
Jianying Zhou · Mauro Conti · Chuadhry Mujeeb Ahmed ·

Man Ho Au · Lejla Batina · Zhou Li · Jingqiang Lin ·

Eleonora Losiouk · Bo Luo · Suryadipta Majumdar ·

Weizhi Meng · Martín Ochoa · Stjepan Picek ·

Georgios Portokalidis · Cong Wang · Kehuan Zhang (Eds.)

LN
CS

 1
24

18

ACNS 2020 Satellite Workshops
AIBlock, AIHWS, AIoTS, Cloud S&P, SCI, SecMT, and SiMLA
Rome, Italy, October 19–22, 2020, Proceedings

Applied Cryptography
and Network Security
Workshops

Lecture Notes in Computer Science 12418

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Jianying Zhou • Mauro Conti •

Chuadhry Mujeeb Ahmed •

Man Ho Au • Lejla Batina •

Zhou Li • Jingqiang Lin •

Eleonora Losiouk • Bo Luo •

Suryadipta Majumdar • Weizhi Meng •

Martín Ochoa • Stjepan Picek •

Georgios Portokalidis • Cong Wang •

Kehuan Zhang (Eds.)

Applied Cryptography
and Network Security
Workshops
ACNS 2020 Satellite Workshops
AIBlock, AIHWS, AIoTS, Cloud S&P, SCI, SecMT, and SiMLA
Rome, Italy, October 19–22, 2020
Proceedings

123

Editors
Jianying Zhou
Singapore University of Technology
and Design
Singapore, Singapore

Mauro Conti
University of Padua
Padua, Italy

Chuadhry Mujeeb Ahmed
Singapore University of Technology
and Design
Singapore, Singapore

Man Ho Au
The University of Hong Kong
Hong Kong, Hong Kong

Lejla Batina
ICIS
Radboud University Nijmegen
Nijmegen, The Netherlands

Zhou Li
University of California
Irvine, CA, USA

Jingqiang Lin
University of Science and Technology
of China
Hefei, China

Eleonora Losiouk
University of Padua
Padua, Italy

Bo Luo
University of Kansas
Lawrence, KS, USA

Suryadipta Majumdar
CIISE
Concordia University
Montréal, QC, Canada

Weizhi Meng
Technical University of Denmark
Lyngby, Denmark

Martín Ochoa
AppGate Inc.
Bogotá, Colombia

Stjepan Picek
Delft University of Technology
Delft, The Netherlands

Georgios Portokalidis
Stevens Institute of Technology
Hoboken, NJ, USA

Cong Wang
City University of Hong Kong
Hong Kong, China

Kehuan Zhang
Chinese University of Hong Kong
Shatin, Hong Kong

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-61637-3 ISBN 978-3-030-61638-0 (eBook)
https://doi.org/10.1007/978-3-030-61638-0

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0594-0432
https://orcid.org/0000-0002-3612-1934
https://orcid.org/0000-0003-3644-0465
https://orcid.org/0000-0003-2068-9530
https://orcid.org/0000-0003-0727-3573
https://orcid.org/0000-0002-2315-7823
https://orcid.org/0000-0002-6501-4214
https://orcid.org/0000-0003-4384-5786
https://orcid.org/0000-0002-7816-5775
https://orcid.org/0000-0001-7509-4337
https://orcid.org/0000-0002-1665-803X
https://orcid.org/0000-0003-0547-315X
https://doi.org/10.1007/978-3-030-61638-0

Preface

These proceedings contain the papers selected for presentation at the 18th International
Conference on Applied Cryptography and Network Security (ACNS 2020) satellite
workshops, which were held in parallel with the main conference.

ACNS 2020 was planned to be held in Rome, Italy, during June 22–25 2020. Due to
the unexpected COVID-19 crisis, we first postponed the conference to October 19–22,
2020, but ended up deciding for the safety of all participants to have a virtual con-
ference. The local organization was in the capable hands of Emiliano Casalicchio and
Angelo Spognardi (Sapienza University of Rome, Italy) and Giuseppe Bernieri
(University of Padua, Italy) as general co-chairs, and Massimo Bernaschi (CNR, Italy)
as organizing chair. We are deeply indebted to them for their tireless work to ensure the
success of the conference even in such complex conditions.

ACNS initiated four satellite workshops successfully in 2019. Each workshop
provided a forum to address a specific topic at the forefront of cybersecurity research.
In response to this year’s call for workshop proposals, three new workshops were
launched besides the four workshops launched last year.

– AIBlock: Second ACNS Workshop on Application Intelligence and Blockchain
Security

– AIHWS: First ACNS Workshop on Artificial Intelligence in Hardware Security
– AIoTS: Second ACNS Workshop on Artificial Intelligence and Industrial IoT

Security
– Cloud S&P: Second ACNS Workshop on Cloud Security and Privacy
– SCI: First ACNS Workshop on Secure Cryptographic Implementation
– SecMT: First ACNS Workshop on Security in Mobile Technologies
– SiMLA: Second ACNS Workshop on Security in Machine Learning and its

Applications

This year, we received a total of 65 submissions. Each workshop had its own
Program Committee (PC) in charge of the review process. These papers were evaluated
on the basis of their significance, novelty, and technical quality. The review process
was double-blind. In the end, 31 papers were selected for presentation at seven
workshops, with an acceptance rate of 47.7%.

ACNS also gave the best workshop paper award. The winning papers were selected
from the nominated candidate papers from each workshop. The following two papers
shared ACNS 2020 Best Workshop Paper Award:

– Michael McCoyd, Won Park, Steven Chen, Neil Shah, Ryan Roggenkemper,
Minjune Hwang, Xinyu Liu, and David Wagner, “Minority Reports Defense:
Defending Against Adversarial Patches,” from the SiMLA workshop

– Valence Cristiani, Maxime Lecomte, and Philippe Maurine, “Leakage Assessment
through Neural Estimation of the Mutual Information,” from the AIHWS workshop

Besides the regular papers being presented at the workshops, there were also six
invited talks.

– “Computing on Encrypted Data: Hardware to the Rescue” by Farinaz Koushanfar
from UC San Diego, USA, and “Fooling Smart Machines: Security Challenges for
Machine Learning” by Simon Friedberger from NXP, The Netherlands, at the
AIHWS workshop

– “Adversarial Classification in IoT Applications Using Differential Privacy” by
Alvaro Cardenas from University of California, Santa Cruz, USA, at the AIoTS
workshop

– “Towards Building a Scalable Security Analytics Framework for Attack Detection
on Ethereum” by Yajin Zhou from Zhejiang University, China, at the CLOUD S&P
workshop

– “Cache-in-the-Middle (CITM) Attacks: Manipulating Sensitive Data in Isolated
Execution Environments” by Kun Sun from George Mason University, USA, at the
SCI workshop

– “Security and Privacy: The Sorrows of Young Droid” by Alessio Merlo from
University of Genoa, Italy, at the SecMT workshop

ACNS 2020 workshops were made possible by the joint efforts of many individuals
and organizations. We appreciate Springer’s strong support on our new initiative. We
sincerely thank the authors of all submissions. We are grateful to the program chairs
and PC members of each workshop for their great effort in providing professional
reviews and interesting feedback to authors in a tight time schedule. We thank all the
external reviewers for assisting the PC in their particular areas of expertise. We also
thank the organizing team members of the main conference as well as each workshop
for their help in various aspects.

Last but not least, we thank everyone else, speakers and session chairs, for their
contribution to the program of ACNS 2020 workshops.

We are glad to see the existing workshops are growing and new workshops on
emerging topics are being launched. We hope this trend will continue in the coming
years. We expect it could provide a stimulating platform to discuss open problems at
the forefront of cybersecurity research.

September 2020 Jianying Zhou
Mauro Conti

ACNS 2020 Workshop Chairs

vi Preface

AIBlock 2020

Second ACNS Workshop on Application Intelligence
and Blockchain Security

19 October 2020

General Chairs

Chunhua Su University of Aizu, Japan
Xiapu Luo The Hong Kong Polytechnic University, China

Program Chairs

Weizhi Meng Technical University of Denmark, Denmark
Man Ho Au The University of Hong Kong, China

Program Committee

Raja Naeem Akram Royal Holloway, University of London, UK
Jintai Ding University of Cincinnati, USA
Dieter Gollmann Hamburg University of Technology, Germany
Debiao He Wuhan University, China
Qiong Huang South China Agricultural University, China
Georgios Kambourakis University of the Aegean, Greece
Chhagan Lal University of Padua, Italy
Romain Laborde Paul Sabatier University, France
Wenjuan Li The Hong Kong Polytechnic University, China
Jiqiang Lu Beihang University, China
Felix Gomez Marmol University of Murcia, Spain
Pantaleone Nespoli University of Murcia, Spain
Jun Shao Zhejiang Gongshang University, China
Jiangang Shu Peng Cheng Laboratory, China
Andreas Veneris University of Toronto, Canada
Qianhong Wu Beihang University, China
Ding Wang Nankai University, China
Guomin Yang University of Wollongong, Australia

Additional Reviewers

Gu, Zhiqiang
Luo, Zhenqiu
Miao, Ying
Wang, Chenyu

AIHWS 2020

First ACNS Workshop on Articial Intelligence in Hardware Security

21 October 2020

Program Chairs

Lejla Batina Radboud University, The Netherlands
Stjepan Picek Delft University of Technology, The Netherlands

Program Committee

Lex Schoonen Brightsight, The Netherlands
Fatemeh Ganji Worcester Polytechnic Institute, USA
Liran Lerman Thales Belgium, Belgium
Shahin Tajik Worcester Polytechnic Institute, USA
Lukasz Chmielewski Riscure, The Netherlands
Vincent Verneuil NXP Semiconductors, Germany
Alan Jovic University of Zagreb, Croatia
Luca Mariot Delft University of Technology, The Netherlands
Chitchanok

Chuengsatiansup
The University of Adelaide, Australia

Nele Mentens Katholieke Universiteit Leuven, Belgium
Dirmanto Jap Nanyang Technological University, Singapore
Shivam Bhasin Nanyang Technological University, Singapore
Nikita Veshchikov NXP, Belgium
Kostas Papagiannopoulos NXP, Germany
Guilherme Perin Delft University of Technology, The Netherlands

Publicity Chair

Marina Krcek Delft University of Technology, The Netherlands

AIoTS 2020

Second ACNS Workshop on Articial Intelligence and Industrial IoT Security

20 October 2020

Program Chairs

Martin Ochoa Cyxtera, Colombia
Chuadhry Mujeeb Ahmed SUTD, Singapore

Organizing Chairs

Sridhar Adepu SUTD, Singapore
John Henry Castellanos SUTD, Singapore

Publicity Chair

Chhagan Lal University of Padua, Italy

Program Committee

Anand Agrawal NYU Abu Dhabi, UAE
Alvaro Cardenas University of California, Santa Cruz, USA
Ding Ding George Washington University, USA
Luis Garcia University of California, Los Angeles, USA
Amrita Ghosal University of Padua, Italy
Venkata Reddy IIPE-Visakhapatnam, India
Subir Halder University of Padua, Italy
Nandha Kumar Kandasamy SUTD, Singapore
Eunsuk Kang Carnegie Mellon University, USA
Elena Lisova Mälardalen University, Sweden
Chhagan Lal University of Padua, Italy
Junyu Lai UESTC, China
Eleonora Losiouk University of Padua, Italy
Chris Poskitt SMU, Singapore
Rajib Ranjan Maiti BITS-Hyderabad, India
Tohid Shekari Georgia Tech, USA
Federico Turrin University of Padua, Italy
Riccardo Taormina Delft University of Technology, The Netherlands
Robin Verma UTSA, USA

Cloud S&P 2020

Second ACNS Workshop on Cloud Security and Privacy

22 October 2020

Program Chairs

Suryadipta Majumdar University at Albany, SUNY, USA
Cong Wang City University of Hong Kong, China

Program Committee

Daniel Bastos British Telecom, UK
Helei Cui Northwestern Polytechnical University, China
Nora Cuppens IMT Atlantique, France
Sabrina De Capitani

di Vimercati
Universitá degli Studi di Milano, Italy

Yosr Jarraya Ericsson Security, Canada
Kallol Krishna Karmaker The University of Newcastle, Australia
Eduard Marin University of Birmingham, UK
Ali Miri Ryerson University, Canada
Makan Pourzandi Ericsson Security, Canada
Indrakshi Ray Colorado State University, USA
Pierangela Samarati Universitá degli Studi di Milano, Italy
Paria Shirani Concordia University, Canada
Lingyu Wang Concordia University, Canada
Xingliang Yuan Monash University, Australia
Yifeng Zheng Data61, CSIRO, Australia

Additional Reviewers

Shirazi, Hossein
Karanfil, Mark
Cabana, Olivier

SCI 2020

First ACNS Workshop on Secure Cryptographic Implementation

21 October 2020

Program Chairs

Jingqiang Lin University of Science and Technology of China, China
Bo Luo The University of Kansas, USA

Publication Chair

Jun Shao Zhejiang Gongshang University, China

Publicity Chairs

Le Guan University of Georgia, USA
Debiao He Wuhan University, China

Web Chair

Yuan Ma Chinese Academy of Sciences, China

Program Committee

Bo Chen Michigan Technological University, USA
Fu Chen Central University of Finance and Economics, China
Junfeng Fan Open Security Research, Inc., China
Johann Großschädl University of Luxembourg, Luxembourg
Le Guan University of Georgia, USA
Debiao He Wuhan University, China
Linzhi Jiang University of Surrey, UK
Fengjun Li The University of Kansas, USA
Xiao Liu Facebook Inc., USA
Zhe Liu Nanjing University of Aeronautics and Astronautics,

China
Yuan Ma Chinese Academy of Sciences, China
Jun Shao Zhejiang Gongshang University, China
Ruisheng Shi Beijing University of Posts and Telecommunications,

China
Juan Wang Wuhan University, China
Jun Xu Stevens Institute of Technology, USA

Li Yang Xidian University, China
Fan Zhang Zhejiang University, China
Fangyu Zheng Chinese Academy of Sciences, China

Additional Reviewers

Qi Jiang Xidian University, China
Weijing You Chinese Academy of Sciences, China
Junwei Zhang Xidian University, China

xii SCI 2020

SecMT 2020

First ACNS Workshop on Security in Mobile Technologies

19 October 2020

Program Chairs

Eleonora Losiouk University of Padua, Italy
Georgios Portokalidis Stevens Institute of Technology, USA

General Chair

Olga Gadyatskaya Leiden University, The Netherlands

Program Committee

Kevin Allix University of Luxembourg, Luxembourg
Elias Athanasopoulos University of Cyprus, Cyprus
Antonio Bianchi Purdue University, USA
Yanick Fratantonio EURECOM, France
Li Li Monash University, Australia
Isabella Mastroeni University of Verona, Italy
Guozhu Meng Nanyang Technological University, Singapore
Kaveh Razavi ETH Zurich, Switzerland
Andrea Saracino National Research Council, Italy
Flavio Toffalini SUTD, Singapore

SiMLA 2020

Second ACNS Workshop on Security in Machine Learning and its Applications

20 October 2020

Program Chairs

Zhou Li University of California Irvine, USA
Kehuan Zhang The Chinese University of Hong Kong, China

Program Committee

Kangkook Jee The University of Texas at Dallas, USA
Baojun Liu Tsinghua University, China
Wenrui Diao Shandong University, China
Yinqian Zhang The Ohio State University, USA
Di Tang The Chinese University of Hong Kong, China
Zhe Zhou Fudan University, China
Kai Chen Institute of Information Engineering, Chinese Academy

of Sciences, China
Chaowei Xiao University of Michigan, USA

Additional Reviewers

Mingxuan Liu
Li Wang
Zhixiu Guo

Contents

AIBlock – Application Intelligence and Blockchain Security

Towards a Formally Verified Implementation of the MimbleWimble
Cryptocurrency Protocol . 3

Gustavo Betarte, Maximiliano Cristiá, Carlos Luna, Adrián Silveira,
and Dante Zanarini

Secure Management of IoT Devices Based on Blockchain Non-fungible
Tokens and Physical Unclonable Functions . 24

Javier Arcenegui, Rosario Arjona, and Iluminada Baturone

Bitcoin Blockchain Steganographic Analysis . 41
Alexandre Augusto Giron, Jean Everson Martina, and Ricardo Custódio

Dynamic Group Key Agreement for Resource-constrained Devices
Using Blockchains . 58

Yaşar Berkay Taçyıldız, Orhan Ermiş, Gürkan Gür, and Fatih Alagöz

Tokenization of Real Estate Using Blockchain Technology 77
Ashutosh Gupta, Jash Rathod, Dhiren Patel, Jay Bothra,
Sanket Shanbhag, and Tanmay Bhalerao

AIHWS – Artificial Intelligence in Hardware Security

Practical Side-Channel Based Model Extraction Attack on Tree-Based
Machine Learning Algorithm . 93

Dirmanto Jap, Ville Yli-Mäyry, Akira Ito, Rei Ueno, Shivam Bhasin,
and Naofumi Homma

Controlling the Deep Learning-Based Side-Channel Analysis: A Way
to Leverage from Heuristics . 106

Servio Paguada, Unai Rioja, and Igor Armendariz

A Comparison of Weight Initializers in Deep Learning-Based Side-Channel
Analysis. 126

Huimin Li, Marina Krček, and Guilherme Perin

Leakage Assessment Through Neural Estimation
of the Mutual Information . 144

Valence Cristiani, Maxime Lecomte, and Philippe Maurine

Evolvable Hardware Architectures on FPGA for Side-Channel Security 163
Mansoureh Labafniya, Shahram Etemadi Borujeni, and Nele Mentens

Simple Electromagnetic Analysis Against Activation Functions of Deep
Neural Networks . 181

Go Takatoi, Takeshi Sugawara, Kazuo Sakiyama, and Yang Li

Performance Analysis of Multilayer Perceptron in Profiling
Side-Channel Analysis . 198

Léo Weissbart

The Forgotten Hyperparameter: Introducing Dilated Convolution
for Boosting CNN-Based Side-Channel Attacks . 217

Servio Paguada and Igor Armendariz

AIoTS – Artificial Intelligence and Industrial IoT Security

ARM-AFL: Coverage-Guided Fuzzing Framework for ARM-Based
IoT Devices . 239

Rong Fan, Jianfeng Pan, and Shaomang Huang

Post-exploitation and Persistence Techniques Against Programmable
Logic Controller . 255

Andrei Bytes and Jianying Zhou

Investigation of Cyber Attacks on a Water Distribution System 274
Sridhar Adepu, Venkata Reddy Palleti, Gyanendra Mishra,
and Aditya Mathur

Cloud S&P – Cloud Security and Privacy

Computing Neural Networks with Homomorphic Encryption
and Verifiable Computing . 295

Abbass Madi, Renaud Sirdey, and Oana Stan

Attribute-Based Symmetric Searchable Encryption. 318
Hai-Van Dang, Amjad Ullah, Alexandros Bakas, and Antonis Michalas

Towards Inclusive Privacy Protections in the Cloud. 337
Tanusree Sharma, Tian Wang, Carlo Di Giulio, and Masooda Bashir

A Study on Microarchitectural Covert Channel Vulnerabilities
in Infrastructure-as-a-Service. 360

Benjamin Semal, Konstantinos Markantonakis, Raja Naeem Akram,
and Jan Kalbantner

xvi Contents

SCI – Secure Cryptographic Implementation

On New Zero-Knowledge Proofs for Fully Anonymous Lattice-Based
Group Signature Scheme with Verifier-Local Revocation 381

Yanhua Zhang, Ximeng Liu, Yifeng Yin, Qikun Zhang, and Huiwen Jia

Proofs of Ownership on Encrypted Cloud Data via Intel SGX 400
Weijing You and Bo Chen

On the Verification of Signed Messages. 417
Bowen Xu, Xin Xu, Quanwei Cai, Wei Wang, and QiongXiao Wang

Applications and Developments of the Lattice Attack in Side Channel
Attacks . 435

Ziqiang Ma, Bingyu Li, Quanwei Cai, and Jun Yang

Exploring the Security of Certificate Transparency in the Wild 453
Bingyu Li, Fengjun Li, Ziqiang Ma, and Qianhong Wu

SecMT – Security in Mobile Technologies

DaVinci: Android App Analysis Beyond Frida via Dynamic System Call
Instrumentation . 473

Alexander Druffel and Kris Heid

MobHide: App-Level Runtime Data Anonymization on Mobile 490
Davide Caputo, Luca Verderame, and Alessio Merlo

Evaluation of the Adoption and Privacy Risks of Google Prompts. 508
Christos Avraam and Elias Athanasopoulos

On the Evolution of Security Issues in Android App Versions 523
Anatoli Kalysch, Joschua Schilling, and Tilo Müller

SiMLA – Security in Machine Learning and Its Applications

Unsupervised Labelling of Stolen Handwritten Digit Embeddings
with Density Matching. 545

Thomas Thebaud, Gaël Le Lan, and Anthony Larcher

Minority Reports Defense: Defending Against Adversarial Patches 564
Michael McCoyd, Won Park, Steven Chen, Neil Shah,
Ryan Roggenkemper, Minjune Hwang, Jason Xinyu Liu,
and David Wagner

Author Index . 583

Contents xvii

AIBlock – Application Intelligence and
Blockchain Security

Towards a Formally Verified
Implementation of the MimbleWimble

Cryptocurrency Protocol

Gustavo Betarte1, Maximiliano Cristiá2, Carlos Luna1(B), Adrián Silveira1,
and Dante Zanarini2

1 InCo, Facultad de Ingenieŕıa, Universidad de la República, Montevideo, Uruguay
{gustun,cluna,adrians}@fing.edu.uy

2 CIFASIS, Universidad Nacional de Rosario, Rosario, Argentina
{cristia,zanarini}@cifasis-conicet.gov.ar

Abstract. MimbleWimble is a privacy-oriented cryptocurrency technol-
ogy which provides security and scalability properties that distinguish it
from other protocols of its kind. We present and briefly discuss those
properties and outline the basis of a model-driven verification approach
to address the certification of the correctness of an implementation of
the protocol.

Keywords: Cryptocurrency · MimbleWimble · Idealized model ·
Formal verification · Security

1 Introduction

Cryptocurrency protocols deal with virtual money so they are a valuable target
for highly skilled attackers. Several attacks have already been mounted against
cryptocurrency systems, causing irreparable losses of money and credibility (e.g.
[11]). For this reason the cryptocurrency community is seeking approaches, meth-
ods, techniques and development practices that can reduce the chances of suc-
cessful attacks. One such approach is the application of formal methods to soft-
ware implementation. In particular, the cryptocurrency community is showing
interest in formal proof and formally certified implementations.

MimbleWimble (MW) is a privacy-oriented cryptocurrency technology
encompassing security and scalability properties that distinguish it from other
technologies of its kind. MW was first proposed in 2016 [29]. The idea was then
further developed by Poelstra [37]. In MW, unlike Bitcoin [35], there exists no
concept of address and all the transactions are confidential. In this paper we
outline an approach based on formal software verification aimed at formally
verifying the basic mechanisms of MW and (one of) its implementations [28]1.

1 The methodology proposed in this work also applies to the Beam implementation:
https://www.beam-mw.com.

c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 3–23, 2020.
https://doi.org/10.1007/978-3-030-61638-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_1&domain=pdf
https://www.beam-mw.com
https://doi.org/10.1007/978-3-030-61638-0_1

4 G. Betarte et al.

We put forward a model-driven verification approach where security issues
that pertain to the realm of critical mechanisms of the MW protocol are explored
on an idealized model of this system. Such model abstracts away the specifics of
any particular implementation, and yet provides a realistic setting. Verification
is then performed on more concrete models, where low level mechanisms are
specified. Finally the low level model is proved to be a correct implementation
of the idealized model.

Security (idealized) models have played an important role in the design and eval-
uation of high assurance security systems. Their importance was already pointed
out in the Anderson report [1]. The paradigmatic Bell-LaPadula model [4], con-
ceived in 1973, constituted the first big effort on providing a formal setting in
which to study and reason on confidentiality properties of data in time-sharing
mainframe systems. State machines can be employed as the building block of a
security model. The basic features of a state machine model are the concepts of
state and state change. A state is a representation of the system under study
at a given time, which should capture those aspects of the system that are rel-
evant to the analyzed problem. State changes are modeled by a state transition
function that defines the next state based on the current state and input. If one
wants to analyze a specific safety property of a system using a state machine
model, one must first specify what it means for a state to satisfy the property,
and then check if all state transitions preserve it. Thus, state machines can be
used to model the enforcement of a security policy.

Related Work. Developers of cryptocurrency software should not be scared of
using mathematics as a tool to describe software. In fact, Nakamoto uses maths
in his seminal paper on Bitcoin [35] and Wood uses it to describe the EVM [41].
However, these descriptions can not be understood as Formal Methods (FM)
because they are not based on standardized notations nor on clear mathematical
theories.

On the other hand, recently, the FM community has started to pay atten-
tion to cryptocurrency software. Idelberger et al. [27] proposed to use defeasible
logic frameworks such as Formal Contract Logic for the description of smart
contracts. Bhargavan et al. [8] compile Solidity programs into a verification-
oriented functional language where they can verify source code. Luu et al. [32]
use the Oyente tool to find and detect vulnerabilities in smart contracts. Hirai
[25] uses Lem to formally specify the EVM; Grishchenko, Maffei and Schnei-
dewind [24] also formalize the EVM but in F*; and Hildenbrandt et al. do the
same but with the reachability logic system known as K. P̂ırlea and Sergey [36]
present a Coq [5,38] formalization of a blockchain consensus protocol where some
properties are formally verified.

Additionally, Metere and Dong [34] present a mechanised formal verification
of the Pedersen commitment protocol using EasyCrypt [2] and Fuchsbaue et
al. [18] introduce an abstraction for the analysis of some security properties of
MW. Our work assumes some of these results to formalize and analyze the MW
protocol, to then propose a methodology to verify their implementations.

Towards a Formally Verified Implementation 5

Finally, in [6] we outline some formal methods related techniques that we
consider particularly useful for cryptocurrency software. We present some guide-
lines for the adoption of formal methods in cryptocurrency software projects.
We argue that set-based formal modeling (or specification), simulation, proto-
typing and automated proof can be applied before considering more powerful
approaches such as code formal verification. In particular, we show excerpts of
a set-based formal specification of a consensus protocol and of the Ethereum
Virtual Machine. We also exhibit that prototypes can be generated from these
formal models and simulations can be run on them. By last, we show that test
cases can be generated from the same models and how automated proof can be
used to evaluate the correctness of these models. Our work follows the approach
of Betarte et al. [6].

Contribution. In this paper, we present elements that constitute essential steps
towards the development of an exhaustive formalization of the MW cryptocur-
rency protocol and the analysis of its properties. We also introduce and discuss
the basis of a model-driven verification approach to address the certification of
the correctness of a protocol’s implementation. The proposed idealized model
in this paper is key in the verification process and constitutes our main contri-
bution, together with the analysis of its important properties. In particular, we
determine sufficient conditions on our model to ensure the verification of relevant
security properties of MW.

Organization of the Paper. The rest of the paper is organized as follows:
Sect. 2 provides a very brief description of MW. Section 3 describes the building
blocks of a formal idealized model (abstract state machine) of the computational
behaviour of MimbleWimble. Section 4 provides a brief account of the verifica-
tion activities we are putting in place in order to verify the protocol and its
implementation. Final remarks and directions for future work are presented in
Sect. 5. A preliminary version of this paper is available on arXiv [7].

2 The MimbleWimble Protocol

Confidential transactions [20,33] are at the core of the MW protocol. A transac-
tion allows a sender to encrypt the amount of bitcoins by using blinding factors.
In a confidential transaction only the two parties involved know the amount of
bitcoins being exchanged. However, for anyone observing that transaction it is
possible to verify its validity by comparing the number of inputs and outputs; if
both are the same, then the transaction will be considered valid. Such procedure
ensures that no bitcoins have been created from nothing and is key in preserving
the integrity of the system. In MW transactions, the recipient randomly selects
a range of blinding factors provided by the sender, which are then used as proof
of ownership by the receiver.

The MW protocol aims at providing the following properties [28,29]:

6 G. Betarte et al.

– Verification of zero sums without revealing the actual amounts involved in a
transaction, which implies confidentiality.

– Authentication of transaction outputs without signing the transaction.
– Good scalability, while preserving security, by generating smaller blocks—or

better, reducing the size of old blocks, producing a blockchain whose size does
not grow in time as much as, for instance, Bitcoin’s.

The first two properties are achieved by relying on Elliptic Curves Cryptography
(ECC) operations and properties. The third one is a consequence of the first two.

2.1 Verification of Transactions

If v is the value of a transaction (either input or output) and H is a point over an
elliptic curve, then vH encrypts v because it is assumed to be computationally
hard to get v from vH if we only know H . However, if w and z are other values
such that v + w = z , then if we only have the result of encrypting each of them
with H we are still able to verify that equation. Indeed:

v + w = z ⇔ vH + wH = zH

due to simple properties of scalar multiplication over groups. Therefore, with this
simple operations, we can check sums of transactions amounts without knowing
the actual amounts.

Nevertheless, say some time ago we have encrypted v with H and now we
see vH , then we know that it is the result of encrypting v . In the context of
blockchain transactions this is a problem because once a block holding vH is
saved in the chain it will reveal all the transactions of v coins. For such problems,
MW encrypts v as rG + vH where r is a scalar and G is another point in
H ’s elliptic curve, r is called blinding factor and rG + vH is called Pedersen
commitment. By using Pedersen commitments, MW allows the verification of
expressions such as v +w = z providing more privacy than the standard scheme.
In effect, if v +w = z then we choose rv , rw and rz such that rvG + rwG = rzG
and so the expression is recorded as:

v
︷ ︸︸ ︷

(rvG + vH) +

w
︷ ︸︸ ︷

(rwG + wH) =

z
︷ ︸︸ ︷

rzG + zH

making it possible for everyone to verify the transaction without knowing the
true values.

2.2 Authentication of Transactions

Consider that Alice has received v coins and this was recorded in the blockchain
as rG + vH , where r was chosen by her to keep it private. Now she wants to
transfer these v coins to Bob. As a consequence, Alice looses v coins and Bob
receives the very same amount, which means that the transaction adds to zero:
rG + vH − (rG + vH) = 0G − 0H . However, Alice now knows Bob’s blinding

Towards a Formally Verified Implementation 7

factor because it must be the same chosen by her (so the transaction is balanced).
In order to protect Bob from being stolen by Alice, MW allows Bob to add his
blinding factor, rB , in such a way that the transaction is recorded as:

(r + rB)G + vH − (rG + vH) = rBG − 0H

although now it does not sum zero. However, this excess value is used as part
of an authentication scheme. Indeed, Bob uses rB as a private key to sign the
empty string (ε). This signed document is attached to the transaction so in the
blockchain we have:

– Input: I .
– Output: O .
– Bob’s signed document: S .

This way, the transaction is valid if the result of decrypting S with I −O (in the
group generated by G) yields ε. If I − O does not yield something in the form
of rBG − 0H , then ε will not be recovered and so we know there is an attempt
to create money from thin air or there is an attempt to steal Bob’s money.

3 Idealized Model of MimbleWimble-Based Blockchain

The basic elements of our model are transactions, blocks and chains. Each node
in the blockchain maintains a local state. The main components are the local
copy of the chain and the set of transactions waiting to be validated and added
to a new block. Moreover, each node keeps track of unspent transaction outputs
(UTXOs). Properties such as zero-sum and the absence of double spending in
blocks and chains must be proved for local states. The blockchain global state
can be represented as a mapping from nodes to local states. For global states, we
can state and prove properties for the entire system like, for instance, correctness
of the consensus protocol.

3.1 Transactions

Given two fixed generator points G and H on the elliptic curve C of prime order
n (whose discrete logarithms relative to each other are unknown), we define a
single transaction between two parties as follows:

Definition 1 (Transaction). A single transaction t is a tuple of type:

Transaction def= {i : I
∗
, o : O

∗
, tk : TxKernel , tko : KOffset}

with X
∗

representing the lists of elements of type X and where:

– i = (c1, ..., cn) and o = (o1, ..., om) are the lists of inputs and outputs. Each
input ci and output oi are points over the curve C and they are the result
of computing the Pedersen commitment r .G + v .H with r the blinding factor
and v the transactional value in the finit field Fn .

8 G. Betarte et al.

– tk = {rp, ke, σ} is the transaction kernel where:
• rp is a list of range proofs of the outputs.
• ke is the transaction excess represented by (

∑m
1 r ′ − ∑n

1 r − tko).G.
• σ is the kernel signature2.

– tko ∈ Fn is the transaction kernel offset.

The transaction kernel offset will be used in the construction of a block to
satisfy security properties.

Definition 2 (Ownership). Given a transaction t, we say S owns the output
o if S knows the opening (r , v) for the Pedersen commitment o = r .G + v .H .

The strength of this security definition is directly related to the difficulty of
solving the logarithm problem. If the elliptic curve discrete logarithm problem
in C is hard then given a multiple Q of G , it is computationally infeasible to
find an integer r such that Q = r .G .

Definition 3 (Balanced Transaction). A transaction t = {i , o, tk , tko}, with
transaction kernel tk = {rp, ke, σ}, is balanced if the following holds:

∑

oj ∈o

oj −
∑

cj ∈i

cj = ke + tko.G

A balanced transaction guarantees no money is created from thin air and the
transaction was honestly constructed.

Property 1 (Valid Transaction). A transaction t is valid (valid transaction(t))
if t satisfies:

i. The range proofs of all the outputs are valid.
ii. The transaction is balanced.
iii. The kernel signature σ is valid for the excess.

These three properties have a straightforward interpretation in our model.
Due to limitations of space, we formalize and analyze in this paper only some of
the properties mentioned throughout the document.

3.2 Unconfirmed Transaction Pool

The unconfirmed transaction pool (mempool) contains the transactions which
have not been confirmed in a block yet.

Definition 4 (Mempool). A mempool mp is a list of type:

Mempool def= Transaction
∗

2 For simplicity, fees are left aside.

Towards a Formally Verified Implementation 9

3.3 Blocks and Chains

Genesis block Gen is a special block since it is the first ever block recorded in
the chain. Transactions can be merged into a block. We can see a block as a big
transaction with aggregated inputs, outputs and transaction kernels.

Definition 5 (Block). A Block b is either the genesis block Gen, or a tuple of
type:

Block def= {i : I
∗
, o : O

∗
, tks : TxKernel

∗
, ko : KOffset}

where:

– i = (c1, ..., cn) and o = (o1, ..., om) are the lists of inputs and outputs of the
transactions.

– tks = (tk1, ..., tkt) is the list of t transaction kernels.
– ko ∈ Fn is the block kernel offset which covers all the transactions of the

block.

We can say a block is balanced if each aggregated transaction is balanced.

Definition 6 (Balanced Block). Let b be a block of the form b = {i , o, tks, ko}
with tks = (tk1, ..., tkt) the list of transaction kernels and where the j-th item
in tks is of the form tkj = {rpj , kej , σj}. We say the block b is balanced if the
following holds:

∑

oj ∈o

oj −
∑

cj ∈i

cj = ko.G +
∑

kej∈tks

kej

We assume the genesis block Gen is valid. We define the notion of block
validity as follows:

Property 2 (Valid Block). A block b is valid (valid block(b)) if b is the genesis
block Gen or it satisfies:

i. The block is balanced.
ii. For every transaction kernel, the range proofs of all the outputs are valid and

the kernel signature σ is valid for the transaction excess.

Blocks can be constructed by aggregating transactions as follows:

Definition 7 (Block Aggregation). Given a valid transaction t0 and a valid
block b as follows:

t0 = {i0, o0, tk0, tko0} and b = {i , o, tks, ko}

a new block can be constructed as:

b′ = {i0 || i , o0 || o, tk0 || tks, tko0 + ko}

where || is the list concatenation operator and + is the scalar sum.

10 G. Betarte et al.

Block aggregation preserves the validity of blocks; i.e. block validity is invari-
ant w.r.t. block agreggation.

Lemma 1 (Invariant: Block Validity). Given a valid transaction t0 and a
valid block b as in Definition 7. Let b′ be the result of aggregating t0 into b.
Then, b′ is valid.

Proof. Let t0 be the transaction t0 = {i0, o0, tk0, tko0} with tk0 = {rp0, ke0, σ0}.
Let b be the block b = {i , o, tks, ko}, with tks = (tk1, ..., tkt), the list of transac-
tion kernels.

Applying Definition 7, we have that the resulting b′ is of the form:

b′ = {i ′, o′, tks ′, ko′}
with i ′ = i0 || i , o′ = o0 || o, tks ′ = (tk0, tk1, ..., tkt), ko′ = tko0 + ko

According to Definition 6, we need to prove the following equality holds for
the block b′:

∑

oj ∈o′
oj −

∑

cj ∈i′
cj = ko′.G +

∑

kej ∈tks′
kej

Each term can be written as follows:

(
∑

oj ∈o0

oj +
∑

oj ∈o

oj) − (
∑

cj ∈i0

cj +
∑

cj ∈i

cj) = (tko0 + ko).G + ke0 +
∑

kej∈tks

kej

Rearranging the equality and using algebraic properties on elliptic curves, we
have:

(
∑

oj ∈o0

oj −
∑

cj ∈i0

cj) + (
∑

oj ∈o

oj −
∑

cj∈i

cj) = (ke0 + tko0.G) + (ko.G +
∑

kej ∈tks

kej)

Now, we apply the hypothesis concerning the validity of t0 and b. In particular,
applying Definition 3 for t0 and Definition 6 for b, we have the following equalities
are true:

∑

oj ∈o0

oj −
∑

cj ∈i0

cj = ke0 + tko0.G

and
∑

oj ∈o

oj −
∑

cj ∈i

cj = ko.G +
∑

kej ∈tks

kej

That is exactly what we wanted to prove. ��
Definition 8 (Chain). A chain is a non-empty list of blocks:

Chain
def= Block

∗

For a chain c and a valid block b, we can define a predicate validate(c, b)
representing the fact that is correct to add b to c. This relation must verify, for
example, that all the inputs in b are present as outputs in c, in other words,
they are unspent transaction outputs (UTXOs).

Towards a Formally Verified Implementation 11

3.4 Validating a Chain

The model formalizes a notion of valid state that captures several well-
formedness conditions. In particular, every block in the blockchain must be valid.
A predicate validChain can be defined for a chain c = (b0, b1, . . . bn) by checking
that:

– b0 is a valid genesis block
– For every i ∈ {1, . . .n}, validate((b0, . . . , bi−1), bi)

The axiomatic semantics of the system are modeled by defining a set of
transactions, and providing their semantics as state transformers. The behaviour
of transactions is specified by a precondition Pre and by a postcondition Post :

Pre ⊆ State × Transaction

Post ⊆ State × Transaction × State

This approach is valid when considering local (nodes) or global (blockchain)
states (of type State) and transactions (of type Transaction). Different sets of
transactions, pre and postcondition are defined to cover local or global state
transformations. At a general level, State is Chain.

3.5 Executions

There can be attempts to execute a transaction on a state that does not verify
the precondition of that transaction. In the presence of such situation the sys-
tem answers with a corresponding error code (of type ErrorCode). Executing a
transaction t over a valid state s (valid state(s))3 produces a new state s ′ and
a corresponding answer r (denoted s ↪

t/r−−→ s ′), where the relation between the
former state and the new one is given by the postcondition relation Post .

valid state(s) Pre(s, t) Post(s, t , s ′)

s ↪
t/ok−−−→ s ′

valid state(s) ErrorMsg(s, t , ec)

s ↪
t/error(ec)−−−−−−−→ s

Whenever a transaction occurs for which the precondition holds, the valid state
may change in such a way that the transaction postcondition is established. The
notation s ↪

t/ok−−−→ s ′ may be read as the execution of the transaction t in a valid
state s results in a new state s ′. However, if the precondition is not satisfied,
then the valid state s remains unchanged and the system answer is the error

3 When dealing with global states, valid state is validChain.

12 G. Betarte et al.

message determined by a relation ErrorMsg4. Formally, the possible answers of
the system are defined by the type:

Response def= ok | error (ec : ErrorCode)

where ok is the answer resulting from a successful execution of a transaction.
One-step execution with error management preserves valid states.

Lemma 2 (Validity is invariant).
∀ (s s ′ : State)(t : Transaction)(r : Response),
valid transaction(t) → s ↪

t/r−−→ s ′ → valid state(s ′)

The proof follows by case analysis on s ↪
t/r−−→ s ′. When Pre(s, t) does not hold,

s = s ′. From this equality and valid state(s) then valid state(s ′). Otherwise,
Pos(s, t , s ′) must hold and we proceed by case analysis on t , considering that t
is a valid transaction and s is a valid state.

System state invariants, such as state validity, are useful to analyze other
relevant properties of the model. In particular, the properties in this work are
obtained from valid states of the system.

4 Verification of MimbleWimble

We now detail some relevant properties that can be verified in our model. In
addition to some of the properties mentioned in previous sections, we include
in our research other properties such as those formulated in [36], and various
security properties considered in [18,19,30].

4.1 Protocol Properties

The property of no-coin-inflation or zero-sum guarantees that no new funds are
produced from thin air in a valid transaction. The property can be stated as
follows.

Lemma 3 (No Coin Inflation). Given a valid transaction t = {i , o, tk , tko}
with transaction kernel tk = {rp, ke, σ}, it can be proved that no money is
created from thin air; i.e. the transaction excess only contains the blinding factor
and the kernel offset.

Proof We know the transaction t is valid, in particular, the transaction is bal-
anced. Applying Definition 3, we know that:

∑

oj ∈o

oj −
∑

cj ∈i

cj = ke + tko.G

4 Given a state s, a transaction t and an error code ec, ErrorMsg(s, t , ec) holds iff
error ec is an acceptable response when the execution of t is requested on state s.

Towards a Formally Verified Implementation 13

Using Definition 1, we start to unfold the terms in the equality:

m
∑

1

r ′.G + v ′.H −
n

∑

1

r .G + v .H = (
m

∑

1

r ′ −
n

∑

1

r − tko).G + tko.G

Applying algebraic properties on elliptic curves, we have:

m∑

1

v ′.H −
n∑

1

v .H = (

m∑

1

r ′.G −
n∑

1

r .G) − (

m∑

1

r ′.G −
n∑

1

r .G) − tko.G + tko.G = 0

Therefore,

(v ′
1 + ... + v ′

m).H − (v1 + ... + vn).H = (v ′
1 + ... + v ′

m − v1 − ... − vn).H = 0.H = 0

It means that all the inputs and outputs add to zero. In other words, they
summed to the commitment to the excess blinding factor and the kernel offset.

��
Thus, we have proved no money was created from thin air and the only ones

who knew the blinding factors were the transacting parties when they created
the transaction. This means the new outputs will be spendable by them.

An important feature of MW is the cut-through process. The purpose of this
property is to erase redundant outputs that are used as inputs within the same
block. Let C be some coins that appear as an output in the block b. If the same
coins appear as an input within the block, then C can be removed from the
list of inputs and outputs after applying the cut-through process. In this way,
the only remaining data are the block headers, transaction kernels and unspent
transaction outputs (UTXOs). After applying cut-through to a valid block b it is
important to ensure that the resulting block b′ is still valid. We can say that the
validity of a block should be invariant with respect to the cut-through process.
Basically, this invariant holds because the matching inputs and outputs cancel
each other in the overall sum.

4.2 Privacy and Security Properties

In blockchain systems the notion of privacy is crucial: sensitive data should not be
revealed over the network. In particular, it is desirable to ensure properties such
as confidentiality, anonymity and unlinkability of transactions. Confidentiality
refers to the property of preventing other participants from knowing certain
information about the transaction, such as the amounts and addresses of the
owners. Anonymity refers to the property of hiding the real identity from the one
who is transacting, while unlinkability refers to the inability of linking different
transactions of the same user within the blockchain.

In the case of MW no addresses or public keys are used; there are only
encrypted inputs and outputs. Privacy concerns rely on confidential transactions,
cut-through and CoinJoin. CoinJoin combines inputs and outputs from different

14 G. Betarte et al.

transactions into a single unified transaction. It is important to ensure that the
resulting transaction satisfies the validity defined in the model.

The security problem of double spending refers to spending a coin more than
once. All the nodes keep track of the UTXO set, so before confirming a block to
the chain, the node checks that the inputs come from it. If we refer to our model,
that validation is performed in the predicate validate mentioned in Sect. 3.3.

4.3 Zero-Knowledge Proof

The goal is to prove that a statement is true, without revealing any information
beyond the verification of the statement. In MW we need to ensure that in every
transaction, the amount is positive, so that users cannot create coins. The key
here is to prove that, without revealing the amount. As we defined in the model,
the output amounts are hidden in the form of a Pedersen commitment, and
the transaction contains a list of range proofs of the outputs to prove that the
amount is positive. MW uses Bulletproofs to achieve this goal. In our model, this
verification is performed as the first step of the validation of the transaction.

4.4 Unlinkability and Untraceability

MW does not use addresses, the protocol relies on confidential transactions to
hide the identity of the sender and the recipient. It means that users have to
communicate off-chain to create the transactions.

As we specified in our model, each node has a pool of unconfirmed transac-
tions in the mempool. This transactions are waiting for the miners in order to be
included in a block. We can distinguish two security properties of the transac-
tions. Untraceability refers to the transactions in the mempool and unlinkability
to the transactions in the block. In our model, this two notions are described as
follows:

Property 3 (Transaction Unlinkability). Given a valid block b, it should be
computationally infeasible to know which input cancels which output.

The following lemma captures the semantics of this property. Moreover, the
operations cut-through and CoinJoin, which were described above, contribute to
this property.

Lemma 4 (Transaction Unlinkability). It is said a valid block b is
transaction-unlinkable if for any polinomial probabilistic time adversary A, the
probability of finding a balanced transaction within the block is negligible.

Proof. Let b = {i , o, tks, ko} be a valid block with tks = (tk1, ..., tkt) the list of
transaction kernels. The j -th item in tks is of the form tkj = {rpj , kej , σj }.

The goal of the adversary A is to find a tuple of the form {i ′, o′, ke ′} in b
where the list of inputs i ′ is a subset of i and the list of outputs o′ is a subset of

Towards a Formally Verified Implementation 15

o, which satisfies the Definition 3 of a balanced transaction. It means that, the
following equality must be true for the tuple:

∑

oj ∈o′
oj −

∑

cj ∈i′
cj = ke ′ + tko′.G

If we refer to the process construction in Definition 7, the transaction kernel
offsets were added to generate a single aggregate offset ko to cover all transactions
in the block. It means that, we do not store the individual kernel offset tko′ of
the transaction in b once the transaction is aggregated to the block.

The challenge is trying to solve the adversary A, could be seen as the subset
sum problem (NP-complete) but, in this case, tko′ is unrecoverable. So, although
many transactions have few inputs and outputs, it is computationally infeasible,
without knowing that value, to find the tuple.

��
Property 4. (Transaction Untraceability). For every transaction in the mempool,
it should not be possible to relate the transaction to the IP address of the node
which originated it.

In regards to this property, we should refer mainly, to the broadcast of the
transactions. Once the transactions are created, they are broadcasted to the
network and they are included in the mempool. Each node could track the IP
address from the node which received the transaction. At that point nodes could
record the transactions, allowing them to build a transaction graph.

We define that the broadcast of a transaction can be performed with or with-
out confusion. Without confusion means that, once the transactions are created,
they are broadcasted immediately to all the network. However, if someone con-
trols enough nodes on the network and discovers how the transaction moves, he
could find out the IP address node from which the transaction comes from.

On the other hand, we define the broadcast with confusion as a way to obscure
the IP address node.

Property 5. (Broadcast with confusion). Let’s say node A sends a transaction to
node B. We say B receives the transaction with confusion if given the IP address
of node A, the node B does not know if the transaction was originated by the
node A or not.

In other words, it can be said that if some malicious nodes, working together,
construct a graph of the pairs (transaction, IP address node), the IP address
node will not convey information about what node originated the transaction.
Therefore, in our model, we define that the Property 5 must hold before the
broadcast takes place. In order to achieve this, we can establish that the node
broadcasting the transaction, should be far enough from the one which originated
it. Moreover, CoinJoin could be performed before the broadcast.

Dandelion, proposed by Fanti et al [39], is a protocol for broadcasting trans-
action that intends to defend that deanonymization attack. Dandelion is not

16 G. Betarte et al.

part of the MW protocol, however this kind of protocols should be implemented
by each node to lower the risk of creating the transaction graph. The spreading
propagation consists of two phases: the “steam” phase and the “fluff” phase. In
the “steam” phase the transaction is broadcasted randomly to one node, which
then randomly sends it to another, and so on. This process finishes when the
“fluff” phase is reached, and the transaction is broadcasted to the network.

The following routines capture the semantic of the phases:
subroutine steam(tx : Transaction){
c ← {0, 1} (* random decision *)
if c == 0 then

node ← select random node()
node.steam(tx)

else
this.fluff (tx)

}

subroutine fluff (tx : Transaction){
broadcast(tx)
}

Each node, besides having the local state, should implement these two rou-
tines. Once the transaction is created and is ready to be included in the mempool,
its broadcasting start in the “steam” phase. When it reaches the “fluff” phase,
it is broadcasted to the network and added in the mempool.

Dandelion relies on the following three rules: all nodes obey the protocol,
each node generates exactly one transaction, and all nodes on the network run
Dandelion. The problem is that an adversary can violate them. For that rea-
son, Grin implements a more advanced protocol called Dandelion++ [17] which
intends to prevent that [23]. However, it is believed that Dandelion++ is not
good enough to guarantee the privacy of a virtual coin [22]. For instance, the
flashlight attack [26] is an open problem to research [21]. The scenario here is
when an ‘activist’ want to accept donations but he cannot reveal his identity.
At some point, he will deposit those payments to an exchange and his identity
would be compromised. The adversary injects ‘tainted coins’ and could build a
‘taint tree’ looking through all deposits to the exchange. This way, he could link
those deposits to the ‘activist’.

The combined use of the MW protocol with a Zerocash-style commitment-
nullifier scheme has been put forward in [40] as a countermeasure to the above
attack. In the case of Zcash, every shielded transaction has a large anonymity set,
namely, the set of transactions form which the transaction is indistinguishable
from. In the case of Spectrecoin [16] the main idea is the use, only once, of
public addresses (XSPEC) to receive the payments combined with an anonymous
staking protocol.

Towards a Formally Verified Implementation 17

4.5 Model-Driven Verification

MW is built on top of a consensus protocol. In that direction, we have developed
a Z specification of a consensus protocol (see Appendix A). Z specifications in
turn can be easily translated into the {log} language [13], which can be used as
both a (prototyping) programming language and an automated theorem prover
for an expressive fragment of set theory and set relation algebra. We present
an excerpt of the {log} prototype of a consensus protocol in Appendix B. This
{log} prototype can be used as an executable model where simulations can be
run. This allows us to analyze the behavior of the protocol without having to
implement it in a low level programming language.

We also plan to use {log} to prove some of the basic properties mentioned
above, such as the invariance of valid state. However, for complex properties
or for properties not expressible in the set theories supported by {log} we plan
to develop a complete and uniform formulation of several security properties of
the protocol using the Coq proof assistant [38]. The Coq environment supports
advanced logical and computational notations, proof search and automation, and
modular development of theories and code. It also provides program extraction
towards languages like Ocaml and Haskell for execution of (certified) algorithms
[31]. Additionally, Coq has an important set of libraries; for example [3] contains
a formalization of elliptic curves theory, which allows the verification of elliptic
curve cryptographic algorithms.

The fact of first having a {log} prototype over which some verification activ-
ities can be carried out without much effort helps in simplifying the process of
writing a detailed Coq specification. This is in accordance with proposals such
as QuickChick whose goal is to decrease the number of failed proof attempts in
Coq by generating counterexamples before a proof is attempted [15].

By applying the program extraction mechanism provided by Coq we would
be able to derive a certified Haskell prototype of the protocol. This prototype
can be used as a testing oracle and also to conduct further verification activities
on correct-by-construction implementations of the protocol. In particular, both
the {log} and Coq approaches can be used as forms of model-based testing. That
is, we can use either specification to automatically generate test cases with which
protocol implementations can be tested [14,15].

5 Final Remarks

We have highlighted elements that constitute essential steps towards the devel-
opment of an exhaustive formalization of the MimbleWimble cryptocurrency
protocol, the analysis of its properties and the verification of its implementa-
tions.

The proposed idealized model is key in the described verification process and
constitutes our main contribution. We have also identified and precisely stated
sufficient conditions for our model to ensure the verification of relevant security
properties of MimbleWimble.

18 G. Betarte et al.

We plan to continue working on the lines presented in Sect. 4, also considering
tools oriented towards the verification of cryptographic protocols and implemen-
tations, such as EasyCrypt [2], ProVerif [10], and CryptoVerif [9]. In particu-
lar, we are especially interested in using EasyCrypt5, an interactive framework
for verifying the security of cryptographic constructions in the computational
model.

A Excerpt of a Z Model of a Consensus Protocol

The following are some snippets of a Z model of a consensus protocol based
on the model developed by P̂ırlea and Sergey [36]. For reasons of space we just
reproduce a little part of it.

The time stamps used in the protocol are modeled as natural numbers. Then
we have the type of addresses (Addr), the type of hashes (Hash), the type of
proofs objects (Proof) and the type of transactions (Tx). Differently from P̂ırlea
and Sergey’s model6 we modeled addresses as a given type instead as natural
numbers. In PS the only condition required for these types is that they come
equipped with equality, which is the case in Z.

Time == N

[Addr ,Hash,Proof ,Tx]

The block data structure is a record with three fields: prev , (usually) points to
the parent block; txs, stores the sequence of transactions stored in the block;
and pf is a proof object required to validate the block.

Block
prev : Hash
txs : seqTx
pf : Proof

The local state space of a participating network node is given by three state
variables: as, are the addresses of the peers this node is aware of; bf , is a block
forest (not shown) which records the minted and received blocks; and tp, is a set
of received transactions which eventually will be included in minted blocks.

LocState
as : PAddr
bf : Hash
→ Block
tp : PTx

5 See http://www.easycrypt.info.
6 From now on we will refer to P̂ırlea and Sergey model simply as PS.

http://www.easycrypt.info

Towards a Formally Verified Implementation 19

The system configuration is represented by two state variables: Delta, which
establishes a mapping between network addresses and the corresponding node
(local) states (in PS this variable is referred to as the global state); and P , a set
of packets (which represent the messages exchanged by nodes).

Conf
Delta : Addr
→ LocState
P : PPacket

Packets are just tuples of two addresses (origin and destination) and a message.

Packet == Addr × Addr × Msg

The model has twelve state transitions divided into two groups: local and global.
Local transitions are those executed by network nodes, while global transitions
promote local transitions to the network level. In turn, the local transitions
are grouped into receiving and internal transitions. Receiving transitions model
the nodes receiving messages from other nodes and, possibly, sending out new
messages; internal transitions model the execution of instructions run by each
node when some local condition is met. Here, we show only the local, receiving
transition named RcvAddr .

RcvAddr
ΔLocState
p? : Packet
ps! : PPacket

p?.2 = this
∃ asm : PAddr •

p?.3 = AddrMsg asm
∧ as ′ = as ∪ asm
∧ bf ′ = bf
∧ tp′ = tp
∧ ps! = {a : asm \ as • (p?.2, a,ConnectMsg)}∪

{a : as • (p?.2, a,AddrMsg as ′)}

As can be seen, RcvAddr receives a packet (p?) and sends out a set of packets
(ps!). The node checks whether or not the packet’s destination address coin-
cides with its own address. In that case, the node adds the received addresses
to its local state and sends out a set of packets that are either of the form
(p?.2, a,ConnectMsg) or (p?.2, a,AddrMsg as ′). The former are packets gener-
ated from the received addresses and sent to the new peers the node now knows,
while the latter are messages telling its already known peers that it has learned
of new peers.

20 G. Betarte et al.

B Excerpt of a {log} Prototype of a Consensus Protocol

In this section we show the {log} code corresponding to the Z model presented
in Appendix A. {log} code can be seen as both a formula and a program [13].
Thus, in this case we use the code as a prototype or executable model of the Z
model. The intention is twofold: to show that passing from a Z specification to a
{log} program is rather easy, and to show how a {log} program can be used as
a prototype. The first point is achieved mainly because {log} provides the usual
Boolean connectives and most of the set and relational operators available in Z.
Hence, it is quite natural to encode a Z specification as a {log} program.

Given that {log} is based on Prolog its programs resemble Prolog programs.
The {log} encoding of RcvAddr is the following:

rcvAddr(LocState,P,Ps,LocState_) :-

LocState = {[as,As] / Rest} &

P = [_,this, addrMsg(Asm)] & un(As,Asm,As_) & diff(Asm,As,D) &

Ps1 = ris(A in D,[],true,[this,A,connectMsg]) &

Ps2 = ris(A in As,[],true,[this,A,addrMsg(As_)]) & un(Ps1,Ps2,Ps) &

LocState_ = {[as,As_] / Rest}.

As can be seen, rcvAddr is clause receiving the before state (LocState), the
input variable (P), the output variable (Ps) and the after state (LocState).
As in Prolog, {log} programs are based on unification with the addition of set
unification. In this sense, a statement such as LocState = {[as,As]/Rest} (set)
unifies the parameter received with a set term singling out the state variable
needed in this case (As) and the rest of the variables (Rest). The same is done
with packet P where means any value as first component and addrMsg(Asm)
gets the set of addresses received in the packet without introducing an existential
quantifier.

The set comprehensions used in the Z specification are implemented with
{log}’s so-called Restricted Intentional Sets (RIS) [12]. A RIS is interpreted as
a set comprehension where the control variable ranges over a finite set (D and
As).

Given rcvAddr we can perform simulations on {log} such as:

S = {[as,{}] / R} &
rcvAddr(S,[_,this,addrMsg({a1,a2})],P1,S1) &
rcvAddr(S1,[_,this,addrMsg({a1,a3})],P2,S2).

in which case {log} returns:

P1 = ris(A in {a1,a2/_N2},[],true,[this,A,connectMsg],true),
S1 = {[as,{a1,a2}]/R},
P2 = {[this,a3,connectMsg],[this,a1,addrMsg({a2,a1,a3})],

[this,a2,addrMsg({a2,a1,a3})] /
ris(A in _N1,[],true,[this,A,connectMsg],true)},

S2 = {[as,{a2,a1,a3}]/R}
Constraint: subset(_N2,{a1,a2}), subset(_N1,{a1,a3}),

a1 nin _N1, a2 nin _N1

Towards a Formally Verified Implementation 21

That is, {log} binds values for all the free variables in a way that the formula
is satisfied (if it is satisfiable at all). In this way we can trace the execution of
the protocol w.r.t. states and outputs by starting from a given state (e.g. S) and
input values (e.g. |[,this,addrMsg(a1,a2)]), and chaining states throughout
the execution of the state transitions included in the simulation (e.g. S1 and S2).

References

1. Anderson, J.: Computer Security technology planning study. Technical report,
Deputy for Command and Management System, USA (1972)

2. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.-Y.:
EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-
2013. LNCS, vol. 8604, pp. 146–166. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10082-1 6

3. Bartzia, E.-I., Strub, P.-Y.: A formal library for elliptic curves in the coq proof
assistant. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 77–92.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08970-6 6

4. Bell, D.E., LaPadula, L.J.: Secure computer systems: Mathematical foundations.
Technical report MTR-2547, vol. 1, MITRE Corp., Bedford, MA (1973)

5. Bertot, Y., Castéran, P., (informaticien) Huet, G., Paulin-Mohring, C.: Interactive
theorem proving and program development: Coq’Art : the calculus of inductive
constructions. Texts in theoretical computer science. Springer, Berlin, New York
(2004). Données complémentaires http://coq.inria.fr

6. Betarte, G., Cristiá, M., Luna, C., Silveira, A., Zanarini, D.: Set-based models for
cryptocurrency software. CoRR, abs/1908.00591 (2019)

7. Betarte, G., Cristiá, M., Luna, C., Silveira, A., Zanarini, D.: Towards a formally
verified implementation of the mimblewimble cryptocurrency protocol. CoRR,
abs/1907.01688 (2019)

8. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Pro-
ceedings of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, PLAS 2016, pp. 91–96. ACM, New York (2016)

9. Blanchet, B.: CryptoVerif: a computationally sound mechanized prover for cryp-
tographic protocols. In Dagstuhl seminar “Formal Protocol Verification Applied”,
October 2007

10. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
In: 14th IEEE Computer Security Foundations Workshop (CSFW-14 2001), 11–13
June 2001, Cape Breton, Nova Scotia, Canada, pp. 82–96. IEEE Computer Society
(2001)

11. Buterin, V.: Critical update re: Dao vulnerability, June 2016
12. Cristiá, M., Rossi, G.: A decision procedure for restricted intensional sets. In: de

Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 185–201. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 12

13. Cristiá, M., Rossi, G.: Solving quantifier-free first-order constraints over finite sets
and binary relations. J. Automated Reasoning 64, 295–330 (2019). https://doi.
org/10.1007/s10817-019-09520-4

14. Cristiá, M., Rossi, G., Frydman, C.: log as a test case generator for the test template
framework. In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM 2013.
LNCS, vol. 8137, pp. 229–243. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40561-7 16

https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-08970-6_6
http://coq.inria.fr
https://doi.org/10.1007/978-3-319-63046-5_12
https://doi.org/10.1007/s10817-019-09520-4
https://doi.org/10.1007/s10817-019-09520-4
https://doi.org/10.1007/978-3-642-40561-7_16
https://doi.org/10.1007/978-3-642-40561-7_16

22 G. Betarte et al.

15. Dénès, M., Hritcu, C., Lampropoulos, L., Paraskevopoulou, Z., Pierce, B.:
Quickchick: Property-based testing for coq. In: The Coq Workshop (2014)

16. Korsell, E., Mueller, P., Schumann, Y.: Spectrecoin. https://spectreproject.io/
Spectrecoin White-Paper.pdf, June 2019

17. Fanti, G.C., et al.: Dandelion++: lightweight cryptocurrency networking with for-
mal anonymity guarantees. CoRR, abs/1805.11060 (2018)

18. Fuchsbauer, G., Orrù, M., Seurin, Y.: Aggregate cash systems: a cryptographic
investigation of mimblewimble. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11476, pp. 657–689. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17653-2 22

19. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

20. Gibson, A.: An investigation into confidential transactions (2018). https://github.
com/AdamISZ/ConfidentialTransactionsDoc/blob/master/essayonCT.pdf

21. Grin Community. Grin: Open Research Problems (2020). https://grin.mw/open-
research-problems

22. Grin Team. Privacy Primer, November 2018. https://github.com/mimblewimble/
docs/wiki/Grin-Privacy-Primer

23. Grin Team. Dandelion++ in Grin: Privacy-Preserving Transaction Aggrega-
tion and Propagation, July 2019. https://github.com/mimblewimble/grin/blob/
master/doc/dandelion/dandelion.md

24. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the secu-
rity analysis of ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST
2018. LNCS, vol. 10804, pp. 243–269. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89722-6 10

25. Hirai, Y.: Defining the ethereum virtual machine for interactive theorem provers.
In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 33

26. Miers, I.: Blockchain Privacy: Equal Parts Theory and Practice, February 2019.
https://www.zfnd.org/blog/blockchain-privacy/#flashlight

27. Idelberger, F., Governatori, G., Riveret, R., Sartor, G.: Evaluation of logic-based
smart contracts for blockchain systems. In: Alferes, J.J.J., Bertossi, L., Governa-
tori, G., Fodor, P., Roman, D. (eds.) RuleML 2016. LNCS, vol. 9718, pp. 167–183.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42019-6 11

28. Jedusor, T.: Introduction to MimbleWimble and Grin (2016). https://github.com/
mimblewimble/grin/blob/master/doc/intro.md

29. Jedusor, T.: Mimblewimble (2016). scalingbitcoin.org/papers/mimblewimble.txt
30. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure

proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

31. Letouzey, P.: A new extraction for coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES
2002. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-39185-1 12

32. Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Weippl, E., Katzenbeisser, S. Kruegel, C., Myers, A., Halevi, S. (eds.)
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, Vienna, Austria, 24–28 October, 2016, pp. 254–269. ACM (2016)

https://spectreproject.io/Spectrecoin_White-Paper.pdf
https://spectreproject.io/Spectrecoin_White-Paper.pdf
https://doi.org/10.1007/978-3-030-17653-2_22
https://doi.org/10.1007/978-3-030-17653-2_22
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://github.com/AdamISZ/ConfidentialTransactionsDoc/blob/master/essayonCT.pdf
https://github.com/AdamISZ/ConfidentialTransactionsDoc/blob/master/essayonCT.pdf
https://grin.mw/open-research-problems
https://grin.mw/open-research-problems
https://github.com/mimblewimble/docs/wiki/Grin-Privacy-Primer
https://github.com/mimblewimble/docs/wiki/Grin-Privacy-Primer
https://github.com/mimblewimble/grin/blob/master/doc/dandelion/dandelion.md
https://github.com/mimblewimble/grin/blob/master/doc/dandelion/dandelion.md
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-70278-0_33
https://www.zfnd.org/blog/blockchain-privacy/#flashlight
https://doi.org/10.1007/978-3-319-42019-6_11
https://github.com/mimblewimble/grin/blob/master/doc/intro.md
https://github.com/mimblewimble/grin/blob/master/doc/intro.md
http://www.scalingbitcoin.org/papers/mimblewimble.txt
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1007/3-540-39185-1_12

Towards a Formally Verified Implementation 23

33. Maxwell, G.: Confidential transactions write up (2020). https://people.xiph.org/
∼greg/confidential values.txt

34. Metere, R., Dong, C.: Automated cryptographic analysis of the pedersen com-
mitment scheme. In: Rak, J., Bay, J., Kotenko, I., Popyack, L., Skormin, V.,
Szczypiorski, K. (eds.) MMM-ACNS 2017. LNCS, vol. 10446, pp. 275–287.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65127-9 22

35. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system, March 2009. Cryp-
tography Mailing list at https://metzdowd.com

36. P̂ırlea, G., Sergey, I.: Mechanising blockchain consensus. In: Proceedings of CPP
2018, pp. 78–90. ACM, New York (2018)

37. Poelstra, A.: Mimblewimble, October 2016. https://download.wpsoftware.net/
bitcoin/wizardry/mimblewimble.pdf

38. The Coq Dev. Team. The Coq Proof Assistant Reference Manual - V. 8.9.0 (2019)
39. Venkatakrishnan, S.B., Fanti, G.C., Viswanath, P.: Dandelion: Redesigning the

bitcoin network for anonymity. CoRR, abs/1701.04439 (2017)
40. Wanseob-Lim. Ethereum 9 3/4: Send ERC20 privately using Mimblewimble

and zk-SNARKs, September 2019. https://ethresear.ch/t/ethereum-9-send-erc20-
privately-using-mimblewimble-and-zk-snarks/6217

41. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger eip-150
revision (759dccd - 2017–08-07) (2017). Accessed 03 Jan 2018

https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://doi.org/10.1007/978-3-319-65127-9_22
https://metzdowd.com
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://ethresear.ch/t/ethereum-9-send-erc20-privately-using-mimblewimble-and-zk-snarks/6217
https://ethresear.ch/t/ethereum-9-send-erc20-privately-using-mimblewimble-and-zk-snarks/6217

Secure Management of IoT Devices Based
on Blockchain Non-fungible Tokens
and Physical Unclonable Functions

Javier Arcenegui(B), Rosario Arjona(B), and Iluminada Baturone(B)

Instituto de Microelectrónica de Sevilla (IMSE-CNM), Universidad de Sevilla, CSIC,
C/Américo Vespucio 28, 41092 Seville, Spain

{arcenegui,arjona,lumi}@imse-cnm.csic.es

Abstract. One of the most extended applications of blockchain technologies for
the IoT ecosystem is the traceability of the data and operations generated and
performed, respectively, by IoT devices. In this work, we propose a solution for
securemanagement of IoT devices that participate in the blockchainwith their own
blockchain accounts (BCAs) so that the IoT devices themselves can sign transac-
tions. Any blockchain participant (including IoT devices) can obtain and verify
information not only about the actions or data they are taking but also about their
manufacturers, managers (owners and approved), and users. Non Fungible Tokens
(NFTs) based on the ERC-721 standard are proposed to manage IoT devices as
unique and indivisible. The BCA of an IoT device, which is defined as an NFT
attribute, is associated with the physical device since the secret seed from which
the BCA is generated is not stored anywhere but a Physical Unclonable Function
(PUF) inside the hardware of the device reconstructs it. The proposed solution is
demonstrated and evaluated with a low-cost IoT device based on a Pycom Wipy
3.0 board, which uses the internal SRAM of the microcontroller ESP-32 as PUF.
The operations it performs to reconstruct its BCA in Ethereum and to carry out
transactions take a few tens of milliseconds. The smart contract programmed in
Solidity and simulated in Remix requires low gas consumption.

Keywords: IoT devices · Blockchain technology · Non fungible tokens ·
Physical Unclonable Functions

1 Introduction

The Internet of Things (IoT) and blockchain are nowadays two technologies that are
attracting a great interest. In general, IoT is a set of interconnected devices that ex-
change data and offer services to citizens, industries, businesses, and governments. IoT
devices make smart the area where they are deployed (factories, hospitals, cities, etc.).
Among the features that IoT devices must provide, security is one of the most important
since they are the link between the physical world and Internet. An attacker may control
either the actuators or sensors of an IoT device to carry out malicious actions. For
example, a device with an insulin pump can be attacked to inject a lethal dose to the

© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 24–40, 2020.
https://doi.org/10.1007/978-3-030-61638-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_2

Secure Management of IoT Devices Based on Blockchain Non-fungible Tokens 25

patient or a blood pressure meter can be attacked to provide false readings. Secure IoT
devices must prove that their hardware and software are trusted and that they behave in
a trustworthy way. Similarly, they must trust the other devices or users with whom they
interact [1, 2].

In the other side, a blockchain is a network of participants that take part in a dis-
tributed, synchronized and cryptographically secure data structure (ledger) composed
of chained blocks that can be tracked by any participant. A block contains information
about transactions (typically the exchange of digital currency or generic assets, date,
time, etc.), participants involved in the transactions, data identifying the block univo-
cally, and how the block is linked to the previous one. A newblock is added if participants
with the role of miners demonstrate (by a proof of work, stake, authority, etc.) that the
new block is secure and most of the miners (typically 51% at least) agree to link the
block (applying a consensus algorithm). Since not only the inclusion of a new block
is based on a consensual agreement but also many of the participants (nodes) have an
updated copy of the blockchain, it is very costly for hackers to manipulate any block [3].

Combining IoT and blockchain is very interesting because many transactions in
smart areas involve IoT devices [4–6]. While it is not convenient for IoT devices to
participate with the role of nodes or miners since they do not have enough memory
and computing resources, it is practical they can participate with their own blockchain
accounts (BCAs) associated with their cryptographic public keys so that they can take
part in transactions and can sign them. This way, traceability of both devices and their
data/actions is provided to the rest of blockchain participants, greatly increasing their
security. The well-known blockchain Scalability Trilemma, which is to offer security,
decentralization and scalability simultaneously, appears when many blocks and partic-
ipants (being IoT devices or not) have to be handled [7]. In this work, we assume that
there are other participants (apart from IoT devices) acting as nodes and miners that
guarantee security and decentralization and that only the summary of many transactions
carried out off-chain are stored in the blockchain to guarantee scalability.

The new generation of blockchain technologies allows smart contracts as a way
to formalize agreements between participants. Typical agreements are to represent a
cryptocurrency by a fungible token with a set of specifications (like its owner) and
functions (like the way to change of owner). Fungible tokens of the same type are
identical (like coins are identical) and are divisible into smaller units (like coins of
different values). More recently, non-fungible tokens (NFTs) have been employed to
represent unique assets (like collectables, certificates of any kind, any type of access
rights, objects, etc.). An NFT is unique, indivisible, and different from another token of
the same type. In particular, the ERC-721 standard describes how to build non-fungible
tokens in the Ethereum blockchain [8]. Standard attributes of ERC-721 NFTs are: (a)
the token identifier (tokenId), (b) the BCA of the NFT owner, and (c) the approved BCA
by the owner to transfer the token to another owner. The digital and unique identifier,
tokenId, allows recording and tracking a NFT in the blockchain. However, the token
identifier does not have to be associated with a physical property of the device. In fact,
it is generated automatically when the ERC-721 NFT is created.

In this work, we propose the use of NFTs to represent IoT devices. In particular,
we base our development on the ERC-721 standard of Ethereum. The novelty of our

26 J. Arcenegui et al.

proposed NFTs is that they represent IoT devices that participate in the blockchain
and, hence, have a unique BCA. Then, we incorporate the BCA of the IoT device as
an NFT attribute. Another novelty of our proposal is that, since the BCA of an IoT
device is naturally associated with the physical device, the IoT device generates its
BCA from a PUF response. PUFs allow generating unique, intrinsic, unpredictable and
distinctive identifiers for each device by exploiting the random variations of the device
manufacturing process [9]. The BCA is associated with a cryptographic public key,
which in turn is associated with a cryptographic secret key. Our proposal is that IoT
devices prove their authenticity if, firstly, any content stored in its memory is removed,
and, secondly, they are programmed with a trustworthy firmware that does not contain
its secret key. If the IoT device is able to reconstruct its secret key and, hence, its BCA,
is because its PUF response is authentic.

In addition, we incorporate the BCA of the user of the IoT device as another NFT
attribute in order to distinguish between users, who employ the IoT device for an appli-
cation, and owners, who assign IoT devices to users and can transfer the token to new
owners. Owners can also approve others (approved BCAs) to transfer tokens to other
owners.

Our proposal allows a secure management of IoT devices since any participant in the
blockchain (including the IoT device itself or another) can verify their manufacturers,
managers (owners and approved), users, and the actions or data they are taking. Besides,
the IoT device and its physical owner, approved, and user can be subscribed to the events
of its associated NFT so that they can receive notifications about the situation of the NFT
and behave accordingly.

In summary, the contributions of this work are the following:

• The proposal of an NFT based on the ERC-721 standard of Ethereum that includes as
new attributes the BCA of the IoT device and the BCA of the user of the IoT device.
Since the IoT device has a BCA, it can take part in blockchain transactions and can
sign them. Since the BCA of the user of the IoT device is included, user and owner
roles are distinguished.

• The use of PUFs to guarantee that only the IoT device able to provide the required
PUF response is the only one able to generate its BCA.

• A solution that merges the IoT and blockchain paradigms to allow the secure trace-
ability of the data generated and the operations performed by IoT devices in scenarios
of remote management.

• A proof of concept of the proposed solution by using a PycomWipy 3.0 as IoT device
that generates its BCA in the blockchain Ethereum from the response of its SRAM
PUF.

The paper is structured as follows. Related work is included in Sect. 2. Section 3
presents the proposal ofNFTs for secure devices. The extension of the ERC-721 standard
for NFTs that not only considers the BCA of the owners (managers) but also the BCAs of
the device and its user is described. The process to generate the device BCA from a secret
seed obfuscated by the response of a SRAM PUF as well as the device management are
explained. Section 4 includes a proof of concept based on the PycomWipy 3.0 board. In
the one side, the feasibility of obfuscating and recovering 256-bit secret seeds from the

Secure Management of IoT Devices Based on Blockchain Non-fungible Tokens 27

use of internal SRAM PUFs is proven. In the other side, the implementation of the NFT
with the SRAM PUF-based BCA by considering the Ethereum blockchain is shown.
Section 4 also provides the execution times of the operations required to complete a
transaction and the gas consumption of the smart contract functions programmed in
Solidity and simulated in Remix [10]. Results are compared to other proposals in the
literature. Finally, Sect. 5 concludes the work and adds future research directions.

2 Related Work

In the literature, ERC-721 NFTs are employed for several applications. The works [11]
and [12] describe how the traceability of manufactured products can be performed using
ERC-721 NFTs. The use of ERC-721 NFTs is also mentioned in [13] and in [14] for car
sharing and event reselling applications, respectively. The management of IoT devices
through the blockchain is extensively based on the use of smart contracts. However, the
tokens used in many applications are not standard. In [15], tokenization is not directly
related to the IoT devices. Instead, tokenization is employed through a task manager to
ensure that all participants have something to lose if they misbehave. In [16], the IoT
devices are grouped into IoT systems (like smart homes, smart hospitals, etc.) and each
system is associated with the nearest blockchain-enabled fog node. A smart contract
is defined on top of the blockchain-enabled fog nodes to support authentication and
authorization of the IoT devices in a distributed fashion. In this proposal, IoT devices
can communicate among them if they are registered and authenticated by blockchain-
enabled fog nodes. The tokens are considered as certificates that include the device
identifier, the device public address and the IoT system identifier. Therefore, the token
involves two devices: the fog node and the IoT device. The solution proposed in [17] uses
the principle of ERC-721 NFTs to implement a capability-based access control model
in a decentralized IoT architecture. In this proposal, the tokens store the access rights for
the resources/services available. A device in possession of one of these access tokens
can access the resource/service according to the access control rules defined within the
token. This solution is tested on a private Ethereum blockchain node.

None of the above commented solutions stablishes a physical link between a device
and an NFT logical identifier. In [11], the digital and unique identifier, tokenId, which is
a standard attribute of ERC-721 NFTs that allows recording and tracking an NFT in the
blockchain, is a randomly selected string assigned to the device and stored in its RFID
or QR code. In [15], the tokenId is the hash of a concatenation of the serial number
embedded in the device chipset and a randomly generated salt. This can be also replaced
by any random string that is not already in use when the device is registered. In [16],
IoT devices are identified by certificates generated from a private key. In [17], tokenId
is obtained by hashing three logical identifiers (the identifier of the device in possession
of the token, the identifier of the resource/service, and the identifier of the resource as
per the communication protocol).

Other works that employ the blockchain framework to provide supply chain integrity
use PUFs to stablish a physical link between the devices and their logical identifiers [18–
21]. The PUFs embedded in the products introduce a higher security level that reduces
the risk of counterfeit and tampered electronic devices. However, these works do not
employ explicitly the concept of NFTs.

28 J. Arcenegui et al.

To the best of our knowledge, there are no works in the literature using PUFs in
ERC-721 NFTs as presented in the following.

3 Proposed NFTs for Secure Devices

The application scenarios of our proposal are smart areas with IoT devices that must
be secure. The combination of IoT and Blockchain technologies enhances security. The
main agents in these scenarios are: (a) the IoTdevices (referred to as SDs, secure devices);
(b) the users of the IoT devices; and (c) the application managers (referred to as owners),
who assign devices to users and can transfer the devices to other managers. These
three agents take part in the blockchain transactions through their BCAs (BCA_SD,
BCA_user, and BCA_owner, respectively). Hence, they can authenticate each other and
their messages in scenarios of remote management. A relevant amount of messages
can be interchanged off-chain, to improve scalability, but the important transactions are
registered to allow traceability in the blockchain. The owner (manager) and user can reset
the device to ensure their firmware is trustworthy, avoiding the execution of malware.
Conversely, the device allows reset if the request is from the owner or the user. In a smart
hospital, for example, the owner can be the technical supervisor that assigns devices to
doctors. In a smart infrastructure, the owner can be the manager of the technical workers
who, depending on the scheduled tasks, assign the devices to one technician or another.

3.1 Main Features of the Proposed NFT

An IoT device becomes SD after being bound to our proposed NFT. The structure
of the proposed token has the attributes shown in Table 1. The variables tokenId and
BCA_owner are defined by the standard ERC-721. The standard also defines other
variables (approved and operator) to help the owner to transfer NFTs to other owners,
but this is not in the scope of this work, so that we omit them. The important variables
added in this work are BCA_SD, which binds a device to the NFT, and BCA_user, which
binds the device of the NFT to a user.

Table 1. Structure of the non fungible token

Type Name of variable Defined by the standard

TokenId_Type tokenId Yes

Address BCA_owner Yes

Address BCA_SD No

Address BCA_user No

The standard ERC-721 only declares functions related to the ownership of the token.
A summary of them are included in the upper part of Table 2. They return which are the
tokenIds of an owner (function “balanceOf”), who is the owner of a tokenId (function
“ownerOf”), and how to transfer the tokenId to another address (function “transferFrom”
detailed in Table 3).

Secure Management of IoT Devices Based on Blockchain Non-fungible Tokens 29

Table 2. Functions employed in the proposed NFT

Defined by the standard
function balanceOf(address _owner) external view returns (uint256);
function ownerOf(uint256 _tokenId) external view returns (address);
function transferFrom(address _from, address _to, uint256 _tokenId) external payable;

Defined for this work
function createToken(address _owner, address _BCA_SD) external returns (uint256)
function userTransfer(uint256 tokenId, address _BCA_user) external;
function completeTransfer(uint256 _tokenId) external;
function tokenFromBCA(address _BCA_SD) external view returns (uint256);
function ownerOfFromBCA(address _BCA_SD) external view returns (address);
function userOf(uint256 _tokenId) external view returns (address);
function userOfFromBCA(address _BCA_SD) external view returns (address);
function userBalanceOf(address _BCA_user) external view returns (uint256);
function userBalanceOfAnOwner(address _BCA_user, address _owner) external view returns

(uint256);

Table 3. Pseudo-code of the standard function “transferFrom”

Transfers a token from an owner to a new owner

Input: old_Owner, new_Owner, tokenId
Require (owner, operator, approved) =
msg.sender
Require owner of tokenId = old_Owner
Change owner of tokenId to new_Owner
Send event Transfer

The functions needed in our case are shown in the bottom of Table 2. Given
the BCA_SD, the functions “tokenFromBCA”, “ownerOfFromBCA” and “userOf-
FromBCA” return, respectively, the tokenId, the BCA_owner and the BCA_user.
Given the tokenId, the function “userOf” returns the BCA_user. The tokenIds of
any owner assigned to a user are returned by the function “userBalanceOf” and
the tokenIds of a particular owner assigned to a user are returned by the function
“userBalanceOfAnOwner”.

The pseudo-codes of the functions added to the proposed token are shown in Table 4.
A token is created by the manufacturer of the IoT device with the function “createTo-
ken”. It is assumed that the manufacturer creates the token when an “owner” buys the
IoT device. The owner of the token can assign a user to the token with the function
“userTransfer”. If the owner of the token assigns it to the address “0”, the token cannot
be used by anyone, since this address is reserved in Ethereum. This is the way how an
owner sets a device to a non-operative state.

30 J. Arcenegui et al.

Table 4. Pseudo-codes of the added functions

“createToken”: Creates a new token linking BCA_SD to a
tokenId

Input: _owner, _BCA_SD
Output: tokenId
Require (manufacturer) = msg.sender
Generate new tokenId
Set tokenId to token
Set owner of tokenId = _owner
Set BCA_SD of tokenId = _BCA_SD
Return tokenId

“userTransfer”: The owner assigns a user to the token

Input: tokenId, _BCA_user
Require (owner) of _tokenId = msg.sender
Set BCA_user from _tokenId = _ BCA_user
Send event UserTransfer

“completeTransfer”: Notifies that the token is already operative

Input: _tokenId
Require (user) of _tokenId = msg.sender
Send event TransferCompleted

3.2 Binding the IoT Device to Its Associated NFT

The manufacturer challenges the PUF inside the IoT device and receives from the IoT
device the public key generated and the BCA_SD associated, as well as the helper data
and masks that the device PUF needs to reconstruct its public key and BCA_SD. The
steps of this process are detailed in Fig. 1 for the case of SRAM PUFs that use Static
Random Access Memories (SRAMs). The manufacturer creates the token for the first
owner, and includes the tokenId, PUF challenge, masks and helper data in the firmware
associated to the device. Hence, only that device will be able to reconstruct its public key
from that firmware because only its PUF will be able to provide the adequate response
to the challenge received. Any other device will be unable to reconstruct BCA_SD from
that firmware.

Among the electronic circuits that can be employed as PUFs, in this work, we select
SRAM PUFs because most of IoT devices include SRAM in its hardware. SRAM PUFs
are based on the start-up values obtained by powering up the memory [9]. Each SRAM
bit cell is a bistable circuit whose logic memory functionality comes from two cross-
coupled inverters. A write operation forces the SRAM cell to transition towards one of
the two stable states (‘0’ or ‘1’). If the cell is powered-up and nowrite operation is carried
out, the positive feedback between the two inverters leads the cell to the start-up value
imposed by the inverter that begins to conduct. Ideally, the two inverters are identical,
but the random variations in the manufacturing process make them different so that one
of them is the first to conduct in each cell. Flipping bits can appear in the PUF response
since the inverters of some bit cells are so similar that their start-up values change due

Secure Management of IoT Devices Based on Blockchain Non-fungible Tokens 31

Fig. 1. The manufacturer binds the device to the NFT.

to noise. Particularly, those cells that change their value in half of the measurements,
named herein as RND cells, are not adequate to identify the SD but are good to generate
true random seeds. In the other side, the cells that provide generally the same start-up
value, named herein as ID cells, are good to generate the PUF response. The use of the
SRAM PUF inside the IoT device to generate the BCA_SD is illustrated in Fig. 2.

The first step of the token creation is to classify the SRAM cells addressed by the
PUF challenge into ID and RND cells. For that purpose, the simple cell classification
proposed in [22] is carried out. It consists in obtaining several measurements of start-up
values by powering up and down the SRAM several times. For each measurement, the
start-up values of all cells are compared. If the cell values do not change for all the
measurements, the cells are registered as ID cells by an ID mask. If the cells change
in half of the measurements, the cells are registered as RND cells in an RND mask.
The second step of the token creation is to generate a true random Secret Seed from
the start-up values of a set of RND cells selected by the RND mask. Since the Secret
Seed are quite sensitive data because they identify cryptographically the SD, and the
SRAM PUF response are also quite sensitive data because they identify physically the
SD, the third step of the token creation is to generate non-sensitive data, known as Helper
Data, from the Secret Seed and PUF response. The PUF response is obtained from the
start-up values of a set of ID cells selected by the ID mask. Then, the Code Offset-based
Helper Data algorithm described in [23] is used. It employs an Error Correcting Code
to cope with flipping bits in the PUF response. Since the PUF response will show small
bit flipping, a simple repetition Error Correcting Coder is employed. The steps of this
process are detailed in Fig. 2a. The Secret Seed is not stored anywhere but is recovered
from the response of the ID cells and the Helper Data, as illustrated in Fig. 2b. The
Private and Public Keys of the device are obtained from the Secret Seed. Finally, the
BCA_SD is computed from the Public Key. This is illustrated in Fig. 2c.

32 J. Arcenegui et al.

Fig. 2. Using the PUF inside the SD to generate and reconstruct the BCA_SD. (a) Generation of
Secret Seed, masks, and Helper Data. (b) Secret Seed reconstruction. (c) Generation of Private
Key, Public Key and BCA_SD from Secret Seed.

The manufacturer also programs in the device firmware that the device is sub-
scribed to events “Transfer” (see Table 3), “UserTransfer”, and “TransferCompleted”
(see Table 4). With the two first events, the IoT device changes its state to “blocked”
(non-operative) and can know its owner and user. This is important because the device
will verify the BCAs and signatures of owner and user through their public keys if they
request the device to update its firmware. The device does not need to store anything so
the content of their memories can be deleted and a trustworthy firmware can be updated
by its owner or user to ensure that the hardware and software of the device are trusted.
Besides, the device will verify also the BCAs and signatures of the owner and user
through their public keys when it is activated by them. The event TransferCompleted

Secure Management of IoT Devices Based on Blockchain Non-fungible Tokens 33

notifies that the user and device have authenticated each other successfully so that the
device becomes operative for the application. Although being “activated”, the IoT device
is not ready to work (“operative”) until this notification is received. Details of these steps
related to user and device are shown in Fig. 3.

Fig. 3. States of the IoT device depending on events and user messages.

4 Implementation of the Proof of Concept

In this work, we employ a Pycom Wipy 3.0 board composed of an Espressif ESP32
chipset as IoT Secure Device (SD). This is a tiny development platform that allows
ultra-low power usage and is very suitable to create IoT devices. The microcontroller
ESP-32, which is the hardware core of the SD, contains an internal SRAM of 520 MB.
This internal SRAM can be powered down and up without powering off the board
completely so that it can be used as SRAM PUF.

4.1 SRAM PUFs from the IoT Device for Secret Obfuscation

One of the contributions of this work is the use of PUFs to obfuscate secret seeds
employed to generate BCAs. In order to characterize the SRAMPUF, a specific firmware
was developed to carry out the measurements by powering down and up the internal
SRAM so as to extract automatically the start-up values. The internal SRAM is divided
into three memories. In this work, the first 29,665 bytes (237,320 bits) of the last 100 KB

34 J. Arcenegui et al.

of the second memory were evaluated since they are enough for a statistical character-
ization. These bytes were not written or employed by the compiler to store execution
variables. Three different boards and 120 measurements were considered. The ID and
RND masks for each board were created with the first 20 measurements. The resting
100 measurements were employed for evaluation.

Theminimum percentage of ID cells foundwas 84.07% (whichmeans aminimum of
199,514 ID cells for the cells evaluated in each SRAM). Usually, most of the SRAMcells
are ID cells. The PUF responses considered have a size of 2048 bits, so that 97 different
responses per each board (291 responses in total) were evaluated. The similarity between
PUF responses from the same cells is evaluated by the average intra fractional Hamming
distance. The distribution of fractional Hamming distances calculated for responses from
the same SRAM cells is known as intra fractional Hamming distance distribution in the
PUF literature. For the measurements performed, the average intra fractional Hamming
distance calculated was 0.25% (a value close to the ideal value of 0, which means that
the PUF responses are equal). The number of intra Hamming distances calculated was
1,440,450 (100‧99‧291/2).

The decoder of the Error Correcting Code should cope with the noise of PUF
responses to reconstruct, with no errors, the secret from the Helper Data. The bit flipping
of a start-up value can be modeled essentially as a Bernoulli trial, which takes value ‘1’
(if the bit changes) with probability p and a value of ‘0’ (if the bit does not change) with
probability 1− p. If the n bits obtained from the start-up values of n cells are assumed
to be independent, the probability of finding t flipping bits (or errors) in them is given
by a binomial distribution.

The binocdf(t, n, p)Matlab function was employed to compute the failure probabil-
ity in reconstructing a bit of the secret when using an Error Correcting Code with n-bit
codewords and capacity to correct up to t errors, with p estimated as the average intra
fractional Hamming distance. An 8-bit repetition Error Correcting Code (with n = 8
and t = 3) gives a probability of failure in reconstructing a bit of the secret of 2.71e-9
(according to the operation 1-binocdf(3, 8, 0.0025)). The 8-bit repetition Error Correct-
ing Code is selected since an error rate of 10−6 is considered by many authors as a
conservative value that fulfills the requirements of most of typical security applications
[23, 24]. The results shown herein have been obtained for nominal operation conditions
(that is, nominal power supply voltage and ambient temperature). Of course, repetition
Error Correction Codes with bigger words can be employed to ensure the adequate
reconstruction of the secrets in any operation condition.

4.2 Development of an NFT with an SRAM PUF-Based BCA

In this work, we used Kovan, which is an Ethereum public testnet, as Ethereum Virtual
Machine (EVM) network. Ethereum is one of the most extended public blockchain
and is part of the third generation of blockchains (which employs smart contracts). In
Ethereum, secure transactions are based on the Elliptic Curve Cryptography (ECC). The
Elliptic CurveDigital SignatureAlgorithm (ECDSA) represents a robust and lightweight
signature scheme for constrained devices (such as IoT devices).

Several environments were employed to create the NFT. In the one side, the ESP-IDF
(Espressif IoT Development Framework), which is the official development framework

Secure Management of IoT Devices Based on Blockchain Non-fungible Tokens 35

for ESP32 microcontrollers, was employed to use the PycomWipy as the core of an IoT
secure device based on SRAM PUFs. In the other side, the blockchain functionalities
were performed by using the Web3E-alphawallet library to create a BCA and carry out
transactions in PlatformIO; Remix to program in Solidity language and deploy smart
contracts; and Etherscan to check transactions. Figure 4(a) shows theWipy board which
is connected to a laptop. Figure 4(b) shows a screenshot of a transactionwhich is executed
and checked by using the development environments.

Fig. 4. (a) Real picture of the Wipy board. (b) Screenshot of a transaction performed through
PlatformIO and checked through Etherscan.

The BCA of the SD is generated from a 256-bit secret seed obfuscated by the SRAM
PUF response as explained above. Previously to the obfuscation, SRAM cells are clas-
sified to obtain the ID mask. Then, the seed obfuscation leads the ID mask application
to obtain 2048 ID cells. The start-values of these cells are XOR-ed with the encoded
Secret Seed (using the 8-bit repetition error correction encoder). The result is the 2048-
bit Helper Data. The secret seed reconstruction needs the ID mask application to obtain
the 2048 ID cells, the XOR operation with the Helper Data to obtain the 2048-bit coded
seed and the 8-bit repetition error correction decoding to obtain the 256-bit decoded
seed.

36 J. Arcenegui et al.

In order to create a BCA, private and public keys should be generated. A 256-bit
private key is generated by applying a hash operation to the seed. A 64-byte public key
results from applying the corresponding Elliptic Curve operation to the private key. In
this work, we employ the secp256k1 curve, which is the elliptic curve used in Ethereum.
The BCA is obtained by applying the Keccak256 operation to the public key and taking
the most significant 20 bytes.

The different functions considered are performed by using the libraries provided by
the development environments. The Keccak256 function is obtained by using the sha3.h
library from Trezor cryptographic library set within the Web3E-alphawallet library.
A SHA3 context should be initiated with the Keccak256 algorithm through the kec-
cak_256_Init function. Subsequently, the context is updated with the data to be hashed
and, finally, the results are obtained with the keccak_final function.

For the BCA creation, the secp256k1 curve is obtained by using contract.h library
from the Web3E-alphawallet library. The public key is obtained with the PrivateKey-
ToPublic function. The BCA is obtainedwith thePublicKeyToAddress function. ECDSA
is obtained by using ecdsa.h library within the Trezor cryptographic library.

The transactions are performed as JSON structures under the Web3E framework.
A contract context from the Web3E-alphawallet library is defined by indicating the
private key, a nonce with the SetPrivateKey function, and the gas price and limit by the
EthGetTransactionCount function. The transaction is launched by the SendTransaction
function. This operation generates the JSON structure associated, the transaction signed
by using ECDSA with the private key, and a transaction hash as output. The transaction
message is sent to the smart contract through a blockchain transaction. The realization of
a smart contract is a similar operation but employing the SetupContractData function.

The execution times of these operations are included in Table 5. The transaction
completion time is the total time to generate a transaction and its transfer to the blockchain
or smart contract. In our proposal, the transaction completion time is composed of the
seed reconstruction, BCA generation and blockchain transaction times. This value is
compared to the resulting transaction completion time obtained in [16] and [20]. The
solution proposed in [16] also employs Ethereum blockchain. However, IoT device
identifiers are based on certificates generated from a private key that is not obfuscated
by PUFs. [20] considers an IoT device that creates hashes of data together with a key
generated by a PUF for mining purposes. In contrast to our proposal, this solution does
not employ a public and standard blockchain.

Through the simulation of the smart contract functions “createToken”, “transfer-
From”, “userTransfer” and “completeTransfer”, the transaction gas consumption was
evaluated. Table 6 illustrates the results obtained and shows a comparisonwith other sim-
ilar functions proposed in [15] and [21]. The solution proposed in [15] does not employ
PUFs and the device identifier is stored in the device-manager smart contract. The man-
ager smart contracts verify information and decide whether a process can continue or
not. Tokens are not directly related to the devices but to the tasks. Tokenization (which is
not performed under the ERC-721 standard) is implemented by using a token-manager
smart contract which is included in the task-manager smart contract. The task-manager
smart contract provides a public register of available tasks related to the user, device,
and tokens. Instantiations of users and devices are performed through the corresponding

Secure Management of IoT Devices Based on Blockchain Non-fungible Tokens 37

Table 5. Execution times of the operations of a Secure Device based on PUFs

Operation Execution time (ms)

Seed Obfuscation SRAM cells classification 3.8‧ 105

ID mask application, repetition error
correction code and XOR operation

2.02

Seed Reconstruction ID mask application, XOR operation and
repetition error correction code

1.60

BCA Generation 256-bit private key generation (Keccak256
operation)

0.45

64-byte public key generation (secp256k1
operation)

21.15

20-byte BCA creation (Keccak256
operation)

0.45

Blockchain Transaction Message preparation (configuration,
ECDSA operation)

26.10

Transfer to blockchain or smart contract 2.90

Transaction Completion in our proposal 52.65

Transaction Completion in [16] 69.0

Transaction Completion in [20] 192.30

manager smart contracts. In this way,manager smart contracts are only instantiated once,
while the child (user and device smart contracts) are instantiated for each use. The gas
values associated to the smart contract instantiation are included in Table 6. The solu-
tion in [21] provides a method for device traceability by using device authentication and
ownership via blockchain smart contracts that do not employ NFTs explicitly. Device
authentication is performed by PUF identifiers. However, the device has not capability to
interact to the blockchain by a BCA associated to the PUF. The “createToken” function
of our proposal, which can be compared to the registerDevice function of [21], consumes
less gas. The standard “transferFrom” function of the ERC-721 NFT can be compared
to the transferOwnership function of [21].

5 Conclusions

A solution for the secure management of IoT devices has been proposed. IoT devices
are considered as Non Fungible Tokens (NFTs) based on the ERC-721 standard, which
additionally include the BCA of the device user (not only the BCA of the device owner or
manager) and the BCA of the IoT device. Device BCAs are generated from secret seeds
obfuscated by Physical Unclonable Functions (PUFs). Any participant in the blockchain
(including the IoT devices themselves because of their BCAs) can verify their manufac-
turers, owners, users, and the actions or data they are taking. Besides, the IoT devices,
owners, and users are subscribed to the events of their associated NFTs so that they
receive notifications about the situation of the NFT and behave accordingly.

38 J. Arcenegui et al.

Table 6. Gas consumption of smart contract functions

Proposal Function Gas
consumption

Our createToken 112,510

transferFrom 34,272

userTransfer 47,683

completeTransfer 23,770

[15] User 273,931

User manager 530,579

Device 446,652

Device manager 1,097,206

Token manager 413,560

Task 554,883

Task manager 3,052,709

[21] registerDevice 121,478

transferOwnership 30,365

The proposed device was implemented in a Pycom Wipy 3.0 board, proved with
Kovan Ethereum testnet interacting with a smart contract programmed in Solidity, and
verified with Remix. The SRAM PUF response employed has a size of 2048 bits to
reconstruct secret seeds of 256 bits. The operations carried out by the Wipy board to
generate the IoT device BCA and its employment in a transaction are carried out in
a few tens of milliseconds. Smart contract functions are very simple. In fact, the gas
consumption of the functions employed is low. A comparison is performed to other
proposals in the literature in terms of execution times and gas consumption.

As future work, we plan to extend the proposal to provide security to the data gener-
ated by the IoT device, in terms of integrity, confidentiality, privacy, authentication, and
provenance. In this way, not only the management of the IoT devices will be secure but
also the storage and transmission of the data generated by these devices.

Acknowledgements. This work was supported in part by the Spanish Agencia Estatal de Inves-
tigación and Fondo Europeo de Desarrollo Regional (FEDER) under Projects TEC2017-83557-R
and RTC-2017-6595-7, and Consejería de Economía, Conocimiento, Empresas y Universidad de
la Junta de Andalucía under Projects AT17_5926_USE and US-1265146. The work of Rosario
Arjonawas supported by a Post-Doc Fellowship from the SpanishNational Cybersecurity Institute
(INCIBE).

References

1. Khan, M.A., Salah, K.: IoT security: review, blockchain solutions, and open issues. Future
Gener. Comput. Syst. 82, 395–411 (2018)

Secure Management of IoT Devices Based on Blockchain Non-fungible Tokens 39

2. Stoyanova, M., Nikoloudakis, Y., Panagiotakis, S., Pallis, E., Markakis, K.: A survey on the
Internet of Things (IoT) forensics: challenges, approaches, and open issues. IEEE Commun.
Surv. Tutor. 22, 1191–1221 (2020)

3. Buterin, V.: Ethereumwhitepaper (2013). https://ethereum.org/whitepaper/. Accessed 19Aug
2020

4. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the Internet of Things.
IEEE Access 4, 2292–2303 (2016)

5. Popov, S.: IOTA: feeless and free. IEEE Blockchain Technical Briefs (2019)
6. Prada-Delgado, M.A., Baturone, I., Dittmann, G., Jelitto, J., Kind, A.: PUF-derived IoT

identities in a zero-knowledge protocol for blockchain. Internet Things 9 (2020)
7. Raiden Network. https://raiden.network/. Accessed 19 Aug 2020
8. ERC-721. http://www.erc721.org. Accessed 19 Aug 2020
9. Maes, R.: PUF-based entity identification and authentication. In: Maes, R. (ed.) Physically

Unclonable Functions, pp. 117–141. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-41395-7_5

10. Remix. https://remix.ethereum.org. Accessed 19 Aug 2020
11. Westerkamp, M., Victor, F., Küpper, A.: Tracing manufacturing processes using blockchain-

based token compositions. Digit. Commun. Netw. 6, 167–176 (2020)
12. Hasan, M., Binil, S.: Decentralized cloud manufacturing-as-a-service (CMaaS) platform

architecture with configurable digital assets. J. Manuf. Syst. 56, 157–174 (2020)
13. Valaštín, V., et al.: Blockchain based car-sharing platform. In: IEEE International Symposium

ELMAR (2019)
14. Le, T., Yoohwan, K., Ju-Yeon, J.: Implementation of a blockchain-based event reselling

system. In: 6th IEEE International Conference on Computational Science/Intelligence and
Applied Informatics (CSII) (2019)

15. Wickström, J.,Magnus,W.,Göran, P.:Rethinking IoT security: a protocol based onblockchain
smart contracts for secure and automated IoT deployments. arXiv preprint arXiv:2007.02652
(2020)

16. Khalid, U., Asim, M., Baker, T., Hung, P.C.K., Tariq, M.A., Rafferty, L.: A decentralized
lightweight blockchain-based authentication mechanism for IoT systems. Cluster Comput.
23, 2067–2087 (2020). https://doi.org/10.1007/s10586-020-03058-6

17. Sghaier Omar, A., Basir, O.: Capability-based non-fungible tokens approach for a decen-
tralized AAA framework in IoT. In: Choo, K.-K.R., Dehghantanha, A., Parizi, R.M. (eds.)
Blockchain Cybersecurity, Trust and Privacy. AIS, vol. 79, pp. 7–31. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-38181-3_2

18. Cui, P., Dixon, J., Guin, U., Dimase, D.: A blockchain-based framework for supply chain
provenance. IEEE Access 7, 157113–157125 (2019)

19. Xu, X., Rahman, F., Shakya, B., Vassilev, A., Forte, D., Tehranipoor, M.: Electronics supply
chain integrity enabled by blockchain. ACM Trans. Des. Autom. Electron. Syst. 24, 1–25
(2019). Article 31

20. Mohanty, S.P., Yanambaka, V.P., Kougianos, E., Puthal, D.: PUFchain: A hardware-assisted
blockchain for sustainable simultaneous device and data security in the Internet of Everything
(IoE). IEEE Consum. Electron. Mag. 9, 8–16 (2020)

21. Islam, M.N., Kundu, S.: Enabling IC traceability via blockchain pegged to embedded PUF.
ACM Trans. Des. Autom. Electron. Syst. 24, 1–23 (2019). Article 36

22. Baturone, I., Prada-Delgado, M.A., Eiroa, S.: Improved generation of identifiers, secret keys,
and random numbers From SRAMs. IEEE Trans. Inf. Forensics Secur. 10, 2653–2668 (2015)

23. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and their use for IP
protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_5

https://ethereum.org/whitepaper/
https://raiden.network/
http://www.erc721.org
https://doi.org/10.1007/978-3-642-41395-7_5
https://remix.ethereum.org
http://arxiv.org/abs/2007.02652
https://doi.org/10.1007/s10586-020-03058-6
https://doi.org/10.1007/978-3-030-38181-3_2
https://doi.org/10.1007/978-3-540-74735-2_5

40 J. Arcenegui et al.

24. Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient helper data key
extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 181–
197. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_12

https://doi.org/10.1007/978-3-540-85053-3_12

Bitcoin Blockchain Steganographic
Analysis

Alexandre Augusto Giron1,2(B), Jean Everson Martina1,
and Ricardo Custódio1

1 Programa de Pós-Graduação em Ciência da Computação, Departamento de
Informática e Estat́ıstica, Universidade Federal de Santa Catarina, Florianópolis,

Santa Catarina, Brazil
alexandre.giron@posgrad.ufsc.br, {jean.martina,ricardo.custodio}@ufsc.br

2 Universidade Tecnológica Federal do Paraná, Toledo, Paraná, Brazil

Abstract. Steganography has been used as a way to hide data in files
or in messages traveling on communication channels. Its use can be
worrisome when it is used without proper authorization. Recently, it
has been detected that there are arbitrary files included in the public
blockchain of the Bitcoin cryptocurrency. The main concern arises when
such data inserted contains objectionable content, thus compromising
blockchain platforms. In this context, this paper presents an analysis of
the Blockchain of Bitcoin, based on some proposals for the use of ste-
ganography in blockchains and on detection methods of steganographic
data. Additionally, it is shown that we found no evidence of steganogra-
phy data in Bitcoin using these techniques. We conclude by showing that
there is no specific approach, so far, for steganalysis in blockchains.

Keywords: Blockchain · Steganography · Hash channels · Nonces

1 Introduction

Not only financial services but, currently, almost all electronic services are begin-
ning to explore the benefits of using blockchains in their infrastructure. New pro-
tocols, new applications, and solutions are announced every day with the incor-
poration of blockchain. Applications such as smart contracts, supply chains,
proof of existing services, and, recently, for secret communication are exam-
ples [3,12,14,26,28,29,32,38]. It is argued that blockchains make it possible for
applications to be more secure and less dependent on third parties.

The term blockchain can be defined as a decentralized digital registry cryp-
tographically protected from tampering [17]. The use of blockchain in infor-
mation systems became famous in 2008 when the cryptocurrency Bitcoin was
proposed [24]. Two of the main benefits of incorporating a blockchain in appli-
cations are the guarantee that data cannot be changed once registered and the
need not rely on a third party for this purpose.

c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 41–57, 2020.
https://doi.org/10.1007/978-3-030-61638-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_3

42 A. A. Giron et al.

However, blockchains are subject to entering questionable data. The work
of Matzutt et al. [21] showed that at least 1600 arbitrary files were inserted,
exploring different “spaces” inside of the Bitcoin blockchain. The authors argued
that some of these files contain links to objectionable content [21]. This fact
becomes particularly worrying since, on the blockchain, all data is made available
to network participants, and that data cannot be deleted. This threat can, for
instance, compromise the use of public blockchains. Countermeasures for this
threat include content filters, editable blockchains, and increased transaction
rates [1].

Although the insertion of inappropriate data into the blockchain may itself be
a potential problem, an additional difficulty occurs when that data is somehow
hidden in the blockchain, without being able to detect it a priori. Unfortunately,
this inclusion can be done, for example, through a technique known as stegano-
graphy. Steganography is a technique that can be used to camouflage data so
that it is difficult to observe in files or communication channels [11]. In 2002,
Hopper et al. formalized provably safe steganography [18]. Using Hopper termi-
nology, it appears that Partala was the first to link steganography to blockchain,
in 2018 [26]. Going back to the example of Matzutt et al. [21], they haven’t ana-
lyzed the blockchain in the context of the well-known steganography techniques.
Even though the data insertion methods in the blockchain can be a potential
problem, hiding data steganographically can be also a potential problem, espe-
cially in public blockchains, accessible by any participant in the network.

Historically, there are reports of the use of steganography by the military and
secret service agencies. In addition to the transport of confidential messages, it
has also been used to track the spread of images or to guarantee the rights to use
such images, through watermark schemes [16]. Another use would be the possi-
bility to send and receive messages in situations where there are restrictions that
prevent people from communicating, as in a dictatorial regime where censorship
prevails [9].

On the other hand, Raggo and Hosmer show the use of steganography by ter-
rorists with the seizure of a memory card by the German police in 2011 [30]. It
contained terrorist training manuals and plans to attack Europe, steganograph-
ically hidden in a video. Another misuse of steganography techniques, which is
common in practice, is by malware trying to exfiltrate data over the network [7]
or to hide its presence in a system [4]. Besides, when Edward Snowden publi-
cized NSA documents in 2013, it brought several concerns to the public about
their privacy. Those documents leaked the NSA research about an attack on
encryption algorithms in a way that the output also has covert information. For
example, the NSA would use this information to reconstruct the encryption key
of the user. This type of attack is called Algorithm Substitution Attack (ASA)
[9], or Kleptography attack [1].

In this context, the detection of the presence of steganography in a communi-
cation channel (called steganalysis) is important to avoid some of those threats
or to trigger countermeasures against it. Using blockchains as a steganographic

Bitcoin Blockchain Steganographic Analysis 43

channel have some “attracting” advantages compared to other cover mediums
[26]:

– It has free access with a degree of anonymity;
– There is no central authority controlling the blocks stored on the blockchain;

and
– Once the block is published, the data cannot be deleted, which means that it

is not susceptible to censorship (i. e. an authoritarian regime).

Therefore, this paper aims to evaluate how steganography can be detected,
if possible, in the blockchain. As a secondary goal, the Bitcoin blockchain will
be analyzed in order to find if there is evidence of steganographic messages
in it. Most of the related works evaluate its proposals using synthetic data or
fictitious steganographic messages. In this paper, the focus is to find evidence of
steganography use (if there is any) considering the Bitcoin’s blockchain as a real
case scenario. Bitcoin was chosen due to its high popularity and market share
by the time of writing of this paper. The main contributions are summarized
below:

– An overview of the available techniques for data insertion and hiding in the
Bitcoin’s blockchain;

– A search for steganographic evidence in Bitcoin, considering the first 253.38
GiB of blocks of the blockchain; and

– A discussion about the difficulty of this problem and the absence of positive
findings (i.e. steganographic evidences) by our experiments, derived mostly
from the lack of an specific steganalysis approach for the blockchain.

This paper is structured as follows. Section 2 presents the Related Work.
Section 3 brings the necessary background on data hiding in blockchain and ste-
ganography. In Sect. 4 it is presented the methodology of the analysis performed
in this work. Section 5 discuss the results of the experiments. Section 6 presents
the conclusions and further research directions.

2 Related Work

Juha Partala [26] proposed a method of embedding and extracting covert
information on the blockchain, called BLOCCE (Blockchain Covert Channel).
Although not implemented in practice, the author performed a security analysis
of BLOCCE in the context of provably secure stegosystems. In summary, the
method defines the embedding of a ciphered message m by choosing the payment
addresses such that the Least Significant Bits (LSBs) form m. To extract it, the
method defines a start indicator of the encrypted message.

Alsalami and Zhang [1,2] further advance in this line of research by pre-
senting steganography attacks against blockchain platforms. They explored the
uncontrolled randomness in blockchains and showed how this could be manipu-
lated to enable covert communication and hidden persistent storage. They imple-
mented their approach in Bytecoin and Monero cryptocurrencies. In addition,

44 A. A. Giron et al.

they examined the existing countermeasures to thwart this threat in the context
of blockchains. However, there is no comment on the detection methods from a
steganalysis point of view.

Fionov [15] also discuss covert channels for blockchains. He proposes seven
channels in blockchains: two of them use uncontrolled randomness to hide data
(similarly to Alsalami and Zhang); four channels are based on permutations of
transactions (inputs and outputs); and the last channel is based on distribution of
payments in a transaction. In his work, the channels are analyzed theoretically, in
terms of capacity and detectability, but no practical experiment was conducted.

There are works in the same line of Matzutt et al. [21] about searching for
arbitrary content inserted in blockchains and how to prevent such content of
being inserted [6,20]. However, these works do not discuss it in a steganographic
point of view. On the other hand, understanding how data can be inserted in
the blockchain is the first step to use blockchain as a channel for steganography.
Data insertion methods are covered in the next section.

It is important to note that these works we just presented do not focus
on the steganalysis of a real blockchain. More than that, they focus on hiding
information and not how to find out what may have actually been hidden. Our
work, on the other hand, knowing these techniques, focuses on applying best-of-
knowledge steganography detection techniques in order to try to identify if there
is hidden content in the Bitcoin Blockchain.

3 Data Insertion and Hiding

To be able to adequately discuss later the techniques we applied to the Bit-
coin Blockchain, it is essential to revise some of the known data insertion tech-
niques for this blockchain, as well as revise some well-known steganography
techniques for general data hiding. In this section, the data insertion methods
for the Bitcoin’s blockchain are introduced first (Sect. 3.1), followed by stega-
nography concepts and the state-of-the-art proposals for covert communication
using blockchain (Sect. 3.2).

3.1 Data Insertion in Bitcoin’s Blockchain

We start with the work by Matzutt et al. which describes the methods for data
insertion in the blockchain of Bitcoin, classified as follows [21]:

– In Coinbase: coinbase is the name of the first transaction input of each
block in Bitcoin, used by the miners to collect rewards and additional fees.
The transaction allows near to 100 bytes of arbitrary data in ScriptSig field.
The typical example is the message in the coinbase transaction of the Bitcoin
genesis block: “The Times 03/Jan/2009 Chancellor on the brink of second
bailout for banks”.

– Using OP RETURN: since 2014, this is the Bitcoin standard way of adding
extra data (limited to 83 bytes) to transactions. This opcode in a single output
marks the transaction as invalid, and the outputs are unspendable.

Bitcoin Blockchain Steganographic Analysis 45

– In Standard transactions: these transactions can be misused to insert data
in output scripts. Two standard transaction types are Pay-to-PubkeyHash
(P2PKH) and Pay-to-Script-Hash (P2SH). There is the obsolete Pay-to-
Pubkey (P2PK) transaction, commonly found in coinbase transactions from
the earlier blocks of the blockchain. Regarding P2PKH and P2SH, the respec-
tive public keys or script hash values can embed arbitrary data as miners do
not verify it. The main problem is that the user must “burn coins” due to the
receiver address be replaced by the data inserted. The amount of data that
can be inserted varies from 57.34 KiB to 96.7 KiB.

– In Non-standard transactions: in this case, there is an additional difficulty
because miners often ignore them, and therefore the data will not be inserted
on the blockchain. The amount of data that can be inserted reaches near to
100 KiB.

3.2 Data Hiding in Blockchains

Before presenting the state-of-the-art approaches for data hiding using blockcha-
in, some concepts will be defined below. We will start with some basic Stega-
nography concepts in order to allow the reader to understand the following
state-of-the-art approaches we present later.

Steganography is part of the information hiding methods used to make data
harder to notice [22]. Typically, it is used to hide the fact that a (secret) commu-
nication is taking place. The following components are present in a stegosystem:
the important message (the hidden text) m; the unsuspicious document d, which
is called covertext if it contains m embedded into; and the history h, composed
by the already transmitted documents in a communication channel C.

The main difference between the security notion of a cryptosystem and a
stegosystem is the presence of the communication channel. The channel
C is formalized as a probability distribution, and the communication can be
viewed as a sampling from this distribution. In this sense, the security of a
stegosystem relies in the fact that an observer is not able to distinguish the
stegotext from objects randomly picked from the channel distribution [9].

Formally, Berndt [9] defines a secret-key stegosystem in a triple StS = (StS.
Gen, StS.Enc, StS.Dec). The stegoencoder StS.Enc takes as input the hidden
text m, the key k, generated by StS.Gen(1k), and the history h ∈ (

∑dl(k))∗.
StS.Enc outputs a single document (the stegotext) d. On the other hand, the
stegodecoder StS.Dec requires k and a sequence of documents to return the
original message m. Modern steganography security principles are then similar
to Kerckhoffs’ principle in cryptography, i. e. the security should rely only on
the secret information: the key(s) [27].

In the design of secure stegosystems, a common technique is called Rejection
Sampling [10]. This technique is based on taking samples d from the channel:
if d already encodes the hidden text (i.e., by chance), then output d; other-
wise, discard d and continue the sampling step. Depending on the channel, if
the sampling of bits from the channel is close to the standard uniform distribu-
tion, it may be easier to find d that already encodes m, especially when m is an

46 A. A. Giron et al.

encrypted message. Another common technique (not necessarily in the security
notion described) is by embedding in the Least Significant Bit (LSB). This tech-
nique takes advantage of (pseudo) random noise present in the acquired media
data, such as images, video, and audio [11]. In addition, both techniques can be
combined (rejection sampling plus LSB embedding).

We can now move to State-of-the-art approaches that redirected to blockchain
data hiding, and we will cover here any approach for data hiding, which considers
the specific characteristics of the channel, in this case, the blockchain. By the
time of writing this paper, there are three specific approaches for hiding data in
the blockchain.

The approach of Partala [26] (BLOCCE) follows the terminology of provably
secure steganography (by Hopper et al. [18]). The technique is based on the LSB
of the payment addresses. First, the message m is encrypted with a pseudoran-
dom ciphertext function. Then, the addresses are ordered in a way that the LSBs
form m. The extraction is based on a secret start indicator of m in the cover-
text. The formal specification given by Partala allows embedding of one bit per
block of the blockchain. If a pre-computed list of L addresses are significantly
greater than N (the size of the m), than it is easier to sample these addresses in
order to match the LSB with the bits of m. In practice, Partala’s approach
hides information in hashes (or public keys), which represent addresses in a
blockchain.

The approach of Alsalami and Zhang [1] exploits subliminal channels in cryp-
tographic primitives. Their approach embeds information using the random num-
bers (cj , rj) of the ring signatures of the CryptoNote protocol. This protocol uses
ED25519 Edwards-curve with group order of prime p equals to 253 bits. The app-
roach uses the least significant 252 bits of cj , rj , presented in Fig. 1. There is a
128-bit IV where 64-bit are random bits and the rest are zero to indicate the
presence of a message. The remaining 376 bits (or 47 bytes) are used to embed
an encrypted m with a secret key k and the IV. In summary, their approach
hides information in a digital signature, by using the random numbers of
the signature generation process.

Fig. 1. Steganographic approach proposed by Alsalami and Zhang [1].

The combinatorial channels proposed by Fionov [15] have some conditions
to hide data. His work treats input or output addresses as numbers. Then, a

Bitcoin Blockchain Steganographic Analysis 47

permutation of the addresses is selected in a way that it matches the data to be
hidden (represented also as a number), similarly to a rejection sampling process.
However, not enough details are provided on the security and on how to extract
the hidden data from these channels.

The main drawback of BLOCCE is the low throughput. The approach can
be viewed as a theoretical construction; it was not implemented in practice.
In addition, no steganalysis technique was proposed to detect the hidden text
in BLOCCE. Considering the approach of Alsalami and Zhang, a premise of an
Initialization Vector as a cryptographic primitive is to be random [35]. Since their
approach needs 64 bit zeros for the message indicator in the IV, the drawback
is that it could low down the security factor of the original digital signature
scheme.

Another important way of hiding information could be the use of Covert
Communication in Hash Channels. The term “Hash Channels” was coined by
Wu [39] in 2005. Similarly to Alsalami and Zhang, Wu shows that the digi-
tal signature protocols that use hashes allow covert communication due to the
randomness (or pseudorandomness) observed in hashes. As hashes represent
addresses in blockchain transactions, they can be used for covert communica-
tion in blockchains. In Wu’s work, no detection techniques neither a steganalysis
approach was proposed.

It seems that there are only few detection methods for covert communica-
tion in hash channels proposed so far. In the work of Kucner [19], followed by
Teşeleanu [36], a side-channel attack is proposed to detect a hidden message, but
in the context of kleptography. Their detection is based on the execution time to
distinguish between “honest devices” (the ones that do not embed information)
and “backdoored devices” (the ones that do). Since the information of the execu-
tion time is not available in the blocks already published in the blockchain, this
method cannot be applied to detect hidden information in this case. So far, the
steganalysis in hash channels seems to be an open problem. Other approaches
exist, like the controlled randomness [1], but they are countermeasures to prevent
covert communication, not to detect its presence.

4 Methodology

Knowing the data insertion points for the Bitcoin Blockchain, and also having
revised classical steganography techniques and blockchain applied ones, we set
to answer the following research question:

– Are there hidden messages in the Bitcoin Blockchain that use classical stenog-
raphy techniques, and that could be detected with standard steganalysis?

The methodology followed in this paper is based on steganalysis experi-
ments on the Bitcoin’s blockchain, which can be obtained at https://bitcoin.
org/en/download. The experiments aim to find evidence of the presence (or
not) of steganographic messages in the blockchain. In addition, the blockchain

https://bitcoin.org/en/download
https://bitcoin.org/en/download

48 A. A. Giron et al.

Table 1. Description of the Dataset of the Bitcoin’s blockchain analyzed in this work.

Chunk number Dataset (timestamp of

the last block)

Approx. size

(MiB)

Block count interval

1 2009-01-03 16:15:00 to

2009-07-02 23:42:50

3,95 Block #0 to #18607

2 2010-01-02 23:53:05 3,12 Block #18608 to #32747

3 2010-07-02 23:48:12 10,19 Block #32748 to #63939

4 2011-01-02 23:58:10 40,50 Block #63940 to #100765

5 2011-07-02 23:58:47 267,32 Block #100766 to #134463

6 2012-01-02 23:49:53 502,15 Block #134464 to #160340

7 2012-07-02 23:56:08 1085,34 Block #160341 to #187257

8 2013-01-02 23:52:07 2560,40 Block #187258 to #214877

9 2013-07-02 23:44:23 4339,41 Block #214878 to #244469

10 2014-01-02 23:59:25 4628,57 Block #244470 to #278334

11 2014-07-02 23:48:30 6217,90 Block #278335 to #308941

12 2015-01-02 23:57:48 7653,73 Block #308942 to #337190

13 2015-07-02 23:54:00 10028,16 Block #337191 to #363551

14 2016-01-02 23:56:10 14877,21 Block #363552 to #391461

15 2016-07-02 23:54:19 19492,93 Block #391461 to #419026

16 2017-01-02 23:55:50 21218,05 Block #419027 to #446347

17 2017-07-02 23:49:46 24858,20 Block #446348 to #473944

18 2018-01-02 23:50:33 25693,64 Block #473945 to #502287

19 2018-07-02 23:31:50 22848,60 Block #502288 to #530254

20 2019-01-02 23:53:08 22844,33 Block #530255 to #556758

21 2019-07-02 23:57:49 28409,40 Block #556759 to #583537

22 2020-01-02 23:41:39 26933,42 Block #583538 to #611005

23 2020-04-14 11:54:21 14951,96 Block #611006 to #625941

parser (available at: https://github.com/alecalve/python-bitcoin-blockchain-
parser) was used to retrieve information of the blocks, such as addresses.

The first 253.38 GiB of blocks (synchronized until 14/04/2020) were con-
sidered in this work, analyzed in data chunks. Its description is presented in
Table 1. The chunks were created by using the timestamp information in the
block headers. Each chunk of data is divided by semesters (using the timestamp
information in each block). This division by time (instead of fixed size) would
help to relate the findings with real-world events.

We executed two experiments: Checking LSB of addresses (Sect. 4.1) and
Checking the Nonces (Sect. 4.2). The tools developed for each experiment are
available at https://github.com/AAGiron/steganalysis-tool-blockchain.

4.1 Checking the LSB of Addresses

The work of Partala [26] inspires this experiment. It consists of uncompress-
ing addresses of transactions in the blockchain and then extracts the LSB for
analysis. In practice, since an address in Bitcoin can be viewed as an encoded

https://github.com/alecalve/python-bitcoin-blockchain-parser
https://github.com/alecalve/python-bitcoin-blockchain-parser
https://github.com/AAGiron/steganalysis-tool-blockchain

Bitcoin Blockchain Steganographic Analysis 49

hash, the problem of this analysis is how to detect covert information in Hash
Channels.

A Bitcoin address is a Base-58 encoded version of a RIPEMD-160 hash. In
summary, to generate an address, first, the ECDSA public key pk of a wallet is
hashed through SHA256, producing the hash of the public key h1. Then, h1 is
hashed again with RIPEMD-160 hash algorithm [13], producing a second hash
h2. The version byte (i.e., 0x00 for the main Bitcoin network) is added in front
of h2. In addition, four bytes from a double SHA-256 hash of h2 are appended
in the end of h2. The last step is the encoding of h2 using Base-58 encoding.

In a practical scenario, it would be easier to hide a message in the LSB
of h1 through rejection sampling, unless the user had a pre-computed list of
final addresses. Therefore, in this experiment, the LSB of each of the addresses
analyzed is the one from hash h1.

The metrics for the evaluation are derived from statistical analysis. Shan-
non’s entropy [33] is used as a measure of unpredictability of the values. The
distribution of the Arithmetic Mean (AM) is used to analyze if the samples are
close to a normal distribution. In addition, if the AM of all samples is close to
127.5, it is a possible indicator that the bytes were generated randomly. Lastly,
the Monobit test compares if the number of 0 s and 1 s in a set is approximately
the same.

The objective is to detect if the LSB of addresses in the transactions is
generated by SHA256. The result statistics are expected to match a synthetic
set of LSB hashes, with high entropy, close to a normal distribution, and with a
low percentage of monobit failures. If the result statistics are not compatible with
the expected result, it could be an indicator that the LSB has been manipulated
to hide a message. In this cases, the extracted LSB data will be searched to find
the presence of hidden data (file documents, images, and other types of data).

However, these metrics will probably fail to detect the presence of hidden-
texts if the hidden-texts are encrypted before being hidden. In this case, this
detection will be effective only if a “fingerprint” was left, like a message start
indicator; or, if a known protocol was used, for example, the fingerprint string
“Salted” in OpenSSL [25].

In order to compare the distribution of the LSB of the addresses extracted
from the blockchain, a synthetic set of 1 Gigabit of SHA256 LSB data was
generated. The synthetic data was produced using the SHA256 implementation
of OpenSSL, with seeds provided by the /dev/urandom generator of Linux kernel
4.15.0-20-generic.

It is worthy to state that there is a chronological gap between the blocks
in the chunks 1–18 (until 2017) and the BLOCCE publication (2018), which
inspired this experiment. This chronological gap could low down the expecta-
tion of finding evidence in those chunks. Still, the experiment is required to
corroborate this statement.

50 A. A. Giron et al.

4.2 Checking the Nonces

The second experiment is realized by analyzing the Nonces of a block. The
idea came from the website bitslog.com1 which detected patterns on the mining
process and also in the LSByte (Least Significant Byte) values of the nonces.
One hypothesis raised on the website was that the nonces could contain a hidden
message.

The 32-bit nonce in the block header is the value adjusted by miners for
the Proof-of-Work consensus algorithm. The nonce is incremented in order to
make the hash of the block header less or equal to an expected target [24].
Although miners control the nonce, it is unpredictable which nonce will produce
the desired hash. Therefore, this experiment aims at first to verify the results
from the website bitslog.com. If confirmed, the second step is to analyze the
extracted data (e.g. LSBytes) of the nonces. The same metrics of the previous
experiment (Sect. 4.1) will be used.

In addition, since the blockchain can be used for arbitrary data, it could
store an image with a hidden message in it, for example. The work of Matzutt
et al. [21] has found 144 images inserted via known services (Apertus for images,
Satoshi Uploader for files) and 2 images without it. The steganalysis, in this
case, would be done using traditional steganalysis techniques for images (i.e.,
analysis of the histogram of the image), which was out of the scope of this work.

5 Results and Discussion

5.1 Checking LSB of Addresses

The results of the experiment of Sect. 4.1 for the first chunk of data are sum-
marized in Table 2. The addresses of transactions are grouped by transaction
type: coinbase, pubkey, Pay-to-Public-key-Hash (P2PKH) and Pay-to-Script-
Hash (P2SH). The coinbase here is the address (or addresses) in the output
of first transaction of each block. The LSB of the extracted addresses are com-
pared to the LSB of the synthetic dataset of 1 Gbit of SHA256 hashes.

The statistical metrics presented in Table 2 are: the Entropy (bits-per-byte),
the AM of the data bytes, both calculated with ENT software [37]; and the
percentage of failures regarding the Monobit test [8]. In the Monobit test used
in this paper, each set of bits has 20000 bits, and the percentage of failures is
defined by the number of sets that fails over the total number of sets.

The comparison in Table 2 shows that there is a difference of the LSBs in
the addresses when compared to the expected output (the first line in Table 3).
The results for P2PKH are not compatible with the synthetic data set, but the
dataset was too small to compare. The monobit test was not computed for the
datasets that have size smaller than 20000 bits.

The extracted LSB were appended together in four files (for each transaction
type), and then the files were checked with Scalpel [31], a file carving tool.

1 https://bitslog.com/2013/09/03/new-mystery-about-satoshi/.

https://bitslog.com/2013/09/03/new-mystery-about-satoshi/

Bitcoin Blockchain Steganographic Analysis 51

Table 2. Results of the statistical analysis of the LSB of the first chunk of blocks.

Transaction type Dataset Entropy Arithmetic mean (AM) Monobit failures

SHA256 LSB 1 Gbit 7.999998 127.5034 ∼0.012%

coinbase LSB 2.3 KiB 7.908350 126.5942 –

pubkey LSB 2.3 KiB 7.923754 124.8914 –

P2PKH LSB 9 bytes 2.641604 179.6667 –

P2SH LSB – – – –

However, no meaningful data representation (ASCII, images or documents) were
found. A RPM file (fingerprint “0xEDAB EEDB”) was found by scalpel, but
later it turned out to be a false positive.

The results of the analysis of chunk 9 of the blockchain are presented in
Table 3. Possibly, the presence of repeated addresses in the transactions was
the cause of the high rate of failures in the Monobit test, low AM and low
byte entropy. It was found that the data extracted from pubkey transactions
is composed mostly of zeros, which explains the low entropy and low AM. For
completeness, scalpel was executed to check the extracted data for each trans-
action type and no meaningful message was found. In the LSBs of the pubkey
transaction, scalpel did not find any files. In the P2PKH transaction, scalpel
found 290 files, composed by PGP (i.e. fingerprint “0xA600”) and RPM files,
all of them false positives.

Table 3. Results of the statistical analysis of the chunk number 9.

Transaction type Dataset Entropy Arithmetic mean (AM) Monobit failures

coinbase LSB 16.4 KiB 7.973333 133.7690 ∼66.67%

pubkey LSB 18.7 KiB 0.761906 3.4775 100%

P2PKH LSB 3.0 MiB 7.921173 118.9001 86.51%

P2SH LSB 1.8 KiB 7.876623 130.4107 –

Regarding the last chunk of data (number 23), the results are presented in
Table 4. Similar behavior was found considering the pubkey transaction type
but in this case the data was composed mostly by ones. Scalpel returned 356
files (all false positives) considering P2PKH extracted data and 281 files (also
false positives) considering P2SH data, composed mostly of PGP and RPM
fingerprints, but also MPG, WPC and one OST fingerprint.

All of the statistical results can be found in the Github repository previously
mentioned. Scalpel was also executed for all chunks of data and no meaning-
ful message was found. This indicates that there are no hidden steganographic
messages or, if they exist, they could not be detected with this experiment.

52 A. A. Giron et al.

Table 4. Results of the statistical analysis for the last chunk of blocks.

Transaction type Dataset Entropy Arithmetic mean (AM) Monobit failures

coinbase LSB 1.7 KiB 7.481999 162.3399 –

pubkey LSB 26.4 KiB 1.915187 142.0985 90%

P2PKH LSB 4.1 MiB 7.965501 124.4108 40.85%

P2SH LSB 3.8 KiB 7.992155 128.2559 6.94%

5.2 Checking the Nonces

From the experiment described in Sect. 4.2, firstly, the nonces were veri-
fied in terms of the AM frequencies. Figure 2 shows the distribution of the
first chunk blocks, which is not very close to a normal distribution. The
tables for the computed metrics and histograms computed for the AM of all
of the chunks are available at https://github.com/AAGiron/steganalysis-tool-
blockchain/tree/master/results. The AM histograms have similar shape as in
Fig. 2.

Fig. 2. Distribution of the AM of the Nonces in the First chunk of blocks.

However, there are differences perceived when comparing the values of the
Most-Significant-Byte (MSByte) with the LSByte values of Nonces. Figure 3b
shows MSByte values biased towards zero, probably due to the incremental
nature of the nonces. On the other hand, in Fig. 3a the gap observed on the
value interval 10 to 19, for example, regarding the LSByte values is intriguing.
This result corroborates with the results pointed out by bitslog.com.

Similar behavior was perceived in the chunks 2,3 for LSBytes presented
in Fig. 3a, which has gradually changed until chunk 11 (Fig. 3c). Regarding

https://github.com/AAGiron/steganalysis-tool-blockchain/tree/master/results
https://github.com/AAGiron/steganalysis-tool-blockchain/tree/master/results

Bitcoin Blockchain Steganographic Analysis 53

MSBytes, the bias towards zero stop to occur in chunk 5 and kept this behavior
until chunk 14, which can be observed in Fig. 3d. But in the remaining chunks,
starting in the year 2016, the MSBytes had another pattern, presented in Fig. 3f.
Interestingly, both LSBytes and MSBytes have changed their behavior among
the years and there are different patterns that can be observed.

Fig. 3. Comparison of the LSBytes and MSBytes of the Nonces from the chunks 1,12
and 21.

The evaluation metrics were also applied to the extracted data, and they
show that its data is not random. The byte entropy calculated for the LSBytes
of the first chunk was 6.779773 bits per byte, with AM equal to 56.4422. For
the MSBytes, the byte entropy calculated was 7.640788 and AM metric was
96.5922. In addition, Monobit test failures reached 100%, both for LSBytes
and for MSBytes. Although this result indicates the non-random nature of the
LSBytes and MSBytes of the nonces, no meaningful message has been found
in the extracted data. In the first chunk, 18, 6 KiB of LSBytes were extracted

54 A. A. Giron et al.

from nonces (and the same amount of MSBytes). Scalpel was also used for this
verification and similar false positives of the previous experiment were identified.

The evaluation metrics changed for the other chunks. The byte entropy of the
extracted LSBytes increased to 7.973855 (chunk 11, 30, 6 KiB) and to 7.943257
(chunk 21, 26, 7 KiB), compared to the first chunk. AM also increased (123.0151
and 122.2475, respectively). Monobit test result in 91, 6% failures for chunk 11
and 100% for 21. A compilation of all of these metrics is available in the github
repository previously mentioned.

Considering the MSBytes, a difference between those chunks was observed in
the Monobit test: no failure for the chunk 11 and 100% for the chunk 21. Byte
entropy increased (7.993308 and 7.943257, respectively) as well as the AM metric
for chunk 11 and 21 (127.2097 and 122.2475, respectively), when compared to
chunk 1. This indicates that middle blocks (like chunk 11) have a higher level
of randomness than the other blocks and therefore unlikely to contain a hidden
message (except if the message is encrypted).

It is hard to explain such different behaviors, both for LSBytes and MSBytes.
One possible explanation is that the behavior changed after mining pools started
to operate in the blockchain. Coordinate miners could iterate through all of the 4
billion possibilities of the nonce without finding the target hash. Since 2012, the
consequence of mining pools and later the ASIC hardware for mining is the use
the “extra nonce” in the coinbase transaction [5], and therefore the nonce was
not the only factor used to find the target hash. Additionally, with mining tags
for the identification of the mining pool also changed the header and therefore
the block hash. A different hypothesis is that the nonces were manipulated, but
still, no message has been found in the extracted LSBytes and MSBytes for all
chunks (through Scalpel).

6 Conclusions and Future Work

This paper aimed at the relation between blockchain and steganography, on
how the last can be applied in and on how to detect it. Two experiments were
performed to analyze the first 253.38 GiB of Bitcoin blocks, which constitute
a significant part of the entire network (by the time of writing this paper). No
steganographic evidence could be found within these blocks, considering that
hash channels (of Partala’s approach [26]) and the block nonces were investi-
gated.

The main difficulty of the detection is that it could not be found any steganal-
ysis approach that is specific for the blockchain. Such approach should consider
the characteristics of the underlying structure of the blockchain, in order to
increase the detectability level of covert channels in this scenario. It seems that
it remains an open research problem that will be considered for future work.

The results corroborate with the observation made in bitslog.com, regard-
ing the behaviour of the nonces. However, after extracting the LSBytes and
MSBytes, no hidden message or meaningful content could be found in this data,
by using statistical analysis and Scalpel for file carving. It is worthy to note that

Bitcoin Blockchain Steganographic Analysis 55

other blockchains could be also subject for analysis, in particular for blockchains
that might have lower transaction costs than Bitcoin or higher anonymity levels.

An approach that will be considered for future work is the redesign of the LSB
experiments using clustering techniques [23,34]. The objective is to extract the
LSB from addresses that belong to the same cluster. In the context of blockchain
applications, the importance of steganalysis lies on the fact that it would help to
prevent misuse of public blockchains. Blockchains constitute a promising archi-
tecture for many financial and non-financial applications, which cannot afford
to be jeopardized by steganography.

References

1. Alsalami, N., Zhang, B.: Uncontrolled randomness in blockchains: Covert bulletin
board for illicit activity. Cryptology ePrint Archive (2018). ia.cr/2018/1184

2. Alsalami, N., Zhang, B.: Utilizing public blockchains for censorship-circumvention
and iot communication. In: 2019 IEEE Conference on Dependable and Secure
Computing (DSC), pp. 1–7. IEEE (2019)

3. Andoni, M., et al.: Blockchain technology in the energy sector: a systematic review
of challenges and opportunities. Renew. Sustain. Energy Rev. 100, 143–174 (2019)

4. Andriesse, D., Bos, H.: Instruction-level steganography for covert trigger-based
malware. In: Dietrich, S. (ed.) DIMVA 2014. LNCS, vol. 8550, pp. 41–50. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08509-8 3

5. Antonopoulos, A.M.: Mastering Bitcoin: Programming the Open Blockchain.
O’Reilly Media Inc., Newton (2017)

6. Ateniese, G., Magri, B., Venturi, D., Andrade, E.: Redactable blockchain-or-
rewriting history in bitcoin and friends. In: 2017 IEEE European Symposium on
Security and Privacy (EuroS&P), pp. 111–126. IEEE (2017)

7. B ↪ak, P., Bieniasz, J., Krzemiński, M., Szczypiorski, K.: Application of perfectly
undetectable network steganography method for malware hidden communication.
In: 2018 4th International Conference on Frontiers of Signal Processing (ICFSP),
pp. 34–38. IEEE (2018)

8. Bassham, L.E., et al.: A statistical test suite for random and pseudorandom number
generators for cryptographic applications. Technical report, National Institute of
Standards and Technology (NIST) (2010)

9. Berndt, S., Lískiewicz, M.: Provable secure universal steganography of optimal
rate: Provably secure steganography does not necessarily imply one-way functions.
In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia
Security, pp. 81–92. ACM (2016)

10. Cachin, C.: An information-theoretic model for steganography. In: Aucsmith, D.
(ed.) IH 1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-49380-8 21

11. Cole, E.: Hiding in Plain Sight. Wiley, Hoboken (2002)
12. Crosby, M., Pattanayak, P., Verma, S., Kalyanaraman, V., et al.: Blockchain tech-

nology: Beyond bitcoin. Appl. Innov. 2(6–10), 71 (2016)
13. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: a strengthened version of

RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-60865-6 44

14. Fernández-Caramés, T.M., Fraga-Lamas, P.: A review on the use of blockchain for
the internet of things. IEEE Access 6, 32979–33001 (2018)

https://ia.cr/2018/1184
https://doi.org/10.1007/978-3-319-08509-8_3
https://doi.org/10.1007/3-540-49380-8_21
https://doi.org/10.1007/3-540-49380-8_21
https://doi.org/10.1007/3-540-60865-6_44

56 A. A. Giron et al.

15. Fionov, A.: Exploring covert channels in bitcoin transactions. In: 2019 International
Multi-Conference on Engineering, Computer and Information Sciences (SIBIR-
CON), pp. 0059–0064. IEEE (2019)

16. Von zur Gathen, J.: Cryptoschool. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48425-8

17. Henry, R., Herzberg, A., Kate, A.: Blockchain access privacy: challenges and direc-
tions. IEEE Secur. Priv. 16(4), 38–45 (2018). https://doi.org/10.1109/MSP.2018.
3111245

18. Hopper, N.J., Langford, J., von Ahn, L.: Provably secure steganography. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 77–92. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9 6

19. Kucner, D., Kutylowski, M.: Stochastic kleptography detection. In: Public-Key
Cryptography and Computational Number Theory, pp. 137–149 (2001)

20. Matzutt, R., Henze, M., Ziegeldorf, J.H., Hiller, J., Wehrle, K.: Thwarting
unwanted blockchain content insertion. In: 2018 IEEE International Conference
on Cloud Engineering (IC2E), pp. 364–370. IEEE (2018)

21. Matzutt, R., et al.: A quantitative analysis of the impact of arbitrary blockchain
content on bitcoin. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol.
10957, pp. 420–438. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-
662-58387-6 23

22. Mazurczyk, W., Caviglione, L.: Information hiding as a challenge for malware
detection (2015). arXiv preprint arXiv:1504.04867

23. Meiklejohn, S., et al.: A fistful of bitcoins: characterizing payments among men
with no names. In: Proceedings of the 2013 Conference on Internet Measurement
Conference, pp. 127–140. ACM (2013)

24. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

25. OpenSSL.org.: OpenSSL Cryptography and SSL/TLS Toolkit. https://www.
openssl.org/

26. Partala, J.: Provably secure covert communication on blockchain. Cryptography
2(3), 18 (2018)

27. Provos, N., Honeyman, P.: Hide and seek: an introduction to steganography. IEEE
Secur. Priv. 1(3), 32–44 (2003)

28. Puthal, D., Malik, N., Mohanty, S.P., Kougianos, E., Das, G.: Everything you
wanted to know about the blockchain: its promise, components, processes, and
problems. IEEE Consum. Electron. Mag. 7(4), 6–14 (2018)

29. Radanović, I., Likić, R.: Opportunities for use of blockchain technology in medicine.
Appl. Health Econ. Health Policy 16(5), 583–590 (2018)

30. Raggo, M.T., Hosmer, C.: Data hiding: exposing concealed data in multimedia,
operating systems, mobile devices and network protocols. Newnes (2012)

31. Richard III, G.G., Roussev, V.: Scalpel: a frugal, high performance file carver. In:
DFRWS (2005)

32. Scott, B., Loonam, J., Kumar, V.: Exploring the rise of blockchain technology:
towards distributed collaborative organizations. Strat. Change 26(5), 423–428
(2017)

33. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948)

34. Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: extracting intelligence from the
bitcoin network. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol.
8437, pp. 457–468. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45472-5 29

https://doi.org/10.1007/978-3-662-48425-8
https://doi.org/10.1007/978-3-662-48425-8
https://doi.org/10.1109/MSP.2018.3111245
https://doi.org/10.1109/MSP.2018.3111245
https://doi.org/10.1007/3-540-45708-9_6
https://doi.org/10.1007/978-3-662-58387-6_23
https://doi.org/10.1007/978-3-662-58387-6_23
http://arxiv.org/abs/1504.04867
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.openssl.org/
https://www.openssl.org/
https://doi.org/10.1007/978-3-662-45472-5_29
https://doi.org/10.1007/978-3-662-45472-5_29

Bitcoin Blockchain Steganographic Analysis 57

35. Stallings, W.: Cryptography and Network Security: Principles and Practice, 7th
edn. Pearson, Upper Saddle River (2017)

36. Teşeleanu, G.: Subliminal hash channels. Cryptology ePrint Archive, Report
2019/1112 (2019)

37. Walker, J.: Ent: a pseudorandom number sequence test program. Software and
documentation (2008). http://www.fourmilab.ch/random/

38. Williams, S.P.: Blockchain: The Next Everything. Scribner, New York (2019)
39. Wu, C.K.: Hash channels. Comput. Secur. 24(8), 653–661 (2005)

http://www.fourmilab.ch/random/

Dynamic Group Key Agreement
for Resource-constrained Devices Using

Blockchains

Yaşar Berkay Taçyıldız1, Orhan Ermiş2(B), Gürkan Gür3, and Fatih Alagöz1

1 Department of Computer Engineering, Boğaziçi University, Istanbul, Turkey
{berkay.tacyildiz,fatih.alagoz}@boun.edu.tr

2 EURECOM, Sophia Antipolis, France
orhan.ermis@eurecom.fr

3 Zurich University of Applied Sciences (ZHAW), Winterthur, Switzerland
gueu@zhaw.ch

Abstract. Dynamic group key agreement (DGKA) protocols are one
of the key security primitives to secure multiparty communications in
decentralized and insecure environments while considering the instant
changes in a communication group. However, with the ever-increasing
number of connected devices, traditional DGKA protocols have perfor-
mance challenges since each member in the group has to make several
computationally intensive operations while verifying the keying mate-
rials to compute the resulting group key. To overcome this issue, we
propose a new approach for DGKA protocols by utilizing Hyperledger
Fabric framework as a blockchain platform. To this end, we migrate the
communication and verification overhead of DGKA participants to the
blockchain network in our developed scheme. This paradigm allows a
flexible DGKA protocol that considers resource-constrained entities and
trade-offs regarding distributed computation. According to our perfor-
mance analysis, participants with low computing resources can efficiently
utilize our protocol. Furthermore, we have demonstrated that our proto-
col has the same security features as other comparable protocols in the
literature.

Keywords: Group key agreement · Blockchain · Hyperledger fabric ·
IoT

1 Introduction

The digitalization of daily life and human activities has become a reality via the
emergence of more prevalent and high-performance communications and net-
working. With the advent of 5G networks, innovative and collective solutions
which consist of different type of devices are now much more feasible. The envis-
aged use-cases and applications involve a huge number of devices and pervasive
data sharing and dissemination such as massive Machine-Type Communications
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 58–76, 2020.
https://doi.org/10.1007/978-3-030-61638-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_4

Dynamic Group Key Agreement for Resource-constrained Devices 59

(mMTC) and Multi-access Edge Computing (MEC) scenarios. Although some
of these systems require ultra-reliable and real-time connectivity in rather pre-
set conditions (e.g., telesurgery or industrial networks), many others require a
dynamic environment where interaction between networked entities changes fre-
quently and minor latency due to security functions can be tolerated (e.g., ad
hoc data sharing or sensor-based monitoring scenarios). Moreover, IoT devices
with low computing power and limited energy resources are expected to operate
seamlessly and efficiently in future networks. In such systems, as the number of
connected devices increases rapidly, decentralized and efficient secure communi-
cation frameworks are essential to meet the service requirements.

As a secure communication facilitator, group key agreement protocols where
participants can agree on a common secret key in an insecure channel have
gained significant importance. Starting with Diffie-Hellman [11] where two par-
ties can agree on a secret key, several protocols have been developed which
enable multiple parties to agree on a common key [18,19]. However, such proto-
cols were mostly designed for static groups, where the members of the group do
not change until the end of communication session. Therefore, if the members
in the group change, the entire protocol should be executed from the beginning
for all participants in the group. On the other hand, some protocols provide
additional functionalities to handle that re-execution overhead. Such protocols
are called Dynamic Group Key Agreement (DGKA) protocols [13,15–17,30].
Although DGKA protocols are more efficient compared to static ones, there
exist some other several factors which affect their performance – the first one
is the way of broadcasting key agreement parameters and the second being the
validation of participant identities via verification of received parameters. To
perform better in parameter distribution and verification stages, cluster-based
approaches [14,17,21] and tree-based methods [13,20] have been proposed in the
literature.

As a decentralized computing platform, blockchain technology has recently
emerged starting with Bitcoin [24] as a monetary system based on cryptocur-
rency. The technology is later decoupled from cryptocurrencies and transformed
into a wider domain with the concept of Distributed Ledger Technology (DLT)
such as in Hyperledger Fabric (HF) [31]. Essentially, HF is a generic decen-
tralized application development platform where transactions history is shared
among peers as computation nodes in the network. DLT allows decentralization,
greater transparency and easier auditability in a distributed setting.

In our work, we propose a dynamic group key agreement protocol called B-
GKAP which is an improved version of KAP-PBC [16] protocol and integrates
the HF platform to improve key computation performance while keeping impor-
tant security properties of known DGKA protocols. The main rationale for using
the blockchain technology is to offload computational burden in a trustworthy
and distributed manner for resource-constrained environments. The HF provides
capabilities, e.g., Fabric Channels, of a permission-based blockchain platform to
realize this extension in an efficient and secure way. The relevant benefits of our

60 Y. B. Taçyıldız et al.

implemented approach are shown with the complexity analysis carried out for
different aspects such as communication and computation in our experiments.

Our main contributions in this work are as follows:

1. To reduce the number of parameter transmissions in the protocol, DGKA
participants communicate with the blockchain network instead of communi-
cating with each other in our proposal. In this way, the amount of network
transmissions is decreased significantly.

2. We employ a blockchain application in HF to perform verification of group
key agreement parameters. Therefore, instead of each participant performing
verification of every other participant, we migrate those operations to the
blockchain network. Our performance evaluation show that B-GKAP provides
better results in terms of scalability when compared to conventional DGKA
protocols.

3. We propose a detailed security analysis for B-GKAP by considering the the
well-known security attacks and properties. Our analysis shows that B-GKAP
achieves the same level of security with the existing DGKA protocols. Fur-
thermore, we extend our analysis for the use of blockchain network in group
key computation based on the honest-but-curious security model.

The outline of this paper is as follows: in Sect. 3, we discuss the group key agree-
ment solutions and blockchain platforms in the technical domain. Sect. 4 explains
our proposed model B-GKAP in terms of its system model, protocol flow and
functions. Then, in Sect. 5, we prove that our protocol has the same security
features with known group key agreement protocols. In Sect. 6, we discuss per-
formance of our model in terms of communication and computational costs, and
simulation results. Finally, Sect. 8 summarizes our findings in this study, followed
by a discussion of potential future work.

2 Preliminaries

In this section, we introduce general definitions and the security model of B-
GKAP.

2.1 General Definitions

This section introduces the general definitions of B-GKAP based on [16].

Definition 1. Participants:

– Each participant is an entity and is represented as Ui.
– Each participant Ui who fully follows the protocol is called as “honest partic-

ipant”.
– The participant list is represented as U = 〈U1, U2, . . . , UN+M 〉 which consists

of two subgroups, network participants as |Unet| = M , and group participants
as |Ugrp| = N .

U = Ugrp ∪ Unet

Dynamic Group Key Agreement for Resource-constrained Devices 61

– The participant group Ugrp is circular so that UN+i = Ui for some positive
1 � i � N . The order of the participants is known by each participant.

Definition 2. Public Parameters: B-GKAP uses the following public parameters
based on the definitions in [16]:

– p = 2q + 1, where both p and q are large prime numbers.
– g is a generator for Gq = {i2|i ∈ Z∗

p}, where Gq is a cyclic subgroup of quadratic
residues in Z∗

p .
– T is the time-stamp against replay attack.

Definition 3. Long-term Public Private Key Pair: The protocol uses the follow-
ing long-term key definitions based on [16]. Each entity in B-GKAP holds this key
pair.

– xi ∈ Z∗
q is the private key and only the entity that holds the key knows it. This key

is never shared with other entities in the network.
– yi is the public key where yi = gxi mod p

Since our solution is based on KAP-PBC in [16], we assume that long-term public
keys of each participant are issued via a Certification Authority (CA). Before the
transmission, each variable is signed with long-term private key. Thus, during signature
verification stage, identities of the participants are authenticated.

Definition 4. Schnorr Signature Scheme: Based on the definition in [27], a mes-
sage M can be signed as e, s = SS(xi, yi, M) and the signature products e, s can be
verified using SV (yi(e, s), M)

?
= True. In these equations, SS stands for ‘Schnorr Sign’

and SV stands for ‘Schnorr Verify’.

Definition 5. Ledger Functions: Each network participant Ui in Unet maintains its
own blockchain ledger and has two functions called readLedger(·) and writeLedger(·).
A variable x can be written to the ledger via writeLedger(x), and read from the ledger
via x = readLedger().

2.2 Security Models

We consider malicious and honest-but-curious security models for the group partic-
ipants and the network participants of B-GKAP, respectively. We assume that the
potential entities for the malicious security model are as follows:

– Group participants: Participants that actively involve in the group key computa-
tion.

– B-GKAP users: Users that have valid certificates received from CA. They do not
need to participate every group key computation.

– Non-members: Standard Internet users without a valid certificate.

Based on the entity definitions above, a DGKA protocol should provide security against
the following threats: (i) violation of security properties (authentication, fault-tolerance
and forward secrecy) (ii) security attacks (impersonation, eavesdropping and replay
attacks) and (iii) secure dynamic group operations (backward and forward confiden-
tiality properties). We refer the reader to Sect. 5 for further details.

62 Y. B. Taçyıldız et al.

On the other hand, B-GKAP differs from conventional DGKA protocols by includ-
ing entities of HF into group key computation process. The main idea is to outsource
the verification overhead of temporary public keys and exchanged secrets to the HF
network for achieving a more scalable DGKA protocol. Network participants are pow-
erful entities and they have access to all keying materials to compute the group key;
in fact, these participants are computationally bounded by the B-GKAP algorithm
and they cannot compute the group key. Therefore, we consider the honest-but-curious
security model for the network participants. Based on the definition in [26], we define
honest-but-curious adversary for B-GKAP as follows:

Definition (Honest-But-Curious (HBC) Adversary). The Honest-But-Curious
(HBC) adversary is a legitimate network participant in B-GKAP that tries to learn the
group key while honestly following the protocol [26].

3 Related Work and Technical Background

In this section, we overview the literature with respect to DGKA protocols and
blockchain technologies. In particular, we elaborate on the HF1 platform which we
have employed as the blockchain platform to implement and evaluate our protocol.

3.1 GKA Protocols

Diffie-Hellman key exchange protocol [11] is the first group key agreement protocol
that is used for securing the communication among two parties using a common key
computed by these participants. Later, the concept of two-party secure communication
was extended by Ingamarsson et al. in [18] to multi-party setting. In addition, the pro-
tocol in [6] is also accepted as a pioneering work regarding the key agreement protocol
research with the proposed efficient group key computation. Nevertheless, these proto-
cols were designed specifically for static groups, which means any change in the set of
communicating parties requires the re-execution of the group key agreement protocol
for all communicating participants. In this work, our main focus is on the DGKA pro-
tocols that use some auxiliary functions to update the group key without re-executing
the protocol from scratch for all participants as elaborated in [2,10,12,13,15–17,28,32].
These protocols have many application areas such as conference communication [15],
secure file sharing systems [16], and secure communication in Mobile Ad Hoc Net-
works (MANETs) [17]. Although the listed protocols have proposed efficient group key
computation approaches, novel solutions are necessary to overcome the overhead of
verification operations during group key computation while dealing with large groups
and resource-constrained devices.

3.2 HF Platform

HF is a permissioned blockchain platform that only allows identified participants [1].
Thus, with the identification of the network modules, Byzantine Fault Tolerant (BFT)
[8] or Crash Fault Tolerant (CFT) [25] consensus protocols can be utilized. Another
important feature of HF is that most of the HF components are designed to be modu-
lar such as Membership Service Provider (MSP) and consensus protocol. This modular

1 https://www.hyperledger.org/projects/fabric.

https://www.hyperledger.org/projects/fabric.

Dynamic Group Key Agreement for Resource-constrained Devices 63

Fig. 1. B-GKAP block diagram and model.

design is made possible by its novel execute-order-validate architecture. In other appli-
cations [7,24], order-execute architecture is utilized where transactions are first ordered
via a consensus protocol, and then they are executed by all peers sequentially. On the
other hand, in HF, execution of the transactions is performed first to allow running
non-deterministic applications and the ordering phase is separated from the valida-
tion step to isolate consensus logic from the peers. Therefore, the transactions can run
in parallel without the necessity to keep the order. After the consensus is provided by
ordering state, the final state of the transaction can be applied by all nodes individually.
Therefore, in this work, our main motivation is to employ HF platform to perform nec-
essary verification operations for increasing the group key computation performance.
Accordingly, we propose an improved dynamic group key agreement protocol called
B-GKAP based of KAP-PBC [16] protocol by integrating the HF platform. The most
important feature of the proposed protocols is to improve the key computation perfor-
mance particularly for the communication cost while providing the same security level
with the existing protocols in the literature.

4 B-GKAP: Blockchain-Based Group Key Agreement
Protocol

In this section, we introduce our Blockchain based Group Key Agreement Protocol
(B-GKAP) which is deployed on HF as a blockchain platform. In the first section, we
provide a system overview that explains the positioning of the HF components. Then,
we introduce B-GKAP in more details.

4.1 System Overview

B-GKAP is based on the Key Agreement Protocol with Partial Backward Confidential-
ity, namely KAP-PBC [16], but extends and improves its performance with HF plat-
form. Additionally, in B-GKAP, we migrate the communication among participants
to communication between participants and the network, which in return reduces the

64 Y. B. Taçyıldız et al.

communication cost during the group key computation in terms of the length of the
transmitted messages. Moreover, to verify the variables of the participants, we uti-
lize HF chaincodes. When a variable is received as an invoke request by the network,
the chaincode first performs the verification operation depending on the variable type.
Then if the verification succeeds, the chaincode approves the operation.

The overview of B-GKAP is shown in Fig. 1a, which consists of the following main
components:

1. B-GKAP participants are the entities which compute the group key.
2. B-GKAP admin sends initialization command to start up the HF platform and

setup initial variables as specified in Sect. 2.1. Both B-GKAP participants and
admin use HF Software Development Kit (SDK) which enables them to commu-
nicate with the network.

3. The peers are responsible for simulating incoming transactions by utilizing B-
GKAP chaincode. Additionally, each peer maintains a blockchain ledger and latest
ledger state. We have utilized HF ledger to store B-GKAP parameters.

4. HF Endpoint is a logical endpoint which can correspond peers or orderers.
5. B-GKAP Chaincode handles all ledger read-write requests of the participants, and

performs the necessary verification operations.
6. HF Orderer performs the ordering of the produced transaction output sets as a

block of transactions and it disseminates to all HF peers. Then peers update their
ledger states.

7. HF CA maintains the identities of the HF components and B-GKAP participants.

Fig. 2. B-GKAP flowchart

4.2 B-GKAP Protocol

As shown in Fig. 2, first, each participant Ui ∈ U executes Public Key Distribution step
to distribute temporary public keys. Then, each network participant executes Public
Key Verification and Fault Correction steps to remove dishonest participants from the
group. Later on, remaining honest participants execute Public Key Query to fetch the
temporary public key of the next participant in the group. Once this step is completed,
each participant executes the Secret Key Distribution to send the secret keys to the
network participants. Afterward, network participants perform Secret Key Verification
and Fault Correction to exclude malicious participants from the group. Finally, each
participant performs Secret Key Query and Group Key Computation steps to compute
the common group key. Additionally, when a new participant joins the group or leaves
the group, Participant Join or Participant Leave steps can be executed.

Dynamic Group Key Agreement for Resource-constrained Devices 65

As illustrated in Fig. 1b, there are network participants which are not involved in
the group key computation phase. Instead, they produce B-GKAP parameters except
for the secret key. Therefore, network participants can verify the temporary public and
secret keys of the participants who compute the group key. Each network participant
has multiple peers and an isolated ledger via HF channels. In this way, secret key
variables can be stored and validated separately by each network participant.

4.3 B-GKAP Protocol Steps

In this section, we give details of the protocol steps.

Public Key Distribution (sendPK(·)). Each participant Ut ∈ U executes the fol-
lowing to distribute temporary public keys. Group participants Ui ∈ Ugrp distribute their
temporary public keys to each network participant Uj ∈ Unet.

1: randomly select t ∈ Z∗
q

2: ω = gtmodp
3: Sign ω: e, s = SS(x, y, ω)
4: Send the message M = {ω, e, s, T}

Public Key Verification (verifyPK(·)). Each network participant Uj ∈ Unet exe-
cutes the following to verify temporary public key of each group participant Ui ∈ Ugrp.
According to verification result, the key is written to the ledger of Uj.

1: for all Ui ∈ Ugrp do
2: Check the timestamp T
3: if SV (yi, (e1,i, s1,i), ωi) then
4: writeLedger(ωi)
5: end if
6: end for

Fault Correction (faultCorr(·)). Each network participant Uj ∈ Unet performs
the following to remove any group participant Ui ∈ Ugrp whose verification of its tem-
porary public key or secret key fails.

1: for all Ui ∈ Ugrp do
2: if Ui is faulty then
3: Ui is removed from the participant group, U ′ = U − Ui

4: Execute participantLeave(·)
5: end if
6: end for

Public Key Query (queryPK(·)). In this step, each group participant Ui ∈ Ugrp,
requests for temporary public key of next group participant Ui+1 in the group from the
target network participant Uj ∈ Unet (the selection of Uj is determined in a way to
ensure equal distribution of workload).

66 Y. B. Taçyıldız et al.

Uj performs the following:
1: ωi+1 = readLedger()
2: Sign temporary public key of Ui+1, ej , sj = SS(yj , xj , ωi+1)
3: Send message to Ui, M = (ωi+1, ej , sj , T)

Ui performs the following:
1: Receive the message M
2: Check timestamp T
3: Verify signature of Uj: SV (yj , (ej , sj), ωi+1))

Secret Key Distribution (sendSK(·)). Each group participant Ui ∈ Ugrp performs
the following to generate and distribute secret key (CKi) to the target network partici-
pant Uj ∈ Unet (the selection of Uj is determined in a way to ensure equal distribution
of secret keys).

1: Generate CKi: CKi = ωti
(i+1) mod p = gtiti+1 mod p

2: Randomly select an integer a ∈ Z∗
q

3: k = (ωa
j modp) mod q

4: Randomly select a line L(x), L(x) = xci + CKi mod q, ci = ga mod p
5: di = L(k) mod q
6: d′

i = k ⊕ di

7: e2,i, s2,i = SS(xi, yi, CKi)
8: Send the message M = {s2,i, e2,i, ci, d

′
i, T}

Secret Key Verification (verifySK(·)). Each network participant Uj ∈ Unet per-
forms following to verify secret keys of group participants Ui ∈ Ugrp.

1: for all Ui ∈ Ugrp do
2: Receive message M = {s2,i, e2,i, ci, d

′
i, T}

3: Recover CKi and check T
4: k = (c

tj
i mod p) mod q

5: d = d′
i ⊕ k

6: CKi = d − ci ∗ k mod q
7: Check the signature of Ui

8: if SV (yi, (e2,i, s2,i), CKi) then
9: writeLedger(CKi)

10: end if
11: end for

Secret Key Query (querySK(·)). After the fault correction step, each group partic-
ipant Ui ∈ Ugrp performs following to query secret keys from each network participant
Uj ∈ Unet (CK1...N = CK1||CK2|| . . . ||CKN).

Dynamic Group Key Agreement for Resource-constrained Devices 67

Uj performs the following:
1: Randomly select an integer a ∈ Z∗

q

2: cj = ga mod p
3: ki = (ωa

i modp)modq
4: for all Uk ∈ Ugrp − Ui do
5: Randomly select a line L(x) = xcj + CKk mod q
6: dk = L(ki) mod q
7: d′

k = ki ⊕ dk

8: end for
9: Sign CK1...N : e2,j , s2,j = SS(xj , yj , CK1...N)

10: Send M = {s2,j , e2,j , cj , {d′
1, d

′
2, . . . , d

′
N}, T}

Ui performs the following:
1: ki = (ctij mod p) mod q
2: for all Uk ∈ Ugrp − Ui do
3: dk = d′

k ⊕ ki

4: CKk = dk − cj ∗ ki mod q
5: end for
6: Check timestamp T
7: Check the signature of Uj: SV (yj , (e2,j , s2,j), CK1...N)

Group Key Computation (compute(·)). Each group participant Ui ∈ Ugrp, com-
putes the group key.

1: for all Ui ∈ Ugrp do
2: CK = ((CK1CK2 · · · CK|Ugrp|)modp)modq =

(gt1t2+t2t3+...+tn−1tn+tnt1modp)modq
3: end for

Participant Join (join(·)). Let Ui ∈ {UN+1, UN+2, . . . , UN+K} be the participant
that wants to join the group Ugrp = {U1, U2, ..., UN}. The join operations operate as
follows:

1: if Ui ∈ {UN , UN+1, . . . , UN+K} then
2: Ui performs queryPK(·) and querySK(·)
3: Ui performs sendPK(·)
4: Network participants perform faultCorr(·)
5: Ui−1 performs sendSK(·)
6: Network participants perform faultCorr(·)
7: end if
8: for all Ui ∈ {U1, U2, . . . , UN+K} do
9: Ui performs querySK(·) and compute(·) functions

10: end for

68 Y. B. Taçyıldız et al.

Participant Leave (leave(·)). Let U ′
grp = {Ui, Ui+1, ..., Ui+K}, where K < N ,

be the set of leaving participants from Ugrp. The leave operations operate as follows:

1: if |Ugrp| − |U ′
grp| < 2 then

2: The group key computation is terminated
3: end if
4: for each leaving participant Uj ∈ U ′

grp do
5: non-leaving participant(s) Uj−1 ∈ Ugrp − U ′

grp, performs sendPK(·)
6: Network participants perform faultCorr(·)
7: Uj−1 and Uj−2 ∈ Ugrp − U ′

grp perform sendSK(·)
8: Network participants perform faultCorr(·)
9: end for

10: for all Ui ∈ Ugrp − U ′
grp do

11: Ui performs querySK(·) and compute(·)
12: end for

5 Security Analysis

In this section, we provide a security analysis of B-GKAP. We consider the basic
security properties as well as potential attacks for group key agreement protocols for
our analysis.

5.1 Security Properties of GKA Protocols

In this section, we analyze B-GKAP with respect to the the basic security properties
of group key agreement protocols such as authentication, fault tolerance and forward
secrecy.

Authentication: This property is used for validating the identities of participants dur-
ing the execution of the protocol. In B-GKAP, as an initial authentication mechanism,
we assume that all participants are pre-identified with HF CA [31]. As a requirement
of interacting with HF Network, all participants have to use TLS v1.32 certificate to
provide identification. The TLS certificate is created by HF Admin prior to the network
initialization. For the second level of authentication mechanism, long-term key pairs of
the participants are used. All long-term public keys of the participants must be signed
by a trusted CA. During variable exchange between the participants and the network,
all message payloads is signed with the long-term private key of the sender entity.
Eventually, receiving entity verifies the signature of the payload by sender’s long-term
public key using Schnorr’s signature [27].

Fault Tolerance: In the course of group key agreement processes, malicious partici-
pants should be immediately detected and removed from the group. In B-GKAP, detec-
tion and elimination of faulty participants occurs during the execution of verifyPK(·),
verifySK(·) and faultCorr(·) functions. If a malicious participant is detected in
verifyPK(·) or verifySK(·) functions, the key of the malicious participant is not
written to the ledger. Later, the faultCorr(·) function is used for removing this par-
ticipant from the group.

2 https://tools.ietf.org/html/rfc8446.

https://tools.ietf.org/html/rfc8446.

Dynamic Group Key Agreement for Resource-constrained Devices 69

Forward Secrecy: This property is used for protecting the previous and subsequent
group keys against the compromise of long-term private keys of participants in the
group. Therefore, in B-GKAP, the long-term key pairs of participants are only used to
authenticate these participants. Additionally, each entity in B-GKAP generates a new
temporary public-private key pair using sendPK(·) function for each session. Thus,
B-GKAP provides the forward secrecy property.

5.2 Protection Against Security Attacks

In this section, we provide the security analysis of B-GKAP against impersonation,
eavesdropping and replay attacks.

Impersonation Attack: As mentioned in Sect. 2.2, the motivation of the imperson-
ation attack is to take place of any group participant during the protocol execution.
To do so, an attacker needs to be able to generate the signature of that entity. Since
B-GKAP uses the Schnorr signature scheme [27] as an authentication mechanism and,
as stated in [3] and [23], the Schnorr signature is secure against impersonation attacks,
B-GKAP also provides security against the impersonation attack.

Eavesdropping Attack: The goal of the eavesdropping attack in group key agreement
protocols is to capture the computed group key by eavesdropping the communication
channels among entities. In order to generate a group key, the attacker must obtain
secret keys (CKi) of all participants (CK1, . . . , CKN). In B-GKAP, entities exchange
secret keys in sendSK(·) and querySK(·) functions. In those functions, all secret key
values are extracted using c, d′ variables of the sender and temporary private key (t)
of the receiver. Since only the participants in the key agreement group U knows their
temporary private key (t), to compute k = (ctmodp) equation, attacker should try to
extract tj from ωj = gtjmodp for each participant Uj in U . Therefore, because solving
this equation is as hard as the discrete logarithm problem, B-GKAP is secure against
eavesdropping attack. Furthermore, as proved in [16] (Theorem 1), KAP-PBC is secure
under the Decisional Diffie-Hellman Problem. Since B-GKAP uses the same functions
(sendSK(·) and querySK(·)) while distributing the short-term public keys and secret
keys, it is also secure under the Decisional Diffie-Hellman Problem.

Replay Attack: During the communication between the B-GKAP entities, an attacker
might capture and re-transmit messages in the network to degrade the availability of
recipient parties such as in Distributed Denial-of-Service (DDoS) attack. Therefore, to
provide a protection against such attacks, we also append timestamp variable (T) into
the communication messages among participants during the execution of the protocol.

5.3 Security of Join and Leave Operations

Dynamic group operations enable group key agreement protocols to be more efficient
during re-generation of group keys. In order to overcome security weaknesses stated in
[22], a protocol must ensure forward and backward confidentiality properties. Forward
confidentiality property assures that further group keys cannot be computed by a par-
ticipant who has left the group. Conversely, backward confidentiality feature warrants
that previous group keys cannot be computed by recently joined participants. In the
following sections, we prove that Leave and Join operations in B-GKAP provide the
same security features as [16] assures.

70 Y. B. Taçyıldız et al.

Prior to applying dynamic group operations, let the participant group be Ugrp =
{U1, U2, U3, . . . , UN} and the group key be:

CK = ((gt1t2+...+ti−1ti+titi+1+...+tN t1)modp)modq)

Lemma 1. Under the difficulty of discrete logarithm problem, join operation does not
violate backward confidentiality.

Proof. The participant UN and joining participants should run join(·) algorithm. Let
the joining participants be U ′ = UN+1, UN+2, . . . , UN+k and the new group key be
CK′ = ((gt1t2+...+tN−1t

′
N+t′

N tN+1+...+tN+kt1)modp)modq. We assume that any joining
participant with malicious intent has the previous message exchanged during the com-
putation of CK. In order to compute the previous group key, the malicious participant
should obtain tN from either using gtN−1tN or gtN t1 , which is as hard as solving the
discrete logarithm problem. Thus, B-GKAP provides backward confidentiality under
the difficulty of discrete logarithm problem.

Lemma 2. Under the difficulty of discrete logarithm problem, leave operation does not
violate forward confidentiality.

Proof. Let U ′ = Ui, Ui+1, Ui+2, . . . Ui+k be leaving participants where U ′ ⊆ U . As given
in function leave(·) (Sect. 4.3), when participants in U ′ leaves the group, the group key
is re-computed as CK′ = ((gt1t2+...+ti−2t

′
i−1+t′

i−1ti+k+1...+tN t1)modp)modq. If there
exist some malicious participants in the leaving ones and they want to compute the
new group key CK′ using the old keying materials, they have to obtain t′

i−1 by either
using gti−2t

′
i−1 or gt′

i−1ti+k+1 . Since solving these equations is as hard as solving the
discrete logarithm problem, B-GKAP provides forward confidentiality property.

5.4 Security of B-GKAP Hyperledger Fabric Network

In B-GKAP, the network participants store all keying material exhanged by the group
participants. Such participants are involved in the execution of B-GKAP except for the
secret key generation and key computation steps. During the network initialization step
(sendPK(·)), each network participant Um network entities generate temporary public-
private key pair (tm, ωm). Participants use these public keys to encrypt their secret keys
before the submission. Thus, the network can unveil the secret keys of the participants
using its temporary private key (tm). Additionally, the network participants also hold
its own long-term key pair (xm, ym). These keys are used for signing the protocol
variables that are sent to the participants. Hence, participants ensure that they are
receiving variables from a trusted entity. Moreover, the secret key verification step is
distributed among the network entities. Since the ledger of each entity is isolated via
the Fabric channels, the secret keys of the participants are also isolated3. Therefore, as
described in Sect. 2.2, we consider the honest-but-curious security model for network
participants. Although they have the keying material to compute the group key, all the
network entities should work cooperatively to compute the key.

Furthermore, HF platform provides storage immutability via blockchain ledgers.
The ledger is distributed among peers, and to change the ledger data, a subset of peers

3 https://developer.ibm.com/tutorials/cl-blockchain-private-confidential-
transactions-hyperledger-fabric-zero-knowledge-proof/.

https://developer.ibm.com/tutorials/cl-blockchain-private-confidential-transactions-hyperledger-fabric-zero-knowledge-proof/.
https://developer.ibm.com/tutorials/cl-blockchain-private-confidential-transactions-hyperledger-fabric-zero-knowledge-proof/.

Dynamic Group Key Agreement for Resource-constrained Devices 71

needs to generate the same output. This feature is forced by endorsement policies.
Finally, our design guarantees that even if a peer is compromised or failed, the system
remains operational.

In B-GKAP protocol, prior to secret key distribution, identities of network par-
ticipants are verified via Uj ∈ Unetwork, SV (yj , e2,j , s2,j , ωj) �= false, and secret key
CKi of each participant Ui ∈ Ugrp is encrypted via temporary public key ωj of the
network participant Uj ∈ Unet. Thus, network participants can only receive intended
parameters which are ωi, si, ei, d

′
i, ci for Ui ∈ Ugrp. Moreover, in HF, the only way to

interact with the ledger is via Fabric chaincodes. Because implemented chaincode has
defined a set of functionality and is shared among the peers, the network has no other
choice but to follow the B-GKAP protocol. Given these properties, B-GKAP fits the
HBC adversary model.

6 Performance Analysis

In this section, communication cost and computational cost complexity of B-GKAP are
analyzed and simulation results are presented. During our analysis, we only consider
the participants which compute the group key. All simulations were carried out on a
machine of Intel Core Broadwell Processor (2.5GHz x 8 cores), L1 Cache 32KB, L2
Cache 4MB, L3 Cache 16MB, and 32GB RAM. We have used Docker Engine v18.06.1-
ce-mac734 and Hyperledger Fabric v1.4.35. For both B-GKAP chaincode and B-GKAP
participant implementations, we have used Go programming language v1.13.36. More-
over, we have utilized the same environment for the implementation of other protocols
for performance comparison.

6.1 Communication Cost Complexity Ct

B-GKAP Functions: In B-GKAP, variable transmission occurs between participants
(Ui ∈ Ugrp) and network participants (Uj ∈ Unet). Since all transmitted variables are
modular base of p and q, length of a variable is equal to its modular base. Table 1
indicates network transmission length of each function in B-GKAP.

Table 1. Transmission length of each B-GKAP function in bits.

Function Transmission length

sendPK(·) (2q + p)

queryPK(·) (2q + p)

sendSK(·) (3q + p)

querySK(·) (N + 1)q + p

4 https://docs.docker.com/engine/.
5 https://hyperledger-fabric.readthedocs.io/.
6 https://golang.org/project/.

https://docs.docker.com/engine/.
https://hyperledger-fabric.readthedocs.io/.
https://golang.org/project/.

72 Y. B. Taçyıldız et al.

Table 2. Computational and communication complexities for N participants.

Protocol Cc × Texp Ct

Protocol in [13] ≤ O(log3 N) -
Protocol in [29] O(N) (N + 2)|q| + 4|p|
Protocol in [15] O(N) (N + 2)|q| + 4|p|
GKAP-MANET [17] O(N) 2|q| + 5|p|
KAP-PBC [16] O(N) (N + 4)|q| + 2|p|
B-GKAP O(1) 5|q| + 2|p|

Key Computation: During key computation, several variable transmissions between
participants and the network occur. For each participant Ui ∈ Ugrp, network transmis-
sions are performed in sendPK(·) and sendSK(·) functions. In total, for the number
of network participants M , |(2M +3)q+(M +1)p| bits are transmitted for each DGKA
participant. Therefore communication complexity of key computation is Ct = O(M).
Join Operation: For the join operation, when K participants join the group, K + 1
participants perform network transmission in sendPK(·) function, and K + 2 partici-
pants perform network transmission in sendSK(·). In total, for K joining participants,
|(2M(K + 1) + 3K + 6)q + (M + K + 2)p| bits are transmitted.
Leave Operation: In the leave operation, for the leaving participant Ui, participant
Ui−1 executes sendPK(·). Moreover, participants Ui−1 and Ui−2 execute sendSK(·).
Therefore, |(2M + 6)q + (M + 2)p| bits are transmitted.

6.2 Computational Cost Complexity Cc

In computational cost analysis, we consider modular exponential operations as the
principal factor while calculating our results. The time cost of these operations can be
stated as Texp = O(xy mod z). In B-GKAP, group participants Ui ∈ Ugrp performs
verification for only network participants Uj ∈ Unet. If we consider that M is negligi-
ble against the participant count N , the computational cost complexity of group key
computation, join and leave operations is Cc = O(1)Texp.

7 Discussion on the Performance of B-GKAP

In this section, we compare the communication cost and computational cost com-
plexities of B-GKAP with some well-known GKA protocols by considering the total
computational and communication costs of a single participant as the benchmark.

Comparison for the computational and communications costs of B-GKAP with
other well-known dynamic group key agreement protocols [13,15–17,29] is given in
Table 2. For instance, GKAP-MANET protocol relies on the most efficient group key
agreement protocol proposed by Burmester and Desmedt (BD) in [6]. BD protocol
has many other variants that improve the security of the original work against active
attacks while achieving a constant round of communication and less computational
overhead as introduced in Katz-Yung protocol [19]. However, such static protocols are
computationally more expensive than the dynamic ones. Therefore, we only compare
B-GKAP with other dynamic group key agreement protocols.

Dynamic Group Key Agreement for Resource-constrained Devices 73

As shown in Table 2, B-GKAP is more efficient than most of the protocols regard-
ing the communication and computational complexities for each participant. In terms
of total communication complexity, the other protocols perform network transmission
to every other participant in the key agreement group. On the other hand, B-GKAP
participants only transmit messages to a limited number of network participants. More-
over, in B-GKAP, participants only perform verification for the network participants
instead of performing verification for incoming parameters from other participants.
As a cost of utilizing HF SDK, the lightweight client code in a B-GKAP participant
needs to establish several connections to a limited number of HF peers and orderers for
data transmissions, which is a slight additional overhead compared to the mentioned
protocols. Moreover, this number becomes more negligible when the number of par-
ticipants increases. Given these reasons, the overhead for participants in B-GKAP is
significantly lower than counterparts. Due to these complexity advantages compared
to other protocols, B-GKAP can be a good candidate for resource-constrained devices.

As a case study, we further investigate B-GKAP performance and compare it to
KAP-PBC counterpart as a baseline scheme. Figure 3 illustrates the group key com-
putation performance of KAP-PBC and B-GKAP for N group participants. As the
orderer parameters, we set batch size as N/M for B-GKAP where M is number of
network participants and batch timeout as five seconds. Since the solution is designed
for several network participants such as large organizations, this simulation is per-
formed with one and two network participants, which are represented as B-GKAP
and B-GKAP+ respectively. Additionally, each network participant maintains two HF
peers.

Fig. 3. B-GKAP and conventional model comparison.

The results show that, group key computation time of the conventional method
increases exponentially as the participant count increases. In contrary, group key com-
putation of B-GKAP increases linearly. First, the communication cost complexity of
KAP-PBC is O(N2) whereas in B-GKAP, the communication cost complexity is O(N).
For the computational cost complexity, B-GKAP outperforms KAP-PBC with its con-
stant computational cost O(1). The reason of slight performance difference between
B-GKAP and B-GKAP+ is that in B-GKAP+, the orderer needs to process submitted

74 Y. B. Taçyıldız et al.

public variables in two transaction blocks. Moreover, in our simulations, we set batch
size such that the HF network can process without an issue. For more participants, the
network should process the transactions for multiple batches, which would affect the
performance slightly.

8 Conclusion

In this study, we present B-GKAP which employs HF blockchain platform to par-
tially offload the group key computation and thus alleviate the performance burden for
resource-constrained environments. Our approach is specifically geared towards non-
real-time scenarios such as ad hoc data sharing or group communications considering
potential latency due to blockchain operations, albeit being minimal. With our pro-
tocol, the computation overhead of the group key agreement participants is decreased
significantly by migrating the verification of the distributed parameters to the network
participants. Thus, participants with low computation power and energy resource can
conveniently adopt our GKA protocol. Additionally, we have reduced the number of
network transmissions for group key computation, leave and join operations. Hence, for
network environments such as connected IoT devices or edge network nodes where par-
ticipant group changes frequently, our solution provides more efficient dynamic oper-
ations. Furthermore, we have distributed secret keys of the participants among the
network participants via Fabric Channels. In this way, malicious network participants
cannot generate group keys without colluding.

HF platform provides immutable storage property for stored variables via
blockchain ledger. Additionally, in HF, not only valid but also invalid transactions are
stored in the ledger. This feature makes our system auditable for further investigations.
Another important feature of HF is its modularity. For instance, its consensus proto-
col can be replaced with more efficient methods as a future work. Moreover, with its
modular membership service provider, various authentication schemes can be utilized
depending on the usage area of the protocol.

Furthermore, to overcome the problem of colluding network participants, Fabric
chaincode runtime environment, and ledger storage can be transferred to a Trusted
Execution Environment (TEE) [5]. Consequently, even the network participants cannot
access to secret keys of the participants. Investigation of the applicability of post-
quantum secure group key agreement protocols such as [4,9] together with blockchain
platforms can be an another important future work for this domain.

Acknowledgment. This work is partially supported by the Turkish Directorate of
Strategy and Budget under the TAM Project number DPT2007K120610.

The research leading to these results partly received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement no
871808 (5G PPP project INSPIRE-5Gplus). The paper reflects only the authors’ views.
The Commission is not responsible for any use that may be made of the information
it contains.

Dynamic Group Key Agreement for Resource-constrained Devices 75

References

1. Hyperledger Fabric. https://www.hyperledger.org/projects/fabric. Accessed 30
September 2019

2. Alwen, J., et al.: Keep the dirt: tainted treekem, adaptively and actively secure
continuous group key agreement. Cryptology ePrint Archive, Report 2019/1489
(2019). https://eprint.iacr.org/2019/1489

3. Bellare, M., Palacio, A.: GQ and schnorr identification schemes: proofs of secu-
rity against impersonation under active and concurrent attacks. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9_11

4. Bobrysheva, J., Zapechnikov, S.: Post-quantum group key agreement scheme.
Cryptology ePrint Archive, Report 2020/873 (2020). https://eprint.iacr.org/2020/
873

5. Brandenburger, M., Cachin, C., Kapitza, R., Sorniotti, A.: Blockchain and trusted
computing: problems, pitfalls, and a solution for hyperledger fabric. arXiv e-prints
arXiv:1805.08541, May 2018

6. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution
system. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286.
Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053443

7. Buterin, V.: A next-generation smart contract and decentralized application plat-
forme. https://github.com/ethereum/wiki/wiki/White-Paper

8. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. (TOCS) 20(4), 398–461 (2002)

9. Choi, R., Hong, D., Han, S., Baek, S., Kang, W., Kim, K.: Design and implemen-
tation of constant-round dynamic group key exchange from rlwe. IEEE Access 8,
94610–94630 (2020)

10. Chuang, Y.H., Tseng, Y.M.: An efficient dynamic group key agreement protocol
for imbalanced wireless networks. Int. J. Net. Man. 20, 167–180 (2010)

11. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inform.
Theor. 22, 644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638

12. Dutta, R., Barua, R.: Constant round dynamic group key agreement. In: Zhou, J.,
Lopez, J., Deng, R.H., Bao, F. (eds.) Information Security (2005)

13. Dutta, R., Barua, R.: Dynamic group key agreement in tree-based setting. In:
Boyd, C., González Nieto, J.M. (eds.) Information Security and Privacy, pp. 101–
112. Springer, Berlin Heidelberg, Berlin, Heidelberg (2005)

14. Dutta, R., Dowling, T.: Secure and efficient group key agreements for cluster based
networks. In: Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds.) Transactions on
Computational Science IV. LNCS, vol. 5430, pp. 87–116. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01004-0_6

15. Ermiş, O., Bahtiyar, Ş., Anarim, E., Çağlayan, U.: An improved conference-key
agreement protocol for dynamic groups with efficient fault correction. Secur. Com-
mun. Netw. 8(7), 1347–1359 (2015)

16. Ermiş, O., Bahtiyar, Ş., Anarim, E., Çağlayan, U.: A key agreement protocol with
partial backward confidentiality. Comput. Netw. 129, 159–177 (2017)

17. Ermiş, O., Bahtiyar, Ş., Anarim, E., Çağlayan, U.: A secure and efficient group key
agreement approach for mobile ad hoc networks. Ad Hoc Netw. 67, 24–39 (2017)

18. Ingemarsson, I., Tang, D., Wong, C.: A conference key distribution system. IEEE
Trans. Inform. Theor. 28, 714–719 (1982)

https://www.hyperledger.org/projects/fabric
https://eprint.iacr.org/2019/1489
https://doi.org/10.1007/3-540-45708-9_11
https://eprint.iacr.org/2020/873
https://eprint.iacr.org/2020/873
http://arxiv.org/abs/1805.08541
https://doi.org/10.1007/BFb0053443
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-642-01004-0_6

76 Y. B. Taçyıldız et al.

19. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. J.
Cryptol. 20(1), 85–113 (2007)

20. Kim, Y., Perrig, A., Tsudik, G.: Tree-based group key agreement. ACM Trans.
Inform. Syst. Secur. 7(1), 60–96 (2004)

21. Konstantinou, E.: Cluster-based group key agreement for wireless ad hoc networks.
In: 2008 Third International Conference on Availability, Reliability and Security,
pp. 550–557, March 2008. https://doi.org/10.1109/ARES.2008.106

22. Lee, S., Kim, J., Hong, S.: Security weakness of Tseng’s fault-tolerant conference
key agreement protocol. J. Syst. Softw. 82, 1163–1167 (2009)

23. Morita, H., Schuldt, J.C.N., Matsuda, T., Hanaoka, G., Iwata, T.: On the security
of the schnorr signature scheme and DSA against related-key attacks. In: Kwon,
S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 20–35. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30840-1_2

24. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Technical report,
Manubot (2008)

25. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: 2014 USENIX Annual Technical Conference (ATC), pp. 305–319 (2014)

26. Paverd, A., Martin, A., Brown, I.: Modelling and automatically analysing pri-
vacy properties for honest-but-curious adversaries. Uni. of Oxford, Technical report
(2014)

27. Schnorr, C.P.: Efficient identification and signatures for smart cards. In:
Quisquater, J.J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
688–689. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_68

28. Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups.
IEEE Trans. Parallel Distrib. Syst. 11(8), 769–780 (2000)

29. Tseng, Y.M.: An improved conference-key agreement protocol with forward secrecy.
Informatica Lith. Acad. Sci. 16(2), 275–284 (2005)

30. Tseng, Y.M.: A communication-efficient and fault-tolerant conference-key agree-
ment protocol with forward secrecy. J. Syst. Softw. 80(7), 1091–1101 (2007)

31. Vukolić, M.: Hyperledger fabric: towards scalable blockchain for business. Technical
report, Trust in Digital Life 2016. IBM Research (2016)

32. Zhang, Q., et al.: A hierarchical group key agreement protocol using orientable
attributes for cloud computing. Inform. Sci. 480, 55–69 (2019)

https://doi.org/10.1109/ARES.2008.106
https://doi.org/10.1007/978-3-319-30840-1_2
https://doi.org/10.1007/3-540-46885-4_68

Tokenization of Real Estate Using
Blockchain Technology

Ashutosh Gupta1(B), Jash Rathod1(B), Dhiren Patel1(B), Jay Bothra2(B),
Sanket Shanbhag1(B), and Tanmay Bhalerao3(B)

1 VJTI Mumbai, Mumbai, India
{avgupta b17,jsrathod b17}@ce.vjti.ac.in, dhiren29p@gmail.com,

sanketshanbhag@gmail.com
2 HSBC, London, UK
jb202038@gmail.com

3 Autodesk India Pvt. Ltd., Mumbai, India
tsb2127@gmail.com

Abstract. Real estate is by far one of the most trusted investments
that people have preferred, being a lucrative investment it provides a
steady source of income in the form of lease and rents. Although there
are numerous advantages, one of the key downsides of real estate invest-
ments is lack of liquidity. Thus, even though global real estate invest-
ments amount to about twice the size of investments in stock markets,
the number of investors in the real estate market is significantly lower.
Blockchain technology has real potential in addressing the issues of liq-
uidity and transparency, opening the market to even retail investors.
Owing to the functionality and flexibility of creating Security Tokens,
which are backed by real-world assets, real estate can be made liquid
with the help of Special Purpose Vehicles. Tokens of ERC 777 standard,
which represent fractional ownership of the real estate can be purchased
by an investor and these tokens can also be listed on secondary exchanges.
The robustness of Smart Contracts can enable the efficient transfer of
tokens and seamless distribution of earnings amongst the investors. This
work describes Ethereum blockchain-based solutions to make the existing
Real Estate investment system much more efficient.

Keywords: Blockchain · Real estate · Ethereum · Tokenization ·
Security token · Special purpose vehicle

1 Introduction

Real estate is a unique and complex asset class. The commercial real estate
market makes up a significant economic global segment in terms of the asset
base and the transactional activity. Although the investment market for real
estate is huge, it has been dominated by a relatively closed network of firms
and organizations able to make large investments which are not liquid. Real
estate is different from various other asset classes as it involves high transaction
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 77–90, 2020.
https://doi.org/10.1007/978-3-030-61638-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_5

78 A. Gupta et al.

costs, land use regulations and other barriers to entry. These characteristics of
real estate have implications for the overall efficiency of the market. While there
have been improvements in the information flow and transaction set up and
completion – we are only at the initial few steps in terms of digitization [14]. A
significant portion of the digitized information is hosted on disparate systems,
which results in a lack of transparency and efficiency, and a higher incidence
of inaccuracies that creates a greater potential for fraud. There is still a lot of
improvement that can be made in real estate when it comes to the use of digital
technology and the representation of physical assets in digital forms.

Blockchain technology could enable the real estate industry to address these
inefficiencies and inaccuracies. Simply said, a blockchain is essentially a shared
and distributed database or ledger. Transactions are processed and bundled in
blocks and the blocks encrypted and cryptographically linked in a chain. The
processing takes place within a network of nodes – either public or private – with
a consensus design intended to decentralize authority such that no single source
is the sole decider of transactional integrity. Rather authority is decentralized
across the operators of the nodes, with each node validating and maintaining
verified copies of the ledger [18]. By recording and combining transactions into
a decentralized, secure ledger, a blockchain network creates a “chain” of chrono-
logical data that no one party has control of or can change and such that each
block and the individual transaction can be verified via cryptography. The trans-
action records are further protected by the replication of the data across nodes
allowing for multiple and verifiable sources of truth. The main contributions of
this paper are:

– Providing an approach for Real Estate Asset tokenization by using Ethereum,
thus making it liquid, secure and efficient.

– Extend the approach to provide an automated solution for the transfer of
tokens and distribution of earnings to investors.

The remainder of this paper is organized as follows: Section 2 describes the
existing system and its flaws. Section 3 discusses the preliminaries for this work.
Section 4 describes the proposed workflow and Sect. 5 elaborates on the imple-
mentation architecture. Finally, Sect. 6 concludes the paper and suggests direc-
tions for future scope.

2 Existing System and Its Flaws

Real estate is real and tangible property made up of land as well as anything on it
including natural resources, flora and fauna, and buildings. Any real estate falls
into one of the three categories - Residential, Commercial, and Industrial. One of
the traditional methods to invest in real estate is to buy land or property directly
through a real estate broker. Some of the advantages of real estate investments
are competitive risk-adjusted returns, high tangible asset value, and attractive
and stable income returns in the form of rent and leasing fees. Figure 1 depicts
the various ways to invest in real estate.

Tokenization of Real Estate Using Blockchain Technology 79

There are numerous drawbacks to traditional real estate investment. First of
all, the initial cost required to buy property is very high. Most of the investors are
not able to meet this required amount and hence cannot invest in real estate.
The system also suffers from a lack of liquidity. Real estate investments are
highly illiquid. To keep earning rental income from the underlying property,
the owner also has to find suitable tenants. One cannot sell a fraction of their
asset and have to sell the entire underlying asset. Moreover, there are generally
numerous intermediaries such as brokers, lawyers, etc. involved in the system.
The transaction costs associated with the real estate market are high and it
takes a lot of time for a real estate deal to get finalized. All these factors make
the system cumbersome and unattractive to a retail investor [2].

Another alternate method to invest in real estate is through Real Estate
Investment Trusts (REIT). A REIT is a trust, corporation or an association
that owns, or finances income-producing real estate and can be publicly listed
or privately owned [6]. The income of a REIT is generated through rent earned
from its owned-asset portfolio, interest earned by financing real estate assets or
sale proceeds upon sale of assets under management.

Fig. 1. Investment through A. REITs B. Traditional System C. Crowdfunding

Although REITs help to mitigate the problem of illiquidity in real estate, they
have several disadvantages. Historically, public REITs have had lower returns
than private REITs. They also trade on an average at a premium to the under-
lying Net Asset Value. The total value of the commercial real estate assets value
captured by the REITs is significantly smaller than the total Commercial Real
Estate market. Hence, a large number of commercial real estate is out of reach
for investors. Moreover, the retail investors are also dependent upon the REIT
managers and do not have the option of customizing their real estate exposure.
An investor might want access to a specific type of asset in a specific geogra-
phy and currently, REITs do not provide the benefit of such a granular level
of investment. Some REITs also incur high management and transaction fees,
leading to lower payouts for investors [13].

80 A. Gupta et al.

Crowdfunding is defined as a collection of equity and debt to be invested
in several kinds of projects through a web-based platform able to create oppor-
tunities by matching lenders and sponsors. The capital raised in real estate
crowdfunding is used in order to purchase, develop or refurbish a Real Estate
asset with the aim of subsequent use or transaction [1].

Real estate crowdfunding has failed to take off for multiple reasons. One of
the biggest reasons is the quality of assets listed on the crowdfunding platform.
When assets that were unable to raise capital through traditional means of the
financing end up on crowdfunding platforms. Other issues with crowdfunding
are multi-year lock-in periods required. This locks investor capital and even
with some platforms providing a secondary market for these assets this reduces
overall liquidity. Certain platforms allow investors to sell their holdings after one
year but these secondary markets are siloed [13]. All these factors make REITs
and crowdfunding undesirable for retail investors.

3 Preliminaries

3.1 Blockchain

Blockchain technology is a type of distributed ledger technology that uses a
Peer-to-Peer (P2P) network model consisting of immutable and time-stamped
records of data. This work employs the use of Ethereum blockchain. As the name
suggests, Blockchain is an append-only chain of blocks that are back-linked. It
was first introduced by Satoshi Nakamoto in [11]. Some of the main advantages
of this technology are security, immutability, decentralization, and transparency.
It uses public-key cryptography as the base for identifying users and granting
them access to their assets on chain stored in these wallets. Cryptographic hash
functions, or simply hash functions, are known to be one way, i.e., the input
cannot be deciphered from the hash value of the input. These are used to create
a tamper-proof record of any form of transactions on the ledger.

A blockchain system consists of users or computers which are called nodes
[11]. These nodes form the peers in the network. Any communication or sharing
of resources between two peers is called a transaction, like, in Bitcoin blockchain,
the transfer of bitcoins is called a transaction. A block is a collection of transac-
tions that are verified and added to the blockchain. A block consists of a block
header and a block body. The block header consists of a previous block hash as
one of its elements, which serves as a link to the previously added block and the
block body consists of the transactions. The validation of the transaction is done
by miners on the blockchain. These miners contend to solve a cryptographic hash
algorithm-based difficult mathematical puzzle. A consensus protocol enables all
the nodes of the network to reach a common agreement and ensures that there
is only one version of the truth that is agreed upon by all the nodes in the
Blockchain.

When a transaction occurs, it is broadcasted to the entire network. The
nodes in the network validate the transaction and the user’s status. A set of
verified transactions is considered to be added to the block. Miners solve the

Tokenization of Real Estate Using Blockchain Technology 81

mathematical puzzle and the one who solves it first broadcasts it to the entire
network and mines the new block on the blockchain. This new block is permanent
and unalterable. The new state of the blockchain is updated in the ledger present
with each node, and it is distributed to each and every node on the network, it
makes it decentralized.

3.2 Ethereum

Ethereum is a global, open-source platform for decentralized applications. It is a
specific blockchain-based software platform that enables the possibility of build-
ing and running smart contracts and Distributed Applications (DApps) [10].
Ether is the cryptocurrency asset employed in the Ethereum blockchain. In some
extent, Ether is the fuel for operating distributed applications over Ethereum.
Using this cryptocurrency, it is possible to make payments to other accounts or
to the machines executing some requested operation. Ether thus enables running
DApps, enabling smart contracts, generating tokens during Initial Coin Offer-
ing (ICOs), i.e., a type of funding using cryptocurrencies, and also for making
standard P2P payments.

A transaction on Ethereum consists mainly of five elements [17], namely,
From (sender), To (Receiver), Gas (fees to be paid for performing operations),
Data/Input (message), and Value (amount transferred in Wei). A consensus algo-
rithm is a procedure through which all the peers of the Blockchain network reach
a common agreement about the present state of the distributed ledger. Consen-
sus algorithms hence achieve reliability in the Blockchain network and establish
trust between unknown peers in a distributed computing environment. Proof of
Work (PoW) is a consensus algorithm that aims at solving a costly and time-
consuming mathematical puzzle for a new block to be added to the blockchain
and at the same time easy for other nodes to verify it. Proof of Stake (PoS)
concept states that a person can mine or validate block transactions according
to how many coins he or she holds. This means that the more cryptocurrency
owned by a miner, the more mining power he or she has. At present, Ethereum is
using Proof of Work. But, it is transitioning into using Proof of Stake eventually.

3.3 Smart Contracts

Smart contracts are portions of codes where the logic is implemented. Ethereum
provides a Turing complete programming language e.g. Solidity that allows cre-
ating programs and running them on the blockchain. When users send the trans-
actions, the portion of code is executed [8]. The execution of a smart contract
occurs when a miner includes a transaction in a block and re-run by every recip-
ient of this block upon arrival. These are open to all other users and once the
transactions are completed, they cannot be reversed. In this way, the merits
of the blockchain of immutability and cryptographically provided security are
further strengthened by the efficacy of smart contracts. Smart Contracts on
the Ethereum Network are generally written using the programming language

82 A. Gupta et al.

Solidity. This Solidity-based smart contract is compiled using Ethereum Vir-
tual Machine (EVM) bytecode and subsequently executed and deployed on the
Ethereum Blockchain [16].

3.4 Tokenization

The tokenization of assets refers to the process of issuing a blockchain token
(specifically, a security token) that digitally represents a real tradable asset [7].
Tokenization is in many ways similar to the traditional process of securitization.
These security tokens are created through a type of initial coin offering (ICO)
sometimes referred to as a security token offering (STO) to distinguish it from
other types of ICOs, which can produce different tokens such as equity, utility,
or payment tokens. An STO can be used to create a digital representation—
a security token—of an asset, meaning that a security token could represent
a share in a company, ownership of a piece of real estate, or participation in
an investment fund. These security tokens can then be traded on a secondary
market. The main benefits of tokenization of assets are:

– Liquidity - By tokenizing assets, the tokens can be then traded on a secondary
market of the issuer’s choice. This access to a broader base of traders increases
the liquidity [9].

– Faster and cheaper transactions - Because the transaction of tokens is com-
pleted with smart contracts, certain parts of the exchange process are auto-
mated. This automation can reduce the administrative burden involved in
buying and selling, with fewer intermediaries needed, leading to not only
faster deal execution but also lower transaction fees.

– Transparency - A security token is capable of having the token holder’s rights
and legal responsibilities embedded directly onto the token, along with an
immutable record of ownership. These characteristics promise to add trans-
parency to transactions, allowing you to know with whom you are dealing,
what your and their rights are, and who has previously owned this token.

– Accessibility - Importantly, tokenization could open up investment in assets to
a much wider audience thanks to reduced minimum investment amounts and
periods. Tokens are highly divisible, meaning investors can purchase tokens
that represent incredibly small percentages of the underlying assets.

3.5 Special Purpose Vehicle

A Special Purpose Vehicle is a separate legal entity created by an organization.
The Special Purpose Vehicle is a distinct company with its own assets and liabil-
ities, as well as its own legal status. Usually, a Special Purpose Vehicle is created
for a specific objective [3]. Special Purpose Vehicles can be viewed as a method
of distributing the risks of an underlying pool of exposures held by the Special
Purpose Vehicle and reallocating them to investors who want to take those risks.
This allows investors to be able to invest in those opportunities which would not
otherwise exist and provides an additional source of revenue generation for the

Tokenization of Real Estate Using Blockchain Technology 83

firm sponsoring the Special Purpose Vehicle. Some of the most common uses of
a Special Purpose Vehicle are:

– Securitization - Special Purpose Vehicles are the key characteristic of securi-
tization and are commonly used to securitize loans and other receivables.

– Asset Transfer - Many assets are either non-transferable or difficult to trans-
fer. By having a Special Purpose Vehicle own a single asset, the Special Pur-
pose Vehicle can be sold as a self-contained package, rather than attempting
to split the asset or assign numerous permits to various parties.

– Financing - A Special Purpose Vehicle can be used to finance a new venture
without increasing the debt burden of the firm sponsoring the Special Pur-
pose Vehicle and without diluting existing shareholders. The sponsor may
contribute some of the equity with outside investors providing the remainder.

3.6 Legal Aspects of Security Tokens, Smart Contracts, and Special
Purpose Vehicle

The Securities and Exchange Commission (the “SEC”) has regulatory authority
over the issuance or resale of any ethereum token or other digital asset that has
the characteristics of an “investment contract”. Under Securities Act § 2(a)(1)
and Securities Exchange Act § 3(a)(10), a security includes “an investment con-
tract.”. An “investment contract” has been defined by the U.S. Supreme Court
as an investment of money in a common enterprise with a reasonable expectation
of profits to be derived from the entrepreneurial or managerial efforts of others.
On September 11, 2018, the U.S. District Court for the Eastern District of New
York held that a digital token can be deemed to be a security under the Howey
test [5].

According to the Financial Conduct Authority (FCA) in their Policy State-
ment 19/22, the security tokens are within the regulatory parameter [4]. This
means that firms carrying on specified activities involving security tokens need
to ensure that they have the correct permissions and are following the relevant
rules and requirements.

To make the smart contract associated with the platform legally binding, we
can use the approach as suggested in [12]. The approach involves digitally signing
the legal contract by the different entities involved in the transaction. Once the
legal contracts have been signed, they are added to an immutable distributed
database such as the InterPlanetary File System (IPFS) and the hashes of these
legal documents are added to the smart contract. This ensures that the smart
contract was legally agreed upon by every party in the transaction and any
disputes can be upheld in a court of law.

The Special Purpose Vehicle owning the asset would be tokenized and the
shares of the Special Purpose Vehicle would be distributed to the token holders.
The Special Purpose Vehicle is treated as a corporation and is subject to laws
pertaining to the respective jurisdictions. A shareholder certificate can be pro-
vided to token holders. The token holders will have to comply with the respective
KYC/AML norms.

84 A. Gupta et al.

4 Proposed Workflow for Tokenizing Real Estate

The process involves background verification of users (asset owners and investors)
and registering them on the platform. Later, a Special Purpose Vehicle is cre-
ated which holds the title of the asset and is tokenized. The tokens are issued
initially through a security token offering and using smart contracts the monthly
distribution of the income generated by the asset is done to the investors. These
processes are described in detail below:

4.1 Registration of Entities

We propose a common platform where the asset owners can be connected with
the investors. Every Real estate owner, as well as the investors, will have to regis-
ter on the platform. A Know Your Customer (KYC) and Anti Money Laundering
(AML) verification for every user registered on the platform would be conducted
through a third-party provider. Basic details regarding the User’s identity would
need to be submitted by the user electronically to the platform. Once the KYC
and AML requirements are satisfied, the user can be able to access the services
of the platform.

Fig. 2. Registration of users on platform

4.2 Creation of Special Purpose Vehicle

Once an Owner of the property is registered, he/she can now submit the nec-
essary documents and paperwork in accordance with the local jurisdiction. A

Tokenization of Real Estate Using Blockchain Technology 85

Special Purpose Vehicle is created. The Special Purpose Vehicle would serve
as the legal owner of a real estate. Also, the Special Purpose Vehicle would be
responsible for the operation of the real estate or, in general, the underlying
assets. These operations can be the functioning of a hotel or renting the prop-
erty for commercial purposes. It is the Special Purpose Vehicle that would be
responsible to verify the documents with the concerned authorities. The Special
Purpose Vehicle is only created upon successful verification of the paperwork. In
case of any inconsistency with either the information of the asset or the Special
Purpose Vehicle, the entire deal is called off, on grounds of not complying with
legal formalities. The reason for opting for a Special Purpose Vehicle instead of
direct tokenization of an asset is that in most countries, directly tokenizing the
underlying asset is not possible due to the lack of legal and technical frameworks
for enabling the tokenization of property rights [15].

4.3 Tokenization and Smart Contract

Once everything is verified, the Special Purpose Vehicle is successfully created
and the process of tokenization can be proceeded with. It is the Special Purpose
Vehicle and not the underlying asset which would be tokenized. The tokens gen-
erated would represent shares of the Special Purpose Vehicle. It means that every
token holder would have some percentage of ownership in the Special Purpose
Vehicle based on the number of tokens they hold. From the legal perspective, the
ownership of these Security Tokens is guaranteed owing to an Special Purpose
Vehicle that we establish for each of our clients. The Security Tokens issued are
an economic right to share the profits of the Special Purpose Vehicle.

It is at this stage that the crypto tokens are actually minted on the Ethereum
blockchain of ERC 777 standard. These security tokens, which are blockchain
native, are now a representation of the fractional ownership of the Special Pur-
pose Vehicle and by extension the asset. Subsequently, these tokens must be
embedded with subjected regulation on a Smart Contract. The underlying Smart
Contract would contain the entire business logic of transfer of ownership and val-
idating the users and transactions. Moreover, the use of a Smart Contract can
be further extended to incorporate additional features of the token.

4.4 Security Token Offering (STO)/Initial Coin Offering (ICO)

Once the Special Purpose Vehicle has been tokenized, the tokenized securities
will be issued to the investors through a Security Token Offering. Unlike the
tokens issued through an ICO, Security tokens are backed by an asset. Hence,
the tokens of Special Purpose Vehicle would be issued through an STO. The
asset would be listed on the platform. Target price and the number of tokens
would be set based on the value of the asset. The registered user will be able to
view all the asset features such as the location, cost, expected returns and other
details of the asset on the platform. Once the user decides to purchase the token
of the given asset, they will pay the required amount based on the number of
tokens purchased.

86 A. Gupta et al.

Fig. 3. Tokenization of real estate

If the STO is successful, which means if the STO is able to raise the required
target amount of funds, the investors will receive their corresponding tokens and
the asset title would transfer in the name of the Special Purpose Vehicle offline.
Whereas, if the STO is not successful and is unable to raise the required amount
necessary to purchase the asset, the amount paid by the existing investors would
be refunded and the title ownership would still lie in the name of the original
asset owner.

Once the investors have received their tokens, they would be able to benefit
from the monthly returns of the tokens as well as from the capital appreciation
due to the rise in token value. Since the implemented token is based on Ethereum
and is of the ERC 777 standard, the investors can also freely sell these tokens in
the secondary market via different exchanges where the tokens can be traded.
This ability of trading the tokens ensures liquidity to the investors.

4.5 Distribution of Dividends to the Investors

As discussed earlier, the real estate can be used for various purposes. It could be
rented for commercial or residential purposes or it could be a hotel business. In
any case, revenue can be generated from the asset. The profits can be distributed
to the investors in the proportion of the number of tokens they own. This system
can be automated and efficiently implemented using a smart contract. The smart
contract can have the functionality of calculating the percentage of ownership
and smoothly transfer the proportion of profits to the investor without any scope
for frauds or discrepancies. Along with functionality for dividends’ distribution,
additional features for voting of investors in case of any decision taking can also
be implemented.

Tokenization of Real Estate Using Blockchain Technology 87

Fig. 4. Distribution of dividends to ivestors

5 Implementation Architecture of the Proposed System

The platform will be based on the ethereum blockchain which allows us to use
smart contracts. The security tokens which are backed by the shares of the
Special Purpose Vehicle will be embedded in the smart contract. The tokens will
follow the ERC 777 standard protocols. ERC 777 standard defines a common
list of rules which all ethereum tokens must adhere to.

ERC 777 defines 13 different functions for the benefit of other tokens within
the Ethereum system. The Thirteen functions defined by the ERC 777 are:

– name() - This function returns the name of the token in string format
– symbol() - This function returns the symbol of the token in string format
– totalSupply() - This function identifies the total number of tokens created
– balanceOf() - The balanceOf function returns the number of tokens that a

particular address, in this case, the contract owner, has in their account.
– granularity() - This function gets the smallest part of the token that’s not

divisible. The granularity is the smallest amount of tokens (in the internal
denomination) which may be minted, sent or burned at any time.

– defaultOperators() - It gets the list of default operators as defined by the
token contract

– isOperatorFor() - This function indicates whether the operator address is an
operator of the holder address.

– authorizeOperator() - This function sets a third party operator address as an
operator of the sender to send and burn tokens on its behalf.

– revokeOperator() - This function removes the right of the operator address
to be an operator for sender and to send and burn tokens on its behalf.

– send() - This function sends the amount of tokens from the address of the
sender to the address of the recipient.

– operatorSend() - This function sends the given amount of tokens on behalf of
the address of sender to the receiver.

88 A. Gupta et al.

– burn() - This function burns the given amount of tokens from the address of
the sender.

– operatorBurn() - This function burns the amount of tokens on behalf of the
address given.

Altogether, this set of functions and signals ensures that Ethereum tokens of
different types will uniformly perform in any place within the Ethereum system.
As such, nearly all of the digital wallets which support the ether currency also
support ERC 777 compliant tokens. Following the ERC 777 standard for the
tokens would allow the tokens to be listed and traded in numerous secondary
market exchanges that are compatible with ERC 777 tokens.

Algorithm 1. Transfer Tokens
Input: recipient address

tokens
function transfer :
1: if (recipient address �= stakeholder or

Balance of msg.sender < tokens) then
2: Abort session
3: else
4: Debit tokens from account of msg.sender
5: Credit tokens to account of recipient address
6: Emit tokens is transferred from msg.sender to

recipient address
7: end if

On top of these above listed six functions, a function for Asset income distri-
bution is also implemented in the smart contract. The algorithm takes as input
the accumulated wealth which denotes the income accumulated by the Special
Purpose Vehicle over the years and the income which denotes the income of the
Special Purpose Vehicle during the current month. The algorithm is invoked
by the Special Purpose Vehicle at the end of each month. The algorithm first
verifies whether the account which invoked the contract is the Special Purpose
Vehicle. Then for every token holder it calculates the proportion of tokens that
the token holder owns and calculates the dividend distributed to them accord-
ingly. The contract then credits the dividend into each token holders account.
A transaction is emitted to the blockchain stating the respective dividend has
been credited in the Tokenholder’s account.

Tokenization of Real Estate Using Blockchain Technology 89

Algorithm 2. Distribution of Dividends
Input: accumulated wealth

income
function distribute:
1: if (msg.sender �= Special Purpose Vehicle) then
2: Abort session
3: else
4: for every token holder do
5: Calculate Percentage of ownership (percent own)
6: dividend = income * percent own
7: accumulated wealth - dividend
8: Balance of token holder = Balance of token holder + dividend
9: end for

10: Emit dividends distributed to token holders
11: end if

6 Conclusion

In this paper, we present an approach to introduce liquidity in a real estate
investment by leveraging the use of Blockchain technology. We have used a Spe-
cial Purpose Vehicle for the purpose of holding the underlying asset. Special
Purpose Vehicle is tokenized and is providing the investors the flexibility to
purchase ERC 777 standard security tokens as per their convenience. A Smart
Contract is developed for the transfer of tokens and also an automated solution
for distribution of dividends is implemented.

The future directions for this work focus on using a Decentralized
Autonomous Organization (DAO) instead of a Special Purpose Vehicle to fur-
ther improve decentralization. We can also provide functionality for additional
features like voting and loyalty rewards for token holders. Moreover, each token
can also be structured to represent ownership in the Special Purpose Vehicle
which not only owns a single asset but holds the title for multiple assets belong-
ing to the same class. For example, tokens can be made to represent shares of a
Special Purpose Vehicle which holds two or more assets.

References

1. Ey-real estate crowdfunding-march 2019.pdf. https://www.ey.com/
Publication/vwLUAssets/Real Estate Crowdfunding/$FILE/EY-Real%20Estate
%20Crowdfunding-March%202019.pdf. Accessed 14 May 2020

2. Icorating.com. https://icorating.com/upload/whitepaper/yNnaV9f5nFjxrcMukahy
rzKBBvdIEyufEC2AoAT0.pdf. Accessed 14 May 2020

3. The next chapter: creating an understanding of special purpose vehi-
cles. https://www.pwc.com/gx/en/banking-capital-markets/publications/assets/
pdf/next-chapter-creating-understanding-of-spvs.pdf. Accessed 14 May 2020

4. Ps19/22: Guidance on cryptoassets. https://www.fca.org.uk/publication/policy/
ps19-22.pdf. Accessed 14 May 2020

https://www.ey.com/Publication/vwLUAssets/Real_Estate_Crowdfunding/$FILE/EY-Real%20Estate%20Crowdfunding-March%202019.pdf
https://www.ey.com/Publication/vwLUAssets/Real_Estate_Crowdfunding/$FILE/EY-Real%20Estate%20Crowdfunding-March%202019.pdf
https://www.ey.com/Publication/vwLUAssets/Real_Estate_Crowdfunding/$FILE/EY-Real%20Estate%20Crowdfunding-March%202019.pdf
https://icorating.com/upload/whitepaper/yNnaV9f5nFjxrcMukahyrzKBBvdIEyufEC2AoAT0.pdf
https://icorating.com/upload/whitepaper/yNnaV9f5nFjxrcMukahyrzKBBvdIEyufEC2AoAT0.pdf
https://www.pwc.com/gx/en/banking-capital-markets/publications/assets/pdf/next-chapter-creating-understanding-of-spvs.pdf
https://www.pwc.com/gx/en/banking-capital-markets/publications/assets/pdf/next-chapter-creating-understanding-of-spvs.pdf
https://www.fca.org.uk/publication/policy/ps19-22.pdf
https://www.fca.org.uk/publication/policy/ps19-22.pdf

90 A. Gupta et al.

5. Securities. https://blockchainlawguide.com/securities/. Accessed 14 May 2020
6. Tokenisation report.pdf. https://www.sbs.ox.ac.uk/sites/default/files/2020-01/

Tokenisation%20Report.pdf. Accessed 14 May 2020
7. The tokenization of assets is disrupting the financial industry. https://

www2.deloitte.com/content/dam/Deloitte/lu/Documents/financial-services/
lu-tokenization-of-assets-disrupting-financial-industry.pdf. Accessed 14 May 2020

8. Atzei, N., Bartoletti, M., Cimoli, T., Lande, S., Zunino, R.: SoK: unraveling bitcoin
smart contracts. In: Bauer, L., Küsters, R. (eds.) Principles of Security and Trust,
vol. 10804, pp. 217–242. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89722-6 9. http://link.springer.com/10.1007/978-3-319-89722-6 9

9. Blankenship, M.J., Howard, C.B., Lopez, R.: The tokenization of real estate-how
blockchain technology will impact real estate, p. 2. https://www.lockelord.
com/-/media/files/newsandevents/publications/2019/07/fintech20190729the-
tokenization-of-real-estatelope/fintech20190729the-tokenization-of-real-
estatelope.pdf?la=en&hash=A784B2ACC54B61202956ECFE2CC27E7A

10. Buterin, V.: A Next Generation Smart Contract & Decentralized Application Plat-
form, p. 36 (2009)

11. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, p. 9 (2009)
12. Patel, D., Shah, K., Shanbhag, S., Mistry, V.: Towards legally enforceable smart

contracts. In: Chen, S., Wang, H., Zhang, L.-J. (eds.) ICBC 2018. LNCS, vol.
10974, pp. 153–165. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94478-4 11

13. Smith, J., Vora, M., Benedetti, D.H., Yoshida, K., Vogel, Z.: Tokenized securities &
commercial real estate, p. 46. https://mitcre.mit.edu/wp-content/uploads/2019/
11/Tokenized-Security-Commercial-Real-Estate2.pdf

14. Thota, S.: Blockchain for real estate industry. J. Soc. Sci. Re. (52), 53–
56 (2019). https://doi.org/10.32861/sr.52.53.56. https://arpgweb.com/journal/
10/archive/02-2019/2/5

15. Uzsoki, D.: Tokenization of infrastructure: a blockchain-based solution to financ-
ing sustainable infrastructure, p. 45. https://www.iisd.org/sites/default/files/
publications/tokenization-infrastructure-blockchain-solution.pdf

16. Vujicic, D., Jagodic, D., Randic, S.: Blockchain technology, bitcoin, and Ethereum:
a brief overview. In: 2018 17th International Symposium INFOTEH-JAHORINA
(INFOTEH), pp. 1–6. IEEE, East Sarajevo (2018). https://doi.org/10.1109/
INFOTEH.2018.8345547. https://ieeexplore.ieee.org/document/8345547/

17. Wood, D.G.: Ethereum: a secure decentralised generalised transaction ledger. eip-
150 revision, p. 32 (2012)

18. Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: An overview of blockchain
technology: architecture, consensus, and future trends. In: 2017 IEEE Interna-
tional Congress on Big Data (BigData Congress), pp. 557–564. IEEE, Honolulu,
June 2017. https://doi.org/10.1109/BigDataCongress.2017.85. http://ieeexplore.
ieee.org/document/8029379/

https://blockchainlawguide.com/securities/
https://www.sbs.ox.ac.uk/sites/default/files/2020-01/Tokenisation%20Report.pdf
https://www.sbs.ox.ac.uk/sites/default/files/2020-01/Tokenisation%20Report.pdf
https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/financial-services/lu-tokenization-of-assets-disrupting-financial-industry.pdf
https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/financial-services/lu-tokenization-of-assets-disrupting-financial-industry.pdf
https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/financial-services/lu-tokenization-of-assets-disrupting-financial-industry.pdf
https://doi.org/10.1007/978-3-319-89722-6_9
https://doi.org/10.1007/978-3-319-89722-6_9
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-319-89722-6_9
https://www.lockelord.com/-/media/files/newsandevents/publications/2019/07/fintech20190729the-tokenization-of-real-estatelope/fintech20190729the-tokenization-of-real-estatelope.pdf?la=en&hash=A784B2ACC54B61202956ECFE2CC27E7A
https://www.lockelord.com/-/media/files/newsandevents/publications/2019/07/fintech20190729the-tokenization-of-real-estatelope/fintech20190729the-tokenization-of-real-estatelope.pdf?la=en&hash=A784B2ACC54B61202956ECFE2CC27E7A
https://www.lockelord.com/-/media/files/newsandevents/publications/2019/07/fintech20190729the-tokenization-of-real-estatelope/fintech20190729the-tokenization-of-real-estatelope.pdf?la=en&hash=A784B2ACC54B61202956ECFE2CC27E7A
https://www.lockelord.com/-/media/files/newsandevents/publications/2019/07/fintech20190729the-tokenization-of-real-estatelope/fintech20190729the-tokenization-of-real-estatelope.pdf?la=en&hash=A784B2ACC54B61202956ECFE2CC27E7A
https://doi.org/10.1007/978-3-319-94478-4_11
https://doi.org/10.1007/978-3-319-94478-4_11
https://mitcre.mit.edu/wp-content/uploads/2019/11/Tokenized-Security-Commercial-Real-Estate2.pdf
https://mitcre.mit.edu/wp-content/uploads/2019/11/Tokenized-Security-Commercial-Real-Estate2.pdf
https://doi.org/10.32861/sr.52.53.56
https://arpgweb.com/journal/10/archive/02-2019/2/5
https://arpgweb.com/journal/10/archive/02-2019/2/5
https://www.iisd.org/sites/default/files/publications/tokenization-infrastructure-blockchain-solution.pdf
https://www.iisd.org/sites/default/files/publications/tokenization-infrastructure-blockchain-solution.pdf
https://doi.org/10.1109/INFOTEH.2018.8345547
https://doi.org/10.1109/INFOTEH.2018.8345547
https://ieeexplore.ieee.org/document/8345547/
https://doi.org/10.1109/BigDataCongress.2017.85
http://ieeexplore.ieee.org/document/8029379/
http://ieeexplore.ieee.org/document/8029379/

AIHWS – Artificial Intelligence in
Hardware Security

Practical Side-Channel Based Model
Extraction Attack on Tree-Based

Machine Learning Algorithm

Dirmanto Jap1, Ville Yli-Mäyry2, Akira Ito2, Rei Ueno2, Shivam Bhasin1(B),
and Naofumi Homma2

1 Nanyang Technological University, Singapore, Singapore
{djap,sbhasin}@ntu.edu.sg

2 Tohoku University/CREST, Sendai, Japan
{ville,ito,ueno,homma}@riec.tohoku.ac.jp

Abstract. Machine learning algorithms have been widely applied to
solve various type of problems and applications. Among those, decision
tree based algorithms have been considered for small Internet-of-Things
(IoT) implementation, due to their simplicity. It has been shown in a
recent publication, that Bonsai, a small tree-based algorithm, can be
successfully fitted in a small 8-bit microcontroller. However, the security
of machine learning algorithm has also been a major concern, especially
with the threat of secret parameter recovery which could lead to breach
of privacy. With machine learning taking over a significant proportion
of industrial tasks, the security issue has become a matter of concern.
Recently, secret parameter recovery for neural network based algorithm
using physical side-channel leakage has been proposed. In the paper, we
investigate the security of widely used decision tree algorithms running
on ARM Cortex M3 platform against electromagnetic (EM) side-channel
attacks. We show that by focusing on each building block function or
component, one could perform divide-and-conquer approach to recover
the secret parameters. To demonstrate the attack, we first report the
recovery of secret parameters of Bonsai, such as, sparse projection param-
eters, branching function and node predictors. After the recovery of these
parameters, the attacker can then reconstruct the whole architecture.

1 Introduction

With the growing trend of machine learning (ML) across various fields and appli-
cation, the security of ML has been thoroughly scrutinized. Recently, a new type
attack against ML using side-channel attacks (SCA) have been reported [1,5,11].
These attacks have shown it is possible to recover the trained ML model which
is usually intellectual property, and the leak of which leads to monetary losses.
Attacks that enable the theft of ML intellectual property have only be shown
for complex ML algorithms like multilayer perceptron (MLP) or convolutional
neural network (CNN). However, security of other widely used algorithms for

c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 93–105, 2020.
https://doi.org/10.1007/978-3-030-61638-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_6

94 D. Jap et al.

resource constrained platforms is still highly unexplored. To highlight the impor-
tance, ML algorithm, such as decision trees are widely used in industrial environ-
ments, especially in Industrial internet of things (IIoT), for anomaly detection
and quality assurance of the supply chain. Under industry 4.0, IIoT relies upon
small edge devices deployed over industrial site to perform crucial tasks. For
example, quality assessment of manufactured products is often done with in the
supply line by small sensor modules running ML algorithms. Given the task,
reaction time and available resources on sensors, simpler ML algorithms are
often used like decision trees. Several optimizations of supply chain and smart
manufacturing have been proposed based on decision trees [12]. The algorithms
are highly optimized to improve the supply chain and thus remain crucial pro-
prietary information. Thus, in this paper, we assess the security of decision tree
ML algorithm against electromagnetic (EM) SCA. We investigate some pub-
lic libraries for decision tree implementation, and analyze potential exploitable
leakages in the implementation.

1.1 Related Works

As per the authors’ best knowledge, there has been no work so far investigating
the SCA vulnerabilities of decision tree algorithms. Indeed, SCAs on ML imple-
mentations are relatively new, and most of the reported attacks are focusing
so far on more popular MLP or CNN implementations. For example, Hua et
al. [5] demonstrate recovery of CNN secret parameters by targeting zero prun-
ing using cache leakage. Another work, by Wei et al. [11], shows input recovery
attack via EM side-channel targeting a special architecture called line buffers.
Recently, Batina et al. [1] proposed a generic and systematic reverse engineering
of deep neural networks via EM side-channel. The attack recovers parameters
like number of layers, number of neurons in each layer, activation function, CNN
kernel size etc. As such, these works illustrate the potential of SCA based attacks
against ML in general.

1.2 Contributions

This work follows the attack methodology presented in [1], namely using divide-
and-conquer approach to recover the parameters for each operation. In this
paper, we investigate the security of decision tree based ML algorithms against
SCA through EM emanation. With a divide-and-conquer approach, it is possible
to recover different secret parameters, one at a time. In other words, the pro-
posed methodology can be considered as a model extraction attack on tree-based
algorithms. Thus, another important point is to first identify crucial targets to
recover in the decision tree followed by practical demonstration of parameter
recovery. To the best of our knowledge, this is the first work that targets a
tree-based ML algorithm.

Model Extraction Attack on Tree-Based Machine Learning Algorithm 95

2 Background

In this section, we provide basic background about decision trees as well as
Bonsai, which will be the main target for the investigation. We provide a brief
description of the target algorithm and the attack methodology. For the attack,
we consider variants of side-channel attacks (SCA) and recall general basics
about profiling and non-profiling based SCA.

2.1 Decision Tree

Decision tree [2] is a classification, as well as regression algorithm, which can
be illustrated as a tree structure with if-else rules, starting from top to bottom,
based on the attributes or features split. In contrast to other more complex
learning algorithm, decision tree is relatively simple, and is easy to understand.
However, decision tree is also sensitive to small changes in the training data. The
decision tree that is grown large enough will usually tend to overfit the training
data, i.e., having low bias, but with high variance trade-off. Hence, some post-
processing methods such as pruning are sometimes required after construction
of the decision tree.

2.2 Bonsai

Bonsai [8] is designed for efficient Decision Tree prediction on IoT devices. In
the paper, the authors reported the implementation of Bonsai on Arduino Uno
board, mounting an 8-bit ATmega328P microcontroller, operating at 16 MHz
with no native floating point support, 2 KB RAM and 32 KB read-only flash. The
implementation is reported to minimize the model size while still maintaining
the prediction accuracy. To achieve the efficiency, the tree model is trained to
learn a single, shallow, sparse tree with powerful nodes. To fit in the board, the
model is also trained to sparsely project all data into a low-dimensional space
in which the tree is learned. Both internal and leaf nodes in Bonsai are also
tailored to make non-linear predictions, by summing individual node predictions
along the path. This allows sharing of the parameters along paths to reduce the
model size. Using these techniques, Bonsai can achieve the accuracy of non-linear
classifiers while still maintaining the model size of a typical linear classifier.

The prediction for a point x are given by

y(x) = ΣkIk(x)W�
k Zx ◦ tanh(σV �

k Zx) (1)

where ◦ denotes element-wise Hadamard product, σ denotes used defined
hyper-parameter, Z is a sparse projection matrix from higher input dimension
to lower space. Ik, Wk and Vk are Bonsai parameters, where Ik(x) is an indica-
tor function determining path taken by x, and Wk and Vk are sparse predictors
learned at node k. The indicator function Ik is computed by learning sparse
vector θ at each internal node. After the learning, the sign of θ�Zx determines
whether point x should be branched to the node’s left or right child. The pseu-
docode of Bonsai is presented in Algorithm 1.

96 D. Jap et al.

2.3 Side-Channel Attacks (SCA)

Even though in theory the algorithm is secure, in practice, the implementa-
tion might leak some information physically (referred to as side-channel). Side-
Channel Attacks (SCA) [7], widely used in physical security domain, can also be
used to exploit leaked information from these models. SCA can be further clas-
sified as profiling or non-profiling based. In profiling based attacks, the attacker
is assumed to have capability to learn from a similar device (clone device) and
use the learned model when attacking the actual target device. For non-profiling
based attack, the attacker only collects data/traces from the target device when
sensitive computation is running, and then performs statistical analysis based
on leakage models like Hamming weight or distance to recover the target secret.

Algorithm 1: Pseudocode of Bonsai
Data: Training Input: X, Parameter: Z, V, W, θ, depth
Result: Class label c

1 node = 0, n = 0, score = 0;
2 X = Z | ∗ | X ;
3 X = X - mean;
4 while n < depth do
5 W0 = W[node] * X;
6 V0 = V[node] * X;
7 V0 = tanh(V0);
8 X0 = W0 ◦ V0;
9 θ0 = θ[node] * X;

10 node = (θ0 >0)? ((2*node)+1):((2*node)+2);
11 score = score + X0;
12 n = n+1;

13 end
14 c = argmax(score);

Correlation Power Analysis (CPA). With access to known inputs (or out-
puts), the adversary maps them to a function with a fixed unknown (or secret)
constant. The adversary can then observe the side-channel leakage of the result-
ing computation. The adversary, assuming that the leakage is following specific
leakage model, then builds a hypothetical leakage set for all possible value of the
constant, given the knowledge of the inputs. For every hypothetical constant, the
outputs are correlated with the actual observed side-channel leakage. The hypo-
thetical constant value which leads to the highest (absolute) correlation value is
then deemed to be the correct unknown recovered by the attack. In SCA, the
attack is considered successful if the correct constant can be distinguished from
the incorrect constant values. In other words, if the guessed values are ranked
based on the correlation value, the attack is successful if the correct guess is
ranked the highest. For the choice of leakage model, the most commonly used

Model Extraction Attack on Tree-Based Machine Learning Algorithm 97

is Hamming weight or Hamming distance model [10]. In this work, Hamming
weight leakage model is used, since it is the commonly observed leakage model
in microcontroller or software implementation [9]. The model directly represents
leakages due to loading on sensitive data into a pre-charged data bus.

Template Attacks (TA). In TA, the adversary is assumed to have full (or at
least, some level of) control over the device similar to the target. The adversary
then identifies some leakage points and builds a template for each possible values.
The template for each value typically consists of sample mean vector and sample
covariance matrix, computed based on the training data having that value. In
the matching or attack phase, the adversary measures a new trace from the
target device where secret is unknown and calculates the probability for each
value, based on the built templates. The trace will be grouped to the value in
which highest probability is achieved leading to recovery of the secret.

3 Attack Overview

In this section, the attack methodology will be detailed. To begin, the target
implementation will be studied. Based on preliminary investigation, vulnerable
operations will be identified, and different possibility of attacks will be investi-
gated for each vulnerable operation. Finally, after recovering each secret param-
eters by targeting different parameters, the whole trained model can be recon-
structed.

3.1 Measurement Setup and Target Library

As mentioned earlier, for the target implementation, we consider Bonsai, a pub-
licly available library for tree-based ML algorithms which can be fitted into low-
end IoT devices, such as AVR ATmega328p and ARM Cortex-M3. The model
can be trained offline, and the resulting model can be exported to IoT device
for deployment1. For the attacker model, the adversary is assumed to be a mali-
cious client who legally acquires a copy (or few) of licensed ML models, and then
relies on reverse engineering to recover the model to avoid paying for additional
licences. As the target is a licensed copy, the adversary can feed known inputs
and observe the side-channel leakage. As stated earlier, the reverse engineering
is conducted by observing EM side-channel leakage, since it can achieve bet-
ter precision and localization. For the following experiments, the target board
is Arduino Due with ARM Cortex M3 as an IoT device with 512 KB flash,
96 KB SRAM and 84 MHz operating frequency. The choice of board is due to
the reason that the board is more widely deployed and more powerful than the
example given by the library, the Arduino Uno. Hence, the trained model can
simply be adopted for the targeted platform. The measurements are captured
using RF-U 5-2 near-field EM probe from Langer as shown in Fig. 1, on a Lecroy

1 The source code is publicly available at: https://github.com/microsoft/EdgeML.

https://github.com/microsoft/EdgeML

98 D. Jap et al.

WaveRunner 610zi oscilloscope. A 30 dB pre-amplifier is also used for improv-
ing measurement quality. A preliminary investigation with known fixed data is
conducted to find the best spot for attack. A grid search is performed, where
different probe positions are tested. A single look up table operation is executed,
and position which gives the highest SNR is chosen. Based on preliminary timing
investigation, on average, one classification will take around 3–5 s, including the
serial communication. Since there are conditional branching, the timing behavior
is not constant. The strategy of the attacker is then to focus the attack on each
individual layer, using the information recovered in one layer to attack the next
layer. Due to time constraint, a total number of 100, 000 traces are collected.

Fig. 1. Experimental setup depicting the placement of EM probe over targeted ARM
Cortex-M3 microcontroller running Bonsai Library

For the training, a shallow decision tree will be trained on Bonsai with the
USPS handwritten digit dataset [6]. This is the same dataset used in the demo
example for Bonsai. The model is trained on this dataset, and then downloaded
to ARM Cortex-M3. Thus, the key model parameters like depth, branching func-
tion, node predictors etc. for the deployed model are fixed. As the depth of the
tree can be easily guessed by checking the inference execution time, we consider
it to be a known parameter. For testing, the adversary will consider only random
numbers as inputs, without limiting to a specific dataset, as it is not required

Model Extraction Attack on Tree-Based Machine Learning Algorithm 99

for the analysis. In an attack against Bonsai, the adversary can assume that the
trained parameters are secret, and the normalization factors are known for the
input, and thus, the recovery targets can be identified.

3.2 Identification of Sensitive Parameters

Some of trained Bonsai parameters can be identified by analyzing the parameter
description. The main secret parameters of the model are Z, θ, V,W , which are
sparse projection parameters, branching function and node predictors. The sparse
projection is to map higher dimensional features to lower dimension to allow
better fit for IoT devices. The sparse projection matrix, Z, when implemented,
can be split into Zval and Zidx, the value and index, rather than full matrix,
to further reduce the overhead. As for the branching function, at each layer,
the θ parameter determines which direction the node will branch. At each node
in the path traversed by the input, a vector score for each class is computed
using the learned parameter matrices V and W , so that each node predicts the
vector W�

k Zx ◦ tanh(σV �
k Zx) (see Eq. (1)). The predictions are then summed,

and the class with highest score is returned as predicted label. As per Bonsai’s
documentation, the functional form of the node predictor was chosen empirically.

In general, these parameters are used in separate functions throughout the
algorithm (refer to Algorithm 1). For example, the node predictor parameters are
typically used in matrix multiplication, and hence, each individual multiplication
can be individually targeted. Rather than showing the recovery of each parameter
individually, we consider to report the attack for the critical operations, in which
the parameters are involved. Hence, the operations are the main target to be
reversed for recovering the model. We have identified three basic operations in
which these parameters are used during the computations. These operations
are: 1) fixed point multiplication (involving parameter V,W,Zval, θ), 2) loading
of the index (when loading the parameter Zidx) and 3) conditional branching (to
determine the path traversed by the input). For each operation, we analyse and
adopt different side-channel methodology strategy to recover the corresponding
parameter.

3.3 General Attack Flow

In general, after the adversary has identified the target operations, the adversary
can initiate the attack in a top-down manner. The assumption is that adversary
has control over the input data, either through test data similar to training
set, or randomly chosen data, as the output label does not impact the attack
process. Also, in this case, the attacker is assumed to know fixed data, such as
normalization mean for the input, as well as the depth of the tree. For Bonsai,
assuming that the procedure is executed sequentially2, the attacker can then

2 An example of a trained model can be found on: https://github.com/microsoft/
EdgeML/tree/master/tools/SeeDot/seedot/arduino.

https://github.com/microsoft/EdgeML/tree/master/tools/SeeDot/seedot/arduino
https://github.com/microsoft/EdgeML/tree/master/tools/SeeDot/seedot/arduino

100 D. Jap et al.

recover the parameter by attacking the operation starting from the root all the
way to the leaf of the tree, based on the sequence in Algorithm 1.

In Fig. 2, we have illustrated the general flow of the attack. As mentioned
earlier, we do the attacks as described previously starting from the root node.
In this case, we can use all the traces collected, and we can first recover the
sparse projection matrix (Zval and Zidx) and then recover the first row of the
matrices (W,V, T). Afterwards, using this information, once we have recovered
the branching, we can move on to the next row. However, due to the branching,
not all of the traces or data can be used in the next layer. Due to the splitting of
the data during the branching (when deciding the next node path), the dataset
used will also be split normally. Hence, when treating the next branch node (left
or right), the adversary can treat it as a new root node, and repeat the process,
albeit with lesser number of traces. Note that for parameter W,V, T , there are 3
dimensions of interest: 2depth − 1 as number of rows, number of class labels, and
projected features (28 for this dataset).

Fig. 2. Attack flow illustration

4 Experimental Results

In this section, we present the recovery process for each sensitive parameter
individually in a divide-and-conquer manner. After each parameter has been
recovered, the results can be combined in which finally leads to a full recovery
of the model.

4.1 Recovering Sparse Projection Parameters and Node Predictors

The operation for node predictor is normally expressed as matrix multiplica-
tion. The matrix multiplication itself can be expressed as sequence of individual
fixed-point multiplications, between known user defined input and secret tar-
geted parameter. The user defined input could either be the chosen or random
input to the tree. The secret target parameter is a constant value, an element
of the targeted matrix (V, W, θ). This is indeed similar scenario to known

Model Extraction Attack on Tree-Based Machine Learning Algorithm 101

plaintext attack method in SCA and we use correlation power analysis (CPA)
analysis [3], but utilize electromagnetic emanations from the device instead of
power consumption information as the information leakage source. We use CPA
to statistically recover the secret node predictor over several EM measurements
with known but varying inputs.

Fig. 3. The results of attack on signed multiplication using CPA and attack on index
loading using TA

CPA for Fixed-Point Multiplication. In Bonsai, the fixed point length can
be of 8-bit or 16-bit, so the no. of hypotheses is either 28 or 216. The attack is
successful if the correct values for each element in the matrix (sparse projection
or node predictor) can be recovered. In terms of SCA, this can be achieved if
each correct value achieves higher correlation in comparison to incorrect values.
The attack results are shown in Fig. 3a for 16-bit data type (harder of the two
cases). In this case, we only show the recovery of one constant. The procedure
can be repeated until all constant values in the targeted matrices are recovered.

102 D. Jap et al.

The black line depicts the correct value, which shows higher correlation than
best of incorrect values, depicted in red (the incorrect values with highest cor-
relation). Due to the property of fixed point multiplication, the correct weight
and its logical complement will show same absolute correlation with opposite
polarity, due to linearity of the multiplication operation. Thus, the attacker can
either brute force for the polarity of the weights or bias the inputs carefully to
recover the exact weight. In this case, 1,000 traces will be sufficient. However, in
practice, the attacker usually prefers to recover the unique constant candidate.
This can be achieved by introducing minor bias in the input data, and with
100,000 measurements, it is possible to recover the correct key candidate from
its wrong but complement hypothesis.

The difference generally comes from the bias in data distribution. In this case,
if the distribution is uniformly balanced, the correct constant and its complement
will both have the same maximum (absolute) correlation, hence, by removing
some positive (or in this case, negative) trace to cause imbalance, it allows the
attacker to distinguish the correct constant values. The bias introduced is that
there are more positives input than negatives to skew the correlation result. It
can be done by removing few traces corresponding to negative input value to
make the distribution imbalanced. Hence, in this case, each constant value can
be recovered individually to partially reconstruct the matrices. For the matrix
multiplication to speed up the operation, conditional branching might be intro-
duced. If the constant in the matrix is 0, it can be skipped, and hence, by noting
the timing difference, the adversary can easily identify the zero entries in the
matrix. One of the challenges is the number of available training data. For the
root node, all the training data can be used, however, once the branching is
involved, the data will be split. For example, in the next layer, approximately
only half of the data is available for each of the node (see Fig. 2). As such, the
more depth the tree has, the more training data is required.

In summary, for each constant entry in the matrix, 1, 000 traces is sufficient
for GE = 2, and by introducing small bias, to achieve GE = 1, around 100, 000
traces are typically required. Since each trace captured the full classification, the
same trace set can be used to recover other constant as well.

4.2 Recovering Sparse Projection Index Parameters

When performing dimensionality reduction through the multiplication with
sparse matrices, the constant (Zval) and the target features (Zidx) are pre-stored
in the memory rather than the full matrix Z. The constant Zval can be recov-
ered when targeting the multiplication. The index loading can be targeted with
Template Attack (TA) [4] on load operation. As load involves memory access,
the operation perform memory access and leaks with higher signal to noise ratio
(SNR) than other logical operations. Basically, since the loading operation in
microcontrollers is known to leak information, this operation can be profiled.

TA for Index Recovery. To mount our attack, we should first find the timing
when the index (Zidx) is being loaded by the measured EM emanation. Basically,

Model Extraction Attack on Tree-Based Machine Learning Algorithm 103

when the targeted index, Zidx, is being fetch from the memory, we measure
leakage. However, since this is a single loading operation, basic CPA or non-
profiling based attack could not be performed, since it requires known user data.
Hence, we adopted TA. However, this means a training/profiling will be required.
In this case, we split the data for training and testing. We first apply pre-
processing technique to determine the point of interest in the traces. We uniquely
identified 3 points or features in the traces which contain useful information,
and afterwards, for each label, we measure the template (the mean vector and
covariance matrix). Then, on the testing phase, we calculate the probability of
the test data, given the templates. To improve SNR for the experiments, we
perform averaging 100 times. The train-test split is then set to 7:3, for a fairer
evaluation.

In the given example for Bonsai, the USPS dataset is projected to 28 feature
space. This projection can be also applied to any dimension, but for simplicity,
the given feature dimension is used as default. We showed the results in Fig. 3b,
measuring the GE of the index. With a profiling set of 7, 000 averaged traces
and the attack trace set of 3, 000 traces, we report an accuracy of 38.9% and
success rate of 95.5% for the correct index being in top-5 candidates (GE = 5).
As observed from the figure, the success for first order rank is not that good
(accuracy of 38.9%), meaning that the actual label is recovered around 38.9%
of the time. However, it can also be observed the correct label is within top
5 prediction with high success rate (95.5%), meaning that in most cases, the
attacker can brute force the top 5 prediction to recover the correct index. In
this case, the first order and top 5 success rate will be highly dependent on
the number of features used. In terms of number of input features, with more
features more constants must to be recovered, and hence the success rate will
likely decrease or more brute force required to reduce the number of candidates.

4.3 Recovering Branching Function

In general, in tree based algorithms, conditional branches are used to decide
which path to transverse. In the case of Bonsai, if the previous parameters can
be recovered, this step is trivial. However, we also investigate the alternative
attack which might also be possible for this case. We target the if-else structure
of conditional branching using timing side-channel. We measure the execution
time of the following function which computes branching function as:

node1 = ((tmp > 0)?((2 ∗ node0) + 1) : ((2 ∗ node0) + 2));

The timing information is directly available on the EM measurements previously
captured, accurate to nanosecond scale. Normally, the node1 is the target node,
node0 is the original node, and tmp is the intermediate value. Our experiments
reported successful recovery of tmp using timing information. We observed that
the mean timing for first and second branches are 3.41 ns and 3.36 ns respectively.
The variance in timing is only 0.01 ns, and hence, modelling this as TA with
single feature, it allows the 100% recovery success. Hence, by building the timing
profile, one can easily identify the path taken.

104 D. Jap et al.

5 Conclusion

In this paper, we report side-channel based model extraction attack for tree-
based algorithms running on IIoT. We target Bonsai, a public library, and iden-
tify crucial operations to target including sparse projection parameters, branch-
ing function and node predictors. Practical experiments on 32-bit ARM micro-
controller using EM side-channel information were demonstrated for parameter
recovery. Moreover, the target operations are also present in other learning algo-
rithms, which make the proposed approach generic.

Acknowledgement. This work was performed in the Cooperative Research Project of
the Research Institute of Electrical Communication, Tohoku University with Nanyang
Technological University. This research was also supported in part by JST CREST
Grant No. JPMJCR19K5, Japan.

References

1. Batina, L., Bhasin, S., Jap, D., Picek, S.: CSI NN: reverse engineering of neu-
ral network architectures through electromagnetic side channel. In: Heninger, N.,
Traynor, P. (eds.) 28th USENIX Security Symposium, USENIX Security 2019,
Santa Clara, CA, USA, 14–16 August 2019, pp. 515–532. USENIX Association
(2019). https://www.usenix.org/conference/usenixsecurity19/presentation/batina

2. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth (1984)

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

5. Hua, W., Zhang, Z., Suh, G.E.: Reverse engineering convolutional neural networks
through side-channel information leaks. In: Proceedings of the 55th Annual Design
Automation Conference, DAC 2018, San Francisco, CA, USA, 24–29 June 2018,
pp. 4:1–4:6. ACM (2018). https://doi.org/10.1145/3195970.3196105

6. Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pat-
tern Anal. Mach. Intell. 16(5), 550–554 (1994). https://doi.org/10.1109/34.291440

7. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

8. Kumar, A., Goyal, S., Varma, M.: Resource-efficient machine learning in 2 KB
RAM for the internet of things. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the
34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6–11 August 2017. Proceedings of Machine Learning Research, vol. 70,
pp. 1935–1944. PMLR (2017). http://proceedings.mlr.press/v70/kumar17a.html

9. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer, Boston, MA
(2007). https://doi.org/10.1007/978-0-387-38162-6

https://www.usenix.org/conference/usenixsecurity19/presentation/batina
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1145/3195970.3196105
https://doi.org/10.1109/34.291440
https://doi.org/10.1007/3-540-68697-5_9
http://proceedings.mlr.press/v70/kumar17a.html
https://doi.org/10.1007/978-0-387-38162-6

Model Extraction Attack on Tree-Based Machine Learning Algorithm 105

10. Messerges, T.S., Dabbish, E.A.: Investigations of power analysis attacks on
smartcards. In: Guthery, S.B., Honeyman, P. (eds.) Proceedings of the 1st Work-
shop on Smartcard Technology, Smartcard 1999, Chicago, Illinois, USA, 10–11
May 1999. USENIX Association (1999). https://www.usenix.org/conference/
usenix-workshop-smartcard-technology/investigations-power-analysis-attacks-
smartcards

11. Wei, L., Luo, B., Li, Y., Liu, Y., Xu, Q.: I know what you see: power side-channel
attack on convolutional neural network accelerators. In: Proceedings of the 34th
Annual Computer Security Applications Conference, ACSAC 2018, San Juan, PR,
USA, 03–07 December 2018, pp. 393–406. ACM (2018). https://doi.org/10.1145/
3274694.3274696

12. Wu, D., Jennings, C., Terpenny, J., Gao, R.X., Kumara, S.: A comparative study on
machine learning algorithms for smart manufacturing: tool wear prediction using
random forests. J. Manufact. Sci. Eng. 139(7) (2017)

https://www.usenix.org/conference/usenix-workshop-smartcard-technology/investigations-power-analysis-attacks-smartcards
https://www.usenix.org/conference/usenix-workshop-smartcard-technology/investigations-power-analysis-attacks-smartcards
https://www.usenix.org/conference/usenix-workshop-smartcard-technology/investigations-power-analysis-attacks-smartcards
https://doi.org/10.1145/3274694.3274696
https://doi.org/10.1145/3274694.3274696

Controlling the Deep Learning-Based
Side-Channel Analysis: A Way
to Leverage from Heuristics

Servio Paguada1,2(B) , Unai Rioja1,2(B) , and Igor Armendariz2(B)

1 Digital Security Group, Radboud University, Nijmegen, The Netherlands
{servio.paguadaisaula,unai.riojasabando}@ru.nl

2 Ikerlan Technological Research Centre, Arrasate-Mondragón, Gipuzkoa, Spain
{slpaguada,urioja,iarmendariz}@ikerlan.es

Abstract. Deep neural networks have become the state-of-the-art
method when a profiled side-channel analysis is performed. Their popu-
larity is mostly due to neural nets overcoming some of the drawbacks of
“classical” side-channel attacks, such as the need for feature selection or
waveform synchronization, in addition to their capability to bypass cer-
tain countermeasures like random delays. To design and tune a neural
network for side-channel analysis systematically is a complicated task.
There exist hyperparameter tuning techniques which can be used in the
side-channel analysis context, like Grid Search, but they are not optimal
since they usually rely on specific machine learning metrics that cannot
be directly linked to e.g. the success of the attack.

We propose a customized version of an existing statistical methodol-
ogy called Six Sigma for optimizing the deep learning-based side-channel
analysis process. We demonstrate the proposed methodology by success-
fully attacking a masked software implementation of AES.

Keywords: Cryptographic hardware · SCA · Six sigma · Deep
learning · Hyperparameter tuning · Grid search · Guessing entropy

1 Introduction

The integration of countermeasures against side-channel analysis (SCA) attacks
in small electronic devices and their validation has become a popular research
topic in recent years. One approach for assessing the security of embedded sys-
tems against SCA (e.g. Common Criteria (CC) [13]) was to attack the device
with different methods and techniques and quantify the resistance of the device
based on whether the attacks are successful and the amount of resources needed.
This approach is still used by entities like ANSSI [3] and BSI [1], but the amounts
of time and resources needed for performing this kind of evaluations is constantly

S. Paguada and U. Rioja—These authors contributed equally to this work.

c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 106–125, 2020.
https://doi.org/10.1007/978-3-030-61638-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_7&domain=pdf
http://orcid.org/0000-0003-4665-7457
http://orcid.org/0000-0003-0892-3611
http://orcid.org/0000-0002-5055-455X
https://doi.org/10.1007/978-3-030-61638-0_7

Controlling the Deep Learning-Based Side-Channel Analysis 107

growing. Basically, the ever-increasing number of known SCA techniques, algo-
rithms implemented, power models, etc. make this kind of evaluation infeasible
for less experienced ones. To overcome the drawbacks, several leakage assessment
techniques have arisen recently with the purpose of determining whether a device
leaks information through side channels in a quick and simple way. The most
popular one is the Test Vector Leakage Assessment (TVLA) methodology by
Cryptography Research (CRI) [5]. The approach is using a statistical test (com-
monly Welch’s t-test or Pearson’s χ2-test [33]) to distinguish whether two sets of
data (e.g., random vs fixed) are significantly different. Those tests alone are not
enough for evaluating a device security against SCA, since they do not quantify
the leakage or give any clue about its exploitability, but are suitable for a prelimi-
nary (“black-box”) evaluation. Thus, current certification processes like EMVCo
[14] or Common Criteria (CC)[13] still require to evaluate the robustness of the
Device Under Test (DUT) by directly attacking it with various side-channels
techniques (e.g., differential power analysis [23], correlation power analysis [8],
mutual information analysis [4,16], template attacks [10,12], deep learning-based
attacks [27,31,36], etc.). However, the problem persists: the process of exploit-
ing leakage with SCA techniques is a complex procedure in which not only the
acquisition of hundreds of thousands or even millions of power traces is needed,
but also the usage of signal processing techniques in combination with advanced
statistical and mathematical tools is most of the times mandatory. In real-world
experimental setups, the results are largely influenced by a huge amount of
parameters that are not easily adjusted without trial and error and are heavily
relying on the experience of professional security analysts.

The exploitation of SCA leakage using deep learning techniques is a promis-
ing approach since it addresses some of the problems of “classical” side-channel
attacks, such as the need for preprocessing or feature (points-of-interest) selec-
tion. Also, related works on the topic show how neural networks can learn
second-order leakages [27] and bypass desynchronization [37,45]. Conversely, the
inclusion of deep neural networks in the equation implies adding even more com-
plexity to an already difficult path, in which many decisions have to be taken
with not much more clue, than the know-how of the people who have dealt with
this kind of issues in the past. The usage of deep learning-based side-channel
attacks (DL-SCA) is an unpredictable task, since the intrinsic stochasticity of
neural networks causes that, even if we apply an architecture designed for a spe-
cific SCA data set, we can obtain bad results. Also, it is a non-repetitive task: a
model that works properly for a certain data set can have terrible performance in
a different one. Moreover, the selection of the proper values for the neural net’s
hyperparameters is not a trivial task. Therefore, it is important to use a suitable
methodology to perform an experimentation process with those characteristics.
Six Sigma is a well-known statistical methodology oriented to improve indus-
trial processes (production and quality engineering) by reducing its variability.
A customized Six Sigma methodology for reducing the uncertainty associated
with the SCA process was introduced in [38]. In that work, we present a cus-
tomized Six Sigma methodology, applicable to the different phases of the SCA

108 S. Paguada et al.

process (acquisition optimization, attack optimization and leakage assessment).
To the best of our knowledge, this is the only instance of considering Six Sigma
for the SCA field until now. In this work, we go one step further by extend-
ing this methodology to the DL-SCA context and by using it for tuning both,
architecture hyperparameters and optimizer hyperparameters [37].

Problem Statement: The design of a proper neural network architecture for
DL-SCA evaluation is a cumbersome process as well as repetitive, not making
it easy for SCA channel evaluators and researchers to fine-tune an architecture
having many different data sets of leakage traces. There exist hyperparameter
tuning techniques that may help to this task, but they are not optimal for the
DL-SCA issues, as explained in Sect. 4.

Our Contribution: In addition to our previous work in [38], in which we
applied Six Sigma in several SCA scenarios, we go deeper by extending this
methodology to the DL-SCA context. Our approach is to develop a customized
Grid Search using Six Sigma, in which it is possible to identify and quantify
the effect of each hyperparameter in the DL-SCA process. Instead of trying all
possible combinations of the finite set of hyperparameters, we search for the
best combination of them in a more methodical and ordered way. This approach
considerably reduces the number of possible hyperparameter combinations (as
detailed in Sect. 5) and hence the huge amount of time needed in a regular Grid
Search procedure. The search is performed by using our novel score function
that is based on guessing entropy [44] allowing us to integrate Six Sigma and its
hyperparameter tuning procedure into the SCA context (see Sect. 4 for detailed
explanation). The score function is an important piece in the tuning process, as
it establishes the score performance that we would like to achieve at the end of
the procedure. To demonstrate our contributions in practice, we have conducted
experiments showing an improvement in the score performance of a previously
built architecture [48] (Sect. 5). All this in addition to the benefits of using our
(simplified) methodology. A similar approach can be applied for an architecture
that is built from scratch.

The rest of the paper is organized as follows: Sect. 2 reminds the main con-
cepts of the Six Sigma methodology, explains its main steps and connects it to
the practical use case (Sect. 5). Section 3 summarizes briefly the state-of-the art
in deep learning-based side-channel analysis. Section 4 gives an overview of the
existing hyperparameter tuning techniques and explains our guessing entropy-
based score function. Finally, Sect. 6, concludes the paper.

2 Six Sigma Methodology

The Six Sigma (6σ) methodology was created in 1986 by Bill Smith, while work-
ing as an engineer at Motorola, as the company that registered the term as
their trademark in 1993 [19]. The primary objective was to minimize the vari-
ability of the output of a process. To achieve this, different empirical quality
management methods, along with statistical methods are used. In this improve-
ment process some steps have to be repeated until a main goal is reached. In our

Controlling the Deep Learning-Based Side-Channel Analysis 109

Fig. 1. Custom Six sigma methodology steps.

case, Six Sigma involves the DMAIC methodology implicitly (Define-Measure-
Analyze-Improve-Control), which is based on the Deming’s Plan-Do-Check-
Act Cycle [11,43]. The steps of the methodology are shown in Fig. 1, pointing
to how they could fit in an DL-SCA context and linking them to our use case
(Sect. 5). More details can be found in [38].

– Define the system. Here the system’s inputs are the client requirements and
the project’s goal. In our case, the “Define phase” consists of not only the
definition of the experiments itself but also the main goal(s) and the OK-
criterion. We interpret this OK-criterion as the quantification of the goal we
want to achieve. In other words, the definition of a factor that enables us to
decide if the experiments are conclusive or not. A more detailed explanation
can be found in the “Define” section of the use case (Sect. 5.2).

– Measure the current process setup. To characterize the current state of the
process, here one collects its parameters and outputs. In our case, the objec-
tive is to define the variables/parameters we are going to tune. We need to
define the variables of the system (architectural hyperparameters, optimizer
hyperparameters, etc.) that could affect the performance of the DL-SCA. For
those variables, one prescribes a minimum and a maximum value and selects
three of them. In the “Measure” section of our use case (Sect. 5.3) the reader
can find a detailed explanation.

– Analyze the data obtained from the process, and determine its relation-
ships with the problem. This step consists of experimentation e.g., crafting
an experimental design or Design of Experiments (DoE). DoE is a branch of
applied statistics, which is responsible for evaluating the factors (or variables)
that influence a parameter or group of parameters. Note that in this paper
we do not deeply explain DoE, but we refer interested readers to [32], and
[15]. The objective is to quantify which variables have more influence over the
experiment and adjust them to the proper values. To do that, a DoE with
the 3 selected working variables to perform 8 experiments is chosen. The out-
put of it gives the coefficient for each variable, which tells us if the effect is
positive or negative (improves or not the result of the experiment) and how
strong each one in comparison with the others is. In the “Analyze section” of
use case 5.4 the output of each DoE can be observed in more detail.

– Improve the current process using the analysis of root causes done in the
previous step to identify, test and implement a solution for the discovered
problems. In this customized Six Sigma, this step consists of the analysis
of the experimental design’s results. Here one adjusts the identified working

110 S. Paguada et al.

variables that have more influence over the experiments. If the OK-Criterion
is not reached after the 8 experiments, the process should be repeated from the
previous step, considering to change the selected variables or readjust their
minimum and maximum values. This is considered as one iteration. The idea
is to perform several iterations between these two last steps until the main
objective is reached. Practical examples of this analysis of the results and the
readjustment of the DoE variables are shown in the “Improve” section of our
use case (5.5).

– Control the newly improved process to correct any undesired deviations on
it. Repeat the steps until obtaining the desired quality level. This step does
not strictly apply to our problem, but it can be understood as the action of
taking notes of the results to apply in future experiments.

3 Deep Learning-Based Side-Channel Analysis

DL-SCA belongs to the so-called profiling attacks, the dominant type in SCA
nowadays. It is divided into two phases: the profiling phase and the attack
phase. In the profiling phase, a leakage model of the targeted device is built by
using standard classification techniques like in Template attacks [10,12], Sup-
port Vector Machine (SVM) [21,22,24], Random Forest (RF) [25], regression or
the Stochastic models approach [39] or even recently introduced Deep learning
techniques [9,27,36]. In the attack phase, the model is applied and the secret
key is guessed. Template attacks and deep learning are the two most popular
approaches [26]. Here we focus on deep learning-based attacks because of their
popularity and the lack of a methodical approach for efficient analysis.

The main goal in a DL-SCA is to deduce the secret key used to perform
cryptographic operations. Thus, the attacker has to first take measurements
of some device’s physical property (commonly the power consumption or the
electromagnetic radiation emitted by the device) during the manipulation of
some intermediate value iv = f(p, k) related to the plain text p and the secret
key k. In the profiling phase, the attacker uses a set of np profiling traces (Tp,k)
to train a neural network to classify possible iv values. Then, in the attack phase,
from a set of na real power traces and its input data (plain text), the attacker
tries to guess the correct iv value (or its Hamming Weight) by using the trained
neural network. Since iv = f(p, k), knowing iv and p the secret key k can be
recovered.

Multiple related works on DL-SCA have been developed in recent times. Most
of them are based on two deep learning architectures: Multilayer Perceptron
(MLP) and Convolutional Neural Networks (CNN). MLP was the first archi-
tecture used in DL-SCA due to its simplicity. Although the first proposal was
using regression to characterize leakage [47], MLP are mostly used to classify
the intermediate value of the traces (as explained above) [27,29]. Conversely,
CNNs have also been applied to SCA because its spatial invariance property
provides robustness against data distortions like environmental noise and coun-
termeasures [9,20,27,46]. Several studies have also compared the performance

Controlling the Deep Learning-Based Side-Channel Analysis 111

of different profiling SCA techniques [36,37,48,50]. As mentioned above, one
of the main drawbacks of classical SCA (profiled or non-profiled) is the need
for pre-processing and feature selection, which require human engineering and
therefore, the success of the attack strongly relies on the expertise of the evalu-
ator. Although its usage increases the complexity of the attack, DL-SCA claims
to overcome those difficulties since the features are selected automatically from
traces by the neural network. Also, it has been shown that neural networks
are capable of bypassing desynchronization [30,36,37] and dealing with masking
countermeasures [17,27].

4 Hyperparameter Tuning

In this section, we give an overview of grid search among some other commonly
used hyperparameter tuning techniques in order to pin down the hyperparameter
tuning issue. Additionally, we formalize the score function that we use later in
the experiments.

4.1 Grid Search and Other Techniques in the SCA Field

A well-known hyperparameter tuning procedure is grid search [18], which exhaus-
tively search through a manually specified subset of hyperparameters space. In
other words, for each hyperparameter a finite set of values is selected. Then,
the grid search algorithm trains a net for each combination of hyperparameters
and evaluates their performance on a validation data set. It uses what is usu-
ally called score function to evaluate the chosen hyperparameter set. Regarding
the type of application (i.e. regression or classification), it is common to use the
average accuracy score or mean square error as score function, but an alternative
score function can be specified in order to adapt the search to a specific use case.
Although exhaustive, grid search has been used widely in many applications that
involve machine learning algorithms due to the need to find the hyperparameters
that better performance has for the problem. In fact, its use is attributed to its
easy software implementations available in many data analysis tools.Other pro-
cedures for tuning are Hyperopt [7] and Hyperas [6] that rely on randomly chosen
trials of hyperparameter. Although it has been proven that random approaches
are more efficient than grid search in general applications [18], we focus on grid
search since we aim to connect currently used hyperparameter tuning procedures
with SCA (by using a score function based on an SCA metric).

As mentioned above, machine learning metrics are commonly used as score
functions in hyperparameter tuning procedures. This is not optimal since
machine learning metrics are not reliable for evaluating the effectiveness of a
deep learning architecture in the SCA context [35]. We speak in terms of general
applications, as we argue that many of the contributions made in the deep learn-
ing field, and more specifically for hyperparameter tuning, are indeed applicable
in the SCA field. An example can be found in publications such as [48], where grid
search has been used as a procedure to find out the best set of hyperparameters.

112 S. Paguada et al.

Fig. 2. Averaged guessing entropy plot from the attack using the baseline model in
[48], where an score value of 0.65 was obtained using Eq. 1.

In any case, as demonstrated in [35], conventional machine learning metrics
are not very informative for the side-channel analysis domain, concluding that
the best metrics are SCA specific metrics like success rate (SR) and guessing
entropy (GE) [44] which are directly linked to the success of the attack. Also,
it worth mentioning a recent work that purposes a novel DL-SCA metric called
Cross-Entropy Ratio (CER) [49], closely related to SR and GE. Anyhow, we
focus on GE because it is a well-known and understood metric in the SCA field.

In essence, the GE of an attack (or a battery of attacks) measures the average
number of key candidates an attacker needs to test in order to reveal the secret
key. In other words, is a measure of the difficulty that an attacker has to guess
the secret key. In a profiled SCA scenario, given a na number of power traces in
the attack phase and being |K| the size of the keyspace, the attack outputs a key
guessing vector g = [g1, g2, ..., g|K|,]1 with decreasing order of probability. The
GE is the average rank of the correct key candidate in g over several attacks.
The higher GE value, the more difficult it would be for an attacker to guess the
correct key. An example of a GE graphic can be found in Fig. 2 where it can be
observed how the GE of the attack (y-axis) decreases as the number of traces
employed for the attack increases (x-axis).

Nevertheless, to the best of our knowledge, there is no procedure specifically
designed for SCA and thus, one of our contributions is to introduce a score
function based on GE. Moreover, combining this with our customized Six Sigma
methodology brings the possibility to quantify the impact of each hyperparam-
eter on the performance of the DL-SCA. A standard implementation does not
allow to analyze such an impact systematically.

Our customized Grid Search procedure allows us to find out an optimal
combination of hyperparameters in a more ordered and methodical way (instead
of trying all possible combinations of the finite set of hyperparameters). Such a

1 The key guessing vector g (over na power traces) is computed using the log-likelihood
principle gi =

∑na
j=1 log (p̂ij).

Controlling the Deep Learning-Based Side-Channel Analysis 113

tuning process requires a score function as a way to quantify the effect of each
hyperparameter. Moreover, the score function is the mathematical foundation for
defining the OK-criterion. In the next subsection, we explain how this function
is defined.

4.2 A Scoring Function Based on Guessing Entropy

For both Grid Search and our customized Six Sigma procedure, we need a quan-
tification of the output of each experiment (namely hyperparameter combina-
tion), and this is achieved with the score function. In a nutshell, our score func-
tion quantifies the result of the experiment by taking into account three aspects:
the final guessing entropy value (the guessing entropy of a successful attack
will converge to 0), when the guessing entropy converges i.e. how fast the model
reaches the minimal guessing entropy value, and the shape of the slope (we assess
how far is the slope of the curve from an optimal shape). The formal expression
of the function is shown in Eq. (1).

sf(ge) =
trend

2
·
(

M − gei=N

M
+

N − argmin(ge)
N

)
(1)

where ge is the guessing entropy vector (of length N), M is the maximum GE
value2, gei=N is the final guessing entropy value of the attack and argmin(ge)
is the index of the minimum value of the guessing entropy vector. As trend, we
understand a value between 0 and 1, which tells us whether the slope of the
guessing entropy vector is optimal. We obtain it by computing the cumulative
of the difference between the neighboring values, for all guessing entropy vector
elements, that is divided by the max difference value (a.k.a MinMax scaler) as
follows:

trend =
∑N−1

i=1 (gei − gei+1) − min(ge)
max(ge) − min(ge)

(2)

For instance, if we apply Eq. 1 to the GE plot shown in Fig. 2 (which cor-
respond to an attack over the ASCAD [37] dataset using the baseline model
purposed in [48]) we obtain a baseline value of 0.65. The closest this value is to
1, the better performance the model has. We take this value of 0.65 as a starting
point for our use case.

5 Use Case: Deep-Learning Based Side-Channel Attack
over a Protected AES Implementation

In this section the proposed method is presented and explained step by step,
giving as examples the procedures done with our experimental setup to optimize

2 In SCA on software AES implementations, is common to target 8-bit intermediate
values. In this case, since the size of the keyspace |K| is 28, the maximum GE value
(worst case) is 256.

114 S. Paguada et al.

the DL-SCA process. First, we briefly describe the presented use case and then
we elaborate on the 5 steps following the DMAIC scheme.

Moreover, we show how the number of hyperparameter combinations
employed in the tuning procedure is drastically reduced comparing it with a reg-
ular Grid Search procedure. As explained above, in a regular procedure a finite
set of values for each hyperparameter is selected, and each combination of them
is evaluated in order to select the optimal values. An example can be observed in
[48], where grid-search optimization is performed using 40 320 hyperparameter
combinations3. By combining our customized Six Sigma procedure with Grid
Search optimization we have been able to improve the results obtained with the
hyperparameter combination shown in [48] with only 32 hyperparameter com-
binations (23 · 4 iterations), showing a significant improvement (99.92% fewer
combinations).

5.1 Use Case Description

For the experiments, we have used ASCAD [37] as the first open database for
DL-SCA. The target platform in this data set is an 8-bit AVR microcontroller
(ATmega8515), implementing a masked AES-128 cipher [2,28] and the traces
are obtained by measuring the electromagnetic emanation of the device. The
data set provides 60 000 traces where 50 000 are used for profiling and 10 000 for
the attack. These traces are a window of 700 relevant raw samples per trace,
representing the third byte of the first round masked S-Box operation. For a
deeper explanation of the ASCAD dataset we refer to [37]. As the sensitive
intermediate value we use an S-box output: Y (i) (k∗) = Sbox[P (i)

3 ⊕ k∗].

5.2 Define

In this step, we specify our experiments. We use a CNN to perform an attack
over the aforementioned traces. The amount of traces used for the profiling
phase is a variable included in the system’s variables, its range values should
be determined in the measure step. It is a good practice to include a validation
set in the training phase, and it could be anything from 20% to 25% of the
number of traces (for training). In the attack phase, a random choice from a
subset of the total traces is conducted, Table 1 summarize all these values. After
the attack, the guessing entropy is computed and used by the score function.
The resulting value represents the evaluation of the performance produced by
the chosen hyperparameters set.

Main goal: Here the goal that we want to achieve is defined. For our experiment
we set the following goal: successfully attack a masked AES implementation with
a DL-SCA, increasing the baseline score (Fig. 2, Eq. 1) from 0.65 to 0.70 and
hence improving the performance of the CNN model purposed in [48].
3 In [48], if we analyze the possible combinations of the specified subset of hyperpa-

rameters for Grid search optimization, we obtain 32 · 42 · 81 · 71 · 51 = 40 320 possible
combinations

Controlling the Deep Learning-Based Side-Channel Analysis 115

Table 1. Values of variables for the profiling and attack phase

Variable Value and description

profiling traces To be set in the measure step

validation traces 20% to 25%

attack traces 400 random chosen (from 10 000 subset) in 50 attack trials

OK-criterion : The quantification of the goal, a factor that indicates whether
the experiments are conclusive or not. During the experiments, one tries to tune
several parameters obtaining different results through iterations, so the OK-
criterion indicates when to stop Six Sigma running. Also, it tells us when we
have reached our objectives. In this use case, since we measure the performance of
each experiment with the score function (Sect. 4.2), our OK-criterion is to obtain
a score greater than or equal to 0.70 using that function. As explained before,
after conducting several attacks over the ASCAD fixed key data set using the
CNN architecture proposed in [48] (which has shown competitive performance in
that dataset) and computing the averaged guessing entropy, we have obtained
the results depicted in Fig. 2 and an averaged score value around 0.65. Thus,
we take 0.65 as baseline value and establish a value of 0.70 as good enough to
consider an improvement in the results i.e. OK-Criterion = sf(ge) ≥ 0.70

5.3 Measure

The purpose of this step is to define the system’s variables that we are going to
study. The parameters can be different in nature (architectural hyperparameters,
optimizer hyperparameters, preprocessing parameters, etc.). Also, there are some
parameters that can be considered in most of the cases (optimizer, batch size,
epochs, no of neurons, no of layers, etc.) while other parameters will depend
on the specific use case. After prompting all the possible parameters that need
further tuning, the three variables that are more likely to affect the results of the
experiment have to be chosen. Thus, the parameters must be sorted by relevance.
An expert evaluator would do that based on his own intuition, but they can also
be ranked randomly. Although this could imply more iterations, it is a good
solution whenever the evaluator is not sure how to rank them.

For each parameter a minimum and a maximum value has to be specified,
although some parameters will be Boolean others will have a range of possible
values. Also, this list must be analyzed to avoid the selection of parameters
that can be dependent on each other. Table 2 gives the parameters with their
descriptions and ranges. The top three variables will be analyzed in the next
step, performing a DoE on them (Table 4). The rest of the parameters have to
be fixed in values between their minimum and maximum. It should be noticed
that there are some parameters that can be set apart from the experimental
design (see Table 3). Here we consider variables that could be included in the
previous list, but can be fixed by the evaluator, or there could be another method

116 S. Paguada et al.

Table 2. Defined variables that will be used in the experimental design

Rank Parameter Description Range Fixed Value

1 # traces
(profiling)

The 45k training traces can
be used in the profiling phase
or only a subset of them

20k vs 45k

2 # epochs A trade-off to avoid
overfitting and underfitting

25 vs 50

3 Optimizer Different optimizers can be
used (SGD, RMSprop,
Adam, etc)

RMSprop
vs Adam

4 Batch nor-
malization

Technique for improving the
speed, performance, and
stability of artificial neural
networks

NO vs YES YES

5 Dropout A trade-off to avoid slowing
down training process

NO vs YES NO

6 Kernel size According to state of the art
methodologies [48]

1 vs 3 1

7 Activation
function

ReLu and SeLU avoid
convergence problems of the
optimizer

ReLU vs
SeLU

SeLU

8 Weight ini-
tialization

He uniform and Glorot
uniform have proved to
provide good results

Glorot
uniform vs
He uniform

He uniform

9 Dim of
internal FC
layers

A trade-off avoiding a too
complex model

10 vs 20 10

10 # Conv
Layers

A trade-off avoiding a too
complex model

1 vs 2 1

11 # FC
Layers

A trade-off avoiding a too
complex model

3 vs 5 3

for tuning them, e.g., the learning rate, can be tuned using One Cycle Policy
[40–42]. This also allows for reducing the number of variables involved.

As a starting point, range values in Table 2 are chosen according to the state-
of-the-art proposals in the SCA context, as well as deep learning general recom-
mendations. One of the main reasons for the latter is to avoid underfitting and
overfitting as well as class biases [18,34,35]. Hyperparameters like number of
epochs, number of traces, dropout, batch normalization, weight initialization
are just a few of them which have to be properly tuned to achieve a good classi-
fication. Keep in mind that almost always a trade-off between variables has to be
found, by instances dropout can reduce overfitting but could also slow down the
training process, being necessary to increase the number of epochs. Currently,

Controlling the Deep Learning-Based Side-Channel Analysis 117

Table 3. Fixed Parameters (not considered in the experimental design)

Rank Parameter Description Range Fixed
value

12 Learning
Rate

The LR will be tuned with
the One Cycle Policy

One Cycle Policy One
Cycle
Policy

13 Stand-
ardization

Zero mean and regularization
are mandatory in almost
every SCA scenario

YES YES

14 Desynchr-
onization

For this use case we do not
consider desynchronization

NO NO

15 Batch size We fix the batch size to 50
following the state-of-the art
suggestions

50 50

16 Max Pool Max Pooling according to
state-of-the-art approaches

YES YES

17 Loss
Function

Categorical Cross-Entropy
because of the intrinsic
nature of the classification
problem addressed by the
learning algorithm

cross-entropy cross-
entropy

kernel size of 1 has been proved to be an optimal value for the first convolutional
block [48]. Nevertheless, to show the effect of applying the suggested methodol-
ogy, we established a range value of 1 vs 3. For the following range values, he
uniform and glorot uniform have proved to achieve good result for classification,
similar case apply for ReLU and SeLU activation functions for the hidden layers
of the deep learning model. Since DL-SCA could be described as a classification
problem, the loss function to be used is a Categorical Cross-Entropy. Such func-
tion aims to minimize the cross-entropy, which is equivalent to maximize the
lower bound of the mutual information between traces and secret key [31].

5.4 Analyze

From the ordered list, the three top parameters are chosen (Table 4), and a
simple Design of Experiments (DoE [15]) process is carried out. We choose the
3 variables factorial DoE for its simplicity and reliability. Therefore, we perform
23 experiments following the process described in [38] (Sec. 3.4.).

The DoE as explained above was applied to create 8 experiments with the
limit in the values as shown in Table 5. Note that the order of the experiment
must follow exactly the one given in the table. After the experiments the “Round
1” column in Table 5 was filled with the obtained scores. The set of 8 experi-
ments has been repeated using cross-validation [18] (with different subsets of
traces, column “Round 2”) to ensure that the results are consistent and are not
altered by the intrinsic randomness of the neural networks. The coefficients are

118 S. Paguada et al.

Table 4. Working variables and values (1st DoE iteration)

Factor letter Factor name Low settings High settings

A # traces (profiling) 20k 45k

B # epochs 25 50

C optimizer RMSprop Adam

calculated with the averaged data (column “Average”). The number of rounds
can be increased for better confidence but it will also increase the computing
time. At this point, we have one set of results and hence the factors of Eq. (3)
given by DoE. The parameters A, B, and C in Fig. 3 mean that our experiment
has better results when the Number of traces for profiling is 45k, and we
train with 50 epochs using the Adam optimizer.

DoE = 0.425 + 0.165 ∗ A + 0.022 ∗ B + 0.0282 ∗ C
+ − 0.069 ∗ AB + −0.019 ∗ AC + 0.109 ∗ BC

(3)

Fig. 3. Coefficients and interactions
(1st DoE iteration)

Fig. 4. Averaged Guessing entropy of
the 8 experiments (1st DoE iteration)

Table 5. First DoE iteration with results

Execution
order

Number of
traces
(profiling)

Num of Epoch Optimizer Round 1 Round 2 AVG

1 20k 25 RMSprop 0.2341 0.3381 0.2861

2 20k 25 Adam 0.0494 0.0546 0.0520

3 20k 50 RMSprop 0.1384 0.1403 0.1393

4 20k 50 Adam 0.6238 0.4981 0.5610

5 45k 25 RMSprop 0.6375 0.7250 0.6813

6 45k 25 Adam 0.6000 0.5875 0.5938

7 45k 50 RMSprop 0.4889 0.4721 0.4805

8 45k 50 Adam 0.7125 0.4989 0.6057

Controlling the Deep Learning-Based Side-Channel Analysis 119

5.5 Improve

After performing DoE, in this step the evaluator should analyze the results,
interpret them and apply the necessary changes. If the impact of one parameter
is clear, its value can become fixed in its maximum/minimum value. Otherwise,
the range of the variable can be modified and used in another DoE iteration.
After fixing the values of the tuned variables, the evaluator may add the next
parameters in the table and perform another iteration of the DoE, until we reach
the OK-criterion. Conversely, one can derive from the results that certain combi-
nations of parameters work better than others (the effect of the interactions can
be very relevant to make a decision) and select the 3 variables for the next itera-
tion accordingly. For a better interpretation of the results, the evaluator should
observe the Guessing Entropy plot of each one of the 8 experiments (Fig. 4) apart
from the scores shown in Table 5. We observe that the best performance is for
experiment number eight, and thus, it has the highest score of the 8 experiments.
The OK-Criterion has not been reached in any of the experiments but we can
clearly see that we obtain better results with 45k traces, 50 epochs and Adam
optimizer. Thus, we fix these 3 variables and select the next three from the list
(Table 6).

Fig. 5. Coefficients and interactions
(2nd DoE iteration)

Fig. 6. Averaged Guessing entropy of
the 8 experiments (2nd DoE iteration)

Table 6. Second DoE Iteration with results

Execution
order

Batch
normal-
ization

Dropout Kernel size Round 1 Round 2 AVG

1 NO NO 1 0.7500 0.4988 0.6244

2 NO NO 3 0.5499 0.7500 0.6499

3 NO YES 1 0.7000 0.6875 0.6938

4 NO YES 3 0.0509 −0.0322 0.0093

5 YES NO 1 0.5731 0.5720 0.5726

6 YES NO 3 0.3256 0.6747 0.5001

7 YES YES 1 0.5371 0.7625 0.6498

8 YES YES 3 0.6375 0.7000 0.6688

120 S. Paguada et al.

Second DoE Iteration
Results of the second iteration are shown in Table 6 and Figs. 5 and 6. The
OK-Criterion has not been reached yet but we can see a clear gain concerning
the previous iteration. From observing the coefficients of each variable (Fig. 7)
we notice Batch Normalization has a clear good effect on the attack, while
Dropout is not so clear. Some experiments using Dropout have good results but
in general, it slows down the learning process by reducing the chance to achieve
good performance with the chosen number of epochs, so we decide to fix it to
its minimum value (no dropout). Nevertheless, the variable can be considered
again in the next iterations if necessary. Related to kernel size, in this case
we obtain better results with a kernel size of 1. The three variables are fixed to
their maximum/minimum value taking into account the effects and a third DoE
iteration is performed.

Fig. 7. Coefficients and interactions
(3rd DoE iteration)

Fig. 8. Averaged Guessing entropy of
the 8 experiments (3rd DoE iteration)

Table 7. Third DoE iteration with results

Execution
order

Num epochs Activation
function

Weight ini-
tialization

Round 1 Round 2 AVG

1 50 ReLU Glorot 0.5430 0.6125 0.5777

2 50 ReLU He 0.6375 0.6750 0.6563

3 50 SeLU Glorot 0.3490 0.4209 0.3850

4 50 SeLU He 0.7000 0.6750 0.6875

5 75 ReLU Glorot 0.1205 0.2003 0.1604

6 75 ReLU He 0.0936 0.2062 0.1499

7 75 SeLU Glorot 0.6000 0.7500 0.6750

8 75 SeLU He 0.5621 0.7125 0.6373

Third DoE Iteration
The results of the third iteration are shown in Table 7, Fig. 8 and Fig. 7. In
this iteration, we have added again the number of epochs variable to assess

Controlling the Deep Learning-Based Side-Channel Analysis 121

if a larger number of epochs improves the outcomes. The results show clearly
that we obtain better performance with 50 epochs. We observe that, in general,
SeLU activation function and the Glorot weight initialization provide
better results, although we obtain similar performance using SeLU + Glorot
(Table 7, Exp 7) and Selu + He (Table 7, Exp 4). Since the OK-Criterion has
not been reached we add the next 3 variables (Dimension of the fully-connected
layer, Number of convolution layers and Number of fully-connected layers), and
perform another iteration.

Fourth DoE Iteration
The results of the fourth iteration are shown in Table 8 and Figs. 9and 10. Ana-
lyzing the results, adding more convolution layers or fully-connected layers
does not produce any improvement (actually the results are slightly worse). Nev-
ertheless, we see a clear improvement while increasing the number of neurons
in the fully-connected layers. Since we have reached the OK-Criterion in several
experiments (2, 4 and 6), we consider the Six Sigma process concluded.

Fig. 9. Coefficients and interactions
(4th DoE iteration)

Fig. 10. Averaged Guessing entropy of
the 8 experiments (4th DoE iteration)

Table 8. Fourth DoE iteration with results

Execution
order

Dim of
fc layer

Num of
Conv
layers

Num of fc layers Round 1 Round 2 AVG

1 10 1 3 0.6687 0.6125 0.6406

2 10 1 4 0.7125 0.7750 0.7438

3 10 2 3 0.5875 0.5421 0.5648

4 10 2 4 0.7750 0.6500 0.7125

5 20 1 3 0.5106 0.5607 0.5356

6 20 1 4 0.7500 0.7000 0.7250

7 20 2 3 0.6625 0.6875 0.6750

8 20 2 4 0.6375 0.7000 0.6687

122 S. Paguada et al.

6 Conclusion and Perspectives

The experimental results demonstrate the suitability of this method for improv-
ing the DL-SCA process. Our customized Six Sigma methodology not only opti-
mizes the Grid Search procedure by reducing the number of hyperparameter
combinations to try (and hence the computation time) but also allow evaluators
to systematically track and quantify the impact of each hyperparameter in the
guessing entropy of the attack, making it easier to adjust them to an optimal
value.

The methodology steps proposed are simple, methodical and very helpful
while dealing with the analysis of those characteristics. This approach can be
helpful to any researcher or evaluator in a testing laboratory; it allows techni-
cians without a deep knowledge of all the basics involved in these methods to
implement and interpret DL-SCA evaluations properly. The methodology can
also be used by experts when they have to come up with a new architecture for
an alternative testing platform (e.g., new devices, attacks). Our recommendation
for them is to run the proposed method at least once, so they can find out the
best hyperparameters as a starting point.

Even though for this work we decided to show the effects of using Six Sigma
to optimize the grid search procedure, we argue that all the aforementioned pro-
cedures and techniques (i.e. random approaches) are potential candidates to be
optimized for DL-SCA, and these are taken as futures lines of research. Addi-
tionally, more complex data set from 32-bit platforms, and HW implementations
will be considered for future works.

References

1. Federal Office for Information Security (BSI) - Common Criteria for exam-
ination and evaluation of it security. https://www.bsi.bund.de/EN/Topics/
CommonCriteria/commoncriteria.html. Accessed 17 June 2020

2. FIPS 197: Announcing the Advanced Encryption Standard (AES), November 2001.
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

3. Agence Nationale de la Sécurité des Systèmes d’information - Certified prod-
ucts (2019). https://www.ssi.gouv.fr/en/products/certified-products/. Accessed
17 June 2020

4. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.X., Veyrat-Charvillon,
N.: Mutual information analysis: a comprehensive study. J. Cryptology 24(2), 269–
291 (2011)

5. Becker, G., et al.: Test vector leakage assessment (TVLA) methodology in practice
(extended abstract) (2013)

6. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

7. Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., Cox, D.D.: Hyperopt: a python
library for model selection and hyperparameter optimization. Comput. Sci. Discov.
8(1), 014008 (2015)

8. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

https://www.bsi.bund.de/EN/Topics/CommonCriteria/commoncriteria.html
https://www.bsi.bund.de/EN/Topics/CommonCriteria/commoncriteria.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://www.ssi.gouv.fr/en/products/certified-products/
https://doi.org/10.1007/978-3-540-28632-5_2

Controlling the Deep Learning-Based Side-Channel Analysis 123

9. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

10. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

11. Cheng, C.S., Lee, S.C., Chen, P.W., Huang, K.K.: The application of design for
Six Sigma on high level smart phone development. J. Q. 19, 117–136 (2012)

12. Choudary, M.O., Kuhn, M.G.: Efficient, portable template attacks. IEEE Trans.
Inf. Forensics Secur. 13(2), 490–501 (2018)

13. Common Criteria: Common Criteria v3.1. Release 5, April 2017. https://www.
commoncriteriaportal.org/cc/index.cfm?. Accessed 17 June 2020

14. EMVCo: EMV specifications (2001). https://www.emvco.com/. Accessed 17 June
2020

15. Fisher, R.A.: The Design of Experiments, 9th edn. Macmillan (1935)
16. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:

Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3 27

17. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked
implementation of AES. In: Proceedings of the 2015 IEEE International Sympo-
sium on Hardware-Oriented Security and Trust, HOST 2015, pp. 106–111, June
2015

18. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, New
York (2016)

19. Gordon, J. (ed.): Six Sigma Quality for Business and Manufacture. Elsevier Science,
October 2002, hardcover ISBN: 9780444510471

20. Hettwer, B., Gehrer, S., Güneysu, T.: Profiled power analysis attacks using con-
volutional neural networks with domain knowledge. In: Selected Areas in Cryp-
tography - SAC 2018–25th International Conference, Calgary, AB, Canada, 15–17
August 2018, pp. 479–498 (2018)

21. Heuser, A., Zohner, M.: Intelligent machine homicide. In: Schindler, W., Huss, S.A.
(eds.) COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29912-4 18

22. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.:
Machine learning in side-channel analysis: a first study. J. Cryptographic Eng.
1, 293–302 (2011)

23. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

24. Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack : an approach
based on machine learning. In: Constructive Side-Channel Analysis and Secure
Design, COSADE (2011)

25. Lerman, L., Bontempi, G., Markowitch, O.: A machine learning approach against
a masked aes. J. Cryptograph. Eng. 5(2), 123–139 (2015)

26. Lerman, L., Poussier, R., Markowitch, O., Standaert, F.X.: Template attacks versus
machine learning revisited and the curse of dimensionality in side-channel analysis:
extended version. J. Cryptograph. Eng. 8(4), 301–313 (2018)

https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-36400-5_3
https://www.commoncriteriaportal.org/cc/index.cfm?
https://www.commoncriteriaportal.org/cc/index.cfm?
https://www.emvco.com/
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/978-3-642-29912-4_18
https://doi.org/10.1007/3-540-48405-1_25

124 S. Paguada et al.

27. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

28. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer, Boston (2007). https://doi.org/10.1007/978-0-
387-38162-6

29. Martinasek, Z., Malina, L.: Comparison of profiling power analysis attacks using
templates and multi-layer perceptron network, January 2014

30. Martinasek, Z., Malina, L., Trasy, K.: Profiling power analysis attack based on
multi-layer perceptron network. In: Mastorakis, N., Bulucea, A., Tsekouras, G.
(eds.) Computational Problems in Science and Engineering. LNEE, vol. 343, pp.
317–339. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15765-8 18

31. Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep learning for
side-channel analysis. Trans. Cryptographic Hardware Embed. Syst. 2020, 348–
375 (2019)

32. Montgomery, D.C.: Design & Analysis of Experiments. Wiley, USA (2019)
33. Moradi, A., Richter, B., Schneider, T., Standaert, F.X.: Leakage detection with

the X 2-test. IACR Trans. Cryptographic Hardware Embed. Syst. 2018(1), 209–
237 (2018)

34. Perin, G., Buhan, I., Picek, S.: Learning when to stop: a mutual information app-
roach to fight overfitting in profiled side-channel analysis. IACR Cryptol. ePrint
Arch. 2020, 58 (2020)

35. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbal-
ance and conflicting metrics with machine learning for side-channel evaluations.
IACR Trans. Cryptographic Hardware Embed. Syst. 2019(1), 209–237 (2018)

36. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the perfor-
mance of convolutional neural networks for side-channel analysis. In: Chattopad-
hyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–
176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6 10

37. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Canovas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ascad database. IACR
Cryptol. ePrint Arch. 2018, 53 (2018)

38. Rioja, U., Paguada, S., Batina, L., Armendariz, I.: The uncertainty of side-channel
analysis: a way to leverage from heuristics. Cryptology ePrint Archive, Report
2020/766 (2020). https://eprint.iacr.org/2020/766

39. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

40. Smith, L.N.: Cyclical learning rates for training neural networks. In: IEEE Winter
Conference on Applications of Computer Vision (WACV), pp. 464–472 (2017)

41. Smith, L.: A disciplined approach to neural network hyper-parameters: Part 1 -
learning rate, batch size, momentum, and weight decay, March 2018

42. Smith, L.N., Topin, N.: Super-convergence: very fast training of residual networks
using large learning rates. CoRR abs/1708.07120 (2017)

43. Srinivas, S.S., Sreedharan, V.R.: Failure analysis of automobile spares in a man-
ufacturing supply chain distribution centre using Six Sigma DMAIC framework.
Int. J. Serv. Oper. Manage. 29(3), 359–372 (2018)

https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-3-319-15765-8_18
https://doi.org/10.1007/978-3-030-05072-6_10
https://eprint.iacr.org/2020/766
https://doi.org/10.1007/11545262_3

Controlling the Deep Learning-Based Side-Channel Analysis 125

44. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

45. Tubbing, R.: An analysis of deep learning based profiled side-channel attacks: cus-
tom deep learning layer, CNN hyperparameters for countermeasures, and porta-
bility settings (2019)

46. Yang, G., Li, H., Ming, J., Zhou, Y.: Convolutional neural network based side-
channel attacks in time-frequency representations. In: Bilgin, B., Fischer, J.-B.
(eds.) CARDIS 2018. LNCS, vol. 11389, pp. 1–17. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-15462-2 1

47. Yang, S., Zhou, Y., Liu, J., Chen, D.: Back propagation neural network based
leakage characterization for practical security analysis of cryptographic implemen-
tations, pp. 169–185, November 2011

48. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN
architectures in profiling attacks. IACR Trans. Cryptographic Hardware Embed.
Syst. 2020(1), 1–36 (2019)

49. Zhang, J., Zheng, M., Nan, J., Hu, H., Yu, N.: A novel evaluation metric for deep
learning-based side channel analysis and its extended application to imbalanced
data. In: CHES 2020, pp. 73–96 (2020)

50. Zotkin, Y., Olivier, F., Bourbao, E.: Deep learning vs template attacks in front of
fundamental targets: experimental study. IACR Cryptol. ePrint Arch. 2018, 1213
(2018)

https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-030-15462-2_1
https://doi.org/10.1007/978-3-030-15462-2_1

A Comparison of Weight Initializers
in Deep Learning-Based Side-Channel

Analysis

Huimin Li(B), Marina Krček(B), and Guilherme Perin(B)

Delft University of Technology, Delft, The Netherlands
{h.li-7,m.krcek,g.perin}@tudelft.nl

Abstract. The usage of deep learning in profiled side-channel analysis
requires a careful selection of neural network hyperparameters. In recent
publications, different network architectures have been presented as effi-
cient profiled methods against protected AES implementations. Indeed,
completely different convolutional neural network models have presented
similar performance against public side-channel traces databases. In this
work, we analyze how weight initializers’ choice influences deep neural
networks’ performance in the profiled side-channel analysis. Our results
show that different weight initializers provide radically different behavior.
We observe that even high-performing initializers can reach significantly
different performance when conducting multiple training phases. Finally,
we found that this hyperparameter is more dependent on the choice of
dataset than other, commonly examined, hyperparameters. When eval-
uating the connections with other hyperparameters, the biggest connec-
tion is observed with activation functions.

Keywords: Weight initialization · Deep learning · Side-channel
analysis

1 Introduction

There has been rapid progress in profiled side-channel attacks (SCAs) based on
machine learning techniques in recent years. These techniques proved to be very
successful by outperforming some of the classical attacks [3,14], like template
attacks [4]. Around a decade ago, machine learning algorithms like SVM [9] and
Random Forest [15,19] represented the standard choice for machine learning-
based SCA.

More recently, deep learning-based SCAs started when Maghrebi et al.
demonstrated the strong performance of several neural network types, most
notably, convolutional neural networks [16]. Despite many successes, there are
still many difficulties (and unanswered questions) when training deep neural
networks, especially those related to how to tune hyperparameters. This tun-
ing phase can highly influence the model’s performance, so it is important to

c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 126–143, 2020.
https://doi.org/10.1007/978-3-030-61638-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_8

A Comparison of Weight Initializers 127

properly address the issue and have a good strategy for selecting the hyperpa-
rameters. Hyperparameters are all those configuration variables external to the
model, like the number of hidden layers in a neural network. The parameters are
the configuration variables internal to the model and estimated from data (e.g.,
the weights in a neural network).

As there are many hyperparameters, and numerous possible combinations
that can be explored, selecting proper hyperparameters can be a very time-
consuming process. Researchers commonly approach this problem by selecting
the hyperparameters they deem relevant and then conducting a grid search.
While such an approach works well (as confirmed by successful attacks on var-
ious AES implementations), there are also potential drawbacks. Most notably,
grid search skips many possible values while limiting the setup to only cer-
tain hyperparameters, completely disregards other hyperparameters’ influence.
In [23], the authors proposed a methodology to select hyperparameters that are
related to the size (number of learnable parameters, i.e., weights and biases) of
layers in CNNs. This includes the number of filters, kernel sizes, strides, and
the number of neurons in fully-connected layers. In [1], the authors conducted
an empirical evaluation for different hyperparameters for CNNs on the ASCAD
database. Kim et al. investigated how adding noise to the input (thus, serving
as regularization) improves the performance of profiled SCAs [11], which is a
technique that can be used with any neural network architecture.

In this work, we focus on the weight initialization strategies for CNNs in
SCA, and we explore its influence on the performance of the attacks. Thus, we
investigate a hyperparameter, i.e., selecting different weight initializers directly
responsible for weights parameter. Our experiments show that most of the weight
initializers work well. More precisely, there is a decent selection of weight initial-
izers one can use in deep learning-based SCA and expect good results. Next, our
experiments show significant differences concerning key rank results, as within
one guessing entropy experiment, it is common to obtain both perfect attack
and attack that does not work at all. Interestingly, our results indicate that
independent training phases result in significantly different guessing entropy
performances. This means that it is not enough to consider only one training
experiment, but one must conduct a proper statistical analysis for training and
testing phases. We evaluate the evolution of weights and biases concerning the
progress of epochs, and we observe most changes in Convolutional and Batch
Normalization layers. In contrast, the fully-connected layers (those responsible
for classification) remain almost constant throughout the training phase. Finally,
we examine the connection between weight initializers and other hyperparame-
ters, and we determine that the biggest influence comes from the combination
of activation functions and weight initializers. This indicates that future exper-
iments should consider both hyperparameters.

128 H. Li et al.

2 Background

2.1 Side-Channel Analysis

Side-channel analysis is a type of implementation attacks, where instead of
attacking the algorithm itself, adversary attacks the physical device that imple-
ments the algorithm [17]. Profiled side-channel attacks are the most powerful
type of side-channel attacks as they assume that the attacker has access to an
identical copy of a device to build a profile. These attacks have two phases,
namely, profiling and online attack. The profiling phase is a modeling problem,
for which machine learning algorithms perform well. The online phase is the
actual attack on a similar device to recover the secret information and is done
using the profiling phase’s model.

2.2 Machine Learning and Side-Channel Analysis

Machine learning is a subset of artificial intelligence and is based on learning
specific patterns from given data. Since this approach is data-driven, it does not
require explicit instructions and rules. Therefore, such algorithms work well in
modeling problems. Currently, neural networks are a prevalent machine learning
technique in SCA, and in our experiments, we investigate deep learning. Deep
learning represents methods based on artificial neural networks, and some of the
deep learning architectures are multilayer perceptrons (MLPs), recurrent neural
networks (RNNs), and convolution neural networks (CNNs). In our experiments,
we concentrate on CNNs from [23] and [11]. We opt not to consider MLP as
there are less “accepted” MLP architectures in the literature, and the number
of hyperparameters is more limited, which makes it possible to include weight
initialization in the hyperparameter tuning phase.

To understand weight initializers, we first explain neurons, the base building
block of artificial neural networks. Neuron takes input values and calculates the
weighted sum using the weight matrix. For a neural network to learn nonlinear
functions and models, nonlinear activation functions are applied to the weighted
sum. Output of one neuron is described with the equation y = f(b+

∑n
i=1 xiwi),

where, the input x is of size n, w are the weights, b the bias and f is the
activation function. Bias is also a weight for an input x0 with an assigned value
of 1. The equation takes a form y = f(

∑n
i=0 xiwi) where x0 = 1 and w0 = b.

This calculation is done in all neurons of one layer, so we can describe it with
matrices, where features of the input samples can be arranged as columns or
rows. In Keras, the features are arranged as columns, and in this setting the
equation equals:

Y = X ∗ W + B, (1)

where X is the input, W is the weight, and B is the bias matrix. The weight
matrix of a layer l is a matrix of dimension (size of layer l−1, size of layer l), while
the bias matrix is (1, size of layer l), with the size of the layer being the number
of neurons in the layer. Weight initializers are strategies for setting the initial
values of a weight matrix for a neural network layer. Later, in the training phase

A Comparison of Weight Initializers 129

during back-propagation, the weights in the weight matrix are adjusted with
the selected optimization algorithm. Commonly used optimization algorithms
are Stochastic Gradient Descent, RMSprop, and Adam [12], which we use in our
experiments. Here, we explore different weight initialization strategies and how
they impact the performance of deep learning-based SCA.

2.3 Weight Initializers

As mentioned, weight initializers represent how the initial values of a neural
network layer’s weight matrix are set. It is believed that neural networks are
very sensitive to the initial weights [18]. When the deep learning algorithm
was first successfully proposed, it was common to initiate weights with Gaus-
sian noise, setting the mean equal to zero, and the standard deviation to 0.01.
This way of initializing weights was not enough to train deep neural networks
because of problems, such as vanishing gradients, exploding gradients, or dead
neuron [13,18], which significantly hampered its development. In 2010, Glorot
and Bengio [22] analyzed the problem systematically and proposed a formula to
initialize weights depending on the number of input and output units (neurons).
Glorot initializer works well in many cases and is still popular today. In 2015, He
et al. [8] put forward that Glorot initializer does not work with well ReLU acti-
vation function, and extended the formula to meet ReLU based neural networks
through only using the number of input units and increasing the scaling by

√
2.

As more people have devoted themselves to the study of weight initialization,
various methods have appeared. In general, these methods can be divided into
two categories: Zeros and Ones initialization, and Random initialization.

Zeros and Ones Initialization. With all weights initialized to 0 (1), all weights
are the same, and the activation in all neurons is also the same. That way, the
loss function’s derivative is the same for every weight in a weight matrix of a
layer. When all weights have the same value, in all iterations, this makes hidden
layers symmetric. Every neuron of the layer computes the same function, so the
model behaves like a linear model.

Random Initialization. All weight matrix values are set to random numbers,
usually from a normal or uniform distribution. As mentioned, issues with ran-
dom initialization are vanishing and exploding gradients. In vanishing gradients,
weight update is minor, which results in slower convergence, while in exploding
gradients, large gradients can result in oscillation around the optimum.

For deep networks, heuristics can be used to initialize the weights depending
on the nonlinear activation function. Heuristics set the normal distribution vari-
ance to k/n, where k is a constant value that depends on the activation function,
and n is the number of input nodes to the weight tensor or both input and out-
put nodes of the weight tensor. This is adjusted to a uniform distribution, which

130 H. Li et al.

can be seen in the provided list of initializers from Keras library [5]. While these
heuristics do not entirely solve the exploding/vanishing gradients issue, they help
mitigate it to a great extent. Initializers with explained heuristics are LeCun,
Glorot/Xavier, and He initializers.

Different weight initializers available [10] in Keras are listed below with
fan in being the number of input units in the weight tensor and fan out the
number of output units in the weight tensor.

– Zeros: initializes weights to 0.
– Ones: initializes weights to 1.
– Constant: initializes weights to given constant, default is 0.
– RandomNormal: initializes weights with normal distribution, mean = 0,
stddev = 0.05.

– RandomUniform: initializes weights with uniform distribution, minval =
−0.05,maxval = 0.05.

– TruncatedNormal: similar to RandomNormal except that values more than
two standard deviations from the mean are discarded and redrawn.

– VarianceScaling: adapts scale to the shape of weights, default values are
scale = 1,mode =′ fan in′ and normal distribution.

– Orthogonal: random orthogonal matrix, default value of multiplicative factor
to apply to the matrix is 1.

– Identity: identity matrix, multiplicative factor again 1.
– lecun uniform: uniform distribution within [-limit, limit] where limit is
sqrt(3/fan in).

– lecun normal: truncated normal distribution centered on 0 with stddev =
sqrt(1/fan in).

– glorot normal: truncated normal distribution centered on 0 with stddev =
sqrt(2/(fan in + fan out)).

– glorot uniform: uniform distribution within [-limit, limit] where limit is
sqrt(6/(fan in + fan out)).

– he normal: truncated normal distribution centered on 0 with stddev = sqrt(
2/fan in).

– he uniform: uniform distribution within [-limit, limit] where limit is sqrt(
6/fan in).

3 Experimental Setup

Algorithms used for these experiments are taken from [11] and [23], where CNN
hyperparameters were fine-tuned specifically for each dataset the authors used.
We vary available weight initializers in our experiments to investigate the per-
formance difference according to each weight initializer. All of the other hyper-
parameters are taken directly from the mentioned works. We consider these two
architectures as they represent top-performing architectures from related works.
Additionally, they differ in size, which will enable us to evaluate the influence of
weight initializers on architectures of different complexity.

A Comparison of Weight Initializers 131

We will refer to CNN architecture as the Noise architecture for [11], and
the Methodology architecture for [23]. For each architecture, two leakage models
are used: Identity (ID) model [11,23] and Hamming weight (HW) model [20], in
which there are 256 classes and nine classes respectively corresponding to the
output of neural networks. In both architectures, hyperparameters are tuned
with the ID model (as the original works consider only ID model), but we use
the same hyperparameters for the HW model.

Kim et al. [11] used glorot uniform weight initializer, and Zaid et al. [23] used
he uniform weight initializer. In the last layer, [23] does not set weight initializer
to he uniform, but instead, the default weight initializer is utilized, which is
glorot uniform. We are not aware of this implementation’s motivation, so in our
experiments, we vary weight initializers in all layers, including the last layer
with a Softmax activation function. This change causes a difference between our
results with Methodology architecture and ID leakage model compared to results
presented in the work of Zaid et al. [23], as shown later in Sect. 4.

We are not running experiments with Constant, VarianceScaling, Identity,
and Orthogonal initializers from all available Keras weight initializers. Iden-
tity and Orthogonal initializers are not actively used, and Constant and Vari-
anceScaling correspond to Zeros and lecun normal, respectively, when using
default values. We simulate ten times with each initializer and average the results
for comparison with other weight initializers.

We use the public source code provided on GitHub by Zaid et al. [23] in Keras
with Tensorflow backend [5]. We consider three publicly available datasets that
consist of side-channel measurements for the AES cipher for our experiments.
Following, we shortly describe these datasets and then discuss the results for
each dataset in detail.

DPA contest v4 (DPAv4) dataset1 is obtained from a masked AES software
implementation [2]. Knowing the masked values, this dataset is easily converted
into an unprotected scenario. We attack the first round of S-box operation, and
identify each trace with Y (i)(k∗) = Sbox[P (i)

0 ⊕ k∗] ⊕ M where P
(i)
0 is the first

byte of the i-th plaintext and M is the known mask.

AES RD dataset2 is obtained from an implementation on an 8-bit AVR micro-
controller with a random delay countermeasure [6]. This countermeasure shifts
each trace following a random variable of 0 to N [0]. The attack is on the
first round S-box operation, as in DPAv4 dataset, where traces are labeled as
Y (i)(k∗) = Sbox[P (i)

0 ⊕ k∗].

1 http://www.dpacontest.org/v4/42 traces.php.
2 https://github.com/ikizhvatov/randomdelays-traces.

http://www.dpacontest.org/v4/42_traces.php
https://github.com/ikizhvatov/randomdelays-traces

132 H. Li et al.

ASCAD dataset3 is obtained from a masked AES-128 implementation on an 8-
bit AVR microcontroller introduced in [21]. The leakage model is the first round
S-box operation, such that Y (i)(k∗) = Sbox[P (i)

3 ⊕k∗]. In contrast to the DPAv4
and AES RD datasets, the third byte is exploited (as this is the first masked
byte).

4 Experimental Results

This section shows the results for different weight initializers. We explore 1) how
weight initializers impact the performance of the utilized CNN architectures, 2)
which one is the best for a specific dataset and architecture, and 3) whether
there is the best weight initializer for all datasets. As explained in Sect. 3, we
use 11 weight initializers available in Keras and execute experiments on com-
monly used DPAv4, AES RD, and ASCAD datasets. For each dataset, we run
four experiments: Methodology architecture with ID and HW model, and Noise
architecture with ID and HW model.

Recall, with Zeros and Ones initialization, the model is no better than a
linear model. In our experiments, we still choose to show the results with Zeros
and Ones weight initialization to show that a linear model is not sufficient for
considered problems. There, all results show that guessing entropy is either stay-
ing at random guessing or increasing with Zeros and Ones weight initialization.
Consequently, when discussing the performance of weight initializers, we usually
ignore the performance of Zeros and Ones, as they never converge.

A good initializer is the one where GE decreases, preferably to zero, in the
least number of traces, and is more stable, as observed from results from multiple
independent experiments. As such, those weight initializers where GE behaves
similarly in multiple experiments, we consider more stable than when this is not
true. To get the best weight initializer, we consider two additional metrics: speed
and stability. We sort the averaged GE value of all weight initializers to evaluate
their “speed”, and compare the consistency in multiple experiments to obtain
the “stability”. The key rank range shows the “best” GE from 10 experiments
to present the range from multiple performed attacks. The “best” GE is the
one that reaches the lowest value, and if multiple GE results reach the same
minimum, then the one that reaches that value with fewer traces is considered
better, and we plot key rank range for that experiment. The range is taken from
the 100 attacks that are executed for calculating the GE. Weights’ evolution
figures show weights for each layer, and the layers in the legend are ordered from
first input layer to the last output layer of the neural network. We provide a
Table 1 as an overview of all experiments and best initializers in each setup.

4.1 Results for the DPAv4 Dataset

As in [23], we use 4 000 traces for the training set, 500 traces for the valida-
tion set, and 500 for attacking the device. Each trace has 4 000 features. The
3 https://github.com/ANSSI-FR/ASCAD.

https://github.com/ANSSI-FR/ASCAD

A Comparison of Weight Initializers 133

Table 1. An overview of all experiments and best initializers in each setup.

Dataset Architecture Best initializer (ID/HW)

DPAv4 Methodology RandomUniform

Noise RandomUniform/RandomNormal

AES RD Methodology he normal/lecun normal

Noise RandomUniform

ASCAD Methodology he normal

Noise lecun normal

GE rankings of the four experiments are shown in Fig. 1. In the two experiments
with the Methodology architecture (Figs. 1a and 1b), most weight initializers per-
form similarly when weight initializer is varied, but RandomUniform is slightly
faster in convergence and more stable with both leakage models. With the Noise
architecture and ID leakage model (Fig. 1c), the best weight initializer is Rando-
mUniform, and with the HW model (Fig. 1d), most weight initializers perform
quite well, but we choose RandomNormal as the best one.

Fig. 1. Averaged GEs for all weight initializers with the DPAv4 dataset.

Figure 2 shows the key rank range for the best (Fig. 2a) and the worst ini-
tializer (Fig. 2b) with the Noise architecture and ID model for the DPAv4
dataset when ignoring the Zeros and Ones. While the GE is slowly converg-
ing with he uniform initializer, in Fig. 2b, we can see significant differences in
the key rank results from multiple performed attacks within one guessing entropy
experiment.

134 H. Li et al.

Fig. 2. The key rank range of Noise architecture with ID model for decreasing GE in
DPAv4 dataset.

When looking at the weights’ evolution, we observe the change of weights
and biases in every neural network layer in every epoch and find that weights
and biases change in Convolutional layers and Batch Normalization layers, and
other layers such as dense layers do not exhibit much change. In the Methodology
architecture, both weights, and biases change significantly, while in the Noise
architecture, only biases change, and weights stay almost constant. According
to the result, we can peek into the training processes of the two architectures.
The iterative processes of the two architectures are radically different: in the
Methodology architecture, both weights, and biases are trained, while in the
Noise architecture, biases are the main training objects. This indicates that
the Noise architecture is more “robust” as there is not much need for weight
improvement to reach strong attack performance. More precisely, there seems
to be more weight optima for the Noise architecture than for the Methodology
architecture.

In the weights’ evolution for the DPAv4 dataset, the random initializers
without heuristics perform best for the Methodology ID setting and very similar
to Glorot initializers. Weight initializers He and LeCun in this setting performed
a bit worse, and their weights’ evolution is also similar, but visually different from
the weights’ evolution of the other initializers. Similar weights’ evolution is seen
with the HW model.

For the Noise architecture, in Figs. 3a and 3b, we show weights’ evolution of
the best and worst initializer, respectively. It seems as the he normal (Fig. 3b)
could improve with more epochs and reach the performance of, at least, Glorot
initializers. Additionally, we show corresponding experiments of the same initial-
izer to show their stability in Figs. 3c and 3d. Here, both are stable: RandomU-
niform is performing well, and he normal consistently has a slow convergence.
This is again visible through weights’ evolution because the weights and biases’
variance is not large. The performance of different weight initializers with both
architectures and models on the DPAv4 dataset is quite similar, and most of the
initializers reach GE of zero.

Lastly, we simulate experiments with the Methodology architecture and both
leakage models to explore the influence of the weight initializer in the last fully-
connected layer, similar to [23]. More precisely, we keep all hyperparameters

A Comparison of Weight Initializers 135

Fig. 3. Weights’ evolution and experiments with Noise ID setting on the DPAv4
dataset.

of the two experiments except that the setting of the last layer in the neural
network is the same as paper [23]. The results for the two experiments show
that it has no impact on the outcome, and the performances of all the weight
initializers in the ID and HW model are almost the same.

4.2 Results for the AES RD Dataset

AES RD dataset is a protected implementation, where adding random delays to
the normal operation of AES makes it more difficult to conduct attack as features
are misaligned. The dataset consists of 50 000 traces of 3 500 features each, where
20 000 traces are used for the training set, 5 000 for the validation, and 25 000
for the attack set. The GE rankings for the AES RD dataset are illustrated in
Fig. 4. By observing all weight initializers’ speed and stability, we get the best
weight initializers in all scenarios: he normal, lecun normal, RandomUniform,
and RandomUniform, respectively.

Like the DPAv4 dataset, weights and biases change mostly in Convolutional
layers and Batch Normalization layers, but not in other layers. We can also see
that in the Methodology architecture, both weight and bias change significantly,
while in the Noise architecture, only biases change, and weights remain almost
constant.

Figures 5a and 5b display the best and the worst initializer respectively in
weights’ evolution for the Methodology architecture on the AES RD dataset. The
difference in the initializers’ performance stems from their stability because all

136 H. Li et al.

Fig. 4. Averaged GEs for all weight initializers with the AES RD dataset.

Fig. 5. Weights’ evolution and experiments with Methodology ID setting on the
AES RD dataset.

reach GE equal to zero in several of ten simulations, which can be seen in Figs. 5c
and 5d. The stability of the weight initializer is also seen in weights’ evolution.
Since we show the mean of the weights and the range for the ten simulations:
the more the weights’ evolution varies, the more GE is also likely to vary.

A Comparison of Weight Initializers 137

Finally, we investigate the weight initializer’s influence in the last dense layer
for the Methodology architecture. All hyperparameters are the same, except for
the weight initializer in the last layer, which is set as default, according to the
settings in paper [23]. The new results show that the change in the last layer also
does not have a big effect on the initializer’s stability, but it impacts the speed.
With the HW model, the convergence for all weight initializers is slower. The
best weight initializers for ID and HW model are he normal and lecun normal,
respectively.

4.3 Results for the ASCAD Dataset

Next, we compare the performance of different weight initializers for the ASCAD
dataset. We use the ASCAD dataset with 60 000 traces of 700 features without
desynchronization. The dataset is divided into 45 000 training traces, 5 000 vali-
dation traces, and 10 000 attack traces. In Fig. 6, we show the GE rankings. In
the experiment with the Methodology ID setting (Fig. 6a), increasing the number
of attack traces leads to an increase of the GE for the correct key byte, even with
he uniform, which was used in paper [23] in all layers except for the last layer.
By comparing the stability, we get that he normal is the best one. We observe
that the GE value of weight initializers with heuristics converges to zero with
the HW model (Fig. 6b). he normal is the fastest one. In the setting with the
Noise architecture (Figs. 6c and 6d), the best weight initializers, lecun normal,
can be easily chosen by observing the speed.

Fig. 6. Averaged GEs for all weight initializers with the ASCAD dataset.

Figure 7 shows the key rank range for he normal initializer where GE reached
zero (Fig. 7a), and RandomUniform where GE increases with an increased num-

138 H. Li et al.

ber of traces (Fig. 7b). Again, we see that even when the GE is increasing, some
key rank results are showing perfect attacks.

Fig. 7. The key rank range of Methodology architecture with HW model for decreasing
and increasing GE in ASCAD dataset.

Next, we observe the weights and biases change of every layer throughout
the epochs. Like the previous two datasets, weight and bias change mostly in
Convolutional layers and Batch Normalization layers, but not in other layers.
Once again, it can be seen that in the Methodology architecture, both weights
and biases change significantly, while for the Noise architecture, only biases
change and weights are almost constant.

In Fig. 8, we show the weights’ evolution of the best initializer (Fig. 8a) and
average performing one (Fig. 8b). The corresponding experiments are shown in

Fig. 8. Weights’ evolution and experiments with Noise HW setting on the ASCAD
dataset.

A Comparison of Weight Initializers 139

Figs. 8c and 8d for the Noise architecture and the HW model. In these experi-
ments, the worst initializer, RandomUniform (see Fig. 6d), performed similarly
to Zeros and Ones, as in every experiment, GE was increasing.

Finally, to explore the influence of weight initializers in the last layer, we run
experiments with the Methodology architecture, using all the hyperparameters
of the two experiments except the setting of the last layer in the neural network.
Like [23], the weight initializer of the last layer is a default one. The new results
show that weight initializer has a significant influence on the outcomes. In the
experiments with the Methodology ID setting, the average GE values of all weight
initializers (except Zeros and Ones) decrease, but there is a difference in the
stability of the initializers. The best weight initializer is he normal. With the
Noise architecture, the average GE values of all weight initializers increase. The
best weight initializer is lecun uniform, since, for two out of ten simulations, GE
converged to zero.

5 Weight Initializer Influence on Other Hyperparameters

Based on the best weight initializers that we find to provide better performance
for specific neural network architectures and datasets, we now analyze whether
a weight initializer’s performance depends on its combination with other hyper-
parameters or if a weight initializer method is connected to the dataset itself.
In other words, we wish to understand if the selection of a weight initializers
is optimal for a restricted group of hyperparameters or if it is more dependent
on the nature of the side-channel traces, meaning that any small variations on
hyperparameters would still lead to a successful attack in the majority of tests.

We select the Methodology convolutional neural network architecture used
in the previous sections and make small variations in their hyperparameters to
investigate the influence on the best found weight initializer. To do this analysis,
we select ASCAD dataset. For this dataset and the Methodology CNN archi-
tecture, we find that he normal weight initializer provide better results. Table 2
shows the ranges of hyperparameters that we vary in different CNN training
phases. In total, we train 400 CNNs, and we use the HW leakage model.

Table 2. Hyperparameter variations in the Methodology architecture.

Hyperparameters Original Minimum Maximum Step

Filters 4 4 8 1

Kernel Size 1 1 4 1

Neurons 10 5 15 1

Layers 2 2 3 1

Learning Rate 5e−3 1e−3 1e−2 1e−4

Mini-Batch 100 100 400 100

Activation function (all layers) SELU ReLU, Tanh, ELU, or SELU

140 H. Li et al.

Figure 9 shows that Tanh is the only activation function that does not provide
successful key recovery in any of the experiments. For the ReLU, ELU and SELU
activation functions, the different trained CNNs architectures can return low GE.

Fig. 9. Activation functions and guessing entropy.

Concerning the number of filters in the single convolution layer of this archi-
tecture, the usage of four filters tends to maximize the attack’s success, as demon-
strated in Fig. 10. Increasing the filter size decreases the probability of the attack
to be successful. Regarding kernel sizes, we observe that small variations on this
hyperparameter do not significantly affect the results. In Fig. 11, for kernel sizes
varying from 1 to 4, the density of low GE values is similar in all the cases.

Fig. 10. Filters and guessing entropy.

Fig. 11. Kernel sizes and guessing entropy.

Finally, we also observe that making small variations in the number of layers
and neurons also does not provide too much effect on the final GE. As shown
in Figs. 12a and 12b, more layers, and more neurons tend to provide a subtle
increase in the concentration of low GE values. These variations are insufficient

A Comparison of Weight Initializers 141

Fig. 12. Different layers and neurons variations and their relation to final GE results.

to assume that the combination of architecture hyperparameters and weight
initializer strictly depends on a specific number of layers and neurons.

We also do not observe a significant effect on the final GE results for different
mini-batch sizes (from 100 to 400) and different learning rates (from 0.001 to
0.01). Therefore, this analysis’s main conclusion is that the choice of a weight ini-
tializer for the Methodology CNN architecture (when using the ASCAD dataset
with the Hamming weight model), depends mostly on the activation function
rather than the rest of hyperparameters. However, for this scenario, a more
precise conclusion would be to assume that for a specific dataset (and leakage
model), there is an optimal combination of activation function and weight initial-
izer. Weight initializers with heuristics are derived based on certain assumptions
on the activation functions. For example, the Glorot initializer assumes that the
activations are linear. This assumption is not valid for ReLU activation func-
tions, so He et al. [8] derived a new initialization method, and it allowed their
deep models to converge as opposed to the Glorot initialization method. There-
fore, we see that weight initializers are closely related to activation functions,
which supports our conclusion.

6 Conclusions and Future Work

In this paper, we evaluate the influence of the weight initializer choice on the
performance of CNNs in the profiled side-channel analysis. We consider 11 weight
initializers, three datasets, two leakage models, and two CNN architectures. We
evaluate the weight initializer performance by observing guessing entropy, the
stability of results, and the evolution of weights through the training process.

Our results show that when the dataset is easy to attack, it is not important
what weight initializer to use. Going toward more difficult datasets, we observe
more influence stemming from this selection. Interestingly, we see that specific
key rank experiments can behave extremely well or extremely badly from the
guessing entropy results. What is more, we see significant differences in individual
training processes, which means that weight initializers play a significant role in
the training process, and it is necessary to run multiple training phases (and not
only attacks to obtain guessing entropy). Next, most of the changes in weights

142 H. Li et al.

happen in the Convolutional and Batch Normalization layer, while we observe
almost no change in weights in dense layers. Finally, we analyze the intercon-
nection between weight initializers and other hyperparameters. Our results show
a strong connection with activation functions and only marginal connection to
other commonly explored hyperparameters. This is supported by the fact that
the weight initializers with heuristics are designed based on certain properties
of activation functions. However, more experiments could further support this
observation. Mathematical explanations of weight initialization strategies were
out of scope for this work, but this is an interesting and broad research topic
that contributes to a deeper understanding of the deep learning models.

For future work, we see two particularly interesting directions. The first one is
to explore the influence of weight initializers and activations functions. Indeed,
our results indicate that changes in activation functions influence the results
from different weight initializers significantly. The second direction is to explore
the unsupervised pre-training setup. Results are showing that autoencoders can
be used to assign weights to each layer in an unsupervised manner, which helps
to guide the learning towards basins of attraction of minima that support better
generalization from the training dataset [7].

References

1. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-
channel analysis and introduction to ASCAD database. J. Cryptographic Eng.
10(2), 163–188 (2020). https://doi.org/10.1007/s13389-019-00220-8

2. Bhasin, S., Bruneau, N., Danger, J.-L., Guilley, S., Najm, Z.: Analysis and improve-
ments of the DPA contest v4 implementation. In: Chakraborty, R.S., Matyas, V.,
Schaumont, P. (eds.) SPACE 2014. LNCS, vol. 8804, pp. 201–218. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12060-7 14

3. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

5. Chollet, F., et al.: Keras (2015). https://keras.io
6. Coron, J.S., Kizhvatov, I.: An efficient method for random delay generation in

embedded software. Cryptology ePrint Archive, Report 2009/419 (2009). https://
eprint.iacr.org/2009/419

7. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why
does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–
660 (2010)

8. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on imagenet classification. In: IEEE International Conference
on Computer Vision (ICCV 2015) 1502, February 2015. https://doi.org/10.1109/
ICCV.2015.123

9. Heuser, A., Zohner, M.: Intelligent machine homicide - breaking cryptographic
devices using support vector machines. In: COSADE, pp. 249–264 (2012)

https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-3-319-12060-7_14
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-36400-5_3
https://keras.io
https://eprint.iacr.org/2009/419
https://eprint.iacr.org/2009/419
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123

A Comparison of Weight Initializers 143

10. Keras: Layer weight initializers. https://keras.io/api/layers/initializers/
11. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise: Unleash-

ing the power of convolutional neural networks for profiled side-channel analy-
sis. Cryptology ePrint Archive, Report 2018/1023 (2018). https://eprint.iacr.org/
2018/1023

12. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International
Conference on Learning Representations, December 2014

13. Koturwar, S., Merchant, S.: Weight initialization of deep neural networks (DNNS)
using data statistics. CoRR abs/1710.10570 (2017). http://arxiv.org/abs/1710.
10570

14. Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: An approach
based on machine learning. Int. J. Appl. Cryptol. 3(2), 97–115 (2014). https://doi.
org/10.1504/IJACT.2014.062722

15. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Tem-
plate attacks vs. machine learning revisited (and the curse of dimensionality in
side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014.
LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21476-4 2

16. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

17. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Advances in Information Security. Springer, Boston (2007).
https://doi.org/10.1007/978-0-387-38162-6

18. Peng, A.Y., Sing Koh, Y., Riddle, P., Pfahringer, B.: Using supervised pretraining
to improve generalization of neural networks on binary classification problems. In:
Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD
2018. LNCS (LNAI), vol. 11051, pp. 410–425. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-10925-7 25

19. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class
imbalance and conflicting metrics with machine learning for side-channel eval-
uations. IACR Trans. Cryptographic Hardware Embed. Syst. 2019(1), 209–
237 (2018). https://doi.org/10.13154/tches.v2019.i1.209-237, https://tches.iacr.
org/index.php/TCHES/article/view/7339

20. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the perfor-
mance of convolutional neural networks for side-channel analysis. In: Chattopad-
hyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–
176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6 10

21. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ascad database. Cryptol-
ogy ePrint Archive, Report 2018/053 (2018). https://eprint.iacr.org/2018/053

22. Xavier Glorot, Y.B.: Understanding the difficulty of training deep feedforward
neural networks. J. Mach. Learn. Res. 9, 249–256 (2010)

23. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN
architectures in profiling attacks. IACR Trans. Cryptographic Hardware Embed.
Syst. 2020(1), 1–36 (2019). https://doi.org/10.13154/tches.v2020.i1.1-36, https://
tches.iacr.org/index.php/TCHES/article/view/8391

https://keras.io/api/layers/initializers/
https://eprint.iacr.org/2018/1023
https://eprint.iacr.org/2018/1023
http://arxiv.org/abs/1710.10570
http://arxiv.org/abs/1710.10570
https://doi.org/10.1504/IJACT.2014.062722
https://doi.org/10.1504/IJACT.2014.062722
https://doi.org/10.1007/978-3-319-21476-4_2
https://doi.org/10.1007/978-3-319-21476-4_2
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-3-030-10925-7_25
https://doi.org/10.1007/978-3-030-10925-7_25
https://doi.org/10.13154/tches.v2019.i1.209-237
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://doi.org/10.1007/978-3-030-05072-6_10
https://eprint.iacr.org/2018/053
https://doi.org/10.13154/tches.v2020.i1.1-36
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://tches.iacr.org/index.php/TCHES/article/view/8391

Leakage Assessment Through Neural
Estimation of the Mutual Information

Valence Cristiani1(B), Maxime Lecomte1, and Philippe Maurine2

1 Univ. Grenoble Alpes, CEA, LETI, Grenoble, France
valencecristiani@gmail.com
2 LIRMM, Montpellier, France

Abstract. A large variety of side-channel attacks have been developed
to extract secrets from electronic devices through their physical leakages.
Whatever the utilized strategy, the amount of information one could gain
from a side-channel trace is always bounded by the Mutual Information
(MI) between the secret and the trace. This makes it, all punning aside,
a key quantity for leakage evaluation. Unfortunately, traces are usually
of too high dimension for existing statistical estimators to stay sound
when computing the MI over full traces. However, recent works from the
machine learning community have shown that it is possible to evaluate
the MI in high dimensional space thanks to newest deep learning tech-
niques. This paper explores how this new estimator could impact the
side channel domain. It presents an analysis which aim is to derive the
best way of using this estimator in practice. Then, it shows how such a
tool can be used to assess the leakage of any device.

Keywords: Side channel analysis · Mutual information · Deep
learning

1 Introduction

Side Channel Analysis (SCA) could be defined as the process of gaining infor-
mation on a device holding a secret through its physical leakage such as power
consumption [11] or Electromagnetic (EM) emanations [16]. The secret is usu-
ally a cryptographic key but could be as well basic block execution, assembly
instructions, or even the value of an arbitrary register. The basic assumption
is that the secret and the side-channel data are statistically dependent. Many
techniques have been developed to extract part of these dependencies such as
DPA [11], CPA [3], MIA [15], and profiling attacks [6]. This diversity makes
it hard for designers and evaluators to draw an objective metric in order to
assess leakage. Testing all the existing attacks is a possible strategy but the
incentives to develop a leakage assessment protocol can be found in a couple of
works [4,13,18].

From an information theory point of view, the maximum amount of infor-
mation one could extract from a side-channel trace is bounded by the mutual
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 144–162, 2020.
https://doi.org/10.1007/978-3-030-61638-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_9

Leakage Assessment Through Neural Estimation of the Mutual Information 145

information, I(S,X) between the secret S and the trace X, seen as random vari-
ables. This quantity is, indeed, central in the side-channel domain. The goals of
the different actors could be summarized as follows:

– Designers aim at implementing countermeasures to decrease as far as pos-
sible I(S,X), with computational, spatial and efficiency constraints.

– Evaluators aim at estimating I(S,X) as closely as possible to assess leakages
in a worst-case scenario.

– Attackers aim at developing strategies to partially or fully exploit I(S,X)
in order to recover a secret.

The main problem for designers and evaluators is that I(S,X) is known to
be hard to estimate from drawn samples when the variables live in a high dimen-
sional space, which is generally the case of X. Indeed, computing I(S,X) usually
requires an estimation of the conditional density Pr(S|X) which is hard because
of the well-known curse of dimensionality. This explains why conventional leak-
age assessment tools [18] (Signal to Noise Ratio (SNR), T-tests) and classical
attack strategies such as CPA and MIA typically focus on one (or a few) samples
at a time in the trace. As a result, the amount of information effectively used
may be significantly lower than I(S,X).

Latest deep learning attacks have proved that neural networks are a very
interesting tool able to combine information from many samples of the traces
without any prior knowledge on the leakage model. For instance, [14] recently
proposed a way to derive an estimation of I(S,X) from the success rate of their
attacks and showed that in a supervised context, neural networks are close to
optimal at extracting information from traces.

In a completely unrelated context, Belghazi et al. [1] lately introduced a
Mutual Information Neural Estimator (MINE) which uses the power of deep
learning to compute mutual information in high dimension. They have proposed
applications in a pure machine learning context but we argue that this tool might
be of great interest in the side-channel domain. Indeed, being able to efficiently
compute I(S,X) in an unsupervised way (no profiling of the target needed), no
matter the target, the implementation, or the countermeasures used, would be
highly relevant for all the different parties.

Paper Organization. For this paper to be self-contained, the general method
and the mathematical ideas behind MINE are recalled in Sect. 2. Section 3 pro-
poses an in-depth analysis of MINE in a side-channel context supported with syn-
thetic traces, and suggests ways of dealing with the overfitting problem. Section 4
provides some real case applications. It shows how this estimator constitutes a
reliable leakage assessment tool that can be used to compare leakage from differ-
ent implementations and devices. This section also shows that such an estimator
can be used as a guide for an evaluator/attacker to maximize the MI captured
from different hardware side-channel setups.

146 V. Cristiani et al.

2 Background and Theory Behind MINE

Notations. Random variables are represented as upper case letters such as X.
They take their values in the corresponding set X depicted with a calligraphic
letter. Lower case letters such as x stand for elements of X . Probability density
function associated to the variable X is denoted by pX .

Background. The entropy H(X) [19] of a random variable is a fundamental
quantity in information theory which typically tells how much information one
would get in average by learning a particular realization x of X. It is defined as
the expectation of the self-information log2(1/pX). In a discrete context:

H(X) =
∑

x∈X
pX(x) · log2

(
1

pX(x)

)
(1)

In a side-channel environment where X represents the acquired data, one is
not interested in the absolute information provided by X but rather in the
amount of information revealed about a second variable such as a secret S. This
is exactly what is measured by the mutual information I(S,X). It is defined as:
I(S,X) = H(S) − H(S|X) where H(S|X) stands for the conditional entropy of
S knowing X:

H(S|X) =
∑

x∈X
pX(x) · H(S|X = x) (2)

The most common ways to estimate MI are the histogram method and the kernel
density estimation both described in [15]. There also exists a non parametric esti-
mation based on k-nearest neighbors [12]. This paper is interested in MINE [1],
a new estimator based on deep learning techniques, which claims to scale well
with high dimensions. Technical details about MINE are given hereafter.

MINE. A well known property of I(S,X) is its equivalence with the Kullback-
Leibler (KL) divergence between the joint probability pS,X = Pr(S,X) and the
product of the marginals pS ⊗ pX = Pr(S) · Pr(X):

I(S,X) = DKL(pS,X || pS ⊗ pX) (3)

where DKL(p, q) is defined as follow:

DKL(p || q) = Ep[log
(

p

q

)
] (4)

whenever p is absolutely continuous with respect to q. This property guarantees
that when q is equal to 0, p is also equal to 0 and there is no division by 0 in the
logarithm. By definition, pS,X is absolutely continuous with respect to pS ⊗ pX .

The key technical ingredient of MINE is to express the KL-divergence with
variational representations, especially the Donsker-Varadhan representation that
is given hereafter. Let p and q be two densities over a compact set Ω ∈ R

d.

Leakage Assessment Through Neural Estimation of the Mutual Information 147

Theorem 1. (Donsker-Varadhan, 1983) The KL-divergence admits the follow-
ing dual representation:

DKL(p || q) = sup
T : Ω→R

Ep[T] − log(Eq[eT]) (5)

where the supremum is taken over all functions T such that the two expectations
are finite.

A straightforward consequence of this theorem is that for any set F of functions
T : Ω → R satisfying the integrability constraint of the theorem we have the
following lower bound:

DKL(p || q) ≥ sup
T∈F

Ep[T] − log(Eq[eT]) (6)

Thus, using (3), one have the following lower bound for I(S,X):

I(S,X) ≥ sup
T∈F

EpS,X
[T] − log(EpS⊗pX)[eT]) (7)

How to Compute I(S,X). To put it short, the idea is to define F as the set
of all functions Tθ parametrized by a neural network with parameters θ ∈ Θ and
to look for the parameters maximizing the loss function L : Θ → R:

L(θ) = EpS,X
[Tθ] − log(EpS⊗pX)[eTθ]) (8)

This loss function is itself bounded by I(S,X). The universal approximation
theorem for neural networks guarantees that this bound can be made arbitrarily
tight for some well-chosen parameters θ. The goal is then to find the best θ,
potentially using all the deep learning techniques and, more generally, all the
tools for optimization problem-solving. The expectations in (8) can be estimated
using empirical samples from pS,X and pS⊗pX and the maximization can be done
with the classical gradient ascent. A noticeable difference with a classical deep
learning setup is that the trained network is not used for any kind of prediction.
Instead, the evaluation of the loss function at the end of the training gives an
estimation of I(S,X). We give hereafter the formal definition of the estimator
as stated in the original paper [1].

Definition 1. (MINE) Let A =
{
(s1, x1), . . . , (sn, xn)

}
and B =

{
(
∼
s1,

∼
x1), . . . ,

(
∼
sn,

∼
xn)

}
be two sets of n empirical samples respectively from pS,X and pS ⊗pX .

Let F = {Tθ}θ∈Θ be the set of functions parametrized by a neural network. MINE
is defined as follows:

̂I(S,X)n = sup
T∈F

EA[T] − log(EB[eT]) (9)

where ES [·] stands for the expectation empirically estimated over the set S.
The main theoretical result proved in [1] is that MINE is strongly consistent.

148 V. Cristiani et al.

Theorem 2. (Strong consistency) For all ε > 0 there exist a positive integer N
such that:

∀n > N, |I(S,X) − ̂I(S,X)n| < ε (10)

In practice one often only have samples from the joint distribution: A =
{(s1, x1), . . . (sn, xn)}. Samples from the product of the marginals can be arti-
ficially generated by shuffling the variable X using a random permutation σ:
B = {(s1, xσ(1)), . . . , (sn, xσ(n))}. We provide hereafter an implementation of
MINE that uses minibatch gradient ascent. Note that B is regenerated after
each epoch. Thus, this algorithm is not strictly implementing MINE as defined
in (9) because B is fixed in this definition. Theoretical arguments are provided
in Sect. 3.4 to explain why this regeneration limit overfitting in practice and is
therefore mandatory.

Algorithm 1: Mine implementation
Input: A = {(s1, x1), . . . (sn, xn)}
θ ← Initialize network parameters
Choose b a batch size such that b | n
repeat

Generate B = {(s1, xσ(1)), . . . , (sn, xσ(n))} with a random permutation σ
Divide A and B into n

b
packs of b elements: A1, . . . , A n

b
and B1, . . . , B n

b

for i = 1; i = n
b
do

L(θ) ← EAi [Tθ] − log(EBi [e
Tθ]), Evaluate the loss function

G(θ) ← ∇θL(θ), Compute the gradient
θ ← θ + μG(θ), Update the network parameters (μ is the learning rate)

end

until convergence of L(θ)

3 Analysis of MINE in a Side-Channel Context

MI has found applications in a wide range of disciplines and it is not surprising
that it is also of great interest for side-channel analysis. Unlike Pearson coeffi-
cient, it detects non-linear dependencies and thus does not require any assump-
tions on the leakage model. Another key property of the MI is that it is invariant
to bijective transformations of the variables. This is of interest for side-channel
as S usually represents the state of an internal variable (ex: S = K ⊕ P for an
AES) and is therefore unknown but bijectively related to a known variable such
as the plaintext P . In that case, there exists a bijective function f such that
S = f(P) and:

I(S,X) = I(f−1(S),X) = I(P,X) (11)

Thus, one may estimate I(S,X) with only the knowledge of P and X and
therefore quickly get the amount of leakage an attacker could potentially exploit.

In what follows, we consider that we are granted n samples (s1, x1), . . . , (sn, xn)
of traces associated to the sensitive variable being processed in the device (or

Leakage Assessment Through Neural Estimation of the Mutual Information 149

as stated above, to any bijection of this variable). These samples will be either
generated on simulation or measured from real case experiments. The goal is to
derive the best way to use MINE in a side-channel context in order to compute
a reliable estimation of I(P,X).

3.1 Simulated Traces Environment

In order to assess the capabilities of MINE experiments on synthetic traces were
first conducted. These traces have been generated using a leakage model which
may seem awkward since the whole point of conducting MI analysis is to avoid
any assumption on the leakage model. But we argue that as a first step, it brings
a valuable advantage: the environment is perfectly controlled, thus the true MI
is known and can be used to evaluate the results and compare different settings.

Trace Generation. To generate traces, featuring nl +nr independent samples,
a sensitive byte 0 ≤ s ≤ 255 was first drawn uniformly. The leakage was spread
over the nl samples drawn from a normal distribution centered in the Hamming
Weight (HW) of s and with noise σ ∼ N (HW (s), σ). The nr remaining samples
are random points added to the trace to artificially increase the dimension and
be closer from a real scenario. Each of the nr samples is drawn from a normal
distribution centered in c and with noise σ ∼ N (c, σ), where c is an integer itself
drawn uniformly between 0 and 8. A very simple yet informative case is to set
nl = 1, nr = 0 and σ = 1. In that case, the true mutual information I(S,X) is
equal to:

I(S, X) = H(S) − H(S|X)

= 8 −
255∑

s=0

∫ ∞

−∞
Pr(s, x) · log2

(
1

Pr(s|x)

)
dx

= 8 −
255∑

s=0

∫ ∞

−∞

1

28

1√
2π

e− 1
2 (x−HW (s))2 · log2

(∑255
s′=0 e− 1

2 (x−HW (s′))2

e− 1
2 (x−HW (s))2

)
dx

≈ 0.8 bits

(12)
As a first step, we applied MINE to a set of 10k synthetic traces gener-

ated with these parameters. The network was set to be a simple Multi Layer
Perceptron (MLP) with two hidden layers of size 20. The Exponential Linear
Unit (ELU) was used as the activation function. The input layer was composed
of two neurons, representing the value of the sensitive variable S and the one-
dimensional trace X. The output was a single neuron giving the value of the
function Tθ. The batch size was set to 500. The value of the loss function L(θ)
over time is plotted in Fig. 1. An epoch represents the processing of all the data
so the parameters are updated 20 times per epoch.

As shown, the results are mixed. On one hand, the loss function is always
under the true MI and it seems that the limit superior of MINE is converging
over time towards 0.8, i.e. the true MI. On the other hand, the loss function

150 V. Cristiani et al.

experiences a lot of drops and the convergence is very slow (above 200k epochs).
Drops may be due to the optimizer used (ADAM [10]) and happens when the
gradient is very close to 0. Increasing the size/number of hidden layers did not
produce any significantly better results. In that state MINE is clearly not of
any use for side-channel: the convergence is not clear and a classical histogram
method would compute the MI faster and better for one-dimensional traces.

1e3

loss

0.8

B
its

Epochs

1

Fig. 1. Evolution of MINE’s loss function over time

3.2 Input Decompression

Trying to gain intuition about the reasons causing the network to perform poorly
in this situation, we hypothesized that the information in the first layer, espe-
cially the value of s, could be too condensed in the sense that only one neuron
is used to describe it. Intuitively, the information provided by s about the cor-
responding trace x is not continuous in s. The meaning of this statement is that
there is no reason that two close values of s induce two close values of x. For
example, in a noise-free Hamming weight leakage model, the traces correspond-
ing to a sensitive value of 127 and 128 would be very different since HW (127) = 7
and HW (128) = 1. Since neural networks are built using a succession of linear
and activation functions which are all continuous, approximating functions with
quick and high variations may be harder for them. Indeed, building a neural
classifier that extracts the Hamming weight of an integer is not an easy task.
However, if the value of this integer is split into multiple neurons holdings its
binary representation, the problem becomes trivial as it ends up being a simple
sum.

This observation led us to increase the input size to represent the value
of s in its binary form, thus using 8 neurons. However, computing I(S,X) in
that case gives an unfair advantage to the arbitrarily chosen Hamming weight
model. Indeed, the value of X would be closely related to the sum of the input
bits. So we decided to compute I(S ⊕ k,X) instead of I(S,X), with a fixed k.
As stated above this bijective transformation does not change the MI anyway
and removes a possible confusion factor in the analysis. Results with the same
parameters as before (nl = 1, nr = 0, σ = 1) are presented in Fig. 2. They bear

Leakage Assessment Through Neural Estimation of the Mutual Information 151

no comparison with the previous ones. With this simple trick, MINE quickly
converges toward the true MI. The estimation seems robust as restarting the
training from different initializations of the network always produces the same
results. The order of magnitude of the computational time for the 500 epochs is
around two minutes.

loss

Fig. 2. MINE with input decompression

Remark 1. Note that any constant function Tθ would produce a loss function of
0. We argue that this could explain the knee point around 0 bit in the learning
curve: it is indeed, easy for the network to quickly reach 0 tuning the parameters
towards a constant function, before learning anything interesting.

Before testing this method for higher dimension traces, we propose to analyze
more in-depth this Input Decompression (ID). The goal is to understand if this
result was related in any way to our simulation setup or if ID could be applied
to more generic cases. As a first step, we tried to decompress X instead of S,
binning the value of X to the closest integers, then using its binary representation
as input neurons. As expected, it did not work: results looked like Fig. 1, as
X is by essence a continuous variable. If there is no interest in splitting into
multiple neurons an intrinsically continuous variable, our hypothesis is that, for
categorical variables, the greater the decompression, the faster the training.

Learning Random Permutations. In order to test this hypothesis in a more
generic case, this section proposes to build a neural network Pθ which goal is to
learn a random permutation P of {0, . . . , n−1} and to analyze its performance in
terms of ID. Permutations have been chosen because they are arbitrary functions
with no relation between close inputs. For an integer m < n the network returns
a float Pθ(m) which has to be as close as possible to P (m). The loss function
was defined as error: L(θ) = |Pθ(m) − P (m)|. Network architecture was again a
simple MLP but with 3 hidden layers of size 100. To study the effect of ID the
input layer was defined to be the representation of m in different bases, with one
neuron per digit. For example, with n = 256, all bases in 256, 16, 7, 4, 3, 2, 1 were
considered resulting in a first layer of respectively {1, 2, 3, 4, 6, 8, 256} neurons

152 V. Cristiani et al.

(base 1 is actually the One Hot Encoding (OHE)). The training dataset was a
list of 10k integers uniformly drawn from {0, . . . , n− 1}. Loss functions in terms
of ID are depicted in Fig. 3. At the end of the training, plots are exactly ordered
in the expected way: greater decompression leads to faster and better training.

In a recent analysis, Bronchain et al. [5] have shown that it was hard for
a MLP to learn the Galois multiplication in GF (2n) when n ≥ 8. As Galois
multiplication suffers from the same non-continuity than random permutations,
we argue that blue plots confirm this result. With no ID our MLP did not show
the beginning of a convergence towards 0. But we do think their network may
have been successful with ID. Pink plots show that the best choice is to use
the OHE. The problem with OHE is that the number of neurons (and therefore
the computational time) scales linearly with n (the number of categories of the
underlying problem), where it only scales logarithmically with any other base. In
side-channel, one mostly deals with bytes (256 categories) and will therefore use
the OHE. However, Sect. 4.3 presents a scenario where using base 2 is a better
choice, when computing the MI with assembly instructions.

Base/Input layer
256/1
16/2
7/3
4/4

3/6
2/8
1/256

(a) n = 28

1e3

(b) n = 216

Fig. 3. Impact of input decompression on learning random permutations

Remark 2. Note that the constant function Pθ = n
2 would result in an average

loss function of n
4 , which explains the knee point around n

4 observable in most
of the curves: quickly converging towards this function is an efficient strategy
for the network to minimize its loss at the beginning of the learning phase. We
verified this statement by looking at the predictions of the network which were
all close from n

2 in the early stage of the training.

3.3 MINE in Higher Dimension

This section presents results of simulations in higher dimension and compare
MINE estimation to that provided by the classical histogram and KNN meth-
ods. The histogram estimator has been implemented following the description
from [15] and Steeg’s implementation [21] has been utilized for KNN. Network

Leakage Assessment Through Neural Estimation of the Mutual Information 153

architecture described in Sect. 3.1 has been used with OHE to encode the S vari-
able. We have kept nl = σ = 1 so the true MI is still around 0.8 bits but nr was
no longer set to 0 in order to increase the traces dimension. Figure 4 shows the
results for nr = 1 and nr = 9. In both case MINE correctly converges toward
the true MI. The histogram method tends to overestimate the MI (as explained
in [23]) while KNN method underestimates it. With dimension greater than 10
these methods are not reliable anymore. One could argue that any dimension
reduction technique applied in the above experiments would allow to compute
the MI with classical estimators. While this is true in this case it may result
in a loss of information in a real case scenario where the information could be
split into multiple samples of the traces. We have conducted many experiments
with different parameters and MINE always returned reliable estimations even
in very high dimension (ex: Fig. 5b with nl = 5 and nr = 1000).

(a) Trace dimension = 2
(nl = 1, nr = 1, σ = 1)

(b) Trace dimension = 10
(nl = 1, nr = 9, σ = 1)

Fig. 4. Comparison of MINE with classical estimators in higher dimension

3.4 Analysis of the Overfitting Problem

Results of simulations are encouraging as they seem accurate with a lot of dif-
ferent parameters but one problem still has to be solved before testing MINE on
real traces: when to stop the training? Until now, training has been manually
stopped when the loss had converged towards the true MI. No such threshold
value will be granted in real cases. One could argue that since the loss function
is theoretically bounded by the true MI, a good strategy would be to let the
training happen during a sufficiently long time and to retain the supremum of
the loss function as the MI estimation. We argue that this strategy is not viable:
in practice the bound does not hold as expectations in the loss are not the true
expectations but are only estimated through empirical data. Thus, MINE can

154 V. Cristiani et al.

still produce output above the true MI. Figure 5 shows this phenomenon: train-
ing has been intentionally let running for a longer time in these experiments and
MINE overestimates the MI at the end of the training. In other terms, MINE is
no exception to the rule when it comes to the overfitting problem: the network
can learn ways to exploit specificities of the data it is using to train, in order to
maximize its loss function. We propose hereafter a detailed analysis of this prob-
lem and answer to the following question: is it possible to control (for example
to bound with a certain probability) the error made by the network?

Let us return to the definition of MINE estimator:

̂I(S,X)n = sup
θ∈Θ

EA[Tθ] − log(EB[eTθ]) (13)

The problem comes from the fact that the two expectations are estimated over
the set of empirical data A and B. The error can not be controlled in the classical
way with the central limit theorem because there is a notion of order that is
important: the two sets A and B are selected before the network tries to find the
supremum over Θ. Thus, the network can exploit specificities of A and B in its
research. We show in Theorem 3 that given two sets A and B, the supremum
may not even be bounded.

(a) Trace dimension = 15
(nl = 5, nr = 10, σ = 1)

(b) Trace dimension = 1005
(nl = 5, nr = 1000, σ = 1)

Fig. 5. Over estimation of MINE at the end the training (overfitting)

Theorem 3. Let X, Y be two random variables over Ω. Let x = (x1, . . . , xn) ∈
Ωn and y = (y1, . . . , yn) ∈ Ωn be two samples of n realizations of respectively X
and Y . Then,

sup
T : Ω→R

Ex [T (X)] − log(Ey [eT (Y)]) < ∞ ⇔ ∀i, ∃j such that xi = yj

Proof. Let us introduce two new random variables, X ′ and Y ′ defined as follows:

∀ω ∈ Ω, P(X ′ = ω) =
1
n

· |{xi = ω}| and P(Y ′ = ω) =
1
m

· |{yi = ω}|

Leakage Assessment Through Neural Estimation of the Mutual Information 155

The samples x and y are perfect samples of X ′ and Y ′ (by definition of X ′

and Y ′), thus, the estimated expectations are equal to the true expectations
computed over this new variables:

sup
T : Ω→R

Ex [T (X)] − log(Ey [eT (Y)]) = sup
T : Ω→R

EX′ [T (X ′)] − log(EY ′ [eT (Y ′)])

Now let us assume the right part of the equivalence. This condition means
that there is no isolated xi, or in other words: ∀ω,Pr(Y ′ = ω) = 0 ⇒ Pr(X ′ =
ω) = 0. This guarantees the absolute continuity of pX′ with respect to pY ′ and
thus, that DKL(pX′ || pY ′) exists. Therefore, using Theorem 1:

sup
T : Ω→R

Ex [T (X)] − log(Ey [eT (Y)]) = DKL(pX′ || pY ′) < ∞

If, on the other hand, this condition is false: ∃i such that ∀j, xi �= yj . For
any given function T one can exploit this isolated xi modifying T (xi) without
influencing the second expectation. In particular, if T (xi) tends towards infinity:

lim
T (xi)→∞

[
Ex [T (X)] − log(Ey [eT (Y)])

]
= lim

T (xi)→∞

[
1

n

n∑

k=1

xkT (xk) − log(
1

n

n∑

k=1

ykeT (yk))

]

= lim
T (xi)→∞

[
1

n

n∑

k=1

xkT (xk)

]
− log(

1

n

n∑

k=1

ykeT (yk))

= ∞

So in that case:

sup
T : Ω→R

Ex [T (X)] − log(Ey [eT (Y)]) = ∞

��
This theorem means that most of the time (and especially for high dimen-

sional variables) the supremum is infinite and MINE is not even well defined. The
natural question that comes now is: why does MINE seem to work in practice?

We claim that this is due to the implementation and especially to the ran-
domization of the set B evoked in Sect. 2: after each epoch a new permutation
σ is drawn to generate samples from pS ⊗ pX : B = {(s1, xσ(1)), . . . , (sn, xσ(n))}.
Thus, the isolated samples from A are not always the same at each epoch which
does not leave time for the network to exploit them. To verify that this was a key
element, MINE was run without this randomization process. The loss function
diverged towards infinity, as predicted by Theorem 3.

In the long run, the network can still learn statistical specificities of the
dataset such as samples from A that has a greater probability of being isolated,
and exploit them. This explains why MINE may overfit when it has a long time
to train. That is why we suggest to add a validation loss function.

156 V. Cristiani et al.

Validation Loss Function. A validation loss function is a common tool when
it comes to detect overfitting and stop the training at the right time. The idea is
to split the dataset A into a training dataset At and a validation one Av and to
only use At for the training. At the end of each epoch, the loss function is com-
puted both on At and Av. As the data from Av are never used during training,
MINE can not overfit on them. Thus, it is safe to take the supremum of the loss
computed over Av as our MI estimation. It also provides a useful condition to
stop the training as the decrease of the validation loss function is usually a sign
of overfitting. Figure 6a shows an example where the true loss function and the
validation one (computed on 80% and 20% of the data) respectively increase and
decrease after a while. Training could have been stopped after the 500th epoch.

Fill the Holes. Theorem 3 states that there is still a case where the supremum
is bounded: when ∀a ∈ A, ∃b ∈ B such that a = b, or in other words, when there
is no isolated value in A. An alternative solution to prevent overfitting is thus to
force this condition to be true instead of regenerating B after each epoch. Naively
filling the holes by adding to B all the isolated values is not a good idea because
the resulting set would be biased, not containing stricto sensu samples drawn
from pS ⊗ pX . However, with A = {(s1, x1), . . . (sn, xn)}, As = {s1, . . . , sn} and
Ax = {x1, . . . , xn} one can define B′ as the Cartesian product1 B′ = As × Ax

which is by definition a non-biased dataset that covers all the elements of A.
The problem is that its size is no longer n but n2 which drastically impacts the
computational time of MINE as the network has to compute Tθ(b) for all b ∈ B′

at each epoch. However, the number of network evaluations can be reduced to
c · n where c is the cardinality of the set S made up of all the possible values
taken by the sensitive variable S. For example, if S is a byte, c = 256. The idea
is to evaluate Tθ on the c ·n elements of the set S×Ax which is sufficient to cover
all the couples from B′ as elements from As × Ax can all be found in S × Ax.

With this implementation MINE is fundamentally bounded by a quantity
denoted Maxmi equal to the KL-divergence between the empirical distributions
associated to A and B as stated in the proof of Theorem 3. Figure 6b shows an
example of MINE with this implementation applied to the already considered
case (nl = 1, nr = 0, σ = 1). One may observe that the loss function is a lot
smoother and is effectively bounded by Maxmi (we tried to let the network
train for more than 100k epochs) which is another empirical confirmation of
Theorem 3.

However, when the dimension of the variables increases samples tend to be
more and more unique. At the limit, they hold the full information about the cor-
responding secret s which means that Maxmi will tends towards H(S). Knowing
if the network will always converge towards his supremum or will stabilize to a
value close to the true MI is an open question. We do think that the randomiza-
tion proposed in the precedent strategy may help to that aim and that is why we

1 These sets are actually multisets as they may contains repetitions of a single elements
but the Cartesian product can be canonicaly extended to multisets.

Leakage Assessment Through Neural Estimation of the Mutual Information 157

will stick to the validation method for our real-life experiments, which is faster
anyway.

MlNE Validation
loss

(a) Validitaion strategy
(nl = 10, nr = 0, σ = 1)

loss

(b) Fill the holes strategy
(nl = 1, nr = 0, σ = 1)

Fig. 6. Two possible strategies against overfitting

4 Application of MINE in an Evaluation Context

This section provides real case examples where MINE could be useful especially
in an evaluation context. Its most straightforward utilization is probably to assess
the quantity of information leaking from a device when it computes a crypto-
graphic algorithm. It can be seen as a first security metric, easy to compute
whatever the target and the implementation, with low expertise required. How-
ever, MINE only returns an upper bound on the amount of leakage potentially
usable. In practice, an attacker may not be able to fully exploit this information,
depending on his strategy, and that is why classical evaluation methods still have
to be performed.

That being said, MINE is also a great comparison tool. Indeed, its output
is an interpretable number that allows to objectively rank different devices or
implementations in terms of their leakage. It can be used to analyze the effect
of a countermeasure or even to compare different hardware setup in order to
maximize the MI for future attacks or evaluations.

4.1 Leakage Evaluation of an Unprotected AES

As a first real case experiment, our target was an unprotected AES implemented
on a cortex M4 device. 20k EM traces centered on the first round of the AES
have been acquired through a Langer probe (RF-B 0, 3-3) linked to an LNA
and a Tektronix oscilloscope (MSO64, 2.5 GHz) with a sample rate of 1 GS/s.
Resulting traces had a length of 50k samples. They have been labeled with the

158 V. Cristiani et al.

first byte of the corresponding plaintext which was drawn randomly for each
computation of the AES.

The main goal of this first experiment was to demonstrate how adding more
samples to the analysis, which is the purpose of MINE, increases the amount of
information one can recover. To this end, only the n samples with the maximum
SNR were kept in the traces, with n in {1, 5, 500}. Network architecture was the
same as in the simulated experiments. Results are presented in Fig. 7. The thick
blue plot shows that if one only uses one sample in his analysis (for example
with a CPA or histogram-based MIA) he would be able to extract at most 1.15
bits about the secret, per trace. While it is a huge amount of information (it
is an unprotected AES) it is possible to extract almost 4 times more using 500
samples. For clarity reasons, only the validation loss has been plotted. Training
has been stopped after epoch 500 as these validations (especially the green one)
started to decrease. Going further with n ≥ 500 did not produce better results
as it seems that the remaining samples were absolutely not informative about
the secret.

ADC Comparison. The oscilloscope used in the former experiment offers the
possibility to set the ADC precision to either 8 or 15 bits. This is a good oppor-
tunity to show MINE comparative interest and its ability to answer questions
such as “Is it really worth it to buy the newest scope with the enhanced ADC
precision?” in a quantitative and objective way. 10k traces instead of 20k (so
that the occupied memory stayed constant) were thus acquired with the 15 bits
precision. Results are represented by the thin plots on Fig. 7. In this case, the
answer is that there is a slight improvement (around 10%) working with the 15
bits precision rather than the 8 bits one.

4.2 Leakage Evaluation of a Masked AES from the ASCAD
Database

One of the main difficulties of side-channel analysis is to extract information even
when the target algorithm has been masked. Indeed, masking removes all the
first-order leakage and thus, obliges one to combine samples together to detect
a dependency with the secret. This is usually very long as all the couples of
samples (or n-tuple) have to be tested.

It is thus a great challenge for MINE to see if it is able to automatically
perform this recombination, and detect higher-order leakages. For that purpose,
the public dataset ASCAD [2] (with no jitter) has been used. It provides a
database of 50k EM traces of 700 samples each, of an AES protected with a
Boolean masking. A MI estimation, derived from deep learning attack results,
has already been done on this dataset [14]. They reported a MI of 0.065 bit
between the traces and the third key byte (the first two were not masked) which
provides a reference point.

At first, MINE was not successful: the loss function increased but the vali-
dation started to decrease very early which is a direct sign of overfitting. Intu-
itively, when the underlying problem is more complex, it may be easier for the

Leakage Assessment Through Neural Estimation of the Mutual Information 159

network to learn properties of the empirical data before the true structure of
these data. Then, classical solutions against overfitting have been applied to
MINE. These include Batch Normalization (BN) layers, dropout, and regular-
ization techniques. While the last, did not impact performances significantly, the
combination of BN and dropout greatly improved the results. A BN layer has
been applied to the inputs in order to normalize them. This is known to make
the loss function smoother and thus the optimization easier [17]. Dropout was
activated with p = 0.2 so that each neuron has a probability p of being set to
0 when an output of the network is computed (except when the validation is
computed). This is also known to reduce overfitting and make the training more
robust [20].

Results are presented in Fig. 8: validation loss reached a value of 0.2 bits
which is about three times bigger than the MI reported in [14]. Due to how
validation is computed this value can not be an overestimation of the MI. Our
MLP structure may be a little more adapted than the CNN used in [14] as there
is no jitter in that case. We also suggest that the input decompression technique,
only usable with MINE, could help the network to learn, especially for complex
problems such as when the algorithm is masked. This may explain why MINE
was able to extract more information in that case. One can observe that it took
100 epochs for the network to start to learn something. It may seem random but
this period of 100 epochs was surprisingly repeatable across experiments.

8 bitsADC: 15 bits

Fig. 7. Leakage evaluation of an unprotected AES

4.3 Instructions Leakage

Another advantage of MINE is that it cannot only compute MI for high dimen-
sional traces but also for secrets with a high number of classes. This is the case if
one is interested in recovering information about the raw assembly instructions
that are being executed. This branch of SCA is called Side Channel Based Dis-
assembling (SCBD) [7–9,22] and the main difficulty in this domain is the size
of the attacked variable, generally the couple (opcode, operands) which is no
longer a simple byte. For example the target device in [7,8,22] is a PIC16F from

160 V. Cristiani et al.

Fig. 8. Leakage evaluation of a masked AES (ASCAD)

Microchip which encodes its instruction on 14 bits. Even though some opcodes
are not valid, the number of possible couples (opcode, operands) is around 212.
It is even worse for more complex processors encoding their instruction on 16
or 32 bits. MINE treats the attacked variable as an input and the number of
neurons used to encode it can be adjusted with ID as stated in Sect. 3.2. Using
base 2, one only need 14 neurons to encode an instruction in the PIC example.

In order to test MINE in this context, we have generated a program with 12k
randoms instructions for the PIC. Using the same experimental setup described
in Sect. 4.2 of [7], an EM trace of the whole execution has been acquired (it was
averaged on 500 traces as the program is repeatable). This trace has then been
separated into 12k sub-traces of 2000 samples each. Each sub-trace was labeled
with the executed instruction. As it has been shown in [7] that the probe position
may be very important, MINE has been applied at 100 different positions (using
a (10 × 10) grid) resulting in the MI cartography given in Fig. 9. The value at
each position is the mean of the network’s validation computed over the 100 last
epochs of the training (all the training lasted 500 epochs and a Gaussian filter
has been applied to the figure). Up to 8 bits of information have been found for
the best positions which is a high amount if one compares to the full entropy
of an instruction which is approximately 12 bits. This shows that MINE stays
sound even when the target variable has a high number of classes.

Coil Comparison. Similar to what has been done regarding the selection of the
oscilloscope precision, another hardware comparative experiment was conducted.
Two probes with two different coil orientations (Langer ICR HH and HV 100-
27) have been used. While the “hot” zones are globally the same, one may
observe that the coil orientation may have a significant impact on the captured
information for some specific positions. This experiment suggests that MINE
could be used to guide the positioning of EM probes during evaluations.

Leakage Assessment Through Neural Estimation of the Mutual Information 161

Bits

Fig. 9. Cartography of the MI between instructions and traces estimated by MINE on
a PIC16F

5 Conclusion

This paper suggests ways MINE, a new deep learning technique to estimate
mutual information, could constitute a new tool for side-channel analysis. The
main advantage is its ability to estimate MI between high dimensional variables.
Indeed, being able to consider full (or large part of) traces as a variable, allows
to exploit all potential leakage sources with no a priori on the leakage model
neither on the implementation. It seems that MINE could be used as a very
simple tool to obtain an objective leakage evaluation from traces. Thus, it may
be employed for massive and quick evaluations for designers in their development
process as well as for evaluators as a first leakage metric.

These suggestions result from a theoretical and practical analysis of MINE
in a side-channel context. MINE’s overfitting problem has been deeply inves-
tigated as well as the way input representation may have a huge impact on
performances. Our upcoming works will aim at investigating possible usages of
MINE for extracting secrets in an unsupervised way i.e. in an attack context.

References

1. Belghazi, M.I., et al.: Mine: mutual information neural estimation (2018)
2. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Study of deep learning

techniques for side-channel analysis and introduction to ascad database. ANSSI,
France & CEA, LETI, MINATEC Campus, France (2018)

3. Joye, M., Quisquater, J.-J. (eds.): CHES 2004. LNCS, vol. 3156. Springer, Heidel-
berg (2004). https://doi.org/10.1007/b99451

https://doi.org/10.1007/b99451

162 V. Cristiani et al.

4. Bronchain, O., Hendrickx, J.M., Massart, C., Olshevsky, A., Standaert, F.X.: Leak-
age certification revisited: Bounding model errors in side-channel security evalua-
tions. Cryptology ePrint Archive, Report 2019/132 (2019)

5. Bronchain, O., Standaert, F.X.: Side-channel countermeasures’ dissection and the
limits of closed source security evaluations. Cryptology ePrint Archive (2019)

6. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: International Workshop on
Cryptographic Hardware and Embedded Systems (2002)

7. Cristiani, V., Lecomte, M., Hiscock, T.: A bit-level approach to side channel based
disassembling. In: Beläıd, S., Güneysu, T. (eds.) CARDIS 2019. LNCS, vol. 11833,
pp. 143–158. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42068-0 9

8. Eisenbarth, T., Paar, C., Weghenkel, B.: Building a side channel based disassem-
bler. In: Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds.) Transactions on Com-
putational Science X. LNCS, vol. 6340, pp. 78–99. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17499-5 4

9. Goldack, M., Paar, I.C.: Side-channel based reverse engineering for microcon-
trollers. Master’s thesis, Ruhr-Universität Bochum, Germany (2008)

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)
11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Annual International

Cryptology Conference (1999)
12. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys.

Rev. 69, 066138 (2004)
13. Macé, F., Standaert, F.X., Quisquater, J.J.: Information theoretic evaluation of

side-channel resistant logic styles, vol. 2008, p. 5, January 2008
14. Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep learning for

side-channel analysis. IACR Trans. Cryptographic Hardware Embed. Syst. 2020,
348–375 (2019)

15. Prouff, E., Rivain, M.: Theoretical and practical aspects of mutual information
based side channel analysis, pp. 499–518, January 2009

16. Quisquater, J.J., Samyde, D.: Electromagnetic analysis: measures and counter-
measures for smart cards (2001)

17. Santurkar, S., Tsipras, D., Ilyas, A., Madry, A.: How does batch normalization
help optimization? (2018)

18. Schneider, T., Moradi, A.: Leakage assessment methodology. In: International
Workshop on Cryptographic Hardware and Embedded Systems (2015)

19. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948)

20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(56), 1929–1958 (2014)

21. Steeg, G.V.: Non-parametric entropy estimation toolbox (2014). https://github.
com/gregversteeg/NPEET

22. Strobel, D., Bache, F., Oswald, D., Schellenberg, F., Paar, C.: Scandalee: a side-
channel-based disassembler using local electromagnetic emanations. In: Proceed-
ings of the Design, Automation & Test in Europe Conference & Exhibition (2015)

23. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings
comparison: variants, properties, normalization and correction for chance. J. Mach.
Learn. Res. 11(95), 2837–2854 (2010)

https://doi.org/10.1007/978-3-030-42068-0_9
https://doi.org/10.1007/978-3-642-17499-5_4
https://github.com/gregversteeg/NPEET
https://github.com/gregversteeg/NPEET

Evolvable Hardware Architectures
on FPGA for Side-Channel Security

Mansoureh Labafniya1, Shahram Etemadi Borujeni1(B), and Nele Mentens2,3

1 University of Isfahan, Isfahan, Iran
{mlabaf,etemadi}@eng.ui.ac.ir

2 Leiden University, LIACS, Leiden, The Netherlands
n.mentens@liacs.leidenuniv.nl

3 KU Leuven, ESAT, ES&S and imec-COSIC, Leuven, Belgium
nele.mentens@kuleuven.be

Abstract. This paper proposes the use of Evolvable Hardware (EH)
architectures as a countermeasure against power analysis attacks. It
is inspired by the work of Sasdrich et al., in which the block cipher
PRESENT is protected against power analysis attacks through the use
of dynamic logic FPGA reconfiguration. The countermeasure consists of
splitting the substitution boxes (S-boxes) into two parts with a register
in between; the way the S-boxes are split is random and is altered before
each new execution of the block cipher. This makes it very difficult (or
even impossible) for an attacker to perform a Differential Power Analysis
(DPA) attack by collecting many power traces of the same implementa-
tion.

Whereas the approach of Sasdrich et al. requires the external compu-
tation and communication of new configurations, our approach computes
new configurations on the fly with an on-chip configuration generator
based on evolutionary algorithms. This reduces the risk of an adversary
tampering with the configuration data and takes away the communica-
tion delay. Our work is the first to propose the use of EH and Genetic
Programming (GP) for this type of countermeasure. More precisely, we
explore two methods, Genetic Programming (GP) and Cartesian Genetic
Programming (CGP) and we evaluate the feasibility of these methods by
measuring the overhead in terms of delay and resource occupation for the
block ciphers PRESENT and PRINTcipher.

Keywords: Evolvable Hardware · Virtual reconfigurable circuit ·
Differential Power Analysis (DPA) · Field-Programmable Gate Array
(FPGA)

1 Introduction

Side-channel attacks (SCAs) are a realistic security threat for devices populating
the Internet of Things (IoT). When an attacker has access to side-channels,
such as the power consumption [19], the electromagnetic radiation [1] or the
timing behavior [20] of an electronic device, he/she can possibly extract secret
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 163–180, 2020.
https://doi.org/10.1007/978-3-030-61638-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_10

164 M. Labafniya et al.

information related to the internal signals in the device. This way, the theoretical
security provided by cryptographic primitives can easily be defeated if the device
is not equipped with any SCA countermeasures.

Two common categories of countermeasures against SCA are hiding and
masking [23]. The main concept behind masking is to randomize the processed
values by applying masks, such that it becomes more difficult for an attacker to
gain information on the internal signals. Hiding countermeasures, on the other
hand, aim at breaking the correlation between the internally processed values
and the observed side-channels. Examples of hiding countermeasures are given
by Güneysu et al. in [11]. They propose generic countermeasures against power
analysis attacks on FPGAs by reducing the signal-to-noise ratio, introducing
timing disarrangement, and scrambling. Another example of an FPGA-specific
countermeasure against power analysis attacks is presented by Sasdrich et al.
in [29]. In that work, configurable lookup tables (CFGLUTs) are used in Xilinx
FPGAs to randomly split the implementation of the substitution boxes (S-boxes)
into two parts at runtime with a register in between the two parts. Since most
power analysis attacks on block ciphers target the retrieval of the value stored
in the register at the output of the nonlinear substitution layer, moving this
register in between two randomly decomposed S-box parts increases the effort
required for a successful attack. In addition to the use of CFGLUTs for random
S-box decomposition, the authors of [29] propose to integrate two other counter-
measures, namely, Boolean masking and register pre-charging. They evaluate the
efficiency and effectiveness of their approach on the block cipher PRESENT [29].

The main drawback of the approach proposed in [29], is that the configura-
tions needed for the random decomposition of the S-boxes are generated exter-
nally, which means that the FPGA should always be connected to another pro-
cessing device. In this paper, we overcome this shortcoming by using the Evolv-
able Hardware (EH) paradigm for the implementation of the S-boxes. Whereas
the approach in [29] mainly concentrates on the efficient implementation of the
split S-box, our work also takes into account the time and resource overhead that
is necessary to find new S-box configurations. Our FPGA architecture consists
of a Virtual Reconfigurable Circuit (VRC) in combination with an on-chip con-
figuration generator. We present two alternatives, one based on regular FPGA
LUTs and one based on CFGLUTs. Our contributions are the following:
– We propose an FPGA architecture based on EH to allow the on-chip gener-

ation of randomly decomposed S-boxes. It is the first work that uses EH for
SCA countermeasures.

– We implement two block ciphers following this approach: PRESENT and
PRINTcipher.

– We evaluate the overhead in FPGA resources, power consumption, and com-
putational delay of these ciphers.

– We compare architectures based on regular LUTs with architectures based
on CFGLUTs.

– We compare the use of tree-based structures in Genetic Programming (GP)
vs. graph-based structures in Cartesian Genetic Programming (CGP) for the
implementation of the S-boxes.

Evolvable Hardware Architectures on FPGA for Side-Channel Security 165

– We discuss the limitations of our solution and point out to follow-up work.

The paper is organized as follows. In Sect. 2, we give background information
on EH using VRCs, the evaluated ciphers, and related work. Section 3 and 4
describe our hardware architecture based on LUTs and CFGLUTs. The imple-
mentation results are presented in Sect. 5. Section 6 concludes the paper.

2 Preliminaries

2.1 Evolvable Hardware Using Virtual Reconfigurable Circuits

Evolutionary Algorithms (EAs) have been used for more than 50 years to solve
various real-world problems in design automation using reconfigurable hardware.
Combining EAs with hardware circuits leads to Evolvable Hardware (EH) archi-
tectures that target novel design solutions and circuit optimization. In EH archi-
tectures, the EA interacts with the environment and alters the system automat-
ically without manual intervention. In most cases, the goal is to improve the
performance of the hardware architecture, given the environmental constraints.
While the EH architecture is in hardware, the EA can be implemented exter-
nally in software or internally in hardware. The software implementation of
EAs is relatively easy but introduces large delays that are not desirable for
most applications. On the other hand, implementing EAs in hardware, espe-
cially on parallel computing platforms like FPGAs, is more efficient. When the
EAs are computed internally on the FPGA, the most straightforward way of
reconfiguring the FPGA is to use dynamic partial reconfiguration (DPR) [35].
However, DPR leads to large reconfiguration delays. Therefore, virtual reconfig-
urable circuits (VRCs) consists of an array of programmable elements (PEs) with
programmable interconnect that can be reconfigured through a reconfiguration
layer. A genetic unit computes new configurations, which can be applied rapidly
on the VRC [27,30]. Figure 1 shows an example of a VRC structure consisting
of 25 PEs.

2.2 PRESENT and PRINTcipher

In this paper, we consider PRESENT [6] and PRINTcipher [18]. Both ciphers
are proposed as lightweight ciphers.

PRINTcipher is a block cipher of which the block size can be chosen to be
48 or 96. If the block size is chosen to be 96, it has 96 rounds and a 160-bit
key. In this paper, we select the block size to be 48. This means that both the
plaintext and the ciphertext are 48 bits long. PRINTcipher-48 has a key size
of 80 bits and performs encryption based on 48 rounds. Each round consists of
five layers: (1) the XOR Layer, in which the cipher state is combined with a
round key using a bitwise exclusive-or (XOR) operation, (2) the Diffusion Layer,
in which the cipher state is shuffled using a fixed linear diffusion layer, (3) the

166 M. Labafniya et al.

Fig. 1. Example of a VRC structure with 25 PEs and a genetic unit generating new
configurations.

RC Layer, in which the cipher state is combined with a round constant using
bitwise XOR, (4) the P Layer, in which the 48-bit state is divided into 16 parts
of 3 bits that are each permuted with a key-independent permutation, (5) the S
Layer, in which each 3-bit value is substituted by another 3-bit value based on
a substitution box (S-box), which performs the table lookup shown in Table 1
(left).

Table 1. S-box table lookup in PRINTcipher (left) and PRESENT (right).

x 0 1 2 3 4 5 6 7

S[x] 0 1 3 6 7 4 5 2

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] c 5 6 b 9 0 a d 3 e f 8 4 7 1 2

PRESENT. PRESENT is a block cipher with a block size of 64 bits. The
key length can be 80 or 128 bits. The encryption is performed in 31 rounds.
Each round consists of three layers: (1) the XOR Layer, which is similar to the
PRINTcipher XOR Layer, (2) the S Layer, which divides the 64-bit state into
sixteen 4-bit values, that are replaced using the S-box shown in Table 1 (right),
(3) the P Layer, which performs a bit permutation according to a given table P
in [6] and moves a bit in position i to bit position P(i).

2.3 Related Work

One way to design digital circuits automatically without human manipulation is
to use bio-inspired algorithms. Evolutionary Algorithms (EAs), such as Genetic

Evolvable Hardware Architectures on FPGA for Side-Channel Security 167

Algorithms (GAs), Genetic Programming (GP), and Cartesian Genetic Pro-
gramming (CGP) are methods to deal with the complexity of today’s circuits.

Genetic Algorithms. Genetic Algorithms (GAs) were introduced in 1960 by
John Holland. In [14], GAs were explained based on the concept of Darwin’s
theory of evolution. GA-based techniques are known to optimize multiple objec-
tives, and automate the process of digital circuit design [4,13,17]. GAs mimic
evolutionary principles by maintaining multiple candidate solutions in the form
of a population. The GA performs the operations of crossover and mutation on
individuals according to user-specified probabilities, with the intent to increase
the fitness of individuals. After the application of these operators, the popula-
tion for the next generation is selected based on a specific selection scheme [4].
In [8], the design of digital circuits for FPGA-based architectures using parallel
GAs is introduced. The GA employed involves the use of a linear representation
which can be readily employed for intrinsic evolution systems, e.g., through the
direct manipulation of the FPGA configuration bitstream. In [4], the logic cir-
cuit is organized in a two-dimensional array consisting of nr ∗ nc cells in order
to optimize the power consumption and the circuit delay.

Genetic Programming. Genetic Programming (GP) is a related technique
popularized by John Koza [21]. GP often uses tree-based internal data structures
to represent the computer programs for adaptation instead of the list structures
that are typical for GAs. GP and GAs are both used to evolve the answer
to a problem, by comparing the fitness of each candidate in a population of
potential candidates over many generations with a difference in representation.
GAs are commonly represented by a fixed length of numerical strings, whereas
GP is represented by variable-length structures containing whatever elements
are needed to solve the problem. The work of Hadjam et al. [12] discusses GP
and a number of variants for designing digital circuits. There are some other
applications that use GP for optimizing the efficiency of circuits like efficient
edge detector circuits [10,32].

Cartesian Genetic Programming. Another approach consists of designing
digital circuits using Cartesian Genetic Programming (CGP) [2,3,13,15,33].
CGP is a variation of GP which was proposed by Miller and Thomson [24].
In CGP, circuits are not encoded as trees like in GAs, but as graphs that usually
have the form of nr ∗nc Cartesian grids in which nr is the number of rows and nc

is the number of columns [31]. This graph can have different levels of feedback,
where the maximum is equal to nc. The work of Brajer and Jakobović [7] shows
that, if the selected parameters for CGP are close to human-made solutions,
CGP-based evolutionary systems produce better results. In [16], the authors try
to minimize the digital circuit size using CGP. The paper concludes that a larger
CGP dimension results in a higher success rate to get to a working solution while
sacrificing space and time for searching the larger chromosome space. Using CGP

168 M. Labafniya et al.

to self-reconfigure digital circuits is mentioned in [34], which designs a full adder
that uses 32 percent of the resources of the selected FPGA.

VRC. There are many articles that use EAs with a VRC structure in differ-
ent applications. Examples are filter optimizations in image processing algo-
rithms [28], fault-tolerant systems [35], face recognition [9], systems with power
consumption minimization [22], and arithmetic circuit optimization [36]. In the
domain of hardware security, the work of Picek et al. [26] proposes to use VRCs
for the design and optimization of lightweight Pseudo-Random Number Gen-
erators (PRNGs). The designed PRNGs are suitable for generating masks in
high-throughput side-channel protected circuits. Picek et al. use CGP to evolve
deterministic random number generators [25].

In the next section, we will use and compare tree and graph structures to
implement the S-boxes of PRESENT and PRINTcipher in a more secure way.
We use EAs to produce a runtime solution for protecting the ciphers against
SCA attacks. This is the first application to designs secure against SCA using
EAs.

3 First FPGA Architecture Using Regular LUTs

In many symmetric ciphers, S-boxes are used to present a nonlinear compo-
nent in the encryption method and are usually implemented as simple lookup
tables. Power analysis attacks typically focus on retrieving the output values
of the S-boxes. An efficient countermeasure proposed by Sasdrich et al. [29] is
to use dynamic logic reconfiguration of FPGAs to randomly split the S-box
computation into two parts with a register in between. Although the S-box
structure in [29] is very efficient in terms of occupation of FPGA resources,
the computation of new configurations needs to be done offline, which causes
a large overhead both in communication and computation space which is not
reported in the paper. In our paper, we propose the use of a VRC for the S-box
computation. Just like in [29], we split the S-box computation into two parts
with a register in between. We generate random configurations using an internal
genetic unit. Figure 2a shows an S-box with three inputs and three outputs (like
the PRINTcipher S-box) that is implemented by the VRC structure without
an intermediate register. Each output of the S-box is produced by reconfiguring
three PEs and their interconnection. The first two PEs need two configuration
bits for the interconnect of each input. The PE that generates the output bit
needs one configuration bit for the interconnect of each input. The function-
ality of each PE is configured through three configuration bits, leading to the
following functionalities: buffer (output equal to the input, like a wire), NOT,
AND, OR, XOR, XNOR, NAND, NOR. Figure 2b shows the new structure of
the S-box in which an intermediate register is added in between the two layers
of PEs. Changing the functionality of the PEs causes a change in the value that
is stored in the intermediate register, making it more difficult for an attacker
to extract secret internal information by targeting the value in the intermediate

Evolvable Hardware Architectures on FPGA for Side-Channel Security 169

register. Note that the overall S-box computation (i.e., the input-output behav-
ior as a result of the computation of all the PEs together) always corresponds to
Table 1 (left). The changes generated by the genetic unit can be imposed period-
ically in the spare time of the system before each new encryption or at random
instances in time. Besides the VRC structure for the 3-bit PRINTcipher S-box,
we implemented a similar architecture for the 4-bit PRESENT S-box.

The added value of our approach over the dynamic logic reconfiguration
method proposed by Sasdrich et al. in [29] is that the configurations are gen-
erated internally. This reduces the external communication delay and the risk
of eavesdropping. The security of the external module that creates the config-
urations is important in [29], which is not mentioned in the paper. Note that
the security of the system can be improved by replacing the LFSR used to pro-
duce the chromosomes by a True Random Number Generator (TRNG), which
we omit in our experiments. In order for the proposed countermeasures to be
effective, the distribution of the generated configurations should be uniform, and
repetitive generation of the same configuration should be avoided. We assume
that, by generating configurations based on random seeds, this requirement is
satisfied.

We use a fixed random seed for all calculations. The structure of our LFSR is
based on a chain of gates with random feedback between them. The complexity
of calculations and the time needed to produce new configurations in [29] is not
mentioned, while it is very important, because finding a configuration that works
properly is time-consuming. The resulting PRINTcipher architecture is shown
in Fig. 3.

We compare CGP and GP for implementing the SCA-protected cipher archi-
tectures. Figure 4 shows the graphical scheme of our used method in CGP, which
consists of one Linear Feedback Shift Register (LFSR) to produce the initial pop-
ulation in each run. In this figure, after producing four children by mutation from
the primary chromosome, we perform an evaluation. In this phase, five chromo-
somes are evaluated according to the related truth table in Table 1 (left). For
each input combination, the outputs of the candidate individuals are evaluated
and compared with the originally required outputs, as described in the truth
table of the digital function to be implemented. Bitwise comparison is made in
this case, incrementing the fitness value with each output line match. This is
accumulated over all possible input combinations. In our case, the PRINTcipher
S-box has three input bits (8 input values), so the maximum fitness is equal to 8.
The PRESENT S-box has four input bits (16 input values), and the maximum
fitness is equal to 16.

In the last module in Fig. 4, we select the chromosome with the highest fit-
ness value. All the other individuals are withdrawn. If a fitness value of 8 is
acquired by the best chromosome, the algorithm is finished, and we reach a new
structure for the cipher. If not, the algorithm will continue executing the muta-
tion mechanism to produce four new children from the selected parent. Table 2
contains fixed parameters for implementing the PRINTcipher S-box. Our selec-
tion mechanism for GP is 3-tournament selection. There, after selecting three

170 M. Labafniya et al.

Fig. 2. VRC for the PRINTcipher S-box (a) without and (b) with an intermediate
register.

random chromosomes from the population pool, the two best ones are kept. After
crossover and node replacement mutation, as represented in Table 3, they will
be used to create the next individual. We use node replacement mutation and
subtree crossover. The computation model and selection mechanism for CGP is
based on a (1+4) evolution strategy, where the different mutation rate (for point
crossover) for each strategy is shown in Table 6. For reducing the hardware over-
head, the number of chromosomes in the population must be small. The big size
of the population consumes FPGA resources for storing and processing the chro-
mosomes. In the application that we consider, reducing the resource overhead is
more important than reducing the calculation time to find the optimal chromo-
some. There are 4 offspring and 1 parent for CGP and 5 individuals for GP. So

Evolvable Hardware Architectures on FPGA for Side-Channel Security 171

Fig. 3. PRINTcipher architecture using VRCs for the S-boxes.

in total the population size is five. In Fig. 4, the 4 individuals are offspring created
from the parent (denoted as chromosome generation by LFSR). The maximum
number of generations for each population is 2 000. These numbers are selected
through experimental simulation, which shows that the optimal chromosome is
calculated before the 2 000th generation. If after 2 000 generations from the initial
population, the optimal individual is not found, the new population is produced
randomly, and again 2 000 generations will be derived by mutation. The termi-
nation condition is finding an optimal individual or reaching the 500th run for
producing a new population. Each PE in the VRC structure has two inputs and
one output. Our function set is AND, OR, NAND, NOR, NOT, BUFFER (out-
put is equal to the input, like a wire), XOR, XNOR. For synthesis, we neglect
the overhead of the random number generator. The structure and length of each
chromosome depend on the number of PEs in the VRC.

We simulate the tree and graph structures in different dimensions for imple-
menting the S-box with fixed parameters given Table 2. Our simulation is done
using the Vivado 2018.2 EDA tool of Xilinx. We use a Xilinx xc7vx485tffg1157-
1 FPGA. Tables 3 and 4 show our simulation results for PRINT S-box imple-
mentation based on tree structure in GP. Tables 5 and 6 show our simulation
results based on the graph structure in CGP. The different strategies introduced
in Table 3, 4, 5 and 6, present various sizes of the VRC for implementing the
PRINTcipher S-box in the form of GP and CGP structures. The output parame-
ters of these implementations are reported. All strategies have the same number
of inputs ni = 3 and outputs n0 = 3. The depth of the tree structure in GP is
varied between #levels = 2 to 5 in Table 3. Although the logic circuit is assumed

172 M. Labafniya et al.

Fig. 4. Implemented algorithm for the splitting of the S-box.

Table 2. Fixed parameters for the PRINTcipher S-box.

Parameters for CGP for GP

Selection (1 + λ) 3-Tournament

Population size 1 + 4 5

Max generation 2000 2000

Termination condition 500 500

to be organized on a two-dimensional array of cells, at least some of them are
not used based on the random behavior of GP to shape the tree structure [5].
The dimension of the array is equal to #levels = nr = nc for each GP strategy
in Table 3. We run three GP modules in parallel, such that each one has three
inputs and one output.

The CGP with graph structure has a varied number of feedback levels from
#fb = 1 to 4, and the dimension is varied between nr ∗ nc = 3 * 3 and 4 * 4. It
is indicated when the first optimal chromosome is found among all 500 popula-

Evolvable Hardware Architectures on FPGA for Side-Channel Security 173

Fig. 5. Overview of the PRINTcipher S-box implementation by 4 × 4 CGP.

tions and 2 000 generations. The mutation rate (mutrate) shows the percentage
of mutated bits in each strategy. Another parameter in the tables is the average
fitness value (avgfit), which is below eight and is equal to the sum of all pro-
duced chromosome’s fitness values at the end of each run, divided by 500. The
success rate (sucrate) indicates the percentage of all optimal chromosome with
fitness = 8 among 500 runs. The FPGA resource consumption is indicated as
well in both tables. The Prediction level parameter (#pred) indicates the total
number of configuration options that are possible through the applied strategy
by considering eight different functionalities for each PEs. The bigger number
for this parameter shows more security for the design. It is harder for an attacker
to analyze the power consumption of the S-box by more variation in design.

In the tables, ‘first popu’ is the number of population and ‘first gene’ is the
number of generations in the last population in which the first fit chromosome
is found.

In Strategy 0, 1, 2, and 3, the final outputs can just be connected to the
last PEs. Each PE can get its inputs from each PE in the first left column.
Strategy 0 is indicated in Fig. 2b. In all GP strategies, three EA modules are
running simultaneously to produce a proper circuit for three output pins, which
is shown in Fig. 3. The simulation results in Table 3 and Table 4 show that,
with an increase in the dimension of GP, the success rate and average fitness are
increased, but hardware overhead is not satisfied. Because of the simple structure
of GP, the first optimal chromosome with fitness value eight is achieved soon in
the first run, and we can reach the optimum chromosome at the end of all runs
in the majority structure of GP. A comparison of different mutation rates in the
GP structure for each strategy shows that with an increased mutation rate, the
number of optimal chromosomes equal to 8 increases as well as their average
fitness. Strategies 4, 5, 6, and 7 have a graph structure, which means that the
final outputs can be connected to each of the PEs in different levels. Increasing
the mutation rate in Table 6 shows that the average of the fitness values and the
percentage of optimal chromosome increases for each strategy. With a 2-node

174 M. Labafniya et al.

Table 3. Different parameters for implementing the PRINTcipher S-box based on a
tree structure.

GP ni no #levels len first popu first gene #LUT #pred

stra0 3 3 ∗ 1 2 3 ∗ 22 1 1540 3 ∗ 250 3 ∗ 84

stra1 3 3 ∗ 1 3 3 ∗ 75 1 1242 3 ∗ 1200 3 ∗ 89

stra2 3 3 ∗ 1 4 3 ∗ 118 0 1316 3 ∗ 3540 3 ∗ 816

stra3 3 3 ∗ 1 5 3 ∗ 240 0 1562 3 ∗ 5000 3 ∗ 825

Table 4. The effect of the mutation rate on the parameters of the PRINTcipher S-box
based on a tree structure.

2-node replacement mutation 3-node replacement mutation

GP mutrate avgfit sucrate mutrate avgfit sucrate

stra0 9 7.5 71 13.6 7.6 71.6

stra1 2 7.8 95.2 4 7.9 99.8

stra2 1.6 7.7 98 2.5 7.9 99.5

stra3 0.8 7.7 95.4 1.25 7.8 95.8

Table 5. Different parameters for implementing the PRINTcipher S-box based on a
graph structure.

CGP ni no nr ∗ nc #fb len first popu first gene #LUT #pred

stra4 3 3 3 * 3 3 111 - - - 89

stra5 3 3 4 * 4 1 156 91 1477 4429 816

stra6 3 3 4 * 4 2 183 21 1744 5956 816

stra7 3 3 4 * 4 4 183 2 1912 6376 816

Table 6. The effect of the mutation rate on the parameters of the PRINTcipher S-box
based on a graph structure.

3-node replacement mutation 4-node replacement mutation

CGP Mutrate avgfit sucrate mutrate avgfit sucrate

stra4 2.7 3 – 3.6 4 –

stra5 1.9 5 2.4 2.5 5.4 3.2

stra6 1.6 5 2 2.1 5.4 2.6

stra7 1.6 5 1.6 2.1 5.1 1.7

replacement mutation rate, we did not get any optimum chromosome from the
graph structure. The high-level view of the architectures generated by Strategy
5, 6, and 7 is shown in Fig. 5. In Strategy 4 and 7, because they have a graph
structure and full feedback, each PE can get its input from the output of all PEs
in the previous level or all PEs on the left side. Also, it is possible to get their
inputs from the primary inputs, IN0 to IN2.

Evolvable Hardware Architectures on FPGA for Side-Channel Security 175

Because Strategy 5 has one feedback level, the PEs can get their inputs
from the first left-side column or from the primary inputs. In Strategy 6 with 2
feedback levels, each PE can get its inputs from the PEs one or two levels to the
left or from the primary inputs.

Strategy 4 did not find an optimal individual. The simulation results in
Table 5 show that an increased CGP dimension leads to an increased aver-
age chromosome fitness, although the number of chromosomes with fitness =
8 decreases and the resource consumption gets worse.

According to the achieved results, Strategy 0 is the best solution with respect
to resource consumption, although the security level is inferior to the security
level of the other strategies. This is due to the low prediction level. Strategy 5
is the best solution with respect to the security level. It has a higher prediction
level and features a moderate resource consumption. Simulation results show
that with increasing the dimension and feedback of CGP for implementing the
S-box, the time to find the first optimal individual is decreased. In addition,
the number of optimal chromosomes decreases because the search space and the
chromosome length are increased.

In addition to GP and CGP, we tested a random search for both tree and
graph structures. Because the tree structure is simple and the outputs are inde-
pendent of each other, random search could find an optimal structure. The opti-
mal structure was found after generating the 2 028th random number on average
for the 4 * 4 structure, which is equal to 2 028 clock cycles. For the GP struc-
ture, this iteration decreased to 1 316 clock cycles. For the graph structure, a
random search did not find any optimal structure after evaluating 30 000 random
numbers. The final result is that for securing circuits with two or three inputs
and one output, a random search can be used to find optimal chromosomes, but
for more complicated digital circuits with multiple inputs and multiple outputs,
random search is not recommended as it takes a long time to find an optimal
structure. In this case, the GP and CGP are recommended.

In Sect. 5, we implement PRINTcipher based on Strategy 0, because of the
low hardware overhead of this structure. The PRESENT S-box has four inputs,
which means its fitness function is equal to 16. According to the simulation
results in this section for PRINTcipher, the tree-based structure has less hard-
ware overhead. For PRESENT, we use the tree structure for each output, like
Strategy 0, but with more PEs. The smallest possible tree structure for the
PRESENT S-box contains 9 PEs in which each PEs has three inputs and one
output. As the PRESENT S-box has four outputs, its total number of PEs is
4*9. Its PE function set consists of the same eight different functions as PRINT-
cipher.

4 Second FPGA Architecture Using CFGLUTs

Another alternative for the EH architecture is to use CFGLUTs instead of the
VRC structure. In this architecture, each PE in Fig. 3 is replaced by a CFGLUT.
Using CFGLUTs instead of a regular VRC structure will decrease the resource

176 M. Labafniya et al.

consumption but increase the time for reconfiguring the hardware. CFGLUTs
are elements that were introduced first in Xilinx Virtex-5 FPGAs. CFGLUTs
are LUTs that can be configured from within the FPGA at runtime. Figure 6
shows the structure of the CFGLUT5 in a Virtex-5, which consists of a 5-input
and 1-output LUT or alternatively 4-input and 2-output LUT in addition to a
configuration input (CDI) and a configuration output (CDO). This module can
be used for partial reconfiguration of FPGAs at runtime instead of manipulat-
ing the bitstream for reconfiguration. The internal structure of the CFGLUT
consists of a 16-bit shift configurable memory followed by a multiplexer stage.
The configuration memory size is 16 bits in order to deal with 4-bit inputs. Each
CFGLUT is loaded with an INIT value that presents the truth table of the LUT.
The functionality of the LUT can be changed at runtime by changing this INIT
value, which gives the user the power of partial reconfiguration of the FPGAs
internally. Reconfiguration is done by activating the CE pin and simultaneously
putting 1-bit reconfiguration data on the CDI pin, one bit is written in the INIT
register in each clock cycle. Sixteen clock cycles are needed to reconfigure the
CFGLUT entirely. In our solution based on CFGLUTs, only one CFGLUT is
needed for each PE, while in the first method, described in Sect. 3, each PE
consists of many LUTs. Using CFGLUTs decreases the number of LUTs such
that, instead of using 9 LUTs for each S-box, 3 CFGLUTs and 4 LUTs are used.
Another point is that the VRC structure in the first method is virtual, while the
CFGLUT-based method is not virtual and thus better adapted to the under-
lying hardware. The routing between CFGLUTs is configured by the selected
chromosome. Each chromosome, in addition to specifying the functionality of
PEs, establishes the way the PEs connect to each other. For both PRINTcipher
and PRESENT, the way of using CFGLUTs is similar.

5 Implementation Results

Table 7 shows that the proposed architectures lead to a drastic increase in the
occupied FPGA resources, power consumption, and the critical path compared
to unprotected architectures. The timing constraint used for all the examples is
a clock period of 10 ns. The operating frequency for producing random chro-
mosomes is 500 MHz and is determined by the critical path of the EA module,
which is a combinational circuit. The number of clock cycles needed for the
computation of the ciphertext is not changed and is equal to 16 cycles, but in
the proposed structure, we need additional cycles for changing the implementa-
tion of the S-box. If we assume a system with significant idle time in between
the encryptions, the reconfiguration time can be ignored. The critical path also
increased significantly, but this is mainly caused by the genetic unit. If we use
a different clock domain for the genetic unit and the cipher architecture, the
effect on the encryption delay will be decreased. Table 7 shows that the use of
CFGLUTs instead of VRC architecture leads to a reduction in the number of
LUTs. The number of FFs is increased due to the additional clock cycles that
are needed for reconfiguring the CFGLUTs. The dynamic power is increased

Evolvable Hardware Architectures on FPGA for Side-Channel Security 177

Fig. 6. Block diagram of a CFGLUT5.

Table 7. Implementation results of the cipher architectures.

Used structure #LUTs #FFs Dynamic #Clk Clk

Power Cycles Period

PRINTcipher 115 54 0.003 J 16 1 ns

prot PRINTcipher (par) 865 54 0.003 J 16 + time (EA) 7.5 ns

prot PRINTcipher (seq) 365 54 0.003 J 16 + time (EA) 7.5 ns

prot PRINTcipher 733 60 0.009 J 16 +16+ 7.5 ns

with CFGLUTs time(EA+CFGLUT)

PRESENT 148 149 0.018 J 31 1 ns

prot PRESENT (par) 6998 149 0.056 J 31 + time (EA) 7.5 ns

prot PRESENT (seq) 2201 149 0.031 J 31 + time (EA) 7.5 ns

because of the higher number of clock cycles needed for reconfiguring the CFG-
LUTs, but the static power consumption is always fixed and equal to 0.243 J.
For decreasing the overhead of using EAs, we can use just one EA module in
Fig. 3 and call it three times sequentially instead of using a parallel structure.
This way, the overhead of using our solution is decreased according to Table 7. In
this table, both the sequential (seq) and the parallel (par) architectures are pre-
sented, as well as the protected (prot) and the unprotected versions. Compared
to the method proposed in [29], our work presents the following differences:

– The configurations needed for the random decomposition of the S-boxes are
generated internally in our method but externally in [29].

– The time overhead of our method is the time for the EA to produce the final
fit chromosomes. The simulation results in Table 3 and Table 5 show that the
first successful chromosome is produced at least in the first population or at
maximum in the 91th population, which means it takes from 1 to 91 clock
cycles as the EA is implemented as a combinational circuit. In [29], the time
overhead is 16 clock cycles.

– The hardware overhead of our method depends on the strategy and the struc-
ture. E.g., in Table 7, the resource utilization increases from 115 LUTs to 365

178 M. Labafniya et al.

LUTs with a fixed number of FFs. In [29], the resource utilization is increased
from 224 LUTs and 128 FFs to 1 172 LUTs and 260 FFs.

– We use one method as an SCA countermeasure SCA in contrast to [29],
which uses three different methods. In our paper, the goal is to introduce
a new application for EA in SCA, which does not exclude the use of other
countermeasures in addition to the EA-based countermeasure.

6 Conclusion

In this work, we propose to use Evolvable Hardware in the form of a virtual
reconfigurable circuit to implement the dynamic logic reconfiguration counter-
measure presented by Sasdrich et al. in 2015. Our approach has the advan-
tage of computing new configurations inside the FPGA instead of relying on
an external device. This decreases the communication overhead and reduces the
risk of eavesdropping. We evaluate the efficiency of our approach based on two
lightweight cipher algorithms, namely PRINTcipher and PRESENT, with two
different implementations using evolutionary algorithms based on tree and graph
structures. Although our approach introduces a significant overhead in terms of
FPGA resource occupation, power consumption, and delay, we stress that this
is the first attempt to apply the dynamic logic reconfiguration countermeasure
with internal configuration generation as an SCA countermeasure. Further opti-
mizations of the genetic unit that generates the configurations and the virtual
reconfigurable circuit will lead to more competitive implementation results.

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s).
In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 4

2. Asha, S., Hemamalini, R.R.: Synthesis of adder circuit using cartesian genetic
programming. Middle-East J. Sci. Res. 23(6), 1181–1186 (2015)

3. Babu, K.S., Balaji, N.: Approximation of digital circuits using cartesian genetic
programming. In: 2016 International Conference on Communication and Electron-
ics Systems (ICCES), pp. 1–6. IEEE (2016)

4. Bao, Z., Watanabe, T.: A new approach for circuit design optimization using
genetic algorithm. In: 2008 International SoC Design Conference, vol. 1, pp. I–
383. IEEE (2008)

5. Benkhelifa, E., Pipe, A., Dragffy, G., Nibouche, M.: Towards evolving fault toler-
ant biologically inspired hardware using evolutionary algorithms. In: 2007 IEEE
Congress on Evolutionary Computation, pp. 1548–1554. IEEE (2007)

6. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

7. Brajer, I., Jakobović, D.: Automated design of combinatorial logic circuits. In:
2012 Proceedings of the 35th International Convention MIPRO, pp. 823–828. IEEE
(2012)

https://doi.org/10.1007/3-540-36400-5_4
https://doi.org/10.1007/978-3-540-74735-2_31

Evolvable Hardware Architectures on FPGA for Side-Channel Security 179

8. Dechev, D., Ashraf, R., Luna, F., DeMara, R.: Designing digital circuits for FPGAS
using parallel genetic algorithms. Technical report, Sandia National Lab. (SNL-
NM), Albuquerque, NM (United States) (2012)

9. Glette, K.: Design and implementation of scalable online evolvable hardware pat-
tern recognition systems (2008)

10. Golonek, T., Grzechca, D., Rutkowski, J.: Application of genetic programming
to edge detector design. In: 2006 IEEE International Symposium on Circuits and
Systems, 4 p. IEEE (2006)

11. Güneysu, T., Moradi, A.: Generic side-channel countermeasures for reconfigurable
devices. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 33–48.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9 3

12. Hadjam, F.Z., Moraga, C., Benmohamed, M.: Cluster-based evolutionary design of
digital circuits using all improved multi-expression programming. In: Proceedings
of the 9th Annual Conference companion on Genetic and Evolutionary Computa-
tion, pp. 2475–2482. ACM (2007)

13. Hadjam, F.Z., Moraga, C., Rahmouni, M.K.: Evolutionary design of digital circuits
using improved multi expression programming (IMEP). Mathware Soft Comput.
14(2), 103–123 (2007)

14. Holland, J.H., et al.: Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. MIT Press
(1992)

15. Irfan, M., Habib, Q., Hassan, G.M., Yahya, K.M., Hayat, S.: Combinational digital
circuit synthesis using cartesian genetic programming from a nand gate template.
In: 2010 6th International Conference on Emerging Technologies (ICET), pp. 343–
347. IEEE (2010)

16. Kazarlis, S., Kalomiros, J., Kalaitzis, V.: A cartesian genetic programming app-
roach for evolving optimal digital circuits. J. Eng. Sci. Technol. Rev. 9(5), 88–92
(2016)

17. Keller, R.E., Banzhaf, W.: The evolution of genetic code in genetic program-
ming. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary
Computation-Volume 2, pp. 1077–1082. Morgan Kaufmann Publishers Inc. (1999)

18. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: a
block cipher for IC-printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15031-9 2

19. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

20. Kocher, P.C.: Timing attacks on implementations of diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

21. Koza, J.R.: Genetic programming (1994)
22. López, B., Valverde, J., de la Torre, E., Riesgo, T.: Power-aware multi-objective

evolvable hardware system on an FPGA. In: 2014 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), pp. 61–68. IEEE (2014)

23. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards (Advances in Information Security). Springer-Verlag, New York
Inc, Secaucus, NJ, USA (2007)

24. Miller, J.F., Harding, S.L.: Cartesian genetic programming. In: Proceedings of the
10th Annual Conference Companion on Genetic and Evolutionary Computation,
pp. 2701–2726. ACM (2008)

https://doi.org/10.1007/978-3-642-23951-9_3
https://doi.org/10.1007/978-3-642-15031-9_2
https://doi.org/10.1007/978-3-642-15031-9_2
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9

180 M. Labafniya et al.

25. Picek, S., Sisejkovic, D., Rozic, V., Yang, B., Jakobovic, D., Mentens, N.: Evolving
cryptographic pseudorandom number generators. In: Handl, J., Hart, E., Lewis,
P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol.
9921, pp. 613–622. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45823-6 57

26. Picek, S., et al.: Prngs masking applications and their mapping to evolvable hard-
ware. In: International Conference on Smart Card Research and Advanced Appli-
cations, pp. 209–227. Springer (2016)

27. Salvador, R., Otero, A., Mora, J., de la Torre, E., Riesgo, T., Sekanina, L.: Imple-
mentation techniques for evolvable HW systems: Virtual vs. dynamic reconfigu-
ration. In: 2012 22nd International Conference on Field Programmable Logic and
Applications (FPL), pp. 547–550. IEEE (2012)

28. Salvador, R., Otero, A., Mora, J., de la Torre, E., Riesgo, T., Sekanina, L.: Self-
reconfigurable evolvable hardware system for adaptive image processing. IEEE
Trans. Comput. 62(8), 1481–1493 (2013)

29. Sasdrich, P., Moradi, A., Mischke, O., Guneysu, T.: Achieving side-channel pro-
tection with dynamic logic reconfiguration on modern FPGAS. In: 2015 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), pp.
130–136. IEEE (2015)

30. Sekanina, L., Friedl, Š.: An evolvable combinational unit for fpgas. Comput. Inform.
23(5–6), 461–486 (2012)

31. Sekanina, L., Vasicek, Z., Mrazek, V.: Automated search-based functional approx-
imation for digital circuits. In: Reda, S., Shafique, M. (eds.) Approximate Circuits,
pp. 175–203. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99322-5 9

32. Sharma, P., Sasamal, T.N.: Minimization of digital combinational circuit using
genetic programming with modified fitness function. In: 2016 2nd International
Conference on Applied and Theoretical Computing and Communication Technol-
ogy (iCATccT), pp. 406–410. IEEE (2016)

33. da Silva, J.E., Bernardino, H.: Cartesian genetic programming with crossover for
designing combinational logic circuits. In: 2018 7th Brazilian Conference on Intel-
ligent Systems (BRACIS), pp. 145–150. IEEE (2018)

34. Srivastava, A.K., Gupta, A., Chaturvedi, S., Rastogi, V.: Design and simulation
of virtual reconfigurable circuit for a fault tolerant system. In: International Con-
ference on Recent Advances and Innovations in Engineering (ICRAIE-2014), pp.
1–4. IEEE (2014)

35. Swarnalatha, A., Shanthi, A.: Complete hardware evolution based sopc for evolv-
able hardware. Appl. Soft Comput. 18, 314–322 (2014)

36. Wang, J., Piao, C.H., Lee, C.H.: Implementing Multi-VRC cores to evolve combi-
national logic circuits in parallel. In: Kang, L., Liu, Y., Zeng, S. (eds.) ICES 2007.
LNCS, vol. 4684, pp. 23–34. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74626-3 3

https://doi.org/10.1007/978-3-319-45823-6_57
https://doi.org/10.1007/978-3-319-45823-6_57
https://doi.org/10.1007/978-3-319-99322-5_9
https://doi.org/10.1007/978-3-540-74626-3_3
https://doi.org/10.1007/978-3-540-74626-3_3

Simple Electromagnetic Analysis Against
Activation Functions of Deep Neural

Networks

Go Takatoi(B), Takeshi Sugawara, Kazuo Sakiyama, and Yang Li(B)

Graduate School of Informatics and Engineering, Department of Informatics,
The University of Electro-Communications,

1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
{g.takatoi,liyang}@uec.ac.jp

Abstract. From cloud computing to edge computing, the deployment of
artificial intelligence (AI) has been evolving to fit a wide range of appli-
cations. However, the security over edge AI is not sufficient. Edge AI is
computed close to the device and user, therefore allowing physical attacks
such as side-channel attack (SCA). Reverse engineering the neural net-
work architecture using SCA is an active area of research. In this work,
we investigate how to retrieve an activation function in a neural network
implemented to an edge device by using side-channel information. To this
end, we consider multilayer perceptron as the machine learning architec-
ture of choice. We assume an attacker capable of measuring side channel
leakages, in this case electromagnetic (EM) emanations. The results are
shown on an Arduino Uno microcontroller to achieve high quality mea-
surements. Our experiments show that the activation functions used in
the architecture can be obtained by a side-channel attacker using one or
a few EM measurements independent of inputs. We replicate the timing
attack in previous research by Batina et al., and analyzed it to explain
how the timing behavior acts on different implementations of the activa-
tion function operations. We also prove that our attack method has the
potential to overcome constant time mitigations.

Keywords: Machine learning · Deep learning · Side-channel ·
Activation function · SEMA

1 Introduction

Machine learning has been researched in many areas due to its practicality and
effectiveness. Deep learning especially is rapidly becoming a popular machine
learning method. Image recognition [9,15], robotics [13], natural language pro-
cessing [24], security [1,16,28], and medical science [6,7] are all areas in which
deep learning are being used.

Neural networks are trained with high costs, and has a possibility of including
confidential information from the training phase. Machine learning models are
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 181–197, 2020.
https://doi.org/10.1007/978-3-030-61638-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_11

182 G. Takatoi et al.

stored with valuable intellectual property, which are quickly becoming a target.
Therefore, security over artificial intelligence (AI) is a growing concern. There are
already a variety of attacks against AI [2,12,20]. For example, model extraction
attacks [26], membership inference attacks [22], and model inversion attacks
[5] are all attacks that target valuable information from AI. Model extraction
attack presented by Tramer et al. can reverse engineer a machine learning model
with high efficiency, as it only requires less than 10,000 online queries to the
target machine learning model to replicate their attack. [26]. Shokri et al. proved
that by using membership inference attack, prediction application programming
interface (API) leaks information if an input was used as the training data [22].
Fredrikson et al. discussed that the model inversion attack could reverse engineer
the training data just from the label and access to the prediction API [5].

In recent years, communication, privacy, and latency issues have caused deep
neural networks to be calculated on the edge instead of the cloud servers. Edge
devices are existent close by, therefore allowing physical attacks such as side-
channel attacks. There are side-channel attacks to recover the architectures and
parameters of neural networks. Leaked side-channel information include infor-
mation from the operation. Recovering neural network architectures with cache
side-channel attack is one way to attack edge AI [11,29]. Fault attacks are also
used to recover neural network parameters [4]. There are side-channel attacks
against specific neural network accelerators [27,30].

One recent work by Batina et al. has shown that a black box multilayer per-
ceptron (MLP) and convolutional neural network (CNN) implemented on a 8bit
and 32bit CPU can be reverse engineered using merely side-channel informa-
tion [3]. They had separated the recovery of the network architecture into 4 key
parameters: the activation function, pre-trained weights, the number of hidden
layers, and the number of neurons in each layer. The activation function was dis-
cerned by timing attack from its distinctive computation time. Timing patterns
or average timing can be compared with the profile of each function to determine
the activation function. They recovered weight parameters with correlation elec-
tromagnetic analysis (CEMA), looking at the leakage in the Hamming weight
of the input and weight multiplications. The layer boundaries and the number
of nodes can be distinguished from the electromagnetic (EM) trace using the
leakage signatures.

In this work, we have focused on the problem in the recovery of the activation
function. The previously proposed recovery on the activation function has a
limitation that it depends on non-constant timing behavior. By implementing
constant time activation function, their attack can be easily mitigated. In this
work, we have the following contributions.

– We propose a new type of attack to identify activation functions based on
simple electromagnetic analysis (SEMA) [14]. Our proposed attack is imple-
mented and demonstrated on a Arduino Uno, we were able to identify the
activation functions used in the network.

– We have replicated the timing attack on the activation functions by Batina et
al., and analyzed their attack and how the timing behavior acts on different

SEMA Against Activation Functions of DNN 183

implementations of the activation function operations. This has shown the
significance of our proposed method as it is versatile to different activation
function implementations and independent of inputs to the network.

– We have compared our new attack to the attack proposed in previous work,
and we have discussed the potential of our attack to overcome constant time
mitigation.

The rest of this paper is organized as follows. In Sect. 2, we briefly review
the background. Section 3 outlines the methodology and the benefits of the
SEMA attack. Subsequently, our experiment setup is shown in 4.1, and the
proposed signal processing method is described in Sect. 4.2. The proposed signal
processing is applied in Sect. 4.3. The analysis of the experiment results are
shown in Sect. 5. Section 5.3 also discusses the analysis of previous work and
constant time activation function implementations. Finally, the conclusions are
presented in Sect. 6.

2 Background

In this section, we describe the details and architectures of the artificial neural
network (ANN) used in this work.

2.1 Multilayer Perceptron

A MLP is a very simple type of neural network, and is made of fully connected
layers. Fully connected layers means that all of the nodes in a layer is connected
to all of the nodes in the next layer. A model of a node is depicted in Fig. 1.
The circle surrounding a and y is called a node (or neuron). The output y of a
node is calculated in Eq. (1) as follows.

y = h

(
n∑

i=1

xi × wi + b

)
(1)

Here, (x1, x2, . . . , xn) represents the inputs, (w1, w2, . . . , wn) represents the
weights, b represents the bias, and h(a) represents the activation function. The
bias is often programmed as the weight of an input value 1.

The model of a 4 layer MLP that is used in this work is depicted in Fig. 2. A
MLP must have at least 3 layers, composed of at least one input layer, hidden
layer, and output layer. The MLP in Fig. 2 consists of an input layer, two hidden
layers, and an output layer.

2.2 Activation Functions

Here we describe the activation functions used in this works, which are sigmoid
function, tanh function, softmax function, and Rectified Linear Unit (ReLU)
function.

184 G. Takatoi et al.

Fig. 1. A model of a node Fig. 2. A model of a multilayer perceptron

The sigmoid (logistic) function is a nonlinear function as shown in Eq. (2).
This function will be most effective when used in a neural network trained with
back propagation. The sigmoid function plots inputs ranged (−∞,∞) to outputs
ranged (0, 1).

h(a) =
1

1 + e−a
(2)

The tanh function is a rescaling of the sigmoid function, and the main differ-
ence is that it is symmetric by the origin. The tanh function maps inputs ranged
(−∞,∞) to outputs ranged (−1, 1) as shown in Eq. (3).

h(a) =
ea − e−a

ea + e−a
=

2
1 + e−2a

− 1 (3)

The softmax function is able to map values into several outputs (or classes)
which sum becomes 1. The output range is (0, 1). It is able to be seen as proba-
bility, and is used for classification problems. Equation (4) below is the softmax
function where the vector is shown in bold.

h(a)j =
eaj∑K
k=1 e

ak

, for j = 1, . . . ,K and a = (a1, . . . , aK) ∈ R
K (4)

As shown in Eq. (5), the ReLU function is an extremely simple function,
therefore mainly used as an activation function for ANNs. For networks with
many nodes, this type of simple function can reduce the time of training and
computing.

h(a) =

{
0, for a ≤ 0
a, for a > 0

(5)

SEMA Against Activation Functions of DNN 185

3 Problem and Methodology

3.1 Identification of Activation Functions

Activation functions are used in many neural networks, and they play a very
important role in the network. Non-linear functions are used as activation func-
tions to output a result from the sum of the inputs and to solve non-linear
problems. Designing and choosing activation functions that enable fast training
of accurate deep neural networks is an active area of research. From this, it can
be said that it is important to conceal the information of activation functions
used in a neural network architecture.

3.2 Previous Work: Identification Based on Timing Behavior

In the previous work by Batina et al., they have used timing attacks to identify
activation functions. The activation function was discerned by timing attack from
its distinctive computation time. They showed that the timing behavior of the
activation function can be directly observed on the EM trace. They collected
EM traces and measured the timing of the activation function computation.
The measurements were taken when the network were processing random inputs
in the range they had chosen beforehand. A total of 2000 EM measurements
were captured for each activation function. By plotting the processing time of
each activation function by inputs, distinct signatures can be seen from each
timing behavior. By making a profile, timing patterns or averaged timing can be
compared with the profile of each function to determine the activation function.

The method proposed by Batina et al. has a few limitations as listed as
follows.

1. Multiple measurements are required to use the distribution of the calculation
time to identify the activation function.

2. Multiple inputs following a uniform distribution are required.
3. The distinct signatures of each activation function from the timing behavior

has a possibility to differ depending on the implementation or processor.
4. The timing difference could be mitigated with constant time implementation

of the activation functions.

3.3 New Method: Identification Using SEMA

The timing attack proposed by Batina et al. had several limitations. Therefore
we took a different approach. While they collected EM traces and measured the
timing of the activation function computation, we observe the leakage patterns
of the EM trace directly and try to discern what operation is being computed in
the trace from the different leakage signatures. We call this SEMA attack. SEMA
attack requires only one or a few EM traces, compared to the timing attack which
required multiple EM traces. We were successful in recovering the activation
function by applying signal processing to the measurement. By reducing the noise

186 G. Takatoi et al.

in the EM trace, we were able to extract peak patterns from the measurement.
We have found out that there are unique peak patterns for each operation in
the activation function. Our attack is also independent of the inputs, as the
patterns generally are invariant for any input. We observe the activation function
operations from the peaks of the EM trace, thus this method has potential to
overcome constant time mitigation.

4 Experiments

4.1 Experimental Setup

Here we describe the experimental setup to measure the EM emanations from
an MLP trained for 3-input XOR.

Target Device. The MLP is implemented on the microcontroller Atmel
ATmega328P. The reasons for using Atmel ATmega328P as a target platform is
motivated as follows.

– CPU and GPU are frequently used platforms for DNN computation, and use
optimized libraries for its operations [23]. By using Atmel ATmega328P, we
can implement the operations in a similar way.

Software Setup. There are several ways to implement activation functions into
a neural network. In our work, we have used activation functions that operates
mathematically as shown in Eqs. (2)–(5). The exponential function and tanh
function are implemented using standard library functions in C++ language.
The MLP used in this work has the same architecture as Fig. 2, and has 2
hidden layers with 9 nodes in both layers. However for the MLP with the softmax
function, the dimensions for the 2 hidden layers are 3 nodes for the first hidden
layer, and 9 nodes for the second hidden layer.

Hardware Setup. Tektronix MS064 oscilloscope was used to capture EM mea-
surements, and used an RF-U 5-2 near-field EM probe from Langer to collect
EM measurements. All measurements were 500MSamples/s. We also used a low-
pass filter BLP-50+ from Mini-Circuits with cutoff frequency of 48MHz to get a
clear signal. To improve the quality of measurement of the microcontroller, we
scraped the outer package, and decapsulated the microcontroller [21] as shown
in Fig. 3. The EM probe is placed above the decapsulated chip and is chosen by
hand. The full measurement setup is depicted in Fig. 4.

4.2 Attack Scenario

The goal of this work is to show an alternative method to recover the activation
function instead of observing the pattern in the process time distribution that
was presented in previous work. The proposed method has a few advantages over
the previous method.

SEMA Against Activation Functions of DNN 187

Fig. 3. Target microcontroller
decapsulated

Fig. 4. Measurement setup

– No information and access to the inputs required.
– Less executions required.
– Less implementation dependency, as we can show that the timing behav-

ior used to identify sigmoid function and tanh function in previous work is
implementation dependent.

Here we specify the considered attack scenario. Several pre-trained networks
are implemented in C++ language and then compiled on to the edge device.
Pre-trained networks are intellectual property, and accordingly the activation
functions in those networks are confidential. The attacker’s motive is to identify
the activation functions used in the network. The attacker’s capability is as
follows.

– The attacker does not know the architecture of the network, but can access
the network predictions.

– The attacker knows what set of activation functions could be implemented on
the architecture, in this work, the sigmoid function, tanh function, softmax
function, and ReLU function.

– The attacker is capable of measuring electromagnetic emanations from the
target device.

Batina et al. has used the MLP to validate their attack methodology [3]. In
this work, we also use the MLP as the DNN of choice. The motives are as follows.

– MLP is a widely used neural network architecture [8,10,19,25].
– Every node from a MLP is fully connected. Fully connected layer is a feature

that can be seen in convolutional neural networks, recurrent neural networks,
and other neural network architectures.

– All layers are identical, making side-channel analysis difficult than other neu-
ral network architectures.

Thereby, a generic attack is possible in developing our methodology. In other
words, our methodology can be applied to many other DNN models.

188 G. Takatoi et al.

4.3 Signal Processing

We apply several methods to retrieve distinctive patterns from the EM trace. In
this section, we propose a 4-step methodology to obtain the desired EM trace.
First, a measurement (or trace) is taken from the target device. Next, averaging
is applied to the measured trace. Then, to extract the peaks, we compute the
upper half of the EM trace’s envelope. For the last step, by smoothing the trace,
the desired trace is acquired. The detailed actions of each step are as follows.

Step 1: Measuring the EM Trace. Here, an EM measurement of a MLP
predicting the output class probabilities is taken from a microcontroller. MLPs
including each of the 4 activation functions discussed in Sect. 2.2 are being
computed. Then a EM trace is collected by an electromagnetic probe from the
predicting MLP.

In our experiment, the measurements were taken from the device processing
the input to the outputs of the first hidden layer’s first node. In other words,
the measurement is from the device computing Eq. (1). 4 measurements are
obtained, each with 4 different activation functions mentioned in Sect. 2.2.

Step 2: Averaging the EM Trace. For this step, averaging is applied to the
trace collected in step 1. By averaging the trace, it can improve the signal-to-
noise ration (SNR). We used the oscilloscope in-built feature for averaging.

Each measurement from step 1 was averaged with 400 traces. However even
with noise reduction, it is difficult to separate the boundaries of the nodes,
multiplication operations and activation functions. The peaks are still very hard
to distinguish, therefore signal processing is applied.

Step 3: Extracting the Upper Half of the EM Trace’s Envelope. To
make the peak stand out from the averaged trace, we apply signal processing
using Matlab. The upper half of the EM trace’s envelope is calculated to check
the peak of the trace. However, if only the envelope is calculated, the pulse
component still remains.

The averaged traces in step 2 were processed using Matlab. The peaks of
the traces were extracted by calculating the upper half of the envelope. The
peaks can be seen, however there is still noise in the trace, making it hard to
characterize each pattern.

Step 4: Smoothing the EM Trace. Last step is signal smoothing, to extract
the noise from the envelope. In this work, we used the Gaussian-weighted moving
average filter, calculated using Matlab. The smaller the window size, the higher
frequency components stand out, and larger the window size, the lower frequency
components are extracted. We want to extract the high frequency noise, therefore
we use a large window size.

For the last step by using the Gaussian-weighted moving average filter,
smoothing was applied to the noisy traces keeping important patterns in our

SEMA Against Activation Functions of DNN 189

measurements while leaving out noise. Table 1 presents the window size used for
smoothing each of the measurements. The smoothed trace is shown in Fig. 5.
The patterns can be compared easier with smoothing. The multiplication and
activation function can be easily distinguished with their different patterns. The
red lines in Fig. 5 represents the boundary of the multiplication and activation
function. By observing the patterns of the multiplication operation, the weight
multiplication, the addition of the outputs, and addition of the bias can be dis-
tinguished from the trace.

Table 1. Window size (in sample points) for different activation functions

Activation function Window size

Sigmoid 4000

Tanh 4000

Softmax 1000

ReLU 2000

5 Analysis of the Results

5.1 Analysis of the Activation Function Operations

Here we analyze the processed measurements to discern activation functions.
First, we start by examining the computation time of the activation functions.
The computation time can be observed from Fig. 5. Table 2 presents the com-
putation time of the activation functions.

Table 2. Computation time (in µs) for different activation functions

Activation function Computation time

Sigmoid 190.79

Tanh 204.35

Softmax 695.52

ReLU 13.76

As the activation functions differ in operations, so does the computation
time. It can be observed from Table 2 that the ReLU function has the least
computation time at 13.76µs, and that the softmax function has the most com-
putation time at 695.52µs. Due to the simplicity of the ReLU function, it can
be computed in a short time. The ReLU function does not have an exponenti-
ation operation, unlike the other 3 activation functions. The softmax function

190 G. Takatoi et al.

Fig. 5. Extracted pattern measurements of activation functions as Sigmoid, Tanh, Soft-
max and Relu.

SEMA Against Activation Functions of DNN 191

computes the exponentiation operation several times, depending on the number
of nodes in the output layer as shown in Eq. (4). Due to the complexity of the
function, it takes the longest time to process. These two activation functions can
be easily distinguished. However the sigmoid function and tanh function have
similar computation times, sigmoid at 190.79µs and tanh at 204.35µs.

Next, we observe the processed leakage patterns through SEMA. The soft-
max function computes the exponentiation operation several times, therefore
the pattern of the exponentiation operation will repeat itself for the number of
nodes in the output layer. The number of nodes in the output layer is 3 in this
work, thus the multiplication pattern will repeat 9 times, and the exponentiation
pattern 3 times. The vertical red lines separate the exponentiation operations
and the division operation in the activation function.

The ReLU function does not include the exponentiation operation, therefore
cannot observe the same patterns in the other activation functions.

Figure 6 compares the leakage patterns of sigmoid and tanh function. It can
be observed that although there is no obvious gap in the processing time, the
peak patterns differ. Extra peaks can be seen in 2 sections from the tanh func-
tion when comparing with the sigmoid function. The extra peaks observed are
surrounded in a red box. The first peak can be seen right after the multiplica-
tion. The second peak can be seen in the latter half of the activation function.
The differences in peaks comes from the difference in the functions. Tanh func-
tion has an additional multiplication and subtraction compared with the sigmoid
function. We have observed that these operations causes the difference in peak
patterns. The sigmoid function and tanh function can be distinguished with the
different peak patterns, with tanh function having more peaks patterns.

5.2 Distinctive Features of Activation Functions from SEMA

Table 3 presents the features of each activation function when we used SEMA. To
conclude, softmax function and ReLU function can be distinguished out of the
4 activation functions with their computation time. Also, by examining at the
processed measurement patterns, all 4 activation functions can be discerned. Our
experiments has shown that the EM trace leaks information on the operations in
the activation function. Our method can be applied to an attack to identify the
activation functions by making a template and pre-characterizing the operations
in the EM trace.

Table 3. Features of activation functions from SEMA

Activation function Computation Time Trace pattern

Sigmoid – 2 less peaks than tanh

Tanh – 2 more peaks than sigmoid

Softmax Long Repeated exponentiation pattern

ReLU Short Not have exponentiation pattern

192 G. Takatoi et al.

Fig. 6. Comparison of the patterns of sigmoid and tanh function

5.3 Discussions

We were able to extract features from the EM trace, and identify each activation
function, sigmoid function, tanh function, softmax function, and ReLU function.
The results could be expected as the information of the operation leaks itself from
EM emanations. Our hypothesis was that since the operations leaks information
into the measurements, we could recover the operations from the measurements
itself if we can reduce the noise in the trace. The signal processing allowed the
peaks to have distinctive features for each operation. We were able to match the
features to the activation functions for identification. We believe this attack could
be applied to different neural network models as long as the activation functions
operate directly. We have used Arduino Uno as the target platform. We believe
our approach and methodology could be applied to different platforms such as
a similar microcontroller platform, a GPU platform or a FPGA platform. This
is because side-channel analysis are demonstrated on these platforms on several
previous works [3,17,27].

Analyzing Previous Work. We have also analyzed the work by Batina et al.
and their timing attack against activation functions. They plot the processing
time of each activation function by inputs, and stated that distinct signatures
could be seen from each timing behavior. However, the problem lies on why the
timing behavior acts in such a way, which they have not explained in their work.

We were able to recreate the timing behavior of sigmoid function and the tanh
function as shown in Fig. 7. The timing delay is displayed in µs. The experiments

SEMA Against Activation Functions of DNN 193

were done on an Arduino Uno simulator Tinkercad. The timing delay were mea-
sured with micros function, which returns the number of microseconds since the
Arduino board began running the program. The processing time were averaged
10 times per input.

Sigmoid Tanh

Mathematically Calculated Tanh

Fig. 7. Timing behavior for different activation functions

Batina et al. have stated that tanh is more symmetric in pattern compared
to sigmoid, for both positive and negative inputs which has been completely
replicated in Figs. 7a and 7b. Based on our analysis of the results, we believe that
the standard library functions in C++ language cause the distinct signatures.
The exponentiation function causes the symmetric pattern in timing delay, with
positive inputs having slightly longer computation time. The tanh function is an
optimized operation, having symmetric patterns for both positive and negative
inputs. However, if we did not use the standard library tanh function, and used
the exponentiation function to mathematically calculate the tanh function, the
timing behavior acts the same way as the sigmoid function as depicted in Fig.
7c. The patterns are both symmetric with positive inputs having slightly shorter
computation time for Figs. 7a and 7c. The minimum, maximum, and mean values
of the timing delay do not differ as significantly as Figs. 7a and 7b. The similarity
in pattern and timing behavior makes the two activation functions very difficult
to distinguish depending on the implementation method.

They have also stated that they take measurements when the network is
processing random inputs in the range, i.e., x ∈ {−2, 2}. This input refers to

194 G. Takatoi et al.

the inputs to the activation function. To plot the timing behavior for different
activation functions based on the inputs, there would be a need to calculate Eq.
(6) below.

a =

(
n∑

i=1

xi × wi + b

)
(6)

where a is the input to the activation functions. Here, (x1, x2, . . . , xn) repre-
sents the inputs, (w1, w2, . . . , wn) represents the weights, b represents the bias.
Without the knowledge of the weights, bias, and nodes in a layer, this timing
attack will not be possible. This proves the significance of our attack, as we do
not need any information on the inputs to the activation function nor the input
to the network. This means that there is no need to calculate the input to the
activation function with our method, therefore shortening the step to identify
the activation function.

Implementation of Constant-Time Activation Functions. To mitigate
the timing attack on the activation function, dummy operations can be included
to the computation of the activation functions. By making the computation time
of the activation function constant with no operation instruction, it will become
difficult to guess the activation function from the time computed. ReLU function
will be the easiest to implement the constant-time operation, as the computation
time only differs when the input is before 0 and after 0 [18]. However, with SEMA
attack the operation itself could be seen through the EM trace, therefore it will
become easy to see what operation is being done in the processor.

6 Conclusion

The need for implementations of neural networks on to the edge device is increas-
ing. These edge devices, however, tend to be vulnerable to side-channel attacks.
In this paper, we introduce an attack methodology that can recover activation
functions from a black box network using side-channel information. We con-
ducted the experiment on a MLP processing 3-input XOR implemented on a
Arduino Uno microcontroller. Using SEMA and signal processing, the activa-
tion functions were successfully identified. Compared with previous work by
that identify the activation functions using timing behavior, the SEMA attack
proposed in this work does not rely on the inputs, requires fewer measurement
and is less dependant on non-constant timing behavior of the activation function.
Our experiment showed the vulnerabilities of edge AI to side-channel attacks.
Neural networks on edge devices need to implement effective countermeasures
against side-channel attacks to strengthen their security.

In future works, we will further research how SEMA could potentially break
the constant-time implementation. We have also left out relatively new activa-
tion functions such as Exponential Linear Unit (ELU) function, Leaky Rectified
Linear Unit (Leaky ReLU) function, and Scaled Exponential Linear Unit (SELU)

SEMA Against Activation Functions of DNN 195

function. We will further look into these activation functions and see how to dis-
tinguish them from ReLU function as they all have the same outputs for positive
inputs, making them hard to identify with our current method.

Acknowledgements. This work was supported by JST AIP Acceleration Research
Grant Number JPMJCR20U2, Japan.

References

1. Riscure. https://www.riscure.com/blog/automatedneural-network-construction-
genetic-algorithm/. Accessed 10 June 2020

2. Ateniese, G., Mancini, L.V., Spognardi, A., Villani, A., Vitali, D., Felici, G.: Hack-
ing smart machines with smarter ones: How to extract meaningful data from
machine learning classifiers. Int. J. Secur. Networks 10(3), 137–150 (2015)

3. Batina, L., Bhasin, S., Jap, D., Picek, S.: CSI NN: reverse engineering of neu-
ral network architectures through electromagnetic side channel. In: Heninger, N.,
Traynor, P. (eds.) 28th USENIX Security Symposium, USENIX Security 2019,
Santa Clara, CA, USA, 14–16 August 2019, pp. 515–532. USENIX Association
(2019)

4. Breier, J., Jap, D., Hou, X., Bhasin, S., Liu, Y.: SNIFF: reverse engineering of
neural networks with fault attacks. CoRR abs/2002.11021 (2020)

5. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confi-
dence information and basic countermeasures. In: Ray, I., Li, N., Kruegel, C. (eds.)
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, Denver, CO, USA, 12–16 October 2015, pp. 1322–1333. ACM
(2015)

6. Fredrikson, M., Lantz, E., Jha, S., Lin, S.M., Page, D., Ristenpart, T.: Privacy in
pharmacogenetics: an end-to-end case study of personalized warfarin dosing. In:
Fu, K., Jung, J. (eds.) Proceedings of the 23rd USENIX Security Symposium, San
Diego, CA, USA, 20–22 August 2014, pp. 17–32. USENIX Association (2014)

7. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing,
J.: Cryptonets: applying neural networks to encrypted data with high throughput
and accuracy. In: Balcan, M., Weinberger, K.Q. (eds.) Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY,
USA, 19–24 June 2016. JMLR Workshop and Conference Proceedings, vol. 48, pp.
201–210 (2016). JMLR.org

8. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked
implementation of AES. In: IEEE International Symposium on Hardware Oriented
Security and Trust, HOST 2015, Washington, DC, USA, 5–7 May 2015, pp. 106–
111. IEEE Computer Society (2015)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27–30, 2016. pp. 770–778. IEEE Computer Society
(2016)

10. Heuser, A., Picek, S., Guilley, S., Mentens, N.: Lightweight ciphers and their side-
channel resilience. IEEE Trans. Comput. (2017)

11. Hong, S., Davinroy, M., Kaya, Y., Dachman-Soled, D., Dumitras, T.: How to
0wn the NAS in your spare time. In: 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020 (2020).
OpenReview.net

https://www.riscure.com/blog/automatedneural-network-construction-genetic-algorithm/
https://www.riscure.com/blog/automatedneural-network-construction-genetic-algorithm/
http://www.JMLR.org
http://www.OpenReview.net

196 G. Takatoi et al.

12. Ilyas, A., Engstrom, L., Athalye, A., Lin, J.: Black-box adversarial attacks with lim-
ited queries and information. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, 10–15 July 2018, Proceedings of Machine Learning Research,
vol. 80, pp. 2142–2151. PMLR (2018)

13. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: a survey.
I. J. Robotics Res. 32(11), 1238–1274 (2013)

14. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C.,
Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held 3–6 December 2012, Lake Tahoe, Nevada,
United States, pp. 1106–1114 (2012)

16. Kucera, M., Tsankov, P., Gehr, T., Guarnieri, M., Vechev, M.T.: Synthesis of
probabilistic privacy enforcement. In: Thuraisingham, B.M., Evans, D., Malkin, T.,
Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, 30 October–03 November
2017, pp. 391–408. ACM (2017)

17. Luo, C., Fei, Y., Luo, P., Mukherjee, S., Kaeli, D.R.: Side-channel power analysis of
a GPU AES implementation. In: 33rd IEEE International Conference on Computer
Design, ICCD 2015, New York City, NY, USA, 18–21 October 2015, pp. 281–288.
IEEE Computer Society (2015)

18. Nakai, T., Suzuki, D., Omatsu, F., Fujino, T.: Evaluation of timing attacks against
deep learning on a microcontroller and countermeasures. In: 2020 Symposium on
Cryptography and Information Security - SCIS 2020, Kochi, Japan, 28–31 January
2020, vol. 3E4-4. The Institute of Electronics, Information and Communication
Engineers (2020)

19. Naraei, P., Abhari, A., Sadeghian, A.: Application of multilayer perceptron neural
networks and support vector machines in classification of healthcare data. In: 2016
Future Technologies Conference (FTC), pp. 848–852. IEEE (2016)

20. Papernot, N., McDaniel, P.D., Goodfellow, I.J., Jha, S., Celik, Z.B., Swami, A.:
Practical black-box attacks against machine learning. In: Karri, R., Sinanoglu, O.,
Sadeghi, A., Yi, X. (eds.) Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, AsiaCCS 2017, Abu Dhabi, United Arab
Emirates, 2–6 April 2017, pp. 506–519. ACM (2017)

21. Patranabis, S., Mukhopadhyay, D. (eds.): Fault Tolerant Architectures for Cryp-
tography and Hardware Security. CADM. Springer, Singapore (2018). https://doi.
org/10.1007/978-981-10-1387-4

22. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: 2017 IEEE Symposium on Security and Pri-
vacy, SP 2017, San Jose, CA, USA, 22–26 May 2017, pp. 3–18. IEEE Computer
Society (2017)

23. Sze, V., Chen, Y., Yang, T., Emer, J.S.: Efficient processing of deep neural net-
works: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)

24. Teufl, P., Payer, U., Lackner, G.: From NLP (natural language processing) to MLP
(machine language processing). In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS
2010. LNCS, vol. 6258, pp. 256–269. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14706-7 20

https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-981-10-1387-4
https://doi.org/10.1007/978-981-10-1387-4
https://doi.org/10.1007/978-3-642-14706-7_20
https://doi.org/10.1007/978-3-642-14706-7_20

SEMA Against Activation Functions of DNN 197

25. Thomas, P., Suhner, M.: A new multilayer perceptron pruning algorithm for clas-
sification and regression applications. Neural Process. Lett. 42(2), 437–458 (2015)

26. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine
learning models via prediction APIS. In: Holz, T., Savage, S. (eds.) 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX, USA, 10–12 August 2016,
pp. 601–618. USENIX Association (2016)

27. Wei, L., Luo, B., Li, Y., Liu, Y., Xu, Q.: I know what you see: Power side-channel
attack on convolutional neural network accelerators. In: Proceedings of the 34th
Annual Computer Security Applications Conference, ACSAC 2018, San Juan, PR,
USA, 03–07 December 2018, pp. 393–406. ACM (2018)

28. Xu, X., Liu, C., Feng, Q., Yin, H., Song, L., Song, D.: Neural network-based graph
embedding for cross-platform binary code similarity detection. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, 30 October– 03 November 2017, pp. 363–376. ACM (2017)

29. Yan, M., Fletcher, C.W., Torrellas, J.: Cache telepathy: Leveraging shared resource
attacks to learn DNN architectures. CoRR abs/1808.04761 (2018)

30. Yu, H., Ma, H., Yang, K., Zhao, Y., Jin, Y.: DeepEM: deep neural networks model
recovery through EM side-channel information leakage (2020)

Performance Analysis of Multilayer
Perceptron in Profiling Side-Channel

Analysis

Léo Weissbart1,2(B)

1 Delft University of Technology, Delft, The Netherlands
weissbart@cs.ru.nl

2 Digital Security Group, Radboud University, Nijmegen, The Netherlands

Abstract. In profiling side-channel analysis, machine learning-based
analysis nowadays offers the most powerful performance. This holds espe-
cially for techniques stemming from the neural network family: multilayer
perceptron and convolutional neural networks. Convolutional neural net-
works are often favored as results suggest better performance, especially
in scenarios where targets are protected with countermeasures. Mul-
tilayer perceptron receives significantly less attention, and researchers
seem less interested in this method, narrowing the results in the literature
to comparisons with convolutional neural networks. On the other hand,
a multilayer perceptron has a much simpler structure, enabling easier
hyperparameter tuning and, hopefully, contributing to the explainability
of this neural network inner working.

We investigate the behavior of a multilayer perceptron in the con-
text of the side-channel analysis of AES. By exploring the sensitivity of
multilayer perceptron hyperparameters over the attack’s performance,
we aim to provide a better understanding of successful hyperparame-
ters tuning and, ultimately, this algorithm’s performance. Our results
show that MLP (with a proper hyperparameter tuning) can easily break
implementations with a random delay or masking countermeasures. This
work aims to reiterate the power of simpler neural network techniques
in the profiled SCA.

1 Introduction

Side-channel analysis (SCA) exploits weaknesses in cryptographic algorithms’
physical implementations rather than the algorithms’ mathematical proper-
ties [16]. There, SCA correlates secret information with unintentional leakages
like timing [13], power dissipation [14], and electromagnetic (EM) radiation [25].
One standard division of SCA is into non-profiling (direct) attacks and profil-
ing (two-stage) attacks. Profiling SCA is the worst-case security analysis as it
considers the most powerful side-channel attacker with access to a clone device
(where keys can be chosen and known by the attacker). During the past few

c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 198–216, 2020.
https://doi.org/10.1007/978-3-030-61638-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_12

Performance Analysis of Multilayer Perceptron 199

years, numerous works showed the potential and strength of machine learning in
profiling side-channel analysis. Across various targets and scenarios, researchers
were able to show that machine learning can outperform other techniques con-
sidered state-of-the-art in the SCA community [2,15]. More interestingly, some
machine learning techniques are successful, even on implementations protected
with countermeasures [2,12]. There, in the spotlight are techniques from the
neural network family, most notably, multilayer perceptron (MLP) and convo-
lutional neural networks (CNNs).

When considering the attack success, we commonly take into account only
the performance as measured by the number of traces needed to obtain the key.
While this is an important criterion, it should not be the only one. For instance,
attack complexity (complexity of tuning and training a model) and interpretabil-
ity of the attack are also essential but much less researched. For instance, CNNs
are often showed to perform better than MLPs in SCA’s context [2,15,22], as
they make the training of a model more versatile and alleviate the feature engi-
neering process. On the other hand, MLP has a more straightforward structure
and is probably easier to understand than CNNs, but still, the performance
of MLP for SCA raises less attention. Consequently, this raises an interesting
dilemma: do we consider profiling SCA as a single-objective problem where the
attack performance is the only criterion or should it be a multi-objective prob-
lem where one considers several aspects of “success”? We believe the proper
approach is the second one as, without a better understanding of attacks, we
cannot make better countermeasures, which is an integral part of the profiling
SCA research.

In this paper, we experimentally investigate the performance of MLP when
applied to real-world implementations protected with countermeasures and
explore the sensitivity of the hyperparameter tuning of a successful MLP archi-
tecture. We emphasize that this work does not aim to compare the performance
of different techniques, but rather to explore the multilayer perceptron’s capa-
bilities. To achieve this, we use two datasets containing different AES imple-
mentations protected with random delay countermeasure and masking counter-
measure. Our results show that we require larger architectures only if we have
enough high-quality data. Hence, one can (to a certain degree) overcome the
limitation in the number of hidden layers by providing more perceptrons per
layer or vice versa. Finally, while our experiments clearly show the difference
in the performance concerning the choice of hyperparameters, we do not notice
that MLP is overly sensitive to that choice. This MLP “stability” means it is
possible to conduct a relatively short tuning phase and still expect not to miss
a hyperparameter combination yielding high performance.

2 Background

2.1 Profiling Side-Channel Analysis

Profiling side-channel analysis is an efficient set of methods where one works
under the assumption that the attacker is in full control of an exact copy of

200 L. Weissbart

the targeted device. By estimating leakage profiles for each target value during
the profiling step (also known as the training phase), the adversary can classify
new traces obtained from the targeted device by computing the probabilities
of each target value to match the profile. There are multiple approaches to
compute these probabilities, such as template attack [3], stochastic attack [26],
multivariate regression model [28], and machine learning models [12,15]. When
profiling the leakage, one must choose the appropriate leakage model, which will
result in a certain number of classes (i.e., possible outputs). The first common
model is the intermediate value leakage model, which results in 256 classes if we
consider the AES cipher with an 8-bit S-box:

Y (k) = Sbox[Pi ⊕ k].

The second common leakage model is the Hamming weight (HW) leakage
model:

Y (k) = HW(Sbox[Pi ⊕ k]).

The Hamming weight leakage model results in nine classes for AES. Note that
the distribution of classes is imbalanced, which can lead to problems in the
classification process [22].

2.2 Multilayer Perceptron

The multilayer perceptron (MLP) is a feed-forward neural network that maps
sets of inputs onto sets of appropriate outputs. MLP has multiple layers of
nodes in a directed graph, where each layer is fully connected to the next layer.
The output of a neuron is a weighted sum of m inputs xi evaluated through a
(nonlinear) activation function A:

Output = A(
m∑

i=0

wi · xi). (1)

An MLP consists of three types of layers: an input layer, an output layer, and
one or more hidden layers [5]. If there is more than one hidden layer, the archi-
tecture can be already considered as deep. A common approach when training a
neural network is to use the backpropagation algorithm, which is a generalization
of the least mean squares algorithm in the linear perceptron [9].

The multilayer perceptron has many hyperparameters one can tune, but we
concentrate on the following ones:

1. The number of hidden layers. The number of hidden layers will define the
depth of the algorithm and, consequently, the complexity of relations the
MLP model can process.

2. The number of neurons (perceptrons) per layer. The number of neurons per
layer tells us the width of the network and what is the latent space. Inter-
estingly, there exists a well-known result in the machine learning commu-
nity called the Universal Approximation Theorem that states (very infor-
mally) that a feed-forward neural network with a single hidden layer, under

Performance Analysis of Multilayer Perceptron 201

some assumptions, can approximate a wide set of continuous functions to any
desired non-zero level of error [7]. Naturally, for this to hold, there need to
be many neurons in that single hidden layer, and knowing how many neurons
are needed is not straightforward.

3. Activation functions. Activation functions are used to convert an input signal
to an output signal. If complex functional mappings are needed, one needs to
use nonlinear activation functions.

When discussing machine learning algorithms, it is common to differentiate
between parameters and hyperparameters. Hyperparameters are all those con-
figuration variables that are external to the model, e.g., the number of hidden
layers in a neural network. The parameters are the configuration variables inter-
nal to the model and whose values can be estimated from data. One example of
parameters is the weights in a neural network. Consequently, when we talk about
tuning a machine learning algorithm, we mean tuning its hyperparameters.

2.3 Datasets

We consider two datasets presented in previous researches and that we denote as
ASCAD and AES RD. Both datasets are protected with countermeasures: the
first one with masking and the second one with the random delay interrupts.

The ASCAD dataset, introduced in the work of Prouff et al. [24], consists
of electromagnetic emanations (EM) measurements from a software implemen-
tation of AES-128 protected with first-order Boolean masking running on an
8-bit AVR microcontroller (ATMega8515). This dataset counts 60 000 traces
of 700 samples each and targets the third byte of the key. The SNR for this
dataset is around 0.8 if the mask is known and 0 if it is unknown. The trace set
is publicly available at https://github.com/ANSSI-FR/ASCAD/tree/master/
ATMEGA AES v1/ATM AES v1 fixed key.

The AES RD dataset, introduced in the work of Coron and Kizhvatov [6],
consists of power traces from a software implementation of AES-128 protected
with random delayed interruptions running on an 8-bit AVR microcontroller
(ATmega16). This dataset has 50 000 traces with 3 500 samples each, and targets
the first byte of the key. The SNR has a maximum value of 0.0556. The trace
set is publicly available at https://github.com/ikizhvatov/randomdelays-traces.

3 Related Work

The corpus of works on machine learning and SCA so far is substantial, so we con-
centrate only on works considering multilayer perceptron. Yang et al. considered
neural networks and backpropagation as a setting for profiling SCA [32]. They
indicated that “...neural network based power leakage characterization attack
can largely improve the effectiveness of the attacks, regardless of the impact of
noise and the limited number of power traces”. Zeman and Martinasek investi-
gated MLP for profiling SCA where they mentioned the machine learning algo-
rithm simply as “neural network” [17]. They considered an architecture with only

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
https://github.com/ikizhvatov/randomdelays-traces

202 L. Weissbart

a single hidden layer and experimented with several possible numbers of neurons
in that layer. Finally, they only considered a sigmoid for the activation function.
After those, there have been several papers using MLP with good results, but
usually comparable with other machine learning techniques [8,11,18]. Still, the
hyperparameter tuning was often not sufficiently explored. Despite our attempts,
we could not confirm the first paper using MLP in a deep learning paradigm,
i.e., with more than a single hidden layer. Interestingly, first papers with MLP
were often not clear on the number of layers, as the tuning phase played an even
smaller role than today.

In 2016, Maghrebi et al. conducted the first experiments with convolutional
neural networks for SCA, and they compared their performance with several
other techniques (including MLP) [15]. Their results indicated that, while MLP
is powerful, CNNs can perform significantly better. From that moment on, we
observe a number of papers where various deep learning techniques have been
considered in comparison with MLP, see, e.g., [10,20,22,23].

Pfeifer and Haddad considered how to make additional types of layers for
MLP to improve the performance of profiling SCA [19]. B. Timon investigated
the “non-profiled” deep learning paradigm, where he first obtained the mea-
surements in a non-profiled way, which are then fed into MLP or CNN [30].
Interestingly, the author reported better results with MLP than CNNs. Finally,
Picek et al. connected the Universal Approximation Theorem and performance
of the side-channel attack, where they stated that if the attacker has unlimited
power (as it is usually considered), most of the MLP-based attacks could (in
theory) succeed in breaking implementation with only a single measurement in
the attack phase [21].

4 Experimental Setup

In this section, we present our strategy to evaluate and compare the perfor-
mance of the different MLP attacks on different datasets. We want to observe
the influence of the choice of leakage model, information reduction, and major
hyperparameters defining an MLP (i.e., number of layers, number of perceptrons
per layers, and activation function).

We provide results with power leakage models of both the S-box output
(intermediate value model) and the Hamming Weight (HW) representation of
the S-box output.

Besides considering the raw traces (i.e., no pre-processing and feature engi-
neering), we apply the Difference-of-Means (DoM) feature selection method [16].
DoM method selects the samples of a dataset that have the highest variance for
a given leakage model. Even though selecting features with high variance is likely
to preserve the information about the leakage, it is better to select a number of
features with different variance since the features containing the leakage are not
always the features with the highest or the lowest variance.

To compare the hyperparameters’ influence, we conduct a grid search for
hyperparameter optimization and consider each resulting model as a profiling

Performance Analysis of Multilayer Perceptron 203

model for an attack. Considering the MLP hyperparameters, we fix some param-
eters (i.e., number of training epochs and learning rate) and explore the influence
of the three following hyperparameters:

– The number of perceptrons, with a fixed number of layers.
– The number of layers, with a fixed number of perceptrons.
– The activation function used for the perceptrons in the hidden layers.

In Table 1, we list all the explored hyperparameters. The total number of
models trained per experiment is of nact ∗ nl ∗ np = 2 ∗ 6 ∗ 10 = 120, where
nact, nl, np, represent the number of activation functions, layers and percep-
trons per layers explored respectively. We run our experiments with Keras [4],
and we use 200 epochs for the training phase, with a learning rate of 0.001. To
assess the performance of a profiling model for an attack, we use the guessing
entropy (GE) metric [27]. GE defines the average rank position of the correct
key candidate in the guessing vector. In other words, when considering N attack
traces, each of which results in a guessing vector g = [g0, g1, . . . , g|K−1|] con-
taining the probabilities of each key candidates in the keyspace K, ordered by
decreasing probability. For all experiments, when computing GE, we use the
generalized guessing entropy introduced in [31]. GE equal to 0 means that the
first key guess is correct, while GE of 128 indicates a random behavior. GE can
also show stability or consistent increase above 200 for the correct key candidate
when the computation method for GE don’t consider averaging several attacks
on different traces. Such behavior indicates that the trained model failed to learn
how to classify data.

The metric used during a neural network training phase is training accuracy.
Note, this metric can be deceiving for assessing the quality of a side-channel
attack because it evaluates the attack one trace at a time, while SCA metrics
take several traces into account, giving a more accurate estimation for a real
attack scenario [22].

Table 1. List of evaluated hyperparameters.

Hyperparameter Range

Activation function ReLU, Tanh

Number of layers 1, 2, 3, 4, 5, 6

Number of perceptrons per layer 10, 20, 30, 40, 50, 100, 150, 200, 250, 300

5 Experimental Results

The results for all experiments on both datasets (ASCAD, AES RD) and leak-
age models are given in four figures: the final key ranking from the guessing
entropy of each model is represented for the activation functions explored in the
first two figures. Next, we depict guessing entropy of the attack for all trained

204 L. Weissbart

MLP architectures. The last figure presents the integrated gradient of the best-
obtained model and the median model with the corresponding color value of its
final guessing entropy. By doing so, we depict the differences in important fea-
tures when comparing the best attack model and average model. The integrated
gradient is a method introduced in [29], which attributes the prediction of a
deep neural network to its inputs. The integrated gradient can be used in the
side-channel analysis to visualize the part of the traces that influence the most
a network prediction and understand what trace samples the network evaluates
as the leakage.

5.1 ASCAD Results

Intermediate Leakage Model: In Fig. 1, we depict the influence of all combi-
nations of hyperparameter choices for the ReLU and Tanh activation functions
when considering the intermediate value leakage model. For both choices of acti-
vation functions, some models reach guessing entropy of 0 within 1 000 attack
traces. More models achieve a low guessing entropy with the ReLU activation
function than with Tanh. On the other hand, Tanh seems to behave more sta-
ble as the resulting GE is more uniform across many explored hyperparameters
settings. Several models with ReLU activation function and a low number of
perceptrons (down to 50) can reach GE near zero.

The authors of the ASCAD dataset report the best performance using an
MLP with six layers containing 200 units and ReLU activation function trained
over 200 epochs. The same hyperparameters are also evaluated and show sim-
ilarly good results. However, This hyperparameters choice is not unique, and
other models show equivalent performances with fewer layers and perceptrons
per layers. As represented in Fig. 1a, for settings with 200 perceptrons per layer,
all MLPs with more than two hidden layers converge approximately equally fast
to GE of 0. In Figu. 1c, we see that many settings reach GE of 0 and that some
have poor performance even after 2 500 attack traces with GE around 200. We
interpret this as expected sensitivity to the hyperparameter tuning. Models with
too few layers and perceptron per layers failed to properly fit the data because
of their poor learnability. Finally, Fig. 1d shows that the model that reaches the
smaller GE in the attack (in blue) is more sensitive to the various samples of
the input than other models that fail to learn the leakage. The leakage seems
entirely spread over all samples, which indicates reducing the number of features
will reduce the attack performance. The model that reaches a median GE con-
sidering all experiments (in orange) has smaller integrated gradients on every
data sample, which explains why this model shows poor performance for the
attack.

Reduced Number of Features: We now reduce the number of features to 50
with the Difference-of-Mean method. We train different MLPs with the traces
that have a reduced number of features. We apply the same reduction for the
attack dataset and compute guessing entropy, and we show the results in Fig. 2.

Performance Analysis of Multilayer Perceptron 205

(a) ReLU. (b) Tanh.

(c) Guessing entropy of all MLP archi-
tectures versus the increasing number
of attack traces.

(d) Integrated Gradient.

Fig. 1. ASCAD guessing entropy for the intermediate leakage model. (Color figure
online)

The area where GE converges toward zero is now smaller. For the ReLU acti-
vation function, this area is located around three and four layers with 250 and 300
perceptrons per layer. For the Tanh activation function, it is located above five
layers and 250 perceptrons per layer. Interestingly, the highest score in Fig. 2a is
not obtained for the highest number of layers. For both activation functions, the
hyperparameters leading to a good attack performance are shifted toward larger
hyperparameter values. This indicates that when considering features selected
with the DoM method (i.e., using less information), we require deeper MLP to
reach the same performance level, as the information is still present but more
difficult to fit for the model. Fig. 2c shows sensitivity to hyperparameter tuning
similar to the case with no feature selection. From Fig. 2d, the best fitting model
has higher gradient values than the median model. Consequently, for the best
model, we use most of the available features, while the average models do not
manage to combine available features in any way that would indicate influence
in the classification process.

HW Leakage Model: Next, we consider the Hamming Weight (HW) leakage
model. From Fig. 3, we see similar results when compared to the intermediate
value leakage model. Still, in Fig. 3b, the number of perceptrons per layer has a
more substantial influence on the guessing entropy than the number of layers. We
can notice a better behavior for MLP with a small number of layers compared

206 L. Weissbart

(a) ReLU. (b) Tanh.

(c) Guessing entropy of all MLP archi-
tectures versus the increasing number
of attack traces.

(d) Integrated Gradient.

Fig. 2. ASCAD guessing entropy with a reduced number of features and the interme-
diate leakage model.

to the intermediate value leakage model scenario. We believe this happens as
more perceptrons per layer give more options on how to combine features, while
deeper networks would contribute to more complex mappings between input and
output, which is not needed for the HW leakage model as the classification task
is simpler than when using the intermediate value leakage model. We can also
see a stable area for several models with a number of perceptrons above 150
and a number of layers above three. In this area, the hyperparameters choice
does not influence the performance of the MLP anymore. Like the intermediate
value leakage model, the sensitivity to the hyperparameter tuning (Fig. 3c) is as
expected, with many settings reaching top performance, but also many perform-
ing poorly. Interestingly, again we observe a more stable behavior from Tanh
than the ReLU activation function. From Fig. 3d, the best fitting model and
the median model have similar integrated gradient values. However, the high-
est peaks are different, showing that the leakage learned by the two models is
different, which also accounts for the differences in GE results.

HW Leakage Model and Reduced Number of Features: We use the
reduced number of feature representation of the dataset and apply the Hamming
weight leakage model. We can see in Fig. 4c that many MLP architectures differ
significantly with a GE spread between 0 and 175. In Fig. 4b, no MLP with the
Tanh activation function succeeds in the attack. Finally, in Fig. 4a, MLP with

Performance Analysis of Multilayer Perceptron 207

(a) ReLU. (b) Tanh.

(c) Guessing entropy of all MLP ar-
chitectures versus increasing number
of attack traces.

(d) Integrated Gradient.

Fig. 3. ASCAD guessing entropy in the Hamming weight leakage model.

ReLU reaching GE of 0 has only one hidden layer, and when the number of layers
increases, the performance decreases. Based on the ruggedness of the landscape
for ReLU , it is clear that the choice of the number of layers/perceptrons plays a
significant role. In Fig. 4c, slightly differing from previous cases (cf. Fig. 3c), we
see more groupings in the GE performance. This indicates that a reduced num-
ber of features in the HW leakage model is less expressive, so more architectures
reach the same performance. From Fig. 4d, the median model presents a higher
integrated gradient than the best fitting model. This behavior differs from the
previous experiments and shows that a wrong fitting model has high sensitivity
on samples that do not correlate with the correct leakage. This also explains the
spread of GE results, as there are many subsets of features combinations that
result in high GE.

5.2 AES RD Results

Intermediate Leakage Model: Given the intermediate value leakage model
(Fig. 5), all MLP architectures, including the smallest ones (one hidden layer
with ten perceptrons), are capable of reaching GE below 30 within 2 500 attack
traces. Increasing the number of layers does not have an impact on the ReLu
activation function. For the Tanh activation function, it even seems to increase
GE (thus, decreasing the attack performance). For both activation functions,

208 L. Weissbart

(a) ReLU. (b) Tanh.

(c) Guessing entropy of all MLP ar-
chitectures versus increasing number
of attack traces.

(d) Integrated Gradient.

Fig. 4. ASCAD guessing entropy with a reduced number of features and the Hamming
weight leakage model.

increasing the number of perceptrons per layer decreases GE. Still, from Fig. 5c,
regardless of the architecture chosen, all MLP settings converge within the same
amount of attack traces. This indicates that there is not enough useful informa-
tion that larger networks can use, and as such, using them brings no performance
gain (consequently, there is not much benefit from detailed hyperparameter tun-
ing). The best-fitting model and the median model are both models that fit the
dataset correctly. However, from Fig. 5d, the integrated gradient method reveals
that the two models have very different sensitivity on the input. Such a result
could have been expected as the AES RD dataset deals with randomly delayed
traces, meaning that the leakage is not located in a precise area of the input.

Reduced Number of Features: In Fig. 6, we observe a similar performance
when training MLPs with a reduced number of features for the AES RD dataset
and the intermediate leakage model (containing only 50 selected features). Again,
this implies there is no useful information in additional features, and that is why
MLP cannot perform better even if we use larger/deeper architectures. This is
following the expected behavior for the random delay countermeasure as the
features are not aligned. Finally, the landscape is smoother for Tanh than for
ReLU (similar to ASCAD but also different from AES RD with all features).
The outcome from Fig. 6d is quite similar to the integrated gradient obtained
on the raw traces. While the gradient values for the two models have the same

Performance Analysis of Multilayer Perceptron 209

(a) ReLU. (b) Tanh.

(c) Guessing entropy. (d) Integrated Gradient.

Fig. 5. AES RD guessing entropy for the intermediate leakage model.

levels, no maximum or minimum values are the same, meaning that no samples
contribute significantly to network prediction.

Hamming Weight Leakage Model: When considering the HW leakage model
for the AES RD dataset, even after 2 500 traces, the attack is still unsuccessful.
More precisely, in Fig. 7, no hyperparameter setting results in a model that can
reach a GE below 60, which is not even close to a successful attack. Note we
do not depict results for the reduced number of features as the attack was not
successful even with the full number of features. With the intermediate value
leakage model, we required around 1 500 traces to succeed in the attack. Now,
we use a leakage model with a simpler classification problem and fail with more
measurements. This result shows that the HW leakage is either not present
or that the trained models are too simple to fit the leakage. Interestingly, all
architectures behave relatively similarly, as visible in Fig. 7c. The integrated
gradient on Fig. 7d shows similar results as obtained for the intermediate value
leakage model, but in this case, both models do not fit the dataset correctly,
which means it is difficult to talk about features that contribute more to the
classification result. No trace samples show a higher sensitivity for the network
prediction because of the random delay nature of the dataset.

As no MLP architecture can succeed in the HW leakage model’s attack
on the AES RD dataset, we cannot conclude whether more layers or percep-
trons would improve the attack performance. The phenomenon preventing MLPs
from obtaining good attack performance might be linked to the class imbalance,

210 L. Weissbart

(a) ReLU. (b) Tanh.

(c) Guessing entropy. (d) Integrated Gradient.

Fig. 6. AES RD guessing entropy with a reduced number of features and the interme-
diate leakage model.

pointed out by Picek et al. [22], where they obtain similar results for different
architectures of MLP using the HW leakage model. Additionally, they observe
increasing performance when balancing the training data among the classes.

6 Discussion

MLP can break the masking countermeasure of the ASCAD dataset and the ran-
dom delay countermeasure of the AES RD implementation even when training
a rather small model. For AES RD, the smallest models (one layer, 200 percep-
trons, and six layers, ten perceptrons) share the best outcome of all the models in
the comparison. The same results are observed when using only the most impor-
tant features. An important leakage of the secret could explain these results
if the countermeasure were turned off. Although the random delays shift the
first round S-box operation from the start of the encryption execution, a strong
leakage of the operation handling the secret information is still present. Conse-
quently, using an MLP is enough to overcome this countermeasure. This result
indicates that the current consensus in the SCA community on MLP perfor-
mance should change. Indeed, CNNs are considered especially good for random
delay countermeasure and MLP for masking countermeasure [15,22]. Our results
indicate there is no reason not to consider MLP successful against the random
delay countermeasure given the satisfying results obtained on AES RD with

Performance Analysis of Multilayer Perceptron 211

(a) ReLU. (b) Tanh.

(c) Guessing entropy. (d) Integrated Gradient.

Fig. 7. AES RD guessing entropy for the Hamming weight leakage model.

intermediate value. When selecting 50 POIs with a Difference-of-Mean method,
the selected points represent only 50/3 500 � 1% of the original traces in the
dataset, and the information about the leakage is reduced. Still, the attack suc-
ceeds in the same way, which can be explained because the leakage only comes
from the selected POIs. Finally, the integrated gradient is more difficult to inter-
pret as the dataset has randomness in the time domain, which means it becomes
difficult to pinpoint a few features with a significant contribution toward the
classification result.

For the ASCAD dataset, we observe that the best score obtained for MLP
has the following hyperparameters: six layers and 200 perceptrons. Still, we see
in Figs. 1a and 1b that MLP with similar hyperparameters can perform equally
good (where the red point represents the result obtain with the architecture of
the best MLP MLPbest from the ASCAD paper). When selecting POIs with
the Difference-of-Mean method, we can observe that the performance decreases,
meaning that the useful information is decreased. This, in turn, results in attacks
not able to recover the full secret key. Still, some MLPs can obtain the secret key
in the given number of traces, and we observe that both the number of layers and
the number of perceptrons influence their performance. Finally, the performance
of MLPs with the Hamming weight leakage model gives better performance
than for the intermediate value. The range of hyperparameters that can achieve
the best results is smaller than for the intermediate value leakage model. From
the integrated gradient perspective, we see that many features contribute to a

212 L. Weissbart

successful attack, but MLP makes slightly different feature selection than DoM,
as obviously not all 50 selected features contribute significantly. For the HW
leakage model, the integrated gradient is somewhat more aligned, which means
that more features in this leakage model contribute similarly. Such behavior is
again expected as the HW leakage model forms larger clusters with S-box output
values, where the importance of features is more spread within clusters.

To answer the question of how challenging is the tuning of MLP hyperpa-
rameters, we observe that there is nearly no influence using a (relatively) big
or small MLP for the AES RD dataset. When considering the ASCAD dataset
with the masking countermeasure, depending on the leakage model considered,
the size of the MLP can play a significant role. There, either by increasing the
number of perceptrons per layer or the number of layers with a fixed number of
perceptrons, we can decrease the guessing entropy.

From the activation function perspective, ReLU behaves somewhat better for
the intermediate leakage model when compared to Tanh, i.e., it can reach the
top performance with a smaller number of layers/perceptrons. For the Hamming
weight leakage model, Tanh seems to work better on average, but ReLU reaches
top performance with smaller architectures than Tanh. Finally, Tanh gives more
stable behavior when averaged over all settings, i.e., with the Tanh activation
function, the hyperparameter tuning seems to be less sensitive. To conclude,
ReLU appears to be the preferred option if going for top performance or using
smaller architectures. In contrast, Tanh should be preferred if stability over a
more scenarios is required.

MLP is (or, at least, can be) a deep learning algorithm that has a simple
architecture and a few hyperparameters but can show good performance in the
side-channel analysis. What is more, our results show it can break implemen-
tations protected with both masking or hiding countermeasures. If there is no
sufficient useful input information (as one would expect when dealing with the
random delay countermeasure), a reasonable choice is to go with a relatively
small architecture. For masked datasets, the number of perceptrons or the num-
ber of layers must be large, but the activation function’s choice also plays an
important role. Finally, we observe that in all considered scenarios, the MLP
architectures are not overly sensitive to the hyperparameter choice, i.e., there
does not seem to be a strong motivation to run very fine-grained hyperparameter
tuning.

Based on those observations, we list general recommendations for MLP in
the profiled SCA context1:

1. Many hyperparameter settings can lead to good performance, which makes
the benefit of an exhaustive search very limited.

1 The recommendations are based on the tested configurations. There is no guaran-
tee that different results could not be achieved with significantly different settings,
e.g., having a different number of perceptrons per layer. Still, following our recom-
mendations should provide good performance in most of the scenarios commonly
encountered in profiling SCA.

Performance Analysis of Multilayer Perceptron 213

2. ReLU is better for top performance, while Tanh is more stable over different
hyperparameter combinations.

3. Smaller depth of an MLP can be compensated with wider layers.
4. Integrated gradient is an efficient method for evaluating the influence of fea-

tures if MLP manages to reach good performance.
5. Simpler leakage models require fewer layers.

7 Conclusions and Future Work

In this paper, we considered the behavior of a multilayer perceptron for profiling
side-channel analysis. We investigated two datasets protected with countermea-
sures and a number of different MLP architectures concerning three hyperpa-
rameters. Our results clearly show that the input information to the MLP plays
a crucial role, and if such information is limited, larger/deeper architectures are
not needed. On the other hand, if we can provide high-quality input informa-
tion to the MLP, we should also use larger architectures. At the same time,
our experiments revealed no need for very fine-grained hyperparameter tuning.
While the results for MLP maybe cannot compare with state-of-the-art results
for CNNs, we note that they are not far apart in many cases. If we additionally
factor in that MLP is simpler and faster to train, the choice between those two
techniques becomes even more difficult to make and should depend on additional
goals and constraints. For example, reaching the top performance is the argu-
ment for the usage of CNNs, but if one requires small yet powerful architecture,
a more natural choice seems to be MLP.

In this work, we concentrated on scenarios where each hidden layer has the
same number of perceptrons. It would be interesting to investigate the perfor-
mance of MLP when each layer could have a different number of perceptrons.
Naturally, this opens a question of what combinations of neurons/layers to con-
sider as one could quickly come to thousands of possible settings to explore.
Similarly, for activation functions, we consider only the two most popular ones
where all hidden layers use the same function. It would be interesting to allow
different layers to have different activation functions. Recent experiments showed
that MLP could outperform CNNs when considering different devices for train-
ing and testing (i.e., the portability case) [1]. We plan to explore the influence of
the hyperparameter choice in those scenarios. Finally, as we already mentioned,
MLP architectures are usually simpler than CNNs, which should mean they
are easier to understand. We aim to explore whether we can design stronger
countermeasures against machine learning based-attacks based on MLP inner
working.

References

1. Bhasin, S., Chattopadhyay, A., Heuser, A., Jap, D., Picek, S., Shrivastwa, R.R.:
Mind the portability: a warriors guide through realistic profiled side-channel anal-
ysis. Cryptology ePrint Archive, Report 2019/661 (2019). https://eprint.iacr.org/
2019/661

https://eprint.iacr.org/2019/661
https://eprint.iacr.org/2019/661

214 L. Weissbart

2. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

3. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

4. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras
5. Collobert, R., Bengio, S.: Links between perceptrons, MLPs and SVMs. In: Pro-

ceedings of the Twenty-First International Conference on Machine Learning, ICML
2004, p. 23. ACM, New York (2004). https://doi.org/10.1145/1015330.1015415

6. Coron, J.-S., Kizhvatov, I.: An efficient method for random delay generation in
embedded software. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp.
156–170. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-
9 12

7. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math.
Control Sig. Syst. 2(4), 303–314 (1989). https://doi.org/10.1007/BF02551274

8. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked
implementation of AES. In: 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pp. 106–111, May 2015. https://doi.org/10.
1109/HST.2015.7140247

9. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://
www.deeplearningbook.org

10. Hettwer, B., Gehrer, S., Güneysu, T.: Profiled power analysis attacks using con-
volutional neural networks with domain knowledge. In: Cid, C., Jacobson Jr., M.
(eds.) Selected Areas in Cryptography - SAC 2018–25th International Conference,
Calgary, AB, Canada, 15–17 August 2018, Revised Selected Papers. Lecture Notes
in Computer Science, vol. 11349, pp. 479–498. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-10970-7 22

11. Heuser, A., Picek, S., Guilley, S., Mentens, N.: Side-channel analysis of lightweight
ciphers: does lightweight equal easy? In: Hancke, G.P., Markantonakis, K. (eds.)
RFIDSec 2016. LNCS, vol. 10155, pp. 91–104. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-62024-4 7

12. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise.
Unleashing the power of convolutional neural networks for profiled side-channel
analysis. IACR Trans. Cryptographic Hardware Embed. Syst. 2019(3), 148–
179 (2019). https://doi.org/10.13154/tches.v2019.i3.148-179. https://tches.iacr.
org/index.php/TCHES/article/view/8292

13. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

14. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48405-1 25. http://dl.acm.org/citation.cfm?id=646764.7-
03989

15. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-36400-5_3
https://github.com/fchollet/keras
https://doi.org/10.1145/1015330.1015415
https://doi.org/10.1007/978-3-642-04138-9_12
https://doi.org/10.1007/978-3-642-04138-9_12
https://doi.org/10.1007/BF02551274
https://doi.org/10.1109/HST.2015.7140247
https://doi.org/10.1109/HST.2015.7140247
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-030-10970-7_22
https://doi.org/10.1007/978-3-030-10970-7_22
https://doi.org/10.1007/978-3-319-62024-4_7
https://doi.org/10.1007/978-3-319-62024-4_7
https://doi.org/10.13154/tches.v2019.i3.148-179
https://tches.iacr.org/index.php/TCHES/article/view/8292
https://tches.iacr.org/index.php/TCHES/article/view/8292
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
http://dl.acm.org/citation.cfm?id=646764.7-03989
http://dl.acm.org/citation.cfm?id=646764.7-03989
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1

Performance Analysis of Multilayer Perceptron 215

16. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Boston (2006). http://www.springer.com/. ISBN 0-387-
30857-1. http://www.dpabook.org/

17. Martinasek, Z., Zeman, V.: Innovative method of the power analysis. Radioengi-
neering 22(2) (2013)

18. Martinasek, Z., Hajny, J., Malina, L.: Optimization of power analysis using neural
network. In: Francillon, A., Rohatgi, P. (eds.) Smart Card Research and Advanced
Applications, pp. 94–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-08302-5 7

19. Pfeifer, C., Haddad, P.: Spread: a new layer for profiled deep-learning side-channel
attacks. Cryptology ePrint Archive, Report 2018/880 (2018). https://eprint.iacr.
org/2018/880

20. Picek, S., Heuser, A., Alippi, C., Regazzoni, F.: When theory meets practice: A
framework for robust profiled side-channel analysis. Cryptology ePrint Archive,
Report 2018/1123 (2018). https://eprint.iacr.org/2018/1123

21. Picek, S., Heuser, A., Guilley, S.: Profiling side-channel analysis in the restricted
attacker framework. Cryptology ePrint Archive, Report 2019/168 (2019). https://
eprint.iacr.org/2019/168

22. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbal-
ance and conflicting metrics with machine learning for side-channel evaluations.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209–237 (2019). https://
doi.org/10.13154/tches.v2019.i1.209-237

23. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the perfor-
mance of convolutional neural networks for side-channel analysis. In: Chattopad-
hyay, A., Rebeiro, C., Yarom, Y. (eds.) Security, Privacy, and Applied Cryptog-
raphy Engineering, pp. 157–176. Springer International Publishing, Cham (2018).
https://doi.org/10.1007/978-3-030-05072-6 10

24. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. Cryp-
tology ePrint Archive, Report 2018/053 (2018). https://eprint.iacr.org/2018/053

25. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7 17

26. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

27. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

28. Sugawara, T., Homma, N., Aoki, T., Satoh, A.: Profiling attack using multivariate
regression analysis. IEICE Electron. Express 7(15), 1139–1144 (2010)

29. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks.
arXiv preprint arXiv:1703.01365 (2017)

30. Timon, B.: Non-profiled deep learning-based side-channel attacks with sensi-
tivity analysis. IACR Trans. Cryptographic Hardware Embed. Syst. 2019(2),
107–131 (2019). https://doi.org/10.13154/tches.v2019.i2.107-131. https://tches.
iacr.org/index.php/TCHES/article/view/7387

http://www.springer.com/
http://www.dpabook.org/
https://doi.org/10.1007/978-3-319-08302-5_7
https://doi.org/10.1007/978-3-319-08302-5_7
https://eprint.iacr.org/2018/880
https://eprint.iacr.org/2018/880
https://eprint.iacr.org/2018/1123
https://eprint.iacr.org/2019/168
https://eprint.iacr.org/2019/168
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.1007/978-3-030-05072-6_10
https://eprint.iacr.org/2018/053
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
http://arxiv.org/abs/1703.01365
https://doi.org/10.13154/tches.v2019.i2.107-131
https://tches.iacr.org/index.php/TCHES/article/view/7387
https://tches.iacr.org/index.php/TCHES/article/view/7387

216 L. Weissbart

31. Wu, L., et al.: Everything is connected: From model learnability to guessing
entropy. Cryptology ePrint Archive, Report 2020/899 (2020). https://eprint.iacr.
org/2020/899

32. Yang, S., Zhou, Y., Liu, J., Chen, D.: Back propagation neural network based
leakage characterization for practical security analysis of cryptographic implemen-
tations. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 169–185. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31912-9 12

https://eprint.iacr.org/2020/899
https://eprint.iacr.org/2020/899
https://doi.org/10.1007/978-3-642-31912-9_12

The Forgotten Hyperparameter:

Introducing Dilated Convolution for Boosting CNN-Based
Side-Channel Attacks

Servio Paguada1,2(B) and Igor Armendariz2(B)

1 Digital Security Group, Radboud University, Nijmegen, The Netherlands
servio.paguadaisaula@ru.nl

2 Ikerlan Technology Research Centre, Arrasate-Mondragón, Gipuzkoa, Spain
{slpaguada,iarmendariz}@ikerlan.es

Abstract. In the evaluation of side-channel resilience, convolutional
neural network-based techniques have been proved to be very effective,
even in the presence of countermeasures. This work is introducing the
use of dilated convolution in the context of profiling side-channel attacks.
We show that the convolutional neural network that uses dilated convo-
lution increases its performance by taking advantage of the leakage dis-
tributed through scattered points in leakage traces. We have validated
the feasibility of the proposal by comparing it with the state-of-the-art
approach. We have conducted experiments using ASCAD (with random
key), and as a result the guessing entropy of the attack converges to zero
for around 550 synchronized traces and for 3 000 desynchronised traces.
In both groups of experiments, we have used the same architecture to
train the model, changing just dilatation rate and kernel length, which
indicates a reduction of the complexity in the deep learning model.

Keywords: Profiled attacks · Side-channel analysis · Dilated
convolutions · CNNs · Dilatation rate

1 Introduction

The profiled attack is considered to be one of the most powerful attacks in Side-
Channel Analysis (SCA). The overall idea is to build a model (profile) by using
a clone of the target device and then use this model to attack the non-controlled
target device. Template Attack is the first example of these types of attacks [6],
and some related works followed introducing new attack scenario and improving
the execution phase [10,14,33]. Profiled attacks became even more powerful with
the usage of deep learning techniques. Since profiled attacks can be seen as a
classification problem, existing deep learning architectures like VGG [34] were
taken as a baseline for applications in SCA [20,32]. Several publications pre-
sented different types of deep learning models such as Multi-Layer Perceptron
(MLP) [23,24], and Convolutional Neural Network (CNN) [4] that were able to
compromise the secure implementation of cryptographic algorithms. They both
showed the potential to outperform previous results of template attacks.
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 217–236, 2020.
https://doi.org/10.1007/978-3-030-61638-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_13&domain=pdf
http://orcid.org/0000-0003-4665-7457
http://orcid.org/0000-0002-5055-455X
https://doi.org/10.1007/978-3-030-61638-0_13

218 S. Paguada and I. Armendariz

Many efforts are made to improve our understanding of how these deep
learning-based attacks work. One direction is to find the best combinations of
hyperparameter values of the learning algorithm, e.g. those that improve the
attack. Results of those efforts are the different methodologies that explain how
evaluators and researchers should build CNN models. Thanks to that, tests over
commercial devices for assessing their resilience are becoming more feasible and
reliable.

Recently, the methodology presented in [40] has shown that, by reducing the
use of relevant features in the convolutional blocks, not only the efficiency but
also the effectiveness of the attack increases. Additionally, the experiments made
in [21] suggest that an important improvement in CNN-based attacks could be
achieved, if features where the intermediate values leak and where the mask leaks
are combined in its convolution operation. CNN almost always are built with
two main parts, the convolutional part, and the classification part. The former
is composed of convolutional blocks, and it is the part where that convolution
operation is performed.

We take the arguments from the two papers mentioned above as our starting
point. Then, we conducted preliminary experiments using dilated convolutions.
Dilated convolution is a type of convolutional block where its kernel is modified
(dilated) in a way such that it covers wider areas than the normal convolution,
and at the same time does not overuse relevant points. Dilated convolution is
used to face the problem of scattered dependencies, meaning that the leak is
scattered through sample points in the leakage traces [16,21,22]. Some works in
high-order side-channel also explain the phenomenon from the perspective of this
analysis [2,11,36,38]. The dilatation of the kernel is controlled by a hyperparam-
eter known as dilatation rate. It turned out that by using dilated convolution,
we increased the performance of the CNN model. The preliminary experiments
were conducted using ASCAD fixed key dataset [32], with the CNN model sug-
gested in the latest work [40]. The results have shown that dilated convolution is
feasible and might represent a useful hyperparameter when building CNN mod-
els for SCA. Then, ASCAD random key dataset [32] was used in experiments
where the guessing entropy [35] converges to zero for around 550 traces, whilst
the baseline value produced by a model from [21] converges to zero for around
4 500 traces. The results of these latter experiments were achieved by a CNN
model that uses dilated convolutions.

Contribution

By taking dilated convolution into account, we are aiming to understand better
how the architecture of CNNs should be designed for evaluations. To be more
specific, we introduce the use of dilated convolution by explaining and demon-
strating how this type of kernels is feasible to evaluate implementations of cryp-
tographic algorithms. As it turns out, it brings a new possibility to reduce the
complexity of the deep learning models. To prove what we claim, we conducted
the following:

The Forgotten Hyperparameter 219

1. The first experiment compares state-of-the-art results from [40], showing the
feasibility of the dilated convolution. Gradient visualization [25], Signal-to-
Noise Ratio (SNR) [22], and Weight visualisation [40] techniques are used to
evaluate the classification and feature selection of both approaches. Further
experiments involve a CNN model that outperforms the state-of-the-art app-
roach. These latter experiments aim to compare CNN’s effectiveness by using
different values of kernel length, and dilatation rate. They demonstrate the
effect of reducing redundant points in the first convolutional block, but also
the importance of combining enough relevant ones.

2. Experiments for mimicking the behaviour of the dilated convolution using
small values of kernel lengths and stride are also performed. Proving that
in fact, dilated convolution takes advantage of the long-range dependencies
leakage when combining the involved sample points in the same convolution
operation.

3. Experiments that show how dilated kernels reduce the impact of the desyn-
chronisation. This latter experiment aims at reducing the complexity of the
convolutional part. As we show, the deep learning model used for bypassing
desynchronisation is almost the same as the experiment without this effect.
Changes were only made in the kernel length and the dilatation rate of the
first convolutional block.

4. We also propose considerations that serve as a guide when using dilated
convolutions.

Paper Organisation

The remainder of this paper is organised as follows. Section 2 includes a back-
ground in CNN, theoretical aspect of normal and dilated convolutions, the
datasets we used, and the metric to assess the performance as well as the visu-
alisation techniques. Section 3 summarises previous works regarding CNN for
SCA. Section 4 presents the consideration when building dilated convolution-
based CNN. Section 5 and Sect. 6 contain the result of experiments and the
conclusion, respectively.

2 Background

In this section, we start by giving an overview of convolutional neural networks.
We also include some theory on how the dilatation rate affects the convolu-
tional operation. To show the arithmetic relation, we have used the mathematical
expression of the most general case of convolution operation [13], which involves
all the possible variables, i.e. padding, kernel and input map lengths, and stride.

2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of neural network; they were
initially designed to address classification problems in images. Some recent works

220 S. Paguada and I. Armendariz

have also shown their performance for time series analysis [8,28]. As depicted
in Fig. 1(a), CNNs are composed of two main parts; the convolutional part and
the fully-connected part. The convolutional part is where the convolutions take
place, and as the name suggests they are the convolution layers of a CNN. In
such a layer, a kernel is required to perform the operation using the input map;
being the first convolution layer the input signal. The elements of the kernel are
also known as weights. The back-propagation operation updates these weights
after a loss function determines the error in the classification. Back-propagation
is a powerful characteristic of the neural network learning algorithms [15].

The input map contains features that characterise itself; not all features are
relevant; in fact, irrelevant features lead to an ineffective neural network [27].
When the input map is convolved with a kernel of length lk, the sparse combina-
tion of features produces a feature map, whose elements represent more abstract
features than the ones in the input. Such a resultant feature map serves as input
for the next convolutional block. The number of kernels used represents the
number of feature maps that will be created; all of them will characterise in an
abstract way the input signal. Feature map could also be seen as a reduction of
the space volume of information. The length lk determines how many points are
involved in computing such reduction. Both, the kernel length, and the number
of kernels in the convolutional block are hyperparameters for the neural network
architecture.

As those feature maps progress through the hidden convolution layers, even
more abstract feature maps are created. A 1D convolution operation can be
expressed as in Eq. 1, where f is the input map and k is the kernel; a graphic
example is depicted in Fig. 1(b). Feature map might pass to a pooling layer; this
layer acts as a downsampler which takes the output of a convolution layer and
creates a spatial feature map. This spatial feature map is an invariant represen-
tation of the original sparse features in the input map; we named this pooling
feature map in Fig. 1(b). In the convolutional part, the operation must catch
relevant features that aim for the proper classification. Which also implies that
the goal is not to have a long kernel that mixes many features in the operation;
indeed, such a practice could lead to poor results. At the end of the convolutional
part, the feature maps are reduced to a vector (i.e. flattened) to feed it into the
fully connected part where the classification is conducted.

f [x] � k[x] =
∞∑

n=−∞
f [n] · k[x − n] (1)

Normal Convolutions

Different hyperparameters setup the convolution operation, and they affect the
output dimension lo of the resultant feature map. To explain this relation, in
Eq. 2 it is assumed a convolution layer with kernel of length lk, a padding param-
eter p whose value determines the dimension with zero values used to contour
input map; this latter would have an original length denoted by li. Finally, the

The Forgotten Hyperparameter 221

Fig. 1. (a) Convolution neural network common architecture (N = 0); (b) Convolution
operation example

stride parameter sc represents the distance between two consecutive applications
of the kernel over the input map.

lo = lfm =
⌊

li + 2p − lk
sc

⌋
+ 1 (2)

As we mentioned, the output of the convolution layer could pass through
a pooling operation. Commonly, this is the case because such operation grants
invariant property to a CNN against small translations of the input maps. Pool-
ing layer uses a window that we called it pooling kernel, its length lpk represents
the number of features taken from the feature map to conduct the pooling oper-
ation. A stride value sp (named pooling stride) controls the displacement of the
pooling kernel through the feature map. This operation also affects the output
dimension lo that in such a case becomes lpo, Eq. 3 shows the relation. Although
there are different kinds of pooling operation Eq. 3 applies for all of them. Figure
1(b) also show example of these parameters.

lpo =
⌊

lfm − lpk
sp

⌋
+ 1 (3)

Dilated Convolutions

A dilated convolution takes place when the effective size of the kernel is increased
by a factor, known as dilatation rate dr. Normally, this factor is bigger than
1, (where dr = 1 is a normal convolution layer) which allows the convolution
operation to cover a wider area, without heavily affecting the original convolution
operation performance. The effect could be seen as if we take a kernel and inflate
it by inserting zeros between kernel elements; some features are nullified from the
operation because of those zero value elements; i.e. there are terms of zero value
in the right side of Eq. 1. Therefore, only the non-zero kernel elements contribute
to compose the feature maps; using features that are even more sparse. The rest

222 S. Paguada and I. Armendariz

Fig. 2. Dilated convolutions explanatory illustration, two kernels with different lengths
and different values of dilatation rate (considering sc = 1)

of the operations remain as they were normal convolutions. Each time kernel
moves according to the stride value, the resultant feature map includes less
redundant features and at the same time keeps enough relevant ones. Equation
4 shows how the length of a kernel lk is affected by the dilatation rate dr. Figure
2 illustrates a dilated convolution with two examples.

l̂k = lk + (lk − 1)(dr − 1) (4)

It is clear that, dilated convolution also changes the output dimension of
the feature maps. Equation 5 is a modification of Eq. 2, and shows the relation
of the output dimension, when dilatation rate (dr) already changed the kernel
length l̂k. It is also clear that when lk = 1 Eq. 5 becomes exactly as Eq. 2; this is
something to be considered for choosing the criteria to build the deep learning
architecture (Sect. 4).

lo = lfm =

⌊
li + 2p − l̂k

sc

⌋
+ 1 (5)

2.2 ASCAD Dataset

ASCAD dataset was introduced in [32] with the purpose of being a common
dataset, to conduct benchmarking related to side-channel profiled attacks using
machine learning techniques. The ATMega8515 was the device from which the
traces were collected. The EM radiation was recorded while the device executed
an AES-128 [12] software implementation. A masking countermeasure was used
to protect the cryptographic operation [3]. In the acquisition campaign, an oscil-
loscope with the EM sensor sampled the signal at 2 GS/s.

The structure of this dataset allocates traces into two groups; profiling traces
which contains traces to perform the profiling stage and attack traces, which
contains traces to perform the attack stage. The dataset has two versions, col-
lected traces with fixed key encryption and collected traces with random key

The Forgotten Hyperparameter 223

encryption. In the work [40], they used ASCAD fixed key; to establish a com-
parison we have used this dataset in the first experiment. The profiling traces
group contains 50 000 traces and the attack traces group contains 10 000. The
traces in both of the groups have 700 sample points, and they are the points of
interest of the crypto operation (the masked S-box for the sensitive value).

For the rest of the experiments, we have used ASCAD random key version
since it represents a challenging way to conduct a profiling attack. For this ver-
sion, profiling traces contains 200 000 traces and attack traces contains 100 000
traces. In the experimental section (Sect. 5), Tables 2 and 3 show the amount of
traces of each group used to perform training. Each trace has a length of 1 400
sample points. As in the fixed version, these are the points of interest of the
crypto operation.

Traces can be desynchronised by applying a threshold (N) that moves traces
around x-axis. The common values to perform the benchmarking are N = 0,
N = 50, and N = 100. In the experiment, we have only used N = 0 and
N = 100; the latter value lets enough evidence that the proposed method is
feasible as well for N = 50.

Sensitive value of traces has the model represented by the Eq. 6 where the
value of Z represents the class that labelled the traces associated with the same
index. The byte that is intended to exploit is the third value (i = 3). The p
represents the plain text, and k is the possible key hypothesis.

Z[i] = Sbox[p[i] ⊕ k[i]] (6)

All the samples were standardised and normalised between 0 and 1 to accel-
erate the learning process [15]. For the first experiment, we have used the same
training hyperparameters as in [40] as well as the same setup for the attack phase.
For the experiments using ASCAD random key, the attack traces are randomly
shuffled and a battery of 100 attacks are performed to obtain the average value.

2.3 Guessing Entropy

The guessing entropy (GE) [35] is commonly used as a metric to assess the
performance of a side-channel attack. It represents the average number of the
key candidates required to obtain the secret key k after conducting a side-channel
analysis. To give a specific example, let consider the 5000 randomly chosen traces,
an attack using these traces results in a GE vector �g = [g1, g2, . . . , g|K|] where
K represents the keyspace. Each component gi is ordered from the maximum to
the minimum value of probability. Then, the GE is the average position of k in
the vector �g over many experiments. By using a battery of 100 experiments, we
obtain an averaged guessing entropy for adequately estimating the performance
of the attack.

2.4 Visualisation of Feature Selection

The ability of a neural network to extract relevant feature can be visualised
using the following techniques. Gradient visualisation [25] computes the value

224 S. Paguada and I. Armendariz

of the derivatives regarding the input trace, the resultant value is used to point
out what feature needs to be modified the least, to affect the loss function the
most. This technique gives information about what time samples influence the
most in the classification; when those time samples are compared with other
visualisation techniques, one can evaluate how well the neural network extracts
the important features. Signal-to-Noise Ratio (SNR) [22] points out the time
samples in leakage traces that contain exploitable information. We used it to
compare with gradient visualisation and see how the time points match in each
result. Weight Visualisation [40] helps to understand how the convolutional part
of a CNN performs the feature selection. By comparing the shape of this latter
technique with gradient visualisation, one can evaluate how well the feature
learning part did to help the classification part.

3 Works in CNN for Side-Channel Analysis

In this section, we briefly mention related works in the context of using CNN for
SCA.

The first works in using CNN architecture for SCA were [20,32] conclud-
ing that VGG [34] was the best architecture in addressing side-channel analy-
sis. After these papers, others became available showing results against coun-
termeasures such as those jitter-based and masking [4,5]. Other publications
focused on understanding theoretically, and visually how deep learning models
are capable of bypassing the countermeasure and compromising the security such
as [25,29,40]. CNN has also been used for non-profiled attacks [37]. Additionally,
in the same contribution, the ability of deep neural networks to fit high-order
side-channel leakages was shown.

Recent works have looked into modifications of the architecture of the CNN,
not just on changing the hyperparameters, but trying to feed the neural network
with more inputs (with additional data) to improve the performance [18]. Feature
selection has also been covered in SCA, Picek et al. show the relevance of applying
techniques for choosing features to increase the performance of the learning
algorithm [30]. In [21], the authors present several experiments for building the
first convolutional block related to scattered leaks1.

One of the most recent works in showing a methodology to build a CNN for
side-channel analysis is [40]. In that paper, the conducted analysis shows how
to setup kernels in the first convolutional block; for avoiding composing feature
maps that include many irrelevant as well as redundant features. As we already
mentioned in the previous section, such mis practice impacts negatively on the
performance. The work assesses other aspects concerning pooling operation, and
they claim that a pooling stride should also be set in a way that the pooling kernel
does not take repetitive features.

All these works have integrated reliable conclusions that are still used in the
state-of-the-art. To the best of our knowledge, dilated convolutions have not
been presented into SCA context yet. Some references on using them in image
classification applications exist [7,17,28,39].
1 i.e. intermediate value and mask leaks.

The Forgotten Hyperparameter 225

4 Dilated Convolutions Design Considerations

Here we discuss the design considerations for CNN architectures with dilated
convolutions for SCA, as well as the potential pitfall of using them.

We offer a takeaway when one opts for the presented approach. As the reader
can see, they are substantially similar to the state-of-the-art. This is because
dilated convolution follows the basis of avoiding collecting irrelevant features.
What follows are the criteria and their explanation for building deep learning
architecture. At the same time, they justify the usage of the dilated convolution.
It must be understood that dilatation rate is also a hyperparameter so that the
process to find the best value for it relies on a trade-off between it and the others.

– Reduce overusing of relevant features: It has been shown that a kernel
which covers long areas of the signal, tends to build feature maps that contain
a lot of redundant features. When that happens, the elements in the feature
map do not represent the actual relevance of the essential points [19]. Their
values are close or equivalent to each other. Dilated convolution reduces the
overuses of relevant points because zeros between kernel weights nullify a
portion of them.

– Kernel length and dilatation rate: Having evidenced that the leak could
be scattered through sample points [2,11,38], and a kernel length should cover
the leak of the intermediate values as well as the leak of the mask [21,36].
It is not enough to avoid the overuse of relevant points by setting the first
convolutional block with small kernel length. The kernel must be able to take
these scattered leaks and conducts the operation; dilated convolution covers
this issue.

– Pooling stride: Keeping the pooling stride Sp value big enough is also
mandatory to have in mind. This resolution was already addressed in [40]; a
pooling operation should not compromise relevant features already refined by
the convolution layer.

– Desynchronisation: The conclusions in [40] also stresses the fact that avoid-
ing deep architecture could have a positive impact on the presence of desyn-
chronisation. This is an aspect that we cover by using dilated convolutions,
recall that having gathered better feature maps in earlier convolutional blocks
reduce the need for adding more of them. We depict this fact in the last exper-
iment, we have used the same architecture for both ASCAD sync and ASCAD
desync with N = 100, achieving good results. We have only changed values for
each training stage and values for the kernel length as well as the dilatation
rate for the first convolutional block.

– Do not dilate too much: Regarding the fact that we can lose too much
information. It is clear that there isn’t total control about how relevant the
points are being nullified when using dilated convolution, so it’s also possible
to lose too many of them; this is a potential pitfall of using dilated convolution.

226 S. Paguada and I. Armendariz

Takeaway Message:

1. For the two first points, we suggest evaluating with a small kernel length and
dilatation rate values, e.g. lk = 7 and dr = 2. Then, one should increase them
iteratively finding a good trade-off. Recall, those values are related to the way
the leaks are scattered in the leakage signal. A leakage analysis might help to
identify the leaky points [19].

2. A recommended value for the pooling stride is at least the length of the
pooling kernel i.e. lpk = Sp (as is exemplified in Fig. 1(b)).

3. In the presence of desynchronization, it is feasible to go for longer kernels,
since the leakage is even more scattered. As in the first point the values to
begin with heavily depend on the length of the input map, set these values
having in mind that a low dilatation rate, dilates the kernel in a multiplicative
way.

4. To avoid the pitfall, we recommend finding a trade-off in the number of kernels
specified for the convolution layer that uses dilated convolutions. By doing so,
one composes enough feature maps and preserves as many relevant features
as possible. Another recommendation is to try with different kernel lengths to
see the impact of changing the value. We provide one experiment to exemplify
this.

Taking these considerations, the suggested architecture is summarised in
Table 1 in Sect. 5.2. Note that the proposed architecture follows the rule of
thumbs about the number of kernels. We use this single architecture to perform
different experiments. Some values in Table 1 are fixed according to experiments,
and they are set to the respective ones. To build deep learning models for the
experiment we have used Python Keras library [9], and TensorFlow as back-end
[1]. As a classification problem that has more than one class, we have use Softmax
as the activation function for the output layer, and categorical cross-entropy [26]
as the loss function. The optimiser was set to Adam [15] using batch size of 256
and a learning rate of 10−3. Recall that these training hyperparameters and this
CNN architecture are only used in the experiment with ASCAD random key
version.

5 Experimental Results and Discussions

In this section, we report on the results that were achieved by using dilated
convolution using synchronised and desynchronised ASCAD traces.

5.1 ASCAD Fixed Key (N = 0)

To compare with state-of-the-art results2, we conducted experiments using dif-
ferent values of lk and dr to train the CNN suggested in the latest work in [40].

2 https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA.

https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA

The Forgotten Hyperparameter 227

(a)

0 100 200 300 400 500
Number of Traces

0

5

10

15

20

25

G
ue
ss
in
g
En

tr
op
y

GE ASCAD N=0 Fixed key

(b)

(c) (d)

Fig. 3. (a) Two traces from ASCAD fixed key (N = 0); (b) GE baseline using CNN
from [40]; (c) SNR of unmasked sensitive value and mask; (d) Correlation analysis

We have keep all the training hyperparameters as in that work3. Then, the
experiments are conducted with the following hyperparamenters of the first con-
volutional block: A1 : [lk = 1], A2 : [lk = 16, dr = 4], A3 : [lk = 16, dr = 6],
A4 : [lk = 32, dr = 3], A5 : [lk = 64, dr = 2].

We have in Fig. 3(b) the value of GE obtained from the CNN model in [40].
Thanks to the fact that the information of the masks and the sensitive values are
available in ASCAD dataset [37], we can compute the SNR of the unmasked sen-
sitive value and the mask Fig. 3(c) and Fig. 3(d) shows the correlation analysis,
both with regard to the third byte. As we said, SNR gives us information about
the points of the leakage signal that are exploitable. In ASCAD fixed key two
intervals are remarkable I1 = [90, 300] and I2 = [450, 600]. Although I1 regard
to unmasked sensitive value is barely visible in the SNR plot, the correlation
analysis emphasises that in this area, there is some exploitable information [37].
In fact, I1 is the interval where the two signals overlap, which represents a con-
venient situation because both leaks are matched.

Figure 4(a) depicts all the five attacks. Looking at these results, we argue
that by having achieved the same outcome with most of the cases, the dilated
convolution approach is feasible. Recall that the CNN model presented in [40] is

3 Including One Cycle Policy to deal with the learning rate.

228 S. Paguada and I. Armendariz

0 100 200 300 400 500
Number of Traces

0

5

10

15

20

25

G
ue
ss
in
g
En

tr
op
y

GE ASCAD N=0 Fixed key A1:[lk=1]

A2:[lk=16, dr=4]

A3:[lk=16, dr=6]

A4:[lk=32, dr=3]

A5:[lk=64, dr=2]

(a)

Time samples

0.25

0.50

0.75

W
ei
gh

t
va
lu
e

A1:[lk=1]

Time samples

0.25

0.50

W
ei
gh

t
va
lu
e

A2:[lk=16, dr=4]

Time samples

0.25

0.50

0.75

W
ei
gh

t
va
lu
e

A3:[lk=16, dr=6]

Time samples

0.2

0.4

W
ei
gh

t
va
lu
e

A4:[lk=32, dr=3]

0 100 200 300
Time samples

0.25

0.50

0.75

W
ei
gh

t
va
lu
e

A5:[lk=64, dr=2]

(b)

Time samples
0

1

G
ra
di
en

t

A1:[lk=1]

Time samples
0

2

G
ra
di
en

t
A2:[lk=16, dr=4]

Time samples
0

2

G
ra
di
en

t

A3:[lk=16, dr=6]

Time samples
0

2

G
ra
di
en

t

A4:[lk=32, dr=3]

0 200 400 600
Time samples

0

2

G
ra
di
en

t

A5:[lk=64, dr=2]

(c)

Fig. 4. (a) GE from different values of lk and dr; (b) Weight visualisation; (c) Gradient
visualisation

one of the minimal models regard to the complexity ever presented. The model
relies on the analysis and performance of having a lk = 1. It indicates that the
dilatation rate is a useful hyperparameter for building CNN for SCA.

Figure 4(b) and (c) depict the weight visualisation and gradient visualisation
of the five models trained respectively. In general, all the models detect points
of interest in similar intervals of time samples, some of those points match with

The Forgotten Hyperparameter 229

the SNR and correlation analysis in Fig. 3(c) and (d). The gradient visualisation
gives us a sign that no feature information was lost from the feature learning
process (convolutional part) to the classification part [40].

It’s worth mentioning that the configuration of A4 appears to be an outlier.
Its GE converges to zero in [200, 300] and not in [100, 200] like the others. The
reader can interpret it as an example of finding a trade-off of the kernel length
and dilatation rate.

5.2 Attack over Synchronised ASCAD Random Key (N = 0)

In the following experiments, we show a CNN with dilated convolution that
performs better than previous approaches. To set a baseline to compare with
Fig. 5(a) depicts the shape of two synchronised traces from ASCAD dataset
random key (profiling traces) and Fig. 5(b) shows a guessing entropy achieved
by the model presented in [21]. As we did in the previous experiment, we have
computed the SNR (and the correlation) to visualise the intervals in the leakage
traces which are exploitable; the results are depicted in Fig. 5(c) and (d).

Table 1. Architecture of the CNN for experiments using ASCAD random key

Hyperparameter Value Additional info of values

Input shape (1400, 1)

Conv layers (32, 64, 128) SeLU, He uniform, lk1 and dr varies
according to experiments,
lk2 = 25, lk3 = 3

Regulatization Batch normalisation

Pooling type Average (lpk1 = sp1 = 2, lpk2 = sp2 = 25,
lpk3 = sp3 = 4)

FC 3 FC layers of 15 units each SeLU, He uniform

Dense 256 units Softmax

Comparing Lengths and Dilatation Rate

We consider the length of the kernel that could be the best choice, to achieve
an efficient and effective attack (in terms of number of traces), and at the same
time to show that is not only about covering all the time samples where the
leak happens. To show this in practice, we performed 4 experiments under the
next combinations of values; lk = 1, lk = 32, lk = 64, lk = 32, dr = 2 with the
deep learning architecture as presented in Table 1. In Table 2, a summary of the
values used in the training stage is presented.

During training, 75 epochs were used in all the experiments. However, when
we had found out the presence of overfitting or underfitting, we adjusted these
values, until we notice almost the same tendency in the loss and validation
loss for all of them. Besides, as those two metrics have been shown to be not

230 S. Paguada and I. Armendariz

(a) (b)

(c) (d)

Fig. 5. (a) Two traces from ASCAD random key (N = 0); (b) GE baseline using CNN
from [21]; (c) SNR of unmasked sensitive value and mask; (d) Correlation analysis

reliable as a side-channel metric [31], also a cross-validation setup was used.
All four results are depicted in Fig. 6(a). Our goal is to show how a dilated
convolution outperforms the attack effectiveness. So, the comparison was using
the same architecture with values of kernel lengths suggested in the state of the
art publications.

Note how the GE result of lk = 32 and lk = 64 are worse in approximating
to the baseline. It might be caused for the accumulation of irrelevant features.
In contrast, observe how the result with lk = 32, dr = 2 outperform the GE.
Note, the length of the kernel is practically the same as in the third one, but

0 1000 2000 3000 4000 5000
Number of Traces

0

10

20

30

40

50

60

70

80

G
ue
ss
in
g
En

tr
op
y

ge baseline
lk = 32, dr = 2
lk = 1
lk = 32
lk = 64

(a)

0 200 400 600 800 1000 1200 1400
Time samples

0.0

0.5

1.0

1.5

2.0

2.5

G
ra
di
en
t

(b)

Fig. 6. (a) Guessing entropy of the four experiments; (b) Gradient visualisation result
of lk = 32, dr = 2

The Forgotten Hyperparameter 231

here we include less irrelevant and redundant features because of the dilatation.
Figure 6(b) shows the gradient visualisation of the latter result; the relevant time
samples match with the SNR in Fig. 5(c).

Table 2. Values of the training stage for synchronised traces

Parameter Value

Number of profiling traces 45000

Number of validation traces 5000

Epochs 75

Mimic Dilated Convolution with Stride Values

In this experiment, we show the achieved performance when the behaviour of
the dilated convolution is imitated with small kernel sizes, and stride values that
allow skipping some features. The GE of this experiment is depicted in Fig. 7(a).

The result tells us, that although the efficiency achieved by doing this imita-
tion is less than using dilated convolutions, kernel length of 1 with a stride value
of 3 tends towards a successful attack4, demonstrating the effect of taking many
times the same features. By comparing with dilated convolution, we demonstrate
that reducing redundant and irrelevant features is not the total answer. In some
cases, the efficiency could improve if the evaluator considers the fact that fea-
tures in the input map might present long-range dependencies, i.e. the scattered
leakage of the mask and intermediate values, so a dilated convolution comes to
outperform the results of the evaluation. By comparing the gradient results in
Fig. 6(b), and Fig. 7(c)–(d) one can see how efficiently each model performs the
feature selection. Each one of them matches respectively with its GE.

Different Lengths with Same Dilatation Rate

Dilatation rate is also under the heuristic nature of deep learning, and it must
be included in the tuning process of the deep learning architecture. Although
dilated convolution discards features being or not irrelevant, there is no way (at
least at the moment) to say that it is performing feature engineering, the feature
selection is still not under the control of the evaluator or designer. The experi-
ment, whose result is depicted in Fig. 7(b), was conducted to show that by using
the approach of dilated convolution, one could also damage the performance.
The kernel is taking not enough relevant features, or a lot of relevant features
are being nullified in the interval covers by the kernel.

As we mentioned in Sect. 4, it is recommended to apply a longer kernel
or increase the number of kernels, a trade-off should be found over these two
hyperparameters. Keep in mind that by increasing the number of kernels in a

4 As well as kernel length of 3 with stride value of 6.

232 S. Paguada and I. Armendariz

0 1000 2000 3000 4000 5000
Number of Traces

0

20

40

60

80

100

120

G
ue
ss
in
g
En

tr
op
y

lk = 1, s = 3
lk = 3, s = 6
lk = 32, dr = 2

(a)

0 200 400 600 800 1000
Number of Traces

0

5

10

15

20

25

30

35

G
ue
ss
in
g
En

tr
op
y

lk = 32, dr = 2
lk = 7, dr = 2

(b)

0 200 400 600 800 1000 1200 1400
Time samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
ra
di
en
t

lk=1, s=3

(c)

0 200 400 600 800 1000 1200 1400
Time samples

0.0

0.1

0.2

0.3

0.4

0.5

G
ra
di
en
t

lk=3, s=6

(d)

Fig. 7. (a) GE of examples that mimic dilated convolution; (b) Effect over GE with
same dilatation rate and different lengths; (c) Gradient visualisation result of lk =
1, s = 3; (d) Gradient visualisation result of lk = 3, s = 6

convolutional block, the next one should follow the rule of thumb, i.e. increase
the number of kernels by the power of 2. In Fig. 7(b) we have the result of having
two dilated kernel whose lengths are considerably different in terms of dilatation
rate, i.e. using a dilatation rate of 2 with a kernel size of 7, its effective size
becomes 14, whilst the effective size of a kernel of 32 becomes 64. As the reader
can see, different performances are achieved.

5.3 Attack over Desynchronised ASCAD Random Key (N = 100)

The last experiment considers the impact of having desynchronised traces. For
this, we have used the same architecture as in the previous experiments. Figure
8 shows four combinations of values, a kernel length of 64 with a dilatation rate
of 3 being the best where these were the only changes in the architecture. It is
demonstrated that dilated convolution can bypass desynchronisation, reaching a
considerable good performance. Mention that by having used the same architec-
ture as in the experiment without it, we have evidenced that dilated convolution
also reduces the complexity of the deep learning model. Over certain circum-
stances, a convolutional block that uses dilated convolution composes better
feature maps. Those lead to a better characterisation of the leakage traces. So,
there is no need to add more layers to the architecture.

The Forgotten Hyperparameter 233

0 1000 2000 3000 4000 5000
Number of Traces

0

20

40

60

80

100

120

140

G
ue
ss
in
g
En

tr
op
y

lk = 64, dr = 2
lk = 64, dr = 3
lk = 32, dr = 3
lk = 32, dr = 2

Fig. 8. Guessing entropy over desynchronised ASCAD traces (N = 100)

Table 3. Values of the training stage for desynchronised traces (N = 100)

Parameter Value

Number of profiling traces 55000

Number of validation traces 7000

Epochs 100

Recall that to attack desynchronised signals successfully is trickier. Even
though the same architecture was used, we did a few changes in the kernel length
and dilatation rate, as well as changes in the training values. Table 3 summarises
the latter. As we said, to deal with the effect of the desynchronisation, a trade-off
of kernel length and dilatation rate must be found. Being advantageous is the
fact that one can find an architecture that is useful for different scenarios.

These values make sense; longer kernel is required to combine the leaks cause
relevant points between traces are more scattered when they are desynchronised,
the same reason why the kernel needs to be more dilated. One could argue that
if this is the case, an even simpler architecture could be found for the previous
experiments. While we do not question that statement, being in a scenario where
the evaluator must address synchronised and desynchronised tests, he could rely
on the fact that the same architecture could achieve suitable results in both.

6 Conclusions and Perspectives

In this paper, we have used dilated convolution to build up a CNN. The results
show that by using this type of convolutions, a boosting effect over the perfor-
mance of a deep learning-based side-channel attack is achieved. The arguments
that support our theory are taken from the already addressed aspect about
decreasing the redundancy of relevant points of the input signal. These points
are used for composing feature maps in the convolutional blocks of a CNN. Hav-
ing a useful feature map that characterises well enough the input signal, leads
to a reduction of the number of convolutional blocks in the architecture, which
directly represents a reduction of the deep learning model complexity.

234 S. Paguada and I. Armendariz

The potential of dilated convolutions is in the capability to inflate the kernel,
covering wider areas than normal convolutions. The leakage in the trace could
imply samples that are separated from different amounts of samples in between,
more if the leakage signals are not synchronised. This capability is not presented
in large kernels as well as small kernels with a stride value big enough, that
allows them to avoid points between convolution operations. The lack of this in
normal convolutions has the opposite effect, causing a negative impact on not
being able to reach the performance of the dilated convolution.

From the evaluator’s perspective, it has been shown that a single dilated
convolutional-based model could reach enough performance boost to address
the requirement of a test in both synchronised and desynchronised scenarios.
However, one should bear in mind that small changes in the hyperparameter are
still required. Dilated convolutions have demonstrated to be a hyperparameter
that could lead to new CNN architectures which increase the threat of profiled
attacks. In future works, we will systematically exploit the effect of using this
approach for building deep learning models. Also, we will study other archi-
tectures that may present different behaviour when this alteration is applied,
as well as study more complex data, i.e. 32-bits platforms, covering scenarios
where the noise becomes an important factor when evaluating implementations
of cryptographic algorithms.

Concerning the way, we could protect the latter; we are aiming for evaluating
a combination of countermeasures, i.e. higher level of masking and hiding. Since
hiding countermeasures try to stabilise the power consumption, the learning
algorithm will detect fewer variations; this is going to impact its classification
score, which could be a way to affect the performance of the attack.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems, software available from tensorflow.org (2015). https://www.tensorflow.org/

2. Belgarric, P., et al.: Time-frequency analysis for second-order attacks. In: Francil-
lon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 108–122. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 8

3. Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4 5

4. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

5. Cagli, E., Dumas, C., Prouff, E.: Kernel discriminant analysis for information
extraction in the presence of masking. In: Lemke-Rust, K., Tunstall, M. (eds.)
CARDIS 2016. LNCS, vol. 10146, pp. 1–22. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-54669-8 1

6. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

https://www.tensorflow.org/
https://doi.org/10.1007/978-3-319-08302-5_8
https://doi.org/10.1007/978-3-540-30564-4_5
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-54669-8_1
https://doi.org/10.1007/978-3-319-54669-8_1
https://doi.org/10.1007/3-540-36400-5_3

The Forgotten Hyperparameter 235

7. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: seman-
tic image segmentation with deep convolutional nets, atrous convolution, and fully
connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

8. Choi, K., Fazekas, G., Sandler, M., Cho, K.: Convolutional recurrent neural net-
works for music classification. In: 2017 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 2392–2396. IEEE (2017)

9. Chollet, F., et al.: Keras (2015). https://keras.io
10. Choudary, M.O., Kuhn, M.G.: Efficient, portable template attacks. IEEE Trans.

Inf. Forensics Secur. 13(2), 490–501 (2018)
11. Coron, J.S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security

and mask refreshing. In: Moriai, S. (ed.) Fast Software Encryption, pp. 410–424.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 21

12. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

13. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning. arXiv
preprint arXiv:1603.07285 (2016)

14. Fan, G., Zhou, Y., Zhang, H., Feng, D.: How to choose interesting points for tem-
plate attacks more effectively? In: Yung, M., Zhu, L., Yang, Y. (eds.) INTRUST
2014. LNCS, vol. 9473, pp. 168–183. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-27998-5 11

15. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press (2016)
16. Hajra, S., Mukhopadhyay, D.: Multivariate leakage model for improving non-

profiling DPA on noisy power traces. In: Lin, D., Xu, S., Yung, M. (eds.) Inscrypt
2013. LNCS, vol. 8567, pp. 325–342. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-12087-4 21

17. Hamaguchi, R., Fujita, A., Nemoto, K., Imaizumi, T., Hikosaka, S.: Effective use
of dilated convolutions for segmenting small object instances in remote sensing
imagery. In: 2018 IEEE Winter Conference on Applications of Computer Vision
(WACV), pp. 1442–1450 (2018)

18. Hettwer, B., Gehrer, S., Güneysu, T.: Profiled power analysis attacks using con-
volutional neural networks with domain knowledge. In: Selected Areas in Cryp-
tography - SAC 2018–25th International Conference, Calgary, AB, Canada, 15–17
August 2018, Revised Selected Papers, pp. 479–498 (2018)

19. Hettwer, B., Gehrer, S., Güneysu, T.: Deep neural network attribution methods
for leakage analysis and symmetric key recovery. In: Paterson, K.G., Stebila, D.
(eds.) SAC 2019. LNCS, vol. 11959, pp. 645–666. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-38471-5 26

20. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise: unleashing
the power of convolutional neural networks for profiled side-channel analysis. IACR
Cryptology ePrint Archive 2018, 1023 (2018)

21. Maghrebi, H.: Deep learning based side channel attacks in practice. IACR Cryp-
tology ePrint Archive 2019, 578 (2019)

22. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards, vol. 31. Springer, Boston (2008). https://doi.org/10.1007/978-0-
387-38162-6

23. Martinasek, Z., Dzurenda, P., Malina, L.: Profiling power analysis attack based on
MLP in DPA contest V4.2. In: 2016 39th International Conference on Telecommu-
nications and Signal Processing (TSP), pp. 223–226 (2016)

24. Martinasek, Z., Zapletal, O., Vrba, K., Trasy, K.: Power analysis attack based on
the MLP in DPA contest v4 (07 2015)

https://keras.io
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-662-04722-4
http://arxiv.org/abs/1603.07285
https://doi.org/10.1007/978-3-319-27998-5_11
https://doi.org/10.1007/978-3-319-27998-5_11
https://doi.org/10.1007/978-3-319-12087-4_21
https://doi.org/10.1007/978-3-319-12087-4_21
https://doi.org/10.1007/978-3-030-38471-5_26
https://doi.org/10.1007/978-3-030-38471-5_26
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6

236 S. Paguada and I. Armendariz

25. Masure, L., Dumas, C., Prouff, E.: Gradient visualization for general characteriza-
tion in profiling attacks. In: Polian, I., Stöttinger, M. (eds.) International Workshop
on Constructive Side-Channel Analysis and Secure Design, pp. 145–167. Springer
(2019). https://doi.org/10.1007/978-3-030-16350-1 9

26. Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep learning for
side-channel analysis. IACR Trans. Cryptographic Hardware Embed. Syst. 2020,
348–375 (2020)

27. Ng, A.Y.: Feature selection, L1 vs. L2 regularization, and rotational invariance. In:
Proceedings of the Twenty-First International Conference on Machine Learning,
ICML 2004, p. 78. Association for Computing Machinery, New York (2004)

28. van den Oord, A., et al.: WaveNet: a generative model for raw audio. In: SSW
(2016)

29. Perin, G., Ege, B., Chmielewski, L.: Neural Network Model Assessment for Side-
Channel Analysis. IACR Cryptology ePrint Archive 2019, 722 (2019)

30. Picek, S., Heuser, A., Jovic, A., Batina, L., Legay, A.: The secrets of profiling for
side-channel analysis: feature selection matters. IACR Cryptology ePrint Archive
2017, 1110 (2017)

31. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbal-
ance and conflicting metrics with machine learning for side-channel evaluations.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 209–237 (2018)

32. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Canovas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. IACR
Cryptology ePrint Archive 2018, 53 (2018)

33. Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31815-6 35

34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

35. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

36. Thiebeauld, H., Vasselle, A., Wurcker, A.: Second-order scatter attack. IACR Cryp-
tology ePrint Archive 2019, 345 (2019)

37. Timon, B.: Non-profiled deep learning-based side-channel attacks with sensitivity
analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 107–131 (2019)

38. Waddle, J., Wagner, D.: Towards efficient second-order power analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 1

39. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. CoRR
abs/1511.07122 (2016)

40. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN
architectures in profiling attacks. IACR Trans. Cryptographic Hardware Embed.
Syst. 2020(1), 1–36 (2019)

https://doi.org/10.1007/978-3-030-16350-1_9
https://doi.org/10.1007/978-3-540-31815-6_35
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-540-28632-5_1

AIoTS – Artificial Intelligence and
Industrial IoT Security

ARM-AFL: Coverage-Guided Fuzzing
Framework for ARM-Based IoT Devices

Rong Fan(B) , Jianfeng Pan, and Shaomang Huang

Security Engineering Institute, Qihoo 360, Beijing, China
fanrong1@360.cn, panjianfeng@360.cn, huangshaomang@360.cn

Abstract. With the proliferation of IoT devices, an increasing number
of attack surfaces are exposed to malicious hackers. Discovering vulnera-
bilities in IoT devices and patching them is imperative. However, there is
a lack of effective tools to help IoT developers discover vulnerabilities in
their code. Fuzzing is an effective and widely used technique to discover
software vulnerabilities in general-purpose computers. In this paper, we
present ARM-AFL, an effective, coverage-guided fuzzing framework for
ARM-based IoT devices. ARM-AFL instruments software during compi-
lation and runs fuzzing directly on IoT devices. This addresses compati-
bility issues in user-mode emulation and provides higher throughput than
full-system emulation. We also design a light-weight heap memory cor-
ruption detector (lwHMCD), which is able to detect three kinds of silent
heap memory corruptions. By combining ARM-AFL and lwHMCD, IoT
developers can discover vulnerabilities before an attacker does.

Keywords: IoT · Fuzzing · Vulnerability · Compatibility ·
Throughput

1 Introduction

The growth of people’s desire for convenient life makes the intellectualization of
embedded devices an irresistible trend. And with the evolution of IoT Technol-
ogy, more and more embedded devices are being connected to the internet. At
the end of 2019, the total number of IoT devices that are in use worldwide has
reached 9.5 billion, excluding mobile phones, tablets and laptops. And the num-
ber of IoT devices is expected to increase to 28 billion by 2025 [1]. But the lack
of effective IoT vulnerability detection tools could make IoT devices vulnerable
to attack and leave almost everyone at danger. Therefore, it is an urgent matter
to help IoT developers secure their code.

Fuzzing is proved to be an effective technique to discover vulnerabilities in
real-world programs. In early time, fuzzers only feed a program with random
inputs and monitor its running status. Modern fuzzers, like AFL, use code cover-
age to guide the fuzzing process. This makes Modern fuzzers much more effective
than traditional fuzzers. Unfortunately, modern fuzzers are mainly focused on
i386 or x86 64 architectures, but most of the IoT devices are based on ARM. As
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 239–254, 2020.
https://doi.org/10.1007/978-3-030-61638-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_14&domain=pdf
http://orcid.org/0000-0001-5860-3427
https://doi.org/10.1007/978-3-030-61638-0_14

240 R. Fan et al.

a consequence, IoT developers are unable to utilize modern fuzzing technique to
secure their code.

There are three fundamental problems in IoT fuzzing. The first is compatibil-
ity. IoT programs strongly depend on particular hardware components of their
devices. Without proper hardware support, testing IoT programs with fuzzers
would encounter unexpected failures. For instance, using AFL’s user-mode emu-
lation to fuzz IoT programs would not work in most cases. The second is through-
put. Throughput is one of the most important benchmark of fuzzing. For IoT
fuzzing, full-system emulation may solve some compatibility issues, but through-
put is quite low. The third is code coverage. The higher the code coverage, the
more likely it is to trigger a vulnerability. Despite the high compatibility and
throughput of directly performing blackbox fuzzing on real IoT devices, code
coverage is far from satisfied.

Recent research on the vulnerability detection of IoT programs has tried to
solve these problems from different perspectives. Avatar [10] combines emulator
and real device to enable dynamic analysis for embedded firmware. FIRMA-
DYNE [6] takes advantage of full-system emulation to achieve high compati-
bility. IoTFuzzer [4] utilizes the information embedded in the companion apps
to perform blackbox fuzzing on real devices. FIRM-AFL combines full-system
emulation and user-mode emulation to overcome the limitations of using only
one of them.

All of these techniques can apply fuzzing on IoT programs, but they only solve
some of the problems and have limitations. The compatibility and throughput
of the techniques which utilize emulation cannot be obtained at the same time.
Zheng et al. [3] points out, although full-system emulation could provide a high
compatibility, it sacrifices 10 times more throughput than user-mode emulation.
Despite the information collected, the code coverage of blackbox fuzzing is much
lower than that of coverage-guided fuzzing.

Our Approach. In this work, we present ARM-AFL, a high throughput greybox
fuzzer, which is able to run coverage-guided fuzzing on ARM-based IoT devices.
Unlike existing techniques which mainly rely on emulation for IoT fuzzing, ARM-
AFL performs greybox fuzzing directly on real devices. To achieve this, we add an
instrument function for ARM jump instructions to ARM-AFL, so that it could
properly instrument with ARM assembly files. We also implement trampoline
and payload for ARM architecture, which can enable code coverage calculation
for ARM-AFL.

Contributions. In summary, we make following contributions in this paper:

– We summary the state-of-the-art IoT vulnerability detection techniques. Both
static and dynamic techniques are discussed and their limitations are ana-
lyzed.

– We implement ARM-AFL which is able to run coverage-guided fuzzing on
ARM-based IoT devices.

– We design a light-weight heap memory corruption detector (lwHMCD) for
ARM-AFL.

ARM-AFL 241

– We evaluate our approach with open source software to show its efficiency and
effectiveness. The result shows that our approach has both high compatibility
and high throughput, and it is able to find the known vulnerabilities.

The rest of this paper is organized as follow: In Sect. 2, we discuss fuzzing,
AFL and AddressSanitizer. While in Sect. 3, the workflow of AFL and the imple-
mentation details of ARM-AFL are explained. Experimental evaluations and
analysis are given in Sect. 4. In addition, a review of related work is described
in Sect. 5. Finally, the conclusion and potential for future work are presented in
Sect. 6.

2 Background

2.1 Fuzzing

Fuzzing is one of the most effective techniques to discover vulnerabilities in
program by repeatedly executing it with random inputs. State-of-the-art fuzzers
according to how much information is collected and used for the execution, can
be categorized into whitebox, blackbox and greybox. Whitebox fuzzers usually
utilize program analysis techniques like symbolic execution and taint analysis
which introduce extremely high performance overhead to generate the inputs.
Blackbox fuzzers don’t have any information about the target program, they
treat the program as blackbox and execute it without feedback. Greybox fuzzers
utilize feedback from the target program execution to guide the generation of
inputs.

The most popular fuzzing technique is coverage-guided greybox fuzzing.
Greybox fuzzers instrument the target program with extra code, and these code
help to collect code coverage information when executing random inputs. Then
greybox fuzzers choose input with higher code coverage as seed to generate
new inputs. Obviously, continuing to implement this strategy will trigger more
and more code paths of the target program. The lightweight instrumentation of
greybox fuzzer does not have much impact on target program execution speed.
Overall, graybox fuzzers have much higher throughput than whitebox fuzzers
and much higher code coverage than blackbox fuzzers.

2.2 AFL

AFL [5] is one of the most popular greybox fuzzer. It has already found numerous
vulnerabilities in real-world targets. Compared to other coverage-guided fuzzers,
AFL is designed to be practical. It has moderate performance overhead, uses
a series of highly effective fuzzing strategies (bitflip, arithmetic, interest, dic-
tionary, havoc, etc) and deduplication of crash tricks. When the source code is
available, AFL employs a compile-time instrumentation and genetic algorithms
to figure out test cases which are able to trigger new execution path in the target
program. These test cases will be added to the seed queue for further fuzzing.
And when the source code is not available, AFL utilizes user-mode emulation

242 R. Fan et al.

provided by a patched version of QEMU to instrument the target binary dynam-
ically. QEMU’s user-mode emulation uses basic blocks as translation units, and
the dynamic instrumentation is implemented on top of this. As a result, AFL is
able to perform coverage-guided fuzzing on binary-only targets. The techniques
adopted by AFL can help to improve the code coverage for the target program.

2.3 AddressSanitizer

AddressSanitizer (ASAN) [14] is a fast memory corruption detector developed by
Google. It detects buffer overflows, use after frees, memory leaks, etc, by instru-
menting the memory access instructions and replacing the malloc(), free()
and related functions with a run-time library. If a corruption is detected, the
program will print an error message to stderr and exit with a non-zero exit
code. On average, ASAN’s slowdown is just 73% and it has already found hun-
dreds of bugs in web browsers and other software. It is a part of LLVM starting
with version 3.1 and a part of GCC starting with version 4.8.

seed queue
fuzzer

forkserver

mutate data

target instance

read

add mutate data if trigger
new execution path

fork

ctl_pipe

st_pipe

write

read

analysis

fork

return state of
the subprocess

shared
memory

mutate

Fig. 1. Workflow of ARM-AFL

3 Implementation

In this section, we will give the implementation details of ARM-AFL.

3.1 Workflow of ARM-AFL

The main components of ARM-AFL are described below:

ARM-AFL 243

– afl-gcc is a wrapper for gcc. It adds several compilation options, like -g, -O,
-B, etc. Among them, -B is the most critical option, it adds afl-as’s path to the
assembler’s search paths, which leads afl-as to perform the actual assembly
works.

– afl-as performs the instrumentation and converts the assembly code into exe-
cutable machine code. Instrument function of afl-as adds trampoline assembly
to basic blocks of the target program. And if there is any trampoline assembly
added, instrument function will add payload assembly to target program.

– afl-fuzz does the main business of fuzzing the instrumented target program.

We implement the workflow of ARM-AFL basically the same as that of AFL
(shown in Fig. 1). At the beginning of fuzzing, afl-fuzz forks a child process
and this child process uses execve() to run the target program up to entry
point of the main function. This target program process acts as forkserver and
repeatedly fork child process which will be fed with mutated inputs. With the
help of forkserver mechanism, afl-fuzz can avoid overhead of execve() calls.
The parent process of forkserver is called fuzzer. It communicates with forkserver
through two pipes. One is ctl pipe, which is used to send commands to forkserver.
The other is st pipe, which is used to receive pid and return state of child process
of forkserver.

When forkserver completes the initialization, it sends a four-byte hello mes-
sage to fuzzer. And if there are any new test cases, forkserver will receive a
command from fuzzer, fork a target program process and send its pid back.
During the running of the forked process, the instrumented code records exe-
cuted branches to shared memory created by fuzzer. When the forked process
finishes executing, fuzzer will analysis the record in shared memory and append
the test case to seed queue if it triggers new execution path. Finally, fuzzer
displays on the status screen if the forked process crashes.

3.2 ARM-AFL

In order to allow ARM-AFL to run fuzzing on ARM-based IoT devices, we imple-
ment an instrument function, trampoline and payload for ARM architecture.

Instrument Function. The instrument function in afl-as adds trampoline
to target program basic blocks mainly according to jump instructions. Jump
instructions of ARM architecture are different from that of i386 or x86 64 archi-
tectures, so we implement a new instrument function for ARM architecture. In
the instrument function, a while loop reads assembly files of the target program
line by line and write instrumented assembly to a new file. Specifically, instru-
mentation begins with .cfi startproc and ends with .cfi endproc, which
indicate the beginning and ending of a function. trampoline is added when the
read line contains .L[digit] which indicate a jump destination, or jump instruc-
tions except bic, b, bl and blx. And ARM-AFL also use an environment variable
AFL INST RATIO (a value between 0 and 100) to reduce the odds of instrument-
ing every discovered branch. The instrument function would generate a random

244 R. Fan et al.

number between 0 and 100, and compare it with AFL INST RATIO before instru-
menting a branch, the branch is instrumented only if the random number less
than AFL INST RATIO. After the while loop, if any trampoline is added, instru-
ment function will also add payload to the new file.

Trampoline. Trampoline of ARM architecture is shown in Listing 1.1. The
main task of trampoline is jumping to afl maybe log (label of payload) with
a random number as parameter. And this parameter will be used to indicate the
current basic block later.

Listing 1.1. assembly of trampoline

1 static const u8 *trampoline_fmt_arm =
2 "\n"
3 "/* --- AFL TRAMPOLINE --- */\n"
4 "\tpush {r0 , lr}\n"
5 "\tldr r0 , =#%u\n"
6 "\tbl __afl_maybe_log \n"
7 "\tb 1f\n"
8 "\t.ltorg\n"
9 "\t1:\n"

10 "\tpop {r0 , lr}\n"
11 "/* --- END --- */\n"
12 "\n";

Payload. Payload has two major modules, forkserver and branch recorder. fork-
server module runs only once during whole fuzzing process. As shown in Listing
1.2, it utilizes environment variable (whose name is stored in .AFL SHM ENV) cre-
ated by fuzzer to get the shared memory ID (shm id), then attaches the shared
memory segment to the process’ address space, finally writes a four-byte mes-
sage (afl temp, an uninitialized variable in the bss section) to fuzzer through
FORKSRV FD+1 (which is a copy of st pipe). If fuzzer successfully reads four bytes
form forkserver, it is all set.

Listing 1.2. setup of fork server

1 ldr r0, =.AFL_SHM_ENV
2 bl getenv
3
4 cmp r0, #0
5 beq __afl_setup_abort
6
7 bl atoi
8
9 mov r5, r0

10 mov r1,#0
11 mov r2,#0
12 bl shmat
13
14 ...
15
16 __afl_forkserver:
17 ldr r1, =__afl_area_ptr

ARM-AFL 245

18 str r0, [r1]
19 ldr r5, =__afl_temp
20 mov r0, #FORKSRV_FD+1
21 mov r1, r5
22 mov r2, #4
23 bl write

After that, forkserver enters afl fork wait loop (shown in Listing 1.3).
It waits for fork-command by reading from fuzzer (via FORKSRV FD which is a
copy of ctl pipe), then forks a child process when reading successfully. The child
process enters afl fork resume which closes pipes, records current branch to
shared memory and resumes execution of the target program. Concurrently the
parent process writes child pid to fuzzer and waits until the child process ends,
then writes the child process end state to fuzzer, finally goes to the beginning of
afl fork wait loop and loops again.

Listing 1.3. wait loop of fork server

1 __afl_fork_wait_loop:
2 mov r0, #FORKSRV_FD
3 mov r1, r5
4 mov r2, #4
5 bl read
6
7 cmp r0, #4
8 bne __afl_die
9

10 bl fork
11
12 cmp r0, #0
13 blt __afl_die
14
15 beq __afl_fork_resume
16
17 ldr r1, =__afl_fork_pid
18 str r0, [r1]
19 mov r6, r0
20 mov r0, #FORKSRV_FD+1
21 mov r2, #4
22 bl write
23
24 cmp r0, #4
25 bne __afl_die
26
27 mov r0, r6
28 mov r1, r5
29 mov r2, #0
30 bl waitpid
31
32 cmp r0, #0
33 blt __afl_die
34 mov r0, #FORKSRV_FD+1
35 mov r1, r5
36 mov r2, #4
37 bl write
38
39 cmp r0, #4
40 beq __afl_fork_wait_loop

246 R. Fan et al.

Branch recorder runs every time the instrumented branch is triggered. Its
pseudo code is shown in Listing 1.4.

Listing 1.4. pseudo code of branch recorder

1 cur_location = <COMPILE_TIME_RANDOM >;
2 shared_mem[cur_location^prev_location]++;
3 prev_location = cur_location >> 1;

The locations of basic blocks are represented by random values generated
during compilation. The branch recorder module uses the value of previous loca-
tion XOR current location as index of the current branch in shared memory and
records the number of executions of the current branch there. Assembly of branch
recoder is shown in Listing 1.5.

Listing 1.5. assembly of branch recorder

1 __afl_store:
2 ldr r0, =__afl_area_ptr
3 ldr r0, [r0]
4 ldr r1, =__afl_prev_loc
5 ldr r2, [r1]
6 eor r2, r2, r4
7 ldrb r3, [r0, r2]
8 add r3, r3, #1
9 strb r3, [r0, r2]

10 mov r0, r4, asr#1
11 str r0, [r1]
12 __afl_return:
13 msr APSR_nzcvq, r7
14 pop {r1 -r7, pc}

3.3 Light-Weight Heap Memory Corruption Detector

According to Muench et al. [24], the vast majority of fuzzing techniques find
bugs by detecting crashes which terminate the program immediately or cause
some recovery procedures. However, many common security mechanisms (e.g.
heap consistency check) which trigger crashes are rarely present on IoT devices.
As a result, our fuzzer can encounter unobservable memory corruptions under
particular conditions. So we draw on the experience of ASAN and design a light-
weight heap memory corruption detector (lwHMCD).

lwHMCD aims to detect use after free, double free and heap buffer overflow.
They are unobservable memory corruptions under particular conditions and can-
not be detected using ARM-AFL alone. A brief introduction of these three kinds
of heap memory corruptions are as follow:

– Use after free (uaf) refers to the reuse of a freed pointer which is not set
to NULL (also called dangling pointer) [26], and if the memory pointed by the
pointer has not been modified, the program is likely to work properly.

– Double free [27] occurs when free() is called twice or more with the same
pointer as an argument. The program is able to work properly with double
free under certain circumstances.

ARM-AFL 247

Low memory address

High memory address

Top Chunk

User
Data
(len)

Allocated
Chunk
(size)

prev_size

size

fd

bk

(a) malloc chunk

Low memory address

High memory address

Top Chunk

lenlen+2*CSIZE

prev_size

size

len/fd

bk

len

(b) lwHMCD chunk

Fig. 2. Schematic diagram of lwHMCD

– Heap buffer overflow [25] is caused by writing more data to a fixed-length
buffer located on the heap than what is actually allocated for that buffer. In
most cases, heap buffer overflow does not crash the program.

Figure 2(a) shows the basic structure of heap buffer implemented in glibc. To
achieve heap memory corruption detection, we add the parameter of malloc()
at the beginning and end of malloc chunk’s user data (as shown in Fig. 2(b)).
The lwHMCD chunk is implemented by replacing the glibc’s dynamic memory
functions (free(), malloc(), realloc(), calloc()) with our custom functions
(wrap free(), wrap malloc(), wrap realloc(), wrap calloc()).

Listing 1.6 depicts the core logic of lwHMCD’s functions (wrap free()
and wrap malloc()). They are actually wrappers for glibc’s free() and
malloc(). When lwHMCD chunk is freed for the first time, its added field at
the beginning (len/fd) would be set to 0 or address of another free chunk by
glibc. So if len/fd is equal to 0 or not equal to the added field at the end
(at line 9–12), there may be a double free vulnerability. When a heap buffer
overflow happens, the added field at the end of lwHMCD chunk is overwritten, so
the checking conditions in wrap free() (at line 10–12) would trigger crash.

Listing 1.6. Light weight heap memory corruption detector

1 #define CSIZE sizeof(size_t)
2
3 void __wrap_free(void *addr)
4 {
5 if (addr) {
6 // prevent uaf

248 R. Fan et al.

7 memset(addr ,0,*(size_t *)((size_t)addr -CSIZE));
8 // check double free and overflow
9 if (*(size_t *)((size_t)addr -CSIZE) == 0 ||

10 *(size_t *)((size_t)addr -CSIZE) !=
11 *(size_t *)((size_t)addr +
12 *(size_t *)((size_t)addr -CSIZE))) {
13 raise(SIGSEGV);
14 }
15 __real_free ((void *)((size_t)addr -CSIZE));
16 }
17 }
18
19 void* __wrap_malloc (size_t len)
20 {
21 void *addr = __real_malloc (len+2* CSIZE);
22 if (addr) {
23 // add parameter at the beginning and end
24 *(size_t *)addr = len;
25 *(size_t *)((size_t)addr+len+CSIZE) = len;
26 } else {
27 return NULL;
28 }
29 return (void *)((size_t)addr+CSIZE);
30 }

Listing 1.7 shows a uaf vulnerability example, it runs properly with glibc’s
free() and malloc(). After replacing them with lwHMCD’s functions, the heap
buffer would be cleared by wrap free(), resulting in a null pointer dereference
in the printf()’s parameter (at line 19).

Listing 1.7. Uaf vulnerability example

1 struct stu {
2 char *name;
3 };
4
5 struct mentor {
6 char *name;
7 struct stu *s;
8 };
9

10 int main()
11 {
12 struct stu *stu1 = (struct stu *) malloc(sizeof(struct stu));
13 stu1 ->name = "stu1";
14 struct mentor *men1 =
15 (struct mentor *) malloc(sizeof(struct mentor));
16 men1 ->name = "mentor1";
17 men1 ->s = stu1;
18 free(men1);
19 printf("%s", men1 ->s->name); // uaf here
20 return 0;
21 }

4 Evaluation

In this section, we evaluate our fuzzer ARM-AFL on Raspberry Pi Model 3 B
with programs including openssl-1.0.1f, c-ares, libpng-1.2.56, etc, which contain

ARM-AFL 249

four already known vulnerabilities (CVE-2014-0160, CVE-2016-5180, two artifi-
cial vulnerabilities). We use these programs selected by Google [11] to imitate
software which can only run on ARM-based IoT devices and test whether our
approach is effective in IoT vulnerability detection.

4.1 Experimental Setup

We run ARM-AFL on Raspberry Pi Model 3 B, with 4 cores and 1 GB mem-
ory [12]. The OS is Raspbian 2019-07-12 32bit [13]. The programs used in our
experiment is briefly described as below:

– OpenSSL is an open source toolkit for the Transport Layer Security (TLS)
and Secure Sockets Layer (SSL) protocols. It is also a general-purpose cryp-
tography library. It is widely used on servers on the Internet [15].

– c-ares is a C library for asynchronous DNS requests. It is intended for appli-
cations which need to perform DNS queries without blocking, or need to
perform multiple DNS queries in parallel [16].

– libpng is an open source library for use in applications that read, create and
manipulate PNG (Portable Network Graphics) raster image files [17].

– Little CMS is an open source color management engine, with special focus
on accuracy and performance. It uses the International Color Consortium
standard (ICC), which is the modern standard when regarding to color man-
agement [18].

– The PCRE library is a set of functions that implement regular expression
pattern matching using the same syntax and semantics as Perl 5 [19].

– Wakaama (formerly liblwm2m) is an implementation of the Open Mobile
Alliance’s LightWeight M2M protocol (LWM2M). It is not a library but files
to be built with an application [20].

– LwIP is a small independent implementation of the TCP/IP protocol suite
that is intended to reduce resource usage. It is suitable for use in embedded
systems with tens of kilobytes of free RAM and room for around 40 kbytes
of code ROM [21].

4.2 Efficiency

We compile each program into three versions with ARM-AFL, the first one
with ASAN (ASAN version), the second one with lwHMCD (lwHMCD version)
and the last one with neither of them (original version). ARM-AFL use envi-
ronment variable AFL USE ASAN to enable ASAN. When AFL USE ASAN is set,
AFL INST RATIO is set to 33 to probabilistically skip ASAN-specific branches.
And when compiling without ASAN, AFL INST RATIO is initialized to 100 by
default. Figure 3 shows the throughput of these three versions. The lwHMCD
version’s average slowdown is just 2.5%, so it is much faster than the ASAN
version.

250 R. Fan et al.

Fig. 3. Throughput of ARM-AFL

4.3 Effectiveness

There are four already known vulnerabilities in these programs we chosen from
Google’s test suite. And they are described as below:

– CVE-2014-0160. This vulnerability is caused by an unchecked user input
flaw in the TLS/DTLS heartbeat functionality of OpenSSL versions 1.0.1
through 1.0.1f. Specifically, the memcpy() in dtls1 porcess heartbeat()
takes unchecked user input as size parameter, and this allows an attacker to
retrieve private memory of an application that uses the vulnerable OpenSSL
library in chunks of 64k at a time. As a result, the secret key, usernames
and passwords, emails and communication on the servers protected by the
vulnerable OpenSSL library can be stolen by anyone on the Internet [22].

– CVE-2016-5180. This vulnerability is caused by an incorrect size calcula-
tion in ares create query() function of c-ares 1.x before 1.12.0. In detail,
the size of a hostname with an escaped trailing dot (such as "BB\.") would
be calculated incorrectly in ares create query() function, this leads to a
single byte out-of-bounds written on a heap-based buffer. A remote attacker
is able to cause a denial of service or possibly execute arbitrary code via such
a hostname.

– Two artificial vulnerabilities. Our approach of bug insertion was inspired
by LAVA [28]. We manually added a uaf bug to libpng and a double free bug
to Wakaama. As Listing 1.8 shows, the uaf bug is at the end of libpng’s
main() function and the double free bug is in the middle of Wakaama’s
free multi option.

ARM-AFL 251

Listing 1.8. Two artificial vulnerabilities

1 int main(int argc , char *argv []) {
2 ...
3 if (height == width *2) {
4 free(O);
5 O->buf_state ->data = NULL; // uaf here
6 }
7 return 0;
8 }
9

10 void free_multi_option (multi_option_t *dst)
11 {
12 if (dst) {
13 multi_option_t *n = dst ->next;
14 dst ->next = NULL;
15 if (dst ->is_static == 0) {
16 free(dst);
17 free(dst ->data);
18 }
19 free(dst); // double free here
20 free_multi_option(n);
21 }
22 }

Table 1. Result of ARM-AFL

Version CVE-2014-0160 CVE-2016-5180 uaf Double free

ASAN version 15min 27 s 2min 15 s 10 min 40 s 56 min 36

lwHMCD version N/A 56 s 3 min 11 s 18 min 46 s

Original version N/A N/A N/A N/A

As Table 1 shows, without the help of ASAN or lwHMCD, ARM-AFL is not
able to find the particular vulnerabilities. The lwHMCD version can find the
heap buffer overflow, uaf and double free vulnerabilities, but cannot find the
memory leak vulnerability. The ASAN version can find all the vulnerabilities,
but 2.4 to 3.4 times slower than the lwHMCD version. IoT developers can make
a trade-off between efficiency and effectiveness. If device resources are limited
(common feature of IoT devices) or using a gcc version lower than 4.8 (does not
support ASAN), lwHMCD is a good choice.

5 Related Work

As the number of IoT devices increases and their security needs grow, researchers
have already made many related security studies including several vulnerabil-
ity detection techniques. These techniques include static analysis and dynamic
detection.

252 R. Fan et al.

5.1 Static Analysis

Costin et al. [2] collected a large number of firmware images from the Internet
and implemented a distributed system to unpack and run static analysis tasks on
these firmware images. Their approach compares and finds similarities between
all the files unpacked to detect known vulnerabilities.

Shoshitaishvili et al. [9] also proposed a static analysis-based IoT vulnera-
bility detection technique. Firmalice takes security policies to identify a set of
privileged program points of firmware, then use the Static-Program-Analysis
module to create an authentication slice from an entry point to the privi-
leged program point. After that, Firmalice utilizes a symbolic execution engine
to find paths that can reach a privileged program point. Finally, Firmalice’s
Authentication-Bypass-Check module determines whether the found paths actu-
ally cause authentication bypass vulnerabilities.

Feng et al. [7] has implemented an IoT vulnerability search engine called
Genius which was inspired by image retrieval techniques. Firstly, Genius extracts
the attributed control flow graph (ACFG) from a binary function. Then it uti-
lizes unsupervised learning methods to learn categorizations from ACFGs. Next
it maps ACFG of a function into a high-level numeric vector. Finally, given a
function, Genius finds its most similar functions to search cross-platform vulner-
ability for firmware images. Xu et al. [8] present a novel binary code similarity
detection approach which was based on neural network. This approach is able to
detect similar functions directly in binaries across multiple platforms, e.g., x86,
ARM or MIPS. So it can help to detect known vulnerabilities in released IoT
firmware.

Static analysis techniques for IoT may have high false-positive deficiencies
and are rarely able to find new vulnerabilities.

5.2 Dynamic Detection

In contrast, dynamic detection techniques have higher efficiency and accuracy.
Avatar enables dynamic analysis for firmware by combining emulator and real
device. It utilizes the emulator to do the execution and analysis of the firmware,
and redirect the I/O operations to the real device to address compatibility issues.
In addition, the author applies a whitebox fuzzing to find vulnerabilities as a
demonstration. Due to the data transmission and whitebox fuzzing, the through-
put of Avatar is quite low.

FIRMADYNE [6] downloads firmware images from vendor websites with its
web crawler component, then automatically extract kernel and root filesystem
from the firmware. It starts up a QEMU full-system emulator with the extracted
filesystem and a pre-build linux kernel to do the dynamic analysis. FIRM-AFL
[3] is built on top of AFL and FIRMADYNE. And its main idea is to augment
user-mode emulation with full-system emulation. The target program is fuzzed
in user-mode emulation to achieve higher efficiency and switches to full-system
emulation to ensure correct program execution.

ARM-AFL 253

From another perspective, Chen et al. [4] observes that most IoT devices
are controlled through their official mobile apps, and such an app often carries
rich information about the device. Examples of such information include pro-
tocol messages and encryption/decryption strategies in the app. Based on such
information, IoTFuzzer can generate better test cases for blackbox fuzzing on
the real device. Even so, it has a low code coverage and throughput.

6 Conclusion and Future Work

Coverage-guided fuzzing is proved to be an effective technique to discover vulner-
abilities in program. However, it has not been applied to IoT devices. Therefore,
we present ARM-AFL in this paper, a coverage-guided vulnerability detection
framework which can run on ARM-based IoT devices. To achieve this, we imple-
ment a new instrument function, trampoline and payload assembly for ARM
architecture. Heavy-weight memory error detectors like ASAN, Valgrind [29]
(10–50 times slower than natively), etc, can detect more types of vulnerabilities,
but the large amount of memory consumed and the resulting slowdown are not
suitable for embedded devices [30]. We implement a light-weight heap memory
corruption detector, which can turn three kinds of silent heap corruptions into
observable crashes with little impact on performance. With the help of ARM-
AFL, IoT developers can secure their code before being attacked by malicious
hackers.

Our fuzzing framework can only detect vulnerabilities on ARM with Linux
operating system, although it accounts for the majority of the IoT, there are still
some essential devices that are other architectures with different operating sys-
tems. For future work, we would add support for other mainstream architectures
and operating systems of IoT devices.

References

1. IoT 2019 in Review: The 10 Most Relevant IoT Developments of the Year. https://
iot-analytics.com/iot-2019-in-review/, 7 January 2020

2. Costin, A., Zaddach, J., Francillon, A., Balzarotti, D.: A large-scale analysis of the
security of embedded firmwares. In: 23rd USENIX Security Symposium (USENIX
Security 14) 2014, pp. 95–110 (2014)

3. Zheng, Y., Davanian, A., Yin, H., Song, C., Zhu, H., Sun, L.: FIRM-AFL: high-
throughput greybox fuzzing of IoT firmware via augmented process emulation. In:
28th USENIX Security Symposium (USENIX Security 19), pp. 1099–1114 (2019)

4. Chen, J., et al.: IoTFuzzer: discovering memory corruptions in IoT through app-
based fuzzing. In: NDSS 2018, February 2018

5. American fuzzy lop. http://lcamtuf.coredump.cx/afl/
6. Chen, D.D., Woo, M., Brumley, D., Egele, M.: Towards automated dynamic anal-

ysis for linux-based embedded firmware. In: NDSS 2016, 21 February, pp. 1–16
(2016)

https://iot-analytics.com/iot-2019-in-review/
https://iot-analytics.com/iot-2019-in-review/
http://lcamtuf.coredump.cx/afl/

254 R. Fan et al.

7. Feng, Q., Zhou, R., Xu, C., Cheng, Y., Testa, B., Yin, H.: Scalable graph-based bug
search for firmware images. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security 2016, 24 October, pp. 480–491. ACM
(2016)

8. Xu, X., Liu, C., Feng, Q., Yin, H., Song, L., Song, D.: Neural network-based graph
embedding for cross-platform binary code similarity detection. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security
2017, 30 October, pp. 363–376. ACM (2017)

9. Shoshitaishvili, Y., Wang, R., Hauser, C., Kruegel, C., Vigna, G.: Firmalice-
automatic detection of authentication bypass vulnerabilities in binary firmware.
In: NDSS 2015, 8 February (2015)

10. Zaddach, J., Bruno, L., Francillon, A., Balzarotti, D.: AVATAR: a framework to
support dynamic security analysis of embedded systems’ firmwares. In: NDSS 2014,
23 February, pp. 1–16 (2014)

11. Set of tests for fuzzing engines. https://github.com/google/fuzzer-test-suite/
12. Raspberry. https://www.raspberrypi.org/downloads/raspbian/
13. Raspberry Pi 3 Model B. https://www.raspberrypi.org/products/raspberry-pi-3-

model-b/
14. Serebryany, K., Bruening, D., Potapenko, A., Vyukov. D.: AddressSanitizer: a fast

address sanity checker. In: Presented as part of the 2012 USENIX Annual Technical
Conference (USENIXATC 12) 2012, pp. 309–318

15. OpenSSL. https://www.openssl.org/
16. c-ares. https://c-ares.haxx.se/
17. libpng. http://www.libpng.org/
18. Little CMS. http://www.littlecms.com/
19. PCRE - Perl Compatible Regular Expressions. https://www.pcre.org/
20. Wakaama. https://www.eclipse.org/wakaama/
21. lwIP - A Lightweight TCP/IP stack. https://savannah.nongnu.org/projects/lwip/
22. The Heartbleed Bug. http://heartbleed.com/
23. CVE-2016-5180. https://www.cvedetails.com/cve/CVE-2016-5180/
24. Muench, M., Stijohann, J., Kargl, F., Francillon, A., Balzarotti, D.: What you

corrupt is not what you crash: challenges in fuzzing embedded devices. In: NDSS
2018, February 2018

25. Wikipedia. Heap overflow (2019). https://en.wikipedia.org/wiki/Heap overflow
26. Wikipedia. Dangling pointer (2019). https://en.wikipedia.org/wiki/Dangling

pointer
27. Wikipedia. C dynamic memory allocation (2019). https://en.wikipedia.org/wiki/

C dynamic memory allocation
28. Dolan-Gavitt, B., et al.: Large-scale automated vulnerability addition. In: 2016

IEEE Symposium on Security and Privacy (SP) 2016, 22 May, pp. 110–121. IEEE
(2016)

29. Valgrind. https://valgrind.org/
30. Zhang, C., Zhu, L., Xu, C., et al.: Reliable and privacy-preserving truth discovery

for mobile crowdsensing systems. IEEE Trans. Dependable Secure Comput. (2019).
https://doi.org/10.1109/TDSC.2019.2919517

https://github.com/google/fuzzer-test-suite/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.openssl.org/
https://c-ares.haxx.se/
http://www.libpng.org/
http://www.littlecms.com/
https://www.pcre.org/
https://www.eclipse.org/wakaama/
https://savannah.nongnu.org/projects/lwip/
http://heartbleed.com/
https://www.cvedetails.com/cve/CVE-2016-5180/
https://en.wikipedia.org/wiki/Heap_overflow
https://en.wikipedia.org/wiki/Dangling_pointer
https://en.wikipedia.org/wiki/Dangling_pointer
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://valgrind.org/
https://doi.org/10.1109/TDSC.2019.2919517

Post-exploitation and Persistence
Techniques Against Programmable

Logic Controller

Andrei Bytes(B) and Jianying Zhou

Singapore University of Technology and Design, Singapore, Singapore
andrei bytes@mymail.sutd.edu.sg, jianying zhou@sutd.edu.sg

Abstract. The rising appearance of system security threats against
real-world Critical Infrastructure (CI) sites over the past years brought
significant research attention into the security of Industrial Control Sys-
tems (ICS). Academic institutions and major industrial appliance ven-
dors have since increased efforts on effective vulnerability discovery in
these systems. However, from the investigation of the major recent ICS
incidents, it is evident that a targeted post-exploitation chain plays a cru-
cial role for an attack to succeed. After the initial access to the system is
gained, typically through a previously unknown (zero-day) or unpatched
vulnerability, weak credentials or insider assistance, a specific knowledge
on the system architecture is applied to achieve stealthy and persistent
presence in the system before the physical process is disrupted. In this
work, we propose a set of post-exploitation and persistence techniques
against WAGO PFC200 Series Programmable Logic Controller (PLC).
It will help to raise the awareness of stealthy and persistent threats to
PLCs built on top of the variations of CODESYS runtime.

Keywords: Programmable Logic Controller · Vulnerability discovery ·
Industrial control system security

1 Introduction

Industrial Control Systems (ICS) are widely deployed to control and super-
vise the safe operation of nation-wide critical infrastructure: electric power grid,
water treatment and distribution, transportation. Numerous domains of modern
life and economy rely on real-time stability, safety and security of ICS. Pro-
grammable Logic Controllers (PLC), as well as sensors and actuators, play a
key role in ICS as field devices.

The importance of security research in ICS domain has become especially
evident after a series of major security incidents which relied on the exploitation
of PLCs and other industrial appliance to corrupt the control logic and there-
fore affect the physical process [7,22,63]. The IEC61131 standard [15] defines
the programming languages and system operation requirements to be followed
by PLCs, to fulfill highest safety and security standards in the physical process
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 255–273, 2020.
https://doi.org/10.1007/978-3-030-61638-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_15&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_15

256 A. Bytes and J. Zhou

implementation. A key difference of PLCs from traditional embedded systems is
their real-time operation design, extended fault tolerance and redundancy capa-
bilities [27]. A single corruption of physical process control logic or availability
shortage, even on the software level, can have serious consequences, ranging from
immediate financial loss to man-made environmental disaster.

In this work, we analyze the software internals of widely used WAGO PFC200
Series PLCs and provide a set of potentially applicable techniques which allow
for post-exploitation and persistence in these devices. While the methodology is
provided in relation to WAGO PLCs, a similar approach is potentially helpful
for the vulnerability discovery research in other ICS products, which are built
on top of the variations of CODESYS runtime. This includes more than 360
devices from Hitachi, Advantech, Schneider Automation, ABB, Bosch Rexroth
and other vendors [19,42].

Contributions: We perform a study of the popular WAGO PFC200 Series (750-
8202/025-001) controller and identify a set of targeted post-exploitation tech-
niques which can be applied on the firmware components to support the attack
payload persistence. We also discuss the options of detection and defence, which
take into account the internal components of the above-mentioned system.

Organization: The remainder of this paper is organized as follows. Section 2
introduces the typical ICS architecture and PLC components. Section 3 for-
mulates the threat model of the system being studied. Section 4 provides an
overview of recent exploits which assist in unauthorized access to the controller,
and propose a set of techniques for post-exploitation and persistence. Section 5
gives two examples of attack scenarios that leverage the post-exploitation and
persistence techniques, and Sect. 6 discusses the options of detection and defence.
Section 7 reviews the related work, and Sect. 8 concludes the paper.

2 Background

2.1 WAGO PFC200 Series PLC

The PFC200 Controller, produced by WAGO Kontakttechnik is built on rela-
tively powerful hardware (ARM Cortex CPU, 256 Mbytes RAM) and a modern
software stack (real-time operating system (RTOS) with a modified Linux ker-
nel). The controller implements a variety of well-known and vendor-proprietary
network protocols for remote management, I/O connectivity and general net-
working.

This hardware and software design allows for rich connectivity (two embed-
ded webservers, on-board Java HMI, extensions, integration with “cloud” back-
ends, interconnection with mobile applications over TCP) and relatively high
security standards (SSL, SSH, OpenVPN, firewall) offered out-of-the-box.

Post-exploitation and Persistence Techniques Against PLC 257

Software: A key advantage of WAGO PFC200 Series controller for secu-
rity research is the access to the privileged user and unrestricted access to
the kernel space. A typical identification string of WAGO PFC200 is as fol-
lows: Linux PFC200-450B5E 4.9.115-rt93-w02.03.00 02+2 #2 PREEMPT RT
armv7l GNU/Linux.

The target architecture is ARMv7. The key modifications to the Linux 4.9
kernel are provided by the real-time kernel patchset [51] (Preempt RT). In partic-
ular, it extends the mainline kernel with additional preemption models, changes
the task scheduling and priority policies. This turns the PFC200 system into a
real-time OS (RTOS).

2.2 Firmware Availability

A significant advantage of WAGO controllers from a research perspective is
the public availability of the Board Support Package (BSP) for its firmware
[43]. In embedded systems, BSP is a common way to provide the developers
with essential tools to cross-compile the firmware for a given hardware platform
[28,31].

While there are many closed-source components (such as, system daemons
and runtime software), the BSP contains a root file system, a compiler toolchain
for ARM instruction set, hardware-specific drivers, kernel modules, configura-
tion utilities and documentation. A native customization utility also allows to
include the components and routines which facilitate the dynamic analysis of
the firmware, such as tracing and debugging tools. The build process consists of
the following chain:

– PTXdist, a build system for creating Embedded Linux distributions
– Pengutronix build environment, optimized for PFC controllers
– OSELAS toolchain for ARM cross-compilation
– Other utilities and components to build the firmware image
– WAGO rule-sets and configuration scenarios for CODESYS runtime

As compared to firmware analysis routine for ICS products from other major
vendors, such as Rockwell Automation Allen-Bradley [16] or Siemens SIMATIC
[17,18], the availability of BSP for WAGO PFC200 significantly extends the
opportunity for the analysis of exploitation context.

Generic Runtime System: CODESYS (Controller Development System) [35] is
widely adopted by ICS device vendors as a generic, portable third-party runtime
software component responsible for control program execution [42]. In addition
to the actual execution environment on field devices, CODESYS includes its own
IDE (Integrated Development Environment) to construct IEC61131 compatible
control logic applications. Control programs use proprietary binary format pro-
duced by a built-in compiler. CODESYS also ships with multiple emulation tools
and supports a broad set of extensions which can be called from the control
project as external libraries [23,35].

258 A. Bytes and J. Zhou

Numerous variations of CODESYS runtime are reportedly being used in
at least 20% of PLCs worldwide [19]. The device directory list includes more
than 360 devices from Hitachi, Advantech, Schneider Automation, ABB, Bosch
Rexroth, Owen, Berghof Automation [19,42]. Typically, ICS vendors use it as
a white-label platform for their own-branded IDE and device firmware. This
implies an extensive amount of customization with additional software compo-
nents to be introduced in the end products.

Adoption in WAGO PLC: The WAGO PFC200 firmware embeds the CODESYS
runtime for control program deployment and execution on top of its real-time
operating system (RTOS) and a customized Linux kernel [44].

The newest generation of CODESYS-based runtime, named WAGO
e!RUNTIME, supports the latest generation of WAGO PFC200 Series con-
trollers. The documentation clearly specifies that this runtime system is based
on the original CODESYS v3, with the extended functionality introduced to
it by WAGO [37]. In addition to the conventional CODESYS IDE, PFC100
and PFC200 controllers can be programmed and configured with WAGO
e!COCKPIT - the desktop software also provided by WAGO, which is CODESYS
v3 compatible and potentially can be used to work with non-WAGO controllers
which have the non-customized revision of v3 runtime system in their firmware.

Compatibility Mode: The above mentioned PFC100 and PFC200 series of WAGO
controllers can be switched to using a previous generation of the WAGO runtime,
WAGO-I/O-SYSTEM 750. The documentation states that this system is based
on CODESYS v2.3 and is incompatible with the newer IDE [37]. For WAGO-
I/O-SYSTEM 750 runtime, an older development from WAGO should be used,
named WAGO-IO-PRO. The latter has significantly lower memory and compu-
tational power requirements and is also used with low-end, non-ARM controller
series [37,39].

2.3 Vendor-Specific Components

To support and tweak the runtime WAGO system includes a set of additional
configuration interfaces and remote controller management tools. These also
allow for physical process visualization, native integration of remote back-ends,
and recently introduced “cloud” IoT connectivity [41,45,46].

One of the key toolsets, “WAGO CBM”, provides a Command-Line Interface
(CLI) which is capable for essential hardware and network configuration on the
controller.

An embedded Human Machine Interface (HMI) system, “WebVisu”, can
execute Java applets, downloaded to the controller by the IDE to allow the
developers to build dynamic HMI screens straight from the control application
programming environment and expose them as web services on the PLC.

A separate embedded web server on the PLC runs WAGO Web-Based Man-
agement System (WBM) - a configuration and remote control wrapper built on
top of the CBM toolset mentioned earlier.

Post-exploitation and Persistence Techniques Against PLC 259

Such a wide variety of custom pre-installed components motivate us to per-
form research on how to find opportunities for post-exploitation of the PLC
and how the persistent payload can be hidden among these services to evade
detection.

3 Threat Model

For the exploitation cycle analysis, we consider a threat model which is described
below.

A remote attacker has a generic exploit in possession which utilises a previ-
ously unknown or unpatched vulnerability of the controller. However, prelimi-
nary knowledge about the particular deployed system and the physical process
is limited. The threat actor obtains access to the system through one of the
remotely exposed interfaces and seeks for long-term stealthy persistence in the
system which would allow gathering a sufficient set of operational information
to proceed with a targeted attack against the physical process.

4 Methodology

Objectives: A threat actor who has established the one-time unauthorized access
to the system is motivated to ensure the long-term stealthy presence of the
malicious payload on the PLC. This allows for passive observation on the system
and its state changes, fingerprinting of the deployed configuration and ensuring
the remote access in future.

Techniques: A common way to support these attack objectives at the PLC in
the operational state is to place a persistent backdoor into one of its software
components. In this section, we provide an overview of the attack cycle and
system components which can perform invocation of the malicious payload and
are suitable for placement of the backdoor executable.

4.1 Obtaining the Remote Access

At the time of writing, the most recent firmware release for PFC200 revision is
FW16. This version introduced several of patches for critical security vulnerabil-
ities. Supporting each other in a chain, these vulnerabilities facilitate a remote
attacker to gain remote unauthorized access to the controller. We analyze mul-
tiple vulnerability chains below to provide an overview of unauthorized access
scenarios.

Vulnerabilities in Management Interfaces: In [47], an exposed Web-Based Man-
agement (WBM) component demonstrates a serious authentication flaw which
can be exploited to reduce the password trial entropy and obtain access to the
configuration interface. A related authentication bypass [40] was also demon-
strated in the older revision of the firmware (FW10) through the CODESYS
remote control component exposed via TCP port.

260 A. Bytes and J. Zhou

Authentication Flaws: Similarly, in [52], a vulnerable encryption mechanism
caused user credentials leakage in packets sent between the WAGO e!Cockpit
IDE and the PLC runtime. Due to the hard-coded encryption key, it was possi-
ble to derive login credentials for any user and perform the unauthorised access
to the controller. Another attack vector against the PFC200 update mecha-
nism from the operator workstation [53], allows burning the incorrect version
of WAGO update package (WUP) with false metadata in order to downgrade
the firmware revision, which has known unpatched vulnerabilities for further
access bypass. Previous, older implementations of the WBM component and its
companion visualisation application, WebVisu, have also been proven to have
authentication bypass flaws [29,38] in older firmware revisions.

Code Execution via File Uploads: The above can be chained with [54] for arbi-
trary code execution through package upload to the controller. The packaging
system of the PFC200 through ipk archives provides no integrity checks on
its content and is passed to opkg activation utility which executes the injected
payload with superuser privileges.

Vulnerable Extension Packages: The newly added extension for Cloud Connec-
tivity functionality of WAGO PFC200 was exploited in [48,56,57]. A manipu-
lated remote firmware update command string is interpreted on the controller
site and passed to the CBM utility without validation. As the former runs with
superuser privileges, this results in a high-privileged remote code execution.

Exploitation of Network Services: A direct exploitation of the privileged services
is one of the most dangerous attack vectors for the remote attacker. In [58–62],
the “I/O-Check” service which implements the WAGO service protocol and is
reachable through TCP port 6626 of the PFC200 controller allowed for a heap
buffer overflow with a potential code execution. The above-mentioned service
protocol provides the capability to read and write data to the EEPROM of the
controller, which can lead to the controlled memory corruption. Notably, this
vulnerable behaviour does not require any authentication and can be invoked by
an anonymous client.

In an unpatched system, a vulnerability chain similar to the scenarios
described above can provide an attacker with an unauthorised access to the
affected PFC200 system. Once the one-time access is established, a more spe-
cific knowledge of the system is required to perform post-exploitation operations
and prepare the attack against the physical process.

4.2 Privilege Escalation Techniques

Access Control System: The access control in WAGO PFC200 implements cus-
tomized, vendor-built procedures which apply in multiple contexts of the con-
troller configuration invoked by CBM and WBM utilities. As mentioned in the
documentation, user management in the custom access control system is isolated
from system user groups for security reasons [36]. In practice, this means that

Post-exploitation and Persistence Techniques Against PLC 261

the services which run CLI and Web configuration applications run themselves
with root privileges and perform the access control validation on the application
layer. This design bypasses more robust access control mechanisms which are
provided by the Linux kernel, replacing it with vendor-added validation logic.
Since the impact of potential vulnerabilities in CBM and WBM is no longer
mitigated by system user isolation, this builds up a major privilege escalation
vector.

Vulnerabilities in Privileged Services: The controller also runs a set of high-
privileged system services which are not always reachable through the network.
However, there are known scenarios in which such services process input files
which can be tampered with by unprivileged user. Successful exploitation of file
processing vulnerability in one of the privileged services bypasses the vendor-
built access control gives an extensive opportunity for privilege escalation into
a superuser. Thus, in [49,50], a vulnerable “WAGO IO-Check” privileged ser-
vice can be exploited through a low privilege user-writable cache file in the
controller filesystem. The cache file parser does not fully sanitize the retrieved
arguments and allows for command injection with root privileges. Similarly, in
[50], it demonstrated that the privileged process could also deliver the payload
from fields in the tampered cache into sprintf() call without validation, result-
ing in a stack buffer overflow and command execution in superuser context. This
introduces another vector for code execution and privilege escalation on the con-
troller.

4.3 Gathering System Information

Logging: By default, the PFC200 controller is configured with multiple logging
services. A wide range of debug information in PFC200 is populated into log files
in different locations. The data retrieved from log files can be used in a post-
exploitation stage to determine the controller runtime state, network events,
date and time patterns of operator assistance and firmware updates. Types of
information and log file locations are summarized in Table 1.

Runtime Configuration: The CODESYS runtime on the controller writes its
state information into multiple configuration files on the controller filesystem.
From the [SysFileMap] of the eRUNTIME.cfg configuration file located under
the home path of the codesys root user, a list of useful state file mappings
can be determined. From Project.xml, it is possible to identify the state of
configured modules of the control program project, initialized names and values
of local and global variables. The timestamps contained in ProjectCfg.txt
allow to identify when the latest configuration update for the control program
was performed.

Thus, the PlcLogic path under codesys root u hosts multiple status files
related to the currently uploaded control program.

Current mapping of the hardware indicators on the front panel of the con-
troller is written to /tmp/led.xml and /var/www/wbm/led.xml.

262 A. Bytes and J. Zhou

More information about the exposed management interfaces of the controller,
mode of authentication, MODBUS and serial port initialization can be obtained
at /etc/rts3s.cfg.

The configuration of the embedded webserver, embedded into the con-
troller runtime, can be found at CODESYSControl.cfg,CmpWSServer.cfg,/etc/
webserver conf.xml.

In [55], the abuse of the concurrent process pool limitation set by these
configuration files was demonstrated, leading to a denial of service attack against
the controller management interface.

Table 1. Logged information of PFC200

Useful information Location

booted runtime mode /var/run/runtime

runtime init log /tmp/runtime state.log

hardware port
mapping

/var/run/ifstate

Per-thread trace log:
OPC UA, MODBUS
events

/var/log/runtime

WAGO events and
diagnostic information

/var/log/wago/wagolog.log

Booted firmware
revision

/etc/REVISIONS

Firmware update log /log/fwupdate.log

latest executed
privileged commands

/var/log/sudo.log

WAGO CBM calls,
firewall rules and state
transitions

/var/log/messages

PLC boot events /home/check-system/events.log

Analysis of the Control Program: The control logic, compiled by the WAGO
e!Cockpit IDE can be retrieved from PlcLogic/Application/Application.app
binary in the codesys root user home path in the controller. Alternatively,
in the older firmware, the binary is deployed as DEFAULT.PRG to the home
path of codesys root on the controller. If such option is enabled, the IDE can
include the full source code of the control program which can be retrieved from
source.dat binary file in the same path.

If the source file is lacking due to the project deployment configuration, an
analysis of the compiled program binary can be done based on the techniques
and file layout described in [19]. Re-construction of the control flow allows for
context-aware post-exploitation payload generation.

Post-exploitation and Persistence Techniques Against PLC 263

Visualisation Applet Extraction: The PFC200 supports embedded rendering of
visualisation applets, assembled and deployed to the controller by a CODESYS-
based IDE. Extraction of webvisu.jar is possible from the home path of
codesys user. Further decompilation and analysis of this applet give additional
information about the control components and prioritized metrics, performed on
the physical process.

4.4 Persistence

One of the primary objectives for the malicious code, deployed into the PLC is
persistence - an ability to re-execute the payload in the affected system regard-
less of possible reboots, control switches to and from other PLCs by the fault-
tolerance logic, planned and unexpected power cycles.

To support this operation, the malicious payload performs a set of modifi-
cations to the selected components system. A number of system components in
PFC200 provide an opportunity to establish execution persistence.

Aiming to the long-term, passive presence of a deployed payload, modification
of default but vendor-specific components of the PLC firmware places lower
detection risk as compared to generic Linux persistence techniques.

Injection to CBM Modules: WAGO CBM is a vendor-added set of command-line
interface (CLI) utilities which play a key role in the controller setup, monitoring,
management of its hardware and the state of CODESYS runtime. These contain
a set of scripts which obey the custom access permission system [44]. Many of
these utilities are not only meant to be manually invoked by the operator but
provide a call interface for other software on the controller.

Table 2 lists some of the frequently invoked CBM scripts with the loca-
tion path related to /etc/config-tools/. The systematic invocation of high-
privileged CBM scripts makes them a reliable target for payload injection and
system persistence.

Table 2. Frequently invoked WAGO CBM scripts

Utility name Trigger condition

cbm-script-modules/* Multiple: configuration protocol

events/* Multiple: power cycle and interface up/down

start reboot Power cycle

firmware restore PLC boot and firmware update

Web Components: The PFC200 controller runs two groups of web applications
via separate embedded web servers. Running as root, the /usr/sbin/webserver

264 A. Bytes and J. Zhou

is responsible for serving web components of the pure CODESYS distribu-
tion (including WebVisu visualisation applets). The /usr/sbin/lighttpd web-
server with /usr/bin/php-cgi interpreter is running as www user and serves
the WAGO WBM remote management utility. The deployed configuration of
lighttpd also turns it into a reverse proxy, which redirects its certain routes to
the CODESYS server.

This can be observed by inspecting /etc/webserver conf.xml, redirect
wbm.conf, and host configurations under /etc/lighttpd/.

The important property which makes these web components attractive for
persistence hook execution is extensive non-traditional privileges of the www
user. With a sudoers record, a list of additional commands is granted to it. These
include powerful actions like hardware devices access, firmware replacement and
service configuration.

To achieve the payload persistence though the ability of its remote invoca-
tion from WBM, /var/www/wbm/page elements, /var/www/wbm/fs utils are
suitable injection points for a malicious payload hook. To ensure that a given
component can be accessed from WBM with an authenticated request, a refer-
ence can be checked against a permission rules file wbm/paperm.inc.php.

Process Migration Candidates: Once the superuser privileges are gained, an effi-
cient option would be to host the persistent payload stealthily among the running
processes.

A reason behind this method is an additional detection countermeasure effect.
While these processes will be likely common for every PFC200 series controller
which runs in a given mode of operation (CODESYS 2.5 and 3 have significant
difference and are supported by PFC200 as separate modes), a generic Linux
rootkit detection tool would likely not be able to attest the integrity of these
binaries.

A good candidate for this is the codesys3 process itself. In a typical config-
uration, it spawns 36 named threads for different jobs of its execution cycle. In
particular, this includes I\O operations, MODBUS and networking, visualization
thread, cycle scheduling, webserver threads, load monitoring and other system-
atic tasks. Many of these threads happen to be dormant, judging by consumed
CPU time as their functionality or target network interface is always enabled.
However, even in this case, the same number of named threads is still spawned
by the runtime.

For a stealthy backdoor on the controller, this makes the codesys3 process
a right candidate for process migration.

Another potential target could be the custom vendor-built oms.d service
which is responsible for handling the hardware button events in the controller
and triggers call-backs for power on, soft and factory reset actions with root
privileges.

The downside of this method is the unavailability of debugging and function
hooking tools in the typical firmware build configuration. However, the board

Post-exploitation and Persistence Techniques Against PLC 265

support package [43] provides rules to include these utilities to the firmware
distribution for debugging purposes.

Generic Techniques: In addition to the targeted techniques which lever-
age vendor-specific components in PFC200, the persistence opportunities are
extended by a number of generic assets present in the firmware. These tech-
niques are widely used by Linux malware [9] to obtain persistence in desktop
platforms. Despite being very limited in available kernel modules and user-space
utilities, the real-time operating system (RTOS) of WAGO PFC200 embeds a
Linux kernel and multiple generic system services. This makes such techniques
applicable for persistence purposes on the PLC.

Crontab Records: PFC200 actively uses Cron daemon for purposes of auxiliary
system operations. If Cron daemon is available in the system, it is often possible
to achieve persistence by adding a record to a given user’s crontab [9] with access
privileges of this user.

To reduce the risk of detection, an attacker can append the malicious pay-
load to one of known script invocation records or forge the process name with
one of the default cron jobs, preserving same invocation frequency to reflect in
system logs. A suitable candidate for this in WAGO PFC200 can be the default
crontab record for logrotate service, which is systematically called to perform
the management of multiple system and event logs on the controller filesystem.

Terminal Sessions: One of the conventional persistence techniques in Linux
systems is backdooring the terminal session initialization file to invoke additional
commands when the user initiates the session [9].

For the purposes of local and remote in-network configuration, CLI capabili-
ties are provided by PFC200 out-of-the-box. By default, pre-configured users of
the system are also enabled to initiate Bash terminal sessions. When such session
is opened, typically through the built-in Dropbear SSH server or serial interface,
multiple configuration files are invoked. In particular, the following scripts are
part of the terminal session invocation chain:

– /etc/wago-screen-prompt.sh
– /etc/profile.passwd
– /etc/config-tools/get user info

Altering these scripts give an additional opportunity to invoke the backdoor
when a session is opened for a given user.

5 Attack Scenarios

In this section, we provide two examples of attack chains which leverage the
post-exploitation and persistent techniques proposed in Sect. 4.

266 A. Bytes and J. Zhou

Example 1. A WAGO PFC200 controller runs firmware revision 03.01.07(13)
which contains unpatched vulnerabilities known to the attacker. A remote
attacker accesses the WBM service through the exposed TCP port and uses
the authentication flaw [47] to derive login credentials (Fig. 1). The attacker
crafts a malicious ipk package and achieves its execution in the system using
the remote code execution flaw [54], resulting in privilege escalation to the supe-
ruser. Using the same vulnerability, the attacker uploads a crafted backdoor,
compiled for ARMv7 instruction set [5] to the persistent partition on the PLC
(Fig. 2). During the post-exploitation, the attacker analyses the logfiles located at
var/log/wago/wagolog.log, and /var/log/messages. She observes that sys-
tematic maintenance is done on the controller, through command-line sessions
over the serial interface. To achieve the persistence of the malicious backdoor, the
attacker adds an additional record to /etc/wago-screen-prompt.sh to invoke
the previously uploaded binary every time the operator logins (Fig. 3). The pay-
load potentially preserves its dormant state until the second stage of the attack
is activated, affecting the physical process of the plant. In the system logs and
historian server data, the actions placed by the malicious implant will conform
timestamps of legitimate operator actions.

Fig. 1. E1 Stage I: Authentication bypass

Post-exploitation and Persistence Techniques Against PLC 267

Fig. 2. E1 Stage II: Code execution

Example 2. A WAGO PFC200 controller runs firmware revision 03.01.07(13)
which contains unpatched vulnerabilities known to the attacker. The attacker
exploits a buffer overflow flaw [59] in WAGO service protocol reachable through
TCP port 6626 on the controller. This results in arbitrary code execution with
superuser privileges. The attacker crafts a malicious executable and writes it
into the persistent partition on the controller. To secure the re-execution of
the payload, an attacker appends the malicious executable invocation hook to
the /etc/config-tools/events/networking/update config event rule. This
results in persistence on the system after power cycle of the PLC or its network
interfaces re-configuration.

6 Discussion

We have to note that the research is significantly facilitated in the case of
CODESYS runtime by having direct access to the device filesystem through
a number of control interfaces and protocols. The ability to have shell access to
the PLC and process monitoring utilities in the embedded OS plays an important
role to understand the architecture.

268 A. Bytes and J. Zhou

Fig. 3. E1 Stage III: Post-exploitation

Defence and Detection: The objective of a persistent backdoor placed on the
affected PLC is to minimize detection risk in a long-term perspective. The
assumed detection mechanisms can be categorised in the following categories:

– Generic Linux rootkit detection utilities
– Network activity anomaly detection
– System behaviour analysis
– Manual in-system investigation

In relation to the techniques described in Sect. 4, the customization to spe-
cific PLC firmware components is assumed as an advantage against detection
by generic detection algorithms. Use of a generic Linux rootkit detection soft-
ware would likely not be able to verify the integrity of modified vendor-specific
utilities.

Assumed that the attack payload is in a dormant state but persists in the
PLC system long-term, the in-network behaviour analysis mechanisms similar to
[13] and [2] will not apply as there is no immediate deviation from the historical
data or change of physical process state.

Applicability: In this work, we have studied the methodology in relation to
RTLinux-based WAGO PLCs, which introduces vendor-specific system services
to manage the CODESYS runtime. A similar approach is potentially helpful

Post-exploitation and Persistence Techniques Against PLC 269

for attack cycle research in other ICS products, which are built on top of the
variations of CODESYS runtime. This includes more than 360 devices from
Hitachi, Advantech, Schneider Automation, ABB, Bosch Rexroth and other ven-
dors [19,42].

7 Related Work

From analysis of the major security ICS incidents [7,22,63], a key difference
from traditional IT systems can be observed in the crucial importance of a post-
exploitation chain for a successful attack. This motivates us to specifically focus
on the post-exploitation stage in this work, to research its practical implication
against PLCs.

Similarly, multiple works on the security of PLCs and ICS field devices [3,
10,14,20,33,34] focus on the attacks which could enable remote unauthorised
access. In [27], authors survey the hardware components used in most common
field devices. This provides a view on the share of ARM platforms among other
hardware platforms in ICS at the time of writing. Since then, the growth of
WAGO PFC200 on the market further altered this proportion.

A wider view on the internals of the CODESYS runtime used in WAGO
PFC200 is given in [23]. In [1], WAGO 750-8202 controllers are used as a test
target for the proposed I/O-aware rootkit to facilitate a stealthy attack against
the physical process.

Extensive research is done with a focus on the security of the control code,
executed by PLCs [6,8,11,24–26,30,32,64]. The security design challenges for
PLC and other field devices were studied in [4,21].

To achieve the persistence of a malicious payload, Govil et al. demonstrate the
PLC “Logic Bombs” [12]. Written in Ladder Logic or other PLC programming
language, compiled and deployed, e.g. to CODESYS runtime, such code is hard
to be detected in the controller operation. The trigger condition of such an
implant can be constructed as a pre-defined set of physical process events, which
pass the control to the malicious payload. In [9], a study is done on the effective
persistence techniques used by real-world Linux malware samples.

From the defence perspective, Hsio et al. [13] have proposed an ICS security
monitoring solution to reveal anomalies which can be applied to the detection
of malicious rootkit activity on the PLC. In [2], authors propose to detect the
attacks against the physical process using noise analysis of the field devices.

A significant contribution was made recently in the domain of reverse engi-
neering of WAGO PFC200 CODESYS-compiled binaries. In [19], authors pro-
pose a structured way of reverse-engineering the CODESYS-compiled binaries.
The proposed open-source framework is aware of the proprietary binary format
and canto reconstruct the Control Flow Graph from the given binaries auto-
matically. In the post-exploitation context, a fully automated, targeted attack
generation was demonstrated against WAGO PLCs.

270 A. Bytes and J. Zhou

8 Conclusion

In this work, we proposed a set of post-exploitation and persistence techniques
for WAGO PFC200 Series PLC and crafted two examples of attack scenarios. We
further analyzed detection and defence options, taking into account the internal
system components utilized by the persistence chain.

We highlighted that in the ICS domain, in addition to the initial vulnerabili-
ties which provide a way to penetrate the system, the targeted post-exploitation
techniques play a crucial role in the attack to succeed. Apart from attacks against
PLCs, this is also relevant to a wide range of other ICS devices.

Acknowledgement. This work was partly supported by the SUTD start-up research
grant SRG-ISTD-2017-124.

References

1. Abbasi, A., Hashemi, M.: Ghost in the PLC: designing an undetectable pro-
grammable logic controller rootkit via pin control attack, pp. 1–35. Black
Hat, November 2016. https://research.utwente.nl/en/publications/ghost-in-the-
plc-designing-an-undetectable-programmable-logic-con

2. Ahmed, C.M., et al.: Noiseprint: attack detection using sensor and process noise
fingerprint in cyber physical systems. In: Proceedings of the 2018 on Asia Con-
ference on Computer and Communications Security. ASIACCS 2018, pp. 483–497.
Association for Computing Machinery, New York (2018). https://doi.org/10.1145/
3196494.3196532

3. Bytes, A., Adepu, S., Zhou, J.: Towards semantic sensitive feature profiling of
IoT devices. IEEE Internet Things J., (2019). https://doi.org/10.1109/JIOT.2019.
2903739

4. Cardenas, A., Amin, S., Sastry, S.: Secure control: towards survivable cyber-
physical systems. In: 2008 28th International Conference on Distributed Comput-
ing Systems Workshops. ICDCS 2008, pp. 495–500, June 2008

5. Casey, P., Topor, M., Hennessy, E., Alrabaee, S., Aloqaily, M., Boukerche, A.:
Applied comparative evaluation of the metasploit evasion module. In: 2019 IEEE
Symposium on Computers and Communications (ISCC), pp. 1–6 (2019)

6. Castellanos, J.H., Ochoa, M., Zhou, J.: Finding dependencies between cyber-
physical domains for security testing of industrial control systems. ACM, December
2018. https://doi.org/10.1145/3274694.3274745

7. Cobb, P.: German steel mill meltdown: rising stakes in the internet
of things (2015). https://securityintelligence.com/german-steel-mill-meltdown-
rising-stakes-in-the-internet-of-things/

8. Costin, A., Zaddach, J.: Embedded Devices Security and Firmware Reverse
Engineering. ResearchGate, July 2013. https://www.researchgate.net/publication/
259642928 Embedded Devices Security and Firmware Reverse Engineering

9. Cozzi, E., Graziano, M., Fratantonio, Y., Balzarotti, D.: Understanding Linux mal-
ware. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 161–175 (2018)

10. Dragos: CRASHOVERRIDE: Analyzing the Malware that Attacks Power Grids—
Dragos, April 2019. https://dragos.com/resource/crashoverride-analyzing-the-
malware-that-attacks-power-grids. Accessed 14 Apr 2019

https://research.utwente.nl/en/publications/ghost-in-the-plc-designing-an-undetectable-programmable-logic-con
https://research.utwente.nl/en/publications/ghost-in-the-plc-designing-an-undetectable-programmable-logic-con
https://doi.org/10.1145/3196494.3196532
https://doi.org/10.1145/3196494.3196532
https://doi.org/10.1109/JIOT.2019.2903739
https://doi.org/10.1109/JIOT.2019.2903739
https://doi.org/10.1145/3274694.3274745
https://securityintelligence.com/german-steel-mill-meltdown-rising-stakes-in-the-internet-of-things/
https://securityintelligence.com/german-steel-mill-meltdown-rising-stakes-in-the-internet-of-things/
https://www.researchgate.net/publication/259642928_Embedded_Devices_Security_and_Firmware_Reverse_Engineering
https://www.researchgate.net/publication/259642928_Embedded_Devices_Security_and_Firmware_Reverse_Engineering
https://dragos.com/resource/crashoverride-analyzing-the-malware-that-attacks-power-grids
https://dragos.com/resource/crashoverride-analyzing-the-malware-that-attacks-power-grids

Post-exploitation and Persistence Techniques Against PLC 271

11. Garcia, L.A., Brasser, F., Cintuglu, M.H., Sadeghi, A.R., Zonouz, S.A.: Hey,
my malware knows physics! Attacking PLCs with physical model aware rootkit.
ResearchGate, January 2017. https://doi.org/10.14722/ndss.2017.23313

12. Govil, N., Agrawal, A., Tippenhauer, N.O.: On ladder logic bombs in industrial
control systems. In: Katsikas, S.K., et al. (eds.) CyberICPS/SECPRE -2017. LNCS,
vol. 10683, pp. 110–126. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-72817-9 8

13. Hsiao, S.W., Sun, Y.S., Chen, M.C., Zhang, H.: Cross-level behavioral analysis
for robust early intrusion detection. In: 2010 IEEE International Conference on
Intelligence and Security Informatics (ISI), pp. 95–100. IEEE (2010)

14. Huang, T., Zhou, J., Bytes, A.: ATG: an attack traffic generation tool for security
testing of in-vehicle CAN bus. ResearchGate, pp. 1–6, August 2018. https://doi.
org/10.1145/3230833.3230843

15. IEC 61131–3 industrial control programming standard. https://www.isa.org/
standards-publications/isa-publications/intech-magazine/2012/october

16. Firmware from Rockwell Automation - Software Download, April 2019. https://
www.rockwellautomation.com/rockwellsoftware/support/firmware.page. Accessed
15 Apr 2019

17. Operating System Update for SIMATIC S7–1200 CPU Firmware V3 - ID:
64789124 - Industry Support Siemens, April 2019. https://support.industry.
siemens.com/cs/document/64789124/operating-system-update-for-simatic-s7-
1200-cpu-firmware-v3?dti=0&pnid=13615&lc=en-WW. Accessed 15 Apr 2019

18. Support Packages for the hardware catalog in the TIA Portal (HSP) - ID: 72341852
- Industry Support Siemens, April 2019. https://support.industry.siemens.com/
cs/document/72341852/support-packages-for-the-hardware-catalog-in-the-tia-
portal-(hsp)?dti=0&pnid=13615&lc=en-US. Accessed 15 Apr 2019

19. Keliris, A., Maniatakos, M.: ICSREF: a framework for automated reverse engineer-
ing of industrial control systems binaries. In: The Network and Distributed System
Security Symposium (NDSS) (2019)

20. Krotofil, M., Gollmann, D.: Industrial control systems security: what is happen-
ing?, pp. 664–669. ResearchGate, July 2013. https://doi.org/10.1109/INDIN.2013.
6622963

21. Lee, E.A.: cyber-physical systems: design challenges. Technical report UCB/EECS-
2008-8, EECS Department, University of California, Berkeley, January 2008.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html

22. Lipovsky, R.: New wave of cyber attacks against Ukrainian power industry, January
2016. http://www.welivesecurity.com/2016/01/11

23. Lufkin, D.: Programmable Logic Controllers: A Practical Approach to IEC 61131–3
using CoDeSys (12 2015)

24. McLaughlin, S.: On dynamic malware payloads aimed at programmable logic
controllers, p. 10. ResearchGate, August 2011. https://www.researchgate.net/
publication/262355936 On dynamic malware payloads aimed at programmable
logic controllers

25. McLaughlin, S., McDaniel, P.: SABOT: specification-based payload generation
for Programmable Logic Controllers, pp. 439–449. ResearchGate, October 2012.
https://doi.org/10.1145/2382196.2382244

26. McLaughlin, S., Zonouz, S., Pohly, D., McDaniel, P.: A trusted safety verifier for
process controller code. ResearchGate, January 2014. https://doi.org/10.14722/
ndss.2014.23043

https://doi.org/10.14722/ndss.2017.23313
https://doi.org/10.1007/978-3-319-72817-9_8
https://doi.org/10.1007/978-3-319-72817-9_8
https://doi.org/10.1145/3230833.3230843
https://doi.org/10.1145/3230833.3230843
https://www.isa.org/standards-publications/isa-publications/intech-magazine/2012/october
https://www.isa.org/standards-publications/isa-publications/intech-magazine/2012/october
https://www.rockwellautomation.com/rockwellsoftware/support/firmware.page
https://www.rockwellautomation.com/rockwellsoftware/support/firmware.page
https://support.industry.siemens.com/cs/document/64789124/operating-system-update-for-simatic-s7-1200-cpu-firmware-v3?dti=0&pnid=13615&lc=en-WW
https://support.industry.siemens.com/cs/document/64789124/operating-system-update-for-simatic-s7-1200-cpu-firmware-v3?dti=0&pnid=13615&lc=en-WW
https://support.industry.siemens.com/cs/document/64789124/operating-system-update-for-simatic-s7-1200-cpu-firmware-v3?dti=0&pnid=13615&lc=en-WW
https://support.industry.siemens.com/cs/document/72341852/support-packages-for-the-hardware-catalog-in-the-tia-portal-(hsp)?dti=0&pnid=13615&lc=en-US
https://support.industry.siemens.com/cs/document/72341852/support-packages-for-the-hardware-catalog-in-the-tia-portal-(hsp)?dti=0&pnid=13615&lc=en-US
https://support.industry.siemens.com/cs/document/72341852/support-packages-for-the-hardware-catalog-in-the-tia-portal-(hsp)?dti=0&pnid=13615&lc=en-US
https://doi.org/10.1109/INDIN.2013.6622963
https://doi.org/10.1109/INDIN.2013.6622963
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html
http://www.welivesecurity.com/2016/01/11
https://www.researchgate.net/publication/262355936_On_dynamic_malware_payloads_aimed_at_programmable_logic_controllers
https://www.researchgate.net/publication/262355936_On_dynamic_malware_payloads_aimed_at_programmable_logic_controllers
https://www.researchgate.net/publication/262355936_On_dynamic_malware_payloads_aimed_at_programmable_logic_controllers
https://doi.org/10.1145/2382196.2382244
https://doi.org/10.14722/ndss.2014.23043
https://doi.org/10.14722/ndss.2014.23043

272 A. Bytes and J. Zhou

27. Mulder, J., Schwartz, M., Berg, M., Van Houten, J., Urrea, J.M., Pease, A.: Analy-
sis of field devices used in industrial control systems. In: Butts, J., Shenoi, S. (eds.)
ICCIP 2012. IAICT, vol. 390, pp. 45–57. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-35764-0 4

28. Noergaard, T.: Embedded Systems Architecture: A Comprehensive Guide for
Engineers and Programmers. Newnes (2013). https://books.google.com.sg/books/
about/Embedded Systems Architecture.html?id=piGhuAAACAAJ&source=kp
book description&redir esc=y

29. Online: Wago-i/o-system codesys 2.3 webvisu password extraction (2019).
https://packetstormsecurity.com/files/127438/WAGO-I-O-SYSTEM-CODESYS-
2.3-WebVisu-Password-Extraction.html

30. Siddiqi, A., Tippenhauer, N.O., Mashima, D., Chen, B.: On practical threat sce-
nario testing in an electric power ICS testbed. In: Proceedings of the Cyber-
Physical System Security Workshop (CPSS), co-located with ASIACCS, June 2018.
https://doi.org/10.1145/3198458.3198461

31. Toolchains - eLinux.org, April 2019. https://elinux.org/Toolchains. Accessed 15
Apr 2019

32. Giraldo, J., Urbina, D., Cardenas, A.A., Tippenhauer, N.O.: Hide and seek: an
architecture for improving attack-visibility in industrial control systems. In: Deng,
R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol.
11464, pp. 175–195. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21568-2 9

33. Urias, V., Van Leeuwen, B., Richardson, B.: Supervisory Command and Data
Acquisition (SCADA) system cyber security analysis using a live, virtual, and con-
structive (LVC) testbed. In: 2012 Military Communications Conference - MILCOM
2012, pp. 1–8 (2012)

34. Valentine, S., Farkas, C.: Software security: application-level vulnerabilities in
SCADA systems, pp. 498–499. ResearchGate, August 2011. https://doi.org/10.
1109/IRI.2011.6009603

35. Codesys. The system. https://www.codesys.com/the-system.html
36. Security for controller pfc100/pfc200 v 1.1.0, 5 December 2018. https://www.wago.

com/medias/mxxxxxxxx-CyberSecurity-0en.pdf
37. Wago controllers brochure. https://www.wago.com/infomaterial/pdf/60386168.

pdf
38. Wago ethernet web-based management authentication bypass vulnerability.

https://ics-cert.us-cert.gov/advisories/ICSA-16-357-02
39. (May 2014). https://www.wago.com/infomaterial/pdf/51236524.pdf. Accessed 15

Apr 2019
40. Vulnerabilities in WAGO PFC 200 Series (2017). https://sec-consult.com/en/blog/

advisories/wago-pfc-200-series-critical-codesys-vulnerabilities/index.html
41. (Apr 2019). https://www.wago.com/sg/download/public/IoT-Brosch%25C3

%25BCre/AU-NA-DE-DE-FP-180827 001%2BIoT-Box%2BBrochure web.pdf.
Accessed 15 Apr 2019

42. Codesys device directory, April 2019. https://devices.codesys.com/device-
directory.html. Accessed 15 Apr 2019

43. WAGO Global—swreg linux c, April 2019. https://www.wago.com/global/d/
swreg linux c. Accessed 15 Apr 2019

44. WAGO—Controllers with Embedded Linux, April 2019. https://www.wago.com/
sg/embedded-linux. Accessed 15 Apr 2019

https://doi.org/10.1007/978-3-642-35764-0_4
https://doi.org/10.1007/978-3-642-35764-0_4
https://books.google.com.sg/books/about/Embedded_Systems_Architecture.html?id=piGhuAAACAAJ&source=kp_book_description&redir_esc=y
https://books.google.com.sg/books/about/Embedded_Systems_Architecture.html?id=piGhuAAACAAJ&source=kp_book_description&redir_esc=y
https://books.google.com.sg/books/about/Embedded_Systems_Architecture.html?id=piGhuAAACAAJ&source=kp_book_description&redir_esc=y
https://packetstormsecurity.com/files/127438/WAGO-I-O-SYSTEM-CODESYS-2.3-WebVisu-Password-Extraction.html
https://packetstormsecurity.com/files/127438/WAGO-I-O-SYSTEM-CODESYS-2.3-WebVisu-Password-Extraction.html
https://doi.org/10.1145/3198458.3198461
https://elinux.org/Toolchains
https://doi.org/10.1007/978-3-030-21568-2_9
https://doi.org/10.1007/978-3-030-21568-2_9
https://doi.org/10.1109/IRI.2011.6009603
https://doi.org/10.1109/IRI.2011.6009603
https://www.codesys.com/the-system.html
https://www.wago.com/medias/mxxxxxxxx-CyberSecurity-0en.pdf
https://www.wago.com/medias/mxxxxxxxx-CyberSecurity-0en.pdf
https://www.wago.com/infomaterial/pdf/60386168.pdf
https://www.wago.com/infomaterial/pdf/60386168.pdf
https://ics-cert.us-cert.gov/advisories/ICSA-16-357-02
https://www.wago.com/infomaterial/pdf/51236524.pdf
https://sec-consult.com/en/blog/advisories/wago-pfc-200-series-critical-codesys-vulnerabilities/index.html
https://sec-consult.com/en/blog/advisories/wago-pfc-200-series-critical-codesys-vulnerabilities/index.html
https://www.wago.com/sg/download/public/IoT-Brosch%25C3%25BCre/AU-NA-DE-DE-FP-180827_001%2BIoT-Box%2BBrochure_web.pdf
https://www.wago.com/sg/download/public/IoT-Brosch%25C3%25BCre/AU-NA-DE-DE-FP-180827_001%2BIoT-Box%2BBrochure_web.pdf
https://devices.codesys.com/device-directory.html
https://devices.codesys.com/device-directory.html
https://www.wago.com/global/d/swreg_linux_c
https://www.wago.com/global/d/swreg_linux_c
https://www.wago.com/sg/embedded-linux
https://www.wago.com/sg/embedded-linux

Post-exploitation and Persistence Techniques Against PLC 273

45. WAGO—IoT PLC Controllers with MQTT Protocol for Industry 4.0, April 2019.
https://www.wago.com/sg/automation-technology/plc-mqtt-iot. Accessed 15 Apr
2019

46. WAGO—WebVisu, April 2019. https://www.wago.com/global/automation-
technology/discover-software/webvisu. Accessed 15 Apr 2019

47. Talos Vulnerability Report 2019–0923 (2020). https://talosintelligence.com/
vulnerability reports/TALOS-2019-0923

48. Talos Vulnerability Report 2019–0950 (2020). https://talosintelligence.com/
vulnerability reports/TALOS-2019-0950

49. Talos Vulnerability Report 2019–0961 (2020). https://talosintelligence.com/
vulnerability reports/TALOS-2019-0961

50. Talos Vulnerability Report 2019–0962 (2020). https://talosintelligence.com/
vulnerability reports/TALOS-2019-0962

51. Technical basics: Preempt RT (2020). https://wiki.linuxfoundation.org/realtime/
documentation/technical basics/start

52. WAGO e!Cockpit authentication hard-coded encryption key vulnerability (2020).
https://talosintelligence.com/vulnerability reports/TALOS-2019-0898

53. WAGO e!COCKPIT Firmware Downgrade Vulnerability (2020). https://
talosintelligence.com/vulnerability reports/TALOS-2019-0951

54. WAGO PFC 200 Web-Based Management (WBM) Code Execution Vulnerability
(2020). https://talosintelligence.com/vulnerability reports/TALOS-2020-1010

55. WAGO PFC100/200 Web-Based Management (WBM) FastCGI configuration
insufficient resource pool denial of service (2020). https://talosintelligence.com/
vulnerability reports/TALOS-2019-0939

56. WAGO PFC200 Cloud Connectivity Multiple Command Injection Vulnerabilities
(2020). https://talosintelligence.com/vulnerability reports/TALOS-2019-0948

57. WAGO PFC200 Cloud Connectivity Remote Code Execution Vulnerability (2020).
https://talosintelligence.com/vulnerability reports/TALOS-2019-0954

58. WAGO PFC200 iocheckd service “I/O-Check” getcouplerdetails remote code exe-
cution vulnerability (2020). https://talosintelligence.com/vulnerability reports/
TALOS-2019-0864

59. WAGO PFC200 iocheckd service “I/O-Check” ReadPCBManuNum remote
code execution vulnerability (2020). https://talosintelligence.com/vulnerability
reports/TALOS-2019-0873

60. WAGO PFC200 iocheckd service “I/O-Check” ReadPCBManuNum remote
code execution vulnerability (2020). https://talosintelligence.com/vulnerability
reports/TALOS-2019-0874

61. WAGO PFC200 iocheckd service “I/O-Check” ReadPCBManuNum remote
code execution vulnerability (2020). https://talosintelligence.com/vulnerability
reports/TALOS-2019-0863

62. WAGO PFC200 iocheckd service “I/O-Check” ReadPSN remote code execution
vulnerability (2020). https://talosintelligence.com/vulnerability reports/TALOS-
2019-0871

63. Weinberger, S.: Computer security: is this the start of cyberwarfare? Nature 174,
142–145 (2011)

64. Zonouz, S., Rrushi, J., McLaughlin, S.: Detecting industrial control malware using
automated PLC code analytics. IEEE Secur. Priv. Mag. 12(6), 40–47 (2014).
https://doi.org/10.1109/MSP.2014.113

https://www.wago.com/sg/automation-technology/plc-mqtt-iot
https://www.wago.com/global/automation-technology/discover-software/webvisu
https://www.wago.com/global/automation-technology/discover-software/webvisu
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0923
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0923
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0950
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0950
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0961
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0961
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0962
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0962
https://wiki.linuxfoundation.org/realtime/documentation/technical_basics/start
https://wiki.linuxfoundation.org/realtime/documentation/technical_basics/start
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0898
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0951
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0951
https://talosintelligence.com/vulnerability_reports/TALOS-2020-1010
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0939
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0939
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0948
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0954
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0864
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0864
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0873
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0873
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0874
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0874
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0863
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0863
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0871
https://talosintelligence.com/vulnerability_reports/TALOS-2019-0871
https://doi.org/10.1109/MSP.2014.113

Investigation of Cyber Attacks
on a Water Distribution System

Sridhar Adepu1(B), Venkata Reddy Palleti2, Gyanendra Mishra1,
and Aditya Mathur1

1 iTrust Centre for Research in Cyber Security,
Singapore University of Technology and Design, Singapore, Singapore
adepu sridhar@mymail.sutd.edu.sg, aditya mathur@sutd.edu.sg

2 Indian Institute of Petroleum and Energy-Visakhapatnam, Sabbavaram, India
venkat palleti.che@iipe.ac.in

Abstract. A Cyber Physical System (CPS) consists of cyber compo-
nents for computation and communication, and physical components
such as sensors and actuators for process control. These components
are networked and interact in a feedback loop. CPS are found in critical
infrastructure such as water distribution, power grid, and mass trans-
portation. Often these systems are vulnerable to attacks as the cyber
components are potential targets for attackers. In this work, we report a
study to investigate the impact of cyber attacks on a water distribution
(WADI) system. Attacks were designed to meet attacker objectives and
launched on WADI using a specially designed tool. This tool enables the
launch of single and multi-point attacks where the latter are designed to
specifically hide one or more attacks. The outcome of the experiments led
to a better understanding of attack propagation and behavior of WADI
in response to the attacks as well as to the design of an attack detection
mechanism for water distribution system.

Keywords: Critical infrastructure protection · Industrial control
system security · Cyber attacks · SCADA security · Water distribution
systems · Cyber physical systems

1 Introduction

Cyber Physical Systems (CPSs) are found in critical infrastructure such as water
distribution, energy and transportation. CPS consists of a physical process con-
trolled by an Industrial Control System (ICS). In a CPS, a set of sensors measure
process variables such as temperature, flow rate, level etc., from the physical pro-
cess and send these values to the controllers through communication channels.
Based on these values the controller makes decisions and initiates actions on the
physical process.

The increase in successful cyber attacks on ICS [15], and many unsuccess-
ful attempts [15], points to the importance of research in the design of ICS

c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 274–291, 2020.
https://doi.org/10.1007/978-3-030-61638-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_16&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_16

Investigation of Cyber Attacks on a Water Distribution System 275

that is resilient to cyber attacks. Attacks are a result of exploitation of one or
more vulnerabilities in an ICS. Such vulnerabilities might be due to the lack of
access control in the system [6], software vulnerabilities in the Programmable
Logic Controllers (PLCs), Supervisory Control and Data Acquisition (SCADA)
software systems, and weaknesses in the communication channels.

Motivation: Several attacks on water distribution systems have been reported
in recent years such as the Kemuri Water Company (KWC)1 attack, in 2016.
The attack resulted in the exposure of personal information of the utility’s 2.5
million customers. Reports from ICS-CERT [15] indicate that an understanding
of these attacks against critical infrastructure is important for rapid investigation
and evaluation of detection methods. The work presented in this paper is a
step towards realizing a safe and secure water distribution infrastructure. The
following questions are addressed through experimentation on WADI: RQ1: How
do cyber attacks impact a water distribution system? RQ2: How does knowledge
of the response of a water distribution system to one or more cyber attacks help
in designing an attack detection mechanism?

Contributions: In the context of a specific water distribution plant: (a) A tool
to launch attacks and (b) design and implementation of attacks on a water
distribution system.

Organization: The remainder of this paper is structured as follows. Background
on vulnerability assessment in ICS is explained in Sect. 2. Section 3 presents the
context of this work and includes architecture of WADI, vulnerability assessment,
and how attacks can be launched on WADI. Section 4 describes the attack design
and investigation on WADI. Response to the research questions and lessons
learned are discussed in Sect. 5. Related work is presented in Sect. 6. Section 7
offers a summary of this work and future work.

2 Vulnerability Assessment in ICS

Vulnerability assessment on ICSs follows four main steps2: 1) identify list of
assets and resources in the system, 2) assign importance to the resources, 3) iden-
tify security vulnerabilities in each asset and resource, 4) propose mitigation for
the most serious vulnerabilities. In order to know all the vulnerabilities in ICS,
one must know the associated paths within ICS communications. In [19] authors
explained different paths through which an attacker can enter into the system
using various devices, communications paths, and methods that can be used
for communicating with process system components. An attacker who wishes to
attack ICS has to go through the following steps: 1) gain access to the ICS net-
work 2) perform reconnaissance and understanding of the process 3) gain control
of ICSs.
1 http://www.securityweek.com/attackers-alter-water-treatment-systems-utility-

hack-report.
2 https://www.secureworks.com/blog/vulnerability-assessments-versus-penetration-

tests.

http://www.securityweek.com/attackers-alter-water-treatment-systems-utility-hack-report
http://www.securityweek.com/attackers-alter-water-treatment-systems-utility-hack-report
https://www.secureworks.com/blog/vulnerability-assessments-versus-penetration-tests
https://www.secureworks.com/blog/vulnerability-assessments-versus-penetration-tests

276 S. Adepu et al.

Some of the industries conducted the vulnerability assessments in indus-
trial systems and published the results. Following are the summary of reports
from Kasper-sky and Honywell. Kasper-sky [22] summarized the findings of it’s
research on ICS vulnerabilities as follows: Over the years, 19 vulnerabilities in
2010 increased to 189 vulnerabilities in 2015. Even though the vulnerabilities are
fixed by the product manufactures, the ICS management not upgrading soon.
At least 5% of the vulnerabilities published by ICS-CERT were not fully fixed.
Sometimes the vulnerable component was removed from the market and vendor
support may not be available anymore. Honeywell XL Web II Controller Vulner-
abilities [31] are found by an independent researcher. An attacker may use these
to expose a password by accessing a specific URL. The XL Web II becomes an
entry point into the network.

Fig. 1. Three stages in WADI are shown. Solid arrows indicate flow of water and
sequence of processes. S: set of sensors; A: set of actuators. LT-Level Transmitter,
AIT-Analyzer Indication Transmitter, FIT-Flow Indication Transmitter, PIT-Pressure
Indication Transmitter, LS-Level Switch. Actuators: P-Pump, MV-Motorized valve,
MCV-Modulating Control Valve, SV-Solenoid Valve. Tag name of the instrument is
indicated as XXX YYY ZZZ, where XXX, YYY and ZZZ represent stage number,
instrument type and instrument index, respectively.

3 Context: WADI Testbed

This study centers around a Water Distribution (WADI) testbed3. This section
covers the testbed architecture and the communication channels.

3.1 Architecture of the WADI

Water distribution (WADI) plant [7] is an operational testbed supplying 10 US
gallons/min of filtered water. It represents a scaled-down version of a large water
3 https://itrust.sutd.edu.sg/research/testbeds/water-distribution-wadi/.

https://itrust.sutd.edu.sg/research/testbeds/water-distribution-wadi/

Investigation of Cyber Attacks on a Water Distribution System 277

distribution network in a city. WADI consists of three stages (Fig. 1), namely pri-
mary grid (P1), secondary grid (P2), and return water grid (P3). Primary grid
consists of two raw water (RW) tanks of 2500 liters each. These tanks are fed
by three incoming sources including Public Utility Board (PUB), return water
grid, and from a water treatment plant. A level sensor (1 LT 001) is installed
in the primary grid to monitor the levels in the RW tanks. Water quality ana-
lyzers are installed to measure pH, turbidity, conductivity and residual chlorine.
Secondary grid consists of two Elevated Reservoir (ER) tanks, consumer tanks,
and contamination sampling stations. RW tanks supply water to the ER tanks
using raw water pump (1 P 003) which is installed in the primary grid. Two
level sensors, 2 LT 001 and 2 LT 002 are installed in ER tanks to measure water
levels. Further, water from ER tanks flows into the consumer tank based on the
preset demand pattern.

Two water quality monitoring stations are installed at consumer tanks. One
station is at the immediate downstream of reservoir and another is before the
consumer tanks (P2A and P2B stations in Fig. 1). These stations ensure water
quality before it is sent to the consumer tanks. Once a consumer tank is filled,
a level switch installed raises an alarm and water from the tank drains into
the return water grid. To recycle water, return water grid pumps water to the
primary grid. Water quality analyzers are installed in return water grid to check
water quality before pumping it into the primary grid.

Three PLCs are installed to control each stage of WADI. These PLCs use
CompactRIO as RIO (Remote Input Output) from National Instruments. In
addition to the PLC in the secondary grid, two Schneider Electric Remote Ter-
minal Units (RTUs), which use SCADAPack, are installed to measure water
quality. There is a total of 103 sensors and actuators operating to measure water
levels, water quality, flow rates, pressure, and status of motorized valves and
pumps. There are three levels of networks in WADI. Level 0 corresponds to
the communication between PLC’s and sensors over Modbus RS485. Level 1

Table 1. Assets Table

Asset Version/Model used Location

SCADA System SCADA System from
Labview is used for the
application

SCADA System computer
running on Windows 7

PLCs NI PLC is used in WADI to
control various operations

Control and network panel
and works based on the
firmware and control logic
program. Communicates
with NI-PSP and Modbus
TCP/IP communication in
few cases

Network Switches Moxa ES5 301 Network Control panel

Access points Wifi access points Network Control panel

278 S. Adepu et al.

corresponds to communications using the National Instrument’s publish sub-
scribe protocol (NI-PSP) while the SCADAPack RTUs communicate through
Modbus TCP. PLCs at Stage-1 and Stage-3 are connected to analyzers capa-
ble of communicating through Modbus Serial. Level 2 consists of communication
between the HMI and the plant control network. The interconnection of HMI,
workstations and PLCs allows remote monitoring.

List of Assets and Resources in the System: The list of assets are mentioned in
the Table 1. As mentioned in Sect. 2, this list of assets in Table 1 are useful for
vulnerability assessment in WADI.

WADI supports various different communication channels like Modbus
between RTUs and SCADA, NI-PSP between various controllers and RTUs.
To develop an attack tool all communication channels were studied and investi-
gated to identify any vulnerabilities. It is observed that a lot of them were lacked
any form of access control.

3.2 Attacking WADI

As mentioned in Sect. 3.1, WADI uses a multi layered network comprising of
different protocols at different levels and between different devices. For this paper
the focus is on the National Instruments Publish Subscribe Protocol (NI-PSP).
NI-PSP is the most used protocol in the entire WADI network and provides
access to all data on the network. We developed an attack tool named NiSploit4

that uses custom LabVIEW Virtual Instruments (VIs) that communicate with
shared variables present on different PLCs across the plant using NI-PSP. Earlier
exploration into various other mechanisms gave limited access to the variables
[6].

Shared variables are used by a controller and SCADA to expose data over the
network via a shared variable engine. These variables reside in controllers and
the SCADA, have publish-subscribe architecture, and are shared using the NI-
PSP. Network shared variables publish data through the shared variable engine.
The shared variable engine resides on a SCADA and manages variables using the
NI-PSP protocol. In the publish subscribe model the publishers do not publish to
clients; instead they send data to the shared variable engine after every update
and the subscribers subscribe to the shared variable engine for changes.

LabVIEW programs, or VIs, are drag and drop programs. We have written
custom VIs for the purpose of attacking the National Instruments Publish Sub-
scribe Protocol Variables. Several different custom VIs have been created, each
one for attacking different types of cluster variables used in WADI. The Python
module is the front end of the tool and an attacker needs to be concerned only
with the use of this module. The module uses ActiveX [25] to control the Lab-
VIEW application from python code. It connects to ActiveX controls using the
Pywin32 library. ActiveX allows the user to run programs and specific functions
that the program has exposed via it’s ActiveX server. LabVIEW exposes a lot

4 https://gitlab.com/gyani/NiSploit.

https://gitlab.com/gyani/NiSploit

Investigation of Cyber Attacks on a Water Distribution System 279

of different functionality including the ability to run VIs, set values for different
controls and to fetch values of interest. The custom VIs along with the python
module allow for creating powerful and complex controlled attacks. The attacks
designed and executed in the following Section (Sect. 4) are realized through the
NI-PSP attack tool called NiSploit.

4 Attack Investigation on WADI

This section presents a detailed case study which includes attack design, exe-
cution of attacks and results. We assumed an attacker [30] has an ability to
enter into the system through vulnerabilities and social engineering. Further, we
considered an insider attacker profile in which attacker has the process, commu-
nication knowledge, and access to the communication channels.

4.1 Attack Design

Attacks considered in this paper are launched on primary grid (P1) and sec-
ondary grid (P2) of WADI (Sect. 3.1). Stage-1 contains a tank whose level is
measured by 1 LT 001. The stage-2 tank is responsible for water received by the
consumer and its level is measured by 2 LT 002. Valve 1 MV 001 is responsible
for the flow of water from RW tanks to the drain. Valve 1 MV 002 is responsible
for the inflow of water to the RW tank. Valve 2 MV 003 is responsible for inflow
of water to the ER tank. Water flows from the RW tank to the ER tank. In
this study, an attacker is an insider, who has an access to the system: process,
communication knowledge, and access to the communication channels.

Cyber attacks on WADI were derived from a CPS-specific generalized
attacker model [4]. This model contains the attacker’s intents (set I), and the
attack domain (D). For example, in a water distribution system attacker’s intent
could be water pump damage or overflow the water from a tank. An attack model
for a CPS is represented as a six-tuple (M,G,D,P, So, Se). An attack procedure
M is designed by the attacker to realize an attack on a finite set of attack points
P in a CPS when this CPS is in state So, and possibly removed when the CPS
is in state Se. This attacker model is useful in generating a variety of attacks.
Attack procedure M contains the attack vectors which include how an attacker
enters into the system and manipulate different communication channels. The
procedure M essentially the use of the NiSploit tool as described in Sect. 3.2.
Goal G is equal to Intent I. Domain D is derived from the CPS domain [4]. For
each CPS, domain is different based on the kind of physical process and com-
ponents involved. Here, P is a set of sensors, actuators or any other potential
attack points. So is the starting state of the system at the time of attack launch
starting and Se is the end state of the system when the attacker ends an attack.
When Se and I is identical then it shows that attacker reached his intent or
attacker made an impact on the system.

Impact of attacks can be viewed along three [4] dimensions: (Cm, Pr, Pe),
where Cm represents the impact on components of the system, Pr is the impact

280 S. Adepu et al.

on properties such as water pH, ORP (Oxidation Reduction Potential), con-
ductivity and hardness, Pe is performance of the overall plant - e.g.. if a water
distribution system supplies 10 million gallons per day, attacker intent may be
to reduce it to 5-million gallons per day. The attacks are on 1 LT 001, 2 LT 002,
1 MV 002, 2 MV 003, and 1 MV 001 which form the Cm dimension of the attack
domain. For the dimensions considered in this paper, refer to Table 2. The attacks
also affect the flow of water that falls along the Pe dimension. Pr is an empty
set as the attacks do not affect the property dimension. Based on the above
description, six attacks were designed and launched one at a time (refer to the
Table 2 for summary of all attacks).

As we discussed in the attacker model, we derived the attacks from an intent
of the attack. Based on the existing realistic attacks and incidents reported in
the literature on water distribution systems, we considered the following intents
in our experiments: 1) stop water supply to consumers, 2) damage water pumps
in water distribution system, 3) overflow the water tanks, 4) wastage of water by

Table 2. Summary of attacks launched on WADI

Attack No Attack Sensor/Actuator Intent Start state(So) End state(Se)

Single point attacks

1 LIT - 1 LT 001 Block flow
of water to
ER tank

48% 40%

2 LIT - 2 LT 002 Stop flow of
water to
consumers
and damage
pump

80%

3 MV - 1 MV 002 No flow of
water to the
consumers

Open Close

4 MV - 1 MV 001 Block flow of
water to raw
water tank

Open Close

Multi point attacks

5 1 AIT 002, 2 MV 003 Supply con-
taminated
water to the
elevator
tank

1 AIT 002 is
0.5 and
2 MV003 is
Close

1 AIT 002 is 6
and 2 MV003
is Open

6 2 MCV 101, 2 MCV 201 Intermittent
supply to
consumer
tank

Both Close Open both
valves at 50%

Investigation of Cyber Attacks on a Water Distribution System 281

leaking the pipe, 5) burst the water pipes, 6) manipulate the dosing mechanisms
in a water distribution systems.

One might attempt to realize only one or more than one intent (mentioned
in Table 2) at a time. There are a couple of steps in going through to realize an
intent: 1) understand the physical process, 2) based on the intent, identify the
set of sensors or actuators to manipulate, and 3) control process to reach the
intent. Initially, we understand the WADI process behavior and identify the set
of sensors and actuators to be attacked in order to reach the intent. We divided
the attacks into two categories based on the number of sensors and actuators
attacked. A single-point attack is when only one sensor or actuator is attacked.
When the attack occurs on more than one sensor or actuator, it is classified as a
multi-point attack. In Table 2, four single point and two multi point attacks are
listed.

4.2 Execution of Attacks

We used the NiSpliot (see Sect. 3.2) to launch the attacks listed in Table 2. The
remaining subsection offers details of each attack.

Attack 1: Attack on 1 LT 001. This is an attack on level indica-
tor 1 LT 001. This level indicator measures the level in the raw water
tank (stage 1). The related shared variable is stored at the path P1-
CompactRIO/HMI HOST/HMI 1 LT 001 and contains measurements for the
water level in raw water tank 1. The shared variable cluster can be broken fur-
ther into the following variables.

– PV - Process value measures water level.
– SIM PV - Process value used in simulation Mode.
– SIMULATION - This variable is a boolean, sets whether the PV is to be used in

the simulation PV or the actual PV.
– SAHH - Set point Alarm High High, the HH alarm default is 90.
– SAH - Set point Alarm High, the High (H) alarm set point default is 70.
– SAL - Set point Alarm Low, the Low (L) alarm set point default is 60.
– SALL - Set point Alarm Low Lo (LL), the Low Low alarm set point default is 40.
– S EMPTY - Set point for the state in which the tank is considered empty, default

is 35.
– A EMPTY - Alarm indicating S EMPTY is reached.
– AHH - Alarm indicating SAHH is reached
– AH - Alarm indicating SAH has been reached.
– AL - Alarm indicating SAL is reached.
– ALL - Alarm indicating SALL is reached.

In this attack the attacker sets SIMULATION to True and also sets Simula-
tion PV to 40 while setting S EMPTY to 40 using a script written using the NiS-
ploit library. Thus, the state of WADI moves from So={SIMULATION=False, S
EMPTY=35, 2 MV 004=Open} to Se={SIMULATION=True, S EMPTY=40,
2 MV 004=Close}.

282 S. Adepu et al.

Fig. 2. Attack1: Water level readings
of three stages. Attacker brings the
level of 1 LT 001 to 40%.

Fig. 3. Attack 1: Flow to the consumer
tanks and consumers are cut-off from
water supply from little over 3500 s
onwards.

Attack 2: Attack on 2 LT 002. This is an attack on level indicator 2 LT 002.
This level indicator measures ER tank-2 level in process 2. The related shared
variable is stored at the path P2-CompactRIO/HMI HOST/HMI 2 LT 002 and
contains measurements for the water level in ER tank-2. The shared variable
cluster can be broken further into smaller variables as described in Sect. 4.2. In
this attack the attacker sets PV to 80 by running a continuous loop. The state
of valves and pumps remains unchanged, i.e. open and running, but the level of
water falls in both the Raw Water Tank and the ER.

Attack 3: Attack on Motorized Valve 1 MV 002. This attack is
on motorized valve 1 MV 002. This motorized valve is an actuator in pro-
cess 1, the related shared variable is stored at the path P1-CompactRIO/
HMI HOST/HMI 1 MV 002 and contains the current status of the respective
motorized valve governing the flow of water to the drain.

The shared variable cluster can be broken further into smaller variables. The
state of the system moves from So={1 MV 002=Close, 2 MV 004=Open} to
Se={1 MV 002=Open, 2 MV 004=Close}.

– Auto - If set to True, the motorized valve works according to the programmed
logic.

– Open Command - open the valve
– Close Command - close the valve
– Reset - reset valve state to default state
– Available - Check if the Valve is available for control.
– Fully Open - Boolean indicating whether the Valve is fully open.
– Fully Close - Boolean indicating whether the valve is fully closed.
– Failed to Open - When the open command is sent but the valve could not be

opened.
– Failed to Close - When the close command is sent and the valve could not be

closed.
– Status - The current status of the valve.
– State - The current state of the valve, i.e. open or closed.

The attacker sets Auto to False and force opens the drain valve.

Investigation of Cyber Attacks on a Water Distribution System 283

Attack 4: Attack on Motorized Valve 1 MV 001. This attack is on
motorized valve 1 MV 001. This motorized valve is an actuator in process 1.
The related shared variable is stored at the path P1-CompactRIO/HMI HOST/
HMI 1 MV 001 and contains the current status of the motorized valve governing
the inflow of water to raw water tanks. The attacker sets Auto to False and sends
the Close command. The state of WADI moves from So={1 MV 001=Open,
2 MV 004=Open} to Se={1 MV 001=Close, 2 MV 004=Close}.

In the previous sections, we described the single point of attacks. It is also
possible an attacker can target multi points at a time, within the single stage
and/or across multiple stages. However, in this study we investigated attacks
on maximum two points. As shown in the Table 2, two multi-point attacks are
launched on the system.

In attack 5, the attacker intention is to supply contaminated water to the ele-
vator tank. In order to realize this intent attacker targets multistage multi point
attack across the processes P1 and P2. In this attack, attacker targets 1 AIT 002
in process1 and 2 MV002 in process2. In attack 6, the attacker intention is to
cause intermittent supply to consumer tank. This is an single stage multi point
attack, where attacker targeted two actuators (2 MCV 101, 2 MCV 201) in pro-
cess P2. Initial and final states of the system during attack 5 and attack 6 are
mentioned in Table 2.

4.3 Results

The results show how an attacker is able to reach his intent. This kind of study is
helpful to perform the impact analysis of the system. The remaining subsection
presents the results for the attacks designed in the Table 2.

Attack 1: Attack on 1 LT 001. From Fig. 2 it can be seen that the attack
begins slightly after 1000 s when the 1 LT 001 is set to simulation mode with
SIM PV at 40. Figure 2 shows the attack on 1 LT 001 in which the attacker
alters the reading from 48% to 40% of the RW tank level which corresponds to a
LowLow (LL) state. Since the raw water tank is in LL state the controller sends
a command to open the PUB inlet valve, or the return water grid pump, to fill
the tank. Further, due to LL state of the RW tank there is no flow of water from
primary to the secondary grid. It is to be noted that at the time of attack launch
on RW tank, the secondary grid is at 50% of the maximum tank level. Therefore,
the secondary grid supplies water to the consumer tanks until it reaches to 35%
of the maximum tank level which is considered an “Empty” state. The secondary
grid tank level (2 LT 002) behavior is shown in Fig. 2. Figure 3 indicates that no
water flows to the consumers when the secondary grid tank is in Empty state.
Further, the RW tank overflows as there is no flow from the primary grid to the
secondary grid though there is continuous supply of water to RW tank through
the PUB valve.

284 S. Adepu et al.

Fig. 4. Attack 1: Actual level of the RW tank as it overflows.

It is possible to estimate from first principles the water level in a tank. Mass
balance equations, in continuous and discrete forms, for the change in water level
h for a given input Qin and output Qout, flow rate, as follows,

A
dh

dt
= Qin − Qout, (1)

h(t + 1) = h(t) +
Δt(Qin(t) − Qout(t))

A
, (2)

where A is the cross sectional area of the tank. Assuming linear dynamics, Qin

and Qout are either 0 (when valve closes) or constant (when valve opens). We
use Eq. 2 to estimate the tank level when a sensor is under attack. In this attack,
the attacker sets the value of 1 LT 001 to 40% which corresponds to LL state.
Consequently the outlet flow rate Qout is zero. Hence, Eq. 2 reduces to the fol-
lowing

h(t + 1) = h(t) +
Δt(Qin(t))

A
. (3)

Using Eq. 3 we estimate the actual level of the tank. As shown in Fig. 4 the tank
overflows when the attacker sets a constant value to 40%.

Attack 2: Attack on 2 LT 002. In Fig. 5 it can be seen that the attack begins
after 1000 s when 2 LT 002 is set to 80% of the tank level which corresponds
to High (H) state. This leads to no flow of water from the RW tank to ER
tank. However, the ER tank continuously supplies water to the consumers. After
sufficient time has elapsed, the actual ER tank level moves to Empty state as
seen in Fig. 6. It can be observed that in this situation the booster pump will be
running continuously assuming that ER level is at H. Consequently the booster
pump will run dry and may be damaged unless a physical protection, e.g..,
a temperature cut off, are installed. Further, supply to the consumers stops
completely.

Investigation of Cyber Attacks on a Water Distribution System 285

Fig. 5. Attack 2: Water level readings
of tanks. Figure shows launch of attack
on 2 LT 002 at ≈ 1000 s

Fig. 6. Attack 2: Actual water level of
ER tank (2 LT 002) goes into Empty
state.

Attack 3: Attack on Motorized Valve 1 MV 002. In Fig. 7 it can be seen
that the attack begins after 1000 s when valves 1 MV 002 and 1 MV 003 (also
called drain valves) are forced open. When these valves are open, water starts
draining from the RW tank. Also, water is supplied to the ER tank when its level
reaches the L state. After some time water level in the RW tank reaches to LL
state and consequently PUB inlet valve, or return water grid pump, turns on to
fill the tank. Note that water filling (through the PUB valve or return water grid)
and draining (through 1 MV 002 and 1 MV 003) happens simultaneously. This
leads to the water level in the tank at 40% or below depending on the inlet and
drain water flow rate. Figure 8 shows that water level falls below 40% gradually
leading to no water supply from RW tank to the ER tank. Consequently water
supply will be stopped to the consumer tanks (shown in Fig. 9) when the level
in the ER tank falls to 35% of the maximum tank level.

Attack 4: Attack on Motorized Valve 1 MV 001. As in Fig. 10 the attack
begins after 1000 s when 1 MV 001 valve is forced shut. This leads to no water
flow into the RW tank. Figure 11 shows that RW tank level is kept at 40% as
a result of the attack. Hence, there is no flow from the RW to the ER tank.
However, the ER tank continuously supplies water to the consumers. It can be
observed from Fig. 11 that ER tank level reaches Empty state after sometime
and there is no water flowing to the consumers.

4.4 Multi Point Attacks

Attack 5. In this attack, attacker launches multi point attack on 1 AIT 001
and 2 MV 003 as shown in Fig. 12 and 13 respectively. Initially, the attacker
manipulates 1 AIT 002 value from 0.5 to 6 which is above threshold at around
400 s. And, at around 500 s the attacker intentionally tries to open the inlet
valve (2 MV 003) of elevated reservoir tank. As a result water from the raw

286 S. Adepu et al.

Fig. 7. Attack 3: Attack on valves 1 MV 002 and 1 MV 003.

Fig. 8. Attack 3: Water tank levels
of 1 LT 001 reduces gradually. At ≈
2250 s 2 LT 002 reaches to Empty state
(35% of tank level).

Fig. 9. Attack 3: Water flow to the con-
sumers.

Fig. 10. Attack 4: Attack on valve
1 MV 001 at ≈ 1250 s

Fig. 11. Attack 4: Water tank levels
when 1 MV 001 is attacked.

water tank will be pumped to the elevated reservoir tank. Therefore, the attacker
successfully achieves his goal by launching attack on 1 AIT 002 and 2 MV 003.
Similarly, attack 6 is launched on the system to achieve his goals based on the
attacker intentions.

Investigation of Cyber Attacks on a Water Distribution System 287

Fig. 12. Attack 5: Attack on 1 AIT 001 Fig. 13. Attack 5: Attack on 2 MV 003

5 Discussion

Next we summarize what we learned during this investigation and provide
answers to research questions stated earlier.

Value of a Testbed: Researchers have studied [8,32] the attacks on water dis-
tribution systems. However, these studies have concentrated on small systems
with a few sensors and actuators, and thus are not adequate to investigate cyber
attacks on larger systems. Characterization of cyber attacks on water distri-
bution systems [32] launched in a simulated environment may not be realistic
though they do offer hints on the design of experiments reported here. The study
reported here overcomes the limitations of past studies by using a realistic water
distribution system as the testbed, namely WADI.

RQ1: How do cyber attacks impact a water distribution system?:

Section 4.3 describes how six attacks affect the water distribution process in
WADI. In summary, an attack may lead to any one or more of the following
undesirable consequences: (a) tank overflow, (b) pressure drop at the consumer
end, (c) no water at consumer end, and (d) equipment damage. In addition to
the six attacks mentioned in Sect. 4.3, several other attacks can be launched on
WADI. For example organic and inorganic contaminants may be added to water
and the chemical sensors compromised [27] so that the attack is not detected.
WADI also has a leakage simulator that can be used to launch leakage or water
theft attacks. Such attacks and their impact on WADI will be study in the future.

RQ2: How does knowing the response of a CPS to one or more cyber attacks,
help in designing an attack detection mechanism?:

Traditional attack detection is often based on network traffic monitoring.
[11] Proposed water marking schemes are based on control theory. [23] It is
well understood that cyber attacks or faults on the system affect specific sensor
readings.

288 S. Adepu et al.

Future research will focus on the detection of attacks such as those described
in Sect. 4.1. There exist several detection mechanisms in the literature. One such
mechanism is based on invariants derived from plant design. A “process invari-
ant,” or simply an invariant [3] is a mathematical relationship among “physical”
and/or “chemical” properties of the process controlled by the PLCs in a CPS.
These invariants aid in detecting such attacks. For example, attack 1 in Sect. 4.1
can be detected as follows. In this attack, attacker sets the raw water tank level
to LL state and as a result 1 MV 001 opens to fill the tank. Further, the tank
level is not rising even though the inlet valve is open and also there is no outflow
from this tank. One can write the invariant for the valve and the tank level as
follows. If the tank level is in LL and the inlet valve opens, then after sufficient
time the tank level should rise to L or H state. However, in this case the tank level
neither reaches L nor the H state. Clearly, in this case the invariant is violated
and hence the attack is detected. Therefore, these kinds of invariants are use-
ful in attack detection. Note that violation of an invariant does not necessarily
imply that there is a cyber attack; it could also be due to communication or
component failure.

6 Related Work

Attack Modeling and Analysis: The attacks designed in this work are based
on a cyber-physical attacker model [4]. Jajodia et al. [20] proposed a detailed
procedure for modeling cyber systems using attack graphs. Such graphs model
practical vulnerabilities in distributed networked systems. Chen et al. [13] have
proposed argument graphs as a means to capture the workflow in a CPS. The
graphs are intended to assess a system in the presence of an attacker. The graphs
are formed based on information in the workflow such as use case or state,
physical system topology such as network type, and an attacker model such as
an order to interrupt, power supply, physical tampering, network connection,
denial of service, etc. Typed graphs [12] are other important contributions to
the modeling of cyber attacks.

Attacks on Water Systems: The first well known attack on water supply was
Maroochy Shire [1] in 2000 in Australia. Industrial Control Systems Cyber
Response Team [15] has reported several attacks on water systems and remedial
actions to protect against these. Amin et al. [8,9] studied attacks on water canal
systems and presented attack detection methods based on control, hydrodynamic
models. However, this paper focuses on an ICS system consisting of a few sen-
sors and actuators. The formal approach [21,29] is used to analyse the security
of a water treatment system. We aim at investigating the impact of attacks on
a larger system such as WADI, which has more than 100 sensors and actuators.
Riccardo et al. [32] presented a modeling framework to characterize the cyber
physical attacks on water distribution systems. This framework consists of a few
categories of attacks and EPANET simulation models. The analysis is applied
to C-Town network to show the usage of the framework. This work is mostly

Investigation of Cyber Attacks on a Water Distribution System 289

performed in a simulation environment while the study reported here was per-
formed on an operational water distribution system [7]. This research is helpful
to understand the differences between simulation based attack investigation in
water distribution systems, real time water distribution attacks.

Attack Detection in Water Systems: Mitchel and Chen surveyed [26] intrusion
detection techniques for CPS. They presented existing works based on a clas-
sification tree. They also presented the advantages and limitations of the tech-
niques. The use of invariants for detecting attacks on CPS has been proposed and
evaluated by several researchers such as in [3,17,28]. In this work it is claimed
that the use of controlled invariant sets in detecting cyber attacks uses little
information about the controller and hence is useful for a large range of control
laws. Yuqi et al. [14] proposed an approach for learning physical invariants that
combine machine learning with ideas from mutation testing. Data driven [18,24]
approaches for attack detection is studied on a water treatment system.

Security of cyber physical systems are also studied as decision games [16].
The BATADAL [33] is a battle of the attack detection algorithms competition
in water distribution symposium. The goal of the battle was to compare the dif-
ferent detection methods to detect cyber physical attacks. The BATADAL was
conducted on a C-Town network, a real-world, medium-sized water distribution
system operated through PLCs and a SCADA. Total seven different teams par-
ticipated in the BATADAL and their effectiveness of was evaluated in terms
of time-to-detection and classification accuracy. This emphasis of dealing with
real-life infrastructure and equipment for training and research is also seen in the
development of Capture the Flag style gamification of an ICS testbed platform
[5,10].

7 Conclusions and Future Work

This paper reports an investigation into the response of an operational water
distribution plant to cyber attacks. The outcome of the investigation points to
the importance of testbeds in understanding stealthy and a varied set of attacks
and practical issues in operational water distribution plants. The case study also
indicates that an attacker will likely be able realize an intent when adequate
resources are available and the required accessibility exists. The work presented
in this paper is a step towards realizing a safe and secure critical infrastructure.
Future work includes understanding more stealthy attacks and the implementa-
tion of a prototype defence mechanism in WADI. We plan to implement some
of the attack detection mechanism mentioned in the related work section and
assess in a real time water distribution system. We are also planning to extend
similar work on power systems [2].

Acknowledgment. This work was supported in part by the National Research Foun-
dation (NRF), Prime Minister’s Office, Singapore, under its National Cybersecurity
R&D Programme (Award No. NRF2014NCR-NCR001-40, NRF2015NCR-NCR003-
001) and administered by the National Cybersecurity R&D Directorate. The WADI

290 S. Adepu et al.

testbed is built with the support from Ministry of Defense, Singapore and SUTD-MIT
International Design Centre (IDC).

References

1. Abrams, M., Weiss, J.: Malicious control system cyber security attack case study-
Maroochy Water Services. The MITRE Corporation, Australia (2008)

2. Adepu, S., Kandasamy, N.K., Mathur, A.: EPIC: an electric power testbed for
research and training in cyber physical systems security. In: Katsikas, S.K., et al.
(eds.) SECPRE/CyberICPS -2018. LNCS, vol. 11387, pp. 37–52. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-12786-2 3

3. Adepu, S., Mathur, A.: Distributed detection of single-stage multipoint cyber
attacks in a water treatment plant. In: Proceedings of the 11th ASIACCS, pp.
449–460 (2016)

4. Adepu, S., Mathur, A.: Generalized attacker and attack models for cyber physical
systems. In: 2016 IEEE 40th Annual COMPSAC, vol. 1, pp. 283–292 (2016)

5. Adepu, S., Mathur, A.: Assessing the effectiveness of attack detection at a hackfest
on industrial control systems. IEEE Trans. Sustain. Comput. (2018)

6. Adepu, S., Mishra, G., Mathur, A.: Access control in water distribution networks:
a case study. In: QRS (2017)

7. Ahmed, C.M., Palleti, V.R., Mathur, A.: WADI: a water distribution testbed for
research in the design of secure cyber physical systems. In: 3rd CysWater (2017)

8. Amin, S., Litrico, X., Sastry, S., Bayen, A.: Cyber security of water SCADA sys-
tems; Part I: analysis and experimentation of stealthy deception attacks. IEEE
Trans. Control Syst. Technol. (2013)

9. Amin, S., Litrico, X., Sastry, S., Bayen, A.: Cyber security of water SCADA sys-
tems; Part II: attack detection using enhanced hydrodynamic models. IEEE Trans.
Control Syst. Technol. (2013)

10. Antonioli, D., Ghaeini, H.R., Adepu, S., Ochoa, M., Tippenhauer, N.O.: Gamify-
ing ICS security training and research: design, implementation, and results of S3.
In: Proceedings of the 2017 Workshop on Cyber-Physical Systems Security and
PrivaCy, pp. 93–102. ACM (2017)

11. Baig, Z., Ahmad, S., Sait, S.: Detecting intrusive activity in the smart grid com-
munications infrastructure using self-organizing maps. In: 12th IEEE TrustCom,
pp. 1594–1599, July 2013

12. Bhave, A., Krogh, B., Garlan, D., Schmerl, B.: View consistency in architectures
for cyber-physical systems. In: Proceedings of the 2nd ACM/IEEE International
Conference on Cyber-Physical Systems (2011)

13. Chen, B., et al.: Go with the flow: toward workflow-oriented security assessment. In:
Proceedings of the 2013 Workshop on New Security Paradigms Workshop. NSPW
2013, pp. 65–76 (2013)

14. Chen, Y., Poskitt, C.M., Sun, J.: Learning from mutants: using code mutation to
learn and monitor invariants of a cyber-physical system. In: Proceedings of the
IEEE Symposium on Security and Privacy (S&P 2018) (2018)

15. ICS-CERT Advisories. https://ics-cert.us-cert.gov/advisories
16. Frey, S., Rashid, A., Anthonysamy, P., Pinto-Albuquerque, M., Naqvi, S.A.: The

good, the bad and the ugly: a study of security decisions in a cyber-physical systems
game. IEEE Trans. Softw. Eng. (2018)

https://doi.org/10.1007/978-3-030-12786-2_3
https://ics-cert.us-cert.gov/advisories

Investigation of Cyber Attacks on a Water Distribution System 291

17. Gamage, T., McMillin, B., Roth, T.: Enforcing information flow security properties
in cyber-physical systems: a generalized framework based on compensation. In:
IEEE 34th Annual COMPSACW, pp. 158–163 (2010)

18. Goh, J., Adepu, S., Tan, M., Lee, Z.S.: Anomaly detection in cyber physical systems
using recurrent neural networks. In: 2017 IEEE 18th International Symposium on
High Assurance Systems Engineering (HASE), pp. 140–145. IEEE (2017)

19. Homeland Security: DHS common cybersecurity vulnerabilities in ICS. https://
ics-cert.us-cert.gov/sites/default/files/recommended practices/DHS Common
Cybersecurity Vulnerabilities ICS 2010.pdf

20. Jajodia, S., Noel, S.: Advanced cyber attack modeling, analysis, and visualiza-
tion. Technical report AFRL-RI-RS-TR-2010-078. Final Technical Report, George
Mason University, March 2010

21. Kang, E., Adepu, S., Jackson, D., Mathur, A.P.: Model-based security analysis of
a water treatment system. In: In Proceedings of 2nd International Workshop on
Software Engineering for Smart Cyber-Physical Systems, May 2016

22. Kasper Sky: Industrial control systems vulnerabilities statistics. https://
kasperskycontenthub.com/securelist/files/2016/07/KL REPORT ICS Statistic
vulnerabilities.pdf

23. Kwon, C., Liu, W., Hwang, I.: Security analysis for cyber-physical systems against
stealthy deception attacks. In: ACC, pp. 3344–3349 (2013)

24. Lin, Q., Adepu, S., Verwer, S., Mathur, A.: Tabor: a graphical model-based app-
roach for anomaly detection in industrial control systems. In: Proceedings of the
2018 on Asia Conference on Computer and Communications Security, pp. 525–536.
ACM (2018)

25. Microsoft: Activex controls. https://msdn.microsoft.com/en-us/library/
aa751968(v=vs.85).aspx

26. Mitchell, R., Chen, I.R.: A survey of intrusion detection techniques for cyber-
physical systems. ACM Comput. Surv. (CSUR) 46(4), 55 (2014)

27. Palleti, V.R., Narasimhan, S., Rengaswamy, R., Teja, R., Bhallamudi, S.M.: Sensor
network design for contaminant detection and identification in water distribution
networks. Comput. Chem. Eng. 87, 246–256 (2016)

28. Palleti, V.R., Tan, Y.C., Samavedham, L.: A mechanistic fault detection and isola-
tion approach using Kalman filter to improve the security of cyber physical systems.
J. Process Control 68, 160–170 (2018)

29. Patlolla, S.S., McMillin, B., Adepu, S., Mathur, A.: An approach for formal analysis
of the security of a water treatment testbed. In: 2018 IEEE 23rd Pacific Rim
International Symposium on Dependable Computing (PRDC), pp. 115–124. IEEE
(2018)

30. Rocchetto, M., Tippenhauer, N.O.: On attacker models and profiles for cyber-
physical systems. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.)
ESORICS 2016. LNCS, vol. 9879, pp. 427–449. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45741-3 22

31. Rupp, M.: Honeywell XL web II controller vulnerabilities. https://ics-cert.us-cert.
gov/advisories/ICSA-17-033-01

32. Taormina, R., Galelli, S., Tippenhauer, N.O., Salomons, E., Ostfeld, A.: Charac-
terizing cyber-physical attacks on water distribution systems. J. Water Resour.
Plann. Manag. 143(5), 04017009 (2017)

33. Taormina, R., et al.: Battle of the attack detection algorithms: disclosing cyber
attacks on water distribution networks. J. Water Resour. Plann. Manag. 144(8),
04018048 (2018)

https://ics-cert.us-cert.gov/sites/default/files/recommended_practices/DHS_Common_Cybersecurity_Vulnerabilities_ICS_2010.pdf
https://ics-cert.us-cert.gov/sites/default/files/recommended_practices/DHS_Common_Cybersecurity_Vulnerabilities_ICS_2010.pdf
https://ics-cert.us-cert.gov/sites/default/files/recommended_practices/DHS_Common_Cybersecurity_Vulnerabilities_ICS_2010.pdf
https://kasperskycontenthub.com/securelist/files/2016/07/KL_REPORT_ICS_Statistic_vulnerabilities.pdf
https://kasperskycontenthub.com/securelist/files/2016/07/KL_REPORT_ICS_Statistic_vulnerabilities.pdf
https://kasperskycontenthub.com/securelist/files/2016/07/KL_REPORT_ICS_Statistic_vulnerabilities.pdf
https://msdn.microsoft.com/en-us/library/aa751968(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa751968(v=vs.85).aspx
https://doi.org/10.1007/978-3-319-45741-3_22
https://doi.org/10.1007/978-3-319-45741-3_22
https://ics-cert.us-cert.gov/advisories/ICSA-17-033-01
https://ics-cert.us-cert.gov/advisories/ICSA-17-033-01

Cloud S&P – Cloud Security and
Privacy

Computing Neural Networks
with Homomorphic Encryption

and Verifiable Computing

Abbass Madi, Renaud Sirdey(B), and Oana Stan

CEA, LIST, Point Courrier 172, 91191 Gif-sur-Yvette Cedex, France
{abbass.madi,renaud.sirdey,oana.stan}@cea.fr

Abstract. The widespread use of machine learning and in particular of
Artificial Neural Networks (ANN) raises multiple security and data pri-
vacy issues. Recent works propose to preserve data confidentiality during
the inference process, available as an outsourced service, using Homo-
morphic Encryption techniques. However, their setting is based on an
honest-but-curious service provider and none of them addresses the prob-
lem of result integrity. In this paper, we propose a practical framework
for privacy-preserving predictions with Homomorphic Encryption (HE)
and Verifiable Computing (VC). We propose here a partially encrypted
Neural Network in which the first layer consists of a quadratic func-
tion and its homomorphic evaluation is checked for integrity using a VC
scheme which is slight adaption of the one of Fiore et al. [13]. Inspired by
the neural network model proposed by Ryffel et al. [26] which combines
adversarial training and functional encryption for partially encrypted
machine learning, our solution can be deployed in different application
contexts and provides additional security guarantees.

We validate our work on the MNIST handwritten recognition dataset
for which we achieve high accuracy (97.54%) and decent latency for a
practical deployment (on average 3.8 s for both homomorphic evaluation
and integrity proof preparation and 0.021 s for the verification).

Keywords: Neural Networks · Homomorphic Encryption · Verifiable
Computing

1 Introduction

Despite limitations due to high communication overheads, computing costs
or expressivity, techniques for computing over encrypted data such as Fully
Homomorphic (FHE), Functional Encryption (FE) or Multi Party Computation
(MPC), to name a few, are becoming practical for a number of applications.
At the same time, Artificial Intelligence (AI) techniques and, especially, Neu-
ral Networks ones are becoming omnipresent in our connected society and have
already lead to countless practical applications impacting, for better or worse,

c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 295–317, 2020.
https://doi.org/10.1007/978-3-030-61638-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_17&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_17

296 A. Madi et al.

our daily lives. Yet, the AI applications ecosystem has so far developed with a
limited concern for user privacy.

In this context, this paper contributes to the study of how the aforemen-
tioned emerging cryptographic techniques can contribute to address AI privacy
challenges. More specifically, we address the issue of ensuring the end-to-end con-
fidentiality of some user data when they pass through a neural network operated
on some cloud server with the aim of providing classification results to an oper-
ator. We do so by means of Homomorphic Encryption, which is used to execute
the neural network on the server, associated to Verifiable Computing techniques
in order to guarantee both the confidentiality of the user data as well as the
integrity of the execution of the network with respect to threats coming from
the server. Still, this is easier said than done, and in order to cope with the var-
ious constraints coming when using these techniques we also have to open the
machine learning box and to propose a specific solution in which both the neural
net structure and the crypto techniques are co-designed in order to achieve the
desired overall system security properties.

1.1 Problem Statement and Contribution

We propose an approach to build privacy preserving neural networks, combining
a FHE cryptosystem (here the BFV scheme [12]) with the Verifiable Computa-
tion protocol from Fiore et al. [13], adapted for BFV encrypted data.

More specifically, we show how to evaluate the first layer of a neural network
on homomorphically encrypted data on a server and how the operator, which
decrypts them, can check the result validity. The operator then pursue, in the
clear domain, the network evaluation to reach a final classification.

We present here a global architecture made of these three entities: the client,
owner of some private data, the server performing the computation over the
encrypted layers of the neural network and the operator computing the remaining
layers of the neural network. This architecture allows to deploy our semi-private
evaluation of a neural network in order to ensure data privacy for clients and
also provide integrity proofs with respect to the server computations. A complete
description of the proposed architecture and an analysis of the associated security
threats are given in Sect. 3.

To achieve this we reuse the neural network model proposed in [26] in which
the first layer of the network acts as a whitener, ensuring, by means of adversar-
ial training, that the knowledge of the outputs of the first layer does not allow
to recover selected (sensitive) features of the input data while still preserving
an ability to perform good quality classification. However, as shown in Sect. 3,
the implementation of our approach targets different use cases and deployment
scenarios as the ones from [26]. Although based on different reference problems,
since the underlying cryptographic primitives we use are different (i.e. HE and
VC), our work has similar security guarantees. This work thus complements
[26] approach by providing more versatility to their network partitioning app-
roach. Also note that that the neural network design, partitioning and training

Computing Neural Networks with HE and VC 297

approaches underlying [26] is widely applicable to virtually any classification
problem.

We also provide an efficient implementation and demonstrate practical results
on the MNIST dataset [21], for the recognition of handwritten digits. Within our
approach we perform the classification of the encrypted image in less than 3.8 s
and the integrity check for the evaluation of the first layer in approx. 0.015 sec,
with an overall accuracy of 97.54% for 128 bits of security.

2 Related Work

FHE for Encrypted Machine Learning. Research on the application of
techniques for computing over encrypted data, FHE or others “competing” tech-
niques, to neural networks-related privacy issues is only at its beginning. The
first attempts at applying homomorphic encryption techniques to neural net-
works have almost all focused on the inference phase and more specifically, as
the present work does, on the problem of evaluating a public (from the point
of view of the computer doing the evaluation) network over an encrypted input
(hence producing an encrypted output). The first work of this kind is Cryp-
toNets [16] where the authors successfully evaluate an approximation of a sim-
ple 6-layer Convolutional NN able to achieve 99% success recognition on the
well-known MNIST hand-written digits database. That network was composed
only of simple Convolution, Square Activation and Mean Pool Scaling layers
with only one application of the “FHE-unfriendly” Sigmoid function at the last
layer which, in that specific case, could be dropped without affecting prediction
quality (hence the final network only had 2 nonlinear Square Activation layers
leading to a small multiplicative depth). Their implementation uses the BFV
FHE scheme [12] and achieves network evaluation timings of around 4 min on a
high-end PC. Yet, thanks to the SIMD/batching property of FV-like schemes,
one network evaluation can in fact lead to 4096 evaluations of the network done in
parallel on independent inputs (i.e. the network is evaluated once on ciphertexts
which have many “slots” and thus contain different cleartexts). So, although the
latency remains of 4 min, the authors rightfully claim their system to be able
to sustain a throughput of around 60000 digit recognitions per hour. In sub-
sequent papers, Chabanne et al. [7,9] are building approximations with small
multiplicative depth of networks with up to 6 nonlinear layers by combining
batch normalization layers with degree 2 approximations of the ReLU function
(the former allowing to stabilize the inputs of the latter in order to decrease the
sensitivity of the network to approximation errors). Through significant hand-
tuning of the learning step of their networks, they show that these can achieve
state-of-the-art prediction quality on both hand-digit (MNIST) and face recog-
nition. However their work lacks an implementation and, hence, they did not
provide FHE evaluation timings. More recently, Bourse et al. [5], have fine-
tuned the TFHE cryptosystem towards a slight generalization of BNNs (Binary
Neural Networks) called DiNNs in which the nonlinear activation function is the
sign function which they intricate with the TFHE bootstrapping procedure for

298 A. Madi et al.

more efficiency. Overall, they are able to evaluate small DiNN networks (100
neurons and only one hidden layer) in around 1.5 s resulting in a (just decent)
96% prediction accuracy on the MNIST database. This line of research has also
been pursued in [19] where the authors have fine-tuned the TFHE cryptosys-
tems for efficient evaluation of Hopfield networks and tested their approach on
a face recognition application achieving the evaluation of an encrypted network
(with 256 neurons) over an encrypted input in 0.6 secs, however for a recognition
accuracy of only 86%. This latter work is the first to attempt at both hiding the
network and its input (and, by construction, its output). Also, in [32], the authors
focus on applying FHE to hide the model of a neural network-based system in
the case of a plain input for the special case of embedding-based networks.

Other notable works on the application of homomorphic encryption tech-
niques to the private inference step of ANN include, in a non-exhaustive way,
nGraph-HE [4], nGraph-HE2 [3], LOLA [6], TAPAS [28], NED [18], Faster Cryp-
toNets [11]. As already emphasized, all the previously mentioned papers focus
only on the inference phase under the hypothesis of an honest-but-curious eval-
uation server. It should also be mentioned that the applications to ANN of other
“competing” techniques for computing over encrypted data, the main one being
Secure Multiparty Computations (MPC) also start to be investigated in their
associated communities (e.g., [2,25]).

VC for Machine Learning. As for applying the verifiable computing protocols
for the computation of Neural Networks, there are only a few recent works on
this subject.

The SafetyNets [15] is an interactive proof protocol to execute a deep neural
network on a cloud, using Interactive Proof Systems [30] to prove the correctness
of the calculated result returned by the cloud server. As such, it requires multiple
interactions and calculations with the server to complete the verification step
and it replaces the ReLu function by the function x → x2, which reduces the
neural network accuracy. Since it is impossible for the prover to prove a non-
deterministic computation (i.e. to prove the correctness of a computation while
hiding some inputs) then the verifier and the prover need to share the model.
Zaho et al. [31] propose VeriML to verify a neural network using QAP-based zk-
SNARK. The VeriML ensures both security statement (privacy and integrity)
but, it has a fairly large proof complexity O(|→a | · |→x | + |→y) where

→
a denotes the

kernel,
→
x the input and

→
y the output. The combination of the GKR protocol and

QAP (Quadratic Arithmetic Programs) scheme has been proposed by Chabanne
et al. [8]. To do this the verifying process of GKR is verified in the QAP circuit.
However; this still leads to a large computation complexity of O(|→a | · |→x | + |→y |)
(according to [22]).

In the same line of research, Keuffer et al. build [20] a Verifiable Computing
scheme, by combining other two VC schemes: a general-purpose VC (GVC) like
[17,24] and a specialized one (EVC), namely Sum-Check protocol [23]. As such,
they achieve efficient verification of complex operations as for example for large
matrix-multiplication. In order to verify a function, they perform the complex

Computing Neural Networks with HE and VC 299

Fig. 1. Semi-encrypted Neural Network with Functional encryption

operation with the EVC protocol where the GVC is least efficient, the remaining
functions being handled by the GVC. They apply this VC scheme to prove the
correctness of a neural network evaluation.

As seen in this section and to the best of our knowledge, so far there are
no approaches for an outsourced machine learning method which support the
integrity of its execution while guaranteeing the data privacy by means of veri-
fiable computation and homomorphic encryption.

2.1 Encrypted Machine Learning Using Functional Encryption

As already emphasized, our model for the neural network builds on the one from
[26] in which it is used for a partial encrypted-domain network evaluation using
Functional Encryption. Let us describe it here more in details.

To evaluate the first layer of the neural network, they use the Functional
Encryption (FE) scheme, from [27], designed for quadratic multi-variate poly-
nomials, based on bilinear pairings and with adaptive security under chosen-
plaintext attacks (IND-CPA security). As illustrated in Fig. 1, the method they
propose achieves user data privacy when performing classification in a classi-
cal user-operator model. It is based on a neural network composed of a private
(running in the encrypted domain) and a public (running in the clear domain)
part, with the private part consisting of a quadratic evaluation function. In their
approach, the user encrypts his/her data x using a FE public key pk and sends
the encryption EncFE(x) to the operator.

To classify, the operator applies the first layer of the neural network over the
data it received. More formally, the operator runs the quadratic activation func-
tion f over encrypted data by means of the FE scheme and uses the decryption
key dkf to decrypt the result of this layer as plaintext. This decrypted results
are injected in the remaining of the neural network which is then evaluated on
clear data with the argmax function applied at the end to obtain the cleartext
output. They run the overall neural network on top of a modified version of

300 A. Madi et al.

MNIST where there are two types of classes to predict: the public label which
is the digit on the image and the private label associated with the font used to
draw the image.

Moreover, they also propose a counter-measure to the threat associated from
collateral learning, coming from an adversary having access to the output of the
quadratic network and wanting to learn the private label (e.g. the font). As such,
in order to reduce the information leakage on the operator hosting the partially
encrypted neural network, they employ a semi-adversarial training method.

In this paper, we choose to build upon their quadratic model for the first layer
as well as the same remaining neural network. However, our work is different in
several aspects. First at all, even if the architectural framework is very similar our
approach target different deployment scenarios and use cases (see below). Second,
we ensure the data privacy and security using BFV homomorphic encryption
scheme as well as a VC protocol, adapted from [13] so we use different underlying
cryptographic primitives. Finally, as shown in the experimental part, in terms
of performances, we obtain similar and sometimes even better execution times
for the different steps of the private classification.

In essence, the two approaches are complementary: in the Functional Encryp-
tion approach, there is also a server playing the role of a trusted authority for the
generation and distribution of the keys but which does not perform any calcu-
lations. Therefore, it has only an offline key management role i.e., it only has to
provide (once) the master public key to the user as well as the secret functional
decryption key associated to the first network layer to the operator and plays
no role in the processing of a client request. In our setting, the server has an
online active role in the sense that it is the entity receiving the encrypted client
data and evaluating the first network layer (in the encrypted domain). Thanks
to the use of VC in our approach which provides the server with the execution
integrity which FHE alone does not provide, both approaches are equivalent
in terms of security model. They differ on where the main computing burden
(primarily due to the encrypted data processing) occurs: on the operator in the
Functional Encryption approach or on the server in our FHE/VC approach. It
is difficult to state which of the two is more relevant in practice as it clearly
depends on the use-case at hand and where some computational power is most
naturally available (e.g., if the operator is a mobile device such as a tablet then
our approach is more relevant whereas in other cases it may not be so).

3 Scenario and Threat Model

This section provides a general scenario of deployment for our method, the dif-
ferent threats we address as well as the possible use cases.

We start by describing the general architecture in which we apply a neural
network for a semi-private evaluation of an user data. There are mainly three
entities involved: the user, owner of some confidential data x, the server perform-
ing the privacy-preserving part of the neural network and an operator having
access to the evaluation of this preliminary classification and performing the
remaining of the neural network in the clear domain.

Computing Neural Networks with HE and VC 301

As such, the server evaluates in the homomorphic domain the first layer of
the neural network over the private data of one or many users. In our approach,
this private step is equivalent to the homomorphic evaluation of a quadratic
function (which is totally feasible and moreover with really good performances
by existing FHE means).

Unlike other works using homomorphic encryption for private inference, we
set up our study in the case of a malicious server, which can possible alter the
results of the evaluation (e.g. by not running the specified algorithm). To counter
this, within our setting, the server has to generate an integrity proof aside of the
homomorphic results without any interaction with the user or the operator. To do
so, we make use of the VC protocol of Fiore et al. [13] which allows to efficiently
check that a computation over encrypted data as been properly performed. To
the best of our knowledge, this scheme is presently the most practical to address
the validity of computation over encrypted data with the evaluation of multi-
variate polynomials of degree at most 2. As VC schemes for degree beyond 2 are
not practical, this is one of the reasons we restrain the homomorphic evaluation
to a first quadratic layer (practical Functional Encryption scheme also have the
same limitations1).

Then, the homomorphic evaluation of the private neural network along with
the associated integrity proof is sent to the operator. The last one decides (based
on the proof) if the server output is correct and, when it is so, can decide to
decrypt the homomorphic results of this first layer and to continue with the
prediction on clear data. As a counter-measure in the case of an operator which
could take advantage of the decrypted results of this intermediate layer operated
by the server to recover the user sensitive data, the quadratic first layer is trained
based on the adversarial learning technique from [26]. Let us also note that,
since it is performed on plaintext data, this remaining part of the network can
involve more complex machinery and obviously more than one additional layers
(including non linear activation functions).

In summary, under the hypothesis of non collusion between these the entities
involved, the architecture we propose has the following security properties:

– The user has access (obviously) to its own data x and, in function of the use
case, can have access to the overall classification result or the evaluation of
the intermediate first layer (if the operator shares it).

– The server, evaluating the first private layer of the neural network, has no
access to the inputs x nor to the output of the function f(x). While the homo-
morphic encryption addresses the confidentiality threats on the user inputs,
the verifiable computation addresses the integrity threats to the homomorphic
evaluation, in the case of a malicious server.

– The operator, performing the remaining layers of the neural network, has
access to the decryption result of the first layer and can check the validity of
the server computation. It can then exploit the overall result of the evaluation
of the neural network to its own advantage or return it to the user. The

1 This is due to the need to go beyond bilinear maps to achieve higher degrees in the
underlying cryptographics primitives involved in both VC and FE.

302 A. Madi et al.

adversarial training model for the first layer addresses the case of an honest-
but-curious operator which may try to learn sensitive information about the
user inputs based on the intermediate results.

Table 1 illustrates the threat analysis in terms of the access to the sensitive data
x and to the result of the evaluation of the function f over x for all three entities
involved in our architecture.

Table 1. Threat analysis in our architecture (Y: Yes, he has access; N: Non, he has no
access)

User Server Operator

x Y N N

Enc(x) Y Y N

f(x) N N Y

Enc(f(x)) N Y Y

Let us know illustrate some applications in which our architecture could be
useful.

Mail Filter. In this application, we consider the scenario were an employer
(operator) wishes to perform statistics on its employees (users) emails. For exam-
ple, she wishes to know when an email is received whether it is professional or
personal, a phishing attempt, some advertisement or some spam. The employer
needs to do so without having access to the employees mail contents. In this
context, a cloud provider can play the role of the server. First, the employees
encrypts their emails under the employer’s public key and forward them to the
cloud provider. The cloud provider then runs the first neural net layer in the
encrypted domain and sends the results to the employer (along with the proof
that the first layer was applied correctly) which then turns them into a con-
crete classification to compute her statistics. In this setup, employees have to
trust only that the cloud server will not collude with their employer (e.g. by for-
warding its encrypted emails). In particular, the confidentiality of their emails
is safe from server threats thanks to the FHE layer. Thanks to VC protocol, the
employer is guaranteed that the cloud provider evaluates properly the first layer
of her network. Also, because it reveals only the first layer of its networks, the
employer does not have to disclose the exact statistics she in fine computes to
the cloud provider.

Medical Use-Case. Suppose that a pharmaceutical firm wishes to conduct an
epidemiologic study over a group of people. To do so, they need to evaluate
for example a specific neural network on some health-related data over a large
set of patients while respecting the following properties: (1) the evaluation of
the NN should not be done by the patients (i.e. for either or both cost and
intellectual property issues) and (2) it needs to access only the outputs of the

Computing Neural Networks with HE and VC 303

neural net and it is not allowed to access the inputs of this network. For this
goal, consider a trusted health authority (server) in the center between these
patients (clients) and the firm (operator). The firm is the owner of all keys in our
architecture (FHE and VC keys). To apply its network, the firm (the operator in
our architecture) discloses its first network layer to the health authority. It is the
authority responsibility to guarantee that the first layer is acceptable in terms
of privacy of the input data (one nice thing is that the firm discloses only the
first layer of its network to the authority) i.e. that knowledge of the outputs of
the first layer does not allow to recover specific features of the associated inputs
(after decryption of these outputs by the operator). If the authority validates
the first layer, it distributes the firm’s public key to the patients, which they
use to encrypt their data which are then sent to the authority. The authority
then evaluates the first layer of the neural network in the FHE domain and then
sends its (encrypted) results along with short proof of correctness to the firm.
Finally, the firm uses its secret key with the short proof it received, to verify the
calculation of the server. Then if the verification is successful, the firm decrypts
the result and evaluates the remainder of its network performed on clear data.
The security properties are specified as above.

4 Technical Preliminaries

4.1 FHE

Fully Homomorphic Encryption (FHE) schemes allow to perform arbitrary
computations directly over encrypted data. That is, with a fully homomor-
phic encryption scheme E, we can compute E(m1 + m2) and E(m1 × m2) from
encrypted messages E(m1) and E(m2).

In this section we recall the general principles of the BFV homomorphic
cryptosystem [12], which we use in combination with a VC scheme. Since we
know in advance the function to be evaluated homomorphically, we can restrain
to the somewhat homomorphic version described below. Moreover, we skip the
description of the relinearisation step no needed in our approach which evaluates
only multi-variate quadratic polynomials.

Let R = Z [x] /Φm (x) denote the polynomial ring modulo the m-cyclotomic
polynomial with n′ = ϕ(m). The ciphertexts in the scheme are elements of
polynomial ring Rq, where Rq is the set of polynomials in R with coefficients in
Zq. The plaintexts are polynomials belonging to the ring Rt = R/tR.

As such, BFV scheme is defined by the following probabilistic polynomial-
time algorithms:

BFV.ParamGen(λ): → (n′, q, t, χkey, χerr, w).
It uses the security parameter λ to fix several other parameters such as n′, the
degree of the polynomials, the ciphertext modulus q, the plaintext modulus t,
the error distributions, etc.

BFV.KeyGen(n′, q, t, χkey, χerr, w):→ (pk, sk, evk).
Taking as input the parameters generated in BFV.ParamGen, it calculates
the private, public and evaluation key. Besides the public and the private keys,

304 A. Madi et al.

an evaluation key is generated to be used during computation on ciphertexts in
order to reduce the noise.

BFV.Encpk(m)→ c = (c0, c1, c2 = 0)
It produces a ciphertext c according to BFV-cryptosystem for a plaintext m
using the public key pk.

BFV.Decsk(c) :→ m
It computes the plaintext m from the ciphertext c, using private key sk.

BFV.Evalpk,evk(f, c1, . . . , cn):→ c, with c =BFV.Encpk(f(m1, . . . ,mn)),
where ci =BFV.Encpk(mi), and f has n inputs and has degree at most two.
It allows the homomorphic evaluation of f , gate-by-gate over ci using the fol-
lowing functions: BFV.Add(c1, c2) and BFV.Mulevk(c1, c2).

For further details on this scheme, we refer the reader to the paper [12].
Let us just note that a BFV ciphertext c can be seen as an element in

Rq[y] = Z/qZ[X,Y]/Φm(x) with a degree at most 2 (i.e., c = c0 + c1y + c2y
2).

4.2 VC
Verifiable computation VC techniques allow to prove and verify the integrity
of computations on authenticated data. A Verifiable Computation scheme is
defined as a protocol in which a client (usually weak) has a function f and
some data denoted x and delegates to another client (in most cases a server) the
computation of y = f(x). Then the same client or another one can receive the
result y plus a short proof of its correctness. More in details, a user generates an
authentication tag σx associated with his/her data x with his/her secret key and
the server computes an authentication tag σf,y that certifies the value y = f(x)
as an output of the function f . Now, anyone using the verification key (public
or secret) can verify y to check that y is indeed the result of f(x).

A VC scheme includes the following algorithms:

1. (PK,SK)←KeyGen(f, λ): Taking as input the security parameter λ and a
function f , this randomized key generation algorithm generates a public key
(that encodes the target function f) used by the server to compute f . It also
computes a matching secret key, kept private by the client.

2. (σx,τx)←ProbGenSK(x): The problem generation algorithm uses the secret
key SK to encode the input x as a public value σx, given to the server to
compute with, and a secret value τx which is kept private by the client.

3. σy ←ComputePK(σx): Using the client’s public key and the encoded input,
the server computes an encoded version for the function output y = f(x).

4. (acc, y) ←VerifySK(τx,σy): Using the secret key SK and the secret τx, this
algorithm converts the server output into a bit acc and a string y. If acc = 1
we say that the client accepts y = f(x), meaning that the proof is correct,
else (i.e. acc = 0) we say the client rejects it.

In the extended version, we recall in Appendix A the three main properties
of VC protocols (correctness, security, privacy) as defined in [14] and some other
properties (function privacy, outsourceability, adaptive security) as described in
[13].

Computing Neural Networks with HE and VC 305

4.3 Pseudo Random Function with Amortized Closed-Form
Efficient

We present here the notion of Pseudo Random Function(PRF) with Amortized
Closed-Form Efficiency [1]. In the extended version (Appendix B) we also present
the definition of security for a PRF and we will present a realization of a PRF
satisfying the amortized closed-form efficiency.

A PRF consists of two algorithms (F.KG, F). The key generation method
F.KG takes as input the security parameter λ to generate a secret key K and
some public parameters pp that specify the domain χ and the range R of the
function F . The function FK takes as input the data x ∈ χ and uses the key K
to generate a value R ∈ R satisfying the following pseudorandom property:

Definition 1. [1] Consider a computation Comp that takes as input n random
values R1, . . . , Rn ∈ R, and a vector of m arbitrary values z = (z1, . . . , zm),
and assume that the computation of Comp(R1, . . . , Rn, z1, . . . , zm) requires time
t(n,m). Let L = (L1, . . . , Ln) be arbitrary values in the domain χ of F such
that each one can be interpreted as Li = (Δ, τi). We say that a PRF (KG,
F) satisfies amortized closed-form efficiency for (Comp,L) if there exist two
algorithms CFEval off

Comp,τ and CFEval on
Comp,Δ such that:

1. Given w ← CFEval off
Comp,τ (K, z) we have that:

CFEval on
Comp,Δ(K,w) = Comp(FK(Δ, τ1), . . . , FK(Δ, τp), z1, . . . , zm)

2. the running time of CFEvalon
Comp,Δ(K,w) is o(t).

4.4 Homomorphic Hash Function

Informally, a family of key homomorphic hash functions H with domain X and
range R consists of three algorithms (H.KeyGen, H, H.Eval). The first one,
the key generation hash H.KeyGen, generates the description of the hash func-
tion HK ,where K is the key, the function H computes the hash and, finally,
H.Eval allows the computation over R satisfying the following homomorphic
property: H.Eval(f, (H(x1), . . . , H(xn))) = H(f(x1, . . . , xn)) where xi ∈ X (H
is a ring homomorphism).

In the VC scheme for quadratic multi-variate polynomial over BFV encrypted
data, we are interested in the calculation of H.Eval for one level of multiplication
(with two inputs) and any numbers of additions over D.

In the extended version (Appendix C) we present a realization of homomor-
phic hash H̃, based on bilinear groups. It allows to reduce a BFV ciphertext μ ∈
Rq[y] into a v ∈ Z/qZ depending on the degree of μ denoted degy(μ) with preser-
vation of the homomorphic properties. Hence H.Eval(f, (H(μ1), . . . , H(μn))) =
H(f(m1, . . . ,mn)) where μi = BFV.EncPK(mi) with mi a BFV plaintext.

5 VC for Quadratic Polynomials over BFV Encrypted
Data

In this section, we present an application of the VC scheme of Fiore et al. [13]
for the case of multi-variate polynomials of degree 2, over BFV encrypted data

306 A. Madi et al.

instead over BGV encrypted data as in the original paper. First the client
encrypts his/her data x = (x1, . . . , xn) as a BFV ciphertext, where the plaintext
modulus q is chosen to be prime. In parallel with the encryption of xi, he/she also
generates a tag σi for his/her data, using the combination of the PRF output and
the hash collision-resistant functions (that compresses a BFV ciphertext into a
double of group elements). Once the server receives the BFV ciphertexts [xi]BFV

and the tags σi from the user, it computes f over [xi]BFV and over σi and it
obtains y = f([xi]BFV) and respectively a tag σ = f(σi). The server sends y with
the associated tag to the user owning the verification keys, which then checks
the output in constant time (because he has already done a pre-computation
phase).

In this scheme, we require to authenticate with our scheme:

1. Each of the 2n′ − Fq components of a BFV ciphertext;
2. The BFV evaluation circuit f̂ : F2nn′

q → F
3n′
q instead of f : Fn

q → Fq.

More formally, our VC scheme is specified by the following algorithms:

1. KeyGen(f, λ) → (PK,SK), with the following steps:
– First generate bgpp = (q, g, h, e) some bilinear group parameters, where
G1 =< g >, G2 =< h >, q = order(Gi) for i = {1, 2} and e : G1 ×G2 →
GT a non-degenerate bilinear map (GT =< e(g, h) >).

– Run BFV.ParamGen(λ) → (n′, q, t, χerr, χkey, w) to generate the
parameters for the BFV encryption scheme. Run BFV.KeyGen()→
(pk, sk, evk).

– Run H̃.KeyGen → (κ, K̃) to choose a random member of the hash func-
tion family H̃ : D = {μ ∈ Zq[x][y] : degx(μ) ≤ 2(n′ − 1), degy(μ) ≤ 2} ⊂
Rq[y] → G1 × G2. In our scheme, we do not use the public key of H̃,
so it is not necessary to calculate it. (For details see Appendix C) in the
extended version.

– Sample a random value r ← Fq.
– Run PRF.KeyGen(λ) → (K, pp) to build FK : {0, 1}∗ → G1 × G2. In

this adaptation, we need FK to be computationally indistinguishable from
a function that outputs (R,S) ∈ G1×G2 such that Dlogg(R) = Dlogh(S)
is uniform over Fq (i.e. e(R, h) = e(g, S)).

– Run CFEvaloff
τ (K, f) → wf , called concise information for f . (For

details on PRF and CFEval see Sect. 4.3).
– Set SK = (pk, sk, κ, r,K,wf) and PK = (pk, pp, f).

2. ProbGenSK(−→x = (x1, . . . , xn)) → σx, τx, requiring the operations below:
– Choose an arbitrary string Δ ∈ {0, 1}λ (identifier for −→x).
– For i=1 to n:

(a) Run BFV.Enc(xi) = μi ∈ R2
q and compute its hash value (Ti, Ui) =

H̃κ(μ) ∈ G1 × G2. Next run FK(Δ, i) = (Ri, Si) ∈ G1 × G2.
(b) Compute Xi = (Ri ·T−1

i)1/r and Yi = (Si ·U−1
i)1/r ∈ G1,G2 respec-

tively.
(c) Set σi = (Ti, Ui,Xi, Yi, Λi = 1GT

) ∈ (G1 ×G2)2 ×GT . We denote the
level of tag as lev(σi) and we set lev(σi) = 1.

Computing Neural Networks with HE and VC 307

– Set σx = (Δ,μ1, σ1, . . . , μn, σn) and τx =⊥.
3. ComputePK(σx) → σy consisting of the following steps:

– Let f be an admissible circuit.
– Run the evaluation circuit f over the BFV encrypted data and obtain

μ = BFV.Eval(f, μ1, . . . , μn). Let us note that, for preserving the homo-
morphic properties of the hash, the difference with the normal evalua-
tion of the BFV scheme is that here the multiplication of polynomials
is performed over Rq without the mod Φm(x)-reduction and without the
rounding step, and we assume thus that this modulus reduction and this
rounding operations are performed at the end by the verifier receiving the
result of the evaluation of f .

– Apply (gate-by-gate) f over the authentication tags (σ1, . . . , σn), using
the following gate functions GateEval(). GateEval:(fg, σ1, σ2) → σ
Parse (Ti, Ui,Xi, Yi, Λi) ∈ (G1 × G2)2 × GT for i = 1, 2, where fg stands
for tag addition (“+”) or tag multiplication (“×”). We try to compute
σ = (T,U,X, Y, Λ).

• Add two tags together. If fg =“+”, the addition takes different
forms depending on the levels of the input tags.
If lev(σ1) = lev(σ2), then σ = (T1 ·T1, U1 ·U2,X1 ·X2, Y1 ·Y2, Λ1 ·Λ2)
with lev(σ) = 1.
Else, without loss of generality, let suppose that lev(σ1) = 1 and
lev(σ2) = 2(i.e. there is a multiplication gate before this gate).
The idea is to create a level-2 tag (σ′

1) from σ1 as follows: σ′
1 =

(e(T1, h), e(g, U1), e(X1, h), e(g, Y1), Λ1). Then compute σ = σ′
1 + σ2

as in the first case but set lev(σ) = 2.
• Add a constant to a tag (c + σ1). This method depends on the

level of the tag as follows:
If lev(σ1) = 1, then the result tag σ = (T1 ·(gc), U1 ·(hc),X1, Y1, , Λ1).
If lev(σ1) = 2, then we obtain: σ = (T1 · (e(g, h)c), U1 ·
(e(g, h)c),X1, Y1, Z1, Λ1).
In both cases lev(σ) = lev(σ1).

• Multiplication by a constant (c · σ1). The result tag is σ =
(T c

1 , U c
1 ,Xc

1 , Y
c
1 , Λc

1) and lev(σ) = lev(σ1).
• Multiplication. For fg = “×” on two tags (σ1 × σ2)

If levy(σ1) > 1 or levy(σ2) > 1 then reject. Else calculate T =
e(T1, U2), U = e(T2, U1), X = e(X1, U2) · e(X2, U1), Y = e(T2, Y1) ·
e(T1, Y2), Λ = e(X1, Y2). Also set lev(σ) = 2.
It is not necessary to keep U and Y after a multiplication because
T = U and X = Y . We keep them only for the sake of clarity. As
noted in [13], one can see the function f as the composition of two
functions fg(f1, f2) in the last gate fg of f .

• Set σy = (Δ,μ, σ), where σ is the tag obtained after evaluating the
last tag of f .

4. VerifySK(σy, τx) → (acc, y), for σy = (Δ,μ, σ), using the following opera-
tions:

308 A. Madi et al.

– Compute H̃κ(μ) → ν̃.
– Run CFEvalon

Δ (K,wf) → W (see Sect. 4.3 for details on the online
closed-form method).

– Check, depending on the of degree of f , as follows:
(a) If deg(f) = 1, check the following equations:

(T,U) = ν̃(= (g((μ(α))(β)), h((μ(α))(β))))
e(X,h) = e(g, Y)
W = e(T · Xa, h).

(b) Else, check over GT the following equations:

T = U = ν̃(i.e. = e(g, h)((μ(α))(β))) (1)
X = Y (2)

W = T · (X)r · (Λ)
2

(3)

– If all equations are satisfied set the check bit acc to 1 (accept), otherwise
set it to 0 (reject).

– Finally, if acc=1, μ′ = μ mod Φm(x) = (c0, c1, c2) and set μ′ = (�t ·
c0/q	, �t · c1/q	, �t · c2/q) y = BFV.Decdk(μ′), otherwise set y =⊥.

Theorem 1. If BFV is a semantically secure homomorphic encryption scheme,
H̃ is a collision-resistant homomorphic hash function and F is a pseudorandom
function, then VC described above is correct, adaptive secure and input private.

Proof. Same proof as for the scheme VCquad from [13].

6 VC and FHE for First Layer

In this section, we present more in details our architecture for partially encrypted
machine learning using Verifiable Computing for BFV homomorphic encrypted
data.

As illustrated in Fig. 2, the client sends the homomorphic data encrypted
at the server along with a authentication tag. The server computes the first
layer (f) of a neural network on the homomorphic encrypted data, generates a
short proof-calculation for verifying the homomorphic results and sends them
to an operator. He later on checks using the short proof that the calculation
of the first layer is correct and, if so, he decrypts the result of this first layer
and completes the neural network on clear data. More precisely, the user runs
the ProbGen algorithm (described below) to encrypt and to generate a tag
corresponding to his/her data. We note that a preliminary step consists in the
generation of the keys by the operator (Setup algorithm). The server runs the
Compute function (described below) over the received data to apply f , the first
layer of the neural network and to compute the tag associated with the result. It

Computing Neural Networks with HE and VC 309

returns thus the ciphertext Enc(f(x))BFV and the result tag σ = f(σi) to the
operator which verifies the results it receives with the Verify function. If the
calculation is correct, he decrypts the result using the homomorphic secret key
and he completes the evaluation of the remaining of the neural network over the
clear data for obtaining the prediction result.

Fig. 2. Semi-encrypted neural network using FHE and VC.

Let us now go into more details. The data represented as x = (x0, . . . , xn)
is encrypted with a BFV cryptosystem. For authentication the client uses the
secret key to generate a series of tags (σ1, . . . , σn), that will help the server to
produce (without any secret key) the authentication tag σ corresponding to the
result of the first private layer of the neural network, i.e. the quadratic activation
function f (Compute algorithm). This tag σ = f(σ1, . . . , σn) authenticates
the ciphertext μ = f(μ0, . . . , μn) using the properties of homomorphic BFV
ciphertexts obtained. The one receiving f(μ0, . . . , μn) can verify effectively that
the server performed the computation correctly (using the secret key of VC) and
can decrypt it to obtain f(m0, . . . ,mn) (using the homomorphic secret key). This
decrypted result is the input of the remaining of the neural network performed
on clear data (Clear-NN algorithm).

Our steps are specified as follows:
Setup(NN,λ): Takes as input the neural network and generates the public

(PK) and secret key (SK) to the VC scheme for BFV data.
ProbGenPK(−→x = (x1, . . . , xn)) : Takes as input the data −→x . For all i ∈

[1, n], it generates in parallel the encrypted μi ← BFV.Encpk(xi) and the tags
σi corresponding to the μi as shown in the above section.

Finally, it outputs σx = (μ1, σ1, . . . , μn, σn) and τx =⊥.
ComputePK(σx): Taking as input the encrypted data and the correspond-

ing tags, it runs the evaluation circuit BFV f over the BFV encrypted data μi,
and, in the same time, it generates the tag corresponding to the evaluation of
the circuit f over the tags σi gate-by-gate as mentioned above in the GateEval
algorithm. Finally, it returns σy = (Δ,μ, σ).

310 A. Madi et al.

CompleteSK(σy, μ): Taking as inputs the tag and the encrypted result, it
verifies the calculation using VC.V erifySK(σy, τx) and if it is true, it decrypts
the result and completes the remaining of neural network Clear-NN over
f(x1, . . . , xn), else it refuses the result .

The security of this architecture such as defined in Sect. 3 is based on the
security of VC over BFV encrypted data and under the hypothesis of non collu-
sion between these three entities.

In this architecture, we can evaluate an activation function f : F
n
q → Fq

of degree at most 2, because our adaptation of VC works for a multi-variate
function of degree at most 2. We can also hide the function f from the server,
using the same modification proposed in [13] in the two algorithms KeyGen and
Compute (namely, by modifying the multiplication-by-constant method, using
H̃K(EncBFV (c)) instead of c, which requires the modification in the algorithms
cited above).

7 Experimental Results

We present here the experimental results of applying our approach for the digit
recognition on the standard MNIST dataset.

In this section we work more to characterize the computational performances
of our architecture than really building an operational machine learning system.
In other words, despite that we use a small dataset size, this allows us to obtain
a representative view for our architecture in terms of execution times and per-
formances.

Hardware and Software. Let us precise that all tests were performed on
an 2016 DELL PC(Genuine-Intel Core i7 − 6600U , 4 cores at 2.60 GHz with
16 GB RAM at 2.13 GHz), on Ubuntu (linux kernel 4.15.0-91-generic, with the
architecture x86 − 64) as operating system.

Choosing a Model. For the training, we apply the adversarial training app-
roach from [27]. They learned P ∈ Z

d×n and (Di)i∈[�] ∈ (Zd×d)�, with the model
defined as fi(x) = (Px)T Di(Px), ∀i ∈ [�]. Then, they generalized this model by
adding a bias term: fi(x) = (Px + b)T Di(Px + b) for b ∈ Z

d
p, and, for simplic-

ity, they used an equivalent of this model by systematically adding a 1 at the
beginning of x when encrypting it x′ = (1, x1, . . . , xn)T . The prediction for the
class of x ∈ [0, 255]785 is argmaxi(fi(x)) for i ∈ [�]. This modelling is important
for FE efficiency [27], because it reduces the number of pairing computations. In
our implementation, we used an equivalent model g defined as g(x) = Qt(Px)2,
where Q ∈ Z

d×� and Q[i, j] = Dj [i, i] (i.e. fi(x) = gi(x) = QT
i (Px)2 with Qi the

i-th row of Q). The prediction for the class of x ∈ [0, 255]785 is argmax(g(x)).
As such, instead of using a matrix per label, we use a new matrix Q for all
labels. Therefore, the resulting model is a polynomial network of degree 2 with
one hidden layer of d neurons and a square for the activation function.

Computing Neural Networks with HE and VC 311

Implementation Tools.

Homomorphic Encryption. We use the SEAL library [29], a homomorphic
encryption library developed by Microsoft and written in modern standard C++.
In terms of security, we choose parameters for providing 128 bits of security.
We run SEAL with the following parameters: n′ = 4096, log2(q) = 109 and
t = 1032193. These parameters are chosen using the Homomorphic Encryption
Standardization report [10].

The table 2 illustrates the evolution of the noise budget for the prediction,
and, as expected, the noise growth caused by the homomorphic multiplications
increases rapidly (in our case hi × hi grows the noise by 38 bits).

Table 2. Noise budget where Qi and Pi are the i − th row of Q and i − th row of P
respectively.

[xi]BFV hi = Pi · [x]BFV h2
i Q2

i · h
Noise budget 45 bits 40 bits 8 bits 5 bits

Verifiable Computing. We use the HAL library [33], a library for Homomorphic
Authentication over encrypted BGV data, written in C and providing 128 bits
of security, by using the Barreto-Naehrig curve for pairings.

In our experiments, we encrypt and decrypt homomorphically the data with
SEAL library and we use the HAL library for authentication but for BFV
encrypted data.

7.1 Results

Our tests consist in classifying a MNIST image data, a greyscale RGB image
with 784 pixels, represented as a vector x ∈ [0, 255]784. As illustrated in Fig. 3,
we add 1 at the beginning of x when encrypting it (encrypting pixel by pixel)
by the user. The server evaluates the model g over encrypted data (Hidden
layer). Now the operator runs the Clear-NN algorithm for verifying the results
and decrypting it to obtain g(x) and calculate the argmax(g(x)). Our model
achieves 97, 54% accuracy on a test set of 10000 labeled images. We note that
in our test we obtain the same confusion matrix as for the FE-model (see Fig. 4
in [27]).

Table 3. Costs (in seconds) for our architecture, where x = (x1, . . . , x785)

User-side Server-side Operator-side

Operation Enc GenTag g(Enc(x)) g(σ1, . . . , σn) V erify Dec

T imes 1.760 2.525 3.8 3.35 0.015 0.006

312 A. Madi et al.

Fig. 3. Overview of our architecture with model g.

Table 4. Size (in KB) for MNIST test, where x = (x1, . . . , xi, . . . , xn), with i =
{1, . . . , 785}.

User-side Server-side

Enc(xi) tag(σi) Enc(f(x)) f(σi)

Size 194 0.408 291 1.2

Performance. In Table 3, we describe the time evaluation for our approach. We
remark that the user can execute the encryption function and the tags generation
in parallel, so the user runs this step in average in less than 2.5 s. (Let us note
that this time is inferior to the time of user for encryption using the FE−mode,
of 8s.) Similarly, the server calculates the quadratic function g over encryption
and over the authentication tag in parallel. Then, the server execution time is
less than 3.8 s. We note that for computing the function g for all labels, we run in
parallel the gi(σ1, . . . , σ785) for i ∈ [10]. Finally using our architecture, the time
on the operator side is negligible. Namely, the operator time is 0.021s (decryption
and verification together), while the time for argmax on the decrypted results
is negligible, as expected. In terms of memory requirements, Table 4 describes
the size in KiloBytes of the data used our architecture. More precisely, we report
the size of the homomorphic ciphertexts and of the authentication tags on both
user and server sides.

8 Conclusion

In this paper, we presented a solution for private classification of sensitive data
based on Homomorphic Encryption combined with a Verifiable Computing (VC)

Computing Neural Networks with HE and VC 313

protocol to ensure the result integrity. We built on a semi-encrypted neural-
network trained using a semi-adversarial model [26] and then preserve the confi-
dentiality of sensitive data and the integrity for treatments using an application
of VC over BFV encrypted data. Our experimental results for the MNIST image
dataset are encouraging giving good classification accuracy (nearly 97.54%) with
decent execution performances (less than 6s for the overall protocol). However,
due to the limitations on the classes of functions supported in today practi-
cal VC techniques for encrypted data, our work was to some extend restricted
to a private evaluation only for a first quadratic layer and we had to finalize
(on another entity) the rest of the classification process on clear data from the
decrypted intermediate values.

As such, one open research problem worth investigating consists in develop-
ing efficient verifiable delegation protocols with support for the computation of
a broader class of functions, in particular any multi-variate polynomials. This
will allow us to provide more complete privacy and integrity solutions for the
evaluation of neural networks. Another more concrete research line we plan to
follow is to improve the performances of the proposed approach by exploring the
use of batching and other optimization techniques dedicated to HE computation.
Finally, we hope that this work is a first step and will inspires further contri-
butions around the application of Verifiable Computation and Homomorphic
Encryption techniques for the design of secure AI methods.

A Properties of VC

Let us now present a summary for some general properties of VC schemes, for
more details see [13,14]:

Correctness: The VC is correct if the client running the verification algorithm
accepts, with a high probability, the output send by the server only when this
one is correct.

Security: A VC scheme is secure if a malicious server cannot persuade the
verification algorithm to accept an incorrect output.

Privacy: A VC scheme is private when the public outputs of the problem gen-
eration algorithm ProbGen over two different inputs are indistinguishable.

Function Privacy: This requirement guarantees that the public key PK, sam-
pled via (PK,SK) ← KeyGen(f, λ), does not leak information on the encoded
function f , even after a polynomial amount of runs of ProbGenSK on adver-
sarially chosen inputs.

Outsourceability: A VC can be outsourced if it allows efficient generation
and efficient verification. (i.e. the time of (ProbrGenSK(x) + Verify(σy)) is in
O(T), where T is the time required to compute f(x)).

Adaptive Security: The adaptive security for a VC scheme is defined by the
security when the adversary chooses f after having seen many “encodings” of
σx for adaptively-chosen values x.

314 A. Madi et al.

This type of schemes allows to compute σx independently of f so we can
calculate σx before choosing f .

B Realization of PRF with Amortized Closed-Form
Efficiency

Definition 2. A PRF (F.KG, F) is secure if, for every PPT adversary A,
we have that:

∣
∣Pr[AFK(·)(λ, pp) = 1] − Pr[AΦ(·)(λ, pp) = 1]

∣
∣ ≤ neg(λ) where: (K, pp) ←

KG(λ) and Φ : χ → R is a random function (i.e. it is not possible to distinguish
between F and Φ).

Let f : Fn
q → Fq be an arithmetic circuit of degree 2, and, without loss of

generality, parse f(x1, . . . , xn) =
∑n

i,j ζi,j · xi · xj +
∑n

k=1 ζk · xk

for some ζi,j , ζk ∈ Fq. we f̂ : (G1 × G2)n → GT as the compilation
of f on group elements such as: f̂(A1, B1 . . . , An, Bn) =

∏n
i,j ζi,j · e(Ai, Bj) ·

∑n
k=1 ζk · e(Ak, h)
We will show the realization for the PRF with amortized closed-form effi-

ciency For Comp(R1, S1, V1 . . . , Rn, Sn, Vn, f) = f̂(R1, S1, V1 . . . , Rn, Sn, Vn).
That is the adaptation of the scheme of Bakes et al. in [1] to work with the
asymmetric bilinear group.

– F.KG(λ)→ K = (K1,K2) :
First generate bgpp = (q, g, h, e) some bilinear group parameter, where
G1 =< g >,G2 =< h > and q = order(Gi) for i = 1, 2 and
e : G1 × G2 → GT non−degenerate(GT =< e(g, h) >) bilinear map.
Choose two seeds K1,K2 for a family of PRF s F′

K1,2
: {0, 1}∗ → F

2
q.

Output K1,K2. The parameters define F : χ = {0, 1}∗ × {0, 1}∗ → R3.
– FK(Δ, τ) → (R,S, V):

It generates (u, v) ← F ′
K1

(τ) and (a, b) ← F ′
K2

(Δ)
Finally it calculates (R,S) = (gua+vb, hua+vb).

– CFEvaloff
τ (K, f) → wf = ρ :

For i = 1 to t : calculate (ui, vi) = F ′
K1

(τi) and construct a linear map ρi

using (ui, vi) as ρi(x1, x2) = ui · x1 + vi · x2

Run ρ ← f(ρ1, . . . , ρt), i.e., ∀z1, z2 ∈ Fq: ρ(z1, z2) = f(ρ1(z1, z2), . . . ,
ρt(z1, z2)).

– CFEvalon
Δ (K,wf) → W :

It generates (a, b) ← F ′
k2

(Δ) and computes W = e(g, h)wf (a,b).
for the proof of this scheme follow theorem 4 of [13].

C Realizations of Homomorphic Hash [13]

In the construction of H̃, we use the bgpp = (q, g, h, e) where q be a prime
of λ bit and let Fq = Z/qZ. Let us define a function Hα,β(μ) as follow: for

Computing Neural Networks with HE and VC 315

μ ∈ D = {μ ∈ Zq[x][y] : degx(μ) = N, degy(μ) = c} ⊂ Rq[y], Hα,β(μ) first
evaluates μ at y = α and then evaluates μ(α) at β i.e. Hα,β(μ) = evβ ◦ evα(μ).

The family of hash functions (H̃.KeyGen, H̃, H̃.Eval) with domain D and
range G1 × G2 is defined as below:

– H̃.KeyGen→ (K,κ = (α, β)):
First at all, generate bgpp = (g, h, q)
Next, sample a random (α, β) ← (Fq)2 Afterwords, for i = 0, . . . , c and,j =
1, . . . , N and we calculate gαiβj

, and hαiαj and include them to K.
Output K and κ = (α, β).

– H̃: For μ ∈ D, in function of its degree degy(μ), H̃κ(μ) is computed differ-
ently. If degy(μ) ≤ 1 then H̃κ(μ) = (T,U) = (gHκ(μ), hHκ(μ)) ∈ G1 × G2. If
degy(μ) = 2, then e(g, h)Hκ(μ)

– H̃.Eval(fg, ν1, ν2): It computes in a homomorphic way a function of degree
2 on the outputs of H̃.
For ν1 = (T1, U1), ν2 = (T2, U2) and (respectively, T̃1, T̃2 ∈ GT).

⎧

⎨

⎩

ν1 + ν2 = (T1 · T2, U1 · U2) (resp T̃ ← T̃1 · T̃2)
c · ν = (T c, U c) (resp T̃ c) for c ∈ Fq

ν1 · ν2 = e(T1, U2) ∈ GT

References

1. Backes, M., Fiore, D., et al.: Verifiable delegation of computation on outsourced
data. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Com-
munications Security, pp. 863–874 (2013)

2. Ball, M., Carmer, B., et al.: Garbled neural networks are practical. Cryptology
ePrint Archive, Report 2019/338 (2019)

3. Boemer, F., Costache, A., et al.: Ngraph-HE2: a high-throughput framework for
neural network inference on encrypted data. In: Proceedings of the 7th ACM Work-
shop on Encrypted Computing & Applied Homomorphic Cryptography. WAHC
2019, pp. 45–56 (2019)

4. Boemer, F., Lao, Y., et al.: nGraph-HE: a graph compiler for deep learning on
homomorphically encrypted data. CoRR (2018)

5. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of
deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96878-0 17

6. Brutzkus, A., Oren Elisha, O., et al.: Low latency privacy preserving inference.
In: Proceedings of the 36th International Conference on Machine Learning, Long
Beach, California, PMLR 97 (2019)

7. Chabanne, H., de Wargny, A., et al.: Privacy-preserving classification on deep
neural network. Cryptology ePrint Archive, Report 2017/035 (2017)

8. Chabanne, H., Keuffer, J., et al.: Embedded proofs for verifiable neural networks.
IACR Cryptology ePrint Archive, 2017:1038 (2017)

9. Chabanne, H., Lescuyer, R., Milgram, J., Morel, C., Prouff, E.: Recognition over
encrypted faces. In: Renault, É., Boumerdassi, S., Bouzefrane, S. (eds.) MSPN
2018. LNCS, vol. 11005. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-03101-5 16

https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-030-03101-5_16
https://doi.org/10.1007/978-3-030-03101-5_16

316 A. Madi et al.

10. Chase, M., Chen, H., et al.: Security of homomorphic encryption. Technical report,
HomomorphicEncryption.org, Redmond WA, USA, July 2017

11. Chou, E., Beal, J., et al.: Faster CryptoNets: leveraging sparsity for real-world
encrypted inference. CoRR (2018)

12. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012:144 (2012)

13. Fiore, D., Gennaro, R., et al.: Efficiently verifiable computation on encrypted data.
In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 844–855 (2014)

14. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

15. Ghodsi, Z., Gu, T., et al.: SafetyNets: verifiable execution of deep neural networks
on an untrusted cloud. In: Advances in Neural Information Processing Systems,
pp. 4672–4681 (2017)

16. Gilad-Bachrach, R., Dowlin, N., et al.: CryptoNets: applying neural networks to
encrypted data with high throughput and accuracy. In: International Conference
on Machine Learning, pp. 201–210 (2016)

17. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

18. Hesamifard, E., Takabi, H., et al.: Deep neural networks classification over
encrypted data. In: Proceedings of the Ninth ACM Conference on Data and Appli-
cation Security and Privacy. CODASPY 2019, pp. 97–108 (2019)

19. Izabachène, M., Sirdey, R., Zuber, M.: Practical fully homomorphic encryption for
fully masked neural networks. In: Mu, Y., Deng, R.H., Huang, X. (eds.) CANS
2019. LNCS, vol. 11829, pp. 24–36. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-31578-8 2

20. Keuffer, J., Molva, R., Chabanne, H.: Efficient proof composition for verifiable
computation. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS,
vol. 11098, pp. 152–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99073-6 8

21. LeCun, Y., Cortes, C., et al.: Mnist handwritten digit database 7:23, 2010 (2010).
http://yann.lecun.com/exdb/mnist

22. Lee, S., Ko, H., et al.: VCNN: Verifiable convolutional neural network. IACR Cryp-
tology ePrint Archive, 2020:584 (2020)

23. Lund, C., Fortnow, L., et al.: Algebraic methods for interactive proof systems. J.
ACM (JACM) 39(4), 859–868 (1992)

24. Parno, B., Howell, J., et al.: Pinocchio: nearly practical verifiable computation. In:
2013 IEEE Symposium on Security and Privacy, pp. 238–252. IEEE (2013)

25. Rouhani, B.D., Riazi, M.S., et al.: DeepSecure: scalable provably-secure deep learn-
ing. CoRR (2017)

26. Ryffel, T., Sans, E.D., et al.: Partially encrypted machine learning using functional
encryption. arXiv preprint arXiv:1905.10214 (2019)

27. Sans, E.D., Gay, R., et al.: Reading in the dark: Classifying encrypted digits with
functional encryption. IACR Cryptology ePrint Archive 2018:206 (2018)

28. Sanyal, A., Kusner, M., et al.: ICML, June 2018
29. Microsoft SEAL (release 3.0). http://sealcrypto.org, October 2018

https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-030-31578-8_2
https://doi.org/10.1007/978-3-030-31578-8_2
https://doi.org/10.1007/978-3-319-99073-6_8
https://doi.org/10.1007/978-3-319-99073-6_8
http://yann.lecun.com/exdb/mnist
http://arxiv.org/abs/1905.10214
http://sealcrypto.org

Computing Neural Networks with HE and VC 317

30. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 71–89. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 5

31. Zhao, L., Wang, Q., et al.: VeriML: enabling integrity assurances and fair payments
for machine learning as a service. arXiv preprint arXiv:1909.06961 (2019)

32. Zuber, M., Carpov, S., et al.: Towards real-time hidden speaker recognition
by means of fully homomorphic encryption. Cryptology ePrint Archive, Report
2019/976 (2019)

33. Zuber, M., Fiore, D.: Hal: A library for homomorphic authentication (2016–2017).
http://www.myurl.com

https://doi.org/10.1007/978-3-642-40084-1_5
http://arxiv.org/abs/1909.06961
http://www.myurl.com

Attribute-Based Symmetric Searchable
Encryption

Hai-Van Dang1, Amjad Ullah1, Alexandros Bakas2(B), and Antonis Michalas2

1 University of Westminster, London, UK
{H.Dang,A.Ullah}@westminster.ac.uk

2 Tampere University, Tampere, Finland
{alexandros.bakas,antonios.michalas}@tuni.fi

Abstract. Symmetric Searchable Encryption (SSE) is an encryption
technique that allows users to search directly on their outsourced
encrypted data while preserving the privacy of both the files and the
queries. Unfortunately, majority of the SSE schemes allows users to either
decrypt the whole ciphertext or nothing at all. In this paper, we propose a
novel scheme based on traditional symmetric primitives, that allows data
owners to bind parts of their ciphertexts with specific policies. Inspired by
the concept of Attribute-Based Encryption (ABE) in the public setting,
we design a scheme through which users can recover only certain parts of
an encrypted document if and only if they retain a set of attributes that
satisfy a policy. Our construction satisfies the important notion of for-
ward privacy while at the same time supports the multi-client model by
leveraging SGX functionality for the synchronization of users. To prove
the correctness of our approach, we provide a detailed simulation-based
security analysis coupled with an extensive experimental evaluation that
shows the effectiveness of our scheme.

Keywords: Cloud security · Database security · Forward privacy ·
Symmetric searchable encryption

1 Introduction

Symmetric Searchable Encryption (SSE) [15,16,19] is a promising encryption
technique that squarely fits the cloud paradigm and can pave the way for the
development of cloud services that will respect users’ privacy even in the case
of a compromised Cloud Service Provider (CSP). SSE schemes can be seen as a
first, fundamental step for protecting users’ data from both external and internal
attacks (e.g. a malicious administrator). This is due to the fact that in an SSE
scheme, users generate all the secret information (encryption key) locally and
encrypt all of their data on client side (i.e. the encryption key is never revealed to
the CSP). The service offered by the CSP is only used for storing and retrieving

This work was funded by the ASCLEPIOS EU research project (Project No. 826093).

c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 318–336, 2020.
https://doi.org/10.1007/978-3-030-61638-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_18&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_18

ABE-SSE 319

the generated ciphertexts. In contrast to traditional encryption schemes, SSE
offers a remarkable functionality – it allows users to search for specific keywords
directly through the stored ciphertexts. However fascinating, SSE schemes [16]
“suffer” from several disadvantages with most prominent ones being their effi-
ciency and security. Despite the importance of these issues, in this paper we
mostly focus on a new problem that, to the best of our knowledge, has not be
addressed in the literature. By studying the implementation and application of
SSE in important sectors such as the healthcare industry, we realized that the
traditional problem of encryption that cannot enforce granular access control is
becoming really important. Consider, a patient who has encrypted with an SSE
scheme all of her medical information in a single file. Then, assume she wishes to
give access to her medical data to a dermatologist. The problem that arises here
is that the patient has no way of giving out only the related to a dermatologist
examination information from her medical records (i.e. keep the rest of the infor-
mation private). While this is a well-known limitation of traditional encryption
schemes, in SSE is of paramount importance since such schemes are built for the
cloud – an environment that supports data sharing between multiple users. We
believe that it is time to adopt a new broad vision of cryptosystems that will
take advantage of the cloud features without compromising users’ privacy. To
this end, we explore the concept of granular access control in SSE schemes with
the use of trusted hardware.

Apart from focusing on the aforementioned problem, we also try to enhance
our scheme with the best security guarantees. Leaked information in SSE schemes
has become a problem of paramount importance since it is the main factor in
defining the overall level of security. In works such as [13] and [25] it is pointed
out that even a small leakage can lead to several privacy attacks. These works
were further extended in [33] where the authors assumed that an active adver-
sary can perform file-injection attacks and record the output. This “new” abil-
ity allowed the adversary to recover information about past queries only after
ten file insertions. This result led researchers to design forward private SSE
schemes [7,10,17]. Forward privacy is a notion introduced in [32] and guaran-
tees that that newly added files cannot be related to past search queries. While
forward privacy is a very important property, unfortunately it has been shown
to also be vulnerable to certain file-injection attacks [33]. While forward pri-
vacy secures the contents of a past query, its binary property, backward privacy,
ensures the privacy of future queries. Backward privacy was formalized in [11].
Informally, an SSE scheme is said to be backward private if whenever a (w, id)
is deleted from the database, subsequent search queries for w do not reveal id.
More information on backward privacy can be found in [11]. In our case, our
construction does not support a delete function and as a result, there is no need
to worry about deleted entries.

Our Contributions: The contribution of this paper is manyfold: (1) We intro-
duce the first SSE scheme that provides granular access control and does not fall

320 H.-V. Dang et al.

under the All-or-Nothing category1. Using our scheme, a user can only decrypt
parts of the ciphertexts based on a policy and a list of attributes. (2) Our con-
struction is among the first SSE schemes that preserve the notion of forward
privacy in the multi-client setting – a very challenging problem since we need
to ensure that at any given time, all users are synchronized. (3) Our scheme is
asymptotically optimal. The update cost is O(m) and the search time is O(�),
where m is the number of unique keywords in a file and � is the number of the
resulted files. (4) Our construction is parallelizable. (5) We test the overall per-
formance of the scheme in an experimental test-bed, that realistically imitates
a client-server approach. We built an in-house OpenStack private cloud and a
client that communicates with the cloud over the Internet. Additionally, for the
storage of data we used PostgreSQL – a proper database in contrast to other
similar works, that rely on the use of data structures such as arrays, maps, etc.

2 Background

Notation: Let s be a string. The length of s is denoted by |s|, its prefix of length
� by s(�), and its suffix of length � by s(�), where � ≤ |s|. The i−th position of s is
denoted by s[i]. A function negl(·) is called negligible if ∀c ∈ N,∃n0 ∈ N : ∀n ≥
n0, negl(n) < n−c. A file collection F is denoted by F = {f1, . . . , fn}. The unique
identifier of a file fi ∈ F is denoted by id(fi) and its corresponding ciphertext
is cid(fi). The universe of keywords is denoted by W = {w1, . . . , wm} and the
ciphertext of a keyword wj ∈ W is cwj

. A probabilistic polynomial time (PPT)
adversary ADV is a randomized algorithm for which there exists a polynomial
p(·) such that for all input x, the running time of ADV(x) is bounded by p(|x|).
Finally, a truth table is a mathematical table used to determine if a statement
is true (T) or false (F). In this work, each statement is represented by a binary
string and hence, T = 1 and F = 0. The logical conjunction (∧) of two strings
s1 and s2 outputs 1 (True) iff ∃i : s1[i] = s2[i] = 1. For example (Table 1):

Table 1. Truth table for the conjunction of binary strings

s1 s2 s1 ∧ s2

001 011 1 (T)

010 101 0 (F)

100 010 0 (F)

111 001 1 (T)

Definition 1 (Symmetric Searchable Encryption). A Symmetric Search-
able Encryption scheme consists of the following PPT algorithms:
1 All-or-Nothing refers to the restriction of existing SSE to offer granular access control

on encrypted data (i.e. once you decrypt a file you get access to all of its information).

ABE-SSE 321

– KeyGen(1λ) : A probabilistic algorithm that takes as input a security parameter
λ and outputs a symmetric key K.

– Add(fi) : A user runs this algorithm whenever she wants to upload a new file
fi to the CSP.

– Search(wj) : A user runs this algorithm to search on the encrypted data col-
lection for those files that contain a keyword wj.

Security Definitions: To formalize the leakage of our scheme, we make use
of a leakage function L such that L = (Ladd,Lsearch) where the components
Ladd and Lsearch correspond to the leakage associated with addition and search
operations. The adversary ADV has full control of the client and thus, can trigger
add and search operations at will. ADV issues a polynomial number of queries
and for each query she records the output. The scheme is L−adaptively secure
if there exists a simulator S that, given the leakage function L, can simulate add
and search tokens.

Definition 2 (L−Adaptive Security). Let SSE = (KeyGen,Add,Search) be
a symmetric searchable encryption scheme. Moreover, let L = (Ladd.Lsearch) be
the leakage function of the SSE scheme. We consider the following experiments
between an adversary ADV and a simulator S.
RealADV (1λ)

ADV makes a polynomial time of adaptive queries q = {w, f1} such that f1 has

not been uploaded to the CSP and for each q she receives back either a search
token for w, τs(w) or an add token τα(f1) for f1 and a sequence of ciphertexts
{cw1 , . . . , cwn}, ∀wi ∈ f1. ADV outputs a bit b.

IdealADV,S(1λ)

ADV makes a polynomial time of adaptive queries q = {w, f1} and for
each q, S is given L = (Ladd,Lsearch). S then returns a token and, in the
case of addition, a sequence of ciphertexts ci. ADV outputs a bit b.

We say that the DSSE scheme is L-i secure if for all probabilistic polynomial
adversaries ADV, there exists a probabilistic simulator S such that:

|Pr[(Real) = 1] − Pr[(Ideal) = 1]|≤ negl(λ)

Definition 3 (Search Pattern). The Search Pattern is a vector sp that shows
which query each keyword corresponds to. For example, sp[t] = wj means that
wj was queried at time t.

Definition 4 (Access Pattern). The Access Pattern for a keyword wi is the
set of all files containing wi at a given time t. The set is denoted by Fwi,t.

Definition 5. (Leakage Function L). Let L = (Ladd,Lsearch).

– Ladd = (id(fi),#wi ∈ fi). This function leaks the unique identifier of each
file as well as the number of keywords contained in it.

– Lsearch = (sp[t],Fwi,t). This function leaks the search and access patterns.

322 H.-V. Dang et al.

Definition 6 (Forward Privacy). An SSE scheme is said to be forward pri-
vate, if for all additions Ladd can be written as Ladd = (id(fi),#wi ∈ fi)2.

3 Architecture

In this section, we introduce the system model by describing the entities par-
ticipating in our construction. Figure 1 depicts the high-level architecture of the
system, where the core entities and their interaction can be seen.

Fig. 1. High-level architecture

Access Control: We design an access control mechanism based on a truth
table. In particular, each user has a specific role and each attribute is associated
with a rule. These roles and rules are represented as binary strings and thus, if
the conjunction of these strings outputs 1, then the underlying role can access
the specified attribute. The Roles and Rules tables are defined later in Table 2.

Registration Authority (RA): We assume the existence of a registration
authority RA that generate the SSE key K and share it with registered users3.
Additionally, RA generates Roles – a dictionary that contains mappings between
roles and their access rights (represented in binary). For example, as can be seen
in Table 2a, the access rights for the role of a doctor is 001, or R(Doctor) = 001.
Upon its generation, Roles is sent to the CSP.
Users: We denote by U = {u1, . . . , un} the set of users that have been regis-
tered to a cloud service that supports our scheme. Users are classified into two
categories: data owners and users that have not yet uploaded any encrypted
data to the CSP. The latter category simply queries the CSP for files containing
a specific keyword. The role of the data owner however, is the most important
since it is the one that creates and outsources all the necessary indexes that will
allow the rest of the users to generate consistent search tokens and search over
the stored ciphertexts. A data owner creates the following indexes:
2 More details about forward privacy can be found in [11].
3 RA and its key sharing protocol are out of the scope of this paper.

ABE-SSE 323

1. No.Files[w, att]: Contains a hash of each keyword/attribute pair {w.att}, along
with the number of files that each pair can be found at.

2. No.Search[w, att]: Contains a hash of each keyword/attribute pair {w.att},
along with the number of files that each pair has been queried for.

3. Rules: A dictionary mapping attributes to specific rules (represented in binary
values). As an example, in Table 2b, the rule for the attribute “Disease” is
010, or A(Disease) = 010. A user ui can access an attribute attj bound by a
specific rule, iff (R(ui)) ∧ ((A(attj)) �= 0.

4. Dict: A dictionary containing mappings between hash values of keywords and
file identifiers.

5. EDB: A dictionary containing mappings between file identifiers and encrypted
keywords.

Cloud Service Provider (CSP): We consider a cloud computing environ-
ment similar to the one described in [30]. The CSP storage will consist of two
tables Dict and EDB. Dict contains a mapping between keywords and file iden-
tifiers while EDB contains the inverse mapping (i.e between file identifiers and
keywords). Additionally, the CSP stores the Roles and Rules tables, that enable
access control on each search query. The CSP verifies each query of the users to
make sure that the user is authorised and has access to the TA.
Trusted Authority (TA): TA is an index storage that stores the
No.Files[w, att] and No.Search[w, att] values for a keyword w. These values are
needed to create the search tokens that will allow users to search directly on the
encrypted data. The TA must run inside the trusted execution enviornment in
order to guarantee the integrity and confidentiality of its security-sensitive com-
putation. Intel SGX provides such a protected execution environment. Hence,
the proposed SSE scheme expects, the TA must support SGX. The TA must
remotely attest itself to the Client application and to the CSP service, prior
to its use, to prove that it runs in a trusted execution enviornment. A detailed
description on SGX functionalities can be found in [18].
Structured Data: It is worth noting that the proposed scheme works only
with structured data. In particular, we require all files to be presented as lists
of attribute/keyword pairs (e.g. “Age = 42”, “Surname = Adams”, etc). This
requirement makes our construction suitable for practical use-cases that nor-
mally rely on structured data (e.g. healthcare records).

4 Our Construction

This section constitutes the core contribution of our paper as we present a
detailed description of the construction. We assume the existence of an IND-
CPA secure symmetric key cryptosystem SKE = (Gen,Enc,Dec) and that of a
cryptographic hash function h : {0, 1}∗ → {0, 1}λ. It is important to mention
here that for most SSE schemes, retrieving the actual files from the CSP is con-
sidered to be a trivial process and as such is not taken into consideration. In our
construction, this is essential as the user does not retrieve the entire files but

324 H.-V. Dang et al.

encrypted parts of it. Before we proceed with the formal construction we provide
a high-level description in the form of a toy example, with three files, f1, f2 and
f3. Each file contains structured data with multiple keyword/attribute pairs.

Toy Example: We assume a scenario with three different roles, Doctor, Nurse
and Researcher and three files (f1, f2, f3) as shown in Table 2 . The Role table
maps each role to a binary value; whereas, the Rule table maps each attribute
to a specific rule which is also presented in binary format. An attribute attj
is accessible to a user ui iff R(ui) ∧ A(attj) �= 0. For instance, if ui is a nurse
and attj = surname, then R(nurse) ∧ A(surname) = 010 ∧ 011 = 010 �= 0.
Hence, a nurse can access surnames. Similarly, a nurse can access disease, but
not age since R(nurse) ∧ A(age) = 010 ∧ 101 = 0. We now assume that a nurse
ui wishes to search for the keyword w1 that refers to surname. After ui requests
the No.Files[w1, surname] and No.Search[w1, surname] values from the TA, she
can create the search token τs(w1) that will be sent to the CSP. Upon reception,
the CSP verifies that ui, as a nurse, is allowed to access surname and disease.
As a next step, the CSP locates the files fi such that w1 ∈ fi (in this case, f1).
Finally, based on fi, the CSP retrieves EDB, and sends back to ui the ciphertexts
cw1 and cw3 (since cw2 corresponds to an attribute that ui is unauthorized to
access, it will not be sent back to her).

Table 2. CSP tables

Role Value

Doctor 001

Nurse 010

Researcher 100

(a) Roles

Attr Rule

Surname 011

Age 101

Disease 010

(b) Rules

Kw File

h(w4) f2

h(w5) f2

h(w6) f2

h(w3) f1

h(w2) f1

h(w1) f1

h(w8) f3

h(w7) f3

h(w9) f3

(c) Dict.

File Attr Ciphertext

f1 Surname cw1

f1 Age cw2

f1 Disease cw3

f2 Surname cw4

f2 Age cw5

f2 Disease cw6

f3 Surname cw7

f3 Age cw8

f3 Disease cw9

(d) EDB

4.1 Formal Construction

Key Generation. RA runs the KeyGen algorithm to generate the secret key
K = (K1,K2) where K1,K2 ← SKE.Gen. K will be shared with all users upon their
registration to the service, whereas K1 is used to encrypt/decrypt data (line 9
of Algorithm 1) and K2 will be sent to TA to generate a proof for search query
verification (lines 11–14 of Algorithm 2).

ABE-SSE 325

File Addition. To add a new file fi, a user ui first extracts all the keywords and
attributes from fi. For each pair of (attribute, keyword), requests the No.Files
and No.Search values from the TA. These will allow ui to compute the unique
keyword key Kw and the address addrw (hash value of the keyword as in lines 5–
6 of Algorithm 1). Next, ui encrypts the keywords locally and sends them to
the CSP who stores them in the EDB dictionary. Additionally, ui sends a list
Map = {addrw, id(fi)} to the CSP that will be inserted in Dict. Finally, an
acknowledgement is sent to the TA to update the No.Files and No.Search indexes
accordingly.

Algorithm 1. File Addition
1: Map = {}
2: Cw = {}, Attw = {}
3: for all wj ∈ fi do
4: No.Files[wj , attj] + +
5: Kwj = SKE.Enc(K2, h(wj)||attj ||No.Search[wj, attj])
6: addrwj = h(Kwj ,No.Files[wj , attj]||0)
7: valwj = id(fi)
8: Map = Map ∪ {addrwj , id(fi)}
9: cwj = SKE.Enc(K1, wj)

10: Cw = Cw ∪ cwj , Attw = Attw ∪ attj

11: Send {No.Files[wj , attj]} values to be updated at TA
12: Send (Map, id(fi), {Cw}, {Attw}) to the CSP
13: CSP adds Map into Dict and id(fi), {Cw}, {Attw} to EDB

Search. Assume a user uk wishes to perform a search operation for a given
keyword/attribute pair (e.g. age = 42). To do so, she first contacts the TA to
request No.Files[wj , attj] and No.Search[wj , attj] values, where attj and wj is the
keyword/attribute pair she wishes to search for. Based on No.Search[wj , attj],
uk can compute the unique keyword key Kwj . Additionally, uk also computes
the updated addresses for Dict by incrementing the value of No.Search[wj , attj]
by one (lines 3–8 of Algorithm 2). Finally, uk computes and sends to the
CSP the search token that consists of the keyword key Kwj , No.Files[wj , attj]
and the updated addresses. Upon reception, the CSP forwards Kwj to the TA
who decrypts it using K2 and calculates the updated addresses. The updated
addresses will be sent back to the CSP who can verify their correctness4. Then
the CSP locates all the Dict entries (file identifiers id(fi)), associated with wj .
Based on the list of id(fi) and uk ’s role, the CSP retrieves all encrypted key-
words (cw) associated with each fi that uk is eligible to access. The result is
finally sent to uk in a result list R.

4 At a first glance, this extra round of communication between the CSP and the
TA seems unnecessary. However, it is essential for preventing an attack in which a
malicious user would send to the CSP a list of wrong addresses.

326 H.-V. Dang et al.

Algorithm 2. Search
User uk:

1: Request No.Files[wj , attj] and No.Search[wj , attj] values from TA
2: Kwj = SKE.Enc(K2, h(wj)||attj ||No.Search[wj, attj])
3: No.Search[wj , attj] + +
4: Kwj

′ = SKE.Enc(K2, h(wj)||attj ||No.Search[wj, attj])
5: Lu = {}
6: for i = 1 to No.Files[wj , attj] do
7: addrwi = h(Kwi

′, i||0)
8: Lu = �Lu ∪ {addrwi}
9: Send τs(wj) = (Kwj ,No.Files[wj , attj], Lu, attj) to CSP.

CSP:
10: Forward Kwj to TA

TA:
11: Decrypt Kwj , and repeat steps 3-8 with locally stored values of No.Files,No.Search

to produce a list LTA = {addrwi}
CSP:

12: Send LTA to the CSP
13: if Lu �= LTA then
14: Output ⊥
15: else
16: Fwj = {}
17: for i = 1 to No.Files[wi, atti] do
18: id(fi) = Dict[h(Kwj , i||0)]
19: Fwj = Fwj ∪ {id(fi)}
20: Remove Dict[h(Kwj , i||0)]

21: Add the new addresses as specified in Lu

22: R = {}
23: for all id(fi) ∈ Fwj do
24: for all cw� ∈ fi do
25: if R(uk) ∧ A(att�) �= 0 then
26: R = R ∪ {att�, cwl}
27: Send R to uk

28: Send acknowledgement to TA to update No.Search

5 Security Analysis

In this section, we prove the security of our construction according to Defini-
tion 2. We will prove that we can construct a simulator S that can simulate
addition and search tokens in a way that no PPT adversary ADV will be able
to distinguish between the real and ideal experiments as they were defined in
Sect. 2. Note that, similarly to all SSE schemes, our goal is to prove that addition
and search tokens can be simulated given only the leakage function L.

Theorem 1. Let SKE = (Gen,Enc,Dec) be a CPA-secure symmetric key cryp-
tosystem. Moreover, let h : {0, 1}∗ → {0, 1}λ be a secure cryptographic hash
function. Then our construction is secure according to Definition 2.

ABE-SSE 327

Proof. To prove the security of our construction, we use a hybrid argument where
the simulator S is given as input the leakage function L = (Ladd,Lsearch) and
simulates the SSE functionalities. In a pre-processing phase S generates a key
KEXP ← SKE.Gen(1λ) that is given to ADV. Moreover, S creates a dictionary
KeyStore to store the last Kw of each keyword and one dictionary FOracle to
reply to random oracle queries.
Hybrid 0: Everything runs as specified in the protocol.
Hybrid 1: Like Hybrid 0 but instead of the addition algorithm, S is given Ladd

and proceeds as shown in Algorithm 3.

Algorithm 3. Add Token Simulation
1: L = {}
2: C = {}
3: for i = 1 to i = #wi ∈ f do
4: Simulate addresses ai such that |ai|= λ
5: Add (id(f), ai) in Dict
6: L = L ∪ {ai}
7: cwi ← SKE.Enc(KEXP, 0λ)
8: C = C ∪ cwi

9: τα(f) = (cid(f), C, L)

In particular, S simulates random strings of the correct length as the
addresses and stores them in a list L. Apart from that, S encrypts sequences
of zeros and stores them in a list C. Since the simulated addresses have the
same length as the real ones, ADV cannot distinguish between the list L and
Map from Algorithm 1. Moreover, the CPA-security of SKE ensures us that ADV
cannot distinguish between the encryption of zeros and that of real data. Hence,
Hybrid 1 is indistinguishable from Hybrid 0. As a result,

Pr[(Hybrid 0) = 1] − Pr[(Hybrid 1) = 1]|≤ negl(λ) (1)

Note that since S successfully simulates τα(f) given only Ladd, our scheme
preserves the notion of forward privacy.

Hybrid 2: Like Hybrid 1 but now S is given Lsearch and proceeds as presented in
Algorithm 4. More Specifically, the KeyStore[w] dictionary is used to keep track
of the last key Kw used for each keyword w. The FOracle[Kw][j][i] dictionary
is used to reply to ADV’s queries. For example, FOracle[Kw][0][i] represents the
address of a Dict entry assigned to the i − th file in the collection. Similarly,
FOracle[Kw][1][i] represents id(f). The simulated search token has exactly the
same size and format as the real one, and as a result no PPT adversary can
distinguish between them. Moreover, ADV cannot tamper with the quotes gen-
erated by the enclaves during the execution of the remote attestation protocols.
The reason for this, is that these quotes are signed with secret key provided by
Intel. As a result, tampering with the quotes implies producing a valid signature

328 H.-V. Dang et al.

without owning the corresponding key, which can only happen with negligible
probability. Thus, Hybrid 2 is indistinguishable from Hybrid 1. Hence:

Pr[(Hybrid 1) = 1] − Pr[(Hybrid 2) = 1]|≤ negl(λ) (2)

By combining Eqs. 1 and 2 we get:

Pr[(Hybrid 0) = 1] − Pr[(Hybrid 2) = 1]|≤ negl(λ) (3)

Which implies:

Pr[(Real) = 1] − Pr[(Ideal) = 1]|≤ negl(λ)�� (4)

Side-Channel Attacks. Recent works have shown that SGX is vulnerable to
software attacks. However, according to [18] leakage can be avoided if the pro-
grams running in the enclaves do not have memory access patterns or control
flow branches that depend on the values of sensitive data. In our case, no sen-
sitive computations occur in the SGX enclave and thus, there is no possibility
of leaking encryption keys. Hence, by assuming a constant time implementation
our construction is secure against timing attacks.

Does the Removal of TEE Affects the Security of the Scheme? While
the use of a TEE can be seen as a subterfuge to improve the security of a
scheme this is not true in our case. In contrast to other SGX-based approaches [2,
24], where the SGX enclave hosts sensitive information such as encryption and
decryption keys and hence, removing the SGX would lead to a downgrade in the
security of the schemes, in our case the only information stored in the Enclaves
are metadata (No.Search and No.Files) about the files. It is clear that in our
approach the use of SGX only facilitates the multi-client model and thus, while
removing the TEE does not affect the security of the scheme, it results to a
single-client model.

6 Experimental Results

This section provides an overview of the experimental setup used for the eval-
uation and reports the obtained computational results. As already stated, our
construction works with structured data of a certain form. To this end, and for
reasons of simplicity, all of our experiments are conducted with json files.

Experimental Setup.We have setup an experimental testbed, that realistically
imitates the system model described in Sect. 3. For this purpose, an in-house
OpenStack based private cloud environment has been utilized. Three different
virtual machines (VMs) are created, where each VM is used to run service for one
of the three entities (i.e. Client, TA and CSP) respectively. The resource config-
urations of all the three VMs are identical and as follows: [4 virtual CPUs, 8 GB
RAM, 80 GB disk, Ubuntu 18.04 LTS as operating system].

ABE-SSE 329

Algorithm 4. Search Token Simulation
1: d : Number of file identifiers to be returned
2: R = {}
3: if KeyStore[w] = Null then
4: KeyStore[w] ← {0, 1}λ

5: for i = 1 to i = d do
6: if FOracle[0][i] = Null then
7: Pick a id(f), ai) pair
8: else
9: ai = FOracle[Kw][0][i]

10: Remove ai from the dictionary
11: R = R ∪ {id(f)}
12: UpdatedV al = {}
13: Kw

′ ← {0, 1}λ

14: KeyStore[w] = Kw
′

15: for i = 1 to i = d do
16: Generate a new ai such that |ai|= λ
17: Add id(f), ai) to the dictionary
18: UpdatedV al = UpdatedV al ∪ {id(f), ai}
19: FOracle[Kw][0][i] = ai

20: FOracle[Kw][1][i] = id(f)

21: τs(w) = (Kw, d, UpdatedV al)

The implementation of all three applications was done in Python with the use
of Django framework and Tastypie API. For data storage on the TA and the CSP,
we used a PostgreSQL database; therefore, these components also rely on Psy-
copg PostgreSQL database adapter. The Client is a web application that provides
an interface to end-users for uploading and searching data by utilising the TA
and the CSP. Since the client encrypts/decrypts data locally, its implementation
heavily relies on JavaScript. For this purpose, the Stanford JavaScript Crypto
Library (SJCL) [31], has been utilized for hashing and encryption. SHA256 has
been used for hashing, while the encryption is performed using AES with key
size of 128 bits and CCM mode (Counter with CBC-MAC mode of operation,
which provides both authentication and confidentiality).

Similar to the Client, the TA also requires hashing, encryption and decryption
functions, however different to the Client, it is implemented on the server side.
For this purpose, the python package sjcl 0.2.12 of the same library [8] has been
used. This package allows the TA to encrypt/decrypt messages compatible with
the message format of the SJCL library used by the client.

Each application is wrapped in containers and then deployed on the respec-
tive VMs. This was mainly done to easily setup and reproduce the experiments.
The hosting of each application is handled through the Gunicorn WSGI http
server. In the case of CSP and TA, the corresponding PostgreSQL database
instances ran in separate containers on same VMs (i.e. on each VM, there are
two containers – the service and the database container).

330 H.-V. Dang et al.

Open Science and Reproducible Research: To support open science and
reproducible research and give the opportunity to use, test and extend our
scheme, we release all code on GitLab [5] and research artifacts on Zenodo [4].
Additionally, we dockerize the implementation and publish the images on Docker
Hub [3].

Datasets.To evaluate the computational complexity of the various functions
of our scheme, synthetic structural data of different size were generated. As a
benchmark, we considered a system consisting of data belonging to 300 indi-
viduals, where each individual data is provided through a json file. Hence, the
data of 300 individuals means 300 json files, where every json file contains a
fixed number of attributes and their values. The value of each attribute is also
synthetically generated and consists of randomly selected number of characters,
(i.e. between 5 to 30). Using these settings, we then considered sub-scenarios,
where the number of files remains fixed (i.e 300), but, the number of attributes
varies from 50 to 400. Our datasets can be seen in Table 3.
Choosing the Parameters for the Experiments: We used json files, as
inputs, due to its simplistic nature and wide adoption. To choose appropriate
parameters for the experiments (300 instances with attributes varying from 50
to 400), we relied on popular medical datasets, such as Breast Cancer Wiscon-
sin (Diagnostic) (569 instances, 32 attributes) and Heart Disease Data Set (303
instances, 75 attributes), from the UC Irvine Machine Learning Repository [1].
The aim of experiments was to evaluate the performance of the scheme. Hence,
the actual contents of the data was not important. Therefore, the data were
synthetically generated to avoid any data compatibility and/or transformation
issues. To get more accurate results, each experiment was run 30 times.

Table 3. Datasets

No of attributes Size in database

50 4.82 MB

100 9.6 MB

150 14 MB

200 19 MB

250 23 MB

300 28 MB

350 33 MB

400 37 MB

Computational Time and Overhead. We have used Apache Jmeter, a load
testing tool, combined with Selenium WebDriver, a web automation testing
framework, and Chrome driver, to automate and measure the execution of web

ABE-SSE 331

application in Chrome version 78.0.3904.108. The performance tests were con-
ducted on a computer with 8GB RAM, Intel Core i5-6500 CPU 3.20GHz 4
cores, 250GB disk size and Ubuntu 16.04 LTS 64-bit operating system. The
reported measurements are the average result of 30 simulation runs.

Search: To measure the performance of Search we focused on (1) Evaluating
the impact of the number of attributes per file to the search time. Our mea-
surements included files with a variable number of attributes ranging from 50
to 400 and (2) Evaluating the impact of the size of result list R (as defined in
Algorithm 2) to the search processing time for files containing different number
of attributes (ranging from 50 to 400). Figures 2a and 2b present the aggregated
results. From Fig. 2a, we conclude that the processing time increases as the
number of matching keywords in a search query increases. For example, for files
containing 50 attributes, the completion time for a search query that returned 0
matches was approximately 4 s, whereas nearly 7 seconds were required when 20
matches were found. A similar pattern was observed in all the remaining sce-
narios (i.e. when the number of attributes increases from 100 to 400 per file).
Figure 2b, illustrates the impact of the result list R to the processing time. We
observe that the processing time grows almost linearly with the size of R. Note
that the times presented in Figs. 2a and 2b, include the generation of the search
token, the communication between the CSP and TA, the time required for the
CSP to find all matching files and finally, the decryption of the matching files.

Fig. 2. Search function processing time for (a) Variable data sizes against number of
found occurrences, (b) Number of found occurrences against variable data sizes

Insert: In this part of the experiments, we measured the time required to insert
new data in a non-empty database. For the purpose of our experiments, we first
ran our tests with a database containing 50 files and then increased the number
of files to 300. In each case, different measurements were recorded based on
the number of attributes (ranging from 50 to 400). Figures 3a and 3b present
the obtained results. Each measurement, in both plots, represents the average
processing time of 30 runs, where the line bar represents the minimum and
maximum measurement amongst those runs. The key points from the above-
mentioned results is that the measurements in both cases are almost identical.
However, as the number of attributes per file increases, the processing time
increases significantly.

332 H.-V. Dang et al.

Fig. 3. Processing time of new file insertion whilst (a) 300 files present in database,
(b) 50 files present in database

Data Storage Overhead: In the last phase of our experiments, we measured
the data storage overhead. We recorded the size of the databases for the CSP
and the TA. When final measurements were taken, the databases contained data
of 300 files with different number of attributes (ranging from 50 to 400). Figure 4
presents the summarized results where data(blue line) refers to the ciphertexts
stored in the CSP, the overhead of CSP is the size of the dictionary stored in
the CSP, the overhead of the TA is the size of metadata stored in the TA and
the total overhead is the sum of the two.

Fig. 4. Data table sizes containing data of 300 files

7 Related Work and Comparison

Recently, there have been multiple systems that suggest moving beyond the tra-
ditional boundaries of encryption and allowing users of a cloud service to search
over encrypted data [6,28,29]. Our construction is based on the scheme presented
in [17] where authors designed a single-client forward private SSE scheme that
achieves optimal search and update costs. Another single-client forward private
SSE scheme is proposed in [10], where authors designed Sophos. Even though
Sophos achieves optimal search (O(�)) and update costs (O(m)), a file addition
requires O(m) asymmetric operations on the user’s side. In [12], authors leverage
the functionality offered by Intel’s SGX to minimize the leakage. Their construc-
tion achieves logarithmic search costs. However, it is static and does not support

ABE-SSE 333

file insertions after the initial creation of the indexes. Despite their strong points,
all the aforementioned schemes provide an ”All-or-Nothing” functionality in the
sense that the decryptor will either decrypt the whole ciphertext and get access
to all the information that is enclosed or will not get access at all. SSE schemes
can also be constructed by Oblivious RAM [22] as for example in [20]. However,
as mentioned in [10], such constructions induce large bandwidth overhead, large
client storage and multiple roundtrips and as a result, the use of ORAM-based
approaches seems unrealistic. However, despite these inefficiencies, ORAM-based
techniques can be leveraged to design even more secure SSE schemes as in the
case of [11] where there authors presented, among others, Moneta. Moneta is an
SSE scheme based on the TWORAM construction presented in [20] and satisfies
both forward and backward privacy [11]. However, as argued in [21], the use of
TWORAM renders Moneta impractical for realistic scenarios and the scheme can
serve mostly as a theoretical result for the feasibility of more secure SSE schemes.
More recently, in [21] authors present Orion, another ORAM-based SSE scheme
with similar security guarantees as Moneta. While Orion outperforms Moneta,
the number of interactions between the user and the CSP depends on the size of
the encrypted database. In [2], authors propose an SGX-assisted ORAM-based
construction called Bunker-B. While this approach achieves both forward and
backward privacy with optimal search and update costs, it does not offer any
kind of access control. Finally, in [14], authors present three more forward and
backward private schemes that offer small client storage. However, their schemes
require multiple rounds of interaction, does not offer access control and only
support the single-client model. The idea of enabling access control in keyword
search is not novel. However, existing approaches [23,26,27] are based on Pub-
lic key Encryption with Keyword Search (PEKS), a notion first introduced and
formalized in [9], and thus, are not efficient when dealing with large amounts of
data. Moreover, in [24], authors propose an access control mechanism based on
the use of SGX alongside oblivious data structures such as Circuit-ORAM and
Path-ORAM. However, their scheme requires the client to share a key with the
SGX enclave that will be used to perform sensitive operations such as encryp-
tions and decryptions. However, as mentioned in Sect. 5, performing sensitive
operations inside an SGX enclave, can lead to the leakage of the encryption key.
Given the inadequacy of current searchable encryption schemes to offer granular
access on encrypted data, we propose a construction that enables data owners
to specify exactly which parts of their encrypted data may be decrypted and by
whom. As can be seen in Table 4, our construction not only clearly outperforms
ORAM-based approaches but also improves the search time by a factor of 1/p
in comparison to asymptotical optimal constructions. This is due to the fact
that our construction is parallelizable. In particular, each search operation in
our scheme is reduced to the problem of locating to O(�) independent hashes on
Dict, where � is the result size and p the numbers of the processors. Hence, if
the load is distributed to p processors, we achieve optimal search cost O(�/p).
Similarly, the update cost is O(m/p), where m is the number of keywords. Most

334 H.-V. Dang et al.

importantly, our construction is the only one that supports forward privacy in
the multi-client model, and the only one providing an access control mechanism.

Table 4. N : number of (w, id) pairs, n: total number of files, m: total number of keywords, p:
number of processors, k: number of keys, aw: number of updates matching w, MC: Multi-Client, FP:
Forward Privacy, BP: Backward Privacy.

Comparison

Scheme MC FP BP Search time Update time Client storage Access control

Etemad et al. [17] ✗ ✓ ✗ O(�/p) O(m/p) O(m + n) ✗

HardIDX ✗ ✗ ✗ O(log k) – None ✗

Sophos ✗ ✓ ✗ O(�) O(m) O(m) ✗

Moneta ✗ ✓ ✓ ˜O(aw log N + log3 N) ˜O(log2 N) O(1) ✗

Orion ✗ ✓ ✓ O(� log N2) O(logN2) O(1) ✗

Bunker-B ✗ ✓ ✓ O(�) O(1)a O(m log n) ✗

Ours ✓ ✓ ✗ O(�/p) O(m/p) None ✓
aThe authors only consider deleting a single (w, id) pair.

8 Conclusion

In this paper we proposed the first dynamic SSE scheme that provides granular
access control on encrypted data and does not fall under the All-or-Nothing cat-
egory. Our construction, works with structured data in the form of (Attribute:
Value) and allows users to encrypt their data and provide a policy defining who
can access each part of the encrypted data. Our scheme preserves essential prop-
erties of traditional SSE schemes such as forward privacy and constant rounds of
interactions. We see this work as a first step towards an Attribute-Based Sym-
metric Searchable Encryption scheme and we hope that it will inspire researchers
to further explore and develop this fascinating and promising field.

References

1. Uc irvine machine learning repository. https://archive.ics.uci.edu/ml/index.php,
Accessed 25 Feb 2020

2. Amjad, G., Kamara, S., Moataz, T.: Forward and backward private searchable
encryption with SGX. In: Proceedings of the 12th European Workshop on Systems
Security, pp. 1–6 (2019)

3. Asclepios: Docker images of symmetric searchable encryption (2020). https://
hub.docker.com/r/uowcpc/asclepios-client, https://hub.docker.com/r/uowcpc/
asclepios-server, https://hub.docker.com/r/uowcpc/asclepios-ta

4. Asclepios: Research artifacts of symmetric searchable encryption (2020). https://
zenodo.org/record/3986839#.Xzj7tJNKiqA

5. Asclepios: Symmetric searchable encryption source code (2020) https://gitlab.
com/asclepios-project/sseta, https://gitlab.com/asclepios-project/symmetric-
searchable-encryption-server, https://gitlab.com/asclepios-project/sseclient,
https://gitlab.com/asclepios-project/ssemanual

https://archive.ics.uci.edu/ml/index.php
https://hub.docker.com/r/uowcpc/asclepios-client
https://hub.docker.com/r/uowcpc/asclepios-client
https://hub.docker.com/r/uowcpc/asclepios-server
https://hub.docker.com/r/uowcpc/asclepios-server
https://hub.docker.com/r/uowcpc/asclepios-ta
https://zenodo.org/record/3986839#.Xzj7tJNKiqA
https://zenodo.org/record/3986839#.Xzj7tJNKiqA
https://gitlab.com/asclepios-project/sseta
https://gitlab.com/asclepios-project/sseta
https://gitlab.com/asclepios-project/symmetric-searchable-encryption-server
https://gitlab.com/asclepios-project/symmetric-searchable-encryption-server
https://gitlab.com/asclepios-project/sseclient
https://gitlab.com/asclepios-project/ssemanual

ABE-SSE 335

6. Bakas, A., Michalas, A.: Modern Family: a revocable hybrid encryption scheme
based on attribute-based encryption, symmetric searchable encryption and SGX.
In: Chen, S., Choo, K.-K.R., Fu, X., Lou, W., Mohaisen, A. (eds.) SecureComm
2019. LNICST, vol. 305, pp. 472–486. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-37231-6 28

7. Bakas, A., Michalas, A.: Multi-client symmetric searchable encryption with forward
privacy. Cryptology ePrint Archive, Report 2019/813 (2019). https://eprint.iacr.
org/2019/813

8. Bartel, U.: Python-SJCL (2020). https://pypi.org/project/sjcl/
9. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption

with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

10. Bost, R.:
∑

oϕoς: Forward secure searchable encryption. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, 24–28 October 2016 (2016)

11. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable
encryption from constrained cryptographic primitives. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security (2017)

12. Brasser, F., Hahn, F., Kerschbaum, F., Sadeghi, A.R., Fuhry, B., Bahmani, R.:
Hardidx: Practical and secure index with SGX (2017)

13. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM (2015)

14. Demertzis, I., Ghareh Chamani, J., Papadopoulos, D., Papamanthou, C.: Dynamic
searchable encryption with small client storage. In: NDSS, 2020 (2020)

15. Dowsley, R., Michalas, A., Nagel, M.: A report on design and implementation of
protected searchable data in iaas. Technical report, Swedish Institute of Computer
Science (SICS) (2016)

16. Dowsley, R., Michalas, A., Nagel, M., Paladi, N.: A survey on design and imple-
mentation of protected searchable data in the cloud. Computer Science Review
(2017). http://www.sciencedirect.com/science/article/pii/S1574013716302167

17. Etemad, M., Küpçü, A., Papamanthou, C., Evans, D.: Efficient dynamic searchable
encryption with forward privacy. Popets 2018(1), 5–20 (2018)

18. Fisch, B., Vinayagamurthy, D., Boneh, D., Gorbunov, S.: Iron: functional encryp-
tion using intel sgx. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pp. 765–782. ACM (2017)

19. Frimpong., E., Bakas., A., Dang., H., Michalas., A.: Do not tell me what i cannot
do! (the constrained device shouted under the cover of the fog): implementing
symmetric searchable encryption on constrained devices. In: Proceedings of the 5th
International Conference on Internet of Things, Big Data and Security, IoTBDS,
vol. 1, pp. 119–129. INSTICC, SciTePress (2020). DOI: https://doi.org/10.5220/
0009413801190129

20. Garg, S., Mohassel, P., Papamanthou, C.: TWORAM: efficient oblivious RAM in
two rounds with applications to searchable encryption. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 563–592. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3 20

21. Ghareh Chamani, J., Papadopoulos, D., Papamanthou, C., Jalili, R.: New con-
structions for forward and backward private symmetric searchable encryption. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’18. Association for Computing Machinery (2018)

https://doi.org/10.1007/978-3-030-37231-6_28
https://doi.org/10.1007/978-3-030-37231-6_28
https://eprint.iacr.org/2019/813
https://eprint.iacr.org/2019/813
https://pypi.org/project/sjcl/
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
http://www.sciencedirect.com/science/article/pii/S1574013716302167
https://doi.org/10.5220/0009413801190129
https://doi.org/10.5220/0009413801190129
https://doi.org/10.1007/978-3-662-53015-3_20

336 H.-V. Dang et al.

22. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

23. Han, J., Yang, Y., Liu, J.K., Li, J., Liang, K., Shen, J.: Expressive attribute-based
keyword search with constant-size ciphertext. Soft Comput. 22(15), 5163–5177
(2017). https://doi.org/10.1007/s00500-017-2701-9

24. Hoang, T., Ozmen, M.O., Jang, Y., Yavuz, A.A.: Hardware-supported oram in
effect: practical oblivious search and update on very large dataset. Proc. Priv.
Enhancing Technol. 2019(1), 172–191 (2019)

25. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: NDSS. Citeseer (2012)

26. Li, J., Zhang, L.: Attribute-based keyword search and data access control in cloud.
In: Proceedings - 2014 10th International Conference on Computational Intelli-
gence and Security, CIS 2014, pp. 382–386 (2015)

27. Miao, Y., et al.: Privacy-preserving attribute-based keyword search in shared multi-
owner setting. IEEE Trans. Dependable Secure Comput. (2019)

28. Michalas, A., Bakas, A., Dang, H.V., Zalitko, A.: Abstract: access control in search-
able encryption with the use of attribute-based encryption and sgx. In: Proceedings
of the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop,
CCSW’19, p. 183. ACM (2019)

29. Michalas, A., Bakas, A., Dang, H.-V., Zaltiko, A.: MicroSCOPE: enabling access
control in searchable encryption with the use of attribute-based encryption and
SGX. In: Askarov, A., Hansen, R.R., Rafnsson, W. (eds.) NordSec 2019. LNCS,
vol. 11875, pp. 254–270. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-35055-0 16

30. Paladi, N., Gehrmann, C., Michalas, A.: Providing user security guarantees in
public infrastructure clouds. IEEE Trans. Cloud Comput. 5(3), 405–419 (2017).
https://doi.org/10.1109/TCC.2016.2525991

31. Stanford: Stanford javascript crypto library (2020). https://github.com/
bitwiseshiftleft/sjcl

32. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: NDSS, vol. 71, pp. 72–75 (2014)

33. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the
power of file-injection attacks on searchable encryption. In: 25th USENIX Security
Symposium, pp. 707–720 (2016)

https://doi.org/10.1007/s00500-017-2701-9
https://doi.org/10.1007/978-3-030-35055-0_16
https://doi.org/10.1007/978-3-030-35055-0_16
https://doi.org/10.1109/TCC.2016.2525991
https://github.com/bitwiseshiftleft/sjcl
https://github.com/bitwiseshiftleft/sjcl

Towards Inclusive Privacy Protections
in the Cloud

Tanusree Sharma, Tian Wang, Carlo Di Giulio, and Masooda Bashir(B)

University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
{tsharma6,tianw7,mnb}@illinois.edu, carlo.digiulio85@gmail.com

Abstract. The adoption of cloud computing has created tremendous prospects
and cost savings for a variety of organizations. Although increasing resources and
effort have been devoted to fighting cyber-threats in cloud environments, cloud
computing continues to be associated with a range of severe and complex security
and privacy issues that may challenge the overall benefits that CSPs offer. While
security protections in cloud computing has been widely discussed and compre-
hensive guidelines have been established, privacy protections in the cloud does
not have the same level of focus or set of guideline or framework that has been
established. In this paper, we present a systematic review of previous literature
related to privacy issues in cloud computing, analyze multiple general privacy
frameworks, policies, and principles to highlight the critical need for creating pri-
vacy protection criteria’s for cloud computing. Our research and review illustrates
that privacy protections focused on cloud computing is deficient and it can serve
as an initial guide towards building and improving privacy protections in order to
meet cloud privacy requirements and ensure data protection.

Keywords: Privacy protection · Cloud computing · Privacy risks

1 Introduction

Cloud computing represents amajor evolution of computer technology and has become a
dominant model for delivering information technology (IT) infrastructure, components,
and applications [2]. It is a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources that can be rapidly
provisioned and released with minimal management effort or service provider interac-
tion [3]. The main way cloud computing can be offered to consumers is through cloud
service providers (CSPs). Since cloud computing offers mobility, cost effectiveness,
and availability, large and small enterprises as well as government are reorienting their
overall information technology (IT) infrastructure and strategies to include cloud com-
puting for high-level collaboration possibilities [4]. Whereas industry, government, and
everyday online users widely rely on the cloud for access to and processing of their
data, concerns with information assurance and information security and privacy in cloud
computing have captured much attention in particular. The adoption of cloud technol-
ogy has created new threats to security and privacy. Although increasing resources and

© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 337–359, 2020.
https://doi.org/10.1007/978-3-030-61638-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_19&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_19

338 T. Sharma et al.

effort have been devoted to fighting cyber-threats and privacy concerns in cloud envi-
ronments [5], cloud computing continues to be associated with a range of severe and
complex security and privacy issues that may challenge the overall benefits that CSPs
offer [7]. In particular, any of the three main cloud computing model (IaaS, PaaS, and
SaaS) can be vulnerable to serious threats related to data integrity, confidentiality, and
privacy principles.

Consideration of information privacy has become an essential element of all com-
puting and online services. Not only does information privacy refer to confidentiality
of personal information, but also to protection of personal information and safeguard of
collection, access, use, dissemination, and storage of personally identifiable information
(PII) [11]. Cloud computing continues to be a prime target for cyber-attacks because the
cloud holds much of our most personal and sensitive data. Data in the cloud are easier
to manipulate, but also easier to lose control of. Storage of personal data on a server
somewhere in cyberspace can pose a major threat to individual privacy [6]. Solutions
to information privacy issues in the cloud are increasingly needed to promote trust and
boost a safe and data-secure economic development.

Currently, there are already many straightforward, comprehensive set of measures
on cloud computing security, but the focus on privacy is still behind and ambiguous.
Although there are many overlaps between security and privacy in cloud computing, it
is important to distinguish privacy from security. Instead of focusing on preventing or
solving technical issues like security, privacy in cloud computing might be more difficult
to define since the concept of privacy itself can vary under different circumstances. In
cloud environment, privacy issues include, but are not limited to what data should be
collected, with whom the data will be shared, how the data is stored and transmitted, and
who has access to it. Those questions should be considered and addressed carefully in
cloud computing, not only by creating technical measures to prevent privacy threats, but
also keeping in mind that the concept of privacy and all its possible implications related
to data processing in the cloud need to be established and clarified in the first place.

While privacy considerations need to be addressed and emphasized in cloud comput-
ing, to the best of our knowledge, there has been no current or published research with
a well-established comprehensive guideline or framework specifically related to infor-
mation privacy in cloud computing. The National Institute of Standards and Technology
(NIST) has published the Privacy Framework 1.0 on January 2020, but it is intended
to generally help organizations build better privacy foundations by bringing privacy
risk into parity with their broader enterprise risk portfolio, instead of focusing on the
cloud computing environment. Meanwhile, although there has been some preliminary
examination of CSPs and their security controls [1, 8–10] with respect to different certi-
fications, there is still no established set of controls or criteria for information privacy in
cloud computing. For example, there is still much debate and confusion about the terms
and words that are used in discussing security or privacy. Even the term data protection
is used for both security and privacy, so it is not always clear which domain is being
protected. As the first step, a scientific, systematic review of previous studies on infor-
mation privacy under cloud environment is essential and necessary to better understand
the current situation on cloud computing privacy before any measures or steps can be

Towards Inclusive Privacy Protections in the Cloud 339

taken to develop a comprehensive protection framework to be used as a benchmark for
privacy in cloud computing.

In this paper, we systematically review previous published studies related to infor-
mation privacy protection in cloud computing. The research goals are to 1) summarize
and analyze scholarly papers that discuss privacy in cloud computing and 2) discuss the
need of a comprehensive guideline or framework of privacy protection in cloud comput-
ing. Our systematic review will provide an important step in identifying a current gap
in cloud computing privacy.

2 Background

The concept of privacy has been widely discussed in the past decades, and it is still
difficult to define given the fact that its definition may vary under different circum-
stances. Not only is privacy one of the most important concepts, but also one of the
most elusive, since the amount of available information keeps increasing as technology
changes rapidly, which makes scholars and policymakers struggle to define it [57]. As a
result, researchers have been putting significant effort in building a comprehensive and
systematic framework or taxonomy to explain privacy in modern life. One of the most
commonly referred privacy frameworks is the taxonomy developed by Solove in 2005.
In his book, A Taxonomy of Privacy, Solove provides a framework to better understand
privacy by focusing on the activities that invade it [58]. The taxonomy includes four
groups: 1) information collection, 2) information processing, 3) information dissemi-
nation, and 4) invasion, and has been widely applied as guidelines in further studies of
privacy, especially in cloud computing.

Meanwhile, governments and organizations all over the world have created various
privacy laws and frameworks for regulation of individual’s personal information col-
lected by governments, organizations, or other individuals. Below are some of the main
privacy frameworks that have been developed and applied.

NIST Privacy Framework. A tool for improving privacy through enterprise risk man-
agement and helping with optimizing beneficial uses of data while protecting individual
privacy, developed by NIST with version 1.0 published on January 16, 2020. The frame-
work provides a useful set of privacy protection strategies for organizations to have better
approaches to use and protect personal data. It also provides “clarification about privacy
risk management concepts”, as well as the relationship between the Privacy Framework
and NIST’s Cybersecurity Framework [53].

Fair Information Practice Principles (FIPPs). Aset of eight principles that are rooted
in the tenets of the Privacy Act of 1974 [59]. FIPPs are the basis for analyzing privacy
risks and determining appropriate mitigation strategies. The principles are “used as
the framework for privacy policy and implementation at the Department of Homeland
(DHS)”, aswell as beingmentioned inmany state laws, foreign nations, and international
organizations. FIPPs include: Transparency, Individual Participation, Purpose Specifi-
cation, Data Minimization, Use Limitation, Data Quality and Integrity, Security, and
Accountability and Auditing [54].

340 T. Sharma et al.

General Data Protection Regulation (GDPR). The European Union Regulation on
data protection and privacy. It is “on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data,” and is currently
the common regulatory privacy framework for all 27 Member States of the European
Union. The GDPR was published on April 27, 2016 [55].

Cloud Security Alliance Cloud Controls Matrix (CSA CCM). Updated to its latest
version on August 3, 2019, the CCM is defined by the Cloud Security Alliance (CSA)
as “the only meta-framework of cloud-specific security controls.” It provides structure,
detail, and clarity related to information security tailored to cloud computing. The CCM
includes fundamental security principles for cloud vendors as guidelines and for cloud
users to assess the security risk of a cloud provider [56]. The new version released in
2019 included minor update that incorporates specific mappings like AICPA TSC 2017
or NIST 800-53. In this paper, the version being analyzed is the original base version
published in 2017, and the updated document in 2019 is also considered if there is any
new change in that version.

3 Methodology

To conduct our literature review and analysis of privacy protections focused on cloud
computing, we proceeded in three sequential steps: first is the selection of relevant
scholarly papers, then the analysis of those papers to indicate particular privacy and
security guidelines, followed by highlighting privacy terminologies.

Purpose of the first stage of literature review is to find elements in existing research
on privacy-specific frameworks. We initially searched and collected the most relevant
ones from publicly available scholarly papers through our selected search based on
terms of privacy that would help pinning down privacy-relevant work. The terms used are
“Privacy in Cloud”, “Privacy certification in cloud”, “Privacy and security certification”,
“Privacy and security certifications in cloud”. It is important to note that we selected and
limited our search terms to make sure that we concentrated our search on cloud-relevant
publications that included explicit content referring to privacy and therefore reducing
the noise generated by less relevant work.

After our extensive search in our database of scholarly papers, we have initially
recorded the main elements of each papers, classified by 1) paper title with author
names, 2) methodology of those papers (if original/adopted from other guidelines), 3)
privacy-related terms used in the paper, 4) summary, and 5) references. This initial
classification helps us organize the papers in groups and understand how they relate to
privacy studies. In particular, from this classification we are able to highlight three main
aspects of the papers: concentration of the paper, guidelines followed by that paper, and
potential privacy terminologies which we considered as our final variables for scholarly
paper analysis in our preliminary section.

In the second stage, from the literature review of selected paper, we obtained dif-
ferent variables as our database columns (method followed by those papers; original-
ity/adaptation of methods from different guidelines; summary of paper; privacy-related
terms). This information leads us to initially evaluate guidelines and standards as well

Towards Inclusive Privacy Protections in the Cloud 341

as to measure their relevancy towards building a list of comprehensive criteria for cloud
privacy protection. From the analysis of the academic papers, we have collected sev-
eral recurring guidelines/standards, on the base of being frequently mentioned in the
papers. From this list, and based on the frequency criteria, we have selected the most
relevant guidelines, standards, principles. The guidelines we have selected at this stage
are the General Data Protection Regulation (GDPR), California Customers Privacy Acts
(CCPA), the recent “NIST Privacy Framework” and special publication 800-53 (Rev 5)
by NIST, FIPPs (Fair Information Practices) Principles (by OECD, CSA CCM).

In the third stage, we initially started analyzing most frequently mentioned guide-
lines and standards from the scholarly paper analysis to understand the current standing
of those principles’ privacy viewpoint. The selected guidelines and standards are: NIST
guidelines, theGDPR, FIPPs, theCCPA,CSACCMandFIPPs) to understand the current
standing of those principles’ privacy viewpoint.

4 Preliminary Results

In contrast to security, privacy has not been studied and examined substantially in a com-
prehensive way. Taking this challenge into consideration, we designed our initial study
in our method section to review scholarly papers and available guidelines (NIST2020,
GDPR, CCPA, FIPPs, NIST 800-53) and certifications available for privacy and secu-
rity (ISO/IEC, FedRAMP, C5, SOC2) frequently introduced in those papers to identify
privacy requirements for cloud.

4.1 Scholarly Paper Analysis

The initial search has produced a total of 55 papers, which we further refined by lowering
the number down to 42.The initial selection and refinement are based on adirect reviewof
the papers, using criteria of relevance and reference to substantial privacy requirements,
terminology related to data protection, privacy in cloud environments and general privacy
protection for users. We have assessed the landscapes of privacy literature from 2001 to
2020.

In our assessment, the first variable we call “Area of concentration” refers to the
field or area to which the paper is contributing: security with a general view on privacy;
solely privacy focused; framework-based privacy risk assessment; privacy’s legal point
of view; privacy paper review. For example, if any paper is aligned towards information
security and includes generalized elucidation of privacy, we categorized it as security-
focused, while if any papers is focused on building a framework for privacy-aware
systems or risk assessment, we categorized it as framework-based. A paper can be in
more than one category if it has more than one concentration. The second variable is
guidelines/standards, those scholarly papers followed to develop their methodology. For
example, in Table 1, if we refer to paper [28], it followedNIST guidelines for articulating
theirmethods. Finally, the third variable is related privacy terminologywhich helped us
to understand potential possible privacy criteria for our future research goal of building
a list of criteria to protect cloud privacy.

342 T. Sharma et al.

We have found 4 of those papers’ methodology are solely based on FIPPS (Fair
Information practices) [17, 20, 27, 34] and their area of concentration is on privacy
measures and social and legal aspects. Some of the other papers [35] also mentioned
FIPPs principles loosely as their choice of requirements to explain regulatory terms.
For example, they state their compliance with laws and users’ preferences as a form of
feedback to improve data practices in cloud computing by following guidelines of FIPPs.
Mainly they try to describe privacy risks and challenges for public cloud computing and
how the considerations of guidelines mainly FIPPs and other Acts (USA-PATRIOT Act,
the European Directive 95/46/EC, HIPPA, USA Gramm-Leach-Bliley Act) are utilized
for the evaluation of existing solutions and can make progress in preserving privacy
cloud computing.

From Table 1 of the Scholarly paper analysis result, we can easily map that 4 of
the papers and posters are based on Solove’s taxonomy of privacy [18, 19, 42] and
Nissenbaum’s contextual integrity [33]. In Privacy and information security, these two
names are consistently significant while we are trying to construct design and applica-
tion involving rules of privacy by design or formalize the data life cycle and building
blocks of data handling for big and small organizations. Solove’s taxonomy is designed
to consider aspects related to privacy of information that are of interest of the larger com-
munity, such as the desire of individuals on their information being collected, processed,
disseminate and prevent their invasion [58]. Our reviewed papers based on Solove’s tax-
onomy of privacy further explain their point of view on different subcategories of main
four attributes. For example, in the category of Information Dissemination, Distortion
is a sub-component which is about false or misleading information about an individual
where “a creditor reporting a paid bill as unpaid to a credit bureau” considered as dis-
tortion [18]. In one paper, the attributes from Solove’s taxonomy for classifying Privacy
Policies of Social Networks Sites and possible mechanisms to preserve privacy are used
as the exclusive guideline, [19] while one other paper only uses Solove’s taxonomy with
the integration of certification (ISO/IEC) to conduct its literature review and point out
the main features and challenges in particular application of cloud identity management
[42].

From our list of selected papers, 3 of the papers follow GDPR data protection and
EU Directive (95/46/EC) guidelines solely [29, 46, 59] while 3 more still use GDPR
and EU Directive, but among other guidelines and Acts [35, 39, 47] to present privacy
from both legal and social aspects.While 5papers adopt GDPREUDirectives guidelines
to design privacy framework to support users in their adoption decisions, establishing
reliance between users and legal compliance published by cloud services and proposing
international privacy requirementswith the concentrationwith direct privacy, social/legal
and framework based approach [29], some other papers have relied on GDPR from
directly legal aspects of privacy in developing regulatory instruments and bridge the gap
between technology and law [35, 46, 47, 49] and sometimes only explaining privacy
from the aspects of user empowerment and privacy preservation of cloud functionalities
broadly [39].

From our selected papers of review, 9 papers are solely concentrated on security
and they mention very little about privacy directly. Three of these papers have their

Towards Inclusive Privacy Protections in the Cloud 343

Ta
bl
e
1.

Sc
ho
la
rl
y
Pa
pe
r
A
na
ly
si
s

Pa
pe
r
lis
t

C
on
ce
nt
ra
tio

n
of

pa
pe
r

G
ui
de
lin

e
fo
llo

w
ed

Po
ss
ib
ly

re
la
te
d
to

pr
iv
ac
y

Se
cu
ri
ty

fo
cu
se
d

Pr
iv
ac
y
fo
cu
se
d

Fr
am

ew
or
k
ba
se
d

So
ci
al
/le
ga
lf
oc
us
ed

R
ev
ie
w
pa
pe
r

[1
4]

√
×

×
×

×
N
/A

A
va
ila
bi
lit
y,
in
te
gr
ity

an
d
co
nfi

de
nt
ia
lit
y

[1
2,

15
]

√
×

×
×

×
O
ri
gi
na
l

D
at
a
Pr
iv
ac
y
an
d

Se
cu
ri
ty

in
cl
ud
in
g

ac
ce
ss

co
nt
ro
la
nd

st
or
ag
e

[1
6]

√
×

×
×

×
O
ri
gi
na
l

D
at
a
an
al
yt
ic
an
d

cr
yp
to
gr
ap
hi
c
te
rm

s
da
ta
ce
nt
ri
c
se
cu
ri
ty
,

pr
iv
ac
y-
pr
es
er
vi
ng

da
ta
m
in
in
g

[1
8,

19
]

×
√

√
×

×
So

lo
ve
’s
ta
xo
no
m
y

In
fo
-P
ro
ce
ss
in
g,

co
lle
ct
io
n,

di
ss
em

in
at
io
n,

in
va
si
on

[2
1]

×
√

×
×

×
O
ri
gi
na
l

D
at
a
pr
iv
ac
y
w
ith

qu
al
ity
,s
ec
ur
ity
,a
nd

in
te
gr
ity
.

(c
on
ti
nu
ed

)

344 T. Sharma et al.

Ta
bl
e
1.

(c
on
ti
nu
ed

)

Pa
pe
r
lis
t

C
on
ce
nt
ra
tio

n
of

pa
pe
r

G
ui
de
lin

e
fo
llo

w
ed

Po
ss
ib
ly

re
la
te
d
to

pr
iv
ac
y

Se
cu
ri
ty

fo
cu
se
d

Pr
iv
ac
y
fo
cu
se
d

Fr
am

ew
or
k
ba
se
d

So
ci
al
/le
ga
lf
oc
us
ed

R
ev
ie
w
pa
pe
r

[2
2,
60
]

×
×

×
×

√
N
/A

C
on
tr
ol

ov
er

da
ta
,

ac
co
un
ta
bi
lit
y,

ch
oi
ce
,a
nd

re
sp
on

si
bi
lit
y.

[2
3]

×
√

×
×

×
A
ct
s
an
d
IS
O
/I
E
C

15
40
8

A
cc
es
s
ri
gh
t

m
an
ag
em

en
t,

cu
st
om

er
id
en
tifi

ca
tio

n
an
d

au
th
en
tic
at
io
n,

ce
rt
ifi
ca
tio

n
of

us
er

[2
4]

×
×

×
×

√
H
IP
PA

H
ea
lth

da
ta
pr
iv
ac
y

pr
es
er
vi
ng

re
qu

ir
em

en
ts
,

an
on
ym

ity
,

ac
co
un
ta
bi
lit
y

(c
on
ti
nu
ed

)

Towards Inclusive Privacy Protections in the Cloud 345

Ta
bl
e
1.

(c
on
ti
nu
ed

)

Pa
pe
r
lis
t

C
on
ce
nt
ra
tio

n
of

pa
pe
r

G
ui
de
lin

e
fo
llo

w
ed

Po
ss
ib
ly

re
la
te
d
to

pr
iv
ac
y

Se
cu
ri
ty

fo
cu
se
d

Pr
iv
ac
y
fo
cu
se
d

Fr
am

ew
or
k
ba
se
d

So
ci
al
/le
ga
lf
oc
us
ed

R
ev
ie
w
pa
pe
r

[2
5,

44
]

×
√

×
√

×
C
SA

,E
ur
oC

lo
ud

U
se
r’
s
tr
us
tb

y
co
nt
in
uo
us

dy
na
m
ic

ce
rt
ifi
ca
tio

n,
re
lia
bi
lit
y
co
nc
er
ns
,

le
ga
l-
co
m
pl
ia
nc
e,

tr
an
sp
ar
en
t

[2
6]

×
√

×
×

×
O
ri
gi
na
l

T
ru
st
as
su
ra
nc
e

se
rv
ic
e,
pr
iv
ac
y
as

cr
ite
ri
a

[2
8]

√
√

×
×

×
N
IS
T
Se

cu
ri
ty

St
an
da
rd
s

E
nc
ry
pt
io
n,

au
th
en
tic
at
io
n,

ac
ce
ss

co
nt
ro
l,
cl
ie
nt
-s
id
e

pr
ot
ec
tio

n,
da
ta

is
ol
at
io
n,
st
an
da
rd
s

an
d
ce
rt
ifi
ca
tio

n,
da
ta

st
or
ag
e
lo
ca
tio

n

(c
on
ti
nu
ed

)

346 T. Sharma et al.

Ta
bl
e
1.

(c
on
ti
nu
ed

)

Pa
pe
r
lis
t

C
on
ce
nt
ra
tio

n
of

pa
pe
r

G
ui
de
lin

e
fo
llo

w
ed

Po
ss
ib
ly

re
la
te
d
to

pr
iv
ac
y

Se
cu
ri
ty

fo
cu
se
d

Pr
iv
ac
y
fo
cu
se
d

Fr
am

ew
or
k
ba
se
d

So
ci
al
/le
ga
lf
oc
us
ed

R
ev
ie
w
pa
pe
r

[2
9]

×
√

√
√

×
E
U
D
ir
ec
tiv

e
95

/4
6/
E
C

Pr
iv
ac
y
po
lic
y,
le
ga
l

co
m
pl
ia
nc
e,
an
d

pr
iv
ac
y,
pr
iv
ac
y

fr
am

ew
or
k,

in
te
rn
at
io
na
lp

ri
va
cy

re
qu
ir
em

en
ts

[3
0]

×
√

√
√

×
IT

A
ct
20

00
,S

w
is
s

Fe
de
ra
lD

PA
,D

at
a

Se
cu
ri
ty

C
ou
nc
il
of

In
di
a,
C
C
PA

U
se
rs
’
re
qu

ir
em

en
t

an
d
ex
pe
ct
at
io
n
to

de
si
gn

pr
iv
ac
y,

pr
iv
ac
y
co
nt
ro
ls
,

cl
ou

d
st
or
ag
e
pr
iv
ac
y

[3
1]

×
√

×
×

×
O
ri
gi
na
l

A
va
ila
bi
lit
y
an
d

co
nfi

de
nt
ia
lit
y
fo
r

sp
ec
ifi
c
ap
pl
ic
at
io
n

(c
on
ti
nu
ed

)

Towards Inclusive Privacy Protections in the Cloud 347

Ta
bl
e
1.

(c
on
ti
nu
ed

)

Pa
pe
r
lis
t

C
on
ce
nt
ra
tio

n
of

pa
pe
r

G
ui
de
lin

e
fo
llo

w
ed

Po
ss
ib
ly

re
la
te
d
to

pr
iv
ac
y

Se
cu
ri
ty

fo
cu
se
d

Pr
iv
ac
y
fo
cu
se
d

Fr
am

ew
or
k
ba
se
d

So
ci
al
/le
ga
lf
oc
us
ed

R
ev
ie
w
pa
pe
r

[3
2]

×
√

×
√

×
H
IP
PA

,E
nC

oR
e

Pr
iv
ac
y
co
nt
ro
ls
:

pu
rp
os
e
lim

ita
tio

n,
us
er
s
ce
nt
ri
c
de
si
gn

,
us
er

fe
ed
ba
ck
,

tr
an
sp
ar
en
cy

[3
3]

×
√

√
√

×
N
is
se
nb
au
m
’s

C
on

te
xt
ua
lI
nt
eg
ri
ty

A
cc
es
si
bi
lit
y
of

da
ta
,

pr
iv
ac
y
of

in
di
vi
du

al
s,
pr
iv
ac
y

fo
r
cl
ou

d-
st
or
ag
e

sy
st
em

s

[1
7,

20
,2
7,
34
]

×
√

×
√

×
FI
PP

s
FI
PP

s
pr
in
ci
pl
es
:

co
lle
ct
io
n,

lim
ita
tio

n,
co
m
pl
ia
nc
e
ri
gh

ts
,

ob
lig

at
io
ns
,a
nd

ch
an
ge

of
st
at
us

on
di
sc
lo
su
re

(c
on
ti
nu
ed

)

348 T. Sharma et al.

Ta
bl
e
1.

(c
on
ti
nu
ed

)

Pa
pe
r
lis
t

C
on
ce
nt
ra
tio

n
of

pa
pe
r

G
ui
de
lin

e
fo
llo

w
ed

Po
ss
ib
ly

re
la
te
d
to

pr
iv
ac
y

Se
cu
ri
ty

fo
cu
se
d

Pr
iv
ac
y
fo
cu
se
d

Fr
am

ew
or
k
ba
se
d

So
ci
al
/le
ga
lf
oc
us
ed

R
ev
ie
w
pa
pe
r

[3
5]

×
√

×
√

×
FI
PP

s,
U
SA

PA
T
R
IO

T
A
ct
,E

U
D
ir
ec
tiv

e
95

/4
6/
E
C
,

H
IP
PA

,U
SA

G
ra
m
m
-L
ea
ch
-B

lil
ey

A
ct

C
om

pl
ia
nc
e
w
ith

la
w
s
an
d
us
er
’s

pr
ef
er
en
ce
s,

ac
co
un
ta
bi
lit
y,

pr
iv
ac
y
is
su
es

in
cl
ou
d

[3
6]

√
√

×
×

√
C
SA

Se
cu
ri
ty

an
d
pr
iv
ac
y

is
su
es

in
C
C
,s
ol
ut
io
n

fo
r
cl
ie
nt
-b
as
ed

pr
iv
ac
y
m
an
ag
er

[3
7]

√
√

×
×

×
N
IS
T,

C
IC

A
Pr
iv
ac
y
in

th
e
da
ta

lif
e
cy
cl
e
(g
en
er
at
io
n,

tr
an
sf
er
,u
se
,s
ha
re
,

st
or
ag
e,
ar
ch
iv
al
,a
nd

de
st
ru
ct
io
n)

[3
8]

√
×

√
×

×
N
/A

T
hr
ee
-l
ay
er

st
or
ag
e

fr
am

ew
or
k
fo
r
cl
ou

d
da
ta
pr
iv
ac
y (c
on
ti
nu
ed

)

Towards Inclusive Privacy Protections in the Cloud 349

Ta
bl
e
1.

(c
on
ti
nu
ed

)

Pa
pe
r
lis
t

C
on
ce
nt
ra
tio

n
of

pa
pe
r

G
ui
de
lin

e
fo
llo

w
ed

Po
ss
ib
ly

re
la
te
d
to

pr
iv
ac
y

Se
cu
ri
ty

fo
cu
se
d

Pr
iv
ac
y
fo
cu
se
d

Fr
am

ew
or
k
ba
se
d

So
ci
al
/le
ga
lf
oc
us
ed

R
ev
ie
w
pa
pe
r

[3
9]

×
√

×
×

×
G
D
PR

,C
SA

U
se
r
em

po
w
er
m
en
t,

lo
w
ov
er
he
ad
,

tr
an
sp
ar
en
cy
,

pr
es
er
va
tio

n
of

cl
ou

d
fu
nc
tio

na
lit
ie
s,

in
te
ro
pe
ra
bi
lit
y

[4
0]

√
×

×
×

√
N
/A

Ph
ys
ic
al
is
ol
at
io
n,

cr
yp
to
gr
ap
hy
,

co
nfi

de
nt
ia
lit
y

[4
1]

√
√

×
×

√
N
IS
T,

C
SA

T
ru
st
,d
at
a
pr
ot
ec
tio

n,
go
ve
rn
an
ce
,s
ec
ur
ity

as
a
ke
y
to

pr
iv
ac
y

(c
on
ti
nu
ed

)

350 T. Sharma et al.

Ta
bl
e
1.

(c
on
ti
nu
ed

)

Pa
pe
r
lis
t

C
on
ce
nt
ra
tio

n
of

pa
pe
r

G
ui
de
lin

e
fo
llo

w
ed

Po
ss
ib
ly

re
la
te
d
to

pr
iv
ac
y

Se
cu
ri
ty

fo
cu
se
d

Pr
iv
ac
y
fo
cu
se
d

Fr
am

ew
or
k
ba
se
d

So
ci
al
/le
ga
lf
oc
us
ed

R
ev
ie
w
pa
pe
r

[4
2]

√
√

×
×

√
So

lo
ve
’s
Ta
xo
no
m
y,

IS
O
/I
E
C

T
ra
ns
pa
re
nc
y,

co
nt
ro
lla
bi
lit
y,

m
in
im

iz
at
io
n,

ac
co
un
ta
bi
lit
y,
da
ta

qu
al
ity
,u

se
lim

ita
tio

n,
us
er
-f
ri
en
dl
y,
tr
us
t,

ob
fu
sc
at
io
n

[4
3]

√
√

×
√

√
Sa
rb
an
es
-O

xl
ey
-A

ct
,

H
IP
PA

A
gr
ee
m
en
ta
nd

re
gu

la
tio

ns
fo
r

pr
iv
ac
y,

ac
co
un
ta
bi
lit
y
fo
r

bo
th

cl
ou
d
pr
ov
id
er
s

an
d
cu
st
om

er
s

[6
1]

×
√

√
×

×
N
/A

D
at
a
co
nt
ro
l,

tr
an
sp
ar
en
cy
,

m
ul
ti-
te
na
nc
y,

vi
rt
ua
liz
at
io
n (c
on
ti
nu
ed

)

Towards Inclusive Privacy Protections in the Cloud 351

Ta
bl
e
1.

(c
on
ti
nu
ed

)

Pa
pe
r
lis
t

C
on
ce
nt
ra
tio

n
of

pa
pe
r

G
ui
de
lin

e
fo
llo

w
ed

Po
ss
ib
ly

re
la
te
d
to

pr
iv
ac
y

Se
cu
ri
ty

fo
cu
se
d

Pr
iv
ac
y
fo
cu
se
d

Fr
am

ew
or
k
ba
se
d

So
ci
al
/le
ga
lf
oc
us
ed

R
ev
ie
w
pa
pe
r

[4
5]

×
√

×
×

×
N
/A

Pr
iv
ac
y
po
lic
y

ce
rt
ifi
ca
tio

n
no
tifi

ca
tio

n
sc
re
en

(a
pp
lic
at
io
n)

[4
6,

49
]

×
√

×
√

×
G
D
PR

R
eg
ul
at
or
y

in
st
ru
m
en
ti
n
da
ta

pr
ot
ec
tio

n

[4
7]

×
√

×
√

×
D
PA

,G
D
PR

In
te
rp
la
y
be
tw
ee
n
th
e

la
w
an
d
te
ch
no
lo
gi
ca
l

de
si
gn

[8
–1
0]

√
×

×
×

×
IS
O
,S

O
C
2,
C
5,

Fe
dR

A
M
P,
C
SA

C
om

pa
ri
ng

se
cu
ri
ty

co
nt
ro
ls

[4
8]

√
×

×
×

×
E
ur
oC

lo
ud

,
Fe

dR
A
M
P,
C
SA

A
ut
ho
ri
za
tio

n-
ba
se
d

pr
iv
ac
y
st
or
ag
e

co
nfi

de
nt
ia
lit
y

(c
on
ti
nu
ed

)

352 T. Sharma et al.

Ta
bl
e
1.

(c
on
ti
nu
ed

)

Pa
pe
r
lis
t

C
on
ce
nt
ra
tio

n
of

pa
pe
r

G
ui
de
lin

e
fo
llo

w
ed

Po
ss
ib
ly

re
la
te
d
to

pr
iv
ac
y

Se
cu
ri
ty

fo
cu
se
d

Pr
iv
ac
y
fo
cu
se
d

Fr
am

ew
or
k
ba
se
d

So
ci
al
/le
ga
lf
oc
us
ed

R
ev
ie
w
pa
pe
r

[5
0]

√
×

×
×

×
T
O
E
Fr
am

ew
or
k,

D
O
I
T
he
or
y

C
on

tin
uo

us
ly

te
ch
ni
ca
l,
se
cu
ri
ty
,

an
d
pr
iv
ac
y

re
qu

ir
em

en
ts
,

co
nt
in
uo
us

ce
rt
ifi
ca
tio

n

Towards Inclusive Privacy Protections in the Cloud 353

own articulated methodology for reviewing cloud computing security components [14–
16] and achieving security in Cloud Computing by data classification; six uses existing
standards or guidelines of security; three of them use their own methodology which
includes data mining, analytics, cryptographic data-centric security, employing granu-
lar access control as privacy aware computing [15, 16]. Although strongly focused on
security rather than privacy, we reviewed and recorded data from these 9 papers. Some
privacy measures are still loosely mentioned as part of the security recommendations
they suggest, and we believe these measures could serve as some of the initial crite-
ria’s towards building baseline privacy protection in cloud computing. Other 4 papers
present mixed analysis from different certifications (ISO, FedRAMP, C5, SOC2) for
their method of comparing existing certifications’ comprehensiveness. In those research
papers [1, 8–10], there is an analysis of four highly regarded IT security standards that
are used to assess, improve, and demonstrate information systems’ assurance and cloud
security: ISO/IEC 27001, SOC 2, C5, and FedRAMP. They further use Cloud Secu-
rity Alliances’ Cloud Control Matrix to examine their adequacy in addressing current
threats to cloud security and provided an overview of the evolution over the years of
their ability to cope with threats and vulnerabilities. By comparing the standards to each
other, they investigate their complementarity, their redundancies, and the levels of pro-
tection they offer to information stored in cloud environments [1, 8–10]. In addition,
they unveil vulnerabilities left unaddressed in the four frameworks and suggested nec-
essary improvements to meet the security requirements of the current threat landscape.
Lastly, two of the papers are based on certifications such as FedRAMP, CSA, Euro-
cloud (non-profit and vendor-neutral organization delivering legal orientation, quality
guidance and best practice policies globally), Technology-Organization-Environment
(TOE) framework and the Diffusion of Innovations (DOI) theory for proposing trust-
worthy certification process (authorized-based and confidential). Those are mainly for
industrial eHealth application and designing a service from companies that consumers
can participate in a continuous certification process [48, 50].

From the paper review, we have found significant importance of NIST frameworks
for privacy and security. NIST standards are among the most well-known guidelines and
frameworks for major companies and even for the US Government on aspects related
to information technology, including but not limited to cyber and physical security,
and privacy. One of the best implemented and effective example of NIST guidelines is
the Security assessment Framework based on NIST Special Publication 800-53 [51].
Three of the analyzed papers [28, 37, 41] are focused on NIST standards and guidelines.
Although those standards are concentrated on security and privacy at the same time,
the papers only stress security-related aspects, with central security features of encryp-
tion, authentication, access control, client-side protection, backup, data isolation [28].
Other papers also mention privacy in the data life cycle (generation, transfer, use, share,
storage, archival, and destruction) for ensuring three main security triad confidentiality,
integrity, and authorization to maintain privacy [37]. One survey paper briefly analyzes
cloud security problems, different existing approaches and highlighted challenges in
data processing over the cloud [41] but fails in developing the research into a complete
privacy framework.

354 T. Sharma et al.

In our review, we have noticed how different regulatory frameworks are also used
(HIPPA, IT Act 2000, Swiss Federal Data Protection Acts, Data Security Council of
India, CCPA, USA-PATRIOT Act, USA Gramm Leach Bliley Act, CICA, Sarbanes
Oxley Act) as well as less frequent guidelines (EuroCloud, EnCoRe). The approach of
using those guidelines andActs is to ensure privacy for particular application (HIPPA for
Health applications), establishing users’ trust towards cloud provider by ensuring trans-
parency and fixing reliability concerns (EuroCloud), taking users’ requirements, expec-
tation and feedback into consideration in designing privacy controls, ensuring cloud
storage private and making both providers and consumers responsible and accountable
for the usage of data with specific regulation. From our literature review, we have found
directions for further analysis of particular guidelines and standards to start build ways
of enlisting all the necessary criteria for privacy protection in cloud computing.

4.2 Available Standards Analysis

From our literature review, we found GDPR, CCPA, “NIST Privacy Framework” and
special publication 800-53 (Rev 5) by NIST, FIPPs (by OECD), CSA CCM to be the
most frequently included. We chose to initially conduct our review on these guidelines
in quest for the potential of developing our privacy protection criteria.

Most of the GDPR is concentrated in data protection law enforcement and other rules
concerning theprotectionof personal data [55]. TheEUCommissionmainly designed the
Regulation for data protection, privacy, and fair business practices in EU and European
Economic Area. The GDPR, that is structured in articles (Art.) and recitals (R), aims at
creating rules for transparent information, communication, free choice of data subject,
while attributing clear responsibility and accountability to data controllers [55]. Few
main objectives, listed in Article 1, that are maintained as a rule of thumb in the GDPR
are:

• To lay “down rules relating to the protection of natural persons with regard to the
processing of personal data and rules relating to the free movement of personal data.”

• To protect “fundamental rights and freedoms of natural persons and in particular their
right to the protection of personal data.”

• “The free movement of personal data within the Union shall be neither restricted nor
prohibited for reasons connected with the protection of natural persons with regard to
the processing of personal data” [52].

GDPR’s principles are leaning towards data subject which best infer “Privacy and
“Data Protection” and therefore, a potential source for creating the criteria list for privacy
protection in cloud computing [55]. Among recent NIST publications, one of the most
relevant could be considered theNIST special publication 800-53 (Rev 5), whichwas last
reviewed on March 2020 adding security and privacy controls for information systems
and organizations [13]. With its latest review, NIST has added controls and measures
that can be all considered worth of being part of the baseline on privacy protection for
cloud computing. In addition to the SP 8000-53, NIST has published its NIST Privacy
Framework in January 16, 2020, which is an all-privacy framework, based on NIST’s
other security and cybersecurity guidelines [53]. These publications of NIST has the

Towards Inclusive Privacy Protections in the Cloud 355

basis in FIPPs, FISMA, and Privacy Act of 1974 [54]. We found a significant number
of reviewed papers’ method are based on FIPPs Principles which is internationally rec-
ognized for information privacy policies and both from government and private sectors
[54]. Furthermore, we have come across the reference towards California customers
privacy Acts which is the most recent Acts to enhance privacy rights and consumers
protection for residents in California which can be a potential source for our further
criteria list for cloud computing privacy protection.

5 Conclusion

From our literature review and preliminary results, we notice that privacy issues in
cloud computing have been emphasized and extensively discussed in the past decades.
Still, there is no existing standard or principle specifically applicable to privacy in cloud
computing and therefor the urgent need for the development of baseline protections
that includes a comprehensive list of criteria focused on privacy protection in cloud
computing.

While most of previous papers point out privacy risks and challenges in cloud com-
puting, those risks and challenges are mostly tackled from a security perspective. For
example, how data should be stored and processed in cloud environment, and what kind
of techniques should be applied for software engineers to protect data. The literature
shows that when it comes down to identifying security issues and proposing potential
solutions, the answer is straight-forward since there are alreadywell-established controls
and criteria for security in the cloud. Professionals and researchers can easily use these
controls and criteria as guidelines to assess security issues in cloud environment with
no need to come up with new solutions.

Unlike security, the concept of privacy is more ambiguous since there is no concrete
definition of the term “privacy” as related to the cloud. Previous research papers tend to
combine privacy and security, with the result that there is no clear borderline between the
two concepts in cloud computing. For example, when referring to Availability, Integrity,
and Confidentiality in the context of cloud computing, it might be difficult to interpret
the criteria as related to privacy, security, or both.

A separate standard that only focuses on privacy needs to be built to distinguish
privacy from security. Also, because of the development of technology, PII could be
shared globally, making the creation of a global privacy protection standard even more
important. Each region in the world has so far developed its own privacy framework,
making it necessary to create a comprehensive and systematic approach for privacy
protection in cloud computing to ensure that PII is consistently collected, processed,
and stored regardless of the geography.

6 Future Work

From our analysis of scholarly papers and most appeared guidelines/standards presented
in this paper, we have initiated and established our strategies to build a comprehensive
listing of privacy requirements that wewould like to coin as the “Comprehensive Criteria
of Privacy Protection (C2P2)” which will be presented in subsequent publications for

356 T. Sharma et al.

the privacy and security scholars and practitioners’ consideration and evaluation. Based
on the findings of this review and existing standards, we have decided to choose FIPPs,
CSA, NIST2020, NIST 800-53, GDPR, CCPA for building our comprehensive list of
criteria for privacy protection in cloud computing. We will be interactively considering
more guidelines as our sources for retrieving privacy protection criteria for our compre-
hensive list. Currently, we are not including certifications (ISO, FedRAMP, SOC2, C5)
in this initial list to avoid biasness towards particular certifications. After finalizing the
comprehensive criteria list for privacy protection in cloud computing, we will compare
the criteria in the list with the cloud certifications, in order to evaluate the performance
of each certification in addressing privacy considerations in cloud computing.

Acknowledgement. This work has been supported by Cisco. This study is a part of the project
on Privacy Standards Evaluation for the cloud: A proposal for Cisco, University of Illinois at
Urbana-Champaign. We want to acknowledge and thank all of those who have contributed to this
work.

References

1. Bashir, M., Di Giulio, C., Kamhoua, C.A.: Certifications past and future: a future model for
assigning certifications that incorporate lessons learned from past practices. In: Campbell,
R.H., Kamhoua, C.A., Kwiat, K.A. (eds.) Assured Cloud Computing, pp. 277–311. Wiley-
IEEE Computer Society Press (2018)

2. Benlian, A., Kettinger, W.J., Sunyaev, A., Winkler, T.J., Guest Editors: The transforma-
tive value of cloud computing: a decoupling, platformization, and recombination theoretical
framework. J. Manag. Inf. Syst. 35(3), 719–739 (2018)

3. Mell, P., Grance, T.: The NIST Definition of Cloud Computing (Draft): Recommendations
of the National Institute of Standards and Technology. Special Publication 800–145 (draft),
Gaithersburg, MD (2018). Published 28 September 2011, Updated 10 November 2018

4. Ellis, R., Mohan, V. (eds.): Rewired: Cybersecurity Governance. Wiley, Hoboken (2019)
5. Lamps, J., Palmer, I., Sprabery, R.: WinWizard: expanding Xen with a LibVMI intrusion

detection tool. In: Proceedings of the 2014 IEEE 7th International Conference on Cloud
Computing, pp. 849–856 (2014)

6. Guilloteau, S., Venkatesen, M.: Privacy in Cloud Computing. ITU-T Technology Watch
Report March 2012 (2013)

7. Svantesson, D., Clarke, R.: Privacy and consumer risks in cloud computing. Comput. Law
Secur. Rev. 26(4), 391–397 (2010)

8. Di Giulio, C., Sprabery, R., Kamhoua, C., Kwiat, K., Campbell, R.H., Bashir, M.N.: Cloud
standards in comparison: are new security frameworks improving cloud security? In: Pro-
ceedings of the 2017 IEEE 10th International Conference on Cloud Computing (CLOUD),
Honolulu, CA, pp. 50–57 (2017)

9. DiGiulio,C.,Kamhoua,C.,Campbell,R.H., Sprabery,R.,Kwiat,K.,Bashir,M.N.: IT security
and privacy standards in comparison: improving FedRAMP authorization for cloud service
providers. In: Proceedings of the 17th IEEE/ACM International SymposiumonCluster, Cloud
and Grid Computing (CCGrid 2017), pp. 1090–1099. IEEE Press, Piscataway, May 2017

10. Di Giulio, C., Sprabery, R., Kamhoua, C., Kwiat, K., Campbell, R.H., Bashir, M.N.: Cloud
security certifications: a comparison to improve cloud service provider security. In: Proceed-
ings of the 2nd International Conference on Internet of Things and Cloud Computing (ICC
2017). ACM, New York (2017). Article 120, 12 pages

Towards Inclusive Privacy Protections in the Cloud 357

11. McCallister, E., Grance, T., Scarfone,K.:Guide to Protecting theConfidentiality of Personally
Identifiable Information (PII). NIST Special Publication SP 800-122, National Institute of
Standards and Technology, U.S. Department of Commerce (2010). https://nvlpubs.nist.gov/
nistpubs/Legacy/SP/nistspecialpublication800-122.pdf

12. Sharma,T.,Bambenek, J.C.,Bashir,M.: PreservingPrivacy inCyber-physical-social Systems:
An Anonymity and Access Control Approach (2020)

13. Force, J.T.: Security and Privacy Controls for Information Systems and Organizations (No.
NIST Special Publication (SP) 800-53 Rev. 5 (Draft)). National Institute of Standards and
Technology (2017)

14. Idrissi, H.K., Kartit, A., El Marram, M.: A taxonomy and survey of cloud computing. In:
2013 National Security Days (JNS3), pp. 1–5. IEEE, April 2013

15. Shaikh, R., Sasikumar, M.: Data classification for achieving security in cloud computing.
Procedia Comput. Sci. 45(1C), 493–498 (2015)

16. Big Data Taxonomy. https://downloads.cloudsecurityalliance.org/. Accessed 16 Mar 2020
17. Cavoukian, A.: Privacy by design: The 7 foundational principles. Information and privacy

commissioner of Ontario, Canada, May 2009
18. IAPP - A Taxonomy of Privacy (Poster). https://iapp.org/. Accessed 16 Mar 2020
19. Zorzo, S.D., Botelho, R.P., de’Avila, P.M.: Taxonomy for privacy policies of social networks

sites. Soc. Netw. (2013)
20. Antón, A.I., Earp, J.B.: A taxonomy for web site privacy requirements. North Carolina State

University at Raleigh, Raleigh, NC (2001)
21. Miller, H.E.: Big-data in cloud computing: a taxonomy of risks (2013)
22. Sun, Y., Zhang, J., Xiong, Y., Zhu, G.: Data security and privacy in cloud computing. Int. J.

Distrib. Sens. Netw. 10(7), 190903 (2014)
23. Kang, M., Kwon, H.Y.: A study on the needs for enhancement of personal information pro-

tection in cloud computing security certification system. In: 2019 International Conference
on Platform Technology and Service (PlatCon), pp. 1–5. IEEE, January 2019

24. Abbas, A., Khan, S.U.: A review on the state-of-the-art privacy-preserving approaches in the
e-health clouds. IEEE J. Biomed. Health Inform. 18(4), 1431–1441 (2014)

25. Lins, S., Grochol, P., Schneider, S., Sunyaev, A.: Dynamic certification of cloud services:
trust, but verify! IEEE Secur. Priv. 14(2), 66–71 (2016)

26. Lansing, J., Schneider, S., Sunyaev, A.: Cloud service certifications: measuring consumers’
preferences for assurances. In: ECIS, p. 181, June 2013

27. Katzan Jr, H.: On the privacy of cloud computing. Int. J. Manag. Inf. Syst. (IJMIS) 14(2)
(2010)

28. Abuhussein, A., Bedi, H., Shiva, S.: Evaluating security and privacy in cloud computing ser-
vices: a stakeholder’s perspective. In: 2012 International Conference for Internet Technology
and Secured Transactions, pp. 388–395. IEEE, December 2012

29. Sunyaev, A., Schneider, S.: Cloud services certification. Commun. ACM 56(2), 33–36 (2013)
30. Ion, I., Sachdeva, N., Kumaraguru, P., Čapkun, S.: Home is safer than the cloud! Privacy

concerns for consumer cloud storage. In: Proceedings of the Seventh Symposium on Usable
Privacy and Security, pp. 1–20, July 2011

31. Karkouda, K., Nabli, A., Gargouri, F.: Privacy and availability in cloud data warehouse. In:
Proceedings of the 10th International Conference on Education Technology and Computers,
pp. 388–391, October 2018

32. Mowbray, M., Pearson, S.: A client-based privacy manager for cloud computing. In: Proceed-
ings of the Fourth International ICST Conference on COMmunication System softWAre and
MiddlewaRE, pp. 1–8, June 2009

33. Grodzinsky, F.S., Tavani, H.T.: Privacy in “the cloud” applying Nissenbaum’s theory of
contextual integrity. ACM SIGCAS Comput. Soc. 41(1), 38–47 (2011)

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-122.pdf
https://downloads.cloudsecurityalliance.org/
https://iapp.org/

358 T. Sharma et al.

34. Pearson, S.: Taking account of privacy when designing cloud computing services. In: 2009
ICSEWorkshop on Software Engineering Challenges of Cloud Computing, pp. 44–52. IEEE,
May 2009

35. Ghorbel, A., Ghorbel, M., Jmaiel, M.: Privacy in cloud computing environments: a survey
and research challenges. J. Supercomput. 73(6), 2763–2800 (2017). https://doi.org/10.1007/
s11227-016-1953-y

36. Zhou, M., Zhang, R., Xie, W., Qian, W., Zhou, A.: Security and privacy in cloud computing: a
survey. In: 2010 Sixth International Conference on Semantics, Knowledge andGrids, pp. 105–
112. IEEE, November 2010

37. Chen, D., Zhao, H.: Data security and privacy protection issues in cloud computing. In:
2012 International Conference on Computer Science and Electronics Engineering, vol. 1,
pp. 647–651. IEEE, March 2012

38. Wang, T., Zhou, J., Chen, X., Wang, G., Liu, A., Liu, Y.: A three-layer privacy preserving
cloud storage scheme based on computational intelligence in fog computing. IEEE Trans.
Emerg. Top. Comput. Intell. 2(1), 3–12 (2018)

39. Domingo-Ferrer, J., Farras, O., Ribes-González, J., Sánchez, D.: Privacy- preserving cloud
computingon sensitive data: a surveyofmethods, products and challenges.Comput.Commun.
140, 38–60 (2019)

40. Aloraini, A., Hammoudeh, M.: A survey on data confidentiality and privacy in cloud com-
puting. In: Proceedings of the International Conference on Future Networks and Distributed
Systems, pp. 1–7, July 2017

41. Kumar, S.N.,Vajpayee,A.:A survey on secure cloud: security and privacy in cloud computing.
Am. J. Syst. Softw. 4(1), 14–26 (2016)

42. Werner, J.,Westphall, C.M.,Westphall, C.B.: Cloud identitymanagement: a survey on privacy
strategies. Comput. Netw. 122, 29–42 (2017)

43. Lar, S.U., Liao, X., Abbas, S.A.: Cloud computing privacy security global issues, chal-
lenges, mechanisms. In: 2011 6th International ICST Conference on Communications and
Networking in China (CHINACOM), pp. 1240–1245. IEEE, August 2011

44. Sharma, T., Bashir, M.: Privacy apps for smartphones: an assessment of users’ preferences
and limitations. In: Moallem, A. (ed.) HCII 2020. LNCS, vol. 12210, pp. 533–546. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-50309-3_35

45. Tsai, J.: U.S. Patent Application No. 14/984,830 (2017)
46. Lachaud, E.: The general data protection regulation and the rise of certification as a regulatory

instrument. Comput. Law Secur. Rev. 34(2), 244–256 (2018)
47. Easton, C.R.: Information systems for crisis response and management: The EU data

protection regulation, privacy by design and certification (2016)
48. Anisetti, M., Ardagna, C.A., Damiani, E., El Ioini, N., Gaudenzi, F.: Modeling time, probabil-

ity, and configuration constraints for continuous cloud service certification. Comput. Secur.
72, 234–254 (2018)

49. Ardagna, C.A.,Asal, R., Damiani, E., Dimitrakos, T., El Ioini, N., Pahl, C.: Certification-based
cloud adaptation. IEEE Trans. Serv. Comput. (2018)

50. Teigeler, H., Lins, S., Sunyaev,A.:Drivers vs. inhibitors-what clinches continuous service cer-
tification adoption by cloud service providers? In: Proceedings of the 51stHawaii International
Conference on System Sciences, January 2018

51. FedRAMP Security Assessment Framework. https://www.fedramp.gov/assets/resources/.
Accessed 17 Mar 2020

52. GDPR, General Provision. https://gdpr-info.eu/chapter-1/. Accessed 17 Mar 2020
53. NIST Privacy Framework: A Tool for Improving Privacy Through Enterprise Risk Manage-

ment, 16 January 2020. https://www.nist.gov/privacy-framework

https://doi.org/10.1007/s11227-016-1953-y
https://doi.org/10.1007/978-3-030-50309-3_35
https://www.fedramp.gov/assets/resources/
https://gdpr-info.eu/chapter-1/
https://www.nist.gov/privacy-framework

Towards Inclusive Privacy Protections in the Cloud 359

54. Privacy Policy Guidance Memorandum 2008-01, The Fair Information Practice Princi-
ples, 29 December 2008. https://www.dhs.gov/publication/privacy-policy-guidance-memora
ndum-2008-01-fair-information-practice-principles

55. General Data Protection Regulation (GDPR): Off. J. Eur. Union (2016). https://eur-lex.eur
opa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679

56. Cloud Controls Matrix v3.0.1: Cloud Security Alliance, 3 August 2019. https://cloudsecurit
yalliance.org/artifacts/cloud-controls-matrix-v3-0-1/

57. Solove, D.J.: Understanding Privacy. Harvard University Press, Cambridge (2008)
58. Solove, D.J.: A taxonomy of privacy. Univ. Pa. Law. Rev. 154, 477 (2005)
59. Privacy Act of 1974. The United States Department of Justice, 15 January 2020. https://www.

justice.gov/opcl/privacy-act-1974
60. Sharma, T., Bashir, M.: Use of apps in the COVID-19 responses and the loss of privacy

protection. Nat. Med. 26, 1165–1167 (2020)
61. Almtrf, A., Alagrash, Y., Zohdy, M.: Framework modeling for user privacy in cloud comput-

ing. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference
(CCWC), pp. 0819–0826. IEEE, January 2019

https://www.dhs.gov/publication/privacy-policy-guidance-memorandum-2008-01-fair-information-practice-principles
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/%3furi%3dCELEX:32016R0679
https://cloudsecurityalliance.org/artifacts/cloud-controls-matrix-v3-0-1/
https://www.justice.gov/opcl/privacy-act-1974

A Study on Microarchitectural Covert
Channel Vulnerabilities in
Infrastructure-as-a-Service

Benjamin Semal(B), Konstantinos Markantonakis, Raja Naeem Akram,
and Jan Kalbantner

Royal Holloway University of London, Egham, UK
benjamin.semal.2018@live.rhul.ac.uk

Abstract. Microarchitectural cross-VM covert channels are software-
launched attacks which exploit multi-tenant environments’ shared hard-
ware. They enable transmitting information from a compromised system
when the information flow policy does not allow to do so. These attacks
represent a threat to the confidentiality and integrity of data processed
and stored on cloud platforms. Although potentially severe, covert chan-
nels tend to be overlooked due to an allegedly strong adversary model.
The literature focuses on mechanisms for encoding information through
timing variations, without addressing practical considerations. Further-
more, the field lacks a realistic evaluation framework. Covert channels
are usually compared to each other using the channel capacity. While
a valuable performance metric, the capacity is inadequate to assess the
severity of an attack. In this paper, we conduct a comprehensive study
on the severity of microarchitectural covert channels in public clouds.
State-of-the-art attacks are evaluated against the Common Vulnerabil-
ity Scoring System in its most recent version (CVSS v3.1). The study
shows that a medium severity score of 5.0 is achieved. In comparison,
the SSLv3 POODLE (CVE-2014-3566) and OpenSSL Heartbleed (CVE-
2014-0160) vulnerabilities achieved respective scores of 3.1 and 7.5. As
such, the paper successfully demonstrates that covert channels are not
theoretical threats, and that they require the immediate attention of the
community. Furthermore, we devise a new and independent scoring sys-
tem, the Covert Channel Scoring System (CCSS). The scoring of related
works under the CCSS shows that cache-based covert channels, although
more and more popular, are the least practical ones to deploy. We encour-
age authors of future cross-VM covert channel attacks to include a CCSS
metric in their study, in order to account for deployment constraints and
provide a fair point of comparison for the adversary model.

Keywords: Covert channel · Microarchitectural attack · Cloud
privacy · Vulnerability study

c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 360–377, 2020.
https://doi.org/10.1007/978-3-030-61638-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_20&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_20

A Study of Covert Channel Vulnerabilities in IaaS 361

1 Introduction

The multi-tenant nature of cloud platforms prompts concerns over the confi-
dentiality and integrity of data [31]. When multiple virtual machines (VMs) are
scheduled on the same hardware platform, they compete with each other for pro-
cessor resources. Such conflicts can delay the execution of certain instructions,
resulting in timing variations to occur during the execution of an application.
These timing variations can in turn be exploited by two colluding entities in
order to encode and decode binary information. Microarchitectural covert chan-
nel attacks allow tunneling information out of a compromised system when the
security policy does not allow doing so. A sending-end is embedded into the vic-
tim’s environment, and transmits information to the receiving-end located in the
attacker’s environment. Furthermore, covert channel attacks are relevant when
there is no other mean of leaking information in a non-conspicuous manner, e.g.
as part of an advanced persistent threat malware. We note that side channel
attacks, which rely on an accidental leakage of information from the victim, are
beyond the scope of this study.

Microarchitectural covert channels allegedly rely on a strong adversary
model. First, the attacker must infect the victim’s instance with a malicious
sending-end. Second, the attacker requires co-locating her instance on the same
hardware platform as the victim’s instance. Researchers devising these attacks
tend to focus on new mechanisms for generating timing variations, rather than
addressing deployment constraints. Indeed, the trend is to propose covert chan-
nels that are always faster and more robust, while assuming an ideal scenario for
the attacker. Meanwhile, experts responsible for implementing security policies
are free to re-brand microarchitectural covert channels as non-practical exploits,
due to the above-mentioned challenges.

This paper investigates the operational constraints of launching a covert
channel attack across Infrastructure-as-a-Service (IaaS) instances. To do so, a
measurement study on the practicality and severity of these attacks is conducted.
The Common Vulnerability Scoring System (CVSS) is used as a support for our
analysis. Criteria are discussed in the context of microarchitectural attacks and
potentially re-interpreted. Our study shows that microarchitectural covert chan-
nels achieve a medium severity score of up to 5.0, discarding the assumption
that covert channels aren’t practical. In comparison, the MySQL Stored SQL
Injection vulnerability [2] achieved a medium severity scrore of 6.4 (CVSS v3.1),
and was patched shortly after its disclosure. To this day, there are still no prac-
tical countermeasures against severe covert channels released several years ago
[21,30]. Secondly, we propose a new evaluation framework dedicated to microar-
chitectural covert channels, the Covert Channel Scoring System (CCSS). This
framework evaluates state-of-the-art attacks, and outlines the effect of opera-
tional constraints on the severity score. Among other findings, this evaluation
shows that cache-based covert channels achieve the lowest severity scores, despite
being increasingly popular. Overall, the paper reveals the existence of a growing
gap between academic efforts and the commercial ecosystem.

The contributions of this paper are summarised as follows:

362 B. Semal et al.

– We propose the first comprehensive study on the practicality and severity of
microarchitectural covert channels in IaaS, resulting in CVSS scores ranging
from 4.2 to 5.0.

– We devise a new and independent Covert Channel Scoring System, so as to
provide a fair and realistic evaluation framework for future research.

The paper is organised as follows. Section 2 provides a background on cloud
services, processor architecture, and defines covert channel attacks. In Sect. 3, the
criteria discussed in this paper are defined. Section 4 rates criteria which can be
evaluated generically. Section 5 discusses state-of-the-art covert channels, and
provides an individual rating for the remaining criteria. Section 6 details the
resulting scores. Finally, we conclude in Sect. 7.

2 Background

2.1 Infrastructure-as-a-Service

Infrastructure-as-a-Service (IaaS) delivers internet-accessible storage, process-
ing, and network resources. The end-user controls every component inside the
virtual machine, while the service provider manages servers and orchestrators (or
containers). Customers remain in control of the (sensitive) data being processed
within the VM, including data from any other service built upon it, i.e. plat-
form or software. Also, the user can interact with the instance as with any other
machine (e.g. root access, hardware selection APIs, etc). IaaS minimises the trust
that needs to be extended to the cloud provider, and emphasises responsibilities
mostly on the customer.

Fig. 1. Processor overview (NUMA configuration).

A Study of Covert Channel Vulnerabilities in IaaS 363

2.2 Processor Organisation

We use the term processor to refer to the processor die, which includes the
cores and the last-level cache (LLC). The core contains the CPU along with
the level-2 (L2), level-1 instruction (L1-I) and data (L1-D) caches. The mem-
ory bus refers to the front side bus present on older microarchitectures. Since
the Nehalem microarchitecture, Intel processors mainly rely on a non-uniform
memory access (NUMA) configuration. As a result, the memory bus has been
removed, and memory controllers (MC) have been integrated into the processor
die. The interconnect allows a processor accessing a region of DRAM that is
managed by another processor. Figure 1 provides a representation of a multi-
processor multi-core system in the NUMA configuration.

2.3 Scope of the Evaluation

Microarchitectural covert channels exploit vulnerabilities in the implementation
of a processor’s architecture. In contrast, network covert channels abuse network
protocols. This study focuses on the former case. Also, not all covert channels
have malicious intents. Nevertheless, we use the terms covert channel and covert
channel attack interchangeably, for the sake of simplicity. We assume that a
covert channel has a malicious nature. Microarchitectural covert channels differ
from microarchitectural side channels in the attack scenario. Although they share
the same underlying mechanisms, side channels rely on an accidental leakage of
information from the victim, and they do not require compromising the victim’s
environment a priori. Side channel attacks are beyond the scope of our work.
Finally, a covert channel does not necessarily allow communication across VMs.
Because this paper focuses on the threat against IaaS, only cross-VM covert
channels are considered. In parallel, this study could be applied to environments
similar to IaaS, e.g. private clouds. This evaluation is specific to IaaS, and does
not account for variations in similar environments. Table 1 surveys relevant
covert channel attacks. We note that the respective channel capacities have been
calculated here under the binary symmetric model [23].

3 Criteria of Evaluation

This section lists the criteria used to assess the impact of malicious covert chan-
nels in IaaS environments. We use the Common Vulnerability Scoring System
in its most recent version (CVSS v3.1) [3] as a base for our evaluation met-
rics. The CVSS is an open industry standard that is widely used in the security
community in order to assist responses to threats. While other evaluation frame-
works exist, these have been adapting the traditional calculation of the CVSS
to specific industrial environments. Certain criteria can be directly applied to
all covert channels (C1 to C8), while others are specific to the covert channel
considered (C9 to C12). We note that the criteria C11 and C12 are not part of
the CVSS framework. These have been selected in order to provide an optimal
representation of cross-VM covert channels’ adversary model.

364 B. Semal et al.

Table 1. Cross-VM covert channel attacks.

Attack Exploited resource Bitrate Error Capacity

[22] Last-level cache 0.2 bps – –

[32] Last-level cache 3.2 bps 9.28% 1.77 bps

[30] Memory bus 343 bps 0.39% 330 bps

[14] Last-level cache 1.2 Mbps 22% 287 kbps

[16] Last-level cache 751 bps 5.7% 514 bps

[21] DRAM row-buffer 596 kbps 0.4% 573 kbps

[17] Last-level cache 45.25 kbps 0% 45.25 kbps

[24] Memory order buffer 1.49 Mbps ∼5% 1.06 Mbps

[23] Memory controller 150 bps 7.8% 90.7 bps

C1 Attack vector evaluates the proximity between the attacker and its tar-
get. This criterion can be rated as “network” for remote interaction, “adja-
cent” when the attacker needs physical or logical proximity with the target
(e.g. Bluetooth), “local” if it relies on user interaction (e.g. social engineer-
ing), or “physical” when physical manipulation is required.

C2 Attack complexity assesses the difficulty of exploiting a vulnerability
once access to the targeted platform is gained, ranked either as “low” when
no specialised access condition exists, or “high” when the attack requires
a significant amount of preparation such that it cannot be performed at
will. We discuss under this criterion the VM co-location problem.

C3 User interaction indicates whether human interaction other than the
adversary is required. As such, this criteria can be rated as either “none”
or “required”. We discuss under this criterion the trojan insertion problem.

C4 Scope assesses the impact that a vulnerability might have on components
other than the one affected by the vulnerability. This metric accounts for
the overall system damage caused by the exploitation of the reported vul-
nerability. Scope can be rated as “changed” when a scope change occurs,
or “unchanged” otherwise.

C5 Confidentiality impact assesses the severity of a disclosure of infor-
mation, as well as the quantity of information that can be leaked. This
criterion can be rated as “none”, “low” when the attacker can only access
a small amount of data and loss of this data does not result in serious
consequences, or “high” otherwise.

C6 Integrity impact measures the attacker’s capability to tamper with the
victim’s data. It can be rated as “none”, “low” when the amount of data
that can be modified is limited and modification of this data does not
result in serious consequences, or “high” otherwise.

C7 Exploit code maturity evaluates the state of an attack, from a concep-
tual exploit to a fully autonomous malware. Exploitability can be rated as
“unproven”, “proof-of-concept” when the attack has been demonstrated

A Study of Covert Channel Vulnerabilities in IaaS 365

but is not practical, “functional” when the exploit works in most sys-
tems where the vulnerability is present but is still not widely accessible,
or “high” otherwise.

C8 Report confidence assesses the credibility of the source which reported
the vulnerability. This criterion is rated as “confirmed” when originat-
ing from a publication, “reasonable” when multiple non-official sources
reported the vulnerability, or “unknown” when a single non-official source
is involved.

C9 Privileges required evaluates the level of privileges that the adversary
must acquire before launching the attack. This criterion can be rated as
“none”, “low” if privileges that allow performing basic user operations are
required (e.g. changing settings), or “high” for administrative privileges.
We note that this criterion is relative to the covert channel’s sending-end,
concealed in the victim’s environment.

C10 Remediation level accounts for potential countermeasures. This criterion
can be rated as “unavailable”, “workaround” for non-official mitigation,
“temporary fix” for official but not permanent countermeasures, or “official
fix” otherwise.

C11 Hardware configuration specifies the attacker’s proximity with regard
to the victim’s VM. Covert channels can require both VMs to be sched-
uled on the same core, on the same processor, or on the same system.
Accordingly, hardware configuration can be rated as “core”, “processor”,
or “system”. A “system” rating makes for a higher severity score.

C12 Initialisation evaluates whether a covert channel attack requires the
sender and receiver to perform an initialisation phase before leaking the
victim’s data. This criterion can be rated as “mandatory” or “optional”.
In the latter case, the covert channel remains functional in the absence
of an initialisation phase, which increases the severity score. The absence
of initialisation eases the deployment of the attack and decreases visible
side-effects (e.g. large memory footprint).

The confidentiality, integrity, and availability requirements (CR, IR, AR)
allow tuning the CVSS evaluation depending on the targeted asset. In the case
of a cloud platform, the three requirements are equally important. Therefore,
we set these to “medium”, i.e. their default value. Furthermore, the availability
impact is rated to “none”. Covert channel attacks do not aim to compromise the
availability of a computing environment.

4 Evaluation of Generic Criteria (C1–C8)

This section discusses the criteria for which the rating can be applied generically
to the cross-VM covert channel attacks surveyed in Table 1.

C1. The attack vector is “local”. The sending-end is a malicious program running
inside the instance of the victim. This trojan must be inserted either using social
engineering, or by corrupting the machine image. Independently of the chosen
attack vector, user interaction is required. The attack vector is further discussed
under requirement C3.

366 B. Semal et al.

C2. Attack complexity is rated as “high”. Prior to launching the attack, the
adversary must achieve VM co-location, independently of the covert channel
considered. Cloud services’ application programming interfaces do not allow an
attacker to place an instance at will on a chosen physical machine. VM co-
location consists in moving the attacker’s VM until it is executing on the same
hardware platform as the victim’s. Several proposals suggested using networking
utilities to map the internal network topology of the data center, allowing an
attacker to place two instances on the same platform [10,22,25,33]. Microar-
chitectural covert channels can later be used to find out whether co-residency
is achieved at core-level, package-level, or system-level. While these approaches
require some knowledge of the network topology, an adversary can choose instead
to directly apply microarchitectural covert channels to detect co-residency. In a
purely microarchitectural co-residency attack, the sending-end can broadcast
messages on the covert channel, until a receiving-end picks up. Thus targeted
co-residency is still possible without access to a reliable network topology of the
data centre. Recently, Atya et al. [7] successfully demonstrated this approach on
AWS EC2, using the memory bus and the cache as communication mediums.

C3. User interaction is rated as “required”. The Amazon Web Service Elastic
Compute Cloud (AWS EC2) service is a practical example of means to compro-
mise a victim’s instance before its deployment. Amazon Machine Images (AMIs)
are the basic unit of the EC2 service. An AMI contains the OS along with
libraries, applications, and other components which personalise the instance.
Before deploying a VM, a user must choose an AMI, and set permissions for
its AWS account(s). AMI selection presents a unique vulnerability: anyone with
an AWS account can customise and share an AMI. As a result, an attacker can
conceal and distribute a trojan across a large pool of users. While Amazon warns
its customers against such practise, it doesn’t forbid it. Also, because the AMI
contains a tremendous amount of code, it is extremely difficult (if not impossible)
to uncover malicious code once it is embedded into the image. Whether trojan
insertion is performed using social-engineering, or via machine image corruption,
specific actions must be performed by the victim.

C4. The scope metric is rated as “unchanged”. The mechanism responsible for
enforcing access control over the vulnerable component, also known as the secu-
rity authority, depends on the form of the trojan. For example, if the sending-
end is part of a user application (e.g. plugin), the vulnerable component is
the affected application (e.g. web-browser) and the security authority is the
guest operating system, responsible for enforcing isolation between user appli-
cations. However, the covert channel attack does not allow accessing the data
of other applications running in the same guest operating system. The same
reasoning holds if the sending-end takes the form of a malicious kernel module.
The affected component becomes the guest operating system, and the security
authority becomes the hypervisor. The sending-end would be able to leak all
the information of the guest operating system, but it would not allow accessing
the data of other guests under the same hypervisor. Therefore, the fact that
data is exfiltrated across virtual machines does not constitute a change of scope.

A Study of Covert Channel Vulnerabilities in IaaS 367

The sole purpose of a covert channel attack is to exfiltrate information, or carry
out modifications as instructed by the other communicating entity. Any exploit
built on top of the covert channel attack (e.g. privilege escalation) is beyond the
scope of this study.

C5. Confidentiality impact is rated as “high”. Covert channels intend to leak a
selected amount of information rather than the entire set of system files. How-
ever, a successful attack against a public cloud instance can have a significant
impact on a victim, such as theft of proprietary information, leakage of per-
sonal data, or theft of cryptographic keys. We note that covert channels are
only relevant when there is no alternative mean of leaking information in a
non-conspicuous manner, e.g. to avoid generating network traffic and associated
logs [5]. As such, covert channels constitute an ideal basis for advanced persis-
tent threats, where the attacker employs state-of-the-art techniques in order to
maintain long-term intrusion and data exfiltration capabilities. Such an attacker
has other incentives than simple financial gain [12].

C6. Integrity impact is rated as “low”. The attacker can issue modifications
to be applied to the victim’s environment, although this requires bi-directional
communication, as well as the ability to instruct data tampering operations.
Such a covert channel was demonstrated by Maurice et al. [17], who managed to
establish a rogue SSH connection between two AWS EC2 instances. Data mod-
ification is therefore possible, however it remains a specific case, the primarily
objective being data extraction.

C7. Exploit code maturity is rated as “proof-of-concept”. The state-of-the-art
covert channels surveyed in this paper all demonstrate a functional attack in a
virtualised environment. However, researchers rarely disclose their full source-
code. Therefore, current microarchitectural covert channels are not directly
applicable without a skilled attacker.

C8. As per the CVSS specification [3], disclosure of an exploit in external events
such as publications automatically rates the report confidence as “confirmed”.
A research publication is considered an official source which is corroborated by
multiple experts.

To the best of our knowledge, there hasn’t been any reported exploit related
to cross-VM microarchitectural covert channels. Therefore, a universal approach
is adopted in this study. We note that the CVSS v3.1 also provides a set of
modified base metrics, allowing the analyst to override base metrics so as to fit
the victim’s environment specifically. For instance, if the data that was leaked
was not considered sensitive, the confidentiality impact can be overwritten to
“low”. Similarly, if the covert channel allowed modifying data used in critical
decision making processes, the integrity impact can be overwritten to “high”.

368 B. Semal et al.

5 Evaluation of Covert Channel-Specific Criteria
(C9–C12)

In this section, covert channel attacks surveyed in Table 1 are analysed individ-
ually in order to proceed with the criteria evaluation. Results are reported in
Table 3, along with the CVSS and CCSS scores for each attack. We note that
the two scores are independent from each other. Additional details on scoring
are provided in Sect. 6.

5.1 Memory Order Buffer

The memory order buffer (MOB) attack [24] exploits a side-effect of write-after-
read hazards, called 4k-aliasing. This effect occurs whenever the lower twelve
bits of the addresses contained in the load and store registers match, i.e. there
is a data dependency between the load and the out-of-order store. This causes
the load operation to be re-issued, resulting in the load/store bandwidth to
drop. Authors leverage 4k-aliasing to create a covert communication between two
hyperthreads. The sender either fills the store buffer with page-aligned addresses
to transmit a one, or empties the store buffer to transmit a zero. Concurrently,
the receiver probes load operations on every page-aligned addresses. When the
load/store bandwidth drops, the receiver will observe a higher latency.

This effect is exploitable only at the thread-level, as it is linked to the load
and store buffers located within the CPU. Neither the sender nor the receiver
processes require root privileges, and the covert channel works across processes.
Therefore, the sending-end can be embedded into a different program than the
receiving-end. Both entities need to be scheduled on the same physical core.

With regard to countermeasures, authors acknowledge that disabling SMT is
a straightforward way of mitigating the vulnerability. However, they also argue
that “hyperthreading is expected to become more popular on IaaS platforms in
the near future in order to keep them affordable”. Indeed, SMT remains available
on dedicated instances or for general-purpose workloads.

5.2 Last-Level Cache

LLC-based covert channels [14,16,17,22,32] derive from the Prime+Probe
technique [18]. The receiver initialises the cache by filling it with its own cache
lines, waits for the sender to execute, and probes its accesses to the same cache
lines. If the sender chooses to modify the cache sets of the receiver, the latter
will experience a slower access to its cache lines. Prime+Probe relies on the
existence of congruent addresses between the sender and receiver, i.e. virtual
addresses that map to the same cache set.

Identifying congruent addresses requires translating virtual pointers into
physical addresses, which is performed by accessing the privileged page tables.
Alternatively, entities can use the page offset of huge pages (e.g. 2 MB) as it is
not translated, and it is long enough to include index bits. The communicating

A Study of Covert Channel Vulnerabilities in IaaS 369

entities need to agree on a set of congruent addresses, which cannot be performed
in the absence of an existing communication channel. In order to cope with this
issue, Maurice et al. [17] suggested using a jamming agreement. Independently of
the chosen strategy, LLC-based attacks are not functional without an initialisa-
tion phase. LLC-based covert channels are limited to cross-core communication.

Several cloud-oriented mitigation techniques were proposed to tackle LLC-
based timing channels, such as cache partitioning or noise injection [9,11,13,26].
Intel Xeon processors support a similar mechanism, i.e. Intel’s Cache Allocation
Technology [4], which allows locking down portions of the LLC during execution,
and ultimately defeat Prime+Probe attacks [13]. With a different approach,
an auditing technique is suggested by Zhang et al. [34] which consists of using
the performance monitoring unit to detect abnormal behaviour.

5.3 DRAM Row-Buffer

The DRAM addressing covert channel [21] exploits the DRAM bank row-buffer
to create timing variations on uncached memory accesses. The sending-end allo-
cates memory, and performs memory accesses either in the cache or in the
DRAM. When the sender accesses the DRAM, it causes the row-buffer to be
updated with the sender’s row. Concurrently, the receiver accesses the same
DRAM bank as the sender. If the sender evicted the receiver’s row from the
row-buffer, a row-miss occurs resulting in a higher latency.

Pessl et al. [21] relied on a privileged adversary model in order to access
the pagemap file. We note that it is trivial to extend the original author’s threat
model to remote and unprivileged adversaries. One entity can simply write zeroes
and ones on a random memory location, and the other entity scans its memory
address space to detect the bit pattern, i.e. consecutive row-hits and row-misses.
This approach also enables implementing a covert channel without knowledge of
the DRAM addressing function, at the cost of an initialisation phase. This covert
channel has the advantage that the communicating entities do not necessarily
need to be scheduled on the same processor, as the DRAM memory is shared at
a system-level via the interconnect.

Auditing can be used as a mitigation strategy. Indeed, the constant probing to
DRAM results in a significant amount of cache-misses, observable by cache-miss
counters. Alternatively, these authors proposed restricting access to the clflush
instruction, which would render the covert channel harder to implement. Semal
et al. [23] also suggest enforcing a close-page policy in order to inhibit the effect
of the row-buffer.

5.4 Memory Controller

Semal et al. [23] proposed modulating the load on the channel scheduler in order
to induce timing variations in the receiver’s memory accesses to DRAM. The
sender allocates three memory pages, and then reads one byte either in each of
the three pages, or in a single page. The receiver observes a higher latency when
the sender is increasing the load on the channel scheduler.

370 B. Semal et al.

Authors demonstrated the attack both with and without privileges. The
communicating-entities need to agree on a memory channel. As in the row-buffer
attack, this can be achieved by having the sender broadcasting his position.
Because the memory controller is accessible at a system level, this attack could
be extended to multi-processor configurations. Further research is required to
evaluate the impact of accessing memory regions in external NUMA nodes on
the latency variations induced by the sender.

The memory controller covert channel can be addressed with the same coun-
termeasures as the row-buffer one, at the exception of the page policy. Alter-
natively, the controller can be redesigned in order to enforce temporal [27] or
spatial isolation.

5.5 Memory Bus

Wu et al. [30] devised a covert channel based on the memory bus. Authors sug-
gested using atomic operations on exotic memory operations, i.e. operations on
cache line-crossing memory regions, in order to trigger a bus lock emulation. The
sender either performs an exotic access, or remains idle. Meanwhile the receiver
probes its uncached memory accesses. A high latency is observed whenever the
sender accesses exotic memory regions.

This attack allows cross-core communication on NUMA architectures, cross-
processor communication on front side bus architectures, and it does not require
privileges. Furthermore, it is functional without an initialisation phase.

Wu et al. suggest monitoring the cache-miss memory bus lock counters
in order to detect performance anomalies at runtime with minimal overhead.
Another suggestion consists of enforcing a policy where each tenant can only
be neighbour with one other tenant [30]. This approach renders covert chan-
nel attacks almost impractical, however the operational cost remains an open-
question.

5.6 Summary of Findings

C9. The CVSS v3.1 [3] specifies that exploits which rely on social engineering
can be rated as “none”. However, the works of Ristenpart et al. [22] and Xu et al.
[32] require accessing page tables in order to find congruent addresses, and are
thus rated as “high”. All remaining covert channels are feasible from a user-level
program. These are rated as “none”.

C10. The remediation level varies depending on the party that is enforcing
countermeasures. Table 2 shows that among the countermeasures proposed in
the literature, several rely on an alternative hardware design. This approach
has the benefit of being the most efficient, however it is also the hardest to
deploy. Furthermore, security by design tends to have a significant performance
cost which is not always justified. For instance, Wang et al. [27] suggested a
new design of the memory controller which enforces temporal isolation among
different security domains. While effective, this technique results in performance

A Study of Covert Channel Vulnerabilities in IaaS 371

cost of up to 150%. As a result, remediation strategies consisting of alternative
designs are evaluated as “unavailable”.

Other countermeasures have been proposed which can be taken directly by
the cloud customer. For example, Zhang et al. [35] devised the HomeAlone tech-
nique which allows cloud users detecting the presence of a LLC-based timing
channel. The victim continuously probes memory accesses to detect anomalies,
and takes reactive measures accordingly. Yet, this approach can result in a high
number of false positives depending on the workload. This type of strategy is
not official and cannot be generalised to all IaaS users. Therefore, remediation
level is rated as “workaround” at the cloud customer level.

The most practical means of deploying countermeasures is if they are enforced
by the cloud provider. The AWS EC2 and GCE services propose a type of
instance where the user runs on a platform that is isolated from other users
[1,6]. Note that these have a significant cost, e.g. an on-demand EC2 a1.2xlarge
instance costs 0.204 USD per hour while a dedicated EC2 a1.2xlarge instance
costs 2.2162 USD per hour. This approach is valid for running a selected work-
load only. Cloud providers have reportedly encouraged the disabling of SMT
in order to prevent core-level timing channels [15]. We rate these strategies as
“temporary fix”, as they are recommended by vendors but are only applicable
to a set of instances. Researchers also advanced mitigation strategies which can
be implemented via the hypervisor. For example, Liu et al. [13] leverage Intel’s
Cache Allocation Technology to thwart Prime+Probe cache attacks. To the
best of our knowledge, this strategy is not applied by cloud providers. As a
result, this type of remediation is rated as “workaround”.

Table 2. Remediation level (C10) criterion analysis.

C10 Hardware manufacturer Cloud provider Cloud customer

Workaround – Software
partitioning
[8,9,11]; Noise
injection [26,29];
Auditing
hardware
counters [34]

Probing memory
accesses [35];
Auditing
hardware counters
[30]

Unavailable Temporal isolation [27];
Spatial isolation
[13,19,20,29];
Restricting clflush

[21]; Close-page policy
[23]

VM clusters [30] –

Temporary fix - Disabling SMT
[15]; Dedicated
instances [1]

–

372 B. Semal et al.

Table 3. Summary of cross-VM covert channel attacks’ criteria evaluation and scoring.

Attack C9 C10 C11 C12 CVSS/CCSS

[22]* Privileged Workaround Core Mandatory 4.2/1.6

[32]* Privileged Workaround Core Mandatory 4.2/1.6

[30]† Unprivileged Unavailable Processor Optional 5.0/6.7

[14]* Unprivileged Workaround Processor Mandatory 4.9/4.3

[16]* Unprivileged Workaround Processor Mandatory 4.9/3.7

[21]¶ Unprivileged Unavailable System Mandatory 5.0/6.8

[17]* Unprivileged Workaround Processor Mandatory 4.9/3.8

[24]‡ Unprivileged Temporary fix Core Optional 4.8/5.7

[23]§ Unprivileged Workaround Processor Mandatory 4.9/4.7

*LLC, †Memory bus, ¶Row-buffer, ‡Memory order buffer, §Memory controller.
C1 = Local, C2 = High, C3 = Required, C4 = Unchanged, C5 = High, C6 =
Low, C7 = Proof-of-concept, C8 = Confirmed.

C11. Ristenpart et al. [22] and Xu et al. [32] use a busy-loop mechanism to
synchronise receiver and sender, implying that both VMs share CPU resources.
Therefore, these attacks do not meet the requirements for cross-core covert chan-
nels. Similarly, the memory order buffer attack [24] requires both entities to share
CPU resources. These attacks are set to “core”. Remaining LLC-based covert
channels are bound to the “processor” rating as the LLC cannot be shared across
processors. Note that, as defined in Sect. 2.2, we use the term processor to refer
to the entire processor die. Furthermore, while the memory controller attack [23]
exploits a system-level component, the authors didn’t demonstrate the attack on
a multi-processor system. Similarly, Wu et al [30] assigned different virtual CPUs
to each entity without specifying whether these were pinned to distinct hard-
ware processors. These covert channels are also rated as “processor”. Finally,
the DRAM row-buffer [21] attack can transmit data across processors as DRAM
memory is shared at system-level. As such, it is rated as “system”.
C12. Only the memory bus [30] and the memory order buffer [24] covert channels
can be rated as “optional”. Every other covert channel requires an initialisation
phase, and are thus rated as “mandatory” for this criterion.

6 Severity Scores

6.1 Design of the CCSS Equations

In order to provide a classification of covert channels, we create a new scheme
which accounts for criteria C9, C10, C11, C12, and the channel capacity. These
criteria are specific to the covert channel considered, and provide a point of
comparison for the adversary model. The CCSS is by no means a representation
of the severity of the attack. Instead, it should be taken as a complement to the
CVSS which cannot solely be used to classify cross-VM covert channels.

A Study of Covert Channel Vulnerabilities in IaaS 373

Criteria scores have been selected such that the scoring equation is as uniform
as possible. That is, the five criteria all have the same weight. The motivation
behind this decision is that the importance of one factor over another is sub-
jective. For example, one could give a higher weight to the channel capacity,
arguing that communication speed and robustness is the most important. From
one perspective, this is true. A set of log, data, and application files of a pass-
word manager (∼1 GB) would take 99 days 10 h and 5 min at a bitrate of 1 Kb/s
to be transmitted, and 2 h and 23 min at a bitrate of 1 Mb/s. Cloud instances
are rescheduled onto different platforms depending on resource availability and
demand. Therefore, the communication speed is critical. However, from another
perspective, this is false. Faster communication rates are usually achieved by
covert channels that exploit microarchitectural components closer from the exe-
cution units, which can easily be addressed by existing countermeasures (i.e.
disabling SMT), or that have been extensively studied and resulted in multiple
countermeasure proposals [8,9,11,13,26,28,29,36]. Thus faster covert channels
will not necessarily be practical.

Furthermore, improving an evaluation scheme is usually performed over time
by comparing the scores with the reality. For instance, the HeartBleed vulnera-
bility was given a medium severity score of 5.0 in CVSS v2. Yet, it could easily
be exploited and had significant consequences. It now has a high severity score
of 7.5 in the CVSS v3.1 To the best of our knowledge, no covert channel exploit
has been reported so far. Therefore, we consider that starting with an impartial
scoring equation for the CCSS is the best approach. The scoring equation is,

Score = 2 × (C9 + C10 + C11 + C12 + CapScore) (1)

Each CCSS criteria is given a value between 0 and 1: criterion C9 is scored 0 for
“Privileged” and 1 for “Unprivileged”; criterion C10 is scored 0 for “Temporary
fix”, 0.5 for “Workaround”, and 1 for “Unavailable”; criterion C11 is given a
score of 0 for “Core”, 0.5 for “Processor”, and 1 for “System”; C12 is scored 0
for “Mandatory” and 1 for ‘Optional”; the capacity score CapScore is modelled
as an affine function between the highest and lowest channel capacity observed
in this study, such that it outputs a score between 0 and 1,

CapScore = 1/(1.06e06 − 1.77) × Capacity (2)

The final CCSS score varies between 0 and 10. Again, the CCSS score is only
used for comparing covert channel attacks, and is complementary to the CVSS.

6.2 Results

Figure 2 represents the score of each covert channel under the CCSS and the
CVSS. Due to missing information, Ristenpart et al.’s attack [22] was assigned
an error rate of 22%, i.e. the maximum error rate observed in this study. Highest
scores are achieved by the memory bus [30] and DRAM row-buffer [21] covert
channels. Although not the most recent, these were able to reach high-speed

374 B. Semal et al.

Fig. 2. Scoring of cross-VM covert channel attacks under the CVSS and CCSS: (a) =
LLC [22], (b) = LLC [32], (c) = Memory bus [30], (d) = LLC [14], (e) = LLC [16],
(f) = Row-buffer [21], (g) = LLC [17], (h) = Memory order buffer [24], (i) = Memory
controller [23].

effective communication rates while minimising operational constraints. Mean-
while, LLC-based covert channels tend to achieve lower severity scores, due to
the necessity of finding congruent addresses as well as the LLC locality. This
shows that future works should emphasise on exploiting system-level resource,
while working on making the communication more robust.

The CVSS scores were computed with the CVSS v3.1 equations [3]. According
to our study, microarchitectural covert channels achieve a medium severity score
ranging from 4.2 to 5.0. It shows that covert channels in IaaS are practical,
that they should not be overlooked, and that suitable countermeasures should
be devised in the short term in order to tackle timing channel vulnerabilities.
More specifically, we suggest addressing the DRAM row-buffer and memory bus
covert channels, as cache-based covert and side channel attacks have already
been extensively studied.

When comparing the two evaluation frameworks, we observe that the CCSS
outlines disparities among covert channel attacks which the CVSS does not. For
example, the works proposed by Ristenpart el al. [22] and Wu et al. [30] would
both be rated as medium severity vulnerabilities under the CVSS. Yet, the former
attack has significant shortcomings including obtaining privileges (C9), achiev-
ing core-level co-location (C11), finding congruent addresses (C12), and a low
communication speed. Thus the resulting CVSS scoring of the covert channel
proposed by Ristenpart et al. [22] as a medium severity vulnerability is not ade-
quate. In comparison, the proposed evaluation framework successfully highlights
the benefit of one covert channel over another, with respective scores of 1.6 and
6.7. This shows that the evaluation of microarchitectural covert channels cannot
be performed entirely based on the current industry standard, and that the cri-
teria studied in the CCSS should be accounted for when devising new cross-VM
covert channel attacks. Authors of future covert channels are encouraged to use
the CCSS in order to provide a fair and realistic point of comparison with other
works.

A Study of Covert Channel Vulnerabilities in IaaS 375

7 Conclusion

In this paper, we proposed the Covert Channel Scoring System (CCSS) as a new
framework for evaluating microarchitectural covert channels. It allows comparing
covert channel attacks based both on their performance (speed and robustness)
and their practicality (operational constraints). The analysis revealed that the
fastest covert channels are not necessarily the most eminent attacks, as they
usually assume a close locality between sender and receiver, or a complex ini-
tialisation phase, resulting in lower severity scores. We advocate future works to
use the CCSS in order to include a fair comparison metric in their proposal.

Furthermore, we systematically evaluated microarchitectural covert channels
in the Infrastructure-as-a-Service ecosystem, using the Common Vulnerability
Scoring System in its latest version (CVSS v3.1), and revealing medium severity
scores ranging from 4.2 to 5.0. In comparison, the OpenSSL Heartbleed vulner-
ability achieved a severity score of 7.5 (CVSS v3.1). Although not as severe, the
microarchitectural covert channel threat to IaaS is present and not negligible.
In parallel, services built on cloud computing continue offering guarantees on
the confidentiality and integrity of their customers’ data. The loss of data, e.g.
under GDPR requirement, could result in dramatic consequences for the cloud
provider, the software provider, and their customers.

References

1. Amazon EC2 dedicated instances. https://aws.amazon.com/ec2/pricing/
dedicated-instances/. Accessed 25 July 2020

2. CVE-2013-0375 detail. https://nvd.nist.gov/vuln/detail/CVE-2013-0375.
Accessed 25 July 2020

3. CVSS v3 Equations. https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator/
equations. Accessed 25 July 2020

4. Improving real-time performance by utilizing cache allocation technology, Intel
Corporation (2015)

5. Monitoring your instances using CloudWatch. https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/using-cloudwatch.html. Accessed 25 July 2020

6. Sole-tenant nodes. https://cloud.google.com/compute/docs/nodes. Accessed 25
July 2020

7. Atya, A.O.F., Qian, Z., Krishnamurthy, S.V., La Porta, T., McDaniel, P., Marvel,
L.M.: Catch me if you can: a closer look at malicious co-residency on the cloud.
IEEE/ACM Trans. Netw. 27(2), 560–576 (2019)

8. Cock, D., Ge, Q., Murray, T., Heiser, G.: The last mile: an empirical study of
timing channels on sel4. In: ACM CCS, pp. 570–581 (2014)

9. Godfrey, M.M., Zulkernine, M.: Preventing cache-based side-channel attacks in a
cloud environment. IEEE TCC 2(4), 395–408 (2014)

10. Herzberg, A., Shulman, H., Ullrich, J., Weippl, E.: Cloudoscopy: services discovery
and topology mapping. In: ACM CCSW, pp. 113–122. ACM (2013)

11. Kim, T., Peinado, M., Mainar-Ruiz, G.: STEALTHMEM: system-level protection
against cache-based side channel attacks in the cloud. In: USENIX Security, pp.
189–204 (2012)

https://aws.amazon.com/ec2/pricing/dedicated-instances/
https://aws.amazon.com/ec2/pricing/dedicated-instances/
https://nvd.nist.gov/vuln/detail/CVE-2013-0375
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator/equations
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator/equations
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-cloudwatch.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-cloudwatch.html
https://cloud.google.com/compute/docs/nodes

376 B. Semal et al.

12. Langner, R.: Stuxnet: dissecting a cyberwarfare weapon. IEEE S&P 9(3), 49–51
(2011)

13. Liu, F., et al.: Catalyst: defeating last-level cache side channel attacks in cloud
computing. In: IEEE HPCA, pp. 406–418. IEEE (2016)

14. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: IEEE S&P, pp. 605–622. IEEE (2015)

15. Marshall, A., Howard, M., Bugher, G., Harden, B., Kaufman, C., Rues, M.,
Bertocci, V.: Security best practices for developing windows azure applications,
p. 42. Microsoft Corp (2010)

16. Maurice, C., Neumann, C., Heen, O., Francillon, A.: C5: cross-cores cache covert
channel. In: Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015. LNCS,
vol. 9148, pp. 46–64. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
20550-2 3

17. Maurice, C., et al.: Hello from the other side: SSH over robust cache covert channels
in the cloud. In: NDSS, vol. 17, pp. 8–11 (2017)

18. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 1

19. Page, D.: Partitioned cache architecture as a side-channel defence mechanism
(2005)

20. Percival, C.: Cache missing for fun and profit (2005)
21. Pessl, P., Gruss, D., Maurice, C., Schwarz, M., Mangard, S.: DRAMA: Exploiting

DRAM addressing for cross-CPU attacks. In: USENIX Security, pp. 565–581 (2016)
22. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:

exploring information leakage in third-party compute clouds. In: ACM CCS, pp.
199–212. ACM (2009)

23. Semal, B., Markantonakis, K., Akram, R.N., Kalbantner, J.: Leaky controller:
cross-VM memory controller covert channel on multi-core systems. EasyChair
Preprint no. 2941, EasyChair (2020)

24. Sullivan, D., Arias, O., Meade, T., Jin, Y.: Microarchitectural minefields: 4k-
aliasing covert channel and multi-tenant detection in IaaS clouds. In: NDSS (2018)

25. Varadarajan, V., Zhang, Y., Ristenpart, T., Swift, M.: A placement vulnerability
study in multi-tenant public clouds. In: USENIX Security, pp. 913–928 (2015)

26. Vattikonda, B.C., Das, S., Shacham, H.: Eliminating fine grained timers in Xen.
In: ACM CCSW, pp. 41–46 (2011)

27. Wang, Y., Ferraiuolo, A., Suh, G.E.: Timing channel protection for a shared mem-
ory controller. In: IEEE HPCA, pp. 225–236. IEEE (2014)

28. Wang, Y., Ferraiuolo, A., Zhang, D., Myers, A.C., Suh, G.E.: SecDCP: secure
dynamic cache partitioning for efficient timing channel protection. In: DAC, pp.
1–6 (2016)

29. Wang, Z., Lee, R.B.: New cache designs for thwarting software cache-based side
channel attacks. In: ISCA, pp. 494–505 (2007)

30. Wu, Z., Xu, Z., Wang, H.: Whispers in the hyper-space: high-bandwidth and reli-
able covert channel attacks inside the cloud. IEEE/ACM Trans. Netw. 23(2), 603–
615 (2014)

31. Xiao, Z., Xiao, Y.: Security and privacy in cloud computing. IEEE Commun. Surv.
Tutorials 15(2), 843–859 (2012)

32. Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M., Schlichting, R.: An explo-
ration of L2 cache covert channels in virtualized environments. In: ACM CCSW,
pp. 29–40. ACM (2011)

https://doi.org/10.1007/978-3-319-20550-2_3
https://doi.org/10.1007/978-3-319-20550-2_3
https://doi.org/10.1007/11605805_1

A Study of Covert Channel Vulnerabilities in IaaS 377

33. Xu, Z., Wang, H., Wu, Z.: A measurement study on co-residence threat inside the
cloud. In: USENIX Security, pp. 929–944 (2015)

34. Zhang, T., Zhang, Y., Lee, R.B.: CloudRadar: a real-time side-channel attack detec-
tion system in clouds. In: Monrose, F., Dacier, M., Blanc, G., Garcia-Alfaro, J.
(eds.) RAID 2016. LNCS, vol. 9854, pp. 118–140. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45719-2 6

35. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: HomeAlone: co-residency detection
in the cloud via side-channel analysis. In: IEEE S&P, pp. 313–328. IEEE (2011)

36. Zhou, Z., Reiter, M.K., Zhang, Y.: A software approach to defeating side channels
in last-level caches. In: ACM CCS, pp. 871–882 (2016)

https://doi.org/10.1007/978-3-319-45719-2_6
https://doi.org/10.1007/978-3-319-45719-2_6

SCI – Secure Cryptographic
Implementation

On New Zero-Knowledge Proofs for Fully
Anonymous Lattice-Based Group

Signature Scheme with Verifier-Local
Revocation

Yanhua Zhang1(B), Ximeng Liu2, Yifeng Yin1, Qikun Zhang1, and Huiwen Jia3

1 Zhengzhou University of Light Industry, Zhengzhou 450001, China
{yhzhang,yinyifeng,kzhang}@zzuli.edu.cn
2 Fuzhou University, Fuzhou 350108, China

snbnix@gmail.com
3 Guangzhou University, Guangzhou 510006, China

hwjia@gzhu.edu.cn

Abstract. The first lattice-based verifier-local revocation group signa-
ture (GS-VLR) was introduced by Langlois et al. in 2014, and subse-
quently, a full and corrected version was proposed by Ling et al. in 2018.
However, zero-knowledge proofs in both schemes are within a structure of
Bonsai Tree, and thus have bit-sizes of the group public-key and member
secret-key proportional to log N , where N is the group size. On the other
hand, the revocation tokens in both schemes are related to the member
secret-key and only obtain a weaker security, selfless-anonymity. For the
tracing algorithms in both schemes, they just run in the linear time of N .
Therefore, for a large group, the zero-knowledge proofs in lattice-based
GS-VLR schemes are not that secure and efficient.

In this work, we firstly utilize a compact and scalable identity-
encoding technique which only needs a constant number of public matri-
ces to encode the member’s identity information and it saves a O(log N)
factor in both bit-sizes for the group public-key and member secret-key.
Secondly, separating from the member secret-key, we generate revoca-
tion token within some public matrix and a short Gaussian vector, and
thus obtain the strongest security, full-anonymity. Moreover, the explicit-
traceability, to trace the signer’s identity in a constant time, independent
of N , for the tracing authority is also satisfied. In particular, a new
Stern-type statistical zero-knowledge proof protocol for a fully anony-
mous lattice-based GS-VLR scheme enjoying the above three advantages
is proposed.

Keywords: Lattice-based group signatures · Verifier-local revocation ·
Zero-knowledge proofs · Explicit-traceability · Full-anonymity

1 Introduction

Group signature (GS), introduced by Chaum and van Heyst [7] in 1991, is
accepted as a central cryptographic primitive enjoying two key privacy-preserving
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 381–399, 2020.
https://doi.org/10.1007/978-3-030-61638-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_21&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_21

382 Y. Zhang et al.

properties, anonymity and traceability. For the former, it means that any group
member can sign a message on the behalf of the whole group, meanwhile, without
divulging the signer’s identity information; for the latter, it means that there exists
a tracing authority owning some secret information to reveal the anonymity and
track the signer’s identity efficiently. With these two appealing properties, GS has
found several applications in real-life, such as in the trusted computing, anony-
mous online communications, e-commerce systems, and much more.

At a theoretical level, to construct such an efficient GS scheme three criti-
cal and relatively independent cryptographic ingredients are required and within
some sophisticated combinations, these key building blocks include: a digital sig-
nature scheme, a public-key encryption scheme, and an efficient non-interactive
zero-knowledge proof protocol. Therefore to design a theoretical secure and effi-
cient GS scheme is a challenging work for the research community and over the
last three decades GS schemes with different security notions, different levels of
efficiency and based on different hardness assumptions have been proposed (e.g.,
[1–4,10] · · ·).
Lattice-based gs-vlr. The conventional number-theoretic problems (such as
integer factoring problem and discrete logarithm problem) and GS schemes based
on these hardness assumptions are vulnerable to quantum computers, and it is
urgent to design a secure and efficient GS scheme in post-quantum cryptography
(PQC) era. Believed to be one of the promising candidates for PQC, lattice-based
cryptography (LPC) enjoys several competive advantages over number-theoretic
cryptography: security reduction in the worst-case hardness assumptions, sim-
pler arithmetic operations and provision of rich cryptographic functionality and
services. The first lattice-based GS scheme was introduced by Gordon et al. [10]
in 2010, a series of lattice-based GS schemes with static or dynamic design tech-
niques [5,11,13,15–17,20–23,25] were then proposed.

As an orthogonal problem of group member enrollment, the support for mem-
bership revocation is another desirable functionality for GS scheme. As a flexible
revocation approach for group-type cryptographic constructions, verifier-local
revocation (VLR) mechanism [3] is quite practical since it only requires verifier
to download the up-to-date revocation information for signature verification, and
no signer is required. The first lattice-based GS-VLR scheme was introduced by
Langlois et al. [14] in 2014, subsequently, a full and corrected version was pro-
posed by Ling et al. [18] in 2018, furthermore, four schemes achieving different
security notions (almost-full anonymity v.s. dynamical-almost-full anonymity)
were constructed by Perera and Koshiba [26–28].

However, all mentioned lattice-based GS-VLR schemes are within a structure
of Bonsai Tree [6], and thus features bit-sizes of the group public-key and mem-
ber secret-key proportional to log N , where N is the group size, the maximum
number of group members. The only three exceptions are [8,29,30] which adopt
an identity-encoding function introduced in [25] to encode the member’s iden-
tity index and thus save a O(log N) factor for both bit-sizes. However, the two
schemes [8,29] involve a series of sophisticated encryptions and zero-knowledge
proofs (ZKP) protocols in the signing phase, on the other hand, revocation tokens

On New Zero-Knowledge Proofs for Fully Anonymous Lattice-Based Group 383

in [8,14,18,29] are all related to some public matrix and a member secret-key (a
modular multiplication of the public matrix and the first part of member secret-
key), thus all schemes only obtain a weaker security, called selfless-anonymity
as introduced in [3]. In [30], though the revocation token is generated within
an independent short Gaussion vector, the scheme can only obtain a slightly
stronger security, called almost full-anonymity, first defined in [28]. For the trac-
ing algorithms in [8,14,18,29], they all just run in a linear time in N (i.e., one by
one for group members until the signer is traced). Therefore for a large group,
ZKP protocols in lattice-based GS-VLR are not that secure and efficient. These
somewhat unsatisfactory state-of-affairs highlights a challenge to construct a
more secure and efficient lattice-based GS-VLR scheme, in particular, to design
an efficient statistical ZKP protocol corresponding to all these constructions.

Our results and techniques. In this work, we reply positively to the
problems discussed above. Specifically, we pay attention to the new design of
Stern-type statistical ZKP protocol for a fully anonymous lattice-based GS-VLR
scheme. Firstly, by adopting an efficient identity-encoding technique, the bit-
sizes of the group public-key and the member secret-key save a O(log N) fac-
tor in comparison with the existing lattice-based schemes. Secondly, separating
from the member secret-key, the revocation token is generated within some pub-
lic matrix and a short Gaussian vector, and thus obtaining full-anonymity, the
strongest security. Thirdly, based on a lattice-based verifiable encryption pro-
tocol corresponding to the dual learning with errors (LWE) cryptosystem, the
explicit-traceability (ET), to trace the signer’s identity in constant time, inde-
pendent of N , is also satisfied.

We declare that the new and efficient Stern-type statistical ZKP protocol for
a fully anonymous lattice-based GS-VLR scheme with the shorter key-sizes, the
strongest security and explicit-traceability can be obtained in a relatively simple
manner, thanks to three main techniques discussed below.

Firstly, to realize the simpler and efficient Stern-type statistical ZKP protocol
for lattice-based GS-VLR with the shorter key-sizes, some efficient mechanisms
are required to encode the member’s identity information. We utilize a compact
identity-encoding technique as in [25] which needs a constant number of public
matrices to encode the member’s identity index. We consider the group of N = 2�

members and each member is identified by a �-bits string id = (d1, d2, · · · , d�) ∈
{0, 1}� which is a binary representation of its index i ∈ {0, 1, · · · , N − 1}, i.e.,
id = bin(i) ∈ {0, 1}�. In our new Stern-type ZKP protocol (without a structure
of Bonsai Tree), the group public-key only consists of a random vector u ∈ Z

n
q

and five random matrices A, A0, A1 ∈ Z
n×m
q (used for identity-encoding),

A2 ∈ Z
n×m
q (used for explicit-traceability) and A3 ∈ Z

n×m
q (used for revocation

token). For member i, instead of generating a short trapdoor basis matrix for a
hard random lattice as signing secret-key as in [25], we sample a 2m-dimensional
Gaussian vector ei = (ei,0, ei,1) ∈ Z

2m satisfying 0 < ‖ei‖∞ ≤ β, Bi · ei =
u mod q, where Bi = [A|A0 + iA1] ∈ Z

n×2m
q . Furthermore, for the VLR feature

to obtain full-anonymity, the revocation token of member i is constructed by A3

384 Y. Zhang et al.

and a short Gaussian vector fi ∈ Z
m satisfying A · fi = A · ei,0 +A0 · ei,1mod q,

i.e., grti = A3 · fi mod q.
Secondly, to realize the simper and efficient design of Stern-type statisti-

cal ZKP protocol for lattice-based GS-VLR with ET, we further need some
mechanism to hide the member’s index i (in our new design, just to hide
id = bin(i) ∈ {0, 1}�) into a ciphertext c and a verifiable encryption protocol
to prove that c is a correct encryption of id. Thus, besides the public matrices
A, A0 and A1 for identity-encoding, a fourth matrix A2 is required to encrypt
bin(i) using the lattice-based dual LWE cryptosystem [9]. The relation then can
be expressed as c = (c0 = A�

2 s+e1 mod q, c1 = G�s+e2 + �q/2�bin(i) mod q)
where G ∈ Z

n×�
q is a random matrix from certain oracle and s, e1, e2 are random

vectors having certain specific norm.
Thirdly, the major challenge for our new Stern-type ZKP protocol lies in how

to prove the following relations: (a) [A|A0 + iA1] · ei = u mod q; (b) grti = A3 ·
fi mod q; (c) c = (c0, c1) = (A�

2 s+e1,G�s+e2+�q/2�bin(i)) mod q. For relation
(b), we utilize a creative idea introduced by Ling et al. [18] by drawing a matrix
B ∈ Z

n×m
q from some random oracle and a vector e0 ∈ Z

m from the LWE error
distribution, define b = B�grti +e0 = (B�A3) · fi +e0 mod q, thus the member
i’s token grti is now bound to a one-way and injective LWE function. For relation
(c), we also utilize a creative idea introduced by Ling et al. [20] by constructing
a matrix P ∈ Z

(m+�)×(n+m+�)
q (obtained from the public matrices A2 and G, see

Sect. 3 for details), and a vector e = (s, e1, e2) ∈ Z
n+m+�, define c = (c0, c1) =

Pe+ (0m, �q/2�bin(i)) mod q, thus the index i is bound to this new form which
is convenient to construct a Stern-type statistical ZKP protocol. For relation (a),
since ei ∈ Z

2m is a valid solution to the inhomogeneous short integer solution
(ISIS) instance (Bi,u), where Bi = [A|A0 + iA1] ∈ Z

n×2m
q , a direct way for

signer i to prove its validity as a certified group member without leaking ei is to
perform a Stern-type statistical zero-knowledge argument of knowledge (ZKAoK)
as in [19]. However, in order to protect the anonymity of i, the structure of matrix
Bi should not be given explicitly, thus how to realize a Stern-type statistical ZKP
protocol without leaking Bi and ei simultaneously? To solve this open problem,
we firstly transform Bi to B′ which enjoys some new form, independent of the
index i, i.e., B′ = [A|A0|g� ⊗ A1] ∈ Z

n×(�+2)m
q , where g� = (1, 2, 22, · · · , 2�−1)

is a power-of-two vector and notation ⊗ denotes a concatenation with vectors
or matrices and the index i can be rewritten as i = g�

� · bin(i), the detailed
definition will be given later (see Sect. 3). A corresponding change to signing
secret-key of member i, ei = (ei,0, ei,1) ∈ Z

2m is now transformed to e′
i =

(ei,0, ei,1, bin(i)⊗ ei,1) ∈ Z
(�+2)m. Thus, to argue the relation Bi · ei = u mod q,

we instead show that B′ · e′
i = u mod q.

Taking all the above transformations ideas and the versatility of Stern-type
argument system introduced by Ling et al. [19] together, we design an efficient
Stern-type interactive ZKP protocol for the relations (a), (b) and (c). Further-
more, this interactive protocol is repeated ω(log n) times to reduce the sound-
ness error to a negligible value, and then transformed to an efficient and secure
non-interactive Stern-type statistical ZKP protocol by using the Fiat-Shamir

On New Zero-Knowledge Proofs for Fully Anonymous Lattice-Based Group 385

heuristic in the random oracle model. To summarize, by incorporating a scalable
and compact identity-encoding technique, a shorter Gaussian vector separating
from the member secret-key and the lattice-based dual LWE cryptosystem to hide
the index, a new Stern-type statistical ZKP protocol for an implicit fully anony-
mous lattice-based GS-VLR scheme is proposed, therefore, obtaining shorter key-
sizes for the group public-key and member secret-key, full-anonymity, which is
stronger than selfless-anonymity and almost-full anonymity, and supporting the
explicit-traceability.

Organization. In the forthcoming sections, we recall some background knowl-
edge on lattice-based cryptography in Sect. 2. Section 3 turns to develop an
improved identity-encoding technique, a new creation of group member revoca-
tion token and an explicit-traceability mechanism. Our new Stern-type statistical
ZKP protocol for a fully anonymous lattice-based GS-VLR scheme is designed in
Sect. 4, and analyzed in Sect. 5.

2 Preliminaries

Notations. Let Sk denote the set of permutations of k elements, and $←−
denotes that sampling elements from a distribution uniformly. Let ‖·‖ and ‖·‖∞
denote the Euclidean norm (�2) and infinity norm (�∞) of a vector, respectively.
Given e = (e1, e2, · · · , en) ∈ R

n, Parse(e, k1, k2) denotes (ek1 , ek1+1, · · · , ek2) ∈
R

k2−k1+1 for 1 ≤ k1 ≤ k2 ≤ n. The notation log a denotes the logarithm of a
with base 2, and PPT stands for “probabilistic polynomial-time.”

For integers n, m, q ≥ 2, a random matrix A ∈ Z
n×m
q , the m-dimensional

q-ary lattice Λ⊥
q (A) is defined as

Λ⊥
q (A) = {e ∈ Z

m | A · e = 0 mod q}.

We recall two well-known average-case lattices problems, short integer solu-
tion (SIS) and learning with errors (LWE).

Definition 1. The SIS∞
n,m,q,β problem is defined as follows: given a uniformly

random A ∈ Z
n×m
q , a real β > 0, to get e ∈ Z

m such that A · e = 0 mod q, and
0 < ‖e‖∞ ≤ β.

The ISIS problem is an variant of SIS, additionally given a random syndrome
vector u ∈ Z

n
q , the ISIS∞

n,m,q,β problem is asked to get a vector e ∈ Z
m such that

A·e = u mod q, ‖e‖∞ ≤ β. For both problems, they are as hard as certain worst-
case lattice problems, such as shortest independent vectors problem (SIVP).

Lemma 1 ([9,24]). For m, β = poly(n), q ≥ β · ˜O(
√

n), the average-case
SIS∞

n,m,q,β and ISIS∞
n,m,q,β problems are at least as hard as the SIVPβ· ˜O(n) problem

in the worst-case.

Definition 2. The LWEn,q,χ problem is defined as follows: given a random vec-
tor s ∈ Z

n
q , a probability distribution χ over Z, let As,χ be a distribution obtained

386 Y. Zhang et al.

by sampling A ∈ Z
n×m
q , e $←− χm, and output (A,A�s + e mod q), and make

distinguish between As,χ and a uniform distribution U $←− Z
n×m
q × Z

m
q .

Let β ≥ √
n · ω(log n), for a prime power q, given a β-bounded distribution

χ, the LWEn,q,χ problem is as least as hard as SIVP
˜O(nq/β).

3 Preparations

3.1 The Improved Identity-Encoding Technique

A public u ∈ Z
n
q and A3 ∈ Z

n×m
q are required, i.e., Gpk =

(A,A0,A1,A2,A3,u), furthermore, the secret-key of member i is not yet a
trapdoor basis matrix for Λ⊥

q (Bi), instead of a short 2m-dimensional vector
ei = (ei,0, ei,1) ∈ Z

2m in the coset of Λ⊥
q (Bi), i.e., Λu

q (Bi) = {ei ∈ Z
2m | Bi ·ei =

u mod q}.
In order to design a new and efficient Stern-type statistical ZKP protocol cor-

responding to the above variant, we need to transform identity-encoding matrix
Bi = [A|A0 + iA1] of member i to a new form. Before that, we define:

1. g� = (1, 2, 2,2 · · · , 2�−1): a power-of-two vector, for i ∈ {0, 1, · · · , N − 1},
i = g�

� · bin(i) where bin(i) ∈ {0, 1}� denotes a binary representation of i.
2. ⊗: a concatenation with vectors or matrices, given e = (e1, e2, · · · , e�) ∈ Z

�
q,

A ∈ Z
n×m
q and e′ ∈ Z

m
q , define: e⊗e′ = (e1e′, e2e′, · · · , e�e′) ∈ Z

m�
q , e⊗A =

[e1A|e2A| · · · |e�A] ∈ Z
n×m�
q .

We transform Bi to B′ that is independent of the index of member i, where
B′ =

[

A|A0|A1| · · · |2�−1A1

]

= [A|A0|g� ⊗ A1] ∈ Z
n×(�+2)m
q . As a correspond-

ing revision to the secret-key of i, ei = (ei,0, ei,1) is transformed to e′
i, a vector

with a special structure, e′
i = (ei,0, ei,1, bin(i) ⊗ ei,1) ∈ Z

(�+2)m.
Thus from the above transformations, the relation Bi · ei = u mod q is now

transformed to the following new form,

Bi · ei = B′ · e′
i = u mod q. (1)

3.2 The New Creation of Revocation Token

The revocation token of member i is generated within the fifth public matrix A3

and a short Gaussian vector fi ∈ Z
m, satisfying A · fi = A ·ei,0 +A0 ·ei,1mod q,

i.e., grti = A3 · fi mod q, which is separating from member secret-key. In the
proof of full-anonymity for the implicit lattice-based GS-VLR, the challenger is
allowed to provide all members’ secret-keys to adversary, therefore the underlying
GS-VLR can obtain the strongest security, full-anonymity, as in [1].

For the revocation mechanism, as it was stated in [18], due to a flaw in the
revocation mechanism of [14] which adopts the inequality test method to check
whether the signer’s revocation token belongs to a given revocation list or not,
a corrected technique which realizes revocation by binding signer’s revocation
token grti to an LWE function was proposed,

b = B�grti + e0 = (B�A3) · fi + e0 mod q. (2)

On New Zero-Knowledge Proofs for Fully Anonymous Lattice-Based Group 387

3.3 The Explicit-Traceability Mechanism

For the ET mechanism to trace the signer’s identity in constant time, indepen-
dent of N , as it was shown in [20], the lattice-based dual LWE cryptosystem [9]
can be used to hide the index of signer i. In our new design, the binary string
bin(i) ∈ {0, 1}� is treated as plaintext, and the cipertext can be expressed as

c = (c0, c1) = (A�
2 s + e1,G�s + e2 + �q/2�bin(i)) mod q,

where G ∈ Z
n×�
q is a random matrix, and s, e1, e2 are random vectors sampled

from the LWE error χn, χm, χ�, respectively.
Thus, the above relation can be expressed as:

c = (c0, c1) = Pe + (0m, �q/2�bin(i)) mod q, (3)

where P =

⎛

⎝

A�
2

· · · · · · Im+�

G�

⎞

⎠ ∈ Z
(m+�)×(n+m+�)
q and e = (s, e1, e2) ∈ Z

n+m+�.

Taking the above transformations ideas and the versatility of Stern-extension
argument system introduced by Ling et al. [19] together, in the next section, we
design a new and efficient Stern-type statistical ZKP protocol to prove the above
new relations (1), (2) and (3).

4 The New Underlying Stern-Type ZKP Protocol

A new underlying Stern-type statistical ZKP protocol that allows the signer P
to convince any verifier V that P is indeed a member who honestly signed the
message m ∈ {0, 1}∗ will be introduced, i.e., P owns a valid member secret-key,
its revocation token is correctly embedded into an LWE instance, and its identity
information, a binary representation of its index is correctly hidden within the
lattice-based dual LWE cryptosystem.

In our design of new Stern-type statistical ZKP protocol, the classical decom-
position (Dec) technique, extension (Ext) technique, matrix-extension (Mat-Ext)
technique are adopted. Moreover, some specific sets, e.g., B2�, B3m, Secβ(id),
SecExt(id∗), permutations, e.g., π, ϕ ∈ S3m, τ ∈ S2�, a composition F are
also used. Because of page limitation, we omit these duplicate concepts and the
detailed definitions can be referred to the full version or [8,13,14,18,29].

The new Stern-type statistical ZKP protocol between P and V can be sum-
marized as follows:

1. The public inputs are B′ = [A|A0|g� ⊗ A1] ∈ Z
n×(�+2)m
q , b ∈ Z

m
q , u ∈ Z

n
q ,

B ∈ Z
n×m
q , P =

⎛

⎝

A�
2

· · · · · · Im+�

G�

⎞

⎠ ∈ Z
(m+�)×(n+m+�)
q and c = (c0, c1).

2. P’s valid witnesses are e′ = (e′
0, e

′
1, bin(i) ⊗ e′

1) ∈ Secβ(id) for a secret index
i ∈ {0, 1, · · · , N −1}, and three short vectors f , e0 ∈ χm and e = (s, e1, e2) ∈
Z

n+m+�, where s ∈ χn, e1 ∈ χm, e2 ∈ χ�, the LWE errors.

388 Y. Zhang et al.

3. P’s goal is to convince V in zero-knowledge that:
3.1. B′ ·e′ = u mod q, where e′ ∈ Secβ(id) and keeping id ∈ {0, 1}� secret.
3.2. b = (B�A3) · f + e0 mod q, where A · f = A · e′

0 + A0 · e′
1mod q,

‖f‖∞, ‖e0‖∞ ≤ β.
3.3. c = P ·e+(0m, �q/2�bin(i)) mod q, where 0 < ‖e‖∞ ≤ β and keeping
bin(i) ∈ {0, 1}� secret.

Firstly, we sketch the Group Membership Mechanism, that is, P is a certified
group member and its goal is shown as in 3.1.

1. Parse B′ =
[

A|A0|A1|2A1| · · · |2�−1A1

]

, use Mat-Ext technique to extend it
to B∗ =

[

A|0n×2m|A0|0n×2m| · · · |2�−1A1|0n×2m|0n×3m�
]

.
2. Parse id = (d1, · · · , d�) ∈ {0, 1}�, extend it to id∗ = (d1, · · · , · · · , d2�) ∈ B2�.
3. Parse e′ = (e′

0, e
′
1, d1e

′
1, d2e

′
1, · · · , d�e′

1), use Dec, Ext techniques extending
e′
0 to k vectors e′

0,1, e
′
0,2, · · · , e′

0,k ∈ B3m, e′
1 to k vectors e′

1,1, e
′
1,2, · · · , e′

1,k ∈
B3m, respectively. For each j ∈ {1, 2, · · · , k}, we define a new vector e′

j =
(e′

0,j , e
′
1,j , d1e

′
1,j , d2e

′
1,j , · · · , d2�e′

1,j), it can be checked that e′
j ∈ SecExt(id∗).

Thus, P’s goal in 3.1 is transformed to a new structure,

B∗ · (
∑k

j=1 βje′
j) = u mod q, e′

j ∈ SecExt(id∗). (4)

To prove the new relation (4) in zero-knowledge, we take 2 steps as follows:

1. Pick k random vectors r′
1, · · · , r′

k
$←− Z

(2�+2)3m
q to mask e′

1, · · · , e′
k, then it

can be checked that B∗ · (
∑k

j=1 βj(e′
j + r′

j)) − u = B∗ · (
∑k

j=1 βjr′
j) mod q.

2. Pick two permutations π, ϕ ∈ S3m, one permutation τ ∈ S2�, then it can be
checked that ∀j ∈ {1, 2, · · · , k}, Fπ,ϕ,τ (e′

j) ∈ SecExt(τ(id∗)), where id∗ ∈ B2�

is an extension of id = bin(i) ∈ {0, 1}�.

Secondly, we sketch the Revocation Mechanism, that is, P’s revocation token
is correctly embedded in an LWE function and its goal is shown as in 3.2.

1. Let C = B�A3 mod q ∈ Z
m×m
q .

2. Parse f = (f1, f2, · · · , fm) ∈ Z
m, use Dec and Ext techniques to extend f to

k vectors f (1), f (2), · · · , f (k) ∈ B3m.
3. Parse e0 = (e01, e

0
2, · · · , e0m) ∈ Z

m, use Dec and Ext techniques to extend e0
to k vectors e01, e

0
2, · · · , e0k ∈ B3m.

4. Let C∗ = [C|0n×2m|Im|0n×2m], where Im is the identity matrix of order m.
5. Let A∗ = [A|0n×2m], e′

j,0 = Parse(e′
j , 1,m), e′

j,1 = Parse(e′
j , 3m + 1, 4m).

Thus, P’s goal in 3.2 is transformed to a new structure,

b = C∗ · (
∑k

j=1 βj(f (j), e0j)) mod q, f (j), e0j ∈ B3m,

A∗ · (
∑k

j=1 βjf (j)) = A · (
∑k

j=1 βje′
j,0) + A0 · (

∑k
j=1 βje′

j,1) mod q.
(5)

To prove the new relation (5) in zero-knowledge, we take 5 steps as follows:

On New Zero-Knowledge Proofs for Fully Anonymous Lattice-Based Group 389

1. Let r′
j,0 = Parse(r′

j , 1,m), r′
j,1 = Parse(r′

j , 3m + 1, 4m).

2. Pick k uniformly random vectors f1, · · · , fk
$←− Z

3m
q to mask f (1), · · · , f (k).

3. Pick k random vectors r01, · · · , r0k
$←− Z

3m
q to mask e01, · · · , e0k, it

can be checked that C∗ · (
∑k

j=1 βj(f (j) + fj , e0j + r0j)) − b = C∗ ·
(
∑k

j=1 βj(fj , r0j)) mod q.

4. Use r′
j,0, r′

j,1 to mask e′
j,0, e′

j,1, respectively, it can be checked that A∗ ·
(
∑k

j=1 βj(f (j) + fj))−A·(∑k
j=1 βj(e′

j,0 + r′
j,0))−A0 ·(∑k

j=1 βj(e′
j,1 + r′

j,1)) =

A∗ · (
∑k

j=1 βjfj) − A · (
∑k

j=1 βjr′
j,0) − A0 · (

∑k
j=1 βjr′

j,1) mod q.
5. Pick two permutations ξ, φ ∈ S3m, then it can be checked that,

∀j ∈ {1, 2, · · · , k}, ξ(f (j)), φ(e0j) ∈ B3m.

Thirdly, we sketch the Explicit-Traceability Mechanism, that is, P’s identity
index is correctly hidden in a lattice-based dual LWE cryptosystem and its goal
is shown as in 3.3.

1. Let P∗ = [P|0(m+�)×2(n+m+�)].

2. Let Q =

⎛

⎝

0m×� 0m×�

· · · · · · · · · · · ·
�q/2�I� 0�×�

⎞

⎠, where I� is the identity matrix of order �.

3. Parse e = (s, e1, e2) ∈ Z
n+m+�, use Dec and Ext techniques to extend e to k

vectors e(1), e(2), · · · , e(k) ∈ B3(n+m+�).
4. Let id∗ = bin(i)∗ ∈ B2� be an extension of id = bin(i).

Thus, P’s goal in 3.3 is transformed to a new structure,

c = P∗ · (
∑k

j=1 βje(j)) + Q · id∗ mod q, e(j) ∈ B3(n+m+�), id∗ ∈ B2�. (6)

To prove the new relation (6) in zero-knowledge, we take 3 steps as follows:

1. Pick a random vector rid∗
$←− Z

2�
q to mask id∗.

2. Pick k random vectors r′′
1 · · · , r′′

k
$←− Z

3(n+m+�)
q to mask e(1), · · · , e(k), it can

be checked that,

P∗ ·(∑k
j=1 βj(e(j) + r′′

j))+Q·(id∗+rid∗)−c = P∗ ·(∑k
j=1 βjr′′

j)+Q·rid∗ mod q.

3. Pick one permutation ρ ∈ S3(n+m+�), it can be checked that,

∀j ∈ {1, 2, · · · , k}, ρ(e(j)) ∈ B3(n+m+�), τ(id∗) ∈ B2�,

where τ has been picked in the proof of Group Membership Mechanism.

Putting all the above techniques together, we obtain a new underlying Stern-
type interactive statistical ZKP protocol, and the details will be given below.

In our new design, we utilize a statistically hiding and computationally blind-
ing commitment scheme (COM) as proposed in [12]. P and V interact as follows:

390 Y. Zhang et al.

1. Commitments: P randomly samples the randomness of COM, i.e., θ1, θ2, θ3,
and the following random objects:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

r′
1, · · · , r′

k
$←− Z

(2�+2)3m
q ; f1, · · · , fk, r01, · · · , r0k

$←− Z
3m
q ; rid∗

$←− Z
2�
q ;

r′′
1 , · · · , r′′

k
$←− Z

3(n+m+�)
q ;π1, · · · , πk

$←− S3m;ϕ1, · · · , ϕk
$←− S3m;

ρ1, · · · , ρk
$←− S3(n+m+�); ξ1, · · · , ξk, φ1, · · · , φk

$←− S3m; τ $←− S2�.

For ∀j ∈ {1, 2, · · · , k}, define r′
j,0 = Parse(r′

j , 1,m), r′
j,1 = Parse(r′

j , 3m +
1, 4m), then P sends the commitment CMT = (ċ1, ċ2, ċ3) to V, where

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ċ1 = COM({πj , ϕj , ξj , φj , ρj}k
j=1, τ,B

∗ · (
∑k

j=1 βjr′
j),A

∗ · (
∑k

j=1 βjfj)−
A · (

∑k
j=1 βjr′

j,0) − A0 · (
∑k

j=1 βjr′
j,1),C

∗ · (
∑k

j=1 βj(fj , r0j)),
P∗ · (

∑k
j=1 βjr′′

j) + Q · rid∗ ; θ1),
ċ2 = COM({Fπj ,ϕj ,τ (r′

j), ξj(fj), φj(r0j), ρj(r′′
j)}k

j=1, τ(rid∗); θ2),
ċ3 = COM({Fπj ,ϕj ,τ (e′

j + r′
j), ξj(f (j) + fj), φj(e0j + r0j), ρj(e(j) + r′′

j)}k
j=1,

τ(id∗ + rid∗); θ3).

2. Challenge: V chooses a challenge CH
$←− {1, 2, 3} and sends it to P.

3. Response: Depending on CH, P replies as follows:
◦ If CH = 1. For j ∈ {1, 2, · · · , k}, let v′

j = Fπj ,ϕj ,τ (e′
j), w′

j =
Fπj ,ϕj ,τ (r′

j), vj = ξj(f (i)), wj = ξj(fj), v0
j = φj(e0j), w0

j = φj(r0j),
v(j) = ρj(e(j)), w′′

j = ρj(r′′
j), tid = τ(id∗), vid = τ(rid∗), define

RSP = ({v′
j ,w

′
j ,vj ,wj ,v0

j ,w
0
j ,v

(j),w′′
j }k

j=1, tid,vid).

◦ If CH = 2. For j ∈ {1, 2, · · · , k}, let π̂j = πj , ϕ̂j = ϕj , ξ̂j = ξj , φ̂j = φj ,
ρ̂j = ρj , τ̂ = τ , x′

j = e′
j + r′

j , xj = f (j) + fj , x0
j = e0j + r0j , x

′′
j = e(j) + r′′

j ,
xid = id∗ + rid∗ , define

RSP = ({π̂j , ϕ̂j , ξ̂j , φ̂j , ρ̂j ,x′
j ,xj ,x0

j ,x
′′
j }k

j=1, τ̂ ,xid).

◦ If CH = 3. For j ∈ {1, 2, · · · , k}, let π̃j = πj , ϕ̃j = ϕj , ξ̃j = ξj , φ̃j = φj ,
ρ̃j = ρj , τ̃ = τ , h′

j = r′
j , hj = fj , h0

j = r0j , h
′′
j = r′′

j , hid = rid∗ , define

RSP = ({π̃j , ϕ̃j , ξ̃j , φ̃j , ρ̃j ,h′
j ,hj ,h0

j ,h
′′
j }k

j=1, τ̃ ,hid).

4. Verification: Receiving RSP, V checks as follows:
◦ If CH = 1. Check that tid ∈ B2�, for j ∈ {1, 2, · · · , k}, v′

j ∈ SecExt(tid),
vj ∈ B3m, v(j) ∈ B3(n+m+�), v0

j ∈ B3m and that,

{

ċ2 = COM({w′
j ,wj ,w0

j ,w
′′
j }k

j=1,vid; θ2),
ċ3 = COM({v′

j + w′
j ,vj + wj ,v0

j + w0
j ,v

(j) + w′′
j }k

j=1, tid + vid; θ3).

On New Zero-Knowledge Proofs for Fully Anonymous Lattice-Based Group 391

◦ If CH = 2. For j ∈ {1, 2, · · · , k}, define x′
j,0 = Parse(x′

j , 1,m) and
x′

j,1 = Parse(x′
j , 3m + 1, 4m), and check that,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ċ1 = COM({π̂j , ϕ̂j , ξ̂j , φ̂j , ρ̂j}k
j=1, τ̂ ,B∗ · (∑k

j=1 βjx
′
j) − u,A∗ · (∑k

j=1 βjxj)

−A · (∑k
j=1 βjx

′
j,0) −A0 · (∑k

j=1 βjx
′
j,1),C

∗ · (∑k
j=1 βj(xj ,x

0
j))

−b,P∗ · (∑k
j=1 βjx

′′
j) + Q∗ · xid − c; θ1),

ċ3 = COM({Fπ̂j ,ϕ̂j ,τ̂ (x′
j), ξ̂j(xj), φ̂j(x

0
j), ρ̂j(x

′′
j)}k

j=1, τ̂(xid); θ3).

◦ If CH = 3. For j ∈ {1, 2, · · · , k}, define h′
j,0 = Parse(h′

j , 1,m) and
h′

j,1 = Parse(h′
j , 3m + 1, 4m), and check that,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ċ1 = COM({π̃j , ϕ̃j , ξ̃j , φ̃j , ρ̃j}k
j=1, τ̃ ,B∗ · (∑k

j=1 βjh
′
j),A

∗ · (∑k
j=1 βjhj)

−A · (∑k
j=1 βjh

′
j,0) −A0 · (∑k

j=1 βjh
′
j,1),C

∗ · (∑k
j=1 βj(hj ,h

0
j)),

P∗ · (∑k
j=1 βjh

′′
j) + Q∗ · hid; θ1),

ċ2 = COM({Fπ̃j ,ϕ̃j ,τ̃ (h′
j), ξ̃j(hj), φ̃j(h

0
j), ρ̃j(h

′′
j)}k

j=1, τ̃(hid); θ2).

V outputs 1 if and only if all the above conditions hold, otherwise 0.
Thus, the associated relation R(n, k, �, q,m, β) in the above protocol can be

defined as:

R =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A,Ai∈{0,1,2,3},B ∈ Z
n×m
q ,P ∈ Z

(m+�)×(n+m+�)
q ,u,b ∈ Z

m
q , c ∈ Z

m+�
q ,

id = bin(i) ∈ {0, 1}�, e′ = (e′
0, e

′
1, bin(i) ⊗ e′

1) ∈ Secβ(id), f , e0 ∈ Z
m,

e = (s, e1, e2) ∈ Z
n+m+�; s.t. 0 < ‖e′‖∞, ‖f‖∞, ‖e0‖∞, ‖e‖∞ ≤ β,

[A|A0|g� ⊗ A1] · e′ = u mod q,b = (B�A3) · f + e0 mod q,

A · f = A · e′
0 + A0 · e′

1mod q, c = P · e + (0m, �q/2�bin(i)) mod q.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

5 Analysis of the Protocol

A detailed analysis of the underlying interactive protocol constructed in Sect. 4
including four aspects: communication cost, perfect completeness, statistical zero-
knowledge and argument of knowledge.

Theorem 1. Let COM be a statistically hiding and computationally binding
commitment scheme, thus for a given CMT, three valid responses RSP1, RSP2

and RSP3 with respect to three different challenges CH1, CH2 and CH3, the pro-
posed protocol is a statistical ZKAoK for R(n, k, �, q,m, β), where each round has
perfect completeness, soundness error 2/3, argument of knowledge property and
communication cost ˜O(�n).

Proof. The proof for Theorem 1 will employ standard proof techniques for Stern-
type protocol as in [12–14], and it includes the following four aspects:

392 Y. Zhang et al.

Communication Cost:

– The output of COM, a vector of Z
n
q , has bit-sizes n log q, thus P sends 3

commitments amounting to 3n log q bits.
– The challenge CH ∈ {1, 2, 3} could be represented by 2 bits.
– The response RSP from P consist of the following items:

1. one permutation in S2�, 4k permutations in S3m and k permutations in
S3(n+m+�),

2. 2k vectors in Z
(2�+2)3m
q and 2k vectors in Z

3(n+m+�)
q ,

3. 4k vectors in Z
3m
q , one vector in {0, 1}2� and one vector in Z

2�
q .

Thus, the bit-size of RSP is bound by O(�mk) log q. Recall that k = �log β�+
1 = O(log β) = ˜O(1), the communication cost of proposed Stern-type statistical
ZKP protocol is bounded by ˜O(�n).
Perfect Completeness:

To show that given a tuple (A,A0,A1,A2,A3,P,u,B,b, c), if an honest P
owns witness (id = bin(i) ∈ {0, 1}�, e′ ∈ Secβ(id), f , e0, e1 ∈ Z

m, s ∈ Z
n, e2 ∈ Z

�)
and follows the proposed protocol (constructed in Sect. 4) correctly, then P can
generate a valid Stern-type statistical ZKP protocol satisfying the verification
processes, and gets accepted by V with a high probability.

Firstly, the public inputs and P’s witness are transformed to B∗, C∗, P∗, id∗

and {e′
j , f

(j), e0j , e
(j)}k

j=1 using the Dec, Ext and Mat-Ext techniques, thus these
new results satisfy the following new structures,

B∗ · (
∑k

j=1 βje′
j) = u mod q, e′

j ∈ SecExt(id∗),

C∗ · (
∑k

j=1 βj(f (j), e0j)) = b mod q, f (j), e0j ∈ B3m.

A∗ · (
∑k

j=1 βjf (j)) = A · (
∑k

j=1 βje′
j,0) + A0 · (

∑k
j=1 βje′

j,1) mod q,

e′
j,0 = Parse(e′

j , 1,m), e′
j,1 = Parse(e′

j , 3m + 1, 4m),

c = P∗ · (
∑k

j=1 βje(j)) + Q · id∗ mod q, e(j) ∈ B3(n+m+�), id∗ ∈ B2�.

Next, to show that P can correctly pass all the verification checks for each
challenge CH ∈ {1, 2, 3} with a high probability. Furthermore, apart from con-
sidering the checks for correct computations, it only needs to note that:

◦ If CH = 1. id = bin(i) ∈ {0, 1}�, id∗ ∈ B2� is an extension of id and B2� is
invariant under the permutation τ ∈ S2�, thus we have that tid = τ(id∗) ∈ B2�.
Similarly, for each j ∈ {1, · · · , k}, f (j), e0j ∈ B3m and B3m is invariant under
ξj , φj ∈ S3m, we have that vj = ξj(f (j)) ∈ B3m and v0

j = φj(e0j) ∈ B3m;
e(j) ∈ B3(n+m+�), and B3(n+m+�) is invariant under ρj ∈ S3(n+m+�), thus we
have that v(j) = ρj(e(j)) ∈ B3(n+m+�). As for e′

j , we have that

v′
j = Fπj ,ϕj ,τ,(e′

j) ∈ SecExt(τ(id∗)) = SecExt(tid).

On New Zero-Knowledge Proofs for Fully Anonymous Lattice-Based Group 393

◦ If CH = 2. The key point is to check ċ1, for j ∈ {1, 2, · · · , k}, P can
pass this step by generating x′

j , r′
j , xj , fj , x0

j , r0j , x′′
j , r′′

j , xid, r′
j,0 =

Parse(r′
j , 1,m), r′

j,1 = Parse(r′
j , 3m + 1, 4m), such that the followings hold

true:

B∗ · (∑k
j=1 βjx

′
j) − u = B∗ · (∑k

j=1 βj(e
′
j + r′

j)) − u

= B∗ · (∑k
j=1 βjr

′
j) mod q.

C∗ · (∑k
j=1 βj(x

(j),x0
j)) − b = C∗ · (∑k

j=1 βj(f
(j) + fj , e

0
j + r0j)) − b

= C∗ · (∑k
j=1 βj(fj , r

0
j)) mod q,

A∗(
∑k

j=1 βjxj) −A(
∑k

j=1 βjx
′
j,0) −A0(

∑k
j=1 βjx

′
j,1) = A∗(

∑k
j=1 βjfj)

−A(
∑k

j=1 βjr
′
j,0) −A0(

∑k
j=1 βjr

′
j,1) mod q

P∗ · (∑k
j=1 βjx

′′
j) + Q∗ · xid − c = P∗(

∑k
j=1 βj(e

(j) + r′′
j)) + Q(id∗ + rid∗) − c

= P∗ · (∑k
j=1 βjr

′′
j) + Q · rid∗ mod q.

◦ If CH = 3. It only needs to consider the checks for correct computations,
and obviously these are true.

Statistical Zero-Knowledge:
To design a PPT simulator S who interacts with a verifier V ′ (maybe dishon-

est) to output a simulated transcript that is statistically close to one generated
by an honest P in the real interaction with probability negligibly close to 2/3.

The construction is as follows: S picks a value ˜CH
$←− {1, 2, 3} as a prediction

that V ′ will not choose, and three randomness of COM, i.e., θ′
1, θ′

2, θ′
3.

◦ If ˜CH = 1. S does as follows:
1. Use linear algebra algorithm to compute k vectors e′′

1 , · · · , e′′
k ∈ Z

(2�+1)3m
q

such that B∗ · (
∑k

j=1 βje′′
j) = u mod q.

2. Use linear algebra algorithm to compute k vectors f (1
′), · · · , f (k

′) ∈ Z
3m
q

and k vectors ê1, · · · , êk ∈ Z
3m
q such that C∗ · (

∑k
j=1 βj(f (j

′), êj)) =
b mod q.

3. Use linear algebra algorithm to compute k vectors e′′′
1 , · · · , e′′′

k ∈
Z
3(n+m+�)
q and id∗ ∈ Z

2�
q such that P∗ · (∑k

j=1 βje′′′
j)+Q · id∗ = c mod q.

4. Sample several random vectors and permutations,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

r′
1, · · · , r′

k
$←− Z

(2�+2)3m
q ; f1, · · · , fk; r01, · · · , r0k

$←− Z
3m
q ; rid∗

$←− Z
2�
q ;

r′′
1 , · · · , r′′

k
$←− Z

3(n+m+�)
q ;π1, · · · , πk

$←− S3m;ϕ1, · · · , ϕk
$←− S3m;

ρ1, · · · , ρk
$←− S3(n+m+�); ξ1, · · · , ξk;φ1, · · · , φk

$←− S3m; τ
$←− S2�.

5. Compute CMT = (ċ1′, ċ2′, ċ3′), where

394 Y. Zhang et al.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ċ1
′ = COM({πj , ϕj , ξj , φj , ρj}k

j=1, τ,B∗ · (∑k
j=1 βjr

′
j),A

∗ · (∑k
j=1 βjfj)−

A · (∑k
j=1 βjr

′
j,0) −A0 · (∑k

j=1 βjr
′
j,1),C

∗ · (∑k
j=1 βj(fj , r

0
j)),

P∗ · (∑k
j=1 βjr

′′
j) + Q · rid∗ ; θ′

1),

ċ2
′ = COM({Fπj ,ϕj ,τ (r′

j), ξj(fj), φj(r
0
j), ρj(r

′′
j)}k

j=1, τ(rid∗); θ′
2),

ċ3
′ = COM({Fπj ,ϕj ,τ (e′′

j + r′
j), ξj(f

(j′) + fj), φj(êj + r0j), ρj(e
′′′
j + r′′

j)}k
j=1,

τ(id∗ + rid∗); θ′
3).

6. Send CMT to V ′.
Receiving a challenge CH ∈ {1, 2, 3}, S replies as follows:
1. If CH = 1, S outputs ⊥ and aborts.
2. If CH = 2, S sends

RSP = ({πj , ϕj , ξj , φj , ρj , e′′
j +r′

j , r
(j′)+rj , êj+r0j , e

′′′
j +r′′

j }k
j=1, τ, id

∗+rid∗).

3. If CH = 3, S sends RSP = ({πj , ϕj , ξj , φj , ρj , r′
j , fj , r

0
j , r

′′
j }k

j=1, τ, rid∗).

◦ If ˜CH = 2. S does as follows:
1. Sample several random vectors and permutations,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

r′
1, · · · , r′

k
$←− Z

(2�+2)3m
q ; f1, · · · , fk

$←− Z
3m
q ; r01, · · · , r0k

$←− Z
3m
q ;

r′′
1 , · · · , r′′

k
$←− Z

3(n+m+�)
q ;π1, · · · , πk

$←− S3m;ϕ1, · · · , ϕk
$←− S3m;

ξ1, , · · · , ξk
$←− S3m; ρ1, · · · , ρk

$←− S3(n+m+�);φ1, · · · , φk
$←− S3m;

τ
$←− S2�; rid∗

$←− Z
2�
q ; id∗ $←− B2�; e′′

1 , · · · , e′′
k

$←− SecExt(id∗);

ê1, · · · , êk
$←− B3m; r(1

′), · · · , r(k
′) $←− B3m; e′′′

1 , · · · , e′′′
k

$←− B3m.

2. Compute CMT = (ċ1′, ċ2′, ċ3′) as in ˜CH = 1.
3. Send CMT to V ′.

Receiving a challenge CH ∈ {1, 2, 3}, S replies as follows:
1. If CH = 1, S sends

RSP =({Fπj ,ϕj ,τ (e′′
j),Fπj ,ϕj ,τ (r′

j), ξj(r(j
′)), ξj(fj), φj(êj), φj(r0j),

ρj(e′′′
j), ρj(r′′

j))}k
j=1, τ(id∗), τ(rid∗)).

2. If CH = 2, S outputs ⊥ and aborts.
3. If CH = 3, S sends RSP = ({πj , ϕj , ξj , φj , ρj , r′

j , fj , r
0
j , r

′′
j }k

j=1, τ, rid∗).
◦ If ˜CH = 3. S does as follows:
1. Sample several random vectors and permutations as in ˜CH = 2.

On New Zero-Knowledge Proofs for Fully Anonymous Lattice-Based Group 395

2. Compute CMT = (ċ1′, ċ2′, ċ3′), where r′
j,0 = Parse(e′′

j + r′
j , 1,m), r′

j,1 =
Parse(e′′

j + r′
j , 3m + 1, 4m),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ċ1
′ = COM({πj , ϕj , ξj , φj , ρj}k

j=1, τ,B∗ · (∑k
j=1 βj(e

′′
j + r′

j)) − u,

A∗ · (∑k
j=1 βj(f

(j′) + fj)) −A · (∑k
j=1 βjParse(e

′′
j + r′

j , 1, m))−
A0 · (∑k

j=1 βjParse(e
′′
j + r′

j , 3m + 1, 4m)),

C∗ · (∑k
j=1 βj(f

(j′) + fj , êj + r0j)) − b,

P∗ · (∑k
j=1 βj(e

′′′
j + r′′

j)) + Q · (id∗ + rid∗) − c; θ′
1),

ċ2
′ = COM({Fπj ,ϕj ,τ (r′

j), ξj(fj), φj(r
0
j), ρj(r

′′
j)}k

j=1, τ(rid∗); θ′
2),

ċ3
′ = COM({Fπj ,ϕj ,τ (e′′

j + r′
j), ξj(r

(j′) + fj), φj(êj + r0j), ρj(e
′′′
j + r′′

j)}k
j=1,

τ(id∗ + rid∗); θ′
3).

3. Send CMT to V ′.
Receiving a challenge CH ∈ {1, 2, 3}, S replies as follows:

1. If CH = 1, S sends as in (˜CH = 2, CH = 1).
2. If CH = 2, S sends as in (˜CH = 1, CH = 2).
3. If CH = 3, S outputs ⊥ and aborts.

Based on the statistically hiding property of the commitment scheme COM,
the three distributions of CMT, CH, RSP are statistically close to those in the
real interaction, S outputs ⊥ and aborts with probability negligibly close to 1/3.
Furthermore, once S does not halt, then a valid transcript will be given and the
distribution of the transcript is statistically close to that in the real interaction,
therefore S can impersonate an honest prover P with probability negligibly close
to 2/3.
Argument of Knowledge:

To prove that our new protocol is an argument of knowledge for the relation
R(n, k, �, q,m, β) (as shown in Sect. 4), thus to show the proposed protocol has
the special soundness property. In the followings, we show that if there exists
a prover P ′ (maybe cheating) who can correctly respond to three challenges
CH ∈ {1, 2, 3} corresponding to the same commitment CMT with the public
inputs (A,A0,A1,A2,A3,B,P,u,b, c), then there exists an extractor K who
produces (id = bin(i) ∈ {0, 1}�, f , e0, e1 ∈ Z

m, e′ = (e′
0, e

′
1, bin(i) ⊗ e′

1) ∈
Secβ(id), s ∈ Z

n, e2 ∈ Z
�) such that

(A,A0,A1,A2,A2,B,P,u,b, c; id = bin(i), e′, f , e0, s, e1, e2) ∈ R.

Indeed, based on three valid responses RSP1,RSP2,RSP3 given by P ′, the
extractor K can extract the following information:

396 Y. Zhang et al.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

tid ∈ B2�, ∀j ∈ {1, 2, · · · , k},v′
j ∈ SecExt(tid),vj ∈ B3m,x′

j,0 = Parse(x′
j , 1, m),

x′
j,1 = Parse(x′

j , 3m + 1, 4m),h′
j,0 = Parse(h′

j , 1, m),h′
j,1 = Parse(h′

j , 3m + 1, 4m),

ċ1 = COM({π̂j , ϕ̂j , ξ̂j , φ̂j , ρ̂j}k
j=1, τ̂ ,B∗(

∑k
j=1 βjx

′
j) − u,A∗(

∑k
j=1 βjxj) − A(

∑k
j=1 βjx

′
j,0)−

A0(
∑k

j=1 βjx
′
j,1),C

∗(
∑k

j=1 βj(xj ,x0
j)) − b,P∗(

∑k
j=1 βjx

′′
j
) + Qxid − c; θ1),

= COM({π̃j , ϕ̃j , ξ̃j , φ̃j , ρ̃j}k
j=1, τ̃ ,B∗(

∑k
j=1 βjh

′
j),A

∗(
∑k

j=1 βjhj) − A(
∑k

j=1 βjh
′
j,0)−

A0(
∑k

j=1 βjh
′
j,1),C

∗(
∑k

j=1 βj(hj ,h0
j)),P

∗(
∑k

j=1 βjh
′′
j
) + Qhid; θ1),

ċ2 = COM({w′
j ,wj ,w0

j ,w′′
j }k

j=1,vid; θ2)

= COM({Fπ̃j ,ϕ̃j ,τ̃ (h
′
j), ξ̃j(hj), φ̃j(h

0
j), ρ̃j(h

′′
j)}k

j=1, τ̃(hid); θ2),

ċ3 = COM({v′
j + w′

j ,vj + wj ,v0
j + w0

j ,v(j) + w′′
j }k

j=1, tid + vid; θ3),

= COM({Fπ̂j ,ϕ̂j ,τ̂ (x
′
j), ξ̂j(xj), φ̂j(x

0
j), ρ̂j(x

′′
j)}k

j=1, τ̂(xid); θ3).

Based on the computationally binding property of COM, K deduces that:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

tid ∈ B2�, τ̂ = τ̃ ,∀j ∈ {1, · · · , k}, ξ̂j = ξ̃j , φ̂j = φ̃j , π̂j = π̃j ,

ϕ̂j = ϕ̃j , ρ̂j = ρ̃j ; tid = τ̃(hid), tid + vid = τ̂(xid);
A∗ · (

∑k
j=1 βjxj) − A · (

∑k
j=1 βjx′

j,0) − A0 · (
∑k

j=1 βjx′
j,1) =

A∗ · (
∑k

j=1 βjhj) − A · (
∑k

j=1 βjh′
j,0) − A0 · (

∑k
j=1 βjh′

j,1);
B∗ · (

∑k
j=1 βjx′

j) − u = B∗ · (
∑k

j=1 βjh′
j);

C∗ · (
∑k

j=1 βj(xj ,x0
j)) − b = C∗ · (

∑k
j=1 βj(hj ,h0

j));
P∗ · (

∑k
j=1 βjx′′

j) + Q · xid − c = P∗ · (
∑k

j=1 βjh′′
j) + Q · hid;

w′
j = Fπ̃j ,ϕ̃j ,τ̃ (h′

j),v
′
j + w′

j = Fπ̂j ,ϕ̂j ,τ̂ (x′
j),v

′
j ∈ SecExt(tid);

wj = ξ̃j(hj),vj + wj = ξ̂j(xj),vj ∈ B3m,w0
j = φ̃j(h0

j),v
0
j ∈ B3m.

v0
j + w0

j = φ̂j(x0
j),w

′′
j = ρ̃j(hj),v(j) + w′′

j = ρ̂j(x′′
j),v(j) ∈ B3(n+m+�).

For j ∈ {1, · · · , k}, let e′
j = x′

j −h′
j = F−1

π̃j ,ϕ̃j ,τ̃ (v′
j), f

(j) = xj −hj = ξ̃−1
j (vj),

e0j = x0
j−h0

j = φ̃−1
j (v0

j), e
(j) = x′′

j −h′′
j = ρ̃−1

j (v(j)), id∗ = xid−hid = τ̃−1(tid), we
have that e′

j ∈ SecExt(τ̃−1(tid)) = SecExt(id∗), f (j), e0j ∈ B3m, e(j) ∈ B3(n+m+�).
Furthermore, B∗ · (

∑k
j=1 βje′

j) = u mod q, C∗ · (
∑k

j=1 βj(f (j), e0j)) = b mod q,

and P∗ · (
∑k

j=1 βje(j)) + Q · id∗ = c mod q.
The knowledge extractor K produces id = bin(i) ∈ {0, 1}�, e′ ∈ Secβ(id), f ,

e0, e1 ∈ Z
m, s ∈ Z

n and e2 ∈ Z
� as follows:

1. Let id∗ = (d1, d2, · · · , d�, d�+1, · · · , d2�) = τ̃−1(tid), we obtain bin(i) = id =
(d1, d2, · · · , d�) and the index i = g�

� · bin(i) where g� = (1, 2, · · · , 2�−1).
2. Let e∗ =

∑k
j=1 βje′

j ∈ Z
(2�+2)3m
q , thus 0 < ‖e∗‖∞ ≤ ∑k

j=1 βj‖e′
j‖∞ ≤ β.

Since e′
j ∈ SecExt(id∗), there exist e∗

0, e
∗
1 ∈ Z

3m such that ‖e∗
0‖∞, ‖e∗

1‖∞ ≤ β
and e∗ = (e∗

0, e
∗
1, d1e

∗
1, d2e

∗
1, · · · , d2�e∗

1). Let e′ = (e′
0, e

′
1, d1e

′
1, · · · , d�e′

1) =
(e′

0, e
′
1, bin(i) ⊗ e′

1), where e′
0, e

′
1 are obtained from e∗

0, e
∗
1 by removing the

last 2m coordinates. Thus e′ ∈ Secβ(id), and

[A|A0|g� ⊗ A1] · (e′
0, e

′
1, bin(i) ⊗ e′

2) = u mod q.

On New Zero-Knowledge Proofs for Fully Anonymous Lattice-Based Group 397

3. Let f̂ =
∑k

j=1 βjf (j) ∈ Z
3m, ê0 =

∑k
j=1 βje0j ∈ Z

3m, thus,

0 < ‖f̂‖∞ ≤ ∑k
j=1 βj‖f (j)‖∞ ≤ β, 0 < ‖ê0‖∞ ≤ ∑k

j=1 βj‖e0j‖∞ ≤ β.

Let f ∈ Z
m be a vector obtained from f̂ by removing the last 2m coordinates,

e0 ∈ Z
m obtained from ê0 by removing the last 2m coordinates. So f ∈ Z

m,
0 < ‖f‖∞ ≤ β, e0 ∈ Z

m, 0 < ‖e0‖∞ ≤ β and b = (B�A3) · f + e0 mod q.
4. Let ê =

∑k
j=1 βje(j) ∈ Z

3(n+m+�), so 0 < ‖ê‖∞ ≤ ∑k
j=1 βj‖e(j)‖∞ ≤ β, let

e ∈ Z
n+m+� be a vector obtained from ê by removing the last 2(n + m + �)

coordinates. Parse e = (s, e1, e2) where s ∈ Z
n, e1 ∈ Z

m, e2 ∈ Z
�, so ‖e‖∞ ≤

β, and c = (c0, c1) = P · e + (0m, �q/2�bin(i)) mod q.

Finally, the knowledge extractor K outputs a tuple

(id = bin(i) ∈ {0, 1}�, e′ ∈ Secβ(id), f , e0, e1 ∈ Z
m, s ∈ Z

n, e2 ∈ Z
�),

which is a valid witness for R = (n, k, �, q,m, β). This concludes the proof.

Acknowledgments. The authors would like to thank the anonymous reviewers of
ACNS-SCI 2020 for their helpful comments, and this research is supported by the
National Natural Science Foundation of China (No. 61772477) and Science and Tech-
nology Development of Henan Province (No. 20210222210356).

References

1. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

2. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 11

3. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: CCS,
pp. 168–177. ACM (2004). https://doi.org/10.1145/1030083.1030106

4. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-39555-5 7

5. Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens from
lattices. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp.
57–75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9 4

6. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

7. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1145/1030083.1030106
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-642-32928-9_4
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22

398 Y. Zhang et al.

8. Gao, W., Hu, Y., Zhang, Y., Wang, B.: Lattice-based group signature with verifier-
local revocation. J. Shanghai JiaoTong Univ. (Sci.) 22(3), 313–321 (2017). https://
doi.org/10.1007/s12204-017-1837-1

9. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoor for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206. ACM (2008). https://doi.
org/10.1145/1374376.1374407

10. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice
assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 23

11. Katsumata, S., Yamada, S.: Group signatures without NIZK: from lattices in the
standard model. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11478, pp. 312–344. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 11

12. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89255-7 23

13. Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signa-
tures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42045-0 3

14. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature
scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS,
vol. 8383, pp. 345–361. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54631-0 20

15. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–
403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 13

16. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

17. Libert, B., Mouhartem, F., Nguyen, K.: A lattice-based group signature scheme
with message-dependent opening. In: Manulis, M., Sadeghi, A.-R., Schneider, S.
(eds.) ACNS 2016. LNCS, vol. 9696, pp. 137–155. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39555-5 8

18. Ling, S., Nguyen, K., Roux-Langlois, A., Wang, H.: A lattice-based group signa-
ture scheme with verifier-local revocation. Theor. Comput. Sci. 730, 1–20 (2018).
https://doi.org/10.1016/j.tcs.2018.03.027

19. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the isis problem, and applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 8

20. Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter,
shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 19

https://doi.org/10.1007/s12204-017-1837-1
https://doi.org/10.1007/s12204-017-1837-1
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-642-17373-8_23
https://doi.org/10.1007/978-3-030-17659-4_11
https://doi.org/10.1007/978-3-030-17659-4_11
https://doi.org/10.1007/978-3-540-89255-7_23
https://doi.org/10.1007/978-3-642-42045-0_3
https://doi.org/10.1007/978-3-642-42045-0_3
https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-319-39555-5_8
https://doi.org/10.1007/978-3-319-39555-5_8
https://doi.org/10.1016/j.tcs.2018.03.027
https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-662-46447-2_19

On New Zero-Knowledge Proofs for Fully Anonymous Lattice-Based Group 399

21. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving
full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS
2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-61204-1 15

22. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Forward-secure group signatures from
lattices. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp.
44–64. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7 3

23. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Constant-size group signatures from lat-
tices. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 58–88.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 3

24. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 2

25. Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices.
In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401–426. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46447-2 18

26. Perera, M.N.S., Koshiba, T.: Fully dynamic group signature scheme with member
registration and verifier-local revocation. In: Ghosh, D., Giri, D., Mohapatra, R.N.,
Sakurai, K., Savas, E., Som, T. (eds.) ICMC 2018. SPMS, vol. 253, pp. 399–415.
Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-2095-8 31

27. Perera, M.N.S., Koshiba, T.: Zero-knowledge proof for lattice-based group signa-
ture schemes with verifier-local revocation. In: Barolli, L., Kryvinska, N., Enokido,
T., Takizawa, M. (eds.) NBiS 2018. LNDECT, vol. 22, pp. 772–782. Springer, Cham
(2019). https://doi.org/10.1007/978-3-319-98530-5 68

28. Perera, M.N.S., Koshiba, T.: Achieving strong security and verifier-local revocation
for dynamic group signatures from lattice assumptions. In: Katsikas, S.K., Alcaraz,
C. (eds.) STM 2018. LNCS, vol. 11091, pp. 3–19. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-01141-3 1

29. Zhang, Y., Hu, Y., Gao, W., Jiang, M.: Simpler efficient group signature scheme
with verifier-local revocation from lattices. KSII Trans. Internet Inf. Syst. 10(1),
414–430 (2016). https://doi.org/10.3837/tiis.2016.01.024

30. Zhang, Y., Yin, Y., Liu, X., Zhang, Q., Jia, H.: Zero-knowledge proofs for improved
lattice-based group signature scheme with verifier-local revocation. In: Shen, B.,
Wang, B., Han, J., Yu, Y. (eds.) FCS 2019. CCIS, vol. 1105, pp. 107–127. Springer,
Singapore (2019). https://doi.org/10.1007/978-981-15-0818-9 8

https://doi.org/10.1007/978-3-319-61204-1_15
https://doi.org/10.1007/978-3-319-61204-1_15
https://doi.org/10.1007/978-3-030-25510-7_3
https://doi.org/10.1007/978-3-319-76581-5_3
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1007/978-3-662-46447-2_18
https://doi.org/10.1007/978-981-13-2095-8_31
https://doi.org/10.1007/978-3-319-98530-5_68
https://doi.org/10.1007/978-3-030-01141-3_1
https://doi.org/10.1007/978-3-030-01141-3_1
https://doi.org/10.3837/tiis.2016.01.024
https://doi.org/10.1007/978-981-15-0818-9_8

Proofs of Ownership on Encrypted Cloud
Data via Intel SGX

Weijing You1 and Bo Chen2(B)

1 Department of Computer Science and Technology, University of Chinese Academy
of Sciences (UCAS), Beijing, China
youweijing16@mails.ucas.ac.cn

2 Department of Computer Science, Michigan Technological University,
Michigan, USA
bchen@mtu.edu

Abstract. To deal with surging volume of outsourced data, cloud stor-
age providers (CSPs) today prefer to use deduplication, in which if multi-
ple copies of a file across cloud users are found, only one unique copy will
be stored. A broadly used deduplication technique is client-side dedupli-
cation, in which the client will first check with the cloud server whether
a file has been stored or not by sending a short checksum and, if the
file was stored, the client will not upload the file again, and the cloud
server simply adds the client to the owner list of the file. This can signif-
icantly save both storage and bandwidth, but introduces a new attack
vector that, if a malicious client obtains a checksum of a victim file,
it can simply claim ownership of the file. Proofs of ownership (PoWs)
were thus investigated to allow the cloud server to check whether a client
really possesses the file. Traditional PoWs rely on an assumption that
the cloud server is fully trusted and has access to the original file con-
tent. In practice, however, the cloud server is not fully trusted and, data
owners may store their encrypted data in the cloud, hindering execution
of the traditional PoWs.

In this work, we make it possible to execute PoWs over encrypted
cloud data by leveraging Intel SGX, a security feature which has been
broadly equipped in processors of today’s cloud servers. By using Intel
SGX, we can create a trusted execution environment in a cloud server,
and the critical component of the PoW verification process will be
executed in this secure environment (with confidentiality and integrity
assurance). Security analysis and experimental evaluation show that our
design can allow PoWs over encrypted data with modest additional over-
head.

Keywords: Client-side deduplication · Cloud storage · Proofs of
ownership · Intel SGX

1 Introduction

Cloud outsourcing can significantly reduce cost as well as burden of data storage
and management. Therefore, more and more data owners choose to outsource
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 400–416, 2020.
https://doi.org/10.1007/978-3-030-61638-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_22&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_22

Proofs of Ownership on Encrypted Cloud Data via Intel SGX 401

their data to cloud storage providers (CSPs), e.g., Amazon AWS [1], Microsoft
Azure [2]. Since an ever-surging amount of data is now stored in clouds, an
urgent need for the CSPs is how to host those data with reduced cost. Dedu-
plication [3] can immediately help, in which only a unique copy of data will be
stored when multiple duplicate copies across different data owners are found.
Based on where deduplication is performed, we can have server-side and client-
side deduplication. In the server-side deduplication, deduplication will happen
purely in the cloud server, transparently to the client. In the client-side dedupli-
cation, the client will collaborate with the cloud server to perform deduplication.
Specifically, the client will first check with the cloud server (i.e., by sending a
checksum of the file) and, if a file has been stored, the client will not upload it
again; instead, the client will simply claim ownership of this file. The client-side
deduplication can save both storage and bandwidth, and hence has been used
broadly by popular file hosting services including Dropbox [4], Box [5], Google
Drive [6].

The client-side deduplication, however, suffers from various attacks. For
example, a malicious user can claim ownership of a file by only possessing the
checksum rather than the actual file; or an attacker can easily create and send
some arbitrary checksums and become owners of the corresponding files. Proofs
of Ownership (PoWs) [7] were thus investigated to combat those attacks. In a
PoW protocol, the cloud server will require the client to prove the ownership of
the claimed file, so that without actually possessing the original file, the client
will not be able to pass the PoW check.

Conventional PoW protocols will work correctly if the cloud server itself has
access to the original file. This, however, may not be realistic in practice. Due to
their openness nature, the CSPs should not be fully trusted, and a lot of data
owners today will choose to encrypt their valuable data before data outsourc-
ing. For deduplication purpose, secure message-locked encryption (MLE) [8,9]
ensures that different data owners can securely derive the same encryption key
for duplicate data possessed individually. But, the encrypted data will create a
significant obstacle for correctly executing PoWs. This is because, by possessing
an encrypted file, the server cannot verify a PoW proof, which was computed by
a potential data owner over the original file. An immediate remediation is to ask
the potential data owner to first encrypt the original file, and then compute the
PoW proof over the encrypted file [10]. This however will be problematic since
now the PoW protocol can only ensure that the client possesses an encrypted
version of the original file, rather than the original file itself1. How to adapt the
PoW protocol so that it can work correctly on encrypted cloud data is still an
open problem.

You et al. proposed DEW, a PoW protocol for outsourced multimedia data
embedded with watermarks [11]. The idea is to create some sort of “miniatures”
over the original file, and send the “miniatures” to the cloud server to assist the
PoW verification. This idea can be used in adapting PoWs for encrypted data,

1 Note that for ownership proving, we need to ensure that the prover really “owns”
the original file.

402 W. You and B. Chen

but it has some limitations: First, the additional storage overhead will be O(n),
where n is the size of the file; Second, it neglects the fact that the cloud server
still possesses an encrypted version of the file (which may still be utilized), and
thus the resulting design is general and not optimized for our unique application
scenario.

Having observed that today’s cloud servers are broadly equipped with Intel
Software Guard Extensions (SGX) [12], we design a new PoW protocol for
encrypted cloud data by leveraging this new hardware feature. SGX can allow
creating an isolated memory region (i.e., an enclave) with both confidential-
ity and integrity assurance at the hardware level, i.e., security of this isolated
memory region can be assured even when the operating system is compromised.
In the PoW protocol, only the PoW verification process requires accessing the
original file, and therefore, it is possible to separate this process and move it
into an SGX enclave, within which the encrypted data will be decrypted for
PoW verification but the decrypted data will not be leaked to the untrusted
cloud server. The resulting design, PoWIS, is the first secure Proof of Ownership
protocol on encrypted cloud data via Intel SGX. Our key insights are: 1) The
PoW verification process is separated and delegated to the SGX enclave; 2) The
decryption key for decryptng the encrypted cloud data and the PoW proof will
be transmitted via a secure channel established between the secure enclave and
the client, which will remain confidential to the untrusted cloud server. 3) The
secure enclave and the untrusted cloud server collaborate to validate the received
PoW proof based on the stored encrypted cloud data (which will be decrypted
in the secure enclave via the decryption key sent by the client).

Contributions. Our contributions are summarized as follows:

– To the best of our knowledge, we are the first to identify the gap of existing
PoWs over encrypted data, and the resulting design, PoWIS, is the first secure
PoW protocol designed for encrypted cloud data.

– PoWIS ensures security by combining both cryptography and secure hardware
equipped broadly in cloud servers.

– We implement and evaluate PoWIS in terms of security and performance.

2 Background

2.1 Deduplication and Proofs of Ownership (PoWs)

Deduplication has been broadly used in the cloud environment, focusing on
eliminating unnecessary storage space by removing duplicate data outsourced
to clouds by different data owners. Since deduplication only removes unneces-
sary duplicates across owners, it does not contradict with another known data
security feature, namely, durability [13–16], in which duplicates are created for
the same data owner to be resilient against potential future failures. For differ-
ent data owners, duplicates among them will be unknown to each other, and
hence are useless. Based on deduplication granularity, we have file-based (i.e.,

Proofs of Ownership on Encrypted Cloud Data via Intel SGX 403

the deduplication granularity is a file) and block-based (i.e., the deduplication
granularity is a block) deduplication; while based on deduplication location, we
have server-side (i.e., deduplication happens in the server, unknown to the client)
and client-side (i.e., the server and the client collaborate for deduplication, not
transparent to the client) deduplication. In this paper, we focus on the more ben-
eficial client-side deduplication; additionally, we mainly focus on the file-based
deduplication, which is extensible to the block-based deduplication.

The client-side deduplication faces some new attacks. One of the known
attacks is that, a malicious data owner can claim ownership of a file by only pos-
sessing its checksum, rather than the file itself. Proofs of Ownership (PoWs) [7]
were thus explored to mitigate such an attack. A PoW protocol gets the cloud
server and the client involved, in which the cloud server (i.e., the verifier) checks
whether or not the client (i.e., the prover) really possesses the file. Halevi et
al. [7] instantiated the PoW as: a Merkle tree is first constructed over a file,
and the resulting Merkle root will be stored by the verifier; upon receiving a
claim of ownership on a file, the verifier will issue a challenge, requiring the
prover to prove possession of the file; based on the challenge, the prover will
construct correct Merkle-tree paths, and the verifier then checks: 1) whether the
leaf node of each Merkle-tree path matches the hash value computed on each
chosen file block, and 2) whether the root computed along each Merkle-tree path
is identical to the stored root; only when the two conditions are both satisfied,
the prover can pass the PoW check and become a valid data owner. Note that,
to reduce the computation during each challenge, the verifier usually uses spot
checking [17] for large files, i.e., checking a random subset of file blocks, rather
than the entire file. It shows that if a certain faction of the file is corrupted, by
randomly checking a constant number (e.g., 460 [17]) of the file blocks (rather
than the entire file), the verifier is able to detect the corruption with a high
probability; in addition, the cloud server is assumed to be trusted and can have
access to the original file.

2.2 Message-Locked Encryption (MLE)

Various encryption schemes, in which the encryption key is derived from the mes-
sage being encrypted is so called Message-Locked Encryption (MLE) [8,9,18]. By
using MLE in deduplication, different clients owning identical message are able
to derive the same encryption key, and hence could obtain the same ciphertext,
such that deduplication will not be disturbed by client-side encryption.

2.3 Trusted Execution Environment and Intel SGX

Hardware-enforced trusted execution environment (TEE) can be used to iso-
late sensitive code and data from other software running on the same platform,
e.g., the operation system (OS), or the hypervisor. The TEE which has been
broadly used today includes Intel Software Guard Extensions (SGX) [12] and
ARM TrustZone [19]. SGX is equipped in an Intel processor, which has been

404 W. You and B. Chen

used by a majority of servers around the world. SGX is a set of x86-64 instruc-
tion extensions that makes it possible to create a trusted execution environment
(called enclave), which can be used to protect sensitive code and data. The Intel
processor strictly controls access to the enclave memory so that any unauthorized
instruction outside the enclave will fail to read/ write the memory of a running
enclave. The confidentiality and integrity of cache lines of enclave are ensured by
the Intel processor with SGX enabled. The processor is the only hardware-driven
trusted computing base (TCB), which eliminates various advanced attacks. The
software TCB is the code that the client wants to run inside the enclave. The
code inside the enclave can be called from outside through a customized entry
point, which is defined as “ECALL” in SGX. The processor will save the regis-
ter context to the enclave memory, allocate a buffer from the protected memory
for data transfer, and copy data from outside to the secure buffer. The secure
buffer and the register context will be scrub before resuming execution outside
the enclave. Other components, like the network interface, will be shared by
all applications, including both SGX and non-SGX applications running on the
same server.

In cloud outsourcing, both the code and the data supposed to be executed
securely will be outsourced to the untrusted cloud. In this case, it is necessary
for the client to establish trust on the remote cloud server. In SGX, this can be
achieved via Remote Attestation (RA) [20], in which a specific enclave can prove
to the client that it is successfully launched by and running on a genuine SGX
processor. Specifically, the SGX processor will measure the enclave in terms of
its layout, memory content, and other customized information which must be
included and has been hardcoded by developers of the SGX applications. During
the enclave initialization, any interference from untrusted software, e.g., the OS,
will result in a different measurement. The measurement of the enclave and a
signed digest of it form a public verifiable trust commitment, called Quote. The
Quote will be signed by a special enclave, called Quoting Enclave (QE), and the
enclave signing is an asymmetric anonymous group signing scheme, in which the
private key used to sign the digest is derived from the platform-unique secret,
which is only accessible to the platform-unique Architectural Enclaves (AE). The
signature on the Quote can be verified through the SGX Attestation API [21].
Via the RA, the client can ensure that the enclave is running on the remote
cloud server and executions inside the enclave are trustworthy. A secure channel
can be established between the client and the enclave at the same time, which
allows the client to communicate with the enclave directly. To support the RA,
the platform being attested must support the SGX and must enable the SGX
in BIOS, but the verifier of the RA does not require SGX to be supported and
enabled.

3 System Model and Adversarial Model

System Model. We consider a cloud storage system which is consists of two
entities, namely, the cloud server (S) and the data owner (O). The cloud server

Proofs of Ownership on Encrypted Cloud Data via Intel SGX 405

is equipped with Intel processors with SGX enabled in BIOS. Using SGX, the
cloud server can be logically viewed as two components: a trusted execution
environment created by the SGX processor (i.e., enclave), and an untrusted
environment outside the enclave (still denoted as S). S provides storage services
and enables client-side deduplication. O outsources data to S but encrypts them
before uploading. Since S deploys client-side deduplication, each time when O
wants to outsource a file, it will first check with S to find out whether the file
has been stored in S (i.e., was uploaded before by another data owner). If not,
O will upload the file, otherwise, S will perform a PoW check on O and add O
to the owner list of the file if the check can be passed.

Adversarial Model. The cloud server S is honest-but-curious [22,23]. S will
honestly store the outsourced file, correctly execute required protocols (e.g., the
PoW protocol), and timely respond to data owners as contracted by the Service
Level Agreements (SLA). However, it is curious and tries to learn sensitive infor-
mation from the encrypted file. There is a malicious data owner which wants to
pass the PoW check on a file without actually possessing this file. We assume
that the cloud server will not collude with the malicious data owner; otherwise,
the cloud server can simply add the malicious data owner to owner list of the
file, and PoW becomes meaningless. This is a reasonable assumption, since col-
lusion is not an honest behavior, and additionally, the cloud server will not gain
additional advantage of learning sensitive information from the file by colluding
with a malicious data owner. In addition, we assume that the data owner which
initially uploads the file is honest. This assumption is also reasonable, since by
uploading an arbitrary file initially, the data owner will gain nothing from this
outsourcing but will lose money due to paying the storage service. The commu-
nication channel between S and O is assumed to be secure, e.g., protected by
SSL/TLS.

4 PoWIS

In this section, we present the design details of PoWIS, a Proof of Ownership
scheme on encrypted cloud data via Intel SGX for secure client-side deduplica-
tion. Note that PoWIS is instantiated for the file-based deduplication, which is
extensible to the block-based deduplication.

4.1 The Overall Design of PoWIS

A secure client-side deduplication for plaintext data works as follows: The file
F is initially uploaded by a data owner O (i.e., the first uploader) during the
Initial Upload phase. During the Client-side Deduplication phase, a client2 which
possesses the same file F will check with the cloud server whether F was stored
previously, and the cloud server will issue a PoW check and the client will be

2 For simplicity, we use the term “client” to refer to peers interacting with the cloud
server, including both the honest and the malicious data owner.

406 W. You and B. Chen

Fig. 1. The workflow of PoWIS in the Client-side Deduplication phase

added to the owner list of the file F if and only if it can successfully pass the PoW
check (Sect. 2.1). PoWIS enables the client-side deduplication for encrypted cloud
data, by modifying both the Initial Upload and the Client-side Deduplication
phase as follows:

The Initial Upload Phase. Upon uploading a file F for the first time, the data
owner O will construct a Merkle-tree over it, and encrypt it using an MLE key
(denoted as Kmle, which is derived using a secure MLE instantiation introduced
in Sect. 2.2). O will also encrypt the Merkle-tree root using Kmle, and then send
both the encrypted F and the encrypted Merkle-tree root to the cloud server.

The Client-Side Deduplication Phase. Before uploading a file, the client
will first check with the cloud server whether the file has been uploaded before.
The client will derive the Kmle based on the file, encrypt the file using the Kmle,
and compute a checksum over the encrypted file, and send the checksum to the
cloud server [10]. If the cloud server finds out that the checksum matches a stored
encrypted file, it will check whether the client really owns the file by running the
PoW protocol. The traditional PoW protocol designed for the plaintext data can
be directly used here but can only prove that the client possesses the encrypted
file since the cloud server only has access to the encrypted file. We adapt the
traditional PoW protocol to support encrypted cloud data by leveraging Intel
SGX, a security feature built into the processor of the cloud server (which is
honest but curious as described in Sect. 3). A complete workflow of the new
PoW protocol is as follows (Fig. 1):

1. The cloud server creates an SGX enclave.
2. The client attests and negotiates a session key (K) with the enclave.
3. The cloud server sends a PoW challenge to the client. Note that, the cloud

server can use spot checking (Sect. 2.1) if the file has more than 460 4KB file
blocks, i.e., a random subset of file blocks will be checked if the file is large;
otherwise, the server simply checks the entire file.

4. The client first derives Kmle from the possessed file F . The client then com-
putes the PoW proof based on the received challenges. Specifically, it con-
structs the Merkle-tree based on F , and for each file block being challenged,

Proofs of Ownership on Encrypted Cloud Data via Intel SGX 407

it computes the hash value of the file block, which is a leaf in the Merkle-tree,
and extracts the path from this leaf to the Merkle-tree root (i.e., consisting
of all the hash values of “siblings” along the path). The final PoW proof
includes: 1) a set of leaves corresponding to the file blocks being checked;
2) the corresponding sibling-paths. Lastly, the client encrypts both the Kmle

and the PoW proof using the session key K. Note that, due to the use of spot
checking, both the computation and communication overhead will remain
constant for large files [17]. The encrypted Kmle and PoW proof will be sent
back to the server.

5. The cloud server will rely on the enclave to check correctness of the PoW
proof. Both the encrypted Kmle and the PoW proof will be passed to the
enclave. In addition, the cloud server will send to the enclave: 1) the encrypted
Merkle-tree root (initially uploaded by the first uploader); and 2) the subset of
encrypted file blocks which is corresponding to the subset of file blocks being
checked. The enclave will then perform the following sensitive operations
transparently to the cloud server: 1) Using the session key K, the enclave
will perform decryption, obtain Kmle and the PoW proof; 2) Using Kmle,
the enclave will decrypt the encrypted Merkle-tree root as well as the subset
of encrypted file blocks; 3) Using the Merkle-tree root and the subset of file
blocks in plaintext, the enclave can check whether the PoW proof is correct
or not and the final verification result will be returned to the cloud server.
The verification is performed as:

For each file block being challenged:

– the enclave computes the hash value of the file block and compares it with
the corresponding leaf sent back by the client;

– if it does not match, the verification fails and exits;
– if it matches, the enclave will compute a sibling-path corresponding to this

file block, and check whether the resulting root matches the Merkle-tree root
sent from the cloud server;

– if it does not match, the verification fails and exits;
– if it matches, this sibling-path is valid.

4.2 Remote Attestation and Establishing a Secure Communication
Channel

The enclave is a vital component in PoWIS that enables the PoW verification
without disclosing the original file to the untrusted cloud server. Therefore,
ensuring that the enclave is really initialized in a genuine Intel SGX proces-
sor and the verification process of PoWIS is actually running inside the enclave,
is necessary for security of PoWIS. This is achieved by Remote Attestation [20]
(RA) in SGX, which allows the client to attest the enclave and to negotiate a
session key to protect communication between the client and the enclave.

To ensure the session key is not modified by a man-in-the-middle attacker
during the RA process such that the client communicates with the intended

408 W. You and B. Chen

Fig. 2. The sequence of interactions between the client and the enclave during the RA
process

enclave, an EC signing based on elliptic curve (satisfying the NIST P-256 stan-
dard) and an enclave signing will be used. Specifically, the EC public key will
be hardcoded in the SGX application which will be running in the cloud server
side, and the EC private key will be hardcoded in the application which will
be running in the client side. The private key for the enclave signing is derived
from the unique secret embedded on each SGX processor, which is only accessi-
ble to the special Architectural Enclaves (AE), e.g., the Quoting Enclave (QE),
and the Platform Service Enclave (PSE). The public key for the enclave signing
is possessed by the Intel. The interactions between the client and the enclave
during the RA process is shown in Fig. 2, which is an elaborated SIGMA key
exchange protocol based on the discrete logarithm Diffie-Hellman key agreement
(DHKE) protocol:

– Initiate RA context: The enclave accepts a handle of a trusted session created
by PSE, and accepts the EC public key as an argument, and returns an opaque
context for the key exchange that will be invoked during RA.

– Enclave
msg0−−−→ client: The enclave selects the attestation mode, one of which

is based on the Enhanced Private ID (EPID), and the other is based on the
Elliptic Curve Digital Signature Algorithm (ECDSA). The attestation mode
is the main content of msg0.

– Enclave
msg1−−−→ client: The enclave generates its public session key share ga,

where g is a global generator of a secure DH group G in order n, and a is
a random big integer generated inside the enclave. The enclave retrieves the

Proofs of Ownership on Encrypted Cloud Data via Intel SGX 409

extended Group ID (GID)3. ga and the extended GID form msg1. Note that
msg0 and msg1 can be sent together (up to system setting).

– Client
msg2−−−→ enclave: The client synchronizes RA context based on msg0 and

extracts the public key share ga from msg1. Then the client generates its
public key share gb, where b is a random big integer picked by the client,
and computes the session key K = gab. Further, (ga||gb) will be processed to
a digest and signed using the client’s EC private key, where “——” denotes
concatenation. gb and the signed (ga||gb) will be included in msg2, which will
be sent back to the enclave.

– Enclave
msg3−−−→ client: The enclave verifies the integrity of (ga||gb) using the

EC public key, and computes the session key K = gab. The most critical
payload of msg3 is a special cross-platform commitment, i.e., Quote, which
is generated by the SGX processor. Specifically, the statement of enclave is
strictly measured by the SGX processor during the RA, including the data
generated inside the enclave, e.g. ga, the data received during the RA, e.g., gb,
and the code running inside the enclave. The resulting measurement, called
Report, will be further processed to Quote by the QE. QE will compute a
digest of Report and sign it using the private key for enclave signing. Note
that the private key for enclave signing is derived from a platform-specific
secret, the accessibility of which is strictly controlled by the SGX processor.

– Client
C1,C2−−−−→ enclave: The client validates the Quote through the online Intel

Attestation Service [21] to ensure that the intended enclave is created and run
in the cloud server, and the key shares are not modified. At this point, the
client can be convinced that the Quote is signed by a valid SGX processor,
and hence the integrity of the code running in the cloud server side as well as
the data exchanged during the RA is ensured. Therefore, the key exchange
process is trustworthy and the communication channel is well protected. The
PoW proof and Kmle will be encrypted using the session K to C1 and C2,
respectively, and then will be sent back to the enclave.

5 Analysis and Discussion

5.1 Security Analysis

In the following, we show that PoWIS is a secure proof of ownership protocol
and, the server will not be able to learn sensitive information about the original
file.

A Malicious Client Which Does Not Possess the Original File Cannot
Pass the PoW Check. In PoWIS, the client is required to provide both the
MLE key and the PoW proof to pass the PoW check. We first show that a
malicious client which does not possess the original file will not be able to learn
it. The only known approach for the malicious client to learn the original file

3 Currently, the Intel Attestation Service only supports the value of zero for the
extended GID.

410 W. You and B. Chen

in the client-side deduplication is to perform the side-channel attacks [24]. This
is infeasible in PoWIS because: at the beginning of the client-side deduplication
phase, the client is required to send a hash value over the encrypted file, rather
than the original file; in other words, by performing the side-channel attack, the
malicious client can at most learn the encrypted file rather than the original
file. Then, without being able to have access to the original file, a malicious
client will not be able to obtain the correct MLE key, considering a secure MLE
protocol is used. In addition, the PoW proof in PoWIS is constructed based on
the traditional PoW protocol using Merkle tree [7] and, the client is guaranteed
to be unable to pass the PoW check without having access to the original file
considering the traditional PoW protocol is secure. Note that for performance
consideration, this guarantee would be probabilistic if spot checking is used [17]
during the checking; especially, if a certain percentage of the original file is
missing in the client side (e.g., 1%), by randomly checking a certain number of
file blocks (e.g., 460), the cloud server can detect this misbehavior with a high
probability (e.g., 99%).

The Cloud Server Cannot Learn Anything About the Original File in
PoWIS. What the cloud server can have access to is the encrypted file and the
encrypted Merkle-tree root, which are both protected by the MLE key derived
through a secure MLE instantiation. It is infeasible for the cloud server to find
out the MLE key considering a secure MLE protocol is used. In addition, each
PoW proof is encrypted using a session key, which is established through the
secure key exchange protocol between the client and the enclave. Without having
access to the session key, the cloud server cannot gain any additional advantage
of learning the original file by accumulating the PoW proofs. Last, considering
the SGX enclave is secure4, the cloud server is not able to learn anything about
the file blocks being processed inside the enclave.

5.2 Discussion

Side channel attacks against Intel SGX. The Intel SGX has been shown
to be vulnerable to various side channel attacks since the untrusted code and
the enclave code share the same processor. These include memory access pattern
attacks [25], cache-based side channels [26,27], branch shadowing attacks [28],
etc. Several defenses have been proposed to mitigate those attacks, e.g., checking
program execution time [29], data location randomization [30], using a commod-
ity component of the Intel processor, Transactional Synchronization Extensions
(TSX), to detect exceptions and interrupts during running an enclave [31], etc.

Accelerating SGX. Accelerating SGX is necessary for handling the ever-
surging volume of cloud data. Intel has spent efforts on improving SGX per-
formance in the upcoming version SGX2 [12]. The SGX can be accelerated by
4 Note that the focus of this work is not the security of SGX itself, as we know that

various new side-channel attacks on the SGX as well as the corresponding defenses
have been actively investigated in the literature. Here we simply use SGX as a black
box which is assumed to be secure.

Proofs of Ownership on Encrypted Cloud Data via Intel SGX 411

Table 1. Time for each individual component during the RA process

enclave creation (server side) 0.06s

generating msg0 (server side) 0.002s

Generating msg1 (server side) 0.009s

Generating msg2 (client side) 0.003s

Processing msg2, generating msg3 (server side) 0.27s

Processing msg3 (client side) 1.18−1.7s

leveraging GPU [32], or implementing it in a more efficient platform [33], i.e.,
the PCIe ExpressFabric chips, with PCIe ExpressFabric working as a high-speed
resource sharing network.

6 Implementation and Evaluation

6.1 Implementation

We implemented PoWIS in C. The server was implemented on a PC with SGX
enabled (Intel Core i5-9400 2.9 GHz processor, 8 GB RAM, Windows 10, Intel
SGXSDK version 2.7), and the client was implemented on another PC without
SGX (Intel Core i5-6300 2.4 GHz processor, 8GB RAM, Windows 10). For effi-
ciency, when the total number of file blocks exceeds a threshold (i.e., 460 [17]),
the cloud server will always challenge a constant number of file blocks (i.e.,
460 [17]); otherwise, the cloud server will check the entire file. OpenSSL [34]
has been widely used for performing cryptographic computations, but Intel has
omitted several potentially insecure operations, and only the specific SSL library
adjusted by Intel [35] and compiled by an SGX processor, called SGXSSL, can
be successfully linked and used by the SGX applications. Therefore, we used
SGXSSL (based on OpenSSL-1.1.0d) for the server, and standard OpenSSL-
1.1.1e for the client, respectively.

6.2 Performance Evaluation

We mainly evaluated the PoW process of PoWIS. We used 6 files for testing,
the sizes of which range from 128 KB to 16 MB and the size of each file block
is 4KB. We did not try too large file sizes, since once the file size exceeds 1.84
MB (i.e., 4KB × 460), the computation turns to be constant due to the use of
spot checking. The PoW process of PoWIS has a few key components including
the SGX Remote Attestation, the PoW proof generation, and the PoW proof
verification. Since DEW [11] can be adapted to support PoWs over encrypted
cloud data, we therefore compared PoWIS with DEW during the PoW process.

Remote Attestation (RA). In RA, the cloud server spends time on generating
msg0 and msg1, processing msg2, and generating msg3. The client spends time

412 W. You and B. Chen

(a) Generating a PoW proof (client side) (b) Verifying a PoW proof (server side)

Fig. 3. Proof generation and verification in the PoW process

on processing msg0, msg1, and msg3 as well as generating msg2. The experi-
mental results are shown in Table 1.

We can observe that the most time-consuming operation in the server side is
generating msg3. By analyzing the source code of the RA in SGXSDK [36], we
found that, the special Quote in msg3 is generated through a series of function
calls, which perform a few expensive operations, including the SGX processor
carefully measuring the enclave, sealing the resulting valid Report, QE process-
ing the Report by signing it with a private key, etc. The most time-consuming
operation in the client side is processing msg3, varying between 1.18s and 1.7s.
This time is a little expensive because, Quote in msg3 currently can only be vali-
dated through the online attestation service provided by Intel, and the resulting
time is highly affected by network delay, server response delay, etc, i.e., this time
is very unstable and strongly depends on where the client is located as well as
the capability of the Intel attestation service. This should be improved as the
SGX technology develops.

The PoW Proof Generation and Verification. The time for generating the PoW
proof and verifying the PoW proof are shown in Fig. 3(a) and Fig. 3(b), respec-
tively. The experimental results were averaged over 10 trials. We can observe
that: 1) The time for generating/ verifying a PoW proof in PoWIS is approxi-
mately liner with the file size before the threshold (i.e., 1.84MB), but it remains
constant after the threshold is reached. This is because, after the threshold is
reached, the PoW check will be based on spot checking, which always checks 460
blocks, randomly selected from the entire file; 2) For a fixed file size, both the
proof generation and the proof verification of PoWIS are more efficient than the
DEW [11]. This is because, in PoWIS, the proof generation/ verification consists
of lightweight hash operations and Merkle-tree computation, but in DEW [11],
the proof generation/ verification contains expensive modular exponentiation
operations over a multiplicative cyclic group. However, this does not imply that
PoWIS is more efficient than DEW during the PoW process, since PoWIS has
extra overhead in the Remote Attestation. The major advantage of PoWIS over

Proofs of Ownership on Encrypted Cloud Data via Intel SGX 413

DEW is that, PoWIS does not require additional metadata (or “miniatures”) to
facilitate the PoW process, but DEW does, and the size of these metadata is
O(n), when n is the number of blocks in the file.

7 Related Work

7.1 Deduplication in Cloud Storage

Data deduplication has been used broadly in cloud storage for storage saving.
The deduplication techniques can be roughly categorized into the server-side and
the client-side deduplication, and the client-side deduplication is more advanta-
geous due to its saving in both the storage and the bandwidth.

Message-LockedEncryption (MLE). To enable deduplication over encrypted
data, different users should generate the same encryption key for duplicate data
possessed individually. MLE has been designed for this purpose. Convergent
Encryption (CE) [18] proposed by Douceur et al. can be used to derive the
encryption key by hashing the file content, which is vulnerable to the brute-force
attack [37]. To mitigate this attack, DupLESS [9] introduced an independent key
server. Liu et al. [8] removed the independent key server at the cost of requiring
users to synchronize username/ password in advance, which is impractical.

Proofs of Ownership (PoWs). In the client-side deduplication, a PoW pro-
tocol [7] can be used to prevent a malicious entity from claiming ownership
of a file without really possessing it. Halevi et al. [7] proposed PoW protocols
which rely on the Merkle-tree, under the assumption that the cloud server is
fully trusted and can have access to the original file. Our work PoWIS removes
this assumption and enables a PoW protocol for encrypted cloud data, in which
the cloud server can only have access to the encrypted file but is still able to
check whether the client possesses the original file. You et al. [11] proposed a
PoW protocol specifically for the outsourced watermarked data, in which the
untrusted cloud server can check whether the client possesses the original file
even if it can only have access to the watermarked file.

7.2 Intel SGX in Cloud Computing

SGX [12] is an advanced security feature integrated into the Intel processors that
can ensure both confidentiality and integrity of sensitive code and data even
if the OS is compromised. SGX is particularly promising in cloud computing
since a cloud server is typically an untrusted execution environment, and SGX
has been supported in various cloud providers including Microsoft Azure [2].
Schuster et. al [38] proposed a MapReduce framework in the cloud which can
allow users to run distributed MapReduce computations in the cloud without
comprising data confidentiality as well as correctness of results by leveraging
SGX. Pereira et al. relied on SGX to ensure use of audited software in an insecure
environment [39]. Kurnikov et al. designed and implemented a TEE-based cloud

414 W. You and B. Chen

key store (CKS) [40], facilitating key management securely. They implemented
a proof of concept CKS using Intel SGX. Dang et al. [41] proposed a privacy-
preserving server-side deduplication protocol that protects the confidentiality,
the ownership as well as the equality information of the outsourced data.

8 Conclusion

This work identifies a novel conflict in traditional proofs of ownership protocols
that the verifier (i.e., the cloud server) needs to have access to the original file,
but the file accessible to the verifier is encrypted. To resolve this conflict, we
design a novel PoW protocol for encrypted cloud data by leveraging Intel SGX
(PoWIS), a security feature presenting in most of the cloud servers’ processors.
Security analysis and experimental evaluations justify that PoWIS is a secure
PoW protocol for encrypted cloud data with a modest additional overhead.

References

1. Amazon simple storage service (2020). http://aws.amazon.com/cn/s3/
2. Microsoft azure (2020). http://www.windowsazure.cn/?fb=002
3. Meyer, D.T., Bolosky, W.J.: A study of practical deduplication. ACM Trans. Stor-

age 7(4), 1–1 (2012)
4. Dropbox (2019). https://www.dropbox.com/
5. Box (2019). https://www.box.com/
6. Google drive (2020). https://www.google.cn/intl/zh cn/drive/
7. Halevi, S., Harnik, D., Pinkas, B., Shulman-Peleg, A.: Proofs of ownership in remote

storage systems. In: ACM Conference on Computer and Communications Security,
pp. 491–500. ACM (2011)

8. Liu, J., Asokan, N., Pinkas, B.: Secure deduplication of encrypted data without
additional independent servers. In: Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 874–885 (2015)

9. Bellare, M., Keelveedhi, S., Ristenpart, T.: DupLESS: server-aided encryption for
deduplicated storage. In: USENIX Conference on Security, pp. 179–194 (2013)

10. Lei, L., Cai, Q., Chen, B., Lin, J.: Towards efficient re-encryption for secure client-
side deduplication in public clouds. In: Lam, K.-Y., Chi, C.-H., Qing, S. (eds.)
ICICS 2016. LNCS, vol. 9977, pp. 71–84. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-50011-9 6

11. You, W., Chen, B., Liu, L., Jing, J.: Deduplication-friendly watermarking for mul-
timedia data in public clouds. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.)
European Symposium on Research in Computer Security (ESORICS), vol. 12308
(2020). https://doi.org/10.1007/978-3-030-58951-6 4

12. Intel software guard extensions (2020). https://software.intel.com
13. Chen, B., Curtmola, R., Ateniese, G., Burns,R.: Remote data checking for net-

work coding-based distributed storage systems. In: Proceedings of the 2010 ACM
Workshop on Cloud Computing Security Workshop, pp. 31–42. ACM (2010)

14. Chen, B., Curtmola, R.: Towards self-repairing replication-based storage systems
using untrusted clouds. In: Proceedings of the Third ACM Conference on Data
and Application Security and Privacy, pp. 377–388. ACM (2013)

http://aws.amazon.com/cn/s3/
http://www.windowsazure.cn/?fb=002
https://www.dropbox.com/
https://www.box.com/
https://www.google.cn/intl/zh_cn/drive/
https://doi.org/10.1007/978-3-319-50011-9_6
https://doi.org/10.1007/978-3-319-50011-9_6
https://doi.org/10.1007/978-3-030-58951-6_4
https://software.intel.com

Proofs of Ownership on Encrypted Cloud Data via Intel SGX 415

15. Chen, B., Ammula, A.K., Curtmola, R.: Towards server-side repair for erasure
coding-based distributed storage systems. In: Proceedings of the 5th ACM Con-
ference on Data and Application Security and Privacy, pp. 281–288. ACM (2015)

16. Chen, B., Curtmola, R.: Remote data integrity checking with server-side repair. J.
Comput. Secur. 25(6), 537–584 (2017)

17. Ateniese, G., et al.: Provable data possession at untrusted stores. In: Proceedings
of the 14th ACM Conference on Computer and Communications Security, pp.
598–609. ACM (2007)

18. Douceur, J.R., Adya, A., Bolosky,W.J., Dan, S., Theimer, M.: Reclaiming space
from duplicate files in a serverless distributed file system. In: International Con-
ference on Distributed Computing Systems, pp. 617–624 (2002)

19. Arm trustzone (2020). https://www.arm.com/products/silicon-ip-security
20. Attestation service for intel software guard extensions (2020). https://api.

trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
21. Remote attestation in intel software guard extensions (2020). https://software.

intel.com/content/www/us/en/develop/articles/code-sample-intel-software-
guard-extensions-remote-attestation-end-to-end-example.html

22. Yu, S., Wang, C., Ren, K., Wenjing, L.: Achieving secure, scalable, and fine-grained
data access control in cloud computing. In: INFOCOM 2010, pp. 1–9. IEEE (2010)

23. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and
data dynamics for storage security in cloud computing. In: Backes, M., Ning, P.
(eds.) ESORICS 2009. LNCS, vol. 5789, pp. 355–370. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04444-1 22

24. Harnik, D., Pinkas, B., Shulman-Peleg, A.: Side channels in cloud services: dedu-
plication in cloud storage. IEEE Secur. Priv. 8(6), 40–47 (2010)

25. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: deterministic side chan-
nels for untrusted operating systems. In: 2015 IEEE Symposium on Security and
Privacy, pp. 640–656. IEEE (2015)

26. Moghimi, A., Irazoqui, G., Eisenbarth, T.: CacheZoom: how SGX amplifies the
power of cache attacks. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 69–90. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66787-4 4

27. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi, A.-R.:
Software grand exposure: {SGX} cache attacks are practical. In: 11th {USENIX}
Workshop on Offensive Technologies ({WOOT} 17) (2017)

28. Lee, S., Shih, M.-W., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring fine-
grained control flow inside {SGX} enclaves with branch shadowing. In: 26th
{USENIX} Security Symposium ({USENIX} Security 17), pp. 557–574 (2017)

29. Chen, S., Zhang, X., Reiter, M.K., Zhang, Y.: Detecting privileged side-channel
attacks in shielded execution with déjá vu. In: Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security, pp. 7–18 (2017)

30. Brasser, F., Capkun,S., Dmitrienko, A., Frassetto, T., Kostiainen, K., Sadeghi, A.-
R.: Dr. SGX: automated and adjustable side-channel protection for SGX using data
location randomization. In: Proceedings of the 35th Annual Computer Security
Applications Conference, pp. 788–800 (2019)

31. Shih, M.W., Lee, S., Kim, T., Peinado, M.: T-SGX: eradicating controlled-channel
attacks against enclave programs. In: Network & Distributed System Security Sym-
posium (2017)

https://www.arm.com/products/silicon-ip-security
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
https://software.intel.com/content/www/us/en/develop/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example.html
https://doi.org/10.1007/978-3-642-04444-1_22
https://doi.org/10.1007/978-3-319-66787-4_4
https://doi.org/10.1007/978-3-319-66787-4_4

416 W. You and B. Chen

32. Jang, I., Tang, A., Kim, T., Sethumadhavan, S., Huh, J.: Heterogeneous isolated
execution for commodity GPUS. In: Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems, pp. 455–468 (2019)

33. Zhu, J., et al.: Enabling privacy-preserving, compute-and data-intensive com-
puting using heterogeneous trusted execution environment. arXiv preprint
arXiv:1904.04782 (2019)

34. Openssl-cryptography and ssl/tls toolkit (2020). https://www.openssl.org/
35. Intel software guard extensions ssl (2020). https://github.com/intel/intel-sgx-ssl
36. Intel software guard extensions for linux os (2020). https://github.com/intel/linux-

sgx
37. Known attacks towards convergent encryption (2013). https://tahoe-lafs.org/

hacktahoelafs/drew perttula.html
38. Schuster, F., et al.: VC3: trustworthy data analytics in the cloud using SGX. In:

2015 IEEE Symposium on Security and Privacy, pp. 38–54. IEEE (2015)
39. Pereira, L.W., et al.: Using intel SGX to enforce auditing of running software in

insecure environments. In: 2018 IEEE International Conference on Cloud Comput-
ing Technology and Science (CloudCom), pp. 243–246. IEEE (2018)

40. Kurnikov, A., Paverd, A., Mannan, M., Asokan, N.: Keys in the clouds: auditable
multi-device access to cryptographic credentials. In: Proceedings of the 13th Inter-
national Conference on Availability, Reliability and Security, pp. 1–10 (2018)

41. Dang, H., Chang, E.-C.: Privacy-preserving data deduplication on trusted proces-
sors. In: 2017 IEEE 10th International Conference on Cloud Computing (CLOUD),
pp. 66–73. IEEE (2017)

http://arxiv.org/abs/1904.04782
https://www.openssl.org/
https://github.com/intel/intel-sgx-ssl
https://github.com/intel/linux-sgx
https://github.com/intel/linux-sgx
https://tahoe-lafs.org/hacktahoelafs/drew_perttula.html
https://tahoe-lafs.org/hacktahoelafs/drew_perttula.html

On the Verification of Signed Messages

Bowen Xu1,2,3, Xin Xu1,2,3, Quanwei Cai1,2, Wei Wang1,2,
and QiongXiao Wang1,2,3(B)

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

{xubowen,xuxin,caiquanwei,wangwei,wangqiongxiao}@iie.ac.cn
2 Data Assurance and Communication Security Research Center,

Chinese Academy of Sciences, Beijing, China
3 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. Signed messages are widely used in network security. A mes-
sage is typically signed by the sender with semantically-secure signature
algorithms, and then verified by any receiver which is configured with the
sender’s public key. A successfully-verified message ensures data origin
authentication and data integrity. However, some known vulnerabilities
or incidents indicate that this mechanism does not always take effect in
the real-world systems; that is, even when the sender’s private key is well
protected, a message forged or modified by attackers, might still be suc-
cessfully verified by receivers. This paper analyzes the implementations
of digitally-signed message verification, and discusses possible weaknesses
based on some publicly-disclosed vulnerabilities. This survey provides a
guideline for the secure implementation of cryptographic protocols.

Keywords: Digital signature · Data integrity · Data origin
authentication · Cryptographic implementation

1 Introduction

Digital signatures are widely used in network security, e.g., to ensure data ori-
gin authentication, data integrity and authentication. For a semantically-secure
signature algorithm, only the entity owning the private key is able to generate
the valid signature for a message, which is successfully verified using the corre-
sponding public key. It is computationally impossible for any entity which does
not own the private key, to generate a valid signature. Meanwhile, if any bit of
the message is modified unintentionally or maliciously, the verification fails.

Typical signed messages include signed PDF documents, X.509 certifi-
cates in public key infrastructures, identity tokens in single sign-on protocols,
access tokens for authorization frameworks, signed binaries of code signing, key

This work was supported partially by Cyber Security Program of National Key RD
Plan of China (Grant No. 2017YFB0802100).

c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 417–434, 2020.
https://doi.org/10.1007/978-3-030-61638-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_23&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_23

418 B. Xu et al.

exchange messages of TLS, etc. In these different security applications of cryp-
tography, a successfully-verified message means that the content of this message
is certified by the signer, and it is not modified unintentionally or maliciously in
the transmission.

However, this mechanism does not always take effect in the real-world sys-
tems. Vulnerabilities are reported in different steps. For example, CVE-2020-
0601 [17] allows the adversaries to arbitrarily sign an X.509 certificate which
will be successfully verified and accepted by some vulnerable versions of Win-
dows operating systems (OSes). Attackers could exploit the signature verification
vulnerabilities of PDF and XML documents to tamper with a signed document
[18,20], and this document will be verified successfully by some PDF readers
and XML libraries.

These attacks do not break the signature algorithms, but result from the
careless and reckless implementations of cryptographic functions. Such vulner-
abilities are logic errors, different from common software vulnerabilities such
as buffer overflow, code injection, control flow hijacking, return-oriented pro-
gramming, data-oriented attacks. Thus, the following questions appear when we
analyze these vulnerabilities on the verification of signed messages: Which steps
of the verification of signed messages are prone to such logic errors? What kinds
of logic errors may exist in the verification of signed messages?

In this paper, we analyze the verification of signed messages, and discusses
possible weaknesses based on some publicly-disclosed vulnerabilities. We survey
the vulnerabilities related to algorithm identifiers, message formats, public keys,
and message parsing. These discussions help to find vulnerabilities related to the
verification of signed messages in network security solutions, and contribute to
secure implementation of security applications of cryptography.

The remainder of this paper is organized as follows. Section 2 presents the
background of signed messages in network security. Section 3 discusses the differ-
ent ways to forge successfully-verified messages, followed by the learned lessons
in Sect. 4. Section 5 concludes this paper.

2 Digital Signature and Verification

A semantically-secure signature algorithm is briefly explained as follows. A signer
(or sender) holds a key pair, i.e., the private key sk and the public key pk. After
generating a message m, the sender uses its private key to compute the signature
sig = Sign(m, sk). Usually m is firstly hashed into a message digest and then
input to the digital signing.

After receiving a signed message [m, sig], the receiver firstly finds the public
key pk, and then verifies whether the signature matches the message or not. If
this signed message is verified successfully, then the receiver parses m as the
application-layer format specifies. The sender’s public key is usually distributed
as an X.509 certificate, which is also a message signed by the certification author-
ity (CA) and verified by the receiver.

Next, we briefly describe some typical applications of signed messages in
network security.

On the Verification of Signed Messages 419

2.1 PDF Signature

Portable Document Format (PDF) is an electronic file format [10]. PDF pro-
vides PDF signature to ensure the integrity and authenticity of PDF files. To
better understand the attack on PDF signature, the following introduces basic
knowledge about PDF file structure and PDF signature.

PDF Structure: The structure of a PDF file is shown in Fig. 1.

Header Body Xref Table Trailer

%PDF-1.x
(Standard version)

...
xref<ID, ObjVer, ObjContent>

<ID0, Num>
<Offset, RevisionNum, Status>

<Offset, RevisionNum, Status>
...

Element in italic is the constant string.
ID0= 0, Num= the number of object.
Status= in use, RevisionNum= the maximum allowed revisions;
Status= idle, RevisionNum= the version of the object.

<ID, ObjVer, ObjContent>

trailer
/Size NumOfObj

/Root IDOfRootObject
Optional Information

Fig. 1. A brief structure of a PDF file

The PDF file is composed of four parts: Header, Body, Xref table, Trailer.

1. Header: The first line of a PDF file and indicates the version of the PDF
specification used in the PDF.

2. Body: The main part in a PDF, including the objects of the text stream,
images, other media elements, etc. The body section is used to hold all data
that is displayed to the users.

3. Xref table: A cross-reference table indicates the byte offset from the start
of the file for each object. The purpose of a cross-reference table is to allow
random access to objects in a file without reading the entire PDF file to
locate a specific object. An entry in the table corresponds to an object, and
the length of an entry is 20 bytes.

4. Trailer: Trailer contains the byte offset of Xref table and the information
about Catalog object which is the root object of Body. It is first processed
when PDF viewers display a PDF file. Trailer ends with %%EOF .

Incremental Update: Incremental update is a feature of PDF. The PDF file
is modified by adding a new body, Xref table, and Trailer after %%EOF without
changing the original content and structure of the PDF file. Incremental updates
improve the efficiency of PDF file generation when making a few changes to PDF.

420 B. Xu et al.

PDF Signature: PDF files can be signed using incremental updates. The appli-
cation creates the PDF signature with adding a new Body, new Xref table, and
new Trailer to the original file. The new Body contains a new Catalog, a signa-
ture object, and some parameter objects related to PDF viewers when processing
PDF files. The new Xref table contains the index of objects in the body that
newly added.

The signature object is shown in Fig. 2. Some details have been excluded or
abbreviated, specifically the signer name, signature creating time, etc. we mainly
focus on /Contents entry and /Byterange entry.

n 0 obj

<<
/Type /Sig

/Filter /Adobe.PPKLite

/SubFilter
/adbe.pkcs7

/Contents
<sig.value>

/ByteRange [a b c d]
>>

Fig. 2. The simplified example of PDF signature object.

The /F ilter entry and the /SubF ilter entry specifies the handler used to
process the data in the object. The /Contents entry contains the public key
certificate, signed message digest and timestamp. The above information is col-
lectively referred to as signature value. The /ByteRange entry is composed of
two integer pairs and specifies the range for calculating the signature value.
The integer pair [a b] specifies the first input for hash calculation in signature
creation and validation which is before the /Contents entry. The integer pair
[c d] specifies the second input for hash calculation which is after the /Contents
entry.

When verifying the signature, PDF viewers calculate the value according to
the range specified by /ByteRange, and compare the value with the signature
value saved in /Contents.

2.2 XML Signature in SAML

SAML (Security Assertion Markup Language) is an XML-based standard data
format that exchanges authentication and authorization data between identity
providers and service providers [6]. SAML used XML signature to ensure the
authenticity and integrity of the assertions. XML signature has much in common
with PKCS7 but is more extensible and complex. For the same XML file, there
are multiple implements of XML signature that conform to the standard.

On the Verification of Signed Messages 421

XML Signature. The XML signature structure is shown as Fig. 3.
SignedInfo element contains a collection of reference elements.
CanonicalizationMethod and SignatureMethod elements in SignedInfo

specify the algorithm used for canonicalization and signature.
Reference element includes the hash value and hash algorithm of the

resource, and URI parameter in Reference element points to the signed ele-
ment.

Signature element

SignedInfo

CanonicalizationMethod

Signature Method

Reference URI

SignatureValue

KeyInfo

Reference URI

Fig. 3. XML Signature element structure

The XML signature standard [8] defines the rules for creating and verifying
XML signatures. It allows the entire XML tree to be signed or only specific
elements to be signed. According to the position of XML signature and signed
data, XML signatures can be divided into three types (Fig. 4):

Signed element

Signature element

SignedInfo

Reference URI

Signed element

Signature Value

1. Detached Signature 2. Enveloping Signature 3. Enveloped Signature

Signature element

SignedInfo

Reference URI

Signature Value

Signed element

Signature element

SignedInfo

Reference URI

Fig. 4. Three types of XML signatures

1. Detached signature: The signature element is neither placed in the signed
element nor as the parent element of the signed data.

422 B. Xu et al.

2. Enveloping signature: The signature element is the parent element of the
signed data.

3. Enveloped signature: The signed data is the parent element of the signature
element.

XML Signature in SAML: Enveloped signature is used in SAML assertion
[6]. The SAML assertion or its parent element is used as a reference to the
signature element and the signed element is the parent element of the Signature.
In the SOAP framework, SAML assertion is placed in the head of SOAP; in the
REST framework, SAML assertion is placed in the Response element (Fig. 5).

Header

SAML Assertion
ID = legal

Signature

Reference URI =legal

Body

SAML assertion in SOAP framework

Response

SAML Assertion
ID = legal

Signature

Reference URI =legal

SAML assertion in REST framework

Fig. 5. The SAML assertion under SOAP Framework and REST Framework

2.3 JSON Web Signature

The JWT (JSON Web Token) is an Internet standard that defines a method for
securely transferring information between two parties [13]. JWT is used in many
protocols such as OAuth and OpenID-Connect. The JWT payload includes a
series of claims that are used to pass identity messages of authenticated users
between an identity provider and a service provider.

JWS (JSON Web Signature) guarantees the integrity and authenticity of
content by using digital signatures or Message Authentication Codes (MACs)
[11]. JWS specification defines two kinds of serializations. JWS compact seri-
alization is a compact, URL-safe representation intended for space-constrained
environments such as HTTP Authorization headers and URI query parameters
[12]. The structure of JWT with JWS compact serialization shown in Fig. 6.

1. Header: Header contains attributes that related to JWT and parameters used
to generate and verify JWT.

– “alg”: This parameter indicates the algorithm used to generate signatures
or MACs. JWS support Message Authentications Code with symmetric
key and digital signature with asymmetric key. This parameter is required
in JWS Header.

On the Verification of Signed Messages 423

Header
{

alg :
:

}

.

Payload

{
claims
}

.

Signature

{
Signature value
}

Fig. 6. The structure of JSON Web Token with JSON Web Signature

– “jwk”: This optional parameter is the public key used to verify JWT.
JWT specification also defines some optional parameters in JWT Header that
not be mentioned in this discussion.

2. Payload: Payload contains a series of claims that used to verify JWT. The
data that the issuer wants to transmit is also stored in claims.

3. Signature: Signature contains the Base64URL encoded signature value. The
signed message is Base64 URL encoded Header and Payload.

Header, payload, signature, use “.” as the delimiter, and use Base64URL for
encoding.

2.4 Validation of Digital Certificate

In Public Key Infrastructure (PKI), a digital certificate is issued and signed by
an entity (Certificate Authority, CA) trusted by both parties in communication.
A certificate contains subject identity information, the information about public
key and the digital signature. The issuance of certificates can be multi-layered.
The uppermost CA acts as the root CA and uses its own private key to issue
certificates for lower-level CAs. The lowest-level CA uses the private key to issue
certificates for users. The intermediate-level CAs in this process are referred to
as the subordinate CA. The root CA has a self-signed certificate called “root
CA certificate”, which contains the root CA’s public key, identity information
and the signature calculated using the root CA’s private key.

The root CA certificate, intermediate CA certificates, and user certificate
together form a certificate chain. When using a certificate, the receiver will verify
the certificate and the certificate chain. The verification process of the certificate
chain is as follows:

1. Obtain the certificate chain and verify each level of certificates in the certifi-
cate chain to ensure the integrity and validity of each certificate.

2. Securely obtain the root CA self-signed certificate which is generally preset
by the manufacturer into the browser or operating system.

3. Verify the root CA certificate in the certificate chain. Since it is a self-signed
certificate, verify its validity based on the obtained secure root CA certificate.

The digital certificate supports the use of OID to identify the signature algo-
rithm used and the corresponding algorithm public parameters [5]. In the certifi-
cate, subjectPublicKeyInfo parameter contains the algorithm public parame-
ters corresponding to the signature algorithm. Parameters can be identified by
OIDs (such as the OID of ECDSA-P384 parameters is 1.3.132.0.34). In addition,
parameters can also be displayed in subjectPublicKeyInfo.

424 B. Xu et al.

Elliptic Curve Digital Signature Algorithm (ECDSA). The Elliptic
Curve Digital Signature Algorithm (ECDSA) is a kind of digital signature algo-
rithm accepted in 2000 as NIST standards [9].

ECDSA requires that the private/public key pairs used for digital signa-
ture generation and verification be generated with respect to a particular set of
domain parameters. Domain parameters may be common to a group of users
and may be public.

The domain parameters are (q, FR, a, b,G, n, h): q is the field size; FR is
an indication of the basis used; a and b are two field elements that define the
equation of the curve; G is a base point of prime order on the curve; n is the
order of the point G; h is the cofactor. The signer’s private key is x,and the
public key P = [x]G. The signed message is m and the signature is the pair
(r, s).

The ECDSA signature generation algorithm is shown as follows:

1. Calculate e = Hash(m).
2. Let z be the leftmost bits of e.
3. Select a random integer k from [1, n − 1].
4. Calculate point (x1, y1) = kG.
5. Calculate r = x1 mod n. If r = 0, select a new random integer k.
6. Calculate s = k−1(z + rdA) mod n. If s = 0, select a new random integer k.
7. The signature is the pair (r, s).

The ECDSA signature verification algorithm is shown as follows:

1. The receiver have the public key P , and verify P is valid curve point.
2. Verify that r and s are integers in [1, n − 1].
3. Calculate e = Hash(m).
4. Let z be the leftmost bits of e.
5. Calculate u1 = zs−1 mod n and u2 = rs−1 mod n.
6. Calculate the curve point (x1, y1) = u1G + u2P .
7. The signature is valid if r ≡ x1 mod n.

2.5 Digital Signature in TLS Protocol

TLS (Transport Layer Security) protocol provides privacy and data integrity
between two communicating applications [7]. TLS protocol is composed of two
layers: The TLS Record Protocol and the TLS Handshake Protocol. The TLS
Record Protocol is used for encapsulation of higher-level protocols. The TLS
handshake protocol specifies the session negotiation process. The TLS Hand-
shake protocol is shown as Fig. 7:

Hello messages are used to initialize a TLS connection, exchange encryption,
hashing, compression algorithms, and random numbers used in subsequent con-
nections, as well as information about the session. After sending ServerHello
message to the client, the server sends its certificate in ServerCertificate mes-
sage. If the ServerCertificate message does not contain enough data to allow
the client to exchange a premaster secret such as use DHE and ECDHE as

On the Verification of Signed Messages 425

Client Server

ClientHello

ServerHello

Certificate

ServerKeyExchange

ServerHelloDone

ClientKeyExchange

Finished

Finished

Fig. 7. An overview of TLS handshake.

the key agreement algorithm. The server sends ServerKeyExchange message
to exchange the parameters. The ServerKeyExchange message is signed using
the public key in Server Certificate.

When the client receives the messages from the server, the client first verifies
the server certificate, then uses the public key to verify the ServerKeyExchange
message and get the key agreement protocol message.

The client also generates the Key agreement protocol parameters. The
parameters are encapsulated in ClientKeyExchange message and sent to the
server. Then the client and server send Finished message and calculate the
premasterkey.

Diffie-Hellman Key Exchange. Diffie-Hellman key exchange is a method of
securely exchanging cryptographic keys over a public channel. DHE used in TLS
protocol is a variety of Diffie-Hellman key exchange. To provide forward secrecy,
DHE generate new key pairs for each session.

We use Alice and Bob to denote the two parties of communication. The
domain parameters are (g, p) that have been agreed upon. The process of DH
key exchange is as follows:

1. Alice generates a random a, and calculates A = ga mod p.
2. Alice sends A to Bob.
3. Bob generates a random b, and calculates B = gb mod p.
4. Bob sends B to Alice.
5. Alice calculates k = Ba mod p and Bob calculates k = Ab mod p, k is the

secret key.

In TLS protocol, the domain parameters are sent to the receiver with A and B.

426 B. Xu et al.

Elliptic-Curve Diffie-Hellman Key Exchange. ECDH key agreement pro-
tocol is a variant of the DH protocol using elliptic-curve cryptography. ECDHE is
a variant of ECDH using ephemeral key to provide forward secrecy. The domain
parameters in ECDH are (p, a, b,G, n, h). In TLS protocol, the ECDH domain
parameters are sent to the receiver with A and B.

3 Different Ways to Forge Successfully-Verified Messages

As mentioned in Sect. 2, on receiving a signed message, the receiver processes it
as follows:

1. According to the adopted signature algorithm, find the sender’s public key
(or sometimes certificate);

2. Verify whether the signature matches the message or not, using the public
key;

3. Parse the verified message into application-layer instructions.

Provided the signature algorithm is not broken, an adversary does not have
attack opportunities in Step 2; that is, when the four inputs (i.e., the algo-
rithm identifier, the public key, the message, and the signature) are correctly
determined, the verification outputs correct results always. On the other hand,
attacks could be launched in other steps by exploiting the algorithm identifier,
the public key, the application-layer format, etc.

Next, we present different ways to forge successfully-verified messages.
Firstly, the attackers might modify the algorithm identifier, so that they can
generate a valid signature or the receiver does not verify the signature [1,3,4].
Alternative, the attackers might exploit the vulnerable steps of finding public
keys, to deceive the receiver to use a manipulated public key [2,17]. Then, the
attackers would be able to generate a valid signature corresponding to this public
key, and the verification succeeds. Once more, the attackers might remove the
signature in the message or delete some parameter in the signature element to
mislead the receiver skip signature verification in Step 2 but accept the modified
message [18,20]. Finally, the attackers might exploit vulnerabilities of the mes-
sage parsing process, to inject some message parts which are parsed in Step 3
but not verified in Step 2, or to mislead the receiver to parse the whole message
into different application-layer instructions.

3.1 Modified Algorithm Identifiers

As mentioned above, the receiver first finds the public key according to the
signature algorithm (Step 1). If the attacker modifies the algorithm identifier, it
is possible to mislead the receiver to process the signed message incorrectly, such
as performing other cryptographic operations to verify the message, or skip the
signature verification process.

In the implementation of some JWT libraries, the attacker can modify the
algorithm identifier in the JWT Header to make the victim use the wrong cryp-
tographic algorithm when verifying the JWT, or not to verify the signature.

On the Verification of Signed Messages 427

Because some JWT libraries have vulnerabilities in their implementation, the
victims that call these libraries for JWT verification will accept the forged JWT.

The verification API of some JWT libraries is as follows:

JWT.decode (string token, string verficationkey)

When the receiver calls the vulnerable JWT library to verify the JWT, it
uses the decode function to decode and verify the JWT. The token parameter
represents JWT, and the verificationkey parameter represents the key required
for JWT verification. The verification API does not distinguish between the sym-
metric key used by MACs and the asymmetric key used by signature algorithms
and does not have a parameter used to identity the algorithm corresponding
to the key. Therefore, after receiving the token and verificationkey, the JWT
library will parse the verificationkey string according to the “alg” parameter in
JWT header. If the signature algorithm is the RSA algorithm, the JWT library
will parse the verificationkey string into RSA public key to verify the signature.
If the algorithm is the HMAC algorithm, the JWT library will directly use this
string as a symmetric key to verify the MAC.

After obtaining the public key of the victim’s program, the attacker can
modify the algorithm identifier in “alg” parameter to make the JWT library
incorrectly use the public key passed by the victim program [14], the forged
JWT is shown as Fig. 8.

Header
{

alg : HS256
:

}

.

Payload

{
claims
}

.

Signature

{
Signature value
}

Signature value = algpk (Header + . + Payload)
pk = the RSA public key, use the public key as symmetric key.
alg = HS256

Fig. 8. A simplified example of a modified JWT.

In the implementation of jwt.decode function in the JWT-simple (version
0.3.0) [1], there is no mandatory use of the “algorithm” parameter. If the victim
wishes to receive a JWT with RSA signature, but the attacker uses the RSA
public key as the MACs symmetric key to create the MAC and modifies the“alg”
parameter in JWT Header. Then the attacker sends the JWT with MAC to the
victim. After receiving the JWT, the victim will use the RSA public key as
the HMAC algorithm symmetric key to verify the JWT and accept the JWT
modified by the attacker.

Another example is that the attacker uses the “none” algorithm to make the
receiver bypass the signature verification process. JWT specification supports
“none” algorithm that is used to sign the token. When using “none” algorithm,

428 B. Xu et al.

JWT signature must be null and the receiver will not verify the signature when
verifying the token. JWT specification points out that the JWS using “none”
algorithm is called Unsecured JWS. The “none” algorithm must not be sup-
ported by default unless the application specified that it is acceptable for Unse-
cured JWS. However, some JWT implementations incorrectly supports the use
of the “none” algorithm and are vulnerable to attacks.

The attacker intercepts a JWT and modifies the JWT by removing the JWT
signature and change the signature algorithm to “none” algorithm. The victim
will accept the forged JWT if the “none” algorithm is supported by default.
Prime-jwt library (version prior to commit abb0d0479) is vulnerable to this
attack [3]. The Xmidt cjwt library (version 1.0.1) processes the JWT signed
with an unsupported algorithm as JWT using “none” algorithm [4]. For this
vulnerability, the attacker can forge the JWT by changing the algorithm to an
unsupported algorithm. In this case, the forged JWT can be accepted even if
the “none” algorithm is disabled.

3.2 Fake or Manipulated Public Keys

The security of digital signature algorithms depends on the security of the pri-
vate key. If the attacker obtains the private key, the attacker can forge any
message. It is difficult to obtain the private key directly, but the attacker can
forge or manipulate the public key used by the victim and use the private key
corresponding to the fake public key to sign the message. This type of attack
misleads the receiver to use the wrong public key to verify the signature in the
process of finding public key (Step 1).

For example, the JWT standard [13] specifies that the public key used to
verify the signature can be embedded in JWT Header. JWT with embedded
key is suitable for special application scenarios, and JWT must be transmitted
in a trusted channel. Since the developers of JWT libraries are not aware of
the possible security problems of the embedded key, some JWT libraries do not
restrict the use of the “jwk” parameter. If a JWT containing an embedded key
is received, the JWT libraries trust the embedded key by default and use it to
verify the JWT. The attacker modifies with the intercepted JWT, generates a
new key pair, stores the public key in the “jwk” parameter in the JWT header,
and then uses the private key to generate the signature. For the vulnerable JWT
libraries, after receiving the modified JWT, it uses the embedded key to verify
the JWT, and then it will accept the JWT modified by the attacker. This attack
can be implemented in Cisco node-jose library (version before 0.11.0) [2].

In Windows operating system (Windows 10 version 1607/1709/1803/1903,
Windows server 2016, Windows server 2019), there is an elliptic curve crypto-
graphic digital certificate validation vulnerability [17]. The attacker can use this
vulnerability to manipulate the public key used to verify the certificate and forge
digital certificates.

A list of trusted root CA certificates is saved in the Windows operating
system. When verifying the certificate chain, it first verifies the CA signature
of all levels of certificates is correct, and then compare the root CA certificate

On the Verification of Signed Messages 429

with the certificates in the list of trusted root CA. If the root CA certificate is
included in the list, then the certificate chain is considered to be trusted. The
vulnerability appears in the comparison process between the root CA certificate
and the corresponding certificate in the trusted certificate list. The Windows
operating system judges whether the certificate is trusted by comparing the
information in the certificate. When verifying the parameters related to the
public key, only the public key is verified and the domain parameters are not
verified, even if the domain parameters are present in the certificate. The attacker
chooses a trusted root CA certificate whose the public key is p and the base point
is G. After that the attacker chooses a random x, and calculates p = [x]G′. Then
the attacker forges a self-signed root CA certificate that has the same public key
p and different base point G′.

The Windows operating system considers the fake self-signed CA certificate
as the trusted root CA certificate. In addition, another main factor for the success
of the attack is that when verifying the CA digital signature, the Windows
operating system uses the public key and the parameters in the self-signed root
CA certificate to verify the signature. At this time, the public key is P , the base
point is G′, and the attacker holds the private key x, so the attacker can use the
private key to sign any certificate, which is considered by the operating system
to be issued by a trusted root CA Certificate.

3.3 Unverified-but-Accepted Messages

This kind of attack is launched based on modified messages. The attacker
removes the signature value or deletes some parameter in the signature element,
and then sends the forged message or file to the victim. This attack targets
the second step (Step 2) of signed message processing. The attacker realizes the
attack by manipulating inputs in the signature verification process.

If the signature value is removed or the signature element is modified, the
verifier cannot obtain the correct inputs (signature and signed message) during
the signature verification process. In implement of a semantically-secure signa-
ture algorithm, exception or error is thrown when verifying the signature of a
modified message without signature value or signature element. However, due to
the vulnerability in the implementation of signature verification, the modified
message is accepted as the correct verified message. This kind of vulnerabilities
appears in many applications and libraries. PDF signature and XML signature
can be attacked in this way.

Attack XML Signature in SAML. Signature Exclusion Attack [20] relies on
the logical vulnerability in the implementation of XML signature verification in
SAML frameworks. It is simple to implement Signature Exclusion Attack. The
attacker only needs to remove the signature element in the signed SAML asser-
tion message. Some SAML frameworks with logic vulnerabilities will incorrectly
accept modified signature messages. In JOSSO and the Java-based Eduserv
framework (version before 2012), if the signature exists in the SAML asser-
tion they will validate it. However, if the attacker removes the signature, both

430 B. Xu et al.

of them skip the validation step and accept the message without throwing any
exception.

Attack PDF Signature. Universal Signature Forgery [18] against PDF sig-
natures is a variant of Signature Exclusion Attack. Attackers’ goal is to modify
the PDF file while the PDF viewers still show the signature is correctly verified.
Directly removed the references to the signature in PDF file cannot successfully
implement the attack. Therefore, the attacker chooses to make the PDF viewers
skip the signature verification by modifying the information in the signature ele-
ment. The /ByteRange entry which defines the signed content in the file. The
attacker modifies the PDF file arbitrarily by removing the /ByteRange entry
or replacing its value to null. When the victim PDF viewer verify the signature,
the viewer cannot access the signed message through /ByteRange entry. In this
case, the vulnerable PDF viewer default signature verification process has been
completed without throwing an exception, and accepts and displays the modi-
fied PDF file. Adobe Acrobat Reader DC (version 2018.011), Adobe Reader XI
(version 11.0.10) and PDF Editor 6 Pro (version 6.4.2/6.6.2) are vulnerable to
this attack.

3.4 Parsed-but-not-Verified Message Parts

After receiving the signed message, the receiver verifies the signature (Step 2) and
parsed the verified message into the application-layer instructions (Step 3). The
signature verification process (Step 2) and the message parsing process (Step 3)
are usually two separate modules. In some complex signature format messages
such as signed PDF files and signed SAML assertions, the data processed by
the signature verification module and the message processing module may be
different. Due to the vulnerability in some implementation of the signature ver-
ification module, some parts of the message are parsed but not verified. Thus,
the attacker can use the modified message to bypass the signature verification
process to achieve the attack. Compared with above attacks, the signature has
been correctly verified by the receiver in this attack.

XML Signature Wrapping (XSW) attack is first proposed by McIntosh and
Austel in 2005 [16]. It described the process that the attacker inserting a mali-
cious object into an XML signature document to attack the XML document. In
the following research, variants of XSW attacks were used in various software
attacks.

Signature Bypass in SAML. SAML standard supports complex SAML asser-
tion formats and structures. The XML signature specified in the SAML standard
is also complex. Therefore, the attacker can combine different SAML assertion
structures and XML signature structures to forge SAML assertion messages such
as inject malicious assertions in front of the original assertion or embed the orig-
inal assertion in the malicious assertion. This kind of attack is called Refined

On the Verification of Signed Messages 431

Signature Wrapping [20]. Because of the ID-based reference used in signature cre-
ation and validation, even if the position of the assertion changes, the original
assertion can still be found and verified according to the ID in reference element
in some SAML libraries. In this case, the modified message with injected evil
assertion can still be successfully verified. The signature verification processing
does not process the evil assertion. However, when parsing SAML assertions
into the application-layer instructions, the message will be processed according
to application logic. The malicious assertion inserted by the attacker is processed
and accepted by the receiver. Attacker attacks SAML Framework or Providers by
constructing different malicious messages. Many of them have the above vulner-
abilities, such as IBM XS40, Higgins (version 1.x) which support Type1 SAML
messages, and Guanxi, JOSSO which support Type2 SAML messages.

Signature Bypass in PDF. There are also vulnerabilities in PDF signature
that allow the attacker to perform Signature Wrapping Attacks [18]. When cre-
ating a PDF signature, the content in /Contents entry will not be signed. The
attacker can inject malicious content into /Contents entry to implement the
attack. A mount of PDF viewers can be attacked in this way such as eXpert
PDF 12 Ultimate (version12.0.20), Expert PDF Reader (version 9.0.180), Foxit
Reader (version 9.1.0/9.2.0), etc [18]. By forging /ByteRange entry, the attacker
control signature verification processing use the original data for signature veri-
fication. And by forging Xref Table, the content parsing processing can index
the malicious objects injected by the attacker. The content processed by signa-
ture verification process and message parsing process are different. The malicious
content injected by the attacker are accepted and displayed.

Such attacks can also be achieved by taking advantage of the incremental
update feature of PDF files. The attacker uses incremental update to add new
malicious content in the signed PDF file [18]. The /ByteRange entry in the
PDF signature file does not change. Therefore, the victim PDF viewer verifies
the original PDF file when verifying the signature, and processes all contents
in the file including malicious contents injected by the attacker. Since the secu-
rity issues brought by incremental updates have been realized by many PDF
viewer developers, the attacker has to bypass the defense mechanisms of PDF
viewers through some variants based on the attack. For example, by deleting the
Xref table and Trailer in the incremental update content or adding the signa-
ture content to the new body, the PDF viewers are misled that the signed PDF
file does not contain new incremental updating parts. When the PDF viewer
processes the verified PDF file, it will think that the PDF file has no additional
content, and use the original content for verification. However, due to the error-
tolerant of the PDF viewer, when processing the contents of the PDF file, the
PDF viewer will complete the missing structure in different ways and display
the modified file without showing a warning. Attacker use this method attack
Foxit Reader (version 9.1.0/9.2.0), PDF Editor 6 Pro (version 6.4.2/6.6.2), etc
[18].

432 B. Xu et al.

3.5 Misleading Message Parsing

Cross-protocol attacks [15,21] mislead the victims in the parse of signed messages
after the successful verification. The verified message is generated and correctly
signed by the signer in a specific context, and not modified by the attacker;
however, it is sent in another context so that this message is parsed into differ-
ent instructions. That is, for example, if a correctly-signed timestamp could be
parsed as signed PDF documents, the innocent timestamp signing server would
be exploited to sign malicious documents.

In the key exchange of TLS, the TLS server and client may choose DH
or ECDH to finish the key negotiation. After negotiating the method of key
exchange through unprotected messages with a client, the TLS server sends a
signed DH or ECDH key exchange message along with its X.509 certificate. The
client verifies the received certificate and the signed message, and sends its own
key exchange message. Then, the server computes the session keys based on the
received key exchange message and its own ephemeral private key, so does the
client. These symmetric session keys are used for confidentiality and integrity of
subsequent messages.

The cross-protocol attacker [15] impersonates the TLS server, by replaying
a signed ECDH key exchange message as a DH one to the victim client. The
attacker acts as a client to establishes TLS sessions with the impersonated TLS
server by ECDH key exchange, while as a TLS server to establishes TLS sessions
with the victim client by DH key exchange. Note that the ECDH key exchange
message is replayed without any modification, so the verification by the victim
client succeeds. As analyzed in [15], when secp384r1 is used and Explicit prime
curve is supported, the probability is about 1.9 · 10−8–2.0 · 10−8 that parsed as
a valid DH key exchange message. Further, the probability is about 2−40 that it
is valid and the ephemeral DH private key can be solved by the attacker easily.

4 The Lessons Learned from Known Attacks

We summarize the lessons learned from the above attacks as follows. These
lessons provide some guidelines for the secure implementation of cryptographic
protocols.

Modified Algorithm Identifiers. Either public-key cryptosystems or sym-
metric cryptosystems are adopted to provide data integrity and data origin
authentication. When both digital signature algorithms and HMAC algorithms
are supported in the implementation, the system must carefully configure the
corresponding public and symmetric keys. Then, after recognizing the algorithm
identifier, it finds the public key or the symmetric key correctly, to prevent the
use of public keys as secret ones to verify HMACs.

In addition, when implementing cryptographic protocols in the real-world
systems, we must support only semantically-secure algorithms. Insecure algo-
rithms such as MD5 and RSA-512, shall be abandoned.

On the Verification of Signed Messages 433

Fake or Manipulated Public Keys. Before verifying signed messages, the
receivers need to find the correct public key. The public key shall come from
some trusted storage of the system, or if the public key is obtained through
insecure channels, typically as an X.509 certificate, it must be checked before
used to verify signed messages.

Public parameters of the digital signature algorithm, shall be considered as
parts of the public key; for example, the domain parameters of ECDSA and the
prime modulus of Diffie-Hellman key exchange. However, such parameters may
be neglected in the checking of public keys for some reasons. The neglecting of
checking such public parameters may result in fake public keys.

Unverified-but-Accepted Messages. In the implementation of cryptographic
protocols, the verification of signed messages is necessary but not an optional
step. If multiple signatures are included, all signatures must be verified.

When signatures are absent in the messages, the verification shall fail explic-
itly. Unsigned messages are usually accepted for debugging and testing, but when
the software is released, such messages must be rejected directly.

Parsed-but-not-Verified Message Parts. This vulnerability exists especially
for messages with complex formats. In general, in order to ensure fault tolerance,
the system is usually designed and implemented to parses not-well-formed mes-
sages, and some exceptions and errors are ignored in the message parsing process.
However, this feature of fault tolerance is exploited to inject evil contents into
a signed message, so that the verification succeeds because the inputs of the
verification are correct (i.e., the injected parts are not input to the verification)
but the injected evil contents are still parsed.

Therefore, when the system is processing a message requiring data integrity
and data origin authentication, we suggest an additional step of strict format
checking to detect such attacks. This additional step harms the fault tolerance
of message parsing but improves the security of data integrity.

Misleading Message Parsing. In order to prevent the cross-protocol attackers
from misleading the message parsing, the message type needs to be included in
the signed message, to properly instruct the message parsing. There is no such a
message type identifier in the key exchange messages of TLS. On the other hand,
for example, JWT best current practices [19] recommend to explicitly include
the “typ” parameter in a JWT, to eliminate the cross-JWT confusion.

5 Conclusions

Signed messages are widely used in network security. However, the real-world
systems, even when the sender’s private key is protected well, a message forged or
modified by some attackers, might be still successfully verified by receivers. This
paper surveys the implementation vulnerabilities in the verification of signed
message, attempting to provide some guidelines for the secure implementation
of cryptographic protocols.

434 B. Xu et al.

References

1. Common vulnerabilities and exposures (cve): cve-2016-10555. https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2016-10555 (2016)

2. Common vulnerabilities and exposures (cve): cve-2018-0114. https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2018-0114 (2018)

3. Common vulnerabilities and exposures (cve): cve-2018-1000531. https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2018-1000531 (2018)

4. Common vulnerabilities and exposures (cve): cve-2019-19324. https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2019-19324 (2019)

5. Bassham, L., Polk, W.T., Housley, R.: Algorithms and identifiers for the internet
X.509 public key infrastructure certificate and certificate revocation list (CRL)
profile. RFC 3279, pp. 1–27 (2002)

6. Cantor, S., Moreh, J., Philpott, R., Maler, E.: Metadata for the oasis security
assertion markup language (SAML) v2. 0 (2005)

7. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2.
RFC 5246, pp. 1–104 (2008)

8. Eastlake, D., Reagle, J., Solo, D., Hirsch, F., Roessler, T.: Xml-signature syntax
and processing. In: W3C Recommendation, p. 12 (2002)

9. Gallagher, P.: Digital Signature Standard (DSS), vol. FIPS 186. Federal Informa-
tion Processing Standards Publications (2013)

10. Adobe Systems Incorporated: Pdf reference: Version, vol. 1, p. 7 (2006)
11. Jones, M.B.: JSON web algorithms (JWA). RFC 7518, 1–69 (2015)
12. Jones, M.B., Bradley, J., Sakimura, N.: JSON web signature (JWS). RFC 7515,

1–59 (2015)
13. Jones, M.B., Bradley, J., Sakimura, N.: JSON web token (JWT). RFC 7519, 1–30

(2015)
14. Maclean, T.: Critical vulnerabilities in JSON web token libraries. https://auth0.

com/blog/critical-vulnerabilities-in-json-web-token-libraries/ (2015)
15. Mavrogiannopoulos, N., Vercauteren, F., Velichkov, V., Preneel, B.: A cross-

protocol attack on the TLS protocol. In: The ACM Conference on Computer and
Communications Security, pp. 62–72 (2012)

16. Mcintosh, M., Austel, P.: Xml signature element wrapping attacks and counter-
measures. In: ACM Workshop on Secure Web Services (2005)

17. Microsoft: Cve-2020-0601—windows cryptoapi spoofing vulnerability. https://
portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-0601
(2020)

18. Mladenov, V., Mainka, C., Zu Selhausen, K.M., Grothe, M., Schwenk, J.: 1 trillion
dollar refund: how to spoof PDF signatures. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1–14 (2019)

19. Sheffer, Y., Hardt, D., Jones, M.B.: JSON web token best current practices. RFC
8725, 1–13 (2020)

20. Somorovsky, J., Mayer, A., Schwenk, J., Kampmann, M., Jensen, M.: On breaking
SAML: be whoever you want to be. In: Proceedings of the 21th USENIX Security
Symposium, pp. 397–412 (2012)

21. Wagner, D., Schneier, B.: Analysis of the SSL 3.0 protocol (1999)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10555
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10555
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-0114
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-0114
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1000531
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1000531
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19324
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19324
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-0601
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-0601

Applications and Developments of the
Lattice Attack in Side Channel Attacks

Ziqiang Ma1,3, Bingyu Li2,3, Quanwei Cai3(B), and Jun Yang1

1 School of Information Engineering, Ningxia University, Yinchuan, China
{maziqiang,Dragon}@nxu.edu.cn

2 School of Cyber Science and Technology, Beihang University, Beijing, China
libingyu@buaa.edu.cn

3 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

caiquanwei@iie.ac.cn

Abstract. Partial key exposure attacks have become a growing threat
to the cryptographic system, as the side channel attacks can usually
obtain the partial information easily, which makes the partial key expo-
sure attacks much more practical. The lattice attack is the most common
method to process the partial key information to recover the secret key.
In this paper, we systematically analyse the developments of the lattice
attacks and its use in side channel attacks. First, we divide the lattice
attack into three categories based on the lattice construction. Then we
investigate the lattice attacks on each algorithms and the way different
side channel data is processed by. Finally, we summary the development
trend of the lattice attack in side channel attacks.

Keywords: Lattice attack · Side channel attack · HNP · EHNP ·
Cryptographic algorithm · (EC)DSA · RSA

1 Introduction

The security of the cryptosystem relies on the security of the secret key. While
the security of the secret key does not only relies on the computational com-
plexity of the algorithm itself, i.e. the secret key cannot be retrieved through
analysing the plaintext and the ciphertext with the algorithm. Also it needs to
guarantee the secret key not being leaked from the system through any methods
during the cryptographic computation. However, in real-world applications, the
cryptosystem faces a variety of attacks so that the secret key is easy to leak,
such as the hardware vulnerability attack [41,44], the software memory leak
attack [37] and the side channel attack [36,45,70,71] and so on.

This work was supported by the Open Subject of the State Key Laboratory of Infor-
mation Security, Institute of Information Engineering, Chinese Academy of Sciences
(No. 2020-MS-08 and No. 2020-ZD-05).

c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 435–452, 2020.
https://doi.org/10.1007/978-3-030-61638-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_24&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_24

436 Z. Ma et al.

Among lots of attack threats, side channel attacks take advantage of the
various information leaked during the cryptographic computing to recover the
secret key. The leaked information are obtained through the side channels such as
timing [1,2,13,21], cache activities [1,71], electromagnetic fields [32], power [14,
57], ground electric potential [34] and acoustic emanations [35], etc. Compared
with attacks by exploiting hardware or software vulnerabilities, side channel
attacks can be launched even no software and hardware vulnerabilities exist in
the target system. Moreover, the side channel information is generated along
with the operation of the cryptosystem, which is difficult to eliminate. So the
side channel attack is a serious and long-term threat to the cryptosystem.

From the side channels, the attacker only can obtain partial information
about the key for most algorithm implementations [67]. Then the attacker
requires to obtain a large amount of the partial information, consolidates and
processes them to recover the whole secret key. This approach exploiting the par-
tial information to recover the whole secret key is called the partial key exposure
attack.

In 1998, Boneh presented several partial key exposure attacks on RSA in [19],
requiring the knowledge of the least significant bits (LSBs) of the private expo-
nent or the most significant bits (MSBs). they used Coppersmith’s ideas [25]
to exploit the data to recover the private key. After that, many improve-
ments [16,18,30] are made to better use the partial information and reduce
the constraints to recover the RSA private key. In 1996, Boneh and Venkate-
san [20] proposed this type of attack on the Diffie-Hellman key exchange. They
used the lattice attack to recover the secret key. Then the attack is extended to
the DSA [53] and ECDSA [54]. Moreover, the partial information are not limited
to LSB or MSB. More type of partial information from the side channels can be
used to recover the DSA and ECDSA private keys, such as the position of the
non-zero bits [31], length of the obtained chain [67], etc. Also the partial data
processing methods are becoming more efficient.

With the continuous development and progress of the partial key exposure
attacks, and their widely application to various cryptographic algorithms, the
lattice attack technique has become the most effective method to recover the
private key with the partial information. The lattice attack uses the partial key
information and combines with the algorithm itself to construct a problem that
can be solved by the lattice reduction algorithm, and then recovers the private
key of the algorithm by solving the problem. The Hidden Number Problem [20]
is a typical problem solved by the lattice reduction algorithm. This problem is
used to attack various algorithms such as DSA [39], ECDSA [12,23] with differ-
ent partial information. Another way is the Extended Hidden Number Problem
which is a variant of the HNP problem. The EHNP problem [38] is proposed in
2007 and is used to construct more efficient lattice attacks [31]. Also, there are
some other ways that do not used the HNP or EHNP problem. They directly
use the obtained side channel information to construct the lattice and recover
the private key with the lattice reduction algorithm.

Developments of the Lattice Attack in Side Channel Attacks 437

Up to now, there is a little number of summary of lattice attack. In 2018,
Anjali kumari [42] summarized the lattice attack methods of the DSA algorithm.
Lu [48] summarized the progress of the Coppersmith’s lattice-based method.
However, no survey researches are focused on the lattice attack exploited in side
channel attacks.

In this paper, we focus on the application and development of the lattice
attack in side channel attacks. We study how the lattice attack method uses
the side channel information to recover the complete algorithm private key, and
the development of the lattice attack technology in processing the side channel
information, so as to explore the future development and application direction
of the lattice attacks.

First, we show the technological developments of the lattice attack over last
20 years. We illustrate the development of each case by dividing the lattice attack
into three categories based on the construction methods of the lattice. Second,
we investigate different lattice attacks on different algorithms. Because differ-
ent algorithms have different structures, different lattices are constructed for
recovering the private key. We demonstrate the improvement of the existing
lattice construction method for different algorithms. Third, we study how to
use the lattice attacks to process the obtained information from different side
channels. Different forms of information need different methods to process, so
attackers need to choose appropriate lattice attacks for different side channels.
Finally, through analyzing the existing lattice attack technologies, we summarize
its future development direction.

In summary, the main contributions of this paper are as follows:

– For the first time, we summarize and analyze the current developments of the
lattice attack technology from three aspects: lattice attack technology itself,
lattice attacks on different algorithms and lattice attacks for different side
channels.

– We analyze the future directions of the lattice attack in side channel attacks.

The rest of this paper is organized as follows. Section 2 presents the prelim-
inaries. Section 3 shows the development of the lattice attack technology itself.
Section 4 provides lattice attacks on different algorithms. Section 5 shows lattice
attacks for different side channels. Section 6 analyzes the future directions of the
lattice attack. And, Sect. 7 draws the conclusion.

2 Preliminaries

In this section, we first present several cryptographic algorithms whose private
key can be recovered using the lattice attacks with partial information, such
as RSA, DSA and ECDSA. And then we introduce several effective side chan-
nel attacks obtaining the information about the private keys, including timing
attack, cache attack, fault attack, power and electronic attacks.

438 Z. Ma et al.

2.1 Cryptographic Algorithms

In this section, we introduce the algorithms whose private key cannot be directly
recovered from side channel information and need the lattice attacks.

RSA. The RSA public key cryptosystem can be briefly described as follows:

– large primes p, q, (generally considered of same bit size, i.e., q < p < 2q);
– let N = pq, φ(N) = (p − 1)(q − 1);
– e, d satisfy that ed = 1 mod φ(N);
– N , e are public keys and the plaintext M ∈ ZN is encrypted as C ≡ Me

(mod N);
– d is the private key and used to decrypt the ciphertext C ∈ ZN as M ≡ Cd

(mod N).

The partial key exposure attack is to compute the private key d from partial
information on d, and the public key (e,N).

DSA. DSA [52] is a digital signature algorithm standard published by American
National Institute of Standards and Technology (NIST). DSA uses the multi-
plicative group in finite fields, and is described as follows: there exists large
primes p and q satisfy that q|p − 1. The multiplicative group on the finite field
Fp has a generator g which order is q. The private key α of DSA is a random num-
ber satisfying 0 < α < q, while the corresponding public key is y = gα mod p.
Given a hash function h, the DSA signature of a message m is computed as
follows:

1. Select a random ephemeral key 0 < k < q.
2. Compute r = (gk mod p) mod q; if r = 0, then go back to the first step.
3. Compute s = k−1(h(m)+r ·α) mod q; if s = 0, then go back to the first step.

The pair (r, s) is the DSA signature of the message m. The modular exponen-
tiation is the target of the attackers because it is vulnerable to the side channel
attacks.

ECDSA. ECDSA [7,40] is the migration of the Digital Signature Algorithm
(DSA) [52] from the multiplicative group of a finite field to the group of points
on an elliptic curve.

Let E be an elliptic curve defined over a finite field Fp where p is prime.
G ∈ E is a fixed point of a large prime order q, that is G is the generator of
the group of points of order q. These curve and point parameters are publicly
known. The private key of ECDSA is an integer α that satisfies 0 < α < q,
and the public key is the point Q = αG. Given a hash function h, the ECDSA
signature of a message m is computed as follows:

1. Select a random ephemeral key 0 < k < q.

Developments of the Lattice Attack in Side Channel Attacks 439

2. Compute the point (x, y) = kG, and let r = x mod q; if r = 0, then go back
to the first step.

3. Compute s = k−1(h(m)+r ·α) mod q; if s = 0, then go back to the first step.

The pair (r, s) is the ECDSA signature of the message m. The scalar mul-
tiplication kG becomes the target of most attackers. The equation in the third
step shows the private key can be computed if k is leaked. Even if only a portion
of k is leaked, the private key can be recovered by lattice attacks.

2.2 Lattice

To solve the HNP problem, we need to use the knowledge of the lattice. Here
we provide a briefly introduce to the lattice. For more detailed references on
lattice we refer to the literature [55]. Consider the Euclidean space R

d and let
B = {b1, b2, ..., br} be a set of linearly independent vectors in R

d. The set of
vectors

L = L(B) = {
r∑

i=1

nibi | ni ∈ Z}

is the lattice generated by B. The set B is called a basis of L, and L is spanned
by B. The number r representing the number of vectors in B is the dimension
or rank of L(B). If r = d, the lattice L(B) is a full-dimension lattice.

Hard Lattice Problems. Since the lattice is a set of vectors, it has a shortest
non-zero vector, and the norm this vector is known as the first minima and
denoted by λ1(L). That is, λ1(L) = min{‖u‖ | 0 �= u ∈ L}, where ‖u‖ denotes
the Euclidean norm of the vector u. The problem of finding a non-zero vector
v ∈ L with minimal norm is called the shortest vector problem (SVP). While for
a lattice L and an arbitrary vector v ∈ R

d, the problem of finding a lattice vector
u ∈ L of minimum distance from v is called the closest vector problem (CVP)
similarly. In other words, finding a vector u satisfied ‖u‖ = min{‖u−v‖ | u ∈ L}.

2.3 Side Channel Attacks

Side channel attacks can exploit any information leaked during the cryptographic
calculation, including timing [1,2,21,66], cache activities [1,71], electromagnetic
fields [32], power [14,57] and so on. We briefly introduce the common used side
channels to obtain the partial information about the private keys.

Power Attacks and Electromagnetic Attack. Side-channel power attacks
have been extensively studied since their presentation by Kocher et al. Several
techniques have been proposed to extract secret material analyzing the power
consumption trace of a cryptographic device.

Simple power analysis (SPA) is one of them. SPA attacks exploit the exis-
tence of distinguishable power consumption patterns that reveal the sequence of
operations or data processed by the target algorithm. Differential power analy-
sis (DPA) is a statistical method to analyze the power consumption to identify

440 Z. Ma et al.

data-dependent correlations. This approach takes multiple traces of two sets of
data, then computes the difference of the average of these traces. Given enough
traces, even tiny correlations can be seen, regardless of how much noise is in the
system, since the noise will effectively cancel out during the averaging.

The electromagnetic attack is a closely related to the power attack, where the
measured quantity is replaced with the time-resolved intensity of electromagnetic
emission [32]. The electromagnetic attack measurements have to be performed
close to the surface of the chip, and require significantly more effort, as compared
to power analysis measurements.

Cache Attacks. Cache side-channel attacks, firstly proposed in 2002 [58], take
advantage of the characteristic of the cache activity that accessing data from
caches is much faster than from memory. Attackers exploit these time variations
to deduce the operations of the target process and then infer the key information.
Typical cache attacks contains the Evict+Time, Flush+Reload, Prime+Probe,
Flush+Flush and Prime+Abort etc.

We use Flush+Flush [36] as an example. The Flush+Flush employs a spy
process to monitor whether the specific memory lines have been accessed or
not by the victim process. So this attack needs shared memory between the
spy and the victim processes. It relies on the execution time of the clflush
instruction, which is affected by whether the to-be-flushed data are cached or
not. The execution time of clflush is shorter if the data are not cached and
longer if the data are cached. So according to this time, the attackers determine
the victim’s cache activities. The execution of such an attack consists of three
phases:

– Flush: The attacker uses the clflush instruction to flush the desired memory
lines out from the caches.

– Wait: The attacker waits a moment while the victim is running.
– Flush: This phase detects whether the victim accesses the memory lines

flushed in the first phase during the waiting time.

Fault Attacks. Fault injection attack was first introduced in 1997 by Boneh,
Demillo and Lipton [17]. This type of attack is a serious threat for implementing
cryptographic algorithms in practice.

Some of the most popular fault injection techniques include variations in
supply voltage, clock frequency, temperature or the use of white light, X-ray
and ion beams. The objectives of all these techniques is generally the same:
corrupt the chip’s behaviour.

To attack the cryptographic algorithms, the attacker induces some bytes
error on the private key using the fault injection techniques and measure the
output difference from the correct case when executing the algorithms. Then
the attacker obtains some bits information about the private key through the
measured difference. Finally, the attacker can use the partial key exposure tech-
nique to recover the whole private key.

Developments of the Lattice Attack in Side Channel Attacks 441

Timing Attacks. The timing attack is the most common side channel attack
with a long history. But it is rarely used to obtain the partial key information.
Often the timing attack is launched in the remote scenario, because other types
of side channel are hard to exploit.

The remote timing attack measures the total execution time of the algorithm.
By the difference of the execution time, the attackers can extract some bits
information of the private key. Then using the partial key exposure attack to
recover the whole private key.

3 The Improvements of the Lattice Attacks

In this section, we introduce the lattice attack technology and its developments
in detail. We first give the definition of the lattice attack and its attack steps.
Then we divide the lattice attacks into several types, according to the way of
constructing the lattice and the solving methods. For each type of lattice attacks,
we fully analyse its technological development for the past years.

3.1 The Lattice Attack

The lattice attack is first proposed by Dan Boneh [20] in 1996 to attack the
Diffie-Hellman Schemes with the most significant bits of the secret key known.
Then the idea of using lattice to recover the private key is extended to many algo-
rithms such as RSA, DSA, ECDSA and even the lattice-based ciphers. Broadly
speaking, the lattice attack refers to the method of using lattice related theory
to attack cryptographic algorithms. In this paper, the lattice attack specially
refers to the method of using partial key information to recover the complete
key by the lattice reduction algorithm. That is to say, we do not consider the
lattice attacks on the NTRU and other lattice-based ciphers.

Generally, the lattice attack on the partial key information contains three
steps. The first step is the problem transformation. In this step, the attacker
analyzes the calculation formula of the encryption or signature and exploits the
known partial information of the private key to transform the private key recov-
ery problem into a problem that can be solved by a lattice reduction algorithm
such as the HNP and EHNP problem. The second step is constructing the corre-
sponding lattice. This step constructs the lattice with the partial key information
and transforms the problem in the first step into the hard problems in the lat-
tice such as CVP and SVP. The last step is to find the approximate solutions to
the lattice hard problems. In this step the lattice reduction algorithm is used to
solve the lattice hard problems. Then the private key is included in the result.
Sometimes, the first and the second step are combined, that is directly using the
partial key information to construct the lattice and the lattice hard problems.

Based on the type of the problem solving by the lattice reduction algorithm,
we can divide the lattice attack into three categories: the HNP problem, the
EHNP problem and other problems. Next we will elaborate the technology devel-
opment on each type of lattice attacks.

442 Z. Ma et al.

3.2 HNP

The Hidden Number Problem (HNP) is first presented by Boneh and Venkate-
san [20] in 1996. It is used to recover the secret key of Diffie-Hellman key
exchange [20], DSA [39] and ECDSA [54], given some leaked consecutive bits of
the ephemeral key. Given a prime number q and a positive l, and let t1, t2, ..., td
be randomly chosen, which are uniform and independent in Fq. The HNP can be
stated as follows: recovering an unknown number α ∈ Fq such that the known
number pairs (ti, ui) satisfy

vi = |αti − ui|q ≤ q/2l+1, 1 ≤ i ≤ d,

where |·|q denotes the reduction modulo q into range [−q/2, ..., q/2). If |αt−u|q ≤
q/2l+1 is satisfied, the integer u represents the l most significant bits of αt which
is defined as MSBl(αt).

The HNP problem can be solved by the lattice basis reduction algorithm.
The LLL [43] or BKZ [64] algorithm is used to solve the SVP problem, while
Babai [10] algorithm or Enumeration technique is to solve the CVP problem.

Boneh and Venkatesan [20] initially investigated to use the partial infor-
mation of the ephemeral key to construct an HNP problem and recovered the
Diffie-Hellman private key by solving it using the lattice reduction algorithm.
Howgrave-Graham and Smart [39] extended this work to recover the DSA pri-
vate key by constructing an HNP instance from leaked LSBs and MSBs of the
ephemeral key. Their attack is a heuristic approach to verify the availability of
the partial key exposure attacks on DSA. Then Nguyen and Shparlinski [53] gave
the rigorous theoretical proof that knowing the l ≥ 3 LSBs, the l + 1 MSBs or
any 2l consecutive bits of a certain number of ephemeral keys, was enough for
recovering the DSA private key with the HNP problem. Further, they extended
these results to ECDSA [54]. In 2013, Liu and Nguyen [47] provided a prob-
abilistic attack based on enumeration techniques, where managed to find the
secret key if they know 2 bits of 100 ephemeral keys. In 2019, more precisely in
the work [3], the authors improve the upper bound under which it has at most
one solution of the attack [60] by constructing the HNP problem. keys for 206
signatures is known.

The attack provided in [47] first reduces the problem of finding the secret
key, to the hidden number problem (HNP) and then reduces HNP to a variant
of CVP (called Bounded Decoded Distance problem : BDD).

3.3 EHNP

The Extended Hidden Number Problem (EHNP) introduced in [38] is a variant
of the HNP and is stated as follows, which also can be used to recover the
ECDSA private key [27,31]. Let N be a prime number. Given u congruences

βix +
li∑

j=1

ai,jki,j ≡ ci mod N, 1 ≤ i ≤ u ,

Developments of the Lattice Attack in Side Channel Attacks 443

where ki,j and x are unknown variables satisfying 0 ≤ ki,j ≤ 2εi,j and
0 < x < N, βi, ai,j , ci, li and εi,j are all known. The EHNP is to find the unknown
x satisfying the conditions above. Similarly to the HNP, the EHNP can be trans-
formed into a lattice problem and one can recover the secret x by solving a short
vector problem in a given lattice.

EHNP mostly differs from HNP by the nature of the information given as
input. Indeed, the information required to construct an instance of EHNP is
not sequences of consecutive bits, but the positions of the non-zero coefficients
in any representation of some integers. The authors in [38] first use the EHNP
problem to recover the DSA private key. Then in 2016, Fan et al. [31] attacked
the ECDSA and transformed the problem of recovering the secret key to the
extended hidden number problem (EHNP) which was latter solved by the lattice
reduction algorithm. In 2019, De Micheli [27] analyzed the construction of the
lattice and optimized Fan’s work to use less signatures to recover the ECDSA
private key.

3.4 Others

RSA is different from the DSA because its security relies on the complex problem
of large number factoring. Also their computational process are totally different.
Therefore, the lattice construction to launch the partial key exposure attack of
the RSA is different from that of DSA.

In 1996, Coppersmith [25] describes rigorous techniques to find small integer
roots of polynomials in a single variable modulo n. This result can help the
attacker with the knowledge of partial information of a secret to recover the
remaining part by modeling as a univariate modular equation.

In 1998, Boneh, Durfee and Frankel studied how many bits of d need to
be known to factor the RSA modulus N . The constraint was the upper bound
on e, that had been

√
N . In 2000, Boneh and Durfee [18] improved Wiener’s

attack [68] and proposed the lattice based attack for the RSA cryptography.
In 2003, the idea of [19] has been improved by Blömer and May [16] where

the bound on e was increased upto N0.725. In 2005, Ernst et al. [30] use Copper-
smith’s technique and improved the results on known MSBs of d for small pri-
vate exponent d and full size public exponent e. In 2008, Sarkar and Maitra [62]
extended the work of [30] by guessing few bits of one prime. In 2010, Santanu
Sarkar [63], proposed a variant of the idea presented in [30] to make the results
more practical when some portion of Most Significant Bits (MSBs) of d are
exposed and d < N0.6875.

Later researches pay more attention on the vulnerabilities during the actual
execution of RSA, in order to obtain the partial information and then based on
the obtained information to construct appropriate lattice problem.

While, the Coppersmith’s method also can be used to recover the ECDSA
private key. BLAKE et al. [15] in 2002 present a key-recovery attack against the
DSA based on the Coppersmith’s method. While Draziotis et al. [29] in 2016
also investigate the Coppersmith’s method to recover the ECDSA private key.

444 Z. Ma et al.

In addition, some works proposed lattice attacks with special methods. In
2003, Draziotis and Poulakis [28] exploited Lagrange’s algorithm for the com-
putation of a basis of a 2-dimensional lattice formed by two successive minima,
to attack DSA and ECDSA with one or two signed messages given. In 2016, the
attack on DSA described in [60] is based on a system of linear congruences of
a particular form which has at most a unique solution below a certain bound,
which can be computed efficiently.

4 Lattice Attacks on Different Cryptographic Algorithms

In this section, we investigate the lattice attack methods for different crypto-
graphic algorithms. We already know that the lattice attack fall into several
categories. Based that each cryptographic algorithm has its own structure, the
attack methods on each algorithm are not the same. We present the lattice
attacks for each algorithm and their effects.

4.1 RSA

For RSA encryption, because it exploits the complex of the large number fac-
toring, the partial key exposure attacks often use the Coppersmith’s method to
construct the lattice problem to recover the private key.

In 1998, Boneh, Durfee and Frankel presented several partial key exposure
attacks on RSA in [19]. They showed that the constraint was the upper bound
on e, that had been

√
N , and a quarter of the least significant bits of d need

to be known to factor the RSA modulus N . In 2000, Boneh and Durfee [18]
improved Wiener’s attack [68] and proposed the lattice based attack for the
RSA cryptography.

In 2003, the idea of [19] has been improved by Blömer and May [16] where
the bound on e was increased upto N0.725. In 2005, Ernst et al. [30] use Copper-
smith’s technique and improved the results on known MSBs of d for small pri-
vate exponent d and full size public exponent e. In 2008, Sarkar and Maitra [62]
extended the work of [30] by guessing few bits of one prime. While in 2009, the
work by Aono [8] improved the results of [30] when some portion of Least Signif-
icant Bits (LSBs) of d are exposed and d < N0.5. In 2010, Santanu Sarkar [63],
proposed a variant of the idea presented in [30] when some portion of Most
Significant Bits (MSBs) of d are exposed and d < N0.6875.

In 2019, Aldaya et al. [4] used the Coppersmith’s method to process the real
data from the side channel to recover the RSA private key, making the partial
key exposure attack on RSA practically.

4.2 DSA

For DSA signature, attackers often construct the HNP or EHNP problem to
recover the private key. Recall the expression that s = k−1(h(m) + r · α) mod q,
if the attackers knew some bits of the ephemeral key k, they can construct the

Developments of the Lattice Attack in Side Channel Attacks 445

HNP or EHNP problems and then solve them by lattice reduction algorithms.
The private key is included in the results.

In 2001, Howgrave-Graham and Smart [39] gave the first attack on DSA
using lattices. They have shown that if partial information on the ephemeral
keys can be obtained for a certain number of signatures, the private key can be
obtained using Babai’s round-off (nearest point) algorithm. The attackers can
use different partial information of the ephemeral key k to construct the lattice.
The most used information is the LSBs of the ephemeral key to construct the
HNP problem. Because in practise, this information is easy to obtain. Many
works investigate how to use the LSBs to efficiently recover the private key with
less signatures. Correspondingly, the MSBs of the ephemeral key also can be used
to construct the HNP problem. More generally, arbitrarily continuous bits of the
ephemeral can be used. For the EHNP problem, the partial information is some
position information of the bits in the ephemeral key. This discrete information
also is useful to recover the DSA private key.

4.3 ECDSA

For ECDSA signature, it structure is similar to the DSA. So the attack on
ECDSA is also similar to the DSA. The used partial information for the lattice
construction is also included the LSBs, MSBs and other information.

In 2009, Brumley and Hakala [22] recovered the LSBs of ECDSA ephemeral
keys. They recovered a 160-bit ECDSA private key using the attack in [39] with
2, 600 signatures (8K with noise). In 2011, Brumley and Tuveri [23] obtained the
MSBs of the ephemeral keys through the timing attack and recovered the ECDSA
private key over 8, 000 TLS handshakes. In 2014, Benger et al. [12] extended the
technique in [53] to use a different length of leaked LSBs for each signature. They
recovered the secret key of OpenSSL’s ECDSA using about 200 signatures. Then
in 2015, Van de Pol et al. [59] used all of the information leaked in the top half of
the ephemeral keys to construct the HNP instance, allowing them to recover the
secret key after observing only 14 signatures. In 2016, Allan et al. [6] improved
the results in [59] by using a performance-degradation attack to amplify the
side-channel to recover a 256-bit private key only need 6 signatures. Fan et al.
[31] exploited the EHNP to reduce the number of signatures needed to 4. In
2017, Wang et al. [67] exploited the HNP to recover the ECDSA private key
using 85 signatures with a few information. In 2019, Micheli et al. [27] updated
the attack in [31] and only use 3 signatures to construct the EHNP to recover
the ECDSA private key.

4.4 Others

The lattice attack is also useful to some other algorithms. In 1996, Boneh
and Venkatesan [20] initially investigated to use the partial information of the
ephemeral key to construct an HNP problem and recovered the private key
of Diffie-Hellman by solving it using the lattice reduction algorithm. In 2017,
Shani [65] used the HNP problem to attack the ECDH exchange protocol. In

446 Z. Ma et al.

2017, Zhang et al. [72] extended the attack in [54] to SM2 Digital Signature
Algorithm (SM2-DSA), which is a Chinese version of ECDSA. Lattice attacks
can also solve similar HNP instances to recover private keys for other signature
schemes such as EPID in the presence of side channel vulnerabilities [26].

5 Applications of Lattice Attacks in Side Channel
Attacks

With the development of side channel attack technology, the researches on the
partial key exposure attack have shifted from theory to practical application.
Researchers are more concerned about how to obtain the information about the
key through the side channel and construct the appropriate lattice for private key
recovery based on the obtained information. While, different side channels can
obtain different data so that the lattice construction is different. Commonly used
side channels to obtain the partial information include: the cache side channel,
the power and electromagnetic side channel, fault injury and timing side chan-
nels.

5.1 Cache Attacks

As describe in Sect. 2, the cache attack is a very effective method software side
channel attack. This attack requires very little capability of the attackers and is
extremely easy to launch.

In 2007, the authors in [38] first suggested to use the cache side channel attack
to obtain the partial key information to construct the EHNP problem to recover
the DSA private key. After 2014, with the presence of the Flush+Reload attack,
Benger et al. [12] obtained a different length of leaked LSBs. They recovered the
ECDSA private key with the HNP problem. Then in 2015, Van de Pol et al. [59]
used all of the information leaked from the cache side channel in the top half of
the ephemeral keys to construct the HNP instance, allowing them to recover the
secret key. Fan et al. [31] also used the Flush+Reload attack and transformed
the problem of recovering the secret key to the extended hidden number problem
(EHNP). In 2017, Wang et al. [67] exploited the HNP to recover the private key
using a few information from the Flush+Reload attack. In 2019, [61] gives a
cache side-channel based attack on ECDSA and DSA, modelling the problem
using HNP. Aldaya et al. [4] proposed a methodology to analyze cryptographic
software for traversal of known side-channel insecure code paths. They applied
it to RSA key generation and use the Flush+Reload attack to obtain the side
channel information.

5.2 Power and Electromagnetic Attacks

The power attack and the electromagnetic attack are similar due to the similar
analytical methods, while the difference is only the measured quantity.

Developments of the Lattice Attack in Side Channel Attacks 447

In 2008, Medwed et al. [49] used the template SPA attack to obtain the partial
key information to construct the lattice attack to recover the ECDSA private
key. In 2014, Aranha et al. [9] used the power attack on the ECDSA with the
GLV/GLS implementation. In 2016, Genkin et al. [33] obtained the LSBs of
the ECDSA signature on the mobile device with the power and electromagnetic
attack, to recover the private key using the HNP problem. Belgarric et al. [11]
also used the electromagnetic attack to obtain the LSBs of the ECDSA signature
on the Android device. In 2017, Aldaya et al. [5] used the SPA attack to obtain
the LSBs of the ECDSA signature and constructed the HNP problem to recover
the private key. Zhang et al. [72] used the power attack on SM2 to obtain the
LSBs, recovering the private key with HNP problem.

5.3 Fault Attacks

The fault attacks initiatively inject an error to the execution process, and analyse
the difference with normal case to obtain the partial key information. This type
of attack can not obtain a lot of bits.

In 2005, Naccache et al. [51] first used the fault injection attack to obtain the
LSBs of the DSA on the smartcard and recovered the private key with the HNP.
In 2012, Nguyen et al. [56] obtain the LSBs of DSA and RSA with this attack
and using the HNP to recover the private key. In 2013, Liu et al. [46] extended
the attack to the SM2 algorithm. In 2015, Cao et al. [24] use the differential
fault attack on the ECDSA with the wNAF representation to get the LSBs of
the ephemeral key. Then they recovered the private key with the HNP problem.

5.4 Timing Attacks

The timing attack is the oldest side channel but is still very effective. In 2011,
Brumley et al. [23] presented the practical remote timing attack on ECDSA
with the Montgomery Ladder implementation and construct the HNP problem
to recover the private key. in 2015, Wong et al. [69] revisited Brumley’s work and
practically using the remote timing attack with the HNP problem to recover the
ECDSA private key. In 2020, Moghimi et al. [50] exploited the timing attack to
recover the ECDSA private key on the TPM constructing HNP problem with
the obtained MSBs of the ephemeral key information.

6 Future Developments of Lattice Attacks

Up to now, we systematically analyse the improvements of the lattice attack
in past years, and especially we have researched how the lattice attack is used
to process the partial information obtained from the side channel attacks. In
general, The development of lattice attacks has the following characteristics:

– From theoretical research to practical application research. The initial
researches often focus on how to use partial information to recover the secret

448 Z. Ma et al.

key theoretically. Then, the attention is turned to what kind of information
we can really obtain, how to obtain the information effectively, and how to
construct the appropriate lattice to fully use the obtained information.

– We divide the lattice attacks into three categories. While different lattice
attack methods are applicable to different algorithms.

– the partial key exposure attacks now are already extended to various plat-
forms and devices, not limited to the Intel platform.

Therefore, in the future, the development direction of lattice attack can be
summarized as follows:

– More practical. We need to construct the lattice based on the type of data
obtained from the side channels. Also we need to consider the effects of noise.
Only in this way, the lattice attack can recover the private key of the real
system.

– More algorithm implementations. So far, there are still many implemen-
tations not vulnerable to the actual attacks, such as the ECDSA with Mont-
gomery Ladder. So there are a lot of implementations needed to construct
actually attack to obtain some information in order to exploit appropriate
lattice attacks to recover the secret key.

– More application scenarios. Different scenarios have different characteris-
tics, which may influence the effect of the key recovery. Therefore, for different
scenarios, corresponding changes need to be made to maximize the impact of
the attack.

– More efficient. The efficiency contains two aspects. One side is to fully
exploit the obtained partial information. That is the attacks need more effi-
cient use of known data to construct lattices. On the other side, the private
key can also be recovered effectively with very little data per on execution.

7 Conclusion

In this paper, we systematically analyse the developments of the lattice attacks
and its use in side channel attacks. First, based on the lattice construction, we
divide the lattice attack into three categories: HNP, EHNP, and others. Then
we investigate the lattice attacks on each algorithms and the way side channel
data is processed by the lattice attack. Finally, we summary the trend of the
lattice attack in side channel attacks. The lattice attacks will be improved more
efficient, practical, and have more application scenarios.

References

1. Acıiçmez, O., Koç, Ç.K.: Trace-driven cache attacks on AES (short paper). In:
Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 112–121. Springer,
Heidelberg (2006). https://doi.org/10.1007/11935308 9

2. Acıiçmez, O., Schindler, W., Koç, Ç.K.: Improving Brumley and Boneh timing
attack on unprotected SSL implementations. In: Proceedings of the 2005 ACM
Conference on Computer and Communications Security (CCS), pp. 139–146 (2005)

https://doi.org/10.1007/11935308_9

Developments of the Lattice Attack in Side Channel Attacks 449

3. Adamoudis, M., Draziotis, K.A., Poulakis, D.: Enhancing an attack to dsa schemes.
Lecture Notes in Computer Science 11545, 13–25 (2019)

4. Aldaya, A.C., Garćıa, C.P., Tapia, L.M.A., Brumley, B.B.: Cache-timing attacks
on RSA key generation. IACR Trans. Cryptogr. Hardw. Embed. Syst. 4, 213–242
(2019)

5. Aldaya, A.C., Sarmiento, A.C., Sánchez-Solano, S.: SPA vulnerabilities of the
binary extended Euclidean algorithm. J. Cryptographic Eng. 7(4), 273–285 (2017)

6. Allan, T., Brumley, B.B., Falkner, K., van de Pol, J., Yarom, Y.: Amplifying side
channels through performance degradation. In: Proceedings of the 32nd Annual
Conference on Computer Security Applications (ACSAC), pp. 422–435 (2016)

7. American National Standards Institute: ANSI X9.62-2005, Public Key Cryptog-
raphy for the Financial Services Industry: The Elliptic Curve Digital Signature
Algorithm (ECDSA) (2005)

8. Aono, Y.: A new lattice construction for partial key exposure attack for RSA. In:
Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 34–53. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1 3

9. Aranha, D.F., Fouque, P.-A., Gérard, B., Kammerer, J.-G., Tibouchi, M., Zapalow-
icz, J.-C.: GLV/GLS decomposition, power analysis, and attacks on ecdsa signa-
tures with single-bit nonce bias. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014.
LNCS, vol. 8873, pp. 262–281. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45611-8 14

10. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986)

11. Belgarric, P., Fouque, P.-A., Macario-Rat, G., Tibouchi, M.: Side-channel analysis
of Weierstrass and Koblitz curve ECDSA on android smartphones. In: Sako, K.
(ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 236–252. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29485-8 14

12. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: “Ooh Aah... Just a Little
Bit”: a small amount of side channel can go a long way. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 75–92. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44709-3 5

13. Bernstein, D.J.: Cache-timing attacks on AES. http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf (2005)

14. Bertoni, G., Zaccaria, V., Breveglieri, L., Monchiero, M., Palermo, G.: AES power
attack based on induced cache miss and countermeasure. In: International Con-
ference on Information Technology: Coding and Computing (ITCC), pp. 586–591
(2005)

15. Blake, I.F., Garefalakis, T.: On the security of the digital signature algorithm. Des.
Codes Cryptogr. 26(1–3), 87–96 (2002)

16. Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 2

17. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

18. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than n/sup
0.292/. IEEE Trans. Inf. Theory 46(4), 1339–1349 (2000)

19. Boneh, D., Durfee, G., Frankel, Y.: An attack on RSA given a small fraction of the
private key bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514,
pp. 25–34. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1 3

https://doi.org/10.1007/978-3-642-00468-1_3
https://doi.org/10.1007/978-3-662-45611-8_14
https://doi.org/10.1007/978-3-662-45611-8_14
https://doi.org/10.1007/978-3-319-29485-8_14
https://doi.org/10.1007/978-3-319-29485-8_14
https://doi.org/10.1007/978-3-662-44709-3_5
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://doi.org/10.1007/978-3-540-45146-4_2
https://doi.org/10.1007/978-3-540-45146-4_2
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-49649-1_3

450 Z. Ma et al.

20. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-68697-5 11

21. Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: Goubin,
L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201–215. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11894063 16

22. Brumley, B.B., Hakala, R.M.: Cache-timing template attacks. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 667–684. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10366-7 39

23. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: Atluri, V.,
Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 355–371. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23822-2 20

24. Cao, W., et al.: Two lattice-based differential fault attacks against ECDSA with
wNAF algorithm. In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp.
297–313. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30840-1 19

25. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Mau-
rer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer, Heidel-
berg (1996). https://doi.org/10.1007/3-540-68339-9 14

26. Dall, F., et al.: CacheQuote: efficiently recovering long-term secrets of SGX EPID
via cache attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2, 171–191 (2018)

27. De Micheli, G., Piau, R., Pierrot, C.: A tale of three signatures: practical attack
of ECDSA with WNAF. IACR Crypt. ePrint Arch. 2019, 861 (2019)

28. Draziotis, K., Poulakis, D.: Lattice attacks on DSA schemes based on Lagrange’s
algorithm. In: Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI 2013. LNCS,
vol. 8080, pp. 119–131. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40663-8 13

29. Draziotis, K.A.: (EC)DSA lattice attacks based on Coppersmith’s method. Inf.
Process. Lett. 116(8), 541–545 (2016)

30. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks on
RSA up to full size exponents. In: Cramer, R. (ed.) Partial key exposure attacks on
RSA up to full size exponents. LNCS, vol. 3494, pp. 371–386. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 22

31. Fan, S., Wang, W., Cheng, Q.: Attacking OpenSSL implementation of ECDSA
with a few signatures. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS), pp. 1505–1515 (2016)

32. Genkin, D., Pachmanov, L., Pipman, I., Tromer, E.: Stealing keys from PCs using
a radio: cheap electromagnetic attacks on windowed exponentiation. In: Güneysu,
T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 207–228. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4 11

33. Genkin, D., Pachmanov, L., Pipman, I., Tromer, E., Yarom, Y.: ECDSA key extrac-
tion from mobile devices via nonintrusive physical side channels. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1626–1638 (2016)

34. Genkin, D., Pipman, I., Tromer, E.: Get your hands off my laptop: physical side-
channel key-extraction attacks on PCs. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 242–260. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44709-3 14

https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/11894063_16
https://doi.org/10.1007/978-3-642-10366-7_39
https://doi.org/10.1007/978-3-642-23822-2_20
https://doi.org/10.1007/978-3-319-30840-1_19
https://doi.org/10.1007/3-540-68339-9_14
https://doi.org/10.1007/978-3-642-40663-8_13
https://doi.org/10.1007/978-3-642-40663-8_13
https://doi.org/10.1007/11426639_22
https://doi.org/10.1007/978-3-662-48324-4_11
https://doi.org/10.1007/978-3-662-44709-3_14
https://doi.org/10.1007/978-3-662-44709-3_14

Developments of the Lattice Attack in Side Channel Attacks 451

35. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth acous-
tic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 444–461. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44371-2 25

36. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+ Flush: a fast and stealthy
cache attack. In: 13th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pp. 279–299 (2016)

37. Halderman, J., et al.: Lest we remember: cold boot attacks on encryption keys. In:
17th USENIX Security Symposium, pp. 45–60 (2008)

38. Hlaváč, M., Rosa, T.: Extended hidden number problem and its cryptanalytic
applications. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp.
114–133. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74462-
7 9

39. Howgrave-Graham, N.A., Smart, N.P.: Lattice attacks on digital signature schemes.
Des. Codes Crypt. 23(3), 283–290 (2001)

40. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

41. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: 2019 IEEE
Symposium on Security and Privacy (S& P), pp. 1–19 (2019)

42. Kumari, A., Roy, B.: A survey of lattice attack on digital signature algorithm. In:
Proceedings of 3rd International Conference on Internet of Things and Connected
Technologies (ICIoTCT) (2018)

43. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4), 515–534 (1982)

44. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: 27th
USENIX Security Symposium, (USENIX Security), pp. 973–990 (2018)

45. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: IEEE Symposium on Security and Privacy, S&P 2015,
pp. 605–622 (2015)

46. Liu, M., Chen, J., Li, H.: Partially known nonces and fault injection attacks on
SM2 signature algorithm. In: Lin, D., Xu, S., Yung, M. (eds.) Inscrypt 2013. LNCS,
vol. 8567, pp. 343–358. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12087-4 22

47. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36095-4 19

48. Lu, Y., Peng, L., Kunihiro, N.: Recent progress on Coppersmith’s lattice-based
method: a survey. In: Takagi, T., Wakayama, M., Tanaka, K., Kunihiro, N., Kimoto,
K., Duong, D.H. (eds.) Mathematical Modelling for Next-Generation Cryptogra-
phy. MI, vol. 29, pp. 297–312. Springer, Singapore (2018). https://doi.org/10.1007/
978-981-10-5065-7 16

49. Medwed, M., Oswald, E.: Template attacks on ECDSA. In: Chung, K.-I., Sohn,
K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379, pp. 14–27. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00306-6 2

50. Moghimi, D., Sunar, B., Eisenbarth, T., Heninger, N.: TPM-FAIL: TPM meets
timing and lattice attacks. arXiv: Cryptography and Security (2019)

51. Naccache, D., Nguyên, P.Q., Tunstall, M., Whelan, C.: Experimenting with faults,
lattices and the DSA. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp.
16–28. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4 3

52. National Institute of Standards and Technology: FIPS PUB 186–4 Digital Signa-
ture Standard (DSS), July 2013

https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-540-74462-7_9
https://doi.org/10.1007/978-3-540-74462-7_9
https://doi.org/10.1007/978-3-319-12087-4_22
https://doi.org/10.1007/978-3-319-12087-4_22
https://doi.org/10.1007/978-3-642-36095-4_19
https://doi.org/10.1007/978-981-10-5065-7_16
https://doi.org/10.1007/978-981-10-5065-7_16
https://doi.org/10.1007/978-3-642-00306-6_2
http://arxiv.org/abs/Cryptography
https://doi.org/10.1007/978-3-540-30580-4_3

452 Z. Ma et al.

53. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the digital signature algorithm
with partially known nonces. J. Cryptology 15(3), 151–176 (2002)

54. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the elliptic curve digital signature
algorithm with partially known nonces. Des. Codes Crypt. 30(2), 201–217 (2003)

55. Nguyen, P.Q., Stern, J.: Lattice reduction in cryptology: an update. In: Bosma,
W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 85–112. Springer, Heidelberg (2000).
https://doi.org/10.1007/10722028 4

56. Nguyen, P.Q., Tibouchi, M.: Lattice-based fault attacks on signatures. In: Joye,
M., Tunstall, M. (eds.) Fault Analysis in Cryptography, pp. 201–220. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29656-7 12

57. Oren, Y., Shamir, A.: How not to protect PCs from power analysis. Rump Session,
CRYPTO (2006)

58. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. IACR
Cryptology ePrint Arch. 2002, 169 (2002)

59. van de Pol, J., Smart, N.P., Yarom, Y.: Just a little bit more. In: The Cryptogra-
phers’ Track at the RSA Conference (CT-RSA), pp. 3–21 (2015)

60. Poulakis, D.: New lattice attacks on DSA schemes. J. Math. Cryptology 10(2),
135–144 (2016)

61. Ryan, K.: Return of the hidden number problem. a widespread and novel key
extraction attack on ECDSA and DSA. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2019(1), 146–168 (2019)

62. Sarkar, S., Maitra, S.: Improved partial key exposure attacks on RSA by guessing
a few bits of one of the prime factors. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008.
LNCS, vol. 5461, pp. 37–51. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-00730-9 3

63. Sarkar, S., Sen Gupta, S., Maitra, S.: Partial key exposure attack on RSA –
improvements for limited lattice dimensions. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 2–16. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17401-8 2

64. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66(1), 181–199 (1994)

65. Shani, B.: On the bit security of elliptic curve Diffie–Hellman. In: Fehr, S. (ed.)
PKC 2017. LNCS, vol. 10174, pp. 361–387. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54365-8 15

66. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. J. Cryptology 23(1), 37–71 (2010)

67. Wang, W., Fan, S.: Attacking OpenSSL ECDSA with a small amount of side-
channel information. Sci. Chin. Inf. Sci. 61(3), 032105:1–032105:14 (2017)

68. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. The-
ory 36(3), 553–558 (1990)

69. Wong, D.: Timing and lattice attacks on a remote ECDSA openssl server: how
practical are they really? IACR Cryptol. ePrint Arch. 839 (2015)

70. Yarom, Y., Benger, N.: Recovering OpenSSL ECDSA nonces using the FLUSH+
RELOAD cache side-channel attack. IACR Cryptol. ePrint Arch. p. 140 (2014)

71. Yarom, Y., Falkner, K.: Flush+Reload: a high resolution, low noise, L3 cache
side-channel attack. In: Proceedings of the 23rd USENIX Conference on Security
Symposium, pp. 719–732 (2014)

72. Zhang, K., et al.: Practical partial-nonce-exposure attack on ECC algorithm. In:
2017 13th International Conference on Computational Intelligence and Security
(CIS), pp. 248–252 (2017)

https://doi.org/10.1007/10722028_4
https://doi.org/10.1007/978-3-642-29656-7_12
https://doi.org/10.1007/978-3-642-00730-9_3
https://doi.org/10.1007/978-3-642-00730-9_3
https://doi.org/10.1007/978-3-642-17401-8_2
https://doi.org/10.1007/978-3-662-54365-8_15
https://doi.org/10.1007/978-3-662-54365-8_15

Exploring the Security of Certificate
Transparency in the Wild

Bingyu Li1,4(B), Fengjun Li2, Ziqiang Ma3,4, and Qianhong Wu1,5

1 School of Cyber Science and Technology, Beihang University, Beijing 100191, China
{libingyu,qianhong.wu}@buaa.edu.cn

2 Department of Electrical Engineering and Computer Science,
The University of Kansas, Lawrence, USA

fli@ku.edu
3 School of Information Engineering, Ningxia University, Yinchuan, China

maziqiang@nxu.edu.cn
4 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing 100093, China
5 Hangzhou Innovation Institute, Beihang University, Hangzhou, China

Abstract. Certificate Transparency (CT) is proposed to detect fraud-
ulent certificates and improve the accountability of CAs. CT as an open
auditing and monitoring system is based on the idea that all CA-issued
certificates are logged in a publicly accessible log server, and that CT-
compliant browsers only accept publicly recorded certificates. The pur-
pose of CT is to make all TLS server certificates issued by the CA publicly
visible; once a fraudulent certificate is publicly published, it can be dis-
covered by the domain name owner. In practice, the CT can achieve its
intended purpose only when the three components (i.e., log server, moni-
tor, and auditor) of the CT cooperate and work correctly and effectively.
Compared with traditional PKI systems, the CT framework does not rely
on a single trusted party, but as a distributed system that distributes
trust guarantees to many CAs, log servers, auditors, and monitors. In
this paper, we study the interaction among log servers, monitors, audi-
tors, CAs, domain owners (or websites), browsers, and other components
in practice, and then analyze the security impact of each component on
the CT. We explore the security of CT framework in practice from mul-
tiple perspectives, and find that each component has many security vul-
nerabilities. Thus, the attackers might first exploit the vulnerability to
disable the CT and then launch an attack using fraudulent certificates.
The overall security guarantees of CT are jeopardized due to the weak
protections of any components.

Keywords: Certificate Transparency (CT) · Fraudulent certificate ·
Trust management

This work was partially supported by National Natural Science Foundation of China
(No. 62002011), Open Project of the State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences (No. 2020-ZD-05,
No. 2020-MS-08), NSF CNS-1422206, DGE-1565570, NSA Science of Security Initiative
H98230-18-D-0009, and the Ripple University Blockchain Research Initiative.

c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 453–470, 2020.
https://doi.org/10.1007/978-3-030-61638-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_25&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_25

454 B. Li et al.

1 Introduction

Public Key Infrastructure (PKI) uses certificates to establish and transmit trust
on the Internet [8]. By 2020, there are more than 2.3 billion valid certificates
on the Internet [41], which are widely used for confidentiality, authentication,
data integrity, etc. The certification authority (CA) is responsible for issuing
a certificate, which is used for binding users’ identity and public key. So it is
usually assumed that the CA is completely reliable. However, in recent years, a
series of security incidents [7,12,24,32,43,44] have shown that accredited CAs
may issue fraudulent certificates due to compromised or deceived. The fraudu-
lent certificate binds a domain name to a key pair held by man-in-the-middle
(MitM) attackers, instead of the legitimate website. Thus, attacks using fraudu-
lent certificates can launch MitM or impersonation attacks without any warning
against targets such as websites, national core devices or user networks. Numer-
ous fraudulent certificates weaken the trust provided by PKI system and result
in serious threat to the compromising or deceiving of PKI.

Traditional PKI system lacks the mechanism of finding fraudulent certificate.
The fraudulent certificate usually takes a long time to be detected (from weeks
to months). In addition, browsers’ trust in accredited CAs are undifferentiated,
and any of the CA’s security problems may harm the entire Internet ecosystem.
Therefore, the attack surface of fraudulent certificates on the network is long-
term and extensive.

Certificate transparency (CT) [26] is proposed to timely detect the fraudu-
lent certificates and enhance the accountability of CAs. CT as an open auditing
and monitoring system, the basic idea is to record all certificates issued by the
CA in a publicly accessible log server, and clients (e.g., browsers) only accept
such publicly issued certificates. CT has been widely adopted by CAs, websites,
browsers and TLS software, including Chrome [19], Apple platforms [3], Mozilla
Firefox/NSS [33], OpenSSL [36], Nginx [34] and Microsoft AD Certificate Ser-
vice [31]. Its purpose is to make all TLS server certificates issued by the CA
publicly visible and subject to public monitoring and auditing. Once a fraudu-
lent certificate is published via CT log, it can be detected by the domain owner.
Therefore, CT introduces the following three new components: (a) Log server,
being used to record certificates submitted by the CA or domain owner, etc.;
(b) Monitor, obtaining all certificates recorded in the log regularly to help find
suspicious (or fraudulent) certificates; (c) Auditor, verifying that the log server
behavior is correct.

Compared with the traditional PKI system, the CT framework does not
rely on a single trusted party, but as a distributed system, it distributes trust
security to CAs, log servers, auditors and monitors [11,25,26]. The CT requires
that certificates signed by the CA be recorded in publicly-visible logs, and then
the domain owner can monitor suspicious certificates issued for its domain. In
particular, a certificate is submitted by the CA or website to the log server,
which responds with a signed certificate timestamp (SCT), as a promise for
the certificate to be publicly-visible in the logs. Then, the certificate is sent
along with SCTs in TLS handshakes to the browser; otherwise, a CT-compliant

Exploring the Security of Certificate Transparency in the Wild 455

browser rejects the certificate. The log server is only responsible for recording the
certificate, but not for checking whether the certificate is signed with the domain
owner’s authorization or not. Meanwhile, the latter work mainly depends on the
monitor. Finally, based on SCTs and signed tree heads (STHs) issued by log
servers, auditors ensure the correct behaviors of log servers; that is, certificates
are append-only in the logs, and a log server provides consistent views to different
parties.

In an ideal state, the components and each link of CT achieve the security via
redundant and digital signature [26,27]. First of all, log server, CA and domain
owner depend on the digital signatures of certificate and SCTs, and the public
keys of the signers are publicly known or pre-installed in the verifiers. Secondly,
the behavior consistency of log server is audited by auditor and monitor. The
interaction security between log server and other components, including browser,
auditor and monitor, is designed with the fault tolerance of redundant auditors.
These interactions also rely on digital signatures, including SCT or/and STH,
and the public keys are publicly known. Auditor and monitor provide security
services to browsers and domain owners through mutual interaction and redun-
dant to help detect fraudulent certificates or incorrect behavior of the log servers.
In summary, among these components, the public keys of the signers are pub-
licly known and it is assumed that at least one of the numerous auditors and
monitors is secure and reliable. Therefore, they will seldom suffer from MitM
attack exploiting fraudulent certificate.

In practice, only the three components of CT work correctly and effectively, then
it can achieve the expected goal. There are a variety of reasons that can cause an
attacker to exploit a fraudulent certificate to launch a MitM or impersonation
attack without triggering any alarm in the CT. For example, the log server does
not record the certificate to the public log within the maximum merge delay
(MMD), auditor fails to detect the incorrect behavior of the log, or monitor fails
to reliably detect fraudulent certificates from the log server in a timely manner,
etc. The longer the fraudulent certificates stay undetected in the system (or CT
logs), the more the damage they may cause to the PKI ecosystem. Therefore,
these factors such as the correctness of CT log behavior, the quality of certificate
monitoring server, and the granularity and timeliness of audit, will all affect the
overall security enhancement by the CT framework in practice.

In this paper, we investigate the security configuration of each component in
the CT framework and the mutual security influence among them in practice.
We find that, compared with the security design, these components are not
significantly more immune to the security vulnerabilities. Therefore, the attacker
could first launch MitM or distributed denial of service attack (DDoS) attacks
on one or more of the CT components to manipulate the certificate monitor
and/or audit results. Then, when a fraudulent certificate is exploited in the MitM
attacks on any ordinary website which supports CT, the domain owner still can
not detect this fraudulent certificate because the attackers would conceal the
certificate in the manipulated search result, or force the browser not to perform
CT policy checks, etc. Note that, in this attack scenario as explained above, CAs,

456 B. Li et al.

log servers, monitors, and auditors have malicious behavior due to their own
vulnerabilities or defects, while the domain owners and CT-compliant browsers
will accept the fraudulent certificate without receiving any warning from the CT
mechanism.

Contribution. We shed light on the security design of each component of the
CT framework, and disclose that if any of the components are not well protected
and configured, the attackers could still exploit fraudulent certificates to launch
MitM attacks on an ordinary website, without trigger any alerts in the CT.
Then, we comprehensively analyze the security impact of each CT component
on other components in practice, including the log server, monitor, and auditor,
and find that any one of them could have various security issues that directly or
indirectly affect the security of other components, and ultimately affect the effec-
tiveness of CT. So the overall security guarantees of CT is jeopardized due to the
weak protections of any components. Finally, we discuss several improvements
to enhance the reliability of CT framework.

The remainder is organized as follows. The CT framework, the security design
of each component in the CT and its deployment in practice are described in
Sect. 2. Section 3 studies the security of CT components on the Internet and
analyzes the mutual security influence of each CT component in practice, and
Sect. 4 proposes several potential countermeasures to improve the reliability of
CT. Section 5 surveys the related works and Sect. 6 draws the conclusions.

2 The Components of Certificate Transparency

In this section, we first describe the CT framework. Then, we analyze the security
design of each component in the CT framework, and finally show the deployment
of CT in practice.

2.1 The CT Framework

CT scheme is proposed to resist fraudulent certificate which binds a domain
name to a key pair held by MitM attacker. As shown in Fig. 1, compared with
the traditional PKI system, the CT framework introduces new component and
enhances the functions of the traditional PKI system, so that the CT can achieve
the expected purpose.

CA. Compared with the CA in traditional PKI system, a CA supports the CT
by adding the following steps. The CA signs the certificate and submits it to the
log server to obtain the SCT. Alternatively, before signing the certificate, the
CA creates a precertificate that binds the same data but in a different format
from the final certificate. The precertificate is then submitted to return an SCT.
Finally, the SCT is embedded as a certificate extension when the certificate is
issued. According to the CT policy, a certificate may be submitted to multiple
log servers to obtain multiple SCTs.

Exploring the Security of Certificate Transparency in the Wild 457

Website
(Domain Owner)

Certification
Authority

Browser

Log Server

Monitor

Auditor

Audit Path

Certificate,
SCT

TLS Handshake:
Certificate+SCT

Supplemental
CT Components

Traditional
PKI System

Fig. 1. The framework of Certificate Transparency

Website. Sometimes, it needs to submit its own certificate to the log server
to obtain SCT. Then, in the TLS handshake, the SCT is sent to the website
along with the certificate via a TLS extension (e.g., OCSP stapling) or certificate
extension. Finally, domain name owner needs to periodically query all certificates
issued for its domain name from monitor, so as to monitor suspicious certificates
and detect the fraudulent certificate.

Browser. Compared with the browser in traditional PKI systems, a CT-
compliant browser is enhanced with the following functions. In TLS handshakes,
the browser verifies the certificate and SCTs based on the pre-installed public
keys of CAs and approved log servers. If the CT policy is not met (e.g., with-
out enough valid SCTs), the browser will reject the certificate. In addition, the
browser can also periodically send each SCT to the auditor to check whether it
corresponds to a certain certificate entry in the public logs.

Log Server. Log server is responsible for recording the certificate and returning
SCT as the promise to make the certificate be publicly-visible in the logs within
the maximal merge delay (MMD). Certificates are recorded in the log in the
form of a Merkle hash tree, which is convenient for auditing. and the log server
periodically signs the root node of the tree, called signed tree head (STH).

Monitor. Monitor is responsible for regularly and continuously monitoring sus-
picious certificates from public logs. Monitor obtains all the records from the
monitored log set, parses the certificates and checks the certificates of interest.
The logs are publicly visible, and anyone can act as monitor to obtain certificate
from these logs, monitor suspicious certificate and find fraudulent certificate. log
servers are publicly-accessible, and any individual or third-party can act as mon-
itor, querying certificates for domain name of interest and monitoring suspicious
certificates.

458 B. Li et al.

Auditor. As a lightweight software component, auditor is used to ensure the
correctness of the log server behavior. Auditor can be a standalone service, a
TLS client or monitor component. By comparing two STHs, auditor can check
whether log server is only addable, that is, any particular version of the log is
superset of any previous version. Besides, the auditor requests the audit path
from the log server, which is the shortest list of additional nodes used to com-
pute the root node in the Merkle tree, to check whether an SCT corresponds
to a specific entry in the log. Moreover, auditor and monitor ensure that log
server provides the same view for different entities through exchanging the STHs
periodically.

2.2 The Security Design of CT

The CT framework is different from the traditional PKI system in that it does
not rely on a single trusted party, but distributes trustworthiness among CAs,
log servers, auditors, and monitors [11,25,26]. These components establish dis-
tributed trust through message exchange, verification, auditing, and monitor-
ing. Based on the CT framework, we analyze the interactions and connections
between different components and investigate the security design of each link.

Log Server - CA, WebSite, Browser. Over these components, certificates
are signed by CAs, and then verified by log servers, websites, and browsers.
Meanwhile, SCTs are signed by log servers, and verified by CAs, websites, and
browsers [27]. The vendors of browsers evaluate the certification practice of CAs
and log servers, and maintain the public certificate trust list (CTL) and log list
for global users. The public keys of these CAs and log servers are pre-install to
browsers (e.g., Chrome). The domain name owner chooses the CA to issue the
certificate, and the CA further chooses the log server to record the certificate.
Therefore, the public key of the CA and the log server shall be known in advance
(i.e., publicly-known, pre-install by out-of-band means). The transfer of trust
between these components depends on the authentication of the signer’s public
key and the correctness of the component’s behavior.

Monitor - Log Server, Domain Owner. The incorrect behavior of the CA
(e.g., issuing fraudulent certificates) is recorded by the log server and discovered
by the monitor by monitoring the fraudulent certificates in the log. The monitor
servers provide certificate search services to the domain name owner via the
TLS/HTTPS session. Therefore, this link depends on the authenticity of the
monitor server’s public key and the quality of the monitor’s service.

Auditor - Log Server, Monitor, Browser. As mentioned above, in order to
ensure the correct behavior of the log server, the auditor will periodically request
STHs from the log server. To verify the signed STHs, the log server’s public keys
are pre-installed in the auditors. Besides, the auditors sometimes even exchange

Exploring the Security of Certificate Transparency in the Wild 459

STHs with the monitors to ensure that the same view is provided to different
entities, which is guaranteed by the redundancy of the monitors and auditors.

In addition, browsers periodically send the SCTs to auditors, who get the
audit paths from log servers to ensure that the corresponding certificate is
recorded in the public log. The audit path is verified by the SCT and the STH
which are signed by the log server, and the public keys of log servers are pre-
installed in the auditors. This verification is also redundant, because massive
and independent browsers will send SCTs to different auditors.

2.3 CT in Practice

CT has been widely deployed on the Internet [39]. In July 2020, we created a list
of 93 accessible logs by collecting the information from the log list maintained
by Google [18], and the websites of CA companies, third-party monitors and
auditors. Then, using the get-roots command of log servers [26], we obtain the
list of root CAs accepted by each log. In total, these logs support 596 unique
CAs, covering almost all the mainstream CA (e.g., Let’s Encrypt, DigiCert,
GeoTrust, GoDaddy, Comodo, and GlobalSign) [6,38]. By July 2020, there were
8.196 billion certificates in these 93 public logs. As of February 2018, at least
60% of HTTPS connections support the CT[39]. Moreover, Chrome browser and
Apple platform have been staring the mandatory enforcement of CT policies
since Jun 2018. Certificates used by the website servers that do not meet CT
policies will no longer be accept by Chrome and Apple platform. By July 2020,
there are 41 approved logs in Chrome [19], and 59 in Apple platform [3].

There are maturely deployed third-party monitor servers on the Internet.
They can obtain records from logs, parse certificate and provide certificate query
and monitoring services for users. To our best knowledge, there are 6 mainstream
third-party monitors on the Internet, namely crt.sh, SSLMate, Censys, Google
Monitor, Facebook Monitor, and Entrust CT Search Tool. There are also some
CT auditors have been deployed on the Internet, such as Edgecombe [13] and
Merkle Town [6]. They audit the running state of log servers by verifying STHs
and execute Gossip verification along with each other. The CT-over-DNS scheme
[16] is integrated into the browser (e.g., Chrome) to help the latter to implement
CT audit function.

3 Certificate Transparency on the Internet

In practice, there are hundreds of log servers, multiple monitors and auditors
deployed on the Internet. They run independently, redundant and cooperate with
each other to ensure the effective work of CT. In practice, the implementation
of each CT component may face various challenges, including internal policy
influences or the impact caused by external component interactions, etc. Any
problem of them will lead to security problems of the whole framework of CT
and ultimately affect the application effect of CT.

460 B. Li et al.

In this section, we study the security of the CT components on the Internet,
to analyze the strength of CT in practice. We have collected a list of log servers,
monitors and auditors that are operating normally on the Internet and providing
external services by the end of July 2020. We analyze and summarize the security
impact of the interaction between different components, following the framework
of CT described in Sect. 2, including the number of certificates covered by these
components, the scope of CA supported, the log list monitored, and the policy
and deployment of CT by the mainstream platform. In particular, we investigate
the security vulnerabilities of each component, based on the implementations of
the security designs in practice.

3.1 Website and CA

Website and CA are the security enhancement targets of CT. In practice, any
website may be attacked by fraudulent certificate and any CA may be forced
to issue fraudulent certificate. This is consistent with the threat model and
hypothesis as the CT scheme [17,26]. The policies of websites and CAs for CT
will also directly influence the deployment of CT, including the accepted log
servers and the supported SCT delivery methods, etc.

Next, we will find whether the security guarantee of CT (i.e., the CA-signed
TLS server certificate in TLS handshakes is publicly visible to the domain owner)
is well supported by other components or not.

3.2 Log

As the core of CT framework, log server is responsible for recording all accepted
certificate, responding the corresponding SCT, providing public accessible inter-
face, supporting third-party or individual to act as monitor for certificate mon-
itoring, and accepting auditor to audit the correctness of log serve’s behavior.
Therefore, the parameter configuration, internal and external policies and run-
ning quality of log servers will affect multiple components of CT and mass CT-
enable devices.

We created a list of public logs in July 2020. It includes a total of 93 logs
collected from the list maintained by Google and third-party monitors. Based on
this log list, we analyze the challenges and potential impacts of the deployment
of the log server in practice.

List of Accepted CA. Mainstream browsers and platforms pre-install a number
of root CAs that they trust by default, called mainstream CAs. There are 174
in Apple macOS, 307 root CA certificates in Microsoft Windows, and 144 in
Mozilla NSS by July 2020. The union consists of 341 root CAs. Meanwhile, each
log holds an accept list of CAs and accepts only the certificates issued by these
CAs [28]. The CA list accepted by log server will directly influence CAs, websites
and mass clients.

For example, using the get-roots command [26], we obtain the list of root CAs
accepted by each log. The 93 public logs accept 596 unique root CA certificates

Exploring the Security of Certificate Transparency in the Wild 461

in total, among which 337 belong to mainstream CAs. While 4 mainstream CAs
are not accepted by any regular log, which means that CT can not cover all
certificates deployed in the network. On the one hand, these CAs are excluded
from the CT framework, so any fraudulent certificates issued by them will not be
detected by monitors. On the other hand, the certificates issued by these CAs,
will be rejected by Chrome always, but acceptable to browsers that currently do
not support CT such as Mozilla Firefox and Microsoft Edge.

CT Log Policy. With the widespread application and deployment of CT, more
and more certificates are submitted to log servers. For example, using the get-
sth command [26], we obtain the STHs for each log, to explore the amount of
records in public logs. Until July 2020, 8.196 billion certificates are recorded in
93 public logs, at an average growth of 82.6 million records per day. The massive
and fast-growing certificates increase the long-term operation and operational
burden of log server operators. In addition, the massive and expired certificates
in the log server also add extra burden to the third-part monitors and auditors,
seriously affecting monitoring and auditing efficiency [28].

In order to solve this problem, researchers propose a partitioned log server
based on the validity of certificate to limit the range of received certificates (e.g.,
the log server Argon2020 only accepts certificates that are valid until 2020 [21]).
This gives the operator the right to shut down the log server after a specified date
without any impact to any CT-compliant software, since all certificates recorded
by the logging server have expired normally. While, for early non-partitioned log
servers, operators plan to freeze these servers within a limit time and no longer
receive new certificates [20,22]. However, this also may leads to some issues: as
mentioned above, the early system of Apple platform directly on the accepted
log list into the system source code. Therefore, the log list cannot be updated
online in time. Once the accepted log server stops working, CA can only submit
the newly issued certificate to other log servers, which can not be verified by
some Apple platform.

Key Update for the Log Server. The private key of log server is mainly used for
digital signature of STH and SCT. The public key is used to verify signature by
CAs, monitors, auditors and browsers, and it is publicly-known or pre-install in
CT-compliant software. Therefore, these components may be affected if the log
server’s key needs to be updated due to leakage or expiration. The number of
CA, monitor and auditor deployed on the Internet is limited (tens or hundreds).
These components can be updated in a secure and controlled manner, such as
manually by out-of-band means.

However, there may be various problems in the key update of the log server for
a large number of client devices (e.g., browsers). These massive client devices are
deployed around the world, and different platforms adopt different key update
methods. For example, the Chrome browser regularly visits the CT official web-
site to obtain the latest approved log server list. While, the early Apple platform
(e.g., iOS 11.0, watchOS 4.0, tvOS 11.0, and macOS 10.13) pre-installs the list
of approved log servers in the platform source code, which made it impossible for

462 B. Li et al.

the device to update the log server information independently from the platform
[22]. This may cause potential security threats to users who fail to update or
refuse to update the operating system version: the SCT issued for a fraudulent
certificate through the leaked private key of log server will still be verified by
the client.

Summary. The number of certificates recorded by the log server is increasing
rapidly, and the requirement for access and auditing is also increasing. These
increments increase the storage, computing, network bandwidth, and mainte-
nance costs of log servers. In addition, there is a deviation between the CA list
accepted by the log server and trusted by the mainstream platform, which makes
it impossible for the CT to fully cover all CAs and realize ecological supervision
of TLS certificates. Finally, the operation plan of the log server and the CT pol-
icy of each CT-compliant software may influence and conflict with each other.
Furthermore, this may cause legitimate certificates to be unacceptable by the
CT-compliant software, while the fraudulent certificates cannot be detected.

3.3 Monitor

Monitor plays a key role in monitoring fraudulent certificate. The service quality
of monitor will directly determine the effectiveness of CT, and further affect the
promotion and deployment of CT. If there is a security vulnerability in mon-
itor’s implementation, an attacker can exploit this vulnerability to circumvent
monitor’s monitoring of fraudulent certificates. Therefore, if there is a fraudulent
certificate which is issued by the publicly-trusted CA, meets the CT policy, is
verified by the browser, but cannot be detected by the monitor and is “invisi-
ble” to the legitimate domain name owner. An attacker can use the fraudulent
certificate to launch a MitM attack or impersonation attack on the target. The
security and reliability problems of monitor will directly affect the security effect
of CT framework: in TLS/HTTPS ecosystem, certificates conforming to CT pol-
icy should be more trustworthy.

The implementation of monitoring technology in the certificate transparency
system is essentially to establish a fraudulent certificate monitoring system, to
ensure that all valid certificate sets related to the monitored domain name can
be securely, reliably and timely fed back to the legitimate domain name owners.
To achieve the CT target, we believe that monitoring services should meet the
following requirements: (a) it should be able to monitor all valid certificate sets
related to the target domain name in the log servers in a timely and reliable
manner; (b) it should be able to securely and completely feed back the complete
and valid certificate set monitored to the domain name owner; (c) it should have
certain fault tolerance, comprehensive and fast security measurement means and
be able to identify and repair faults and resist malicious attacks.

In practice, there are many factors that determine the service quality of moni-
tor, including monitoring policies, interface rules, and so on. Some studies [27,28]
have shown that CT monitor, which provides certificate query and fraudulent

Exploring the Security of Certificate Transparency in the Wild 463

certificate monitoring service on the Internet, has obvious defects in terms of
reliability and timeliness and exists hidden danger of being attacked. Therefore,
monitors can not provide users timely and complete certificate set of monitored
domain name.

We studied the CT policies and security configurations of monitors in the
Internet, to analyze the strength of this component in practice. In particular,
we analyze 6 popular third-party monitors, namely crt.sh, SSLMate, Censys,
Google Monitor, Facebook Monitor, and Entrust. We analyzed the list of logs
they monitor, the ability to monitor certificates, and the security configuration
of the external service interface, to explore the possible problems with monitor
services in practice.

Handling Massive Amounts of Certificates. We combine the CT policies of main-
stream CT applications such as Google and Apple to investigate various types
of log sets that monitor can monitor, including the maximal set (i.e., all regular
logs) and the minimal set (e.g., minimum set of logs for the certificates com-
pliant with the Chrome CT policy, as of July 2020, there are 13 log servers in
this set). However, monitoring the minimal set still consumes huge storage space
and network bandwidth. There are billions certificates in these logs by 2020, the
amount increases at a daily growth of millions records. Massive certificates have
brought great challenges to the timely processing of monitor. In fact, even some
third-party monitors (e.g., crt.sh, Censys, and SSLMate) have to keep lots of
fetched-but-unprocessed (pre)certificates in backlogs [28].

Parsing Multiple Domain Name Types. We use multiple types of domain name
test sets to test the monitoring quality of monitors. Test types include parent
domain name (i.e., C.B), subdomain name (i.e., D.C.B.A), and wildcard domain
name (i.e., *.B.A) of specified domain name (e.g., C.B.A), as well as domain
names containing special symbols (e.g., ‘ ’, ‘*’, ‘?’, etc.), and also internation-
alized domain names (IDNs), etc. We find that each monitor may handle these
types of domain names differently, resulting in a different set of certificates being
queried. Moreover, almost all monitors may be missing some certificates. We
found that each monitor may handle these types of domain names differently,
resulting in different sets of queried certificates. Almost all monitors may be miss-
ing some certificates. In particular, Google Monitor admitted to us that they had
problems with the handling of certificates containing ‘ ’ in domain names in their
previous software programs, resulting in missing such certificates in the query
results. The format of certificate and domain name is diversified and the binding
relationship is complex, which increases the difficulty and unpredictability for
correct monitor [37].

TLS/HTTPS Configurations of the Monitor Servers. We also conducted the
TLS/HTTPS configurations analysis on all 6 monitors, including the Protocol-
related configuration (e.g., TLS version, HTTPS redirection, and HSTS) and
Certificate-related configuration (e.g., HPKP, Expect-CT, CAA, and Revoca-
tion), by using the protocol analyzer of Wireshark and the network security

464 B. Li et al.

analysis tool. While, none of these monitors on the Internet is perfectly deployed
with TLS/HTTPS configurations [27]. Compared with ordinary domain name
websites, they do not achieve obvious security enhancement and the generated
potential TLS MitM vulnerability will seriously threaten the overall security of
CT framework.

Summary. In practice, there are many factors that affect and determine the
quality of monitor’s service. Currently, mainstream monitors on the Internet
have various problems in terms of reliability, timeliness, and security. Such as,
delayed processing, interface limitation, unclear policies, etc. Problems in any of
the above links may lead to the existence of a fraudulent certificate “invisible” to
the domain name owner, which can then be used to launch attacks on legitimate
websites.

3.4 Auditor

Auditor plays a key role in auditing log sever behavior. The service quality of
auditor will directly determine the reliability of CT. If there is a security vulner-
ability in auditor’s implementation, an attacker can exploit this vulnerability to
avoid auditor’s auditing of malicious log server. Therefore, if there is a fraudulent
certificate which is issued by the publicly-trusted CA, meets the CT policy, is
verified by the browser, but the malicious log server has not recorded it and the
auditor has not detected this illegal behavior, and is “invisible” to the legitimate
domain name owner. An attacker can use the fraudulent certificate to launch a
MitM attack or impersonation attack on the target.

The implementation of auditor technology in certificate transparency system
is essentially to establish a malicious log server auditing system on the Internet,
to ensure that the audited log server meets the consistency and existence proof.
To achieve the CT target, we believe that auditing services should meet the
following requirements: (a) it should be able to perform security audits on the
behavior of the log server in a timely and reliable manner; (b) it should be able
to securely and efficiently provide the SCT audit path for the browser, to ensure
that the certificate (or SCT) is recorded in public logs.

In practice, there are many factors that determine the service quality of
auditor, including deployment mode and location (i.e., independent third-party
server or integrated in the browser), coverage scope, frequency of detection, and
robustness, etc. Therefore, in practice, the implementation of auditor faces many
challenges. For example, (a) Privacy. Privacy leakage happens when browsers
access auditor services. An SCT audit path request includes the identifier of the
validated certificate, so the log server or auditor server knows the website that the
client is visiting [14]. (b) Security. The existing auditor implementation methods
cannot effectively check all STH and SCT in use. If it cannot effectively verify
whether an SCT has been appended to the log, it may be used by attackers to
launch attacks on websites. (c) Performance. If the browser wants to obtain the
audit path of an SCT, it needs to additionally access a third-party (i.e., auditor

Exploring the Security of Certificate Transparency in the Wild 465

server or log server) during the TLS establishment process. If the extra cost is
too large, it will seriously affect the performance of client network connection,
affect the user experience, and thus affect the promotion and deployment of
auditor.

Summary. There are very few third-party auditors (e.g., Edgecombe and
Merkle Town) deployed on the Internet. They typically audit the running status
of log servers, by performing gossip validation of STHs with each other. However,
there is no third-party auditor that provides users with SCT audit services, and
while Chrome integrates the CT-over-DNS scheme, it is not enabled by default.
In practice, there are many influencing factors that need to be considered when
implementing an auditor, including privacy protection, security, reliability, and
performance efficiency. If these problems cannot be properly resolved, it will
greatly limit the application and deployment of the auditor in practice.

3.5 Browser

As the certificate verifier, the browser needs to be as the main body to partici-
pate to check whether the certificate meets the CT policy. These checks include
the signature validity, quantity and existence proof of SCT, so as to alleviate
the security threat brought by the fraudulent certificate. Therefore, as the bene-
ficiary of CT framework, the support policy of browser and other client directly
influences the promotion and deployment of CT. We combined the Chromium
source code to analyze and summarize the browser’s CT policies from the follow-
ing points. In practice, these CT policies may affect the deployment and security
of CT.

Trust Anchor. This includes a list of trusted root CA certificates and a list of
approved log servers. The former determines which CAs issued certificates can
be accepted, and also indicates that these CAs must comply with CT policies.
The latter defines at least which log server the certificates issued by these CAs
must be submitted to. As we mentioned in Sect. 3.2, there are 4 mainstream CAs
that are not accepted by any regular log. This may result in a valid certificate
issued by a CA that the browser trusts, but does not support the CT policy
and thus is not accepted by the browser [28]. Moreover, as mentioned above,
the way that the browsers update the approved log server list also affects many
components of CT, including the running status of the log server, the accepted
CA list, etc. [22]. It even cause log servers to overwork for a long time.

SCT Policy. The browser’s requirements for the number and source of SCT will
affect the scope of the log servers where CAs submit certificates [3,21,28]. This
may further potentially affect the range of monitoring log server list of monitor.
In addition, the browser’s requirements for the SCT delivery method (i.e., TLS
extension or certificate extension) will affect the application of CT by CAs and
a large number of website servers [2,35,38]. Finally, the browser’s verification

466 B. Li et al.

policy for SCT will also affect the effect of CT. For example, browser developers
often “soft-fail” by deciding to trust certificates when the list of approved log
servers cannot be updated, so as not to rest their perceived reliability on the
shoulders of a disparate set of third-party log servers. Soft-failing when latest log
list is unavailable may at first appear to be an innocuous trade-off for usability,
but in practice it has surprisingly extensive implications on the security of the CT
as well as the PKI system [29]. Any attacker who can block a victim’s access to
specific domains (e.g., an attacker on the same wireless network) could leverage
soft-failures to effectively turn off the victim’s SCT checking.

Interactions with Auditor. The browser needs to interact with the auditor to
complete the existence check of the SCT (i.e., a particular certificate has been
appended to the log). Therefore, the browser’s SCT checking policy, including
validation methods, frequency, etc., will affect the deployment of the auditor.
This may also further determine the audit scope and reliability of the auditor.
In addition, as mentioned above, the browser performs the SCT checking through
the auditor, which may affect the performance of the TLS connection and leak
private information such as the website visited by the user.

Summary. As the certificate verifier, the browser’s support policy for CT will
directly determine the deployment of core components of CT such as log servers,
auditor, etc. Then, judging from the existing actual deployment, there are certain
deviations in the CT policy between the browsers and the CT components,
including the list of supported CAs, the method of performing SCT verification,
etc. These deviations may be exploited by attackers to evade CT detection of
fraudulent certificates, and then be used to launch attacks on websites.

4 Feasible Suggestions

The problems existing in the practical application of CT components make CT
possible to suffer from various attacks, which seriously endanger the overall secu-
rity of CT. Our analysis shows that these CT components lack uniform and
standardized implementation standards and are not robust. As a distributed
security enhancement mechanism, no component of CT should not be assumed
by default as fully trustworthy [28]. From these considerations, we propose to
design countermeasures to improve the security of CT.

Formulate Security, Unified and Standardized CT Implementation Standards.
The deviation between the new components introduced by CT and the origi-
nal system of PKI leads to the possibility that CT security enhancement cannot
completely cover the PKI ecological environment. For example, the scope of sup-
port of CA, the client’s implementation policy for CT (e.g., approved log servers,
update mechanism, implementation level, etc.). Establishing a unified and stan-
dardized implementation standard and data set will not limit the principles of
CT distributed security design, but it can effectively reduce the degradation
attacks caused by the deviation of each component.

Exploring the Security of Certificate Transparency in the Wild 467

Implement Security Measures for CT Services. CT auditor and monitor are
respectively used, to audit log behavior and find fraudulent certificates. There-
fore, similar audit mechanism should be implemented to detect the misbehav-
ior or problematic behavior of CT auditor and monitors, especially on ser-
vice reliability [28]. By integrating the resources and functions of the publicly
deployed auditors and monitors on the Internet, the online regular status evalu-
ation mechanism can be implemented to realize mutual supervision and redun-
dancy between them. For example, by regularly exchanging data (e.g., SCTs,
STHs, certificates), or requesting services based on the same domain name
test set, testing their quality, and realizing automated error cause analysis and
reporting.

Certificate Transparency as a Service. With the rapidly increase of certificates in
logs and the widespread use of CT on the clients, it is difficult for a monitor or a
auditor to have enough resources and capabilities to handle massive CT service
requests. Incapable of addressing this challenge leads to several issues [28], such
as erroneous certificate processing, delayed incident recovery, and also prevents
the instantiation of the auditor function, etc., which might lead to delayed or
failed detection of fraudulent certificates.

Therefore, certificate transparency, as a public security infrastructure, should
provide “certificate transparency as a service (CTaaS)”, certificate monitoring
and auditing services to the outside world [10,28]. CTaaS can be implemented
based on cloud computing platform, so as to achieve dynamic resource allocation,
unified and continuous service capability [28]. This can effectively mitigate the
impact of single point failure and limited resources on CT services.

5 Related Work

CT Deployment. The deployments of CT on the Internet are investigated
from various perspectives. Stark et al. [39] completed a comprehensive study of
CT deployment across the Internet, including compliance, user experience, and
potential risk. Nykvist et al. [35] studied the adoption of CT in Alexa Top-1M
websites and evaluated the performance of SCT delivery methods. Scheitle et al.
[38] analyzed the server-side deployment of CT, and discussed the subdomain
information leakage caused by the certificates in public logs. B. Li et al. con-
ducted systematic in-depth research and analysis on CT monitor from the per-
spectives of reliability [28] and TLS/HTTPS configurations [27] respectively.
Gustafsson et al. [23] characterized 11 public logs and highlight the differences
of certificates they record. Amann et al. [2] finished a large-scale study on the
adoption of various TLS/HTTPS security enhancements, including CT, HPKP,
HSTS, CAA, SCSV downgrade prevention and DANE.

CT Extensions. Following the basic CT framework, several designs were pro-
posed to improve the security and/or performance. Matsumoto et al. [30] studied
the incentives of parities in the PKI system to deploy log-based enhancement

468 B. Li et al.

schemes, and proposed the deployment status filters to detect the deployment
status of a domain against the downgrade attacks. Dowling et al. [11] defined
four security properties of logging schemes, and formally proved that CT imple-
ments these security properties. An efficient gossip protocol was proposed to
detect several types of log inconsistencies [5]. Eskandarian et al. [14] proposed
to audit a CT log without exposing user privacy by zero-knowledge proofs, and
with the support of non-public subdomains by commitments with binding and
hiding properties. Dahlberg et al. [10] proposed a verifiable light-weight monitor-
ing, which enabled users to verify the correctness of the certificate notification
from monitors. Tomescu et al. [40] introduced an append-only authenticated
dictionary to construct logs, to provide efficient append-only proofs and lookup
proofs.

TLS Certificate on the Internet. The certificates in public logs help to
understand the TLS/HTTPS ecosystem. Gasser et al. [15] used the certificates
in CT logs to investigate the violations of the baseline requirements for the
certificate issuance [4]. Cui et al. [9] analyzed multiple attributes of forged cer-
tificates in the wild, such as preferences, causes, and attributes. Aertsen et al. [1]
exploited the data obtained from several CT logs to study the certificate services
of Let’s Encrypt adopted in different organizations, hosts and domains. Vander-
Sloot et al. [42] attempted to present a complete view of the certificates in the
wild, by integrating the certificates in logs with data from passive measurement,
active scanning, and search engines.

6 Conclusion

In this paper, we analyze the overall CT framework and its components. We
find that, to achieve the design goal of CT, CT components themselves need to
formulate reasonable policies and implement them correctly, and each compo-
nent must ensure that it is more secure and reliable than regular TLS sessions
when exchanging information. Then, we analyze the security design of each com-
ponent of the CT framework and its impact on other components in practice.
The analysis results show that each component faces various challenges in the
implementation process, and its own policies and implementation methods can
influence other components to different degrees. If the CT components cannot be
deployed in a unified, coordinated, security and reasonably manner, an attacker
may launch an attack on any component. This makes CT unable to achieve its
intended purpose and thus conceals the fraudulent certificates exploited in the
MitM attacks on the target websites. Therefore, the overall security guarantees
of CT is jeopardized due to the weak protections of any components.

References

1. Aertsen, M., Korczynski, M., Moura, G., et al.: No domain left behind: is let’s
encrypt democratizing encryption? In: 2nd ANRW (2017)

Exploring the Security of Certificate Transparency in the Wild 469

2. Amann, J., Gasser, O., Scheitle, Q., et al.: Mission accomplished? HTTPS security
after DigiNotar. In: 17th IMC (2017)

3. Apple Inc: Certificate transparency in Apple (2018). https://support.apple.com/
en-us/HT205280

4. CA/Browser Forum: Baseline requirements for the issuance and management of
publicly-trusted certificates, version 1.6.1 (2018). https://cabforum.org/baseline-
requirements-documents/

5. Chuat, L., Szalachowski, P., Perrig, A., et al.: Efficient gossip protocols for verifying
the consistency of certificate logs. In: 3rd IEEE CNS (2015)

6. Cloudflare Inc: Explore the certificate transparency ecosystem (2018). https://ct.
cloudflare.com/

7. Comodo Group Inc: Comodo report of incident (2011). https://www.comodo.com/
Comodo-Fraud-Incident-2011-03-23.html

8. Cooper, D., Santesson, S., et al.: IETF RFC 5280 - Internet X.509 public key
infrastructure certificate and certificate revocation list (CRL) profile (2008)

9. Cui, M., Cao, Z., Xiong, G.: How is the forged certificates in the wild: practice
on large-scale SSL usage measurement and analysis. In: Shi, Y., et al. (eds.) ICCS
2018. LNCS, vol. 10862, pp. 654–667. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-93713-7 62

10. Dahlberg, R., Pulls, T.: Verifiable light-weight monitoring for certificate trans-
parency logs. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 171–183.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03638-6 11

11. Dowling, B., Günther, F., Herath, U., Stebila, D.: Secure logging schemes and
certificate transparency. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows,
C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 140–158. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45741-3 8

12. Eckersley, P.: A Syrian man-in-the-middle attack against Facebook (2011). https://
www.eff.org/deeplinks/2011/05/syrian-man-middle-against-facebook

13. Edgecombe, G.: Certificate transparency monitor (2018). https://ct.
grahamedgecombe.com/

14. Eskandarian, S., Messeri, E., Bonneau, J., et al.: Certificate transparency with
privacy. In: 17th PETS (2017)

15. Gasser, O., Hof, B., Helm, M., Korczynski, M., Holz, R., Carle, G.: In log we trust:
revealing poor security practices with certificate transparency logs and internet
measurements. In: Beverly, R., Smaragdakis, G., Feldmann, A. (eds.) PAM 2018.
LNCS, vol. 10771, pp. 173–185. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-76481-8 13

16. Google Inc: Certificate transparency over DNS (2016). https://github.com/google/
certificate-transparency-rfcs/blob/master/dns/draft-ct-over-dns.md

17. Google Inc: Certificate transparency (2018). http://www.certificate-transparency.
org/

18. Google Inc: Known logs (2018). http://www.certificate-transparency.org/known-
logs

19. Google Inc: Certificate transparency enforcement in google chrome (2020). https://
groups.google.com/a/chromium.org/forum/#!msg/ct-policy/wHILiYf31DE/
iMFmpMEkAQAJ

20. Google Inc: Changing the roots of the non-temporally-sharded Google Logs (2020).
https://groups.google.com/a/chromium.org/g/ct-policy/c/iOg8Jqc0XxU?pli=1

21. Google Inc: Chromium certificate transparency policy (2020). https://github.com/
chromium/ct-policy

https://support.apple.com/en-us/HT205280
https://support.apple.com/en-us/HT205280
https://cabforum.org/baseline-requirements-documents/
https://cabforum.org/baseline-requirements-documents/
https://ct.cloudflare.com/
https://ct.cloudflare.com/
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
https://doi.org/10.1007/978-3-319-93713-7_62
https://doi.org/10.1007/978-3-319-93713-7_62
https://doi.org/10.1007/978-3-030-03638-6_11
https://doi.org/10.1007/978-3-319-45741-3_8
https://www.eff.org/deeplinks/2011/05/syrian-man-middle-against-facebook
https://www.eff.org/deeplinks/2011/05/syrian-man-middle-against-facebook
https://ct.grahamedgecombe.com/
https://ct.grahamedgecombe.com/
https://doi.org/10.1007/978-3-319-76481-8_13
https://doi.org/10.1007/978-3-319-76481-8_13
https://github.com/google/certificate-transparency-rfcs/blob/master/dns/draft-ct-over-dns.md
https://github.com/google/certificate-transparency-rfcs/blob/master/dns/draft-ct-over-dns.md
http://www.certificate-transparency.org/
http://www.certificate-transparency.org/
http://www.certificate-transparency.org/known-logs
http://www.certificate-transparency.org/known-logs
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/wHILiYf31DE/iMFmpMEkAQAJ
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/wHILiYf31DE/iMFmpMEkAQAJ
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/wHILiYf31DE/iMFmpMEkAQAJ
https://groups.google.com/a/chromium.org/g/ct-policy/c/iOg8Jqc0XxU?pli=1
https://github.com/chromium/ct-policy
https://github.com/chromium/ct-policy

470 B. Li et al.

22. Google Inc: Continued Operation of Logs with Planned Turn Down Dates (2020).
https://groups.google.com/a/chromium.org/g/ct-policy/c/i1NFmE7txNE?pli=1

23. Gustafsson, J., Overier, G., Arlitt, M., Carlsson, N.: A first look at the CT land-
scape: certificate transparency logs in practice. In: Kaafar, M.A., Uhlig, S., Amann,
J. (eds.) PAM 2017. LNCS, vol. 10176, pp. 87–99. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-54328-4 7

24. Heather Adkins: An update on attempted man-in-the-middle attacks (2011).
https://security.googleblog.com/2011/08/update-on-attempted-man-in-middle.
html

25. Kent, S.: IETF Draft - Attack and Threat Model for Certificate Transparency
(2018)

26. Laurie, B., Langley, A., et al.: IETF RFC 6962 - Certificate transparency (2013)
27. Li, B., Chu, D., Lin, J., et al.: The weakest link of certificate transparency: exploring

the TLS/HTTPS configurations of third-party monitors. In: 18th IEEE TrustCom
(2019)

28. Li, B., Lin, J., Li, F., et al.: Certificate transparency in the wild: exploring the
reliability of monitors. In: 26th AMC CCS (2019)

29. Liu, Y., Tome, W., Zhang, L.: An end-to-end measurement of certificate revocation
in the web’s PKI. In: 15th IMC (2015)

30. Matsumoto, S., Szalachowski, P., Perrig, A.: Deployment challenges in log-based
PKI enhancements. In: 8th EuroSec (2015)

31. Microsoft Inc: Certificate transparency in Microsoft (2018). https://blogs.msdn.
microsoft.com/azuresecurity/2018/04/25/certificate-transparency/

32. Morton, B.: More Google fraudulent certificates (2014). https://www.entrust.com/
google-fraudulent-certificates/

33. Mozilla: Certificate transparency in Mozilla (2018). https://wiki.mozilla.org/PKI:
CT

34. Nginx: Certificate transparency in Nginx (2018). http://www.certificate-
transparency.org/resources-for-site-owners/nginx

35. Nykvist, C., Sjöström, L., Gustafsson, J., Carlsson, N.: Server-side adoption of
certificate transparency. In: Beverly, R., Smaragdakis, G., Feldmann, A. (eds.)
PAM 2018. LNCS, vol. 10771, pp. 186–199. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-76481-8 14

36. OpenSSL: Certificate transparency in OpenSSL (2018). https://www.openssl.org/
docs/man1.1.0/crypto/ct.html

37. Opsmate Inc: How Cert Spotter Parses 255 Million Certificates (2020). https://
sslmate.com/blog/post/how certspotter parses 255 million certificates

38. Scheitle, Q., Gasser, O., Nolte, T., et al.: The rise of certificate transparency and
its implications on the Internet ecosystem. In: 18th IMC (2018)

39. Stark, E., Sleevi, R., Muminovic, R., et al.: Does certificate transparency break
the web? Measuring adoption and error rate. In: 40th IEEE S&P (2019)

40. Tomescu, A., Bhupatiraju, V., Papadopoulos, D., et al.: Transparency logs via
append-only authenticated dictionaries. In: 26th ACM CCS (2019)

41. University of Michigan: Censys (2018). https://censys.io/
42. VanderSloot, B., Amann, J., et al.: Towards a complete view of the certificate

ecosystem. In: 16th IMC (2016)
43. Wikipedia: Flame (malware) (2017). https://en.wikipedia.org/wiki/Flame

(malware)
44. Wilson, K.: Distrusting new CNNIC certificates (2015). https://blog.mozilla.org/

security/2015/04/02/distrusting-new-cnnic-certificates/

https://groups.google.com/a/chromium.org/g/ct-policy/c/i1NFmE7txNE?pli=1
https://doi.org/10.1007/978-3-319-54328-4_7
https://doi.org/10.1007/978-3-319-54328-4_7
https://security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html
https://security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html
https://blogs.msdn.microsoft.com/azuresecurity/2018/04/25/certificate-transparency/
https://blogs.msdn.microsoft.com/azuresecurity/2018/04/25/certificate-transparency/
https://www.entrust.com/google-fraudulent-certificates/
https://www.entrust.com/google-fraudulent-certificates/
https://wiki.mozilla.org/PKI:CT
https://wiki.mozilla.org/PKI:CT
http://www.certificate-transparency.org/resources-for-site-owners/nginx
http://www.certificate-transparency.org/resources-for-site-owners/nginx
https://doi.org/10.1007/978-3-319-76481-8_14
https://doi.org/10.1007/978-3-319-76481-8_14
https://www.openssl.org/docs/man1.1.0/crypto/ct.html
https://www.openssl.org/docs/man1.1.0/crypto/ct.html
https://sslmate.com/blog/post/how_certspotter_parses_255_million_certificates
https://sslmate.com/blog/post/how_certspotter_parses_255_million_certificates
https://censys.io/
https://en.wikipedia.org/wiki/Flame_(malware)
https://en.wikipedia.org/wiki/Flame_(malware)
https://blog.mozilla.org/security/2015/04/02/distrusting-new-cnnic-certificates/
https://blog.mozilla.org/security/2015/04/02/distrusting-new-cnnic-certificates/

SecMT – Security in Mobile
Technologies

DaVinci : Android App Analysis Beyond
Frida via Dynamic System Call

Instrumentation

Alexander Druffel(B) and Kris Heid

Fraunhofer Institute for Secure Information Technology, Darmstadt, Germany
{alexander.druffel,kris.heid}@sit.fraunhofer.de

Abstract. Today there are billions of mobile Android devices and the
corresponding app stores contain millions of different apps. Due to their
access to personal data and their commonly closed source nature, pro-
gram analysis remains the only instrument to analyze app behavior and
protect user data. At the same time, many measures for hardening apps
have been developed to make analysis more difficult and to hide the inner
workings of applications, making dynamic analysis a time-consuming
task. We propose DaVinci, an Android kernel module for system call
hooking, which allows a fully transparent and scalable dynamic analysis.
DaVinci comes with preconfigured high level profiles to easily analyze
the low level system calls. DaVinci works even on hardened apps with-
out manual adjustments where common tools like Frida fail or require
exhausting reverse engineering. We evaluate our approach against state-
of-the-art hardening measures in a custom app as well as several hard-
ened real-world examples and find that we successfully overcome all pro-
tection measures even when other tools fail. Our framework will be open-
sourced and made available to the research and security communities.

Keywords: Android · Hooking · Program analysis · Kernel ·
Rootkit · Instrumentation

1 Introduction

In the current market for mobile devices, Android remains the most popular
operating system with over 85% market share in 2020 [13]. Thus, the number of
apps in the largest Android app store (Google Play Store) is also steadily grow-
ing. Due to the sensitive data that smartphones come into contact with during
their everyday usage and the fact that apps in the Play store are distributed
without access to the source code, users can be at risk through malicious or
vulnerable code in the apps. Google conducts basic behavioral analysis of all
uploaded apps to prevent such malware from entering their store. However, the
exact nature of the analysis is kept secret and prior work has shown successful
methods of hiding malicious code from analysis [6]. Even if apps do not contain
known malware, they can exhibit undesired behavior, such as collecting and
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 473–489, 2020.
https://doi.org/10.1007/978-3-030-61638-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_26&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_26

474 A. Druffel and K. Heid

sending personal data without the user’s explicit consent. Google added a per-
mission system to Android as a first privacy protection measure, allowing users
to grant or restrict access to protected resources such as location data or the
camera. Over the years, permission granularity has continuously improved, such
that explicit consent is now required during access to the resource at runtime.
While it provides an overview of the resources that an app accesses, it does not
provide any information on exactly what happens with the acquired data and
whether privacy is violated. For example, a navigation app has a legitimate rea-
son to access location data and connect to the internet, but users may not want
their location data to be shared with the developer or third parties.

Static and dynamic code analysis are techniques to understand what an app
does besides what is presented to the user. These methods are used to identify
hidden code and vulnerabilities in apps. The results can be useful for end users to
protect their privacy, as well as companies who might want to generate white or
black lists of applications to protect their data. In addition, antivirus companies
and researchers use the same techniques to analyze applications or potential
malware.

While static code analysis works by disassembling the program and analyzing
the recovered code, reconstructing control flow graphs and data dependencies,
dynamic analysis manipulates function calls and system interaction of an app
during runtime. Both methods offer complementary results, and depending on
the task and app, one or both are appropriate. Some apps, such as online banking
apps, streaming apps with protected content, games with anti-cheating protec-
tion, or malware, often contain various measures to prevent static and dynamic
analysis to protect their code or assets. In banking apps, code obfuscation is
implemented to protect the user and to prevent fraud. Apps with copyrighted
content, such as streaming apps, use these measures to prevent the extraction
of the copyrighted material to prevent piracy. Game developers want to prevent
cheating, and malware apps often use obfuscation to hide their malicious behav-
ior and remain undetected for as long as possible. That presents analysts with
the problem that analysis of those apps consumes significantly more resources
and time.

In addition, although most Android apps contain only Java bytecode, some
apps also include native libraries written in C or C++ that are loaded at run-
time via the Java Native Interface (JNI). This effectively breaks many analysis
frameworks that only consider the Java bytecode and do not provide functional-
ity to analyze the native code, as hiding functionality in native code is an easy
and effective strategy to defeat those frameworks.

This leads to a perpetual arms race between the developers of app protection
frameworks who try to make reverse engineering as difficult as possible and the
developers of program analysis tools who try to provide insight into even the
most protected apps.

In this work, we try to stop the arms race and propose a barely detectable
dynamic analysis method. We propose a configurable kernel module for selec-
tively hooking and manipulating system calls. We offer a comfortable interface

DaVinci : Android App Analysis 475

to remotely control and configure the kernel module and custom hooks or load
reconfigured profiles. Using a kernel module for dynamic analysis, removes obvi-
ous side channels and hides our approach well. Other dynamic analysis tools
are much easier detectable by anti-analysis libraries and require manual adjust-
ments by the analyst for each analysis target. DaVinci is therefore well suited
for large-scale automated analysis, as we will demonstrate a generic bypass of
all anti-dynamic-analysis measures we found in the wild.

We include features for tracing, hooking and blocking system calls in a recon-
figurable and workflow-oriented manner that speeds up dynamic analysis of apps
and is designed to work with hardened applications. Despite efforts to harden
current Android versions by restricting available system calls using the seccomp
feature of the kernel, the vast majority of system calls is still available to appli-
cations, and they remain the only way of interacting with the system, meaning
that restriction for security reasons can limit features, which results in a con-
flict of interest for manufacturers. Some processes are sandboxed and therefore
further restricted, with renderer threads in web browsers being a prominent
example, but Android applications in general have a broad variety of system
calls to interact with the system.

We are aware that kernel modules on Linux are not new, but are quite uncom-
mon in Android and there exist no publications in the area of dynamic analysis
via kernel modules on Android.

We would like to emphasize that while our tool is capable of analyzing hard-
ened applications in detail, it does not pose any risk to users and our results
should not be seen as a vulnerability of the Android system or the analyzed
apps. It is not suitable as a hacking tool as it requires root privileges and,
depending on the Android version, even a customized kernel build.

In Sect. 2 we list related approaches and highlight our improvements in con-
trast. Section 3 shows the working principle and features of DaVinci. Section 4
evaluates our design against hardened apps, malware and a customized root-
detection app. This section also shows scenarios, where state-of-the-art tools
like Frida fail or would require complex workarounds as well as a performance
comparison discussion. Finally, we give a short conclusion and an outlook on
future work.

2 Related Work

Dynamic app analysis is still an effective approach to program analysis that
complements static analysis methods well. In the 12 years since the first Android
release, many approaches have been proposed and implemented [4]. Due to the
Java Native Interface (JNI), Android applications, which normally consist of
Java bytecode, can load shared-object libraries at runtime and move functional-
ity into native code. This bypasses many existing approaches working on byte-
code.

Most dynamic analysis tools, such as debuggers and tracers, use the ptrace
system call to implement process instrumentation. Classic dynamic analysis

476 A. Druffel and K. Heid

approaches such as debugging can be slow and difficult to set up generically,
since they usually require manual analysis of each target application to find
relevant breakpoint locations. However, many modern operating systems limit
the use of ptrace to improve integrity, and there are also many anti-debugging
techniques for detecting ptrace within applications themselves.

The Xposed [14] framework takes a different approach. Xposed injects itself
into applications by modifying the zygote process from which all apps are forked,
and overlays functions and symbols with custom ones. It includes an interface to
write modules with custom code, making it very extensible. This allows generic
hooking of Java functions. A drawback of this approach is that it only operates
on function granularity, which can be too coarse for analysis, and native code is
not considered either.

Compared to Xposed, the dynamic analysis toolkit Frida [7] has fewer limi-
tations. It allows instrumentation of native code and Java byte-code but is also
limited to basic block granularity. Also, system calls can only be intercepted at
the wrapper function level, like at the libc and Java runtime. This means that
Frida’s interception can be bypassed with inline assembly system calls, which is
a problem because analysts need to be able to intercept all system interactions.

CopperDroid [22] and CuckooDroid [5] take a potentially more powerful sand-
box based approach. Both works use an Android emulator to implement a sand-
box for dynamic analysis. We note that CuckooDroid, since it uses the Xposed
framework internally, inherits its constraints.

The use of emulators generally provides good access, monitoring and inter-
ception possibilities. However, it is relatively easy for apps to detect the emula-
tion [20] and possibly obfuscate their behavior.

To overcome the limitations of previous approaches, we propose implementing
analysis in the kernel space, transparent to applications. There are many kernel
space tracing and filtering tools such as Kprobes [8], eBPF [9] or LTTng [10],
but they do not offer arbitrary system call manipulation, which is essential since
we need to hide data that discloses our analysis to the application. A kernel
module for macOS, especially targeting malware detection, is presented in [19].
This approach traces system calls and through pattern analysis similar to [15],
the kernel module succeeds in reliably detecting malware with a low false nega-
tive rate. Since this approach aims to detect malware patterns without defending
against them, it lacks instrumentation functionality. In [18], the authors used a
similar approach to implement a debugger without using ptrace, by implement-
ing the features in a kernel module. Their goal was to defeat debugger-detection
and provide an easier user experience than traditional debuggers. One notable
difference to our approach is that it is not able to be automated for applications
without symbols. For example intercepting a certain system call only works on
the libc function layer and not on inline assembly, which requires manual analy-
sis. It also does not fully work on ARM, as some of the uprobes features it relies
upon are not available on ARM.

The kernel module for dynamic binary translation of kernel code presented
in [16] allows kernel code instrumentation and could therefore be used for an

DaVinci : Android App Analysis 477

approach similar to ours. However, at this time, it is only a proposed frame-
work, the code is not maintained and it does not implement our use case, which
is scalable and dynamically reconfigurable system call instrumentation for appli-
cation analysis.

2.1 Contribution

In contrast to related approaches, we see two main novel contributions in
DaVinci:

1. Dynamic application analysis from kernel space, which is hardly detectable
by the analyzed app, even with commercial hardening solutions.

2. Compared to other kernel space analysis tools, we offer a more powerful hook-
ing interface that not only traces system calls, but also allows arbitrary manip-
ulation.

3 Overview of DaVinci

Our approach circumvents the aforementioned limitations of other dynamic anal-
ysis frameworks by working on a different analysis layer. We change the system
call table and dispatch into custom functions and therefore can intercept all
system calls made by all processes. To achieve this, we have developed a kernel
module that locates the system call table and overwrites the function pointers
of the system calls we are interested in with pointers to the functions of the
kernel module. We implement filtering, logging and manipulation of parameters
and return values. This technique is commonly used in rootkits to hide their
presence and activity [1,3], and we use the same approach to hide our analysis
tool (Fig. 1).

Fig. 1. High level overview of our architecture

478 A. Druffel and K. Heid

3.1 Non-invasive Instrumentation

Because this approach hooks the system calls made by all processes on the
entire system, we must first filter out all calls that were not made by our target
application. To have a reliable filter, we take advantage of the fact that each app
installed on an Android system is assigned a new Linux user id and all processes
that are spawned in the application life cycle are bound to that user id. This way
we can verify the user id of the calling process for each system call and dispatch
to the original handler if it does not come from the target app. While android
allows developers to specify a shared user id for multiple of their apps, this does
not cause problems for DaVinci, as these apps can also run in the same process
and in the same JVM, therefore making it the same target for all intents and
purposes. Some system calls are invoked at a very high rate and usually most do
not come from the target app. Therefore, it is important to keep the common
case runtime overhead low. For this reason, user ids are always filtered as the
first step. For relevant system calls, the occurrence, the parameters and return
value can be logged in a configurable logging measure. We implemented logging
to a file, to the kernel message buffer, and over a custom in-module network
stack to a remote server, with the last option being the least detectable.

3.2 System Call Hooking

For some dynamic analysis tasks, it can be useful to change the result of a system
call based on a condition. Our approach can actively change and manipulate
parameters and results of system calls, thereby break integrity assumptions made
by application developers. This feature is missing on most other kernel-space
instrumentation approaches. For example, some apps try to detect if they are
running on a rooted device, and one of the measures to detect this is to look for
a program called su(switch user) in the usual program folders. The su program
is normally not present on Android and is usually placed during rooting and
allows elevating privileges from a normal user to the root user. Therefore, the
app can assume that the device is rooted when the binary is found. However,
an analyst might want to analyze such an app from their rooted device to use
analysis tools that require root privileges. The analyst could now intercept all
filesystem related system calls with DaVinci, check the filename parameter and
manipulate the return value of the system call if the filename equals su. Due to
the nature of our approach, it does not matter how the app performs this check.
The Android Java API, for example File.exists(), the libc function access()
or raw assembly all end up using the same system calls.

Listing 1.1 shows an excerpt from the log of filesystem related system calls
by a banking app during startup. We can see how it searches for the su binary.
In line 7 one can see that our hooking framework has manipulated the return
value from 0 to 2 to hide the /sbin/su present file.

Manipulations that go beyond simple return value overrides require more
complex logic. For example, if the app under test uses the system call getdents

DaVinci : Android App Analysis 479

Listing 1.1. Excerpt of system calls of the Commerzbank app

1 LOG: openat(dfd:64 pathname:‘‘/property contexts’’ flags:256) = −2
2 [...]
3 LOG: newfstatat(dfd:64 pathname:‘‘/vendor’’ flags:256) = 0
4 HOOK: newfstatat(dfd:64 pathname:‘‘/sbin/su’’ flags:0) = 2
5 [...]
6 HOOK: newfstatat(dfd:64 pathname:‘‘/vendor/xbin/su’’ flags:0) = 2
7 HOOK: newfstatat(dfd:64 pathname:‘‘/sbin/su’’ flags:0) = 2 <− 0
8 HOOK: newfstatat(dfd:64 pathname:‘‘/system/sbin/su’’ flags:0) = 2
9 [...]

10 HOOK: newfstatat(dfd:64 pathname:‘‘/vendor/xbin/su’’ flags:0) = 2

to get all directory entries and search these for the su binary, we need to manip-
ulate the buffer into which the directory entries are written.

To speed up the dynamic analysis workflow, we designed DaVinci for dynamic
reconfiguration at runtime. There are several options, with a configuration pro-
gram running in userspace being the simplest. The program communicates with
the kernel module via an exposed kernel device. Alternatively, DaVinci can be
configured via its hidden network stack. Since we have not implemented any kind
of configuration verification, any party could change the configuration. There-
fore, we strongly advise against using DaVinci outside a trusted lab environment.

3.3 High Level Common Analysis Profiles

Since there are a lot of system calls on Linux that can reveal the existence of a
file, it would be cumbersome to hook each one individually every time. Therefore,
we have created profiles that summarize common manipulation goals for analysis
into profiles. They consist of a single setting in our module, for example to hide
a particular file described by name, and sets up hooks for all system calls that
interact with the file system, including checks and manipulations to hide any
result or side effect of a system call that would reveal the existence of the file.
We deemed this useful and necessary because hiding a file requires a total of 45
system calls to be hooked to intercept every possible system call for this fairly
common analysis goal. Since many rooting and emulator detection approaches
look for specific files, this should speed up analysis considerably.

We included profiles for the following common tasks:

– Transparently disable filesystem modifications
– Hiding specific files
– Create a virtual filesystem overlay
– Filter network traffic.

Filesystem overlays can be used to provide custom files such as known-good
configuration and device property files, which are commonly checked in anti
analysis code. To do this, we hook every system call that takes a filename and

480 A. Druffel and K. Heid

replace the path with a specifiable one if it matches, so the analyst only needs
to place a known-good file somewhere on the device.

Unlike other tools that isolate programs into filesystem or network names-
paces to secure the system, our tool can offer a common environment for apps to
trigger code paths behind environmental checks. For example, if an application
tries to write a file and terminates if the write fails, our toolkit can manipulate
the system call to prevent the actual change from happening, but give the pro-
gram a return value indicating a successful write. Further work could expand to
dynamic virtual files that exist purely in kernel memory, for cases where the app
is trying to verify that the data was actually written.

As our target user base are application analysts, DaVinci can be integrated
with other common dynamic analysis tools like Frida or XPosed if the application
under test implements advanced anti-analysis techniques to bypass their way of
intercepting system interaction. This would enable to use the mature plugin-base
of these tools without the need to re-implement the needed features as kernel
driver code in C, which has a high complexity and might be time-consuming.

4 Evaluation

To evaluate our approach, we verify that DaVinci is not detected by commercially
hardened applications and common malware evasion techniques. In addition, we
highlight real world targets where other tools such as Frida are unable to bypass
protection measures, while DaVinci is successful, which underlines our contribu-
tion. We evaluate our approach on a real device, as well as on an emulator, both
running Android 10, the most recent version available during evaluation. To fur-
ther evaluate with known behavior, we developed a testing app that implements
all previously mentioned techniques for detecting if it is running on a legitimate
device without being analyzed. We started by evaluating the effectiveness by
testing 14 hardened apps from the Google Play Store.

In the next step, we extended the open-source root-detection app
RootBeer [12] with a multitude of additional checks, including anti-debugging,
anti-root, anti-emulator and anti-hooking code to evaluate if our kernel module
manages to hide its presence.

Finally, we analyzed six malware samples to look for more common malware
anti-analysis patterns. The numbers were chosen as each app required manual
analysis to confirm our results and to help develop profiles for common analysis
goals, laying the foundation for a future comprehensive large-scale analysis. We
explain the process for two hardened apps and one malware sample in more detail
to demonstrate the capabilities of our approach and highlight the workflow. As
a last step, we discuss the performance overhead introduced by our method in
contrast to other approaches.

4.1 Hardened Apps from the Store

We found a variety of different obfuscators, application packers, anti-debugging
and anti-emulator measures, as well as VM detection measures, in mobile

DaVinci : Android App Analysis 481

Table 1. Test apps with detected measures (- = not detected)

No. App & Version Obfuscator Packer Anti-analysis

1 de.brillux.brilluxapp-3.2.2 - dxmerge properties

2 com.commerzbank.mobilebanking-1.0.0 Arxan Promon API, properties

3 com.commerzbank.photoTAN-7.1.16 llvm 3.5 Promon -

4 com.commerzbank.msb-2.3.0 Arxan - API, properties

5 com.secneo.guard-1.0 SecNeo Bangcle ARM-only

6 com.phone.calller.locator-2.2.2 - Jiagu -

7 com.readdle.spark-5.0.1 DexGuard,

llvm 3.5

- Invalid classes,

properties

8 com.sand.airdroid-4.1.0.4 - DexProtector properties

9 de.datev.smartlogin-2.0.4 - - API, properties

10 com.dring.juice.cocktail.simulator.relax-4.0 Unknown Tencent Protect ARM-only,

properties

11 com.tgelec.kidssmartwatch-1.0.0 - Ijiami, upx ARM-only,

properties

12 com.nineton.best.line-1.8.3 llvm 3.5 Jiagu -

13 com.hawsoft.mobile.speechtrans-1.4.5 llvm 3.6.1 Jiagu -

14 com.supercell.clashofclans-13.180.8 - - ARM-only,

properties

applications. The initial analysis was performed using an open source hardening-
measures identifier called APKiD [2], which gives a first overview over the hard-
ening measures taken. We used this to filter a larger set of apps for samples with
unique combinations of hardening measures. We selected a unique combination
of detected code obfuscators, packers and detected anti-analysis techniques to
get samples from the most popular hardening frameworks. A list of which is
shown in Table 1. We do note that this list is not comprehensive and serves as a
proof of concept and a more comprehensive analysis of a large scale sample set
of applications is left as future work. We focus on hardened applications, since
this is the use case where our approach offers functionality beyond that of exist-
ing tools. During analysis, we were able to overcome the protection mechanisms
from all tested apps.

We assume that the apps do not implement different levels of protection, and
once the application starts and performs its tasks rather than exiting, we have
overcome the protection measures. Since we do not have access to the source code
we have to make this assumption. Nevertheless, it would be theoretically possible
to have a multi-stage anti-analysis detection mechanism and that certain features
are step by step enabled with increasing anti-analysis test stages for more critical
components. For example: reading the balance of a bank account may be less
secured than actual transactions. However, we can not check this claim without
source code access, and we also consider this unlikely for a legitimate application.

In the following, we will for brevity pick two sample apps for a more in depth
example. We discuss the mechanisms used and how they were overcome with
DaVinci. The methods are similar for other hardening frameworks.

482 A. Druffel and K. Heid

Finance: Commerzbank App. To get an idea of the measures taken by the
app, we first enable logging of all system calls for the app and run it. During
startup, we see an error message informing us that the app detected an untrust-
worthy environment and is refusing to continue running. We observed in our
system call log that the app uses the openat call to read several device property
files and uses the newfstatat system call at multiple candidate locations to look
for a su binary. Since we run our analysis on a rooted device, the app eventually
checks the correct location of su and shows the error message. In the next step
we configured DaVinci to modify the return code of newfstatat if the filename
matches su. Restarting the app with this hook enabled results in the successful
start of the app, like shown in Fig. 2. With this, we consider the anti-root mecha-
nisms of the app defeated. This hook can easily be activated through loading the
“hide files” profile described in Sect. 3.3. This includes hooks for all system calls
with interact with the file system and filter out results and side channels for the
presence of su binaries. Therefore, just enabling this profile enables execution
and further analysis of the application.

To compare our approach with Frida as an example of a userspace based
analysis toolkit, we also tried to circumvent the root detection using many pub-
licly available Frida scripts that claimed such functionality, but found that the
application was especially hardened against Frida and kept crashing during start
up when Frida was enabled, even when no script was loaded.

With manual static analysis we found out that the app implemented its own
signal handlers for breakpoints as anti-debugging measure, which breaks the
analysis foundation of Frida, as Frida uses ptrace to hook onto processes and
interact with them. So to analyze this app with Frida, manual reverse engineering
and customization is necessary to defeat these specific Anti-Frida methods. This
is an example of the anti-debugging arms race we explained in Sect. 1.

Mobile 3D Games: Clash of Clans. Another example we discuss in more
detail is Clash of Clans, a very popular 3D game for Android. We chose this
example because it is protected and offers special challenges, as it only ships
the ARM version of its native libraries and does not run in any of the ARM
emulators we tested, presumably because of performance reasons and missing
3D cross-architecture acceleration. It also uses many system calls and we can see
the real world performance overhead of our analysis. Again, we first traced all
system calls of the application and found checks for debuggers and su binaries in
the log. One challenge we encountered was that certain system calls are used so
frequently in this game, namely read and write, that logging them to the kernel
buffer crashed the device. This means that we need to consider overhead here
and not log unnecessary calls or choose to log over the network, instead of the
kernel message log. The anti-debugger checks were defeated trivially, as we did
not rely on debugging measures and the root detection was defeated in the same
way as explained in the previous example. We found that we were able to bypass
the anti analysis checks and progress to the actual game without a perceivable
performance penalty. When trying to achieve the same with Frida, we found

DaVinci : Android App Analysis 483

(a) Error screen: detected
rooted device

(b) Successful login screen after
activating DaVinci

Fig. 2. The Commerzbank app on a rooted device

that the app also contains measures to detect Frida. This time the app tried to
connect to the Unix socket that Frida uses internally for communication between
the analysis client and the Frida daemon. Again, manual reverse engineering is
required to patch or hook those anti-analysis measures, hindering scalability of
automated analysis based on Frida on hardened apps.

4.2 Anti-analysis Testapp

Finally, we built our own app to implement all anti-analysis checks we found
and test our hooks. We based our app on RootBeer [12], an open source app for
android that checks if the device is rooted. We extended the list of implemented
root detection checks and implemented additional anti-debugging measures as
described in the following list. As a result, the modified RootBeer app should
contain most state of the art hardening measures against dynamic analysis con-
densed into one app. DaVinci is able to successfully hide from all checks in the
app with our preconfigured profiles.

Detecting Root. Many hardened apps are designed to not run on rooted
smartphones or custom roms and use these or similar measures.

– Existence of Magisk, SuperSU, Luckypatcher or other common ROM/Root
Manager apps.

484 A. Druffel and K. Heid

– Test-keys tag in the kernel signature.
– Developer properties such as ro.debuggable=1.
– Existence of su or busybox binaries.
– Writable file system partitions that should be mounted as read-only.

Detecting Debuggers. To detect the presence of a debugger like gdb or the
Android Studio Java debugger, we implemented the following measures:

– Debug.isDebuggerConnected() API to check for Java debuggers.
– Using ptrace on our own process multiple times.
– Checking /proc/self/status for a non-zero entry on the TracerPid field.
– Defining a SIGTRAP handler and executing software breakpoints.
– Reading /proc/self/cmdline and verifying the process name.

Detecting Emulators. We use most methods described in [23] to check the
runtime environment. Advanced techniques for emulation detection via side
channels are currently out of scope and will remain as future work.

– Using a native library in ARM. This requires an ARM emulator, which sig-
nificantly slows down analysis.

– Checking if there are traces of qemu, e.g. the kernel device /sys/qemu trace,
and the file /system/bin/qemud, since it is the default Android Studio ARM
emulator.

– Checking if the CPU info contains Goldfish, the name of the official Android
emulator.

– Checking for hardware-specific values like described in [20]: ethernet inter-
faces, product and device name, phone properties (IMEI, SIM, Number,
Voicemail number and mobile carrier).

Detecting Hooking Frameworks. The following methods are implemented
to check for the presence of the most common hooking frameworks:

– Checking loaded libraries under /proc/self/maps for common tools. e.g.
Frida-agent-32.so.

– Scanning the mapped memory pages for known strings and values from hook-
ing frameworks. Frida for example loads the v8 JavaScript engine into the
memory space, which is identifiable by the strings in the code.

– Scanning the list of installed apps for hooking tools.

Detecting Runtime Modifications. A common technique for defeating
anti-debugging techniques is to unpack the application and simply remove the
code and then package the app again. To harden our app against this, we imple-
mented the following measures.

– Verification of the signature of the running app to see if it matches the one
in the package manager.

DaVinci : Android App Analysis 485

– Continuous checksum generation of the code to detect modifications or break-
points during runtime.

Most of the anti-analysis techniques we have found are trivially bypassed
with DaVinci, since they rely on system call results. We do not use ptrace,
which defeats self-ptracing and debugger detection measures. We do not cause
differences in the memory layout of the program, as Frida would, and therefore
scanning memory pages and loaded libraries does not detect DaVinci. We do
not install a custom app, like XPosed would, therefore scanning installed apps
does not reveal our toolkit. We do not manipulate the app, which means that
integrity verification measures can not reveal the analysis.

Popular hardened apps having special checks against Frida is most likely
based on the fact that Frida is one of the most popular tools for dynamic anal-
ysis on Android and our approach only existed in our lab environment. If our
approach becomes more popular and widespread, application developers could
try to specifically harden against DaVinci too. The options for this are how-
ever limited, as we will discuss now by proposing different techniques by which
DaVinci can be detected from userspace.

One theoretical measure would be to use proceedings in rootkit detection
from userspace, like [21] or [17]. These approaches either rely on information
that is not exposed to the userspace anymore or require a priori knowledge
to measure timing data on the system prior to enabling the hooks in DaVinci
to successfully detect it, which can be circumvented by the analyst by loading
DaVinci before starting the app under test. In general, most userspace based
rootkit detection approaches rely on either timing side channels or data supplied
by the kernel, which makes such approaches either dependent on gathering prior
data, as Android devices vary greatly in hardware and performance metrics, or
on system calls, which could always be manipulated by us. We note that this
might require a one-time cost of implementing the correct response to a new
heuristic to detect kernel modifications or runtime details that DaVinci doesn’t
handle yet.

We did not implement these techniques and leave this area for further
research, as the authors did not make their tools publicly available and the
scenario does not apply to our use case, as previous measurements have to be
made to detect changes at runtime and in our case we always load the analysis
before starting the app.

Another measure an app developer could take is to use Google’s SafetyNet
Attestation API, which provides developers a fresh, signed assessment of the
device integrity from the Google Playstore Services itself at runtime. Intercept-
ing and manipulating this result would not be sufficient, as we are unable to
forge the cryptographic signature. However, our analysis toolkit does not need
to change the result, as our full analysis setup passes the SafetyNet test on
Android 10. Because SafetyNet’s internals are kept secret by Google, we assume
that it is overly careful to avoid creating false negative reports, and that the
rooting tool we use is not detected. Many newer rooting frameworks manage
to achieve this through means of union mounting the system partition to leave

486 A. Druffel and K. Heid

the original system partition unchanged [11], allowing us to analyze apps on a
rooted Android device with a custom kernel booted, DaVinci loaded and the
SafetyNet API reporting a fully trustworthy device. We mention here that using
Xposed causes SafetyNet to consider the device untrustworthy, as the zygote
file on the system partition gets modified. In order to work around a SafetyNet
result that indicates our analysis framework as untrustworthy, another approach
is required. For example patching out the check in the app itself or use in-app
hooking or debugging to change behavior after the result is received.

4.3 Malware

We analyzed some malware samples from the Android Malware Genome
Project [24] to test the stability of our approach and learn about potential fur-
ther techniques that apps might use. The Genome Project was chosen, since it
contains an exhaustive list of malware, also used in previous research. However,
it is currently not maintained and samples are a few years old, which leaves a
more broad analysis on more recent samples as future work. Table 2 shows the
six randomly chosen malware samples and the hardening measures detected by
APKiD. Since manual analysis is required to confirm our findings, we could not
analyze all samples and decided to randomly pick six, but we quickly realized
that the behavior is often very similar.

Again, as an example to demonstrate the capabilities of DaVinci, we have
analyzed malware app 1 and will discuss the results in more detail. The procedure
for the other malware samples was quite similar, and we were able to identify the
behavior of all samples using our toolkit. We initially enabled the no-filesystem-
modification and no-network-communication hooking profiles to minimize the
risk of compromising our device and invalidating further results. In the logs, we
observe that the malware attempts to contact a command and control server. The
malware attempts to transmit a device fingerprint, consisting of unique device
identification values such as the IMEI, local time, location, language and device
model to the server. Additionally, the app searches for its own process details in
/proc/self. Without network connection, no further actions can be observed
because blocking requests are used in the malware. To verify our observation,
we use static reverse engineering methods to analyze the malware. We find the
properties to be passed, in addition we find binaries to root the device, along
with a tool for taking screenshots and one for installing and removing apps. No
further hardening against dynamic analysis was detected, except the Java API
check to find debuggers, which resulted in the /proc/self access.

As we can see, DaVinci provides adequate protection against persistence and
botnet code, as well as analysis capabilities for malware.

DaVinci : Android App Analysis 487

Table 2. Malware with detected measures (- = not detected)

No. SHA256 start Obfuscator Packer Anti-analysis

1 04f9634fe910 - APKProtect properties

2 05e8e162979c - APKProtect properties

3 049a64f049d9 - Qihoo 360 properties

4 040f1be49973 - Bangcle -

5 04a22268aad7 llvm Baidu API

6 06ed56758a7c - APKProtect -

4.4 Performance Evaluation

Since measuring precise performance overhead for kernel code is significantly
more complex than in userspace, we confine our performance evaluation to an
informal discussion. One reason for this is the need to consider kernel thread
scheduling, which introduces a variability of results that is difficult to control.
And since DaVinci is a framework, actual overhead is highly dependent on the
runtime of the used hooks and the frequency of the hooked system call. Load-
ing the kernel module and not tracing anything induces zero overhead. When
intercepting a system call, the general overhead for the rest of the processes is
limited as only one additional indirect branch is performed on the fast path. The
hooked function compares the user id of the process with the configuration and
jumps to the original handler. Due to branch prediction, this induces only a min-
imal overhead, as the instructions for the branch are already prefetched. For the
application under test, our approach has a significantly smaller overhead than
Frida, as our hooks are implemented in C and not in interpreted JavaScript.
We found that our approach is stable, if logging is either done over the net-
work or rate limited for the kernel message buffer. Otherwise, system crashes
have been observed when logging without rate limiting of high-frequency system
calls, like read and write, which occurred thousands of times per second on
some applications. Our experimental evaluation confirmed our intuition, as the
system remained responsive and no perceivable difference was found when using
the applications under test. Since our approach is intended for software ana-
lysts and not day-to-day usage, a performance overhead beneath the perceivable
threshold is most likely acceptable, as most of the time in analysis is often spent
developing custom analysis code and evaluating the results and runtime is only
a small factor.

5 Conclusion and Future Work

In this work, we have presented DaVinci, a novel approach for dynamic android
app analysis, which allows fast and scalable analysis where existing approaches
have severe limitations or require tedious manual analysis. The presented tool

488 A. Druffel and K. Heid

allows for dynamic system call instrumentation and reconfiguration while ana-
lyzing the whole process, meaning all code is considered. In contrast to existing
userspace based tools, system calls can no longer be hidden from the analysis and
anti-debugging measures are not effective. We have shown, that our approach
works well for several classes of hardened apps, including banking, anti cheating
and malware. Additionally, we have evaluated DaVinci against several state-of-
the-art anti-analysis checks. With these results, we also show that detecting our
approach is barely possible. We see three promising topics for future research:
detailed inter process communication analysis, high level behavior reconstruc-
tion from system call behavior and improved virtual environment modeling, for
example in the filesystem. Analysis of the inter process communication would be
helpful to for example detect confused deputy attacks and find connections to
different apps to extend analysis to. For this, the Android IPC system (Android
Intents), which use the ioctl system call on the /dev/binder device with serial-
ized Java data, would need to be analyzed in depth, including target analysis and
monitoring which apps receive the messages. Decoding of the data of Intents
has shown itself to be a complex problem. CopperDroid [22] explored this direc-
tion and could be a valuable addition to this toolkit. Custom hooking logic based
on different IPC messages could be very valuable in modeling the system and
analyzing interactions between app families. This can be generalized into recov-
ery of high-level behavior from system call traces. This would allow to further
accelerate the analysis process for apps. Regarding the virtual environment, it
would be helpful to not only be able to block modifications to the filesystem, but
also allow writes to files without actual filesystem modifications, for example in
purely virtual files that live in kernel memory and only exist in the context of the
analysis. With this, an app could interact more and may progress into deeper
code paths without the dangers of allowing file system access to untrusted code.
We plan to open-source DaVinci soon.

References

1. Android platform based linux kernel rootkit. http://www.phrack.org/issues/68/6.
html

2. Apkid github. https://github.com/rednaga/APKiD
3. Bypassing integrity checking systems. http://phrack.org/issues/51/9.html#article
4. Collection of android security related resources. https://github.com/ashishb/

android-security-awesome
5. Cuckoodroid. https://github.com/idanr1986/cuckoodroid-2.0
6. Dissecting the android bouncer. https://jon.oberheide.org/files/summercon12-

bouncer.pdf
7. Frida binary instrumentation toolkit. https://frida.re
8. Kernel debugging with kprobes. https://www.ibm.com/developerworks/library/l-

kprobes/index.html
9. Kernel tracing with ebpf - unlocking god mode on linux. https://media.ccc.de/v/

35c3-9532-kernel tracing with ebpf
10. Lttng. https://lttng.org/
11. Magisk. https://github.com/topjohnwu/Magisk

http://www.phrack.org/issues/68/6.html
http://www.phrack.org/issues/68/6.html
https://github.com/rednaga/APKiD
http://phrack.org/issues/51/9.html#article
https://github.com/ashishb/android-security-awesome
https://github.com/ashishb/android-security-awesome
https://github.com/idanr1986/cuckoodroid-2.0
https://jon.oberheide.org/files/summercon12-bouncer.pdf
https://jon.oberheide.org/files/summercon12-bouncer.pdf
https://frida.re
https://www.ibm.com/developerworks/library/l-kprobes/index.html
https://www.ibm.com/developerworks/library/l-kprobes/index.html
https://media.ccc.de/v/35c3-9532-kernel_tracing_with_ebpf
https://media.ccc.de/v/35c3-9532-kernel_tracing_with_ebpf
https://lttng.org/
https://github.com/topjohnwu/Magisk

DaVinci : Android App Analysis 489

12. Rootbeer. https://github.com/scottyab/rootbeer
13. Smartphone market share (2020). https://www.idc.com/promo/smartphone-

market-share/os
14. Xposed framework. https://repo.xposed.info/
15. Borek, M.: Intrusion detection system for android: linux kernel system calls anal-

ysis. G2 pro gradu, diplomity, Aalto University (2017). http://urn.fi/URN:NBN:
fi:aalto-201709046813

16. Feiner, P., Brown, A.D., Goel, A.: Comprehensive kernel instrumentation via
dynamic binary translation. SIGARCH CAN 40(1), 135–146 (2012). https://doi.
org/10.1145/2189750.2150992

17. Wampler, D., Graham, J.: A method for detecting linux kernel module rootkits. In:
Craiger, P., Shenoi, S. (eds.) DigitalForensics 2007. ITIFIP, vol. 242, pp. 107–116.
Springer, New York (2007). https://doi.org/10.1007/978-0-387-73742-3 7

18. Holl, T., Klocke, P., Franzen, F., Kirsch, J.: Kernel-assisted debugging of linux
applications. In: 2nd Reversing and Offensive-oriented Trends Symposium 2018
(ROOTS), November 2018

19. Mieghem, V.V.: Detecting malicious behaviour using system calls. Master the-
sis, TU Delft (2016). http://resolver.tudelft.nl/uuid:c71c85bc-d742-449b-88e7-
33e172392ec2

20. Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.:
Rage against the virtual machine: hindering dynamic analysis of android malware.
In: EuroSec. Association for Computing Machinery, New York (2014). https://doi.
org/10.1145/2592791.2592796

21. Singh, B., Evtyushkin, D., Elwell, J., Riley, R., Cervesato, I.: On the detection of
kernel-level rootkits using hardware performance counters. In: Proceedings of the
2017 ACM on Asia Conference on Computer and Communications Security, ASIA
CCS 2017, pp. 483–493. Association for Computing Machinery, New York (2017).
https://doi.org/10.1145/3052973.3052999

22. Tam, K., Khan, S.J., Fattori, A., Cavallaro, L.: CopperDroid: automatic recon-
struction of android malware behaviors. In: NDSS (2015)

23. Vidas, T., Christin, N.: Evading android runtime analysis via sandbox detection.
In: ASIA CCS, pp. 447–458. Association for Computing Machinery, New York
(2014). https://doi.org/10.1145/2590296.2590325

24. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.
In: IEEE Symposium on Security and Privacy, vol. 4, pp. 95–109, May 2012.
https://doi.org/10.1109/SP.2012.16

https://github.com/scottyab/rootbeer
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://repo.xposed.info/
http://urn.fi/URN:NBN:fi:aalto-201709046813
http://urn.fi/URN:NBN:fi:aalto-201709046813
https://doi.org/10.1145/2189750.2150992
https://doi.org/10.1145/2189750.2150992
https://doi.org/10.1007/978-0-387-73742-3_7
http://resolver.tudelft.nl/uuid:c71c85bc-d742-449b-88e7-33e172392ec2
http://resolver.tudelft.nl/uuid:c71c85bc-d742-449b-88e7-33e172392ec2
https://doi.org/10.1145/2592791.2592796
https://doi.org/10.1145/2592791.2592796
https://doi.org/10.1145/3052973.3052999
https://doi.org/10.1145/2590296.2590325
https://doi.org/10.1109/SP.2012.16

MobHide: App-Level Runtime Data
Anonymization on Mobile

Davide Caputo , Luca Verderame , and Alessio Merlo(B)

DIBRIS - University of Genova, Via Dodecaneso, 35, 16146 Genova, Italy
{davide.caputo,luca.verderame,alessio}@dibris.unige.it

Abstract. Developers of mobile apps gather a lot of user’s personal
information at runtime by exploiting third-party analytics libraries, with-
out keeping the owner (i.e., the user) of such information in the loop. We
argue that this is somehow paradoxical. To overcome this limitation, in
this paper, we discuss a methodology (i.e., MobHide), allowing the user
to choose a different privacy level for each app installed on her device.
According to the user’s preferences, MobHide anonymizes the data col-
lected by the analytics libraries before sending them to the app devel-
opers, through a fruitful combination of data anonymization techniques.
More in detail, the methodology enables to i) analyze all the network
traffic generated by the invocation of analytics libraries, ii) anonymize
the personal and device data using a generalization technique, and the
events related to the user’s behavior by exploiting local differential pri-
vacy, and iii) send the anonymized data to the developers.

We empirically assessed the viability of the approach on Android, by
implementing the methodology as an Android app, i.e., HideDroid, that
relies on the VPN service provided by Google to intercept all network
requests. Our preliminary experiments - carried out on a real app (i.e.,
Duolingo) - are promising, and suggest that runtime data anonymization
on mobile is feasible nowadays, as it negligibly impacts the app perfor-
mance.

Keywords: Android privacy · Analytics libraries · Data
anonymization

1 Introduction

In mid-2020 the number of available mobile applications (hereafter, apps) is
growing towards 4.5 millions1 (i.e., 2.56 M Android apps and 1.86 M iOS apps).
This fact suggests that the competition among app developers to rise to (or stay

1 https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-
app-stores/.

This work was partially funded by the Horizon 2020 project “Strategic Programs for
Advanced Research and Technology in Europe” (SPARTA).

c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 490–507, 2020.
https://doi.org/10.1007/978-3-030-61638-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_27&domain=pdf
http://orcid.org/0000-0002-5408-4735
http://orcid.org/0000-0001-7155-7429
http://orcid.org/0000-0002-2272-2376
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://doi.org/10.1007/978-3-030-61638-0_27

MobHide: App-Level Runtime Data Anonymization on Mobile 491

on) top is always more fierce, as they need to keep building apps that fully meet
the user’s expectation. To this aim, app developers need to receive continuous
feedback on the way users interact with their apps. To achieve such result, they
actually keep monitoring both the user’s activities and the status of the device
in order to i) track errors and crashes in the app, ii) understand the tastes of the
user, and iii) deliver personalized advertisements, products or functionalities, in
order to maximize the user’s experience.

Such monitoring activity is currently carried out at runtime by exploiting
third-party analytics libraries that enable the collection of information regarding
the user’s behavior. In detail, such libraries are made of a set of API that allows
collecting the user-generated events (e.g., the set of the most visited pages or the
history of purchases), and several details about the user herself and the device
(e.g., the IMEI number, the OS version, and the GPS location). Developers can
include such libraries in the app and invoke their API methods in the app code to
log a meaningful event or information. Currently, the most widespread analytics
libraries [3,23] are Facebook Analytics2 and Google Firebase Analytics3.

However, the adoption of analytics libraries raised serious concerns regard-
ing the user’s privacy [14,17] for several reasons. First, as analytics libraries
are embedded in the app, they share the app privileges and get access to its
resources. Furthermore, analytics libraries do not enforce any privacy-preserving
mechanism, as discussed in [11,17,20]. Finally, the user has no control over them:
although she can grant or deny the permission to collect personal data, she can-
not choose the data to track nor apply any anonymization techniques to her data
collected by the analytics libraries. Paradoxically, this means that the manage-
ment of some user’s personal information is devoted to the app developers rather
than the user, which is the legal owner. This “status quo” currently maximizes
the utility of data (for app developers) at the expense of the user’s privacy.
To this aim, we argue that the user must be kept in the loop and be free to
choose the trade-off between utility and privacy of her own data, before they are
delivered to any third-party.

Currently, this problem is gaining momentum, as researchers recently pro-
posed some solutions to try mitigating the privacy issues of third-party libraries
at large, and to anonymize the collected personal data. For instance, Zhang
et al. [24] proposed a solution allowing the developer to anonymize the collected
information according to differential privacy techniques. However, the approach
is still developer-centric, i.e., the developer chooses both the anonymization strat-
egy and its configuration. Liu et al. [17] designed an Android app able to inter-
cept and block all the API related to analytics libraries, while Razaghpanah et
al. [19] developed an app able to block the network requests that contain per-
sonal information. However, both solutions follow an “all or nothing” approach:
all personal data are exported in their original form (i.e., maximizing the utility
of data), or none of them is exported at all (i.e., maximizing the user’s privacy).
As data anonymization can be modeled as an optimization problem, where the

2 https://developers.facebook.com/docs/graph-api/reference/application/activities/.
3 https://firebase.google.com/docs/analytics/get-started.

https://developers.facebook.com/docs/graph-api/reference/application/activities/
https://firebase.google.com/docs/analytics/get-started

492 D. Caputo et al.

aim is to find the optimal balance between data privacy and utility, previous
approaches need to be extended further. As a last remark, it is also worth point-
ing out that the implementation of all the proposed solutions is strongly invasive
(i.e., it requires either the adoption of a customized OS, the mandatory presence
of root permissions, or the modification of the app logic), and could hardly be
adopted in the wild.

Contributions of the Paper. This paper presents a novel, user-centric
methodology, called MobHide, that allows the per-app anonymization of col-
lected personal data according to a privacy level chosen by the user. In a nutshell,
the idea is to collect all the network traffic generated by the invocation of API
calls belonging to analytics libraries, and extract the exported data. Then, the
next step is anonymizing the personal and device data using a generalization
technique, and the data related to the user’s behavior using an approach based
on the concept of local differential privacy, in a way that preserves as much data
semantics as possible. Finally, the anonymized data are sent to the expected
recipients by mimicking the original network calls.

To prove the effectiveness and the feasibility of MobHide, we implemented the
methodology in an Android app called HideDroid, and we used it to anonymize
the data collected by a real Android app with more than 100M downloads (i.e.,
Duolingo). HideDroid relies on standard Android APIs to build a VPN-Client
that successfully intercepts the network traffic generated by the app with a
minimal configuration (i.e., by installing the app certificate). Furthermore, we
integrated a transparent repackaging mechanism for the installed apps that do
not alter the app behavior, to overcome the network restrictions imposed by the
most recent Android OS versions.

Structure of the Paper. The rest of the paper is organized as follows: Sect. 2
introduces the functionalities of analytics libraries, and some basic concepts on
data anonymization, while Sect. 3 defines the MobHide methodology. Section 4
presents the HideDroid prototype implementation on Android. Section 5 shows
and discusses the usage of our approach on a real app. Section 6 presents the
current state of the art, Sect. 7 discusses the limitation of our proposal, while
Sect. 8 concludes the paper and points out some extensions of this work.

2 Background

2.1 Notes on Analytics Libraries

Analytics libraries allow to log user’s events and device properties during the app
execution. There exist several providers of mobile analytics libraries [3]. Among
them, Firebase Analytics, Facebook Analytics, and Flurry are largely the most
adopted ones [23].

Analytics libraries are composed by two parts, namely i) a Software Devel-
oper Kit (SDK) that can be included by developers in the app, and ii) a backend
system - usually located in the Cloud - that allows the same developers to track
and analyze the collected data through proper control dashboards. The SDK

MobHide: App-Level Runtime Data Anonymization on Mobile 493

allows the developer to log and monitor either a pre-defined set of standard
events or define properly customized events. In general, standard events are
common to all apps, and are automatically collected by the SDK and sent to the
analytics backend without any further configuration. Examples of such events
are “app installation, “app open”, and “app close”. A custom event is defined
by the developer to track app-specific activities. The event is typically repre-
sented in a key-value format (e.g., JSON) and sent to the backend by invoking
a proper SDK API - typically named logEvent. Also, the event often contains
some metadata [4].

2.2 Data Anonymization

Data Anonymization (DA) is the process of protecting private or sensitive infor-
mation by erasing or encrypting identifiers that explicitly connect an individual
to some data. For instance, such a process is of paramount importance when com-
panies share data about their users with third parties for analytics or marketing
analysis [12]. State of the art DA techniques can be divided into perturbative
and non-perturbative, depending on the kind of data to protect. One of the most
widespread non-perturbative technique, especially for the multidimensional data
(e.g., relational databases), is generalization [21].

Generalization. A piece of information describing an entity (e.g., a user) can
be represented by a set of attributes that give details about its features (e.g.,
gender, date of birth, address). In the original data, where each value is as
much specific as possible, each attribute is considered to be in the most specific
domain. Generalization techniques consist of replacing the specific value of a set
of attributes with a more general one, preserving as much data semantics as
possible.

In detail, given an attribute A of a table T , we can define a domain gen-
eralization hierarchy (DGH) for A as a set of n functions fh : h = 0, ..., n− 1
such that:

A0
f0−→ A1

f1−→ ...
fn−1−−−→ An (1)

For example, Fig. 1 depicts a set Z0 of actual ZIP codes. In such a case,
we can define a generalization function f0 that strips the first rightmost digit to
represent a larger geographical area. To make Z1 less informative, we can iterate
the process and define f1 and f2 to strip other digits from the ZIP codes until
the most general domain Zn is reached, i.e., where all zip codes are mapped to a
singleton value. It is trivial to notice that the more generalization functions are
invoked on the original data, the higher is the obtained privacy (and the lower
is the data utility), as heterogeneous data are transformed into an always more
reduced set of general values.

Generalization techniques are suitable only for semantically independent mul-
tidimensional data (e.g., the tuple of a relational database table), but they do
not work properly to anonymize sequences of semantically related data. There-
fore, they can be used to anonymize the attributes of a single event logged by

494 D. Caputo et al.

Fig. 1. A sample domain generalization hierarchy (DGH) for ZIP values.

analytics libraries only. To anonymize a sequences of logged (and semantically
related) events, we leverage Differential Privacy [13] techniques.

Differential Privacy. In a nutshell, Differential Privacy (DP) applies a per-
turbation function to a set of related data, e.g., a sequence of events, by using
a random noise to alter the original distribution according to a ratio parameter,
defined a priori.

There are two main models for defining DP problems: centralized and local
model. In the centralized model, the data are sent to a trusted entity (e.g., an
analytics company) that applies DP algorithms and then shares the anonymized
dataset with an untrusted third-party client. On the contrary, the local model
assumes all external entities and communication channels as untrusted. In such
a situation, local DP techniques aim at performing the data perturbation locally
before releasing any dataset to an external party. In our scenario, we consider the
user as the sole owner of its data, and we trust neither the advertising company
nor the developer. To this aim, the local DP model is suitable to anonymize
sequences of events logged by analytics libraries.

In a local model, we can define a sequence of n events such as e1, e2, ..., en
where ei defines the i− th event. We can assume that all possible values of these
events belong to E. A local DP solution can be defined as a perturbation function
R that takes as input a sequence of events (i.e., ei) and outputs another sequence
of events (i.e., zi) different from the previous one. For example, a perturbation
function can be a function that adds some noise to the data or replace some
events according to a probability defined a priori. The resulting data, i.e., zi =
R(ei), can be sent to the destination server (e.g., the analytics server). The
interested reader can find more details on local DP techniques in [13].

3 The MobHide methodology

The MobHide methodology allows the user to choose a different privacy level
for any app installed on the device. The idea is to dynamically analyze the
app behavior at runtime and anonymize the actual exported data. In principle,
we could leverage static analysis techniques, by following, e.g., the techniques
we applied in [8], to locate and instrument the methods that invoke analytics
libraries APIs. Nonetheless, instrumentation leads to high customization of the
app code, requires the systematic repackaging of any app, as well as to deal with
potentially obfuscated code [7]. Therefore, MobHide leverages runtime monitor-
ing of any app according to the following steps: i) intercept all data exported
by the app through the invocation of API calls belonging to analytics libraries,
ii) anonymize data therein by applying the generalization and local DP tech-
niques previously discussed, and iii) send the anonymized data to the backend

MobHide: App-Level Runtime Data Anonymization on Mobile 495

by mimicking the original network calls. Figure 2 provides a high-level view of
the workflow.

In detail, the first step is carried out by the Privacy Detector module, which
intercepts and filters the traffic that comes from the apps. For each network
request belonging to an analytics library API, the module stores it in a buffer
repository (Event Buffer) and drops the original communication (step 2). Oth-
erwise, the connection is transparently forwarded (step 3).

The Data Anonymizer module carries out the anonymization procedure. Peri-
odically, this module pulls the data from the Event Buffer (step 4) and applies
the anonymization strategy according to the selected app privacy level (step
5) and data generalization hierarchies (step 6). Finally, the anonymized data is
sent to the Data Sender module (step 7) that forwards them to the expected
recipients (step 8). The rest of this section details the different modules and the
MobHide anonymization strategies.

Fig. 2. MobHide - high-level workflow.

3.1 Privacy Detector

The Privacy Detector inspects all network traffic coming from the apps
selected by the user (Step 1 in Fig. 2). The module parses both encrypted and
plain-text traffic according to i) the domain name and ii) the content of the
request itself.

In detail, if the domain name belongs to a set of well-known analytic libraries
(e.g., graph.facebook.com is related to Facebook Analytics, and app-measu-
rement.com to Firebase Analytics), the corresponding request is immediately
stored in the Event Buffer, and the original communication is dropped. If the
domain name is not sufficient or unknown, the Privacy Detector analyzes the
data within the request to identify the parameters and the value most commonly

496 D. Caputo et al.

used by analytics libraries. The most common attributes are obtained by the
official documentation of the analytics library4,5,6.

Finally, the rest of the network traffic is forwarded to the expected recipients
without any further change.

3.2 Privacy Settings Database and DGH Database

MobHide relies on two databases to store the settings defined by the user and
the configuration rules for the anonymization strategy.

The privacy level chosen by the user for each app is stored within the Pri-
vacy Settings Database, and it contains the per-app privacy level defined by
the user and thus enables the use of a fine-grained anonymization strategy to
each of the apps. The privacy level is mapped into four different values, i.e.
NONE, LOW, MEDIUM, HIGH. If an app is set to NONE, its traffic will be excluded by
the anonymization process. On the contrary, the maximum privacy level HIGH
leads to execute both the generalization and the local DP according to the more
restrictive (i.e., privacy-preserving) settings.

The DGH Database contains the domain generalization rules for the most
common personal attributes collected by the analytics libraries (e.g., gender,
date of birth, and location).

3.3 Data Anonymizer

The Data Anonymizer is in charge of applying the anonymization strategies on
the collected data. As described in Sect. 2.1, the data collected by the analytics
libraries includes both the user’s in-app actions (i.e., the user’s behavior) and
information about the user or the device. To deal with such heterogeneous data,
the Data Anonymizer builds an anonymization pipeline based on both data
generalization and differential privacy techniques.

User’s and Device Data Anonymization. To anonymize the information
regarding the user and the device, the Data Anonymizer adopts a procedure
based on data generalization [21]. The Data Anonymizer scans each network
request to detect and extract all exporting data. For each attribute, the module
looks up for a generalization rule in the DGH Database. If a match is found,
the value is generalized according to the privacy level. In detail, each increment
in the privacy value (i.e., from LOW to HIGH) implies the application of an extra
generalization function of the DGH. In case a match is not found, the Data
Anonymizer relies on the following heuristics:

– If the attribute is a string, the generalization replaces the last p elements
with a generic value ′∗′. The value of p depends on the privacy level, and it
is defined as follow:

4 https://firebase.google.com/docs/analytics/get-started.
5 https://developers.facebook.com/docs/graph-api/reference/application/activities/.
6 https://developer.yahoo.com/flurry/docs/.

https://firebase.google.com/docs/analytics/get-started
https://developers.facebook.com/docs/graph-api/reference/application/activities/
https://developer.yahoo.com/flurry/docs/

MobHide: App-Level Runtime Data Anonymization on Mobile 497

p =
stringLength ∗ selectedPrivacyLevel

#PrivacyLevels − 1
(2)

where stringLength is the string length, #PrivacyLevels is the number of
available privacy levels (i.e., 4), and selectedPrivacyLevel is the privacy level
selected by the user (i.e., NONE=0, LOW=1, MEDIUM=2, HIGH=3).

– If the attribute in a number, the generalization rounds the value to the p
most significant digits. The value of p is computed as:

p =
#digits ∗ selectedPrivacyLevel

#PrivacyLevels − 1
(3)

where #digits is the number of digits while the other values are defined in
the same way as discussed above.

Anonymization of the User’s Behavior. To anonymize the user behavior
modeled as a set of related events generated as a consequence of a user action,
the Data Anonymizer adopts a heuristic based on local Differential Privacy and
the concept of local data perturbation. This heuristic enables the anonymization
of the user behavior while preserving structured data for the developer.

The local data perturbation process aims to modify the original behavior
distribution by either (i) removing intercepted events, (ii) replacing events,
or (iii) injecting crafted events. To do so, the Data Anonymizer relies on a
threshold value defined as follows:

Thresholdaction = 1 − selectedPrivacyLevel

#action + 1
(4)

where
action ∈ [inject, remove, replace]

The Data Anonymizer assigns to each intercepted event three pseudo-random
numbers (ranging from 0 to 1) that represent the probability of executing one
of the three perturbation actions (i.e., inject, remove, replace). Then, the per-
turbation action is executed only if the corresponding probability is higher than
the threshold.

Anonymization Pipeline. The complete procedure for the data anonymiza-
tion follows the algorithm described in Algorithm1. For each event stored in
the Event Buffer (row 3), the algorithm computes the three pseudo-random
numbers: Prinj , P rrem, P rrep (rows 4–6).

If the Prinj is higher than the threshold, the Data Anonymizer module builds
a new generalized event taken from the pool of the supported event types. If the
Prrep is greater than the threshold (row 11), the module replaces the original
event with another valid one. Then, it generalizes the attributes of the replacing
event (following the rules described above). Otherwise, the Data Anonymizer
module checks whether to remove the original event or generalize it. In all three
previous cases, the modified event is added to the set of anonymized data (rows
8–9, 12–14, and 17–20), which are returned at the end of the pipeline (row 22).

498 D. Caputo et al.

Algorithm 1. Data Anonymization Pipeline
Input: eventBuffer, selectedPrivacyLevel
Output: anonymizedEvents
1: Initialize anonymizedEvents ← list()
2: Initialize Thresholdaction ← 1 − (selectedPrivacyLevel/4)
3: for each event in eventBuffer do
4: Prinj ← rand()
5: Prrem ← rand()
6: Prrep ← rand()
7: if Prinj > Thresholdaction then
8: newGenEvent ← generateNewGenEvent(selectedPrivacyLevel)
9: anonymizedEvents.add(newGenEvent)

10: end if
11: if Prrep > Thresholdaction then
12: replEvent ← replaceEvent(event)
13: replGenEvent.attributes ← generalizeEvent(replEvent.attributes,

selectedPrivacyLevel)
14: anonymizedEvents.add(replGenEvent)
15: else if Prrem > Thresholdaction then
16: deleteEvent(event)
17: else
18: originalGenEvent ←generalizeEvent(event.attributes,

selectedPrivacyLevel)
19: anonymizedEvents.add(originalGenEvent)
20: end if
21: end for
22: return anonymizedEvents

3.4 Data Sender

The Data Sender module is in charge of forwarding the anonymized data
returned by the Data Anonymizer pipeline (step 7) to the analytics backends. To
do so, the module mimics the original calls dropped by the Privacy Detector by
encapsulating each anonymized data instead of the original plain data (step 8).

4 Implementing MobHide on Android

We empirically assessed the feasibility of MobHide on Android by developing a
prototype implementation, called HideDroid, and testing it on a real app.

MobHide: App-Level Runtime Data Anonymization on Mobile 499

HideDroid leverages the Android VPN API7 to capture and analyze the net-
work traffic generated by the apps installed on the device. The app includes
a Couchbase Lite8 NoSql database to implement the Event Buffer and two
SQLite databases to store the privacy settings and the generalization hierarchies,
respectively.

HideDroid Setup. The execution of HideDroid begins by determining the run-
time environment, i.e., the OS version and the presence of root permissions.
HideDroid implements a transparent SSL/HTTPS proxy [5] to intercept both
plain and encrypted network traffic. To this aim, the app generates a self-signed
CA and requires the permission to install it in the user’s CA store. If the device
has root permissions, HideDroid also requires the permission to install the cer-
tificate within the system CA store.

App Privacy Configuration . The HideDroid interface allows the user to view
all the apps installed on the device, and select a different privacy level for each
app, as shown in Fig. 3. Privacy levels are stored in the Privacy Setting Database.
For each selected app with privacy level higher than NONE, HideDroid checks if
the app requires an additional setup to be intercepted by the Privacy Detector.
It is worth pointing out that this extra step is required only if the Android
version is ≥7.0, and the user does not have root permissions, due to the current
restriction imposed by the OS [1]. Indeed, if the Android OS version is <7.0, or
if the user accepts the installation of the HideDroid CA in the system CA store,
the Privacy Detector can intercept the app network traffic without any further
customization.

The additional setup step is an app repackaging phase, in which proper
network configurations are added to the app, without affecting the original app
logic. More in details, the repackaging phase is composed of four steps in which
HideDroid:

1. unpacks the app using Apktool9;
2. adds a new network security configuration file10 to the app, in order to force

the usage of the user certificate store (Listing 1.1);
3. modifies the Android manifest file to enable the use of the new network con-

figuration;
4. re-installs the configured app using the INSTALL PACKAGES permission.

At the end of this phase, HideDroid is able to intercept and anonymize the data
collected by the analytics libraries.

7 https://developer.android.com/reference/android/net/VpnService.
8 https://docs.couchbase.com/couchbase-lite/current/java-android.html.
9 https://github.com/iBotPeaches/Apktool.

10 https://developer.android.com/training/articles/security-config.

https://developer.android.com/reference/android/net/VpnService
https://docs.couchbase.com/couchbase-lite/current/java-android.html
https://github.com/iBotPeaches/Apktool
https://developer.android.com/training/articles/security-config

500 D. Caputo et al.

(a) Main Interface. (b) Privacy Level Slider.

Fig. 3. Screenshots from the HideDroid prototype.

5 Empirical Assessment

We evaluated the viability of MobHide by executing HideDroid on a real appli-
cation. After reversing and analyzing a set of most downloaded apps equipped
with analytics libraries, we selected Duolingo11 as a relevant use case for several
reasons: first, Duolingo adopts four of the most widespread analytics libraries
(i.e., Google Firebase Analytics, Google Crashlitics, Facebook Analytics, and
Adjust); furthermore, it requires 30 permissions that can be used to extract
information regarding the user and the device (Table 1); finally, it has more
than 100M downloads worldwide.

We carried out the experiment on a Huawei P10 device equipped with
Android 9.0, an Octa-core (4×2.4 GHz Cortex-A73 & 4×1.8 GHz Cortex-A53),
and 4 GB of RAM. Since the experiment involves an Android version ≥7.0, the
Duolingo app has been repackaged (see Sect. 4). An actual user manually tested
the app for two hours, in order to push the invocation of a relevant number of
API calls belonging to analytics libraries. During the testing phase, HideDroid
captured all network traffic generated by Duolingo, and anonymized the data
according to the MobHide strategies described in Sect. 3.

11 https://play.google.com/store/apps/details?id=com.duolingo&hl=en.

https://play.google.com/store/apps/details?id=com.duolingo&hl=en

MobHide: App-Level Runtime Data Anonymization on Mobile 501

Listing 1.1. The network security config.xml file injected by HideDroid.

<?xml version=”1.0” encoding=”utf−8”?>
<base−config cleartextTrafficPermitted=”true”>

<trust−anchors>
<certificates src=”system” />
<certificates src=”user” />

</trust−anchors>
</base−config>

Table 1. Permissions required by Duolingo.

Permissions

ACCESS NETWORK STATE
AUTHENTICATE ACCOUNTS
FOREGROUND SERVICE
GET ACCOUNTS
INTERNET
READ APP BADGE
READ EXTERNAL STORAGE
RECEIVE BOOT COMPLETED
RECORD AUDIO
VIBRATE
WAKE LOCK
WRITE EXTERNAL STORAGE
UPDATE COUNT
BILLING
RECEIVE

BADGE COUNT WRITE
BADGE COUNT READ
PROVIDER INSERT BADGE
BROADCAST BADGE
WRITE
READ
WRITE SETTINGS
READ SETTINGS
UPDATE BADGE
WRITE SETTINGS
READ SETTINGS
CHANGE BADGE
UPDATE SHORTCUT
READ SETTINGS
BIND GET INSTALL REFERRER SERVICE

We analyzed the network traffic generated by the advertising libraries.
Regarding the user’s and device profiling, the model of device, the network
latency, the username, and the free space on disk are the most cap-
tured information. Also, the app collected a set of events that describes the
user’s behavior. Examples of such events include app open, app install, and
learning reason tap. During the two-hours experiment, HideDroid collected
123 events belonging to 39 different classes. Figure 4 summarizes the frequency
of each captured event, while Listing 1.2 shows a subset of actual personal data
collected by Duolingo and exported to the analytics backend.

We tested all the available privacy levels on Duolingo, in order to evaluate
the anonymization capabilities of HideDroid. As described in Sect. 3, MobHide
performs two types of anonymization for personal and device information and for
user’s events, respectively. Listing 1.3 shows an example of the data anonymized
after applying a generalization technique with the privacy level set to HIGH to
the original data showed in Listing 1.2: note that all the string values have been
converted to a sequence of * (e.g., “client id”), while the integer parameters have
been rounded to the most meaningful digit (e.g., “memory maximum”).

502 D. Caputo et al.

Fig. 4. Distribution of the user’s events collected by Duolingo during the two-hours
experiment.

...
‘‘ event type ”: ‘‘ app open ”,
‘‘ event timestamp”: 1591880722000,
‘‘ client ”: {

‘‘ client id ”: ‘‘ android−excess ”
},
‘‘ attributes ”: {

‘‘ memory maximum ”: 268435456,
‘‘ memory class ”: 96,
‘‘ memory system available ”: 2669375488,
‘‘ data saver ”: ‘‘ enabled ”,
‘‘ memory class large ”: 256,
‘‘ $screen height ”: 1794,
‘‘ $app release ”: 951,
‘‘ memory system total ”: 3156844544,
‘‘ screen width ”: 411,
‘‘ $carrier ”: ‘‘ Android ”,
‘‘ Client ”: ‘‘ Duodroid ”,
‘‘ orientation ”: ‘‘ portrait ”,
‘‘ mp lib ”: ‘‘ android ”,
...

Listing 1.2. Example of event collected
by Duolingo.

...
‘‘ event type ”: ‘‘ app open ”,
‘‘ event timestamp ”: 1591880722000,
‘‘ client ”: {

‘‘ client id ”: ‘‘∗∗∗∗∗∗∗∗∗∗∗∗∗”
},
‘‘ attributes ”: {

‘‘ memory maximum ”: 200000000,
‘‘ memory class ”: 90,
‘‘ memory system available ”: 2000000000,
‘‘ data saver ”: ‘‘ undefined ”,
‘‘ memory class large ”: 200,
‘‘ $screen height ”: 1000,
‘‘ $app release ”: 900,
‘‘ memory system total ”: 3000000000,
‘‘ screen width ”: 400,
‘‘ $carrier ”: ‘‘ undefined ”,
‘‘ Client ”: ‘‘ undefined ”,
‘‘ orientation ”: ‘‘ undefined ”,
‘‘ mp lib ”: ‘‘ undefined ”,
...

Listing 1.3. Example of anonymized
event with privacy level HIGH.

Figure 5 shows the distributions of the anonymized event frequencies for each
levels of privacy (i.e., NONE, LOW, MEDIUM, HIGH). It is worth noticing that each
privacy level has its own specific distribution pattern. To prove that the distribu-
tions are actually different from each other, we computed the KL Divergence [15]
(i.e., DKL) which allows measuring the distance between two distributions. A
high value of DKL suggests that the two distributions are very different, while
DKL = 0 indicates that two distributions are identical. We calculated DKL

between the original event distribution and each anonymized distribution. The
results are reported in Table 2.

MobHide: App-Level Runtime Data Anonymization on Mobile 503

Table 2. Parameters and metrics of the HideDroid anonymization phase.

Privacy TH # InjEv # RemEv # RepEv # TotEv DKL Ex. Time

LOW 0.75 24 35 28 140 0.11 0.416
MEDIUM 0.5 62 61 66 190 0.28 0.352
HIGH 0.25 94 93 98 223 0.38 0.419

Fig. 5. Comparison of the different event distributions generated by HideDroid, accord-
ing to the selected privacy level.

504 D. Caputo et al.

Such a table summarizes the results of the anonymization phase on the set
of events for each privacy level. In detail, the first column indicates the privacy
level (i.e., Privacy), while columns 2 to 6 describe the parameters and the metrics
for the local DP, i.e., the Thresholdaction (i.e., TH), the number of injected,
removed and replaced (i.e., # InjEv, # RemEv and # RepEv respectively)
events, the number of total events (i.e., # TotEv). Column 7 contains the value
of the KL Divergence, while the last columns contain the execution time (i.e.,
Ex. Time) required to anonymize the list of events.

Regarding DKL, it is worth pointing out that the distance between the origi-
nal distribution and the anonymized ones is always greater than 0. Furthermore,
the higher is the privacy level, the greater is the DKL value, thereby suggesting
that the utility of the exported data lowers when the privacy level rises.

Performance (i.e., Ex. Time) is likewise very promising. In fact, it is worth
noticing that the anonymization of a data flow belonging to 2 h of app usage
and that contains more than 120 events, requires less than a second. Albeit
further studies are required, this suggests that the on-the-fly execution of data
anonymization techniques at the state of the art on mobile could be feasible on
(most of) the current mobile devices.

6 Related Work

The wide adoption of third-party analytics libraries in mobile apps has recently
attracted the attention of the security research community. The work of Chen
et al. [11] is one of the first studies that explicitly focus on the privacy issues
related to mobile analytics libraries. In detail, the authors demonstrated how
an external adversary could extract sensitive information regarding the user and
the app by exploiting two mobile analytics services, i.e., Google Mobile App
Analytics and Flurry. Moreover, Vallina et al. [22] identified and mapped the
network domains associated with mobile ads and user tracking libraries through
an extensive study on popular Android apps.

Still, most of the research activity focus on proposing some novel approaches
to enhance privacy. For instance, Beresford et al. [10] proposed a modified ver-
sion of the Android OS called MockDroid, which allows to “mock” the access of
mobile apps to system resources. MockDroid allows users to revoke access to spe-
cific resources at run-time, encouraging the same users to take into consideration
a trade-off between functionality and personal information disclosure.

Zhang et al. [25] proposed PrivAid, a methodology to apply differential
privacy anonymization to the user events collected by mobile apps. The tool
replaced the original analytics API with a custom implementation that collects
the generated event and applies DP techniques. The anonymization strategy is
configured directly by the app developer, which can reconstruct at least a good
approximation of the distribution of the original events.

The authors in [19] proposed an Android app called Lumen Privacy Monitor
that analyzes network traffic on mobile devices. This app aims to alert the user if
an app collects and sends personally identifiable information (e.g., IMEI, MAC,

MobHide: App-Level Runtime Data Anonymization on Mobile 505

Phone Number). The application allows the user to block requests to a specific
endpoint. To do that, Lumen Privacy Monitor asks for all the Android permis-
sions in order to collect the user data and perform the lookup in the network
requests.

Unfortunately, the above solutions do not provide proper data anonymiza-
tion, thereby proposing either block-or-allow strategies or approaches that enable
the reconstruction of the original data by a third-party (e.g., the app developer).
Also, most of them require invasive modifications of the apps or the OS (e.g.,
custom OS and root permissions), and can very hardly be adopted in the wild.

To the best of our knowledge, MobHide is the first proposal that allows
the user to choose a per-app privacy level and, at the same time, granting the
possibility to export anonymized data. Furthermore, our prototype HideDroid
has been designed to ensure minimal invasiveness on the mobile device.

7 Discussion and Future Developments

This work aims to demonstrate the feasibility of runtime anonymization of per-
sonal data exported by mobile apps and the viability of allowing users to choose
a level of privacy for each installed app. Nonetheless, both our methodology (i.e.,
MobHide) and implementation (i.e., HideDroid) have some limitations.

In the current definition, the MobHide methodology adopts basic - yet effec-
tive - DA techniques on the collected data. Still, an extensive evaluation of the
type of data transmitted by third-party analytics libraries could unveil com-
plex structures (e.g., multidimensional data, time-series, transaction data, . . .).
To this aim, other - more complex - DA techniques, such as k-anonymity [21],
l-diversity [18] or t-closeness [16], must be taken into consideration and imple-
mented in HideDroid.

Moreover, the traffic recognition capabilities of MobHide are based on a pre-
defined mapping between the hosts and the corresponding analytics services. If
an app sends data to an unknown host, MobHide tries to recognize whether the
request belongs to an analytic service, according to a keyword-based heuristic
(e.g., if the word “event” is contained in the network request). However, such
a technique could introduce some false positives, leading to potential app mal-
functioning if the request contains data related to the logic of the app. Also in
this case, an extensive analysis of such heuristic in the wild will allow evaluat-
ing its reliability. In case of low reliability, the adoption of ML-based network
recognition techniques [22] could be taken into consideration.

Regarding the limitations of the prototype implementation, HideDroid has
been designed to minimize the impact on the target apps. Indeed, we developed
the tool with the aim to reduce as much as possible the app customization, and,
therefore, we rely on app repackaging only on devices equipped with Android
geq 7.0 and without root permissions. However, the repackaging process may fail
against system apps or apps with anti-repackaging mechanisms in place. Also,
the presence of certificate-pinning mechanisms applied to the network traffic of
analytics libraries could interfere with the ability of HideDroid to analyze and
anonymize the corresponding data.

506 D. Caputo et al.

To overcome the above technical limitations, we plan to evaluate the usage of
DroidPlugin [2] or VirtualApp [6] virtual environments that provide the ability
to intercept the network traffic without the need of any app customization.

8 Conclusion

In this paper, we introduced MobHide, the first “user-centric” methodology
for the per-app anonymization of the data collected by third-party analytics
libraries. Furthermore, we proposed HideDroid, a prototype implementation for
Android that has been tested on a real-world app with more than 100M down-
loads.

This work is a first step towards balancing between data utility and user
privacy in mobile ecosystems, demonstrating the feasibility of introducing data
anonymization locally, i.e., directly on the mobile device without the need for
an external trusted party.

Albeit promising, the results suggest that an extensive assessment campaign
is needed to tune the proposed anonymization pipeline. As a first step in this
direction, we intend to include the support of other third-party libraries and gen-
eralization heuristics, and to use Trusted Execution Environment (TEE) tech-
nologies [9] to protect the confidentiality and integrity of the collected data.
Finally, we plan to release HideDroid on the Google Play Store by the end of
2020.

References

1. Android 7.0 news. https://developer.android.com/about/versions/nougat/
android-7.0#network security config. Accessed 27 May 2020

2. Droidplugin. https://github.com/DroidPluginTeam/DroidPlugin. Accessed 27
May 2020

3. Exodus privacy. https://reports.exodus-privacy.eu.org/en/trackers/stats/.
Accessed 27 May 2020

4. Firebase log event. https://firebase.google.com/docs/reference/android/com/
google/firebase/analytics/FirebaseAnalytics.Event. Accessed 27 May 2020

5. Transparent proxy TLS. https://docs.mitmproxy.org/stable/concepts-modes/.
Accessed 27 May 2020

6. VirtualApp. https://github.com/asLody/VirtualApp. Accessed 27 May 2020
7. Aonzo, S., Georgiu, G.C., Verderame, L., Merlo, A.: Obfuscapk: an open-

source black-box obfuscation tool for android apps. SoftwareX 11, 100403
(2020). https://doi.org/10.1016/j.softx.2020.100403, http://www.sciencedirect.
com/science/article/pii/S2352711019302791

8. Armando, A., Costa, G., Merlo, A., Verderame, L.: Enabling BYOD through secure
meta-market, pp. 219–230 (2014). https://doi.org/10.1145/2627393.2627410

9. Armando, A., Merlo, A., Verderame, L.: Trusted host-based card emulation. In:
2015 International Conference on High Performance Computing & Simulation
(HPCS), pp. 221–228. IEEE (2015)

https://developer.android.com/about/versions/nougat/android-7.0#network_security_config
https://developer.android.com/about/versions/nougat/android-7.0#network_security_config
https://github.com/DroidPluginTeam/DroidPlugin
https://reports.exodus-privacy.eu.org/en/trackers/stats/
https://firebase.google.com/docs/reference/android/com/google/firebase/analytics/FirebaseAnalytics.Event
https://firebase.google.com/docs/reference/android/com/google/firebase/analytics/FirebaseAnalytics.Event
https://docs.mitmproxy.org/stable/concepts-modes/
https://github.com/asLody/VirtualApp
https://doi.org/10.1016/j.softx.2020.100403
http://www.sciencedirect.com/science/article/pii/S2352711019302791
http://www.sciencedirect.com/science/article/pii/S2352711019302791
https://doi.org/10.1145/2627393.2627410

MobHide: App-Level Runtime Data Anonymization on Mobile 507

10. Beresford, A.R., Rice, A., Skehin, N., Sohan, R.: MockDroid: trading privacy for
application functionality on smartphones. In: Proceedings of the 12th Workshop
on Mobile Computing Systems and Applications, HotMobile 2011. Association for
Computing Machinery, New York (2011)

11. Chen, T., Ullah, I., Kaafar, M.A., Boreli, R.: Information leakage through mobile
analytics services. In: Proceedings of the 15th Workshop on Mobile Computing
Systems and Applications (2014)

12. Cormode, G., Srivastava, D.: Anonymized data: generation, models, usage. In:
Proceedings of the 2009 ACM SIGMOD International Conference on Management
of data (2009)

13. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Found. Trends® Theor. Comput. Sci. 9(3–4), 211–407 (2014)

14. He, Y., Yang, X., Hu, B., Wang, W.: Dynamic privacy leakage analysis of android
third-party libraries. J. Inf. Secur. Appl. 46, 259–270 (2019)

15. Kullback, S.: Information Theory and Statistics. Courier Corporation, North
Chelmsford (1997)

16. Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: privacy beyond k-anonymity
and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering.
IEEE (2007)

17. Liu, X., Liu, J., Zhu, S., Wang, W., Zhang, X.: Privacy risk analysis and mitigation
of analytics libraries in the android ecosystem. IEEE Trans. Mob. Comput. 19(5),
1184–1199 (2020)

18. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 3
(2007)

19. Razaghpanah, A., et al.: Apps, trackers, privacy, and regulators: a global study of
the mobile tracking ecosystem (2018)

20. Stevens, R., Gibler, C., Crussell, J., Erickson, J., Chen, H.: Investigating user
privacy in android ad libraries

21. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and
suppression. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 10(05), 571–588
(2002)

22. Vallina-Rodriguez, N., et al.: Tracking the trackers: towards understanding the
mobile advertising and tracking ecosystem. arXiv preprint arXiv:1609.07190 (2016)

23. Verderame, L., Caputo, D., Romdhana, A., Merlo, A.: On the (un)reliability of
privacy policies in android apps. In: Proceedings of the IEEE International Joint
Conference on Neural Networks (IJCNN 2020), Glasgow, UK, July 2020

24. Zhang, H., Hao, Y., Latif, S., Bassily, R., Rountev, A.: A study of event frequency
profiling with differential privacy. In: Proceedings of the 29th International Confer-
ence on Compiler Construction, CC 2020. Association for Computing Machinery,
New York (2020)

25. Zhang, H., Latif, S., Bassily, R., Rountev, A.: Privaid: Differentially-private event
frequency analysis for google analytics in android apps

http://arxiv.org/abs/1609.07190

Evaluation of the Adoption and Privacy
Risks of Google Prompts

Christos Avraam1(B) and Elias Athanasopoulos2

1 School of Electronics and Computer Science, University of Southampton,
Southampton, UK

ca2u19@soton.ac.uk
2 Department of Computer Science, University of Cyprus, Nicosia, Cyprus

eliasathan@cs.ucy.ac.cy

Abstract. Internet services struggle with implementing better tech-
niques for making authentication easier for the end-user by balancing
those traits without sacrificing their security or privacy. One very recent
such technology is Google Prompts, where users can authenticate by
merely tapping a prompt to their mobile phone. In this paper, we attempt
to understand how Google Prompts work and the extent to which cur-
rent users adopt them. To this end, we build a collection system for
estimating, using a completely transparent methodology, the fraction of
users that have enabled Google Prompts in their accounts. Our collec-
tion system can infer the adoption of Google Prompts in the wild. Most
importantly, we can use the system for performing a preliminary study
of the privacy implications of Google Prompts.

Keywords: Authentication · Privacy · Measurements

1 Introduction

2-Step Verification Phone Prompts (most commonly abbreviated to Google
Prompts) [5] is a mobile-based authentication method and was introduced rela-
tively recently by Google. With Google Prompts enabled, a user needs to only
enter their email for authenticating with Google and then complete a Yes/No
notification prompt received on their phone. If the user selects the option Yes,
they automatically gain access to the account; otherwise, the authentication pro-
cess gets canceled and blocked. Since 79% of the human population between
ages 18–44 carry their mobile phones 22 h a day [21], an unauthorized per-
son (attacker) who does not possess the mobile device cannot gain access to
the account. As previously explained, a user can either opt-in for an entirely
password-less authentication experience or even combine it with another secu-
rity factor from Google’s weaponry to form a more traditional and convenient
2FA mechanism. By selecting the latter and more commonly with the combina-
tion of a text-based password, the user is required to enter it before receiving the
Google Prompt explicitly. Essentially, this means they trade off performance and
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 508–522, 2020.
https://doi.org/10.1007/978-3-030-61638-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_28&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_28

Evaluation of the Adoption and Privacy Risks of Google Prompts 509

usability for additional security. These two modes (a) password-less authentica-
tion and (b) 2FA-mixed are deeply integrated with currently available Google
services and allow users to easily switch from mode to mode or entirely turn off
Google Prompts and rely upon traditional authentication.

Although Google Prompts seems like a real-life problem solver and 2SV
adoption seems exponential, according to Google [14], the actual user adoption,
through not just enabling Google Prompts but also for its wide variety of authen-
tication methods, is still questionable. It is also questionable how this system
behaves under an adversarial setting. Precisely, we show how an attacker can
carefully issue silent probes to Google Prompts enabled accounts for receiving
back signals about their geographical location. Since the user’s privacy is consid-
ered a top priority aspect, we need to perform a proper vulnerability assessment.
In this paper, we build a collection system for assessing the current use of Google
Prompts in the wild. Our system can perform all measurements without violating
users’ privacy or disturbing them by any means. The measurement methodology
is entirely transparent, i.e., users are not affected by our probes. Building such
a collection system allows us to infer how Google Prompts are integrated with
the current authentication mechanisms offered by Google as well.

In this paper, we make the following contributions.

1. We review Google Prompts, a fairly recent 2FA technology introduced by
Google. Our main goal is to understand how Google Prompts are integrated
into the current authentication system of Google.

2. Towards realizing this understanding, we design and implement a collection
system that estimates how many users who have a Google account, have
enabled Google Prompts. All measurements are carried out ethically without
affecting the security and privacy of the analyzed users. All measurements
are stored entirely anonymized.

3. Based on our experimental findings, we make a preliminary assessment of
the privacy risks introduced by Google Prompts. Towards this, we suggest
possible attack methodologies, where an adversary can carefully issue silent
probes to Google Prompts enabled accounts for receiving back signals about
their geographical location.

2 Google Prompts

Google has developed a mobile-based 2-Step Verification (2SV) method to
enhance the process of accessing Google services. By enabling this authentication
method as the default, the sign-in process goes as follows: the users after they
input their email, they receive a notification prompt on a preconfigured trusted
device, such as a smartphone. On that prompt, they can tap Yes to allow sign-in
(see Fig. 6) and gain access to the service immediately or No to deny/block the
sign-in process. Since its primary function is sending a prompt on a device, for
future reference, we will refer to it as Google Prompts. The default configuration
of Google Prompts is to outsource authentication to it, transforming authenti-
cation into an entirely password-less experience. Google Prompts removes the

510 C. Avraam and E. Athanasopoulos

Fig. 1. Google Prompt as it is being received on the user’s pre-configured device.
By tapping Yes, it allows immediate access to the service otherwise No it blocks the
unauthorized access.

need for remembering passwords or tokens, as it only requires the user’s email
address. It is considered more user-friendly and faster for the average user than
other 2SV and 2-Factor Authentication (2FA) methods [8]. For instance, one-
time codes received via SMS or the Google Authenticator app, not only require
password input but also to transfer/copy them into Google’s sign-in page man-
ually. The prompt may also include details of the device/client initiating the
authentication request: (a) Operating System, (b) current timestamp, and (c)
the location if it could be determined.

It is important to note that with the default configuration if a user for some
reason has no internet access or even physical access to their trusted device, they
have the option to select alternative authentication methods from the Google’s
available security features (e.g., text-based password, Google Authenticator app,
SMS token). Illustratively, when the user has selected to enter their password
instead of sending the prompt, in the next authentication session, the previously
selected method (in this case, the password) is again optionally requested by
default (Fig. 1).

Besides the above mode, there is another configuration where Google
Prompts is used as a second factor (2FA) to trade-off speed with additional
security. If this mode is enabled, the user enters compulsory their password or
any other of the available Google’s security factors. Then the Google Prompt is
also required to be answered in order for the signing-in process to complete.

Moreover, when someone attempts an authentication for the first time on a
new entity (e.g., the user is authenticating with Google using a new laptop),
an extra step is added. A number appears on the browser, and if the device
holder selects Yes to approve sign-in, the user has to select one of the three
given numbers on the phone to match it. Otherwise, if the wrong number is
selected, the authentication process gets canceled, regardless of the previous
step selection.

Evaluation of the Adoption and Privacy Risks of Google Prompts 511

Finally, depending on the operating system of the user’s device (IOS/An-
droid), compatibility requirements are slightly different. Android devices must
keep Google Play Services up to date and have enabled screen-lock. In iPhones,
screen-lock is already enabled because Touch ID requires it, and it is also neces-
sary to have the Google Search app pre-installed since it delivers the prompts.
Screen-lock is a core requirement, since it prohibits unlocked phones, accessible
by anyone, to confirm Google Prompts.

2.1 Research Challenges

Assessing Google prompt’s user adoption, was a challenging task since it was
required to construct a collection system that can infer if a given e-mail account
is associated with Google Prompts (black-box evalution). We needed to evade
Google’s defense mechanisms or at least deal with them in a proper manner. By
resolving such issues, we can conclude to a better understanding of how exactly
this new 2SV variant works. In this part, we review the significant difficulties we
had to overcome.

Fig. 2. Indication that Google Prompts are disabled with three possible error messages.
Most imporntantly, the under analysis account does not receive any prompts. For case
C, it occurred explicitly when the routing was made through Tor.

Request Rate. When a single entity issues about 5 to 6 consecutive requests
on a given day for one account, Google Prompts gets disabled. Instead of sending
a prompt on the preconfigured trusted device, as we have already discussed, a
corresponding error message (see Fig. 2 case A) appears on the browser that
issued the request, and a password is required in order to sign-in. Therefore,
each account should be tested only once. In addition to this limitation, we lessen
the number of emails we can analyze per day, due to we should not be intrusive
to the server itself. Google Prompts can also be disabled in cases where the
users cannot use, reach (see Fig. 2 case B), or lost their device. For such cases,
Google recommends to its clients to take specific actions [3] in order to resolve
any issues.

512 C. Avraam and E. Athanasopoulos

CAPTCHAs. The combination of performing automated procedures in the
Google API and assessing different accounts using one client had as a result of
the service to project CAPTCHAs [22,23] after just a few requests. Therefore,
we needed to perform all tests as cultivated/humanly as possible and in a more
distributed fashion. We route all of our traffic through the anonymizing net-
work service TOR [12], so we can send all requests using several exit nodes with
different geolocations. Interestingly enough, using TOR gives us two notable
benefits. Firstly, different exit nodes will issue requests that in most of the times
will not be blocked by CAPTCHAs. Secondly, and most important, assuming
the account under test has enabled Google Prompts, Google will refuse to send
the prompt to the user under some under investigation circumstances (will be
discussed further in Sect. 5). Instead, Google will issue a unique message that
prompts are disabled for the particular account and requests for the user’s pass-
word. The above case scenario allows us to infer if Google Prompts are enabled
without actually annoying or disturbing any user. The received message for this
particular case is depicted in Fig. 2; notice the case C).

Fail Validation Page. As we have previously mentioned, there is a second
configuration/mode where Google Prompts are used as a second factor. In this
mode, for the authentication to be successful, the user’s password is compulsory
and entered before the validation with the phone prompt. Since we do not know
the user’s password to proceed further, we cannot examine and measure this
configuration. Therefore we cannot differentiate between Password-only configu-
rations and Password&Google Prompts configurations. However, we have noticed
that we can deduce whether a user is using this particular mode by invoking the
reminder-password process (Forget password? - see Fig. 5b).

Upon initiating this process, Google attempts to validate the user’s identity
before allowing them to reset their password. The options presented to the user
are last remembered passwords, sending an SMS to the user’s device, and using
another email address (previously defined). If the configuration we mentioned
earlier, is enabled, one of the reminder-password validation options involves send-
ing a prompt to the user’s pre-configured device; otherwise, it is not an option.
This deduction was confirmed by enabling/disabling this configuration for a mul-
tiple of our owned test accounts and consequently checking all options presented
to the user.

A significant drawback to this approach is that Google only allows the
password-reminder process to occur when the device issuing the request has
already been successfully authenticated in the past. In other cases, Google pro-
hibits the password-reminder process and returns a Fail Validation Block Page,
which we have not yet found a successful way to bypass it (Fig. 3).

Evaluation of the Adoption and Privacy Risks of Google Prompts 513

Fig. 3. Fail Validation Block Page. The above page may be displayed during the Pass-
word Reminder process and blocks the collection system from continuing forward.

3 Research Methodology

3.1 Dataset

According to Forbes [16], on the 9th of September 2014, almost 5 million Gmail
addresses paired with passwords were leaked and published online on a Bitcoin
Security forum. As well as other websites, Google announced about the leaked
accounts and suggested that its clients take action to increase their account’s
security by adding extra verification layers [9]. Therefore, we assume that these
emails should be enhanced with additional security measures. We apprehend this
dataset with only the email addresses and storing each of them in our database
to be checked. Some of its entries were not adhering to a correct email format,
and we exclude those using an email regular expression. Also, some duplicates
existed, which we excluded since we must check each email only once.

3.2 Collection System

The collection system is designed for a single purpose, to experimentally measure
how many users with a Google Account have set Google Prompts as their default
authentication method. It can navigate effectively through the whole authenti-
cation process and, depending on each account security configuration, follows
a different evaluation path. The system comprises two major components: the
interface, written in Python, and an evaluation script, written in JavaScript.

The interface initially creates and connects to an SQLite database (see
Sect. 3.1) and retrieves a specified amount of not yet analyzed email addresses.
To achieve automation, we implement this component based on the Selenium
WebDriver [2]. Selenium uses a browser-specific web driver which sends com-
mands (sent in Selenese, or via a Client API) to an actual browser to fetch its
results. However, any attempt performed by automated means was blocked by

514 C. Avraam and E. Athanasopoulos

Fig. 4. Evaluation Decision Tree used by the collection system. The different states
and their interconnections allow us to effectively understand how Google Prompts are
realized and, using this understanding, to proceed and perform actual measurements
related to the adoption of Google Prompts in the wild. Notice, that Google Prompts
can be enabled in several ways, such as for password-less authentication (see states
Response Evaluation, Password Page and their derived ones), as well as the second
factor in 2FA (see states Forget Password?, More ways to sign-in and their derived
ones).

CAPTCHA and to remain under the radar without issuing too many requests
from the same hosts, as explained in Sect. 2.1, we use a proxy which redirects
all network traffic through Tor. For each distinct email address, we create a
new TOR circuit by utilizing the Stem Controller [4], and we record the cur-
rent IP address of that TOR exit node. Before that, we ensure that it has
a different address than the previously analyzed email; otherwise, we send a
signal NEWNYM to create another TOR circuit. Since TOR exit nodes are
located worldwide, the messages and texts displayed are in different languages;
so, we used the URL parameter “hl = en-GB” to always display text in English

Evaluation of the Adoption and Privacy Risks of Google Prompts 515

(a) More ways to sign-in. The user can gain access to the service through alternative means than the
password. The available options are presented in a list and could be either enabled or disabled.

(b) Reminder Password. The user can recover their account through a series of sequential steps where they
must prove their identity. The steps displayed are depended on the account’s security configurations.

Fig. 5. Additional steps/options a user can perform on the Google’s sign-in page

in the progression of being appropriately evaluated by the system. The Sele-
nium handler is suited better for sites that use browser detection (i.e., Google),
since it ensures cross-browser consistency and has more options than other more
lightweight equivalents, such as CasperJS [7]. One of these options is selecting
between multiple browser drivers, e.g., Firefox and Chrome. We chose the Firefox
driver (geckodriver) since it allows disabling specific parameters, such as Cookies
and History trackers, which helped us to disguise Selenium further. Also, in the
progression of making the whole process more similar to a real-time authentica-
tion attempt by an ordinary user, we emit random delays (time sleeps) between
each execution of the Selenium commands that interact with the browser.

Next in line, the system enters the email address to the Google sign-in page,
automatically clicks the button Next to receive the response. Here we perform
most of the processing using the evaluation script component, which scans the
HTML document for specific tags to determine its next move. We have con-
structed an evaluation decision tree, which we depict in Fig. 4, and based on
that, we reach a verdict regarding the default authentication method the user has
set. In essence, in Fig. 4, rectangle nodes represent distinct pages in the Google
Authentication system, whereas those emphasized in bold indicate the inferred

516 C. Avraam and E. Athanasopoulos

authentication method for each valid account, which we mark as Checked. On
the other hand, dotted lines mean that the account was marked as Invalid due to
one ore more of the following reasons: 1) response contains a CAPTCHA (some
instances may still occur for yet unknown reasons), 2) the email account under
testing is either erroneous, deleted, or does not exist, 3) a system/network error
occurred. Additionally, nodes with dotted circles can indicate the type of the
user’s device, which is considered a privacy leak and will be discussed further in
Sect. 5. Recall that a user can decide to use Google Prompts in two modes (see
Sect. 2). For inferring the alternative authentication option change-up we invoke
the More ways to sign (see Fig. 5a) process. On the other hand, for deducing
the second mode (see Sect. 2.1), we invoke the Reminder Password (see Fig. 5b)
process as well.

Moreover, one significant enhancement we added to our collection system was
the implementation of Fail Safes. They have an active role in ensuring that the
system is running smoothly without any interruptions. They are located strate-
gically in specific points in the EDT to maintain a debug log, which indicates
necessary specific system changes (new/modified JavaScript elements) and to
handle possible exceptions due to network or driver failure. Finally, after each
email analysis, we store the Status (Checked/Invalid/Null), Exit IP Address,
Current Time, Authentication method, and a Debug Log in our database.

3.3 Ethics

Before starting our research, we had to confirm that our approach does not annoy
or affect the owner of the account in any case. We did this by replicating our
experiments on various Google accounts created by us for this purpose. Gener-
ally, if we do not reroute our script through TOR and when Google prompts is the
default authentication method, the user usually receives the notification on his
trusted device. However, if we do reroute through TOR, in most cases, Google
Prompts are disabled, as explained in Sect. 2.1. Then the process terminates,
and as a result, the user is never notified by the service for an authentication
attempt. At the same time, we count this in our evaluation as a Google Prompt
authentication.

The number of active registered users in Google is over 425 million [1], and
the service receives over 106 million requests per month, which is over 3.5 million
requests per day. In order not to be intrusive to the service, we apply a limit of
an average of 1000 requests per day. Thus, the number of requests we issue per
day is about 0,028% of the total daily requests it receives, and in any case, it
can not be considered intrusive.

Furthermore, as far as the collecting data is concerned, we do not store any
privacy-related information of the user (e.g., images, phone numbers), and all
other information is anonymized. We only store data that we categorized as
observations on which method of authentication a user has set as default. After
that, we use this data to store counters which represent our measurements.

Evaluation of the Adoption and Privacy Risks of Google Prompts 517

4 Results

4.1 Initial Evaluation

Our initial evaluation consisted only of the password-less configuration mode.
Therefore inferring if a particular Google account is using this mode, requires
only a single request with the e-mail address as the sole input. We initially
analysed 30,319 Google accounts from our dataset of which 27,286 (90.00%)
were valid (Checked). The others were Invalid for reasons described in Sect. 3.2.

Table 1. The number of Google accounts, where Google Prompts are enabled in
password-less mode only.

Result Checked accounts

Total Percentage

Google Prompts Successful 3 0.01%

Disabled 1,024 3.75%

Unknown cases 26,259 96.24%

Total 27,286 100.00%

Out of the valid accounts, we conclude that 1,027 (3,76%) of Google users,
grouped as Google Prompts in Table 1, have Google Prompts enabled with the
password-less configuration method. In the 3.75% of the cases, Google Prompts
were disabled (password was requested instead with an error message) for the
reasons we discussed in Sect. 2.1 and displayed the Fig. 2. Since Google does not
show the error message for an account that has not configured Google Prompts
in any mode, we can filter out all of those accounts. More importantly, the
accounts mentioned above do not receive an actual prompt, while we perform
the measurements, and our method is relatively transparent. Nevertheless, in
the sporadic three cases (0.01%), Google displayed a message indicating that it
successfully sent the prompt. We are thoroughly discussing the reason behind
this in Sect. 5.

For the remainder accounts, 26,259 (96.24%), there was no error message,
and only the password form was presented. Since our collection system could
not proceed further, at first, we assumed that these cases were not having an
enhanced authentication mechanism enabled and relied only on password. How-
ever, we were wrong in our assumption, and more accurate measurements are
depicted below.

4.2 Final Evaluation

We later discovered there are additional ways to deduce whether an account has
Google Prompts enabled. In particular, a user can:

518 C. Avraam and E. Athanasopoulos

– Enable Google Prompts with the first configuration (password-less) but
chooses to use the password (e.g., because their device is inaccessible dur-
ing authentication). In the next authentication session, a password form is
used as default but is optional since the option for more ways to sign in is
still enabled (sign in only with the prompt).

– Enable Google Prompts as a second factor (second configuration). The pass-
word is compulsory, and to complete the authentication the prompt must be
accepted (tap Yes) as well. To deduce this configuration of Google Prompts,
our collection system must interfere with the password-reminder process (see
Sect. 2.1).

Both these states are presented in Fig. 4 and in the Table 2 under More ways
to sign in and Forget Password - 2nd Factor) paths, accordingly.

Table 2. More accurate measurements obtained with the inclusion of the second con-
figuration mode of Google Prompts and the additional cases of the first one. We observe
that the number of Google Prompts accounts almost doubled (6.76%).

Authentication Checked accounts

Total Percentage

Google Prompt Successful 13 0.05%

Disabled 1129 4.17%

More ways to sign in Enabled 7 0.03%

Disabled 440 1.62%

Forget Password 2nd Factor 242 0.89%

No authentication 1670 6.17%

Fail Validation Block 23585 87.07%

Total 27086 100.00%

In this evaluation, we analyzed an additional amount of 30,014 Google
accounts (distinct from the previous evaluation) from our dataset, of which
27,086 (90.24%) were valid (Checked). The others were Invalid for reasons
described in Sect. 3.2. For the cases which have Google Prompts enabled in
both configuration modes (1st mode: Google Prompt and More ways to sign
in, 2nd mode: Forget Password - 2nd Factor) we have a total of 1831 (6.76%)
accounts, of which Google Prompts were enabled in either of the two config-
uration modes. It is a small percentage, but it is almost double the previous
estimate in our initial evaluation. In addition, notice that the Fail Validation
Block section which covers a large percentage of our results. Similarly, as the
previous evaluation (Unknown Cases), we were not able to navigate further to
discover whether they were using Google Prompts as a second factor or have not
set an authentication at all (see Sect. 2.1).

Evaluation of the Adoption and Privacy Risks of Google Prompts 519

In summary of both evaluations, we can conclude that our collection system
can successfully infer that 2858 (5,25%) accounts have adopted Google Prompts
out of the total of 54372 valid Google accounts we checked.

5 Privacy Leaks

While measuring the adoption of Google Prompts in the wild, we tried to be
as stealthy as possible to avoid users’ annoyance. We performed all the mea-
surements in such a way that they will not be receiving the actual prompts.
Nevertheless, there was still a tiny fraction of Google Prompts received by users
(about 16 in more than 50,000 valid accounts), which we could not mitigate fur-
ther due to the black-box evaluation. We stress here that for those few successful
Google Prompts, we did not further analyze if the prompts were answered posi-
tively. Security implications are out of the scope of this paper. Still, in such cases,
if the targeted user accidentally confirmed the prompt, our collection system or
generally an attacker can freely access the corresponding account. Therefore a
possible attack scenario is to send phishing emails to the victims (real-time) to
manipulate them to accept the prompt. Beyond security, it is also essential to
emphasize the protection of the user’s privacy. Thus we focused here on finding
possible privacy violations.

As we have previously mentioned in Sect. 2, location tracking is part of
the Google Prompts authentication, but we do not know at what extend it is
being utilized. For that reason, we tried to investigate the variables enabling
the successful reception on the user’s device for that small percentage of users
we have found. Recall that our collection system leverages exit nodes that are
distributed across the globe, and in each email analyzation, we switched from
node to node. Since the location was the primary variable change, successfully
sent prompts are indicating a common signal between the triggering node (i.e.,
the TOR exit node) and the under analysis account. For instance, a TOR exit
node that is closely (geographically) located to the user may successfully trigger
a Google Prompt, which in turn can reveal the user’s location. On the other
hand, a Google Prompt that fails to be delivered indicates that the user is likely
not geographically close to the particular node. As a result, determined attackers
can orchestrate probes from different TOR exit nodes to infer the areas where
the victim user (targeted Google account) is not currently located. Sequentially,
they might discover the actual location by the process of elimination. Conducting
a study to demonstrate such issues is beyond the scope of this paper, and is likely
beyond the common sense of ethical research.

Of course, we understand that the location is not the only crucial factor
here. Nevertheless, we alert the reader that at this point, Google Prompts, as
designed, may be potentially used for extracting other private information as
well. For example, our collection system during email analyzation was able to
view data such as device brands and operating systems, user’s first names, and
profile pictures if they were previously set. In Fig. 6, which is the default HTML
response the client receives when the user has enabled Google Prompts, we can

520 C. Avraam and E. Athanasopoulos

see the illustration of these examples. The above information can be obtained in
the final pages with the indication of Device Indication in Fig. 4.

6 Related Work

2FA hardens authentication for protecting users with stolen credentials; however,
its efficacy is still questionable [19]. Initially, 2FA was a promising defense layer
against simple, but highly effective attacks, such as phishing [11]. Nevertheless,
today we are aware of advanced attacks that can bypass 2FA by phishing the
second factor, aswell [13]. Despite the shortcomings of 2FA, researchers seek to
invent and propose new 2FA-based systems that utilize second factors that can
be reasonably user-friendly by requiring little or no user interaction. For instance,
Sound-proof [17] uses as a second factor the proximity of the user’s phone to the
authenticating device. At the same time, Wi-Sign [20] leverages perturbations in
the WiFi signals incurred due to the hand motion while signing. In this paper,
we do not assess the effectiveness of or exploring attacks that can bypass 2FA.
Still, we investigate the mechanics of Google Prompts, a very new 2FA system
offered by Google. To this aspect, this paper is closer to a similar study about
quantifying the adoption of 2FA [18]. In this particular study, the researchers
found out that 6.39% of about 100,000 email accounts of Google had enabled the
2-Step Verification method. Acemyan et al. [6] compare the usability, efficiency,
effectiveness, and satisfaction measures among four of Google’s 2FA mechanisms.
Included in that set is Google Prompts which they found is more usable than
the authenticator app.

As far as other 2FA measurements are concerned, Weir et al. [15] performed
a user case study asking e-banking customers to rate different 2FA methods

Fig. 6. Default HTML response the client receives when Google Prompts are enabled.
We can see some information that can be linked to the user (first name, profile picture,
device operating system and brand)

Evaluation of the Adoption and Privacy Risks of Google Prompts 521

regarding security, quality, and convenience. Overall, they found that users pre-
ferred usability above all and did not see the need for additional security. Ganson
et al. asked mobile banking users to rate a single-factor and two 2FA schemes
for telephone banking [24]. They found that the average user took 20 more sec-
onds to complete each 2FA process than the single-factor one, and 2FA appears
to users as a more secure solution but less easy-to-use. In a similar study, De
Cristofaro et al. asked by various 2FA-familiar users to rate the usability of the
three most popular 2FA solutions with different forms, that is, email or SMS
sent to the user, a mobile app used an authenticator and a hardware token that
produces OTP codes [10]. They observed that people who use 2FA for work
prefer the mobile app option, while those who use it for personal and financial
reasons prefer sending a text.

7 Conclusion

In this paper, we review and analyze Google Prompts, a recently enabled authen-
tication mechanism by Google. Towards realizing our understanding, we devel-
oped the first collection system that can estimate how many users across the
world have adopted Google Prompts. We have analyzed more than 60,000 email
accounts, of which more than 50,000 were valid Google accounts. Out of the valid
accounts, we have successfully inferred that 2858 (5,25%) accounts had Google
Prompts enabled in either of its two configuration modes. However, due to the
many obstacles we faced since the evaluation was black-box based, we could not
determine with certainty the authentication method used for a large percent-
age of our results. Moreover, we showed how an attacker could carefully issue
silent probes to Google users for receiving back signals about their geographical
location.

References

1. Gmail now has 425 million active users. http://www.theverge.com/2012/6/28/
3123643/gmail-425-million-total-users

2. Selenium. https://www.seleniumhq.org/
3. Sign in faster with 2-step verification phone prompts. https://support.google.com/

accounts/answer/7026266?co=GENIE.Platform%3DAndroid&hl=en
4. Stem docs. https://stem.torproject.org/
5. Sign in faster with 2-Step Verification phone prompts (2019)
6. Acemyan, C.Z., Kortum, P., Xiong, J., Wallach, D.S.: 2FA might be secure, but it’s

not usable: a summative usability assessment of Google’s two-factor authentication
(2FA) methods. In: Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, vol. 62, pp. 1141–1145. SAGE Publications, Los Angeles (2018)

7. Agarwal, R.: Choosing automated testing frameworks - phantomjs / casperjs
vs selenium (2015). https://www.algoworks.com/blog/choosing-your-automated-
testing-frameworks-phantomjscasperjs-vs-selenium/

8. Bisson, D.: Two-factor authentication (2FA) versus two-step verification
(2SV) (2016). https://www.grahamcluley.com/factor-authentication-2fa-versus-
step-verification-2sv/

http://www.theverge.com/2012/6/28/3123643/gmail-425-million-total-users
http://www.theverge.com/2012/6/28/3123643/gmail-425-million-total-users
https://www.seleniumhq.org/
https://support.google.com/accounts/answer/7026266?co=GENIE.Platform%3DAndroid&hl=en
https://support.google.com/accounts/answer/7026266?co=GENIE.Platform%3DAndroid&hl=en
https://stem.torproject.org/
https://www.algoworks.com/blog/choosing-your-automated-testing-frameworks-phantomjscasperjs-vs-selenium/
https://www.algoworks.com/blog/choosing-your-automated-testing-frameworks-phantomjscasperjs-vs-selenium/
https://www.grahamcluley.com/factor-authentication-2fa-versus-step-verification-2sv/
https://www.grahamcluley.com/factor-authentication-2fa-versus-step-verification-2sv/

522 C. Avraam and E. Athanasopoulos

9. Google Security Blog: Cleaning up after password dumps. http://
googleonlinesecurity.blogspot.gr/2014/09/cleaning-up-after-password-dumps.
html

10. De Cristofaro, E., Du, H., Freudiger, J., Norcie, G.: A comparative usability study
of two-factor authentication. arXiv preprint arXiv:1309.5344 (2013)

11. Dhamija, R., Tygar, J.D., Hearst, M.: Why phishing works. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 581–590 (2006)

12. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: Proceedings of the 13th Conference on USENIX Security Symposium -
Volume 13, SSYM (2004)

13. Gelernter, N., Kalma, S., Magnezi, B., Porcilan, H.: The password reset MitM
attack. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 251–267.
IEEE (2017)

14. Grosse, E., Upadhyay, M.: Authentication at scale. IEEE Secur. Priv. 11(1), 15–22
(2012)

15. Gunson, N., Marshall, D., Morton, H., Jack, M.: User perceptions of security and
usability of single-factor and two-factor authentication in automated telephone
banking. Comput. Secur. 30(4), 208–220 (2011)

16. Hill, K.: Google says not to worry about 5 million Gmail passwords
leaked. http://www.forbes.com/sites/kashmirhill/2014/09/11/google-says-not-to-
worry-about-5-million-gmail-passwords-leaked/

17. Karapanos, N., Marforio, C., Soriente, C., Capkun, S.: Sound-proof: usable two-
factor authentication based on ambient sound. In: 24th {USENIX} Security Sym-
posium ({USENIX} Security 2015), pp. 483–498 (2015)

18. Petsas, T., Tsirantonakis, G., Athanasopoulos, E., Ioannidis, S.: Two-factor
authentication: is the world ready?: quantifying 2FA adoption. In: Proceedings
of the Eighth European Workshop on System Security, EuroSec 2015, pp. 4:1–4:7.
ACM, New York (2015)

19. Schneier, B.: Two-factor authentication: too little, too late. Commun. ACM 48(4),
136 (2005)

20. Shah, S.W., Kanhere, S.S.: Wi-sign: device-free second factor user authentication.
In: Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services, MobiQuitous 2018, New York, NY,
USA, pp. 135–144. Association for Computing Machinery (2018)

21. Stadd, A.: 79% of people 18–44 have their smartphones with them 22 hours a day,
2 April 2013. https://www.adweek.com/digital/smartphones/

22. C. M. University. Captcha: Telling humans and computers apart automatically
2000–2010. http://www.captcha.net/

23. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: using hard AI
problems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 294–311. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-
9 18

24. Weir, C.S., Douglas, G., Richardson, T., Jack, M.: Usable security: user preferences
for authentication methods in eBanking and the effects of experience. Interact.
Comput. 22(3), 153–164 (2010)

http://googleonlinesecurity.blogspot.gr/2014/09/cleaning-up-after-password-dumps.html
http://googleonlinesecurity.blogspot.gr/2014/09/cleaning-up-after-password-dumps.html
http://googleonlinesecurity.blogspot.gr/2014/09/cleaning-up-after-password-dumps.html
http://arxiv.org/abs/1309.5344
http://www.forbes.com/sites/kashmirhill/2014/09/11/google-says-not-to-worry-about-5-million-gmail-passwords-leaked/
http://www.forbes.com/sites/kashmirhill/2014/09/11/google-says-not-to-worry-about-5-million-gmail-passwords-leaked/
https://www.adweek.com/digital/smartphones/
http://www.captcha.net/
https://doi.org/10.1007/3-540-39200-9_18
https://doi.org/10.1007/3-540-39200-9_18

On the Evolution of Security Issues
in Android App Versions

Anatoli Kalysch(B), Joschua Schilling, and Tilo Müller

Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
{anatoli.kalysch,joschua.schilling}@fau.de, tilo.mueller@cs.fau.de

Abstract. Since its launch in 2008, the Android platform has seen a lot
of development and improvements to this day. Android developer studios
had to refine their understanding and available codebases considerably
in the past decade since Android’s conception. For example, they had
to handle monumental changes in the OS, like the introduction of ART
or the continually evolving permission system. With this study, we look
into the code-base of 1,250 apps from 57 different development studios
and analyze the evolution of security-related issues in past versions of an
app. To analyze a total of 11,002 APKs, we build on popular vulnerability
assessment tools like QARK and drozer and extend them with our own
security checks. We discover that the attack surface of an app usually
grows over time, including issues that are open for a long time or remain
unclosed. Considering the false positive rate of automated vulnerability
scanners like QARK or drozer, the total number of vulnerabilities in an
app must be taken with care, but nevertheless our study substantiates
that the number of security issues typically grows with code complexity
and size, rather than shrinking over time.

Keywords: App security · Mobile security · IPC · UI security

1 Introduction

Android has experienced a fair amount of vulnerability research, continually
uncovering new vulnerabilities and helping to make the Android ecosystem more
secure and robust over the past decade. To keep up with these developments,
each Android major release required developer studios to commit a substantial
amount of resources to adapt their existing code base, purge it from legacy
code, rewrite parts of their app that use deprecated library calls, and stay up-
to-date with new platform features, like security-related functionality. Contrary
to expectations that a strengthened Android platform would strengthen the
security of apps over time, we show that the number of security-related issues
inside an app typically grows over time, from one version to another.

One reason is the use of out-dated third-party code that was made obsolete
by Android, as was the case with Android’s extension of the cryptographic API,
or libraries that are not supported anymore by the original developer [4,31].
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 523–541, 2020.
https://doi.org/10.1007/978-3-030-61638-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_29&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_29

524 A. Kalysch et al.

Previous studies concerned with code reuse even suggest that Google’s code
samples1 are sometimes reused in apps, code samples that are not necessarily
kept up to date, and will lead to vulnerabilities if left unattended between new
Android releases [9].

To substantiate our claim, we create a dataset of the top Development Stu-
dios (DS) being active in Google Play and assess the situation of security-related
issues in their apps. By extending the automated vulnerability scanners QARK
and drozer with our own implementations, we create a semi-automated system
that facilitates our study. By separating our dataset into apps from different DS,
we want to gain insights into how DS handle improvements in Android’s secu-
rity mechanisms differently, and whether they maintain apps that show better
security conciseness than the average case. Previous studies on the evolution of
security in Android app versions, e.g., by Taylor et al. [28] and by Gao et al. [8],
did not take the programmers or DS behind apps into account.

Contribution. In detail, our paper makes the following contributions:

– We present an overview of security issues in Android apps, grouped by the
DS behind it. To analyze the evolution of issues in different versions of the
same app, we create a timeline for each app, analyzing 11,002 apps in total.

– We provide an overview of “trending categories” of app vulnerabilities grow-
ing over the lifetime of an app. For example, we find that IPC vulnerabilities
are typically increasing with new app versions, resulting in 1135 flagged com-
ponents per app on average, while network and cryptography-based issues
appear roughly the same at a smaller scale with only 406 components being
affected in 369 apps.

– Analyzing our dataset, we assess the amount of third-party-introduced secu-
rity issues, as opposed to security issues stemming directly from DS code.
Conducting cross-app observations of the same DS, we are able to assess the
vulnerability reuse, which hints at code reuse between different apps from the
same developer, e.g., we discover 141 unique security issues that affect 52 DS
over 525 apps in the Android GSM internal library.

2 Background

This section describes basic information helpful to understand the rest of the
paper. Readers familiar with automated vulnerability scanners on Android
(Sect. 2.1), or with the top ten mobile vulnerability categories suggested by the
Open Web Application Security Project (OWASP) [18] (Sect. 2.2) introduced in
Sect. 1 may safely skip these sections.

1 https://github.com/googlesamples, accessed on 05.06.2020.

https://github.com/googlesamples

On the Evolution of Security Issues in Android App Versions 525

2.1 Vulnerability Scanners

The Quick Android Review Kit, or QARK2, is a static analysis tool developed
by LinkedIn Research, which allows to scan APK files for a wide range of known
potential vulnerabilities. The methodology is a static off-device analysis.

Drozer3 is a security assessment framework for Android apps. Contrary to
QARK it follows a dynamic on-device analysis methodology, and supports the
analysis of environmental interactions of the application with the device it’s
installed on, e.g., active changes to the Android Runtime (ART), network inter-
actions, other apps’ IPC endpoints and the underlying OS.

2.2 Considered Vulnerabilities

Like any other system Android was victim to several vulnerabilities from diverse
categories since its introduction in the late 2000s. In our case we will be relying
on the OWASP [19] mobile vulnerability taxonomy to assess which categories
we include in our analysis, since they summarize the top threats endangering
the mobile ecosystem, and additionally developer guidelines on how to test and
mitigate them.

UI Security. Clickjacking and accessibility (a11y) services can be both used
to mount UI-based attacks tricking the user to provide personally identifiable
information (PII) to the wrong application or even stealthily manipulating the
Android device and other apps [7].

IPC. Wrong use of Android’s IPC can yield PII and secrets transmitted between
apps on the same device. If Android’s IPC is used incorrectly or protected insuf-
ficiently an attacker might even get access to another app’s resources. The Open
Web Application Security Project (OWASP) cites Improper Platform Usage,
which includes IPC-based vulnerabilities, as the top risk category for mobile
applications [18].

Network Communication. We consider in the network communication cat-
egory the vulnerabilities related to the communication with the apps backend,
or a third-parties backend. Apps should adhere on modern authentication and
cryptographic standards for network communication, lest they fall victim to an
attacker on the same network [18].

Cryptography. User data protection, especially PII protection, is a key feature
to prevent malware from gaining insights to use in social engineering attacks or
in case of banking information to abuse for banking fraud [18]. In regards to
cryptography the use of modern ciphers and sensible key management needs to
be enforced [18].
2 https://github.com/linkedin/qark, accessed on 09.05.2020.
3 https://labs.mwrinfosecurity.com/tools/drozer/, accessed on 05.05.2020.

https://github.com/linkedin/qark
https://labs.mwrinfosecurity.com/tools/drozer/

526 A. Kalysch et al.

3 Approach

The goal of our study is to investigate Android vulnerabilities in Google Play
published apps, maintained by the same developer studios. The purpose is (i)
to discover which vulnerabilities are the most common occurring and which
components are the most at risk, (ii) to what extent code reuse in DS apps is
also reusing vulnerabilities, and (iii) whether vulnerabilities are increasing over
the lifetime of an application or progressively getting fixed. The context of our
study is a dataset of 57 Android DS and their applications, described closer in
Sect. 3.1 and the vulnerability analysis described in Sect. 3.2. With our study we
thereby address the following research questions:

– How do security findings evolve through the life-time of an app? This question
aims to provide insights into the evolution of security issues of an app. These
findings could help security researchers to narrow down potential flaws in apps
depending on their update cycles and previous security finding evolution.

– Are the security issues located in developer written code or in third-party
libraries? Answering this research questions will shed light into the awareness
of developers who include vulnerable third-party code into their projects.

– How many security issues are introduced through reused code? Code reuse is
quite common in software development, however, it brings about additional
maintenance overhead.

– Which types of security issues are most common in experienced developer
studios? We strive to provide a categorical overview of which components
and which issues have the highest chance to appear even in the work of
professional developers. This vulnerability study provides invaluable insights
to both, app developers and security researchers, on which vulnerabilities
should receive more attention.

3.1 Dataset Creation

We operate on a newly created dataset of over 57 DS. The DS all have a pub-
lic website promoting the studio’s apps and additionally have a presence in the
Google Play Store, which we used as a source to download the initial app ver-
sions. Some studios had different publishers; hence the developer accounts on
Google Play could also differ, but as long as the app was listed as primarily
developed by the DS, we matched the app to the studio in our dataset. To
obtain past versions of the apps, we used apkpure [1].

The initial aggregation from Google Play yielded 1,250 apps from 57 different
studios. We focused on the most downloaded apps on the Google Play Store and
the studio’s most downloaded apps. On average, each app was downloaded 6.5
Mil. times. The average number of versions per app was 11.0 with a new app
version being released every 136 days days. All apps and their versions resulted
in a dataset of 11,002 apps.

On the Evolution of Security Issues in Android App Versions 527

3.2 Vulnerability Analysis

For the vulnerability analysis, we follow a hybrid approach, first performing
a static analysis with QARK, followed by a manual UI, input-method editor
(IME), and a11y analysis, and concluding with a dynamic IPC vulnerability
analysis with drozer. These three processes and the following report creation per
app are depicted in Fig. 1. Due to the preferred focus of this study on improper
use of Android’s security features, IPC, and network interaction, QARK was
chosen for static vulnerability assessments, based on the study of Ranganath
and Mitra [20] who investigated the trade-offs of different vulnerability assess-
ment tools. A static-only analysis is not enough and needs to be assisted by
a supplementary dynamic analysis, especially to include assessing the app’s UI
interaction and improving the IPC testing methodologies. While several tools are
available [10,26,27], we chose drozer due to its lightweight nature and ease of
extendability and extended its IPC fuzzing capabilities with an improved version
of a Template-based Intent Fuzzer [14] for Activities, Services and BroadcastRe-
ceivers.

IPC fuzzing
drozer
module

APK

Logcat & Stacktrace

UI, IME & A11y Analysis
(manual)

qark
module

log
parser

Analysis
Manager

APKs from
dev. studio

1

2 2

2

2

1

1

3

3

33

4

Fig. 1. The three analysis processes overseen by the analysis manager module. Denoted
by ① is the initial static analysis process, disassembling the app and conducting a
vulnerability analysis with QARK. ② represents the manual UI, IME and a11y analyses
performed in parallel dynamically on a dedicated Android device. Following, denoted
by ③, is the dynamic IPC analysis conducted after ②. Lastly, after the log parser
module transferred the vulnerability analysis results, the analysis manager consolidates
all results into a report.

For our dynamic approaches, we focused on Android versions 6.0 to 9.0.
The last available Android version distribution data4 places 16.9% devices using
Android 6, 19.2% using Android 7, 28.3% using Android 8 and 10.4% using
Android 9. Remaining devices used even older Android versions at that time.

Vulnerability assessment tools rely on constant development and addition
of the vulnerabilities they scan for in apps. One major issue we encountered, is

4 Last update by Google was on March 10, 2019 https://developer.android.com/
about/dashboards/.

https://developer.android.com/about/dashboards/
https://developer.android.com/about/dashboards/

528 A. Kalysch et al.

that several other approaches suggested in recent years for Android vulnerability
tracking were either not supported for the latest Android versions or have never
been extended with new capabilities. Other vulnerabilities have been fixed by
the Android Open Source Project developers and were not applicable anymore.
Keeping this in mind we decided on recent vulnerabilities that focus on errors in
the apps development and do not constitute a vulnerability in the Android OS
itself. The vulnerabilities we test for can be avoided during or post-development,
and countermeasures are well known [18]. In detail, we extend our vulnerability
assessments with the IPC fuzzing methodology from the Template-based Intent
Fuzzer [14] and the UI, a11y, and input method editor testing methodologies from
Kalysch et al. [13]. We additionally make modifications to the report creation in
QARK, to ensure all reports include a unique identifier for the same vulnerability
types to make the analysis easier. The IPC fuzzing approach distinguished itself
through the comparison with other available open-source IPC fuzzing approaches
for Android [14]. The UI testing methodologies test for major issues with the
UI, IME and a11y subsystems on Android. These subsystems represent crucial
interfaces where Android’s sandboxing model can be subverted [13].

4 Evaluation

In this chapter, we describe the evaluation of our dataset regarding the research
questions defined in Sect. 3. We start with an overview of the evolution of secu-
rity vulnerability categories in contrast to the apps’ code-base evolution. Then
we shift our view to assessing the location of the discovered security issues by
discerning issues discovered in third-party vulnerabilities and comparing them
to issues discovered in developer written code, further assessing how vulnerabili-
ties are propagated between projects, and which components are usually at risk.
Lastly, we take a look at the most common security issues discovered and derive
trends of which vulnerabilities appear in the apps in our dataset.

4.1 Vulnerability and Code-Base Evolution

In this section, we look at the development of vulnerabilities over time and
compare it to the apps’ growing code-base. For every app in our dataset, we
conduct a lifetime study of all available versions of this app from apkpure [1],
resulting in a consolidated dataset of all versions of 11,002. After analyzing all the
app versions with our vulnerability assessment pipelines in QARK and drozer,
we compare the numbers of detected issues for the vulnerability categories IPC,
cryptography, and network.

Although we have 11.0 versions for apps on average, this number can differ
between apps, and the number of different vulnerabilities occurring will also vary
considerably, so we need to perform a normalization process. First, we cast the
different versions to an interval of 0 to 1, with zero being the first version, and
one the last. By doing the same for the vulnerability categories IPC, cryptog-
raphy, and network, we can graph the resulting trends of whether a particular

On the Evolution of Security Issues in Android App Versions 529

vulnerability category increases in time or not, which is visualized in Fig. 2. Note
that this trend analysis only presents an increase over the published versions and
does not provide information about the nominal occurrence of vulnerabilities.

Fig. 2. This figure shows the probabilistic occurrence of vulnerabilities in different
versions of the same app. We mapped the versions of an app to an interval of [0..1] on
the X-Axis, and the mean percentage of vulnerabilities encountered on the Y-Axis.

Interestingly, the IPC security issues seem to increase over time, while the
network and cryptography issues seem to decrease slightly. This development
may be attributed to new IPC components being included over time, usually
through additional functionality, e.g., sharing mechanisms. On the other hand,
network and cryptography mechanisms will probably not be affected by new
functionality in a meaningful way, and are thus becoming slightly more secure
as old vulnerabilities are uncovered and fixed. Clearly, IPC-related security issues
are a trend that is increasing over the lifespan of an application, with vulnerable
interfaces increasing over time.

Similarly, we observe the development of an apps code size over time, which
is plotted in Fig. 3. We perform the same normalization process as before for the
versions of an app and use the largest code-base in the app’s evolution as the
100% mark on the Y-Axis. This creates a comparison of the overall code size of
an app and allows us to compare the trends that show when the code size of an
app starts to grow and shrink during its lifetime.

Curiously, an apps code-base does not seem to increase with each incremental
version. While the code size continually increases during the first versions of an
app, it then begins to fluctuate between increasing and decreasing with each
subsequential update. This development might be an indicator that the app
has reached maturity, and fewer new features are introduced, while instead, the
code-base is streamlined.

Comparing both figures reveals that the decreasing code-base coincides with
the decreasing cryptography and especially network vulnerabilities. Interest-
ingly, for the IPC category, the probability of security issues increases with a
growing code-base. While the rising probability can also be seen for the other

530 A. Kalysch et al.

Fig. 3. This figure shows the evolution of code size in different versions of the same
app. We mapped the versions of an app to an interval of [0..1] on the X-Axis. For
the Y-Axis, we present the percentage of the largest amount of code as 100% and the
amount of code for each version of this app.

categories, the increase is much less. Our findings thus support the notion that
with an increase in the code-base, the probability for bugs and thus vulnerabil-
ities increases.

4.2 Developer Code vs. Third-Party Vulnerabilities

To shed light on the vulnerable code location, we analyzed the third-party
libraries in each application and the core developer packages. Third-party
libraries often offer outsourced functionality not directly related to the apps
actual use case, e.g., ad support, social media interaction, analytics, and legacy
support for older platforms. In our dataset, third-party libraries were responsi-
ble for at least 80.7% of overall vulnerabilities detected in the applications, thus
having a significant impact on the security of an app as a whole. Table 1 pro-
vides an overview of the top 10 common vulnerable third-party library packages
that were frequently flagged during testing. Since they affect a large number of
developer studios, we assume that developers trust third party code, especially
if it is from a renowned source. The table shows, which unique security issues
were flagged in how many faulty components during analysis, and how many
development studios were affected.

4.3 Most Common Security Issues

The analysis of the most common security issues in our dataset yielded insights
into currently disregarded attack scenarios, as well as possibly missed vulnera-
bilities. For example, the percentages of vulnerable apps to our UI, IME, and
a11y-based attacks suggest a disregard for this attack scenario, while the reve-
lations from our IPC fuzzing suggest missing testing methods.

On the Evolution of Security Issues in Android App Versions 531

Table 1. This table shows different well-known third-party libraries that were flagged
during testing with security issues. We combined the detected issues into unique secu-
rity issues and sorted the table according to the faulty component’s number of affected
developers.

Library name Faulty
components

Unique security
issues

Affected
DS

Affected
apps

Android GMS internal 97 141 52 525

Facebook SDK 36 92 42 508

Android GMS common 19 19 56 975

StartApp 19 60 5 40

Android GMS measurements 15 16 31 136

Amazon SDK 12 32 17 116

Moat Analytics 12 31 15 97

Appnext 12 33 4 34

Android GMS ads 11 42 49 639

Android GMS gcm 11 17 28 307

Pushwoosh API 11 22 2 4

Android GMS analytics 9 9 25 197

Alipay SDK 8 21 3 26

Fyber 8 22 6 28

Apache HTTP Client 8 8 7 10

(1) UI, IME, and A11y Vulnerabilities. We analyzed the initial 57 DS
(1,250 apps) to find vulnerabilities against UI-based Overlays [7], malicious third-
party keyboards [13], screen recordings [13], and a11y-based attacks [13]. Testing
the 1,250 apps provided a good trade-off, as it allowed us to make statistically
significant statements while keeping the manual overhead manageable, as we
needed to input the credentials manually for each app. Since most of the appli-
cations were from the game category, a11y events leaking any in-game data were
mostly deactivated. However, that proved to be not the case for in-app pur-
chases and login fields in the apps. They were providing enough a11y events to
sniff confidential information, e.g., passwords, and even leaked the login window
coordinates, needed to execute the UI overlay-based password sniffing.

Two apps had their own implementation of Android’s keyboard, which ren-
dered IME-based attacks useless against a minuscule percentage of apps. While
this is an improvement in terms of security, their in-app keyboard proved to
be vulnerable against a11y-based sniffing attacks, and screen recordings. A pos-
sible countermeasure against the screen recording attack is FLAG SECURE. We
encountered 14 apps that used this flag to secure their screen’s content. How-
ever, FLAG SECURE does not protect the keyboard, thus allowing attackers to
extract typed in credentials despite explicitly setting this flag (Table 2).

532 A. Kalysch et al.

Table 2. Out of 1,250 apps 1,027 had a login screen, either for an account with the
app development studio or third-party, e.g., Facebook and Google. A close examination
revealed most of these accounts being vulnerable to at least one UI-based attack,
thereby compromising user credentials or even credit card information in case of in-
app purchases.

Downloads Apps with
a login

Percentage of logins vulnerable against

Android
overlays

A11y
events

Screen
records

Malicious
IMEs

50+ Mio. 64 100% 96.88% 90.63% 100%

10+ Mio. 119 100% 100% 100% 98.32%

1+ Mio. 385 100% 100% 100% 100%

500+ Tsd. 128 100% 100% 100% 100%

100+ Tsd. 162 100% 100% 100% 100%

50+ Tsd. 36 100% 100% 100% 100%

10+ Tsd. 133 100% 100% 100% 100%

Summary 1, 027 100% 99.54% 98.66% 99.76%

(2) IPC Vulnerabilities. Aside from the UI-related vulnerabilities, the most
common issue we encountered was Android IPC-related. The most common vul-
nerability in this regard was the pending Intent. Pending intents are used to
encapsulate another intent object, thereby allowing another application to exe-
cute the inner Intent as if it were from the original application. This misinterpre-
tation effectively allows another app to use the same permissions and identity
of the executing app because this can lead to unwanted access to app resources,
access to hardware depending on dangerous permissions, and access to an apps
execution context. This issue affected 3345 components in 1131 different apps. In
the same category of IPC vulnerabilities fall the empty pending intent instances
that affect 488 components in 417 apps, and sticky broadcasts that are affecting
274 components in 231 apps.

Sticky broadcasts pose a vulnerability because custom permissions can not
secure them. Thus any application may access, remove, or modify them – even
the Google Developers guidelines advise against their use starting API level
21 [2]. Since other applications can remove sticky intents, developers should
not trust them to persist. All another app needs to modify or remove sticky
broadcasts is the BROADCAST STICKY permission, which is classified as normal
and therefore, might be used by any application without explicit approval by
the user.

Another major IPC issue were exported components with inadequate error
handling. Out of the 1,250 apps, 2603 components were inadequately protected
through permissions in 1135 apps, ultimately leading 377 of these apps to have at
least one crash during our fuzz testing. Apps with a higher number of exported
components did not necessarily show more crashes than apps with a lesser number.

On the Evolution of Security Issues in Android App Versions 533

However, exposing more parts of an app increases its attack surface and, therefore,
the number of possible entry points accessible from outside the app. This entry
point explosion leads to a higher risk for unsafe source code being executable from
outside the app’s scope.

Whenever key-value-mappings were left out, or null references were assigned
to the Intents, it was more likely that a NullpointerExceptions was raised
by the receiving component, which was responsible for two-thirds of the crashes.
However, in case all expected mappings were assigned correctly, but the format of
the data stored in the mappings was modified instead, it was more likely that the
payload passed the extraction step without any errors. This left a higher chance
of discovering interesting bugs in deeper levels of the components’ execution
paths and resulted in more advanced exception types like ClassNotFoundEx-
ceptions, ClassCastExceptions or IllegalArgumentExceptions.

(3) Network and WebView-Based Vulnerabilities. The detected network
vulnerabilities focused on wrong certificate usage and broken session manage-
ment. We found trusted server checks always returning true (406 components
in 369 apps), SSLSession objects not checked through the HostnameVeriefier
(270 components in 233 apps), unsafe implementations of the SSLError handler
(161 components in 107 apps), and instances where all hostnames were explic-
itly allowed (109 components in 108 apps). Altogether, these issues affected 550
apps, making this issue quite pressing for nearly half of our dataset. These issues
reveal a deeper problem with how certificates and host verification are handled
by developers, in the worst-case facilitating spoofing attacks where an allegedly
verified host is an attacker.

WebViews, while useful additions to the Android UI arsenal, introduced an
enormous interface directly into an app’s context. In our dataset, issues with
WebViews were highly prominent: WebViews were running unprotected in an
app’s context with Javascript enabled, meaning they had access to an app’s
permissions, resources, and execution context. While these issues affected 12,170
different components in 1128 apps, they become much graver if coupled with the
networking vulnerabilities detailed above since an attacker could include their
Javascript code in a spoofed host’s website.

(4) Cryptography Vulnerabilities. While regarding the cryptography issues,
we discovered two distinct categories. For one, several issues were the instanti-
ation of outdated ciphers or ciphers with weak parameters, e.g., the use of the
Electronic codebook (ECB). After we an analysis of the afflicted apps we discov-
ered, that most cases were a result of ECB being used as the default for cipher
instantiations if no explicit cipher was chosen. For example, the popular crypto-
graphic Android library Spongycastle5 automatically uses ECB mode whenever
only the transformation algorithm, for example, DES or AES, is specified, but
no cipher mode is given.

5 https://github.com/rtyley/spongycastle, accessed on 09.04.2020.

https://github.com/rtyley/spongycastle

534 A. Kalysch et al.

Fig. 4. This figure presents an overview of the affected apps and the security issues we
detected during our screening procedures.

Random numbers often play a critical role as they are needed for the ad-hoc
creation of encryption keys. The class java.util.Random6 generates pseudo-
random numbers based on a 48-bit seed, which is modified via a linear congru-
ential formula. Javas popular Math.random() method is based on this class and
therefore, should not be used for cryptographic purposes [5]. Instead java.util.
SecureRandom7 offers a true random number generator for use in cryptography.
However, SecureRandom can only return truly random numbers when no pre-
dictable seed is used. In the context of true random generators setting a fixed
Seed eludes the purpose of SecureRandom as long as no truly random seed is
passed and therefore, should not be used. Thus random generators should not
be called with setSeed if their results are used in cryptography. QARK detected
a total of 104 uses of setSeed or generateSeed together with SecureRandom
that belong to 64 different applications.

To summarize the detected vulnerabilities and their occurrence in our
dataset, we refer to Fig. 4. Based on the overwhelming number of UI-based find-
ings, we can assume that this attack vector is currently not considered for the DS
attacker model. Further, the IPC-based findings appear to be a more significant
issue seeing that roughly three-quarters of all apps had an issue belonging to
this category. Network and cryptography issues appear to be less prevalent in
our dataset.

4.4 Vulnerability Reuse Between Different Projects

We assess the code reuse with specific focus on the detected vulnerabilities in our
dataset. To that end we correlate the detected vulnerabilities in apps from the

6 https://docs.oracle.com/javase/10/docs/api/java/util/Random.html, accessed on
17.04.2020.

7 https://docs.oracle.com/javase/10/docs/api/java/security/SecureRandom.html,
accessed on 17.04.2020.

https://docs.oracle.com/javase/10/docs/api/java/util/Random.html
https://docs.oracle.com/javase/10/docs/api/java/security/SecureRandom.html

On the Evolution of Security Issues in Android App Versions 535

same development studio. Note, that a direct correlation of crashed components
in these apps is not possible due to Android Studios default ProGuard obfusca-
tion process which obfuscates the class, function, and most identifier names in
developer written code.

We instead focus on identifying the same vulnerabilities in apps and assessing
a studios predisposition towards certain vulnerability categories. As can be seen
in the previous Sect. 4.3, most UI vulnerabilities were shared among all apps in
our dataset, meaning IPC, network and cryptography issues are a better fit to
assess any correlations between the apps and development studios. These are
summarized for the DS in Table 3, including an overview of how many DS were
actually affected throughout their apps with a certain vulnerability, as well as
the variance, of how many vulnerable components were detected per app on
average. To spot the most significant vulnerabilities in the data set that can
be best attributed towards a specific author, only components not belonging to
external packages are considered.

Generally a lower number of affected DS show a higher correlation with the
affected DS, also a high variance between the frequency numbers of different
authors are better for correlation, as they allow to separate DS more clearly. A
high number of affected DS shows a very common vulnerability, that seems to
be shared throughout development studios.

Table 3. In this table we group selected vulnerabilities from affected DS. Aside from
the percentage of affected developers we also display the variance of how many app
components were on average vulnerable per app. A high variance thus suggests, that
different DS had very different numbers of vulnerable components per app.

Issue Affected DS Variance

(netw.) Webview access to file system/Javascript 40 (66.67%) 652.97

(IPC) Component exported unprotected 36 (60.00%) 50.47

(IPC) Implicit Intent creates PendingIntent 19 (31.67%) 50.47

(cryp.) Implicit ECB use 5 (8.33%) 17.98

(netw.) Unsafe implementation of SslError handler 5 (8.33%) 37.14

(IPC) Exported component protected inadequately 3 (5.00%) 10.86

(netw.) Server is always trusted 2 (3.33%) 69.47

(cryp.) Specifying a fixed seed with SecureRandom 2 (3.33%) 0.03

(IPC) (Ordered) Broadcast 2 (3.33%) 10.13

(netw.) SSLSession objects not checked
(HostnameVerifier)

1 (1.67%) 17.98

High variance numbers suggest major differences in the vulnerable compo-
nents per DS app. This means that these issues have a different impact between
different DS in our dataset and offer insights, that some authors have bigger

536 A. Kalysch et al.

issue of dealing with these vulnerabilities, similar to those vulnerabilities that
affect only a small number of DS with high variance.

To take a closer look at the vulnerability behaviour for each DS, we inspect
the percentage of that developer’s apps affected by the selected issue compared
to the total number of apps of the selected developer. Also, that specific security
issue has to be in a similar way contained in every affected application of the
developer. This means that the frequency of the selected vulnerability should be
approximately the same for each affected application of the selected developer.
To measure whether the frequency of a vulnerability within the application set
of a certain development studio is constant, the variance of the issue occurrence
count of each app can be utilized. A lower frequency variance within the develop-
ers as well as a high percentage of affected apps within a developer indicate high
correlation throughout the apps of a developer, as they have similar features and
are therefore more specific for a selected user.

A few examples of vulnerabilities occurring in specific studios are, e.g., the
hostname verification issues where servers are always trusted. Taking a look at
the two DS affected we can see major differences in the implementation: While
one studio had similar issue numbers for hostname verification issues throughout
the apps, the other had major fluctuations in these specific security issues. This
suggests a high level of code reuse on the one studio.

In another case the constant appearance of the same amount of security
issues in the IPC category led us to discover a DS internal SDK which they
used throughout roughly half of their app projects. Judging by the detected
unprotected components the SDK was developed at one point to enable easier
communication handling with core app features and apps from the same devel-
oper. Since this internal SDK was reused between apps it posed an extremely
lucrative point of entry for attackers as well, since it contained several unpro-
tected components that could be abused as entry points into the app.

5 Discussion

After inspecting the results, a key recommendation is to include vulnerability
scanning and app fuzzing approaches into the CI/CD pipeline of an app devel-
opment project. This would already allow developers to check their apps for
the most common vulnerabilities and create a safer environment. However, the
inclusion of vulnerability scanners comes at a price.

For one, it is the limited scope. No single scanner supports all known vul-
nerabilities or testing methodologies, meaning to get decent coverage, several
scanning and assessment tools have to be employed in tandem. This requires
developers to understand the trade-offs and limitations of each tool and imposes
a significant overhead on top of regular project work. Once tools are included,
however, there is no guarantee for future support and incremental work to keep
updated with new developments.

On the other hand, there seems to be no mutual consent on how to
communicate or classify vulnerabilities or place them in a severity category.

On the Evolution of Security Issues in Android App Versions 537

While in research, some Android vulnerability studies define their own tax-
onomies [16,21,22] they seem not widely used. Usually, vulnerability scanners
either define their own, e.g., QARK, rely on industry taxonomies like OWASP,
or leave it to the authors of the vulnerability submodules to communicate the
vulnerability.

All of this is making the prioritization of the detected vulnerabilities harder
and requires specific domain knowledge and experience to resolve detected issues.
We thereby question the usability of the naive inclusion of vulnerability scanners
into project development pipelines. The reason why a particular code fragment
or behavior is flagged as vulnerability and how to resolve this issue is what the
vulnerability scanner needs to communicate understandably. Ideally, developers
should be able to understand the output in its human-readable format. How-
ever, in our case, the interpretation of vulnerability messages required a deep
understanding of the vulnerability already or domain-specific knowledge of, e.g.,
cryptographic ciphers, to correctly address the issue.

Threats to Validity. As with most empirical studies, the here presented results
might not apply to other platforms. Android has a vast scope of changes intro-
duced to the system from a developer perspective; other platforms might have
a slower pace in development.

Another threat to validity is the reliance on automated vulnerability scan-
ners. As with most approaches, there is a chance for false positives, meaning
not all the detected vulnerabilities might be exploitable. The actual exploitation
of these vulnerabilities would, in most cases, require a deeper understanding of
the app’s internal logic and pose a considerable manual overhead. To mitigate
this, we relied on additional dynamic analysis in the form of IPC fuzzing and on
purely dynamic analysis for UI vulnerabilities.

6 Related Work

In this Section we discuss related works in the vulnerability study area and
additionally differentiate our own contributions from previous work. So far, we
conducted a developer studio focused vulnerability study, to assess whether vul-
nerabilities are reused in different projects and to what extent. Our results allow
to predict vulnerabilities of an application by utilizing a database of previously
detected vulnerabilities in previously published apps by the same developer stu-
dios. Conceptually closest to us is the work of Scandariato et al. [25] and Jiminez
et al. [12]. Scandariato et al., who developed an automated approach to predict
vulnerable classes, base the vulnerability assumptions on software complexity
metrics computed for each class in the apps Dalvik bytecode instead of our
authorship based approach. Jiminez et al. manually check the vulnerabilities
reported to the National Vulnerability Database between 2008 and 2014 to cre-
ate a complexity overview for different Android functionality. This allows them
to predict the areas where vulnerabilities might arise in an Android project.

538 A. Kalysch et al.

Taylor et al. [28] also looked at vulnerabilities in apps at the beginning and
end of a two year period with vulnerability scanners and came to the conclusion,
that number of vulnerabilities increases as well as the number of permitted
resources the app has access to. While some of the premises of both studies are
similar, e.g., tracking vulnerabilities in Android apps over a period of time, we
have a broader scope of considered vulnerabilities, and a focus on DS. In a similar
fashion, Gao et al. [8] conduct a vulnerability study on randomly chosen 28,564
consecutive app releases, relying on the Androbugs Framework for vulnerability
analysis. Our study differs through the different focus groups, Android apps in
their study and DS in ours, and the additionally introduced tests we conducted
beyond the vulnerability scanning with automated screening procedures.

General vulnerability studies without a focus on DS, and have been con-
ducted as well. Notable regarding our scope are especially Enck [6] and Linares
et al. [16]. Enck conducted a study of 1,100 apps from Google Play discovering
flaws especially in the platform usage of the studied apps. Linares et al. analyzed
660 vulnerabilities, including their inner workings in the Android OS, to identify
the components most at risk and provide guidelines on how to better secure the
OS and improve app security.

Some vulnerability studies for Android apps focus on a subset of vulnerabili-
ties regarded in our scope. These subsets of vulnerabilities also do not contain our
focus on the development organization that is responsible for the maintenance of
the app, and do not assess the time it takes to fix the app after a vulnerability was
made public. Wei et al. [30], Li et al. [15] and Sadeghi et al. [23] focus on IPC vul-
nerabilities, which is covered in broader scope through our dynamic drozer mod-
ule. Chin et al. [3], and Sasnauskas et al. [24] conducted studies on IPC vulnerabil-
ities to test their fuzzing implementation, however, they were much more limited
in their scope and dataset, and do not focus on DS. The Android IPC robustness
study of Maji et al. [17], who strongly relied on a null intent fuzzer and generated
sets of valid and semi-valid intents also falls under the same limitations.

Wang et al. [29] and Egele et al. [5] regard several misuse vulnerabilities which
are also a subscope of our paper, albeit with a different focus than our study.
Liu et al. Wang et al. focus on apps that save private data on publicly accessible
storage. Egele et al. focus on cryptographic APIs on Android and their frequent
(88% of apps) misuse. Cryptographic API misuse is also a subscope of this paper.
Our findings reflect a better understanding for cryptography on the developer
side, however, which can be explained by our focus on DS, i.e., proficient software
developers.

Jang et al. [11] analyzed accessibility features of Microsoft Windows, Ubuntu
Linux, iOS and Android. They found vulnerabilities related to these features in
all regarded OS, and proposed improvements. Fratantonio et al. [7] presented
a security assessment of Android’s UI and uncovered design flaws and several
innovative attacks which combine the use of UI-elements and a11y services. In
addition, they describe overlay-based attacks that can be used to bootstrap the
activation of an a11y service. Kalysch et al. [13] focus on a11y-based attacks and
conduct a vulnerability study of 1100 Google Play apps.

On the Evolution of Security Issues in Android App Versions 539

7 Conclusion

In this paper, we performed a study on app DS, focusing on vulnerability reuse
between different apps and on the vulnerability evolution of these applications.
Our analysis showed that DS have severe blind spots for UI security, endanger-
ing users, mainly if their apps include in-app purchases. We further discovered
that the category IPC is usually the most endangered, with over 1135 apps
having at least one IPC related security issue. Analyzing the evolution of secu-
rity issues in an app, we discovered that the number for IPC-based security
issues generally increases with each subsequent app version, contrary to network
and cryptography-related vulnerabilities, which stay mostly the same. However,
many vulnerabilities are introduced due to third-party library code, and less so
through developer code.

References

1. APKpure Inc.: APKPure (2014). https://apkpure.com. Accessed 13 Mar 2020
2. Burns, J.: Mobile application security on Android. In: Black Hat 2009 (2009)
3. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-

munication in Android. In: Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services, pp. 239–252. ACM (2011)

4. Clark, S., Frei, S., Blaze, M., Smith, J.: Familiarity breeds contempt: the honey-
moon effect and the role of legacy code in zero-day vulnerabilities. In: Proceedings
of the 26th Annual Computer Security Applications Conference, pp. 251–260 (2010)

5. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of crypto-
graphic misuse in Android applications. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, pp. 73–84 (2013)

6. Enck, W., Octeau, D., McDaniel, P.D., Chaudhuri, S.: A study of Android appli-
cation security. In: USENIX Security Symposium, vol. 2, p. 2 (2011)

7. Fratantonio, Y., Qian, C., Chung, S.P., Lee, W.: Cloak and dagger: from two
permissions to complete control of the UI feedback loop. In: 2017 IEEE Symposium
on Security and Privacy (SP), pp. 1041–1057. IEEE (2017)

8. Gao, J., Li, L., Kong, P., Bissyandé, T.F., Klein, J.: Understanding the evolution
of Android app vulnerabilities. IEEE Trans. Reliab. (2019)

9. Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., Song, D.: Juxtapp: a scalable system
for detecting code reuse among Android applications. In: Flegel, U., Markatos,
E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 62–81. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37300-8 4

10. Hay, R., Tripp, O., Pistoia, M.: Dynamic detection of inter-application communi-
cation vulnerabilities in Android. In: Proceedings of the 2015 International Sym-
posium on Software Testing and Analysis, pp. 118–128. ACM (2015)

11. Jang, Y., Song, C., Chung, S.P., Wang, T., Lee, W.: A11y attacks: exploiting acces-
sibility in operating systems. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pp. 103–115. ACM (2014)

12. Jimenez, M., Papadakis, M., Bissyandé, T.F., Klein, J.: Profiling Android vulner-
abilities. In: 2016 IEEE International Conference on Software Quality, Reliability
and Security (QRS), pp. 222–229. IEEE (2016)

https://apkpure.com
https://doi.org/10.1007/978-3-642-37300-8_4

540 A. Kalysch et al.

13. Kalysch, A., Bove, D., Müller, T.: How Android’s UI security is undermined by
accessibility. In: Proceedings of the 2nd Reversing and Offensive-Oriented Trends
Symposium, pp. 1–10 (2018)

14. Kalysch, A., Deutel, M., Müller, T.: Template-based Android inter process com-
munication fuzzing. In: Proceedings of the 12th International Conference on Avail-
ability, Reliability and Security. ACM (2020). https://faui1-files.cs.fau.de/public/
publications/Template based Android Inter Process Communication Fuzzing.pdf

15. Li, L., et al.: IccTA: detecting inter-component privacy leaks in Android apps. In:
Proceedings of the 37th International Conference on Software Engineering-Volume
1, pp. 280–291. IEEE Press (2015)

16. Linares-Vásquez, M., Bavota, G., Escobar-Velásquez, C.: An empirical study on
Android-related vulnerabilities. In: 2017 IEEE/ACM 14th International Confer-
ence on Mining Software Repositories (MSR), pp. 2–13. IEEE (2017)

17. Maji, A.K., Arshad, F.A., Bagchi, S., Rellermeyer, J.S.: An empirical study of
the robustness of inter-component communication in Android. In: 2012 42nd
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), pp. 1–12. IEEE (2012)

18. OWASP Foundation: Mobile top 10 (2016). https://www.owasp.org/index.php/
Mobile Top 10 2016-Top 10. Accessed 22 June 2020

19. OWASP Foundation: Owasp mobile security project (2017). https://www.owasp.
org/index.php/OWASP Mobile Security Project. Accessed 22 June 2020

20. Ranganath, V.P., Mitra, J.: Are free Android app security analysis tools effective
in detecting known vulnerabilities? arXiv preprint arXiv:1806.09059 (2018)

21. Rangwala, M., Zhang, P., Zou, X., Li, F.: A taxonomy of privilege escalation attacks
in Android applications. Int. J. Secure. Network. 9(1), 40–55 (2014)

22. Sadeghi, A., Bagheri, H., Garcia, J., Malek, S.: A taxonomy and qualitative com-
parison of program analysis techniques for security assessment of Android software.
IEEE Trans. Software Eng. 43(6), 492–530 (2016)

23. Sadeghi, A., Bagheri, H., Malek, S.: Analysis of Android inter-app security vul-
nerabilities using covert. In: Proceedings of the 37th International Conference on
Software Engineering-Volume 2, pp. 725–728. IEEE Press (2015)

24. Sasnauskas, R., Regehr, J.: Intent fuzzer: crafting intents of death. In: Proceedings
of the 2014 Joint International Workshop on Dynamic Analysis (WODA) and
Software and System Performance Testing, Debugging, and Analytics (PERTEA),
pp. 1–5. ACM (2014)

25. Scandariato, R., Walden, J.: Predicting vulnerable classes in an Android applica-
tion. In: Proceedings of the 4th International Workshop on Security Measurements
and Metrics, pp. 11–16 (2012)

26. Schütte, J., Fedler, R., Titze, D.: ConDroid: targeted dynamic analysis of Android
applications. In: 2015 IEEE 29th International Conference on Advanced Informa-
tion Networking and Applications, pp. 571–578. IEEE (2015)

27. Sounthiraraj, D., Sahs, J., Greenwood, G., Lin, Z., Khan, L.: SMV-HUNTER:
large scale, automated detection of SSL/TLS man-in-the-middle vulnerabilities in
Android apps. In: Proceedings of the 21st Annual Network and Distributed System
Security Symposium (NDSS 2014). Citeseer (2014)

28. Taylor, V.F., Martinovic, I.: To update or not to update: insights from a two-
year study of Android app evolution. In: Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, pp. 45–57 (2017)

29. Wang, H., et al.: Vulnerability assessment of OAuth implementations in Android
applications. In: Proceedings of the 31st Annual Computer Security Applications
Conference, pp. 61–70 (2015)

https://faui1-files.cs.fau.de/public/publications/Template_based_Android_Inter_Process_Communication_Fuzzing.pdf
https://faui1-files.cs.fau.de/public/publications/Template_based_Android_Inter_Process_Communication_Fuzzing.pdf
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
http://arxiv.org/abs/1806.09059

On the Evolution of Security Issues in Android App Versions 541

30. Wei, F., Roy, S., Ou, X., et al.: Amandroid: a precise and general inter-component
data flow analysis framework for security vetting of Android apps. In: Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1329–1341. ACM (2014)

31. Xia, P., Matsushita, M., Yoshida, N., Inoue, K.: Studying reuse of out-dated third-
party code in open source projects. Inf. Media Technol. 9(2), 155–161 (2014)

SiMLA – Security in Machine Learning
and Its Applications

Unsupervised Labelling of Stolen
Handwritten Digit Embeddings

with Density Matching

Thomas Thebaud1,2(B) , Gaël Le Lan2 , and Anthony Larcher1

1 LIUM - Le Mans University, 72085 Le Mans, France
{thomas.thebaud,anthony.larcher}@univ-lemans.fr

2 Orange Labs, 35510 Cesson-Sevigne, France
{thomas.thebaud,gael.lelan}@orange.com

https://lium.univ-lemans.fr/

Abstract. Biometrics authentication is now widely deployed, and from
that omnipresence comes the necessity to protect private data. Recent
studies proved touchscreen handwritten digits to be a reliable biometrics.
We set a threat model based on that biometrics: in the event of theft
of unlabelled embeddings of handwritten digits, we propose a labelling
method inspired by recent unsupervised translation algorithms. Pro-
vided a set of unlabelled embeddings known to have been produced by
a Long Short Term Memory Recurrent Neural Network (LSTM RNN),
we demonstrate that inferring their labels is possible. The proposed app-
roach involves label-wise clustering of the embeddings and label identifi-
cation of each group by matching their distribution to the label-relative
classes of a comparison hand-crafted labeled set of embeddings. Cluster
labelling is done through a two steps process including a genetic algo-
rithm that finds the N-best matching hypotheses before a fine-tuning of
those N-candidates. The proposed method was able to infer the correct
labels on 100 randomised runs on different dataset splits.

Keywords: Label inference · Handwritten digits · Density matching ·
Privacy · Long Short Term Memory · Recurrent Neural Network ·
Genetic search

1 Introduction

The widespread use of biometrics for authentication [11] brings personal data in
the center of security systems. Most recent biometric systems [11] encode bio-
metric data, such as gait sequences [14], voice recording [19], faces images [15],
fingerprints [23] or handwritten digits [13,20,21], into high dimensional represen-
tations commonly named embeddings. Encoding is done through trained classi-
fiers such as Convolutional Neural Networks [15,23] for physiologic biometrics
or Recurrent Neural Networks [13,14] for behavioural ones. Those embeddings
are then used for authentication: new embeddings are compared with the ones
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 545–563, 2020.
https://doi.org/10.1007/978-3-030-61638-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_30&domain=pdf
http://orcid.org/0000-0001-8953-7872
http://orcid.org/0000-0002-1493-5777
http://orcid.org/0000-0003-4398-0224
https://doi.org/10.1007/978-3-030-61638-0_30

546 T. Thebaud et al.

recorded during enrollment, to determine if the user accessing the system is the
same. When stored and transferred between devices, embeddings are subject to
theft and represent a possible breach in a system’s security. However, unlabelled
embeddings alone are not enough to apply commonly known attacks by recon-
struction [2,5,15] and labels are required. To label those stolen embeddings we
propose to match to a hand-crafted set of labelled embeddings, using unsuper-
vised techniques. The task of unsupervised matching of embeddings has already
been vastly explored for machine translation [6]. Most common methods involve
Adversarial training [3], Normalisation flow [24], Wasserstein distances [9], Pro-
crustes analysis [9], Principal Component Analysis [10] and Stochastic optimi-
sations [10].

In this paper, we examine the threat of an unlabelled embedding database
theft, all embeddings being extracted from handwritten digits in the context of a
One-Time-Password authentication system [21]. The embeddings are computed
from handwritten digits, thus contain information about writer identity and
digit value. This paper focuses on digit value (label) retrieval, which to our
opinion is the first problem to address in this attack scenario. The embeddings
are computed from handwritten digits, the number of classes is known to be 10,
and we make the hypothesis that the feature extractor is known to be based on
LSTMs (standard architecture for that kind of sequence data [13]).

Due to the small number of classes and the simple nature of the data, we sup-
pose that an attacker can find another database of raw handwritten digits, create
his own classifier and compute his own set of embeddings for labelling purposes.
Inspired by various unsupervised bilingual translation methods [6,9,10,24], we
investigate whether it is possible to compute the optimal transformation between
the stolen set of unlabelled embeddings and the comparison set of labelled
embeddings to infer the labels of the stolen embeddings. Being able to label
stolen embeddings and map them to a known space (the output space of the
attacker’s classifier), pose a security risk into biometric systems [2,5]. Mai et
al. [15] showed that original face images can be reconstructed from face embed-
dings, using the black-box feature extractor that was used to compute them.
Here we only use unlabelled embeddings to get the transformation from their
proper space to the output space of a known feature extractor and then guess
their labels.

In this paper, our contributions are:

– Inferring labels (digit values) of unknown handwritten digits embeddings by
comparing the statistical distributions of their clusters.

– The combination of unsupervised translation methods for label inference from
an attack perspective.

– The successful labelling of those embeddings and the estimation of a transfer
function to map them into a known space.

In Sect. 2, we expose related works about embedding matching and their
limits. Section 3 presents the proposed attack scenario. Section 4 details the pro-
posed method to infer the stolen embeddings labels. In Sect. 5, we present the
data, the feature extractor architecture and the pre-processing steps. Finally,

Unsupervised Labelling of Stolen Digit Embeddings 547

Sect. 6 presents the experimental work, before Sect. 7 concludes and presents
our future works.

2 Related Work

2.1 Template Reconstruction Attacks

Biometric recognition systems compute templates from physiological or
behavioural characteristics by using neural networks which are often referred
to as feature extractors. The resulting templates are then used for authentica-
tion purpose. Cappelli et al. [2], Galbally et al. [5] and Mai et al. [15] respectively
proposed critics of the current biometric templates by showing that fingerprints,
iris and faces templates can be reconstructed using neural networks.

Here we focus on the deep face template reconstruction [15]. Having access
to real deep face templates and the black-box feature extractor, the authors
generate artificial faces from noise vectors thanks to a generative adversarial
network [7]. Artificial deep face templates are then computed from those arti-
ficial faces thanks to the feature extractor. Artificial face and template pairs
are used to train a neighborly de-convolutional network (NbNet) that infers the
inverse function of the feature extractor, i.e., compute the generated artificial
face images from the artificial face templates. Finally they use that NbNet net-
work to compute real face images from the real face templates. Their work shows
that face images can be retrieved from stolen face templates and a black box
feature extractor.

Our work differs from the work of Mai et al. [15] as we deal with unlabelled
stolen templates of handwritten digits and assume to know the architecture of the
feature extractor (without any knowledge of the weights of the network). We aim
to find the digit values (labels) of unlabelled templates, further called embeddings
for coherence with the unsupervised machine translation literature cited in this
paper. We propose to find the labels of stolen embeddings by matching their
space to the output space of a known, hand-crafted, comparison feature extractor
(here a LSTM RNN), using a transfer function. Once the transfer function is
found, that known RNN feature extractor could then serve as a black-box feature
extractor, to perform an attack similar to the one described in [15].

2.2 Unsupervised Translation for Embedding Matching

The scope of this paper is to find the labels of stolen biometric embeddings
by matching their distribution to the one of labelled embeddings. Unsupervised
machine translation aims at achieving a bilingual translation by matching word
embeddings from a language with word embeddings of another, without knowing
the corresponding labels. The closeness of both problems leads us to explore
unsupervised translation literature.

For unsupervised machine translation, the success of the algorithm is highly
dependent on the initialisation [9,10]. However, most of unsupervised translation

548 T. Thebaud et al.

methods either use a few labelled examples or the first thousands most frequent
words in each language. The initialisation strategies based on that are not suit-
able for our problem. Our problem involves a lower number of classes but with
multiple samples for each class. For that reason, most initialisation approaches
discussed hereafter cannot be directly implemented.

Grave et al. [9] propose a method to match high dimensional word embed-
dings from two different lexicons, using Procrustes Analysis [8] and Wasserstein
distance [22] with a stochastic optimisation of a rotation matrix. They achieve
state of the art performance using the 2000 most frequent words of each lan-
guage to initialise the matrix. The translation of this initialisation to our task is
not directly applicable as we do not have information about the most frequent
digits. However, we keep the idea of using Procrustes analysis to find an optimal
rotation for a given combination.

Still for unsupervised machine translation, Hoshen and Wolf [10] use Prin-
cipal Component Analysis to efficiently initialise their algorithm with the 5000
most frequent words of each language. Their algorithm computes the optimal
rotation from a given permutation matrix, and finds the optimal permutation
matrix according to that rotation. Thanks to the high number of classes (5000)
compared to the low number of dimensions (50 after PCA), switching two classes
in the permutation matrix only induces small variations in the rotation matrix,
so their algorithm can do a step-by-step search. However, due to the low number
of classes (10 digits) in our problem, we cannot apply the step-by-step search.
Indeed, a permutation error would induce a much more important variation of
the rotation matrix. However, we propose to initialise with a global PCA on the
data to align both spaces and reduce the number of dimensions before further
computing.

Zhou et al. [24] match word embeddings by modeling each one as its own
gaussian distribution and fitting Gaussian Mixture Models [17] to each set of
words. The transfer function is then trained by minimizing the distance between
GMMs. Note that they also use a few identical words in both languages to add a
weak similarity constraint to their search. As we want to find the transformation
function without any example, we cannot apply that exact method. However we
keep the idea of modeling the statistic distribution of embeddings with GMMs
and the concept of normalising flow [18] to map the transfer function between
the unlabelled embeddings space and a known space.

3 Proposed Attack Scenario

We want to label a set U of stolen unlabelled embeddings. We suppose that
those embeddings have been produced on a touchscreen biometric system [21],
for authentication by handwritten digits, as illustrated in Fig. 1.

The U set is composed of N unlabelled embeddings of dimension D, result-
ing from the penultimate layer of a LSTM classifier designed to process 2D
stroke sequences taken from handwritten digits from 0 to 9. For the purpose of
this paper, the number N of embeddings depends on the size of the considered
dataset.

Unsupervised Labelling of Stolen Digit Embeddings 549

Fig. 1. Illustration of the stolen embeddings, in a touchscreen biometric system for
handwritten digits. During enrollment, few examples of each digit are drawn by an
user, then computed into embeddings by the F.E and stored. To authenticate, the user
draws a digit or a sequence of digits, computed into embeddings by the same F.E and
compared to the stocked embeddings by the discriminator.

Fig. 2. Illustration of the differences between the stolen, unlabelled embeddings and
the comparison, labelled embeddings.

We suppose an attacker able to find or provide its own data. This data can
be used to produce a labelled set of statistically comparable embeddings. To
simulate that scenario, we train a second LSTM classifier with a disjoint set of
2D sequences, taken from different users, as illustrated in Fig. 2. Those labelled
embeddings will be referred to as the L set. To exploit the stolen embeddings,
we propose a method to transfer them into a known, labelled space, namely the
output space of the second LSTM classifier. The optimal transformation between
the two spaces (i.e. the permutation matrix between unlabelled classes of U and
labelled classes of L) can be used to label the stolen embeddings. Those notions
of permutation and optimal transformation between two spaces are linked in
most of unsupervised translation works [6,9,10], and we manipulate both in our
proposed method.

The method we propose follows 4 steps, as illustrated in Fig. 3:

1. Cluster the embeddings of U in 10 clusters, expecting each cluster to corre-
spond to a class (i.e. a digit value).

550 T. Thebaud et al.

2. Apply a global Principal Component Analysis to both sets U and L, project-
ing embeddings on 10 dimensions;

3. Find the most likely candidate permutation between each cluster of U and
each class of L, using a likelihood score.

4. Fine-tune the reversible transformation associated with each candidate to get
the optimal transformation, and identify the labels of U .

Fig. 3. Illustration of our labelling method: embeddings are clustered and PCA pro-
jected, then clusters of both sets are compared to find the most probables permutations
candidates, and fine-tuning select the candidate that associate clusters of same labels.
Knowing the labels of the crafted set, we infer the labels of the stolen set.

Our main contributions, related to step 3 (labelling), are detailed in Sects. 4.2
and 4.3. The steps of clustering and dimension reduction that are necessary to
achieve good performance are later described in Sect. 5.3.

4 Labelling

To effectively consider the U set as labelled, we need to find the labels of each
one of its clusters. The U set is considered labelled when each of its ten clusters
is paired with a class from L corresponding to a digit value. To represent a
possible match between clusters of U and labels of L, we use a permutation
matrix P = (pij)i,j∈[[0,9]]2 , a bi-stochastic matrix composed of 0 and 1, where
pij = 1 means the ith cluster is labelled as class j (e.g. digit value j). This
section introduces three contributions. First we propose to apply a Procrustes
analysis [8] between the cluster centers of U and the class centers of L, in order to
approximate the optimal transformation between both sets. Second, we propose a
scoring method to evaluate the success of the optimal transformation for a given
permutation. Third, we search through the space of all possible permutations to
find the best candidates, according to our scoring method. Finally, we fine-tune
the best candidates to re-rank them and find the ultimate optimal permutation.

Unsupervised Labelling of Stolen Digit Embeddings 551

4.1 Optimal Rotation for a Given Permutation

Search for Transfer Function as a Rotation. Mikolov et al. (2013) [16]
pointed out that the transformation between the word-embedding spaces of
two languages can be well mapped by a linear transformation, so a multipli-
cation matrix and a bias matrix. Each sets being centered, we can ignore the
bias matrix. Each embedding being length-normalised, the multiplication matrix
should have a determinant of module 1 and after applying the PCA, the embed-
dings of both sets are projected into two orthogonal spaces.

We consider that the transfer function between spaces of embed-
dings is a rotation, which will be verified in Sect. 6.

Procrustes Analysis. Considering that the transfer function is a rotation,
it can be found by a Procrustes analysis that computes a linear transformation
between two sets of matched points U ∈ R

N×D and L ∈ R
N×D. In case the match

between the two sets is known (i.e., which point of U corresponds to which point
of L), the linear transformation W can be simply recovered by solving the least
square problem:

min
W∈RD×D

‖UW − L‖22 (1)

Here we use the 10 centers of the unlabelled clusters as CU , the 10 centers of
the labelled classes as CL and the match is given by the permutation matrix P .
As in Grave et al. (2018) [9], we compute for a given permutation matrix P the
solution to the Eq. 2.

min
W∈RD×D

‖CUW − PCL‖22 (2)

Procrustes analysis presents a simple solution to that problem. Let the square
matrix M ∈ R

D×D be:
M = Ct

U .PCL (3)

M can be decomposed in singular values as:

M = X × Σ × Y ∗\(X,Y ∗) ∈ (RD×D)2 (4)

Then the W rotation matrix solution to the Eq. 2 is defined as:

W = X.Y ∗ (5)

Evaluation of a Given Rotation. To select the most probable permutation
between the two sets, we have to find a reliable heuristic that evaluates its
corresponding rotation, without knowing the labels of one of the sets. We assume
that the statistical distribution of each cluster of embeddings is different enough
to distinguish it from the others, and thus find its label.

552 T. Thebaud et al.

Modeling of the Embeddings Distribution with Gaussian Mixture
Models. The statistical distribution of embedding from each set is approxi-
mated by a multivariate Gaussian Mixture Model (GMM). The number of com-
ponents in the GMM is chosen via Bayesian Information Criterion [1]. We do
not impose priors, means or co-variances to the models, and use full co-variances
matrices.

Global Log-Likelihood Scoring. To measure the distance between a set of
embeddings and a GMM, we propose to use the global log-likelihood.

Let the GMM of the labelled set L be GMML = {(pi, μi, Σi) ∈ (]0, 1[×R
D ×

R
D×D)\i ∈ [[1,K]]}, pi, μi and Σi being respectively the prior, mean and co-

variance of the ith gaussian, with
∑K

i=1 pi = 1. Let U = {u ∈ R
D} be the

set of unlabelled embeddings, and W ∈ R
D×D the given rotation matrix, then

UW = {uW = W.u\u ∈ U} is the set of projected unlabelled embeddings.
The log-likelihood between a projected embedding uW and a Gaussian i is:

log N (uW |μi, Σi) = −1
2
(K log 2π + log |Σi| + (uW − μi)TΣ−1

i (uW − μi)) (6)

The log-likelihood between a projected embedding uW and the model GMML

is then defined as the log of the average of the likelihood with each Gaussian,
weighted by the priors P = {pi ∈ R}:

log NGMML
(uW) = log

K∑

i=1

piN (uW |μi, Σi) (7)

= log
K∑

i=1

exp(log(pi) + log N (uW |μi, Σi))

Finally, the global log-likelihood score of the set XW is set as the average of the
individual log-likelihood scores:

Score(UW , GMML) =
1

Card(UW)

∑

uW ∈UW

log NGMML
(uW) (8)

Here the Score(UW , GMML) function is defined as the likelihood score between
the GMM of a set of embeddings L and a set of embeddings U projected by a W
rotation matrix. If the transformation W is confirmed to be a rotation, then W
is invertible and its inverse is W t. Thus, we can define this score for the reversed
rotation, between embeddings L projected by a rotation W t and a GMM fitted
to a set U : Score(LW t , GMMU).

We propose to take the maximum of the two options, evaluating in a single
score the likelihood of a transformation and its reverse:

Score(U,L,W) = max(Score(UW , GMML), Score(LW t , GMMU)) (9)

A higher score means a better matching between sets, so by taking the maxi-
mum we use the best of both comparisons. For the rest of the article, we used
the opposite global log-likelihood score (−Score(U,L,W)) as the function to
minimize.

Unsupervised Labelling of Stolen Digit Embeddings 553

4.2 Genetic Search

For any given permutation, we can compute the associated optimal rotation and
evaluate its ability to statistically align both datasets. To find the candidates
that minimize the score described above, we explore the space of the possible
permutations P ∈ [[0, 1]]10×10. To find the global best rotation, we need to try
all possibles 10! = 3628800 permutations. To limit the number of tested permu-
tations, we choose to use a genetic algorithm [4] to find the fittest permutations.
The genetic algorithm considers each permutation as a chromosome, and gets
the best candidates through merging and mutations without scoring every pos-
sible permutation. We propose to represent chromosomes as ordered sequences
of 10 digits instead of matrices of zeros and ones:

C = {ci ∈ [[0, 9]] \ i ∈ [[0, 9]]} (10)

Each element from a chromosome represents the link between a cluster of unla-
belled data and a labelled class. ci being the value of the ith element means that
the unlabelled cluster ci is linked to the labelled class i (each cluster is linked to
a unique other class).

∀i, j ∈ [[0, 9]]2, i �= j ⇔ ci �= cj (11)

4.3 Fine-Tuning

Rotations are approximated using the center of each cluster and thus might not
be as precise as if every embedding was used. As a result, the best candidate
permutation found by the genetic search might not always be the genuine one.
To refine and re-rank the k-best candidate permutations, we propose a stochastic
optimisation. The candidate with the best score after fine-tuning is expected to
give the true labels.

Our fine-tuning is inspired by [24], which uses gradient descent to find the
optimal rotation matrix a comparable statistical alignment problem, using two
weak constraints during training (orthogonality and unitary determinant). For
each k-best permutation candidate, we fine-tune W with the Adam stochastic
optimisation method [12] to minimize the global log-likelihood score.

Losses. To fine-tune each matrix W to minimize the global log-likelihood score
while keeping their rotation properties, we combine three loss functions:

1. Loss 1: The global log-likelihood score −Score(U,L,W)
2. Loss 2: The absolute log of the determinant of W : | log(det W)|
3. Loss 3: The difference ui − (W t × W × ui)

The first loss fits the matrix W to the optimum transformation between the two
sets of embeddings. The second targets a determinant of 1, and the third insures
that W is orthogonal. The last two guarantee that W stays a rotation matrix.
The global loss is a non-pondered sum of the three losses.

554 T. Thebaud et al.

After a few dozens of epochs, the losses are stabilized, and we get W ∗, the
fine-tuned version of W . Once each instance of W ∗ is scored with global log
likely-hood score, the one with the minimum score is the best candidate, the
permutation associated giving the searched labels.

5 Data and Preprocessing

5.1 Data

The data is taken from two different datasets described in: Tolosana et al.
(2018) [21] and Tolosana et al. (2019) [20], both produced by the University
of Madrid, containing data from respectively 217 and 93 users. The first set con-
tains 8460 stroke sequences of variable length (mean = 31.9, std = 13.1, max
= 164), in 2 dimensions, representing digits drawings from 0 to 9. The second
contains 7430 sequences of variable length (mean = 33.9, std = 13.2, max =
125). In total, it results in 16350 sequences, with an equal proportion (a tenth)
of each digit. Those sequences are divided into 4 sets of equal digit proportion,
each set containing the sequences of a randomized quarter of the total number
of users. Those sets will then be referred as: Train U, Test U, Train L and
Test L.

Both Train sets are used to train the classifiers and the Test sets to evaluate
their performances. The embeddings used for unsupervised matching in the rest
of the paper are produced by passing the sequences from the Test sets through
the classifiers.

In order to multiply the experiments with the same original data, we ran-
domly split in 4 parts the set of users in 100 different ways, to get 100 different
simulations. Sets of users are always composed of 77 to 78 users, and each set
contains 3450 to 4560 sequences (mean = 4079.35) with each digit having the
same number of examples.

5.2 Architecture of the Networks

The architecture of the feature extractor, assumed to be known by the attacker,
is a Long Short-Term Memory (LSTM) RNN. We train thus two classifiers with
an input in 2 dimensions and a hidden state vector of D = 64 dimensions. The
last hidden-layer is passed through a fully connected layer of dimension 10 and
an a softmax function to predict the digit value.

Both networks are trained with both Train sets using Cross Entropy Loss as
the objective function to predict the digit associated with each sequence. The
training stops when each network has a precision of 96% on its Test set. Both
networks have the same architecture but a different, random initialisation of their
parameters. 64-dimension embeddings are then extracted from the penultimate
layer of each network for all digits from the respective Test set.

The set Test L is processed by the first network to produce a set of Labelled
embeddings referred to as L set, while the set Test U is processed through the

Unsupervised Labelling of Stolen Digit Embeddings 555

second network to produce a set of Unlabelled embeddings referred to as U set.
All produced sets are composed of 3450 to 4560 embeddings (average of 4079.35)
in 64 dimensions, with each class having the same number of examples.

5.3 Preprocessing

Normalisation. For each set, all embeddings are length-normalised, centered
as in Grave et al. (2018) [9] and length-normalised again.

Clustering. The networks being trained to be classifiers, we assume they
project the original sequences in a vector space were borders can be drawn
between same-label classes. Thus, we should be able to split the data in class-
related clusters. To assert this point, we propose to use the K-means clustering
algorithm to split the unlabelled set in ten clusters. For further purposes, the
groups formed by same-label embeddings of L set will be referred as classes, as
opposed to the clusters of U .

Principal Component Analysis. We propose to initiate our method with
principal component analysis, as in Hoshen and Wolf [10]. We propose D = 10,
so the number of dimensions do not exceed the number of distinct matched
points used to compute the Procrutes rotation matrix. For the rest of the paper,
we work with the 10-dimension PCA-reduced embeddings for both sets. We
compute the means of each cluster of U and each class of L after the PCA, so we
end up with 2 × 10 average embeddings representing the centers of the clusters
and classes.

6 Experiments

Firstly, each following experiment is carried out with the same dataset split,
and results are presented for that example dataset split. Secondly, we carry out
the same experiment over the 100 pairs of sets produced in Sect. 5, to provide
reproducible and precise experiments.

6.1 Clustering

We split the unlabelled embeddings in 10 clusters with the K-means algorithm.
The result of this clustering is in the Table 1. We measured the cohesion of the
clusters relative to the original labels of the embeddings. We found a cohesion
of 3792

4000 = 0.948 after the clustering, meaning 94,80% of the embeddings can be
grouped together by a clustering.

For a better precision, we measure the clustering cohesion for every set of
embeddings over the 100 different split of data. The global cohesion was between
92.26% and 96.04% (mean = 94.45%). This is an acceptable cohesion, knowing
that the originally trained classifier got a 96% of accuracy over the test set.

556 T. Thebaud et al.

Table 1. Embeddings of each label and their associated cluster number after K-means
clustering

Label\Cluster 0 1 2 3 4 5 6 7 8 9 Σ

0 0 12 4 4 9 1 4 3 363 0 400

1 0 1 395 4 0 0 0 0 0 0 400

2 394 0 2 1 0 3 0 0 0 0 400

3 0 0 0 0 1 1 0 392 0 6 400

4 1 0 7 375 0 4 13 0 0 0 400

5 0 0 0 1 14 0 0 4 1 380 400

6 0 382 0 0 0 1 0 0 14 3 400

7 6 0 4 0 2 380 6 0 1 1 400

8 0 4 7 0 350 1 2 2 30 4 400

9 0 6 1 6 2 0 381 0 3 1 400

Maximum: 394 382 395 375 350 380 381 392 363 380 3792

This confirms that our unlabelled embeddings can be split in label-wise clus-
ters. This also means that when we have 100% accuracy on the clusters labelling,
an average of 94.45% of the individual embeddings will be correctly labelled.

6.2 Principal Component Analysis

Each set of embeddings from the 100 splits is projected in P = 10 dimensions
using PCA. The total ratio of explained variance is between 80,4% and 88,2%
(mean = 84,9%).

6.3 Rotation

To prove that the relation between the two sets of embeddings can be well
mapped as a rotation, we suppose the labels of both sets to be known, just
for the purpose of this experiment. We apply Procrustes analysis on the cen-
ters of the label-wise clusters of both sets to compute the optimal rotation W
between the two sets. Then we project every embedding of the unlabelled set
with W . For each projected embedding, we measure the nearest labelled cluster
center, the projection being considered as successful if that nearest cluster has
the same label as the original embedding. The Table 2 presents the results of that
association. This experimentation shows 94.31% accuracy, meaning 4,103 out of
4,350 embeddings from the unlabelled set were associated with the right cluster.
When reproducing this experiment with every pairs of sets from the 100 splits
we observe 92.44% and 95.86% accuracy (mean = 94.50%). From there, we can
consider that the transformation between the two spaces can be well approxi-
mated as a rotation, as thus confirm that if we get the right permutation, over
92% of the embeddings will be correctly labelled. We are therefore looking for

Unsupervised Labelling of Stolen Digit Embeddings 557

the optimal rotation between the Labelled space and the Unlabelled one. Thus,
as said in Subsect. 4.1, the transfer function between the spaces of both sets of
embeddings is considered a rotation.

Table 2. Embeddings projected with optimal rotation: label by nearest cluster

Label\Nearest cluster 0 1 2 3 4 5 6 7 8 9

0 402 0 1 0 13 1 14 0 1 3

1 0 412 1 0 19 0 2 1 0 0

2 0 0 429 0 1 1 1 3 0 0

3 1 0 0 417 0 3 2 3 7 2

4 3 3 1 0 402 0 0 4 5 17

5 1 0 0 4 3 401 10 9 7 0

6 7 0 0 3 0 4 420 0 0 1

7 1 2 2 0 4 1 0 425 0 0

8 14 6 3 2 1 15 2 2 386 4

9 0 1 0 1 21 1 1 1 0 409

6.4 Reliability of the Global Log-Likelihood Score

To test the reliability of that score function we use every one of the 10! combi-
nations to compute the 10! rotations associated, and measure the score of the
rotated set for each of them. The genuine permutation is supposed to obtain the
lowest score. We group all permutations by their number of correct matches and
plot them on Fig. 4 with the corresponding scores. The first column is only the
expected permutation, and the others are the scores of permutations with 2 to
10 mismatches. The second graphic is a zoom on the lower part of the first one.
The figure shows that the genuine permutation only obtains the third lowest
score. The score depends on the GMM and since the GMM initialisation is ran-
dom, the score is slightly different each time. After running this experiment 10
times on this particular dataset split to smooth the variations due to the GMM
initialisation, the genuine permutation is always observed between the 1st and
the 6th rank. Over all the candidate permutations, the global log-likelihood score
gives the genuine permutation one of the lowest scores. Therefore, we have to not
only consider the candidate with the lowest score, but a list of the k candidates
with the lowest scores, to be sure to have the genuine candidate among them.
That is why we have to fine-tune the rotations in order to re-rank the k-best
permutations.

558 T. Thebaud et al.

Fig. 4. Box plot of the global log likelihood score of every embedding, as a function of
the number of errors.

6.5 Genetic Search

We are searching through all possible permutations using chromosomes con-
sisting of ordered sequences of 10 naturals numbers (see Eq. 10). Each element
represents the link between a cluster of unlabelled data and a digit class.

A Initialisation The search is initialised with 150 Chromosomes and each of them
is evaluated by computing its rotation matrix and their score as explained in
Subsect. 4.

B Selection The 20 chromosomes with the lowest score are selected.
C Merging Two chromosomes from the 20 selected are randomly taken, and

merged to create a new one. The common elements stay the same while the
elements that are different are randomly selected from one or the other. If the
new chromosome has not been seen yet, it is added to the list, and an other
merge is done until reaching the 100 more chromosomes.

D Mutation One of the 20 selected chromosomes is randomly selected. 2 to
10 elements of that chromosome are randomly selected and then rotated to
obtain a new, mutated chromosome. If the new chromosome have not been

Unsupervised Labelling of Stolen Digit Embeddings 559

seen yet, it is added to the list, and an other mutation is done until reaching
the 50 more chromosomes.

E End of the Main Loop Finally, after getting a list of 170 chromosomes, the
score of each is evaluated, and the algorithm get back to step B: the selection.
It loops over until the 20 selected chromosomes stabilise and stay the same 100
loops in a row. The output is the list of those k = 20 selected chromosomes

We use the genetic search to find the 20 best permutations according to
the global log-likelihood score. An experiment takes around 55 loop each to be
completed, so around 104 permutations are evaluated over the 3.6×106 possible
ones. At the end of the search, the genuine combination is part of the k = 20
best candidates. An example of the score for each one of the 20 best candidates
is presented in Table 3.

Table 3. Example of a table of the scores for the first 20 candidates after a genetic
search. *genuine candidate.

Rank Candidates Score

1 0 4 2 3 1 5 6 7 8 9 −1.465

2 8 1 2 3 4 6 5 7 0 9 −1.360

3* 0 1 2 3 4 5 6 7 8 9 −1.310

4 8 0 2 3 6 7 5 1 4 9 −1.074

5 8 7 2 3 4 6 5 1 0 9 −1.025

6 8 1 2 3 7 6 5 4 0 9 −0.937

7 7 1 2 3 4 6 5 0 8 9 −0.867

8 0 1 2 3 4 6 5 7 8 9 −0.853

9 0 1 2 3 4 8 5 7 6 9 −0.559

10 0 2 4 3 1 5 6 7 8 9 −0.553

11 0 7 2 3 4 6 5 1 8 9 −0.509

12 0 2 7 3 1 5 6 4 8 9 −0.461

13 0 7 2 3 4 5 6 1 8 9 −0.457

14 6 0 2 3 8 7 5 1 4 9 −0.403

15 7 6 8 9 5 1 4 0 2 3 −0.386

16 0 5 2 3 6 7 1 8 4 9 −0.364

17 0 1 2 3 4 5 8 7 6 9 −0.361

18 6 0 2 3 4 7 5 1 8 9 −0.355

19 0 4 7 3 1 5 6 2 8 9 −0.331

20 8 1 2 3 4 0 5 7 6 9 −0.305

For the given example, the genuine candidate, [0 1 2 3 4 5 6 7 8 9], is
not the best one selected. It is ranked third. Thus fine tuning is required, in

560 T. Thebaud et al.

Subsect. 6.6. To present more consistent results, we run this genetic search over
the 100 splits of data and registered the rank of the genuine permutation for each
pair of sets. The genuine candidate is ranked first 62 times out of 100, note that
it is also ranked 20th once. Figure 5 presents an histogram of the ranks obtained
for each dataset split.

Fig. 5. Histogram of the ranks of the wanted solution after a genetic search.

6.6 Fine Tuning

The genetic search gave us a quick reliable way to find a set of good candi-
dates, we now target to find the absolute best permutation by fine tuning each
candidate, using the fine-tuning algorithm Sect. 4.3.

For each candidate permutation, the fine-tuning rotation matrix is initialised
with the one previously computed using Procrustes analysis on the centers. Each
candidate rotation matrix is fine-tuned for 200 epochs with the configuration
detailed in Subsect. 6.6. The global log-likelihood of the statistical alignment
is computed again afterwards. Table 4 corresponds to the same experiment as
Table 3 but after applying fine-tuning.

The genuine candidate effectively got the best score, while the previous best
candidate moved back to rank 5. For this example, the permutation that matches
the cluster of i with the label i (∀i ∈ [[0, 9]]) is selected and the clusters are
correctly labelled.

To present more consistent results, we run the proposed fine-tuning over the
100 splits of data and register the rank of the genuine solution for each pair of
sets. The genuine solution is ranked first every time. Before fine-tuning,
the average score on the 20 selected candidates is −1.910 while the average score
of the genuine candidate is −2.325, for an average rank of 3.27. After fine-tuning,
the average score on the 20 selected candidates became −4.453 while the average
score of the genuine candidate went down to −5.042, for an average rank of 1.00

Unsupervised Labelling of Stolen Digit Embeddings 561

Table 4. Table of the scores for the first 20 candidates after fine-tuning. *genuine
candidate

Updated Previous Candidates Updated
score

Previous
scoreRank Rank

1* 3 0 1 2 3 4 5 6 7 8 9 −5.914 −1.310

2 9 0 1 2 3 4 8 5 7 6 9 −5.827 −0.559

3 6 8 1 2 3 7 6 5 4 0 9 −5.770 −0.937

4 2 8 1 2 3 4 6 5 7 0 9 −5.603 −1.360

5 1 0 4 2 3 1 5 6 7 8 9 −5.602 −1.465

6 10 0 2 4 3 1 5 6 7 8 9 −5.420 −0.553

7 13 0 7 2 3 4 5 6 1 8 9 −5.335 −0.457

8 20 8 1 2 3 4 0 5 7 6 9 −5.334 −0.305

9 17 0 1 2 3 4 5 8 7 6 9 −5.322 −0.361

10 7 7 1 2 3 4 6 5 0 8 9 −5.269 −0.867

11 5 8 7 2 3 4 6 5 1 0 9 −5.219 −1.025

12 12 0 2 7 3 1 5 6 4 8 9 −5.043 −0.461

13 19 0 4 7 3 1 5 6 2 8 9 −5.026 −0.331

14 15 7 6 8 9 5 1 4 0 2 3 −4.999 −0.386

15 8 0 1 2 3 4 6 5 7 8 9 −4.985 −0.853

16 4 8 0 2 3 6 7 5 1 4 9 −4.775 −1.074

17 14 6 0 2 3 8 7 5 1 4 9 −4.731 −0.403

18 18 6 0 2 3 4 7 5 1 8 9 −4.727 −0.355

19 16 0 5 2 3 6 7 1 8 4 9 −4.687 −0.364

20 11 0 7 2 3 4 6 5 1 8 9 −4.622 −0.509

7 Conclusion - Future Work

This paper presents a statistical alignment method for high dimensional unla-
belled embeddings of handwritten digits, in the event of a theft. Our method is
inspired by unsupervised bilingual translation and reconstruction of biometric
templates literature. We aim to find the digit value (label) of each embedding.
Provided a set of unlabelled embeddings produced by a LSTM RNN, we train a
comparison RNN with the same architecture to produce hand-crafted compari-
son labelled embeddings.

We proposed to label the stolen embeddings by matching their clusters to
the label-wise classes of the comparison embeddings. The labelling consists in a
genetic search through all possible permutations between clusters and classes to
find the 20 candidates with the lowest global log-likelihood score. Each of those
candidates is fine-tuned and the fine-tuned candidate with the lowest score is
expected to represent the genuine permutation.

562 T. Thebaud et al.

We have applied this method on 100 different distinct splits of the original
dataset. Our experiment showed that after the genetic search, the genuine can-
didate got an average rank of 3,27, and got ranked first every time after fine
tuning. Thus the proposed method proved to be a reliable way to recover most
labels of the stolen handwritten digits embeddings (without further exploita-
tion we report a 94.45% average accuracy over the labeling of the individual
embeddings due to the clustering cohesion).

Future work will be dedicated to the relaxation of the constraints (higher
number of classes, unknown network architecture, other biometrics) and the
reconstruction of the signals. Overall, our work highlight the importance of per-
sonal data protection, especially embeddings from biometric systems, and open
perspectives for further threat models analysis and associated defenses.

References

1. Akaike, H.: A new look at the statistical identification model. IEEE Trans. Autom.
Control 19, 716 (1974)

2. Cappelli, R., Maio, D., Lumini, A., Maltoni, D.: Fingerprint image reconstruction
from standard templates. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1489–
1503 (2007)

3. Conneau, A., Lample, G., Ranzato, M.A., Denoyer, L., Jégou, H.: Word translation
without parallel data. arXiv preprint arXiv:1710.04087 (2017)

4. Forrest, S.: Genetic algorithms: principles of natural selection applied to compu-
tation. Science 261(5123), 872–878 (1993)

5. Galbally, J., Ross, A., Gomez-Barrero, M., Fierrez, J., Ortega-Garcia, J.: Iris image
reconstruction from binary templates: an efficient probabilistic approach based on
genetic algorithms. Comput. Vis. Image Underst. 117(10), 1512–1525 (2013)

6. Glavas, G., Litschko, R., Ruder, S., Vulic, I.: How to (properly) evaluate cross-
lingual word embeddings: on strong baselines, comparative analyses, and some
misconceptions. arXiv preprint arXiv:1902.00508 (2019)

7. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

8. Gower, J.C.: Generalized Procrustes analysis. Psychometrika 40(1), 33–51 (1975).
https://doi.org/10.1007/BF02291478

9. Grave, E., Joulin, A., Berthet, Q.: Unsupervised alignment of embeddings with
Wasserstein Procrustes. arXiv preprint arXiv:1805.11222 (2018)

10. Hoshen, Y., Wolf, L.: Non-adversarial unsupervised word translation. arXiv
preprint arXiv:1801.06126 (2018)

11. Jain, A.K., Nandakumar, K., Nagar, A.: Biometric template security. EURASIP
J. Adv. Signal Process. 2008, 1–17 (2008)

12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

13. Le Lan, G., Frey, V.: Securing smartphone handwritten pin codes with recurrent
neural networks. In: ICASSP 2019–2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 2612–2616. IEEE (2019)

14. Lee, L., Grimson, W.E.L.: Gait analysis for recognition and classification. In:
Proceedings of Fifth IEEE International Conference on Automatic Face Gesture
Recognition, pp. 155–162. IEEE (2002)

http://arxiv.org/abs/1710.04087
http://arxiv.org/abs/1902.00508
https://doi.org/10.1007/BF02291478
http://arxiv.org/abs/1805.11222
http://arxiv.org/abs/1801.06126
http://arxiv.org/abs/1412.6980

Unsupervised Labelling of Stolen Digit Embeddings 563

15. Mai, G., Cao, K., Yuen, P.C., Jain, A.K.: On the reconstruction of face images
from deep face templates. IEEE Trans. Pattern Anal. Mach. Intell. 41(5), 1188–
1202 (2018)

16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

17. Reynolds, D.A.: Gaussian mixture models. In: Encyclopedia of Biometrics, vol. 741
(2009)

18. Rezende, D.J., Mohamed, S.: Variational inference with normalizing flows. arXiv
preprint arXiv:1505.05770 (2015)

19. Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., Khudanpur, S.: X-vectors:
robust DNN embeddings for speaker recognition. In: 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5329–5333.
IEEE (2018)

20. Tolosana, R., Vera-Rodriguez, R., Fierrez, J.: BioTouchPass: handwritten pass-
words for touchscreen biometrics. IEEE Trans. Mob. Comput. 19(7), 1532–1543
(2019)

21. Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Ortega-Garcia, J.: Incorporating
touch biometrics to mobile one-time passwords: exploration of digits. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,
June 2018

22. Vallender, S.S.: Calculation of the Wasserstein distance between probability dis-
tributions on the line. Theory Probab. Appl. 18(4), 784–786 (1974)

23. Yang, W., Wang, S., Hu, J., Zheng, G., Valli, C.: Security and accuracy of
fingerprint-based biometrics: a review. Symmetry 11(2), 141 (2019)

24. Zhou, C., Ma, X., Wang, D., Neubig, G.: Density matching for bilingual word
embedding. arXiv preprint arXiv:1904.02343 (2019)

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1505.05770
http://arxiv.org/abs/1904.02343

Minority Reports Defense: Defending
Against Adversarial Patches

Michael McCoyd1(B) , Won Park1,2 , Steven Chen1, Neil Shah1,
Ryan Roggenkemper1, Minjune Hwang1 , Jason Xinyu Liu1 ,

and David Wagner1

1 University of California, Berkeley, Berkeley, CA 94720, USA
{mmccoyd,daw}@cs.berkeley.com,

{scchen,neilshah430,rroggenkemper,mjhwang,xinyuliu}@berkeley.edu
2 University of Michigan, Ann Arbor, MI 48109, USA

wonpark@umich.edu

Abstract. Deep learning image classification is widely used yet is vul-
nerable to adversarial attack, which can change the computer classifica-
tion without changing how humans classify the image. This is possible
even if the attacker changes just a small patch of the image. We pro-
pose a defense against patch attacks based on partially occluding the
image around each candidate patch location, so that a few occlusions
each completely hide the patch. We demonstrate on CIFAR-10, Fashion
MNIST, and MNIST that our defense provides certified security against
patch attacks of a certain size. For CIFAR-10 and a 5× 5 patch, we can
provide certify accuracy for 43.8% of images, at a cost of only 1.6% in
clean image accuracy compared to the architecture we defend or a cost
of 0.1% compared to our training of that architecture, and a 0.1% false
positive rate.

Keywords: Adversarial machine learning · Adversarial patch · Partial
occlusions ensemble defense

1 Introduction

Deep learning image classification is widely used yet is vulnerable to adversar-
ial attack, which can change the computer classification without changing how
humans classify the image. An attacker with knowledge of a neural network
model can construct, from any normal image x, an adversarial example x� that
looks to humans like x but that the model classifies differently from the normal
image [SZS+14], [GSS15,HJN+11,CW17].

Recently, researchers have proposed the adversarial patch attack [BMR+17,
KZG18], where the attacker changes just a limited rectangular region of the
image, for example, by placing a sticker over a road sign or other object. Others
have expanded on the vulnerability to this type of attack [EEF+17,TRG19,
XZL+19]. In this paper, we propose a defense against this attack.
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 564–582, 2020.
https://doi.org/10.1007/978-3-030-61638-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_31&domain=pdf
http://orcid.org/0000-0003-4349-4648
http://orcid.org/0000-0002-3032-0748
http://orcid.org/0000-0002-3697-8444
http://orcid.org/0000-0001-7732-3666
https://doi.org/10.1007/978-3-030-61638-0_31

Minority Reports Defense: Defending Against Adversarial Patches 565

The idea of our defense is to occlude part of the image and then classify
the occluded image. First, we train a classifier that properly classifies occluded
images. Then, if we knew the location of the adversarial patch, we could occlude
that region of the image (e.g., overwriting it with a uniform grey rectangle)
and apply the classifier to the occluded image. This would defend against patch
attacks, as the attacker’s contribution is completely overwritten and the input
to the classifier (the occluded image) cannot be affected by the attacker in any
way.

In practice, we do not know the location of the adversarial patch, so a more
sophisticated defense is needed. Our approach works by occluding an area larger
than the maximum patch size and striding the occlude area across the image,
making an occluded prediction at each stride. We then analyze the classifier’s
predictions on these occluded images. If the occlusion region is sufficiently larger
than the adversarial patch, several of the occluded images will completely obscure
the adversarial patch and thus the classifier’s prediction on those images will be
unaffected by the adversary and should match the correct label. Thus, we expect
the correct label to appear multiple times among the predictions from occluded
images. We show how to use this redundancy to detect adversarial patch attacks.
We call our scheme the minority reports defense because no matter where the
patch is located, there will always be a minority of predictions that cannot be
influenced by the attacker and vote for the correct label.

Figure 1 illustrates our defense. We take the input image (Fig. 1a) and con-
struct a grid of partially occluded images (Fig. 1b) with occlusions at different
locations, chosen so that any attack will be occluded in a cluster of several pre-
dictions. We then apply the classifier to each occluded image to obtain a grid of
predictions. When under attack, we can expect most predictions to differ from
the true label, but there will always be a cluster of locations where the adver-
sarial patch is fully obscured, and thus the labels are all expected to agree with
the true label; in Fig. 1, the 3rd and 4th images in the 4th row obscure the
adversarial patch and thus vote for the true label. Our defense analyzes the grid
of predicted labels to detect this pattern. If there is a cluster of predictions that
all match each other but are in the minority for the prediction grid overall, then
this suggests an attack. Figure 2 visualizes the prediction grid for a benign image
(on the left) and a malicious image containing an undefended adversarial patch
(on the right).

We evaluate our scheme on the CIFAR-10 [KH09], Fashion MNIST [XRV17]
and MNIST [LBBH98] datasets with a stride of one. We show that our defense
does not harm accuracy much. We also evaluate its security against adaptive
attacks. In particular, we show how to bound the success of any possible attack
on a given image, and using this, we are able to demonstrate certified security
for a large fraction of images. In particular, we are able to prove a security
theorem: for a large fraction of images in the validation set, we can prove that
no patch attack will succeed, no matter where the patch is placed or how the
patch is modified, so long as the size of the patch is limited. In summary, our
contributions in this paper are:

566 M. McCoyd et al.

Truck

(a) An attack image: a picture of a dog with a malicious 5 × 5 sticker that causes a
standard model to classify it as a truck.

Truck Truck Truck Truck

Truck Truck Truck Truck

Truck Truck Bird Truck

Truck Truck Dog Dog

(b) We occlude part of the image with a grey square, then classify these occluded
images. Here the 3rd and 4th predictions in the 4th row will be unaffected by this
attack. Our actual defense ensures that any attack will be fully occluded by a 3 × 3
grid of predictions, instead of the 1 × 2 grid shown here.

Fig. 1. Our scheme works by occluding different portions of the image and analyzing
the predictions made by the classifier on these occluded images.

– We quantify the vulnerability of undefended networks for Fashion MNIST
and MNIST against patch attacks with patches of different sizes (Sect. 2.2).

Minority Reports Defense: Defending Against Adversarial Patches 567

(a) Benign (b) Attack

Fig. 2. Prediction grids for a benign image (left) and an undefended attack image
(right). Each cell in the grid is colored based on the classifier’s prediction when fed an
image obscured at that position in the grid. A cluster of identical minority predictions,
as seen in the right image, suggests an attack. In the attack image on the right, green
hashes mark the nine predictions where the adversarial patch was fully occluded.

– We propose a novel method for detecting patch attacks, based on differently
occluded views of the input image (Sect. 3).

– We provide a worst-case analysis of security against adaptive attacks for
CIFAR-10, Fashion MNIST, and MNIST (Sect. 4 and Sect. 6).

2 Patch Attack

Patch attacks [BMR+17] work by replacing a small part of the image with
something of the attacker’s choosing, e.g., by placing a small sticker on an object
or road sign. Figure 1a shows a patch attack. Patch attacks represent a practical
method of executing an attack in the physical world. Digital images can be
manipulated throughout the entire scene they present, yet this is impractical in
a physical, not digital, scene. It is far more practical to add an attacker-controlled
object to part of the scene.

As a simple, non-malicious example, it is not uncommon to see stickers on
road signs in the real world, without preventing humans from understanding the
signs or prompting the patch’s immediate removal.

2.1 Attack Model

We assume the attacker knows everything the defender knows: the architecture,
weights, training data, and algorithm of all models and methods used by the

568 M. McCoyd et al.

defender. The attacker may place a ‘compact’ patch anywhere within the digital
image and arbitrarily modify all pixels within the patch to any values in the
pixel range. For simplicity, we restrict the attacker to a patch contained in an
n×n square area for some n, n being a measure of the attacker’s lack of stealth,
and ‘compact’ meaning square.

The size of the adversarial patch that can be defended against can be thought
of as similar to the size of an adversarial example L2 perturbation that can be
defended against. Certainly, the attacker could make a larger change, but at some
point, the change either becomes very obvious or changes the meaning of the
image for humans. Thus crossing the fussy boundary from being an adversarial,
stealthy, attack to being an image of something completely different to humans
– thus no longer adversarial as described in Sect. 1.

2.2 Patch Sizes

We first study how large of a patch is needed to successfully attack undefended
Fashion MNIST and MNIST. We test multiple patch sizes and measure the
attacker’s success rate for each patch size.

Setup. We conduct a targeted attack against standard Fashion MNIST and
MNIST models from Sect. 6. We attack the first 300 validation images for Fashion
MNIST and the first 100 validation images for MNIST. We report the fraction
of images for which we can successfully mount a patch attack. For each image,
we select a target label by choosing randomly among the classes that are least
likely, according to the softmax outputs of the classifier (namely, we find the
least likely class, identify all classes whose confidence is within 0.1% of the least
likely, and select the target class uniformly at random among this set). That
target is used for all attacks on that image. For each base image and its chosen
target class, we enumerate all possible patch positions and try at each position
to find an attack patch at that position.

Attack Algorithm. To generate patch attacks, we iterate over all possible loca-
tions for the patch and use a projected gradient descent (PGD) attack for each
location. We consider the attack a success if we find any location where we can
place a patch that changes the model’s prediction to the target label. The result-
ing adversarial patch is specific to one specific image and one specific location.

The standard PGD attack uses a constant step size, but we found it was
more effective to use a schedule that varies the step size among iterations. In
our experiments, a cyclic learning rate was more effective than a constant step
size or an exponential decay rate, so we used it in all experiments. We used a
cyclic learning rate with ten steps per cycle, with step sizes from 0.002 to 0.3,
for a maximum of 150 steps. We stopped early at the end of a cycle if the attack
achieved confidence 0.6 or higher for the target class, or if the confidence had
not improved by at least 0.002 in the last 20 steps from the best so far. For each
image, we attacked in parallel across all possible patch locations.

Minority Reports Defense: Defending Against Adversarial Patches 569

Results. For our MNIST model, a 6 × 6 patch is large enough to attack 45% of
the images successfully. The success rate for 4×4 patches was 19%, and for 8×8
patches, 80%. When an image can be attacked, there are often many possible
locations where an adversarial patch can be placed: for a 6 × 6 patch, out of
all images where a patch attack is possible, there were, on average, 41 different
positions where the patch can be placed.

For our Fashion MNIST model, the success rate for patch attacks was as
follows: 4 × 4 patch: 27% success, 5 × 5 patch: 50% success, 6 × 6 patch: 60%
success.

These results indicate that, on MNIST, an attacker needs to control a 6 × 6
patch to have close to a 50% chance of success, while a 5 × 5 patch is large
enough for Fashion MNIST, occupying 5% and 3% of the images respectively.

We use 5 × 5 patches for CIFAR-10, Fashion MNIST and MNIST, as that
size is used by recent work [CNA+20].

3 Our Defense

The basic idea of the minority reports defense is to occlude part of the image and
classify the resulting image. If the occlusion completely covers the adversarial
patch, then the attacker will be unable to influence the classifier’s prediction. We
don’t know where the adversarial patch might be located, so we stride the occlu-
sion area across the image. Because we use an occlusion area sufficiently larger
than the adversarial patch, no matter where the adversarial patch is placed, there
should be a cluster of occlusion positions that all yield the same prediction.

3.1 Occlusion Training

As our defense will internally use partial occlusions of the image it is given,
we train, or retrain, with occluded images. Each time an image is presented in
training, a randomly placed n×n square is occluded, and the model receives the
occluded image. This is similar to cutout training from Devries et al. [DT17],
who used occlusion as a regularizer. The difference in our training is that the
occlusion is the size we will use in our defense. We also internally provide the
model an additional input of a sparsity mask that indicates which pixels are
occluded.

For instance, the input to an MNIST model is an image, with dimensions
28 × 28 × 1, and a mask, with dimensions 28 × 28 × 1. The image has its normal
channels, and the mask has one channel. In the mask, a 0 indicates an occluded
position, and a 1 a non-occluded position.

If a model already predicts accurately with a random partial occlusion of the
size we use, there is no need to retrain or modify it, it can just be wrapped in
our defense as described in the following sections.

To better handle the missing pixels, we modify the architectures we test
by replacing convolutions with sparsity invariant convolutions [USS+17]. If the

570 M. McCoyd et al.

mask indicates no occlusions, the sparsity invariant convolutions behave as nor-
mal convolutions, but when occlusions are indicated, the occluded pixels are
handled better.

Training on occluded images appears to have only a small change on the
accuracy of the inner model on non-occluded images, see Sect. A.

3.2 Creating a Prediction Grid

At evaluation time, our defense’s first step is to generate a prediction grid as
follows. We describe the simpler case of low-resolution images here, leaving the
larger stride for higher resolution images to Sect. 5. For defending MNIST images
against a 5 × 5 adversarial patch, we use a 7 × 7 occlusion region. We slide
the 7 × 7 occlusion region over the 28 × 28 image with a stride of one pixel,
yielding 26 × 26 possible locations for the occlusion region. This ensures any
patch is covered by nine occlude areas, even a patch at the image edge, 26 =
(28− (7−1))+2+2. The prediction grid is a 26×26 array that records, for each
location, the classifier’s output. At each location, we mask out the corresponding
occlusion region of the image, classify the occluded image, obtain the confidence
scores from the classifier’s softmax layer and record that in the corresponding cell
of the prediction grid. Cell (i, j) of the prediction grid contains the confidence
scores for all 10 classes when the pixels in the square (i−2, j−2), . . . , (i+5, j+5)
of the image are masked out.

We visualize the pattern of occlusions in Fig. 1b, though with a large stride
for illustration. A stride of one on MNIST produces prediction grids such as
Fig. 2 and Fig. 3a and 3c.

If the image contains an adversarial patch centered at location (i, j), then
obscuring at each of the 9 locations centered at (i − 1, j − 1), . . . , (i + 1, j + 1)
yields nine images where the adversarial patch has been completely overwritten,
and the predictions in those cells of the prediction grid are completely unaffected
by the attacker. If the classifier is sufficiently accurate on occluded images, we
can hope that all of those 9 predictions match the true label. Thus, within the
prediction grid, we can expect to see a 3 × 3 region where the predictions are
uninfluenced by the attacker and (hopefully) all agree with each other. Our
defense takes advantage of this fact.

3.3 Detection

In a benign image, typically, every cell in the prediction grid predicts for the same
label. In contrast, in a malicious image, we expect there will be a 3 × 3 region
in the prediction grid (where the adversarial patch is obscured) that predicts a
single label and some or all of the rest of the prediction grid will have a different
prediction. We use this to detect attacks.

In our simplest defense, we look at all 3×3 regions in the prediction grid that
vote unanimously for the same label (i.e., all 9 cells yield the same classification).
If there are two different labels that both have a 3 × 3 unanimous vote, then we
raise an alarm and treat this as a malicious image.

Minority Reports Defense: Defending Against Adversarial Patches 571

(a) Scattered minority predictions (b) Vote grid: benign

(c) Cluster of minority predictions (d) Vote grid: attack

Fig. 3. In (a) and (c), we show the prediction grids for two benign images. (b) and
(d) show the corresponding vote grids. We must decide if the minority votes (yellow)
are benign errors or what remains of the truth after an attack has influenced the other
predictions. Unanimous voting classifies the top example as benign and the bottom as
an attack. (Color figure online)

Equivalently, we categorize each 3 × 3 region within the prediction grid as
either unanimously voting for a class (if all 9 cells in that region vote for that
class) or abstaining (if they don’t all agree). We construct a 24 × 24 voting
grid recording these votes. If the voting grid consists of solely a single class and
abstentions, then we treat the image as benign, and we use that class as the final
prediction of our scheme. Otherwise, if the voting grid contains more than one
class, we treat it as malicious.

The idea behind this defense is twofold. First, in a benign image, we expect
it to be rare for any 3 × 3 region in the prediction grid to vote unanimously

572 M. McCoyd et al.

for an incorrect class: that would require the classifier to be consistently wrong
on 9 occluded images. Therefore, the voting grid for benign images will likely
contain only the correct class and abstentions. Second, for a malicious image, no
matter where the adversarial patch is placed, there will be a 3 × 3 region in the
prediction grid that is uninfluenced by the attack and thus can be expected to
vote unanimously for the true class. This means that the voting grid for malicious
images will likely contain the correct class at least once. This places the attacker
in an impossible bind: if the attack causes any other class to appear in the voting
grid, the attack will be detected, but if it does not, then our scheme will classify
the image correctly. Either way, the defender wins.

We can formulate our defense mathematically as follows. Let x denote an
image, mi,j denote the mask that occludes pixels in [i − 2, i + 5] × [j − 2, j + 5],
and x � mi,j denote the result of masking image x with mask mi,j . Then the
prediction grid p is constructed as

pi,j = C(x � mi,j ,mi,j), (1)

where the classifier C outputs a vector of confidence scores. The voting grid is
defined as

vi,j =

{
c if c = arg maxc′ pi+u,j+v,c′ ∀u, v ∈ {0, 1, 2}

otherwise.
(2)

If there exists a single class c such that vi,j = c or vi,j = for all i, j, then
our scheme treats the image as benign and outputs the class c; otherwise, our
scheme treats the image as malicious.

We illustrate how the defense works with two examples. For instance, if the
prediction grid is as shown in Fig. 3a, then it yields the voting grid in Fig. 3b. This
will be treated as benign, with classification 7. We show another example of a
prediction grid in Fig. 3c and the resulting voting grid in Fig. 3d. This image will
be treated as malicious, and our scheme will decline to classify it. In particular,
it is possible that the true label is 5, but an adversarial patch was placed in the
upper-left that caused most of the classifications to be shifted to 3, except for
a few cases where the patch was partly or wholly obscured. It is, of course, also
possible that the image was benign, and a cluster of classification errors caused
this pattern, which is the case here.

3.4 Visualization

To give some intuition, we visualize a few sample prediction grids in Fig. 4. The
26 × 26 prediction grid is displayed as a Hinton diagram with 26 × 26 squares.
The color of each square indicates which class had the highest confidence at that
location in the prediction grid (i.e., the class predicted by the classifier). The
size of each square is proportional to the confidence of that class.

We show a representative example from each of four different common cases
that we have seen:

Minority Reports Defense: Defending Against Adversarial Patches 573

(a) Benign: representative (b) Benign: uncommon

(c) Attack (d) Attack

Fig. 4. Representative prediction grids for benign and undefended attack MNIST
images. Color indicates the arg max label for that occlusion position, and confidence is
indicated by how much of the square is filled. We show at the bottom of each figure a
legend indicating which class each color corresponds to and its frequency in the predic-
tion grid; we also show the top prediction and confidence if no pixels are occluded. For
attack images, green hashes show the 3× 3 grid of predictions that completely occlude
the attack; red hashes show the predictions that do not occlude the attack at all. The
hashes are not part of our defense, merely an aid for the reader. (The short orange bars
are from a detection method that compares with the non-occluded prediction.) (Color
figure online)

(a) Most benign images have a prediction grid that predicts all for the same
label or has just scattered minority predictions and looks like case (a). The

574 M. McCoyd et al.

predictions almost always agree with the true label for almost all positions of
the occlusion region. However, there are a few locations that, when occluded,
cause classification errors (non-black squares). These will be correctly clas-
sified and treated as benign by our scheme.

(b) A few benign images have prediction grids that are noisier and contain
large clusters of incorrect predictions in the prediction grid. These will be
(incorrectly) categorized as malicious by our scheme, i.e., they will cause a
false positive.

(c) We show the prediction grid resulting from a typical attack image, with
an adversarial patch placed near the center of the image. The green cross-
hatching represents the locations that completely occlude the adversarial
patch. Those locations in the prediction grid, as well as some other loca-
tions in a broader ring around this, vote unanimously for the true label (1).
Occlusion regions placed elsewhere fail to occlude the adversarial patch and
cause the classifier to misclassify the image as the attacker’s target class (2).
Our scheme correctly recognizes this as malicious, because the voting grid
contains both unanimous votes for 1 and for 2.

(d) Other attack images have even more noise outside the fully occluded area.
These, too, are correctly recognized as malicious because the voting grid
contains unanimous votes for multiple labels, here 3, 2, and 6.

3.5 The Full Minority Reports Defense

We found that the above defense can be improved by incorporating two refine-
ments: (a) using soft agreement instead of hard unanimity, and (b) tolerating
outliers.

First, instead of checking whether a 3 × 3 region in the prediction grid votes
unanimously for the same label, we check whether the confidence for that label
averaged over the region exceeds some threshold. For instance, with a 90%
threshold, if the confidence scores for class c within that 3 × 3 region average to
0.9 or larger, then we’d record a vote for c in the voting grid; if no class exceeds
the threshold, then we record an abstention.

Second, when computing the average, we discard the lowest score before
computing the average. This allows us to tolerate a single outlier when checking
for agreement in a 3 × 3 region.

Mathematically, we fix a threshold τ , and then form the voting grid as

vi,j =

{
c if avg({pi+u,j+v,c ∀u, v ∈ {0, 1, 2}}) ≥ τ

otherwise.
(3)

Here we define avg(S) to be the average of S \ {min S}, i.e., the average of all
but the lowest score in the multiset S.

The threshold τ is a hyper-parameter that can be used to control the trade-off
between false positives and false negatives. Increasing τ reduces the number of
false positives, but also risks failing to detect some attacks; decreasing τ increases
detection power, at the cost of increasing the false positive rate.

Minority Reports Defense: Defending Against Adversarial Patches 575

(a) Cluster of minority predictions (b) Vote grid: benign

Fig. 5. Our full defense on the benign prediction grid from Fig. 3c, with τ = 0.9 clas-
sifying as benign (b). A sticker under any of the nonvoting areas would be undetected.
A sticker in the lower right, when occluded, would leave in (a) the confident remains
of the original prediction, and be classified as an attack.

The size of the occlusion region is another hyper-parameter of our defense.
In our experiments, we always chose an occlusion region that is two pixels larger
than the largest adversarial patch we seek to defend. Thus our occlusion region
will be 7 × 7, and we provide certified results against adversarial patches up to
5 × 5 in size.

We visualize the operation of our final defense in Fig. 5.

4 Security Evaluation

One benefit of our design is that it enables us to guarantee the security of our
scheme on some images. This provides a stronger result than evaluating against
a specific adaptive attack. Were we to rely on evaluation against some adaptive
attack, an adversary might be smarter than our adaptive attack and achieve a
higher attack success rate. Instead, our certified result provides a guarantee that
can not be beaten by any adaptive attack. We describe our certified security
analysis in this section.

The core observation is: if the adversarial patch is completely occluded, then
the adversary cannot have any influence on the prediction made by the classifier
on the corresponding occluded image. For certified security, we make a very con-
servative assumption: we assume that the adversary might be able to completely
control the classifier’s prediction for all other occluded images (i.e., where the
patch is only partly occluded or is not occluded at all). This assumption lets
us make a worst-case analysis of whether the classification of a particular image
could change in the presence of an adversarial patch of a particular size.

576 M. McCoyd et al.

Notice that wherever the sticker is placed, there will be a 3 × 3 grid in the
prediction grid that is unaffected by the sticker. (This is because with a stride
of one, we use an occlusion region that is 2 pixels larger than the maximum
possible sticker size.) It follows that there will be some cell in the voting grid
that is not changed by the sticker.

If the voting grid for an image x is completely filled with votes for a single
class c, with no abstentions, then any image x′ that differs by introduction of a
single sticker will either be classified by our defense as class c or will be detected
by our defense as malicious. (This follows because at least one element of the
voting grid is unaffected by the sticker, so at least one element of the voting
grid for x′ will vote for c. If no other class appears in the voting grid, then our
defense will classify x′ as class c; if some other class appears, then our defense
will treat x′ as malicious.) Thus, such images can be certified safe—there is no
way to attack them without being detected. If the prediction is also correct, we
classify the image as certified accurate.

In contrast, if the voting grid has even one region that does not vote or votes
as the attacker would like, then our conservative analysis is forced to assume
that it might be possible to attack the image: the attacker can place a sticker
at that location, potentially changing all the other regions’ votes, and thereby
escape detection.

We evaluate the security of our scheme by measuring the fraction of images
that can be certified safe and certified accurate, according to the conservative
analysis above.

5 Higher Resolution Images

For higher resolution images, increasing the stride and pixel size of the occlude
area lets us manage the cost of the prediction grid. For a patch of size p×p pixels
and a stride of s pixels, an occlude area of (p + 2s) × (p + 2s) produces nine full
occlusions of any patch, if the patch is aligned to our stride grid. This mirrors
what we have done with a stride of one. To account for patches not aligned to
our stride grid, we increase our occlude by one stride less one pixel. Thus our
occlude area is (p + 3s − 1) × (p + 3s − 1) pixels, for s > 1.

As an example, for CIFAR-10, we evaluate against a 5 × 5 attack patch,
covering 2.4% of the image. For that, we occlude a 7 × 7 area, covering 4.8% of
the image. With a stride of one, our prediction grid is 30 × 30.

If CIFAR-10 had ten times the resolution, 320 × 320, then the comparable
sized attack patch would be 50 × 50 pixels, the same 2.4% of the image. For a
stride of ten, our occlude area would be (50+3×10−1)×(50+3×10−1) = 79×79,
or 6.1% of the image, more than before. Our prediction grid would be the same
30 × 30 size. However, we would be making predictions with more of the image
occluded.

If occluding a larger percentage of the image was an issue, a 40 × 40 patch
would allow a 69×69 occlude area. The predictions for the grid would thus have
4.7% of the image occluded, similar to before, with an expectation of comparable
accuracy.

Minority Reports Defense: Defending Against Adversarial Patches 577

6 Experiments

We evaluate the effectiveness of our defense by measuring the clean accuracy (the
images that when unmodified are classified correctly by class and as benign) and
the certified accuracy (the images that when unmodified are classified correctly
by class and as benign and where any attack – targeted or un-targeted – will
either not change the classification or will be detected).

Data and Models. We evaluate our defense on standard convolutional architec-
tures, trained with data augmentation and random 90/10 train/validation splits.
For CIFAR-10, we use SimpNet’s 600K parameter version [HRF+18] trained for
700 epochs, though we do not yet reproduce all details of their training; for
Fashion MNIST, a VGG-16 model [SZ14] trained for 50 epochs; for MNIST,
the Deotte model [Deo18], with 40% dropout and batch normalization and 45
epochs. These serve as an inner model in our architecture.

Method. We measure the clean and the certified accuracy on the 5000 or 6000
validation images. We perform multiple trials, using a different random 90/10
train/validation split for each trial. For each dataset, we perform n = 4 trials.
The standard deviation is relatively low (for clean and certified accuracy they
are CIFAR-10: 0.2–0.8% 0.5–1.1%, Fashion MNIST: 0.2–0.4% 0.2–0.6%, MNIST:
0.0–0.1% 0.1–0.5%). We report results for different points in the tradeoff between
clean and certified accuracy, and we compare with recent related work using
Interval Bounds Propagation (IBP) [CNA+20].

Results. Our results, Table 1, show that our defense achieves relatively high clean
and certified accuracy and outperforms the previous state of the art.

For CIFAR-10, we achieve a clean accuracy of 92.4%, and 43.8% of images
can be certified accurate (no matter where a sticker is placed, the resulting
image will either be classified correctly or the attack will be detected) for 5 × 5
stickers. Our clean accuracy is 1.6% below that reported in the literature for the
architecture we defend. It is only 0.1% below the accuracy we achieve with that
architecture when evaluated on non-occluded images.

This is significantly better than recent work by Chiang et al. [CNA+20],
which achieves clean accuracy of 47.8% and certified accuracy of 30.3% for
CIFAR-10 against 5 × 5 stickers.

For MNIST, we achieve a clean accuracy of 99.4%, and 64.2% of images can
be certified accurate for 5 × 5 stickers. This is again significantly better than
recent work [CNA+20]: the error rate on clean images is more than an order of
magnitude lower, and the certified accuracy is slightly higher.

Our measurement of certified accuracy is based on conservative assumptions.
We suspect that many images that we cannot certify accurate are in fact secure
against attack, even though we cannot prove it. Thus, the number certified accu-
rate represents a conservative lower bound on the true robustness of our scheme.

578 M. McCoyd et al.

Table 1. The clean accuracy and certified accuracy of our defense (MR) vs. the previ-
ous state of the art (IBP) on all three datasets, for a 5×5 adversarial patch. We report
the false positive rate of our defense in the third column; it is also included in the clean
and certified accuracy. We report the literature reported accuracy of our inner model
architectures in the fourth column. We report the accuracy our inner model achieves
on non-occluded clean images in the fifth column.

Accuracy

Dataset Defense F.P Lit. Inner Clean Cert.

CIFAR-10 IBP [CNA+20] 47.8% 30.3%

MR (Our) 19.9% 94.0% 92.5% 78.8% 77.6%

3.3% 90.6% 62.1%

0.2% 92.4% 43.8%

Fashion MR 12.9% 93.8% 85.4% 84.3%

1.4% 93.0% 69.4%

0.1% 93.9% 42.0%

MNIST IBP [CNA+20] 92.9% 62.0%

MR 4.8% 99.6% 99.6% 95.1% 94.9%

0.7% 99.0% 75.8%

0.2% 99.4% 64.2%

Discussion. Our experiments show that by choosing a high τ , we can achieve
clean accuracy that is very close to the accuracy of our inner model on non-
occluded images. With a lower τ we can achieve a higher certified accuracy at
the cost of a lower clean accuracy.

For CIFAR-10, the architecture we used is reported to have an accuracy
of 94.0% when trained appropriately. We did not replicate all aspects of the
authors’ training procedure and achieved only 92.5%. Once we replicate their
full training procedure, we expect our CIFAR-10 results would also improve.

We did an ablation study where we omitted the occlude training, and found
that the occlude training is essential: Without it, the defense is extremely inef-
fective.

7 Limitations

Multiple patches would not be easy to handle with this approach, though they
may also draw more attention to the attack. The simple extension would be all
combinations of multiple occlude areas. For two patches, this would mean two
occlude areas and a 4D prediction grid. That would be prohibitive in compute
cost, and the multiple occludes would likely degrade accuracy.

Two patches might be present because the image is actually a binocular
image. This would be straightforward to handle if the image came from a true

Minority Reports Defense: Defending Against Adversarial Patches 579

physical scene and the parallax shift was not much. Widening the occlude area
slightly would cover the two views of the same physical adversarial patch object.

The evaluation time cost of our defense is the size of the prediction grid, as
for each occluded prediction, we predict on a new occluded image. It is possible
lower layer convolutional results could be reused, but there would be a complexity
cost, and we have not investigated this. For CIFAR-10 with a 5×5 patch, this is
900 times the evaluation cost of the original model. For a 320× 320 pixel image,
50 × 50 patch, and stride 10, this is also 900 times the cost. We have not found
any real difference in the time to train an occlude trained model than a normally
trained one.

Our certified accuracy depends on the occluded accuracy of the architecture
we defend. We have not examined datasets with lower top-1 accuracy, such as
the 1000 class ImageNet. The more occluded predictions that are different, the
more voting areas will not vote unanimously, causing the image to be vulnerable
to attack.

Our defense is only effective against patches of irregular or unknown shape
if they are bounded by the shape(s) we expect, of which one n × n shape is the
most practical.

8 Related Work

In earlier work, Hayes proposes a defense against sticker attacks using inpainting
of a suspected sticker region to remove the sticker from the image [Hay18]. This
is similar to our defense. However, Hayes uses a heuristic to identify the region
to inpaint (based on unusually dense regions within the saliency map), so any
attack that fools the heuristic could defeat their defense. One could use inpaint-
ing in our scheme instead of occlusion, and it is possible this might improve
accuracy, though our work can be viewed as showing that simple occlusion suf-
fices to get strong results. Naseer et al. propose a defense against sticker attacks
by smoothing high-frequency image details to remove the sticker [NKP18]. They
limit accuracy loss by using windows that overlap by a third, but their windows
are smaller than the attack patch. Chiang et al. broke both of these defenses
[CNA+20], so neither is effective against adaptive attacks; in contrast, we guar-
antee security against adaptive attack.

Wu et al. defend against adversarial patches with adversarial training
[WTV20]. The primary advantage of our approach is that it provides certified
security.

Chiang et al. study certified security against patch attacks using interval
bounds propagation [CNA+20]. As discussed above, our defense achieves signif-
icantly better certified accuracy on both MNIST and CIFAR than their scheme.
They also examine how their defense generalizes to other shapes of stickers and
how to achieve security against L0-bounded attacks, topics that we have not
examined.

Zhang et al. limit the effect of a patch by clipping logits in a bag of features
classifier and provide certified results [ZYMW20]. Comparing our results with

580 M. McCoyd et al.

theirs is difficult as they use the higher resolution ImageNet dataset. They have
higher robustness to attack but a larger cost to clean accuracy.

9 Conclusion

We propose the minority reports defense, a network architecture designed spe-
cially to be robust against patch attacks. We show experimentally that it is
successful at defending against these attacks for a significant fraction of images.

Acknowledgments. This work was supported by generous gifts from Google and
Futurewei, by the Hewlett Foundation through the Center for Long-term Cybersecurity,
and by Intel through the ISTC for Secure Computing.

A Effects of Occlude Training

Our defense requires the inner model to handle occluded images well. To assess
the effect of this requirement, we trained models with and without occlusions
for all three inner-model architectures.

Training on occluded images appears to have only a small change on the
accuracy of the inner model on non-occluded images, see Table 2. The change is,
at worst, the standard deviation of our measurements. Note from Table 1 that
the clean accuracy of our defense might have either a small or no drop from the
accuracy of our inner-model.

Table 2. The effect of training on occluded images, on the inner model’s accuracy on
non-occluded images. We show the difference (last column) and the standard deviation
(n = 4).

Dataset Type of training images Δ

Non-occluded Occluded

CIFAR-10 92.5± 0.3% 92.5± 0.2% −0.0%

Fashion 94.1± 0.4% 93.8± 0.3% −0.3%

MNIST 99.58± 0.08% 99.63± 0.33% +0.05%

Note that this does not measure the accuracy of our defense as a whole. Our
defense feeds the inner model occluded images at test time, and accuracy on
occluded images is slightly lower than on non-occluded images.

B Defense Details

The inner models are standard convolutional architectures modified to handle
partially occluded data by the use of sparse convolutional layers that we created.
The inner model returns a normal logit prediction for the dataset classes.

Minority Reports Defense: Defending Against Adversarial Patches 581

C Model Details

MNIST We used the Deotte model with layer descriptions ([32C3-32C3-32C5S2]
- [64C3-64C3-64C5S2] - 128).

References

[BMR+17] Brown, T., Mane, D., Roy, A., Abadi, M., Gilmer, J.: Adversarial patch
(2017). arXiv:1712.09665

[CNA+20] Chiang, P.-y., Ni, R., Abdelkader, A., Zhu, C., Studor, C., Goldstein, T.:
Certified defenses for adversarial patches. In: ICLR (2020)

[CW17] Carlini, N., Wagner, D.: Towards evaluating the robustness of neural net-
works. In: Security and Privacy (2017). arXiv:1608.04644 [cs.CR]

[Deo18] Deotte, C.: How to choose CNN Architecture MNIST (2018). https://
www.kaggle.com/cdeotte/how-to-choose-cnn-architecture-mnist

[DT17] Devries, T., Taylor, G.W.: Improved regularization of convolutional neural
networks with cutout (2017). arXiv:1708.04552 [cs.CV]

[EEF+17] Eykholt, K., et al.: Robust physical-world attacks on deep learning models
(2017). arXiv:1707.08945

[GSS15] Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adver-
sarial examples. In: ICLR (2015). arXiv:1412.6572 [stat.ML]

[Hay18] Hayes, J.: On visible adversarial perturbations & digital watermarking.
In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, June 2018

[HJN+11] Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I.P., Tygar, J.D.:
Adversarial machine learning (2011)

[HRF+18] HasanPour, S.H., Rouhani, M., Fayyaz, M., Sabokrou, M., Adeli, E.:
Towards principled design of deep convolutional networks: introducing
simpnet. CoRR, abs/1802.06205 (2018)

[KH09] Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny
images (2009)

[KZG18] Karmon, D., Zoran, D., Goldberg, Y.: Lavan: localized and visible adver-
sarial noise. CoRR, abs/1801.02608 (2018)

[LBBH98] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning
applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

[NKP18] Naseer, M., Khan, S., Porikli, F.: Local gradients smoothing: defense
against localized adversarial attacks. CoRR, abs/1807.01216 (2018)

[SZ14] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-
scale image recognition (2014). arxiv:1409.1556

[SZS+14] Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR
(2014). arXiv:1312.6199 [cs.CV]

[TRG19] Thys, S., Van Ranst, W., Goedemé, T.: Fooling automated surveil-
lance cameras: adversarial patches to attack person detection (2019).
arXiv:1904.08653

[USS+17] Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.:
Sparsity invariant CNNs (2017). arXiv:1708.06500 [cs.CV]

[WTV20] Wu, T., Tong, L., Vorobeychik, Y.: Defending against physically realizable
attacks on image classification. In: ICLR (2020)

http://arxiv.org/abs/1712.09665
http://arxiv.org/abs/1608.04644
https://www.kaggle.com/cdeotte/how-to-choose-cnn-architecture-mnist
https://www.kaggle.com/cdeotte/how-to-choose-cnn-architecture-mnist
http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1707.08945
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1904.08653
http://arxiv.org/abs/1708.06500

582 M. McCoyd et al.

[XRV17] Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for
benchmarking machine learning algorithms. CoRR, abs/1708.07747 (2017)

[XZL+19] Xu, K., et al.: Adversarial T-shirt! Evading person detectors in a physical
world (2019). arXiv:1910.11099

[ZYMW20] Zhang, Z., Yuan, B., McCoyd, M., Wagner, D.: Clipped BagNet: defending
against sticker attacks with clipped bag-of-features. In: DLS (2020)

http://arxiv.org/abs/1910.11099

Author Index

Adepu, Sridhar 274
Akram, Raja Naeem 360
Alagöz, Fatih 58
Arcenegui, Javier 24
Arjona, Rosario 24
Armendariz, Igor 106, 217
Athanasopoulos, Elias 508
Avraam, Christos 508

Bakas, Alexandros 318
Bashir, Masooda 337
Baturone, Iluminada 24
Betarte, Gustavo 3
Bhalerao, Tanmay 77
Bhasin, Shivam 93
Bothra, Jay 77
Bytes, Andrei 255

Cai, Quanwei 417, 435
Caputo, Davide 490
Chen, Bo 400
Chen, Steven 564
Cristiá, Maximiliano 3
Cristiani, Valence 144
Custódio, Ricardo 41

Dang, Hai-Van 318
Di Giulio, Carlo 337
Druffel, Alexander 473

Ermiş, Orhan 58
Etemadi Borujeni, Shahram 163

Fan, Rong 239

Giron, Alexandre Augusto 41
Gupta, Ashutosh 77
Gür, Gürkan 58

Heid, Kris 473
Homma, Naofumi 93
Huang, Shaomang 239
Hwang, Minjune 564

Ito, Akira 93

Jap, Dirmanto 93
Jia, Huiwen 381

Kalbantner, Jan 360
Kalysch, Anatoli 523
Krček, Marina 126

Labafniya, Mansoureh 163
Larcher, Anthony 545
Le Lan, Gaël 545
Lecomte, Maxime 144
Li, Bingyu 435, 453
Li, Fengjun 453
Li, Huimin 126
Li, Yang 181
Liu, Jason Xinyu 564
Liu, Ximeng 381
Luna, Carlos 3

Ma, Ziqiang 435, 453
Madi, Abbass 295
Markantonakis, Konstantinos 360
Martina, Jean Everson 41
Mathur, Aditya 274
Maurine, Philippe 144
McCoyd, Michael 564
Mentens, Nele 163
Merlo, Alessio 490
Michalas, Antonis 318
Mishra, Gyanendra 274
Müller, Tilo 523

Paguada, Servio 106, 217
Palleti, Venkata Reddy 274
Pan, Jianfeng 239
Park, Won 564
Patel, Dhiren 77
Perin, Guilherme 126

Rathod, Jash 77
Rioja, Unai 106
Roggenkemper, Ryan 564

Sakiyama, Kazuo 181
Schilling, Joschua 523
Semal, Benjamin 360
Shah, Neil 564
Shanbhag, Sanket 77
Sharma, Tanusree 337
Silveira, Adrián 3
Sirdey, Renaud 295
Stan, Oana 295
Sugawara, Takeshi 181

Taçyıldız, Yaşar Berkay 58
Takatoi, Go 181
Thebaud, Thomas 545

Ueno, Rei 93
Ullah, Amjad 318

Verderame, Luca 490

Wagner, David 564
Wang, QiongXiao 417
Wang, Tian 337
Wang, Wei 417
Weissbart, Léo 198
Wu, Qianhong 453

Xu, Bowen 417
Xu, Xin 417

Yang, Jun 435
Yin, Yifeng 381
Yli-Mäyry, Ville 93
You, Weijing 400

Zanarini, Dante 3
Zhang, Qikun 381
Zhang, Yanhua 381
Zhou, Jianying 255

584 Author Index

	Preface
	AIBlock 2020
	AIHWS 2020
	AIoTS 2020
	Cloud S&P 2020
	SCI 2020
	SecMT 2020
	SiMLA 2020
	Contents
	AIBlock – Application Intelligence and Blockchain Security
	Towards a Formally Verified Implementation of the MimbleWimble Cryptocurrency Protocol
	1 Introduction
	2 The MimbleWimble Protocol
	2.1 Verification of Transactions
	2.2 Authentication of Transactions

	3 Idealized Model of MimbleWimble-Based Blockchain
	3.1 Transactions
	3.2 Unconfirmed Transaction Pool
	3.3 Blocks and Chains
	3.4 Validating a Chain
	3.5 Executions

	4 Verification of MimbleWimble
	4.1 Protocol Properties
	4.2 Privacy and Security Properties
	4.3 Zero-Knowledge Proof
	4.4 Unlinkability and Untraceability
	4.5 Model-Driven Verification

	5 Final Remarks
	A Excerpt of a Z Model of a Consensus Protocol
	B Excerpt of a {log} Prototype of a Consensus Protocol
	References

	Secure Management of IoT Devices Based on Blockchain Non-fungible Tokens and Physical Unclonable Functions
	1 Introduction
	2 Related Work
	3 Proposed NFTs for Secure Devices
	3.1 Main Features of the Proposed NFT
	3.2 Binding the IoT Device to Its Associated NFT

	4 Implementation of the Proof of Concept
	4.1 SRAM PUFs from the IoT Device for Secret Obfuscation
	4.2 Development of an NFT with an SRAM PUF-Based BCA

	5 Conclusions
	References

	Bitcoin Blockchain Steganographic Analysis
	1 Introduction
	2 Related Work
	3 Data Insertion and Hiding
	3.1 Data Insertion in Bitcoin's Blockchain
	3.2 Data Hiding in Blockchains

	4 Methodology
	4.1 Checking the LSB of Addresses
	4.2 Checking the Nonces

	5 Results and Discussion
	5.1 Checking LSB of Addresses
	5.2 Checking the Nonces

	6 Conclusions and Future Work
	References

	Dynamic Group Key Agreement for Resource-constrained Devices Using Blockchains
	1 Introduction
	2 Preliminaries
	2.1 General Definitions
	2.2 Security Models

	3 Related Work and Technical Background
	3.1 GKA Protocols
	3.2 HF Platform

	4 B-GKAP: Blockchain-Based Group Key Agreement Protocol
	4.1 System Overview
	4.2 B-GKAP Protocol
	4.3 B-GKAP Protocol Steps

	5 Security Analysis
	5.1 Security Properties of GKA Protocols
	5.2 Protection Against Security Attacks
	5.3 Security of Join and Leave Operations
	5.4 Security of B-GKAP Hyperledger Fabric Network

	6 Performance Analysis
	6.1 Communication Cost Complexity Ct
	6.2 Computational Cost Complexity Cc

	7 Discussion on the Performance of B-GKAP
	8 Conclusion
	References

	Tokenization of Real Estate Using Blockchain Technology
	1 Introduction
	2 Existing System and Its Flaws
	3 Preliminaries
	3.1 Blockchain
	3.2 Ethereum
	3.3 Smart Contracts
	3.4 Tokenization
	3.5 Special Purpose Vehicle
	3.6 Legal Aspects of Security Tokens, Smart Contracts, and Special Purpose Vehicle

	4 Proposed Workflow for Tokenizing Real Estate
	4.1 Registration of Entities
	4.2 Creation of Special Purpose Vehicle
	4.3 Tokenization and Smart Contract
	4.4 Security Token Offering (STO)/Initial Coin Offering (ICO)
	4.5 Distribution of Dividends to the Investors

	5 Implementation Architecture of the Proposed System
	6 Conclusion
	References

	AIHWS – Artificial Intelligence in Hardware Security
	Practical Side-Channel Based Model Extraction Attack on Tree-Based Machine Learning Algorithm
	1 Introduction
	1.1 Related Works
	1.2 Contributions

	2 Background
	2.1 Decision Tree
	2.2 Bonsai
	2.3 Side-Channel Attacks (SCA)

	3 Attack Overview
	3.1 Measurement Setup and Target Library
	3.2 Identification of Sensitive Parameters
	3.3 General Attack Flow

	4 Experimental Results
	4.1 Recovering Sparse Projection Parameters and Node Predictors
	4.2 Recovering Sparse Projection Index Parameters
	4.3 Recovering Branching Function

	5 Conclusion
	References

	Controlling the Deep Learning-Based Side-Channel Analysis: A Way to Leverage from Heuristics
	1 Introduction
	2 Six Sigma Methodology
	3 Deep Learning-Based Side-Channel Analysis
	4 Hyperparameter Tuning
	4.1 Grid Search and Other Techniques in the SCA Field
	4.2 A Scoring Function Based on Guessing Entropy

	5 Use Case: Deep-Learning Based Side-Channel Attack over a Protected AES Implementation
	5.1 Use Case Description
	5.2 Define
	5.3 Measure
	5.4 Analyze
	5.5 Improve

	6 Conclusion and Perspectives
	References

	A Comparison of Weight Initializers in Deep Learning-Based Side-Channel Analysis
	1 Introduction
	2 Background
	2.1 Side-Channel Analysis
	2.2 Machine Learning and Side-Channel Analysis
	2.3 Weight Initializers

	3 Experimental Setup
	4 Experimental Results
	4.1 Results for the DPAv4 Dataset
	4.2 Results for the AES_RD Dataset
	4.3 Results for the ASCAD Dataset

	5 Weight Initializer Influence on Other Hyperparameters
	6 Conclusions and Future Work
	References

	Leakage Assessment Through Neural Estimation of the Mutual Information
	1 Introduction
	2 Background and Theory Behind MINE
	3 Analysis of MINE in a Side-Channel Context
	3.1 Simulated Traces Environment
	3.2 Input Decompression
	3.3 MINE in Higher Dimension
	3.4 Analysis of the Overfitting Problem

	4 Application of MINE in an Evaluation Context
	4.1 Leakage Evaluation of an Unprotected AES
	4.2 Leakage Evaluation of a Masked AES from the ASCAD Database
	4.3 Instructions Leakage

	5 Conclusion
	References

	Evolvable Hardware Architectures on FPGA for Side-Channel Security
	1 Introduction
	2 Preliminaries
	2.1 Evolvable Hardware Using Virtual Reconfigurable Circuits
	2.2 PRESENT and PRINTcipher
	2.3 Related Work

	3 First FPGA Architecture Using Regular LUTs
	4 Second FPGA Architecture Using CFGLUTs
	5 Implementation Results
	6 Conclusion
	References

	Simple Electromagnetic Analysis Against Activation Functions of Deep Neural Networks
	1 Introduction
	2 Background
	2.1 Multilayer Perceptron
	2.2 Activation Functions

	3 Problem and Methodology
	3.1 Identification of Activation Functions
	3.2 Previous Work: Identification Based on Timing Behavior
	3.3 New Method: Identification Using SEMA

	4 Experiments
	4.1 Experimental Setup
	4.2 Attack Scenario
	4.3 Signal Processing

	5 Analysis of the Results
	5.1 Analysis of the Activation Function Operations
	5.2 Distinctive Features of Activation Functions from SEMA
	5.3 Discussions

	6 Conclusion
	References

	Performance Analysis of Multilayer Perceptron in Profiling Side-Channel Analysis
	1 Introduction
	2 Background
	2.1 Profiling Side-Channel Analysis
	2.2 Multilayer Perceptron
	2.3 Datasets

	3 Related Work
	4 Experimental Setup
	5 Experimental Results
	5.1 ASCAD Results
	5.2 AES_RD Results

	6 Discussion
	7 Conclusions and Future Work
	References

	The Forgotten Hyperparameter:
	1 Introduction
	2 Background
	2.1 Convolutional Neural Networks
	2.2 ASCAD Dataset
	2.3 Guessing Entropy
	2.4 Visualisation of Feature Selection

	3 Works in CNN for Side-Channel Analysis
	4 Dilated Convolutions Design Considerations
	5 Experimental Results and Discussions
	5.1 ASCAD Fixed Key (N = 0)
	5.2 Attack over Synchronised ASCAD Random Key (N = 0)
	5.3 Attack over Desynchronised ASCAD Random Key (N = 100)

	6 Conclusions and Perspectives
	References

	AIoTS – Artificial Intelligence and Industrial IoT Security
	ARM-AFL: Coverage-Guided Fuzzing Framework for ARM-Based IoT Devices
	1 Introduction
	2 Background
	2.1 Fuzzing
	2.2 AFL
	2.3 AddressSanitizer

	3 Implementation
	3.1 Workflow of ARM-AFL
	3.2 ARM-AFL
	3.3 Light-Weight Heap Memory Corruption Detector

	4 Evaluation
	4.1 Experimental Setup
	4.2 Efficiency
	4.3 Effectiveness

	5 Related Work
	5.1 Static Analysis
	5.2 Dynamic Detection

	6 Conclusion and Future Work
	References

	Post-exploitation and Persistence Techniques Against Programmable Logic Controller
	1 Introduction
	2 Background
	2.1 WAGO PFC200 Series PLC
	2.2 Firmware Availability
	2.3 Vendor-Specific Components

	3 Threat Model
	4 Methodology
	4.1 Obtaining the Remote Access
	4.2 Privilege Escalation Techniques
	4.3 Gathering System Information
	4.4 Persistence

	5 Attack Scenarios
	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Investigation of Cyber Attacks on a Water Distribution System
	1 Introduction
	2 Vulnerability Assessment in ICS
	3 Context: WADI Testbed
	3.1 Architecture of the WADI
	3.2 Attacking WADI

	4 Attack Investigation on WADI
	4.1 Attack Design
	4.2 Execution of Attacks
	4.3 Results
	4.4 Multi Point Attacks

	5 Discussion
	6 Related Work
	7 Conclusions and Future Work
	References

	Cloud S&P – Cloud Security and Privacy
	Computing Neural Networks with Homomorphic Encryption and Verifiable Computing
	1 Introduction
	1.1 Problem Statement and Contribution

	2 Related Work
	2.1 Encrypted Machine Learning Using Functional Encryption

	3 Scenario and Threat Model
	4 Technical Preliminaries
	4.1 FHE
	4.2 VC
	4.3 Pseudo Random Function with Amortized Closed-Form Efficient
	4.4 Homomorphic Hash Function

	5 VC for Quadratic Polynomials over BFV Encrypted Data
	6 VC and FHE for First Layer
	7 Experimental Results
	7.1 Results

	8 Conclusion
	A Properties of VC
	B Realization of PRF with Amortized Closed-Form Efficiency
	C Realizations of Homomorphic Hash ch17fiore2014efficiently
	References

	Attribute-Based Symmetric Searchable Encryption
	1 Introduction
	2 Background
	3 Architecture
	4 Our Construction
	4.1 Formal Construction

	5 Security Analysis
	6 Experimental Results
	7 Related Work and Comparison
	8 Conclusion
	References

	Towards Inclusive Privacy Protections in the Cloud
	1 Introduction
	2 Background
	3 Methodology
	4 Preliminary Results
	4.1 Scholarly Paper Analysis
	4.2 Available Standards Analysis

	5 Conclusion
	6 Future Work
	References

	A Study on Microarchitectural Covert Channel Vulnerabilities in Infrastructure-as-a-Service
	1 Introduction
	2 Background
	2.1 Infrastructure-as-a-Service
	2.2 Processor Organisation
	2.3 Scope of the Evaluation

	3 Criteria of Evaluation
	4 Evaluation of Generic Criteria (C1–C8)
	5 Evaluation of Covert Channel-Specific Criteria (C9–C12)
	5.1 Memory Order Buffer
	5.2 Last-Level Cache
	5.3 DRAM Row-Buffer
	5.4 Memory Controller
	5.5 Memory Bus
	5.6 Summary of Findings

	6 Severity Scores
	6.1 Design of the CCSS Equations
	6.2 Results

	7 Conclusion
	References

	SCI – Secure Cryptographic Implementation
	On New Zero-Knowledge Proofs for Fully Anonymous Lattice-Based Group Signature Scheme with Verifier-Local Revocation
	1 Introduction
	2 Preliminaries
	3 Preparations
	3.1 The Improved Identity-Encoding Technique
	3.2 The New Creation of Revocation Token
	3.3 The Explicit-Traceability Mechanism

	4 The New Underlying Stern-Type ZKP Protocol
	5 Analysis of the Protocol
	References

	Proofs of Ownership on Encrypted Cloud Data via Intel SGX
	1 Introduction
	2 Background
	2.1 Deduplication and Proofs of Ownership (PoWs)
	2.2 Message-Locked Encryption (MLE)
	2.3 Trusted Execution Environment and Intel SGX

	3 System Model and Adversarial Model
	4 PoWIS
	4.1 The Overall Design of PoWIS
	4.2 Remote Attestation and Establishing a Secure Communication Channel

	5 Analysis and Discussion
	5.1 Security Analysis
	5.2 Discussion

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Performance Evaluation

	7 Related Work
	7.1 Deduplication in Cloud Storage
	7.2 Intel SGX in Cloud Computing

	8 Conclusion
	References

	On the Verification of Signed Messages
	1 Introduction
	2 Digital Signature and Verification
	2.1 PDF Signature
	2.2 XML Signature in SAML
	2.3 JSON Web Signature
	2.4 Validation of Digital Certificate
	2.5 Digital Signature in TLS Protocol

	3 Different Ways to Forge Successfully-Verified Messages
	3.1 Modified Algorithm Identifiers
	3.2 Fake or Manipulated Public Keys
	3.3 Unverified-but-Accepted Messages
	3.4 Parsed-but-not-Verified Message Parts
	3.5 Misleading Message Parsing

	4 The Lessons Learned from Known Attacks
	5 Conclusions
	References

	Applications and Developments of the Lattice Attack in Side Channel Attacks
	1 Introduction
	2 Preliminaries
	2.1 Cryptographic Algorithms
	2.2 Lattice
	2.3 Side Channel Attacks

	3 The Improvements of the Lattice Attacks
	3.1 The Lattice Attack
	3.2 HNP
	3.3 EHNP
	3.4 Others

	4 Lattice Attacks on Different Cryptographic Algorithms
	4.1 RSA
	4.2 DSA
	4.3 ECDSA
	4.4 Others

	5 Applications of Lattice Attacks in Side Channel Attacks
	5.1 Cache Attacks
	5.2 Power and Electromagnetic Attacks
	5.3 Fault Attacks
	5.4 Timing Attacks

	6 Future Developments of Lattice Attacks
	7 Conclusion
	References

	Exploring the Security of Certificate Transparency in the Wild
	1 Introduction
	2 The Components of Certificate Transparency
	2.1 The CT Framework
	2.2 The Security Design of CT
	2.3 CT in Practice

	3 Certificate Transparency on the Internet
	3.1 Website and CA
	3.2 Log
	3.3 Monitor
	3.4 Auditor
	3.5 Browser

	4 Feasible Suggestions
	5 Related Work
	6 Conclusion
	References

	SecMT – Security in Mobile Technologies
	DaVinci: Android App Analysis Beyond Frida via Dynamic System Call Instrumentation
	1 Introduction
	2 Related Work
	2.1 Contribution

	3 Overview of DaVinci
	3.1 Non-invasive Instrumentation
	3.2 System Call Hooking
	3.3 High Level Common Analysis Profiles

	4 Evaluation
	4.1 Hardened Apps from the Store
	4.2 Anti-analysis Testapp
	4.3 Malware
	4.4 Performance Evaluation

	5 Conclusion and Future Work
	References

	MobHide: App-Level Runtime Data Anonymization on Mobile
	1 Introduction
	2 Background
	2.1 Notes on Analytics Libraries
	2.2 Data Anonymization

	3 The MobHide methodology
	3.1 Privacy Detector
	3.2 Privacy Settings Database and DGH Database
	3.3 Data Anonymizer
	3.4 Data Sender

	4 Implementing MobHide on Android
	5 Empirical Assessment
	6 Related Work
	7 Discussion and Future Developments
	8 Conclusion
	References

	Evaluation of the Adoption and Privacy Risks of Google Prompts
	1 Introduction
	2 Google Prompts
	2.1 Research Challenges

	3 Research Methodology
	3.1 Dataset
	3.2 Collection System
	3.3 Ethics

	4 Results
	4.1 Initial Evaluation
	4.2 Final Evaluation

	5 Privacy Leaks
	6 Related Work
	7 Conclusion
	References

	On the Evolution of Security Issues in Android App Versions
	1 Introduction
	2 Background
	2.1 Vulnerability Scanners
	2.2 Considered Vulnerabilities

	3 Approach
	3.1 Dataset Creation
	3.2 Vulnerability Analysis

	4 Evaluation
	4.1 Vulnerability and Code-Base Evolution
	4.2 Developer Code vs. Third-Party Vulnerabilities
	4.3 Most Common Security Issues
	4.4 Vulnerability Reuse Between Different Projects

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	SiMLA – Security in Machine Learning and Its Applications
	Unsupervised Labelling of Stolen Handwritten Digit Embeddings with Density Matching
	1 Introduction
	2 Related Work
	2.1 Template Reconstruction Attacks
	2.2 Unsupervised Translation for Embedding Matching

	3 Proposed Attack Scenario
	4 Labelling
	4.1 Optimal Rotation for a Given Permutation
	4.2 Genetic Search
	4.3 Fine-Tuning

	5 Data and Preprocessing
	5.1 Data
	5.2 Architecture of the Networks
	5.3 Preprocessing

	6 Experiments
	6.1 Clustering
	6.2 Principal Component Analysis
	6.3 Rotation
	6.4 Reliability of the Global Log-Likelihood Score
	6.5 Genetic Search
	6.6 Fine Tuning

	7 Conclusion - Future Work
	References

	Minority Reports Defense: Defending Against Adversarial Patches
	1 Introduction
	2 Patch Attack
	2.1 Attack Model
	2.2 Patch Sizes

	3 Our Defense
	3.1 Occlusion Training
	3.2 Creating a Prediction Grid
	3.3 Detection
	3.4 Visualization
	3.5 The Full Minority Reports Defense

	4 Security Evaluation
	5 Higher Resolution Images
	6 Experiments
	7 Limitations
	8 Related Work
	9 Conclusion
	A Effects of Occlude Training
	B Defense Details
	C Model Details
	References

	Author Index

