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Abstract. Developers of mobile apps gather a lot of user’s personal
information at runtime by exploiting third-party analytics libraries, with-
out keeping the owner (i.e., the user) of such information in the loop. We
argue that this is somehow paradoxical. To overcome this limitation, in
this paper, we discuss a methodology (i.e., MobHide), allowing the user
to choose a different privacy level for each app installed on her device.
According to the user’s preferences, MobHide anonymizes the data col-
lected by the analytics libraries before sending them to the app devel-
opers, through a fruitful combination of data anonymization techniques.
More in detail, the methodology enables to i) analyze all the network
traffic generated by the invocation of analytics libraries, ii) anonymize
the personal and device data using a generalization technique, and the
events related to the user’s behavior by exploiting local differential pri-
vacy, and iii) send the anonymized data to the developers.

We empirically assessed the viability of the approach on Android, by
implementing the methodology as an Android app, i.e., HideDroid, that
relies on the VPN service provided by Google to intercept all network
requests. Our preliminary experiments - carried out on a real app (i.e.,
Duolingo) - are promising, and suggest that runtime data anonymization
on mobile is feasible nowadays, as it negligibly impacts the app perfor-
mance.

Keywords: Android privacy · Analytics libraries · Data
anonymization

1 Introduction

In mid-2020 the number of available mobile applications (hereafter, apps) is
growing towards 4.5 millions1 (i.e., 2.56 M Android apps and 1.86 M iOS apps).
This fact suggests that the competition among app developers to rise to (or stay

1 https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-
app-stores/.

This work was partially funded by the Horizon 2020 project “Strategic Programs for
Advanced Research and Technology in Europe” (SPARTA).

c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 490–507, 2020.
https://doi.org/10.1007/978-3-030-61638-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_27&domain=pdf
http://orcid.org/0000-0002-5408-4735
http://orcid.org/0000-0001-7155-7429
http://orcid.org/0000-0002-2272-2376
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://doi.org/10.1007/978-3-030-61638-0_27


MobHide: App-Level Runtime Data Anonymization on Mobile 491

on) top is always more fierce, as they need to keep building apps that fully meet
the user’s expectation. To this aim, app developers need to receive continuous
feedback on the way users interact with their apps. To achieve such result, they
actually keep monitoring both the user’s activities and the status of the device
in order to i) track errors and crashes in the app, ii) understand the tastes of the
user, and iii) deliver personalized advertisements, products or functionalities, in
order to maximize the user’s experience.

Such monitoring activity is currently carried out at runtime by exploiting
third-party analytics libraries that enable the collection of information regarding
the user’s behavior. In detail, such libraries are made of a set of API that allows
collecting the user-generated events (e.g., the set of the most visited pages or the
history of purchases), and several details about the user herself and the device
(e.g., the IMEI number, the OS version, and the GPS location). Developers can
include such libraries in the app and invoke their API methods in the app code to
log a meaningful event or information. Currently, the most widespread analytics
libraries [3,23] are Facebook Analytics2 and Google Firebase Analytics3.

However, the adoption of analytics libraries raised serious concerns regard-
ing the user’s privacy [14,17] for several reasons. First, as analytics libraries
are embedded in the app, they share the app privileges and get access to its
resources. Furthermore, analytics libraries do not enforce any privacy-preserving
mechanism, as discussed in [11,17,20]. Finally, the user has no control over them:
although she can grant or deny the permission to collect personal data, she can-
not choose the data to track nor apply any anonymization techniques to her data
collected by the analytics libraries. Paradoxically, this means that the manage-
ment of some user’s personal information is devoted to the app developers rather
than the user, which is the legal owner. This “status quo” currently maximizes
the utility of data (for app developers) at the expense of the user’s privacy.
To this aim, we argue that the user must be kept in the loop and be free to
choose the trade-off between utility and privacy of her own data, before they are
delivered to any third-party.

Currently, this problem is gaining momentum, as researchers recently pro-
posed some solutions to try mitigating the privacy issues of third-party libraries
at large, and to anonymize the collected personal data. For instance, Zhang
et al. [24] proposed a solution allowing the developer to anonymize the collected
information according to differential privacy techniques. However, the approach
is still developer-centric, i.e., the developer chooses both the anonymization strat-
egy and its configuration. Liu et al. [17] designed an Android app able to inter-
cept and block all the API related to analytics libraries, while Razaghpanah et
al. [19] developed an app able to block the network requests that contain per-
sonal information. However, both solutions follow an “all or nothing” approach:
all personal data are exported in their original form (i.e., maximizing the utility
of data), or none of them is exported at all (i.e., maximizing the user’s privacy).
As data anonymization can be modeled as an optimization problem, where the

2 https://developers.facebook.com/docs/graph-api/reference/application/activities/.
3 https://firebase.google.com/docs/analytics/get-started.

https://developers.facebook.com/docs/graph-api/reference/application/activities/
https://firebase.google.com/docs/analytics/get-started
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aim is to find the optimal balance between data privacy and utility, previous
approaches need to be extended further. As a last remark, it is also worth point-
ing out that the implementation of all the proposed solutions is strongly invasive
(i.e., it requires either the adoption of a customized OS, the mandatory presence
of root permissions, or the modification of the app logic), and could hardly be
adopted in the wild.

Contributions of the Paper. This paper presents a novel, user-centric
methodology, called MobHide, that allows the per-app anonymization of col-
lected personal data according to a privacy level chosen by the user. In a nutshell,
the idea is to collect all the network traffic generated by the invocation of API
calls belonging to analytics libraries, and extract the exported data. Then, the
next step is anonymizing the personal and device data using a generalization
technique, and the data related to the user’s behavior using an approach based
on the concept of local differential privacy, in a way that preserves as much data
semantics as possible. Finally, the anonymized data are sent to the expected
recipients by mimicking the original network calls.

To prove the effectiveness and the feasibility of MobHide, we implemented the
methodology in an Android app called HideDroid, and we used it to anonymize
the data collected by a real Android app with more than 100M downloads (i.e.,
Duolingo). HideDroid relies on standard Android APIs to build a VPN-Client
that successfully intercepts the network traffic generated by the app with a
minimal configuration (i.e., by installing the app certificate). Furthermore, we
integrated a transparent repackaging mechanism for the installed apps that do
not alter the app behavior, to overcome the network restrictions imposed by the
most recent Android OS versions.

Structure of the Paper. The rest of the paper is organized as follows: Sect. 2
introduces the functionalities of analytics libraries, and some basic concepts on
data anonymization, while Sect. 3 defines the MobHide methodology. Section 4
presents the HideDroid prototype implementation on Android. Section 5 shows
and discusses the usage of our approach on a real app. Section 6 presents the
current state of the art, Sect. 7 discusses the limitation of our proposal, while
Sect. 8 concludes the paper and points out some extensions of this work.

2 Background

2.1 Notes on Analytics Libraries

Analytics libraries allow to log user’s events and device properties during the app
execution. There exist several providers of mobile analytics libraries [3]. Among
them, Firebase Analytics, Facebook Analytics, and Flurry are largely the most
adopted ones [23].

Analytics libraries are composed by two parts, namely i) a Software Devel-
oper Kit (SDK) that can be included by developers in the app, and ii) a backend
system - usually located in the Cloud - that allows the same developers to track
and analyze the collected data through proper control dashboards. The SDK
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allows the developer to log and monitor either a pre-defined set of standard
events or define properly customized events. In general, standard events are
common to all apps, and are automatically collected by the SDK and sent to the
analytics backend without any further configuration. Examples of such events
are “app installation, “app open”, and “app close”. A custom event is defined
by the developer to track app-specific activities. The event is typically repre-
sented in a key-value format (e.g., JSON) and sent to the backend by invoking
a proper SDK API - typically named logEvent. Also, the event often contains
some metadata [4].

2.2 Data Anonymization

Data Anonymization (DA) is the process of protecting private or sensitive infor-
mation by erasing or encrypting identifiers that explicitly connect an individual
to some data. For instance, such a process is of paramount importance when com-
panies share data about their users with third parties for analytics or marketing
analysis [12]. State of the art DA techniques can be divided into perturbative
and non-perturbative, depending on the kind of data to protect. One of the most
widespread non-perturbative technique, especially for the multidimensional data
(e.g., relational databases), is generalization [21].

Generalization. A piece of information describing an entity (e.g., a user) can
be represented by a set of attributes that give details about its features (e.g.,
gender, date of birth, address). In the original data, where each value is as
much specific as possible, each attribute is considered to be in the most specific
domain. Generalization techniques consist of replacing the specific value of a set
of attributes with a more general one, preserving as much data semantics as
possible.

In detail, given an attribute A of a table T , we can define a domain gen-
eralization hierarchy (DGH) for A as a set of n functions fh : h = 0, ..., n− 1
such that:

A0
f0−→ A1

f1−→ ...
fn−1−−−→ An (1)

For example, Fig. 1 depicts a set Z0 of actual ZIP codes. In such a case,
we can define a generalization function f0 that strips the first rightmost digit to
represent a larger geographical area. To make Z1 less informative, we can iterate
the process and define f1 and f2 to strip other digits from the ZIP codes until
the most general domain Zn is reached, i.e., where all zip codes are mapped to a
singleton value. It is trivial to notice that the more generalization functions are
invoked on the original data, the higher is the obtained privacy (and the lower
is the data utility), as heterogeneous data are transformed into an always more
reduced set of general values.

Generalization techniques are suitable only for semantically independent mul-
tidimensional data (e.g., the tuple of a relational database table), but they do
not work properly to anonymize sequences of semantically related data. There-
fore, they can be used to anonymize the attributes of a single event logged by
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Fig. 1. A sample domain generalization hierarchy (DGH) for ZIP values.

analytics libraries only. To anonymize a sequences of logged (and semantically
related) events, we leverage Differential Privacy [13] techniques.

Differential Privacy. In a nutshell, Differential Privacy (DP) applies a per-
turbation function to a set of related data, e.g., a sequence of events, by using
a random noise to alter the original distribution according to a ratio parameter,
defined a priori.

There are two main models for defining DP problems: centralized and local
model. In the centralized model, the data are sent to a trusted entity (e.g., an
analytics company) that applies DP algorithms and then shares the anonymized
dataset with an untrusted third-party client. On the contrary, the local model
assumes all external entities and communication channels as untrusted. In such
a situation, local DP techniques aim at performing the data perturbation locally
before releasing any dataset to an external party. In our scenario, we consider the
user as the sole owner of its data, and we trust neither the advertising company
nor the developer. To this aim, the local DP model is suitable to anonymize
sequences of events logged by analytics libraries.

In a local model, we can define a sequence of n events such as e1, e2, ..., en
where ei defines the i− th event. We can assume that all possible values of these
events belong to E. A local DP solution can be defined as a perturbation function
R that takes as input a sequence of events (i.e., ei) and outputs another sequence
of events (i.e., zi) different from the previous one. For example, a perturbation
function can be a function that adds some noise to the data or replace some
events according to a probability defined a priori. The resulting data, i.e., zi =
R(ei), can be sent to the destination server (e.g., the analytics server). The
interested reader can find more details on local DP techniques in [13].

3 The MobHide methodology

The MobHide methodology allows the user to choose a different privacy level
for any app installed on the device. The idea is to dynamically analyze the
app behavior at runtime and anonymize the actual exported data. In principle,
we could leverage static analysis techniques, by following, e.g., the techniques
we applied in [8], to locate and instrument the methods that invoke analytics
libraries APIs. Nonetheless, instrumentation leads to high customization of the
app code, requires the systematic repackaging of any app, as well as to deal with
potentially obfuscated code [7]. Therefore, MobHide leverages runtime monitor-
ing of any app according to the following steps: i) intercept all data exported
by the app through the invocation of API calls belonging to analytics libraries,
ii) anonymize data therein by applying the generalization and local DP tech-
niques previously discussed, and iii) send the anonymized data to the backend
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by mimicking the original network calls. Figure 2 provides a high-level view of
the workflow.

In detail, the first step is carried out by the Privacy Detector module, which
intercepts and filters the traffic that comes from the apps. For each network
request belonging to an analytics library API, the module stores it in a buffer
repository (Event Buffer) and drops the original communication (step 2). Oth-
erwise, the connection is transparently forwarded (step 3).

The Data Anonymizer module carries out the anonymization procedure. Peri-
odically, this module pulls the data from the Event Buffer (step 4) and applies
the anonymization strategy according to the selected app privacy level (step
5) and data generalization hierarchies (step 6). Finally, the anonymized data is
sent to the Data Sender module (step 7) that forwards them to the expected
recipients (step 8). The rest of this section details the different modules and the
MobHide anonymization strategies.

Fig. 2. MobHide - high-level workflow.

3.1 Privacy Detector

The Privacy Detector inspects all network traffic coming from the apps
selected by the user (Step 1 in Fig. 2). The module parses both encrypted and
plain-text traffic according to i) the domain name and ii) the content of the
request itself.

In detail, if the domain name belongs to a set of well-known analytic libraries
(e.g., graph.facebook.com is related to Facebook Analytics, and app-measu-
rement.com to Firebase Analytics), the corresponding request is immediately
stored in the Event Buffer, and the original communication is dropped. If the
domain name is not sufficient or unknown, the Privacy Detector analyzes the
data within the request to identify the parameters and the value most commonly
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used by analytics libraries. The most common attributes are obtained by the
official documentation of the analytics library4,5,6.

Finally, the rest of the network traffic is forwarded to the expected recipients
without any further change.

3.2 Privacy Settings Database and DGH Database

MobHide relies on two databases to store the settings defined by the user and
the configuration rules for the anonymization strategy.

The privacy level chosen by the user for each app is stored within the Pri-
vacy Settings Database, and it contains the per-app privacy level defined by
the user and thus enables the use of a fine-grained anonymization strategy to
each of the apps. The privacy level is mapped into four different values, i.e.
NONE, LOW, MEDIUM, HIGH. If an app is set to NONE, its traffic will be excluded by
the anonymization process. On the contrary, the maximum privacy level HIGH
leads to execute both the generalization and the local DP according to the more
restrictive (i.e., privacy-preserving) settings.

The DGH Database contains the domain generalization rules for the most
common personal attributes collected by the analytics libraries (e.g., gender,
date of birth, and location).

3.3 Data Anonymizer

The Data Anonymizer is in charge of applying the anonymization strategies on
the collected data. As described in Sect. 2.1, the data collected by the analytics
libraries includes both the user’s in-app actions (i.e., the user’s behavior) and
information about the user or the device. To deal with such heterogeneous data,
the Data Anonymizer builds an anonymization pipeline based on both data
generalization and differential privacy techniques.

User’s and Device Data Anonymization. To anonymize the information
regarding the user and the device, the Data Anonymizer adopts a procedure
based on data generalization [21]. The Data Anonymizer scans each network
request to detect and extract all exporting data. For each attribute, the module
looks up for a generalization rule in the DGH Database. If a match is found,
the value is generalized according to the privacy level. In detail, each increment
in the privacy value (i.e., from LOW to HIGH) implies the application of an extra
generalization function of the DGH. In case a match is not found, the Data
Anonymizer relies on the following heuristics:

– If the attribute is a string, the generalization replaces the last p elements
with a generic value ′∗′. The value of p depends on the privacy level, and it
is defined as follow:

4 https://firebase.google.com/docs/analytics/get-started.
5 https://developers.facebook.com/docs/graph-api/reference/application/activities/.
6 https://developer.yahoo.com/flurry/docs/.

https://firebase.google.com/docs/analytics/get-started
https://developers.facebook.com/docs/graph-api/reference/application/activities/
https://developer.yahoo.com/flurry/docs/
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p =
stringLength ∗ selectedPrivacyLevel

#PrivacyLevels − 1
(2)

where stringLength is the string length, #PrivacyLevels is the number of
available privacy levels (i.e., 4), and selectedPrivacyLevel is the privacy level
selected by the user (i.e., NONE=0, LOW=1, MEDIUM=2, HIGH=3).

– If the attribute in a number, the generalization rounds the value to the p
most significant digits. The value of p is computed as:

p =
#digits ∗ selectedPrivacyLevel

#PrivacyLevels − 1
(3)

where #digits is the number of digits while the other values are defined in
the same way as discussed above.

Anonymization of the User’s Behavior. To anonymize the user behavior
modeled as a set of related events generated as a consequence of a user action,
the Data Anonymizer adopts a heuristic based on local Differential Privacy and
the concept of local data perturbation. This heuristic enables the anonymization
of the user behavior while preserving structured data for the developer.

The local data perturbation process aims to modify the original behavior
distribution by either (i) removing intercepted events, (ii) replacing events,
or (iii) injecting crafted events. To do so, the Data Anonymizer relies on a
threshold value defined as follows:

Thresholdaction = 1 − selectedPrivacyLevel

#action + 1
(4)

where
action ∈ [inject, remove, replace]

The Data Anonymizer assigns to each intercepted event three pseudo-random
numbers (ranging from 0 to 1) that represent the probability of executing one
of the three perturbation actions (i.e., inject, remove, replace). Then, the per-
turbation action is executed only if the corresponding probability is higher than
the threshold.

Anonymization Pipeline. The complete procedure for the data anonymiza-
tion follows the algorithm described in Algorithm1. For each event stored in
the Event Buffer (row 3), the algorithm computes the three pseudo-random
numbers: Prinj , P rrem, P rrep (rows 4–6).

If the Prinj is higher than the threshold, the Data Anonymizer module builds
a new generalized event taken from the pool of the supported event types. If the
Prrep is greater than the threshold (row 11), the module replaces the original
event with another valid one. Then, it generalizes the attributes of the replacing
event (following the rules described above). Otherwise, the Data Anonymizer
module checks whether to remove the original event or generalize it. In all three
previous cases, the modified event is added to the set of anonymized data (rows
8–9, 12–14, and 17–20), which are returned at the end of the pipeline (row 22).
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Algorithm 1. Data Anonymization Pipeline
Input: eventBuffer, selectedPrivacyLevel
Output: anonymizedEvents
1: Initialize anonymizedEvents ← list()
2: Initialize Thresholdaction ← 1 − (selectedPrivacyLevel/4)
3: for each event in eventBuffer do
4: Prinj ← rand()
5: Prrem ← rand()
6: Prrep ← rand()
7: if Prinj > Thresholdaction then
8: newGenEvent ← generateNewGenEvent(selectedPrivacyLevel)
9: anonymizedEvents.add(newGenEvent)

10: end if
11: if Prrep > Thresholdaction then
12: replEvent ← replaceEvent(event)
13: replGenEvent.attributes ← generalizeEvent(replEvent.attributes,

selectedPrivacyLevel)
14: anonymizedEvents.add(replGenEvent)
15: else if Prrem > Thresholdaction then
16: deleteEvent(event)
17: else
18: originalGenEvent ←generalizeEvent(event.attributes,

selectedPrivacyLevel)
19: anonymizedEvents.add(originalGenEvent)
20: end if
21: end for
22: return anonymizedEvents

3.4 Data Sender

The Data Sender module is in charge of forwarding the anonymized data
returned by the Data Anonymizer pipeline (step 7) to the analytics backends. To
do so, the module mimics the original calls dropped by the Privacy Detector by
encapsulating each anonymized data instead of the original plain data (step 8).

4 Implementing MobHide on Android

We empirically assessed the feasibility of MobHide on Android by developing a
prototype implementation, called HideDroid, and testing it on a real app.
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HideDroid leverages the Android VPN API7 to capture and analyze the net-
work traffic generated by the apps installed on the device. The app includes
a Couchbase Lite8 NoSql database to implement the Event Buffer and two
SQLite databases to store the privacy settings and the generalization hierarchies,
respectively.

HideDroid Setup. The execution of HideDroid begins by determining the run-
time environment, i.e., the OS version and the presence of root permissions.
HideDroid implements a transparent SSL/HTTPS proxy [5] to intercept both
plain and encrypted network traffic. To this aim, the app generates a self-signed
CA and requires the permission to install it in the user’s CA store. If the device
has root permissions, HideDroid also requires the permission to install the cer-
tificate within the system CA store.

App Privacy Configuration . The HideDroid interface allows the user to view
all the apps installed on the device, and select a different privacy level for each
app, as shown in Fig. 3. Privacy levels are stored in the Privacy Setting Database.
For each selected app with privacy level higher than NONE, HideDroid checks if
the app requires an additional setup to be intercepted by the Privacy Detector.
It is worth pointing out that this extra step is required only if the Android
version is ≥7.0, and the user does not have root permissions, due to the current
restriction imposed by the OS [1]. Indeed, if the Android OS version is <7.0, or
if the user accepts the installation of the HideDroid CA in the system CA store,
the Privacy Detector can intercept the app network traffic without any further
customization.

The additional setup step is an app repackaging phase, in which proper
network configurations are added to the app, without affecting the original app
logic. More in details, the repackaging phase is composed of four steps in which
HideDroid:

1. unpacks the app using Apktool9;
2. adds a new network security configuration file10 to the app, in order to force

the usage of the user certificate store (Listing 1.1);
3. modifies the Android manifest file to enable the use of the new network con-

figuration;
4. re-installs the configured app using the INSTALL PACKAGES permission.

At the end of this phase, HideDroid is able to intercept and anonymize the data
collected by the analytics libraries.

7 https://developer.android.com/reference/android/net/VpnService.
8 https://docs.couchbase.com/couchbase-lite/current/java-android.html.
9 https://github.com/iBotPeaches/Apktool.

10 https://developer.android.com/training/articles/security-config.

https://developer.android.com/reference/android/net/VpnService
https://docs.couchbase.com/couchbase-lite/current/java-android.html
https://github.com/iBotPeaches/Apktool
https://developer.android.com/training/articles/security-config


500 D. Caputo et al.

(a) Main Interface. (b) Privacy Level Slider.

Fig. 3. Screenshots from the HideDroid prototype.

5 Empirical Assessment

We evaluated the viability of MobHide by executing HideDroid on a real appli-
cation. After reversing and analyzing a set of most downloaded apps equipped
with analytics libraries, we selected Duolingo11 as a relevant use case for several
reasons: first, Duolingo adopts four of the most widespread analytics libraries
(i.e., Google Firebase Analytics, Google Crashlitics, Facebook Analytics, and
Adjust); furthermore, it requires 30 permissions that can be used to extract
information regarding the user and the device (Table 1); finally, it has more
than 100M downloads worldwide.

We carried out the experiment on a Huawei P10 device equipped with
Android 9.0, an Octa-core (4×2.4 GHz Cortex-A73 & 4×1.8 GHz Cortex-A53),
and 4 GB of RAM. Since the experiment involves an Android version ≥7.0, the
Duolingo app has been repackaged (see Sect. 4). An actual user manually tested
the app for two hours, in order to push the invocation of a relevant number of
API calls belonging to analytics libraries. During the testing phase, HideDroid
captured all network traffic generated by Duolingo, and anonymized the data
according to the MobHide strategies described in Sect. 3.

11 https://play.google.com/store/apps/details?id=com.duolingo&hl=en.

https://play.google.com/store/apps/details?id=com.duolingo&hl=en
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Listing 1.1. The network security config.xml file injected by HideDroid.

<?xml version=”1.0” encoding=”utf−8”?>
<base−config cleartextTrafficPermitted=”true”>

<trust−anchors>
<certificates src=”system” />
<certificates src=”user” />

</trust−anchors>
</base−config>

Table 1. Permissions required by Duolingo.

Permissions

ACCESS NETWORK STATE
AUTHENTICATE ACCOUNTS
FOREGROUND SERVICE
GET ACCOUNTS
INTERNET
READ APP BADGE
READ EXTERNAL STORAGE
RECEIVE BOOT COMPLETED
RECORD AUDIO
VIBRATE
WAKE LOCK
WRITE EXTERNAL STORAGE
UPDATE COUNT
BILLING
RECEIVE

BADGE COUNT WRITE
BADGE COUNT READ
PROVIDER INSERT BADGE
BROADCAST BADGE
WRITE
READ
WRITE SETTINGS
READ SETTINGS
UPDATE BADGE
WRITE SETTINGS
READ SETTINGS
CHANGE BADGE
UPDATE SHORTCUT
READ SETTINGS
BIND GET INSTALL REFERRER SERVICE

We analyzed the network traffic generated by the advertising libraries.
Regarding the user’s and device profiling, the model of device, the network
latency, the username, and the free space on disk are the most cap-
tured information. Also, the app collected a set of events that describes the
user’s behavior. Examples of such events include app open, app install, and
learning reason tap. During the two-hours experiment, HideDroid collected
123 events belonging to 39 different classes. Figure 4 summarizes the frequency
of each captured event, while Listing 1.2 shows a subset of actual personal data
collected by Duolingo and exported to the analytics backend.

We tested all the available privacy levels on Duolingo, in order to evaluate
the anonymization capabilities of HideDroid. As described in Sect. 3, MobHide
performs two types of anonymization for personal and device information and for
user’s events, respectively. Listing 1.3 shows an example of the data anonymized
after applying a generalization technique with the privacy level set to HIGH to
the original data showed in Listing 1.2: note that all the string values have been
converted to a sequence of * (e.g., “client id”), while the integer parameters have
been rounded to the most meaningful digit (e.g., “memory maximum”).
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Fig. 4. Distribution of the user’s events collected by Duolingo during the two-hours
experiment.

...
‘‘ event type ”: ‘‘ app open ”,
‘‘ event timestamp”: 1591880722000,
‘‘ client ”: {

‘‘ client id ”: ‘‘ android−excess ”
},
‘‘ attributes ”: {

‘‘ memory maximum ”: 268435456,
‘‘ memory class ”: 96,
‘‘ memory system available ”: 2669375488,
‘‘ data saver ”: ‘‘ enabled ”,
‘‘ memory class large ”: 256,
‘‘ $screen height ”: 1794,
‘‘ $app release ”: 951,
‘‘ memory system total ”: 3156844544,
‘‘ screen width ”: 411,
‘‘ $carrier ”: ‘‘ Android ”,
‘‘ Client ”: ‘‘ Duodroid ”,
‘‘ orientation ”: ‘‘ portrait ”,
‘‘ mp lib ”: ‘‘ android ”,
...

Listing 1.2. Example of event collected
by Duolingo.

...
‘‘ event type ”: ‘‘ app open ”,
‘‘ event timestamp ”: 1591880722000,
‘‘ client ”: {

‘‘ client id ”: ‘‘∗∗∗∗∗∗∗∗∗∗∗∗∗”
},
‘‘ attributes ”: {

‘‘ memory maximum ”: 200000000,
‘‘ memory class ”: 90,
‘‘ memory system available ”: 2000000000,
‘‘ data saver ”: ‘‘ undefined ”,
‘‘ memory class large ”: 200,
‘‘ $screen height ”: 1000,
‘‘ $app release ”: 900,
‘‘ memory system total ”: 3000000000,
‘‘ screen width ”: 400,
‘‘ $carrier ”: ‘‘ undefined ”,
‘‘ Client ”: ‘‘ undefined ”,
‘‘ orientation ”: ‘‘ undefined ”,
‘‘ mp lib ”: ‘‘ undefined ”,
...

Listing 1.3. Example of anonymized
event with privacy level HIGH.

Figure 5 shows the distributions of the anonymized event frequencies for each
levels of privacy (i.e., NONE, LOW, MEDIUM, HIGH). It is worth noticing that each
privacy level has its own specific distribution pattern. To prove that the distribu-
tions are actually different from each other, we computed the KL Divergence [15]
(i.e., DKL) which allows measuring the distance between two distributions. A
high value of DKL suggests that the two distributions are very different, while
DKL = 0 indicates that two distributions are identical. We calculated DKL

between the original event distribution and each anonymized distribution. The
results are reported in Table 2.
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Table 2. Parameters and metrics of the HideDroid anonymization phase.

Privacy TH # InjEv # RemEv # RepEv # TotEv DKL Ex. Time

LOW 0.75 24 35 28 140 0.11 0.416
MEDIUM 0.5 62 61 66 190 0.28 0.352
HIGH 0.25 94 93 98 223 0.38 0.419

Fig. 5. Comparison of the different event distributions generated by HideDroid, accord-
ing to the selected privacy level.
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Such a table summarizes the results of the anonymization phase on the set
of events for each privacy level. In detail, the first column indicates the privacy
level (i.e., Privacy), while columns 2 to 6 describe the parameters and the metrics
for the local DP, i.e., the Thresholdaction (i.e., TH), the number of injected,
removed and replaced (i.e., # InjEv, # RemEv and # RepEv respectively)
events, the number of total events (i.e., # TotEv). Column 7 contains the value
of the KL Divergence, while the last columns contain the execution time (i.e.,
Ex. Time) required to anonymize the list of events.

Regarding DKL, it is worth pointing out that the distance between the origi-
nal distribution and the anonymized ones is always greater than 0. Furthermore,
the higher is the privacy level, the greater is the DKL value, thereby suggesting
that the utility of the exported data lowers when the privacy level rises.

Performance (i.e., Ex. Time) is likewise very promising. In fact, it is worth
noticing that the anonymization of a data flow belonging to 2 h of app usage
and that contains more than 120 events, requires less than a second. Albeit
further studies are required, this suggests that the on-the-fly execution of data
anonymization techniques at the state of the art on mobile could be feasible on
(most of) the current mobile devices.

6 Related Work

The wide adoption of third-party analytics libraries in mobile apps has recently
attracted the attention of the security research community. The work of Chen
et al. [11] is one of the first studies that explicitly focus on the privacy issues
related to mobile analytics libraries. In detail, the authors demonstrated how
an external adversary could extract sensitive information regarding the user and
the app by exploiting two mobile analytics services, i.e., Google Mobile App
Analytics and Flurry. Moreover, Vallina et al. [22] identified and mapped the
network domains associated with mobile ads and user tracking libraries through
an extensive study on popular Android apps.

Still, most of the research activity focus on proposing some novel approaches
to enhance privacy. For instance, Beresford et al. [10] proposed a modified ver-
sion of the Android OS called MockDroid, which allows to “mock” the access of
mobile apps to system resources. MockDroid allows users to revoke access to spe-
cific resources at run-time, encouraging the same users to take into consideration
a trade-off between functionality and personal information disclosure.

Zhang et al. [25] proposed PrivAid, a methodology to apply differential
privacy anonymization to the user events collected by mobile apps. The tool
replaced the original analytics API with a custom implementation that collects
the generated event and applies DP techniques. The anonymization strategy is
configured directly by the app developer, which can reconstruct at least a good
approximation of the distribution of the original events.

The authors in [19] proposed an Android app called Lumen Privacy Monitor
that analyzes network traffic on mobile devices. This app aims to alert the user if
an app collects and sends personally identifiable information (e.g., IMEI, MAC,
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Phone Number). The application allows the user to block requests to a specific
endpoint. To do that, Lumen Privacy Monitor asks for all the Android permis-
sions in order to collect the user data and perform the lookup in the network
requests.

Unfortunately, the above solutions do not provide proper data anonymiza-
tion, thereby proposing either block-or-allow strategies or approaches that enable
the reconstruction of the original data by a third-party (e.g., the app developer).
Also, most of them require invasive modifications of the apps or the OS (e.g.,
custom OS and root permissions), and can very hardly be adopted in the wild.

To the best of our knowledge, MobHide is the first proposal that allows
the user to choose a per-app privacy level and, at the same time, granting the
possibility to export anonymized data. Furthermore, our prototype HideDroid
has been designed to ensure minimal invasiveness on the mobile device.

7 Discussion and Future Developments

This work aims to demonstrate the feasibility of runtime anonymization of per-
sonal data exported by mobile apps and the viability of allowing users to choose
a level of privacy for each installed app. Nonetheless, both our methodology (i.e.,
MobHide) and implementation (i.e., HideDroid) have some limitations.

In the current definition, the MobHide methodology adopts basic - yet effec-
tive - DA techniques on the collected data. Still, an extensive evaluation of the
type of data transmitted by third-party analytics libraries could unveil com-
plex structures (e.g., multidimensional data, time-series, transaction data, . . . ).
To this aim, other - more complex - DA techniques, such as k-anonymity [21],
l-diversity [18] or t-closeness [16], must be taken into consideration and imple-
mented in HideDroid.

Moreover, the traffic recognition capabilities of MobHide are based on a pre-
defined mapping between the hosts and the corresponding analytics services. If
an app sends data to an unknown host, MobHide tries to recognize whether the
request belongs to an analytic service, according to a keyword-based heuristic
(e.g., if the word “event” is contained in the network request). However, such
a technique could introduce some false positives, leading to potential app mal-
functioning if the request contains data related to the logic of the app. Also in
this case, an extensive analysis of such heuristic in the wild will allow evaluat-
ing its reliability. In case of low reliability, the adoption of ML-based network
recognition techniques [22] could be taken into consideration.

Regarding the limitations of the prototype implementation, HideDroid has
been designed to minimize the impact on the target apps. Indeed, we developed
the tool with the aim to reduce as much as possible the app customization, and,
therefore, we rely on app repackaging only on devices equipped with Android
geq 7.0 and without root permissions. However, the repackaging process may fail
against system apps or apps with anti-repackaging mechanisms in place. Also,
the presence of certificate-pinning mechanisms applied to the network traffic of
analytics libraries could interfere with the ability of HideDroid to analyze and
anonymize the corresponding data.
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To overcome the above technical limitations, we plan to evaluate the usage of
DroidPlugin [2] or VirtualApp [6] virtual environments that provide the ability
to intercept the network traffic without the need of any app customization.

8 Conclusion

In this paper, we introduced MobHide, the first “user-centric” methodology
for the per-app anonymization of the data collected by third-party analytics
libraries. Furthermore, we proposed HideDroid, a prototype implementation for
Android that has been tested on a real-world app with more than 100M down-
loads.

This work is a first step towards balancing between data utility and user
privacy in mobile ecosystems, demonstrating the feasibility of introducing data
anonymization locally, i.e., directly on the mobile device without the need for
an external trusted party.

Albeit promising, the results suggest that an extensive assessment campaign
is needed to tune the proposed anonymization pipeline. As a first step in this
direction, we intend to include the support of other third-party libraries and gen-
eralization heuristics, and to use Trusted Execution Environment (TEE) tech-
nologies [9] to protect the confidentiality and integrity of the collected data.
Finally, we plan to release HideDroid on the Google Play Store by the end of
2020.
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