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Abstract. The rising appearance of system security threats against
real-world Critical Infrastructure (CI) sites over the past years brought
significant research attention into the security of Industrial Control Sys-
tems (ICS). Academic institutions and major industrial appliance ven-
dors have since increased efforts on effective vulnerability discovery in
these systems. However, from the investigation of the major recent ICS
incidents, it is evident that a targeted post-exploitation chain plays a cru-
cial role for an attack to succeed. After the initial access to the system is
gained, typically through a previously unknown (zero-day) or unpatched
vulnerability, weak credentials or insider assistance, a specific knowledge
on the system architecture is applied to achieve stealthy and persistent
presence in the system before the physical process is disrupted. In this
work, we propose a set of post-exploitation and persistence techniques
against WAGO PFC200 Series Programmable Logic Controller (PLC).
It will help to raise the awareness of stealthy and persistent threats to
PLCs built on top of the variations of CODESYS runtime.

Keywords: Programmable Logic Controller · Vulnerability discovery ·
Industrial control system security

1 Introduction

Industrial Control Systems (ICS) are widely deployed to control and super-
vise the safe operation of nation-wide critical infrastructure: electric power grid,
water treatment and distribution, transportation. Numerous domains of modern
life and economy rely on real-time stability, safety and security of ICS. Pro-
grammable Logic Controllers (PLC), as well as sensors and actuators, play a
key role in ICS as field devices.

The importance of security research in ICS domain has become especially
evident after a series of major security incidents which relied on the exploitation
of PLCs and other industrial appliance to corrupt the control logic and there-
fore affect the physical process [7,22,63]. The IEC61131 standard [15] defines
the programming languages and system operation requirements to be followed
by PLCs, to fulfill highest safety and security standards in the physical process
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implementation. A key difference of PLCs from traditional embedded systems is
their real-time operation design, extended fault tolerance and redundancy capa-
bilities [27]. A single corruption of physical process control logic or availability
shortage, even on the software level, can have serious consequences, ranging from
immediate financial loss to man-made environmental disaster.

In this work, we analyze the software internals of widely used WAGO PFC200
Series PLCs and provide a set of potentially applicable techniques which allow
for post-exploitation and persistence in these devices. While the methodology is
provided in relation to WAGO PLCs, a similar approach is potentially helpful
for the vulnerability discovery research in other ICS products, which are built
on top of the variations of CODESYS runtime. This includes more than 360
devices from Hitachi, Advantech, Schneider Automation, ABB, Bosch Rexroth
and other vendors [19,42].

Contributions: We perform a study of the popular WAGO PFC200 Series (750-
8202/025-001) controller and identify a set of targeted post-exploitation tech-
niques which can be applied on the firmware components to support the attack
payload persistence. We also discuss the options of detection and defence, which
take into account the internal components of the above-mentioned system.

Organization: The remainder of this paper is organized as follows. Section 2
introduces the typical ICS architecture and PLC components. Section 3 for-
mulates the threat model of the system being studied. Section 4 provides an
overview of recent exploits which assist in unauthorized access to the controller,
and propose a set of techniques for post-exploitation and persistence. Section 5
gives two examples of attack scenarios that leverage the post-exploitation and
persistence techniques, and Sect. 6 discusses the options of detection and defence.
Section 7 reviews the related work, and Sect. 8 concludes the paper.

2 Background

2.1 WAGO PFC200 Series PLC

The PFC200 Controller, produced by WAGO Kontakttechnik is built on rela-
tively powerful hardware (ARM Cortex CPU, 256 Mbytes RAM) and a modern
software stack (real-time operating system (RTOS) with a modified Linux ker-
nel). The controller implements a variety of well-known and vendor-proprietary
network protocols for remote management, I/O connectivity and general net-
working.

This hardware and software design allows for rich connectivity (two embed-
ded webservers, on-board Java HMI, extensions, integration with “cloud” back-
ends, interconnection with mobile applications over TCP) and relatively high
security standards (SSL, SSH, OpenVPN, firewall) offered out-of-the-box.
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Software: A key advantage of WAGO PFC200 Series controller for secu-
rity research is the access to the privileged user and unrestricted access to
the kernel space. A typical identification string of WAGO PFC200 is as fol-
lows: Linux PFC200-450B5E 4.9.115-rt93-w02.03.00 02+2 #2 PREEMPT RT
armv7l GNU/Linux.

The target architecture is ARMv7. The key modifications to the Linux 4.9
kernel are provided by the real-time kernel patchset [51] (Preempt RT). In partic-
ular, it extends the mainline kernel with additional preemption models, changes
the task scheduling and priority policies. This turns the PFC200 system into a
real-time OS (RTOS).

2.2 Firmware Availability

A significant advantage of WAGO controllers from a research perspective is
the public availability of the Board Support Package (BSP) for its firmware
[43]. In embedded systems, BSP is a common way to provide the developers
with essential tools to cross-compile the firmware for a given hardware platform
[28,31].

While there are many closed-source components (such as, system daemons
and runtime software), the BSP contains a root file system, a compiler toolchain
for ARM instruction set, hardware-specific drivers, kernel modules, configura-
tion utilities and documentation. A native customization utility also allows to
include the components and routines which facilitate the dynamic analysis of
the firmware, such as tracing and debugging tools. The build process consists of
the following chain:

– PTXdist, a build system for creating Embedded Linux distributions
– Pengutronix build environment, optimized for PFC controllers
– OSELAS toolchain for ARM cross-compilation
– Other utilities and components to build the firmware image
– WAGO rule-sets and configuration scenarios for CODESYS runtime

As compared to firmware analysis routine for ICS products from other major
vendors, such as Rockwell Automation Allen-Bradley [16] or Siemens SIMATIC
[17,18], the availability of BSP for WAGO PFC200 significantly extends the
opportunity for the analysis of exploitation context.

Generic Runtime System: CODESYS (Controller Development System) [35] is
widely adopted by ICS device vendors as a generic, portable third-party runtime
software component responsible for control program execution [42]. In addition
to the actual execution environment on field devices, CODESYS includes its own
IDE (Integrated Development Environment) to construct IEC61131 compatible
control logic applications. Control programs use proprietary binary format pro-
duced by a built-in compiler. CODESYS also ships with multiple emulation tools
and supports a broad set of extensions which can be called from the control
project as external libraries [23,35].
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Numerous variations of CODESYS runtime are reportedly being used in
at least 20% of PLCs worldwide [19]. The device directory list includes more
than 360 devices from Hitachi, Advantech, Schneider Automation, ABB, Bosch
Rexroth, Owen, Berghof Automation [19,42]. Typically, ICS vendors use it as
a white-label platform for their own-branded IDE and device firmware. This
implies an extensive amount of customization with additional software compo-
nents to be introduced in the end products.

Adoption in WAGO PLC: The WAGO PFC200 firmware embeds the CODESYS
runtime for control program deployment and execution on top of its real-time
operating system (RTOS) and a customized Linux kernel [44].

The newest generation of CODESYS-based runtime, named WAGO
e!RUNTIME, supports the latest generation of WAGO PFC200 Series con-
trollers. The documentation clearly specifies that this runtime system is based
on the original CODESYS v3, with the extended functionality introduced to
it by WAGO [37]. In addition to the conventional CODESYS IDE, PFC100
and PFC200 controllers can be programmed and configured with WAGO
e!COCKPIT - the desktop software also provided by WAGO, which is CODESYS
v3 compatible and potentially can be used to work with non-WAGO controllers
which have the non-customized revision of v3 runtime system in their firmware.

Compatibility Mode: The above mentioned PFC100 and PFC200 series of WAGO
controllers can be switched to using a previous generation of the WAGO runtime,
WAGO-I/O-SYSTEM 750. The documentation states that this system is based
on CODESYS v2.3 and is incompatible with the newer IDE [37]. For WAGO-
I/O-SYSTEM 750 runtime, an older development from WAGO should be used,
named WAGO-IO-PRO. The latter has significantly lower memory and compu-
tational power requirements and is also used with low-end, non-ARM controller
series [37,39].

2.3 Vendor-Specific Components

To support and tweak the runtime WAGO system includes a set of additional
configuration interfaces and remote controller management tools. These also
allow for physical process visualization, native integration of remote back-ends,
and recently introduced “cloud” IoT connectivity [41,45,46].

One of the key toolsets, “WAGO CBM”, provides a Command-Line Interface
(CLI) which is capable for essential hardware and network configuration on the
controller.

An embedded Human Machine Interface (HMI) system, “WebVisu”, can
execute Java applets, downloaded to the controller by the IDE to allow the
developers to build dynamic HMI screens straight from the control application
programming environment and expose them as web services on the PLC.

A separate embedded web server on the PLC runs WAGO Web-Based Man-
agement System (WBM) - a configuration and remote control wrapper built on
top of the CBM toolset mentioned earlier.
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Such a wide variety of custom pre-installed components motivate us to per-
form research on how to find opportunities for post-exploitation of the PLC
and how the persistent payload can be hidden among these services to evade
detection.

3 Threat Model

For the exploitation cycle analysis, we consider a threat model which is described
below.

A remote attacker has a generic exploit in possession which utilises a previ-
ously unknown or unpatched vulnerability of the controller. However, prelimi-
nary knowledge about the particular deployed system and the physical process
is limited. The threat actor obtains access to the system through one of the
remotely exposed interfaces and seeks for long-term stealthy persistence in the
system which would allow gathering a sufficient set of operational information
to proceed with a targeted attack against the physical process.

4 Methodology

Objectives: A threat actor who has established the one-time unauthorized access
to the system is motivated to ensure the long-term stealthy presence of the
malicious payload on the PLC. This allows for passive observation on the system
and its state changes, fingerprinting of the deployed configuration and ensuring
the remote access in future.

Techniques: A common way to support these attack objectives at the PLC in
the operational state is to place a persistent backdoor into one of its software
components. In this section, we provide an overview of the attack cycle and
system components which can perform invocation of the malicious payload and
are suitable for placement of the backdoor executable.

4.1 Obtaining the Remote Access

At the time of writing, the most recent firmware release for PFC200 revision is
FW16. This version introduced several of patches for critical security vulnerabil-
ities. Supporting each other in a chain, these vulnerabilities facilitate a remote
attacker to gain remote unauthorized access to the controller. We analyze mul-
tiple vulnerability chains below to provide an overview of unauthorized access
scenarios.

Vulnerabilities in Management Interfaces: In [47], an exposed Web-Based Man-
agement (WBM) component demonstrates a serious authentication flaw which
can be exploited to reduce the password trial entropy and obtain access to the
configuration interface. A related authentication bypass [40] was also demon-
strated in the older revision of the firmware (FW10) through the CODESYS
remote control component exposed via TCP port.
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Authentication Flaws: Similarly, in [52], a vulnerable encryption mechanism
caused user credentials leakage in packets sent between the WAGO e!Cockpit
IDE and the PLC runtime. Due to the hard-coded encryption key, it was possi-
ble to derive login credentials for any user and perform the unauthorised access
to the controller. Another attack vector against the PFC200 update mecha-
nism from the operator workstation [53], allows burning the incorrect version
of WAGO update package (WUP) with false metadata in order to downgrade
the firmware revision, which has known unpatched vulnerabilities for further
access bypass. Previous, older implementations of the WBM component and its
companion visualisation application, WebVisu, have also been proven to have
authentication bypass flaws [29,38] in older firmware revisions.

Code Execution via File Uploads: The above can be chained with [54] for arbi-
trary code execution through package upload to the controller. The packaging
system of the PFC200 through ipk archives provides no integrity checks on
its content and is passed to opkg activation utility which executes the injected
payload with superuser privileges.

Vulnerable Extension Packages: The newly added extension for Cloud Connec-
tivity functionality of WAGO PFC200 was exploited in [48,56,57]. A manipu-
lated remote firmware update command string is interpreted on the controller
site and passed to the CBM utility without validation. As the former runs with
superuser privileges, this results in a high-privileged remote code execution.

Exploitation of Network Services: A direct exploitation of the privileged services
is one of the most dangerous attack vectors for the remote attacker. In [58–62],
the “I/O-Check” service which implements the WAGO service protocol and is
reachable through TCP port 6626 of the PFC200 controller allowed for a heap
buffer overflow with a potential code execution. The above-mentioned service
protocol provides the capability to read and write data to the EEPROM of the
controller, which can lead to the controlled memory corruption. Notably, this
vulnerable behaviour does not require any authentication and can be invoked by
an anonymous client.

In an unpatched system, a vulnerability chain similar to the scenarios
described above can provide an attacker with an unauthorised access to the
affected PFC200 system. Once the one-time access is established, a more spe-
cific knowledge of the system is required to perform post-exploitation operations
and prepare the attack against the physical process.

4.2 Privilege Escalation Techniques

Access Control System: The access control in WAGO PFC200 implements cus-
tomized, vendor-built procedures which apply in multiple contexts of the con-
troller configuration invoked by CBM and WBM utilities. As mentioned in the
documentation, user management in the custom access control system is isolated
from system user groups for security reasons [36]. In practice, this means that
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the services which run CLI and Web configuration applications run themselves
with root privileges and perform the access control validation on the application
layer. This design bypasses more robust access control mechanisms which are
provided by the Linux kernel, replacing it with vendor-added validation logic.
Since the impact of potential vulnerabilities in CBM and WBM is no longer
mitigated by system user isolation, this builds up a major privilege escalation
vector.

Vulnerabilities in Privileged Services: The controller also runs a set of high-
privileged system services which are not always reachable through the network.
However, there are known scenarios in which such services process input files
which can be tampered with by unprivileged user. Successful exploitation of file
processing vulnerability in one of the privileged services bypasses the vendor-
built access control gives an extensive opportunity for privilege escalation into
a superuser. Thus, in [49,50], a vulnerable “WAGO IO-Check” privileged ser-
vice can be exploited through a low privilege user-writable cache file in the
controller filesystem. The cache file parser does not fully sanitize the retrieved
arguments and allows for command injection with root privileges. Similarly, in
[50], it demonstrated that the privileged process could also deliver the payload
from fields in the tampered cache into sprintf() call without validation, result-
ing in a stack buffer overflow and command execution in superuser context. This
introduces another vector for code execution and privilege escalation on the con-
troller.

4.3 Gathering System Information

Logging: By default, the PFC200 controller is configured with multiple logging
services. A wide range of debug information in PFC200 is populated into log files
in different locations. The data retrieved from log files can be used in a post-
exploitation stage to determine the controller runtime state, network events,
date and time patterns of operator assistance and firmware updates. Types of
information and log file locations are summarized in Table 1.

Runtime Configuration: The CODESYS runtime on the controller writes its
state information into multiple configuration files on the controller filesystem.
From the [SysFileMap] of the eRUNTIME.cfg configuration file located under
the home path of the codesys root user, a list of useful state file mappings
can be determined. From Project.xml, it is possible to identify the state of
configured modules of the control program project, initialized names and values
of local and global variables. The timestamps contained in ProjectCfg.txt
allow to identify when the latest configuration update for the control program
was performed.

Thus, the PlcLogic path under codesys root u hosts multiple status files
related to the currently uploaded control program.

Current mapping of the hardware indicators on the front panel of the con-
troller is written to /tmp/led.xml and /var/www/wbm/led.xml.
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More information about the exposed management interfaces of the controller,
mode of authentication, MODBUS and serial port initialization can be obtained
at /etc/rts3s.cfg.

The configuration of the embedded webserver, embedded into the con-
troller runtime, can be found at CODESYSControl.cfg,CmpWSServer.cfg,/etc/
webserver conf.xml.

In [55], the abuse of the concurrent process pool limitation set by these
configuration files was demonstrated, leading to a denial of service attack against
the controller management interface.

Table 1. Logged information of PFC200

Useful information Location

booted runtime mode /var/run/runtime

runtime init log /tmp/runtime state.log

hardware port
mapping

/var/run/ifstate

Per-thread trace log:
OPC UA, MODBUS
events

/var/log/runtime

WAGO events and
diagnostic information

/var/log/wago/wagolog.log

Booted firmware
revision

/etc/REVISIONS

Firmware update log /log/fwupdate.log

latest executed
privileged commands

/var/log/sudo.log

WAGO CBM calls,
firewall rules and state
transitions

/var/log/messages

PLC boot events /home/check-system/events.log

Analysis of the Control Program: The control logic, compiled by the WAGO
e!Cockpit IDE can be retrieved from PlcLogic/Application/Application.app
binary in the codesys root user home path in the controller. Alternatively,
in the older firmware, the binary is deployed as DEFAULT.PRG to the home
path of codesys root on the controller. If such option is enabled, the IDE can
include the full source code of the control program which can be retrieved from
source.dat binary file in the same path.

If the source file is lacking due to the project deployment configuration, an
analysis of the compiled program binary can be done based on the techniques
and file layout described in [19]. Re-construction of the control flow allows for
context-aware post-exploitation payload generation.
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Visualisation Applet Extraction: The PFC200 supports embedded rendering of
visualisation applets, assembled and deployed to the controller by a CODESYS-
based IDE. Extraction of webvisu.jar is possible from the home path of
codesys user. Further decompilation and analysis of this applet give additional
information about the control components and prioritized metrics, performed on
the physical process.

4.4 Persistence

One of the primary objectives for the malicious code, deployed into the PLC is
persistence - an ability to re-execute the payload in the affected system regard-
less of possible reboots, control switches to and from other PLCs by the fault-
tolerance logic, planned and unexpected power cycles.

To support this operation, the malicious payload performs a set of modifi-
cations to the selected components system. A number of system components in
PFC200 provide an opportunity to establish execution persistence.

Aiming to the long-term, passive presence of a deployed payload, modification
of default but vendor-specific components of the PLC firmware places lower
detection risk as compared to generic Linux persistence techniques.

Injection to CBM Modules: WAGO CBM is a vendor-added set of command-line
interface (CLI) utilities which play a key role in the controller setup, monitoring,
management of its hardware and the state of CODESYS runtime. These contain
a set of scripts which obey the custom access permission system [44]. Many of
these utilities are not only meant to be manually invoked by the operator but
provide a call interface for other software on the controller.

Table 2 lists some of the frequently invoked CBM scripts with the loca-
tion path related to /etc/config-tools/. The systematic invocation of high-
privileged CBM scripts makes them a reliable target for payload injection and
system persistence.

Table 2. Frequently invoked WAGO CBM scripts

Utility name Trigger condition

cbm-script-modules/* Multiple: configuration protocol

events/* Multiple: power cycle and interface up/down

start reboot Power cycle

firmware restore PLC boot and firmware update

Web Components: The PFC200 controller runs two groups of web applications
via separate embedded web servers. Running as root, the /usr/sbin/webserver
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is responsible for serving web components of the pure CODESYS distribu-
tion (including WebVisu visualisation applets). The /usr/sbin/lighttpd web-
server with /usr/bin/php-cgi interpreter is running as www user and serves
the WAGO WBM remote management utility. The deployed configuration of
lighttpd also turns it into a reverse proxy, which redirects its certain routes to
the CODESYS server.

This can be observed by inspecting /etc/webserver conf.xml, redirect
wbm.conf, and host configurations under /etc/lighttpd/.

The important property which makes these web components attractive for
persistence hook execution is extensive non-traditional privileges of the www
user. With a sudoers record, a list of additional commands is granted to it. These
include powerful actions like hardware devices access, firmware replacement and
service configuration.

To achieve the payload persistence though the ability of its remote invoca-
tion from WBM, /var/www/wbm/page elements, /var/www/wbm/fs utils are
suitable injection points for a malicious payload hook. To ensure that a given
component can be accessed from WBM with an authenticated request, a refer-
ence can be checked against a permission rules file wbm/paperm.inc.php.

Process Migration Candidates: Once the superuser privileges are gained, an effi-
cient option would be to host the persistent payload stealthily among the running
processes.

A reason behind this method is an additional detection countermeasure effect.
While these processes will be likely common for every PFC200 series controller
which runs in a given mode of operation (CODESYS 2.5 and 3 have significant
difference and are supported by PFC200 as separate modes), a generic Linux
rootkit detection tool would likely not be able to attest the integrity of these
binaries.

A good candidate for this is the codesys3 process itself. In a typical config-
uration, it spawns 36 named threads for different jobs of its execution cycle. In
particular, this includes I\O operations, MODBUS and networking, visualization
thread, cycle scheduling, webserver threads, load monitoring and other system-
atic tasks. Many of these threads happen to be dormant, judging by consumed
CPU time as their functionality or target network interface is always enabled.
However, even in this case, the same number of named threads is still spawned
by the runtime.

For a stealthy backdoor on the controller, this makes the codesys3 process
a right candidate for process migration.

Another potential target could be the custom vendor-built oms.d service
which is responsible for handling the hardware button events in the controller
and triggers call-backs for power on, soft and factory reset actions with root
privileges.

The downside of this method is the unavailability of debugging and function
hooking tools in the typical firmware build configuration. However, the board
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support package [43] provides rules to include these utilities to the firmware
distribution for debugging purposes.

Generic Techniques: In addition to the targeted techniques which lever-
age vendor-specific components in PFC200, the persistence opportunities are
extended by a number of generic assets present in the firmware. These tech-
niques are widely used by Linux malware [9] to obtain persistence in desktop
platforms. Despite being very limited in available kernel modules and user-space
utilities, the real-time operating system (RTOS) of WAGO PFC200 embeds a
Linux kernel and multiple generic system services. This makes such techniques
applicable for persistence purposes on the PLC.

Crontab Records: PFC200 actively uses Cron daemon for purposes of auxiliary
system operations. If Cron daemon is available in the system, it is often possible
to achieve persistence by adding a record to a given user’s crontab [9] with access
privileges of this user.

To reduce the risk of detection, an attacker can append the malicious pay-
load to one of known script invocation records or forge the process name with
one of the default cron jobs, preserving same invocation frequency to reflect in
system logs. A suitable candidate for this in WAGO PFC200 can be the default
crontab record for logrotate service, which is systematically called to perform
the management of multiple system and event logs on the controller filesystem.

Terminal Sessions: One of the conventional persistence techniques in Linux
systems is backdooring the terminal session initialization file to invoke additional
commands when the user initiates the session [9].

For the purposes of local and remote in-network configuration, CLI capabili-
ties are provided by PFC200 out-of-the-box. By default, pre-configured users of
the system are also enabled to initiate Bash terminal sessions. When such session
is opened, typically through the built-in Dropbear SSH server or serial interface,
multiple configuration files are invoked. In particular, the following scripts are
part of the terminal session invocation chain:

– /etc/wago-screen-prompt.sh
– /etc/profile.passwd
– /etc/config-tools/get user info

Altering these scripts give an additional opportunity to invoke the backdoor
when a session is opened for a given user.

5 Attack Scenarios

In this section, we provide two examples of attack chains which leverage the
post-exploitation and persistent techniques proposed in Sect. 4.
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Example 1. A WAGO PFC200 controller runs firmware revision 03.01.07(13)
which contains unpatched vulnerabilities known to the attacker. A remote
attacker accesses the WBM service through the exposed TCP port and uses
the authentication flaw [47] to derive login credentials (Fig. 1). The attacker
crafts a malicious ipk package and achieves its execution in the system using
the remote code execution flaw [54], resulting in privilege escalation to the supe-
ruser. Using the same vulnerability, the attacker uploads a crafted backdoor,
compiled for ARMv7 instruction set [5] to the persistent partition on the PLC
(Fig. 2). During the post-exploitation, the attacker analyses the logfiles located at
var/log/wago/wagolog.log, and /var/log/messages. She observes that sys-
tematic maintenance is done on the controller, through command-line sessions
over the serial interface. To achieve the persistence of the malicious backdoor, the
attacker adds an additional record to /etc/wago-screen-prompt.sh to invoke
the previously uploaded binary every time the operator logins (Fig. 3). The pay-
load potentially preserves its dormant state until the second stage of the attack
is activated, affecting the physical process of the plant. In the system logs and
historian server data, the actions placed by the malicious implant will conform
timestamps of legitimate operator actions.

Fig. 1. E1 Stage I: Authentication bypass
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Fig. 2. E1 Stage II: Code execution

Example 2. A WAGO PFC200 controller runs firmware revision 03.01.07(13)
which contains unpatched vulnerabilities known to the attacker. The attacker
exploits a buffer overflow flaw [59] in WAGO service protocol reachable through
TCP port 6626 on the controller. This results in arbitrary code execution with
superuser privileges. The attacker crafts a malicious executable and writes it
into the persistent partition on the controller. To secure the re-execution of
the payload, an attacker appends the malicious executable invocation hook to
the /etc/config-tools/events/networking/update config event rule. This
results in persistence on the system after power cycle of the PLC or its network
interfaces re-configuration.

6 Discussion

We have to note that the research is significantly facilitated in the case of
CODESYS runtime by having direct access to the device filesystem through
a number of control interfaces and protocols. The ability to have shell access to
the PLC and process monitoring utilities in the embedded OS plays an important
role to understand the architecture.
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Fig. 3. E1 Stage III: Post-exploitation

Defence and Detection: The objective of a persistent backdoor placed on the
affected PLC is to minimize detection risk in a long-term perspective. The
assumed detection mechanisms can be categorised in the following categories:

– Generic Linux rootkit detection utilities
– Network activity anomaly detection
– System behaviour analysis
– Manual in-system investigation

In relation to the techniques described in Sect. 4, the customization to spe-
cific PLC firmware components is assumed as an advantage against detection
by generic detection algorithms. Use of a generic Linux rootkit detection soft-
ware would likely not be able to verify the integrity of modified vendor-specific
utilities.

Assumed that the attack payload is in a dormant state but persists in the
PLC system long-term, the in-network behaviour analysis mechanisms similar to
[13] and [2] will not apply as there is no immediate deviation from the historical
data or change of physical process state.

Applicability: In this work, we have studied the methodology in relation to
RTLinux-based WAGO PLCs, which introduces vendor-specific system services
to manage the CODESYS runtime. A similar approach is potentially helpful
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for attack cycle research in other ICS products, which are built on top of the
variations of CODESYS runtime. This includes more than 360 devices from
Hitachi, Advantech, Schneider Automation, ABB, Bosch Rexroth and other ven-
dors [19,42].

7 Related Work

From analysis of the major security ICS incidents [7,22,63], a key difference
from traditional IT systems can be observed in the crucial importance of a post-
exploitation chain for a successful attack. This motivates us to specifically focus
on the post-exploitation stage in this work, to research its practical implication
against PLCs.

Similarly, multiple works on the security of PLCs and ICS field devices [3,
10,14,20,33,34] focus on the attacks which could enable remote unauthorised
access. In [27], authors survey the hardware components used in most common
field devices. This provides a view on the share of ARM platforms among other
hardware platforms in ICS at the time of writing. Since then, the growth of
WAGO PFC200 on the market further altered this proportion.

A wider view on the internals of the CODESYS runtime used in WAGO
PFC200 is given in [23]. In [1], WAGO 750-8202 controllers are used as a test
target for the proposed I/O-aware rootkit to facilitate a stealthy attack against
the physical process.

Extensive research is done with a focus on the security of the control code,
executed by PLCs [6,8,11,24–26,30,32,64]. The security design challenges for
PLC and other field devices were studied in [4,21].

To achieve the persistence of a malicious payload, Govil et al. demonstrate the
PLC “Logic Bombs” [12]. Written in Ladder Logic or other PLC programming
language, compiled and deployed, e.g. to CODESYS runtime, such code is hard
to be detected in the controller operation. The trigger condition of such an
implant can be constructed as a pre-defined set of physical process events, which
pass the control to the malicious payload. In [9], a study is done on the effective
persistence techniques used by real-world Linux malware samples.

From the defence perspective, Hsio et al. [13] have proposed an ICS security
monitoring solution to reveal anomalies which can be applied to the detection
of malicious rootkit activity on the PLC. In [2], authors propose to detect the
attacks against the physical process using noise analysis of the field devices.

A significant contribution was made recently in the domain of reverse engi-
neering of WAGO PFC200 CODESYS-compiled binaries. In [19], authors pro-
pose a structured way of reverse-engineering the CODESYS-compiled binaries.
The proposed open-source framework is aware of the proprietary binary format
and canto reconstruct the Control Flow Graph from the given binaries auto-
matically. In the post-exploitation context, a fully automated, targeted attack
generation was demonstrated against WAGO PLCs.
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8 Conclusion

In this work, we proposed a set of post-exploitation and persistence techniques
for WAGO PFC200 Series PLC and crafted two examples of attack scenarios. We
further analyzed detection and defence options, taking into account the internal
system components utilized by the persistence chain.

We highlighted that in the ICS domain, in addition to the initial vulnerabili-
ties which provide a way to penetrate the system, the targeted post-exploitation
techniques play a crucial role in the attack to succeed. Apart from attacks against
PLCs, this is also relevant to a wide range of other ICS devices.

Acknowledgement. This work was partly supported by the SUTD start-up research
grant SRG-ISTD-2017-124.
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