
Performance Analysis of Multilayer
Perceptron in Profiling Side-Channel

Analysis

Léo Weissbart1,2(B)

1 Delft University of Technology, Delft, The Netherlands
weissbart@cs.ru.nl

2 Digital Security Group, Radboud University, Nijmegen, The Netherlands

Abstract. In profiling side-channel analysis, machine learning-based
analysis nowadays offers the most powerful performance. This holds espe-
cially for techniques stemming from the neural network family: multilayer
perceptron and convolutional neural networks. Convolutional neural net-
works are often favored as results suggest better performance, especially
in scenarios where targets are protected with countermeasures. Mul-
tilayer perceptron receives significantly less attention, and researchers
seem less interested in this method, narrowing the results in the literature
to comparisons with convolutional neural networks. On the other hand,
a multilayer perceptron has a much simpler structure, enabling easier
hyperparameter tuning and, hopefully, contributing to the explainability
of this neural network inner working.

We investigate the behavior of a multilayer perceptron in the con-
text of the side-channel analysis of AES. By exploring the sensitivity of
multilayer perceptron hyperparameters over the attack’s performance,
we aim to provide a better understanding of successful hyperparame-
ters tuning and, ultimately, this algorithm’s performance. Our results
show that MLP (with a proper hyperparameter tuning) can easily break
implementations with a random delay or masking countermeasures. This
work aims to reiterate the power of simpler neural network techniques
in the profiled SCA.

1 Introduction

Side-channel analysis (SCA) exploits weaknesses in cryptographic algorithms’
physical implementations rather than the algorithms’ mathematical proper-
ties [16]. There, SCA correlates secret information with unintentional leakages
like timing [13], power dissipation [14], and electromagnetic (EM) radiation [25].
One standard division of SCA is into non-profiling (direct) attacks and profil-
ing (two-stage) attacks. Profiling SCA is the worst-case security analysis as it
considers the most powerful side-channel attacker with access to a clone device
(where keys can be chosen and known by the attacker). During the past few

c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 198–216, 2020.
https://doi.org/10.1007/978-3-030-61638-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_12

Performance Analysis of Multilayer Perceptron 199

years, numerous works showed the potential and strength of machine learning in
profiling side-channel analysis. Across various targets and scenarios, researchers
were able to show that machine learning can outperform other techniques con-
sidered state-of-the-art in the SCA community [2,15]. More interestingly, some
machine learning techniques are successful, even on implementations protected
with countermeasures [2,12]. There, in the spotlight are techniques from the
neural network family, most notably, multilayer perceptron (MLP) and convo-
lutional neural networks (CNNs).

When considering the attack success, we commonly take into account only
the performance as measured by the number of traces needed to obtain the key.
While this is an important criterion, it should not be the only one. For instance,
attack complexity (complexity of tuning and training a model) and interpretabil-
ity of the attack are also essential but much less researched. For instance, CNNs
are often showed to perform better than MLPs in SCA’s context [2,15,22], as
they make the training of a model more versatile and alleviate the feature engi-
neering process. On the other hand, MLP has a more straightforward structure
and is probably easier to understand than CNNs, but still, the performance
of MLP for SCA raises less attention. Consequently, this raises an interesting
dilemma: do we consider profiling SCA as a single-objective problem where the
attack performance is the only criterion or should it be a multi-objective prob-
lem where one considers several aspects of “success”? We believe the proper
approach is the second one as, without a better understanding of attacks, we
cannot make better countermeasures, which is an integral part of the profiling
SCA research.

In this paper, we experimentally investigate the performance of MLP when
applied to real-world implementations protected with countermeasures and
explore the sensitivity of the hyperparameter tuning of a successful MLP archi-
tecture. We emphasize that this work does not aim to compare the performance
of different techniques, but rather to explore the multilayer perceptron’s capa-
bilities. To achieve this, we use two datasets containing different AES imple-
mentations protected with random delay countermeasure and masking counter-
measure. Our results show that we require larger architectures only if we have
enough high-quality data. Hence, one can (to a certain degree) overcome the
limitation in the number of hidden layers by providing more perceptrons per
layer or vice versa. Finally, while our experiments clearly show the difference
in the performance concerning the choice of hyperparameters, we do not notice
that MLP is overly sensitive to that choice. This MLP “stability” means it is
possible to conduct a relatively short tuning phase and still expect not to miss
a hyperparameter combination yielding high performance.

2 Background

2.1 Profiling Side-Channel Analysis

Profiling side-channel analysis is an efficient set of methods where one works
under the assumption that the attacker is in full control of an exact copy of

200 L. Weissbart

the targeted device. By estimating leakage profiles for each target value during
the profiling step (also known as the training phase), the adversary can classify
new traces obtained from the targeted device by computing the probabilities
of each target value to match the profile. There are multiple approaches to
compute these probabilities, such as template attack [3], stochastic attack [26],
multivariate regression model [28], and machine learning models [12,15]. When
profiling the leakage, one must choose the appropriate leakage model, which will
result in a certain number of classes (i.e., possible outputs). The first common
model is the intermediate value leakage model, which results in 256 classes if we
consider the AES cipher with an 8-bit S-box:

Y (k) = Sbox[Pi ⊕ k].

The second common leakage model is the Hamming weight (HW) leakage
model:

Y (k) = HW(Sbox[Pi ⊕ k]).

The Hamming weight leakage model results in nine classes for AES. Note that
the distribution of classes is imbalanced, which can lead to problems in the
classification process [22].

2.2 Multilayer Perceptron

The multilayer perceptron (MLP) is a feed-forward neural network that maps
sets of inputs onto sets of appropriate outputs. MLP has multiple layers of
nodes in a directed graph, where each layer is fully connected to the next layer.
The output of a neuron is a weighted sum of m inputs xi evaluated through a
(nonlinear) activation function A:

Output = A(
m∑

i=0

wi · xi). (1)

An MLP consists of three types of layers: an input layer, an output layer, and
one or more hidden layers [5]. If there is more than one hidden layer, the archi-
tecture can be already considered as deep. A common approach when training a
neural network is to use the backpropagation algorithm, which is a generalization
of the least mean squares algorithm in the linear perceptron [9].

The multilayer perceptron has many hyperparameters one can tune, but we
concentrate on the following ones:

1. The number of hidden layers. The number of hidden layers will define the
depth of the algorithm and, consequently, the complexity of relations the
MLP model can process.

2. The number of neurons (perceptrons) per layer. The number of neurons per
layer tells us the width of the network and what is the latent space. Inter-
estingly, there exists a well-known result in the machine learning commu-
nity called the Universal Approximation Theorem that states (very infor-
mally) that a feed-forward neural network with a single hidden layer, under

Performance Analysis of Multilayer Perceptron 201

some assumptions, can approximate a wide set of continuous functions to any
desired non-zero level of error [7]. Naturally, for this to hold, there need to
be many neurons in that single hidden layer, and knowing how many neurons
are needed is not straightforward.

3. Activation functions. Activation functions are used to convert an input signal
to an output signal. If complex functional mappings are needed, one needs to
use nonlinear activation functions.

When discussing machine learning algorithms, it is common to differentiate
between parameters and hyperparameters. Hyperparameters are all those con-
figuration variables that are external to the model, e.g., the number of hidden
layers in a neural network. The parameters are the configuration variables inter-
nal to the model and whose values can be estimated from data. One example of
parameters is the weights in a neural network. Consequently, when we talk about
tuning a machine learning algorithm, we mean tuning its hyperparameters.

2.3 Datasets

We consider two datasets presented in previous researches and that we denote as
ASCAD and AES RD. Both datasets are protected with countermeasures: the
first one with masking and the second one with the random delay interrupts.

The ASCAD dataset, introduced in the work of Prouff et al. [24], consists
of electromagnetic emanations (EM) measurements from a software implemen-
tation of AES-128 protected with first-order Boolean masking running on an
8-bit AVR microcontroller (ATMega8515). This dataset counts 60 000 traces
of 700 samples each and targets the third byte of the key. The SNR for this
dataset is around 0.8 if the mask is known and 0 if it is unknown. The trace set
is publicly available at https://github.com/ANSSI-FR/ASCAD/tree/master/
ATMEGA AES v1/ATM AES v1 fixed key.

The AES RD dataset, introduced in the work of Coron and Kizhvatov [6],
consists of power traces from a software implementation of AES-128 protected
with random delayed interruptions running on an 8-bit AVR microcontroller
(ATmega16). This dataset has 50 000 traces with 3 500 samples each, and targets
the first byte of the key. The SNR has a maximum value of 0.0556. The trace
set is publicly available at https://github.com/ikizhvatov/randomdelays-traces.

3 Related Work

The corpus of works on machine learning and SCA so far is substantial, so we con-
centrate only on works considering multilayer perceptron. Yang et al. considered
neural networks and backpropagation as a setting for profiling SCA [32]. They
indicated that “...neural network based power leakage characterization attack
can largely improve the effectiveness of the attacks, regardless of the impact of
noise and the limited number of power traces”. Zeman and Martinasek investi-
gated MLP for profiling SCA where they mentioned the machine learning algo-
rithm simply as “neural network” [17]. They considered an architecture with only

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
https://github.com/ikizhvatov/randomdelays-traces

202 L. Weissbart

a single hidden layer and experimented with several possible numbers of neurons
in that layer. Finally, they only considered a sigmoid for the activation function.
After those, there have been several papers using MLP with good results, but
usually comparable with other machine learning techniques [8,11,18]. Still, the
hyperparameter tuning was often not sufficiently explored. Despite our attempts,
we could not confirm the first paper using MLP in a deep learning paradigm,
i.e., with more than a single hidden layer. Interestingly, first papers with MLP
were often not clear on the number of layers, as the tuning phase played an even
smaller role than today.

In 2016, Maghrebi et al. conducted the first experiments with convolutional
neural networks for SCA, and they compared their performance with several
other techniques (including MLP) [15]. Their results indicated that, while MLP
is powerful, CNNs can perform significantly better. From that moment on, we
observe a number of papers where various deep learning techniques have been
considered in comparison with MLP, see, e.g., [10,20,22,23].

Pfeifer and Haddad considered how to make additional types of layers for
MLP to improve the performance of profiling SCA [19]. B. Timon investigated
the “non-profiled” deep learning paradigm, where he first obtained the mea-
surements in a non-profiled way, which are then fed into MLP or CNN [30].
Interestingly, the author reported better results with MLP than CNNs. Finally,
Picek et al. connected the Universal Approximation Theorem and performance
of the side-channel attack, where they stated that if the attacker has unlimited
power (as it is usually considered), most of the MLP-based attacks could (in
theory) succeed in breaking implementation with only a single measurement in
the attack phase [21].

4 Experimental Setup

In this section, we present our strategy to evaluate and compare the perfor-
mance of the different MLP attacks on different datasets. We want to observe
the influence of the choice of leakage model, information reduction, and major
hyperparameters defining an MLP (i.e., number of layers, number of perceptrons
per layers, and activation function).

We provide results with power leakage models of both the S-box output
(intermediate value model) and the Hamming Weight (HW) representation of
the S-box output.

Besides considering the raw traces (i.e., no pre-processing and feature engi-
neering), we apply the Difference-of-Means (DoM) feature selection method [16].
DoM method selects the samples of a dataset that have the highest variance for
a given leakage model. Even though selecting features with high variance is likely
to preserve the information about the leakage, it is better to select a number of
features with different variance since the features containing the leakage are not
always the features with the highest or the lowest variance.

To compare the hyperparameters’ influence, we conduct a grid search for
hyperparameter optimization and consider each resulting model as a profiling

Performance Analysis of Multilayer Perceptron 203

model for an attack. Considering the MLP hyperparameters, we fix some param-
eters (i.e., number of training epochs and learning rate) and explore the influence
of the three following hyperparameters:

– The number of perceptrons, with a fixed number of layers.
– The number of layers, with a fixed number of perceptrons.
– The activation function used for the perceptrons in the hidden layers.

In Table 1, we list all the explored hyperparameters. The total number of
models trained per experiment is of nact ∗ nl ∗ np = 2 ∗ 6 ∗ 10 = 120, where
nact, nl, np, represent the number of activation functions, layers and percep-
trons per layers explored respectively. We run our experiments with Keras [4],
and we use 200 epochs for the training phase, with a learning rate of 0.001. To
assess the performance of a profiling model for an attack, we use the guessing
entropy (GE) metric [27]. GE defines the average rank position of the correct
key candidate in the guessing vector. In other words, when considering N attack
traces, each of which results in a guessing vector g = [g0, g1, . . . , g|K−1|] con-
taining the probabilities of each key candidates in the keyspace K, ordered by
decreasing probability. For all experiments, when computing GE, we use the
generalized guessing entropy introduced in [31]. GE equal to 0 means that the
first key guess is correct, while GE of 128 indicates a random behavior. GE can
also show stability or consistent increase above 200 for the correct key candidate
when the computation method for GE don’t consider averaging several attacks
on different traces. Such behavior indicates that the trained model failed to learn
how to classify data.

The metric used during a neural network training phase is training accuracy.
Note, this metric can be deceiving for assessing the quality of a side-channel
attack because it evaluates the attack one trace at a time, while SCA metrics
take several traces into account, giving a more accurate estimation for a real
attack scenario [22].

Table 1. List of evaluated hyperparameters.

Hyperparameter Range

Activation function ReLU, Tanh

Number of layers 1, 2, 3, 4, 5, 6

Number of perceptrons per layer 10, 20, 30, 40, 50, 100, 150, 200, 250, 300

5 Experimental Results

The results for all experiments on both datasets (ASCAD, AES RD) and leak-
age models are given in four figures: the final key ranking from the guessing
entropy of each model is represented for the activation functions explored in the
first two figures. Next, we depict guessing entropy of the attack for all trained

204 L. Weissbart

MLP architectures. The last figure presents the integrated gradient of the best-
obtained model and the median model with the corresponding color value of its
final guessing entropy. By doing so, we depict the differences in important fea-
tures when comparing the best attack model and average model. The integrated
gradient is a method introduced in [29], which attributes the prediction of a
deep neural network to its inputs. The integrated gradient can be used in the
side-channel analysis to visualize the part of the traces that influence the most
a network prediction and understand what trace samples the network evaluates
as the leakage.

5.1 ASCAD Results

Intermediate Leakage Model: In Fig. 1, we depict the influence of all combi-
nations of hyperparameter choices for the ReLU and Tanh activation functions
when considering the intermediate value leakage model. For both choices of acti-
vation functions, some models reach guessing entropy of 0 within 1 000 attack
traces. More models achieve a low guessing entropy with the ReLU activation
function than with Tanh. On the other hand, Tanh seems to behave more sta-
ble as the resulting GE is more uniform across many explored hyperparameters
settings. Several models with ReLU activation function and a low number of
perceptrons (down to 50) can reach GE near zero.

The authors of the ASCAD dataset report the best performance using an
MLP with six layers containing 200 units and ReLU activation function trained
over 200 epochs. The same hyperparameters are also evaluated and show sim-
ilarly good results. However, This hyperparameters choice is not unique, and
other models show equivalent performances with fewer layers and perceptrons
per layers. As represented in Fig. 1a, for settings with 200 perceptrons per layer,
all MLPs with more than two hidden layers converge approximately equally fast
to GE of 0. In Figu. 1c, we see that many settings reach GE of 0 and that some
have poor performance even after 2 500 attack traces with GE around 200. We
interpret this as expected sensitivity to the hyperparameter tuning. Models with
too few layers and perceptron per layers failed to properly fit the data because
of their poor learnability. Finally, Fig. 1d shows that the model that reaches the
smaller GE in the attack (in blue) is more sensitive to the various samples of
the input than other models that fail to learn the leakage. The leakage seems
entirely spread over all samples, which indicates reducing the number of features
will reduce the attack performance. The model that reaches a median GE con-
sidering all experiments (in orange) has smaller integrated gradients on every
data sample, which explains why this model shows poor performance for the
attack.

Reduced Number of Features: We now reduce the number of features to 50
with the Difference-of-Mean method. We train different MLPs with the traces
that have a reduced number of features. We apply the same reduction for the
attack dataset and compute guessing entropy, and we show the results in Fig. 2.

Performance Analysis of Multilayer Perceptron 205

(a) ReLU. (b) Tanh.

(c) Guessing entropy of all MLP archi-
tectures versus the increasing number
of attack traces.

(d) Integrated Gradient.

Fig. 1. ASCAD guessing entropy for the intermediate leakage model. (Color figure
online)

The area where GE converges toward zero is now smaller. For the ReLU acti-
vation function, this area is located around three and four layers with 250 and 300
perceptrons per layer. For the Tanh activation function, it is located above five
layers and 250 perceptrons per layer. Interestingly, the highest score in Fig. 2a is
not obtained for the highest number of layers. For both activation functions, the
hyperparameters leading to a good attack performance are shifted toward larger
hyperparameter values. This indicates that when considering features selected
with the DoM method (i.e., using less information), we require deeper MLP to
reach the same performance level, as the information is still present but more
difficult to fit for the model. Fig. 2c shows sensitivity to hyperparameter tuning
similar to the case with no feature selection. From Fig. 2d, the best fitting model
has higher gradient values than the median model. Consequently, for the best
model, we use most of the available features, while the average models do not
manage to combine available features in any way that would indicate influence
in the classification process.

HW Leakage Model: Next, we consider the Hamming Weight (HW) leakage
model. From Fig. 3, we see similar results when compared to the intermediate
value leakage model. Still, in Fig. 3b, the number of perceptrons per layer has a
more substantial influence on the guessing entropy than the number of layers. We
can notice a better behavior for MLP with a small number of layers compared

206 L. Weissbart

(a) ReLU. (b) Tanh.

(c) Guessing entropy of all MLP archi-
tectures versus the increasing number
of attack traces.

(d) Integrated Gradient.

Fig. 2. ASCAD guessing entropy with a reduced number of features and the interme-
diate leakage model.

to the intermediate value leakage model scenario. We believe this happens as
more perceptrons per layer give more options on how to combine features, while
deeper networks would contribute to more complex mappings between input and
output, which is not needed for the HW leakage model as the classification task
is simpler than when using the intermediate value leakage model. We can also
see a stable area for several models with a number of perceptrons above 150
and a number of layers above three. In this area, the hyperparameters choice
does not influence the performance of the MLP anymore. Like the intermediate
value leakage model, the sensitivity to the hyperparameter tuning (Fig. 3c) is as
expected, with many settings reaching top performance, but also many perform-
ing poorly. Interestingly, again we observe a more stable behavior from Tanh
than the ReLU activation function. From Fig. 3d, the best fitting model and
the median model have similar integrated gradient values. However, the high-
est peaks are different, showing that the leakage learned by the two models is
different, which also accounts for the differences in GE results.

HW Leakage Model and Reduced Number of Features: We use the
reduced number of feature representation of the dataset and apply the Hamming
weight leakage model. We can see in Fig. 4c that many MLP architectures differ
significantly with a GE spread between 0 and 175. In Fig. 4b, no MLP with the
Tanh activation function succeeds in the attack. Finally, in Fig. 4a, MLP with

Performance Analysis of Multilayer Perceptron 207

(a) ReLU. (b) Tanh.

(c) Guessing entropy of all MLP ar-
chitectures versus increasing number
of attack traces.

(d) Integrated Gradient.

Fig. 3. ASCAD guessing entropy in the Hamming weight leakage model.

ReLU reaching GE of 0 has only one hidden layer, and when the number of layers
increases, the performance decreases. Based on the ruggedness of the landscape
for ReLU , it is clear that the choice of the number of layers/perceptrons plays a
significant role. In Fig. 4c, slightly differing from previous cases (cf. Fig. 3c), we
see more groupings in the GE performance. This indicates that a reduced num-
ber of features in the HW leakage model is less expressive, so more architectures
reach the same performance. From Fig. 4d, the median model presents a higher
integrated gradient than the best fitting model. This behavior differs from the
previous experiments and shows that a wrong fitting model has high sensitivity
on samples that do not correlate with the correct leakage. This also explains the
spread of GE results, as there are many subsets of features combinations that
result in high GE.

5.2 AES RD Results

Intermediate Leakage Model: Given the intermediate value leakage model
(Fig. 5), all MLP architectures, including the smallest ones (one hidden layer
with ten perceptrons), are capable of reaching GE below 30 within 2 500 attack
traces. Increasing the number of layers does not have an impact on the ReLu
activation function. For the Tanh activation function, it even seems to increase
GE (thus, decreasing the attack performance). For both activation functions,

208 L. Weissbart

(a) ReLU. (b) Tanh.

(c) Guessing entropy of all MLP ar-
chitectures versus increasing number
of attack traces.

(d) Integrated Gradient.

Fig. 4. ASCAD guessing entropy with a reduced number of features and the Hamming
weight leakage model.

increasing the number of perceptrons per layer decreases GE. Still, from Fig. 5c,
regardless of the architecture chosen, all MLP settings converge within the same
amount of attack traces. This indicates that there is not enough useful informa-
tion that larger networks can use, and as such, using them brings no performance
gain (consequently, there is not much benefit from detailed hyperparameter tun-
ing). The best-fitting model and the median model are both models that fit the
dataset correctly. However, from Fig. 5d, the integrated gradient method reveals
that the two models have very different sensitivity on the input. Such a result
could have been expected as the AES RD dataset deals with randomly delayed
traces, meaning that the leakage is not located in a precise area of the input.

Reduced Number of Features: In Fig. 6, we observe a similar performance
when training MLPs with a reduced number of features for the AES RD dataset
and the intermediate leakage model (containing only 50 selected features). Again,
this implies there is no useful information in additional features, and that is why
MLP cannot perform better even if we use larger/deeper architectures. This is
following the expected behavior for the random delay countermeasure as the
features are not aligned. Finally, the landscape is smoother for Tanh than for
ReLU (similar to ASCAD but also different from AES RD with all features).
The outcome from Fig. 6d is quite similar to the integrated gradient obtained
on the raw traces. While the gradient values for the two models have the same

Performance Analysis of Multilayer Perceptron 209

(a) ReLU. (b) Tanh.

(c) Guessing entropy. (d) Integrated Gradient.

Fig. 5. AES RD guessing entropy for the intermediate leakage model.

levels, no maximum or minimum values are the same, meaning that no samples
contribute significantly to network prediction.

Hamming Weight Leakage Model: When considering the HW leakage model
for the AES RD dataset, even after 2 500 traces, the attack is still unsuccessful.
More precisely, in Fig. 7, no hyperparameter setting results in a model that can
reach a GE below 60, which is not even close to a successful attack. Note we
do not depict results for the reduced number of features as the attack was not
successful even with the full number of features. With the intermediate value
leakage model, we required around 1 500 traces to succeed in the attack. Now,
we use a leakage model with a simpler classification problem and fail with more
measurements. This result shows that the HW leakage is either not present
or that the trained models are too simple to fit the leakage. Interestingly, all
architectures behave relatively similarly, as visible in Fig. 7c. The integrated
gradient on Fig. 7d shows similar results as obtained for the intermediate value
leakage model, but in this case, both models do not fit the dataset correctly,
which means it is difficult to talk about features that contribute more to the
classification result. No trace samples show a higher sensitivity for the network
prediction because of the random delay nature of the dataset.

As no MLP architecture can succeed in the HW leakage model’s attack
on the AES RD dataset, we cannot conclude whether more layers or percep-
trons would improve the attack performance. The phenomenon preventing MLPs
from obtaining good attack performance might be linked to the class imbalance,

210 L. Weissbart

(a) ReLU. (b) Tanh.

(c) Guessing entropy. (d) Integrated Gradient.

Fig. 6. AES RD guessing entropy with a reduced number of features and the interme-
diate leakage model.

pointed out by Picek et al. [22], where they obtain similar results for different
architectures of MLP using the HW leakage model. Additionally, they observe
increasing performance when balancing the training data among the classes.

6 Discussion

MLP can break the masking countermeasure of the ASCAD dataset and the ran-
dom delay countermeasure of the AES RD implementation even when training
a rather small model. For AES RD, the smallest models (one layer, 200 percep-
trons, and six layers, ten perceptrons) share the best outcome of all the models in
the comparison. The same results are observed when using only the most impor-
tant features. An important leakage of the secret could explain these results
if the countermeasure were turned off. Although the random delays shift the
first round S-box operation from the start of the encryption execution, a strong
leakage of the operation handling the secret information is still present. Conse-
quently, using an MLP is enough to overcome this countermeasure. This result
indicates that the current consensus in the SCA community on MLP perfor-
mance should change. Indeed, CNNs are considered especially good for random
delay countermeasure and MLP for masking countermeasure [15,22]. Our results
indicate there is no reason not to consider MLP successful against the random
delay countermeasure given the satisfying results obtained on AES RD with

Performance Analysis of Multilayer Perceptron 211

(a) ReLU. (b) Tanh.

(c) Guessing entropy. (d) Integrated Gradient.

Fig. 7. AES RD guessing entropy for the Hamming weight leakage model.

intermediate value. When selecting 50 POIs with a Difference-of-Mean method,
the selected points represent only 50/3 500 � 1% of the original traces in the
dataset, and the information about the leakage is reduced. Still, the attack suc-
ceeds in the same way, which can be explained because the leakage only comes
from the selected POIs. Finally, the integrated gradient is more difficult to inter-
pret as the dataset has randomness in the time domain, which means it becomes
difficult to pinpoint a few features with a significant contribution toward the
classification result.

For the ASCAD dataset, we observe that the best score obtained for MLP
has the following hyperparameters: six layers and 200 perceptrons. Still, we see
in Figs. 1a and 1b that MLP with similar hyperparameters can perform equally
good (where the red point represents the result obtain with the architecture of
the best MLP MLPbest from the ASCAD paper). When selecting POIs with
the Difference-of-Mean method, we can observe that the performance decreases,
meaning that the useful information is decreased. This, in turn, results in attacks
not able to recover the full secret key. Still, some MLPs can obtain the secret key
in the given number of traces, and we observe that both the number of layers and
the number of perceptrons influence their performance. Finally, the performance
of MLPs with the Hamming weight leakage model gives better performance
than for the intermediate value. The range of hyperparameters that can achieve
the best results is smaller than for the intermediate value leakage model. From
the integrated gradient perspective, we see that many features contribute to a

212 L. Weissbart

successful attack, but MLP makes slightly different feature selection than DoM,
as obviously not all 50 selected features contribute significantly. For the HW
leakage model, the integrated gradient is somewhat more aligned, which means
that more features in this leakage model contribute similarly. Such behavior is
again expected as the HW leakage model forms larger clusters with S-box output
values, where the importance of features is more spread within clusters.

To answer the question of how challenging is the tuning of MLP hyperpa-
rameters, we observe that there is nearly no influence using a (relatively) big
or small MLP for the AES RD dataset. When considering the ASCAD dataset
with the masking countermeasure, depending on the leakage model considered,
the size of the MLP can play a significant role. There, either by increasing the
number of perceptrons per layer or the number of layers with a fixed number of
perceptrons, we can decrease the guessing entropy.

From the activation function perspective, ReLU behaves somewhat better for
the intermediate leakage model when compared to Tanh, i.e., it can reach the
top performance with a smaller number of layers/perceptrons. For the Hamming
weight leakage model, Tanh seems to work better on average, but ReLU reaches
top performance with smaller architectures than Tanh. Finally, Tanh gives more
stable behavior when averaged over all settings, i.e., with the Tanh activation
function, the hyperparameter tuning seems to be less sensitive. To conclude,
ReLU appears to be the preferred option if going for top performance or using
smaller architectures. In contrast, Tanh should be preferred if stability over a
more scenarios is required.

MLP is (or, at least, can be) a deep learning algorithm that has a simple
architecture and a few hyperparameters but can show good performance in the
side-channel analysis. What is more, our results show it can break implemen-
tations protected with both masking or hiding countermeasures. If there is no
sufficient useful input information (as one would expect when dealing with the
random delay countermeasure), a reasonable choice is to go with a relatively
small architecture. For masked datasets, the number of perceptrons or the num-
ber of layers must be large, but the activation function’s choice also plays an
important role. Finally, we observe that in all considered scenarios, the MLP
architectures are not overly sensitive to the hyperparameter choice, i.e., there
does not seem to be a strong motivation to run very fine-grained hyperparameter
tuning.

Based on those observations, we list general recommendations for MLP in
the profiled SCA context1:

1. Many hyperparameter settings can lead to good performance, which makes
the benefit of an exhaustive search very limited.

1 The recommendations are based on the tested configurations. There is no guaran-
tee that different results could not be achieved with significantly different settings,
e.g., having a different number of perceptrons per layer. Still, following our recom-
mendations should provide good performance in most of the scenarios commonly
encountered in profiling SCA.

Performance Analysis of Multilayer Perceptron 213

2. ReLU is better for top performance, while Tanh is more stable over different
hyperparameter combinations.

3. Smaller depth of an MLP can be compensated with wider layers.
4. Integrated gradient is an efficient method for evaluating the influence of fea-

tures if MLP manages to reach good performance.
5. Simpler leakage models require fewer layers.

7 Conclusions and Future Work

In this paper, we considered the behavior of a multilayer perceptron for profiling
side-channel analysis. We investigated two datasets protected with countermea-
sures and a number of different MLP architectures concerning three hyperpa-
rameters. Our results clearly show that the input information to the MLP plays
a crucial role, and if such information is limited, larger/deeper architectures are
not needed. On the other hand, if we can provide high-quality input informa-
tion to the MLP, we should also use larger architectures. At the same time,
our experiments revealed no need for very fine-grained hyperparameter tuning.
While the results for MLP maybe cannot compare with state-of-the-art results
for CNNs, we note that they are not far apart in many cases. If we additionally
factor in that MLP is simpler and faster to train, the choice between those two
techniques becomes even more difficult to make and should depend on additional
goals and constraints. For example, reaching the top performance is the argu-
ment for the usage of CNNs, but if one requires small yet powerful architecture,
a more natural choice seems to be MLP.

In this work, we concentrated on scenarios where each hidden layer has the
same number of perceptrons. It would be interesting to investigate the perfor-
mance of MLP when each layer could have a different number of perceptrons.
Naturally, this opens a question of what combinations of neurons/layers to con-
sider as one could quickly come to thousands of possible settings to explore.
Similarly, for activation functions, we consider only the two most popular ones
where all hidden layers use the same function. It would be interesting to allow
different layers to have different activation functions. Recent experiments showed
that MLP could outperform CNNs when considering different devices for train-
ing and testing (i.e., the portability case) [1]. We plan to explore the influence of
the hyperparameter choice in those scenarios. Finally, as we already mentioned,
MLP architectures are usually simpler than CNNs, which should mean they
are easier to understand. We aim to explore whether we can design stronger
countermeasures against machine learning based-attacks based on MLP inner
working.

References

1. Bhasin, S., Chattopadhyay, A., Heuser, A., Jap, D., Picek, S., Shrivastwa, R.R.:
Mind the portability: a warriors guide through realistic profiled side-channel anal-
ysis. Cryptology ePrint Archive, Report 2019/661 (2019). https://eprint.iacr.org/
2019/661

https://eprint.iacr.org/2019/661
https://eprint.iacr.org/2019/661

214 L. Weissbart

2. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

3. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

4. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras
5. Collobert, R., Bengio, S.: Links between perceptrons, MLPs and SVMs. In: Pro-

ceedings of the Twenty-First International Conference on Machine Learning, ICML
2004, p. 23. ACM, New York (2004). https://doi.org/10.1145/1015330.1015415

6. Coron, J.-S., Kizhvatov, I.: An efficient method for random delay generation in
embedded software. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp.
156–170. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-
9 12

7. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math.
Control Sig. Syst. 2(4), 303–314 (1989). https://doi.org/10.1007/BF02551274

8. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked
implementation of AES. In: 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pp. 106–111, May 2015. https://doi.org/10.
1109/HST.2015.7140247

9. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://
www.deeplearningbook.org

10. Hettwer, B., Gehrer, S., Güneysu, T.: Profiled power analysis attacks using con-
volutional neural networks with domain knowledge. In: Cid, C., Jacobson Jr., M.
(eds.) Selected Areas in Cryptography - SAC 2018–25th International Conference,
Calgary, AB, Canada, 15–17 August 2018, Revised Selected Papers. Lecture Notes
in Computer Science, vol. 11349, pp. 479–498. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-10970-7 22

11. Heuser, A., Picek, S., Guilley, S., Mentens, N.: Side-channel analysis of lightweight
ciphers: does lightweight equal easy? In: Hancke, G.P., Markantonakis, K. (eds.)
RFIDSec 2016. LNCS, vol. 10155, pp. 91–104. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-62024-4 7

12. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise.
Unleashing the power of convolutional neural networks for profiled side-channel
analysis. IACR Trans. Cryptographic Hardware Embed. Syst. 2019(3), 148–
179 (2019). https://doi.org/10.13154/tches.v2019.i3.148-179. https://tches.iacr.
org/index.php/TCHES/article/view/8292

13. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

14. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48405-1 25. http://dl.acm.org/citation.cfm?id=646764.7-
03989

15. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-36400-5_3
https://github.com/fchollet/keras
https://doi.org/10.1145/1015330.1015415
https://doi.org/10.1007/978-3-642-04138-9_12
https://doi.org/10.1007/978-3-642-04138-9_12
https://doi.org/10.1007/BF02551274
https://doi.org/10.1109/HST.2015.7140247
https://doi.org/10.1109/HST.2015.7140247
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-030-10970-7_22
https://doi.org/10.1007/978-3-030-10970-7_22
https://doi.org/10.1007/978-3-319-62024-4_7
https://doi.org/10.1007/978-3-319-62024-4_7
https://doi.org/10.13154/tches.v2019.i3.148-179
https://tches.iacr.org/index.php/TCHES/article/view/8292
https://tches.iacr.org/index.php/TCHES/article/view/8292
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
http://dl.acm.org/citation.cfm?id=646764.7-03989
http://dl.acm.org/citation.cfm?id=646764.7-03989
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1

Performance Analysis of Multilayer Perceptron 215

16. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Boston (2006). http://www.springer.com/. ISBN 0-387-
30857-1. http://www.dpabook.org/

17. Martinasek, Z., Zeman, V.: Innovative method of the power analysis. Radioengi-
neering 22(2) (2013)

18. Martinasek, Z., Hajny, J., Malina, L.: Optimization of power analysis using neural
network. In: Francillon, A., Rohatgi, P. (eds.) Smart Card Research and Advanced
Applications, pp. 94–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-08302-5 7

19. Pfeifer, C., Haddad, P.: Spread: a new layer for profiled deep-learning side-channel
attacks. Cryptology ePrint Archive, Report 2018/880 (2018). https://eprint.iacr.
org/2018/880

20. Picek, S., Heuser, A., Alippi, C., Regazzoni, F.: When theory meets practice: A
framework for robust profiled side-channel analysis. Cryptology ePrint Archive,
Report 2018/1123 (2018). https://eprint.iacr.org/2018/1123

21. Picek, S., Heuser, A., Guilley, S.: Profiling side-channel analysis in the restricted
attacker framework. Cryptology ePrint Archive, Report 2019/168 (2019). https://
eprint.iacr.org/2019/168

22. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbal-
ance and conflicting metrics with machine learning for side-channel evaluations.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209–237 (2019). https://
doi.org/10.13154/tches.v2019.i1.209-237

23. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the perfor-
mance of convolutional neural networks for side-channel analysis. In: Chattopad-
hyay, A., Rebeiro, C., Yarom, Y. (eds.) Security, Privacy, and Applied Cryptog-
raphy Engineering, pp. 157–176. Springer International Publishing, Cham (2018).
https://doi.org/10.1007/978-3-030-05072-6 10

24. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. Cryp-
tology ePrint Archive, Report 2018/053 (2018). https://eprint.iacr.org/2018/053

25. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7 17

26. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

27. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

28. Sugawara, T., Homma, N., Aoki, T., Satoh, A.: Profiling attack using multivariate
regression analysis. IEICE Electron. Express 7(15), 1139–1144 (2010)

29. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks.
arXiv preprint arXiv:1703.01365 (2017)

30. Timon, B.: Non-profiled deep learning-based side-channel attacks with sensi-
tivity analysis. IACR Trans. Cryptographic Hardware Embed. Syst. 2019(2),
107–131 (2019). https://doi.org/10.13154/tches.v2019.i2.107-131. https://tches.
iacr.org/index.php/TCHES/article/view/7387

http://www.springer.com/
http://www.dpabook.org/
https://doi.org/10.1007/978-3-319-08302-5_7
https://doi.org/10.1007/978-3-319-08302-5_7
https://eprint.iacr.org/2018/880
https://eprint.iacr.org/2018/880
https://eprint.iacr.org/2018/1123
https://eprint.iacr.org/2019/168
https://eprint.iacr.org/2019/168
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.1007/978-3-030-05072-6_10
https://eprint.iacr.org/2018/053
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
http://arxiv.org/abs/1703.01365
https://doi.org/10.13154/tches.v2019.i2.107-131
https://tches.iacr.org/index.php/TCHES/article/view/7387
https://tches.iacr.org/index.php/TCHES/article/view/7387

216 L. Weissbart

31. Wu, L., et al.: Everything is connected: From model learnability to guessing
entropy. Cryptology ePrint Archive, Report 2020/899 (2020). https://eprint.iacr.
org/2020/899

32. Yang, S., Zhou, Y., Liu, J., Chen, D.: Back propagation neural network based
leakage characterization for practical security analysis of cryptographic implemen-
tations. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 169–185. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31912-9 12

https://eprint.iacr.org/2020/899
https://eprint.iacr.org/2020/899
https://doi.org/10.1007/978-3-642-31912-9_12

	Performance Analysis of Multilayer Perceptron in Profiling Side-Channel Analysis
	1 Introduction
	2 Background
	2.1 Profiling Side-Channel Analysis
	2.2 Multilayer Perceptron
	2.3 Datasets

	3 Related Work
	4 Experimental Setup
	5 Experimental Results
	5.1 ASCAD Results
	5.2 AES_RD Results

	6 Discussion
	7 Conclusions and Future Work
	References

