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Abstract. One of the most extended applications of blockchain technologies for
the IoT ecosystem is the traceability of the data and operations generated and
performed, respectively, by IoT devices. In this work, we propose a solution for
securemanagement of IoT devices that participate in the blockchainwith their own
blockchain accounts (BCAs) so that the IoT devices themselves can sign transac-
tions. Any blockchain participant (including IoT devices) can obtain and verify
information not only about the actions or data they are taking but also about their
manufacturers, managers (owners and approved), and users. Non Fungible Tokens
(NFTs) based on the ERC-721 standard are proposed to manage IoT devices as
unique and indivisible. The BCA of an IoT device, which is defined as an NFT
attribute, is associated with the physical device since the secret seed from which
the BCA is generated is not stored anywhere but a Physical Unclonable Function
(PUF) inside the hardware of the device reconstructs it. The proposed solution is
demonstrated and evaluated with a low-cost IoT device based on a Pycom Wipy
3.0 board, which uses the internal SRAM of the microcontroller ESP-32 as PUF.
The operations it performs to reconstruct its BCA in Ethereum and to carry out
transactions take a few tens of milliseconds. The smart contract programmed in
Solidity and simulated in Remix requires low gas consumption.

Keywords: IoT devices · Blockchain technology · Non fungible tokens ·
Physical Unclonable Functions

1 Introduction

The Internet of Things (IoT) and blockchain are nowadays two technologies that are
attracting a great interest. In general, IoT is a set of interconnected devices that ex-
change data and offer services to citizens, industries, businesses, and governments. IoT
devices make smart the area where they are deployed (factories, hospitals, cities, etc.).
Among the features that IoT devices must provide, security is one of the most important
since they are the link between the physical world and Internet. An attacker may control
either the actuators or sensors of an IoT device to carry out malicious actions. For
example, a device with an insulin pump can be attacked to inject a lethal dose to the
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patient or a blood pressure meter can be attacked to provide false readings. Secure IoT
devices must prove that their hardware and software are trusted and that they behave in
a trustworthy way. Similarly, they must trust the other devices or users with whom they
interact [1, 2].

In the other side, a blockchain is a network of participants that take part in a dis-
tributed, synchronized and cryptographically secure data structure (ledger) composed
of chained blocks that can be tracked by any participant. A block contains information
about transactions (typically the exchange of digital currency or generic assets, date,
time, etc.), participants involved in the transactions, data identifying the block univo-
cally, and how the block is linked to the previous one. A newblock is added if participants
with the role of miners demonstrate (by a proof of work, stake, authority, etc.) that the
new block is secure and most of the miners (typically 51% at least) agree to link the
block (applying a consensus algorithm). Since not only the inclusion of a new block
is based on a consensual agreement but also many of the participants (nodes) have an
updated copy of the blockchain, it is very costly for hackers to manipulate any block [3].

Combining IoT and blockchain is very interesting because many transactions in
smart areas involve IoT devices [4–6]. While it is not convenient for IoT devices to
participate with the role of nodes or miners since they do not have enough memory
and computing resources, it is practical they can participate with their own blockchain
accounts (BCAs) associated with their cryptographic public keys so that they can take
part in transactions and can sign them. This way, traceability of both devices and their
data/actions is provided to the rest of blockchain participants, greatly increasing their
security. The well-known blockchain Scalability Trilemma, which is to offer security,
decentralization and scalability simultaneously, appears when many blocks and partic-
ipants (being IoT devices or not) have to be handled [7]. In this work, we assume that
there are other participants (apart from IoT devices) acting as nodes and miners that
guarantee security and decentralization and that only the summary of many transactions
carried out off-chain are stored in the blockchain to guarantee scalability.

The new generation of blockchain technologies allows smart contracts as a way
to formalize agreements between participants. Typical agreements are to represent a
cryptocurrency by a fungible token with a set of specifications (like its owner) and
functions (like the way to change of owner). Fungible tokens of the same type are
identical (like coins are identical) and are divisible into smaller units (like coins of
different values). More recently, non-fungible tokens (NFTs) have been employed to
represent unique assets (like collectables, certificates of any kind, any type of access
rights, objects, etc.). An NFT is unique, indivisible, and different from another token of
the same type. In particular, the ERC-721 standard describes how to build non-fungible
tokens in the Ethereum blockchain [8]. Standard attributes of ERC-721 NFTs are: (a)
the token identifier (tokenId), (b) the BCA of the NFT owner, and (c) the approved BCA
by the owner to transfer the token to another owner. The digital and unique identifier,
tokenId, allows recording and tracking a NFT in the blockchain. However, the token
identifier does not have to be associated with a physical property of the device. In fact,
it is generated automatically when the ERC-721 NFT is created.

In this work, we propose the use of NFTs to represent IoT devices. In particular,
we base our development on the ERC-721 standard of Ethereum. The novelty of our
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proposed NFTs is that they represent IoT devices that participate in the blockchain
and, hence, have a unique BCA. Then, we incorporate the BCA of the IoT device as
an NFT attribute. Another novelty of our proposal is that, since the BCA of an IoT
device is naturally associated with the physical device, the IoT device generates its
BCA from a PUF response. PUFs allow generating unique, intrinsic, unpredictable and
distinctive identifiers for each device by exploiting the random variations of the device
manufacturing process [9]. The BCA is associated with a cryptographic public key,
which in turn is associated with a cryptographic secret key. Our proposal is that IoT
devices prove their authenticity if, firstly, any content stored in its memory is removed,
and, secondly, they are programmed with a trustworthy firmware that does not contain
its secret key. If the IoT device is able to reconstruct its secret key and, hence, its BCA,
is because its PUF response is authentic.

In addition, we incorporate the BCA of the user of the IoT device as another NFT
attribute in order to distinguish between users, who employ the IoT device for an appli-
cation, and owners, who assign IoT devices to users and can transfer the token to new
owners. Owners can also approve others (approved BCAs) to transfer tokens to other
owners.

Our proposal allows a secure management of IoT devices since any participant in the
blockchain (including the IoT device itself or another) can verify their manufacturers,
managers (owners and approved), users, and the actions or data they are taking. Besides,
the IoT device and its physical owner, approved, and user can be subscribed to the events
of its associated NFT so that they can receive notifications about the situation of the NFT
and behave accordingly.

In summary, the contributions of this work are the following:

• The proposal of an NFT based on the ERC-721 standard of Ethereum that includes as
new attributes the BCA of the IoT device and the BCA of the user of the IoT device.
Since the IoT device has a BCA, it can take part in blockchain transactions and can
sign them. Since the BCA of the user of the IoT device is included, user and owner
roles are distinguished.

• The use of PUFs to guarantee that only the IoT device able to provide the required
PUF response is the only one able to generate its BCA.

• A solution that merges the IoT and blockchain paradigms to allow the secure trace-
ability of the data generated and the operations performed by IoT devices in scenarios
of remote management.

• A proof of concept of the proposed solution by using a PycomWipy 3.0 as IoT device
that generates its BCA in the blockchain Ethereum from the response of its SRAM
PUF.

The paper is structured as follows. Related work is included in Sect. 2. Section 3
presents the proposal ofNFTs for secure devices. The extension of the ERC-721 standard
for NFTs that not only considers the BCA of the owners (managers) but also the BCAs of
the device and its user is described. The process to generate the device BCA from a secret
seed obfuscated by the response of a SRAM PUF as well as the device management are
explained. Section 4 includes a proof of concept based on the PycomWipy 3.0 board. In
the one side, the feasibility of obfuscating and recovering 256-bit secret seeds from the
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use of internal SRAM PUFs is proven. In the other side, the implementation of the NFT
with the SRAM PUF-based BCA by considering the Ethereum blockchain is shown.
Section 4 also provides the execution times of the operations required to complete a
transaction and the gas consumption of the smart contract functions programmed in
Solidity and simulated in Remix [10]. Results are compared to other proposals in the
literature. Finally, Sect. 5 concludes the work and adds future research directions.

2 Related Work

In the literature, ERC-721 NFTs are employed for several applications. The works [11]
and [12] describe how the traceability of manufactured products can be performed using
ERC-721 NFTs. The use of ERC-721 NFTs is also mentioned in [13] and in [14] for car
sharing and event reselling applications, respectively. The management of IoT devices
through the blockchain is extensively based on the use of smart contracts. However, the
tokens used in many applications are not standard. In [15], tokenization is not directly
related to the IoT devices. Instead, tokenization is employed through a task manager to
ensure that all participants have something to lose if they misbehave. In [16], the IoT
devices are grouped into IoT systems (like smart homes, smart hospitals, etc.) and each
system is associated with the nearest blockchain-enabled fog node. A smart contract
is defined on top of the blockchain-enabled fog nodes to support authentication and
authorization of the IoT devices in a distributed fashion. In this proposal, IoT devices
can communicate among them if they are registered and authenticated by blockchain-
enabled fog nodes. The tokens are considered as certificates that include the device
identifier, the device public address and the IoT system identifier. Therefore, the token
involves two devices: the fog node and the IoT device. The solution proposed in [17] uses
the principle of ERC-721 NFTs to implement a capability-based access control model
in a decentralized IoT architecture. In this proposal, the tokens store the access rights for
the resources/services available. A device in possession of one of these access tokens
can access the resource/service according to the access control rules defined within the
token. This solution is tested on a private Ethereum blockchain node.

None of the above commented solutions stablishes a physical link between a device
and an NFT logical identifier. In [11], the digital and unique identifier, tokenId, which is
a standard attribute of ERC-721 NFTs that allows recording and tracking an NFT in the
blockchain, is a randomly selected string assigned to the device and stored in its RFID
or QR code. In [15], the tokenId is the hash of a concatenation of the serial number
embedded in the device chipset and a randomly generated salt. This can be also replaced
by any random string that is not already in use when the device is registered. In [16],
IoT devices are identified by certificates generated from a private key. In [17], tokenId
is obtained by hashing three logical identifiers (the identifier of the device in possession
of the token, the identifier of the resource/service, and the identifier of the resource as
per the communication protocol).

Other works that employ the blockchain framework to provide supply chain integrity
use PUFs to stablish a physical link between the devices and their logical identifiers [18–
21]. The PUFs embedded in the products introduce a higher security level that reduces
the risk of counterfeit and tampered electronic devices. However, these works do not
employ explicitly the concept of NFTs.
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To the best of our knowledge, there are no works in the literature using PUFs in
ERC-721 NFTs as presented in the following.

3 Proposed NFTs for Secure Devices

The application scenarios of our proposal are smart areas with IoT devices that must
be secure. The combination of IoT and Blockchain technologies enhances security. The
main agents in these scenarios are: (a) the IoTdevices (referred to as SDs, secure devices);
(b) the users of the IoT devices; and (c) the application managers (referred to as owners),
who assign devices to users and can transfer the devices to other managers. These
three agents take part in the blockchain transactions through their BCAs (BCA_SD,
BCA_user, and BCA_owner, respectively). Hence, they can authenticate each other and
their messages in scenarios of remote management. A relevant amount of messages
can be interchanged off-chain, to improve scalability, but the important transactions are
registered to allow traceability in the blockchain. The owner (manager) and user can reset
the device to ensure their firmware is trustworthy, avoiding the execution of malware.
Conversely, the device allows reset if the request is from the owner or the user. In a smart
hospital, for example, the owner can be the technical supervisor that assigns devices to
doctors. In a smart infrastructure, the owner can be the manager of the technical workers
who, depending on the scheduled tasks, assign the devices to one technician or another.

3.1 Main Features of the Proposed NFT

An IoT device becomes SD after being bound to our proposed NFT. The structure
of the proposed token has the attributes shown in Table 1. The variables tokenId and
BCA_owner are defined by the standard ERC-721. The standard also defines other
variables (approved and operator) to help the owner to transfer NFTs to other owners,
but this is not in the scope of this work, so that we omit them. The important variables
added in this work are BCA_SD, which binds a device to the NFT, and BCA_user, which
binds the device of the NFT to a user.

Table 1. Structure of the non fungible token

Type Name of variable Defined by the standard

TokenId_Type tokenId Yes

Address BCA_owner Yes

Address BCA_SD No

Address BCA_user No

The standard ERC-721 only declares functions related to the ownership of the token.
A summary of them are included in the upper part of Table 2. They return which are the
tokenIds of an owner (function “balanceOf”), who is the owner of a tokenId (function
“ownerOf”), and how to transfer the tokenId to another address (function “transferFrom”
detailed in Table 3).
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Table 2. Functions employed in the proposed NFT

Defined by the standard
function balanceOf(address _owner) external view returns (uint256);
function ownerOf(uint256 _tokenId) external view returns (address);
function transferFrom(address _from, address _to, uint256 _tokenId) external payable;

Defined for this work
function createToken(address _owner, address _BCA_SD) external returns (uint256)
function userTransfer(uint256 tokenId, address _BCA_user) external;
function completeTransfer(uint256 _tokenId) external;
function tokenFromBCA(address _BCA_SD) external view returns (uint256);
function ownerOfFromBCA(address _BCA_SD) external view returns (address);
function userOf(uint256 _tokenId) external view returns (address);
function userOfFromBCA(address _BCA_SD) external view returns (address);
function userBalanceOf(address _BCA_user) external view returns (uint256);
function userBalanceOfAnOwner(address _BCA_user, address _owner) external view returns

(uint256);

Table 3. Pseudo-code of the standard function “transferFrom”

Transfers a token from an owner to a new owner

Input: old_Owner, new_Owner, tokenId
Require (owner, operator, approved) =
msg.sender
Require owner of tokenId = old_Owner
Change owner of tokenId to new_Owner
Send event Transfer

The functions needed in our case are shown in the bottom of Table 2. Given
the BCA_SD, the functions “tokenFromBCA”, “ownerOfFromBCA” and “userOf-
FromBCA” return, respectively, the tokenId, the BCA_owner and the BCA_user.
Given the tokenId, the function “userOf” returns the BCA_user. The tokenIds of
any owner assigned to a user are returned by the function “userBalanceOf” and
the tokenIds of a particular owner assigned to a user are returned by the function
“userBalanceOfAnOwner”.

The pseudo-codes of the functions added to the proposed token are shown in Table 4.
A token is created by the manufacturer of the IoT device with the function “createTo-
ken”. It is assumed that the manufacturer creates the token when an “owner” buys the
IoT device. The owner of the token can assign a user to the token with the function
“userTransfer”. If the owner of the token assigns it to the address “0”, the token cannot
be used by anyone, since this address is reserved in Ethereum. This is the way how an
owner sets a device to a non-operative state.
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Table 4. Pseudo-codes of the added functions

“createToken”: Creates a new token linking BCA_SD to a
tokenId

Input: _owner, _BCA_SD
Output: tokenId
Require (manufacturer) = msg.sender
Generate new tokenId
Set tokenId to token
Set owner of tokenId = _owner
Set BCA_SD of tokenId = _BCA_SD
Return tokenId

“userTransfer”: The owner assigns a user to the token

Input: tokenId, _BCA_user
Require (owner) of _tokenId = msg.sender
Set BCA_user from _tokenId = _ BCA_user
Send event UserTransfer

“completeTransfer”: Notifies that the token is already operative

Input: _tokenId
Require (user) of _tokenId = msg.sender
Send event TransferCompleted

3.2 Binding the IoT Device to Its Associated NFT

The manufacturer challenges the PUF inside the IoT device and receives from the IoT
device the public key generated and the BCA_SD associated, as well as the helper data
and masks that the device PUF needs to reconstruct its public key and BCA_SD. The
steps of this process are detailed in Fig. 1 for the case of SRAM PUFs that use Static
Random Access Memories (SRAMs). The manufacturer creates the token for the first
owner, and includes the tokenId, PUF challenge, masks and helper data in the firmware
associated to the device. Hence, only that device will be able to reconstruct its public key
from that firmware because only its PUF will be able to provide the adequate response
to the challenge received. Any other device will be unable to reconstruct BCA_SD from
that firmware.

Among the electronic circuits that can be employed as PUFs, in this work, we select
SRAM PUFs because most of IoT devices include SRAM in its hardware. SRAM PUFs
are based on the start-up values obtained by powering up the memory [9]. Each SRAM
bit cell is a bistable circuit whose logic memory functionality comes from two cross-
coupled inverters. A write operation forces the SRAM cell to transition towards one of
the two stable states (‘0’ or ‘1’). If the cell is powered-up and nowrite operation is carried
out, the positive feedback between the two inverters leads the cell to the start-up value
imposed by the inverter that begins to conduct. Ideally, the two inverters are identical,
but the random variations in the manufacturing process make them different so that one
of them is the first to conduct in each cell. Flipping bits can appear in the PUF response
since the inverters of some bit cells are so similar that their start-up values change due
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Fig. 1. The manufacturer binds the device to the NFT.

to noise. Particularly, those cells that change their value in half of the measurements,
named herein as RND cells, are not adequate to identify the SD but are good to generate
true random seeds. In the other side, the cells that provide generally the same start-up
value, named herein as ID cells, are good to generate the PUF response. The use of the
SRAM PUF inside the IoT device to generate the BCA_SD is illustrated in Fig. 2.

The first step of the token creation is to classify the SRAM cells addressed by the
PUF challenge into ID and RND cells. For that purpose, the simple cell classification
proposed in [22] is carried out. It consists in obtaining several measurements of start-up
values by powering up and down the SRAM several times. For each measurement, the
start-up values of all cells are compared. If the cell values do not change for all the
measurements, the cells are registered as ID cells by an ID mask. If the cells change
in half of the measurements, the cells are registered as RND cells in an RND mask.
The second step of the token creation is to generate a true random Secret Seed from
the start-up values of a set of RND cells selected by the RND mask. Since the Secret
Seed are quite sensitive data because they identify cryptographically the SD, and the
SRAM PUF response are also quite sensitive data because they identify physically the
SD, the third step of the token creation is to generate non-sensitive data, known as Helper
Data, from the Secret Seed and PUF response. The PUF response is obtained from the
start-up values of a set of ID cells selected by the ID mask. Then, the Code Offset-based
Helper Data algorithm described in [23] is used. It employs an Error Correcting Code
to cope with flipping bits in the PUF response. Since the PUF response will show small
bit flipping, a simple repetition Error Correcting Coder is employed. The steps of this
process are detailed in Fig. 2a. The Secret Seed is not stored anywhere but is recovered
from the response of the ID cells and the Helper Data, as illustrated in Fig. 2b. The
Private and Public Keys of the device are obtained from the Secret Seed. Finally, the
BCA_SD is computed from the Public Key. This is illustrated in Fig. 2c.
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Fig. 2. Using the PUF inside the SD to generate and reconstruct the BCA_SD. (a) Generation of
Secret Seed, masks, and Helper Data. (b) Secret Seed reconstruction. (c) Generation of Private
Key, Public Key and BCA_SD from Secret Seed.

The manufacturer also programs in the device firmware that the device is sub-
scribed to events “Transfer” (see Table 3), “UserTransfer”, and “TransferCompleted”
(see Table 4). With the two first events, the IoT device changes its state to “blocked”
(non-operative) and can know its owner and user. This is important because the device
will verify the BCAs and signatures of owner and user through their public keys if they
request the device to update its firmware. The device does not need to store anything so
the content of their memories can be deleted and a trustworthy firmware can be updated
by its owner or user to ensure that the hardware and software of the device are trusted.
Besides, the device will verify also the BCAs and signatures of the owner and user
through their public keys when it is activated by them. The event TransferCompleted
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notifies that the user and device have authenticated each other successfully so that the
device becomes operative for the application. Although being “activated”, the IoT device
is not ready to work (“operative”) until this notification is received. Details of these steps
related to user and device are shown in Fig. 3.

Fig. 3. States of the IoT device depending on events and user messages.

4 Implementation of the Proof of Concept

In this work, we employ a Pycom Wipy 3.0 board composed of an Espressif ESP32
chipset as IoT Secure Device (SD). This is a tiny development platform that allows
ultra-low power usage and is very suitable to create IoT devices. The microcontroller
ESP-32, which is the hardware core of the SD, contains an internal SRAM of 520 MB.
This internal SRAM can be powered down and up without powering off the board
completely so that it can be used as SRAM PUF.

4.1 SRAM PUFs from the IoT Device for Secret Obfuscation

One of the contributions of this work is the use of PUFs to obfuscate secret seeds
employed to generate BCAs. In order to characterize the SRAMPUF, a specific firmware
was developed to carry out the measurements by powering down and up the internal
SRAM so as to extract automatically the start-up values. The internal SRAM is divided
into three memories. In this work, the first 29,665 bytes (237,320 bits) of the last 100 KB
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of the second memory were evaluated since they are enough for a statistical character-
ization. These bytes were not written or employed by the compiler to store execution
variables. Three different boards and 120 measurements were considered. The ID and
RND masks for each board were created with the first 20 measurements. The resting
100 measurements were employed for evaluation.

Theminimum percentage of ID cells foundwas 84.07% (whichmeans aminimum of
199,514 ID cells for the cells evaluated in each SRAM). Usually, most of the SRAMcells
are ID cells. The PUF responses considered have a size of 2048 bits, so that 97 different
responses per each board (291 responses in total) were evaluated. The similarity between
PUF responses from the same cells is evaluated by the average intra fractional Hamming
distance. The distribution of fractional Hamming distances calculated for responses from
the same SRAM cells is known as intra fractional Hamming distance distribution in the
PUF literature. For the measurements performed, the average intra fractional Hamming
distance calculated was 0.25% (a value close to the ideal value of 0, which means that
the PUF responses are equal). The number of intra Hamming distances calculated was
1,440,450 (100‧99‧291/2).

The decoder of the Error Correcting Code should cope with the noise of PUF
responses to reconstruct, with no errors, the secret from the Helper Data. The bit flipping
of a start-up value can be modeled essentially as a Bernoulli trial, which takes value ‘1’
(if the bit changes) with probability p and a value of ‘0’ (if the bit does not change) with
probability 1− p. If the n bits obtained from the start-up values of n cells are assumed
to be independent, the probability of finding t flipping bits (or errors) in them is given
by a binomial distribution.

The binocdf(t, n, p)Matlab function was employed to compute the failure probabil-
ity in reconstructing a bit of the secret when using an Error Correcting Code with n-bit
codewords and capacity to correct up to t errors, with p estimated as the average intra
fractional Hamming distance. An 8-bit repetition Error Correcting Code (with n = 8
and t = 3) gives a probability of failure in reconstructing a bit of the secret of 2.71e-9
(according to the operation 1-binocdf(3, 8, 0.0025)). The 8-bit repetition Error Correct-
ing Code is selected since an error rate of 10−6 is considered by many authors as a
conservative value that fulfills the requirements of most of typical security applications
[23, 24]. The results shown herein have been obtained for nominal operation conditions
(that is, nominal power supply voltage and ambient temperature). Of course, repetition
Error Correction Codes with bigger words can be employed to ensure the adequate
reconstruction of the secrets in any operation condition.

4.2 Development of an NFT with an SRAM PUF-Based BCA

In this work, we used Kovan, which is an Ethereum public testnet, as Ethereum Virtual
Machine (EVM) network. Ethereum is one of the most extended public blockchain
and is part of the third generation of blockchains (which employs smart contracts). In
Ethereum, secure transactions are based on the Elliptic Curve Cryptography (ECC). The
Elliptic CurveDigital SignatureAlgorithm (ECDSA) represents a robust and lightweight
signature scheme for constrained devices (such as IoT devices).

Several environments were employed to create the NFT. In the one side, the ESP-IDF
(Espressif IoT Development Framework), which is the official development framework
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for ESP32 microcontrollers, was employed to use the PycomWipy as the core of an IoT
secure device based on SRAM PUFs. In the other side, the blockchain functionalities
were performed by using the Web3E-alphawallet library to create a BCA and carry out
transactions in PlatformIO; Remix to program in Solidity language and deploy smart
contracts; and Etherscan to check transactions. Figure 4(a) shows theWipy board which
is connected to a laptop. Figure 4(b) shows a screenshot of a transactionwhich is executed
and checked by using the development environments.

Fig. 4. (a) Real picture of the Wipy board. (b) Screenshot of a transaction performed through
PlatformIO and checked through Etherscan.

The BCA of the SD is generated from a 256-bit secret seed obfuscated by the SRAM
PUF response as explained above. Previously to the obfuscation, SRAM cells are clas-
sified to obtain the ID mask. Then, the seed obfuscation leads the ID mask application
to obtain 2048 ID cells. The start-values of these cells are XOR-ed with the encoded
Secret Seed (using the 8-bit repetition error correction encoder). The result is the 2048-
bit Helper Data. The secret seed reconstruction needs the ID mask application to obtain
the 2048 ID cells, the XOR operation with the Helper Data to obtain the 2048-bit coded
seed and the 8-bit repetition error correction decoding to obtain the 256-bit decoded
seed.
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In order to create a BCA, private and public keys should be generated. A 256-bit
private key is generated by applying a hash operation to the seed. A 64-byte public key
results from applying the corresponding Elliptic Curve operation to the private key. In
this work, we employ the secp256k1 curve, which is the elliptic curve used in Ethereum.
The BCA is obtained by applying the Keccak256 operation to the public key and taking
the most significant 20 bytes.

The different functions considered are performed by using the libraries provided by
the development environments. The Keccak256 function is obtained by using the sha3.h
library from Trezor cryptographic library set within the Web3E-alphawallet library.
A SHA3 context should be initiated with the Keccak256 algorithm through the kec-
cak_256_Init function. Subsequently, the context is updated with the data to be hashed
and, finally, the results are obtained with the keccak_final function.

For the BCA creation, the secp256k1 curve is obtained by using contract.h library
from the Web3E-alphawallet library. The public key is obtained with the PrivateKey-
ToPublic function. The BCA is obtainedwith thePublicKeyToAddress function. ECDSA
is obtained by using ecdsa.h library within the Trezor cryptographic library.

The transactions are performed as JSON structures under the Web3E framework.
A contract context from the Web3E-alphawallet library is defined by indicating the
private key, a nonce with the SetPrivateKey function, and the gas price and limit by the
EthGetTransactionCount function. The transaction is launched by the SendTransaction
function. This operation generates the JSON structure associated, the transaction signed
by using ECDSA with the private key, and a transaction hash as output. The transaction
message is sent to the smart contract through a blockchain transaction. The realization of
a smart contract is a similar operation but employing the SetupContractData function.

The execution times of these operations are included in Table 5. The transaction
completion time is the total time to generate a transaction and its transfer to the blockchain
or smart contract. In our proposal, the transaction completion time is composed of the
seed reconstruction, BCA generation and blockchain transaction times. This value is
compared to the resulting transaction completion time obtained in [16] and [20]. The
solution proposed in [16] also employs Ethereum blockchain. However, IoT device
identifiers are based on certificates generated from a private key that is not obfuscated
by PUFs. [20] considers an IoT device that creates hashes of data together with a key
generated by a PUF for mining purposes. In contrast to our proposal, this solution does
not employ a public and standard blockchain.

Through the simulation of the smart contract functions “createToken”, “transfer-
From”, “userTransfer” and “completeTransfer”, the transaction gas consumption was
evaluated. Table 6 illustrates the results obtained and shows a comparisonwith other sim-
ilar functions proposed in [15] and [21]. The solution proposed in [15] does not employ
PUFs and the device identifier is stored in the device-manager smart contract. The man-
ager smart contracts verify information and decide whether a process can continue or
not. Tokens are not directly related to the devices but to the tasks. Tokenization (which is
not performed under the ERC-721 standard) is implemented by using a token-manager
smart contract which is included in the task-manager smart contract. The task-manager
smart contract provides a public register of available tasks related to the user, device,
and tokens. Instantiations of users and devices are performed through the corresponding



Secure Management of IoT Devices Based on Blockchain Non-fungible Tokens 37

Table 5. Execution times of the operations of a Secure Device based on PUFs

Operation Execution time (ms)

Seed Obfuscation SRAM cells classification 3.8‧ 105

ID mask application, repetition error
correction code and XOR operation

2.02

Seed Reconstruction ID mask application, XOR operation and
repetition error correction code

1.60

BCA Generation 256-bit private key generation (Keccak256
operation)

0.45

64-byte public key generation (secp256k1
operation)

21.15

20-byte BCA creation (Keccak256
operation)

0.45

Blockchain Transaction Message preparation (configuration,
ECDSA operation)

26.10

Transfer to blockchain or smart contract 2.90

Transaction Completion in our proposal 52.65

Transaction Completion in [16] 69.0

Transaction Completion in [20] 192.30

manager smart contracts. In this way,manager smart contracts are only instantiated once,
while the child (user and device smart contracts) are instantiated for each use. The gas
values associated to the smart contract instantiation are included in Table 6. The solu-
tion in [21] provides a method for device traceability by using device authentication and
ownership via blockchain smart contracts that do not employ NFTs explicitly. Device
authentication is performed by PUF identifiers. However, the device has not capability to
interact to the blockchain by a BCA associated to the PUF. The “createToken” function
of our proposal, which can be compared to the registerDevice function of [21], consumes
less gas. The standard “transferFrom” function of the ERC-721 NFT can be compared
to the transferOwnership function of [21].

5 Conclusions

A solution for the secure management of IoT devices has been proposed. IoT devices
are considered as Non Fungible Tokens (NFTs) based on the ERC-721 standard, which
additionally include the BCA of the device user (not only the BCA of the device owner or
manager) and the BCA of the IoT device. Device BCAs are generated from secret seeds
obfuscated by Physical Unclonable Functions (PUFs). Any participant in the blockchain
(including the IoT devices themselves because of their BCAs) can verify their manufac-
turers, owners, users, and the actions or data they are taking. Besides, the IoT devices,
owners, and users are subscribed to the events of their associated NFTs so that they
receive notifications about the situation of the NFT and behave accordingly.
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Table 6. Gas consumption of smart contract functions

Proposal Function Gas
consumption

Our createToken 112,510

transferFrom 34,272

userTransfer 47,683

completeTransfer 23,770

[15] User 273,931

User manager 530,579

Device 446,652

Device manager 1,097,206

Token manager 413,560

Task 554,883

Task manager 3,052,709

[21] registerDevice 121,478

transferOwnership 30,365

The proposed device was implemented in a Pycom Wipy 3.0 board, proved with
Kovan Ethereum testnet interacting with a smart contract programmed in Solidity, and
verified with Remix. The SRAM PUF response employed has a size of 2048 bits to
reconstruct secret seeds of 256 bits. The operations carried out by the Wipy board to
generate the IoT device BCA and its employment in a transaction are carried out in
a few tens of milliseconds. Smart contract functions are very simple. In fact, the gas
consumption of the functions employed is low. A comparison is performed to other
proposals in the literature in terms of execution times and gas consumption.

As future work, we plan to extend the proposal to provide security to the data gener-
ated by the IoT device, in terms of integrity, confidentiality, privacy, authentication, and
provenance. In this way, not only the management of the IoT devices will be secure but
also the storage and transmission of the data generated by these devices.
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