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Preface

Human population genomics is an exciting and rapidly changing field. Over the past
decade, there has been a deluge of genetic variation data from the entire genome of
individuals from many populations. These data have allowed us an unprecedented
look at human history and how natural selection has impacted humans during this
journey. Simultaneously, there have been increased efforts to determine how genetic
variation affects complex traits in humans. Due to technological and methodological
advances, progress has been made at determining the architecture of complex traits.

Because the field is so rapidly evolving, it can become difficult for newcomers
to gain footing in the morass of technical concepts of population genetics, complex
trait genetics, and data analysis. This is unfortunate as human population genomics
brings together researchers from disparate areas of expertise, including computer
science, statistics, medicine, genetics, evolution, and anthropology.

This book represents our modest attempt to make the highly technical and
contemporary aspects of the field of human population genomics more accessible to
researchers in all these groups. We wanted to start with the basics, but then include
more advanced and current research. Thus, we hope that this book can serve as a
gateway to modern human population genetics research for those new to the field.
We hope that seasoned practitioners will also find it as a useful reference on their
shelf.

The book has three parts. The first part provides an introduction to essential
concepts in population genetics. These chapters will be useful for learning some of
the more arcane, but important, concepts in population genetics, which are relevant
for any organism. The second part covers the genetics of complex traits in humans.
The third part of the book focuses on applying these techniques and concepts to
genetic variation data to learn about demographic history and natural selection in
humans.

In Chap. 1, Wakeley provides an introduction to one of the most useful tools in
population genetics, the coalescent. The coalescent is used ubiquitously throughout
population genetics, and an understanding of it will help develop intuition about
how evolutionary forces impact genetic variation. In Chap. 2, Slatkin provides
a discussion of linkage disequilibrium. While linkage disequilibrium may have
originally been an esoteric theoretical topic with little practical value, it has become
an essential phenomenon for associating genetic variation with complex traits. In
Chap. 3, Skoglund and colleagues discuss tools used to measure and quantify human
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viii Preface

population structure. While understanding human population structure is valuable in
itself, it is vital to properly design association studies for complex traits. In Chap.
4, Enard provides an introduction to natural selection in humans and contemporary
statistical methods used to detect positive selection.

Chapters 5–7 discuss medical genetic and association studies between genetic
variants and complex traits. In Chap. 5, Graff and Witte discuss statistical methods
used to associate genetic variants with complex phenotypes. This chapter provides
an introduction to genome-wide association studies (GWAS) which have become a
mainstay in human genetics. In Chap. 6, Thompson describes an exciting approach
of using identity by descent (IBD) mapping for implicating genetic variants in
disease risk. In Chap. 7, Voight provides a summary of some of the lessons that
the human genetics community has learned from the early GWAS.

Lastly, Chaps. 8 and 9 provide an overview of human evolutionary genetics.
In Chap. 8, Wall summarizes what we have learned about human history for the
analysis of genome-wide genetic variation data. In Chap. 9, Emery and Akey
provide an overview of what we have learned about how natural selection has shaped
genetic variation across the human genome. They discuss some specific examples
of human adaptations and what these selection scans tell us about human evolution.

We wish to thank the authors of these chapters as well as the editors at Springer
for their continued patience with us. This project took nearly a decade to complete,
and we are grateful for their support and helping us eventually complete the book.

Los Angeles, CA Kirk E. Lohmueller
Berkeley, CA Rasmus Nielsen
May 2020
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Population Genetic Theory



1Coalescent Models

John Wakeley

Abstract

The standard neutral coalescent model and its extensions to include changes
in population size over time and population structure are reviewed. Gene
genealogies are shown to provide the hidden structure behind patterns of genetic
variation. Expressions for expected levels of genetic variation are presented and
explained, and tests of the standard neutral model based on the frequencies of
mutations at single-nucleotide sites (aka “site frequencies”) are outlined. Several
examples of deviations from the standard model are discussed, and their effects
on expected site frequencies are illustrated. Some attention is given to the fact
that coalescent theory has not fully grappled with the existence of underlying
population pedigrees.

1.1 Aims and Clarifications

The goal of the coalescent theory is the same as that of population genetics,
namely, to understand the forces which produce and maintain variation. The models
presented in this chapter support this endeavor. They are abstract and idealized tools
applicable to many different kinds of organisms or species. Due to the persistence of
racism, studies of human diversity call for a great deal of sensitivity. It is not enough
just to agree with Hochman (2019) that we have “changed the topic from ‘race’ to
‘population.’” We have to clarify that we are not just switching words. Rather, if
“race” is used to refer to a group of people, that group is not a “population” in the
population-genetic sense.

J. Wakeley (�)
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
e-mail: wakeley@fas.harvard.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
K. E. Lohmueller, R. Nielsen (eds.), Human Population Genomics,
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4 J. Wakeley

Winther et al. (2015) discuss three common uses of “population”: in mathemat-
ical models, in the laboratory, and in the wild. The populations in this chapter are
of the first kind. They are theoretical constructs to be applied for the sake of better
understanding. Their application may lead either to further advances in modeling or
to new hypotheses about populations of actual organisms including ourselves. The
framework is statistical and involves sampling from populations. It should be borne
in mind that “the sample” in what follows means genetic data taken from a number
of individuals.

As a matter of perspective, it is important to recognize the surprising overall
truth about human genetic variation—that there is very little of it compared to what
is found in most species (Leffler et al. 2012). Further, the degree of substructure
among humans is remarkably low (Rosenberg et al. 2005). As a first approximation,
it is not uncommon or unreasonable to compare global patterns of human genetic
variation to the predictions for a single, well-mixed population.

1.2 Introduction: Gene Genealogies Within a Population
or Species

Population-genetic datasets, with their typically complex and interesting patterns
of polymorphism among the DNA sequences, haplotypes or genotypes in the
sample, are the result of an equally complex and interesting set of ancestral genetic
processes. Each single-nucleotide polymorphism (SNP) reflects the specific patterns
of descent from the ancestors of the sample and the mutation(s) at that nucleotide
site during genetic transmission. Patterns of descent from ancestors are influenced
by the random processes of genetic transmission and a host of demographic
processes which may include natural selection, population growth, and population
structure. The data consist only of patterns of polymorphism, and the challenge is
to use these to make whatever inferences we can about the underlying processes.

Forgetting mutations for the moment, the term gene genealogy refers to the
pattern of genetic ancestry among the members of a sample at a single-nucleotide
site or a genetic locus made up of a non-recombining sequence of sites. If there is
intra-locus recombination, then gene genealogies at different sites may be different
(see Chap. 2). In this chapter, gene genealogies are considered without intra-locus
recombination. Under mild restrictions on the sample size, the population size, and
the demography of the species, gene genealogies may be depicted accurately as
rooted, bifurcating trees, with the samples at the tips and the most recent common
ancestor, or MRCA, of the sample at the root. The branches represent the genetic
lineages ancestral to the sample.

Figure 1.1 shows a hypothetical dataset and a corresponding gene genealogy. For
a real dataset, the gene genealogy would be unknown, but it is clear from Fig. 1.1
that the structure of the gene genealogy is a very strong determinant of the patterns
of mutations (e.g., the frequencies) in the sample. Fig. 1.1 depicts the simple case in
which every mutation in the ancestry of the sample occurs at a different nucleotide

http://dx.doi.org/10.1007/978-3-030-61646-5_2
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Fig. 1.1 A hypothetical gene genealogy of n = 4 sequences from the standard neutral coalescent
model without recombination and assuming infinite-sites mutation. The coalescent intervals T2,
T3, and T4 are drawn in proportion to their expected values. Hypothetical DNA sequence data (or
haplotypes) are coded such that the ancestral base at each site is denoted 0 and the mutant base is
denoted 1

site. Thus, each dot (mutation) on the tree in Fig. 1.1 corresponds to exactly one
SNP.

It is due to their position as intermediaries between patterns of polymorphism and
population-level demographic processes that gene genealogies became important
objects of study in the early 1980s. Hudson (1983) and Tajima (1983) initiated
the study of gene genealogies in population genetics, on the stage set previously
by Ewens (1972, 1974) and Watterson (1975). Together, these publications antic-
ipated the current abundance of genetic data and laid the foundations for modern
computational approaches to data analysis, which often make explicit use of gene
genealogies and typically treat them as unknown “nuisance” parameters or hidden
variables.

Work on gene genealogies ushered in a new way of thinking in population
genetics, in which the classical models were turned around and viewed backward in
time (Ewens 1990). The subfield of population genetics that treats gene genealogies
is called a coalescent theory. For reviews, see Hein et al. (2005) and Wakeley (2009).
The word coalescent captures the idea that the ancestral genetic lineages of a sample
are imagined to join together in common ancestors (i.e., they coalesce) as they travel
backward in time. Kingman (1982a, b, c) gave the formal mathematical proof of
the existence of the standard neutral coalescent process, which is the same process
Hudson (1983) and Tajima (1983) considered from a biological point of view.

The fruit of the study of gene genealogies may be seen, for example, in the work
of Li and Durbin (2011), who modeled the distribution of SNPs across the genome
in a sample of two (haploid) human genomes, taking into account the fact that
recombination occurs across the genome. In standard neutral coalescent models, the
shape of this distribution depends on the distribution of pairwise times to common
ancestry across the genome, which in turn depends on the size of the population
in each past generation. Li and Durbin (2011) applied a simulation-based method
of inference, specifically a hidden Markov model (HMM) of times to common
ancestry, to make detailed estimates of past human population sizes. Spence et al.
(2018) review the development of such HMMs following Li and Durbin (2011).

The purpose of this chapter is to provide an intuitive introduction to the
mathematics of coalescent theory. All the basic results of the standard neutral
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model for a single locus without recombination are presented and explained. The
presentation begins with the idea that gene genealogies are embedded within
organismal pedigrees. Although this is not a controversial idea, it is not, in fact,
how gene genealogies are modeled in standard coalescent derivations.

1.2.1 Organismal Pedigrees and Gene Genealogies

Within any sexually reproducing species, such as humans, there exists a pattern of
ancestry and descent which we may call the population pedigree. If it were known,
the population pedigree would be a record of all reproduction events, connecting
parents with their offspring and extending from the distant past to the present day.
It would reflect the movement of individuals across the globe, changes in local
population sizes over time, and events such as the selective sweeps of advantageous
alleles through the population. Like the gene genealogy, the population pedigree
is an unknown but important outcome of the population-level processes which
affect genetic variation. Further, the gene genealogy at a locus without intra-locus
recombination is simply the result of Mendelian segregation within the parts of the
population pedigree relating to the sampled individuals.

The derivations of coalescent theory average over the unknown population
pedigree within each generation, with details depending on the reproduction form
assumed. For example, consider the probability that two gene copies or alleles
at an autosomal locus, obtained by randomly sampling two individuals from the
population without replacement, are descended from a common ancestor (i.e., they
“coalesce”) in the immediately previous generation. This quantity, which we may
call cN following Möhle (1998a) is fundamental in coalescent theory because it sets
the timescale of the coalescent process. Under the diploid, dioecious Wright–Fisher
model (Fisher 1930; Wright 1931) with random mating between the two sexes, we
have

cN = 1

8

(
1

Nf
+ 1

Nm

)

in which Nf and Nm are the numbers of females and males in the population.
In other words, coalescence occurs when the sampled individuals share a female
parent (1/Nf ) or a male parent (1/Nm), and both samples come from that shared
parent (1/4), and they descend from the same copy in that parent (1/2). The first
two probabilities, 1/Nf and 1/Nm, follow from the assumption of random mating,
and the second two probabilities, 1/4 and 1/2, follow from the process of Mendelian
segregation.

In the case that Nf = Nm = N/2, then we have cN = 1/(2N), which is identical
to the result for the diploid, monoecious Wright–Fisher model. Although the details
of the coalescence probability cN depend on the details of reproduction, in general,
cN will depend inversely on the size of the population as it does in this example.
Now, if we apply this same probability in every generation in the past, the number of
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generations back to the common ancestor of the sample is geometrically distributed:

P(g) = cN(1 − cN)g−1. (1.1)

Then on average, looking backward in time, it will take 1/cN generations for
the pair of genetic lineages ancestral to the sample to coalesce. Under the diploid,
monoecious Wright–Fisher model, this would be 2N generations. This is what
sets the timescale of the coalescent process. Time is usually measured in units
proportional to N generations, e.g., 2N in this case of the diploid, monoecious
Wright–Fisher model.

The derivation of Eq. (1.1) is incorrect for two reasons. First, it is exact only
in the diploid, monoecious model if “random mating” includes the possibility of
reproduction by selfing. When there are two sexes or if selfing is not possible,
it is wrong to apply the same probability, cN , in every generation because when
the two lineages ancestral to the sample are in the same individual and they are
distinct, they necessarily descend separately from the two parents. Consequently,
the probability of coalescence in the immediately previous generation is equal to
zero. In spite of this, the geometric distribution is still approximately correct as long
as the population size is large (Möhle 1998b, c), because the two ancestral lineages
will only be in the same individual a small number of times, while the number of
generations back to their coalescence would be large, proportional to N generations
on average.

The second reason has to do with how the population pedigree is treated in the
derivation. Here it is important to recognize that coalescent theory is typically used
to describe patterns of genetic variation across the genome, for example, as in Li and
Durbin (2011) mentioned above. Because this chapter does not treat recombination,
we may imagine a genomic dataset made up of sequences at a number of genetic
loci within which there is no recombination but between which there is either
completely independent assortment, as with different chromosomes, or effectively
independent assortment, as with loci that far enough apart on the same chromosome.
It is conceptually wrong to use results such as Eq. (1.1) because, in averaging over
the process of reproduction, they do not capture the actual patterns of relatedness
among the sampled individuals which are encoded in the population pedigree.

Figure 1.2, which is adapted from Fig. 3 in Wakeley et al. (2016), shows part of
a larger pedigree for the Spanish Habsburg royal family reported in Alvarez et al.
(2009). At a single genetic locus, two sequences sampled from Mary of Portugal
and King Philip II would have zero chance of being descended from a common
ancestral sequence in the immediately previous generation. In the grand-parental
generation, however, the probability of coalescence is a substantial 1/8 due to the
special relatedness of Mary and Philip as double first cousins. Since Mary and Philip
also share one pair of great grandparents, there is a 1/32 chance of coalescence in
the third generation in the past.

These probabilities are calculated by tracing each ancestral lineage back to the
mother or the father of each individual with a 50:50 chance and letting two lineages
coalesce with probability 1/2 whenever they trace back to the same individual. If
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Elizabeth
of Castile

Ferdinand
of Aragon

Mary
of Aragon

Manuel I
of Portugal

King Philip IJoanna I
of Aragon

Isabella
of Portugal

John III
of Portugal

King Charles I

Catherine

Mary
of Portugal

King Philip II

Fig. 1.2 Part of the pedigree of the Spanish Habsburg royal family, extracted from Fig. 1 in
Alvarez et al. (2009) and redrawn

two lineages are in the same individual but are distinct, another uniform random
choice decides which is maternal and which is paternal. Calculations like this have
a long history and numerous uses in human genetics (Ott 1999) and can be used to
compute any probability of interest on arbitrarily complicated pedigrees (Cannings
et al. 1978).

Following these rules, which are just Mendel’s laws viewed backward in time,
also allows for the straightforward simulation of gene genealogies within population
pedigrees. In the particular case of Fig. 1.2, if the genetic ancestry of a large number
of loci were simulated beginning with one sample from Mary of Portugal and one
from King Philip II, the results would show that no loci would have their MCRA in
past generation one, 1/8 of loci would have their MCRA in past generation two, and
1/32 of loci would have their MCRA in past generation three.

The chances of common ancestry in each generation for the pedigree in Fig. 1.2
are markedly different from the predictions of the standard neutral coalescent model,
with its constant probability of coalescence, cN , in every generation. Averaging
over the process of reproduction or equivalently over pedigrees is conceptually
wrong because for any given species, there is in fact just one population pedigree.
Sample ancestries might include relationships like those in Fig. 1.2, which standard
coalescent models ignore. Again, the primary application of coalescent theory
is to model the distribution of genetic variation across the genome within a
sample. As this distribution is the outcome of transmission within a single, fixed
population pedigree, coalescent theory should ideally model the distribution of gene
genealogies in this way too.
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Fortunately, it appears that inferences based on the standard coalescent model
may often involve little error because the process of coalescence on a fixed pedi-
gree is practically indistinguishable from the standard neutral coalescent process
(Wakeley et al. 2012). This result comes from simulations of large well-mixed
populations, so it is important to note that it may not hold for all possible extensions
of coalescent modeling. For example, in those finely divided, structured populations,
often referred to as “meta-populations” (Hanski and Gaggiotti 2004), the sizes of
local subpopulations may be small, and averaging over pedigrees could give highly
inaccurate results.

Standard coalescent models become accurate for large well-mixed populations
because the ancestries of all present-day individuals overlap broadly (Chang 1999;
Rohde et al. 2003). If all ancestors are distinct, then every individual will have
2g pedigree ancestors in generation g in the past. Thus, just 40 generations, or
perhaps 1000 years ago, we should each have more than one trillion ancestors.
However, according to Fig. 1 of Keinan and Clark (2012), the number of people
alive 1000 years ago was only about 100 million. For each of us, our >1012 expected
pedigree ancestors must all map onto 108 actual pedigree ancestors. This causes
a huge degree of overlap of our ancestries. For a Wright–Fisher population of
large constant size N, Chang (1999) found that by 1.77log2N generations ago the
population is divided neatly into two groups: a fraction (~0.7698) who are ancestors
of every present-day individual and a fraction (~0.2302) who have no descendants
today. For perspective, 1.77log2N is roughly 35 generations for a population of size
N = 106 and 47 generations for N = 108.

Roughly speaking, it is because of this broad overlap of pedigree ancestries in
the relatively recent past that coalescent models based on the incorrect assumption
of homogeneity of coalescent probabilities over time actually make reasonable
predictions about the distribution of gene genealogies within fixed population pedi-
grees, at least for large well-mixed populations. Of course, the distribution of gene
genealogies within fixed population pedigrees is not identical to the distribution
of gene genealogies under the standard neutral coalescent. But the differences are
primarily restricted to the past log2N generations, at which point there is a rapid
transition to the type of homogeneous, essentially pedigree-independent behavior
found in the standard model (Wakeley et al. 2012).

Random samples from large well-mixed populations are very unlikely to include
closely related individuals, so the typical effect of the population pedigree is to
bar coalescence in the very recent past. But since log2N generations is much less
than the timescale of the coalescent process, i.e., N generations, the effects of
population pedigrees on gene genealogies will often be negligible. This provides
some justification for the common practice of discarding individuals when high
levels of relatedness are detected in population-genetic data (Rosenberg 2006).
However, it may be preferable to account for recent pedigrees explicitly, particularly
in structured populations (Wilton et al. 2017). In cases where the pedigree itself is
of interest, Ko and Nielsen (2019) describe how it can be estimated from genetic
data.
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1.3 The Standard Neutral Model: The Kingman Coalescent

The standard neutral coalescent model, also called the Kingman coalescent, begins
with single-generation probabilities like cN above and then takes advantage of the
fact that a relatively simple model of the ancestral genetic process for a sample of
size n ≥ 2 holds for many different kinds of reproduction as long as the population
size (N) is large and the sample size n is much smaller than N. Mathematically, this
involves rescaling time so that it is measured in units of 1/cN generations (2N for
the diploid, monoecious Wright–Fisher model) and then taking the limit N → ∞.
The standard coalescent is a backward-time dual process (see Möhle 1999) of the
standard forward-time diffusion model of population genetics, as both models use
this procedure of rescaling time and taking the limit N → ∞ (Ewens 2004).

Kingman assumed a general family of haploid models of reproduction introduced
by Cannings (1974) which includes the diploid, monoecious Wright–Fisher model.
By studying all possible events in the immediate ancestry of a sample of size
n, Kingman found—see Eq. 4.3 in Kingman (1982a)—that the most likely event
is a coalescent event between a pair of lineages. Considering all possible pairs
of lineages and averaging over the process of reproduction, the probability of a
coalescent event is

(
n

2

)
σ 2

N
+ O

(
1

N2

)
(1.2)

where n is the sample size, σ 2 is the variance of the number of offspring of a single

(haploid) individual under the model or reproduction, and

(
n

2

)
=n(n − 1)/2 is the

number of possible pairs of lineages. Equation (1.2) is written with large populations
in mind. The exact probability is not captured entirely by the first term; O(1/N2)
represents all remaining terms in a power series expansion of the coalescence
probability, the largest of which is proportional to 1/N2. The other possible events,
which involve more than two ancestral lineages coalescing in a single generation,
have probabilities proportional to1/N2 or smaller. As N → ∞, all events and terms
of order 1/N2 or smaller become negligible compared to the first term in Eq. (1.2).

Like the standard diffusion model, the standard coalescent process is a limiting
model which is meant to capture the essential behavior of large populations. Its
timescale is set by the probability of coalescence for a sample of size two. When
time is rescaled in Eq. (1.1), so that it is measured in units of 1/cN generations
(which is, again, proportional to N generations) and then the limit N → ∞ is taken,
the geometric distribution P(g) converges to an exponential distribution f (t) = e−t.
Thus, on the new timescale, coalescence occurs with a rate equal to 1 between the
two ancestral lineages. Similarly, using the probability in Eq. (1.2) for a sample of
arbitrary size n, the rate of coalescence becomes equal to n(n − 1)/2. That is, each
of the n(n − 1)/2 pairs of lineages coalesces with a rate equal to 1 independently in
the coalescent limit.
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When the Kingman coalescent is the limiting ancestral process, it is useful to
refer to the coalescent effective population size Ne (Sjödin et al. 2005), which is
given by N/σ 2 in Kingman’s derivation from the general Cannings’ model, by the
familiar 2N in the diploid Wright–Fisher model, under both the monoecious model
and the dioecious model with equal numbers of males and females, and by 1/cN in
general.

Note that the statement N → ∞ does not refer to changes in the size of the
population. The population size N is assumed to be constant over time in the
standard neutral coalescent model (later, one may relax this assumption). The limit
simply means that we consider a series of such (constant-size) populations, with the
aim of identifying the dominant behavior of the ancestral process when N is very
large.

The standard neutral coalescent has been shown to be robust to many deviations
from Kingman’s initial assumptions (Möhle 1998a). It applies when generations
are overlapping and to populations of diploid, biparental organisms. The latter case
requires mathematical formalism beyond what Kingman used. This was developed
in a pair of papers by Möhle which treated partial selfing (Möhle 1998b) and
diploid, biparental inheritance (Möhle 1998c). In all these cases, the derivation of
the coalescent begins with the description of an expected, single-generation process,
which is the average over all possible outcomes of reproduction or over the pedigree.

1.3.1 The Sampling Structure of Coalescent Gene Genealogies

The end product of these calculations is a continuous-time model of the ancestral
genetic process which begins with the n genetic lineages of the present-day sample
and proceeds back into the past. Each pair of lineages coalesces independently with
a rate equal to one, so that the total rate is i(i − 1)/2 when there are i ancestral
lineages. Again, i(i − 1)/2 is the total number of pairs of lineages that can coalesce.
Thus, the total rate of coalescence is higher when there are more lineages available
to coalesce with each other. Coalescent events occur between randomly chosen pairs
of lineages at randomly (exponentially) distributed times. The process is stopped
when the last two ancestral lineages coalesce into a single lineage, the MRCA of
the sample.

One run of this process produces a random-joining tree with associated branch
lengths determined by the series of exponentially distributed coalescence times,
which is taken to represent a single gene genealogy sampled from the distribution
of all possible gene genealogies under the model. Multiple independent runs are
used to represent collections of gene genealogies at multiple unlinked or effectively
unlinked loci. Gene genealogies vary quite dramatically, in both branching structure
and coalescence times (reflected in the heights of the genealogies). This is shown
in Fig. 1.3 which displays ten randomly generated gene genealogies for a sample of
size n = 20 under the standard neutral coalescent. A key purpose of coalescent
theory is to model variation in gene genealogies, as in Fig. 1.3, reflecting the
randomness of the evolutionary process.
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Fig. 1.3 Ten independently generated gene genealogies for a sample of size n = 20, produced
using a Mathematica Demonstrations Project “Coalescent Gene Genealogies” written by John
Hawks

The standard neutral coalescent provides a prior distribution of gene genealogies
which can be invoked (logically before a sample is taken) to make predictions about
expected patterns of genetic variation or for purposes of statistical inference from
data. For example, Huff et al. (2010) used a simple result from coalescent theory,
due to Tajima (1983), to identify loci in a pair of human genomes that had twice the
average coalescence time of randomly chosen loci, and employed these older loci to
make inferences about ancient human effective population sizes. General methods
of statistical inference for larger samples, such as those mentioned in Sect. 1.4.3,
treat gene genealogies as missing data and average over them using the coalescent
prior.

1.3.2 Including Mutations in the Coalescent

The lineages of the gene genealogy represent all the opportunity for mutations
in the ancestry of the sample: any polymorphisms in the data must be the result
of mutations that occurred along the branches of the gene-genealogical tree.
Predictions about genetic variation and inferences from genetic data cannot be made
unless mutations are included in the model. Fortunately, this is straightforward in
the standard neutral coalescent. By definition, neutral genetic variation does not
affect the probabilities of reproduction or the distribution of the number of offspring
per individual, so mutation and coalescence can be treated separately. In particular,
conditional on the gene-genealogical tree, mutations occur independently along
each branch.

Because the timescale of coalescence is in units of N generations, each branch
in the tree represents a huge number of opportunities for a mutation to occur. Then,
because the probability of mutation per generation is very small, mutation may be
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modeled quite accurately as a continuous-time Markov process or sometimes simply
as a Poisson counting process. A four-state Markov process is appropriate for a
mutation in DNA, with its four nucleotides. When a Poisson counting process is
used as an approximation, it is also often assumed that at most one mutation can
occur per site. This is known as the infinite-sites (or infinitely-many-sites) mutation
model.

The mutation rate for a genetic locus is typically denoted θ /2, the mutation
parameter θ being proportional to the product of the population size, N, and neutral
mutation rate per generation, u. In general, θ = 2Neu, with θ = 4Nu in the diploid
Wright–Fisher model. Technically, θ is assumed to exist in the limit N → ∞, but
less formally, the model is valid when N is large and u is small. With θ defined
this way, the number of mutations on a branch or branches of total length t follows
a Poisson distribution with expected value tθ /2. The critical feature of the infinite-
sites model is that each mutation creates a unique polymorphic site. Thus, for a
given nucleotide site in the genome, at most, one mutation can have occurred in the
history of the sample. This chapter will focus exclusively on this mutation model,
which is due in this form (i.e., without recombination) to Watterson (1975). The
infinite-sites model is a reasonable starting approximation for human autosomal
genetic diversity, because only about 1/1000 nucleotide sites are polymorphic when
two human genomes are compared (Cargill et al. 1999; Stephens et al. 2001) and
only about 1/500 SNPs show more than two bases segregating (Hodgkinson and
Eyre-Walker 2010).

A large number of four-state models have been put forward to represent DNA
mutations, the HKY85 model being one of the most commonly used (Hasegawa et
al. 1985). Models of “stepwise” mutation have also been added to the coalescent
in order to account for variation in repeat sequences, such as microsatellite loci
(Valdes et al. 1993). In general, mutation is a time-inhomogeneous process and
must be modeled separately along each branch, forward in time starting from the
MRCA or root of the tree. A number of simpler, “parent-independent” mutation
models have been employed as approximations; for example, see Stephens and
Donnelly (2003) and Fearnhead (2006). The infinite-sites model considered here
and the infinite-alleles model used by Ewens (1972) are special cases of parent-
independent mutation.

1.4 Fundamental Predictions for Single Loci inWell-Mixed
Populations

The mathematical convenience of the standard neutral coalescent, the ease with
which it may be applied, and all of the detailed predictions one can make using
it follow from three key properties of standard neutral gene genealogies:

• The branching structure of a coalescent tree is determined by randomly joining
pairs of ancestral lineages until the MRCA is reached
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• The time during which there are i lineages ancestral to the sample, denoted Ti,
follows an exponential distribution with parameter i(i − 1)/2

• Ti and Tj are statistically independent for i �= j

For reference, the gene genealogy in Fig. 1.1 is drawn with the lengths of coa-
lescent intervals T2, T3, and T4 equal to their expected values from the exponential
distribution, E[Ti] = 2/(i(i − 1)). In the case of parent-independent mutation, such
as in the infinite-sites model considered here, we may include a fourth property:

• Mutations occur with rate θ /2 along each branch of the coalescent tree

Then, conditional on the tree, the number of mutations over a length t of the tree
follows a Poisson distribution with parameter tθ /2. For example, the 11 mutations
on the gene genealogy in Fig. 1.1 are exactly the number expected if θ = 6 because
the total length of the gene genealogy in Fig. 1.1 is 11/3 (see E[TTotal] below).

1.4.1 The Size and Shape of a Gene Genealogy

Considering just the gene genealogy, without mutations, a great deal can be gleaned
from the first three properties listed above. Because lineages always coalesce in
pairs in the standard neutral coalescent, every gene genealogy includes exactly n− 1
coalescent events. Let TMRCA represent the time to the most recent common ancestor
of the sample and let TTotal represent the total length of the gene genealogy, or the
sum of the lengths of all the branches in the tree. These two measures have been used
extensively to characterize the sampling properties of gene genealogies. Knowledge
of TMRCA may be of direct biological interest, while knowledge of TTotal is important
because TTotal quantifies the total opportunity for mutations to occur in the ancestry
of the sample.

From their definitions, TMRCA is simply the sum of the individual times Ti, or

TMRCA =
n∑

i=2

Ti

and TTotal is obtained similarly, except that each time is weighted by the number of
lineages that existed during the interval, so that

TTotal =
n∑

i=2

iTi

The n − 1 times, Tn, Tn − 2, . . . , T2, are called coalescence intervals here to avoid
confusion with TMRCA, which is often referred to as the coalescence time.

Using the properties of the exponential distribution, namely, that E[Ti] = 2/
(i(i − 1)) and Var[Ti] = 4/(i(i − 1))2 and the fact that the n − 1 coalescent intervals
are statistically independent, so that Cov[Ti,Tj] = 0 for i �= j, one obtains the
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fundamental predictions about the time to the most recent common ancestor,

E [TMRCA] =
n∑

i=2

2

i (i − 1)
= 2

(
1 − 1

n

)
≈ 2

and

Var [TMRCA] =
n∑

i=2

(
2

i (i − 1)

)2

≈ 4

3

(
π2 − 9

)

in which the approximations are for large n. Recall that time here is measured in
units of Ne generations, so that 2 in the first equation above corresponds to 4N
generation in the diploid Wright–Fisher model. The significance of this equation is
that TMRCA does not grow indefinitely with increasing sample size n, but converges
to a constant value. This is because when i is large, Ti tends to be extremely
short. For example, E[T100] = 0.0002, whereas E[T2] = 1. Again, the coalescence
intervals in Fig. 1.1 are drawn to scale according to their expected values: [T2] = 1,
E[T3] = 1/3, and E[T4] = 1/6.

Even if the sample size is large, the statistical properties of gene genealogies are
strongly affected by a relatively small number of coalescent intervals, those deep
in the past for which the number of ancestral lineages, i, is small. It is in large part
because of this that inferences based on genetic variation at a single locus tend to be
poor. For example, note that Var[TMRCA] does not decrease to zero as n increases
but converges to a constant value (~1.16). Increasing the sample size n in population
genetics does not induce the kinds of “law of large numbers” behaviors one finds in
standard statistical scenarios where samples are independent.

For the total length of the gene genealogy, one finds

E [TTotal] = 2
n−1∑
i=1

1

i
≈ 2 (ln n + γ )

in which γ = 0.577216 is Euler’s constant, and

Var [TTotal] = 4
n−1∑
i=1

1

i2
≈ 2π2

3

Again, the approximations are for large n. In this case, there is a somewhat greater
effect of increasing the sample size n, but the effect is weak. For example, the
coefficient of variation of TTotal—defined as the standard deviation divided by the
mean—does tend to zero as n tends to infinity, but it decreases very slowly, in
proportion to one over the natural logarithm of n.

It is possible to obtain explicit expressions for the full distributions of TMRCA
and TTotal and also for measures of genetic variation such as S in the next section,
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but the expressions are cumbersome. Interested readers should consult the review
by Tavaré (1984) or the textbooks by Hein et al. (2005) and Wakeley (2009).

1.4.2 Levels and Patterns of Genetic Variation

The introduction of the coalescent was revolutionary in population genetics because
it provided a way to compute the probability of a dataset. This probability,
also known as the likelihood, is the foundation of rigorous statistical inference.
Population-genetic data are complicated, with nested patterns of variation among
subsets of the sample as in Fig. 1.1, and no general analytical results are available
for the likelihood. Inference has proceeded by the numerical computation of
likelihoods, using simulations to sample gene genealogies from the coalescent prior
distribution. Even this is quite complicated due to the enormity of the sample space
of gene genealogies.

Two ways of accounting for the unknown gene genealogy were developed in
the 1990s: importance sampling and Markov chain Monte Carlo (MCMC). If we
knew the order of mutation events and coalescent events, as in Fig. 1.1, but not
the times, we could compute the likelihood by multiplying the probabilities of the
ordered events. For example, under the infinite-sites model, all likelihoods include
the familiar probability of identity by descent, 1/(θ + 1), originally due to Malécot
(1946), because for all gene genealogies, the final event is that two ancestral lineages
coalesce at the MRCA before either of them mutates. Importance-sampling methods
average these products of probabilities over possible orderings of events (Griffiths
and Tavaré 1994, 1996; Stephens and Donnelly 2000; Wu 2010). Alternatively, if
we knew the tree structure and the coalescence times, we could model the process
of mutation along the branches of the tree in computing the likelihood. MCMC
methods do this and average over the underlying trees and times (Kuhner et al.
1995; Kuhner 2006; Beerli 2006; Hey and Nielsen 2004, 2007; Drummond et al.
2012).

There has been a growing trend to make inferences based on “summary
statistics” rather than the full data, often within the framework of approximate
Bayesian computation (Beaumont 2010; Alvarado-Serrano and Hickerson 2016).
The summary-statistic approach to inference reduces the dimensionality of the data,
ideally to a small set of simpler measures of genetic variation which are highly
informative with regard to a set of parameters or phenomena of interest. As with
importance sampling and MCMC, summary-statistic approaches use coalescent
models to average over gene genealogies. Coalescent theory is also used to make
predictions about summary statistics, a number of which (e.g., heterozygosity) have
also been important historically in population genetics.

Three kinds of summary statistics have been well studied in a variety of settings.
These are segregating sites, average pairwise differences, and site frequencies,
which are defined as follows for a sample from a single population. The number
of segregating sites, S, is the number of polymorphisms, e.g., SNPs in a dataset
of DNA sequences. The average number of pairwise differences, which is denoted
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π , is found by comparing each sampled sequence with every other, counting the
number of differences between them, and taking the average over all pairs. The site
frequencies, ξ i, are obtained by counting the number of SNPs in the data at which
the mutant base is found in i copies in the sample, for i from 1 to n− 1. The ancestral
state at each SNP is generally ascertained as the state in a sequence from a closely
related species. If this information is not available or is unreliable, site frequencies
just count the less frequent base, so that 1 ≤ i ≤ n/2.

Under the infinite-sites model, the number of segregating sites is equal to the
number of mutations on the coalescent tree. Then, by conditioning on TTotal, one
obtains

E [S] = θ

n−1∑
i=1

1

i

and

Var [S] = θ

n−1∑
i=1

1

i
+ θ2

n−1∑
i=1

1

i2

(Watterson 1975). The properties of S are similar to the properties of TTotal. In
particular, the expected number of segregating sites increases very slowly—like lnn
as more and more sequences are sampled. Further, the quality of estimates of θ

based on S improves rather slowly with increasing sample size, again like 1/ ln n
rather than the usual 1/n that holds in standard statistical applications, because the
samples are not independent due to their shared gene genealogy.

For the average number of pairwise sequence differences, one obtains

E [π] = θ,

which follows directly from E[S] because the marginal expectation for each pair of
sequences in a sample is identical to the expectation for a single pair. Further,

Var [π] = n + 1

3 (n − 1)
θ + 2

(
n2 + n + 3

)
9n (n − 1)

θ2

(Tajima 1983). Estimates of θ based on π are unbiased but inconsistent in the
statistical sense because Var[π] does not decrease to zero as the sample size n tends
to infinity. This is due to the fact that the ancestries of different pairs of sequences in
the sample share many of the same branches of the gene genealogy, causing some
mutations to be counted more than once in the computation of the average number
of pairwise differences π .

Beyond the general statement that population-genetic samples are not indepen-
dent due to the underlying gene genealogy, the relatively poor statistical properties
of estimates of θ are further explained by the probabilistic structure of gene
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genealogies. For example, Rauch and Bar-Yam (2004) studied the distribution of the
genetic “uniqueness” of a sample, defined as the length of the branch connecting that
sample to the rest of the gene genealogy. This distribution has an extremely long tail
because there is a chance the (n + 1)th sample will establish a new MRCA and thus
be markedly unique. Forward in time, the loss of such markedly unique lineages
causes neutral substitutions to accumulate in (non-Poisson) bursts (Watterson 1982;
Pfaffelhuber and Wakolbinger 2005). Greater statistical power to estimate θ may be
achieved by sampling more loci rather than increasing the sample size at a single
locus (Pluzhnikov and Donnelly 1996; Felsenstein 2006).

Predictions about site frequencies are obtained by considering mutations that
occur on branches in the coalescent tree that have i descendants in the sample. Fu
(1995) derived expressions for the expected values, variances, and covariances of
the site-frequency counts. Here, we will focus on the expected values, which are

E [ξi ] = θ

i

for i from 1 to n− 1. This simple relationship, for a sample of size n= 20, is graphed
as a “site-frequency spectrum” in Fig. 1.4a, which means that site frequencies are
plotted as expected proportions of all segregating sites. Figure 1.4b–d displays a
range of site-frequency spectra for three different models discussed in Sect. 1.5.
When depicted in this way, as expected proportions, the site-frequency spectrum
gives the probability of observing each type of polymorphism at a randomly chosen
SNP.

If the ancestral states at the sites of SNPs are not known, it is only possible to
discern the “folded” site-frequency patterns, which have expected values

E [ηi] = θ

(
1

i
+ 1

n − i

)
1

δi,n−i

for 1 ≤ i ≤ n/2. In the last term, δi, n − i, is the Kronecker delta, so this term is a
correction for the case i = n − i, in which only one kind of SNP contributes to
ηi. The full site-frequency spectrum is referred to as the “unfolded” site-frequency
spectrum.

None of these three measures of genetic variation depends on how variation
is arrayed along the sequences in the sample. All of them can be computed
by considering each SNP in isolation from all other SNPs. Patterns of linkage
disequilibrium between sites and the process of recombination that produces them
are the subject of Chap. 2. Although here our focus is on single loci without
recombination, it is important to note that all of the expected values given above hold
regardless of recombination. This is because the marginal coalescent process at each
site is the same as the corresponding single-locus coalescent process. However, the
variances given above hold only for single loci without recombination. Generally
speaking, recombination acts to decrease these variances because it introduces a
level of independence among sites.

http://dx.doi.org/10.1007/978-3-030-61646-5_2
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Fig. 1.4 Four site-frequency spectra illustrating the range of possible predictions of neutral
population-genetic models. For a given SNP, the mutant count is the number of sequences that carry
the mutant base out of a total sample of n= 20 sequences. The heights of bars give the proportion of
all SNPs that have each mutant count. The four panels show results for samples from (a) a standard
neutral population, (b) a population that recently grew 100-fold, (c) two isolated populations, and
(d) a single deme in a subdivided population with migration. Details and parameters for each case
are given in the text. The values in panels (b) and (c) were computed using Eqs. (20) and (22) in
Wakeley and Hey (1997). The values in panel (d) were generated using simulations described in
Wakeley (1999)

1.4.3 Tests of the Standard Neutral Coalescent Based on Site
Frequencies

Section 1.5 introduces deviations from the simple Kingman coalescent, motivated
by the desire to apply coalescent models more broadly. It is also of interest to test
the simple Kingman coalescent, and this can be done using the three measures of
genetic variation considered in the previous section. A large number of test statistics
have been proposed, modeled after Tajima’s (1989) initial suggestion of the statistic

D = π − S/a1√
Var (π − S/a1)

,

in which

a1 =
n−1∑
i=1

1

i
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The numerator of Tajima’s D compares two unbiased estimates of θ , one from
pairwise differences and one from segregating sites. Tajima’s D thus has an expected
value very nearly equal to zero (it is not exactly equal to zero because of the
denominator), and significant deviations either in the positive or the negative
direction warrant rejection of the standard neutral coalescent. The denominator is a
normalization factor which decreases the sensitivity of the sample size and requires
an estimate of the variance of the numerator, typically made from the same data.

Because S and π are linear functions of the site frequencies (Tajima 1997),
Tajima’s D may be viewed as a measure of goodness-of-fit of the prediction
displayed in Fig. 1.4a (for n = 20). Actually, Tajima’s D depends only on the
folded site-frequency spectrum because sites that contribute to ξ i and ξn − i are
weighted equally, proportional to i(n − i), in the calculation of π , and all sites are
weighted equally in the calculation of S. Deviations in the positive direction indicate
an excess of middle-frequency SNPs (i around n/2) and deviations in the negative
direction indicate either an excess of low-frequency SNPs (i close to 1) or an excess
of high-frequency SNPs (i close to n − 1). Tajima’s D is sometimes portrayed
as a test for selection (see Chap. 4), but in fact, it is sensitive to a whole battery
of nonselective deviations from the standard neutral model, including population
structure and changes in population size over time.

The distribution of Tajima’s D takes on a variety of shapes depending on the
sample size, the mutation rate, and other factors. Because it is computed from the
site-frequency counts, ξ i, Tajima’s D is a discrete random variable. Figure 1.5 shows
two distributions of Tajima’s D, illustrating the range of shapes it can assume. Figure
1.5a is for a sample of n = 20 at a hypothetical locus with θ = 10 under the standard
neutral coalescent, and Fig. 1.5b is for the same number of sequences all sampled
from a single subpopulation in the migration model discussed in Sect. 1.5.2.

Fu and Li (1993) and Fu (1997) introduced a large number of related statistics,
including many that test deviations from the folded site-frequency spectrum and
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Fig. 1.5 (a) The distribution of Tajima’s D among 106 data sets simulated under the standard
neutral coalescent model at a hypothetical locus with n = 20 and = 10. (b) The corresponding
distribution for a sample from a single subpopulation under the island migration model with M = 1
and with other parameters set so the expected number of pairwise differences in the sample is equal
to 10, as it is in (a). The data in (a) were generated using the algorithm in Hudson (1990), and the
data in (b) were generated using the algorithm in Wakeley (1999)

http://dx.doi.org/10.1007/978-3-030-61646-5_4
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others that test deviations from the unfolded site-frequency spectrum. Simonsen et
al. (1995) outlined a method of assessing the significance of such statistics which
accounts for the fact that P-values depend on an estimate of θ from the data. Fay
and Wu (2000) adapted one of Fu’s (1997) statistics as a test specifically for positive
selection. Their statistic, H, is sensitive to an excess of high-frequency SNPs, and
positive selection is one of a small number of deviations from the standard neutral
model that can cause such an excess. Achaz (2009) advanced the theory of devising
optimal statistics based on site frequencies, and Ferretti et al. (2010) extended
this approach to design optimal statistics for specific deviations from the standard
neutral model. Recently, Sainudiin and Véber (2018) described a way to compute
the likelihood of the full site-frequency spectrum of a sample at a locus without
recombination.

1.5 Extensions of the StandardModel

The strong simplifying assumptions of the standard neutral model—no selection,
constant population size over time, and no population structure—are appropriate
if the aim is to establish a null model to be tested. If one wishes to make more
detailed inferences about a range of biological phenomena, then coalescent models
must be extended to include those phenomena and their key parameters. Many
such extensions have been made, significantly broadening coalescent theory beyond
the standard neutral case. In this section, we will encounter examples of how two
important deviations from the Kingman coalescent, namely, changes in population
size over time and geographic population structure, can affect the site-frequency
spectrum and thus might be detected, for example, using Tajima’s D or related
statistics.

Figure 1.6 displays hypothetical gene genealogies for four different population
models, showing how the size and shape of gene genealogies depend on the details
of population structure and history. The standard neutral model (Fig. 1.6a), for
which expected site-frequency results are given in Fig. 1.4a, is compared to a
model of population growth (Fig. 1.6b), and two models of population structure:
divergence in isolation (Fig. 1.6c) and subdivision and migration (Fig. 1.6d). These
three types of deviations from the standard model are considered in detail below,
with expected site-frequency results given in the corresponding panels of Fig. 1.4.

A consideration of how natural selection affects site frequencies is taken up in
Chap. 4. Note that in some species, though probably not humans, extreme differ-
ences in offspring numbers among individuals can cause site-frequency patterns
that closely mimic those produced by natural selection. When the variance σ 2 of
the offspring-number distribution is very large, the Kingman coalescent may not
hold. Instead, gene genealogies may include multiple mergers of ancestral genetic
lineages (Möhle and Sagitov 2001). None of the predictions listed in Sect. 1.4 may
hold, and there may be a dramatic excess of high-frequency SNPs; e.g., see Sargsyan
and Wakeley (2008). Strong natural selection induces a very similar phenomena near
the locus at which selection acts (Durrett and Schweinsberg 2004; Etheridge et al.

http://dx.doi.org/10.1007/978-3-030-61646-5_4
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Fig. 1.6 Cartoon depictions of the four types of neutral population-genetic models for which
results for expected site-frequency distributions are given in Fig. 1.4. Shaded blocks represent
populations over time, with the present at the bottom and the past at the top and with widths
in proportion to relative population size. Hypothetical gene genealogies are shown within these
populations, constrained by their structure, and with coalescent times in roughly inverse proportion
to relative population sizes. The four panels show (a) a standard neutral population of constant size,
(b) a population that recently grew tenfold, (c) two isolated populations descended from a common
ancestral population, and (d) a subdivided population in which migration can occur among five
local populations

2006) similarly because a few individuals leave very many descendants in a short
period of time.

1.5.1 Fluctuations in Population Size over Time

Due to the inverse dependence of the probability of coalescence on N, for example,
in Eq. (1.2), changes in population size lead to changes in the rate of coalescence.
Comparing two populations which are otherwise identical, if one population is twice
the size of the other, then its gene genealogies will be twice as long on average. In
a single population, with time rescaled by the current population size, then at a time
in the past when the population size was twice as large, the rate of coalescence will
be half what it is now. To make this precise, under arbitrary changes in population
size, if λ(t) is the size of the population at time t relative to what it is today, then by
defining

Λ(t) =
∫ t

0

1

λ(s)
ds
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the occurrence of a coalescent event in the interval (0, t) may be modeled using the
first two of the key properties listed in Sect. 1.4 but over the corresponding, rescaled
interval (0, �(t)) (Donnelly and Tavaré 1995).

Equivalently, one can imagine taking a standard gene genealogy, such as the one
in Fig. 1.1, then stretching or shrinking its coalescent intervals accordingly, so that
they become proportionately longer (or, respectively, shorter) when the population
size was larger (respectively, shorter). Alternatively, one may model changes in
population size as proportional changes in the mutation parameter θ over time.
Based on these considerations, for simple types of changes in population size, it
is possible to obtain analytical expressions for some quantities of interest (Slatkin
and Hudson 1991; Polanski and Kimmel 2003; Wakeley and Hey 1997).

Figure 1.4b shows the expected site-frequency spectrum for a sample of size
n = 20 from a population which was much smaller in the past than it is now.
Specifically, the population grew 100-fold instantaneously at time t = 0.2 in the
past, measured on the coalescent timescale based on the current population size. In
terms of the scaled mutation rate, between the present and time t = 0.2, the mutation
parameter was θ = 1, while before time t = 0.2 in the past, the mutation parameter
was θ = 0.01.

In this situation, only a small fraction of mutations will occur during the more
ancient coalescent intervals of the gene genealogy. These are the mutations that
would have produced high-frequency SNPs. For example, on average for n = 20,
there will be seven ancestral genetic lineages at time t = 0.2. These more ancient
intervals, with from seven down to two ancestral genetic lineages, are the only ones
in which mutations can create SNPs contributing to site frequencies ξ14 through
ξ19. Figure 1.6b shows a similar scenario for the gene genealogy of a sample of size
n = 6, illustrating the dramatic compression of ancient coalescent intervals under
population growth.

Because more ancient mutations are disproportionately the source of high-
frequency SNPs, population growth causes an excess of low-frequency SNPs (Fig.
1.4b) compared to the standard neutral coalescent (Fig. 1.4a). Population decline
causes an excess of high-frequency SNPs (not shown). However, as long as the
branching structure of the gene genealogy is determined by randomly joining
pairs of ancestral lineages, the site-frequency spectrum will always be a convex
decreasing function of the mutant count (Sargsyan and Wakeley 2008). Thus, the
most extreme excess of high-frequency SNPs that population decline or any series
of changes in population size can produce under the coalescent model is a flat site-
frequency spectrum.

1.5.2 Population Subdivision andMigration

The great simplicity of the standard neutral coalescent follows from the exchange-
ability of the genetic lineages ancestral to the sample (Kingman 1982c) which holds
only under neutrality for well-mixed populations. Whenever lineages carry labels,
such as allelic types when there is selection or locations when there is geographic
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structure, and these labels affect the rates of coalescence, then the lineages are
not exchangeable, and modeling gene genealogies become more complicated. In
the case of population subdivision, either with or without migration, the chance
of coalescence is greater for pairs of lineages in the same subpopulation than for
pairs of lineages in different subpopulations. This can only be modeled by explicitly
keeping track of the locations of ancestral lineages as they are followed backward
in time.

Other complications arise because structured populations may contain many
subpopulations, which may be of different sizes and between which any number
of complex patterns of migration might exist. A general model of D subpopulations,
or “demes” as they are often called, would have D2 parameters: D deme sizes and
D(D − 1) migration rates. In addition, it is not clear what sort of simplified limiting
models should be developed for structured populations. Some populations might
comprise a small number of very large demes, while others might comprise a large
number of small demes. It could be that the very idea of demes/subpopulations is
inapplicable, rather than that the population is continuously distributed across its
habitat.

Accordingly, a number of different coalescent models of geographic structure
have been developed—these are reviewed in Hein et al. (2005) and Wakeley
(2009)—and the choice of model must depend on the species being studied. Wright
(1931) introduced the island model of population subdivision with migration, which
has been the source of a great number of other models and methods of data
analysis. Herbots (1997) and Notohara (1990) described the general mathematical
coalescent approach to these discrete-deme models, following Takahata (1988). In
these models, the deme sizes are assumed to be large, like the population size in the
Kingman coalescent (N → ∞). The migration rates are assumed to be small. They
are treated in the same manner that mutation is treated in the limit leading to the
Kingman coalescent.

The resulting structured coalescent model allows the straightforward derivation
of useful expressions concerning genetic variation. For instance, consider a simple
version of the island model in which all D demes are of the same (haploid) size
N, migration between all pairs of demes occurs with the same per-generation
probabilitym, and reproduction occurs by haploid Wright–Fisher sampling. Then, if
πw and πb are the average number of differences between pairs of sequences from
the same deme (i.e., “within”) and the average number of differences between pairs
of sequences from two different demes (i.e., “between”), it can be shown that

E [πw] = θD

and

E [πb] = θD

(
1 + 1

M

)
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where the parameter M = 2Nm is the scaled migration rate. This simple model can
be extended to include other modes of reproduction or diploidy, as in the Kingman
coalescent, by replacing N with Ne in both θ and M.

The expression for E[πw] says that the expected level of genetic variation within
demes is identical to the expected level in a single population of the same total size,
ND. The same is not true of the variance (not shown), which depends inversely
on M. The expression for E[πb] says that the expected level of genetic variation
between demes is increased by an amount inversely proportional to the migration
parameter M. When M is small, the population is expected to contain high levels
of variation, and the difference between πb and πw is expected to be great. This
is the basis of FST as a measure of the degree of population subdivision (Slatkin
1991). It is important to note that the scaled migration rate M may be large, so that
little evidence of subdivision is apparent, even if the per-generation probability of
migration is small.

These results had been known previously (Li 1976; Slatkin 1987; Strobeck 1987),
but the introduction of the structured coalescent greatly facilitated the development
of sophisticated methods of inference for structured populations, akin to those
mentioned in Sect. 1.4.3, where the model is employed to average over gene
genealogies in the computation of the likelihood (de Iorio et al. 2005; Beerli 2006).
Similar methods have been proposed for cases of nonequilibrium migration, in
which two or more populations descend from a single ancestral population (Hey
and Nielsen 2004, 2007; Wilkinson-Herbots 2008; Hey 2010).

Population subdivision can have a dramatic effect on site frequencies. Figure
1.4C shows the site-frequency spectrum for a sample of size n = 20 for a
hypothetical case of hidden population structure. Specifically, the sample contains
n1 = 6 sequences from one population and n2 = 14 from the other population under
the isolation model of Takahata and Nei (1985) in which two populations split from
a common ancestral population at some time in the past and after that exchanged
no migrants. The same mutation rate θ = 1 was used for all three populations, and
the split time was assumed to be t = 1, measured on the coalescent timescale. In
this case, there is a tendency for the gene genealogy to be composed of two sub-
trees with 6 and 14 tips connected by a long internal branch, with mutations on
this branch contributing to ξ6 and ξ14. Figure 1.6c depicts a similar scenario for a
sample of total size six.

Figure 1.4d shows the site-frequency spectrum for a sample of size n = 20 taken
from a single deme in the island model with many demes and a migration rate of
M = 1. Here, in the recent past, ancestral genetic lineages not only coalesce within
the deme from which they were sampled but also migrate to other demes. When
all remaining ancestral lineages are in separate demes, the process of coalescence
is dependent on migration events that bring ancestral lineages together into the
same deme, where they have a chance to coalesce. Both the branching pattern and
the lengths of coalescent intervals differ from those of standard coalescent gene
genealogies. ForM = 1, this results in the slightly U-shaped site-frequency spectrum
shown in Fig. 1.4d.
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We can understand the pattern in Fig. 1.4d by imagining a mixture of patterns like
the one in Fig. 1.4c, depending on the specific outcome of migration and coalescence
in the recent ancestry of the sample. For example, if one ancestral lineage migrates
out of the sampled deme and the other 19 ancestral lineages coalesce within it, then
the gene genealogy will resemble one for which two demes were sampled with
n1 = 1 and n2 = 19. This would cause mutants counts ξ1 and ξ19 to be inflated. Fig.
1.6d shows an analogous scenario for a sample of size six in a five-deme model, in
which the counts ξ2 and ξ4 would be inflated.

Figure 1.5 illustrates that such deviations can be detected using Tajima’s D.
For example, if we adopt the lower 2.5% critical value of −1.803 and the upper
97.5% critical value of 2.001 for n = 20 from Table 2 in Tajima (1989), the one
million pseudo-datasets from the standard neutral coalescent that yielded Fig. 1.5a
reject the null model 2.0% of the time in the negative direction and 1.1% in the
positive direction. In contrast, the pseudo-datasets that yielded Fig. 1.5b, which were
generated under the same kind of many-demes model that gave the site-frequency
spectrum in Fig. 1.4d (but with E[πw] = 10 to allow comparison with Fig. 1.5a)
reject the null model 11.4% of the time in the negative direction and 18.8% in the
positive direction.

1.6 Conclusion: Current Challenges of Big Data

Now is a particularly exciting time in human population genetics. The field is awash
in data, with major efforts such as the Simons Genome Diversity Project (Mallick
et al. 2016), the 1000 Genomes Project (The 1000 Genomes Project Consortium
2015), and the UK Biobank (Bycro et al. 2018) promising that, soon, many millions
of genomes will be available for study. The continued relevance of the models
presented here may be seen in the recent papers by Kelleher et al. (2019) and Speidel
et al. (2019). These present new methods for the population-genetic analysis of very
large numbers of genomes. With the caveat that at the genomic scale, it is crucial
to include recombination (see Chap. 2), parts of the analyses in both Kelleher et al.
(2019) and Speidel et al. (2019) rely on the standard neutral coalescent model. The
aim in both works is to infer the ordered series of mutation events and coalescent
events at loci across the human genome (recall the importance-sampling methods
described in Sect. 1.4.2). In doing so, both works use the techniques of Li and
Stephens (2003), which extend the importance-sampling method of Stephens and
Donnelly (2000) to account for recombination. The results of Kelleher et al. (2019)
and Speidel et al. (2019) provide first-pass estimates of ancient relationships and
associated mutations among humans across the genome (Harris 2019).

The aim of this chapter has been to describe the foundational models of
coalescent theory. They are simplified models which capture the effects of neutral
mutation, reproduction, and genetic transmission in shaping distributions of genetic
diversity. The simplest model, the standard neutral coalescent, assumes a single
well-mixed population of constant size, but extensions to include changes in
population size over time and idealized kinds of population structure were also

http://dx.doi.org/10.1007/978-3-030-61646-5_2
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described. These models aid in the interpretation of genetic data and express our
understanding of how evolutionary forces produce and maintain variation at a single
locus without recombination.
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2Linkage Disequilibrium

Montgomery Slatkin

Abstract

Linkage disequilibrium (LD) is the nonrandom association between alleles at
closely linked loci. LD is created by genetic drift and natural selection, and it
decays exponentially with time at a rate proportional to the recombination rate.
This chapter reviews the theory of LD between pairs of loci and the use of LD
for detecting past episodes of selection and for gene mapping.

2.1 Introduction

Although population genetics largely focuses on one locus at a time, much is to
be learned from considering two or more loci together. The reason is that alleles at
different loci are transmitted together, creating the opportunity for correlations that
reflect their common history. This correlation is important for gene mapping, where
the goal is to identify loci that affect a trait, and when considering the effects of
natural selection. Loci that are selected influence nearby neutral loci. Therefore, the
study of sets of loci together can provide more insight into evolutionary processes
and give additional information about gene action than can be obtained by focusing
on each locus separately.

For simplicity, I will start by presenting results for two loci. Assume that the two
loci are on the same pair of homologous chromosomes. If there are two alleles at
each of the two loci (A/a and B/b), there are four combinations, called haplotypes,
on a chromosome, AB, Ab, aB, and ab. These haplotypes can be thought of as the
four kinds of gametes that can be produced by an individual.
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A population is characterized by the frequencies of the four haplotypes, fAB,
fAb, faB, and fab. Allele frequencies can be recovered from the haplotype frequen-
cies:fA = fAB + fAb, etc. Given the haplotype frequencies, we can determine whether
an allele’s presence in a haplotype is independent of the allele present at the other
locus. If they are independent, then the haplotype frequency is the product of the
allele frequencies. For example, fAB = fAfB. If that is the case, the two loci are
said to be in linkage equilibrium. If not, they are in linkage disequilibrium, often
abbreviated LD. If they are in LD, the extent of LD is quantified by the difference
between the actual haplotype frequency and the frequency expected at linkage
equilibrium:

D = fAB − fAfB. (2.1)

This calculation is illustrated in Fig. 2.1 in a sample of eight chromosomes.
fA = 1/2, fB = 5/8, and fAB = 3/8, which gives D = 1/16.

The quantity D is called the coefficient of linkage disequilibrium. D = 0 implies
there is linkage equilibrium. D can be regarded as a covariance in the allelic state at
the two loci.

Fig. 2.1 Illustration of
haplotype counts in a
hypothetical sample of 8
chromosomes
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Although there are four haplotypes, there is only a single D needed to describe
the extent of LD. That is clear when the relationship between haplotype and allele
frequencies is used. For example, if D is defined by Eq. (2.1), then

fAb − fAfb = fA − fAB − fAfb = fA (1 − fb) − fAB = fAfB − fAB = −D.

It is possible, then, to express all the haplotype frequencies in terms of the allele
frequencies and D:

fAB = fAfB + D

fAb = fAfb − D

faB = fafB − D

fab = fafb + D.

(2.2)

Notice that, if there are more AB haplotypes than expected at linkage equilibrium
(D > 0), there have to be more ab haplotypes and fewer Ab and aB haplotypes.

AlthoughD is defined by Eq. (2.1), there is an equivalent but different expression:

D = fAB − fAfB = fAB − (fAB + fAb) (fAB + faB)

= fAB (1 − fAB − fAb − faB) − fAbfaB = fABfab − faBfAb
(2.3)

Equation (2.2) tells us that, because none of the haplotype frequencies can be
negative, there is a limit on the magnitude of D imposed by the allele frequencies. If
D > 0, D must be no greater than the smaller of fAfb and fafB, and if D < 0, D must
be larger than −fAfB and −fafb. That is,

− min (fafb, fAfB) ≤ D ≤ min (fAfb, fafB) . (2.4)

One question that arises when computing D for different pairs of loci is whether
a particular value is large or small. For example, does D = 0.006 indicate a small
or large amount of LD for a pair of loci? Inequality (2.4) tells us that the answer
depends on the allele frequencies and suggests that it is useful to express D relative
to its maximum or minimum possible value. We can do this by defining

D′ = D
min(fAfb,fafB)

if D > 0

= D
− min(fafb,fAfB)

if D < 0
(2.5)

which indicates how close D is to its maximum or minimum value (Lewontin 1964).
In the example with D = 0.006, if fA = 0.4 and fB = 0.01, then D

′ = 1, while if
fA = 0.4 and fB = 0.3, then D

′ = 0.0333.
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2.2 Tests of whetherD= 0

The quantity D′ is, as will be seen below, useful for some purposes, but its value
alone does not tell us whether there is statistically significant LD between a pair
of loci, that is, whether the hypothesis that D = 0 can be rejected. Two tests are
commonly used. One is the standard χ2 test of significance for a 2×2 contingency
table whose entries are the numbers of each of the four haplotypes. Closely related
to the χ2 test is the r2 statistic,

r2 = D2

fAfafBfb

(2.6)

which provides another way to quantify the extent of LD. r2 is formally a correlation
coefficient. Although the upper bound of r2 is 1, it does in general not take the value
1 even when D′ = 1. It is convenient to use r2 because, when testing for significance
in the contingency table, χ2 = nr2 where n is the number of haplotypes sampled.
This result follows from the fact that D is the difference between the observed
haplotype frequency and the haplotype frequency expected if alleles at the two loci
are randomly associated. Such a difference arises naturally when doing a χ2 test of
statistical significance in a 2×2 contingency table. When sample sizes are large and
neither allele is rare, the χ2 test is powerful and easy to use. When sample sizes are
small or at least one of the haplotypes is rare (<5 in count), then Fisher’s exact test
is preferable (Weir 1996).

For most practical purposes, D′ and r2 are equally useful, and in real data sets,
their values are highly correlated. One important feature of D′ is that when its value
is 1, at least one of the four haplotype frequencies is 0. That situation is particularly
important because, when a new mutation arises at a previously monomorphic locus,
D′ = 1 with all polymorphic loci on the same chromosome. The single copy of the
new mutant arises on only one genetic background. After this time, D′ between the
mutant and another locus becomes less than 1 only if there is recombination between
the two loci.

2.3 More than Two Alleles per Locus

Describing LD for a pair of biallelic loci is relatively simple because a single quan-
tity D, combined with the allele frequencies, provides a complete characterization.
If there are more than two alleles at either or both loci, more coefficients of LD
are needed, one for the difference between the frequency of each haplotype and the
frequency expected under random association. If the alleles at one locus are A1, A2,
A3 . . . and those at the other are B1, B2, B3 . . . , then

Dij = fAiBj − fAi fBj . (2.7)
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The Dij are not independent because of the requirement that allele frequencies at
each locus sum to 1. If there are n1 alleles at the first locus and n2 at the second,
there are (n1 − 1)(n2 − 1) independent values of the Dij.

The theory of LD for multiple alleles has been important, particularly in the
application to the major histocompatibility complex (MHC) region in humans and
other vertebrates. MHC loci often have dozens and even hundreds of alleles, and
there is abundant LD among most of the loci (Hedrick et al. 1986). Furthermore,
there is evidence of balancing selection which could contribute to the extent of
LD. For genomic data, nearly all single-nucleotide polymorphisms (SNPs) and
insertion/deletion polymorphisms are biallelic, so a single value of D is sufficient.

2.4 More than Two Loci: Haplotype Blocks and the HapMap
Project

When more than two polymorphic loci are analyzed together, as is always the case
with genomic data, the analysis can become quite complicated. There are analogs
of D defined for three or more loci that represent higher-order linkage disequilibria.
For example, with three diallelic loci (A/a, B/b, C/c), the third-order disequilibrium
coefficient is defined to be

DABC = fABC + fADBC + fBDAC + fCDAB − fAfBfC (2.8)

where DAB, DAC, and DBC are the pairwise coefficients of LD defined above
(Geiringer 1944). The higher-order coefficients of LD are analogous to higher-
order interaction terms in the analysis of contingency tables with more than two
dimensions.

These higher-order coefficients are well defined, and their theoretical properties
have been studied extensively, but they are difficult to estimate and interpret. Fur-
thermore, there are many of them because the number of higher-order coefficients
grows as an exponential function of the number of loci. Higher-order coefficients
of LD have been used primarily in the study of the human MHC loci (Robinson
et al. 1991) because there are strong multilocus patterns of LD that are of clinical
significance.

The approach much more commonly taken to analyzing numerous polymorphic
loci is to compute D′ and r2 for all pairs of polymorphic sites. In the human
genome, it is often found that relatively large values of D′ and r2 are found
between sets of closely linked sites (Daly et al. 2001). Sets of closely linked sites
in strong LD are called haplotype blocks, and they have played an important role
in human genetics in the past several years. The discovery that much of the human
genome is made up of haplotype blocks was part of the impetus for the HapMap
project, which had the goal, now achieved, of finding nearly all common SNPs
in several human populations (Consortium 2003, 2005, 2007; HapMap3 2010).
The emphasis on common SNPs, i.e., those with allele frequencies in the range
(0.05, 0.95) was motivated by the hypothesis that alleles in this frequency range are
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largely responsible for the genetic basis of complex inherited diseases. For complex
diseases, such as most cancers, most forms of heart disease, and many psychiatric
disorders and autoimmune diseases, disease risk in close relatives of an affected
individual is higher than the average risk in a population, which strongly suggests
there is a genetic basis, yet the genetic basis is not attributable to single Mendelian
loci.

2.5 Dynamics ofD

The term “linkage disequilibrium” is unfortunate for two reasons. First, it does not
necessarily tell us something about the linkage of two loci. Two loci on different
chromosomes might be in linkage disequilibrium, while two closely linked loci
might be in linkage equilibrium. Second, the term implies that it describes a dynamic
process, but it does not. Instead, D, D

′
, and r2 quantify the relationship between

haplotype and allele frequencies in a population at a given time. We can understand
the dynamics of LD by determining how D changes under the influence of various
forces, including random mating, natural selection, recombination, and genetic
drift.

We will begin with random mating and recombination. We assume that zygotes
are formed by randomly combining haplotypes and that the two loci have a recombi-
nation rate c between them. We also assume the haplotype frequencies in generation
t are fAB, fAb, faB, and fab. We can compute the haplotype frequencies in the next
generation (t + 1) by assuming gametes are randomly combined into genotypes.
Table 2.1 shows the genotypes, the genotype frequencies, and the frequencies of
gametes produced by each genotype. It will be necessary to distinguish haplotypes
of the two parental gametes of doubly heterozygous individuals, meaning those
with genotype AaBb, because the gametes produced depend on whether they
are doubly heterozygous because their parental gametes are AB and ab or Ab
and aB.

Table 2.1 Two-locus
genotypes and their
frequencies in a randomly
mating population, along with
the frequencies of gametes
produced by each genotype

Gametes produced
Genotype Frequency AB Ab aB ab

AB/AB f 2
AB 1 0 0 0

AB/Ab 2fABfAb 1/2 1/2 0 0
AB/aB 2fABfaB 1/2 0 1/2 0
AB/ab 2fABfab (1–c)/2 c/2 c/2 (1–c)/2
Ab/ab f 2

Ab 0 1 0 0
Ab/aB 2fAbfaB c/2 (1–c)/2 (1–c)/2 c/2
Ab/ab 2fAbfab 0 1/2 0 1/2
aB/aB f 2

aB 0 0 1 0
aB/ab 2faBfab 0 0 1/2 1/2
Ab/ab f 2

ab 0 0 0 1
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From Table 2.1, it is straightforward to compute the haplotype frequencies in the
next generation. For example,

fAB (t + 1) = f 2
AB + 2fABfAb (1/2) + 2fABfaB (1/2)

+2fABfab (1 − c) /2 + 2fAbfaB (c/2)

= f 2
AB + fABfAb + fABfaB + fABfab − c (fABfab − fAbfaB)

= fAB − c (fABfab − fAbfaB)

= fAB − cD.
(2.9)

where the last step uses Eq. (2.3).
We conclude that under random mating, haplotype frequencies change each

generation unless D= 0. That is in contrast to what happens at each locus separately.
The Hardy-Weinberg law tells us that random mating does not change allele fre-
quencies. It is also important that the extent of change in the haplotype frequencies
depends on the recombination rate between the two loci. We can find the recursion
equation forD alone by using the fact that fAB(t+ 1) = fA(t+ 1)fB(t + 1) +D(t+ 1),
fA(t + 1) = fA, and fB(t + 1) = fB to obtain

fAfB + D (t + 1) = fAfB + D(t) − cD(t) (2.10)

or

D (t + 1) = (1 − c)D(t). (2.11)

Equation (2.11) tells us that D decreases by a factor of (1–c) after one generation
of random mating in a very large population. Because the decrease is by the same
factor each generation, D decreases exponentially with time from its initial value:

D(t) = (1 − c)tD(0). (2.12)

The rate of decrease is determined by the recombination rate between the two
loci. If c is small, then (1 − c)t ≈ e−ct, and we conclude that D will decrease to
roughly 37% of its initial value after 1/c generations of random mating.

It is important that D does not go to zero after one generation of random mating.
Even between unlinked loci, for which c = 1/2, D decreases only by a factor
of 1/2 each generation. That behavior is in marked contrast to what happens to
genotype frequencies after one generation of random mating. The foundation of
population genetics is that the Hardy–Weinberg (HW) genotype frequencies are
established in one generation of random mating regardless of the initial genotype
frequencies. That D between unlinked loci does not go to zero in a single generation
of random mating is surprising because both HW genotype frequencies and linkage
equilibrium indicate statistical independence. At the HW frequencies, the presence
of an allele on one homologue is independent of the presence of an allele on the
other. At linkage equilibrium, the presence of an allele at one locus in a haplotype
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is independent of the presence of an allele at the other locus. Yet the above results
show that independence between homologues is established in one generation, but
the independence of loci on different chromosomes is established more slowly.

These results can be related to human populations in a way that illustrates the
reason that linkage disequilibrium has become such an important part of human
population genetics. There are approximately 24,000 coding genes in the human
genome, which has a total recombination length of 30 Morgans or 3000 cM
(Lander 2001). Therefore, the average recombination distance between adjacent
coding genes is 1/8 cM or c = 0.00125. If D is initially nonzero between adjacent
coding genes, then D will decrease to 37% of its initial value in 1/0.00125 = 800
generations. The generation time in humans is about 25 years, so 800 generations
represent about 20,000 years. In other words, the extent of linkage disequilibrium
between adjacent coding genes in the human genome is expected to decay on
a timescale comparable to major events in the history of modern humans, i.e.,
the colonization of North America and the arrival of agriculture in Europe or the
domestication of horses, sheep, and cattle.

Another implication of the preceding theory gives us an additional reason for
being concerned with LD. We first recall that Eq. (2.5) tells us that D′ = 1 when
D takes either its maximum positive value or its minimum negative value. In that
case, the set of equations in (2.2) implies that at least one of the haplotypes has 0
frequency. The reverse is also true, namely, that if only three of four haplotypes
are present in a population, then necessarily D′ = 1. (Understanding this fact
allows a few students in population genetics courses to quickly answer examination
questions that occupy the rest of their classmates for a considerable time.)

Now consider what happens when a mutation occurs at a locus that was
previously monomorphic and is linked to another locus that is polymorphic. To be
specific, suppose the A/a locus is polymorphic and the B/b locus is initially fixed for
b (i.e., all individuals in the population carry the b allele). In a particular generation,
B appears in one copy as a new mutant. When B appears, it does so on a chromosome
that initially carries an A or an a, but it cannot appear on both types of chromosomes.
Suppose it appears on an A-bearing chromosome. In that generation, there are then
only three haplotypes, AB, Ab, and ab. The fourth haplotype (aB) is not present.
Therefore, when B appears as a new mutant allele, we know that D′ = 1 regardless
of the frequency of A and regardless of the recombination distance between A and B.
That is, when a new mutant allele appears, D′ = 1 between it and every polymorphic
locus on the same chromosome.

What happens to D′ after B appears depends on c. For loci sufficiently far apart on
the same chromosome that they are effectively unlinked (c = 1/2), D and hence D′
decrease rapidly to zero. For more closely linked loci (c < 1/2), D and D′ decrease
more slowly, with the rate of decrease being slowest for very closely linked loci.
Thus, each new mutant will be expected to be in strong LD with alleles at closely
linked polymorphic loci for a long time, roughly 1/c generations. That prediction
is valid for every new mutant. Because mutants are appearing every generation,
the overall pattern of LD we expect is one in which D′ is large between closely
linked loci and then decreases with increasing recombination distance between loci.
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Fig. 2.2 D′ plotted against distance separating SNPs in the human genome. The line indicates
the average values of D′. (Reproduced with permission from Nielsen and Slatkin, 2013, An
Introduction to Population Genetics: Theory and Applications, p. 121, Oxford University Press)

This prediction ignores other population genetic forces, particularly genetic drift
and natural selection, which also affect LD, but it reflects the combined effects of
recombination and random mating which affect the whole genome.

This prediction is consistent with many observations of LD in the human and
other genomes. In humans, significant LD is usually found between polymorphic
nucleotide positions that are separated by 50 kb or less but usually less so
between sites separated by 100 kb or more (Reich et al. 2001). There is, however,
considerable variation in D′ values even between sites separated by the same
distance (Fig. 2.2), something that is not predicted by the simple theory presented
so far.

2.6 Genetic Drift and LD

The preceding theory assumes a population of effectively infinite size. That is
what allowed us to assume that allele frequencies do not change from generation
to generation. Real populations are of finite size, and that implies that allele
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frequencies change from generation to generation because of genetic drift (Wright
1931). Genetic drift also affects the extent of LD. The mathematical theory that
predicts the effect of drift on D is too complicated to be presented here, but
the main conclusions from the theory are relatively simple (Hill and Robertson
1968; Ohta and Kimura 1969). At an equilibrium under drift, random mating,
and recombination, genetic drift will maintain some LD between closely linked
sites. Although the expected value of D is 0, the expectation of D2 is nonzero and
decreases roughly with 1/c as c increases.

2.7 Genealogical Interpretation of LD

There is a close relationship between the gene genealogies of two loci and the extent
of LD between them. Refer to Chap. 1 for a discussion of gene genealogies for a
single locus. First, consider the case in which there is no recombination between the
A and B loci. Because there is no recombination, the gene genealogies of the two loci
are the same, as shown in Fig. 2.3. If there is only one mutation at each of the two
loci, as shown, no more than three of the four possible haplotypes will be present in
the sample. Which haplotype is missing depends on where on the genealogy the two
mutations occur. As shown in Fig. 2.3, AB is missing, but if B instead arose on one
of the descendent branches carrying A, then aB would be missing. And if A and B
happened to have arisen on the same branch, then only ab and AB haplotypes would
be present. Therefore, in the absence of recombination and recurrent mutation,
D′ = 1 necessarily, as noted above. It follows that, if D′ < 1, either recombination
or recurrent mutation occurred. At the level of individual nucleotides, recurrent
mutation is unlikely, which implies that observing D′ < 1 for two loci indicates

Fig. 2.3 Illustration of the
gene genealogy of two
completely linked loci,
showing the generation of
haplotypes by mutation

Ab Ab Ab ab aB

b

a A

ab

B

aB
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that recombination occurred between them. When there is recombination, the gene
genealogies are no longer the same. Recombination has the effect of breaking the
gene genealogy of one of the loci and attaching somewhere else on the genealogy
of the other locus. When that occurs, the relationship between D or D′ and the
recombination rate is no longer simple, and the genealogical approach does not in
general lead to tractable analytic results. The similarity of the genealogies at the
two loci will be determined, in part, by the recombination rate between the two loci.
Loci separated by smaller genetic distances will have genealogies that are more
correlated with one another than loci which are farther apart.

2.8 Natural Selection and LD

If the genotypes at two linked loci affect survival and reproduction, the resulting
natural selection can increase the extent of linkage disequilibrium under some
conditions and even maintain permanent disequilibrium in the face of recombination
(Lewontin and Kojima 1960; Felsenstein 1965; Karlin and Feldman 1970). The
effect of selection on LD is weak, however, because it depends not on the selection
coefficients themselves but on the degree of epistasis, which is necessarily smaller.
To illustrate in a simple context, assume there is haploid selection on two linked
biallelic loci (A/a and B/b). Let the relative fitnesses of the four haplotypes
be wAB, wAb, waB, and wab. Selection of this type will tend to increase D if
R = (wABwab)/(wAbwaB) > 1 (Felsenstein 1965). In other words, R is greater than
1 when the increase in fitness from having A and B together (wAB/wab) exceeds the
product of the gains from having A or B separately (wAb/wab and waB/wab).

For diploid populations, more complicated but similar conditions have been
derived that show when selection can overcome the effects of recombination
and random mating and maintain permanent LD. Roughly speaking, permanent
LD can be maintained under restrictive conditions, namely, that there has to be
overdominance in fitness at each locus and c has to be less than a quantity that
summarizes the extent of epistasis in fitness (Karlin and Feldman 1970). It is
currently unclear whether epistasis in fitness among closely linked loci contributes
to observable patterns of LD.

2.9 Genetic Hitchhiking

Natural selection at a locus affects the frequencies of neutral alleles closely linked
to it, a process termed “genetic hitchhiking.” (Maynard Smith and Haigh 1974) The
idea is simple. As described above, when a new mutant arises, it is in complete
LD (D′ = 1) with alleles at linked polymorphic loci. If that mutant increases
rapidly in frequency because it confers a selective advantage to carriers, then neutral
alleles on the same chromosome will increase in frequency also. For example, if
B arises on an A-bearing chromosome and subsequently increases in frequency, A
also will increase in frequency. The result will be an excess of AB chromosomes.
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Recombination between the A and B loci will reduce that excess. Simple theory
shows that, if the selection coefficient in favor of A is s, then substantial LD will
be created by hitchhiking at neutral loci for which c < s. That is, neutral loci that
are very closely linked to the selected locus will remain in substantial LD with the
advantageous allele, while more distant neutral loci will not.

These theoretical results have useful practical applications. If there is substantial
LD in a region surrounding a functionally important allele, it is likely that the allele
has increased in frequency recently because of positive selection. For example, the
A– allele of the G6PD gene in a west African population has a frequency of 11%.
Loci as far away as 700 kb are in significant LD with the A– allele, a distance much
larger than the normal scale of LD in the human genome (Saunders et al. 2005).
Data of this type not only indicate that the A– allele increased because of positive
selection but also make it possible to infer that the selection coefficient in favor of
A– was at least 0.05 and that it arose by mutation between 3000 and 6000 years ago
(Slatkin 2008).

2.10 Population Subdivision

Population subdivision creates LD when there are local differences in allele
frequencies. We can see why by considering a simple example. Suppose that two
populations are fixed for different alleles at each of two loci, population 1 is fixed
for A and B, while population 2 is fixed for a and b. In this case, every individual in
both populations is doubly homozygous, either AABB or aabb. Next, suppose that
a researcher who is concerned with LD at these two loci samples individuals from
both populations. If the researcher does not realize that there are in fact two distinct
populations, individuals from both would be combined into a single sample. The
resulting sample would be a mixture of AABB or aabb individuals. In this sample,
only AB and ab haplotypes would be present, so there is apparently perfect LD
between these two loci (D′ = 1). Yet, that conclusion is obviously an artifact of
mixing individuals from two populations with quite different allele frequencies.

Although this example is an extreme case that can be understood without doing
any calculations, the conclusion is quite general. If allele frequencies at two loci
differ at all between two or more populations and if samples from those two
populations are combined, there will in general more LD in the mixture than in the
separate populations (Mitton et al. 1973; Nei and Li 1973). This effect is called the
“two-locus Wahlund effect” because of its similarity to the classic Wahlund effect,
which is the decrease in heterozygosity in a mixture of two or more populations. In
the simple example, there are no heterozygous individuals at either locus, which is
an extreme case of the Wahlund effect.

It is usually possible to distinguish the two-locus Wahlund effect from selection
as a cause of LD because the Wahlund effect affects all pairs of loci at which
allele frequencies differ among subpopulations, while selection will probably affect
only one genomic region. Still, the two-locus Wahlund effect is important for the
design and interpretations of genome-wide association studies (GWAS). GWAS
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are discussed in greater detail in Chap. 5. Because a GWAS is designed to detect
significant LD between alleles that cause a complex disease and SNP markers, the
two-locus Wahlund effect can create a spurious signal of association if individuals
from different subpopulations are mixed together in the cases and controls. The
term “population stratification” is used in this context. It is difficult to completely
eliminate the effects of population stratification even if care is taken not to combine
individuals from different ethnic groups. The problem is that the actual extent of
variation among subpopulations in the frequencies of causative alleles is unknown,
and hence, it is not clear how narrowly defined a subpopulation has to be in order
to eliminate the effect of population stratification. For example, in carrying out
a GWAS in people of European ancestry, is it appropriate to include people of
both northern and southern European ancestry in the same study or not? Including
both would increase the sample size and hence increase the statistical power to
detect significant associations but at the risk of inducing spurious false-positive
associations. This trade-off is especially problematic for rarer complex diseases for
which the total number of affected individuals might be small. One resolution of
the problem is to allow for some population stratification by using overall genomic
averages of LD, called “genomic controls,” to infer the overall extent of LD created
by subtle population stratification (Devlin et al. 2001).

Gene flow among populations that have diverged can maintain LD in each
subpopulation separately. When there is gene flow, the organisms themselves do the
mixing and create LD between all pairs of loci that differ in allele frequency among
the subpopulations. Mathematical analysis shows that substantial LD between
closely linked loci can be maintained by this mechanism (Mitton et al. 1973; Nei
and Li 1973).

2.11 Conclusion

When the term linkage disequilibrium was introduced by Lewontin and Kojima
(Lewontin and Kojima 1960) in 1960, it was in the context of an abstract mathe-
matical model developed to understand the combined effects of natural selection
and recombination in an infinitely large population at equilibrium. Extensive further
mathematical studies of LD were carried out in the 1960s and 1970s, but there was
almost no attempt to relate the theory to data because almost no information about
closely linked loci was available. This was the era during which genetic variation
was studied by detecting differences in electrophoretic mobility of proteins (Hubby
and Lewontin 1966). Polymorphic protein-coding loci that could be studied with
electrophoresis were not usually closely enough linked for LD to be detectable.
Linkage disequilibrium remained a somewhat arcane and mathematically difficult
part of population genetics, known and appreciated by only a few specialists.

That situation changed with the development of direct means of assessing
polymorphisms at the DNA sequence level—first restriction fragment length poly-
morphisms (RFLPs), then microsatellite loci, and finally SNPs. Instead of being
obscure, linkage disequilibrium became well-known, then fashionable, and finally

http://dx.doi.org/10.1007/978-3-030-61646-5_5
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essential. By 1999, that situation changed drastically. In the program for the 1999
annual meeting of the American Society of Human Genetics, 17% of the paper
titles or abstracts contained the term “linkage disequilibrium.” Since then, LD has
only increased in importance in human genetics and is the foundation of GWAS,
discussed in Chap. 5. As genomic tools become more widely used in plant and
animal populations, LD will assume equal prominence in evolutionary biology.
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3Analysis of Population Structure

Per Sjödin, Lucie Gattepaille, Pontus Skoglund, Carina Schlebusch,
and Mattias Jakobsson

Abstract

For humans, like any sexually reproducing diploid organism, mating may be
random in the sense that individuals are equally likely to mate and produce
offspring. Such a view of a population has been important in population genetics
as a basis for modeling and analysis. Population structure denotes deviation
from this panmixia, regardless of the cause. In this chapter, we will briefly
discuss random mating, populations, population structure, and various methods
and practices to infer population structure among individuals from empirical
genome-wide data.

3.1 What Is Population Structure?

A loose definition of a “panmictic population” is any collection of randomly
mating individuals living at a specific point in time. Strictly speaking, a population
is “randomly mating” if the probability to produce offspring is larger than zero
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and equals for all possible pairs of individuals drawn from the population (often,
depending on the species, given that a pair consists of a female and a male).

Random mating in this sense is, however, rarely an accurate representation of
reality since most populations have a spatial distribution that affects the mating
probability of a random pair of individuals. Hence, if by “structured population,” we
refer to a population that is not randomly mating, then essentially all populations are
structured, and a dual categorization of “structured populations” vs “unstructured
populations” is not very useful. Instead, it may be better to think of any population
as structured and attempt to quantify the degree of structure. The level of population
structure can also (often) be accounted for in downstream analyses. In practice, there
are often groups of individuals for which no structure is detectable (with the data
and methods at hand), and these groups can be regarded as unstructured for most
intents and purposes.

It should be noted that this way of thinking about populations does not reflect
common practice in which the definition of populations is typically subjective,
based on, for example, linguistic, cultural, ethnic, and/or the geographic location
of sampled individuals. Moreover, almost all population structure analyses are
necessarily based on samples, and detection of stratification within the sample does
not necessarily reflect biological populations. For instance (following Pritchard
et al. (2000)), imagine a species that lives on a continuous plane but has a low
dispersal rate, so allele frequencies vary continuously across the plane. A few
clustered sampling points will result in a signal of (a few) clustered genetic groups,
which does not give an accurate description of the biological reality. This example
illustrates that studies of populations are always indirect and limited to information
contained in samples and sensitive to sampling biases.

Accounting for population structure is often crucial in order to reduce both type
I and type II errors in statistical analyses of genetic data. For instance, it has been
shown that not accounting for population structure can result in spurious signals
in association mapping studies and will thus invalidate standard tests (Ewens and
Spielman 1995; Pritchard et al. 2000). It is also important to account for population
structure in forensic applications like DNA fingerprinting to estimate the probability
of random individuals matching a particular profile (Balding and Nichols 1994,
1995; Foreman et al. 1997; Roeder et al. 1998).

Since the first historical opportunity of quantifying molecular genetic variation
until today’s (almost) complete genome sequencing, numerous molecular tech-
niques have been used to genotype individuals, which in turn can be used to
investigate population structure. Early strategies involved typing the human blood
groups (Landsteiner and Weiner 1940), followed by the development of allozymes
(Lewontin and Hubby 1966), and various forms of DNA fragment length assays,
including microsatellites that are abundant in eukaryote genomes (Katti et al. 2001).
The sequencing of the human genome (Venter et al. 2001) led to access to a large
number of human single-nucleotide polymorphisms (SNPs) as well as the human
genome sequence. Various studies have employed novel molecular techniques
to investigate human population structure, including classical markers (Cavalli-
Sforza et al. 1994), mitochondrial genome (Cann et al. 1987), microsatellites
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(Rosenberg et al. 2002), SNPs (Jakobsson et al. 2008; Li et al. 2008), and complete
genomes (1000 Genomes, Mallick et al. 2016). Although these different types of
data have different properties, the general study of population structure follows
straightforward principles of genetic variation, and the difference in datatype can
be accounted for by using different assumptions on the mutation model (see e.g.,
Veeramah and Hammer 2014).

We will review some methods to quantify structure within a population. We will
(primarily) assume biallelic markers, where only two states exist that give rise to
three possible genotypes. These methods are often part of an initial exploratory
step in order to get a better picture of how and to what extent the sample and
the population have been influenced by population structure. First, we will present
methods where all individuals are treated equally and no a priori information is used
for clustering individuals or parts of individual genomes. We will then discuss some
methods to contrast clusters of individuals and how this can be used in more explicit
demographic modeling. To illustrate concepts and methods, we will analyze a subset
of the HGDP data, which has been thoroughly investigated in previous studies (Cann
et al. 2002; Li et al. 2008; Jakobsson et al. 2008). This example dataset consists of
individuals from Africa—the West African Yoruba, the Southern African San, and
the North African Mozabite—and from Europe (France).

3.2 Individual-Based and UnsupervisedMethods for Inferring
Population Structure

3.2.1 Tree ConstructionMethods at the Individual Level

Genetic distance is a traditional measure of differentiation in population genetics.
Distances are calculated between each pair of individuals (can also be calculated
between groups of individuals; see below) and are represented by a pairwise
distance matrix. Distance matrices can be visualized by various approaches such
as the multidimensional statistics discussed in the next section or in the form of
graphs/trees.

A common distance measure between a pair of individuals is the identity by
state (IBS) measure. IBS examines biallelic SNPs between two individuals and puts
them into one of three categories: identical = 1 (e.g., for the genotypes AA and
AA, BB and BB, and AB and AB, where A and B denote the two alleles), one-
allele-shared = 0.5 (i.e., AA and AB; AB and BB), and no-allele-shared = 0 (i.e.,
AA and BB). The state-values are then averaged over all loci to provide genome-
wide pairwise IBS similarity values between 1 and 0 for all individual pairwise
comparisons. This is summarized in an individual similarity matrix of which 1-IBS
will give the distance matrix.

Distance measures based on substitution models for DNA and protein sequence
evolution have also been developed. The evolutionary distance between a pair of
sequences is measured by the number of nucleotide (or amino acid) substitutions
occurring between them. The p-distance is the simplest model and is based on
the proportion (p) of nucleotide sites at which two sequences being compared
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are different. The proportion is obtained by dividing the number of nucleotide
differences by the total number of nucleotides compared. It does not make any
correction for multiple substitutions at the same site, substitution rate biases (for
example, differences in the transition and transversion rates), or differences in
evolutionary rates among sites. More specialized measures (e.g., Jukes-Cantor,
Kimura 2-parameter, Tamura 3-parameter, Tamura-Nei) take some/more of these
complexities into account. The pairwise distances between diploid individuals are
then obtained by averaging over the distances obtained for all pairwise comparisons
of sequences between the two individuals.

There are several tree construction methods for distance data, two of the
most common methods are unweighted pair group method with arithmetic mean
(UPGMA) and neighbor joining (NJ) (Saitou and Nei 1987). UPGMA is a simple
hierarchical clustering method that combines the nearest two units (individuals or
grouped individuals) in a distance matrix into a higher-level cluster. The distance
between any two units is the average of all distances between each element of
each unit. UPGMA assumes a constant molecular clock model and produces an
ultrametric tree (a tree where all the path lengths from the root to the tips are of
equal length). Similar to UPGMA, neighbor joining is also a bottom-up clustering
method; however, compared with UPGMA, neighbor joining has the advantage that
it does not assume that all lineages evolve at the same rate. Both NJ and UPGMA
are fast-clustering (tree-building) algorithms, but since only two elements of the
distance matrix are considered at a time, they have no optimization criterion to fit
the best solution (or tree) over all the data. An optimal criterion method that is
commonly applied to distance data is minimum evolution (ME), which accepts the
tree with the shortest sum of branch lengths, and thus minimizes the total amount of
evolution assumed. Tree-building methods applicable to discrete characters such as
nucleotides are also available (e.g., maximum parsimony and maximum likelihood),
but these are more applicable to phylogenetic purposes and fall outside the scope
of this chapter. Note that inferred trees based on non-recombining chromosomes,
such as the mitochondrial genome or the Y chromosome, represent estimates of the
genealogy of a specific chromosome (see Chap. 1 for a review of gene genealogies)
that may poorly capture an individual’s or a population’s evolutionary history or
structure. Inferred trees based on genome-wide data represent averages over the
genealogical process across the genome, and such summary trees capture population
structure in a more accurate way.

After an initial tree is produced from the distance matrix, a confidence measure
can be calculated making use of procedures such as jackknifing or bootstrapping.
The most widely used tool for confidence inference is a version of bootstrapping
introduced by Felsenstein (1983). Each bootstrap sample consists of the same
number of markers resampled (with replacement) from the original data set and is
then subjected to the same distance calculation and tree reconstruction. From these
trees produced by bootstrapping, a consensus tree can be constructed in which the
confidence of the tree is noted on the nodes as a bootstrap value (the percentage of
times the bootstrap procedure supported the specific node). Jackknife is a similar
resampling procedure, but in this case, the estimate is systematically recomputed by
leaving out one or more observations at a time from the sample set. The bootstrap

http://dx.doi.org/10.1007/978-3-030-61646-5_1
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and jackknife assume near-independence of the markers used, and so the linkage
between nearby markers can be accounted for by performing the bootstrap or
jackknife procedure over larger blocks of the genome or whole chromosomes.

Various software packages that can handle different types of genetic data are able
to calculate many of the distance measures discussed above and give a pairwise
distance matrix as output. The distance matrix can then be used for clustering
using, e.g., a tree construction algorithm. In certain software, both matrix calculation
and tree construction algorithms are available. Some examples of commonly used
software are Mega (Kumar et al. 2016), Arlequin (Excoffier and Lischer 2010), and
Plink (Purcell et al. 2007).

An example tree of West African Yoruba, European French, North African
Mozabites, and Southern African San is given in Fig. 3.1. To construct the tree,
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Fig. 3.1 An example neighbor-joining tree of individuals from West Africa (Yoruba), Europe
(French), North Africa (Mozabite), and Southern African (San). The NJ tree was built from an
IBS distance matrix (computed in Plink) and the R-package ape. The individuals cluster according
to their sample locations, except for the Mozabites that contain the French sample as a subset



52 P. Sjödin et al.

we created an IBS distance matrix in Plink and used the R-package ape to construct
an NJ tree. We see that the individuals cluster quite well according to their sample
locations, except for the Mozabites that contain the French sample as a subset.

3.2.2 Principal Component Analysis and Related Approaches

A single individual can be represented by a position in a multidimensional space
where each locus characterizes one dimension. The number of dimensions is
therefore very large if we have access to information from many sites; oftentimes,
however, many of these dimensions are correlated. A number of methods based on
linear algebra aim at finding the best way to summarize and visualize the data in
a reduced number of dimensions that capture the greatest axes of variation. These
methods, which are typically agnostic to the underlying model of genetic variation,
can potentially reveal inherent population structure in a set of sampled individuals.
We will describe one of the most widely used method for initial data exploration—
principal component analysis (PCA)—and then give a brief overview of a few other
related approaches.

The principle of PCA is straightforward: finding and ordering orthogonal axes
(or principal components, PCs) that capture the variation of the sample so that the
first PC represents the axis of greatest variation in the data, the second PC represents
the axis of greatest remaining variation when the data is projected orthogonally to
the first PC, and so on, down to the last PC where all variation has been taken into
account. Consider, for example, n SNP-loci. Each individual is represented by a
vector of n values, with 0 if homozygous for the reference allele, 1 if homozygous
for the alternative allele, and 0.5 if heterozygous. PCA performs a rotation of the
original n-dimensional orthogonal base, where each of the n loci represents one
dimension, into a new orthogonal base, formed by linear combinations of the loci,
and defining directions called principal components. The first PC is the direction
that maximally explains the variance among individuals when projected into a 1-
dimensional space. Together with the first PC, the second PC defines the plane
that maximizes the variance of the individuals when projected into a 2-dimensional
orthogonal space, and more generally, together with the first k-1 PCs, PC k defines
an orthogonal space that maximizes the variance of the individuals when projected
into a k-dimensional space. Each PC explains a proportion of the total variance, with
the first PC explaining the most variance and the last PC explaining the least.

Applied to our example data of four populations, PCA reveals differences
between the groups (Fig. 3.2). We see that the first and second PCs explain 10.8%
and 5.5% of the total sample variance, respectively. The first PC separates the sub-
Saharan African populations from the European and the North African population;
the second PC separates the Southern African San and the West African Yoruba,
with the French and the Mozabite in-between. The first two PCs together show
the Mozabite individuals in-between the European population and the West African
population, suggesting historical models for the ancestry of the Mozabite such as
(1) a history of admixture between European and West African groups, (2) shared
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Fig. 3.2 Principal component analysis of our example HGDP data of four populations, with the
first two PCs displayed, computed using EIGENSOFT. The first PC explains 10.8% of the total
sample genetic variance, and the second PC explains 5.5%. The first PC separates the sub-Saharan
African populations from the European and the North African population, and the second PC
separates the Southern African San and the West African Yoruba, with the French and the Mozabite
in-between. The first two PCs together show the Mozabite individuals distributed between the
European population and the West African population, consistent with the Mozabite being an
admixed group with a European and a West African source population

ancestry in a treelike population model (without direct admixture) with both these
groups, or (3) a combination of the aforementioned (1) and (2).

Investigating outliers, which are easily identifiable using, e.g., PCA, is an
important step in many applications. In this particular example, there are no obvious
outlier individuals. Outliers are easily identified as individuals “far away” from
any other cluster of individuals in PC space. Outliers can be due to low genotype
quality (for particular individuals), recent migrants from unsampled populations, or
displaying some, potentially unknown, level of population structure in the sample.

The number of PCs to visualize and investigate is arbitrary, but some rule of
thumb has been utilized in past studies. Sometimes, this number can be decided
by a threshold of variance to be explained (for example, investigate the K PCs that
explain at least a fixed percentage, X, of the variance). However, for genome-wide
data, the variance explained by each PC, including the first few ones, is typically
small due to the high dimensionality (see e.g., Fig. 3.2). Another way to choose the
number of PCs to investigate would be to use a “scree plot.” A property of PCA is
that each PC represents an eigenvector of the variance-covariance matrix of the data
(or the correlation matrix if the data is scaled) and is associated with an eigenvalue.
The first PC is associated with the highest eigenvalue λ1, the second PC with the
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Fig. 3.3 The eigenvalues associated with each PC from our example PCA on HGDP data, sorted
decreasingly. In a PCA, the eigenvalues of the variance-covariance matrix (or correlation matrix if
the data is scaled) are directly linked to the variance explained by the PCs: the first PC is associated
with the highest eigenvalue, the second PC to the second-highest eigenvalue, and so on

second-highest eigenvalue λ2, and so on. The scree plot is the graph that displays
the eigenvalues, sorted decreasingly. In a PCA, the eigenvalues of the variance-
covariance matrix (or correlation matrix if the data is scaled) are directly linked to
the variance explained by the PCs: λi divided by the sum of all eigenvalues gives
the proportion of variance explained by the ith PC. In our HGDP example, there is
a clear flattening of the difference between consecutive PCs from PC4 and onward
suggesting that the most interesting patterns can be seen using the first three PCs (see
Fig. 3.3). An alternative approach is to test each PC if there is significant evidence
for structure (Patterson et al. 2006).

PCA is an important tool for data exploration. For a richer mathematical
description and illustrations in different contexts, see Jolliffe (2005). For population
genetics, McVean (2009) showed that expected pairwise coalescent times is what
determines the primary PCs in a PCA implying that it is impossible to distinguish
models with the same expected coalescent times using a PCA approach. He also
demonstrated how PCA can, under some models, be used to estimate divergence
time between populations, as well as admixture proportions within individuals
(McVean 2009). There are several software packages that compute PCA including
the R prcomp package and Eigensoft (Patterson et al. 2006).

Multidimensional scaling (MDS) is a group of methods that use a matrix of
dissimilarities between individuals and represent the individuals in a smaller number
of dimensions, so that the pairwise distances between individuals in the plotting
space are good approximations of the original dissimilarities (see Quinn and Keough
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2002, for a review on some of these methods). The dissimilarity measure of the
individuals in the original data is the scientist’s choice, and some examples of
useful dissimilarity measures were presented in the previous section. The number of
dimensions in the plotting space is chosen in advance and is usually low, to facilitate
observation and interpretation of the data.

3.2.3 Ancestry Component Estimation with FewModel
Assumptions

The program STRUCTURE (Pritchard et al. 2000) implements a method that
makes very few assumptions about the data, and it was one of the first tools that
utilized the power of multiple markers for inference. This approach and the many
ensuing approaches have become standard in population structure investigations
and population-genetic studies in general. STRUCTURE-like methods infer a
predefined number of ancestry components (K) among individuals, based on
genotype frequencies. Each individual’s genotype is assigned to one of K number
of clusters with a certain probability. In the first implementation, STRUCTURE
searched for the assignment of individuals that minimizes deviation from Hardy-
Weinberg equilibrium (see Box 3.1) and linkage equilibrium in each of the K
clusters and allowed individuals to be admixed and to have membership proportions
to more than one of the K clusters (Pritchard et al. 2000). Population structure is
then visible in the dataset as individuals that are closely related having a greater
proportion of their genome assigned to the same cluster/s than individuals that
are not. This approach analyzed single markers separately and then added up the
information to produce a global estimate for each individual. Information about
the relative positions of markers to each other was not used and was considered
to be segregating independently. This approach works well for low-density marker
sets but is less suitable for the high density and full genome datasets that are
available today. In the 2003 update of the STRUCTURE algorithm (Falush et al.
2003), sites/markers are not required to be independent, and correlations between
subsequent markers due to admixture events are explicitly modeled. This allowed
for individual ancestry estimates, known as local ancestry estimates, where the
ancestry of chromosomal chunks can be traced along the chromosomes. It also
introduced a simplistic model (the F-model, originally described in Nicholson et
al. (2002)) to account for correlations of allele frequencies between populations.
Although a clearly unrealistic model, it improved the performance of the algorithm
considerably (Falush et al. 2003).

Box 3.1 Hardy–Weinberg Equilibrium (HWE)
An assumption of random mating is that the probability to produce viable
offspring is equal for all possible pairs of individuals drawn from the

(continued)
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population (given that a pair consists of a female and a male). A consequence
of this is that the probability of an allele contributed by the mother being of
type A is equal to the population frequency of allele type A. The same is true
for alleles contributed by the father. Given a population frequency p of allele
A and 1−p of alleles of type a, the probability of an offspring being of type
AA, Aa, and aa are p2, 2p(1−p), and (1−p)2, respectively. When this situation
is true, the population is said to be in Hardy-Weinberg equilibrium (HWE).

STRUCTURE has been very popular for population structure inference. How-
ever, with the ever-increasing density of genome-wide markers, meeting the com-
putational demands of the algorithm has become a challenge. The Markov chain
Monte Carlo method that STRUCTURE employs places a high burden on computer
resources for large datasets. This has led to the recent development of alternative
approaches, using fast maximum-likelihood-based estimations (FRAPPE (Tang et
al. 2005) and ADMIXTURE (Alexander et al. 2009)).

HAPMIX (Price et al. 2009) extends the local ancestry method implemented in
the second version of STRUCTURE. It is based on the Li and Stephens (2003)
model for patterns of linkage disequilibrium (Li and Stephens 2003) between
markers and infers local ancestry estimates of unphased admixed individuals
based on the phased haplotype data of exactly two populations. Modeling the full
demographic process with recombination and mutation is a notoriously difficult and
computationally intractable problem. The Li and Stephens (2003) approach models
the k + 1 haplotype by (imperfectly) copying from the first k “parental” haplotypes
where recombination events correspond to changing parental haplotype from which
to copy from. Correlations of genealogies (due to linkage) across the sequence is
surprisingly well captured by this approach, and importantly, it is sufficiently simple
to permit even full genome analyses.

Recent developments along this line have led to a method (CHROMOPAINTER,
Lawson et al. (2011)) that does not need discretely defined admixed and parental
populations. Instead, each individual in a sample is considered, in turn, both
as a recipient and a donor, and chromosomes are reconstructed using blocks of
DNA donated by the individuals to each other. Each individual’s chromosome is
thus “painted” by markers donated by donor individuals in any number of other
populations or within the same population. These “painted” chromosomes can be
summarized as a co-ancestry matrix, which is proposed to fully capture the infor-
mation provided by PCA and STRUCTURE-like methods (also for nonindependent
sites). In addition, consecutive markers that are in linkage disequilibrium are com-
bined into haplotypes, which increases the ability of the method to observe subtle
population structure. A downstream model-based extension (fineSTRUCTURE,
Lawson et al. (2011)) is then used to identify discrete populations using the inferred
co-ancestry matrix.
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A subclass of population admixture models can utilize the spatial coordinates
of sampled individuals (BAPS (Corander et al. 2003), TESS (Chen et al. 2007),
GENELAND (Guillot et al. 2005)). While in STRUCTURE-like methods, the
assignment to a population is independent and identical among all individuals in
the dataset, this class of methods takes into account (a priori) the spatial distribution
of individuals and aims to detect genetic discontinuities in space. Since geographic
spatial correlation is often present among individuals and populations, it can be
useful to incorporate spatial coordinates into the population structure analysis.
Recent attempts to incorporate geographic information into population structure
estimations involve approaches that use Wishart distributions (a generalization of
multidimensional gamma distributions) to model genetic similarity as a function of
spatial distance. In uniform isolation-by-distance scenarios, genetic distances visu-
alized in two dimensions should mirror the samples/individuals in geographic space.
Migration and admixture and hinders to gene flow would disturb this correlation.
In one approach, implemented in the software SpaceMix, a covariance model of
genetic data is used to build maps of the geographic positions of the populations,
but distances are distorted according to inferred rates of gene flow (Bradburd et
al. 2016). Barriers to gene flow result in larger distances between groups, while
migration and admixture can be identified as abnormal strong covariances over long
distances. The inferred admixture is then estimated and represented as “arrows,” on
a generated map, from the source population to the recipient population. Another
approach based on the Wishart distribution, EEMS (Petkova et al. 2016), uses
pairwise genetic similarities among populations and estimates a surface map of
effective migration rates. The effective migration rates are scaled by effective
population sizes under an equilibrium model. These methods that incorporate spatial
information may highlight important features of population structure that might
have remained undetected using other, spatially “blind,” methods for inferring
population structure. Two other methods that use FST measures between populations
to identify violations of isolation-by-distance patterns have also been developed
(Duforet-Frebourg and Blum 2014; Jay et al. 2013).

For our example dataset, we ran 10 iterations in the program ADMIXTURE
at K = 2 to K = 5. The iterations at each value of K were then compared to
detect different clustering solutions using the program CLUMPP (Jakobsson and
Rosenberg 2007). For K = 2 to K = 4, all 10 iterations arrived at very similar
solutions, and the combined output is shown in Fig. 3.4 (visualized with the program
DISTRUCT (Rosenberg 2004)). The analysis shows clustering of sub-Saharan
Africans (orange component) and clustering of Europeans and North Africans (blue
component) at K = 2, although Yoruba individuals show a small fraction of ancestry
from the blue component, and the Mozabites show a small ancestry fraction from the
orange component. At K = 3, the Yoruba obtains its own cluster (green), while the
Mozabite still clusters with the French but showing some ancestry fraction from the
green component. The Mozabite forms its own group at K = 4, but some individuals
showed shared ancestry with Yoruba and French. For K = 5, there was no common
solution, and each of the 10 iterations had a different solution (this pattern can be
seen clearly from the similarity matrix output of CLUMPP). The lack of a “common
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Fig. 3.4 Combined output from 10 iterations of running ADMIXTURE with our example HGDP
data analysis for K = 2 to K = 4 visualized by DISTRUCT. For K = 5, there was no common
solution, and each of the 10 iterations had a different solution. The analysis show clustering of
sub-Saharan Africans (orange component) and clustering of Europeans and North Africans (blue
component) at K = 2, although Yoruba individuals show a small fraction of ancestry from the
blue component and the Mozabite show a small ancestry fraction from the orange component.
At K = 3, the Yoruba obtains its own cluster (green), while the Mozabite still clusters with the
French but showing some ancestry fraction from the green component. The Mozabite forms its own
group at K = 4, but some individuals showed shared ancestry with Yoruba and French. Note that
these algorithms, like the ADMIXTURE algorithm, is typically set up to only utilize the genetic
information and to be agnostic to all other information (and other information like self-identified
ancestry/ethnicity, geographic sample location, and/or language can be added onto the results for
visualization purposes)

mode” in the iterations at K = 5 is an indication that there is no additional level of
structure to reveal by dividing the individuals’ genomes into additional ancestry
components. In summary, we note that these three choices of assumed number of
clusters (K = 2, 3, and 4) all reveal interesting patterns of population structure
that are related to a hierarchical ancestry relationship among the four populations
(e.g., Jakobsson et al. 2008; Schlebusch et al. 2012). We further note the interesting
pattern for the Mozabite that display ancestry components related to Europeans and
West Africans at K = 3 but that form their own cluster (to a large extent) at K = 4—
a pattern consistent with a population with mainly Eurasian ancestry, followed by
some level of admixture with West Africans. This admixture likely happened some
time ago since the Mozabites make up their own cluster at K = 4, which is consistent
with subsequent genetic drift in the Mozabites since the admixture.

3.3 Population-Based and SupervisedMethods

Once an overview of the signals in the data has been obtained using PCA,
STRUCTURE-like analyses, and tree construction at the individual level, a natural
next step is to assign individuals to predefined populations. We may then want to
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quantify the amount of structure among groups in order to learn something about the
demographic past of the full collection of individuals. Although these populations
are ideally identified with the aid of the previously presented methods, it is not
uncommon to have assessments based on geography-only defined populations. It
may still be of value to contrast these predefined populations in order to affirm that
they do correspond to separate biological populations.

3.3.1 Genetic Differentiation at the Population Level

3.3.1.1 FST
Introduced by Sewall Wright (Wright 1949), FST is one of the first measures
of genetic differentiation (sometimes referred to as “genetic distance”) among or
between populations. There are many variations on the original definition, and the
usefulness of FST and relatives is still a debated topic (e.g., Holsinger and Weir
2009; Rousset 2013; Jost 2008; Ryman and Leimar 2009). FST was originally
defined as the correlation between gametes chosen randomly from within the same
subpopulation relative to the entire population or, equivalently, as the departure
of genotype frequencies from Hardy–Weinberg expectations relative to the entire
population (see Holsinger and Weir 2009 for a thorough review of FST). A common
definition for more practical purposes is

FST = Var (pi)

E [pi] (1 − E [pi ])
,

(e.g., Holsinger and Weir 2009) where Var(pi) is the variance in allele frequencies
across subpopulations and E[pi] is the expected allele frequency. There are other
formulations, including (Nei 1973) in terms of heterozygosity,

GST = HT − HS

HT
,

where HT is the total (pooled) heterozygosity and HS is the mean heterozygosity
across subpopulations. Note that these definitions are all coined in terms of genetic
variation. If demography is the primary interest, these definitions may not be ideal
since the distribution of genetic variation depends on the mutational process as well
as demography—via the genealogical process. Slatkin (1995) isolated the purely
genealogical aspect of FST by studying the limit as the mutation rate approached
zero and showed that FST can be expressed in terms of expected coalescent times

FST = ts − tw

ts
,

where ts is the average time for two randomly picked genes—from the whole
population—to find a common ancestor and tw is the average time for two genes
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from the same subpopulation to find a common ancestor. The intuition for this
definition is that it measures the relatively longer time it takes for two genes situated
in individuals from different subpopulations to find a common ancestor compared
to when they are situated in individuals from the same subpopulation. From this
definition, it is clear that if the expected coalescent time for two genes does not
depend on which population the genes are drawn from (ts = tw), then FST = 0. In
contrast, if genes from different populations take much longer to find a common
ancestor than genes from the same population, FST tends toward 1.

In order to estimate FST, we need genetic variation from individuals drawn from
predefined populations. Depending on the type of genetic data, different assump-
tions of the mutational process can be used. For sequence data, the mutational
process is well approximated by the infinite sites model, for which at most one
mutation is allowed for each site. The mutation rate per site is typically very low
and the influence of branch-specific, novel mutations when estimating FST will
be assumed to be negligible compared to demographic factors that affect sites
polymorphic in the ancestral population to the predefined populations. Alternatively,
an outgroup can be utilized to delimit the data to SNPs that were polymorphic
prior to the time period of interest. In order to account for the sample variance
(due to limited sample sizes), Weir and Cockerham (1984) developed a robust (and
commonly used) estimator for FST (see also Weir 1996; Bhatia et al. 2013).

Model-specific demographic parameters such as migration rate and/or divergence
time can often be directly related to FST, although caution is warranted for directly
equating an FST estimate with a specific demographic parameter as there are many
different factors that influence estimates of FST. For instance, in a two-population
divergence model, the relationship between FST and the divergence time t is (Slatkin
1995):

FST = t

t + 8Ne

,

while in an infinite island model, the migration rate m is related to FST as (see Fig.
3.5 and Box3.2)

FST = 1

1 + 4Nem
.

Note that estimates of FST, like many other population genetic parameters,
depend on genetic drift and include the term of effective population size. Hence,
estimates of FST transformed into estimates of other population genetic parameters,
such as divergence time or migration rate, are typically estimates of the scaled (in
terms of Ne) parameter.
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Fig. 3.5 Two simple demographic models and their relation to FST (in the limit as the mutation
rate approaches 0 (Slatkin 1995)). The left model is a two-population split model with no
migration, and the scaled divergence time t/2Ne under this model can be estimated by 4FST/(1-
FST). The right model illustrates the infinite island model with an infinite number of equally sized
subpopulations with a constant migration rate between neighboring subpopulations. Under this
model, the scaled migration rate 4Nem is estimated by (1-FST)/FST

Box 3.2 FST
Applied to the example data, the pairwise FST values, estimated using Weir
and Cockerham’s (1984) estimator, are displayed in the table below. The
largest estimate of FST is found between the San and the French leading to
the largest estimated divergence time (scaled by effective population sizes)
or, alternatively, the smallest estimated migration rate, between these two
populations. Note that because San ancestors may have diverged earlier than
any of the other populations (Schlebusch et al. 2012), we may expect that the
divergence time between San and any of the other population would be equal,
but because time is scaled in Ne, this is not necessarily the case. The large
divergence between San and French is, for instance, likely to be a consequence
of a relatively small Ne for the French. Interestingly, FST is markedly smaller
between the French and the Mozabite than between the Mozabite and the

(continued)
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Yoruba. Under a pure migration model, this would suggest more gene flow
between the Mozabite and the French compared to between the Mozabite and
the Yoruba. An alternative interpretation (under a simple divergence model)
would state that the first population split was between Yoruba and the ancestor
population to the French and the Mozabite. As both these models are highly
unlikely to be a good approximation to human demographic history in this
particular case, caution is warranted about such direct interpretations when
the underlying model is largely unknown. From the PCA and STRUCTURE
analyses, we see indications of more complicated demographic scenarios
that incorporate both gene flow and population divergence, which can be
reconciled with these pairwise FST values.

Fst

San vs. French 0.105

San vs. Mozabite 0.091

Yoruba vs. French 0.0905

Yoruba vs. Mozabite 0.073

San vs. Yoruba 0.0511

French vs. Mozabite 0.0185

3.3.1.2 Other Measures of Genetic Distance
There are many alternative measures of genetic distance between populations.
The simplest distance measure is the Euclidian distance between two points in
a multidimensional space. Many variations of this distance are available such as
Rogers’s (1972) scaled Euclidian distance, Prevosti et al.’s (1975) distance, Cavalli-
Sforza and Edwards’ (1967) chord distance, and Nei et al.’s (1983) DA distance.
These are all geometric distances and do not involve any evolutionary models.

Other, more model-based, distance measures are Cavalli-Sforza’s chord distance
(1969); Reynolds, Weir, and Cockerham’s θW (1983), and Nei’s (1972) Ds. The
first two measures utilize existing variation (without modeling the possibility of
new mutations), while Nei’s Ds includes the possibility of new mutations occurring
in an infinite allele mutation model.

Distance measures have also been designed to handle the stepwise mutation
model (SMM) that can be useful for microsatellite data. Goldstein et al.’s (1995)
(δμ)2 distance is commonly used, as is the closely related average square distance
(ASD) (Slatkin 1995). Two other commonly employed distances for microsatellites
are Shriver et al.’s (1995) distance and the shared allele distance DSA (Chakraborty
and Jin 1993).
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3.3.2 Formal Tests for Admixture Under a Population Tree-Model

Once we have some proposed demographic model/s, we can start estimating
demographic parameters in these models. An alternative, but not mutually exclusive,
way to proceed is to construct formal tests of these models. The proposed model is
used as a null model to make predictions, and then these predictions are compared
to the observed data in order to test if the data is consistent with the model. A
recent suite of tests along these lines is the 3-population test, the 4-population test
(Reich et al. 2009), and the D-test (Green et al. 2010). These have been successfully
applied to test for admixture among human populations as well as for identifying a
significant level of admixture from archaic humans (Neandertals and Denisovans)
among human populations (Green et al. 2010; Reich et al. 2010). These methods,
collectively referred to as f -statistics (in contrast to Wright’s F-statistics), relate
the expected covariances in allele frequencies between not only 2 but also 3 and 4
populations in a bifurcating population phylogeny with the possibility of punctual
admixture events.

The f3 statistic, or 3-population test, is computed as the product (pX − pA)
(pX − pB), where pX, pA, and pB are the allele frequencies at each locus in
population A, B, and X. The expected value of this product is positive under a
tree model, but the estimate from data can be negative under certain admixture
scenarios (which violate the tree model), and negative f3-statistics can only occur
due to admixture events.

The f4 statistic, or 4-population test, is computed as the product (pA − pB)
(pX − pY), where pA, pB, pX, and pY are the allele frequencies at each locus in
population A, B, X, and Y. This product is expected to be 0 if the 4 populations
are related by an unrooted phylogeny of the form (A, B), (X, Y) without admixture.
Violations of this assumption can create (significantly) positive or negative values
where the sign of the statistic contains information on the direction of the admixture.

The D-test is a version of the f4 statistic with a denominator that includes a
term for heterozygosity. Jackknife or bootstrap permutation tests of chromosomes
or blocks of the genome can be used to assess statistical uncertainty and perform
hypothesis tests using these statistics (Reich et al. 2009).

We illustrate these methods by performing the D-test on our data (Table 3.1).
Using San as the outgroup, we see that the single-tree hypothesis with the smallest
deviation from D = 0 has the Mozabite and the French as the closest related
populations. However, the negative D-value for this tree suggests gene flow from
the Yoruba into the Mozabite. This result is consistent with the Mozabite having
ancestry related to both Yoruba and the French with more gene flow from the
French than from the Yoruba. This result closely mirrors the analysis based on
FST, and it is (supposedly) robust to effects of genetic drift (e.g., from different
effective population sizes in the different populations), which could impact FST
results. However, we cannot rule out alternative models without a more detailed
model of genetic drift in the population history model.
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Table 3.1 D-test for
different topologies (W, (X,
(Y, Z)))

W X Y Z D-stat Z-score

San Yoruba Mozabite French −0.0089 −8.018
San Mozabite Yoruba French 0.1358 67.627
San French Yoruba Mozabite 0.1445 76.227

A large absolute value of the Z-score indicates a poor fit of
the observed data and the proposed topology. If gene flow
involving the outgroup lineage can be ignored, a negative D
value suggests gene flow between X and Y, while a positive D
value indicates gene flow between X and Z

3.3.3 More AdvancedModeling

3.3.3.1 Population Graph Fitting
The f -statistic framework in Reich et al. (2009) where the 3- and 4-population tests
were introduced also in a more complex model fitting framework where a multi-
population model can be fitted so that population topology, admixture events, and
genetic drift along lineages are fitted to the observed f -statistics. This approach has
been implemented in the package qpgraph (Patterson et al. 2012) and in MixMapper
(Lipson et al. 2013). A similar approach of fitting ancestry graphs to genetic
data was attained by Pickrell and Pritchard (2012). Their method, implemented in
the software TREEMIX, finds the tree structure with potential admixture events
between populations that best explains the observed matrix of allele frequency
covariances between populations.

3.3.3.2 Isolation-MigrationModels
Several methods that attempt to co-estimate effective population sizes, divergence
time, and migration rates in a 2-population “isolation-migration” (IM) model setting
have been developed. In one line of approaches, the estimates are based on haplotype
information using a Bayesian framework (Nielsen and Wakeley 2001; Hey and
Nielsen 2004, 2007). Here the haplotypes are assumed to be known and that
there is no intra-locus recombination. The latter assumption has been relaxed in
the implementation of MIMAR (Becquet and Przeworski 2007). These methods
are usually too computationally intensive to be applied to full genomic data.
Alternatively, loci are assumed to be independent, and the full joint frequency
spectrum is utilized in a composite likelihood approach to estimate the migration
rates and divergence time (Gutenkunst et al. 2009). ABC methods (see below) have
also been developed specifically for the IM model (Lopes et al. 2009; see also Tellier
et al. (2011)).

3.3.3.3 Approximate Bayesian Computation
Approximate Bayesian computation (ABC) is a powerful and extremely flexible
approach to fit and compare models to real data that does not rely on calculating the
full likelihood of the data given a model (see, for instance, Beaumont et al. 2002;
Csilléry et al. 2010). Instead, some (well-chosen) summary statistics calculated for
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simulated data are compared to the values of these summary statistics observed
from the real data. The simulations are performed by drawing model parameters
from prior distributions and then choosing those simulations that best mimic the
real data. The distribution of the model parameters in this chosen set of best fitting
simulations can then be used to estimate the model parameters. Different models can
then be contrasted using Bayes factors. The ABC approach has proven very flexible
for inferring model parameters, and there is an active community developing novel
and faster algorithms (e.g., Pudlo et al. 2016; Csilléry et al. 2012).

3.4 Summary and Guidelines

Good practice when investigating a population-genetic dataset for population struc-
ture is to start by visualizing the data in a way that reveals the inherent characteristics
of the data. To get an indication of whether or not the data contains different
groups; PCA, simple tree-building methods, and “STRUCTURE-like” approaches
are all good tools for initial data exploration. Once some overview of the data is
obtained, we can start building simple models to investigate additional hierarchical
patterns and characteristics of the underlying demographic history of the sample
and population/s. More detailed hypotheses can subsequently be scrutinized using
more explicit and advanced models. The more accurate models of demography we
can infer, the better we understand the underlying processes shaping the population
genetic patterns of variation. Ultimately, this understanding may allow in-depth
analysis of the genetic architecture of traits and patterns of selection impacting the
genome (Li et al. 2012), after controlling for patterns caused by demographic history
manifesting as population structure.
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4Types of Natural Selection and Tests
of Selection

David Enard

Abstract

Natural selection leaves distinct signals at loci in the genome that have experi-
enced deleterious or advantageous mutations during their evolution. This chapter
provides an overview of the main signatures left by natural selection both at
the level of genetic variation within populations and at the level of differences
between species. The chapter also details a number of classic summary statistics
that exploit these signals to detect and quantify natural selection and the rationale
behind these statistics. As such, it offers a basic introduction.

4.1 Types of Selection and Their Effect on Linked Neutral Sites

4.1.1 Types of Selection

Different types of natural selection are distinguished based on the dynamics of
the selected alleles. There are three broad categories: positive directional selection,
balancing selection, and purifying selection.

Alleles under positive directional selection are advantageous alleles (here advan-
tageous means higher reproductive success) where individuals carrying the allele
have a reproductive advantage. In the case of directional selection, assuming the
mutation becomes established in the population, the greater selective advantage
quickly drives the frequency of advantageous alleles from close to zero when they
first appear to 100% after a number of generations.
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Alleles under balancing selection are alleles where heterozygous individuals
have a greater selective advantage than homozygous individuals (heterozygote
advantage) or where the selective advantage of either heterozygous individuals
carrying the allele on one chromosome or homozygous individuals carrying the
allele on both chromosomes depends on the frequency of the allele (frequency-
dependent selection). In both cases of heterozygote advantage and frequency-
dependent selection, the effect of selection is to maintain the frequency of the
selected alleles at intermediate frequencies, for a number of generations greater than
expected under genetic drift alone.

Alleles under purifying selection, also known as negative selection, are alleles
with deleterious consequences for their carriers. Deleterious alleles reduce the
reproductive success of individuals. By reducing reproductive success, deleterious
alleles are removed from populations because individuals carrying them reproduce
less than individuals free of such alleles. Strongly deleterious alleles are eliminated
from populations rapidly enough that they never make it to appreciable frequencies.
Weakly deleterious alleles can initially reach appreciable frequencies due to genetic
drift and sometimes, in small populations, can become fixed by drift in spite of
selection (Ohta and Gillespie 1996).

For further discussion of the mathematical details of the basics of natural selec-
tion, we recommend that readers consult several excellent textbooks on population
genetics (Hartl and Clark 2007; Hamilton 2009; Charlesworth and Charlesworth
2010).

4.1.2 The Effect of Selection on Linked Neutral Sites

Natural selection affects not only the frequency of the selected variants themselves
but also the linked neutral genetic variation. Neutral variants, as opposed to selected
ones, have no effect on an individual’s reproductive success. In the absence of
selection, their evolution is driven by random genetic drift, where the frequency of
a variant fluctuates over generations as a result of the random sampling of gametes
at each generation. The probability that a new neutral mutation becomes fixed is
only one over twice the effective population size. In other words, the vast majority
of neutral variants never reach fixation. The crucial difference between neutral and
selected variants is that when selection is strong enough, it can change the frequency
of linked neutral variants much faster than genetic drift alone. Only those neutral
variants that are genetically linked to one or several selected variants also experience
faster changes in their frequencies. In the case of positive directional selection,
neutral variants are said to hitchhike with the selected variants. It is therefore
possible to localize and/or quantify natural selection in a genome by detecting the
effect of selected variants on linked neutral variation. Regions of the genome where
the frequency of neutral variants has changed the most are also the ones that are
more likely to be influenced by linkage to sites affected by natural selection.

There are three forms of natural selection that influence patterns of linked neutral
diversity. The first is positive directional selection and results in a phenomenon
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called genetic hitchhiking; as a directionally selected variant increases rapidly
to a high frequency, genetically linked neutral variants are also driven to high
frequencies. Balancing selection is the second form of selection that influences
nearby neutral variants. The third form of selection is called background selection.
Unlike directional selection and balancing selection that involve advantageous
mutations, background selection results from the removal of deleterious mutations.
We will first describe the effect of hitchhiking on linked neutral variation (part
A). Second, we will describe how balancing selection shapes neighboring neutral
diversity (part B). Finally, we will focus on background selection (part C).

(A) Hitchhiking
Genetic hitchhiking occurs when linked neutral variants are driven to higher
frequencies together with a positively selected, advantageous mutation that is on the
way to fixation. Hitchhiking leaves several signatures in neutral diversity that can be
used to detect and quantify positive selection. One of the most important signatures
is a local decrease of neutral diversity around the selected mutation (Maynard
Smith and Haigh 1974; Kaplan et al. 1989). As the selected mutation increases
in frequency, at neighboring neutral sites, linked alleles increase in frequency, and
unlinked alleles decrease in frequency. If they do not recombine with the selected
mutation, alleles unlinked to the selected mutation disappear from the population.
Following a hitchhiking event, the loss of neutral diversity is most severe near the
selected mutation and becomes gradually less severe as one gets further and further
away from the selected mutation (Fig. 4.1). This is because very few recombination
events occurred between the selected and the nearest neutral variants that could
rescue the latter from disappearing. As the distance from the selected mutation
increases, more and more recombination events occur, and as a result, more neutral
variants survive. The resulting pattern is a local dip in the level of diversity called
a selective sweep (Fig. 4.1). Diversity has been swept away during the process of
hitchhiking.

The loss of genetic variants is only one of several of the signatures left by
hitchhiking on patterns of diversity. Hitchhiking also affects both the site frequency
spectrum (SFS) and the structure of haplotypes in a population. The site frequency
spectrum is the distribution of the frequencies of variants. In an equilibrium
population, most neutral variants arose recently and segregate at low frequencies.
Most of these low-frequency variants ultimately get lost. Indeed, being at low
frequency means that under drift these variants are much more likely to be lost
than fixed, since it is far easier for them to reach a proportion of 0 than 100%.
Only a small minority of low-frequency variants make it to intermediate or high
frequencies, and the SFS is skewed toward low-frequency variants. In population
genetics, two types of SFS are used, the folded SFS and the unfolded SFS. The
unfolded SFS is the distribution of frequencies of derived alleles. The derived allele
at a particular position is the most recent (i.e. mutant) allele, as opposed to the
ancestral, preexisting allele. Determining which allele is derived and which allele
is ancestral is called polarization. It requires the use of a closely related species,
close enough that it is very likely that both ancestral allele and allele found in the
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Fig. 4.1 Selective sweep around a selected mutation. The graph represents the loss of genetic
diversity or selective sweep due to hitchhiking near a selected mutation that has reached fixation.
The loss of diversity is complete right next to the selected mutation and gradually recovers as the
distance from the selected mutation increases

close species still correspond to the allele in the common ancestor. Polarization of
variants in humans is usually performed using chimpanzees and other primates for
comparison (Hernandez et al. 2007). When it is not possible or not necessary to
know which allele is derived and which is ancestral, the folded SFS is used. The
folded SFS is the distribution of minor allele frequencies. Below we discuss how
hitchhiking affects the SFS.

Hitchhiking affects the SFS in systematic ways that can be detected using a range
of statistical methods. One of the characteristic signatures of hitchhiking on the SFS
is an excess of rare alleles (Nielsen et al. 2007). One may consider the simplest case
of an advantageous de novo mutation increasing in frequency to fixation. As the
frequency of the advantageous mutation increases, the frequency of unlinked alleles
decreases until they are lost. At fixation, many old variants that were previously at
intermediate frequencies have been lost. The new variants that appear after fixation
are all at low frequency. These two things combine to create a local excess of rare
alleles that can be detected using either the folded or the unfolded SFS. The stronger
the selection, the shorter the time to fixation, the less time for recombination to
rescue unlinked variants from loss, and the stronger the excess of rare alleles (Fig.
4.2).

The second effect of hitchhiking on the SFS is to create an excess of high-
frequency derived alleles. Because this pattern is based on derived alleles, the
unfolded SFS is required. When a de novo advantageous mutation occurs, it is
genetically linked to several derived, low-frequency alleles. In the absence of
selection, the vast majority of these derived alleles disappear. However, linked
derived alleles hitchhike to higher frequencies together with the advantageous
mutation. As a result, soon before fixation, there is an unusually high number of
high-frequency derived alleles (Fig. 4.2). When the advantageous mutation fixes, or
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Fig. 4.2 Distortion of the site frequency spectrum by positive selection. The dashed line repre-
sents the distribution of derived allele frequencies under neutrality without selection. The full line
represents the distribution of derived allele frequencies under selection soon after the fixation of
a selected mutation. Compared to the neutral case, there is an excess of rare and high-frequency
derived alleles and reciprocally a lack of derived alleles at intermediate frequencies

soon thereafter, most of these alleles become fixed, and the excess of high-frequency
derived alleles disappears quickly (Przeworski 2002). It is a very transient signal
useful for detecting selective sweeps close to fixation (Zeng et al. 2006). Too soon
before fixation, the derived alleles have not reached frequencies high enough that
they can be considered unusual. Too long after fixation, the derived alleles have
fixed.

Both excess of rare alleles and excess of high-frequency derived variants are
signals that are best suited for detecting hitchhiking from de novo advantageous
mutations, as opposed to selection on standing genetic variation (Hermisson and
Pennings 2005). Selected variants from standing genetic variation differ from the
selection on de novo mutations in that in the case of standing variation, the selected
sites had time to recombine with several genetic backgrounds before selection
started acting upon them. This means that a far greater proportion of neutral variants
are linked to the advantageous standing variant. As a result, far fewer variants are
lost during the hitchhiking process, and the impact on the SFS is much more subtle.
These factors make it less likely to detect selection on standing variation than on
neutral mutations using the SFS (Hermisson and Pennings 2005; Przeworski et al.
2005).

In addition to affecting the SFS, hitchhiking can also have profound effects on the
structure of haplotypes in a population. A haplotype is a combination of neighboring
alleles that are genetically linked in a number of individuals of a population.
Longer haplotypes can be defined in genomic regions that experience low rates of
recombination, since in this case, it is less likely that recombination events would
break down any specific combination of alleles. Hitchhiking specifically creates
unusually long and unusually high-frequency haplotypes (Fig. 4.3) (Sabeti et al.
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Fig. 4.3 Selected alleles are associated with large, frequent haplotypes. The selected allele (white
circle) is associated with a specific haplotype (dark) that is more frequent and extends much further
away from the allele compared to haplotypes unlinked to it (gray haplotypes). The dark haplotype
is more or less extended in different individuals because of different recombination events in the
ancestral lineages of different individuals

2002; Bersaglieri et al. 2004; Voight et al. 2006). In the absence of recombination,
a de novo advantageous mutation would drive an entire chromosome to fixation.
As a de novo advantageous mutation increases in frequency, linked neutral variants
forming a specific haplotype also increase in frequency. As one gets further and
further away from the advantageous mutation, it becomes more and more likely
that recombination events will break down the specific combination of variants that
form the haplotype carrying this mutation. The faster the increase in frequency, the
fewer recombination events have time to break the advantageous mutation-bearing
haplotype, and the longer this haplotype is as a result. The presence of a single,
unusually long, and high-frequency haplotype is therefore a good potential signal of
hitchhiking driven by a de novo mutation.

Hitchhiking on standing variation leaves a different pattern on the linked
haplotypes. During the initial phase when the selected standing variant is not yet
advantageous, it has time to recombine with several haplotypes. When the standing
variant becomes advantageous, all the haplotypes recombined with increase in
frequency, and the signature of selection on standing variation is the presence
of multiple long, high-frequency haplotypes as opposed to only one haplotype
in the case of selection on a de novo mutation (Hermisson and Pennings 2005;
Messer and Petrov 2013b). Haplotype signatures of hitchhiking are short-lived as
recombination rapidly breaks down haplotypes after fixation. For this reason, the
haplotype structure is used to detect ongoing selective sweeps or sweeps completed
very recently.

The impact of hitchhiking on neutral diversity depends on the intensity of
selection and on the amount of recombination. The intensity of selection is defined
as the product of the selection coefficient and population size. In the case of
hitchhiking, it defines how fast an allele goes to fixation and how systematic
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the advantageous mutation will increase in frequency due to selection in spite of
genetic drift. In a small population, genetic drift is strong, and even mutations
with high selection coefficients can experience many ups and downs in frequency
before reaching fixation. In a large population, genetic drift is weaker, and for the
same selection coefficient, there are systematically more ups than downs on the
road to fixation. In other words, as the intensity of selection increases, the path to
fixation becomes more deterministic and shorter. The faster the fixation, the fewer
recombination events and the larger the region around the selected mutation with
reduced diversity and skewed SFS and haplotype structure. Selective sweeps leave a
larger footprint in regions of the genome with lower recombination. For this reason,
if recombination rates are well known, the size of the genomic region affected by
hitchhiking can be used to estimate the intensity of selection.

(B) Balancing Selection
Balancing selection occurs when selection maintains polymorphism at a specific fre-
quency in the population. Balancing selection happens in three different situations:
in the case of heterozygous advantage, in the case of frequency-dependent selection,
and in the case of fluctuating selection. In heterozygous advantage, heterozygous
individuals have, on average, higher reproductive success than homozygous ones. At
the selected site, allelic variants tend to oscillate around an equilibrium frequency.
In frequency-dependent selection, the selective advantage of an initially uncommon
allele depends on its frequency and results in balancing selection if the equilibrium
is at intermediate frequencies between the different alleles at the selected site. In
the case of fluctuating selection, the direction of selection can fluctuate in time and
space in such a way that advantageous alleles are maintained for extended periods
of time in a population.

For both heterozygote advantage and frequency-dependent selection, the initial
phase is very similar to the case of hitchhiking (Charlesworth 2006). A de novo
mutation spreads quickly to the equilibrium frequency (the equilibrium frequency
for heterozygote advantage). Linked neutral variants or haplotypes are also driven
to intermediate frequencies, much like in the initial phase of a hitchhiking event.
In other words, balancing selection is first characterized by a short phase of
hitchhiking that results in a partial sweep. Such partial sweeps leave an excess
of intermediate allele frequencies in the SFS and also result in larger than usual
intermediate-frequency haplotypes. The second phase of balancing selection is
usually much more extended in time. Once the equilibrium frequency has been
reached, this equilibrium is maintained for a large number of generations. The
stronger the selection, the longer the equilibrium is maintained. The neutral variants
that initially hitchhiked together with the new mutation are also maintained to
the equilibrium frequency as long as they are not dissociated by recombination.
Soon after the establishment of the equilibrium, there is an excess of intermediate-
frequency neutral alleles in a large region surrounding the balanced site. With
time, however, recombination breaks down the linkage between the balanced
site and neutral variants, and the region with an excess of intermediate variants
shrinks a bit more every generation. Ultimately, neutral variation is affected by
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balancing selection only in a small region right next to the balanced site, where
the maintenance of balanced alleles increases the observed diversity. After a long
time, it is possible to detect balancing selection as balanced polymorphisms that
can be detected as cases of trans-specific polymorphisms (Leffler et al. 2013).
The effects of fluctuating selection on patterns of linked neutral diversity have
been less extensively studied and are expected to strongly depend on the type and
pace of fluctuations (Bergland et al. 2014). Fluctuating selection includes seasonal
adaptations where allele frequencies of selected alleles fluctuate across seasons for
extended periods of time, as in the case of Drosophila populations in Northern
America (Bergland et al. 2014).

(C) Background Selection
Unlike hitchhiking and balancing selection, background selection is driven not by
advantageous mutations but by deleterious mutations (Charlesworth et al. 1993).
Deleterious mutations are mutations that decrease an individual’s reproductive
success. They are far more common than advantageous mutations (Boyko et al.
2008). Unlike advantageous mutations that happen very intermittently, there is a
constant input of deleterious mutations at any functionally important locus in the
genome. Because they are negatively selected, deleterious mutations are unlikely to
fix, even the weakly deleterious ones. The important differences between weakly
and strongly deleterious mutations are the time these mutations can segregate in
a population before they are lost and the frequencies they can reach. Strongly
deleterious mutations always segregate at low frequencies and are removed very
quickly from a population. Weakly deleterious mutations can segregate at higher
frequencies and during a greater number of generations before they are removed by
purifying selection.

The effect of background selection on linked neutral variation depends on
whether it is driven by strongly or by weakly deleterious mutations. Strongly
deleterious mutations remain at very low frequencies and disappear as fast as they
appeared. They only take away from the population of the chromosomes where they
initially appeared. By doing so, they reduce the overall diversity but have very little
impact on the SFS (Charlesworth et al. 1993). In this respect, background selection
due to strongly deleterious mutations results in a decrease in genetic diversity.
In other words, the level of neutral genetic variation would look as though the
population size was smaller.

Weakly deleterious mutations also decrease the overall diversity but in addition
also affect the SFS (Charlesworth et al. 1993). Weakly deleterious mutations can
rapidly reach higher frequencies than strongly deleterious ones through genetic
drift. Intermediate frequency, older alleles unlinked to such weakly deleterious
mutations can get fixed faster in the process. Population size is being constant, and
at the same time, there is always the same input of new neutral mutations and the
same number of recent, low-frequency neutral alleles. Background selection due to
weakly deleterious mutations therefore creates an excess of rare alleles relative to
higher-frequency ones in the SFS (Desai et al. 2012). Note however that locally
the effect is not as drastic as in the case of strong hitchhiking where the skew
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toward rare alleles can be much more pronounced, especially soon before or soon
after the fixation of a beneficial mutation. Unlike beneficial mutations, weakly
deleterious mutations do not create an excess of high-frequency derived alleles.
Unlike hitchhiking, background selection does not drive long haplotypes to high
frequencies (Enard et al. 2014), but it does increase overall linkage disequilibrium
(Zeng and Charlesworth 2011).

4.2 Tests of Selection

As previously described, hitchhiking, balancing selection, and background selection
all have a specific range of effects on patterns of diversity: on overall levels of
diversity, on the SFS, and on the structure of haplotypes. There is considerable
interest in testing the presence of natural selection at specific loci (Akey 2009) in a
genome or genome-wide (Hernandez et al. 2011; Lohmueller et al. 2011; Enard
et al. 2014). Most frequently evolutionary biologists are interested in detecting
local signals of hitchhiking. Balancing selection has received less attention in the
human genome (Andres et al. 2009; Leffler et al. 2013; DeGiorgio et al. 2014).
There has been little interest in detecting background selection at specific loci, and
background selection is usually quantified at a global genome-wide scale, not a local
one (Hernandez et al. 2011; Lohmueller et al. 2011; Enard et al. 2014). Here we
will therefore focus on tests aimed at detecting hitchhiking. However, we will also
mention those cases where tests of positive selection are confounded by background
selection or when a specific test can also be used to detect balancing selection.

We will first describe tests of positive selection based on patterns of genetic
diversity. There are two flavors of these tests: those that use the site frequency
spectrum and those that reply on haplotype patterns. We will then describe one
particular test based on the combination of both genetic diversity and divergence,
the MacDonald–Kreitman test. The tests described here are the most commonly
used: Tajima’s D (Tajima 1989), Fay and Wu’s H (Fay and Wu 2000) and likelihood
ratio-based tests (Kim and Stephan 2002; Nielsen et al. 2005) for the SFS, extended
haplotype homozygosity (EHH) (Sabeti et al. 2002), integrated haplotype score
(iHS) (Voight et al. 2006) and cross-population extended haplotype score (XP-
EHH) (Sabeti et al. 2007) for haplotype structures, and the McDonald–Kreitman
test (McDonald and Kreitman 1991) for approaches based both on diversity and
divergence. Other tests are often variations of the former tests. We have voluntarily
limited our description to those tests that were most extensively used to analyze
selection in the human genome.

4.2.1 Tests of Selection Based on the Site Frequency Spectrum

4.2.1.1 Tajima’s D
Fumio Tajima proposed his test in 1989 (Tajima 1989), based on the summary
statistic D. Although Tajima’s D has been widely used to detect hitchhiking, Tajima
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initially introduced it in order to detect loci with an excess of rare deleterious
mutations. However, because of the popularity of genome scans for positive
selection, it has been used more widely to detect selective sweeps. The principle of
the Tajima’s D test is to contrast two well-known estimators of genetic diversity,
namely, π and S on the folded SFS to detect a departure from neutrality. π is
the average of differences between each pair of sequences in the sample studied.
S is the number of segregating variants. When a selective sweep is very near or
right after fixation, variation at perfectly linked sites right next to the selected
mutation has been wiped out. Further from the selected mutation, recombination
maintains variation, but many preexisting older intermediate-frequency alleles have
been swept away from the population. At the same time, there is a constant input of
new, low-frequency alleles. This results in an excess of young, rare alleles compared
to the neutral SFS. The strength of the excess of rare variants reflects the strength
and speed of the selective episode. The missing intermediate-frequency alleles do
not affect S strongly as they represented only a small proportion of all segregating
variants in the first place. Unlike S, π is strongly affected by the lack of intermediate-
frequency alleles. As a reminder, π is the average of differences between each pair
of sequences in the sample studied. Intermediate-frequency alleles in the folded
SFS result in differences between many pairs of sequences in the sample, whereas
rare alleles result in differences between very few pairs of sequences. π is therefore
far more sensitive to intermediate-frequency variants than S is. Tajima’s D is the
difference between π and an estimate of the mutation rate based on S, normalized
by the standard deviation of the difference. Under perfectly neutral conditions,
the difference is expected to be null. When a sweep is right before or right after
fixation, Tajima’s D is negative: π is strongly reduced because of the missing
intermediate frequency alleles, while S is less affected. It is important to note that
any demographic expansion or bottleneck that induces a local excess of rare alleles
can create spurious detections of sweeps when using Tajima’s D. Tajima’s D is
also sensitive to the excess of rare alleles induced by background selection due to
weakly deleterious mutations. Tajima’s D can also be used to detect recent balancing
selection, when there is an excess of intermediate-frequency alleles across a wide
region surrounding the balanced allele not yet broken down by recombination. In
this case, Tajima’s D is strongly positive.

4.2.1.2 Fay andWu’s H
Tajima’s D inspired a number of other statistics similarly based on the SFS (Achaz
2009). In an attempt to create a statistic more sensitive to positive selection at
the exclusion of other confounding processes, Fay and Wu created the statistic H
(Fay and Wu 2000), usually called Fay and Wu’s H. H uses the unfolded SFS,
which means an out-group has to be used to polarize alleles. The rationale is
to detect selective sweeps using intermediate- and high-frequency alleles of the
unfolded SFS, at the exclusion of rare alleles. Indeed, the main effect of population
expansions, bottlenecks, and background selection on the SFS is to create an excess
of young rare alleles. By focusing on intermediate- and high-frequency variants,
H is expected to be more robust to these confounding factors. In brief, H is the
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difference between π and θH where π is sensitive to intermediate-frequency alleles
as explained in the description of Tajima’s D, and θH is a measure of diversity that is
sensitive to high-frequency alleles. Right before or after fixation, many intermediate
frequency alleles have been fixed, and π is low. At the same time, young, derived
alleles linked to the selected mutation were rapidly driven to high frequencies.
There is an excess of young, high-frequency derived alleles, and θH is high. The
difference H = π – θH is therefore strongly negative soon before and after the
fixation of a selected mutation. Because the effect of population expansions is to
increase the supply of new, rare alleles, population expansions have no effect on
H. Conversely, population bottlenecks can affect H. The rapid rise of a specific
haplotype to a high frequency can occur by chance during a bottleneck. This mimics
a selective sweep and creates both an excess of high-frequency derived alleles and
a paucity of intermediate alleles on a local scale. Fay and Wu’s H is robust to
background selection driven by strongly deleterious mutations (Zeng et al. 2006).
The robustness of the statistic to background selection driven by weakly deleterious
mutations remains to be evaluated.

4.2.1.3 Likelihood Ratio Tests
In order to achieve greater statistical power to detect selective sweeps, several
authors have developed Likelihood Ratio Tests (LRTs) based on the SFS. The
advantage of such tests is to consider the entire SFS rather than just using parts
of it as for Tajima’s D or Fay and Wu’s H. Further, LRTs compare the likelihoods
of the observed SFS under a selective sweep model and a neutral model, with the
likelihood of the observed SFS under a neutral model. As it provides an explicit test
of selection, it should be more powerful and robust than simple tests of neutrality.
Under both sweep and neutral models, it is possible to estimate the probability of
the observed frequency for each allele of the tested locus. The likelihood of the SFS
under each model is then calculated by multiplying all the individual probabilities
for all the sites present in the tested locus. Once the likelihoods are known both
with and without sweeps, the likelihood ratio can be used to decide whether or
not the neutral hypothesis can be rejected. There are two distinct approaches to
estimate the likelihood of the SFS under the neutral hypothesis. The first approach
consists of using a classical neutral model under panmictic assumptions (Kim and
Stephan 2002; Li and Stephan 2005). A major issue with this neutral model is
that it does not take demographic perturbations into account. Consequently, this
approach is very sensitive to demographic events such as population expansions or
bottlenecks (Jensen et al. 2005). The second approach, called CLR for composite
likelihood ratio (Nielsen et al. 2005), is to estimate the likelihood of the SFS at a
local scale based on the global, genome-wide SFS as the neutral model. Compared
to the previous classical neutral model, this empirical neutral model is a good
approximation of the average expected SFS given the past demographic history
of the population studied. Although this approach does integrate the systematic,
average influence of demography in the neutral model, it still does not account
for the increased variance in the local SFS along chromosomes expected after
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bottlenecks, and false positives due to demography are still an issue (Huber et al.
2014).

4.2.2 Tests of Selection Based on Haplotypes

4.2.2.1 Extended Haplotype Homozygosity (EHH)
The EHH (extended haplotype homozygosity) test was introduced in 2002 by
Sabeti et al. (2002) to test the hypothesis of positive selection of two variants
protecting against malaria at the G6PD and CD40L loci. Both alleles decrease
the risk of malaria by approximately 50% in heterozygous individuals. In African
regions where malaria is endemic, G6PD-202A is at a frequency of 20% despite
the fact that it causes mild G6PD deficiency. This clearly suggests that increased
resistance to malaria has given G6PD-202A heterozygous individuals a strong
selective advantage despite the adverse effects of the allele. If G6PD-202A has
driven a selective sweep, it is a partial ongoing selective sweep. Statistics aimed at
detecting complete or near-complete sweeps such as Tajima’s D or Fay and Wu’s H
have no power in such a case. If selection for G6PD-202A has been strong enough,
the allele should be associated with an unusually long haplotype block that has not
been broken down by recombination. The EHH statistic was designed to detect such
long haplotypes. It is built by first defining core haplotypes. Core haplotypes are
combinations of nearby alleles that are in perfect linkage (i.e., no recombination
has occurred between the alleles). For all possible pairs of chromosomes with the
same core haplotype, EHH is calculated as the proportion of pairs with perfect
homozygosity over a physical distance x from the core haplotype. The distance x
is fixed and largely defined by the size of the locus that was sequenced around the
candidate allele. A relative EHH is then calculated as the ratio of EHH for the core
haplotype of interest to the EHH for all other core haplotypes grouped together. The
relative EHH is meant to normalize for recombination. Note however that there is
always more power to detect selection in regions with low recombination rates and
a greater risk of false positives (O’Reilly et al. 2008; Ferrer-Admetlla et al. 2014).
The observed relative EHH can finally be compared with a distribution of simulated
neutral relative EHH. Sabeti et al. (2002) successfully used the EHH test to detect
strong partial sweeps at the G6PD and CD40L loci. To this date, the G6PD locus is
one of the best examples of an ongoing, partial sweep in the human genome.

4.2.2.2 Integrated Haplotype Score (iHS)
A major limitation of the EHH test is that it uses an arbitrary distance to the core
haplotype. One can imagine the curve of EHH as a function of the distance to the
core haplotype. The area under the curve captures more information about haplotype
structure and represents a less arbitrary statistic than EHH measured for a fixed
distance to the core haplotype. In this respect, the integrated Haplotype Score (iHS)
(Voight et al. 2006) is an improved, integrated, and standardized version of EHH.
Unlike the classic EHH, iHS is oriented based on the derived or ancestral status
of alleles. Single ancestral or derived alleles are used as core haplotypes, and iHS
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detects selection by comparing the haplotype structure around derived alleles with
the haplotype structure around ancestral alleles. The integral of EHH is noted iHH
and is calculated for both the ancestral (iHHA) and the derived allele (iHHD). The
unstandardized iHS is then calculated as:

unst-iHS = ln (iHHA/iHHD) .

The logarithm is used so that unst-iHS is normally distributed. The iHS is finally
calculated by standardizing unst-iHS with the genome-wide average and standard
deviation for alleles with a similar frequency. Unlike the classic EHH, iHS is
calculated using genetic distances instead of physical distances. Genetic distances
are more appropriate than physical distances since the decay of EHH is a function of
the amount of recombination between the tested allele and the position in question.
iHS has maximal power to detect ongoing partial sweeps where the selected allele
has a frequency between 60% and 90%. One of the strongest iHS signals in the
human genome is found at the lactase locus in the European population (Voight et
al. 2006). Methods similar to iHS such as nSL have since been developed that are
more robust to confounding factors such as low recombination (Ferrer-Admetlla et
al. 2014).

4.2.2.3 Cross-Population EHH (XP-EHH)
The EHH and iHS tests were designed to detect ongoing, partial sweeps using the
haplotype structure information from a single population. The XP-EHH statistic
(Sabeti et al. 2007) is essentially a cross-population iHS designed to detect nearly
complete or complete sweeps. Where iHS compares the haplotype structure around
ancestral and derived alleles within a single population, XP-EHH compares the
haplotype structure around the same allele in two different populations. XP-EHH
has maximal power to detect sweeps with selected allele frequencies over 90%,
a frequency range where iHS performs very poorly. The idea behind XP-EHH of
comparing haplotypes between different populations is similar to the idea behind
the classic Fst approaches where selection is detected not with changes in haplotype
structure but with relative changes in allele frequencies between populations.

4.2.3 Tests Based on both Diversity and Divergence:
TheMcDonald–Kreitman Test

The tests we have described so far only make use of genetic diversity to detect single
episodes of selection at a very transient time scale in evolution. There has also been
considerable interest in quantifying not only recent adaptation but also adaptation
that has occurred since divergence from chimpanzee. The most commonly asked
questions are (1) which loci have experienced recurrent episodes of positive
selection since divergence with chimpanzees and (2) how much positive selection
occurred genome-wide since divergence with chimpanzees? These questions have
been addressed using the McDonald–Kreitman test (McDonald and Kreitman
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1991). The aim of the test is to quantify the rate of adaptive substitutions with
a potential functional impact, like amino acid substitutions in a coding sequence
or substitutions affecting a regulatory segment. The test can be conducted from
scales ranging from a single gene to the entire genome. The idea is to compare
functional diversity and divergence with nonfunctional diversity and divergence
to measure an excess of functional divergence. The test has been most frequently
used to quantify the rate of amino acid changes in coding sequences (Bustamante
et al. 2005; Boyko et al. 2008), where it requires to know the numbers of non-
synonymous and synonymous polymorphic sites Pn and Ps and the number of
non-synonymous and synonymous divergent sites with a closely related species
Dn and Ds. Recurrent adaptive amino acid changes are expected to increase Dn

while leaving Pn unaffected. Indeed, adaptive mutations get fixed rapidly and do
not contribute to polymorphism. Recurrent adaptive amino acid changes thus make
Dn higher than expected given Pn. Variations in the mutation rate are then controlled
by comparing the ratios Dn/Ds and Pn/Ps instead of just comparing Dn and Pn. The
rate of adaptive amino acid changes can then be easily computed as a function of
Dn, Ds, Pn, and Ps. Note that the category “non-synonymous” can be replaced with
any other functional category and that “synonymous” can also be replaced by any
other neutral category.

The McDonald–Kreitman test has been adapted for quantifying adaptation
genome-wide (Boyko et al. 2008) or at single genes (Bustamante et al. 2005).
Although the approach is elegant and looks simple at first, it suffers from many
biases. The most important one is deleterious mutations (Eyre-Walker and Keightley
2009; Messer and Petrov 2013a). Recessive deleterious mutations can reach rela-
tively high frequencies before they get eliminated from a population. This means
that they have a significant contribution to polymorphism, but no contribution to
divergence. In coding sequences, non-synonymous deleterious mutations inflate
Pn while leaving Dn unaffected, which biases estimates of the rate of adaptive
substitutions downward. This problem is especially severe after a long popula-
tion bottleneck (Eyre-Walker 2002). Indeed, reduced population size means that
purifying selection is less efficient at weeding out deleterious mutations, which
increases Pn. Fluctuations in selective constraint are also an issue, as Dn represents
the integration of selective constraint over a long period of time while Pn is affected
only by the recent level of constraint. Despite these limitations, the McDonald–
Kreitman approach has been remarkably useful to quantify rates of adaptation in
the human genome.

4.3 How to Choose a Specific Test of Selection?

The choice of a test of positive selection depends on a number of parameters:

– The type of selection. Different types of selection often require different tests,
although the same tests can sometimes be used to study both hitchhiking and
balancing selection. For example, SFS-based tests like Tajima’s D test (Tajima



4 Types of Natural Selection and Tests of Selection 83

1989) (see above) can be used both to detect close to fixation or recently fixed
advantageous mutations or recently established balancing selection.

– The timing of selection. Different tests of positive selection aim at detecting either
hitchhiking or balancing selection at different times relative to the start and end
of the selective events. Ongoing selective sweeps not yet close to fixation or
balancing selection in its initial hitchhiking phase are best detected with tests
using haplotype structure in a single population. Recently completed selective
sweeps are best detected using either SFS-based tests or haplotype-based tests
using multiple populations (see above). Selection over extended time periods
involving multiple amino acid sites may best be detected using the McDonald–
Kreitman type test.

– The nature of the data. Tests of selection have strong requirements regarding
the data they need to be performed. Here we will discuss only the case where
genome-wide variation is available. The data used to test selection in the
genome-wide study usually consists either of sequencing data or of genome-wide
genotype calls obtained with a genotyping chip. Regardless of the kind of data
used, a fundamental parameter for selection tests is the number of individuals in
the dataset. Most tests need a minimum of 20 chromosomes or 10 individuals to
have the power to detect selection. The more individuals, the higher the power to
detect selection. Sequencing can be performed for each individual separately, or
for all individuals grouped together during the sequencing process. The latter is
called pooled sequencing.

Compared to sequencing, genome-wide genotyping is still much cheaper, but
there has recently been a clear movement toward adapting approaches to full
genome sequencing. Indeed, sequencing has become far more affordable. Impor-
tantly, genome-wide genotyping data suffers from the so-called ascertainment
bias (Clark et al. 2005). Ascertainment bias comes from the fact that only those
variants that were previously known are genotyped. This biases the genotyped
diversity in several ways. First, already known variants tend to be high-frequency
ones. This is a serious issue when using the SFS to detect selection, since the SFS
will be skewed toward intermediate frequencies. Such a skew is not trivial to
correct, since it varies along a chromosome with some loci being more affected
than others (Ramirez-Soriano and Nielsen 2009). Second, genotyped positions
are chosen so that they are regularly spaced along the genome. This regular
spacing removes the information on selection that could be extracted from the
local amount of variable sites (Clark et al. 2005). It also means that important
selected variants can be completely missed. A great amount of effort has been
done in the past 10 years to deal with ascertainment bias, but it is still a strong
limitation that explains why full sequencing is now favored over genotyping.

Sequencing is not free of local biases either. The main bias of sequencing
when trying to detect selection corresponds to the local variations in sequencing
depth (Abecasis et al. 2012). The lower the sequencing depth, the lower the
probability that all chromosomes have been sequenced in all individuals of the
studied samples. Incomplete sequencing affects the SFS by reducing the accuracy
of the estimated frequencies. At a given position the frequency of a variant in the



84 D. Enard

sequencing data may not accurately represent the true frequency in the sample if
sequencing depth is too low. Sequencing depth is more convenient to handle than
ascertainment bias. Indeed, sequencing depth unlike ascertainment bias can be
readily measured and is therefore much easier to take into account. The process
of imputation further makes it possible to infer alleles in regions of the genome
with insufficient sequencing depth (Li et al. 2009).

– The confounding factors of selection. Confident detection of positive selection
is always challenging due to the multiple confounding factors that create the
same signatures in diversity as positive selection. The choice of a specific test of
selection thus depends on which confounding factors are acceptable and which
are not in a particular study context.

Demographic history represents the most important confounding factor of
selection. Indeed both decreases and increases in population size can create
local signatures that are undistinguishable from the signatures left by a local
event of positive selection. Increases in population size or population expansions
affect both the SFS and haplotype structure. Population expansion creates
an increased influx of new, low-frequency mutations. The main effect of a
population expansion is therefore to skew the SFS toward rare alleles, just
like hitchhiking. Decreases in population size or bottlenecks can also severely
confound tests of selection. Bottlenecks can either result in an excess of rare
alleles, due to all lineages coalescing during the bottleneck, or lead to an excess
of intermediate-frequency alleles, if only a few lineages make it through the
bottleneck into the larger ancestral population. Either of these effects can occur
depending on the specific parameter (e.g., timing and severity) of the bottleneck.
Thus, there could be depletion in genetic variation or an excess of rare alleles that
can be mistaken with selection. Specific haplotypes can reach high frequency
quickly during a bottleneck, which can also mimic selection.
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Abstract

Association studies are a key approach to evaluating the relationship between
genetic factors and phenotypes or traits. This chapter presents general methods
for genetic association studies in unrelated humans. Topics covered include
types of association studies, study design considerations, measurement of genetic
information, and analytical techniques. This material provides readers with
background for interpreting results from association studies and for undertaking
their own studies.

5.1 Introduction

Since the first sequences of base pairs were published in the late 1960s and early
1970s (Gilbert and Maxam 1973; Wu and Kaiser 1968; Wu and Taylor 1971),
our ability to investigate the human genome has advanced immensely. Genetic
epidemiology largely aims to identify genetic factors that are associated with a
particular phenotype or disease state. To evaluate these relationships, one essential
approach used by researchers is the genetic association study. These studies relate
germline genetic variants—or other sources of genetic variation—to some measure
of phenotype, disease status, progression, and/or mortality.

Before association studies became pervasive in the journey toward deciphering
the genetic basis of complex disease, linkage analysis was a common method
for detecting genes with a major effect on phenotype (Claussnitzer et al. 2020).
In the 1980s and early 1990s, many researchers undertook genetic studies that
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utilized family structures ranging from sibling pairs to large multiplex pedigrees.
Such studies use families with numerous disease-affected individuals to evaluate
markers spaced widely across the genome, at intervals of up to 20 million base pairs,
and to examine how these markers segregate with the disease phenotype across
multiple families (Botstein et al. 1980). Linkage analyses are often successful in
the evaluation of rare and/or monogenetic disorders but are generally underpowered
to detect genetic factors with subtle effects on complex diseases. They also have low
resolution on account of the limited number of meioses from one generation to the
next within families (Risch and Merikangas 1996).

Given that high-penetrance genes co-segregating in affected families have turned
out to be relatively rare, association studies have become the far more common and
more powerful tool to investigate genetic relationships (Claussnitzer et al. 2020).
They rely on historical recombination events from millions of years of evolution
and thus do not require pedigree information or controlled crosses to identify genetic
variants associated with the phenotype. In addition, because most association studies
leverage the phenomenon of linkage disequilibrium (LD) to localize such variants,
they can detect causal loci within narrower regions and allow for genetic mapping
at a finer scale than linkage studies (Xiong and Guo 1997). That is, association
studies do not require the direct evaluation of postulated causal variants. Rather, they
may utilize LD to indirectly evaluate genetic variants neighboring those assayed
(see Chap. 2 on LD). Moreover, genome-wide association studies (GWAS) allow
investigators to broadly search the genome for disease-causing variants in a manner
that is relatively agnostic to previous biological knowledge.

The fundamental approach to any genetic association study is based on the
following premise: compare the frequency of the genetic characteristic of interest
across individuals with different values for the phenotype of interest. Consider,
for example, a single-nucleotide polymorphism (SNP) with effect allele A under
investigation in a standard analysis of a binary phenotype (Fig. 5.1). To determine
whether or not the SNP is associated with the phenotype, one would calculate the
frequency of the effect allele in cases and controls. When the frequency is greater
in individuals with the phenotype than in those without it, then the effect allele is
positively associated with the phenotype (as in the figure). When the opposite is
true, then the effect allele is inversely associated. In GWAS, these associations are
estimated for every SNP measured across the entire genome.

Genomic research traverses genetic sequence information, protein products, and
the eventual expression of traits. It may also utilize a range of organisms; only
one facet is the study of humans. Our focus in this chapter is on population-based
genetic association studies in humans, in which data are derived from unrelated
individuals. Relative to family-based association studies, population-based studies
are the more common—and often more powerful—approach to the evaluation
of genetic associations. In describing types of association studies (Sect. 5.2),
considerations in their design (Sect. 5.3), measurement of genetic information (Sect.
5.4), and analytical techniques (Sect. 5.5), we aim to provide a basis on which
readers can build their own efforts to characterize associations between genetic
polymorphisms and measured phenotypes.

http://dx.doi.org/10.1007/978-3-030-61646-5_2
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Cases – Frequency of A Allele: 33%  

Controls – Frequency of A Allele: 17%  
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Fig. 5.1 Standard approach to a genetic association study

5.2 Types of Association Studies

Before recent technologies enabled larger-scale investigations, efforts to decipher
the genetic basis of disease were predominantly supported by candidate gene
studies (Claussnitzer et al. 2020). GWAS have since become an important avenue
for undertaking agnostic evaluation of the association between common genetic
variants and risk of disease (Claussnitzer et al. 2020). Here we describe these
most common designs for genetic association studies, and Fig. 5.2 summarizes
some of their differences with respect to the number of variants they can address
and the sample sizes they require. In brief, as investigators shift from discovery to
confirmation of associations, the number of markers investigated tends to decrease,
while the number of samples should increase. Fine-mapping studies, however, do
not require particularly large sample sizes as they evaluate a limited number of
variants.
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Fig. 5.2 Overview of genetic association study designs

5.2.1 Candidate Gene Studies

Candidate gene studies overcome some of the issues of linkage analysis by focusing
on associations between disease and specific variants plausibly involved with the
disease a priori. These studies became pervasive following the realization that
genetic variants contributing to the risk of complex disease were likely to have
individually weak effects (Claussnitzer et al. 2020).

Candidate gene studies generally evaluate several SNPs within a single gene
under the assumption that the SNPs capture information about the underlying
genetic variability of the gene (even if the SNPs are not the true causal variants).
They may do so either directly, by evaluating postulated causal variants, or
indirectly, by leveraging LD. Sufficiently large candidate gene studies are able to
detect weak effects due to common variants, though it is important to note that they
too become underpowered as variants become more rare (Risch and Merikangas
1996). In addition, their focus on particular genes means that they ignore much of
the genome.

Many early candidate gene studies were underpowered, and results went largely
unreplicated (Cordell and Clayton 2005). It was also unclear what should actually
constitute a candidate gene. Traditionally, lists of candidate genes were compiled
after an extensive manual biomedical literature review. The process to identify
candidate genes then evolved to incorporate automated text-mining procedures,
selection of genes belonging to specific biological pathways, and/or prioritization
based on gene characteristics such as degree of conservation or proximity to known
loci (Piro and Di Cunto 2012). Since GWAS have come into the picture, however,
the role of candidate gene studies has become increasingly coherent as a fine-
mapping approach. These studies can be targeted toward regions of the genome
in which GWAS find strong hits in order to see which findings are replicable and
thus more likely to be true associations.
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5.2.2 Genome-Wide Association Studies

5.2.2.1 Background
Increased throughput, scalability, and speed have enabled investigators to undertake
GWAS (Claussnitzer et al. 2020)—research that would have been far too complex
to consider even 20 years ago. It has become possible to simultaneously measure
hundreds of thousands of SNPs due to technological advances in array-based
genotyping (Wang et al. 1998). The number of variants that may be assayed by these
SNP arrays rapidly increased at the same time that array prices steadily decreased.
At present, arrays can directly measure millions of SNPs while providing relatively
high coverage of common genetic variation across the human genome (Jorgenson
and Witte 2006; Lindquist et al. 2013; Nelson et al. 2013; Xing et al. 2016; Wojcik
et al. 2018).

The genetic content of such arrays was facilitated by the development of
technology that allows for large-scale sequencing efforts in combination with the
sequencing of the human genome (Lander et al. 2001; Venter et al. 2001). Beginning
in 2002, the International Haplotype Map (HapMap) Project undertook an effort
to catalog the common genetic variants that occur in human beings. It was also
determined that a substantial portion of this variation can be efficiently captured by a
subset of “tag” SNPs via the phenomenon of LD among neighboring SNPs (Daly et
al. 2001; Gabriel et al. 2002; International HapMap Consortium 2003; International
HapMap Consortium 2005) and that this structure varies across ancestral popula-
tions (International HapMap Consortium 2003; International HapMap Consortium
2005; Frazer et al. 2007).

Unlike candidate gene studies, GWAS are not hypothesis-driven; they do not
require a priori specification of the genes or polymorphisms that are conjectured to
be associated with the phenotype of interest. Rather, they quantify DNA sequence
variations from across the entire human genome in an attempt to pinpoint genetic
risk factors for common diseases. In designing an array for genome-wide assess-
ment, a primary objective should thus be to capture as much common variation in
the human genome as possible.

5.2.2.2 Multistage Study Designs
When GWAS first became popular, the high cost of SNP arrays and necessity for
large sample sizes (to achieve sufficient statistical power to detect the anticipated
modest associations among hundreds of thousands of SNPs) (Witte et al. 2000)
motivated the development and use of multistage GWAS designs (Thomas et al.
2005). Decreasing SNP array costs have made multistage designs for GWAS less
essential, but we choose to briefly describe them for two reasons: (1) an overview
is important for understanding historical studies, and (2) as we move into the
post-GWAS era, next-generation sequencing of entire genomes may be sufficiently
expensive to once again make multistage designs relevant.

In the initial discovery stage of a multistage design, a subset of the study sample
is genotyped using genome-wide SNP arrays. Then the most strongly associated
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SNPs are genotyped with a less expensive genotyping platform in the remaining
samples. The procedure prioritizes the most promising SNPs for evaluation in
additional stages and can pinpoint associated regions for fine mapping. The optimal
division of samples across stages depends on a number of factors, but in general,
the most efficient approach entails the inclusion of approximately one-third to one-
half of the samples in the initial stage and the remaining samples in follow-up
stages (Skol et al. 2006, 2007). The number of noteworthy SNPs that should be
tested depends on the sample sizes in the respective stages, the number of false-
negative results that one is willing to accept, and whether or not one wishes to
incorporate SNP information (e.g., proximity to the nearest gene or likelihood of
being functional) (Chen and Witte 2007; Roeder and Wasserman 2009; Roshan et
al. 2011; Thomas et al. 2009). Ideally, at least 1% of the first stage SNPs should be
typed in the second stage (Skol et al. 2006). One must also decide whether the early
follow-up stages should be treated as part of a replication or joint analysis.

5.2.2.3 Limitations
Despite their numerous strengths, GWAS carry several notable limitations. First, it
is important to note that most variants discovered via GWAS are only associated
with, and not causal for, disease. Even when an association is real and statistically
reproducible in other datasets, another untyped variant in LD with the associated
SNP may still be the causal variant. Determining the factors underlying results
can be extremely challenging and require separate fine-mapping and mechanistic
studies. That many of the associations detected to date are not in gene regions can
make the findings yet more complicated (Buniello et al. 2019). These issues limit
our understanding of the biological basis of results and our ability to implement
preventive or therapeutic measures.

Second, findings from GWAS thus far account for only a limited amount of
disease heritability (Maher 2008; Nolte et al. 2017). Most SNPs detected by GWAS
show a small magnitude of effect. That said, as sample sizes for GWAS are
increasing, studies are detecting and replicating a larger number of trait-associated
variants. That we are now also able to examine essentially the entirety of common
variation across the genome (at least indirectly) allows us to explain an increasing
proportion of heritability. So too does our ability to assess the contribution of rare
variants. The polygenic model of heritability is becoming increasingly accepted;
many risk variants with small effect sizes are thought to underlie disease risk.

Finally, GWAS have not yet sufficiently distinguished between individuals with
low- and high-risk disease. In general, screening tests based on SNPs detected by
GWAS to date may have low positive (and negative) predictive value for disease
and thus limited utility in a diagnostic setting (Kraft et al. 2009; Ware 2006). As
more SNPs are discovered, however, combining them into polygenic risk scores
(PRS) efficiently summarizes individuals’ genetic susceptibility profiles, thereby
improving phenotypic prediction (Torkamani et al. 2018). PRS have the potential
to personalize risk estimates and improve the discriminatory ability of screening
tests (Mavaddat et al. 2019; Toland 2019). For example, a 2015 study created a
risk score of 105 SNPs that was strongly associated with prostate cancer risk among
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non-Hispanic whites (P value: 1.0 × 10−211) (Hoffmann et al. 2015). More recently,
a PRS for breast cancer based on 313 variants demonstrated strong predictive
performance (AUC = 0.630) and identified 19% of women who could be eligible
for early screening at age 40 (Mavaddat et al. 2019). Still, few individuals will
carry large numbers of risk alleles from GWAS, though essentially all individuals
will carry some risk alleles. Screening for them in the general population is thus
unlikely to be cost-effective, unless individuals receive genome-wide evaluations. In
addition, predictive models may have worse performance in ancestral populations
other than those in which the models were discovered, because effect size estimates
will be diluted when SNPs in populations with one set of LD patterns (e.g.,
Europeans) are applied to populations with a different set of LD patterns (e.g.,
African Americans) (Carlson et al. 2013). Note also that justification for genetic
testing additionally depends on the existence of effective interventions.

5.2.3 Mendelian Randomization

In some instances, genetic variation can be leveraged toward evaluating causal rela-
tionships between exposures and outcomes that may be challenging to investigate
in traditional observational studies. By using a genetic predictor of exposure as an
instrumental variable, Mendelian randomization circumvents issues of confounding
and reverse causation that often afflict epidemiological studies. While the method
has been around for several decades (Gray and Wheatley 1991; Katan 1986; Smith
and Ebrahim 2003), its use has exploded with the ever-increasing discovery of trait-
associated variants and modern statistical methods for high-dimensional genetic
data. In general, its implementation requires the identification of a set of genetic
variants that is predictive of the exposure of interest followed by the performance of
instrumental variable analyses (Burgess et al. 2013; Pierce and Burgess 2013).

As with all instrumental variable approaches, Mendelian randomization is
premised on three assumptions: (1) the genetic instrument is associated with the
exposure, (2) the genetic instrument shares no common causes with the outcome,
and (3) the genetic instrument only affects the outcome through exposure. The
first assumption is easily satisfied by selecting genetic variants that are strongly
associated with the exposure of interest, such as those reaching genome-wide
significance. The second assumption can be at least partially verified by assess-
ing associations between genetic instruments and known confounders. The third
assumption, however, cannot be substantiated empirically. Nevertheless, sensitivity
analyses can help evaluate the consistency and robustness of observed results
(Bowden et al. 2017; Haycock et al. 2016).
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5.2.4 Transcriptome-Wide Association Studies

Among the more recent methodological developments in genetic association studies
is the transcriptome-wide association study (TWAS) (Gamazon et al. 2015; Gusev
et al. 2016). Without relying on directly measured expression levels, TWAS aim to
identify genes associated with complex traits. By using an external reference set of
individuals with genetic and transcriptomic data, one can impute gene expression
levels in the target study population and evaluate associations with the outcome.
Extensions of this approach allow for implementation with summary statistics rather
than individual-level data, making TWAS an increasingly popular study design
(Barbeira et al. 2018). Furthermore, because associations at the gene expression
level often have clearer functional interpretations than associations with individual
risk variants, TWAS have the potential to offer insights distinct from those offered
by GWAS. Testing for associations with genes rather than SNPs also reduces
the multiple testing burden, thereby improving statistical power for discovery.
TWAS are, however, limited by the comprehensiveness of gene expression reference
panels both across different tissues and for populations of non-European ancestry.
Furthermore, although the genetic architecture of gene expression allows for
reasonable imputation accuracy, gene expression can also be influenced by non-
genetic, external factors.

5.2.5 Replication andMeta-analysis

Findings from a single genetic association study are not generally sufficient to instill
confidence in results. Rather, results should be validated in independent samples and
combined with other studies to bolster sample size.

5.2.5.1 Replication
Early genetic association studies frequently yielded results that failed to reproduce
in independent samples (Hirschhorn et al. 2002; Ioannidis 2006; Ioannidis et al.
2001; Lohmueller et al. 2003). Why the surfeit of false positives? Historically,
studies of candidate markers or genes often had small sample sizes, inappropriate
thresholds for statistical significance, and/or low prior probabilities of true associa-
tions (Chanock et al. 2007; Hirschhorn and Altshuler 2002; Ioannidis 2005; Manolio
et al. 2008; Mutsuddi et al. 2006; Wacholder et al. 2004). Even now, investigators are
conscious of “winner’s curse,” whereby the effect estimates from initial discovery
studies are consistently biased upward (Lohmueller et al. 2003; Goring et al.
2001; Huang et al. 2018). They are generally more attentive to winner’s curse for
genetic association studies than for other epidemiological investigations because
the former most often test a large number of exposures. The gold standard for
substantiating results from genetic association studies has thus become replication
in independent samples. Replication has become important (and essentially required
for publication) to externally validate the credibility of genetic associations.
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Studies designed for the purposes of replication should ensure that sample sizes
are sufficiently large to detect associations of the hypothesized magnitudes. In
fact, sample sizes should ideally be larger than those of the initial study so as
to account for overestimation in the original sample (unless one only wishes to
replicate a limited number of variants). The larger the sample, the better success
replication studies will have in reproducing results from and identifying false
positives generated by the initial study. Replication studies should also evaluate
the same ancestral population as the discovery study and, ideally, the same genetic
variant with respect to the same definition of phenotype. Successful replication then
entails finding the same direction of association (for the same effect allele) at a
predetermined threshold for statistical significance. What that threshold should be
is somewhat controversial; some investigators expect that associations be replicated
at a genome-wide significance level, whereas others apply a less conservative
threshold based on evaluating a smaller number of variants in the replication sample.
Still others are not as concerned with the statistical significance of the replication
association as they are with the significance of the joint analysis of discovery and
replication.

In some cases, studies are not designed exclusively for the purposes of replica-
tion. Rather, colleagues may help one another replicate their strongest results by
looking them up in independent, existing “discovery” studies. Once results are con-
firmed in the original target populations, investigators may also choose to evaluate
associations in populations of varying ancestries. Results that replicate from these
studies are often said to generalize, meaning that the effect is relevant to multiple
human populations. In contrast to replication, studies conducted for generalization
should draw from an ancestral population different from the discovery population.

It should be noted that while replication has become standard practice to
corroborate genetic associations, it may not be as necessary as it once was. As
genetic association studies have become increasingly sizeable and larger numbers
of markers have been genotyped in large replication samples, the statistical power
to detect modest effects has substantially increased. As a result, the potential for
winner’s curse has decreased. Still, replication inspires confidence in findings and
remains customary for genetic association studies.

5.2.5.2 Meta-analysis
Results from multiple studies or even multiple stages of the same study can
be combined into a single result via meta-analysis. Meta-analytical methods
synthesize results from analyses that examine the same hypothesis without access-
ing individual-level data (as mega-analytical studies would). In doing so, they
considerably boost the sample size and power for examining the hypothesis and
thus may achieve a more precise estimate of the association of interest. Several
software packages are available for the implementation of meta-analysis for GWAS,
among which are METASOFT (Han and Eskin 2011), METAL (Willer et al.
2010), GWAMA (Magi and Morris 2010), PLINK (Purcell et al. 2007), and
GenABEL/MetABEL (Aulchenko et al. 2007). Available features in most of these
packages were summarized in a side-by-side comparison (Evangelou and Ioannidis
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2013). In addition, there exist tools to meta-analyze results from populations of
varying ethnicities (Hong et al. 2016; Morris 2011).

Meta-analytical methods can also be used to discover novel genetic loci with
pleiotropic effects and to explore associations across phenotypes or disease sub-
types. Association analysis based on subsets (ASSET) is a flexible meta-analysis
framework that can evaluate associations for a given SNP across phenotypes and
identify the combination of associated traits that maximizes the overall test statistic
(Bhattacharjee et al. 2012). In addition to boosting power in the presence of
heterogeneity, attractive features of ASSET are its ability to account for sample
overlap across contributing studies and its internal correction for the multiple tests
required by the subset search. ASSET has been applied to a number of traits, among
which are multiple cancers (Fehringer et al. 2016) and immune-related diseases
(Marquez et al. 2018; Zhu et al. 2018).

To conduct a rigorous meta-analysis, all studies should be subject to a standard
quality control procedure that determines which SNPs are included in each study. It
is a fundamental assumption of meta-analysis that the studies provide independent
information, so it is also critical to ensure that there not be any overlap in the
samples included from each study. In addition, the design of each study incorporated
into a meta-analysis should ideally be similar; the measurement of covariates and
phenotypes should be analogous, analytic procedures should be comparable, and
covariate adjustment should be standardized (Zeggini and Ioannidis 2009). It is also
important that all studies report results using the same reference allele and mode of
inheritance. Imputation is often required to ensure that all studies in a meta-analysis
offer data about the same SNPs (discussed further below).

The most common method to estimate an average effect across studies is fixed-
effects modeling that weights each study effect based on its inverse variance.
Mixed-effects models may also be used when there is substantial heterogeneity
of effects across studies; their random effect parameters can help account for the
heterogeneity. Regardless of the model selected for meta-analysis, it is important to
quantify the differences across studies, particularly given that it is rare that studies
perfectly fulfill the stringent criteria for meta-analysis. The most commonly used
measures to do so are the Q statistic and I2 index (Evangelou and Ioannidis 2013;
Huedo-Medina et al. 2006; Panagiotou et al. 2013).

5.3 Design of Association Studies

The first step toward obtaining meaningful results from any genetic association
study is designing it effectively. Investigators must always define appropriate
phenotypes, designate a valid study population, and ensure a sufficient sample size.
In this section, we outline some of these key elements that should be contemplated
in conceiving new studies.
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5.3.1 Quantitative Versus Qualitative Traits

There are two primary classes of phenotypes that one might wish to evaluate with
a genetic association study, namely quantitative and qualitative (most often binary
case-control). Quantitative traits generally have higher statistical power to detect
genetic effects, and the interpretation of effects is often more straightforward. For
a genetic variant that influences a quantitative trait, each allele or genotype class
may be interpreted as affecting a unit change in the level of the trait. Alternatively,
one might opt to study subjects at the extremes of a quantitative trait distribution
to maximize power per genotyped individual for detecting associations (Huang and
Lin 2007; Guey et al. 2011).

Many diseases do not have meaningful or well-established quantitative measures.
In such scenarios, individuals are commonly classified as either affected or unaf-
fected, and studies most often implement a case-control design. Frequencies of
genetic variants observed in cases are compared with those observed in controls
in order to evaluate whether an association between genes and disease exists. It
is important to note that for a complex phenotype (e.g., metabolic syndrome) or
one that is diagnosed over a long period (e.g., Alzheimer’s disease), there may be
some measurement error in dichotomizing individuals as cases or controls. Still,
many association studies of binary traits have been extremely successful in detecting
genetic variants correlated with disease (see Chap. 7 on what we have learned from
GWAS).

5.3.2 Subject Selection

The most important facet of subject selection is ensuring that subjects are repre-
sentative of their source population (Wacholder et al. 1992). For a case-control
study in which cases with a particular disease are compared to unaffected controls,
this means that controls should be individuals who, if diseased, would be cases.
Whenever controls are not selected to represent the source population of the
cases, spurious associations may result. Consider, for example, a scenario in which
controls are selected from a different ancestral population from cases. In such a
circumstance, control subjects might have fundamentally different allele frequencies
in the SNPs of interest relative to cases. As a result, one is likely to find associations
between these SNPs and disease even in the absence of true associations. This
particular bias is called population stratification and can, if unaccounted for,
confound GWAS. We will discuss methods to control for population stratification
later in this chapter.

Cases are commonly recruited from a specific population, hospital, or dis-
ease registry. Depending on the study design, controls may either be unrelated
(population-, hospital-, or registry-based) or family members of the cases. Controls
are also commonly matched to cases with respect to ancestry, age, and sex.

Even without rigorous control selection, many GWAS have been successful at
detecting highly replicated variants. Due to the high cost of subject recruitment and
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100 R. E. Graff et al.

genotyping, investigators sometimes use genotype information from controls who
have been recruited into prior studies and that has been made publicly available to
researchers (e.g., via the database of genotypes and phenotypes (dbGaP)) (Luca et
al. 2008; Burton et al. 2007; Paltoo et al. 2014). The inclusion of controls from
public databases can also increase statistical power without affecting costs (Ho and
Lange 2010). The potential bias arising from the use of such “convenience” or
“public” controls is mitigated by the low measurement error in SNP genotyping,
the absence of recall bias when studying inherited variants, large sample sizes,
stringent criteria for statistical significance, and rigorous replication of findings.
Nevertheless, the use of convenience controls may result in the confounding of
associations due to population stratification (discussed further below). One should
thus address the bias analytically with genetic information (Devlin and Roeder 1999;
Price et al. 2006; Pritchard and Rosenberg 1999; Mitchell et al. 2014). One must
also consider the potential for batch effects due to differences in genotyping quality
control procedures and phenotype misclassification in individuals not thoroughly
screened for common diseases. These issues can be assessed in small subsets of
the sample by comparing genotype concordance in re-genotyped individuals or by
conducting sensitivity analyses of the phenotype (Mitchell et al. 2014). Restricting
the use of controls to those genotyped on the same platform and from the same
genetic ancestry as cases may prevent or reduce these biases (Sinnott and Kraft
2012).

5.3.3 Sample Size

As with any study, it is critical that genetic association studies include a sufficiently
large sample size to ensure good statistical power. The power of a study depends on
the unknown frequency and effect size of the causal genetic variant(s) for which one
is searching. Whenever SNPs in LD with the true causal variant are genotyped rather
than the causal variant itself, power is reduced; the sample size required will be
inflated proportionally to the inverse of the correlation between the genotyped and
causative markers. There undoubtedly exist genetic variants that have a small effect
on disease but that have not been detected due to insufficient sample size. In general,
it is rare for successful GWAS to include fewer than 1000 cases and 1000 controls,
and many include substantially larger numbers of individuals. Among the largest
GWAS conducted to date have investigated smoking initiation (n = 1,232,091)
(Liu et al. 2019), educational attainment (n = 1,131,881), blood pressure traits
(n = 1,006,863) (Evangelou et al. 2018), and risk tolerance (n = 975,353) (Karlsson
Linner et al. 2019).

5.4 Measurement of Genetic Information

Accurate measurement of genetic information is yet another crucial component
of a reliable genetic association study. The study design is likely to inform the
appropriate category of measurement broadly, but each method requires nuanced
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decision-making to achieve the highest quality and most relevant results. Here we
discuss some of the most common tools utilized to measure genetic information and
some considerations to contemplate in deciding on methods.

5.4.1 Common Variants

SNP genotyping arrays are currently the most pervasive tool utilized for evaluating
genetic information. GWAS in particular typically employ microarray-based tag
SNP genotyping techniques that capture common variation in the human genome.
The arrays for early GWAS generally contained between 100,000 and 500,000
variants identified in databases such as HapMap. More current chips include
approximately one million or more variants. No matter the set of variants, the array
is then typed in a specific set of individuals. The arrays have generally been designed
to measure variants at or above a minor allele frequency of 5%, though they may
even miss some common variation (Jorgenson and Witte 2006). More recently,
however, microarrays have been designed to detect variants down to a minor allele
frequency of 1% (Hoffmann et al. 2011a, b). The platforms most often come from
one of two companies: Illumina (San Diego, CA) or Affymetrix (Santa Clara, CA;
now owned by Thermo Fisher Scientific) (Hindorff et al. 2009).

One consideration in designing a chip for assessment is determining the set of
SNPs required to capture common variation in the population of interest. Consider,
for example, the number of SNPs required to capture variation across the genome
for African versus European populations. When the latter emigrated from Africa,
they experienced a bottleneck that reduced the population size and resulting genetic
variation. They thus have more LD than the former (see Chap. 8 on human
demographic history). As a result, the chip used for a study of an African population
requires more SNPs to obtain the same overall genomic coverage.

5.4.2 Rare Variants

The recent considerable expansion of the human population and negative selection
of deleterious alleles over time have resulted in low allele frequencies for many
disease-causing variants. Consequently, rare variants with substantial effects may
remain untyped by standard genotyping assays. In addition, whole-genome sequenc-
ing is not generally cost-effective for the evaluation of rare variants, because the
sample sizes required for association studies are normally much too large. More
effective methods to identify rare disease-causing variants involve utilizing exome
sequencing or exome genotyping arrays to investigate coding variation, even though
these approaches ignore potentially important parts of the genome.

Sequencing and capture technologies are now able to accurately determine the
sequence of nearly all protein-coding variants in humans (Choi et al. 2009; Gnirke
et al. 2009; Ng et al. 2009; Teer and Mullikin 2010). They allow researchers to
detect and genotype variants found in particular individuals without requiring that

http://dx.doi.org/10.1007/978-3-030-61646-5_8
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the variants be previously ascertained and included on genome-wide genotyping
arrays. Originally, such technologies were most often utilized for (and successful
at) identifying genetic contributors to many Mendelian disorders. More recently,
the technologies have been leveraged to assay the exome as a popular approach
for evaluating associations between rare variants and complex phenotypes. Exome
sequencing selects the entire set of human exons as the sequencing target (Gnirke
et al. 2009; Hodges et al. 2007). In contrast, exome arrays concentrate on a fixed
set of variants. Regardless of the platform used to evaluate the exome, the variants
assessed have functional implications that are relatively easy to derive. Still, due to
reduced penetrance, sample sizes required for detecting associations with complex
traits are generally larger than those required for the evaluation of Mendelian
disorders. As exome sequencing costs have come down, however, it has become
increasingly feasible to conduct well-powered studies. It is just important that they
increase sample sizes in proportion to the rarity of causal variants.

5.5 Data Analysis

Upon completing the measurement of both genotype and phenotype, one must
consider the appropriate methods for the analysis of the data. In addition to
thinking through the statistical methods that should be applied, one must also assess
the data for their quality, consider covariates that should be accounted for, and
potentially incorporate information from external sources. Below we identify some
key considerations for analyzing genetic association studies.

5.5.1 Quality Control

Before analyzing the data from any study of genetic association, it is imperative
that the genotyping be subject to a number of quality control checks. Samples that
come from various sources may be processed in different ways or measured at
different times, which can result in systematic differences across batches. One must
also evaluate the proportion of samples that are successfully genotyped and test for
Hardy–Weinberg equilibrium. Issues with these metrics could indicate genotyping
problems that affect all of the SNPs in the sample. As such, one should remove
SNPs that fail predefined quality standards from further consideration. Using SNP
genotypes and external LD information on the underlying structure of a genetic
region (e.g., from the TOPMed imputation reference panel), one can impute some
of the untyped variants and variants that fail quality control. Doing so allows for a
more thorough and powerful evaluation of potential associations across the genome
(Huang et al. 2009; Marchini and Howie 2008; Marchini et al. 2007).

Note that sequencing (as opposed to genotyping) also requires appreciable
quality control efforts, but their description is beyond the scope of this chapter.
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Fig. 5.3 Schematic of genotype imputation modified from Li and colleagues (2009). Observed
genotypes are compared to haplotypes in a reference panel to fill in unobserved genotypes

5.5.2 Data Imputation

Above, we discussed the exploitation of LD to capture common variation in the
human genome without directly genotyping every SNP. Using LD patterns and
haplotype frequencies (e.g., from the 1000 Genomes Project or TOPMed imputation
reference panel), it is possible to impute data for SNPs that are not directly
genotyped (Fig. 5.3) (Li et al. 2009). First, directly genotyped markers are compared
to a variant-dense reference panel that contains haplotypes drawn from the same
population as the study sample. A collection of shared haplotypes is then identified,
and genotypes missing from the study panel can be inferred from the matching
reference haplotypes. Because the study sample may match multiple reference
haplotypes, one might opt to give a score or probability for an imputed marker rather
than a definitive allele. In such scenarios, uncertainty can be incorporated into the
analysis of imputed data, typically with Bayesian methods (Marchini et al. 2007).
A less computationally intensive method involves pre-phasing, in which haplotypes
are first estimated for every individual, followed by genotype imputation using the
reference panel for each haplotype. This method also makes it faster to execute the
imputation step with different reference panels as they become updated, since the
genotypes need only be phased once and the estimated haplotypes are saved for
future use (Howie et al. 2012). Note that imputation is especially useful for meta-
analyzing results across studies that rely on different genotyping platforms.
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5.5.3 Analysis of CommonVariants

The conventional analysis plan for genome-wide data is a series of statistical tests
that examine each locus independently for an association with the phenotype of
interest. In the case of binary phenotypes, the simplest approach to these tests is
contingency tables of counts of disease status by either genotype or allele count
(Clarke et al. 2011). One can use a series of χ2 or Cochran-Armitage trend tests to
evaluate the independence of the rows and columns of each table. More commonly
used than contingency tables is a regression approach, linear for quantitative traits
and logistic for case-control traits, with categorical predictor variables for the
genotypes. Regression models are generally favored because they allow adjustment
for covariates, such as principal components (PC) of genetic ancestry.

For quantitative phenotypes, one can use a linear regression model framework,
y = α + xβ + cγ, to model association with phenotype, where x is a matrix (or
vector) of genotypes, c is a matrix of covariates such as ancestral PCs, and β and
γ are the corresponding vectors of regression coefficients. For binary phenotypes,
one would implement a logit link function. Regardless of the link function for the
outcome, the βs are the parameters of interest, and we can test the null hypothesis
of no association between x and y, H0: β = 0.

In addition to maximum likelihood-based regression models, linear mixed
models (LMM) have become increasingly popular in GWAS, motivated by the
computational challenges of analyzing datasets with large numbers of subjects and
genetic variants. One of the most attractive features of LMM is their ability to
control for confounding due to population structure by directly modeling relatedness
among individuals, thereby improving power relative to standard GWAS with
adjustment for PCs (Yang et al. 2014; Zhang et al. 2010; Zhou and Stephens
2012). The most recent addition to this class of methods, BOLT-LMM, adopts a
Bayesian perspective by imposing a prior distribution on SNP effect sizes. It does
not require computing or storing a genetic relationship matrix, which substantially
reduces computational time compared to other methods (Loh et al. 2015). However,
applying BOLT-LMM to case-control data can be problematic since genetic effects
are estimated on the observed 0–1 scale rather than the odds ratio scale. As a
result, transformations are required to make LMM-based results for binary traits
comparable with logistic regression (Lloyd-Jones et al. 2018).

Regardless of the structure of the phenotypic data, there are several ways in
which one might code the genotype data for association tests; the choice made
should reflect the assumed mode of inheritance and genetic effect. In GWAS, the
genotypes are usually coded as 0, 1, or 2 to reflect the number of effect alleles.
This coding assumes that each additional copy of the variant allele increases the
phenotype or log risk of disease by the same amount. The approach is fairly robust
to incorrect assumptions about the mode of inheritance and has reasonable power to
detect both additive and dominant genetic effects. It may, however, be underpowered
if the true mode of inheritance is recessive (Lettre et al. 2007). If one believes the
mode of inheritance to be recessive, then one may use an alternative genetic model
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that assumes that two copies of the risk allele are necessary to result in phenotype
susceptibility. For such models, the heterozygote and wild-type homozygote are
collapsed into a single category, and the genotypic exposure is treated as binary.
The genotypic exposure is also treated as binary for models that assume a dominant
mode of inheritance, but the heterozygote and mutant homozygote are collapsed
separately from the wild-type homozygote. These dominant models assume that
a single copy of the risk allele is expected to result in phenotype susceptibility.
Both recessive and dominant models force heterozygotes to have the same risk or
mean phenotype as one of the homozygotes. If investigators do not have an a priori
hypothesis as to the mode of inheritance, they may choose to assess several different
genetic models. Doing so, however, requires additional corrections for multiple
testing. Another option when there is no a priori hypothesis would be to avoid any
assumptions about how the risk for heterozygotes compares with both homozygotes.
In such codominant models, maintaining the three distinct genotype classes requires
two degrees of freedom, while the other models require only one, thereby making
the latter more attractive if the genetic effect approximately follows one of their
modes of inheritance.

To visualize the results from analyses of common variants, particularly from
GWAS, investigators often generate Manhattan plots (e.g., Fig. 5.4). The x-axis of
these scatter plots is a chromosomal position, and the y-axis shows the P value for
association with the phenotype. Each point on the plot represents a single SNP, and
the height of each point depicts the strength of association between the SNP and the
phenotype. Manhattan plots with genome-wide significant results often exhibit clear
peaks where SNPs in LD show comparable signals. Those with points seemingly
scattered at random should be viewed with some skepticism.

Quantile-quantile (Q-Q) plots are another important visualization tool to evaluate
potential bias or quality control problems in GWAS results (e.g., Fig. 5.5). These
plots present the expected distribution of association test statistics for all SNPs
on the x-axis against the observed values on the y-axis. Deviation from the x = y
line suggests a systematic difference between cases and controls across the whole
genome (such as that which might occur in the presence of population stratification).
One should rather hope to see the plotted points fall on the x = y line until a curve
at the very end representing any true associations.

5.5.4 Analysis of Rare Variants

While many common variants that contribute to complex diseases have been
identified, the majority of variants contributing to disease susceptibility have yet to
be described. Rare variants, which are unlikely to be captured by GWAS focusing
on common SNPs, undoubtedly contribute to phenotype as well (Frazer et al. 2009;
Gorlov et al. 2008). Unfortunately, detecting associations between individual rare
variants and phenotypes can be difficult, even with large sample sizes; the low
frequency of rare variants in the population results in low power (Gorlov et al.
2008; Altshuler et al. 2008; Li and Leal 2008). To increase power, researchers have
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Fig. 5.4 Example Manhattan plot from a recent GWAS of prostate-specific antigen (PSA) levels
(Hoffmann et al. 2017). P values are for variant associations with log-transformed PSA levels,
adjusted for age and ancestry PCs using a linear regression model. Black and grey peaks indicate
novel findings. Dark purple and magenta indicate previously reported PSA level-associated
genotyped and imputed hits, respectively, and light purple and magenta indicate those within
0.5 Mb of previously reported hits that were replicated at genome-wide significance. Dark pink and
red points denote previously reported prostate cancer SNPs genotyped and imputed, respectively,
and pink and orange indicate those within 0.5 Mb of previously reported prostate cancer SNPs
genotyped and imputed. Dark blue and green points denote the previously reported genotyped and
imputed, respectively, SNPs associated with PSA levels only (and not prostate cancer), and light
blue and green those within 0.5 Mb previously reported hits. Circles denote genotyped SNPs, and
triangles represent imputed SNPs

developed a number of methods to evaluate the collective effect of multiple rare
variants within and across genomic regions (Li and Leal 2008; Asimit and Zeggini
2010; Morgenthaler and Thilly 2007; Larson et al. 2017; Santorico and Hendricks
2016).

The two primary approaches to rare variant analyses are burden tests (Morgen-
thaler and Thilly 2007; Asimit et al. 2012; Li et al. 2012; Madsen and Browning
2009; Morris and Zeggini 2010; Zawistowski et al. 2010) and variance component
tests (Neale et al. 2011; Pan 2009; Wu et al. 2010; Wu Michael et al. 2011). The
simplest burden approach collapses rare variants into a single group by counting
individuals who possess at least one rare variant in the genomic region under study
and then tests for frequency differences across phenotypic groups. A limitation of
burden tests is their assumption that all alleles have the same direction of effect; in
the presence of both protective and deleterious variants, power can be substantially
reduced. Burden tests also have reduced power in regions with a large number of
non-causal variants. These limitations are addressed by variance component tests,
the most common of which is the sequence kernel association test (SKAT) (Wu
Michael et al. 2011). SKAT aggregates genetic information across variants using a
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Fig. 5.5 Example Q-Q plot of results from a recent GWAS of PSA levels (Hoffmann et al.
2017). Because there were so many positive results, we see a substantial curve representing true
associations at the end

kernel function. To test the null hypothesis that a set of rare variants does not impact
the phenotype, one can compute the variance component score statistic Q, which
is equal to (y − y)′K(y − y), where y is the predicted mean of y under the null
hypothesis of no association, adjusting for covariates c, and the kernel K is an n × n
matrix that defines the genetic similarity among individuals. The SKAT framework
has expanded to create a family of tests accommodating a range of scenarios (Wu et
al. 2013; Lee et al. 2012), including combination tests for common and rare variants
(Ionita-Laza et al. 2013), time-to-event models (Chen et al. 2014), and multiple
phenotypes (Dutta et al. 2019). Most recently, rare variant tests based on generalized
linear mixed models have been proposed (Chen et al. 2019), as have flexible sliding-
window approaches that account for LD structure (Li et al. 2019).

5.5.5 Incorporating External Information into Association Study
Analyses

5.5.5.1 Gene Set Analysis
Analyses of data from GWAS can test multi-marker combinations of SNPs. Such
gene set analyses can be used to determine whether groups of functionally related
genes defined a priori are associated with a phenotype. Given that complex disease
may result from a sum of changes across genes in a biological pathway, it makes
sense to evaluate genes in a pathway as a set. These analyses aim to identify gene
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sets with coordinated expression changes that would not be detected by single
variant methods (e.g., testing one SNP at a time).

Gene set analysis generally consists of four steps: (1) determining the gene
sets to be tested, (2) selecting an appropriate set of hypotheses, (3) carrying out
corresponding statistical tests, and (4) evaluating the statistical significance of said
tests. Regarding step 2, there are three standard null hypotheses against which
investigators most often test (Dinu et al. 2009; Nam and Kim 2008; Tian et al.
2005). The first is the competitive null hypothesis, which states that the genes in
a set have the same association with phenotype as genes in the rest of the genome.
The second is the self-contained null hypothesis, which asserts that the genes in a
set are not associated with the disease phenotype. The third option, the mixed null
hypothesis, declares that none of the sets under consideration is associated with the
disease.

The set of hypotheses selected largely informs the tests that should be used for
analysis. To obtain a test statistic for the competitive null, a measure of association
should first be computed for each gene and the phenotype of interest. For genes
in a given set, the association measures should then be combined. To evaluate the
statistical significance of the combined test statistic, it should be compared against
the distribution under the null hypothesis, obtained by permuting the association
measures (Tian et al. 2005). The procedure is similar to obtaining a test statistic for
the self-contained null hypothesis, but the null distribution should be generated by
permuting the phenotypes across samples (Tian et al. 2005). Regardless of the test
statistic, larger magnitudes indicate increasing significance, and the sign indicates
the direction of change in phenotype.

The gene sets that are deemed significant are likely to depend on the choice
of methods implemented to analyze gene set associations (Elbers et al. 2009a, b).
Oftentimes, gene set analyses lack sufficient statistical power to detect gene sets
consisting of markers only weakly associated with disease, and they are prone to
several sources of bias, among which are gene set size, LD patterns, and overlapping
genes (Elbers et al. 2009b; Cantor et al. 2010; Hong et al. 2009; Wang et al. 2011;
Sun et al. 2019). It is important to consider and address all of these limitations when
interpreting results from gene set analyses.

5.5.5.2 Hierarchical Modeling
Hierarchical modeling leverages the abundance of bioinformatic data characterizing
the structural and functional roles of common variants analyzed for GWAS (Cantor
et al. 2010; Wang et al. 2010). It aims to incorporate a priori biological knowledge
via Bayesian methods (Cardin et al. 2012), stabilize effect and variance estimation
of SNP associations (Aragaki et al. 1997; Evangelou et al. 2014), and improve the
selection of SNPs for further evaluation (Witte 1997; Witte and Greenland 1996).
It also addresses issues of multiple comparisons in analyses of GWAS. Rather than
perform traditional single-locus analyses, hierarchical models output “knowledge-
based” estimates of SNP effects, thereby improving the ranking of results from
GWAS.
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The hierarchical modeling approach uses higher-level “priors” to model the
parameters of interest as random variables with a joint distribution that is a
function of hyperparameters (Witte 1997). In addition to information about x and
y (as defined above), one also utilizes information about similarities among the
components of β. For example, one might assume that associations corresponding
to markers that are located near one another on a particular chromosome might
be similar. Conditional on this additional information, one may fit a second-stage
generalized model for the expectation of β: f2(β | Z) = δ + Zπ . According to this
model, f2 is a strictly increasing link function, and Z is a second-stage design matrix
expressing the similarities among the β. Hierarchical (i.e., posterior) estimates are
obtained by combining results from the different level models (Witte 1997).

5.5.6 Interactions

GWAS present an opportunity to go beyond single-locus analyses and into the
realm of gene-gene interactions throughout the genome. Given the number of
SNPs generally evaluated in GWAS, it would prove intractable to evaluate all
pairwise combinations. Instead, one can reduce the set of SNPs to further investigate
via one of several methods (McAllister et al. 2017). The first is to select an
arbitrary significance threshold for the set of single-locus analyses. One can then
evaluate all pairwise interactions between SNPs falling below the threshold, or
between such SNPs and all other SNPs. Implementing this method, however, will
preclude the discovery of combinations of markers that affect a significant change
in disease risk even when the individual markers’ marginal effects are statistically
undetectable. An alternative approach is to restrict the analysis of interactions to
SNPs with an established biological function or within a particular protein family.
A general comment regarding all analyses of interaction is that the scale (additive
or multiplicative) on which they are evaluated will impact the results.

The evaluation of gene-gene interactions is not limited to model-based meth-
ods. Multifactor dimensionality reduction (MDR) was developed to reduce the
dimensionality of multilocus data so as to improve the ability to detect gene-gene
interactions. MDR pools genotypes into high-risk and low-risk groups, thereby
reducing data to a single dimension. The method is nonparametric and model-free—
one need not make hypotheses regarding the values of any parameters or assume any
particular mode of inheritance (Motsinger and Ritchie 2006). The details of MDR
analyses have been well described (Hahn et al. 2003; Ritchie et al. 2001, 2003).

The study of gene-environment interactions is another critical component of
understanding the biological mechanisms of complex disease, heterogeneity across
studies, and susceptible subpopulations (Dick et al. 2015). Until recently, gene-
environment interaction studies have been largely carried out using candidate
approaches. Such studies require the identification of genes with related biological
functionality as well as knowledge of the mode of action through which environ-
mental factors affect the genes of interest (Rava et al. 2013).
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With the advent of high-throughput technology, investigators are exploring gene-
environment interactions at the genome-wide level. They are also realizing some
of the fundamental challenges of doing so. The genome-wide approach does not
make use of prior knowledge of biological processes and pathways. In addition, the
stringent significance threshold required due to the number of statistical tests may
preclude the identification of significant interactions.

Analysis approaches can focus on environmental interactions with single genes,
multiple genes, and/or biological pathways (Thomas 2010). Alternatively, one can
utilize available biomarker data that may reflect intermediate phenotypes to establish
informative priors in a hierarchical model framework (Li et al. 2012). Regardless, it
bears recognition that statistical interaction does not conclusively indicate causality.
Variants showing interaction may not be causal, and interactions may be significant
for reasons other than true association (as is true for any other type of association).
Still, the identification of gene-environment interactions with respect to disease risk
is of fundamental public health relevance.

5.5.7 Incorporating Covariates

5.5.7.1 Population Stratification
Population-based association studies are susceptible to a form of confounding
known as population stratification. It occurs whenever the gene of interest shows
pronounced variation in allele frequency across ancestral subgroups of the pop-
ulation, and these subgroups differ in their baseline risk of disease. In extreme
scenarios, population stratification can result from cryptic relatedness, wherein
some individuals in an ostensibly unrelated population are actually related.

In a sample with population stratification in any form, SNPs with large allele
frequency differences across groups are likely to be associated with the trait under
study. The first step toward dealing with the bias is to ensure that cases and controls
are well-matched in the study design phase. One can then evaluate the extent of
residual population stratification via Q–Q plots and their associated inflation factor,
lambda (λ). The latter is defined as the ratio of the median of the observed test
statistics relative to the expected median and reflects the excess false-positive rate.
When the value of lambda is inflated, one can adjust the test statistics by dividing
them by lambda, thereby reducing them, and then recalculating the associated P
values (Devlin and Roeder 1999).

In recent years, the more common approach to the management of population
stratification has been the measurement of the ancestry of each sample in the dataset
using PC methods (Price et al. 2006; Falush et al. 2003). These methods cluster
individuals together based on their ancestral populations, often by comparing them
with an external reference population such as the 1000 Genomes Project or TOPMed
imputation reference panel. With the results, one can then exclude samples that are
extremely different from the main clusters of individuals and then include the top
10 or so PCs as covariates in association analyses. A criticism of PCs is that they
are unable to differentiate between true signal due to polygenicity and confounding
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due to population stratification. An alternative adjustment method can be used that
requires LD score regression, which quantifies the association between LD and test
statistics within a GWAS using a reference panel, in order to calculate a correction
factor for genomic control in GWAS analysis (Bulik-Sullivan et al. 2015).

Methods that account for cryptic relatedness specifically tend to be more complex
and are largely beyond the scope of this chapter. Software packages such as KING
(Manichaikul et al. 2010) can be implemented to identify closely related individuals,
who can subsequently be removed from the analytical population. There also exist
approaches to deal with more distant relatedness as part of data analysis (Price et al.
2010).

5.5.7.2 Addressing Other Confounding
Genetic association studies are distinct from traditional epidemiological studies in
that behavioral and environmental factors are unlikely to confound the associations
of interest. Despite this, to draw clinically relevant conclusions, it is critical to
properly account for patient-level covariates that may confound the associations
under investigation. For example, associations may be confounded by sex whenever
allele frequencies differ between the sexes (i.e., for sex-linked traits) (Clayton 2009).
Other associations may be confounded by age whenever tag SNPs are in LD with
both longevity SNPs and causal SNPs for a phenotype that most commonly occurs in
late-life. If one does not adjust for the necessary covariates, one might find spurious
associations due to sampling artifacts or bias in the study design. It is important
to note that covariate adjustment may reduce statistical power because it requires
additional degrees of freedom.

5.5.7.3 Improving Precision
Covariates may also be included in tests of association in an attempt to improve
the precision of estimates. If a behavioral or environmental factor is associated with
a quantitative phenotype under study independently of the genes of interest, then
its inclusion is often beneficial. The covariate can explain some of the variability
in the outcome, thereby reducing noise and increasing power (Mefford and Witte
2012). For binary traits, the story is more complicated. Inclusion of a covariate
associated only with the outcome may actually reduce power for case-control
association studies (Pirinen et al. 2012). There do exist methods, however, that
leverage information about covariates to increase power in association studies of
binary traits (Zaitlen et al. 2012).

5.5.8 Multiple Testing

Genetic association studies generally test hundreds of thousands of associations
and may also examine multiple phenotypes and/or the results from various genetic
models and covariate adjustments. The enormous number of resulting hypothesis
tests must be adjusted for multiple comparisons, lest a large number of false-positive
associations be detected. One approach to management of this issue of multiple
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testing is to limit the number of association tests executed. For example, in a study
of multiple SNPs and a single phenotype, one might consider running only a single
test per SNP. If the number of SNPs is sufficiently large, however, one will have
to further adjust for the number of tests performed. Doing so is helpful to address
issues of multiple comparisons but it is also important to note that the significance
cutoffs described below are somewhat arbitrary and do not reflect the potential
clinical or biological importance of an association (Witte et al. 1996).

5.5.8.1 Bonferroni and Number of Effective Independent Tests
The most straightforward and the most stringent means by which to correct for
multiple testing is the Bonferroni adjustment. It adjusts the conventional type I error
rate of 0.05 to 0.05/k, where k is the total number of tests performed. The adjustment
assumes that the hypothesis tests are independent, thereby making this approach
quite conservative in the context of correlated tests.

To make the strategy more applicable to the scenario of SNPs in LD, one can
estimate the effective number of independent SNPs in lieu of the total number of
SNPs in the Bonferroni adjustment (Nyholt 2004). Because the number of effective
independent SNPs will always be less than or equal to the total number of genotyped
SNPs, this approach is less conservative than the standard Bonferroni correction. For
GWAS, the generally accepted alpha-level for statistical significance based on the
effective number of genome-wide tests is 5 × 10−8

. This concept of genome-wide
significance should be used only when hypotheses are tested on the genomic scale.
It is not appropriate for candidate gene studies or replication studies, for which the
number of effective independent tests is substantially lower.

5.5.8.2 Permutation Testing
Permutation testing is a more computationally intensive method with which to
adjust for multiple testing. It is less conservative than the Bonferroni adjustment
because it incorporates the correlation between genotypes and/or phenotypes. It
does so by randomly shuffling phenotypes in the dataset, effectively removing any
association between phenotypes and genotypes, while maintaining the correlation
among genotypes resulting from LD within an individual, and then testing for
association again. Random reassignment of the data and association testing is
repeated some prespecified number of times (generally in the thousands), and all
of the test statistics for the associations of interest are computed for each permuted
dataset. A permuted P value can then be obtained by comparing the original test
statistic to the distribution of test statistics from the permuted datasets. Several
statistical packages implement permutation testing, though the most commonly used
is PLINK (Purcell et al. 2007).

5.5.8.3 False Discovery Rate
Another method to account for multiple testing is the false discovery rate
(Benjamini and Hochberg 1995; Brzyski et al. 2017). Rather than control the
family-wise error rate as does the Bonferroni adjustment, the false discovery rate
controls the expected proportion of false discoveries among significant results.
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Under a null hypothesis of no true associations in a GWAS dataset, P values would
conform to a uniform distribution between zero and one. The false discovery rate
essentially corrects for the expected number of false discoveries under this null
distribution. While it typically allows researchers to reject more null hypotheses
than would a Bonferroni adjustment, it may still be overly rigorous in the context of
GWAS or large-scale candidate gene association studies. In such scenarios, one may
implement weighted or stratified false discovery rates to achieve greater power to
detect true associations in subsets of SNPs with a higher proportion of true positives
than in the full set of SNPs (Genovese et al. 2006; Greenwood et al. 2007; Roeder
et al. 2006).

5.5.8.4 Bayesian Approach
Rather than correct for multiple comparisons via traditional frequentist methods,
one might choose to implement a Bayesian approach to the false discovery rate.
Under a Bayesian framework, the Bayes factor quantifies the strength of evidence
for an association between a SNP and phenotype. It is weighed against the prior
probability of an association to arrive at the posterior probability (Stephens and
Balding 2009). The calculation does not reference the number of SNPs tested.
While the expected number of false-positive associations will increase as more
tests are performed, so too will the number of true positive associations under a
reasonable set of assumptions. As such, the ratio of true to false positives will remain
roughly constant. Several software packages (e.g., SNPTEST (Marchini et al. 2007)
and BIMBAM (Servin and Stephens 2007)) accommodate genome-wide Bayesian
analyses.

5.6 Concluding Remarks

Well-executed genetic association studies can contribute immensely to our under-
standing of the underpinnings of disease. For meaningful conclusions to be drawn,
it is critical that they be designed with an appropriate population consisting
of a sufficient number of subjects. This number will depend upon the design
selected—candidate gene, GWAS, or otherwise—and should take into account the
methodological nuances thereof. Accurate measurement of genetic information is
also integral to the success of an association study, as are the quality control
checks that validate it. Then, statistical analyses must consider the specific research
question at hand, so as to make decisions that will best answer it.

There remain many gaps in our understanding and many association studies
that have the potential to fill them in moving forward. Since the proposal of an
exposome in 2005 (Wild 2005), investigators have striven to conceive of methods
that incorporate all of the exposures that individuals experience in a lifetime into
the study of their genetics. They have also been busy considering the question
of pleiotropy so as to identify genes that affect multiple, sometimes seemingly
unrelated, phenotypes. Many are developing methods that will better address rare
variants and interactions. The collection of these efforts will further improve our
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understanding of the disease process, risks, and response to therapy in this era of
genomic discovery.
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Traits
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Abstract

This chapter shows how the descent of genome from an ancestor to currently
observed descendants results in identity by descent (IBD) in current individuals
and hence similarities in their DNA at genetic marker loci. Conversely, data on
the marker genotypes of individuals provides inferences of shared descent of
genome in current individuals, not just genome-wide but in specific genome
regions. Regions where shared genome accords with phenotypic similarities
for a trait provide evidence of causal DNA at some location in the region.
The chapter considers both data observed on defined pedigree structures, and
data on population members whose pedigree relationships may be remote and
are unknown. We take a model-based approach, deriving probabilities of IBD
and likelihoods of mapping parameters, given observed genetic data. We first
consider probabilities of gene IBD among individuals and across a chromosome,
using either a known pedigree or a population-based model. We then consider
probabilities of genotypic and phenotypic data on individuals, conditional on
latent IBD. Thence IBD may be inferred from marker genotypes, combining
information from multiple SNP markers. Finally, we show how location-specific
realizations of IBD can be used to address questions of gene mapping. By
focusing on IBD, we unify pedigree and population-based approaches.
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6.1 Introduction

6.1.1 Identity by Descent

Genetic similarities, whether at the population level or between close relatives, result
from coancestry. Copies of DNA that descend to current individuals from a single
copy of DNA in a common ancestor are, with high probability, of the same allelic
type, implying greater phenotypic similarity. Such DNA is said to be identical by
descent or IBD, and this concept is of key importance in analysis of phenotypic
variation, across species of plants and animals (including humans), and across traits
including disease traits, selected traits in agriculture, and normal variation.

Defining IBD is not straightforward. At every point in the genome, among any
group of organisms, the coalescent ancestry will at some point converge in the most
recent common ancestor (MRCA), and relative to this point all the organisms are
IBD. Although models for this time of the MRCA of a pair of haploid genomes
across genetic loci can be used for inference (Li and Durbin, 2011), for genetic
mapping it will be important to have models for the changing patterns of IBD among
individuals across the genome. We therefore define IBD relative to an ancestral
population or time point of interest. In studies of data on defined pedigrees, IBD
has often been measured relative to the pedigree founders, but these founders are
members of a population and may be related or inbred relative to an earlier point in
the population’s history.

The choice of the time-depth of interest for analyses in IBD will depend on
the scientific question. New variants arising in the distant past descend to current
individuals and remain in linkage disequilibrium (LD) with the genetic background
on which they arose. This ancient coancestry (IBD) gives rise to the patterns of LD
we see in populations today and provides information on population structure and
demographic history. At the other end of the scale, IBD among close relatives may
be important in analysis of family data, but generally close pedigree relationships
are known. In this chapter we focus on IBD relative to ancestors at a time-
depth of 10 to 40 generations. For human populations, this is beyond the depth
for which pedigree information is available or, even if available, provides useful
information on coancestry of genome. On the other hand, the last 1000 years of
human history encompasses a large part of the huge expansion of the human species
and has established the current patterns of genetic variation within and among local
populations.

DNA is copied from parents to offspring in accordance with the process
of meiosis. Throughout this chapter we restrict attention to nuclear autosomal
chromosomes; that is, we consider neither the sex (X and Y ) chromosomes nor
mitochondrial DNA. At any given locus, the process is as specified by Mendel’s
first law (Mendel, 1866). A randomly chosen one of the two homologous copies of
the parental DNA is copied to an offspring. A fundamental feature of the process is
that this random choice is made independently in distinct meioses. Figure 6.1 shows
a schematic view of DNA descent at a locus in a small family. At this locus, brothers
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Fig. 6.1 Descent of DNA in a pedigree. Males are designated by squares; females by circles.
Individuals C and D are brothers, and E is their cousin, since the mothers of these three individuals
are sisters

Fig. 6.2 Descent of a chromosome from parent to gamete. Shown is a pair of parental homologous
chromosomes together with five examples of potential gamete chromosomes. One gamete from the
parent will be transmitted to an offspring. At closer locations, the DNA in an offspring chromosome
has higher probability of deriving from the same parental chromosome

C and D share their paternal DNA IBD, and cousins E and C share their maternal
DNA IBD from their grandfather.

The process of meiosis also determines the copying of parental DNA across
a chromosome. During the formation of gametes, in the first meiotic division,
homologous chromosomes can exchange DNA leading to alternating segments of
DNA from each of the two parental chromosomes (Fig. 6.2). The points at which
the offspring chromosome switches between the parent’s maternal and paternal
chromosomes are crossovers. Typically, for short chromosomes, close to 50% will
have no crossover, so that an intact parental chromosome is transmitted. Most of the
remaining 50% will have one crossover, with a small probability of more crossovers.
In larger chromosomes, there is a high probability of multiple crossovers. On
average, the distance between crossover points is of order 108 base pairs (bp).
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From parents to offspring, DNA is inherited in long segments, but over multiple
generations, repeated meioses break the IBD DNA in current individuals into
smaller and smaller segments.

6.1.2 From Descent to GeneMapping

The fundamental framework of genetic epidemiology was formalized by Elston and
Stewart (1971), who defined the three components of a genetic model: population,
transmission, and penetrance. DNA variation in a population results from evolu-
tionary processes and demographic history, arising via mutation, and modified by
selection and random genetic drift. The parameters of the population model are
allele, genotype, and haplotype frequencies, which are often assumed known in
genetic epidemiological studies. The model for transmission of DNA from parents
to offspring is provided by the process of meiosis, as summarized in Mendel’s
first law and the recombination probabilities across the genome (Sect. 6.1.1). The
parameters of the population process normally relate only to the genetic map that
provides recombination probabilities between any two loci, although it could also
include models of segregation distortion or genetic interference.

Finally, the penetrance model defines the probability relationship between an
individual’s genotype at the relevant locus or loci and the observable data. For
genetic markers, this relationship is straightforward. Normally unphased genotypes
at each marker locus are directly observed, although a model for typing error may
be included. For genetic epidemiological traits of interest, the penetrance model is
often the least certain and most complex component of the model, and successful
inference will often require careful analysis of a range of possible models.

The goal of genetic mapping is to determine the genome locations of DNA
that affects a phenotypic trait of interest. This mapping relies on co-inheritance of
DNA at marker loci of known location and of DNA inferred to affect the trait. At
the population level, co-inheritance of DNA leads to linkage disequilibrium (LD),
which is the basis of association mapping. In a defined pedigree (Fig. 6.1), the
dependence in inheritance between a trait and a genetic marker provides evidence
that the DNA affecting the trait is in proximity to the genetic marker locus. In
between these extremes, even in the absence of known pedigree relationships,
evidence that individuals of similar trait phenotype share DNA IBD in particular
regions of the genome provides evidence that these regions harbor causal loci. This
is the basis of IBD-based genetic mapping.

6.1.3 Outline of the Chapter

The remainder of the chapter is divided into three main sections. The focus is on
related individuals, who may therefore share genome IBD, but the relationships
among the individuals may be known or unknown. Within each section we consider
both pedigree data (known relationships) and population-level data (unknown
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relationships). We present many of the ideas through numerical examples, but
the reader should not (unless they wish to) be concerned with the details of
computations and derivations. Focus instead on the qualitative message in the
numbers provided: do the results make sense? and why does a given table or result
provide insight into the approach to and goals of genetic mapping?

In Sect. 6.2 we consider probabilities of the underlying IBD in related indi-
viduals. At any locus, even a small number of gametes can share IBD in many
different ways. The changes in the IBD pattern across a chromosome that result from
recombination events in ancestral meioses add additional complexity. Additionally,
these ancestral processes have high variance. Against these complexities are the
facts that, on a bp scale, IBD changes slowly across the chromosome and that, in
populations, relatively simple prior models for IBD can provide a basis for infer-
ence. Sections 6.2.3 and 6.2.4 show the importance of IBD. Given a specification of
the IBD and a penetrance model, probabilities of genotypes and phenotypes, jointly
across sets of observed individuals can be computed, without further reference to
the descent structure that gave rise to the IBD.

While Sect. 6.2.3 provides probabilities of marker genotype data given a pattern
of IBD, in Sect. 6.3 we consider the reverse problem—the inference of IBD from
genetic marker data. As dense genetic marker data become increasingly available,
and traits of interest become increasingly complex, there has been a shift in the
paradigm of joint analysis of trait and marker data for purposes of gene mapping.
Whereas models for complex traits may involve several genetic loci, each genetic
marker corresponds to a single locus and simple models apply. By first analyzing
the marker data to obtain patterns of IBD across a chromosome among observed
individuals, direct joint consideration of marker and trait data may be avoided.
Instead the patterns of IBD inferred from marker data may be used to investigate
multiple trait models and hypotheses or even multiple traits observed on subsets of
the same individuals (see, e.g., Chapman et al. 2015, Peter et al. 2016 and Saad
et al. 2016). Efficient methods for realizing, estimating, and storing complex IBD
summaries based on genetic marker data are key to success of this approach. This
applies both in the presence of defined pedigree structures and also in populations:
Sect. 6.3 considers both cases.

Finally, in Sect. 6.4 we consider approaches to genetic mapping of loci underly-
ing phenotypes of interest, using the IBD inferred from genetic marker data. Both
classical and modern approaches can be phrased in terms of IBD, and placing
analyses in this framework shows there is no fundamental difference between
pedigree-based and population-based approaches. Indeed, framing the problem in
terms of IBD allows the combination of pedigree and population data. For close
relatives, where relationships can be well-validated, the assumed pedigree is useful,
not least in providing phase information on individual haplotypes. However, the
location-specific IBD resulting from more remote relationships is often better
inferred without reference to an assumed pedigree, and this IBD may be used in
exactly the same way as pedigree-based IBD in genetic mapping algorithms. A final
conclusion is thus that, with modern genetic marker data, it is not a choice between
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pedigree and population data: gene mapping relies on having related individuals,
but the relationships do not need to be known.

The original version of this chapter was written in 2013–2016. HSG4, the 4th
edition of the Handbook of Statistical Genomics (Balding et al., 2019), was devel-
oped in 2017–2018. Thus, although the focus is slightly different, there is significant
overlap between the current chapter and Chapter 20 of HSG4 (Thompson, 2019).

6.2 Probabilities of IBD

6.2.1 IBD in Defined Relatives

In a defined pedigree relationship, the probabilities of IBD are determined by the
pedigree. As an example, we consider again the pair of cousins E and C in the
pedigree of Fig. 6.1. At a single locus, the probability of IBD of their maternal
gametes from any one of the four grandparental genes is (1/2)4 = 1/16, since that
copy of the DNA must be chosen in each of four independent meioses. Of course,
E and C cannot share other than their maternal genomes IBD. Thus, in total, the
probability that E and C share DNA IBD at a locus is 4 × (1/16) or 1/4.

Suppose that, at a particular locus, DNA in one of the four genomes of the
shared grandparent couple does descend both to E and to C, then E and C do
share genome IBD at this locus. Moving along the chromosome, we assume, for
simplicity, that recombination in any meiosis occurs at random at an average rate
of 1 per 108bp. Since a recombination event in any one of the four connecting
independent meioses will break this IBD, IBD is broken at a rate 4×10−8 per bp, and
the expected distance until IBD is broken is 25×106 bp (25 Mbp), which is of order
25 centiMorgans (cM). That is, an IBD segment in first cousins has expected length
25 cM. Note however that this is different from the expected length of segment
surrounding a known IBD point, since the segment will extend in both directions
along the chromosome, for a total expected length of 50 cM. This apparent anomaly
is the phenomenon of size-biased sampling. It is well known in statistics (Cox,
1962) but has caused some confusion in the recent IBD literature. It is important to
distinguish between a randomly chosen IBD segment and the segment surrounding
a randomly chosen point of IBD.

Consider now the brothers C and D. At a locus they receive their maternal
DNA IBD with probability 1/2 and independently receive their paternal DNA IBD
with probability 1/2. Thus they share both homologues IBD with probability 1/4,
neither with probability 1/4. With the remaining probability 1/2, they share one of
their two homologues IBD. Since recombination in either of two meioses breaks a
maternal IBD segment, the expected length of such a segment is 50 cM and likewise
of a paternal IBD segment. The four meioses to the sibs from their parents are
independent, and every recombination in any one of the four parental meioses results
in a state change. Thus, along the chromosome, the IBD state remains constant for
an average of 25 cM. Switches in state occur from 1 to 0 or 2 IBD or from 0 or 2 to
1 IBD (Fig. 6.3).
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Fig. 6.3 The states and state
changes in a pair of full sibs

Table 6.1 Probabilities of
IBD states among E, C, and
D at any point in the genome,
given the pedigree
relationship of E with her
sibling cousins C and D.
Here, ≡ denotes IBD among
the specified gametes, and �≡
denotes non-IBD

Cp ≡ Dp Cp �≡ Dp Total

Em ≡ Cm ≡ Dm 1/16 1/16 1/8

Em ≡ Cm �≡ Dm 1/16 1/16 1/8

Em ≡ Dm �≡ Cm 1/16 1/16 1/8

Em �≡ Cm ≡ Dm 3/16 3/16 3/8

Em, Cm Dm all �≡ 1/8 1/8 1/4

Total 1/2 1/2 1

We now introduce the concept of more general states of IBD at a locus, using this
same example. The probabilities of the ten possible states are shown in Table 6.1 and
may be derived as follows. There is probability 1/2 that C and D share their paternal
DNA IBD at a locus (Cp ≡ Dp) and probability 1/2 that they do not (Cp �≡ Dp).
Also, this IBD is independent of any IBD among the maternal genomes of C, D, and
E. Now, for E’s maternal gamete Em to be IBD to either of the maternal gametes Cm

or Dm, the same one of the four grandparental genes that descends to E must also
descend to the mother of C and D: probability 4 × (1/8) = 1/2. The probability
this same DNA is copied to both Dm and Cm, to Dm but not Cm, and to Cm but not
Dm is then each (1/2)× (1/2) = 1/4, giving the first three rows of Table 6.1. Now
also, there is total probability 1/2 of IBD between the maternal gametes Cm and Dm

of C and D, so that

Pr(Em �≡ Cm ≡ Dm) = Pr(Cm ≡ Dm) − Pr(Em ≡ Cm ≡ Dm)

= 1/2 − 1/8 = 3/8,

and the fourth row of the table follows. The final row then follows from the known
column totals. We see that even in this small example, the complexity of IBD
patterns increases rapidly as more gametes are considered. Here there are just
five relevant gametes, and a simple pedigree relationship, but there are already ten
possible IBD combinations.

Considering changes among the ten states of Table 6.1 across the genome is also
more complex, despite the independence of the two meioses that determine IBD
between Cm and Dm and those that relate the mother of C and D to E. Additionally
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the rates of moving out of a given IBD state are no longer the same. C and D will
share their maternal genomes for an average length of 50 cM, but IBD with E will be
more rapidly broken, because of the greater number of intervening meioses. Also,
it is no longer sufficient to consider only the rate of breaking an IBD chain. For
example, Em can switch directly from being IBD with Cm to being IBD with Dm.

Despite the rapidly increasing complexity of IBD states as more individuals are
considered, the specification of inheritance in a defined pedigree is straightforward.
Suppose all the meioses of a pedigree are indexed by m, m = 1, . . . ,M; M is twice
the number of non-founders in the pedigree, since each non-founder has a maternal
and a paternal meiosis giving rise to their maternal and paternal gametes. Suppose
L locations of interest across a chromosome are indexed by loci j , j = 1, . . . , L.
We define, for each meiosis m and location j

Smj = 1 if the parent’s paternal DNA is transmitted

Smj = 0 if the parent’s maternal DNA is transmitted (6.1)

Then Mendel’s first law states that meioses m are independent and that

Pr(Smj = 1) = Pr(Smj = 0) = 1/2. (6.2)

Secondly, under the assumption of no genetic interference (Haldane, 1919), the
crossover points in the gametes transmitted to offspring (Fig. 6.2) occur indepen-
dently and at random at rate 0.01 per cM. Then the {Smj ; j = 1, . . . , L} have a
Markov dependence over j . This can be expressed as

Pr(Smj = 1 | Sm′,j ′ , (m′, j ′) �= (m.j)) = Pr(Smj = 1 | Sm,(j−1), Sm,(j+1))

(6.3)

That is, given all the other Sm′j ′ , Smj depends only on the values Sm,(j−1) and
Sm,(j+1) for the same meiosis m and the two neighboring loci. The vector of
components Smj over the values of m for any given locus j is known as the
inheritance vector at locus j (Lander and Green, 1987).

Equations (6.2) and (6.3) provide easy methods for simulation of the descent
of genome in a defined pedigree. At independently inherited loci, it is simply
an application of Mendel’s first law, with the parents maternal or paternal DNA
each being transmitted independently in every meiosis. Across the genome, the
copying switches between copying from the parent’s maternal and paternal DNA
at a rate determined by the genetic map. Under the model of no genetic interference
(Haldane, 1919), the distance to the next switch point on each chromosome can be
generated as an exponential random variable with mean 100 cM. The values of Smj

are then determined at the specified discrete locations j . For each j , or indeed jointly
over j , the Smj determine which founder genome descends to each haploid genome
of each current individual and hence the IBD state among current individuals. Thus
Monte Carlo estimates of the probabilities of IBD patterns, both at a locus and across
loci, can be very efficiently obtained.
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6.2.2 IBD in Populations

In this section we consider IBD at the population level, when no pedigree relation-
ship is specified. However, to motivate the discussion, we consider first the case of
two individuals who have a single common ancestor, such that they are separated by
a total of m meioses. For example, half-kth-cousins have a single common ancestor
(k + 1) generations ago and are separated by m = 2(k + 1) meioses.

The probability of sharing genome IBD decreases by a factor of (1/2) with each
additional meiosis. The formula for sharing any of an autosomal genome length L

Morgans is more complicated (Donnelly, 1983) but also decays exponentially for
larger numbers of meioses. Figure 6.4 shows these probabilities on a log scale, as a
function of the number of separating meioses m. At a point, the probability of IBD
decays rapidly, from 0.1 at m ≈ 4 meioses, to 0.01 at m ≈ 8, to 0.001 at m ≈ 11.
For a genome of length L = 30 Morgans, the probability of some IBD remains high
for m ≤ 8 but then starts to decrease to 0.148 at m = 12 and to 0.001 at m = 20.
While 15% of pairs separated by 12 meioses will share some genome IBD from their
common ancestor, this reduces to 1 in 1000 pairs for a separation of 20 meioses.

A very different picture results from considering the lengths of an IBD segment,
given that it exists. IBD resulting from a chain of m meioses is broken by
recombination at rate proportional to m so that length of IBD segments are of order
m−1 Morgans. Even for m = 20, given there is a segment of IBD, this segment is
expected to be several Mbp long.

m = 12 m = 20
Probability of IBD at point 0.0005 2× 10−6

Probability of any IBD (L = 30) 0.148 0.001
Expected length of IBD segment 8.5 Mbp 5 Mbp
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Fig. 6.4 IBD in remote half-cousins
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Even for a pair of individuals, the IBD of 0, 1, or 2 gametes at a location (Fig. 6.3)
are not the only possibilities. If the parents of an individual are related, then the
individual is inbred, and the two gametes within an individual may be IBD at some
locations. For four gametes, there are 15 possible IBD states; the left-hand columns
of Table 6.2 show the states in pictogram form. An alternative way to specify the
IBD is by specifying the partition of the four gametes into the IBD subsets, and
this specification is also given in Table 6.2. For example, in state 7 of Table 6.2 the
maternal gamete Am is IBD to both gametes Bp and Bm of B. The two subsets of
this IBD partition are thus {Ap} alone and the three IBD gametes {Am,Bp,Bm}.
One advantage of specification as a partition is that it extends to any number of
individuals or set of haploid genomes.

For model-based inference of IBD from genetic data, a prior model for IBD
is required; see Sect. 6.3.4. Given a pedigree, the probabilities of Mendelian
segregation and the process of meiosis provide probabilities of each IBD partition
or state. However, in the absence of a known pedigree, an alternative approach is
necessary. One natural model is that of the Ewens Sampling Formula (ESF: Ewens
1972), which provides a one-parameter model for partitions of an exchangeable set
of gametes. The ESF probabilities are in general written in terms of ai , the number
of subsets of size i; this specification is given in the next column of Table 6.2.
For example, in state 7, with partition {{Ap}, {Am,Bp,Bm}}, there is one subset of
size 1 and one of size 3: a1 = a3 = 1. Since, under the ESF model, the gametes
are exchangeable, all IBD partitions with the same set of values of ai must have
the same probability. For example, in Table 6.2, states 2, 9, and 10 have the same
probability since each has a2 = 2, even though in state 2 the IBD is between the
two gametes within each individual and in states 9 and 10 there are two pairs of
inter-individual IBD.

For our purposes the probabilities are most easily parameterized in terms of β,
which is the pairwise probability of IBD between any two gametes. In terms of
Ewens’ classical parameter θ of genetic variation, β = 1/(1 + θ). For the case of
four gametes the relative probability of each state is also given in Table 6.2. Each
term is normalized by the column sum (1+β)(1+2β) to give the probability. Again,
in the example of state 7, there is one non-IBD factor (1−β) and two IBD factors β

to link the other three gametes. The general formula for multiple gametes is beyond
the scope of this chapter, but the interested reader may consult Tavaré and Ewens
(1997). It can also be checked that every pair of gametes has IBD probability β. For
example, Am ≡ Bp in states 1, 3, 7, 10, and 13 for a total probability

6β3 + 2 × 2β(1 − β) + β2(1 − β) + β(1 − β)2

(1 + β)(1 + 2β)

= β(6β2 + 5β(1 − β) + (1 − β)2)

(1 + β)(1 + 2β)
= β (6.4)
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Table 6.2 The 15 IBD partitions at a locus, among the four gametes of two individuals. For two
individuals A and B, the paternal (p) and maternal m gametes are denoted and depicted as in
Fig. 6.3 with individual A above and B below

State Partition Ewens’ {ai } Probability Kinship

1 {Ap,Am,Bp,Bm} a4 = 1 6β3 1

2 {Ap,Am}, {Bp,Bm} a2 = 2 β2(1 − β) 0

3 {Ap,Am,Bp}, {Bm} a1 = a3 = 1 2β2(1 − β) 1/2

4 {Ap,Am,Bm}, {Bp} a1 = a3 = 1 2β2(1 − β) 1/2

5 {Ap,Am}, {Bp}, {Bm} a2 = 1, a1 = 2 β(1 − β)2 0

6 {Ap,Bp,Bm}, {Am} a1 = a3 = 1 2β2(1 − β) 1/2

7 {Ap}, {Am,Bp,Bm} a1 = a3 = 1 2β2(1 − β) 1/2

8 {Ap}, {Am}, {Bp,Bm} a2 = 1, a1 = 2 β(1 − β)2 0

9 {Ap,Bp}, {Am,Bm} a2 = 2 β2(1 − β) 1/2

10 {Ap,Bm}, {Am,Bp} a2 = 2 β2(1 − β) 1/2

11 {Ap,Bp}, {Am}, {Bm} a2 = 1, a1 = 2 β(1 − β)2 1/4

12 {Ap,Bm}, {Am}, {Bp} a2 = 1, a1 = 2 β(1 − β)2 1/4

13 {Ap}, {Am,Bp}, {Bm} a2 = 1, a1 = 2 β(1 − β)2 1/4

14 {Ap}, {Am,Bm}, {Bp} a2 = 1, a1 = 2 β(1 − β)2 1/4

15 {Ap}, {Am}, {Bp}, {Bm} a1 = 4 (1 − β)3 0

The classical coefficient of kinship between two individuals A and B is the
probability that gametes segregating from each of A and B are IBD at any point in
the genome. The final column of Table 6.2 gives this probability conditional on the
IBD state among the four gametes of A and B. Note there are only four possibilities.
If there is no IBD between the individuals (states 2, 5, 8, and 15), the value is 0.
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For one between-individual IBD link (states 11, 12, 13, and 14), the value is 1/4. If
all four gametes are IBD, the value is 1, and the remaining 6 states each gives value
1/2. From Equation (6.4) and its analogues for other gamete pairs, it is seen that,
under the ESF model, β is both the kinship between A and B and the inbreeding
coefficient of each individual (the probability of IBD between the individual’s two
gametes).

The IBD state among gametes changes along a chromosome due to ancestral
recombination events. For a pair of gametes, Leutenegger et al. (2003) proposed a
simple model in which potential changes occur at rate α and at a potential change
point the new (possibly unchanged) state is IBD or non-IBD with probability β and
(1 − β), respectively. This gives rise to an equilibrium pairwise IBD probability β

and to alternating segments of IBD and non-IBD. The lengths of these segments are
exponentially distributed with expectations 1/α(1−β) and 1/αβ, respectively. This
model is based on the the consideration of a single chain of ancestry (Fig. 6.4) and
does not reflect a more complex situation where there are multiple paths of ancestry
of varying numbers of meioses between the two gametes. However, it is flexible
enough to provide a useful prior distribution for IBD.

Modeling the changes in IBD among multiple gametes along a chromosome is
a challenging problem. The full ancestral recombination graph is too complex a
model for genome-wide use. Simple approximations cannot accommodate the range
of changes that can occur or fail to mimic the types of changes that do occur. For
example, an extension of the model of Leutenegger et al. (2003), which samples
from the ESF at each potential change point, would allow immediate changes from
state 1 to state 15, in Table 6.2, or from state 9 to state 10, whereas no single ancestral
recombination event could accomplish these changes.

One model that has proved useful is that proposed by Brown et al. (2012) which
applies to any number of gametes and has the ESF as its equilibrium distribution.
This model allows for the move of any one gamete into, out of, or between any
two IBD subsets at each potential transition point. Potential transitions occurs at
rate α, which is a surrogate for recombination rate. The two parameters β and α

together control the overall level of IBD and the lengths of chromosome over which
a subset of gametes will remain IBD. This model also does not accommodate all
possible transitions. For example, an ancestral recombination that is ancestral to
two current gametes may move them together into another IBD subset. However,
provided other changes are allowed for with some small probability, this model also
provides a useful prior (Zheng et al., 2014).

6.2.3 Probabilities of Genotypic Data Given IBD

We now consider the relationship between latent IBD and the probabilities of marker
genotypes. At a specific locus, in a specific gamete, the probability of the allelic type
of the DNA is simply the population allele frequency. We will label SNP alleles as
u and v, with population frequencies q and (1 − q). At any locus the observed
genotype G(A) of any individual A is thus uu, uv, or vv. More generally, for a
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marker with k alleles (k > 2), we will denote the alleles by vi and the population
frequencies by qi (

∑k
i=1 qi = 1). It is assumed that appropriate allele frequencies

are known from population databases or other sources.
The basic premise is that IBD DNA is of the same allelic type and that non-

IBD DNA copies are of independent allelic type. Mutations may cause IBD DNA
to differ in allelic type, but the probability of mutation is generally much less than
of typing error. We consider typing error in Sect. 6.2.4. The independence of non-
IBD and the appropriate population allele frequencies are harder issues, since both
depend on the frame of reference. If IBD is measured relative to a particular time-
point or ancestral population, then it is the allele frequencies in that population
that govern the probability that a set of IBD gametes has each the given allelic
type. However, these allele frequencies are generally unknown, and instead current
population estimates are used. IBD is more reliably inferred using only common
genetic variants, for which population allele frequencies are more easily estimated
and more stable over time.

As a simple example, we consider again the small family of Fig. 6.1 and assume
the descent of IBD that is shown in that figure. That is, at the locus of interest,
cousins E and C share their maternal gametes IBD from their grandfather, and sibs
C and D share their paternal DNA IBD. This is shown graphically in the upper
left graph of Fig. 6.5. In this IBD graph, the observed individuals E, C, and D are
depicted as edges, and the notes denote the DNA. Where two or edges impinge on a
node, those individuals shared that DNA IBD. Each edge joins the two DNA nodes
that represent the two gene copies carried by that diploid individual.

Consider the probability that, at the marker locus of interest, E and C each has
the homozygous genotype uu, while D is a heterozygote, uv. It is immediately clear
that the three nodes (blue, magenta, and green) in E and C are of type u, while the
remaining (orange) node of D is of type v (see right part of Fig. 6.5). The probability
that any node is type u is q , the population frequency of allele u, and likewise (1−q)

for v. In the total of four nodes, there are three of type u and one of type v for a total
probability of q3(1 − q).

Now suppose it is inferred that, owing to some previously unspecified relation-
ship between the grandfather and the father of the sibs C and D, the DNA shown
as magenta and as green are in fact IBD. The IBD graph is simply modified by

• • • • Q
u u u v q3(1− q)

u u – v q2(1− q)

Q = Pr(G(E) = uu, G(C) = uu, G(D) = uv)

Fig. 6.5 Example of probabilities of marker genotypes given IBD
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merging these two nodes (Fig. 6.5, lower left). Individual C now carries two copies
of the sane (magenta) DNA node, which is shared also with E and D. There are three
nodes in total, two of type u and one of type v, for a total probability Q = q2(1−q).

While these examples are very simple, they make important points. First, once
the IBD graph and allele frequencies are given, the joint genotype probabilities are
easily determined. The pedigree structure or population history that gave rise to the
IBD graph is no longer relevant once the IBD graph is known. Second, at any given
marker, only observed individuals are included in the IBD graph. Unlike classical
pedigree computations, there is no need to sum out over possible genotypes of
unobserved individuals. Third, the assignment of allelic types to the DNA nodes
is trivial. If any individual is homozygous, then the only possible assignment
(assuming there is one) is immediately determined by extending from that initial
constraint. If all individuals are heterozygous, there may be two alternate assign-
ments whose probabilities must be summed. For example, a single heterozygous uv

genotype not sharing DNA nodes with other individuals has genotype probability
q(1 − q) + (1 − q)q = 2q(1 − q), since either allele may be assigned to either
node. Regardless of the number of possible alleles at a locus and regardless of the
complexity of the IBD graph, there are always 0, 1, or 2 possible allelic assignments
for each connected component of the graph. Of course, on separate components of
the total graph we simply take the product of the probabilities on each component.

6.2.4 Probabilities of Phenotypic Data Given IBD

In this section, we extend the above ideas to phenotypic data. Where a phenotype
allows for several underlying genotypes, it is necessary to sum over the possible
assignments of allelic types to DNA nodes. This computation may be accomplished
sequentially across the graph, using methods that are standard in the area of
graphical models (Lauritzen, 1992). Suppose, for example, that individuals E, C,
and D have (discrete or continuous) phenotypes YE , YC , and YD and that a genetic
model for the trait provides the probabilities of each individual’s phenotype given
the unobserved allelic types of his/her DNA at the trait locus. Additionally, these
penetrance probabilities may depend on other observed covariates such as the
age and gender of each individual. Them we may compute the probability of the
observed phenotypes as

Pr(YE, YC, YD) =
∑
•

∑
•

(Pr(YE |•, •)q(•)q(•) (6.5)

∑
•

(Pr(YC |•, •)q(•)
∑
•

(Pr(YD|•, •)q(•))))

where q(•) denotes the population allele frequency of the allelic type of DNA
node •. That is, proceeding from right to left, we may first use the information
on individuals D and sum over the possible allelic types of node • for each value of



6 Identity by Descent in the Mapping of Genetic Traits 137

the type of node •. Then we can incorporate the data on individual C and for each
value of • sum over the possible values of •. Finally we may incorporate the data
on E and sum over the possible allelic types of the two remaining DNA nodes. By
processing the summation in this way, we can break the overall sum into smaller
feasible computations.

Although our example is of a small pedigree, this is for ease of presentation only.
Even for more much larger and more complex IBD graphs, these computations are
generally feasible. Where IBD graph components are small, probabilities can be
computed even under models for which the trait is controlled by genotypes at several
loci. Moreover, once the IBD graph is given, the source of that IBD information is
irrelevant. The IBD graph contains all the relevant information on the impact of
shared ancestry on joint phenotype probabilities.

A special case of phenotypic data arises with marker data where an allowance is
made for typing error. That is, the true marker genotype provides probabilities for
the marker phenotype; the observed marker “genotype” may not be the true one. In
practice, it is important to use a model that allows for the possibility of error, so that
IBD nodes are not of necessity of the same allelic type. It is not necessary to have
a model that precisely reflects biological or technological genotyping processes.
One simple error model for single genotypes is due to Leutenegger et al. (2003). In
the case of IBD, with probability (1 − ε) the alleles are the same, and of type vi

with probability qi , but with probability ε the Hardy-Weinberg frequencies are used
(Table 6.3). This allows for heterozygous genotypes even in segments where the
individual’s two gametes are IBD, whether due to typing error, mutation, or other
causes.

For larger numbers of individuals, one error model that makes probability
computations on an IBD graph straightforward is a generalization of the model of
Leutenegger et al. (2003). With an error parameter ε, the probability of genotypes g
is modeled as

Pr(g|ε, IBD graph) = (1 − ε)Pr(g|ε = 0, IBD graph) + εPr(g| no IBD) (6.6)

That is, on any connected component, with probability (1 − ε) there is no error,
while with probability ε there is some error, and then the probability is computed as
if there is no IBD among the individuals represented in that IBD graph component.

For small numbers of individuals, or low levels of IBD, the model of Equa-
tion (6.6) works well, but in some cases more complex models are needed. For

Table 6.3 The probabilities of an individual’s genotype at a k-allele locus. Any two distinct
possible alleles at the locus are denoted vi and vi∗ (1 ≤ i < i∗ ≤ k). The population frequencies
of alleles vi and vi∗ are qi and qi∗ , respectively

Non-IBD IBD

vi vi q2
i (1 − ε)qi + εq2

i

vi vi∗ (i < i∗) 2qiqi∗ ε2qiqi∗
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SNP genotypes, another model is that each allele is independently toggled to
its alternative with probability ε (Zheng et al., 2014). Since some loci are more
error-prone, ε may be made locus-dependent. With this or a more general error
model, genetic marker become in effect discrete trait phenotypes. Then probability
computations require the general summation method exemplified in Equation (6.5).

6.3 Inferring in Pedigrees and Populations

6.3.1 IBD Given Marker Data on Relatives

In this section we will consider the inference of IBD from genetic marker data.
We consider first the case where the pedigree structure of the observed individuals
is known and assumed correct. Marker genotypes for some individuals for some
subsets of loci may be missing, but we assume that, if observed, the marker
genotypes are without error. As an example of the principles involved, we consider
the example of a pair of full sibs. At any locus, sibs share their maternal/paternal
genome IBD with probability 1/2. In the absence of genetic marker data, there are
prior probabilities 1/4, 1/2, and 1/4 (respectively) that they share 0, 1, or 2 gene
copies IBD (Sect. 6.2.1).

More generally, we will denote genetic marker (usually SNP) data by X and a
specification of the IBD to be inferred by Z. Section 6.2.3 showed how probabilities
Pr(X | Z) of genetic marker data on relatives could be easily computed given the a
pattern of IBD at the marker locus. Conversely, given a prior probability Pr(Z) of
IBD and genetic marker data, conditional probabilities of IBD can be obtained. By
Bayes theorem:

Pr(Z | X) ∝ Pr(X | Z) Pr(Z). (6.7)

For pairs of individuals in a known pedigree relationship, there are well-established
methods for computing these prior probabilities (Karigl, 1981).

Suppose the SNP genotypes of the pair of sibs at three linked loci are as shown in
Table 6.4. As in Sect. 6.2.3 we will denote the SNP alleles as u and v, while qj and
(1 − qj ) will now denote the frequency of u and of v at locus j . The reader should
not struggle with details of the computation but consider only whether the results
make qualitative sense. Given the allele frequencies shown, then the probabilities
that the sibs share 0, 1, or 2 DNA copies IBD are computed using Equation (6.7)
and are given in Table 6.4. Note the effect of the u allele frequency, qj . The two sibs
have the same genotypes at locus-1 and locus-3, but at locus-3 the u allele is the
rare allele, giving much stronger weight to IBD sharing between the two sibs. Only
at locus-2 do the two sibs have the same genotype and so can share 2 copies IBD
(Z = 2). The genotypic data raises the probability that they do so to 0.4, which is
higher than above the prior probability 0.25.

However, if the loci are linked, this computation does not take into account all the
information available; there is dependence in the IBD state Z at linked loci. Suppose
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Table 6.4 Single-locus probabilities of IBD in a sib pair for the example data

Z = 0 Z = 1 Z = 2 Z = 0 Z = 1 Z=2

Pr(Z) 0.25 0.5 0.25

loc-j qj Data Xj Pr(Xj | Zj ) Pr(Zj | Xj )

loc-1 0.9 uu, uv 0.146 0.081 0.000 0.474 0.526 0.000

loc-2 0.5 uv, uv 0.250 0.250 0.500 0.200 0.400 0.400

loc-3 0.1 uu, uv 0.002 0.009 0.000 0.091 0.910 0.000

Table 6.5 Transition probabilities in sib IBD states at two loci at recombination probability ρ =
0.05

Z = 0 1 2 0 1 2

0 c2 2c(1 − c) (1 − c)2 0.819025 0.17195 0.009025

1 c(1 − c) 1 − 2c(1 − c) c(1 − c) 0.085975 0.82805 0.085975

2 (1 − c)2 2c(1 − c) c2 0.009025 0.17195 0.819025

the recombination fraction between adjacent loci 1 and 2, and 2 and 3, are each
ρ = 0.05. Then there is no change in the maternal [paternal] DNA sharing between
adjacent loci if either both or neither of the meioses from the mother [father] to the
two sibs is recombinant. The probability of this is c = (1 − ρ)2 + ρ2 = 0.905.
This leads to the probabilities of transition between the IBD states Z = 0, 1, 2 from
one locus to another at recombination distance ρ. The matrix of these transition
probabilities is shown in Table 6.5. It can be checked that, for any value of c, this
matrix has the required equilibrium single-locus probabilities 1/4, 1/2, 1/4 for Z =
0, 1, 2.

We can now compute the probability of the IBD state at locus-2, given the data
at all three loci. Let Zj denote the IBD state at locus j and Xj the SNP genotypes
at locus j . Note that the data at a locus depend only on the IBD state at that locus.
Thus, for example, X1,X2, and X3 are conditionally independent given the IBD
state Z2 at the middle locus. Then

Pr(X1,X2, Z2) =
∑
Z1

(
Pr(X1|Z1)Pr(Z2|Z1)Pr(Z1)

)
Pr(X2|Z2)

= 0.0083, 0.0099, 0.0019 for Z2 = 0, 1, 2.

Pr(X3|Z2) =
∑
Z3

(
Pr(X3|Z3)Pr(Z3|Z2)

)

= 0.0030, 0.0076, 0.0016 for Z2 = 0, 1, 2.
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Combining these we have

Pr(X1,X2,X3, Z2) ∝ (2.490, 7.524, 0.304) × 10−5 for Z2 = 0, 1, 2.

and normalizing these gives the probability of Z2 given X1,X2,X3 as approxi-
mately (0.24, 0.73, 0.03) for Z2 = 0, 1, 2. Note that whereas the data at locus-2
increased the relative probability that Z2 = 2, incorporating the data at loci 1 and
3 greatly decreases the probability since the state of 2 IBD is impossible at each of
these flanking loci. For Z2 = 2, a recombination would be required both between
locus-1 and locus-2 and between locus-2 and locus-3.

6.3.2 Monte Carlo Realization of IBD in Defined Pedigrees

The principles that underlie the computations of Sect. 6.3.1 are that the data at
each marker locus depends only on the latent IBD state at that locus and that the
transitions in latent IBD state follow a Markov process across the chromosome.
This is the classic framework for a hidden Markov model (HMM) which enables
many computations to be made. In fact, IBD is in general not Markovian, since
many different patterns of inheritance may give rise to the same IBD state
among observed individuals. However, in the absence of genetic interference, the
indicators of maternal or paternal transmission in a meiosis are indeed Markov (see
Equation (6.1)). This Markov nature of inheritance vectors (Sect. 6.2.1) has been
used by many to enable computations on pedigrees. For example, as implemented in
the MERLIN software (Abecasis et al., 2002), probabilities of IBD pairwise among
the members of a small pedigree may be computed at each marker locus, conditional
on the joint marker data on all pedigree members and on marker genotypes at
all loci. More generally, as seen in Sect. 6.2.1, the inheritance vector at a locus
determines the IBD state at that locus, among all members of the pedigree.

While location-specific probabilities of IBD are useful, there are good reasons
to prefer Monte Carlo realizations of latent inheritance vectors or IBD. First, it is
not feasible to consider probabilities of IBD jointly across multiple loci, but a set
of realizations directly display the segmental nature of inheritance and can identify
locations of recombination events that change the IBD among observed individuals.
Second, the variation in a set of realizations provides a measure of uncertainty in
the IBD information which cannot be captured in a single probability. In using IBD
inferred from marker data in subsequent genetic analyses, it is important to have
some measure of this uncertainty.

The same HMM methods that allow computation of IBD probabilities also allow
Monte Carlo realization of IBD conditional on genetic marker data (Thompson,
2000). On small pedigrees, where exact computation is feasible, independent
realizations may be generated. On larger pedigrees, where the space of inheritance
vectors at each locus is too large for exact computation, Markov chain Monte Carlo
(MCMC) methods must instead be used (Sobel and Lange, 1996; Thompson, 2000).
However, the same principles apply. The Markov dependence of inheritance vectors
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and the dependence of marker genotypes only on the inheritance at that marker
locus enable realizations of inheritance jointly across loci and among individuals
to be made efficiently. The only requirement is that, at each marker location j ,
Pr(Xj | Zj ) can be easily computed (see Sect. 6.2.3). However, this requirement
does generally impose the restriction that marker genotypes are assumed to be
observed without error.

If multiple realizations of inheritance across a chromosome are to be realized
and used in subsequent genetic analyses, it is necessary to store them compactly.
Note that in any meiosis, crossovers (switches between transmission of maternal
and paternal DNA) occur on average only every 108 bp. Thus, rather than storing
inheritance vectors at each location, it is more efficient to store only the initial
value and the bp locations of successive switches. The inheritance vector at any
location may then be efficiently determined and consequently the IBD graph among
individuals observed for a trait of interest. Only the IBD graph is relevant to
subsequent analyses.

6.3.3 Inference of Realized Kinship or Relatedness

A pedigree provides a very strong prior on probabilities of IBD at a locus
(Sect. 6.2.1), but as genetic marker data become more and more informative, this
prior is increasingly unnecessary. Moreover, for more remote relatives, IBD is
highly variable. In the example of Fig. 6.4, only 1 in 1000 pairs of individuals
separated by 20 meioses will share any autosomal IBD, but if they do they will share
(on average) 5 Mbp. Other examples are considered by Donnelly (1983), while Hill
and Weir (2011) give a more extensive review of the variation in realized proportions
of genome shared given different patterns and degrees of pedigree relatedness.

Therefore, with the current availability of dense SNP marker data, there has been
an explosion of interest in the recent literature in the estimation of realized kinship
from genotypic data. More often this is phrased in terms of realized relatedness, or
of the proportion of genome shared IBD by pairs of individuals, but this is simply
twice the realized kinship, which is, in turn, a function of the realized 4-gamete IBD
states across the genome (Table 6.2).

The most widely used measure of realized relatedness based on genotypes is
the genetic relatedness matrix of GRM; see, e.g., Hayes et al. (2009). The GRM
is estimated as follows. As previously, at any SNP locus j , we have alleles u and
v with frequencies qj and (1 − qj ). The genotype xij of an individual i can be
specified by the number of u alleles he carries: xij = 2, 1, 0 for genotypes uu, uv,
and vv, respectively. Under a model of sampling alleles from the current population,
xij has expectation 2qj and variance 2qj (1 − qj ). For two individuals i and k, the
(i, k) entry of the GRM is the empirical correlation between the allele counts x of i

and k:

Aik = 1

L

L∑
j=1

(xij − 2qj )(xkj − 2qj )

2qj (1 − qj )
(6.8)
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where L is the total number of loci genotyped. A more general form is

Aik =
L∑

j=1

wj

(xij − 2qj )(xkj − 2qj )

2qj (1 − qj )
(6.9)

With wj = 1/L we obtain the previous estimator, while
wj = pj (1 − pj )/

∑L
l=1 pl(1 − pl) provides a form that is more robust to small

allele frequencies; see, for example, VanRaden (2008).
One major deficiency of estimators where the weights depend only on allele

frequencies is that they do not account for allelic associations among loci (LD). One
form of weighting to accommodate LD was developed by Speed et al. (2012), while
S. Sverdlov developed an alternative approach that is used in Wang et al. (2017).
The top two panels of Fig. 6.6 show the increased precision of estimation of realized
kinship (relatedness/2) by accounting for LD. The left-hand panel is for the GRM
estimate of realized kinship, Aik/2 where Aik is as in Equation (6.8). The right-hand
panel shows the results for Equation (6.9) with weights wj computed according to
the LD-weighting developed in Wang et al. (2017). Shown are simulation results
for 1000 pairs of second cousins, and the histograms are of the difference between
the estimated realized kinship and the actual realized kinship in each pair. Note
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Fig. 6.6 Histograms of estimation errors of 1 estimators on 1000 simulated second cousin pairs.
The values are the difference between the estimated global realized kinship and the actual
(simulated) global realized kinship, computed at 169,751 SNP marker positions. The estimators
are the classic GRM (6.8), an LD-weighted version of the form (6.9), and estimates based on the
local DW approach (DW), and on the HMM method (Sect. 6.3.4). (The figure is due to Bowen
Wang, based on the study by Wang et al. 2017)
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that we are not here attempting to estimate the pedigree kinship. The histogram of
differences between the pedigree value and actual realized values has a larger spread
than even the upper left histogram based on Equation (6.8).

There is however a more serious deficiency in estimators of the form (6.9); this
is that they do not take the physical locations of SNPs into account. We have
already seen that IBD occurs even in remote relatives as a few long segments.
Additionally, SNPs are individually very uninformative; information about IBD
should be combined across local SNPs to provide more accurate estimates of the
probability of IBD at each point in the genome. Such estimates can then be averaged
across the genome to estimate the realized proportion of genome shared IBD. One
such method was proposed by Day-Williams et al. (2011) and is denoted DW. They
use the four between-individual comparisons of allelic sharing at loci in windows
across the genome, to obtain estimates of local kinship. These are then smoothed
across the genome, subject to constraints that at each point the value is 0, 1/4, 1/2,
or 1 (Table 6.2). An alternative is to estimate the IBD state for the four gametes
using an HMM approach and the model of Brown et al. (2012) for changes in the
15 states across the genome (Sect. 6.2.2): details are given in Sect. 6.3.4 below. This
method provides estimates of realized kinship at points across the genome, and these
may then be combined into a genome-wide estimate.

The two lower histograms of Fig. 6.6 show the results using the local IBD
estimation methods of Day-Williams et al. (2011), denoted DW, and of Brown et al.
(2012) denoted HMM. It is seen that incorporating the segmental nature of DNA
into the inference process greatly improves the precision of estimation of realized
kinship. However, these methods are more computationally intensive and also show
bias. The DW method tends to underestimate IBD, especially in the presence of
inbreeding. The HMM method tends to overestimate IBD in the presence of LD.
For this reason, an LD-weighted version of the HMM estimator provides further
improvement. These and other estimators are further discussed by Wang et al.
(2017).

6.3.4 IBD Given Marker Data in Populations

In the previous section, the focus was on estimating the genome-wide proportions
shared IBD between two individuals. However, for gene mapping, we may be
interested in the joint pattern of IBD among several observed individuals, not
only pairwise measures. Second, for mapping we are interested in IBD at specific
locations across the genome. Third, we may wish to consider segments of IBD
and changes in IBD across genome locations. Estimates of relatedness such as
Equation (6.9) do not take into account the physical linkage among loci, treating
them as an exchangeable collection of SNPs; any permutation of the SNPs will
provide the same result. By contrast, estimates of location-specific IBD rely on the
genetic marker map and depend jointly on the SNPs in the genome region. Each
SNP alone provides little evidence, but segments of IBD typically encompass many
SNPs.
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A defined pedigree provides prior probabilities of IBD among individuals at
a locus and across a chromosome (Sect. 6.2.1). However, population genetics
also provides probabilities of coancestry and IBD for individuals sampled from
a population. In the context of modern highly informative SNP data, the prior
distribution has relatively less weight, and genetic marker data can provide strong
evidence of segments of IBD among individuals not known to be related. Formerly,
where marker data were sparse both in the genome and among individuals, the
highly informative pedigree prior was a necessity for successful inference. With
modern data, it is often unnecessarily constraining. Further, ancestral pedigrees may
be inaccurate and cannot be validated from current genetic data. Except among the
current generations of sampled individuals, where the genetic data may be used to
validate the pedigree, the use of a pedigree prior is often best avoided.

Model-based inference of IBD requires allele frequencies, and the relevant allele
frequencies are those in the reference population relative to which IBD is measured.
Sharing of a rare variant allele among individuals provides strong evidence of IBD,
but on average common allelic variation provides more information. Moreover, for
a rare variant, it is difficult to either quantify the strength of the evidence or to
assess its uncertainty; even the concept of a population allele frequency may be
problematic. In contrast, common SNP variation is ancient and relatively stable.
While each SNP alone provides little information, segments of IBD generally
encompass large numbers of SNPs. Whether or not data are phased, and whether
or not local haplotype frequencies are used in estimation, it is the combination of
data from multiple contiguous SNPs that provides the evidence of IBD.

As described in Sect. 6.2.2, a flexible two-parameter prior model for IBD
between the pair of gametes of an individual was introduced by Leutenegger et al.
(2003). In this case there are just two possible IBD states at each locus; the two
gametes are IBD (Z = 1) or they are not (Z = 0). The assumption of a Markov
process of transitions between the two states again gives an HMM structure that
allows inference of IBD segments. The model is shown schematically in Fig. 6.7.
The latent IBD state consists of alternating segments of IBD (Z = 1) and non-
IBD (Z = 0) between the two gametes. In an IBD segment, the allelic types
at marker loci are, with high probability, of the same allelic type. In non-IBD
segments they are of independent allelic types. More precisely, the data model
was given in Table 6.3 in Sect. 6.2.4. At each marker locus, given non-IBD, we
have Hardy-Weinberg genotype probabilities. In the case of IBD, a small “error”
probability ε allows for the possibility that IBD DNA may be, or be recorded, as of

Fig. 6.7 Model for inferring IBD between two gametes
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different allelic types. While the exact form of the error model is not important, it is
important to allow this flexibility: generally, zero probabilities of latent states should
be avoided in modeling data. Since the model has an HMM structure, standard
algorithms give probabilities Pr(Zj | Y), of the IBD state Zj at each locus j , given
the data X of the allele types on the gametes over all loci. Further, as in Sect. 6.3.2,
we may instead obtain realizations of IBD {Zj ; j = 1, . . . , �} given X, jointly
over j .

There have been a number of extensions of the basic model, including to analyses
of genotypes of pairs of individuals as implemented in the well-known PLINK
software (Price et al., 2006). A more general prior model for IBD across the genome
and among IBD among any number of gametes was given in Sect. 6.2.2. This model
was used by Brown et al. (2012) on sets of four gametes, using either haplotypic
or genotypic data and by Zheng et al. (2014) for multiple gametes but assuming
haplotypic data. Moltke et al. (2011) also proposed a model for multiple gametes
and used it to study IBD in a set of five individuals. All these approaches have the
same basic framework and objective. That is, patterns of IBD across a chromosome
among sets of gametes are to be inferred from genetic marker data. The IBD process
is approximated by a Markov process, and the allelic or genotypic data at each locus
depends only on the underlying IBD state, giving rise to an HMM.

There is one significant approximation in these models in that linkage dise-
quilibrium (LD) is ignored. That is, there is no direct dependence of allelic types
between loci. While it is the allelic similarity of gametes across multiple loci that
results in inference of IBD, haplotypic similarities are not modeled directly. Allele
frequencies are incorporated into the model, and for common SNP variation, these
are normally adequately accurately known, but haplotype frequencies are often
less well established. While ignoring LD is a model mis-specification that can
result in false inferences of IBD (Fig. 6.6), over-compensation for LD can lead to
failure to detect IBD (Brown et al., 2012). A model that does include LD in the
inference of IBD is that due to Browning and Browning (2010), implemented in
the BEAGLE package but at the expense of a simplified IBD model. This approach
works very well in large samples from large populations, where IBD levels are low
and haplotype frequencies can be well-estimated.

These methods also all face another issue: as the number of gametes n increases,
the number of possible IBD states at each locus increases very rapidly, being the
number of partitions of n items. For the 12 gametes of 6 individuals, there are more
than 4 million possible states. The example considered by Moltke et al. (2011) was
for just five individuals and a limited gene region. Zheng et al. (2014) considered
860 SNP markers over a region of 10 Mbp and succeeded in realizing joint IBD
among 40 gametes but assumed the availability of haplotypic marker data. Neither
of these approaches is scalable to chromosome-wide inferences of joint IBD among
multiple gametes from genotypic marker data.
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6.4 IBD-Based Genetic Mapping

Any genetic mapping procedure aims to detect the genomic locations of DNA
variation underlying a trait of interest, by reference to a genetic map of markers
that have known locations in the genome. An association test directly considers
the dependence between marker genotypes (X) and trait phenotypes (Y). However,
these allelic associations arise from the descent of DNA from common ancestors to
different individuals within a population or to different populations. It is therefore
useful to consider the associations between X and Y through the lens of descent Z
and specifically patterns of IBD among individuals observed for the trait inferred
at locations across the genome. Throughout this section we assume that Z contains
all the information needed for analysis of association between X and Y: that is, we
assume that X and Y are conditionally independent given Z.

6.4.1 Mapping from IBD in Pedigrees

We first consider the pedigree context, in which prior probabilities of IBD are
provided by the specified pedigree relationships among individuals. At locations
across a chromosome, the genetic marker data X provide probabilities of IBD or
realizations of the inheritance vectors which determine the location-specific descent
of DNA through a pedigree (Sect. 6.3.2).

In genetic mapping, the use of location-specific IBD in affected individuals of
known pedigree relationship has long been established as a powerful approach. This
may be IBD in affected sib pairs (Suarez et al., 1978) or more general relative pairs
(Weeks and Lange, 1988) or even the two parental gametes of individuals affected
by a rare recessive trait (Lander and Botstein, 1987). In each case, individuals
sharing the trait have increased probability of sharing genome IBD at causal loci.
Observation of the same genome regions showing IBD across multiple pairs of
affected relatives provides the linkage signal. Significance of the observations can be
readily assessed, since the known pedigree relationship provides the null distribution
of any IBD-based test statistic.

IBD-based tests for linkage have been extended to larger groups of relatives,
and a wide variety of test statistics have been developed (McPeek, 1999). Joint
sharing of genome IBD by multiple affected relatives generally provides stronger
evidence, since the pedigree-based prior probability of this multiple sharing event
is generally smaller. An advantage of an IBD-based approach is that it is relatively
robust to allelic heterogeneity: within a pedigree the affected individuals are likely
to carry the same causal mutation IBD. If there are large pedigrees with multiple
affected individuals available, even locus heterogeneity is a lesser concern, since
even a single pedigree can provide sufficient evidence of linkage.

In the genetic mapping of loci underlying quantitative traits (QTL), IBD-based
approaches also have a long history. Haseman and Elston (1972) developed an
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approach to mapping QTL by considering the (negative) correlation between the
squared difference in trait values in sibs and the marker-based IBD probability.
More generally, the variance component approaches to QTL mapping in the SOLAR
software (Almasy and Blangero, 1998; Blangero et al., 2000) use pairwise location-
specific IBD probabilities computed conditionally on the pedigree structure and on
observed marker data to model covariances among relatives and map QTL.

A simple version of the model for QTL detection is as follows. The vector of trait
observations Y over the individuals is modeled as

Y = μ1 + σag + τjwj + σee (6.10)

Here μ is the overall mean, which may more generally include other fixed effects
and covariates, g is a vector of genome-wide genetic (polygenic) effects, w is
a vector of location-specific effects, and e is a vector of independent individual
residuals. Thus Var(e) is the identity matrix I, and Var(wj ) = 2�j where �j is
the matrix of between-individual kinships at location j (Table 6.2). The variance
of the genome-wide effect g is Var(g) = 2� where � is the matrix of genome-
wide kinships. For any pair of individuals, the term in the matrix �j may be
obtained for any location j from realizations of descent conditional on marker
data X (Sect. 6.3.2). For each pair of individuals, these values may be averaged
across the genome to obtain an estimate of � , although in the past a pedigree-based
expectation was often used for � (Sect. 6.2.1).

A log-likelihood ratio can be used to test whether there is an effect specific to
any location j in the genome. The purpose of the genome-wide term (σa > 0)
is to absorb effects of genes other than at the test location j , in order to provide
greater power and precision in detecting the effect at locus j . The general model of
Equation (6.10) can be compared to the model in which there is no effect at location
j (τ 2

j = 0):

�j = log

⎛
⎝maxσ 2

a ,τ 2
j ,σ 2

e
L(σ 2

a , τ 2
j , σ 2

e ; �j,�)

maxσ 2
a ,σ 2

e
L(σ 2

a , τ 2
j = 0, σ 2

e ; �)

⎞
⎠ (6.11)

For pedigrees with not too many observed individuals, maximization over param-
eters, and hence computation of the test statistic (6.11), is not computationally
intensive.

6.4.2 IBD in Pedigree-Based Likelihoods

In model-based testing for an association between genetic marker data X and trait
data Y, one may consider either the probability Pr(Y|X) or the probability Pr(X|Y).
The latter is the basis of association studies, in which individuals are selected on the
basis of their trait data, Y (e.g., cases and controls). Genotypes X are then compared
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between these two groups. For a quantitative trait, or when a more general trait
model is desired, it is more natural to consider Y given X. The same applies to IBD-
based genetic mapping, where the marker data X are used to provide information
about IBD, Z. In the analogue of population-based association tests, we consider
differences in inferred IBD in pairs conditional on their trait status (see Sect. 6.4.3
below). In QTL mapping we model Y given the inferred IBD as in Equation (6.10)
above. In this section, we consider more generally the probability Pr(Y|X) in the
case where the pedigree structure is known.

As in classical linkage analysis (Smith, 1953; Morton, 1955), the goal is to test
for dependence between inheritance of DNA at specific genome locations and the
inheritance of DNA underlying a trait. The pedigree relationships among individuals
are assumed known, and genetic marker data X are available for some individuals,
for markers with known locations in the genome. Trait data Y are also available, and
a model is assumed for the relationship between the allelic type of latent causal DNA
and the trait of interest. In the following, �X will denote the probability model for
the marker data X, which involves marker allele frequencies and locations which
are assumed known, and �Y will denote the model for the trait, which specifies
frequencies of trait alleles, and the probabilities of phenotypes given latent trait
genotypes. The parameter λ is a set of locations at which, with any model, there is
hypothesized to be causal DNA. The full model is � = (�X, �Y , λ). The full set of
all locations at which causal DNA is hypothesized in any model to be considered
will be denoted �; each λ is a subset of �. For models with a single trait locus,
λ = {j } and � is the set of j at which likelihoods are to be computed.

As before, we assume that Y and X are conditionally independent given Z and
denote by Z(λ) the IBD jointly at locations specified by λ. For single-locus trait
models λ = {j }, we write Z(λ) = Zj . Then

Pr(Y | X; �) =
∑
Z

Pr(Y | Z(λ); �Y , λ) Pr(Z(λ) | X; �X) (6.12)

There are several issues inherent in the use of Equation (6.12). First, even though
Z is required only at locations specified in λ and only among individuals observed
for the trait, direct computation is infeasible, except in cases of small pedigrees and
simple trait models. If the trait model involves more than a single trait locus, so λ is
not a single point, computation of the joint probabilities of Z(λ) given the marker
data X across the chromosome is not possible. Next, even for a single hypothesized
location λ = {j } for the causal DNA, if there are more than three related individuals
observed for the trait, the number of possible IBD states among them is too large
for practical computation of Pr(Zj |X).

However, a Monte Carlo approach is feasible. The conditional probability of Y
given X may be rewritten as

Pr(Y | X; �) = E(Pr(Y | Z(λ); �Y ) | X)
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where the expectation is over the values of Z(λ) givenX. The methods of Sect. 6.3.2
allow a large number, N , of patterns of IBD Z(k) (k = 1, . . . , N) across the
chromosome to be sampled jointly for all relevant locations j in any collection
of models {λ : λ ⊂ �} conditional on the joint marker data on individuals and
across the chromosome. For any specific hypothesis λ, the required probability may
be estimated as

P̂r(Y | X; �) = 1

N

N∑
k=1

Pr(Y | Z(λ)(k); �Y ), Z(λ)(k) ∼ Pr(·|X; �X). (6.13)

Given the realizations of Z(λ), the estimate requires only Pr(Y | Z(λ)) for each
hypothesized λ. If the model for trait phenotypes involves only a single locus λ =
{j }, and writing Zj = Z({j }), the probability Pr(Y | Zj) may be computed by the
methods of Sect. 6.2.4. The IBD graph approach outlined there can be extended to
two-locus trait models (Su and Thompson, 2012).

For a single-locus trait model, Equation (6.13) is analogous to that first proposed
by Lange and Sobel (1991) but is here phrased in terms of IBD rather than latent
genotypes of individuals. Sampling and efficient storage of a collection of IBD
realizations across the genome greatly facilitates analysis. Since Equation (6.12)
separates the marker model �X from the trait data Y and model �Y , the analysis of
the marker data may be performed once only. Computation of likelihoods directly
from the stored IBD graphs allows these IBD graphs realized from marker data to
be used not only for different hypothesized trait locations as in Lange and Sobel
(1991) but also for different trait models and even for different traits observed on
subsets of the same set of individuals.

On a given pedigree component, many different realizations, across many loci,
and of different inheritance vectors, may give rise to the same IBD graph. The
probability Pr(Y | Z

(k)
j ; �Y ) should be computed only once for each equivalent

IBD graph. Given a sample of IBD graphs, each across a chromosome, there are
algorithms to determine when IBD graphs are genetically equivalent (Koepke and
Thompson, 2013). This can greatly increase efficiency of the trait data portion of
the analysis, especially when the same collection of marker-based IBD graphs are
to be used in analyses of multiple trait models or for data on multiple traits.

There are several other issues in the use of Equation (6.12). While the values
of Pr(Y|X; �) = Pr(Y|X; �X,�Y , λ) can be compared for different hypothesized
values of λ, there is no baseline as to what should be expected for given sets of
marker data X. The classical human genetics approach has been to compare the
value of (6.12) with the probability Pr(Y; �Y ) under the same trait segregation
model but in the absence of marker data. Note that this baseline “marker-free” null
model is different from the null model of QTL mapping (Equation (6.11)), which is
widely used in the plant and animal literature (Lander and Botstein, 1987). In that
case the null model is of a zero effect of the DNA at a specific genome location j

(τ 2
j = 0).
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In the days before the existence of genome-wide genetic marker maps, a
comparison of the marker-based Pr(Y|X; �) with Pr(Y; �Y ) had a sound foundation
(Smith, 1953; Morton, 1955). However, this is less meaningful when values of
λ or locations j are spread across the genome, and genetic markers are likewise
distributed genome-wide. Further, the unconditional trait probability Pr(Y; �Y ) may
not be computable for data observed on very large complex pedigrees or for complex
trait models. Second, even when easily computed, there remains the choice of �Y .
Trait models have a number of parameters, for each latent trait locus and genotype.
Maximization over these parameters is often impractical, and the likelihood (6.12)
is often sensitive to model choice. We return to these issues in Sect. 6.4.4 below.

6.4.3 Mapping from IBD in Populations

Just as when the pedigree relationships among individuals are known (Sect. 6.4.1),
population-based IBD mapping relies on excess IBD among individuals of similar
phenotype, relative to some null model or comparison group. As an example, we
consider IBD-based mapping in a case-control study (Browning and Thompson,
2012). To avoid the issues of inferring IBD from marker data, we will assume that
the local IBD between pairs of individuals is known with certainty.

Recall that in a simple association test, the frequency of a SNP allele in N1 cases
is compared with that in N2 controls:

⎛
⎝ 1

2N1

∑
cases

Xi − 1

2N2

∑
controls

Xi

⎞
⎠ (6.14)

where Xi = 0, 1, 2 is number of alleles of specified type in i. By analogy, in an
IBD-based test, we compare the frequency of IBD between M1 case-case pairs and
M2 other pairs (case-(non-case) or (non-case)–(non-case)):

⎛
⎝ 1

M1

∑
case-case

Zi − 1

M2

∑
other

Zi

⎞
⎠ (6.15)

where Zi = 1 or 0 as the pair does/does not share genome by descent at test location.
Just as in an association test, we must allow for population heterogeneity or

structure. In an association test, there may be similarities among cases and/or among
controls that are unrelated to the trait. Likewise in an IBD-based test, there may
be different degrees of relatedness among cases from among controls, due to the
methods of sampling or ascertainment. The average IBD scores within each group
in Equation (6.15) may be adjusted for the genome-wide average within in each
group.

To assess significance, a null distribution is required. Whereas in a known
pedigree, Mendelian segregation provides an appropriate null distribution, in a
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population there is no such framework. However, just as in an association test, per-
mutation of case-control labels provides a null distribution of the test statistic (6.15)
under which there is no association between IBD at the test location and the case-
control status of individuals. Since IBD is on a scale of Mbp, at most 3,000 tests can
cover the genome. This results in a multiple testing burden that is several orders of
magnitude less than that for SNP based GWAS.

To show that population-based IBD mapping can work, we present the details of
part of the study undertaken by Browning and Thompson (2012). A coalescent
simulation including selection and mutation provided a base population with
effective size Ne = 104, over a 200 kbp region of chromosome, representing a
functional gene region. The population was then run forward, and, at some later
time point, IBD relative to the base population was scored in descendant individuals.
In the example summarized here, the effective size of the recent population was
Ne = 105 and the time-depth of IBD was G = 25 generations.

For the purposes of association testing, the best SNP in alternating 1 kb blocks
was retained, for a total of 100 SNPs (Fig. 6.8). The five blocks of the central 10kb
(schematically representing the exons of the gene) also contained causal variants
that arose in the population simulation. Individuals with ≥ 1 causal variant alleles
in the five central 1kb blocks are designated as cases with probability 0.1, providing
sufficient information for a mapping signal, while still modeling a trait of low
penetrance.

Tables 6.6 and 6.7 summarize the relevant results from Browning and Thompson
(2012). The values in Table 6.6 show the range of properties of causal variants with
different amounts of selection over 100 independent simulations. When selection is
weak (s = 0.0005), there are somewhat more causal variants, at frequencies up to
about 0.5%, but haplotypes carrying causal variants are not rare. These haplotypes
have frequency from 4.5% to 13%, and normally there is a high association between
at least one of the causal variants and one of the common SNPs. However, when
selection is stronger (s ≥ 0.002), the frequencies of causal variants are much lower,
and the total frequency of haplotypes carrying causal alleles is of the order of 1%.

Fig. 6.8 The alternating 1 kbp blocks over a 200 kbp region with the five central blocks containing
causal variants. (Figure from Browning and Thompson 2012)

Table 6.6 Properties of the
simulated causal variants at
different levels of selection.
Selection is measured as the
deficiency in fitness of allele
carriers relative to
non-carriers

Selection # var. var.freq. total freq. max assoc R2

of var-hap. w/marker SNP

0.0005 11–16 0.00015–0.0060 0.045–0.13 0.91–1.00

0.001 9–14 0.00010–0.0031 0.019–0.050 0.28–1.00

0.002 8–13 0.00010–0.0020 0.0097–0.031 0.06–0.52

0.005 7–10 0.000088–0.001 0.0045–0.011 0.03–0.16
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Table 6.7 Comparison of
the power of IBD-based and
association tests

Selection # cases= power power association

# controls assoc. IBD vs. IBD

0.0005 500 0.87 0.57 assoc.

0.001 500 0.65 0.53 Not-Sig

0.002 1000 0.53 0.87 IBD

0.005 3000 0.47 0.90 IBD

In this case there is rarely a detectable association between any causal variant and
any of the 100 common marker SNPs.

The results in Table 6.7 follow naturally. Here the size of the study is chosen to
provide intermediate power values for easier comparison. The association test uses
Equation (6.14) at each of the 100 common marker SNPs, and the IBD-based test
uses the statistic (6.15) evaluated at the locations of these common SNPs. When
selection is weak (s = 0.0005), the association test has higher power. However,
when selection is stronger, so that each causal variant has lower frequency, an IBD-
based test performs better than an association test. Allelic heterogeneity is a major
problem for association testing, unless there is at least one variant with sufficiently
high frequency to show association. In contrast, an IBD-based test is less affected
by allelic heterogeneity, since each case-case pair has a higher chance of carrying
the same causal allele, even though this allele may differ among pairs.

6.4.4 Model-Based Mapping Likelihoods in Populations

In Sect. 6.3.2 we saw how IBDZ could be sampled conditional on marker dataX and
a known pedigree structure. In Sect. 6.4.2 we saw how these realizations of Z could
be used to compute a likelihood function (6.13) for use in inferring the locations of
DNA underlying trait phenotypesY. In Sect. 6.3.4, we saw how IBD can be realized
conditional on marker data in the absence of pedigree information. Finally we now
show how these population-based realizations can also be used in genetic mapping.
In fact, once the marker data X have been used to provide realizations of IBD, Z, it is
largely irrelevant whether or not they were made conditionally on a known pedigree
structure.

For the general trait models considered in Sect. 6.4.2, it is usually insufficient
to have only pairwise measures of IBD. Even for a single-locus trait model, with
hypothesized causal DNA at location j , the probability Pr(Y | ZJ ; �Y ) (Equa-
tion (6.13)) will depend on the joint IBD state among the individuals observed for
the trait. While extension of the methods of Sect. 6.2.4 allows efficient computation
of this probability for any specified Zj , the number of possible IBD states at a locus
is huge (Sect. 6.3.4), and effective realization ofZ givenX is a difficult problem. The
MCMC methods developed by Moltke et al. (2011) and by Zheng et al. (2014) are
not scalable.
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Glazner and Thompson (2015) proposed an alternate approach, in which a
joint IBD state among multiple individuals is built up successively from pairwise
inferences. The 15-state HMM is run on pairs of individuals as in Brown et al.
(2012). However, in adding individuals to a joint configuration, the IBD trajectories
across the chromosome are constrained by previously realized IBD. Using this
method in a simulated example, Glazner and Thompson (2015) showed that joint
IBD realized in the absence of an assumed pedigree structure can be used to
recover a likelihood across genome locations j using Equation (6.13). The “gold
standards” are likelihoods that would be obtained if IBD were perfectly imputed
from marker data X: Pr(Y | Zj ; �Y ) at multiple locations j across a chromosome.
For IBD realized using haplotypic marker data the approximation is very good,
but for genotypic marker data, X, it is less so. Additionally, the method becomes
computationally intensive, and performance degrades, as larger sets of related
individuals have observed phenotypes, Y. There are additional problems also in the
use of Equation (6.13) for likelihood-based mapping in the absence of a pedigree.
First, the usual baseline probability Pr(Y; �Y ) is not available; without a pedigree
there is no basis to compute it. Second, no constant baseline works well: the
likelihood (6.13) is affected by the inferred level of IBD across the chromosome,
and for IBD estimated without the constraints of a pedigree structure, this can vary
widely.

Because of unsolved problems in computationally feasible and effective ways to
realize joint IBD in the absence of a pedigree structure, we return to the pairwise
model of Equation (6.10) for our final example of IBD-based mapping in the
absence of an assumed pedigree. In this model, the local kinships �j are now
estimated using the methods of Sect. 6.3.4, and the genome-wide kinship � is
estimated by averaging the local kinships �j across the genome. This approach was
first taken by Day-Williams et al. (2011). They used the estimator of local pairwise
kinship �j outlined in Sect. 6.3.3 and denoted DW. The resulting estimators,
smoothed across the chromosome, may additionally be constrained so that each
�j for each pair of individuals takes the values 0, 1/4, 1/2, or 1 (Table 6.2). By
contrast, the joint realizations of IBD among individuals produced by Glazner and
Thompson (2015) can be immediately reduced to a set of pairwise realizations of the
15 states of Table 6.2 and hence to local kinships �j ; these estimates are denoted
GT. At each j , and for each pair of individuals, the averages across realizations can
also be constrained to the values 0, 1/4, 1/2, and 1.

The two estimation methods GT and DW were compared on a simulated example
using the variance component log-likelihood ratio (6.11) computed at locations j

across the chromosome. Since there was no evidence of a genome-wide genetic
effect, for simplicity it was assumed that σ 2

a = 0. The two sets of local estimates
were each used constrained and unconstrained. Each of the four log-likelihood
curves were compared with the curve that would be obtained if the actual Z and
hence the realized �j were known at each location j . Details may be found in
Glazner and Thompson (2015), but generally the GT estimators performed better
than the DW estimators. Also, whereas for GT there was little difference in the
results between the constrained and unconstrained versions, for DW the constraint
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had negative impact especially in regions of high IBD. As noted in Sect. 6.3.3, the
DW method underestimates IBD particularly in regions of within-individual IBD
and multi-gamete IBD.

If a genetic model requires only local pairwise estimates of IBD, the HMM
method of Brown et al. (2012) provides an alternative method. In this case the 15-
state HMM is simply run separately on all pairs of observed individuals, to provide
estimates of �j across all j . The result of applying this approach to the simulated
example of Glazner and Thompson (2015) is shown in Fig. 6.9, together with the
results from the the DW and GT approaches. It is seen that the HMM method
almost perfectly recovers the actual realized pairwise IBD in this example. Given
the difficulties of estimation of IBD among multiple individuals, the use of models
and methods that require only pairwise estimates provide an attractive alternative.

In Sect. 6.4.2 we showed how, on a defined pedigree, realizations of Z given
genetic marker data X could be used to provide estimates of linkage likelihoods
Pr(Y | X, �) for locations λ = {j } across a chromosome. In this section we have
shown how the same may be accomplished in populations, using a population prior
model for IBD (Sect. 6.2.2). Once realizations of Z, jointly among individuals and
across a chromosome, are obtained conditional on genetic marker data X, there is
no essential difference whether these were made with or without the assumption
of a pedigree structure. The pedigree structure provides a more informative, and
sometimes overly constraining, prior, but modern SNP data at multiple markers can
compensate for the lack of pedigree information.

This raises the attractive possibility of combination of pedigree and population-
based IBD. The pedigrees of any family study exist within a population, and
founders within and between pedigrees may be related. Methods to combine IBD
inferred within pedigrees with that inferred among founder members have been
implemented (Saad et al., 2016), but there are several issues. First founders of
pedigree structures are often unobserved: populations-based inference of IBD is
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Fig. 6.9 Comparison of DW (magenta), GT (blue), and HMM (red-dashed) estimators of the log-
likelihood ratio (6.11) on the example of Glazner and Thompson (2015). The black line shows
the value that would be obtained if the true realized pairwise IBD were known as each point in the
genome
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practical only for individuals with fully observed genotypic data. Second, there
are multiple individuals who may be related outside the defined pedigree struc-
tures. Population-based realizations of IBD jointly among multiple individuals are
intractable.

One case where analysis is tractable is that of a set of parent-offspring trios for
whom there are unphased genotype data. Population-based modeling of the IBD
between the two parents can be combined with the modeling of the two meioses
from parents to offspring. Joint analysis of the six genomes of the trio is important:
pairwise analyses are much less informative and can give conflicting results. With
joint analysis, one may, for example, compare the location-specific IBD probability
between the two genomes of the offspring (i.e., autozygosity) with that expected
given the IBD probabilities between the parental genomes. Hence one may detect
regions of the genome in which autozygosity of surviving offspring is significantly
lower than expected given the inferred segments of IBD in the parents, indicating
possible selection against autozygosity in these regions.

In more general pedigrees, there is an additional complication in combining
population- and pedigree-based IBD estimates. Within a pedigree, the mater-
nal/paternal origins of haplotypes can be realized where there are informative
data. In other cases, for example, for the two haplotypes of founders, there is no
information (even with data) on which haplotype is maternal and which paternal, but
this is irrelevant to within-pedigree IBD. In the population-based context, even if the
IBD inference implies fully correct phasing, it is likewise arbitrary which haplotype
is designated the maternal/paternal one of the individual. Combining population and
pedigree IBD faces the intractable challenge of resolving the multiple pairings of
each individual’s two haploid genomes with the labeling in each population-based
realization of IBD. Thus while IBD provides a natural unifying framework in which
to combine pedigree- and population-based inferences, there remain challenges for
successful implementation of methods.

6.5 Summary

We have shown how IBD Z can be inferred from genetic marker data X and then
used to provide evidence for genome locations at which the DNA variants may
be causal for trait phenotypes Y. Rather than considering directly the association
between X and Y, we consider this association through the lens of descent Z. In
fact, a basic assumption of our models is that X and Y are conditionally independent
given Z. In the three main sections of the text, we have considered: first, probability
models for Z; second, inference of Z fromX; and third, use of this inferred or
realized Z to map DNA underlying Y

In Sect. 6.2 the focus was on the models for IBD or Z. We considered probability
models for Z, both in defined pedigrees and among members of a population. It is
important to consider not only IBD at separate locations but also how it changes
across a chromosome. Because DNA descends generation to generation is large
segments, even remote relatives will (if they share any genome IBD) share segments
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that are of order of millions of base pairs long and will contain many SNP markers.
Also in Sect. 6.2 we considered probabilities of marker data, X, and trait data, Y,
conditionally on Z. The key point here is that, for these probabilities, it is irrelevant
whether or not the pedigree structure is known.

In Sect. 6.3 we turn to the inference of Z given marker data X. We first consider
the case of defined relatives, where the pedigree structure provides a strong, but
sometimes overly constraining, prior. Usually not all members of a pedigrees are
typed, but pedigrees can only be validated among current individuals for whom
marker genotypes are available. In some studies also there may be issues of
genotypic error; for computational reasons, pedigree-based methods assume that
marker data are observed without error. We then turn to the inference of IBD in
population, the purpose of the IBD model being to provide a flexible and tractable
prior for inference. One important aspect of this flexibility is that is allows for
error in the observation of marker genotypes. SNP typing is quite accurate, but
there are very large numbers of SNPs. We consider first genome-wide measures
of IBD. We point out issues with methods that treat all SNPs equally and take
no account of their dependence due either to allelic association (LD) or to their
physical locations. We describe one method of adjusting for LD, but our major
focus again is on the segmental natural of DNA descent. Since individual SNPs are
very uninformative, combining multiple SNPs in detecting IBD segments is of key
importance. Using a model for the dependence of descent across SNP markers has
two important consequences. First, estimates of genome-wide IBD proportions are
greatly improved. Second, and essential for gene mapping purposes, Z is realized at
locations across the genome: the actual locations of segments of IBD are detected.

Finally, in Sect. 6.4 we show how Z inferred from marker data X can be used to
map DNA that is causal to trait data Y against the genetic marker map. Again we
consider first the case of pairs or groups of individuals whose pedigree relationships
are known. This includes approaches such as that of affected relative pairs for binary
traits and variance component models for mapping quantitative trait loci (QTL). We
then extend to more general models for phenotypes Y and show how realizations
of Z conditional on X can be used to obtain Monte Carlo estimates of linkage
likelihoods Pr(Y|X) for a specified trait model and specified hypotheses of the
location(s) of causal DNA. Next we return to populations and consider an IBD-
based analogue of case-control studies, showing that where different rare variants
in a functional gene can cause the trait, the IBD-based approach outperforms a
GWAS test. IBD-based tests can address allelic heterogeneity both in pedigrees
and in populations. Finally, we return to linkage likelihoods, on the basis of IBD
inferred in populations where pedigree relationships are unknown. We consider the
complexities of multi-individual IBD and suggest that often a variance component
model that requires only pairwise IBD may be more useful. However, the more
fundamental message is that it is largely irrelevant to subsequent analysis whether
IBD is inferred under a population model or on a defined pedigree. All pedigrees
exist within a broader population framework; the IBD framework permits the
combination of population and pedigree information.
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7What HaveWe Learned from GWAS?

Benjamin F. Voight

Abstract

The last 15 years have witnessed the development and application of well-
powered genome-wide association studies (GWAS), an approach in which a large
number of genetic markers across the entire genome are tested for association
with complex phenotypes in large, unrelated cohorts. This approach has led
to hundreds of bona fide and reproducible associations between genotype and
phenotype in human populations, with additional studies poised to dramati-
cally increase this number in the near term. In the midst of this discovery
process, a retrospective pause is warranted to consider how the field has
evolved and what practically has been learned over this short time period. The
success of GWAS as an approach to uncover the biological basis for disease
required a number of key innovations and developments, both methodolog-
ically and technologically. Once those hurdles had been overcome, a num-
ber of basic insights have been revealed about complex traits directly from
GWAS, most notably regarding the polygenic architecture of complex disease,
shared genetic susceptibility across ethnicities, and success discovering previ-
ously unknown biology underlying disease progression. The following chapter
describes these and other insights learned along the way, with examples from
trait analyses and empirical observation. I conclude with considerations for
future expected experiments as GWAS leaves the phase of locus discovery
to systematic epiphany over the biological underpinnings of complex traits in
humans.
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7.1 Introduction

The last 15 years has witnessed a paradigm shift in studies of complex phenotypes
in humans. The basic idea—that by surveying a large number of genetic markers
across the entire genome in a large number of individuals, markers linked to genes
that associate with complex traits or disease can be identified—was envisioned
almost a hundred years ago by the scientific giants Hermann Muller, Thomas
Morgan, and Alfred Sturtevant, among others. Despite the transformative features
the approach has had on scientific activity and productivity, the adoption of
genome-wide association studies (GWAS) has not been completely uncontroversial
within scientific and public spheres (Wade 2009; Goldstein 2009; Hirschhorn 2009;
Visscher et al. 2012). While answers to any scientific question often spawn still
deeper levels of inquiry, the debate within the scientific community about the
magnitude of discovery which has been emitted from GWAS certainly should
not be misconstrued by a broader audience to mean that the activity was without
meaning or scientific value. In the midst of this discussion, a retrospective pause
is warranted to consider how the field has evolved and what has been learned.
Such insight will fully advantage the next set of experiments—in addition to and
beyond GWAS—designed to advance the biological and genetic understanding of
these conditions.

Several critical advances and insights have been made in the process of perform-
ing these studies. First, the process of deploying genome-wide studies required a
number of critical insights about how to design such studies, statistical approaches
and uniform tools to analyze the data generated from them, and best practices on
how to integrate analysis across multiple data sets into clear queries of association,
variant by variant. After these technical best practices were worked out in detail,
the application of the experimental process has generated a number of key insights
about the architecture of complex traits, the underlying biology, and the potential
mechanisms of action. A fundamental second message is that the application of
these studies has led unambiguously to the conclusion that common disease can
be studied, understood, and characterized through systematic studies of common
genetic variants. A third message is that these common variants are linked to causal
ones and that they explain a fraction of heritability (though not completely); an
observation that underscores the heavily polygenic nature of these phenotypes. And
finally, as specific examples of genes and mechanisms are elucidated (Musunuru
et al. 2010), there is increasing evidence that networks underlying complex traits
are emerging (Cotsapas et al. 2011), demonstrating that mechanisms of disease
etiology and the pathways contributing to them can be identified from genome-wide
association signals.

In the following, I describe the progression of the genome-wide approach toward
the dissection of complex traits and the insights obtained over the past and present.
My intention in these sections is not to build a protective bulwark defending the
genome-wide association approach as somehow the “best value” for the dollar
spent on the approach. Rather, my goal is to highlight specific findings where the
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genome-wide approach has clearly added value in the analysis of genetic data and
the understanding of complex traits.

Based on the studies that have been initiated, there are a number of clear direc-
tions to continue the process of uncovering the architectural organization, biological
insight, and evolutionary history of the genes and pathways that contribute to these
traits. Given some of the clues suggested by GWAS that have yet to be fully and
systematically enumerated, I conclude with a description of several future research
threads that might be anticipated in the coming years.

7.2 Lessons over Eight Years of Association Studies
(2006–2013)

Looking back to the discussion leading up to the first published genome-wide
associations for traits in 2006/2007 (The Diabetes Genetics Initiative 2007; Well-
come Trust Case Control Consortium 2007), one can be reminded of the uncer-
tainty and subsequent debate waged around the scientific merit and technical
feasibility of these studies. (Interested readers can consult a prescient review
with the rationale and issues of the subject written just before this time by
Hirschhorn and Daly (2005) or a historical perspective from Bodmer and Bonilla
(2008).)

While the design of such studies appeared tractable, concerns surrounding the
details of how such studies would be technically implemented were raised. A first
intellectual hurdle was overcome in 1999, with a prediction based on empirical
observation and simulations that the selection of as many as ∼500,000 well-
chosen markers would be required to survey common variation throughout the
entire human genome (Kruglyak 1999); a number of SNPs were within the costs
of the technologies used to ascertain them. However, the scope of such experiments
raised concerns about the technical capability of genotyping technologies to provide
accurate and unbiased genotypes in that number of markers in thousands of
people. Further still, concerns about the appropriate statistical thresholds by which
significance could be declared, how observations would be replicated and validated,
and if studies that perform statistical analysis accounting for effects known to induce
confounding (Pritchard and Rosenberg 1999) would work in practice. Today, the
application of these analyses and technical quality control of data produced by these
technologies are routine, owing to the careful and systematic groundwork laid down
by researchers that contributed to the first studies published on the subject.

A further point of the discussion focused on the question if the architecture of
common complex traits and diseases could even be dissected by such a design.
Proponents who argued in favor hypothesized that common genetic variants likely
contribute to common disease, motivating the international Hapmap Project (Inter-
national HapMap Consortium 2005, 2007; International HapMap 3 Consortium
2010) that formed the basis of the design of array technologies that facilitate
high-throughput genetics underpinning GWAS. One alternative model to this view
suggested that common disease could indeed be influenced by rare variants rather
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than common ones (Pritchard 2001; Schork et al. 2009; Gibson 2012), thus motivat-
ing technologies designed to characterize this spectrum of alleles carefully from
selected patient populations (Cirulli and Goldstein 2010). Empirical observation
supports the model that interindividual risk to complex traits is influenced by a
spectrum of alleles that are rare and common and weak and highly penetrant and
that the relative magnitude and effect in this spectrum depends on many factors,
including the intrinsic complexity of the trait (Iyengar and Elston 2007) as well the
historical fitness consequences of the phenotype studied (Eyre-Walker 2010; Simons
et al. 2014; Lohmueller 2014).

7.2.1 Study Design, Quality Control, and the Search for Technical
Biases

One of the major contributions of the genome-wide association approach was
the development of rigorous approaches to the control of the quality of samples,
genotypes, and the fundamental praxis of careful evaluation of data for technical
or other biases that can induce excess false-positive associations. It is obvious
to state that the best study is one where every sample and all polymorphisms
are accurately genotyped at high fidelity. However, even in the best-designed
study, high-throughput genomics often trades off some accuracy (ideally with
errors distributed randomly) for enhanced information collection. Before the first
studies were performed, it was difficult to predict all sources of errors but more
importantly which type of error would routinely induce false positives if not
controlled. For example, some of the first genotype-calling methods (e.g., the
dynamic modeling algorithm (Di et al. 2005)) were, for some polymorphic sites,
biased against heterozygous genotype calls (Rabbee and Speed 2005). Miscalling
heterozygotes—either incorrectly or by not calling—at best can result in reduced
power for association or, at worst, could result in false-positive association if cases
and controls were unbalanced in genotype calling (Zeggini and Morris 2011).
Today, the field enjoys a number of highly accurate genotype-calling algorithms
paired with workflows that instantiate a number of quality checks for samples and
genotyping data, for example, checks for the effects of “batches” of samples, gender
misclassification, various tests for missing genotypes, examination of quantile-
quantile plots, etc. Interested readers can consult a number of areas where checks
have been enumerated in detail elsewhere (Neale and Purcell 2008; Weale 2010) and
codified into association testing software to facilitate quality evaluations for these
purposes (Purcell et al. 2007).

After many studies have been performed, one broad lesson that has been
understood now is that errors largely can be traced back to the study design,
the source of sample DNA, how samples are processed through the lab, the
technology used to generate data, and the algorithm used to perform genotyping.
This basic insight has then fed back into the study design and the protocol by
which genotyping is performed. In many cases, this has resulted in a closer working
relationship between the statisticians and epidemiologists who helped plan the
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study, the technicians in the lab generating the data, and the analysts who work
with the output of these labors. A corollary from this principle is that the task
of robustly checking data quality—ensuring that patterns match expectation—is
the first, foremost, and most labor-intensive activity for any genome-wide study,
especially for new data types on cutting-edge technologies. For example, the first
GWAS testing of common copy-number polymorphism data with disease followed
the same trajectory as for single-nucleotide polymorphisms but required additional
checks and filters for quality (Myocardial Infarction Genetics Consortium 2009). As
the field moves forward into new data types and technologies each with their own
biases, the establishment of a procedure of stringent quality control will be essential
to ensure the pace of discovery and the avoidance of false-positive associations (see
retraction from Sebastiani et al. 2011).

7.2.2 Addressing Confounding from Population Stratification

After the technical control and application of high-quality data had been achieved,
an essential biological phenomenon to control in the GWAS design is population
ancestry. It had been known for some time that spurious, false-positive associations
between marker and phenotype could occur when the prevalence of the phenotype
of interest differed across sampled populations and if one does not take this fact into
account when sampling and performing association testing (Knowler et al. 1988;
Campbell et al. 2005). Though well-matched association designs were far more
statistically powerful and cheaper than the previous linkage or family-based studies
(Risch and Merikangas 1996), there was a brief time where it was not entirely
clear how one could achieve ancestry matching in practice. As the need arose,
several statistical developments preceding the GWAS era arose, either to correct the
distribution of generated test statistics (Devlin and Roeder 1999), proposing either
formal tests for cases and controls matching (Pritchard and Rosenberg 1999), using
the genetic data to infer ancestry directly (Pritchard et al. 2000), or summarize the
genetic similarities of samples using principal components analysis and control for
those vectors in association testing (Price et al. 2006). (Readers interested further in
the subject should refer to previous chapters that further detail methods.) Sufficed to
say, the application of these approaches in the context of genome-wide association
studies was highly successful, as overtime, discoveries across a range of phenotypes
continue to be consistently supported by the influx of additional data sets and across
a range of ethnic groups.

7.2.3 Threshold for Declaring Significant Genome-Wide Results

Another point that required resolution was the determination of an appropriate
genome-wide statistical threshold that maintained the appropriate error rates, given
the number of markers tested. If Kruglyak’s estimate of markers was correct
(that ∼500,000 markers would be needed), what would such a threshold actually
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turn out to be, especially given the number of not only markers directly assayed
and tested but also implicit (but partially correlated) tests of additional markers
not assayed but indirectly tested due to linkage disequilibrium? What emerged
was a consensus of observations from multiple lines of inquiry designed to
estimate the threshold empirically from data—permutations, principal components
methods, haplotype-block counting, and more—all of which triangulated on a
threshold around 5 × 10−8. This specific value maintained equal to or slightly
lower than the required error rates given the number and haplotype structure
around common variants tested (Johnson et al. 2010). While discussion about
the appropriateness of this specific choice continues today, the emergence of an
overall threshold allowing specific findings to stand out in the context of the entire
genome (rather than candidate genes) was critical to identify bona fide observations
which could be statistically comparable across studies and across phenotypes,
observations that would stand up to scrutiny and replication efforts. The fact that
now thousands of associations exceed this threshold and have been independently
replicated, across multiple ethnicities (Saxena et al. 2012), validates the central
claim that GWAS can identify common genetic variants that contribute to complex
traits.

7.2.4 Best Practices for In Silico Statistical Imputation

While the direct testing of markers on genotyping arrays was a major advance
to understanding complex disease, two central challenges emerged as multiple
technologies, and data sets emerged to perform the task. First, after the issue of
statistical thresholds had been addressed, direct testing as many of the ∼2.5 million
markers found in population databases (International HapMap Consortium 2005,
2007) would likely be the best shot at detecting association with any SNP. Second, as
new studies increasingly used different genotyping technologies often with different
and only partially overlapping SNP panels, it was clear that a way to summarize
evidence of association across a common SNP panel would be desirable. These two
facts and an emergently clear picture about the landscape of haplotypes in genetic
data motivated the development of statistical methods that use panels of reference
haplotypes from population studies to statistically infer the genotypes of untyped
markers. The intuition for how this process works comes fundamental to the idea
of linkage disequilibrium, in a multi-locus context. If one can predict with high
accuracy (r2 > 0.95, for example) the genotype of one SNP given another, one does
not need to know the precise SNP genotypes at one site to test the other. Now,
consider that information on linkage extends beyond simply pairs of SNPs, but to
multiple SNPs that exist on specific haplotypes. If one can match the haplotype in
question closely to combinations of those that have been previously observed, then
one can probabilistically infer the genotypes at all untyped markers that also reside
on those haplotypes with relatively high accuracy. This process (called imputation)
now has many robust and specific implementations in software (Browning and
Browning 2009; Howie et al. 2009; Li et al. 2010). The principles of how best to
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incorporate genotypes at SNPs that are not completely certain in the association with
phenotype are relatively well understood, at least for common variation (Marchini
and Howie 2010). Both the utilization of imputation to test markers for association
in GWAS and the fact that consistent replication and validation using further direct
genotyping of imputed variants show empirically that imputation as a practice for
common variation does work and helps to improve power to associate variants with
phenotype.

7.2.5 Collecting Evidence Across Studies via Meta-Analysis

Once directly genotyped and imputed SNPs have been collected across multiple
studies for a specific trait, it is natural and statistically desirable to pool evidence
across studies into a single assessment of association. The most direct way
to perform this analysis is direct with genotypes, in a stratified analysis (e.g.,
the Cochran-Mantel-Haenszel procedure). However, this analysis approach is not
directly feasible when informed consent and patient protections for genotype data
do not allow the transmission of clinical data to external actors. In this case, it is
desirable to summarize association statistics study to study, by estimates of the
effect of the SNP alleles to phenotype and the associated error as well as by p-
values, and meta-analyze those data. The meta-analysis of association data in this
way raised a number of details that needed to be worked out to obtain faithful
and unconfounded estimates of association across studies. Some of those issues
were determining the most powerful and appropriate statistical models used for
meta-analysis; controlling for the “forward and reverse-strand ambiguous” nature
of A/T and C/G polymorphisms and ensuring that the same allele for each SNP
is tested for each contributing study; thresholds to filter out SNPs passing into
meta-analysis based on frequency, quality of imputation, and sample sizes; or how
stratification and genomic control ought to be applied to the subsequent data.
While the technical details did take time to work out (de Bakker et al. 2008),
ultimately, these and other issues surrounding the analysis were resolved effectively.
The combination of methodology and workflow to appropriately combine data to
maintain power and discover new loci has had a tremendous impact, not least
of all in terms of the number of discoveries as a meta-analytical consortium
for glycemic, cardiovascular, autoimmune-mediated, and psychiatric disease grow
larger in sample sizes as additional studies are added. The details and issues
surrounding how to amass information across multiple studies in a systematic and
comparable way are a critical step for complex trait studies to collectively analyze
a dozen of studies together, and those details will be all the more important as new
technologies and studies amass ever-increasing detail of genetic variation in patient
populations.
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7.3 Uncovering the Biology and Architecture of Complex
Traits

Today, the human genetics field has identified hundreds of reproducible associations
across a range of genetic and pharmacogenetic traits (Hindorff et al. 2009). While
these data represent only a fraction of the underlying genetic contributions, advance-
ments across numerous traits have led to clear insight into the architecture, as well
as clues about the pathophysiology and mechanisms contributing to complex traits.
One can expect additional observations, features, and partial resolution of some of
these questions to emerge as studies continue to amass and specific observations are
taken into functional and experimental systems for further mechanistic proof and
understanding.

7.3.1 Complex Traits Are Differentially Complicated

One clear message is that complex traits broadly share architectural features in
common, but not all traits are uniformly easy to dissect. One can see such features by
comparing the trends in the sample sizes that have led to discoveries across a handful
of traits (Fig. 7.1). Not plotted here are examples in the pharmacogenetics context,
where a few point mutations explain a large fraction of patients with adverse drug
response (SEARCH Collaborative Group et al. 2008; Ge et al. 2009), but we should
be reminded of these cases for their relatively simple architecture. Overall, these
trends indicate a roughly linear relationship between sample size and discovery at
the current stage of analysis for these traits. This implies that, eventually, many
traits will enjoy a similar degree of success in locus discovery efforts, as a function
of samples contributing. Also, these trends indicate different slopes across traits that
imply that each trait has an intrinsic but variable mapping difficulty. The differences
in difficulty could be explained by many factors (e.g., the underlying genetic model,
effect sizes, frequencies of risk variants, the extent of genetic heterogeneity, etc.),
and further dissection of the architecture of traits is a source of active research.

Also contributing to the trait complexity is the degree to which associations are
shared across phenotypes. For example, great success has been met mapping genetic
association for a range of autoimmune disease (AID, e.g., type-1 diabetes (T1D),
inflammatory bowel disease, rheumatoid arthritis). As associations have poured
in, one leading observation is that SNPs with proven association to one trait are
often (and nonrandomly) associated with multiples AIDs (Cotsapas et al. 2011).
This observation is strongly suggestive of shared pathways and biological networks
across diseases, as well as sets of networks that are disease-specific (e.g., the INS
locus for T1D). Metabolic, cardiovascular, and anthropometric networks also appear
to share genetic associations in common, though not nearly the extent as AID:
commonality is more rarely shared among individual SNPs but is instead localized
to discrete genomic locations. As traits share an overlap in genetic causality, one
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Fig. 7.1 Total number of genetic associations discovered as a function of total sample size
collected for Crohn’s disease (CD), height, type 2 diabetes (T2D), and body mass index (BMI).
Approximated data was taken from published meta-analysis (plus replication) cohort sizes for each
trait. Here, one can note that (a) traits all seem linearly related (increases in sample size linearly
increase the number of loci discovered) but that (b) the rates differ across traits

can expect biological insight for one trait to also translate into the others, thereby
increasing the pace of understanding the underlying etiology.

7.3.2 The (Un)Explained Heritability for Complex Traits

A laudable goal for complex trait studies is to systematically identify all genetic
factors responsible, thus explaining as much of the variability in the trait, at a
population level, as possible. Under some simple assumptions, the total pheno-
typic variability for a trait in a population can be mathematically described as a
linear combination of genetic (additive, dominance, interactive) and environmental
(common as well as random) terms (see Tenesa and Haley 2013 for a detailed
review). The proportion of genetic relative to total phenotypic variance is referred
to as H2, or broad-sense heritability. A typical assumption is that dominance and
interaction term nearly zero, and thus, we consider additive genetic variance relative
to total narrow-sense heritability, or h2. Calculating the amount of narrow-sense
heritability that genetic loci contribute is straightforward: under this additive model,
the variance is given by 2p(1-p)a2, where p is the allele frequency and a the
additive effect of the allele on the trait, typically in units of standard deviation.
Thus, based on a “current” set of discoveries of genetic associations, along with
estimates of heritability from twin or family studies, one can determine how much
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heritability remains to be explained by genetics. One intellectual quandary that
has emerged from complex trait mapping studies is that, taken collectively, the
current set of genetic associations does not entirely explain the entire interindividual
predisposition to these traits.

For example, the current estimates for human height suggest that while trait is
upward of 80% heritable, established genetic associations account for only 5–15%
of that heritability (Lango Allen et al. 2010). Similar reports have been shown
for a range of anthropometric, cardiovascular, glycemic, and autoimmune traits
(Manolio et al. 2009). Thus, where does the remaining genetic explanation to this
“missing” heritability reside? A wide variety of potential culprits could explain this
difference: additional risk could reside within genetic variation which is lower fre-
quency, rare, or structural (i.e., deletions or duplications) that has historically been
difficult to assay, excess polygenicity from hundreds of weakly penetrant common
variants which have yet to reach statistical thresholds for significance, epigenetic
phenomenon, parent of origin effects, or within interactions between genes (Maher
2008; Eichler et al. 2010). Another possibility could be that population calculations
might actually overestimate the total heritability, due to simplifying assumptions
about how the traits are modeled with respect to interactions (Zuk et al. 2012). Given
numerous potential sources to explain the unexplained, it is clear that no single
factor will completely equalize the population and genetic estimates of heritability.

7.3.3 The Data Are Consistentwith a Strong Polygenic Component

One quite clear source of missing heritability can be explained, in part, by the large
polygenic component underlying complex traits. The evidence for this claim has
been delivered by the development of statistical methods that infer the number
of loci that are left to be found, given the power to discover loci which already
have been seen (Park et al. 2010), predictive models which use large numbers
of common variants in a primary stage to predict disease in a second stage
(International Schizophrenia Consortium et al. 2009), or approaches which directly
seek to estimate the heritability contributed by common variants in large genome-
wide studies (Yang et al. 2011a). These approaches have resulted in many studies
that quantify the heritability for a range of complex traits. In the example of human
height, while established associations at 180 loci can explain 10% of the variation
in height, common variation overall could explain as much as 45% of the variance
(Yang et al. 2011b; Lango Allen et al. 2010). The results from the application of
all these methods are the summary conclusion that, for each trait, several thousand
genetic loci are linked with common variation tested in GWAS that remain to be
discovered.
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7.3.4 Complex Traits Share a Genetic Basis in CommonAcross
Populations

One observation from GWAS is that the genetic basis of this disease is indeed
shared across populations descended from different ancestries, though the details
can vary across associated sites. Taking T2D as an example trait, this has been
primarily observed, where sufficient statistical power exists, at genetic associations
identified in one population that also associate (individually or in aggregate) in
other populations (Waters et al. 2010; Saxena et al. 2012). In several cases, the
same physical regions and even the same SNPs have been implicated by association
studies across ethnic groups (e.g., TCF7L2 or KCNQ1), which imply the existence
of a common underlying etiology and mechanism. However, in other cases, different
or additional genetic factors at the locus are also associated given the best available
data (e.g., HMGA2 or CDKN2A/2B), and in some cases, the estimated effect of
genotype to phenotype is heterogeneous across populations (e.g., CDKAL1). These
observations could be compatible with shared biology, but variable mechanisms
underlie disease susceptibilities across populations. Alternatively, the data could
be compatible with simply a lack of statistical power in testing due to small
sample sizes coupled with a lack of a comprehensive variant map across ethnicities
to resolve the true, underlying causal variant(s) associated across groups. While
a comprehensive answer to this question will require extensive fine mapping
and genotyping in large samples across ethnicities, it is overwhelmingly clear
that further genetic investigations along this track are essential to identify novel
biological underpinnings of disease.

7.3.5 The Identification of UnknownMechanisms for Disease
Pathogenesis

The preoccupation with reconciling the question of missing heritability is certainly
important for many applications, but should not detract from the goal of translating
genetic findings into biological knowledge, hypotheses for a mechanism, and
actionable intelligence for treatment. The most promising aspect of GWAS is that
the design has provided a rigorous procedure by which biology and mechanisms
related to disease can be discovered. This can clearly be seen as, for a range of
cardiovascular, anthropometric, and glycemic traits, previously known monogenic
causes of these diseases are preferentially found by common variant association
(Voight et al. 2010; Teslovich et al. 2010). But further still, it is also increas-
ingly clear that previously unknown causes and mechanisms of disease have also
been clearly identified by GWAS. Those examples include, but are not limited
to, the complement pathways for age-related macular degeneration, autophagy,
Th17, and interleukin-23 pathways in Crohn’s disease, multiple sclerosis, and
other autoimmune-mediated diseases, hedgehog and TGF-β signaling, chromatin
remodeling, histones for human stature (Lango Allen et al. 2010), and gene
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regulation by microRNAs MIR-137 for schizophrenia (Williams et al. 2011) as well
as Lin28/let-7 for glucose metabolism and risk to diabetes (Zhu et al. 2011). In
addition to recapitulating known and discovery of unknown biology, these studies
have also recapitulated association at established pharmacological interventions for
disease (statins, thiazolidinediones, sulfonylureas, and several others), despite the
relatively weak effect sizes associated at each locus. Also, genetic studies on adverse
drug response (SEARCH Collaborative Group et al. 2008) or treatment response
(Ge et al. 2009) have identified factors strongly predictive and relevant in clinical
outcomes. Interestingly, genes nearest to established associations may not always
be causal: a recent report for an association for T2D indicated strong evidence for
long-range enhancer activity regulating a gene further away (IRX3/5) than the most
proximal one (FTO). This interaction and subsequently follow-up effort implicated
brown fat and the biology of non-shivering thermogenesis as a result (Smemo et
al. 2014). As further results from GWAS are taken forward into model systems
(Musunuru et al. 2010) or in vitro studies to further elucidate the mechanism, one
can expect the pace of understanding to proceed at a steady pace given the labor and
time these experiments require.

7.3.6 The Importance of Phenotypic Collection in Study Designs

Another clear but obvious message is that phenotypic ascertainment can greatly
impact the genetic study and associations discovered. An initial example of the
importance was first observed in the first published GWAS studies for type 2
diabetes (T2D) (The Diabetes Genetics Initiative 2007). In that study, the design
explicitly matched the body mass index (BMI) of cases with that of controls, with
the goal of identification of variants for T2D not mediated through obesity. As a
result, the study directly controlled for the effect of a strong genetic effect for
obesity, variation near the FTO/IRX3/5 locus. Subsequently, other studies without
phenotypic ascertainment in this way discovered and replicated variation at that site,
both with obesity and T2D (Frayling et al. 2007). As the field progresses toward
next-generation genetic studies, with more sophisticated phenotypic measurements
or extreme sampling (Guey et al. 2011), careful attention to the collection process
(and under what conditions those collections occur or are associated with genotype)
will be increasingly important. In addition, collection of a battery of additional
trait measurements (endophenotypes) will be valuable for diseases where clinical
boundaries are hard to describe or assign with precision (e.g., psychiatric conditions,
Crohn’s disease vs. ulcerative colitis)

7.3.7 Challenges with Interpreting the Distribution of Effects
and Frequencies

The increasing number of polymorphisms associated with complex traits facilitates
the first glimpses of the distribution of effect sizes and the frequency spectrum
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of alleles that underlie them. For many traits with association that are known,
this distribution across a range of phenotypes is, with occasional outliers, trending
toward “U-shaped,” where the effect size increases as risk alleles become infrequent
(e.g., Speliotes et al. (2010), Fig. 1c). However, this distribution is largely biased
due to the power of the study to discover effects, given sample sizes collected. A
more formal way to present this discussion is to formally test hypotheses about
frequencies and effect sizes, building confidence sets of models of both parameters
that fail to be rejected by the observed distribution of association scores in meta-
analysis. As an example, power analysis focused on type 2 diabetes (and the sample
sizes collected to date), assuming a simple additive genetic model, and across
the range of “surveyable” genome, we can easily reject genetic models which
postulate that additional common variants (∼20–80% frequency) with modest effect
or greater (odds ratio of 1.2 or greater) remain to be discovered (Park et al. 2010).

While it might be tempting to model the distribution of effect sizes and allele
frequencies underlying complex disease, it is important to note that, except in a
few rare circumstances, the actual causal alleles are not known with precision.
More than likely, lead associations at common variation are simply strongly linked
with variation that is indeed causal. An alternative hypothesis is that common
variation is actually linked with rare, casual, coding mutations (potentially at
very long distances), and thus the observed association at common sites with
traits is merely “synthetic” (Dickson et al. 2010). While this hypothesis has some
theoretical hurdles to overcome in explaining the majority of common variant
associations (Wray et al. 2011; Anderson et al. 2011), empirical genetic studies are
slowly indicating that low-frequency and rare variation cannot explain all common
variant association signals. Coupled with examples of mechanistic explanations for
complex traits (Musunuru et al. 2010), noncoding variation increasingly appears
implicated in the biology of complex diseases. Systematic answers along all of these
lines will require a comprehensive panel of variation across the frequency spectrum
surveyed in a large number of samples.

7.3.8 Observational Epidemiology and Genetics Need Not Always
Agree

Prior to initiating genetic studies, epidemiological and heritability studies are
first initiated to quantify (and demonstrate) that specific clinical or physiological
phenotypes segregate within families and are amenable to genetic dissection. As
such, numerous epidemiological studies on a range of traits have been performing
and continue to be performed. One feature that emerges from such studies, beyond
the estimates of heritability for traits, is that many of these traits are correlated
with one another. This can be due to not only how the traits are measured but
also the intrinsic biology of the traits. This observation has been exploited with
important practical effect, for example, in using plasma-lipid levels as biomarkers
to predict the incidence of heart attack (Emerging Risk Factors Collaboration 2009).
Other correlations across traits are also well-known: between systolic and diastolic
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blood pressure measures, triglyceride levels with high-density lipoprotein (HDL)
cholesterol, body mass index and waist-to-hip or waist circumference measures,
and many other examples.

Observed epidemiological correlation between traits can be intuitively thought
of as the aggregated effect of all genetic (and environmental) perturbations across
traits. However, even if the aggregated effect results in a significant correlation
between traits, individual genetic factors are not required to contribute to both and
could even have opposing effects. An outstanding example of this phenomenon
comes again from one of the first published well-powered GWAS (The Diabetes
Genetics Initiative 2007). That study observed a coding polymorphism at the
glucokinase regulatory protein, GCKR, initially associated with triglyceride levels
but subsequently with fasting glucose levels (Orho-Melander et al. 2008) and type
2 diabetes susceptibility (Dupuis et al. 2010). However, in contrast to observational
epidemiology predicting a positive correlation among triglycerides, fasting glucose
levels, and susceptibility to T2D, the allele associated with increased triglycerides
was associated with decreased fasting glucose levels and lower risk to T2D at
genome-wide levels of significance. A resolution to this paradox was proposed
after careful mutational and mechanistic study indicating that the effect is due
to a reduction in regulatory effect by fructose-6 phosphate-mediated inhibition of
GCKR, resulting in increased glucokinase activity in the liver (Beer et al. 2009).
This effect is predicted to enhance glycolytic flux, promoting hepatic glucose
metabolism and elevated concentrations of malonyl-CoA, a substrate for de novo
lipogenesis (Beer et al. 2009). While the story around GCKR is an unusual one,
other examples are emerging (Kilpeläinen et al. 2011). It is this spectrum of unique
variation discovered by GWAS, along with the notion that such variation empirically
exists and can be found, that will contribute to the understanding of the mechanisms
underlying disease susceptibility and trait biology.

7.4 What Lies Just Beyond the Horizon for GWAS?

In the immediate term, there are several genetic experiments that follow from what
has already been learned from GWAS and should be anticipated in the coming
years. The central theme that underlies each of them is the strategy to collect (and
genetically test) large genetic data sets within previously uncharacterized human
populations, join them together with other genetic data sets across populations
and phenotypes, and finally integrate them with new, high-throughput genomics
technologies. Systematic application of each of these threads is aimed to (1) help
identify the polygenic contribution of diseases by systematic genetic study, (2)
pinpoint causal genetic variation and hypotheses of the mechanism by fine mapping
established loci for disease, and (3) generate hypotheses for networks and pathways
by integrating with functional data sets.
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7.4.1 CustomGenotypingArrays Technologies for Genetic Studies

The central findings from GWAS, where hundreds of associations to multiple (and
related) traits have been identified, are two central questions, among several others.
First, can further genetic investigation identify additional associated regions with
these traits? And second, can detailed genetic investigation localize causal variants
where an established hit has been identified? Addressing these two questions, how-
ever, requires assaying hundreds of thousands of genetic variants from thousands of
individuals, which is an expensive, labor-intensive, and time-consuming process. To
make this process cost-efficient and streamlined in terms of producing an analysis,
2010 saw an effort to develop custom-array genotyping technologies, which are
built directly from the information from leading association studies efforts and have
been initiated. These include, among potentially others in development, the IBC-
chip, the Metabochip for cardiovascular, metabolic, and anthropometric traits, and
the ImmunoChip for AIDS (Keating et al. 2008; Cortes and Brown 2011; Voight et
al. 2012). In addition, a custom array developed to comprehensively genotype low-
frequency and rare variation based on discoveries from exome-sequencing projects
for the coding genome, the Exomechip, has also been developed. These technologies
offer data in a well-powered, second stage, to facilitate replication and fine-mapping
genetic studies, as well as machine-learning or pathway/module-based methods to
identify networks related to disease and to characterize their architecture. The first
set of studies using these technologies are starting now to be published (Trynka
et al. 2011, Morris et al. 2012; CARDIoGRAM Consortium 2013; Global Lipids
Genetics Consortium 2013), and one should expect a surge of new locus discoveries
and statistical methods that utilize this approach to data collection and technology.

7.4.2 Analysis of Multiple PhenotypicMeasurements
and Outcomes

The past 5 years of study has focused a large fraction of effort toward the analysis
of individual phenotypes one at a time. An observation emerging from such studies
is that multiple traits overlap in association, either at SNPs or at discrete physical
locations of the genome. This is perhaps the most notable for autoimmune disease
(Cotsapas et al. 2011), though several instances for metabolic (as previously dis-
cussed) and psychiatric diseases have also been observed. This set of observations
clearly justify more expansive genetic studies which analyze multiple phenotypes
simultaneously either using summary data or jointly in multivariate regression
models. These approaches can be expected to uncover genetic loci with compelling
associations that have not yet been captured by existing studies due to a lack of
power.

One hypothesis along this line of inquiry posits that regions with associations
to multiple traits are uniquely positioned to help identify causal genes, tissues,
and mechanisms of action contributing to them. This hypothesis relies on the
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assumption that pathway modules and mechanisms that contribute genetic risk
to multiple traits are the same across traits (or at least, for related traits). It
is still a theoretical possibility that, locus-to-locus, different associations point
to different (but proximally located) genes in an interval. Multiple SNPs could
still potentially involve a single gene actor, but implicate different mechanisms
important for different traits. For example, the ~1 Mb region upstream of the
well-known proto-oncogene, c-MYC, has multiple associations to different cancers
across tissues (Ghoussaini et al. 2008), with a leading hypothesis that this is due to
cis-expression modules for various regulatory elements which are tissue-specific. A
primary analysis will be to evaluate the pathways around regions where genome-
wide significance for one trait has been established and multiple associations with
additional related traits also reside.

An additional line of inquiry will involve comparisons across trait groups
where prior evidence of biological overlap across traits will certainly be of
interest—for example, autoimmune associations with metabolic and psychiatric
disease or cancer with metabolic and cardiovascular traits. There are at least
some examples in data where potentially coincident associations have been found
(e.g., the regions around BCL11A and the CDKAL1 with Crohn’s disease and
T2D; the MHC region with multiple autoimmune disease and psychiatric dis-
ease). While the exact gene candidates and mechanisms remain to be eluci-
dated, exploratory analysis at this stage can begin to rule out (or hone in on)
regions of the genome that could contribute risk, collectively. By combining
data from multiple genetic scans for psychiatric disease (schizophrenia, bipolar
disorder, attention deficit disorder, autism), new genetic loci directly contributing
to the shared burden of disease have been reported (Williams et al. 2011), with
additional support for a shared, common genetic comorbidity among several
pairs of traits (Cross-Disorder Group of the Psychiatric Genomics Consortium
2013).

7.4.3 Genetic Fine Mapping for Complex Trait Loci

One activity that can be expected uniformly across complex traits will be to
apply fine-mapping procedures to characterize the allele spectrum, identify new
variants, and generate hypotheses of causal variants and genes at established loci.
Early and highly illustrative examples of the strategy have already been performed
(Graham et al. 2007), and the first large-scale fine-mapping studies amassing data
across multiple ethnicities are starting to be reported (DIAGRAM Consortium
2014). The strategy begins by first sequencing a large panel of individuals at
association regions to discover all polymorphic sites that could be related to
disease, and second genotype all variants in a large number of samples and
perform systematic conditional analyses to identify signals which explain the lead
association signal, as well as additional associations independent of the leading
signal. This specific design has been prohibitive until very recently, because of
two key developments: first, availability of custom array genotyping technologies to
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perform the genotyping in a cost-efficient way and, second, approaches which allow
the systematic conditional analysis on specific genetic variants using summary data,
without the need to share individualized genotypes, prohibited due to patient privacy
protections (Yang et al. 2012). Systematic application of these studies to hundreds of
genetic loci identified by GWAS promises to discover additional independent alleles
contributing to disease (explaining additional missing heritability) and a graded
structure of high- to low-risk haplotypes contributing to risk. These haplotypes will
then allow specific candidates for causality to emerge, which can then be tested in
functional or experimental systems.

7.4.4 Genetic Studies of Complex Traits across Ethnicities

Despite the higher prevalence and resulting disproportionate public health burden,
genetic studies of complex disease in non-European populations have not taken
off nearly at the rate of their European counterparts (Bustamante et al. 2011).
Fortunately, and recently, this trend appears to be shifting, for important scien-
tific reasons. Well-powered GWAS for a range of disease traits across a range
of ethnic groups (e.g., Asian, Indian, African-American, Latino) have recently
been published (Saxena et al. 2012; SIGMA Type 2 Diabetes Consortium 2013;
DIAGRAM Consortium 2014) with many more underway. Many of these studies
are also actively working to pool data together and perform meta-analysis and
fine-mapping efforts (DIAGRAM Consortium 2014), forming collaborations with
existing groups who have focused on studies primarily in European popula-
tions.

These efforts are very important, as studies across populations worldwide can
identify new genetic risk factors that are more common or operate at stronger
effects across populations (Rosenberg et al. 2010; Pulit et al. 2010), and can
help improve the quantification of genetic risk prediction across ethnicities. A
potentially useful application of data across ethnicities is to exploit different patterns
of LD across groups to aid in fine-mapping efforts that seek to identify causal
alleles for disease. While this approach does have challenges, the combination
of the well-powered primary stages, custom-array genotyping technologies, and
a catalog of genetic variation down to low frequencies identified by the 1000
Genomes Project (1000 Genomes Project Consortium 2012) will test this hypothesis
very directly in the immediate future. Furthermore, at genomic sites where an
association has been established beyond a reasonable doubt, it is not unreasonable
to imagine that additional variants statistically independent of the established
association might exist and may segregate differently across ethnic groups, par-
ticularly if they are low-frequency or private to specific ethnicities. Thus, these
data may help not only to triangulate on the gene causal for disease but also
to help uncover the genetic mechanisms underlying disease predisposition across
populations.
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7.4.5 Integration of System-Based and “Omics” Approaches
with Genetics

Given the number of established associations of human traits that have been
discovered, along with the many polygenic contributions from numerous locations
in the genome which have not yet met genome-wide significance, a key line of
research is to utilize this collection of genetic data to uncover biological modules,
pathways, and processes which contribute to disease susceptibility. Computational
methods utilizing databases of text, gene expression, or protein-protein interaction
networks have been applied to some success in evaluating the hypothesis that genes
localizing nearby GWAS associations are more likely connected than expected
by chance (Zhu et al. 2008; Raychaudhuri et al. 2009; Rossin et al. 2011). The
results of applying these methods certainly suggest biological modules underlying
disease, but do not always return a clear picture of the nature of those pathways
(and causal candidates for them). Statistical methods such as gene-set enrichment
analysis offer a complementary approach to tests on prespecified networks for
the enrichment of statistical association (Segrè et al. 2010). This strategy offers a
principled approach to hypothesis testing but assumes that the biological networks
are known and can be specified ahead of time. Further research which incorporates
functional genomics data (expression from RNA sequencing, transcription factor
binding, histone occupancy, hypersensitivity assays) to further identify genes of
action, molecular mechanism, tissues of importance, and pathophysiology will be
increasingly available as large-scale experiments are underway (e.g., the genotype-
tissue expression project http://www.genome.gov/gtex/), the ENCODE project,
etc.). Given emerging evidence that suggests variants identified by GWAS are
enriched for expression quantitative trait loci (Nicolae et al. 2010), integrating
this information is almost certain to be of value. Recent success stories for fetal
hemoglobin levels (Bauer et al. 2013) and type 2 diabetes (Pasquali et al. 2014)
offer some promising early examples, whereby human genetic association data was
identified within annotated elements from high-throughput assays (in both cases,
enhancer elements), which were followed up and supported by additional functional
studies.

7.4.6 Uniting Findings from GWASwith Sequencing Studies

While GWAS studies have and will continue, they will gradually be met with high-
powered and detailed high-throughput sequencing efforts for disease traits. The
primary aim of these studies is to comprehensively catalog variation at low and
rare allele frequencies and to test that spectrum of variation for its relationship to
disease. We should expect high power to discover variation implicated in diseases
but dramatically low power to demonstrate compelling association with complex
traits beyond a reasonable doubt (Guey et al. 2011). As a result, it will take some
time before sequencing studies come into their own. However, the discovery of

http://www.genome.gov/gtex/
http://www.genome.gov/gtex/
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some rare or low-frequency variation identified by sequencing could certainly be
integrated with findings from GWAS of complex traits in several ways; probably the
most obvious is directed (rather than genome-wide) hypothesis testing for specific
genes that segregate common variation implicated in the traits. Thus, methods,
which expand the inference process to include both common and rare genetic
variation from human studies, along with functional or other genomics information,
should certainly be anticipated in the coming years.

7.5 Closing Thoughts

The field of human genetics is now engaged in systematically validating theoretical
models worked out 100 years ago by R.A. Fisher, A.H. Sturtevant, T.H. Morgan,
and many others, whose work formulated an expectation for the architecture of
complex traits. In large part, the exciting time we live is due to the successful
application of genome-wide studies that has characterized genetic variation in large
numbers of individuals and tested for association in relatively unbiased (with respect
to underlying biology) ways. Beyond the scientific merits of the approach, the
systematic application of this central idea across a range of traits and diseases
continues to revolutionize not only the business of how such science can be
accomplished efficiently (in terms of technology and partnerships with industry)
but also the social dynamics of how science is accomplished (e.g., the increasing
emphasis on large, collaborative scientific activities and the public dissemination of
results from large-scale studies).

In the process of embarking on genome-wide studies of common variation,
development by the community of clear standards, pipelines, and rigor for how to
relate genetic variation to complex traits has clear implications for the next wave of
study designs and technologies. It is the case that next-generation sequencing studies
have a number of very specific technical challenges that did not challenge genome-
wide studies of common variants. As a result, these studies have an extra layer of
complexity and challenge associated with them. However, we enter the development
of new pipelines and best practices; we can take comfort in the knowledge that
there are genetic discoveries to be made. The lessons learned along with best
practices learned from GWAS give a basal understanding of what to watch out for,
an expectation for the distribution of alleles (and regions of the genome implicated
in disease), and open questions which the next wave of experimental practices are
extraordinarily well-suited to answer.

At this stage, it is possible now to envision a world in the near future where a
large number of practically actionable insights have been made across a range of
traits, leading to new and improved interventions, risk prediction, and modalities
for prevention. However, it is equally clear that much scientific ground remains to
be traversed before that vision can be fully realized. There is the unique opportunity
to translate established genetic findings into credible insight into the structure and
mechanism underlying human traits and pathophysiology of disease. If successfully
applied, these insights have the potential to radically and positively impact human
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health. If the next 10 years of biological discoveries met with only a fraction of the
success as has been achieved from genetic discovery, a tremendous benefit on the
health of human society is very likely to be achieved.
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8Inferring Human Demographic History
fromGenetic Data

Jeffrey D. Wall

Abstract

Genetics and archeology are two fields that provide complementary sources
of information on our history as a species. We review what has been learned
about human population history from recent genetic studies, including studies of
geographic structure, population bottlenecks, and recent population growth. We
also describe recent studies that highlight the importance of admixture in human
history, from the mixing of different continental populations in the Americas over
the past several centuries to ancient admixture between humans and Neanderthals
tens of thousands of years ago.

8.1 Introduction

Making inferences about human demographic history has been one of the primary
goals of human evolutionary studies for decades. Here demography refers to
the history of population relationships, migrations, admixture, and changes in
population size if we trace our ancestors back in time over the past 1–2 million
years. Archeology and physical anthropology have contributed tremendously to our
understanding of past demographic events (e.g., Jones et al. 1994), and the basic
outlines of our history are well established. The genus Homo first arose in Africa
roughly 2–2.5 million years ago, representing ancestors that were bipedal, used
tools, and had brain sizes substantially larger than those of chimpanzees. Some of
these early hominins then migrated to parts of tropical and temperate Eurasia 1.5–
2.0 million years ago, followed by a later migration into southern Europe. More
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recently, anatomically modern humans first appear in the fossil record 150–200
thousand years ago (Kya) in Eastern and Southern Africa. Modern humans then
spread across the rest of the inhabitable world, mostly replacing (but with low
levels of hybridization and admixture) the indigenous hominin groups that they
encountered. Within this broad outline though, there are many specific details that
have yet to be worked out.

In this review, we will focus on what we have learned from genetic data over
the past 50 years. Roughly speaking, genetic similarity can be used as a proxy for
relatedness—the more similar two sequences are, the more likely they are to share
a recent common ancestor. By examining DNA sequences from many individuals
at once and by developing computational and statistical models for what these
sequences should look like under different scenarios, we can begin to piece together
aspects of our species’ history in ways that other approaches cannot. This review
highlights some of the insights that have come from the study of human genetic
data. It is not meant to be comprehensive, but rather a personal opinion on the most
important discoveries over the past several decades.

8.2 Human Population Structure

The first large-scale studies of human genetic variation involved classical markers
such as blood groups and allozyme polymorphisms (e.g., Brues 1954; Edwards
and Cavalli-Sforza 1964). These studies showed that the vast majority of genetic
variation (~85–95%) is shared among different populations, while a much smaller
fraction differentiates populations (reviewed in Cavalli-Sforza et al. 1994). Subse-
quent studies of microsatellite, genotype, and resequencing data (e.g., Rosenberg
et al. 2002; International HapMap Consortium 2005, 2007, 2010; Wall et al.
2008; 1000 Genomes Project Consortium 2010, 2012, 2015; GenomeAsia 100K
Consortium 2019) have found similar levels of population structure between human
populations (as measured by FST). These results have been interpreted as human
populations being much more (genetically) similar to each other than different from
each other, and we now know that the level of population structure in humans is
similar to what is found in many other species. At the time these results formed an
important counterweight to the “candelabra model” of Coon (1962), which posited
that different continental groups had been mostly isolated for hundreds of thousands
of years and which was used to justify segregationist policies in the United States
(Jackson 2001).

Despite the overall similarity of different human groups at specific genetic
markers, the small differences at many markers in aggregate can be used to
accurately distinguish between different human populations (e.g., Pritchard et al.
2000; Patterson et al. 2006). For example, Rosenberg et al. (2002) showed that
377 microsatellite markers were sufficient to distinguish individuals from the major
continental groups, such as sub-Saharan Africans, Europeans, Asians, Melanesians,
and Native Americans. In addition, for recently admixed individuals, these methods
can estimate the proportion of ancestry that comes from multiple ancestral groups
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(Pritchard et al. 2000; Falush et al. 2003). When more markers are available, such as
from standard SNP genotyping chips or whole-genome sequence data, individuals
from closely related populations (e.g., French vs. Spanish, Chinese vs. Japanese)
can be distinguished from one another (e.g., Patterson et al. 2006; Jakobsson et al.
2008; Novembre et al. 2008; Tishkoff et al. 2009; Lu and Xu 2013; GenomeAsia
100K Consortium 2019).

The methods and studies described above made no a priori assumptions about
the makeup of different human populations. For recently admixed individuals (e.g.,
African–Americans), more powerful methods can identify the precise portions of
their genome that were inherited from different ancestral populations, provided
that individuals from each of the ancestral populations have been genotyped (e.g.,
Sankararaman et al. 2008; Price et al. 2009; Bryc et al. 2010; Wall et al. 2011; Baran
et al. 2012). These studies have confirmed the heterogenous nature of Latinos and
African–Americans—for example, the estimated proportion of European ancestry in
a sample of 181 Mexican controls varied from ~0% to ~100% (Fig. 8.1, Choudhry
et al. 2006). In addition, detailed admixture studies have uncovered surprising
examples of admixture over the past several thousand years, including low (<5%)
levels of West African ancestry in Southern Europeans (Moorjani et al. 2011),

Fig. 8.1 Simplified schematic describing the qualitative differences between historical models
of modern human origins. Hominins first evolve in Africa and later colonize temperate Eurasia
roughly 1.5 – 2 million years ago. Much later, modern humans evolved in Africa 150–200 thousand
years ago and then spread to the rest of the world starting 50–80 thousand years ago. Models
differ in the amount of genetic contribution extinct hominins in Eurasia made to the contemporary
gene pool. The recent African origin and replacement model predicts that this contribution was
negligible, and the recent African origin and hybridization model predicts a small contribution,
while the multiregional model predicts that the archaic human contribution was large
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substantial Khoesan ancestry in South African Bantu speakers (Henn et al. 2011),
and substantial non-African ancestry in the East African Maasai (Wall et al. 2013).

8.3 Effective Population Size

The current human population size is in excess of seven billion and is thought
to have been in the millions for all of recorded history (Tellier 2009). However,
genetic sequencing studies have found that extant humans are quite similar to each
other, with the average sequence divergence between two individuals around 0.1%
(Li and Sadler 1991; Wall et al. 2008; 1000 Genomes Project Consortium 2010,
2012, 2015). This corresponds to an effective population size (i.e., time-averaged
number of breeding adults) of around 20,000–25,000, which is vastly less than our
estimates of the recent census size. While there are reasons why the census size
might be more than the effective population size (e.g., nonrandom mating, variance
in reproductive success across individuals, unequal sex ratio, natural selection,
etc., cf. Caballero 1994), the magnitude of the difference is still surprising. In
contrast, great ape species with geographically restricted ranges generally have
effective population sizes larger than humans (Fischer et al. 2006; Prado-Martinez
et al. 2013). This suggests that despite being able to colonize virtually the whole
world, our species must have had a much smaller population size (and likely a
more restricted geographic range) for much of its evolutionary history. Researchers
have generally considered models of recent exponential population growth from a
small initial population to explain the discrepancy between census and effective
population size (e.g., Slatkin and Hudson 1991; Marjoram and Donnelly 1994;
Gutenkunst et al. 2009; Gravel et al. 2011).

The initial analyses of genetic variation in human mitochondrial DNA (mtDNA)
estimated a relatively recent time to the most recent common ancestor (TMRCA)
and observed an excess of rare variants over equilibrium expectations (Cann et al.
1987; Vigilant et al. 1991). These data were then used to estimate a time of onset
of recent explosive population growth of 60–120 thousand years ago (Kya; Rogers
and Harpending 1992). However, mtDNA does not experience recombination so
operates as a single genetic locus. As such, the observed patterns of genetic variation
are sensitive to the effects of natural selection, and inferences of demographic
parameters from mtDNA data are inherently untrustworthy. When comparable
sequence polymorphism data was obtained from multiple nuclear regions, the
skew toward rare variants was much smaller, suggesting that substantial mid-
Pleistocene population growth was unlikely (Wall and Przeworski 2000; Voight
et al. 2005; Gutenkunst et al. 2009). Current estimates based on resequencing
data from thousands of individuals suggest that population growth started in the
late Pleistocene (20–25 Kya) and that the growth rate has accelerated (i.e., super-
exponential growth) in the past 5 thousand years (e.g., Coventry et al. 2010; Nelson
et al. 2012; Tennessen et al. 2012; Gazave et al. 2014; Chen et al. 2015; Gao
and Keinan 2016). This is consistent with the spread of agriculture (and a more
steady food supply) being the primary innovation that enabled our recent explosive
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population growth. We note in passing though that there are several potential
confounding factors that have not yet been adequately accounted for in studies
of recent population growth, including the effects of purifying and background
selection on the site frequency spectrum and the effects of aggregating different
populations into larger groups such as “Europeans” or “African-Americans.”

8.4 Population Bottlenecks

The early analyses of human mtDNA variation assumed a founder model, whereby
the TMRCA corresponded to the “founding” of a population by a few genetically
similar individuals (e.g., Cann et al. 1987). This in part led to the idea that our
species had undergone a drastic population bottleneck (i.e., a temporary reduction
in effective population size) during the mid- to late-Pleistocene (e.g., Cann et al.
1987; Gibbons 1993). Population genetics theory, though, suggests that the specific
TMRCA has very little correlation with the effective population size at that time.
In particular, the recent TMRCA of mtDNA might be due to random chance or
the action of natural selection. Since demographic events such as bottlenecks are
expected to affect genetic variation across the whole genome, it is straightforward
to analyze nuclear sequence polymorphism data to assess the strength of evidence
for a species-wide bottleneck. Analyses of the HLA region, which has extremely
high levels of diversity due to diversifying selection, show that the human effective
population size has not dropped much below 10,000 for all of our species’
history (Takahata 1993; Ayala 1995), and analyses of unlinked, putatively neutral,
autosomal regions came to similar conclusions (Sjödin et al. 2012).

In contrast, there is strong evidence that at least some human populations have
experienced a recent population bottleneck. Simulations suggest that population
bottlenecks lead to a reduction in levels of nucleotide and haplotype diversity, an
increase in levels of linkage disequilibrium (LD), and a skew in the distribution
of allele frequencies (Fay and Wu 1999; Reich et al. 2001; Wall et al. 2002).
Studies of microsatellite (Tishkoff et al. 1996; Rosenberg et al. 2002), single-
nucleotide polymorphism (SNP, e.g., Conrad et al. 2006; Jakobsson et al. 2008),
and sequence (Frisse et al. 2001; Livingston et al. 2004; Voight et al. 2005; 1000
Genomes Project 2010, 2012, 2015; Mallick et al. 2016) data consistently show
that all non-African populations have less variation and more LD than all sub-
Saharan African populations. The simplest explanation for this pattern is that all
non-African populations have experienced at least one population bottleneck in their
recent history. This is consistent with the recent African origin and replacement
model of human evolution (Stringer and Andrews 1988), which posits that modern
humans first evolved in sub-Saharan Africa 150–200 Kya and that modern humans
later expanded and replaced (without admixture) the indigenous “archaic” humans
they encountered in the rest of the world. It is also consistent with the recent African
origin and hybridization model (Brauer 1989), which is identical to the previous
model but allows for a limited amount of hybridization between modern and archaic
humans, but not consistent with some models of modern human evolution such as
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the multiregional model (Wolpoff et al. 1984), which claims that modern humans
evolved from archaic humans simultaneously in Africa, Europe, and Asia (see Fig.
8.1 for a schematic of these models). Under the multiregional model, there would
not be strong systematic differences in levels of LD across continents, and we would
expect greater degrees of population differentiation (as measured by FST) between
different human continental groups.

One potential model for explaining global patterns of human genetic variation
is the serial bottleneck model (Ramachandran et al. 2005; DeGiorgio et al. 2009),
which posits that non-African populations experienced a series of founder bottle-
necks as they left Africa and spread across the rest of the world. Under this model,
populations that are further away from the putative origin of modern humans (in
Eastern or Southern Africa) have experienced more bottlenecks and are expected to
have decreasing levels of variation and increasing levels of LD. Genomic data are
mostly consistent with these expectations (DeGiorgio et al. 2009; 1000 Genomes
Project Consortium 2010, 2012, 2015; Luca et al. 2011; Mallick et al. 2016), but
a denser sampling of the world’s populations is needed to more fully test this
theory. If the serial bottleneck model were mostly correct, it might help explain
why inferences of population history based on mtDNA are qualitatively similar to
ones based on autosomal data (see also Sect. 8.6).

8.5 Sex Ratio

Human effective population sizes vary not only across time but also between
males and females. In principle, this gender-specific difference can be estimated
by looking at patterns of genetic diversity on the X chromosome relative to the
autosomes. In a randomly mating population with equal numbers of males and
females, there are 3 X chromosomes for every four autosomes, and we expect to
observe a 3:4 ratio in levels of diversity in X vs. autosome comparisons. However,
if the numbers of breeding females and breeding males are unequal, there will be
a resulting skew in this 3:4 ratio (Caballero 1994). For example, in polygynous
societies, there is greater variation in male reproductive success, since many males
have no wives, while some have many. This in turn reduces the male effective
population size and leads to an increased ratio of X to autosome diversity.

However, there are many other factors that can affect relative levels of diversity
on sex chromosomes versus autosomes. Past changes in population size (e.g., popu-
lation bottlenecks) can lead to temporary variation in the ratio of sex chromosome to
autosome diversity levels (Fay and Wu 1999), while recent positive selection, which
decreases levels of genetic variation due to hitchhiking effects, is expected to be
more effective on the X chromosome than the autosomes. (This is because recessive
advantageous mutations cannot easily spread on the autosomes but can on the X
chromosome since their advantageous effect is unmasked in males.) Analyses of
human polymorphism data show the effects of both of these evolutionary processes
(Hammer et al. 2008, 2010; Keinan et al. 2009; Arbiza et al. 2014). Overall, the ratio
of X to autosome diversity increases with increasing distance from genes, consistent
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with greater hitchhiking effects on the X chromosome. This result is also apparent
from linkage-disequilibrium-based estimates of X and autosome population sizes
(Lohmueller et al. 2010). In addition, systematic differences between continental
groups are likely the result of shared demographic processes such as a population
bottleneck associated with the exodus of modern humans out of Africa (Arbiza et
al. 2014). In summary, while it is tempting to speculate on the relative prevalence
of polygyny vs. polyandry across human history, it is extremely difficult to separate
out the effects of other population processes that differentially affect autosomal and
sex-linked levels of diversity.

8.6 Estimating Demographic Parameters

Recently, researchers have started to develop computational and statistical methods
for jointly estimating multiple demographic parameters (e.g., split times and
migration rates) from DNA sequence data. Generally, these methods must navigate
a tradeoff between statistical rigor and biological realism, since the statistically
“optimal” approach of full maximum likelihood on autosomal sequence data from
multiple individuals is computationally infeasible for the foreseeable future. Below,
some of the basic approaches researchers have used are outlined, as well as some
recent applications to human data.

The major computational burden of inference methods comes from the modeling
of intragenic recombination. One way of reducing the computational burden is
to assume a model with no recombination (e.g., Nielsen and Wakeley 2001;
Drummond and Rambaut 2007; Gronau et al. 2011) and to apply this model
to mtDNA data, data from short autosomal regions without visible evidence of
recombination, or single diploid genome sequences. While the no-recombination
assumption reduces the usefulness of these methods, this is partially counteracted by
the ability to employ full-likelihood techniques (generally using Bayesian Markov
chain Monte Carlo algorithms) to efficiently utilize the information contained in
the data. For example, Gignoux and colleagues used a large mtDNA sequence data
set to infer the rates of recent population growth in different human populations
(Gignoux et al. 2011). Their results suggest that most of the population growth
happened within the past 8000 years, consistent with recent analyses of autosomal
sequence data (described above in Sect. 8.3).

Researchers have also tried the opposite tactic of assuming free recombination
between all sites (Nielsen 2000; Marth et al. 2004; Garrigan 2009; Gutenkunst et
al. 2009; Nielsen et al. 2009; Kamm et al. 2017, 2019). Under this assumption,
sequence data can be summarized by the site frequency spectrum (SFS, the distri-
bution of the number of SNPs with different allele frequencies), and the expected
relative values for the SFS can be calculated computationally or analytically for
complex demographic models (e.g., Garrigan 2009; Gutenkunst et al. 2009; Bhaskar
et al. 2015; Kamm et al. 2017, 2019). These methods have the benefit of being able
to handle genome-wide polymorphism data in a computationally efficient manner
but at the cost of making a biologically unrealistic assumption and ignoring an
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Table 8.1 Comparison of demographic estimates (with confidence intervals in parentheses) from
Gutenkunst et al. (2009), Gravel et al. (2011), Malaspinas et al. (2016), and Steinrücken et al.
(2019)

Parameter Gutenkunst Gravel Malaspinas Steinrücken

TEU-AS 21.2 (17.2–26.5) 23 (21–27) 42 (29–55) 54 (52–55)
TEU-AF 140 (40–270) 51 (45–69) 127 (83–171) NA
mEU-AS 9.6 (2.3–17.4) 3.1 (1.8–3.9) 2.2–3.6 (1.4–6.5) NA
TPAP-AS NA NA 58 (51–72) 113 (110–115)

Here TEU-AS refers to the split time between European and East Asian populations, TEU-AF refers
to the split time between European and West African populations, mEU-AS refers to the migration
rate (×10−5) between European and East Asian populations, and TPAP-AS refers to the split time
between Papuan and East Asian populations. NA refers to parameters that were not calculated.
Note that Steinrücken have a different parameterization for gene flow between European and East
Asian populations which is not directly comparable to the migration rates of the other studies

important component of the data (LD). Application of these methods to human
data have generally focused on the demographic history of continental European,
East Asian, and West African populations (e.g., Gutenkunst et al. 2009; Gravel et
al. 2011; Malaspinas et al. 2016) and occasionally between European, East Asian,
and Melanesian populations (Malaspinas et al. 2016; Steinrücken et al. 2019). The
parameter estimates obtained by these methods can vary substantially (Table 8.1),
but are not directly comparable to each other due to varying demographic and model
assumptions. It is also unclear whether dates from ancient DNA studies (e.g., Fu et
al. 2013) are consistent with some of the more recent estimates.

Other approaches, which can make more realistic assumptions about intragenic
recombination, replace the data with one or more summary statistics in order to
achieve computational tractability. These methods then use approximate Bayesian
computation (e.g., Patin et al. 2009) or composite likelihood (Voight et al. 2005;
Wall et al. 2009) methodology to estimate demographic parameters. Approxi-
mate likelihood methods are appealing because, unlike the previously described
approaches, they have the potential to exploit the information contained in LD to
help estimate demographic parameters. However, there are two main drawbacks that
might limit their wider use. First, it is not easy to choose summaries of the data that
are both easy to calculate and informative about demographic history. Second, these
methods are all extremely computationally intensive, and they are currently unable
to handle the analyses of large-scale (e.g., genome-wide) data sets without access to
powerful (e.g., hundreds of nodes) computer clusters.

One final promising approach, the pairwise sequentially Markovian coalescent
(PSMC) developed by Li and Durbin (2011), uses single diploid genome sequences
to estimate the trajectory of past population sizes over time. Population genetics
theory predicts that the distribution of coalescent times (i.e., the distribution of
times until the two copies of a diploid sequence share a common ancestor) depends
directly on the effective population size (both past and present) from which the
sample was drawn. While coalescent times cannot be directly observed, they can
be estimated using the sequence divergence between two haploid sequences—older



8 Inferring Human Demographic History from Genetic Data 195

coalescent times generally lead to greater divergence between sequences. Li and
Durbin (2011) use a hidden Markov model to estimate the coalescent times between
two haploid sequences sequentially across the genome (the times vary across the
genome because of recombination). The distribution of times is then used to estimate
the trajectory of past population sizes in the history of the population containing the
sample. While currently limited to analyses of a single genome, the PSMC provides
a novel way of utilizing genome-wide data to make inferences about human history,
and the results so far are consistent with previous findings of a population bottleneck
in non-Africans and recent growth in all populations (Li and Durbin 2011). More
recent work has used the sequentially Markovian assumption in other theoretical
frameworks, allowing for the analyses of larger sample sizes and population splits
(Sheehan et al. 2013; Schiffels and Durbin 2014; Terhorst et al. 2017; Steinrücken
et al. 2019).

8.7 Ancient Admixture

After modern humans evolved in Africa 150–200 Kya, they quickly expanded to
colonize the rest of the inhabitable world. As they did, they encountered other
hominin groups that already occupied the rest of Africa and Eurasia. These other
groups, often called “archaic” humans, included Neanderthals, Denisovans and
Homo erectus in Eurasia, H. floresiensis in island Southeast Asia, and several
unnamed groups within sub-Saharan Africa (Klein 2000; Trinkaus 2005; Rightmire
2009). The extent to which the expanding modern humans interacted and interbred
with the various archaic human groups is still unclear, though some interbreeding
must have occurred (see below). We first discuss how ancient DNA from archaic
hominins has changed our perspective on this issue. Then we describe other indirect
methods for inferring the existence of ancient admixture.

Direct Evidence for Ancient Admixture The isolation and sequencing of a portion
of the mtDNA hypervariable region from the Neanderthal-type specimen opened
up a new avenue of research for human evolutionary studies (Krings et al. 1997).
Subsequent work has generated whole mtDNA sequences from several Neanderthals
(Briggs et al. 2009) and a putative H. heidelbergensis individual (Meyer et al.
2014), low-coverage draft genomes from a Neanderthal (Green et al. 2010) and
a Denisovan (Reich et al. 2010), and high-coverage genomes from a Denisovan
(Meyer et al. 2012) and two Neanderthals (Prüfer et al. 2014, 2017). Denisovans
were a group of archaic humans whose only remains have been found in a single
cave in Southern Siberia. They are known almost exclusively from their DNA, with
very little morphological information available from the limited fossil remains that
have been found (Bennett et al. 2019; Viola et al. 2019). Analyses of the Denisovan
genome have shown that they are distant cousins of Neanderthals (Reich et al. 2010).

Studies of Neanderthal mtDNA found that the Neanderthal sequence was
outside of the range of normal human variation, suggesting that any Neanderthal
contribution to the modern human gene pool was limited (Krings et al. 1997; Serre
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et al. 2004). However, an analysis of the initial draft Neanderthal genome showed
that Neanderthals were more closely related to all non-African populations than to
sub-Saharan African populations (Green et al. 2010). The most likely explanation
for this is that Neanderthals and the ancestors of non-African populations interbred
and exchanged genes, perhaps in the Middle East 60–90 Kya (Sankararaman et
al. 2012), leading to greater genetic similarity. This result was initially surprising,
since researchers initially assumed that any interbreeding between Neanderthals and
modern humans would have occurred in Europe 30–40 Kya. Instead, more detailed
analyses show that East Asian individuals tend to have greater Neanderthal ancestry
than do European ones (e.g., Wall et al. 2013). While this could be due to weaker
purifying selection in East Asian populations (Sankararaman et al. 2014), it more
likely reflects a separate Neanderthal admixture event after the initial divergence of
European and East Asian populations or a recent dilution of Neanderthal ancestry
in the ancestors of European populations (Kim and Lohmueller 2015; Vernot and
Akey 2015). Thus far, a separate Neanderthal admixture event seems more likely
(see, e.g., Villanea and Schraiber 2019).

Similar studies using the draft Denisovan genome also turned up a surprising
result—aboriginal Australians, Melanesians, and Philippine Negrito groups derived
4–5% of their genome from Denisovans, whereas all other human populations
tested showed much smaller levels of Denisovan ancestry (e.g., Reich et al. 2010,
2011; Sankararaman et al. 2016; Vernot et al. 2016; GenomeAsia 100K Consortium
2019). This strongly suggests that the colonization of Melanesia involved a separate
migration out of Africa than did the colonization of mainland Eurasia, perhaps
along the Southern coast of Asia (the “Southern route” hypothesis, reviewed
by Oppenheimer 2009). If so, the historical range of the Denisovans must have
stretched far south of the Siberian cave where the fossil remains were found. There
is also growing evidence for multiple separate Denisovan admixture events in East
and Southeast Asia (Browning et al. 2018; GenomeAsia 100K Consortium 2019;
Jacobs et al. 2019).

Indirect Evidence for Ancient Admixture While the direct comparison between
modern human DNA and archaic human DNA described above has been extremely
informative, it has been limited by the scarcity of archaic human fossils with
sufficient amounts of ancient DNA. Other, indirect methods are needed to detect
potential ancient admixture between modern humans and other archaic human
groups in East Asia and Africa. These methods rely on the observation that ancient
admixture, if it occurred, will leave large, discrete chunks of introgressed sequence
that are substantially different from orthologous modern human sequences. These
chunks can then be detected by searching for unusual patterns of LD (e.g., Wall
2000; Plagnol and Wall 2006; Wall et al. 2009), in an analogous way to how local
ancestry is estimated across the genomes of recently admixed individuals (e.g., Price
et al. 2009; Baran et al. 2012). Analyses of human polymorphism data have found
evidence for ancient admixture in sub-Saharan African populations (Garrigan et al.
2005; Hayakawa et al. 2006; Wall et al. 2009; Hammer et al. 2011; Lachance et
al. 2012; Hsieh et al. 2016; Durvasula and Sankararaman 2020; Wall et al. 2019),
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though quantifying the amount or the timing of admixture depends on specific
assumptions about modern human population structure. Taken at face value, these
studies suggest that admixture between modern and archaic humans may have been
a relatively common occurrence, involving Neanderthals, Denisovans, and one or
more archaic human groups (in sub-Saharan Africa) for which no ancient DNA
samples are currently available.

8.8 Other Ancient DNA Studies

The previous section describes what insight has been gained from studies of
admixture between modern and archaic human groups. Ancient DNA studies
involving only modern human samples have also been very informative about
human demographic history. In particular, a comparison between an ancient DNA
sample and modern human sequences can provide information on genetic affinities
between the population that the ancient sample comes from and extant human
groups. For example, Rasmussen et al. (2010) generated a high-coverage whole-
genome sequence from a 4000-year-old hair sample from Greenland and found that
the genome sequence obtained was most similar to sequences from extant Siberian
populations. They concluded that the population from which the hair sample came
represented a separate migration than the one that gave rise to modern Native
Americans and Inuit. In another example, Rasmussen et al. (2011) sequenced a
100-year-old hair sample from an aboriginal Australian; their analyses provided
additional support for the early (>50 Kya) colonization of Melanesia and the
Southern route hypothesis. Other studies have also elucidated the recent movements
and population affinities of groups across Eurasia (e.g., Lipson et al. 2018; McColl
et al. 2018; Harney et al. 2019; Narasimhan et al. 2019; Shinde et al. 2019).

Finally, ancient DNA studies have helped to understand the relationship between
Neolithic farmers in Europe and contemporary European Paleolithic hunter-
gatherers roughly 6–10 Kya. Specifically, a long-standing debate has centered
on the extent to which the Neolithic transition was cultural, with populations
adopting farming technologies from their neighbors, versus demic, with farming
populations replacing nonfarmers. So far, most of the early ancient DNA studies
have suggested that demic diffusion was predominant (e.g., Bramanti et al. 2009;
Malmstrom et al. 2009; Haak et al. 2010; Skoglund et al. 2012; but see Sampietro
et al. 2007). Later studies have been able to quantify the relative contributions of
various ancestral European groups, including ones that were previously unknown,
and have highlighted the enormous complexity in European demographic history
over the past ~40,000 years (e.g., Lazaridis et al. 2014; Seguin-Orlando et al. 2014;
Jones et al. 2015; Lipson et al. 2017).
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8.9 Conclusion

With more than 100,000 modern human genome sequences publicly available and
several hundred thousand more genome sequences already generated but not yet
public, we are entering a time when the amount of (modern human) genetic data
available for demographic inference is essentially unlimited. The computational,
statistical, and theoretical methods for dealing with these vast amounts of data are
still limited though, and we anticipate that advances on the methodological front
will lead to new insights into human demographic history in the coming decade.
Since human fossils are rare and appreciable amounts of ancient DNA from fossils
rarer still, it is difficult to predict what influence future ancient DNA studies will
have on human evolutionary studies. However, based on the results of the past few
years, it is safe to assume that occasional future fossil finds (with sufficient amounts
of endogenous DNA) will have a major influence on our understanding of human
history.
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9Natural Selection, Genetic Variation,
and Human Diversity

Leslie S. Emery and Joshua M. Akey

Abstract

Patterns of human genetic diversity observed in present-day individuals provide
insight into our species evolutionary history and regions of the genome that have
been influenced by natural selection. In this chapter, we discuss methods and
models that have been used to better understand how selection has impacted
human variation and review studies of natural selection in humans and the stories
they reveal about human history.

9.1 Introduction

A comprehensive understanding of how natural selection has shaped extant patterns
of human genomic variation remains an important, yet elusive, goal. Although it is
becoming increasingly clear that a significant proportion of the human genome has
been impacted by selection (Hahn 2008; Akey 2009), many outstanding questions
remain. These questions include identifying the precise causal alleles that have
been targets of selection, the timing, strength, and form of selection exerted on
causal variants, the mechanistic and molecular pathways selection acts upon, and
ultimately what factors led to differences in fitness among alleles at a given locus.
Answering these questions not only provides a window into human history and the
historical forces that have shaped our past but also provides fundamental insights
into hominin evolution, mechanisms of evolutionary change, and the heritable basis
of disease.
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In this chapter, we discuss the prevalence of selection in the human genome and
how natural selection interacts with demographic forces to shape extant patterns of
variation. Focusing particularly on the action of positive selection, we will review
current knowledge of where and when selection has acted upon the human genome,
based on both detailed candidate gene studies and genomic scans for selection.
Additionally, we will discuss advances in models of selection and statistical methods
that are necessary for a comprehensive description of the action of selection on
the human genome. Finally, we will highlight how an understanding of selection’s
effects on variation can inform studies of human population differentiation.

9.2 Amount of Selection in the Human Genome

We will begin by discussing the amount of balancing, negative, and positive
selection that has been identified in genomic studies. Detailed descriptions of these
types of selection and how they affect genetic variation can be found in Chap. 4.

9.2.1 Balancing Selection

The two subtypes of balancing selection—overdominance and frequency-dependent
selection have been described in Chap. 4. Overdominance and frequency-dependent
selection are rare for most human traits, but both are particularly important for
immune-related genes (Charlesworth 2006). Several notable examples of overdom-
inance have been described including the following: the cystic fibrosis �F508 allele
of the CFTR gene may also prevent childhood asthma (Schroeder et al. 1995);
phenylketonuria-causing alleles of the PAH gene show molecular evidence for
overdominance, though the selective pressure is as yet unknown (Krawczak and
Zschocke 2003); and sickle cell trait alleles and thalassemia alleles at the HBB
gene provide resistance against malaria (Allison 1954; Quintana-Murci and Barreiro
2010).

The X-linked gene G6PD also shows signatures of overdominance due to
selective pressure from the Plasmodium malaria parasites. G6PD encodes the
enzyme glucose-6-phosphate dehydrogenase, which is responsible for replenishing
supplies of NADPH from NADP+. Alleles that drastically reduce the activity of
the G6PD enzyme result in oxidative damage to the red blood cells, because G6PD
is the only enzyme replacing NADPH in these cells (Verrelli et al. 2002). These
deficiency alleles are found at high frequencies in areas with a high prevalence of
malaria, including sub-Saharan Africa and the Mediterranean. Experimental studies
show that deficiency alleles in both heterozygous females and hemizygous males
reduce the risk of malaria infection by about half (Verrelli et al. 2002). The region
exhibits unusually high levels of polymorphism consistent with balancing selection.
Although this molecular signature is not completely conclusive, the confluence of
molecular, phenotypic, and population genetic data make G6PD one of the most
convincing cases of balancing selection in the human genome and one of the first to

http://dx.doi.org/10.1007/978-3-030-61646-5_4
http://dx.doi.org/10.1007/978-3-030-61646-5_4
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be identified by molecular evidence (Tishkoff et al. 2001; Sabeti et al. 2002; Verrelli
et al. 2002).

Frequency-dependent selection is common in host-pathogen interactions, and it
is known to be an important force acting on alleles at the human leukocyte antigen
(HLA) genes, which will be discussed in detail below. A recent study examined
SNP data in European and African American samples and found evidence for
long-term, frequency-dependent selection at 60 genes, including immunity genes,
keratins, membrane channels, and cellular structure genes (Hahn 2008; Andrés et al.
2009). Although balancing selection undoubtedly plays an important role in shaping
variation at perhaps dozens of genes, it is likely the rarest type of selection acting
on the human genome (Akey 2009; Andrés et al. 2009).

9.2.2 Negative Selection

The effects of negative selection are difficult to quantify for a single locus, so
studies have focused on describing its impact genome-wide (Reed et al. 2005;
Charlesworth 2006; McVicker et al. 2009; Lohmueller et al. 2011a). Unexpectedly
low levels of diversity near functional elements would provide evidence for ongoing
negative selection in the human genome, and this pattern is borne out by studies
showing reduced variation near evolutionarily conserved elements (Schroeder et al.
1995; McVicker et al. 2009; Lohmueller et al. 2011a). Variation is even further
reduced near human exons, and estimates show that selection has reduced variation
by 19–26% on the autosomes and by 12–40% on the X chromosome (Krawczak
and Zschocke 2003; McVicker et al. 2009). Although hitchhiking caused by
positive selection also makes a contribution to this reduced variation, widespread
weak purifying selection combined with positive selection in a small fraction of
the genome can explain the observed patterns (Allison 1954; Reed et al. 2005;
McVicker et al. 2009; Quintana-Murci and Barreiro 2010; Lohmueller et al. 2011a).
We can assume, therefore, that negative selection is acting on a large proportion of
the functional elements in the human genome.

9.2.3 Positive Selection

Much debate has centered on the relative contribution of purifying and positive
selection affecting genetic variation (Verrelli et al. 2002; Stephan 2010). Current
evidence suggests that weak negative selection is widespread, whereas positive
selection has affected a smaller portion of the genome more strongly. As a test
of this hypothesis, Hernandez et al. searched for a reduction of neutral genetic
diversity surrounding amino acid human substitutions. This is another signature
of selective sweeps (Fig. 9.1a). They found that the reduction in neutral diversity
surrounding amino acid substitutions was similar to that surrounding putatively
neutral substitutions. Thus, they concluded that fewer than 10% of amino acid
substitutions in the human lineage were fixed by selective sweeps. A more recent
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“Classical selective sweep” or “hard sweep”

“Soft sweep” from standing variation

“Soft sweep” with recurrent mutation

Selection on an epistatic variant

Selection on a microsatellite
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Fig. 9.1 Classical and alternative models of positive selection. Pink: causal variant under positive
selection. Cyan: hitchhiking variants. Blue: hitchhiking variants on a second haplotype back-
ground. Red: epistatic variant that affects the fitness of the selected variant. Left and right panels
denote patterns of variation before and after selection, respectively. (a) A new mutation arises and is
immediately advantageous. (b) An existing variant with multiple haplotype backgrounds is newly
advantageous due to a novel selective pressure. (c) During a selective sweep, the advantageous
variant arises again due to a mutation on a second haplotype background. (d) A new mutation
arises that is advantageous only in the presence of another variant due to epistatic interactions. (e)
A microsatellite locus is advantageous if the number of repeats is within a specific range; all other
repeat lengths have a lower fitness
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study by Enard et al. found that after controlling for genomic features, a greater
fraction of amino acid substitutions may have been fixed by positive selection
(Enard et al. 2014). However, Enard et al. concluded background selection is still the
predominant type of selection affecting neutral diversity across the genome. Thus,
while negative selection has affected a larger proportion of the genome, positive
selection has had a stronger effect at the modest number of regions it has influenced
(Verrelli et al. 2002; Lohmueller et al. 2011a).

Because advantageous alleles provide information about specific human adapta-
tions, positive selection has been widely studied. Both interspecific and intraspecific
adaptations are of interest for studying positive selection in humans. First, positive
selection specific to the human lineage can provide information about unique human
characteristics. These human-specific adaptations can be identified by looking
for alleles that have become fixed in Homo sapiens but are absent in the other
great apes (Tishkoff et al. 2001; Sabeti et al. 2002; Verrelli et al. 2002; Nielsen
et al. 2007). Adaptive alleles identified by such interspecific comparisons are
usually the products of completed selective sweeps, and therefore, the surrounding
linked neutral variation is in the process of recovering. Recent positive selection
detectable by intraspecific comparisons is more pertinent to the characterization of
current human genetic variation. Adaptation of specific human populations to their
respective environments and subsistence strategies is responsible for most of these
ongoing or recently completed selective sweeps. Most recent work to characterize
the action of selection in the human genome has focused on adaptations shaped by
recent positive selection, and we will therefore focus on this topic for the remainder
of the chapter.

9.3 Demography and Selection

Extant patterns of human genomic variation are jointly influenced by natural
selection and human demographic history. Thus, it is necessary to understand and
account for the effects of demographic history when making inferences about
natural selection. To this end, here, we briefly summarize aspects of human
demographic history that are relevant for interpreting signals of selection in humans.
In particular, as described below, demographic history influences the amount of
genetic variation available for selection to act upon and impacts the signatures
imparted on standing levels of genetic variation that often complicate inferences
of selection. A more detailed discussion of inference of human demography can be
found in Chap. 8 by Wall.

Anatomically modern humans arose in Africa over 200,000 years ago, and a
relatively small group of individuals began what is now recognized as the out-of-
Africa dispersal between 50,000–100,000 years ago (Goldstein and Chikhi 2002;
Cavalli-Sforza 2007). The out-of-Africa dispersal ultimately led to the peopling
of the Middle East, Europe, Asia, and the Americas. Notably, the recent African
origin of modern humans and subsequent out-of-Africa dispersal likely explain
a number of features of human genetic variation such as lower levels of genetic

http://dx.doi.org/10.1007/978-3-030-61646-5_8


210 L. S. Emery and J. M. Akey

diversity compared to other great apes (Kaessmann et al. 2001) and higher levels
of genetic diversity in African compared to non-African populations (Vigilant et al.
1991; Jorde et al. 2000; Tishkoff et al. 2009). Genetic data is consistent with several
models of dispersal, including a serial founder effect (Ramachandran et al. 2005;
Deshpande et al. 2009; Barbujani and Colonna 2010) or an isolation-by-distance
model (Handley et al. 2007). Regardless of the appropriate model, the essential
consequence of the peopling of different geographic regions is that each subsequent
dispersal was associated with a reduction in population size, often referred to as
“population bottlenecks” (Cavalli-Sforza 2007). Moreover, as humans dispersed
into new environments, selective pressure to adapt to emergent climates, diets,
and pathogens occurred, resulting in geographically restricted adaptation. In more
recent human history, particularly with the advent of agriculture, population sizes
expanded dramatically, which also likely created new selective pressures (Cavalli-
Sforza 2007). Indeed, it has been suggested that recent population growth has led to
rapid adaptation and an accelerated rate of evolution (Hawks et al. 2007).

The evolutionarily recent divergence of human populations and relatively high
rates of migration and admixture between them have the important consequence
that most of the variation observed in humans is found among all populations, and
not between them (Barbujani et al. 1997; Jorde et al. 2000), resulting in clinal
patterns of genetic diversity (Handley et al. 2007). Population history determines
which alleles are found where, thus limiting the available substrates for selection to
act upon. Indeed, the geographic distribution of SNPs that are highly differentiated
between populations (and possibly subject to selection) is virtually the same as the
distribution of randomly chosen SNPs used to determine population structure (Coop
et al. 2009). Such highly differentiated SNPs are important possible examples of
local adaptation, but other local adaptations are likely the result of subtle allele
frequency shifts and parallel adaptation in similar environments (Hancock et al.
2010a, b; Tennessen and Akey 2011). Accounting for the shared history between
populations is very important for identifying and interpreting the evidence for local
adaptions in specific populations (Tennessen and Akey 2011).

The population expansions and contractions experienced at various times in
human history also complicate the detection of advantageous alleles because it is
well-documented that such demographic events can produce patterns of variation
similar to those left by the hitchhiking effect and background selection (Tajima
1989; Przeworski 2002; Stajich and Hahn 2005; Li et al. 2012). Population
expansions can also mimic the genomic signatures of selection in certain conditions
(Excoffier et al. 2009). Selection events may also be associated with demographic
changes, such as population reduction caused by selective pressure, making the two
forces more difficult to distinguish (Li et al. 2012). It may seem that demography
and selection cannot be distinguished, but a reasonable way to address this problem
is to employ an outlier approach, which assumes that demographic events will
affect variation throughout the genome, while selective events act at individual loci
(Cavalli-Sforza 1966). Thus, advantageous alleles can be detected by identifying
loci that exhibit anomalous patterns of variation compared to the rest of the genome



9 Natural Selection, Genetic Variation, and Human Diversity 211

and are therefore outliers in the distribution of a statistic of interest (Akey et al.
2002).

Finally, human demographic changes have a significant impact on our ability
to correctly identify the signatures of selection in the first place. The statistical
power to detect selection depends on the interaction between local recombination
rate, the dominance and selection coefficients of the selected allele, and whether
the selected allele is new or selected from standing variation (Teshima et al. 2006).
Recent population bottlenecks reduce the power of haplotype homozygosity tests
to detect signatures of selection (Pickrell et al. 2009). Recent admixture, which
is an important consideration in modern human populations, decreases the power
of most neutrality test statistics but actually increases the power of Fay and Wu’s
H (Lohmueller et al. 2011b). Cryptic admixture can also obscure other signals of
selection (Lohmueller et al. 2011b). The unique demographic histories of different
populations also impart differing statistical power, meaning that we are better able
to detect selection in some populations than in others (Lohmueller et al. 2011b).
In addition to affecting statistical power, demography affects the false discovery
rate of tests for selection. Recessive selected alleles, alleles selected from standing
variation, and recent population bottlenecks all contribute to higher false discovery
rates (Teshima et al. 2006). New approaches are being developed to address these
issues, such as the composite of multiple signals (Grossman et al. 2010, 2013).
Likelihood approaches, machine learning, and approximate Bayesian computation
methods may also provide powerful ways to disentangle the effects of demography
and selection in the near future (Li et al. 2012). However, the severe tradeoff
between false-positive and false-negative rates in human populations means that
some selection events will always remain beyond our detection abilities (Teshima et
al. 2006; Li et al. 2012).

9.4 Empirical Studies of Positive Selection

9.4.1 Single Gene Studies

The earliest inferences of positive selection in humans focused on candidate gene
studies, where there was an a priori hypothesis that a particular gene may have
fitness consequences. Candidate gene studies were also the only practical way to
test hypotheses about selection given the limitations in DNA sequencing technology
at the time. Perhaps the most well-studied and understood example of positive
selection arising from candidate gene studies is that of LCT, which encodes for
the enzyme lactase and digests the sugar lactose (Fig. 9.2). In mammals, LCT is
expressed, and thus lactase is produced, during infancy and early childhood when
an individual is dependent on a milk diet, but the gene is turned off following
weaning (Harris and Meyer 2006). This pattern of LCT expression is also the
ancestral state in humans, but adaptive mutations have arisen in several pastoral
populations that allow lactase production to continue into and throughout adulthood.
Patterns of genetic variation around LCT show evidence for an incomplete or
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Fig. 9.2 Signal of selection surrounding the LCT locus. (a) LCT and nearby RefSeq genes on
chromosome 2. Genes on the top line are on the + strand. and genes on the bottom line are
on the—strand. The red star marks the location of rs4988235, one of the polymorphisms in an
enhancer region that is associated with lactase persistence (Bersaglieri et al. 2004). (b) The absolute
value of the integrated haplotype score (iHS) for SNPs from the HapMap phase 2 data in three
populations, from Voight et al. (2006) Populations are (CEU) Utah residents with Northern and
Western European ancestry and (YRI) Yoruba in Ibadan, Nigeria. The black line is a LOESS-
smoothed curve of the plotted points. The gray box denotes values that exceed the 95th percentile
of genome-wide iHS scores, indicating outlier scores that may show evidence for positive selection.
(c) FST, a measure of population differentiation, for variants from the 1000 Genomes project phase
1 data. Populations are the same as above. The black line is a LOESS-smoothed curve of the plotted
points. The gray box denotes values that exceed the 90th percentile of genome-wide FST values,
indicating outlier values that may show evidence of extreme population differentiation

ongoing selective sweep, including long, high-frequency haplotypes (Fig. 9.2b)
(Bersaglieri et al. 2004; Tishkoff et al. 2007; Enattah et al. 2008) and high levels of
population differentiation (Fig. 9.2c). Haplotypes at the LCT gene that do not carry
the advantageous mutation exhibit normal levels of variation (Tishkoff et al. 2007).
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Strikingly, studies of different pastoral populations have identified several distinct
causative lactase-persistence alleles in an upstream intron of the gene MCM6
(Enattah et al. 2002, 2008; Tishkoff et al. 2007; Ingram et al. 2009; Gallego Romero
et al. 2012; Jones et al. 2013), which shows enhancer activity (Olds and Sibley
2003); thus, there has been convergent adaptive evolution influencing transcriptional
regulation of the LCT gene.

Another well-documented example of positive selection is found at the gene
DARC, which encodes the Duffy antigen receptor for chemokines. The malaria
parasite Plasmodium vivax requires the DARC protein to infect red blood cells,
but the FY*O allele prevents expression of DARC exclusively in the red blood
cells and therefore provides malaria resistance (Harris and Meyer 2006). FY*O is
essentially fixed in sub-Saharan Africa, where P. vivax was likely a strong selective
pressure in the past, but it is found at very low frequency in non-Africans. Phenotype
and population frequency information support the hypothesis that positive selection
drove FY*O to fixation in Africans, while non-Africans experienced no such
selection (Hamblin et al. 2002). In concordance with this hypothesis, FY*O has
a very high level of differentiation from non-Africans as measured by FST, when
compared to the FY*A and FY*B alleles (Hamblin et al. 2002). The DARC region
also shows a skew toward rare variants (positive Tajima’s D) and an excess of
high-frequency derived variants (Hamblin et al. 2002). Notably, DARC shows
significantly lower variation within Africans than in non-Africans, which is opposite
the pattern expected given our knowledge of human migration history (Hamblin et
al. 2002).

Although other success stories arising from candidate gene studies exist, such
approaches of analyzing loci individually for signatures of selection are fraught with
difficulty. Most importantly, interpreting patterns of genetic variation for a single
locus at a time is difficult because of the confounding influence that demographic
history imparts on patterns of DNA sequence variation (Akey et al. 2004; Stajich
and Hahn 2005; Akey 2009; Li et al. 2012). As technologies became available to
more comprehensively survey patterns of human genetic variation in large sample
sizes, candidate gene studies of selection gave way to genome-wide studies, which
we discuss below.

9.4.2 Genome-Wide Scans for Selection

9.4.2.1 Insights from Genome-Wide Scans
Genome-wide scans provide a more comprehensive and unbiased approach to
systematically search the genome for substrates of adaptive evolution and also
enable more sophisticated approaches to disentangle the confounding effects of
selection and demographic history. The first genome-wide scans for selection in
humans were made possible by the development of dense genome-wide SNP
genotype data and showed that selection footprint could be detected in such data
(Akey et al. 2002). Genome-wide scans have proliferated, using a wide variety
of statistical approaches and methods designed to identify genomic regions with
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unusual patterns of variation that may be indicative of selection (Table 9.1). These
test statistics examine features including levels of population structure (Akey et al.
2002; Chen et al. 2010); amount and patterns of linkage disequilibrium (Sabeti et al.
2002, 2007; Voight et al. 2006); measures of the site frequency spectrum such as an
excess of high frequency derived alleles or an excess of rare variants (Tajima 1989;
Fay and Wu 2000; Grossman et al. 2010; Zhong et al. 2010, 2011); and differences
between population- and pedigree-based recombination rate estimates (O’Reilly et
al. 2008). It is important to note that no single test statistic is best suited for detecting
all types of selection and their sensitivity and specificity vary widely (Ronald and
Akey 2005; Biswas and Akey 2006; Sabeti et al. 2007). Additionally, some of the
methods that have been developed are appropriate for identifying selective sweeps
that have gone to completion (fixation of the causal adaptive allele), whereas others
are most appropriate for ongoing or incomplete sweeps.

Although there are still many significant advances to be made, the dozens of
published genome-wide scans for selection have provided a comprehensive first-
pass picture of how, when, and where positive selection has affected the human
genome. Even the earliest of studies were able to show that the signatures of natural
selection are fairly evenly distributed throughout the genome rather than being
found in discrete clusters (Akey et al. 2002; International HapMap Consortium
2005; Nielsen et al. 2005). Additionally, scans have thus far identified about 10%
of the genome as being under recent positive selection within humans (Akey
2009). Furthermore, the number of regions identified as the targets of selection is
substantial, whether testing for the signatures of complete or incomplete sweeps
(Akey 2009).

In studies that have truly examined the whole genome, intergenic regions exhibit
a surprising number of selection signatures (Akey 2009). Although some of these
signals can be attributed to regulatory variants associated with nearby genes, some
are so far from the nearest gene that other interesting explanations are possible. The
functional substrate of selection in these regions could be regulatory elements, such
as distant enhancers. They could also be attributed to functional non-coding RNAs,
which we still know relatively little about. Another intriguing possibility is that
some intergenic targets of selection are structural elements responsible for genome
organization. For example, Williamson and colleagues observed many signals
indicating positive selection acting on centromeres. These centromeric regions could
be selected due to meiotic drive, since any variant that makes a chromosome more
likely to end up in the oocyte than in a polar body during female meiosis will have
a very strong selective advantage (Williamson et al. 2007). While it is evident that
the targets of recent positive selection are not restricted to genic or gene-associated
regions, these intergenic selected regions have been largely overlooked thus far and
warrant further study.

A majority of genome-wide scans have either limited their analyses to regions
around genes or focused on identified targets within or near genes. From these
results, we can confidently say that a wide variety of genes in the human genome
have been subject to recent positive selection. Some of these genes are also identified
as the targets of older selective events, such as those detected by interspecific
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comparisons looking for adaptively evolving loci during hominid evolution (Amato
et al. 2009). Many of these genes have been implicated in selection by multiple
studies; however, due to differences in the statistics and significance cutoffs used by
each study, the overlap between sets of candidate regions is far from perfect. For
instance, as of 2009, only ~14% of regions (722 regions) implicated in selection
were identified by more than one genome-wide scan (Akey 2009). Encouragingly,
many of the genes previously known to be targets of selection have also been
detected by genome-wide scanning methods. In particular, HBB, DARC, and LCT
have been detected by several different studies (Table 9.1). These regions serve
as a “positive control,” showing that genome-wide scans are identifying selected
regions with independent supporting evidence for selection. Additionally, scans
have identified numerous new possible targets of selection, some of which are
identified in multiple studies. For example, PCDH15 has been identified in at least
six different genome-wide scans. This gene is important for retinal and cochlear
function and, when mutated, can cause Usher syndrome type 1F (Ahmed et al.
2001) and autosomal recessive deafness 23 (Ahmed et al. 2003). PCDH15 has
also been associated with familial combined hyperlipidemia (Huertas-Vazquez et
al. 2010). EDAR encodes the ectodysplasin A receptor and has been identified
in 11 different genome-wide scans for selection. The EDAR protein mediates
ectoderm-mesoderm interactions during development, and mutations in EDAR can
prevent the normal formation of hair, sweat glands, and teeth in a disorder called
hypohidrotic ectodermal dysplasia (Bryk et al. 2008; Mou et al. 2008). Perhaps
the most compelling new signature of selection, identified by ten different studies,
is SLC24A5, which encodes sodium/potassium/calcium exchanger 5, a protein
required for proper melanogenesis. Although it was already shown that SLC24A5
variants contribute directly to human variation in skin pigmentation (Lamason et al.
2005), previous evidence for selection was minimal.

By examining the candidate selection genes identified by studies so far, we can
search for patterns in gene function. For example, gene ontology analyses of results
from individual scans have suggested that the targets of recent positive selection are
enriched for genes related to immunity, olfactory reception, metabolism, reproduc-
tion, pigmentation, and muscle development (Wang et al. 2006; Voight et al. 2006;
Williamson et al. 2007; López Herráez et al. 2009). Furthermore, when results from
multiple scans have been compiled, the best-supported candidate selection regions
have proved to be enriched for various metabolic processes, signaling, development,
and the cell cycle, among others (Akey 2009). Over and over again, the signatures
of selection have been found in genes related to metabolic processes and pathways
(López Herráez et al. 2009; Hancock et al. 2010b), which is consistent with previous
hypotheses regarding the recent evolution of human metabolism (Neel 1962; Babbitt
et al. 2011). One possibility is that humans have adopted a drastically different diet
from that of our hominin ancestors and have therefore adopted extensively. Such
recent metabolic evolution could be attributed to the development of agriculture and
corresponding new food sources, as well as the availability of novel food sources
in the environments encountered by humans during the peopling of the world
(Hancock and Rienzo 2008; Hancock et al. 2010b; Babbitt et al. 2011). Although the
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signals of selection in metabolic genes are pervasive and striking, it is worth noting
that many other unrelated pathways and processes have been subject to selection as
well.

One important question that genome-wide scans have answered is whether the
targets of the recent selection show evidence of selection in one population or all
populations. Although the number of populations studied so far is disappointingly
small, they usually represent a worldwide, rather than a regional, sample, so any
sharing of candidate selection regions between populations is likely to represent
a worldwide pattern. Several studies have so far observed a significant amount
of overlap between candidate selection regions identified in disparate populations.
One study found evidence of substantial levels of parallel divergence, i.e., sharing
of signals of selection at a gene in phylogenetically independent populations
(Tennessen and Akey 2011). Other studies that do not account for the shared
ancestry between populations see even more evidence of shared targets of selection;
for example, around 30% of targets identified in one study were shared between at
least two worldwide regions (where the world’s populations are clustered into six
world regions) (Pickrell et al. 2009). Although these observations show that a non-
negligible number of candidate selection regions are shared between populations to
some extent, it is also clear that most detectable signatures of positive selection are
geographically restricted. However, the geographic distribution of selected alleles
is not markedly different from randomly selected variants (Coop et al. 2009).
Furthermore, in most cases, the specific allele under selection cannot be identified;
so, although a signal for selection may be seen in multiple populations, it remains
to be seen whether the signal is produced by the same causative allele or not. The
uniqueness of selective forces on different human populations is unsurprising in the
context of human population history but has significant implications for translating
medical applications between populations.

Another issue that genome-wide scans for selection hope to address is whether
the signatures of recent selection we see in the human genome are largely
attributable to alleles of small effect (conferring a small selective advantage) or
large effect (conferring a large selective advantage). For the most part, this question
remains unanswered. The strongest signals of selection are, of course, the easiest
to detect; as a result, candidate selection regions identified so far are biased toward
alleles of large effect (Akey et al. 2002). Since the signature of selection left in
the genome is proportional to the selection coefficient for the advantageous allele,
alleles of small effect are likely to remain outside of our detection ability even
as methods improve. Some studies, however, have attempted to address this issue
by looking for signatures of selection across many genes at once (Hancock et al.
2010b). In these studies, it is possible to detect a very subtle shift in allele frequency
that is pervasive across many genes and, in some cases, correlated with variables
related to environmental selective pressures (Hancock et al. 2010a).

9.4.2.2 Improving Genome-Wide Scans
Most genome-wide scans for selection performed so far have several major weak-
nesses that limit the applicability of their results. First, with existing methods, only
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the strongest signals of recent selection are detectable. While it is likely that signals
of very weak selection will always remain beyond the limits of detection, the use
of the outlier approach and other methods without formal significance thresholds
makes it particularly difficult to sort out false positives and false negatives (Kelley
et al. 2006). Furthermore, our ability to detect a signature of selection remains
largely dependent upon levels of background linkage disequilibrium in the regions
(O’Reilly et al. 2008; Stephan 2010). The result is that targets of recent selection
are easier to identify when they are found in regions of unusually low-background
LD (O’Reilly et al. 2008; Akey 2009). This issue has been addressed by some of the
LD-based statistics, such as iHS and EHH, but more comprehensive methods should
also be developed (O’Reilly et al. 2008). The problems of detection are exacerbated
by conflicting results from various different neutrality test statistics. Since different
statistics measure different kinds of signatures of selection, it is not entirely clear
what combination of signals is most indicative of selection. Composite likelihood
methods have been developed to address this problem, and their further development
is warranted (Grossman et al. 2010).

Perhaps the most glaring drawback of existing genome-wide scans is the repeated
use of the same few population panel SNP data sets, including SeattleSNPs (http://
pga.gs.washington.edu), the SNP Consortium (Altshuler et al. 2000), the Perlegen
SNPs (Hinds et al. 2005), and the HapMap SNPs (phase 1 (International HapMap
Consortium 2005) or 2 (International HapMap Consortium et al. 2007)). Of the 31
studies presented in Table 9.1, only 8 (26%) examined other population data sets.
While the use of the same data sets makes comparisons between studies easier, it
also significantly reduces the applicability of those results to other data sets. Studies
examining new populations are likely to provide much more novel information
than yet another study on a panel of one African, one Asian, and one European
population. Another major drawback to the existing data sets is the pervasive
problem of ascertainment bias in SNP identification. SNP genotyping platforms
were developed using nonuniform SNP discovery techniques that were biased
toward identifying polymorphisms within European ancestry populations (Clark
et al. 2005). Therefore, the information these SNP chips provide about variation
in non-European populations is very difficult to interpret accurately. Furthermore,
SNP data is too sparse to allow the detection of the causative variant underlying
a signature of selection in most cases (Grossman et al. 2010). The use of whole-
genome sequences for detecting selection will solve both problems of ascertainment
bias and resolution, as shown in recent studies using whole-exome sequences to
detect causative variants (Tennessen et al. 2010, 2012).

Finally, the usefulness of current genome-wide scans for recent selection is
severely limited by the simplicity of selection models they employ. The vast
majority of current genome-wide scans have been predicated on the model of
the classic selective sweep, in which a new mutation is immediately beneficial
upon its introduction into the population and quickly reaches fixation, sweeping
along linked neutral variants (Fig. 9.1a). While some attention has focused on
detecting signatures of incomplete or in-progress sweeps (Voight et al. 2006), that
is the only variation on the classic sweep that has been accounted for in genome-

http://pga.gs.washington.edu
http://pga.gs.washington.edu
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wide scans. There are many ways in which selection has likely differed from
this simplified model (Fig. 9.3), and it is unclear how robust current neutrality
test statistics are to deviations from it (Przeworski et al. 2005; Pritchard et al.
2010; Hernandez et al. 2011). In particular, models of selection from standing
variation are intuitively well-suited for recent human evolution, which has been
characterized by adaptation to novel environments (Hermisson and Pennings 2005;
Pritchard et al. 2010; Hernandez et al. 2011). In this model, a neutral allele is
drifting in the population when a change in selective pressure makes it beneficial.
The newly beneficial allele also reaches fixation quickly and drags along linked
neutral variants, but because the allele had time to accumulate different haplotype
backgrounds, the signature of the hitchhiking effect is more difficult to detect (Fig.
9.1b–c) (Hermisson and Pennings 2005; Przeworski et al. 2005). All selective sweep
models are also simplified by considering only single-locus effects, despite the fact
that epistatic effects can have a drastic impact on selection (Fig. 9.1d). Detection
methods that employ gene networks or other multi-locus models have already begun
to address this issue (Hancock et al. 2010a, b). While a few genome-wide scans
have examined microsatellite variation for signatures of selection (Payseur et al.
2002; Kayser et al. 2003; Storz et al. 2004), no study to date has used a model of
selection that explicitly accounts for their unique properties (e.g., Fig. 9.1e). Finally,
although candidate gene analyses have revealed tantalizing signatures of selection
at structural variants affecting amylase (Perry et al. 2007) and APOBEC3 (Kidd et
al. 2007), methods to identify structural variants under selection remain elusive.
As selection detection methods are further developed, it will remain imperative
that copy number variants, structural variants, indels, and microsatellites are not
overlooked.

9.5 Selection and Population Differentiation

An outstanding question that has emerged from studies of natural selection in
humans to date is how selection has influenced population differentiation (Barreiro
et al. 2008). Previous interpretations of allele frequency differences within and
between human populations have to a large extent been influenced by the imprecise
and cultural constructions of race, which is of questionable biological meaning
(Barbujani et al. 1997; Bamshad et al. 2004; Vitti et al. 2012). A more nuanced and
precise understanding of worldwide patterns of genetic variation will provide insight
into human evolutionary history and be an important framework for interpreting
geographic patterns in the prevalence and burden of disease. Levels of genetic
divergence between two populations is a complicated mosaic of many factors
including time of population splitting, population sizes, rates of migration and
admixture, and population-specific selective pressures. Therefore, a given level
of genetic divergence between two populations could arise from myriad different
evolutionary histories.

Substrates of recent natural selection are likely to show unusually high or low
levels of differentiation relative to neutrally evolving genomic loci (Lewontin and
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Fig. 9.3 The effects of positive selection on population differentiation between two populations,
as measured by FST. Left and right panels denote patterns of variation before and after selection,
respectively. Thick horizontal arrows denote selection, and thin curved arrows indicate migration.
Each line is a chromosome in the population, and each circle is a variant segregating in the
population. Thick vertical arrows denote increase or decrease in FST due to selection. Blue:
positively selected causal variant for a high extreme trait. Red: positively selected causal variant
for a low extreme trait. Cyan: a different positively selected causal variant for a high extreme trait.
Light and dark gray: segregating variant that will become advantageous
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Krakauer 1973; Nielsen 2005), and hitchhiking and background selection will also
affect differentiation at linked neutral sites. The nature of these unusual patterns
of differentiation depends largely on the type of selection acting there, as well as
whether the selective pressure is acting in the same direction in each population.
To understand the relationship between selection and population differentiation, we
must first identify extremely differentiated (or undifferentiated) regions and then
determine whether this pattern is in fact due to selection.

As discussed above, most targets of selection that have been identified to date are
under selection in a subset of populations. Intuitively, population-specific balancing
selection can make two populations appear to be more differentiated than they
actually are at the locus of interest. The population affected by selection will
maintain several intermediate frequency alleles, while the neutral variation in the
other population will be randomly fixed or lost due to drift. If a locus is under
positive selection in one population but neutral in another, this will also make
the two populations appear to be more differentiated than they actually are (Fig.
9.3a), assuming migration rates are low (Slatkin and Wiehe 1998). The population
undergoing selection will have a different major allele at a very high frequency.
Taken to an extreme, the beneficial allele could be private to the selected population.
In contrast, negative selection in one population, with neutrality in the other, will
make it appear to be less differentiated from another population (Charlesworth et
al. 1997). The population affected by negative selection will be purged of linked
neutral variation, while the other population’s diversity in the region will continue
to be ruled by genetic drift.

If selection is acting in both populations of interest, the situation is more
complicated and will depend on the origin of the selected allele, migration rates
between populations, and geographic factors (Kim and Maruki 2011). In this case,
long-term balancing selection can make the two populations appear to be less
differentiated than they actually are at linked neutral sites (Charlesworth et al.
1997; Schierup et al. 2000). Both populations will be under selection to maintain
ancient alleles, as well as to acquire and maintain many novel alleles. However, the
theoretical models used to make this prediction lack much of the complexity found
in empirical examples of both frequency-dependent and overdominant selection. In
fact, the HLA loci, which comprise the best-known example of balancing selection
in the human genome, exhibit extremely high population differentiation and an
extremely old TMRCA that predates human population divergence (Meyer and
Thomson 2001). This ancient TMRCA indicates very deep splits in the gene tree,
which can appear to be deep population divergence. There are many HLA alleles
that are private to a single population, and most alleles are found at drastically
different frequencies in different populations. Measures of genetic distance between
populations are extremely high at HLA compared to other genomic regions, even
between very closely related populations. The only groups that show reduced
distance measures are extremely isolated populations, which have experienced
drastic founder effects (Vina et al. 2012). The discrepancy between the theoretical
predictions and empirical observations is probably due to the use of simple biallelic
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models that lack the dynamic changes in selection strength that characterize
balancing selection.

On the other hand, negative selection acting on both populations will result in
lower differentiation between them at the site of selection. Both populations will
experience selective pressure to maintain the ancestral allele and have any arising
deleterious variants purged. Although specific examples of this phenomenon have
not been described, genes that show modest levels of silent human polymorphism,
but no divergence from chimpanzee at the protein level, are more likely to cause
Mendelian diseases (Barreiro et al. 2008). We can infer from this that sites under
pervasive purifying selection have limited capacity for population differentiation,
mainly because allele frequencies will be low at selected variants in both population;
however, linked neutral sites affected by background selection will actually show
increased levels of differentiation due to lower within-population diversity levels
(Charlesworth et al. 1997).

Positive selection acting on both populations can have several possible effects
on levels of differentiation at a locus (Fig. 9.3b–e). Although a non-negligible
proportion of identified targets of positive selection are shared among populations
at a local, regional, or global scale (Pickrell et al. 2009), selection may be acting
on vastly different causative alleles in different populations. Selection in two
given populations could be acting on two different functions of the same gene,
which would cause extremely high differentiation. Additionally, selection may be
driving two populations to different extremes of the same phenotype (Fig. 9.3b),
which would cause extremely high differentiation at the causative allele and linked
neutral sites (Charlesworth et al. 1997). Differentiation between two populations
under positive selection also depends on the variants available for selection to
act upon. Even if positive selection is moving two populations toward the same
trait, if different variants are available in each population, there will be high
levels of resulting differentiation (Fig. 9.3e). Several notable examples of this
kind of convergent evolution have been identified thus far. For instance, lactase
persistence alleles of LCT have arisen separately in European (Bersaglieri et al.
2004), Middle Eastern (Enattah et al. 2008), and East African (Tishkoff et al.
2007) populations. Each population possesses a different lactase persistence allele—
sometimes multiple alleles—with different haplotype backgrounds. So, although
positive selection is driving these populations toward the same phenotypic trait, the
result is still unusually high differentiation compared to the rest of the genome.
A recent genome-wide scan identified numerous SNPs exhibiting unusually high
levels of parallel divergence in two or more populations, suggesting convergent
evolution (Tennessen and Akey 2011). Migration rates between the populations will
also interact with positive selection to affect differentiation. If the beneficial allele
arises in one population and then spreads to the other through migration, there will
actually be a decrease in differentiation near the selected site, and the hitchhiking
region will be narrower (Fig. 9.3c) (Santiago and Caballero 2005). On the other
hand, if the beneficial allele is present in both populations before selection starts,
as in the case of selection from standing variation, differentiation will be higher
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at hitchhiking neutral sites as long as migration rates are not too high (Fig. 9.3d)
(Slatkin and Wiehe 1998).

The connection between phenotypic similarities and population relatedness
becomes even more tenuous when discussing physical, rather than molecular,
phenotypes. One notable example is adaptation to high-altitude living (Scheinfeldt
and Tishkoff 2010). Although the concentration of atmospheric oxygen is the same
at high altitudes, lower atmospheric pressure means that the partial pressure of
oxygen is too low to induce gas exchange in the lungs. Without adaptation, long-
term high-altitude living would be impossible. Populations living in the Andes,
the Tibetan Plateau, and the Ethiopian Highlands all exhibit a lack of hypoxia
at high altitudes. This shared phenotype is the result of convergent evolution and
could be expected to cause genetic similarities between these populations that
are otherwise distantly related. When the phenotype is examined more closely on
a molecular level, however, Andeans, Ethiopian Highlanders, and Tibetans may
have different hemoglobin and oxygen saturation levels (Beall et al. 2002; Huerta-
Sanchez et al. 2013). Closer examination shows that even populations exhibiting
similar molecular phenotypes have adaptations at different genes involved in the
same pathway (the hypoxia-inducible factor 1, or HIF-1 pathway) (Bigham et
al. 2009; Xu et al. 2011; Scheinfeldt et al. 2012; Huerta-Sanchez et al. 2013).
Clearly, even detailed physiological phenotypes are not always a reliable indicator
of population differentiation due to positive selection.

While much attention has been focused on visible phenotypic differentiation
between populations (e.g., hair and skin pigmentation, hair texture, stature, and
facial features), this focus is almost entirely unwarranted. Genome-wide scans for
the targets of positive selection have detected the signatures of selection in genes
associated with visible phenotypes—notably skin pigmentation via SLC24A5 and
hair texture at EDAR—but these signals are far outnumbered by those of other path-
ways, such as metabolic processes, immune responses, and olfaction (Akey 2009).
While it is not entirely clear how much of human genetic variation is represented
in visible phenotypic differences, we can speculate that the majority of molecular
differences have no immediately visible physical manifestation. Therefore, the
majority of population differentiation, whether due to selection or not, is likely to
be found in specific molecular phenotypes that require detailed measurements to
detect. Furthermore, the amount of population differentiation seen at selected loci
is extreme compared to the rest of the genome and should not be used to draw
sweeping conclusions about population differences. The temptation to conjecture
about the meaning and significance of these selected population differences is
high, but there is potential for such conjectures to be misused for harmful and
discriminatory purposes (Vitti et al. 2012). Researchers should therefore interpret
population adaptations with restraint and the use of appropriate supporting data.
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9.6 Conclusions

The study of human evolution sits poised on the cusp of a new and comprehensive
understanding of how natural selection and demographic history have influenced
human genetic variation. The past century has seen great strides in this endeavor,
including the description of the hitchhiking effect, background selection, and the
development of models to describe positive, negative, and balancing selection.
These developments have provided new and surprising insights into population
differentiation, the persistence of deleterious and disease-causing alleles, and
the peopling of the world. Studies of convergent evolution in disparate human
populations on such traits as lactase persistence and living at high altitudes have
exhibited the stochastic nature of adaptive evolution.

Empirical studies have provided an enormous body of knowledge on the signa-
tures of selection across the human genome. These inferences show, for example,
that negative selection has been weak but pervasive across much of the genome.
Balancing selection has proven to be an important force at a handful of loci, with its
complex interaction between hitchhiking and background selection leaving unique
and striking patterns in patterns of local genetic variation. The influence of positive
selection has significantly influenced patterns of human genetic variation, both
directly and indirectly through genetic hitchhiking. Targets of adaptive evolution
are scattered across the human genome, affecting many gene processes, pathways,
and networks. Thus, human populations have adapted to their environments in ways
numerous and diverse (Hahn 2008).

Even in the face of these vast new areas of scientific knowledge, the bulk
of our insight into these topics is yet to come. Advances in next-generation
sequencing technology have enabled the sequencing of hundreds of thousands of
human genomes from increasingly diverse worldwide populations. Advances in
statistical methods for detecting the signatures of selection will improve sensitivity
and specificity of “candidate selected loci.” Additionally, the development of more
realistic models of selection will account for epistatic effects between genes,
selection from standing variation, recurrent mutation, and selection at CNVs, indels,
microsatellites, and other structural variants. Finally, armed with a detailed map of
the signatures of selection across the human genome, we will be able to delineate
the phenotypic consequences of adaptive evolution, make more accurate predictions
of genetic risk for individuals, and gain insights into the connection between human
populations and their evolutionary environments.
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