
The Forgotten Hyperparameter:

Introducing Dilated Convolution for Boosting CNN-Based
Side-Channel Attacks

Servio Paguada1,2(B) and Igor Armendariz2(B)

1 Digital Security Group, Radboud University, Nijmegen, The Netherlands
servio.paguadaisaula@ru.nl

2 Ikerlan Technology Research Centre, Arrasate-Mondragón, Gipuzkoa, Spain
{slpaguada,iarmendariz}@ikerlan.es

Abstract. In the evaluation of side-channel resilience, convolutional
neural network-based techniques have been proved to be very effective,
even in the presence of countermeasures. This work is introducing the
use of dilated convolution in the context of profiling side-channel attacks.
We show that the convolutional neural network that uses dilated convo-
lution increases its performance by taking advantage of the leakage dis-
tributed through scattered points in leakage traces. We have validated
the feasibility of the proposal by comparing it with the state-of-the-art
approach. We have conducted experiments using ASCAD (with random
key), and as a result the guessing entropy of the attack converges to zero
for around 550 synchronized traces and for 3 000 desynchronised traces.
In both groups of experiments, we have used the same architecture to
train the model, changing just dilatation rate and kernel length, which
indicates a reduction of the complexity in the deep learning model.

Keywords: Profiled attacks · Side-channel analysis · Dilated
convolutions · CNNs · Dilatation rate

1 Introduction

The profiled attack is considered to be one of the most powerful attacks in Side-
Channel Analysis (SCA). The overall idea is to build a model (profile) by using
a clone of the target device and then use this model to attack the non-controlled
target device. Template Attack is the first example of these types of attacks [6],
and some related works followed introducing new attack scenario and improving
the execution phase [10,14,33]. Profiled attacks became even more powerful with
the usage of deep learning techniques. Since profiled attacks can be seen as a
classification problem, existing deep learning architectures like VGG [34] were
taken as a baseline for applications in SCA [20,32]. Several publications pre-
sented different types of deep learning models such as Multi-Layer Perceptron
(MLP) [23,24], and Convolutional Neural Network (CNN) [4] that were able to
compromise the secure implementation of cryptographic algorithms. They both
showed the potential to outperform previous results of template attacks.
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 217–236, 2020.
https://doi.org/10.1007/978-3-030-61638-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_13&domain=pdf
http://orcid.org/0000-0003-4665-7457
http://orcid.org/0000-0002-5055-455X
https://doi.org/10.1007/978-3-030-61638-0_13

218 S. Paguada and I. Armendariz

Many efforts are made to improve our understanding of how these deep
learning-based attacks work. One direction is to find the best combinations of
hyperparameter values of the learning algorithm, e.g. those that improve the
attack. Results of those efforts are the different methodologies that explain how
evaluators and researchers should build CNN models. Thanks to that, tests over
commercial devices for assessing their resilience are becoming more feasible and
reliable.

Recently, the methodology presented in [40] has shown that, by reducing the
use of relevant features in the convolutional blocks, not only the efficiency but
also the effectiveness of the attack increases. Additionally, the experiments made
in [21] suggest that an important improvement in CNN-based attacks could be
achieved, if features where the intermediate values leak and where the mask leaks
are combined in its convolution operation. CNN almost always are built with
two main parts, the convolutional part, and the classification part. The former
is composed of convolutional blocks, and it is the part where that convolution
operation is performed.

We take the arguments from the two papers mentioned above as our starting
point. Then, we conducted preliminary experiments using dilated convolutions.
Dilated convolution is a type of convolutional block where its kernel is modified
(dilated) in a way such that it covers wider areas than the normal convolution,
and at the same time does not overuse relevant points. Dilated convolution is
used to face the problem of scattered dependencies, meaning that the leak is
scattered through sample points in the leakage traces [16,21,22]. Some works in
high-order side-channel also explain the phenomenon from the perspective of this
analysis [2,11,36,38]. The dilatation of the kernel is controlled by a hyperparam-
eter known as dilatation rate. It turned out that by using dilated convolution,
we increased the performance of the CNN model. The preliminary experiments
were conducted using ASCAD fixed key dataset [32], with the CNN model sug-
gested in the latest work [40]. The results have shown that dilated convolution is
feasible and might represent a useful hyperparameter when building CNN mod-
els for SCA. Then, ASCAD random key dataset [32] was used in experiments
where the guessing entropy [35] converges to zero for around 550 traces, whilst
the baseline value produced by a model from [21] converges to zero for around
4 500 traces. The results of these latter experiments were achieved by a CNN
model that uses dilated convolutions.

Contribution

By taking dilated convolution into account, we are aiming to understand better
how the architecture of CNNs should be designed for evaluations. To be more
specific, we introduce the use of dilated convolution by explaining and demon-
strating how this type of kernels is feasible to evaluate implementations of cryp-
tographic algorithms. As it turns out, it brings a new possibility to reduce the
complexity of the deep learning models. To prove what we claim, we conducted
the following:

The Forgotten Hyperparameter 219

1. The first experiment compares state-of-the-art results from [40], showing the
feasibility of the dilated convolution. Gradient visualization [25], Signal-to-
Noise Ratio (SNR) [22], and Weight visualisation [40] techniques are used to
evaluate the classification and feature selection of both approaches. Further
experiments involve a CNN model that outperforms the state-of-the-art app-
roach. These latter experiments aim to compare CNN’s effectiveness by using
different values of kernel length, and dilatation rate. They demonstrate the
effect of reducing redundant points in the first convolutional block, but also
the importance of combining enough relevant ones.

2. Experiments for mimicking the behaviour of the dilated convolution using
small values of kernel lengths and stride are also performed. Proving that
in fact, dilated convolution takes advantage of the long-range dependencies
leakage when combining the involved sample points in the same convolution
operation.

3. Experiments that show how dilated kernels reduce the impact of the desyn-
chronisation. This latter experiment aims at reducing the complexity of the
convolutional part. As we show, the deep learning model used for bypassing
desynchronisation is almost the same as the experiment without this effect.
Changes were only made in the kernel length and the dilatation rate of the
first convolutional block.

4. We also propose considerations that serve as a guide when using dilated
convolutions.

Paper Organisation

The remainder of this paper is organised as follows. Section 2 includes a back-
ground in CNN, theoretical aspect of normal and dilated convolutions, the
datasets we used, and the metric to assess the performance as well as the visu-
alisation techniques. Section 3 summarises previous works regarding CNN for
SCA. Section 4 presents the consideration when building dilated convolution-
based CNN. Section 5 and Sect. 6 contain the result of experiments and the
conclusion, respectively.

2 Background

In this section, we start by giving an overview of convolutional neural networks.
We also include some theory on how the dilatation rate affects the convolu-
tional operation. To show the arithmetic relation, we have used the mathematical
expression of the most general case of convolution operation [13], which involves
all the possible variables, i.e. padding, kernel and input map lengths, and stride.

2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of neural network; they were
initially designed to address classification problems in images. Some recent works

220 S. Paguada and I. Armendariz

have also shown their performance for time series analysis [8,28]. As depicted
in Fig. 1(a), CNNs are composed of two main parts; the convolutional part and
the fully-connected part. The convolutional part is where the convolutions take
place, and as the name suggests they are the convolution layers of a CNN. In
such a layer, a kernel is required to perform the operation using the input map;
being the first convolution layer the input signal. The elements of the kernel are
also known as weights. The back-propagation operation updates these weights
after a loss function determines the error in the classification. Back-propagation
is a powerful characteristic of the neural network learning algorithms [15].

The input map contains features that characterise itself; not all features are
relevant; in fact, irrelevant features lead to an ineffective neural network [27].
When the input map is convolved with a kernel of length lk, the sparse combina-
tion of features produces a feature map, whose elements represent more abstract
features than the ones in the input. Such a resultant feature map serves as input
for the next convolutional block. The number of kernels used represents the
number of feature maps that will be created; all of them will characterise in an
abstract way the input signal. Feature map could also be seen as a reduction of
the space volume of information. The length lk determines how many points are
involved in computing such reduction. Both, the kernel length, and the number
of kernels in the convolutional block are hyperparameters for the neural network
architecture.

As those feature maps progress through the hidden convolution layers, even
more abstract feature maps are created. A 1D convolution operation can be
expressed as in Eq. 1, where f is the input map and k is the kernel; a graphic
example is depicted in Fig. 1(b). Feature map might pass to a pooling layer; this
layer acts as a downsampler which takes the output of a convolution layer and
creates a spatial feature map. This spatial feature map is an invariant represen-
tation of the original sparse features in the input map; we named this pooling
feature map in Fig. 1(b). In the convolutional part, the operation must catch
relevant features that aim for the proper classification. Which also implies that
the goal is not to have a long kernel that mixes many features in the operation;
indeed, such a practice could lead to poor results. At the end of the convolutional
part, the feature maps are reduced to a vector (i.e. flattened) to feed it into the
fully connected part where the classification is conducted.

f [x] � k[x] =
∞∑

n=−∞
f [n] · k[x − n] (1)

Normal Convolutions

Different hyperparameters setup the convolution operation, and they affect the
output dimension lo of the resultant feature map. To explain this relation, in
Eq. 2 it is assumed a convolution layer with kernel of length lk, a padding param-
eter p whose value determines the dimension with zero values used to contour
input map; this latter would have an original length denoted by li. Finally, the

The Forgotten Hyperparameter 221

Fig. 1. (a) Convolution neural network common architecture (N = 0); (b) Convolution
operation example

stride parameter sc represents the distance between two consecutive applications
of the kernel over the input map.

lo = lfm =
⌊

li + 2p − lk
sc

⌋
+ 1 (2)

As we mentioned, the output of the convolution layer could pass through
a pooling operation. Commonly, this is the case because such operation grants
invariant property to a CNN against small translations of the input maps. Pool-
ing layer uses a window that we called it pooling kernel, its length lpk represents
the number of features taken from the feature map to conduct the pooling oper-
ation. A stride value sp (named pooling stride) controls the displacement of the
pooling kernel through the feature map. This operation also affects the output
dimension lo that in such a case becomes lpo, Eq. 3 shows the relation. Although
there are different kinds of pooling operation Eq. 3 applies for all of them. Figure
1(b) also show example of these parameters.

lpo =
⌊

lfm − lpk
sp

⌋
+ 1 (3)

Dilated Convolutions

A dilated convolution takes place when the effective size of the kernel is increased
by a factor, known as dilatation rate dr. Normally, this factor is bigger than
1, (where dr = 1 is a normal convolution layer) which allows the convolution
operation to cover a wider area, without heavily affecting the original convolution
operation performance. The effect could be seen as if we take a kernel and inflate
it by inserting zeros between kernel elements; some features are nullified from the
operation because of those zero value elements; i.e. there are terms of zero value
in the right side of Eq. 1. Therefore, only the non-zero kernel elements contribute
to compose the feature maps; using features that are even more sparse. The rest

222 S. Paguada and I. Armendariz

Fig. 2. Dilated convolutions explanatory illustration, two kernels with different lengths
and different values of dilatation rate (considering sc = 1)

of the operations remain as they were normal convolutions. Each time kernel
moves according to the stride value, the resultant feature map includes less
redundant features and at the same time keeps enough relevant ones. Equation
4 shows how the length of a kernel lk is affected by the dilatation rate dr. Figure
2 illustrates a dilated convolution with two examples.

l̂k = lk + (lk − 1)(dr − 1) (4)

It is clear that, dilated convolution also changes the output dimension of
the feature maps. Equation 5 is a modification of Eq. 2, and shows the relation
of the output dimension, when dilatation rate (dr) already changed the kernel
length l̂k. It is also clear that when lk = 1 Eq. 5 becomes exactly as Eq. 2; this is
something to be considered for choosing the criteria to build the deep learning
architecture (Sect. 4).

lo = lfm =

⌊
li + 2p − l̂k

sc

⌋
+ 1 (5)

2.2 ASCAD Dataset

ASCAD dataset was introduced in [32] with the purpose of being a common
dataset, to conduct benchmarking related to side-channel profiled attacks using
machine learning techniques. The ATMega8515 was the device from which the
traces were collected. The EM radiation was recorded while the device executed
an AES-128 [12] software implementation. A masking countermeasure was used
to protect the cryptographic operation [3]. In the acquisition campaign, an oscil-
loscope with the EM sensor sampled the signal at 2 GS/s.

The structure of this dataset allocates traces into two groups; profiling traces
which contains traces to perform the profiling stage and attack traces, which
contains traces to perform the attack stage. The dataset has two versions, col-
lected traces with fixed key encryption and collected traces with random key

The Forgotten Hyperparameter 223

encryption. In the work [40], they used ASCAD fixed key; to establish a com-
parison we have used this dataset in the first experiment. The profiling traces
group contains 50 000 traces and the attack traces group contains 10 000. The
traces in both of the groups have 700 sample points, and they are the points of
interest of the crypto operation (the masked S-box for the sensitive value).

For the rest of the experiments, we have used ASCAD random key version
since it represents a challenging way to conduct a profiling attack. For this ver-
sion, profiling traces contains 200 000 traces and attack traces contains 100 000
traces. In the experimental section (Sect. 5), Tables 2 and 3 show the amount of
traces of each group used to perform training. Each trace has a length of 1 400
sample points. As in the fixed version, these are the points of interest of the
crypto operation.

Traces can be desynchronised by applying a threshold (N) that moves traces
around x-axis. The common values to perform the benchmarking are N = 0,
N = 50, and N = 100. In the experiment, we have only used N = 0 and
N = 100; the latter value lets enough evidence that the proposed method is
feasible as well for N = 50.

Sensitive value of traces has the model represented by the Eq. 6 where the
value of Z represents the class that labelled the traces associated with the same
index. The byte that is intended to exploit is the third value (i = 3). The p
represents the plain text, and k is the possible key hypothesis.

Z[i] = Sbox[p[i] ⊕ k[i]] (6)

All the samples were standardised and normalised between 0 and 1 to accel-
erate the learning process [15]. For the first experiment, we have used the same
training hyperparameters as in [40] as well as the same setup for the attack phase.
For the experiments using ASCAD random key, the attack traces are randomly
shuffled and a battery of 100 attacks are performed to obtain the average value.

2.3 Guessing Entropy

The guessing entropy (GE) [35] is commonly used as a metric to assess the
performance of a side-channel attack. It represents the average number of the
key candidates required to obtain the secret key k after conducting a side-channel
analysis. To give a specific example, let consider the 5000 randomly chosen traces,
an attack using these traces results in a GE vector �g = [g1, g2, . . . , g|K|] where
K represents the keyspace. Each component gi is ordered from the maximum to
the minimum value of probability. Then, the GE is the average position of k in
the vector �g over many experiments. By using a battery of 100 experiments, we
obtain an averaged guessing entropy for adequately estimating the performance
of the attack.

2.4 Visualisation of Feature Selection

The ability of a neural network to extract relevant feature can be visualised
using the following techniques. Gradient visualisation [25] computes the value

224 S. Paguada and I. Armendariz

of the derivatives regarding the input trace, the resultant value is used to point
out what feature needs to be modified the least, to affect the loss function the
most. This technique gives information about what time samples influence the
most in the classification; when those time samples are compared with other
visualisation techniques, one can evaluate how well the neural network extracts
the important features. Signal-to-Noise Ratio (SNR) [22] points out the time
samples in leakage traces that contain exploitable information. We used it to
compare with gradient visualisation and see how the time points match in each
result. Weight Visualisation [40] helps to understand how the convolutional part
of a CNN performs the feature selection. By comparing the shape of this latter
technique with gradient visualisation, one can evaluate how well the feature
learning part did to help the classification part.

3 Works in CNN for Side-Channel Analysis

In this section, we briefly mention related works in the context of using CNN for
SCA.

The first works in using CNN architecture for SCA were [20,32] conclud-
ing that VGG [34] was the best architecture in addressing side-channel analy-
sis. After these papers, others became available showing results against coun-
termeasures such as those jitter-based and masking [4,5]. Other publications
focused on understanding theoretically, and visually how deep learning models
are capable of bypassing the countermeasure and compromising the security such
as [25,29,40]. CNN has also been used for non-profiled attacks [37]. Additionally,
in the same contribution, the ability of deep neural networks to fit high-order
side-channel leakages was shown.

Recent works have looked into modifications of the architecture of the CNN,
not just on changing the hyperparameters, but trying to feed the neural network
with more inputs (with additional data) to improve the performance [18]. Feature
selection has also been covered in SCA, Picek et al. show the relevance of applying
techniques for choosing features to increase the performance of the learning
algorithm [30]. In [21], the authors present several experiments for building the
first convolutional block related to scattered leaks1.

One of the most recent works in showing a methodology to build a CNN for
side-channel analysis is [40]. In that paper, the conducted analysis shows how
to setup kernels in the first convolutional block; for avoiding composing feature
maps that include many irrelevant as well as redundant features. As we already
mentioned in the previous section, such mis practice impacts negatively on the
performance. The work assesses other aspects concerning pooling operation, and
they claim that a pooling stride should also be set in a way that the pooling kernel
does not take repetitive features.

All these works have integrated reliable conclusions that are still used in the
state-of-the-art. To the best of our knowledge, dilated convolutions have not
been presented into SCA context yet. Some references on using them in image
classification applications exist [7,17,28,39].
1 i.e. intermediate value and mask leaks.

The Forgotten Hyperparameter 225

4 Dilated Convolutions Design Considerations

Here we discuss the design considerations for CNN architectures with dilated
convolutions for SCA, as well as the potential pitfall of using them.

We offer a takeaway when one opts for the presented approach. As the reader
can see, they are substantially similar to the state-of-the-art. This is because
dilated convolution follows the basis of avoiding collecting irrelevant features.
What follows are the criteria and their explanation for building deep learning
architecture. At the same time, they justify the usage of the dilated convolution.
It must be understood that dilatation rate is also a hyperparameter so that the
process to find the best value for it relies on a trade-off between it and the others.

– Reduce overusing of relevant features: It has been shown that a kernel
which covers long areas of the signal, tends to build feature maps that contain
a lot of redundant features. When that happens, the elements in the feature
map do not represent the actual relevance of the essential points [19]. Their
values are close or equivalent to each other. Dilated convolution reduces the
overuses of relevant points because zeros between kernel weights nullify a
portion of them.

– Kernel length and dilatation rate: Having evidenced that the leak could
be scattered through sample points [2,11,38], and a kernel length should cover
the leak of the intermediate values as well as the leak of the mask [21,36].
It is not enough to avoid the overuse of relevant points by setting the first
convolutional block with small kernel length. The kernel must be able to take
these scattered leaks and conducts the operation; dilated convolution covers
this issue.

– Pooling stride: Keeping the pooling stride Sp value big enough is also
mandatory to have in mind. This resolution was already addressed in [40]; a
pooling operation should not compromise relevant features already refined by
the convolution layer.

– Desynchronisation: The conclusions in [40] also stresses the fact that avoid-
ing deep architecture could have a positive impact on the presence of desyn-
chronisation. This is an aspect that we cover by using dilated convolutions,
recall that having gathered better feature maps in earlier convolutional blocks
reduce the need for adding more of them. We depict this fact in the last exper-
iment, we have used the same architecture for both ASCAD sync and ASCAD
desync with N = 100, achieving good results. We have only changed values for
each training stage and values for the kernel length as well as the dilatation
rate for the first convolutional block.

– Do not dilate too much: Regarding the fact that we can lose too much
information. It is clear that there isn’t total control about how relevant the
points are being nullified when using dilated convolution, so it’s also possible
to lose too many of them; this is a potential pitfall of using dilated convolution.

226 S. Paguada and I. Armendariz

Takeaway Message:

1. For the two first points, we suggest evaluating with a small kernel length and
dilatation rate values, e.g. lk = 7 and dr = 2. Then, one should increase them
iteratively finding a good trade-off. Recall, those values are related to the way
the leaks are scattered in the leakage signal. A leakage analysis might help to
identify the leaky points [19].

2. A recommended value for the pooling stride is at least the length of the
pooling kernel i.e. lpk = Sp (as is exemplified in Fig. 1(b)).

3. In the presence of desynchronization, it is feasible to go for longer kernels,
since the leakage is even more scattered. As in the first point the values to
begin with heavily depend on the length of the input map, set these values
having in mind that a low dilatation rate, dilates the kernel in a multiplicative
way.

4. To avoid the pitfall, we recommend finding a trade-off in the number of kernels
specified for the convolution layer that uses dilated convolutions. By doing so,
one composes enough feature maps and preserves as many relevant features
as possible. Another recommendation is to try with different kernel lengths to
see the impact of changing the value. We provide one experiment to exemplify
this.

Taking these considerations, the suggested architecture is summarised in
Table 1 in Sect. 5.2. Note that the proposed architecture follows the rule of
thumbs about the number of kernels. We use this single architecture to perform
different experiments. Some values in Table 1 are fixed according to experiments,
and they are set to the respective ones. To build deep learning models for the
experiment we have used Python Keras library [9], and TensorFlow as back-end
[1]. As a classification problem that has more than one class, we have use Softmax
as the activation function for the output layer, and categorical cross-entropy [26]
as the loss function. The optimiser was set to Adam [15] using batch size of 256
and a learning rate of 10−3. Recall that these training hyperparameters and this
CNN architecture are only used in the experiment with ASCAD random key
version.

5 Experimental Results and Discussions

In this section, we report on the results that were achieved by using dilated
convolution using synchronised and desynchronised ASCAD traces.

5.1 ASCAD Fixed Key (N = 0)

To compare with state-of-the-art results2, we conducted experiments using dif-
ferent values of lk and dr to train the CNN suggested in the latest work in [40].

2 https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA.

https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA

The Forgotten Hyperparameter 227

(a)

0 100 200 300 400 500
Number of Traces

0

5

10

15

20

25

G
ue
ss
in
g
En

tr
op
y

GE ASCAD N=0 Fixed key

(b)

(c) (d)

Fig. 3. (a) Two traces from ASCAD fixed key (N = 0); (b) GE baseline using CNN
from [40]; (c) SNR of unmasked sensitive value and mask; (d) Correlation analysis

We have keep all the training hyperparameters as in that work3. Then, the
experiments are conducted with the following hyperparamenters of the first con-
volutional block: A1 : [lk = 1], A2 : [lk = 16, dr = 4], A3 : [lk = 16, dr = 6],
A4 : [lk = 32, dr = 3], A5 : [lk = 64, dr = 2].

We have in Fig. 3(b) the value of GE obtained from the CNN model in [40].
Thanks to the fact that the information of the masks and the sensitive values are
available in ASCAD dataset [37], we can compute the SNR of the unmasked sen-
sitive value and the mask Fig. 3(c) and Fig. 3(d) shows the correlation analysis,
both with regard to the third byte. As we said, SNR gives us information about
the points of the leakage signal that are exploitable. In ASCAD fixed key two
intervals are remarkable I1 = [90, 300] and I2 = [450, 600]. Although I1 regard
to unmasked sensitive value is barely visible in the SNR plot, the correlation
analysis emphasises that in this area, there is some exploitable information [37].
In fact, I1 is the interval where the two signals overlap, which represents a con-
venient situation because both leaks are matched.

Figure 4(a) depicts all the five attacks. Looking at these results, we argue
that by having achieved the same outcome with most of the cases, the dilated
convolution approach is feasible. Recall that the CNN model presented in [40] is

3 Including One Cycle Policy to deal with the learning rate.

228 S. Paguada and I. Armendariz

0 100 200 300 400 500
Number of Traces

0

5

10

15

20

25

G
ue
ss
in
g
En

tr
op
y

GE ASCAD N=0 Fixed key A1:[lk=1]

A2:[lk=16, dr=4]

A3:[lk=16, dr=6]

A4:[lk=32, dr=3]

A5:[lk=64, dr=2]

(a)

Time samples

0.25

0.50

0.75

W
ei
gh

t
va
lu
e

A1:[lk=1]

Time samples

0.25

0.50

W
ei
gh

t
va
lu
e

A2:[lk=16, dr=4]

Time samples

0.25

0.50

0.75

W
ei
gh

t
va
lu
e

A3:[lk=16, dr=6]

Time samples

0.2

0.4

W
ei
gh

t
va
lu
e

A4:[lk=32, dr=3]

0 100 200 300
Time samples

0.25

0.50

0.75

W
ei
gh

t
va
lu
e

A5:[lk=64, dr=2]

(b)

Time samples
0

1

G
ra
di
en

t

A1:[lk=1]

Time samples
0

2

G
ra
di
en

t
A2:[lk=16, dr=4]

Time samples
0

2

G
ra
di
en

t

A3:[lk=16, dr=6]

Time samples
0

2

G
ra
di
en

t

A4:[lk=32, dr=3]

0 200 400 600
Time samples

0

2

G
ra
di
en

t

A5:[lk=64, dr=2]

(c)

Fig. 4. (a) GE from different values of lk and dr; (b) Weight visualisation; (c) Gradient
visualisation

one of the minimal models regard to the complexity ever presented. The model
relies on the analysis and performance of having a lk = 1. It indicates that the
dilatation rate is a useful hyperparameter for building CNN for SCA.

Figure 4(b) and (c) depict the weight visualisation and gradient visualisation
of the five models trained respectively. In general, all the models detect points
of interest in similar intervals of time samples, some of those points match with

The Forgotten Hyperparameter 229

the SNR and correlation analysis in Fig. 3(c) and (d). The gradient visualisation
gives us a sign that no feature information was lost from the feature learning
process (convolutional part) to the classification part [40].

It’s worth mentioning that the configuration of A4 appears to be an outlier.
Its GE converges to zero in [200, 300] and not in [100, 200] like the others. The
reader can interpret it as an example of finding a trade-off of the kernel length
and dilatation rate.

5.2 Attack over Synchronised ASCAD Random Key (N = 0)

In the following experiments, we show a CNN with dilated convolution that
performs better than previous approaches. To set a baseline to compare with
Fig. 5(a) depicts the shape of two synchronised traces from ASCAD dataset
random key (profiling traces) and Fig. 5(b) shows a guessing entropy achieved
by the model presented in [21]. As we did in the previous experiment, we have
computed the SNR (and the correlation) to visualise the intervals in the leakage
traces which are exploitable; the results are depicted in Fig. 5(c) and (d).

Table 1. Architecture of the CNN for experiments using ASCAD random key

Hyperparameter Value Additional info of values

Input shape (1400, 1)

Conv layers (32, 64, 128) SeLU, He uniform, lk1 and dr varies
according to experiments,
lk2 = 25, lk3 = 3

Regulatization Batch normalisation

Pooling type Average (lpk1 = sp1 = 2, lpk2 = sp2 = 25,
lpk3 = sp3 = 4)

FC 3 FC layers of 15 units each SeLU, He uniform

Dense 256 units Softmax

Comparing Lengths and Dilatation Rate

We consider the length of the kernel that could be the best choice, to achieve
an efficient and effective attack (in terms of number of traces), and at the same
time to show that is not only about covering all the time samples where the
leak happens. To show this in practice, we performed 4 experiments under the
next combinations of values; lk = 1, lk = 32, lk = 64, lk = 32, dr = 2 with the
deep learning architecture as presented in Table 1. In Table 2, a summary of the
values used in the training stage is presented.

During training, 75 epochs were used in all the experiments. However, when
we had found out the presence of overfitting or underfitting, we adjusted these
values, until we notice almost the same tendency in the loss and validation
loss for all of them. Besides, as those two metrics have been shown to be not

230 S. Paguada and I. Armendariz

(a) (b)

(c) (d)

Fig. 5. (a) Two traces from ASCAD random key (N = 0); (b) GE baseline using CNN
from [21]; (c) SNR of unmasked sensitive value and mask; (d) Correlation analysis

reliable as a side-channel metric [31], also a cross-validation setup was used.
All four results are depicted in Fig. 6(a). Our goal is to show how a dilated
convolution outperforms the attack effectiveness. So, the comparison was using
the same architecture with values of kernel lengths suggested in the state of the
art publications.

Note how the GE result of lk = 32 and lk = 64 are worse in approximating
to the baseline. It might be caused for the accumulation of irrelevant features.
In contrast, observe how the result with lk = 32, dr = 2 outperform the GE.
Note, the length of the kernel is practically the same as in the third one, but

0 1000 2000 3000 4000 5000
Number of Traces

0

10

20

30

40

50

60

70

80

G
ue
ss
in
g
En

tr
op
y

ge baseline
lk = 32, dr = 2
lk = 1
lk = 32
lk = 64

(a)

0 200 400 600 800 1000 1200 1400
Time samples

0.0

0.5

1.0

1.5

2.0

2.5

G
ra
di
en
t

(b)

Fig. 6. (a) Guessing entropy of the four experiments; (b) Gradient visualisation result
of lk = 32, dr = 2

The Forgotten Hyperparameter 231

here we include less irrelevant and redundant features because of the dilatation.
Figure 6(b) shows the gradient visualisation of the latter result; the relevant time
samples match with the SNR in Fig. 5(c).

Table 2. Values of the training stage for synchronised traces

Parameter Value

Number of profiling traces 45000

Number of validation traces 5000

Epochs 75

Mimic Dilated Convolution with Stride Values

In this experiment, we show the achieved performance when the behaviour of
the dilated convolution is imitated with small kernel sizes, and stride values that
allow skipping some features. The GE of this experiment is depicted in Fig. 7(a).

The result tells us, that although the efficiency achieved by doing this imita-
tion is less than using dilated convolutions, kernel length of 1 with a stride value
of 3 tends towards a successful attack4, demonstrating the effect of taking many
times the same features. By comparing with dilated convolution, we demonstrate
that reducing redundant and irrelevant features is not the total answer. In some
cases, the efficiency could improve if the evaluator considers the fact that fea-
tures in the input map might present long-range dependencies, i.e. the scattered
leakage of the mask and intermediate values, so a dilated convolution comes to
outperform the results of the evaluation. By comparing the gradient results in
Fig. 6(b), and Fig. 7(c)–(d) one can see how efficiently each model performs the
feature selection. Each one of them matches respectively with its GE.

Different Lengths with Same Dilatation Rate

Dilatation rate is also under the heuristic nature of deep learning, and it must
be included in the tuning process of the deep learning architecture. Although
dilated convolution discards features being or not irrelevant, there is no way (at
least at the moment) to say that it is performing feature engineering, the feature
selection is still not under the control of the evaluator or designer. The experi-
ment, whose result is depicted in Fig. 7(b), was conducted to show that by using
the approach of dilated convolution, one could also damage the performance.
The kernel is taking not enough relevant features, or a lot of relevant features
are being nullified in the interval covers by the kernel.

As we mentioned in Sect. 4, it is recommended to apply a longer kernel
or increase the number of kernels, a trade-off should be found over these two
hyperparameters. Keep in mind that by increasing the number of kernels in a

4 As well as kernel length of 3 with stride value of 6.

232 S. Paguada and I. Armendariz

0 1000 2000 3000 4000 5000
Number of Traces

0

20

40

60

80

100

120

G
ue
ss
in
g
En

tr
op
y

lk = 1, s = 3
lk = 3, s = 6
lk = 32, dr = 2

(a)

0 200 400 600 800 1000
Number of Traces

0

5

10

15

20

25

30

35

G
ue
ss
in
g
En

tr
op
y

lk = 32, dr = 2
lk = 7, dr = 2

(b)

0 200 400 600 800 1000 1200 1400
Time samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
ra
di
en
t

lk=1, s=3

(c)

0 200 400 600 800 1000 1200 1400
Time samples

0.0

0.1

0.2

0.3

0.4

0.5

G
ra
di
en
t

lk=3, s=6

(d)

Fig. 7. (a) GE of examples that mimic dilated convolution; (b) Effect over GE with
same dilatation rate and different lengths; (c) Gradient visualisation result of lk =
1, s = 3; (d) Gradient visualisation result of lk = 3, s = 6

convolutional block, the next one should follow the rule of thumb, i.e. increase
the number of kernels by the power of 2. In Fig. 7(b) we have the result of having
two dilated kernel whose lengths are considerably different in terms of dilatation
rate, i.e. using a dilatation rate of 2 with a kernel size of 7, its effective size
becomes 14, whilst the effective size of a kernel of 32 becomes 64. As the reader
can see, different performances are achieved.

5.3 Attack over Desynchronised ASCAD Random Key (N = 100)

The last experiment considers the impact of having desynchronised traces. For
this, we have used the same architecture as in the previous experiments. Figure
8 shows four combinations of values, a kernel length of 64 with a dilatation rate
of 3 being the best where these were the only changes in the architecture. It is
demonstrated that dilated convolution can bypass desynchronisation, reaching a
considerable good performance. Mention that by having used the same architec-
ture as in the experiment without it, we have evidenced that dilated convolution
also reduces the complexity of the deep learning model. Over certain circum-
stances, a convolutional block that uses dilated convolution composes better
feature maps. Those lead to a better characterisation of the leakage traces. So,
there is no need to add more layers to the architecture.

The Forgotten Hyperparameter 233

0 1000 2000 3000 4000 5000
Number of Traces

0

20

40

60

80

100

120

140

G
ue
ss
in
g
En

tr
op
y

lk = 64, dr = 2
lk = 64, dr = 3
lk = 32, dr = 3
lk = 32, dr = 2

Fig. 8. Guessing entropy over desynchronised ASCAD traces (N = 100)

Table 3. Values of the training stage for desynchronised traces (N = 100)

Parameter Value

Number of profiling traces 55000

Number of validation traces 7000

Epochs 100

Recall that to attack desynchronised signals successfully is trickier. Even
though the same architecture was used, we did a few changes in the kernel length
and dilatation rate, as well as changes in the training values. Table 3 summarises
the latter. As we said, to deal with the effect of the desynchronisation, a trade-off
of kernel length and dilatation rate must be found. Being advantageous is the
fact that one can find an architecture that is useful for different scenarios.

These values make sense; longer kernel is required to combine the leaks cause
relevant points between traces are more scattered when they are desynchronised,
the same reason why the kernel needs to be more dilated. One could argue that
if this is the case, an even simpler architecture could be found for the previous
experiments. While we do not question that statement, being in a scenario where
the evaluator must address synchronised and desynchronised tests, he could rely
on the fact that the same architecture could achieve suitable results in both.

6 Conclusions and Perspectives

In this paper, we have used dilated convolution to build up a CNN. The results
show that by using this type of convolutions, a boosting effect over the perfor-
mance of a deep learning-based side-channel attack is achieved. The arguments
that support our theory are taken from the already addressed aspect about
decreasing the redundancy of relevant points of the input signal. These points
are used for composing feature maps in the convolutional blocks of a CNN. Hav-
ing a useful feature map that characterises well enough the input signal, leads
to a reduction of the number of convolutional blocks in the architecture, which
directly represents a reduction of the deep learning model complexity.

234 S. Paguada and I. Armendariz

The potential of dilated convolutions is in the capability to inflate the kernel,
covering wider areas than normal convolutions. The leakage in the trace could
imply samples that are separated from different amounts of samples in between,
more if the leakage signals are not synchronised. This capability is not presented
in large kernels as well as small kernels with a stride value big enough, that
allows them to avoid points between convolution operations. The lack of this in
normal convolutions has the opposite effect, causing a negative impact on not
being able to reach the performance of the dilated convolution.

From the evaluator’s perspective, it has been shown that a single dilated
convolutional-based model could reach enough performance boost to address
the requirement of a test in both synchronised and desynchronised scenarios.
However, one should bear in mind that small changes in the hyperparameter are
still required. Dilated convolutions have demonstrated to be a hyperparameter
that could lead to new CNN architectures which increase the threat of profiled
attacks. In future works, we will systematically exploit the effect of using this
approach for building deep learning models. Also, we will study other archi-
tectures that may present different behaviour when this alteration is applied,
as well as study more complex data, i.e. 32-bits platforms, covering scenarios
where the noise becomes an important factor when evaluating implementations
of cryptographic algorithms.

Concerning the way, we could protect the latter; we are aiming for evaluating
a combination of countermeasures, i.e. higher level of masking and hiding. Since
hiding countermeasures try to stabilise the power consumption, the learning
algorithm will detect fewer variations; this is going to impact its classification
score, which could be a way to affect the performance of the attack.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems, software available from tensorflow.org (2015). https://www.tensorflow.org/

2. Belgarric, P., et al.: Time-frequency analysis for second-order attacks. In: Francil-
lon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 108–122. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 8

3. Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4 5

4. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

5. Cagli, E., Dumas, C., Prouff, E.: Kernel discriminant analysis for information
extraction in the presence of masking. In: Lemke-Rust, K., Tunstall, M. (eds.)
CARDIS 2016. LNCS, vol. 10146, pp. 1–22. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-54669-8 1

6. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

https://www.tensorflow.org/
https://doi.org/10.1007/978-3-319-08302-5_8
https://doi.org/10.1007/978-3-540-30564-4_5
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-54669-8_1
https://doi.org/10.1007/978-3-319-54669-8_1
https://doi.org/10.1007/3-540-36400-5_3

The Forgotten Hyperparameter 235

7. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: seman-
tic image segmentation with deep convolutional nets, atrous convolution, and fully
connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

8. Choi, K., Fazekas, G., Sandler, M., Cho, K.: Convolutional recurrent neural net-
works for music classification. In: 2017 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 2392–2396. IEEE (2017)

9. Chollet, F., et al.: Keras (2015). https://keras.io
10. Choudary, M.O., Kuhn, M.G.: Efficient, portable template attacks. IEEE Trans.

Inf. Forensics Secur. 13(2), 490–501 (2018)
11. Coron, J.S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security

and mask refreshing. In: Moriai, S. (ed.) Fast Software Encryption, pp. 410–424.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 21

12. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

13. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning. arXiv
preprint arXiv:1603.07285 (2016)

14. Fan, G., Zhou, Y., Zhang, H., Feng, D.: How to choose interesting points for tem-
plate attacks more effectively? In: Yung, M., Zhu, L., Yang, Y. (eds.) INTRUST
2014. LNCS, vol. 9473, pp. 168–183. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-27998-5 11

15. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press (2016)
16. Hajra, S., Mukhopadhyay, D.: Multivariate leakage model for improving non-

profiling DPA on noisy power traces. In: Lin, D., Xu, S., Yung, M. (eds.) Inscrypt
2013. LNCS, vol. 8567, pp. 325–342. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-12087-4 21

17. Hamaguchi, R., Fujita, A., Nemoto, K., Imaizumi, T., Hikosaka, S.: Effective use
of dilated convolutions for segmenting small object instances in remote sensing
imagery. In: 2018 IEEE Winter Conference on Applications of Computer Vision
(WACV), pp. 1442–1450 (2018)

18. Hettwer, B., Gehrer, S., Güneysu, T.: Profiled power analysis attacks using con-
volutional neural networks with domain knowledge. In: Selected Areas in Cryp-
tography - SAC 2018–25th International Conference, Calgary, AB, Canada, 15–17
August 2018, Revised Selected Papers, pp. 479–498 (2018)

19. Hettwer, B., Gehrer, S., Güneysu, T.: Deep neural network attribution methods
for leakage analysis and symmetric key recovery. In: Paterson, K.G., Stebila, D.
(eds.) SAC 2019. LNCS, vol. 11959, pp. 645–666. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-38471-5 26

20. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise: unleashing
the power of convolutional neural networks for profiled side-channel analysis. IACR
Cryptology ePrint Archive 2018, 1023 (2018)

21. Maghrebi, H.: Deep learning based side channel attacks in practice. IACR Cryp-
tology ePrint Archive 2019, 578 (2019)

22. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards, vol. 31. Springer, Boston (2008). https://doi.org/10.1007/978-0-
387-38162-6

23. Martinasek, Z., Dzurenda, P., Malina, L.: Profiling power analysis attack based on
MLP in DPA contest V4.2. In: 2016 39th International Conference on Telecommu-
nications and Signal Processing (TSP), pp. 223–226 (2016)

24. Martinasek, Z., Zapletal, O., Vrba, K., Trasy, K.: Power analysis attack based on
the MLP in DPA contest v4 (07 2015)

https://keras.io
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-662-04722-4
http://arxiv.org/abs/1603.07285
https://doi.org/10.1007/978-3-319-27998-5_11
https://doi.org/10.1007/978-3-319-27998-5_11
https://doi.org/10.1007/978-3-319-12087-4_21
https://doi.org/10.1007/978-3-319-12087-4_21
https://doi.org/10.1007/978-3-030-38471-5_26
https://doi.org/10.1007/978-3-030-38471-5_26
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6

236 S. Paguada and I. Armendariz

25. Masure, L., Dumas, C., Prouff, E.: Gradient visualization for general characteriza-
tion in profiling attacks. In: Polian, I., Stöttinger, M. (eds.) International Workshop
on Constructive Side-Channel Analysis and Secure Design, pp. 145–167. Springer
(2019). https://doi.org/10.1007/978-3-030-16350-1 9

26. Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep learning for
side-channel analysis. IACR Trans. Cryptographic Hardware Embed. Syst. 2020,
348–375 (2020)

27. Ng, A.Y.: Feature selection, L1 vs. L2 regularization, and rotational invariance. In:
Proceedings of the Twenty-First International Conference on Machine Learning,
ICML 2004, p. 78. Association for Computing Machinery, New York (2004)

28. van den Oord, A., et al.: WaveNet: a generative model for raw audio. In: SSW
(2016)

29. Perin, G., Ege, B., Chmielewski, L.: Neural Network Model Assessment for Side-
Channel Analysis. IACR Cryptology ePrint Archive 2019, 722 (2019)

30. Picek, S., Heuser, A., Jovic, A., Batina, L., Legay, A.: The secrets of profiling for
side-channel analysis: feature selection matters. IACR Cryptology ePrint Archive
2017, 1110 (2017)

31. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbal-
ance and conflicting metrics with machine learning for side-channel evaluations.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 209–237 (2018)

32. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Canovas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. IACR
Cryptology ePrint Archive 2018, 53 (2018)

33. Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31815-6 35

34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

35. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

36. Thiebeauld, H., Vasselle, A., Wurcker, A.: Second-order scatter attack. IACR Cryp-
tology ePrint Archive 2019, 345 (2019)

37. Timon, B.: Non-profiled deep learning-based side-channel attacks with sensitivity
analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 107–131 (2019)

38. Waddle, J., Wagner, D.: Towards efficient second-order power analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 1

39. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. CoRR
abs/1511.07122 (2016)

40. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN
architectures in profiling attacks. IACR Trans. Cryptographic Hardware Embed.
Syst. 2020(1), 1–36 (2019)

https://doi.org/10.1007/978-3-030-16350-1_9
https://doi.org/10.1007/978-3-540-31815-6_35
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-540-28632-5_1

	The Forgotten Hyperparameter:
	1 Introduction
	2 Background
	2.1 Convolutional Neural Networks
	2.2 ASCAD Dataset
	2.3 Guessing Entropy
	2.4 Visualisation of Feature Selection

	3 Works in CNN for Side-Channel Analysis
	4 Dilated Convolutions Design Considerations
	5 Experimental Results and Discussions
	5.1 ASCAD Fixed Key (N = 0)
	5.2 Attack over Synchronised ASCAD Random Key (N = 0)
	5.3 Attack over Desynchronised ASCAD Random Key (N = 100)

	6 Conclusions and Perspectives
	References

