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Abstract. Nowadays, machine learning techniques and algorithms are
employed in almost every application domain (e.g., financial applica-
tions, advertising, recommendation systems, user behavior analytics). In
practice, they are playing a crucial role in harnessing the power of mas-
sive amounts of data which we are currently producing every day in our
digital world. In general, the process of building a high-quality machine
learning model is an iterative, complex and time-consuming process that
involves trying different algorithms and techniques in addition to having
a good experience with effectively tuning their hyper-parameters. In par-
ticular, conducting this process efficiently requires solid knowledge and
experience with the various techniques that can be employed. With the
continuous and vast increase of the amount of data in our digital world,
it has been acknowledged that the number of knowledgeable data scien-
tists can not scale to address these challenges. Thus, there was a crucial
need for automating the process of building good machine learning mod-
els (AutoML). In the last few years, several techniques and frameworks
have been introduced to tackle the challenge of automating the machine
learning process. The main aim of these techniques is to reduce the role
of humans in the loop and fill the gap for non-expert machine learn-
ing users by playing the role of the domain expert. In this chapter, we
present an overview of the state-of-the-art efforts in tackling the chal-
lenges of machine learning automation. We provide a comprehensive cov-
erage for the various tools and frameworks that have been introduced in
this domain. In addition, we discuss some of the research directions and
open challenges that need to be addressed in order to achieve the vision
and goals of the AutoML process.

1 Introduction

Due to the increasing success of machine learning techniques in several applica-
tion domains, they have been attracting a lot of attention from the research and
business communities. In general, the effectiveness of machine learning tech-
niques mainly rests on the availability of massive datasets. Recently, we have
been witnessing a continuous exponential growth in the size of data produced
by various kinds of systems, devices and data sources. It has been reported that
there are 2.5 quintillion bytes of data is being created every day where 90% of
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stored data in the world, has been generated in the past two years only1. On the
one hand, the more data that is available, the richer and the more robust the
insights and the results that machine learning techniques can produce. Thus,
in the Big Data Era, we are witnessing many leaps achieved by machine and
deep learning techniques in a wide range of fields [1,2]. On the other hand, this
situation is raising a potential data science crisis, similar to the software cri-
sis [3], due to the crucial need of having an increasing number of data scientists
with strong knowledge and good experience so that they are able to keep up
with harnessing the power of the massive amounts of data which are produced
daily. In particular, it has been acknowledged that data scientists can not scale2

and it is almost impossible to balance between the number of qualified data
scientists and the required effort to manually analyze the increasingly growing
sizes of available data. Thus, we are witnessing a growing focus and interest to
support automating the process of building machine learning pipelines where
the presence of a human in the loop can be dramatically reduced, or preferably
eliminated.

In general, the process of building a high-quality machine learning model
is an iterative, complex and time-consuming process that involves a number
of steps. In particular, a data scientist is commonly challenged with a large
number of choices where informed decisions need to be taken. For example, the
data scientist needs to select among a wide range of possible algorithms includ-
ing classification or regression techniques (e.g. Support Vector Machines, Neural
Networks, Bayesian Models, Decision Trees, etc.) in addition to tuning numerous
hyper-parameters of the selected algorithm. In addition, the performance of the
model can also be judged by various metrics (e.g., accuracy, sensitivity, speci-
ficity, F1-score). Naturally, the decisions of the data scientist in each of these
steps affect the performance and the quality of the developed model [4–6]. For
instance, in yeast dataset3, different parameter configurations of a Random
Forest classifier result in different range of accuracy values, around 5%4. Also,
using different classifier learning algorithms leads to widely different performance
values, around 20%, for the fitted models on the same dataset. Although making
such decisions require solid knowledge and expertise, in practice, increasingly,
users of machine learning tools are often non-experts who require off-the-shelf
solutions. Therefore, there has been a growing interest to automate and democ-
ratize the steps of building the machine learning pipelines.

In the last years, several techniques and frameworks have been introduced to
tackle the challenge of automating the process of Combined Algorithm Selection
and Hyper-parameter tuning (CASH) in the machine learning domain. These
techniques have commonly formulated the problem as an optimization problem
that can be solved by a wide range of techniques [7–9]. In general, the CASH
problem is described as follows:

1 Forbes: How Much Data Do We Create Every Day? May 21, 2018.
2 https://hbr.org/2015/05/data-scientists-dont-scale.
3 https://www.openml.org/d/40597.
4 https://www.openml.org/t/2073.
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Fig. 1. The general workflow of the AutoML process.

Given a set of machine learning algorithms A = {A(1), A2, ...}, and a dataset
D divided into disjoint training Dtrain, and validation Dvalidation sets. The goal
is to find an algorithm A(i)∗

where A(i) ∈ A and A(i)∗
is a tuned version of

A(i) that achieves the highest generalization performance by training A(i) on
Dtrain, and evaluating it on Dvalidation. In particular, the goal of any CASH
optimization technique is defined as:

A(i)∗ ∈ argmin
A ε A

L(A(i),Dtrain,Dvalidation)

where L(A(i), Dtrain, Dvalidation) is the loss function (e.g.: error rate, false
positives, etc.). In practice, one constraint for CASH optimization techniques is
the time budget. In particular, the aim of the optimization algorithm is to select
and tune a machine learning algorithm that can achieve (near)-optimal perfor-
mance in terms of the user-defined evaluation metric (e.g., accuracy, sensitivity,
specificity, F1-score) within the user-defined time budget for the search process
(Fig. 1).

In this chapter, we present an overview of the state-of-the-art efforts for
the techniques and framework in the automated machine learning domain. The
remainder of this chapter is organized as follows. Section 2 covers the various
techniques and frameworks that have been introduced to tackle the challenge of
the automated machine learning process while Sect. 3 covers the automated deep
learning process. We discuss some of the research directions and open challenges
that need to be addressed in order to achieve the vision and goals of the AutoML
process in Sect. 4 before we finally conclude the chapter in Sect. 5.
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Fig. 2. An overview of meta-learning process.

2 Automated Machine Learning

In general, meta-learning can be described as the process of learning from pre-
vious experience gained during applying various learning algorithms on different
kinds of data, and hence reducing the needed time to learn new tasks [10]. In the
context of machine learning, several meta learning-techniques have been intro-
duced as an effective mechanism to tackle the challenge of warm start for opti-
mization algorithms. Figure 2 illustrates an overview of the meta-learning pro-
cess. These techniques can generally be categorized into three broad groups [11]:
learning based on task properties, learning from previous model evaluations and
learning from already pretrained models (Fig. 3).

One group of meta-learning techniques has been based on learning from task
properties using the meta-features that characterize a particular dataset [9].
Generally speaking, each prior task is characterized by a feature vector, of k
features, m(tj). Simply, information from a prior task tj can be transferred to
a new task tnew based on their similarity, where this similarity between tnew
and tj can be calculated based on the distance between their corresponding
feature vectors. In addition, a meta learner L can be trained on the feature
vectors of prior tasks along with their evaluations P to predict the performance
of configurations θi on tnew.

Some of the commonly used meta features for describing datasets are sim-
ple meta features including number of instances, number of features, statistical
features (e.g., skewness, kurtosis, correlation, co-variance, minimum, maximum,
average), landmark features (e.g., performance of some landmark learning algo-
rithms on a sample of the dataset), and information theoretic features (e.g., the
entropy of class labels) [11]. In practice, the selection of the best set of meta
features to be used is highly dependent on the application [12]. When comput-
ing the similarity between two tasks represented as two feature vectors of meta
data, it is important to normalize these vectors or apply dimensionality reduc-
tion techniques such as principle component analysis [12,13]. Another way to
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Fig. 3. A taxonomy of meta-learning techniques.

extract meta-features is to learn a joint distribution representation for a set of
tasks.

Another meta-learning approach is to learn from prior tasks properties is
through building meta-models. In this process, the aim is to build a meta model
L that learns complex relationships between meta features of prior tasks tj .
For a new task tnew, given the meta features for task tnew, model L is used
to recommend the best configurations. There exists a rich literature on using
meta models for model configuration recommendations [14–18]. Meta models can
also be used to rank a particular set of configurations by using the K−nearest
neighbour model on the meta features of prior tasks and predicting the top
k tasks that are similar to new task tnew and then ranking the best set of
configurations of these similar tasks [19,20]. Moreover, they can also be used to
predict the performance of new task based on a particular configuration [21,22].
This gives an indication about how good or bad this configuration can be, and
whether it is worth evaluating it on a particular new task.

Another group of meta-learning techniques are based on learning from previ-
ous model evaluation. In this context, the problem is formally defined as follows.

Given a set of machine learning tasks tj ∈ T , their corresponding learned
models along their hyper-parameters θ ∈ Θ and Pi,j = P (θi, tj), the problem
is to learn a meta-learner L that is trained on meta-data P ∪ Pnew to predict
recommended configuration Θ∗

new for a new task tnew, where T is the set of all
prior machine learning tasks. Θ is the configuration space (hyper-parameter set-
ting, pipeline components, network architecture, and network hyper-parameter),
Θnew is the configuration space for a new machine learning task tnew, P is the
set of all prior evaluations Pi,j of configuration θi on a prior task tj , and Pnew

is a set of evaluations Pi,new for a new task tnew.
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Fig. 4. A taxonomy for the hyper-parameter optimization techniques.

Learning from prior models can be done using Transfer learning [23], which
is the process of utilization of pretrained models on prior tasks tj to be adapted
on a new task tnew, where tasks tj and tnew are similar. Transfer learning has
received lots of attention especially in the area of neural network. In particular,
neural network architecture and neural network parameters are trained on prior
task tj that can be used as an initialization for model adaptation on a new
task tnew. Then, the model can be fine-tuned [24–26]. It has been shown that
neural networks trained on big image datasets such as ImageNet [17] can be
transferred as well to new tasks [27,28]. Transfer learning usually works well
when the new task to be learned is similar to the prior tasks, otherwise transfer
learning may lead to unsatisfactory results [29]. In addition, prior models can be
used in Few-Shot Learning where a model is required to be trained using a few
training instances given the prior experience gained from already trained models
on similar tasks.

2.1 Hyper-parameter Optimization

In general, several hyper-parameter optimization techniques have been based and
borrowed ideas from the domains of statistical model selection and traditional
optimization techniques [30–32]. In principle, the automated hyper-parameter
tuning techniques can be classified into two main categories: black-box optimiza-
tion techniques and multi-fidelity optimization techniques (Fig. 4).

Black-Box Optimization. Grid search is a simple basic solution for the hyper-
parameter optimization [33] in which all combinations of hyper-parameters are
evaluated. Thus, grid search is computationally expensive, infeasible and suffers
from the curse of dimensionality as the number of trails grows exponentially with
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the number of hyper-parameters. Another alternative is random search in which
it samples configurations at random until a particular budget B is exhausted [34].
Given a particular computational budget B, random search tends to find better
solutions than grid search [33]. One of the main advantages of random search,
and grid search is that they can be easily parallelized over a number of workers
which is essential when dealing with big data.

Bayesian Optimization is one of the state-of-the-art black-box optimization
techniques which is tailored for expensive objective functions [35,36]. Bayesian
optimization has received huge attention from the machine learning community
in tuning deep neural networks for different tasks including classification tasks [37,
38], speech recognition [39] and natural language processing [40]. Bayesian opti-
mization consists of two main components which are surrogate models for mod-
eling the objective function and an acquisition function that measures the value
that would be generated by the evaluation of the objective function at a new point.
Gaussian processes have become the standard surrogate for modeling the objec-
tive function in Bayesian optimization [38,41]. One of the main limitations of the
Gaussian processes is the cubic complexity to the number of data points which
limits their parallelization capability. Another limitation is the poor scalability
when using the standard kernels. Random forests [42] are another choice for mod-
eling the objective function in Bayesian optimization. First, the algorithm starts
with growing B regression trees, each of which is built using n randomly selected
data points with replacement from training data of size n. For each tree, a split
node is chosen from d algorithm parameters. The minimum number of points
are considered for further split are set to 10 and the number of trees B to grow
is set be 10 to maintain low computational overhead. Then, the random forest
predicted mean and variance for each new configuration is computed. The ran-
dom forests’ complexity of the fitting and predicting variances are O(n log n) and
O(log n) respectively which is much better compared to the Gaussian process.
Random forests are used by the Sequential Model-based Algorithm Configura-
tion (SMAC) library [43]. In general Tree-structured Parzen Estimator (TPE) [44]
does not define a predictive distribution over the objective function but it cre-
ates two density functions that act as generative models for all domain variables.
Given a percentile α, the observations are partitioned into two sets of observations
(good observations and bad observations) where simple Parzen windows are used
to model the two sets. The ratio between the two density functions reflects the
expected improvement in the acquisition function and is used to recommend new
configurations for hyper-parameters. Tree-Structured Parzen estimator (TPE)
has shown great performance for hyper-parameter optimization tasks [44–48].

Simulated Annealing is a hyper-parameter optimization approach which is
inspired by the metallurgy technique of heating and controlled cooling of materi-
als [49]. This optimization technique goes through a number of steps. First, it ran-
domly chooses a single value (current state) to be applied to all hyper-parameters
and then evaluates model performance based on it. Second, it randomly updates
the value of one of the hyper-parameters by picking a value from the immediate
neighborhood to get neighboring state. Third, it evaluates the model performance
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based on the neighboring state. Forth, it compares the performance obtained from
the current and neighbouring states. Then, the user chooses to reject or accept the
neighbouring state as a current state based on some criteria.

Genetic Algorithms (GA) are inspired by the process of natural selection [50].
The main idea of genetic-based optimization techniques is simply applying mul-
tiple genetic operations to a population of configurations. For example, the
crossover operation simply takes two parent chromosomes (configurations) and
combines their genetic information to generate new offspring. More specifically,
the two parents configurations are cut at the same crossover point. Then, the
sub-parts to the right of that point are swapped between the two parents chro-
mosomes. This contributes to two new offspring (child configuration). Mutation
randomly chooses a chromosome and mutates one or more of its parameters that
results in a totally new chromosome.

Multi-fidelity Optimization. Multi-fidelity optimization is an optimization
technique which focuses on decreasing the evaluation cost by combining a large
number of cheap low-fidelity evaluations and a small number of expensive high-
fidelity evaluation [51]. In practice, such an optimization technique is essential
when dealing with big datasets as training one hyper-parameter may take days.
More specifically, in multi-fidelity optimization, we can evaluate samples in dif-
ferent levels. For example, we may have two evaluation functions: high-fidelity
evaluation and low-fidelity evaluation. The high-fidelity evaluation outputs pre-
cise evaluation from the whole dataset. On the other hand, the low-fidelity eval-
uation is a cheaper evaluation from a subset of the dataset. The idea behind
the multi-fidelity evaluation is to use many low-fidelity evaluation to reduce the
total evaluation cost. Although the low fidelity optimization results in cheaper
evaluation cost that may suffer from optimization performance, but the speedup
achieved is more significant than the approximation error.

Modeling learning curves is an optimization technique that models learn-
ing curves during hyper-parameter optimization and decides whether to allocate
more resources or to stop the training procedure for a particular configuration.
For example, a curve may model the performance of a particular hyper-parameter
on an increasing subset of the dataset. Learning curve extrapolation is used in
predicting early termination for a particular configuration [36]; the learning pro-
cess is terminated if the performance of the predicted configuration is less than
the performance of the best model trained so far in the optimization process.
Combining early predictive termination criterion with Bayesian optimization
leads to more reduction in the model error rate than the vanilla Bayesian black-
box optimization. In addition, such a technique resulted in speeding-up the opti-
mization by a factor of 2 and achieved the state-of-the-art neural network on
CIFAR-10 dataset [52].

Bandit-based algorithms have shown to be powerful in tackling deep learn-
ing optimization challenges. In the following, we consider two strategies of
the bandit-based techniques which are the Successive halving and HyperBand.
Successive halving is a bandit-based powerful multi-fidelity technique in which
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given a budget B, first, all the configurations are evaluated. Next, they are
ranked based on their performance. Then, half of these configurations that per-
formed worse than the others are removed. Finally, the budget of the previous
steps is doubled and repeated until only one algorithm remains. It is shown that
the successive halving outperforms the uniform budget al.location technique in
terms of the computation time, and the number of iterations required [53]. On
the other hand, successive halving suffer from the following problem. Given a
time budget B, the user has to choose, in advance, whether to consume the larger
portion of the budget exploring a large number of configurations while spending
a small portion of the time budget on tuning each of them or to consume the
large portion of the budget on exploring few configurations while spending the
larger portion of the budget on tuning them.

HyperBand is another bandit-based powerful multi-fidelity hedging technique
that optimizes the search space when selecting from randomly sampled configu-
rations [54]. More specifically, partition a given budget B into combinations of
number of configurations and budget assigned to each configuration. Then, call
successive halving technique on each random sample configuration. Hyper-Band
shows great success with deep neural networks and performs better than random
search and Bayesian optimization.

2.2 AutoML Tools and Frameworks

In this section, we provide a comprehensive overview of several tools and frame-
works that have been implemented to automate the process of combined algo-
rithm selection and hyper-parameter optimization process. In general, these tools
and frameworks can be classified into two main categories: centralized and dis-
tributed.

Centralized Frameworks. Several tools have been implemented on top of
widely used centralized machine learning packages which are designed to run in
a single node (machine). In general, these tools are suitable for handling small
and medium sized datasets. For example, Auto-Weka5 is considered as the first
and pioneer machine learning automation framework [7]. It was implemented in
Java on top of Weka6, a popular machine learning library that has a wide range
of machine learning algorithms. Auto-Weka applies Bayesian optimization using
Sequential Model-based Algorithm Configuration (SMAC) [43] and tree-structured
parzen estimator (TPE) for both algorithm selection and hyper-parameter opti-
mization (Auto-Weka uses SMAC as its default optimization algorithm but the
user can configure the tool to use TPE). In particular, SMAC tries to draw the
relation between algorithm performance and a given set of hyper-parameters
by estimating the predictive mean and variance of their performance along the
trees of a random forest model. The main advantage of using SMAC is its robust-
ness by having the ability to discard low performance parameter configurations
5 https://www.cs.ubc.ca/labs/beta/Projects/autoweka/.
6 https://www.cs.waikato.ac.nz/ml/weka/.

https://www.cs.ubc.ca/labs/beta/Projects/autoweka/
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quickly after the evaluation on a low number of dataset folds. SMAC shows
better performance on experimental results compared to TPE [43].

Auto − MEKAGGP [55] focuses on the AutoML task for multi-label classifi-
cation problem [56] that aims to learn models from data capable of representing
the relationships between input attributes and a set of class labels, where each
instance may belong to more than one class. Multi-label classification has lots
of applications especially in medical diagnosis in which a patient may be diag-
nosed with more than one disease. Auto − MEKAGGP is a grammar-based
genetic programming framework that can handle complex multi-label classifica-
tion search space and simply explores the hierarchical structure of the problem.
Auto−MEKAGGP takes as input both of the dataset and a grammar describing
the hierarchical search space of the hyper-parameters and the learning algorithms
from MEKA7 framework [57]. Auto − MEKAGGP starts by creating an initial set
of trees representing the multi-label classification algorithms by randomly choos-
ing valid rules from the grammar, followed by the generation of derivation trees.
Next, map each derivation tree to a specific multi-label classification algorithm.
The initial trees are evaluated on the input dataset by running the learning algo-
rithm, they represent, using MEKA framework. The quality of the individuals
are assessed using different measures such as fitness function. If a stopping con-
dition is satisfied (e.g. a quality criteria), a set of individuals (trees) are selected
in a tournament selection. Crossover and mutation are applied in a way that
respects the grammar constraints on the selected individuals to create a new
population. At the end of the evolution, the best set of individuals representing
the well performing set of multi-label tuned classifiers are returned.

Auto-Sklearn8 has been implemented on top of Scikit-Learn9, a popu-
lar Python machine learning package [8]. Auto-Sklearn introduced the idea
of meta-learning in the initialization of combined algorithm selection and hyper-
parameter tuning. It used SMAC as a Bayesian optimization technique too. In
addition, ensemble methods were used to improve the performance of output
models. Both meta-learning and ensemble methods improved the performance
of vanilla SMAC optimization. hyperopt-Sklearn [58] is another AutoML frame-
work which is based on Scikit-learn machine learning library. Hyperopt-Sklearn
uses Hyperopt [59] to define the search space over the possible Scikit-Learn main
components including the learning and preprocessing algorithms. Hyperpot sup-
ports different optimization techniques including random search, and different
Bayesian optimizations for exploring the search spaces which are characterized
by different types of variables including categorical, ordinal and continuous.

TPOT 10 framework represents another type of solution that has been imple-
mented on top of Scikit-Learn [60]. It is based on genetic programming by
exploring many different possible pipelines of feature engineering and learning
algorithms. Then, it finds the best one out of them. Recipe [61] follows the
same optimization procedure as TPOT using genetic programming, which in turn

7 http://waikato.github.io/meka/.
8 https://github.com/automl/auto-sklearn.
9 https://scikit-learn.org/.

10 https://automl.info/tpot/.

http://waikato.github.io/meka/
https://github.com/automl/auto-sklearn
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https://automl.info/tpot/
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exploits the advantages of a global search. However, it considers the unconstrained
search problem in TPOT, where resources can be spent into generating and evalu-
ating invalid solutions by adding a grammar that avoids the generation of invalid
pipelines, and can speed up optimization process. Second, it works with a bigger
search space of different model configurations than Auto-SkLearn and TPOT.

ML-Plan11 has been proposed to tackle the composability challenge on build-
ing machine learning pipelines [62]. In particular, it integrates a super-set of both
Weka and Scikit-Learn algorithms to construct a full pipeline. ML-Plan tackles
the challenge of the search problem for finding optimal machine learning pipeline
using a hierarchical task network algorithm where the search space is modeled
as a large tree graph where each leaf node is considered as a goal node of a
full pipeline. The graph traversal starts from the root node to one of the leaves
by selecting some random paths. The quality of a certain node in this graph is
measured after making n such random complete traversals and taking the mini-
mum as an estimate for the best possible solution that can be found. The initial
results of this approach has shown that the composable pipelines over Weka and
Scikit-Learn do not significantly outperform the outcomes from Auto-Weka
and Auto-Sklearn frameworks because it has to deal with larger search space.

SmartML12 has been introduced as the first R package for automated model
building for classification tasks [9]. In the algorithm selection phase, SmartML
uses a meta-learning approach where the meta-features of the input dataset is
extracted and compared with the meta-features of the datasets that are stored
in the framework’s knowledge base, populated from the results of the previous
runs. The similarity search process is used to identify the similar datasets in the
knowledge base, using a nearest neighbor approach, where the retrieved results
are used to identify the best performing algorithms on those similar datasets in
order to nominate the candidate algorithms for the dataset at hand. The hyper-
parameter tuning of SmartML is based on SMAC Bayesian Optimisation [43].
SmartML maintains the results of the new runs to continuously enrich its knowl-
edge base with the aim of further improving the accuracy of the similarity search
and thus the performance and robustness for future runs.

Autostacker [63] is an AutoML framework that uses an evolutionary
algorithm with hierarchical stacking for efficient hyper-parameters search.
Autostacker is able to find pipelines, consisting of preprocessing, feature engi-
neering and machine learning algorithms with the best set of hyper-parameters,
rather than finding a single machine learning model with the best set of hyper-
parameters. Autostacker generates cascaded architectures that allow the compo-
nents of a pipeline to ”correct mistakes made by each other” and hence improves
the overall performance of the pipeline. Autostacker simply starts by selecting a
set of pipelines randomly. Those pipelines are fed into an evolutionary algorithm
that generates the set of winning pipelines.

AlphaD3M [64] has been introduced as an AutoML framework that uses meta
reinforcement learning to find the most promising pipelines. AlphaD3M finds

11 https://github.com/fmohr/ML-Plan.
12 https://github.com/DataSystemsGroupUT/SmartML.

https://github.com/fmohr/ML-Plan
https://github.com/DataSystemsGroupUT/SmartML
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patterns in the components of the pipelines using recurrent neural networks,
specifically long short term memory (LSTM) and Monte-Carlo tree search in
an iterative process which is computationally efficient in large search space. In
particular, for a given machine learning task over a certain dataset, the network
predicts the action’s probabilities which lead to sequences that describe the whole
pipeline. The predictions of the LSTM neural network are used by Monte-Carlo
tree search by running multiple simulations to find the best pipeline sequence.

OBOE 13 is an AutoML framework for time constrained model selection and
hyper-parameter tuning [65]. OBOE finds the most promising machine learning
model along with the best set of hyper-parameters using collaborative filtering.
OBOE starts by constructing an error matrix for some base set of machine learn-
ing algorithms, where each row represents a dataset and each column represents
a machine learning algorithm. Each cell in the matrix represents the perfor-
mance of a particular machine learning model along with its hyper-parameters
on a specific dataset. In addition, OBOE keeps track of the running time of each
model on a particular dataset and trains a model to predict the running time
of a particular model based on the size and the features of the dataset. Simply,
a new dataset is considered as a new row in the error matrix. In order to find
the best machine learning algorithm for a new dataset, OBOE runs a particular
set of models corresponding to a subset of columns in the error matrix which
are predicted to run efficiently on the new dataset. In order to find the rest of
the entries in the row, the performance of the models that have not been eval-
uated are predicted. The good thing about this approach is that it infers the
performance of lots of models without the need to run them or even computing
meta-features and that is why OBOE can find a well performing model within
a reasonable time budget.

The PMF 14 AutoML framework is based on collaborative filtering and
Bayesian optimization [66]. More specifically, the problem of selecting the best
performing pipeline for a specific task is modeled as a collaborative filtering
problem that is solved using probabilistic matrix factorization techniques. PMF
considers two datasets to be similar if they have similar evaluations on a few set
of pipelines and hence it is more likely that these datasets will have similar eval-
uations on the rest of the pipelines. This concept is quite related to collaborative
filtering for movie recommendation in which users that had the same preference
in the past are more likely to have the same preference in the future. In par-
ticular, the PMF framework trains each machine learning pipeline on a sample
of each dataset and then evaluates such pipeline. This results in a matrix that
summarizes the performance (accuracy or balanced accuracy for classification
tasks and RMSE for regression tasks) of each machine learning pipeline of each
dataset. The problem of predicting the performance of a particular pipeline on
a new dataset can be mapped into a matrix factorization problem.

VDS [67] has been recently introduced as an interactive automated machine
learning tool, that followed the ideas of a previous work on the MLBase

13 https://github.com/udellgroup/oboe/tree/master/automl.
14 https://github.com/rsheth80/pmf-automl.

https://github.com/udellgroup/oboe/tree/master/automl
https://github.com/rsheth80/pmf-automl
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framework [68]. In particular, it uses a meta learning mechanism (knowledge from
the previous runs) to provide the user with a quick feedback, in few seconds, with
an initial model recommendation that can achieve a reasonable accuracy while,
on the back-end, conducting an optimization process so that it can recommend
to the user more models with better accuracies, as it progresses with the search
process over the search space. The VDS framework combines cost-based Multi-
Armed Bandits and Bayesian optimizations for exploring the search space while
using a rule-based search-space as query optimization technique. VDS prunes
unpromising pipelines in early stages using an adaptive pipeline selection algo-
rithm. In addition, it supports a wide range of machine learning tasks including
classification, regression, community detection, graph matching, image classi-
fication, and collaborative filtering. ATMSeer15 is an interactive visualization
tool that has been introduced to support users for refining the search space of
AutoML and analyzing the results [69]. Table 1 shows a summary of the main
features of the centralized state-of-the-art AutoML frameworks.

Several cloud-based solutions have been introduced to tackle the automated
machine learning problem using the availability of high computational power on
cloud environments to try a wide range of models and configurations. For exam-
ple, Google AutoML16 supports training a wide range of machine learning models
in different domains with minimal user experience. Azure AutoML17 is a cloud-
based service that can be used to automate building machine learning pipeline
for both classification and regression tasks. AutoML Azure uses collaborative
filtering and Bayesian optimization to search for the most promising pipelines
efficiently [66] based on a database that is constructed by running millions of
experiments of evaluation of different pipelines on many datasets. Amazon Sage
Maker18 provides its users with a wide set of most popular machine learning,
and deep learning frameworks to build their models in addition to automatic
tuning for the model parameters.

Distributed Frameworks. As the size of the dataset increases, solving the
CASH problem in a centralized manner turns out to be infeasible due to the
limited computing resources (e.g., Memory, CPU) of a single machine. Thus,
there is a clear need for distributed solutions that can harness the power of
computing clusters that have multiple nodes to tackle the computational com-
plexity of the problem. MLbase19 has been the first work to introduce the idea
of developing a distributed framework of machine learning algorithm selection
and hyperparameter optimization [68]. MLbase has been based on MLlib [70], a

15 https://github.com/HDI-Project/ATMSeer.
16 https://cloud.google.com/automl/.
17 https://docs.microsoft.com/en-us/azure/machine-learning/service/.
18 https://aws.amazon.com/machine-learning/.
19 http://www.mlbase.org/.

https://github.com/HDI-Project/ATMSeer
https://cloud.google.com/automl/
https://docs.microsoft.com/en-us/azure/machine-learning/service/
https://aws.amazon.com/machine-learning/
http://www.mlbase.org/
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Spark-based ML library. It attempted to reused cost-based query optimization
techniques to prune the search space at the level of logical learning plan before
transforming it into a physical learning plan to be executed.

Auto-Tuned Models (ATM) framework20 has been introduced as a parallel
framework for fast optimization of machine learning modeling pipelines [71]. In
particular, this framework depends on parallel execution along multiple nodes
with a shared model hub that stores the results out of these executions and
tries to enhance the selection of other pipelines that can outperform the current
chosen ones. The user can decide to use either of ATM’s two searching methods,
a hybrid Bayesian and multi-armed bandit optimization system, or a model
recommendation system that works by exploiting the previous performance of
modeling techniques on a variety of datasets.

TransmogrifAI 21 is one of the most recent modular tools written in Scala.
It is built using workflows of feature preprocessors, and model selectors on
top of Spark with minimal human involvement. It has the ability to reuse the
selected work-flows. Currently, TransmogrifAI supports eight different binary
classifiers and five regression algorithms. MLBox 22 is a Python-based AutoML
framework for distributed preprocessing, optimization and prediction. MLBox
supports model stacking where a new model is trained from the combined pre-
dictors of multiple previously trained models. It uses hyperopt23, a distributed
asynchronous hyper-parameter optimization library, in Python, to perform the
hyper-parameter optimisation process.

Rafiki 24 has been introduced as a distributed framework which is based
on the idea of using previous models that achieved high performance on the
same tasks [72]. In this framework, regarding the data and parameter storage,
the data uploaded by user to be trained is stored in a Hadoop Distributed File
System (HDFS). During training, there is a database for each model storing the
best version of parameters from hyper-parameter tuning process. This database
is kept in memory as it is accessed and updated frequently. Once the hyper-
parameter tuning process is finished, the database is dumped to the disk. The
types of parameters to be tuned are either related to model architecture like
number of Layers, and Kernel or related to the training algorithm itself like
weight decay, and learning rate. All these parameters can be tuned using a
random search or Bayesian optimization. Table 2 shows a summary of the main
features of the distributed AutoML frameworks.

20 https://github.com/HDI-Project/ATM.
21 https://transmogrif.ai/.
22 https://github.com/AxeldeRomblay/MLBox.
23 https://github.com/hyperopt/hyperopt.
24 https://github.com/nginyc/rafiki.

https://github.com/HDI-Project/ATM
https://transmogrif.ai/
https://github.com/AxeldeRomblay/MLBox
https://github.com/hyperopt/hyperopt
https://github.com/nginyc/rafiki
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Fig. 5. The relationship between machine learning and deep learning.

3 Automated Deep Learning

3.1 Neural Architecture Search for Deep Learning

In general, deep learning techniques [73] represent a subset of machine learn-
ing methodologies that are based on artificial neural networks (ANN) which
are mainly inspired by the neuron structure of the human brain (Fig. 5). It is
described as deep because it has more than one layer of nonlinear feature trans-
formation. Neural Architecture Search (NAS) is a fundamental step in automat-
ing the machine learning process and has been successfully used to design the
model architecture for image and language tasks [74–78]. Broadly, NAS tech-
niques falls into five main categories including random search, reinforcement
learning, gradient-based methods, evolutionary methods, and Bayesian optimiza-
tion (Fig. 6).

Random search is one of the most naive and simplest approaches for network
architecture search. For example, Hoffer et al. [79] have presented an approach
to find good network architecture using a random search combined with well-
trained set of shared weights. Li and Talwalkar [80] proposed new network archi-
tecture search baselines that are based on a random search with early-stopping
for hyper-parameter optimization. Results show that random search along with
early-stopping achieves the state-of-the-art network architecture search results
on two standard NAS bookmarkers which are PTB and CIFAR-10 datasets.

Reinforcement learning [81] is another approach that has been used to find
the best network architecture. Zoph and Le [74] used a recurrent neural net-
work (LSTM) with reinforcement to compose neural network architecture. More
specifically, recurrent neural network is trained through a gradient based search
algorithm called REINFORCE [82] to maximize the expected accuracy of the gen-
erated neural network architecture. Baker et al. [83] introduced a meta-modeling
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Fig. 6. A taxonomy for the Neural Network Architecture Search (NAS) techniques

algorithm called MetaQNN based on reinforcement learning to automatically gen-
erate the architecture of a convolutional neural network for a new task. The
convolutional neural network layers are chosen sequentially by a learning agent
that is trained using Q−learning with ε−greedy exploration technique. Simply,
the agent explores a finite search space of a set of architectures and iteratively
figures out architecture designs with improved performance on the new task to
be learned.

Gradient-based optimization is another common way for neural network archi-
tecture search. Liu et al. [84] proposed an approach based on continuous relax-
ation of the neural architecture allowing using a gradient descent for archi-
tecture search. Experiments showed that this approach excels in finding high-
performance convolutional architectures for image classification tasks on CIFAR-
10, and ImageNet datasets. Shin et al. [85] proposed a gradient-based optimiza-
tion approach for learning the network architecture and parameters simultane-
ously. Ahmed and Torresani [86] used gradient based approach to learn network
architecture. Experimental results on two different networks architecture ResNet
and ResNeXt show that this approach yields to better accuracy and a significant
reduction in the number of parameters.

Another direction for architecture search is evolutionary algorithms which
are well suited for optimizing arbitrary structure. Miller et al. [87] considered
an evolutionary algorithm to propose the architecture of the neural network and
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network weights as well. Many evolutionary approaches based on genetic algo-
rithms are used to optimize the neural networks architecture and weights [88–90]
while others rely on hierarchical evolution [78]. Some recent approaches consider
using the multi-objective evolutionary architecture search to optimize training
time, complexity and performance [91,92] of the network. LEAF [93] is an evolu-
tionary AutoML framework that optimizes hyper-parameters, network architec-
ture and the size of the network. LEAF uses CoDeepNEAT [94] which is a powerful
evolutionary algorithm based on NEAT [95]. LEAF achieved the state-of-the-art
performance results on medical image classification and natural language anal-
ysis. For supervised learning tasks, evolutionary based approaches tend to out-
perform reinforcement learning approaches especially when the neural network
architecture is very complex due to having millions of parameters to be tuned.
For example, the best performance achieved on ImageNet and CIFAR-10 has
been obtained using evolutionary techniques [96].

Bayesian optimization based on Gaussian processes has been used by Kan-
dasamy et al. [97] and Swersky et al. [98] for tackling the neural architecture
search problem. In addition, lots of work focused on using tree based models
such as random forests and tree Parzen estimators [44] to effectively optimize the
network architecture as well as its hyper-parameters [45,52,99]. Bayesian opti-
mization may outperform evolutionary algorithms in some problems as well [100].

3.2 AutoDL Frameworks

Recently, some frameworks (e.g., Auto-Keras [101], and Auto-Net [99]) have
been proposed with the aim of automatically finding neural network architec-
tures that are competitive with architectures designed by human experts. How-
ever, the results so far are not significant. For example, Auto-Keras [101] is an
open source efficient neural architecture search framework based on Bayesian
optimization to guide the network morphism. In order to explore the search
space efficiently, Auto-Keras uses a neural network kernel and tree structured
acquisition function with iterative Bayesian optimization. First, a Gaussian pro-
cess model is trained on the currently existing network architectures and their
performance is recorded. Then, the next neural network architecture obtained
by the acquisition function is generated and evaluated. Moreover, Auto-Keras
runs in a parallel mode on both CPU and GPU.

Auto-Net [99] is an efficient neural architecture search framework based on
SMAC optimization and built on top of PyTorch. The first version of Auto-Net
is implemented within the Auto-sklearn in order to leverage some of the existing
components of the machine learning pipeline in Auto-sklearn such as preprocess-
ing. The first version of Auto Net only considers fully-connected feed-forward
neural networks as they are applied on a large number of different datasets.
Auto-net accesses deep learning techniques from Lasagne Python deep learning
library [102]. Auto Net includes a number of algorithms for tuning the neural
network weights including vanilla stochastic gradient descent, stochastic gradient
descent with momentum, Adadelta [103], Adam [104], Nesterov momentum [105]
and Adagrad [106].
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Neural Network Intelligence (NNI)25 is an open source toolkit by Microsoft
that is used for tuning neural networks architecture and hyper-parameters in
different environments including local machine, cloud and remote servers. NNI
accelerates and simplifies the huge search space using built-in super-parameter
selection algorithms including random search, naive evolutionary algorithms,
simulated annealing, network morphism, grid search, hyper-band, and a bunch
of Bayesian optimizations like SMAC [43], and BOHB [47]. NNI supports a large
number of deep leaning frameworks including PyTorch, TensorFlow, Keras,
Caffe2, CNTK, Chainer and Theano.

DEvol 26 is an open source framework for neural network architecture search
that is based on genetic programming to evolve the number of layers, kernels,
and filters, the activation function and dropout rate. DEvol uses parallel train-
ing in which multiple members of the population are evaluated across multiple
GPU machines in order to accelerate the process of finding the most promising
network.

enas [107] has been introduced as an open source framework for neural archi-
tecture search in Tensorflow based on reinforcement learning [74] where a con-
troller of a recurrent neural network architecture is trained to search for optimal
subgraphs from large computational graphs using policy gradient. Moreover,
enas showed a large speed up in terms of GPU hours thanks to the sharing of
parameters across child subgraphs during the search process.

NAO [108], and Darts [84] are open source frameworks for neural architec-
ture search which propose a new continuous optimization algorithm that deals
with the network architecture as a continuous space instead of the discretization
followed by other approaches. In NAO, the search process starts by encoding an
initial architecture to a continuous space. Then, a performance predictor based
on gradient based optimization searches for a better architecture that is decoded
at the end by a complementary algorithm to the encoder in order to map the
continuous space found back into its architecture. On the other hand, DARTS
learns new architectures with complex graph topologies from the rich continuous
search space using a novel bilevel optimization algorithm. In addition, it can be
applied to any specific architecture family without restrictions to any of the con-
volutional and recurrent networks only. Both frameworks showed a competitive
performance using limited computational resources compared with other neural
architecture search frameworks.

Evolutionary Neural AutoML for Deep Learning (LEAF) [93] is an AutoML
framework that optimizes neural network architecture and hyper-parameters
using the state-of-the-art evolutionary algorithm and distributed computing
framework. LEAF uses CoDeepNEAT [94] for optimizing deep neural network
architecture and hyper-parameters. LEAF consists of three main layers which
are algorithm layers, system layer and problem-domain layer. LEAF evolves deep
neural networks architecture and hyper-parameters in the algorithm layer. The
system layer is responsible for training the deep neural networks in a parallel

25 https://github.com/Microsoft/nni.
26 https://github.com/joeddav/devol.

https://github.com/Microsoft/nni
https://github.com/joeddav/devol
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mode on a cloud environment such as Microsoft Azure27, Google Cloud28 and
Amazon AWS29, which is essential in the evaluation of the fitness of the neural
networks evolved in the algorithm layer. More specifically, the algorithm layer
sends the neural network architecture to the system layer. Then, the system
layer sends the evaluation of the fineness of this network back to the algorithm
layer. Both the algorithm layer and the system layer work together to support
the problem-domain layers where the problems of hyper-parameter tuning of
network architecture search are solved. Table 3 shows a summary of the main
features of the state-of-the-art neural architecture search frameworks.

4 Open Challenges and Future Directions

Although in the last years, there has been increasing research efforts to tackle
the challenges of the automated machine learning domain, however, there are
still several open challenges and research directions that needs to be tackled to
achieve the ultimate goals and vision of the AutoML domain. In this section,
we highlight some of these challenges that need to be tackled to improve the
state-of-the-art.

Scalability: In practice, a main limitation of the centralized frameworks
for automating the solutions for the CASH problem (e.g., Auto-Weka,
Auto-Sklearn) is that they are tightly coupled with a machine learning library
(e.g., Weka, scikit-learn, R) that can only work on a single node which makes
them not applicable in the case of large data volumes. In practice, as the scale of
data produced daily is increasing continuously at an exponential scale, several
distributed machine learning platforms have been recently introduced. Examples
include Spark MLib [70], Mahout30 and SystemML [109]. Although there have
been some initial efforts for distributed automated framework for the CASH
problem. However, the proposed distributed solutions are still simple and lim-
ited in their capabilities. More research efforts and novel solutions are required
to tackle the challenge of automatically building and tuning machine learning
models over massive datasets.

Optimization Techniques: In practice, different AutoML frameworks use dif-
ferent techniques for hyper-parameter optimization of the machine learning algo-
rithms. For instance, Auto-Weka and Auto-Sklearn use the SMAC technique
with cross-fold validation during the hyper-parameter configuration optimiza-
tion and evaluation. On the other hand, ML-Plan uses the hierarchical task net-
work with Monte Carlo Cross-Validation. Other tools, including Recipe [61] and
TPOT, use genetic programming, and pareto optimization for generating candi-
date pipelines. In practice, it is difficult to find a clear winner or one-size-fits-all

27 https://azure.microsoft.com/en-us/.
28 https://cloud.google.com/.
29 https://aws.amazon.com/.
30 https://mahout.apache.org/.
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technique. In other words, there is no single method that will be able to outper-
form all other techniques on the different datasets with their various characteris-
tics, types of search spaces and metrics (e.g., time and accuracy). Thus, there is a
crucial need to understand the Pros and Cons of these optimization techniques so
that AutoML systems can automatically tune their hyper-parameter optimiza-
tion techniques or their strategy for exploring and traversing the search space.
Such decision automation should provide improved performance over picking and
relying on a fixed strategy. Similarly, for the various introduced meta-learning
techniques, there is no clear systematic process or evaluation metrics to quan-
titatively assess and compare the impact of these techniques on reducing the
search space. Recently, some competitions and challenges31,32 have been intro-
duced and organized to address this issue such as the DARPA D3M Automatic
Machine Learning competition [67].

Time Budget: A common important parameter for AutoML systems is the
user time budget to wait before getting the recommended pipeline. Clearly, the
bigger the time budget, the more the chance for the AutoML system to explore
various options in the search space and the higher probability to get a better
recommendation. However, the bigger time budget used, the longer waiting time
and the higher computing resource consumption, which could be translated into
a higher monetary bill in the case of using cloud-based resources. On the other
hand, a small-time budget means a shorter waiting time but a lower chance to get
the best recommendation. However, it should be noted that increasing the time
budget from X to 2X does not necessarily lead to a big increase on the quality
of the results of the recommended pipeline, if any at all. In many scenarios, this
extra time budget can be used for exploring more of the unpromising branches
in the search space or exploring branches that have very little gain, if any. For
example, the accuracy of the returned models from running the AutoSklearn
framework over the Abalone dataset33 with time budgets of 4 h and 8 h are
almost the same (25%). Thus, accurately estimating or determining the adequate
time budget to optimize this trade-off is another challenging decision that can not
be done by non-expert end users. Therefore, it is crucial to tackle such challenge
by automatically predicting/recommending the adequate time budget for the
modeling process. The VDS [67] framework provided a first attempt to tackle
this challenge by proposing an interactive approach that relies on meta learning
to provide a quick first model recommendation that can achieve a reasonable
quality while conducting an offline optimization process and providing the user
with a stream of models with better accuracy. However, more research efforts to
tackle this challenge are still required.

Composability. Nowadays, several machine learning solutions (e.g., Weka,
Scikit-Learn, R, MLib, Mahout) have become popular. However, these ML solu-
tions significantly vary in their available techniques (e.g., learning algorithms,

31 https://www.4paradigm.com/competition/nips2018.
32 http://automl.chalearn.org/.
33 https://www.openml.org/d/183.
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preprocessors, and feature selectors) to support each phase of the machine learn-
ing pipeline. Clearly, the quality of the machine learning pipelines that can be
produced by any of these platforms depends on the availability of several tech-
niques/algorithms that can be utilized in each step of the pipeline. In partic-
ular, the more available techniques/algorithms in a machine learning platform,
the higher the ability and probability of producing a well-performing machine
learning pipeline. In practice, it is very challenging to have optimized imple-
mentations for all of the algorithms/techniques of the different steps of the
machine learning pipeline available in a single package, or library. The ML-Plan
framework [62] has been attempting to tackle the composability challenge on
building machine learning pipelines. In particular, it integrates a superset of
both Weka and Scikit-Learn algorithms to construct a full pipeline. The initial
results of this approach have shown that the composable pipelines over Weka and
Scikit-Learn do not significantly outperform the outcomes from Auto-Weka
and Auto-Sklearn frameworks especially with big datasets and small time bud-
gets. However, we believe that there are several reasons behind these results.
First, combining the algorithms/techniques of more than one machine learning
platform causes a dramatic increase in the search space. Thus, to tackle this
challenge, there is a crucial need for a smart and efficient search algorithm that
can effectively reduce the search space and focus on the promising branches.
Using meta-learning approaches can be an effective solution to tackle this chal-
lenge. Second, combining services from more than one framework can involve
a significant overhead for the data and message communications between the
different frameworks. Therefore, there is a crucial need for a smart cost-based
optimizer that can accurately estimate the gain and cost of each recommended
composed pipeline and be able to choose the composable recommendations when
they are able to achieve a clear performance gain. Third, the ML-Plan has been
combining the services of two single node machine learning services (Weka and
Scikit-Learn). We believe that the best gain of the composability mechanism
will be achieved by combining the performance power of distributed systems
(e.g., MLib) with the rich functionality of many centralized systems.

User Friendliness: In general, most of the current tools and framework can not
be considered to be user friendly. They still need sophisticated technical skills
to be deployed and used. Such challenge limits its usability and wide acceptance
among layman users and domain experts (e.g., physicians, accountants) who
commonly have limited technical skills. Providing an interactive and light-weight
web interfaces for such framework can be one of the approaches to tackle these
challenges.

Continuous Delivery Pipeline: Continuous delivery is defined as creating
a repeatable, reliable and incrementally improving process for taking software
from concept to customer. Integrating machine learning models into continuous
delivery pipelines for productive use has not recently drawn much attention,
because usually the data scientists push them directly into the production envi-
ronment with all the drawbacks this approach may have, such as no proper unit
and integration testing.
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5 Conclusion

Machine learning has become one of the main engines of the current era. The
production pipeline of a machine learning models passe through different phases
and stages that require a wide knowledge of several available tools, and algo-
rithms. However, as the scale of data produced daily is increasing continuously
at an exponential scale, it has become essential to automate this process. In
this chapter, we provided an overview of the state-of-the-art research effort in
the domain of AutoML frameworks. We have also highlighted research direc-
tions and open challenges that need to be addressed in order to achieve the
vision and goals of the AutoML process. We hope that our overview serves as
a useful resource for the community, for both researchers and practitioners, to
understand the challenges of the domain and provide useful insight for further
advancing the state-of-the-art in several directions.
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