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Preface

The 9th European Big Data Management and Analytics Summer School (eBISS 20191)
took place in Berlin, Germany, in July 2019. Tutorials were given by renowned experts
and covered advanced aspects of analytics and big data. This volume contains the
lecture notes of the summer school.

The first chapter is devoted to actionable conformance checking. In the context of
business processes, conformance checking aims at comparing a process model with an
event log of the same process in order to assess whether the actual execution of a
business process conforms to the model and vice versa. Although conformance
checking has been receiving increasing attention in the last years, making the output of
a conformance checking process actionable is still a real challenge. This chapter pro-
vides an introductory overview of the main techniques of the conformance checking
field. In order to make it actionable, simple Python code snippets are provided to
illustrate how an organization can start a conformance checking project on its own data.
The chapter also provides pointers to open-source scripting libraries that can be used to
make conformance checking and process mining actionable.

The second chapter provides an introduction to text analytics. It starts by presenting
sources of textual data and the main challenges in text analysis. The chapter then
surveys the various steps and methods involved in a typical processing pipeline. Since
the steps to be realized heavily depend on the analytical task that is to be achieved, it is
therefore necessary to identify the problem at hand and align the process accordingly.
The chapter provides illustrative examples in each of the steps of the process and
concludes by describing potential applications of text analytics, including sentiment
analysis and automatic generation of content.

The third chapter is devoted to automated machine learning. Nowadays, machine
learning techniques and algorithms are employed in almost every application domain to
extract valuable knowledge from the massive amounts of data produced every day in
our digital world. However, building a high-quality machine learning model is an
iterative, complex, and time-consuming process that requires knowledge and experi-
ence. Given the continuous increase of the amount of digital data produced, it has been
acknowledged that the number of data scientists cannot scale to address these chal-
lenges. The chapter gives an overview of the state-of-the-art tools and frameworks that
have been proposed for tackling the challenges of machine learning automation. It
concludes by discussing some research directions and open challenges required to
achieve the vision and goals of automated machine learning.

The fourth chapter addresses the problem of determining how travel time can be
computed from GPS data. The volume of GPS data collected from moving vehicles has
increased significantly over the last years. Nowadays, it is possible to analyze the traffic
on most of the road networks without installing roadside equipment. The chapter

1 http://cs.ulb.ac.be/conferences/ebiss2019/.
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presents a generic data model for travel time prediction that has a global scope and is
applicable when GPS data and a road network graph is present. It defines several
weather classes (dry, fog, rain, and snow) and shows their impact on travel time in
various road categories (motorway, secondary, tertiary, and residential). The paper also
analyzes other weather characteristics such as outside temperature and wind as well as
regional differences. These results are presented in the context of a large-scale
nationwide study performed in Denmark, where GPS data collected from 10,560
vehicles over five years is integrated with OpenStreetMap data and detailed weather
information from the NOAA.

The last chapter introduces the Laplacian matrix as an efficient tool for addressing
various tasks in machine learning. Many machine learning problems can be expressed
by means of a graph with nodes representing training samples and edges representing
the relationship between samples in terms of similarity, temporal proximity, or label
information. As graphs can be represented by matrices, the chapter advocates the use of
a Laplacian matrix, which allows us to assign each node a value that varies only
slightly between strongly connected nodes and more between distant nodes. Such an
assignment can be used to extract a useful feature representation, find a good
embedding of data in a low dimensional space, or perform clustering on the original
samples. The chapter starts by introducing the Laplacian matrix and then presents
several algorithms designed around it for data visualization and feature extraction.

In addition to the lectures corresponding to the chapters described above, there were
four additional lectures, as follows:

• Ralf-Detlef Kutsche from Technische Universität Berlin, Germany: Science
Methodology

• Begüm Demir from Technische Universität Berlin, Germany: Deep Earth Query,
Advances in Remote Sensing Image Characterization and Indexing from Massive
Archives

• Aymen Cherif from Eura Nova, Belgium: Deep Learning, Current Applications and
Future Trends

• Albert Bifet from Télécom ParisTech, France: Machine Learning for Data Streams

These lectures have no associated chapter in this volume.
As for the previous editions, eBISS joined forces with the Erasmus Mundus

IT4BI-DC consortium and hosted its doctoral colloquium aiming at community
building and promoting a corporate spirit among PhD candidates, advisors, and
researchers of different organizations. The corresponding two sessions, each organized
in two parallel tracks, included the following presentations:

• Judith Awiti, Evolving ETL workflows in a big data environment
• Jam Jahanzeb Behan, Statistical multidimensional data modeling based on Linked

Open Data
• Moditha Hewasinghage, Physical design in document stores
• Mohsin Iqbal, Spatio-textual analytics
• Suela Isaj, Multi-source spatial entity linkage
• Nusrat Jahan Lisa, Database operations on top of complex system design
• Rediana Koci, A data-driven approach to prescribe Web API evolution

vi Preface



• Subba Lawan, Bitmap indexing for big data
• Shumet Tadesse Nigatu, Semi-automatic generation of data intensive APIs
• Olga Rybnytska, Prescriptive analytics for physical systems models

We would like to thank the attendants of the summer school for their active par-
ticipation, as well as the speakers and their co-authors for the high quality of their
contribution in a constant evolving and highly competitive domain. Finally, we would
like to thank the external reviewers for their careful evaluation of the chapters.

June 2020 Ralf-Detlef Kutsche
Esteban Zimányi
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Actionable Conformance Checking: From
Intuitions to Code

Josep Carmona1(B), Matthias Weidlich2, and Boudewijn van Dongen3

1 Universitat Politècnica de Cataluna, Barcelona, Spain
jcarmona@cs.upc.edu

2 Humboldt University of Berlin, Berlin, Germany
matthias.weidlich@hu-berling.de

3 Eindhoven University of Technology, Eindhoven, The Netherlands
B.F.v.Dongen@tue.nl

Abstract. Conformance checking is receiving increasing attention in
the last years. This is due to several reasons, that can be summarized
into two: the explosion of digital information that talks about processes,
and the need to use this data in order to monitor and improve pro-
cesses in organizations. Naturally, conformance checking addresses this
by providing techniques capable of relating modeled and recorded pro-
cess information. This paper overviews in a very accessible way the main
techniques and feedback of the conformance checking field. Moreover,
in order to make it actionable, code snippets are provided so that an
organization can start a conformance checking project on its own data.

Keywords: Conformance checking · Process mining · Business process
management · BPMN · Petri nets · Event logs · Alignments

1 Introduction

Nowadays organizations are facing a digital transformation, that primarily
requires active use of the tons of data available as a result of their operation. As
processes are the main focus for the management of an organization, exposing
processes to the data available helps to assess the alignment between observed
and modeled behavior. When modeled and observed behavior are aligned, then
one can be sure that the reality and the models describing it agree. In con-
trast, an organization may need to react in case of finding deviations between
observed and modeled behavior. Conformance checking techniques [1] tackle this
fundamental problem: to analytically asses the adequacy of a process model in
representing the traces in an event log, extracting the deviations in case they
exist. Due to the potential existence of regulations, guidelines, frauds and errors,
conformance checking is becoming an essential element for an organization to
prove the adherence to a desired behavior.

Conformance checking is a crucial dimension in process mining [2]: by relating
modelled and observed behavior, process models that have either been discovered
c© Springer Nature Switzerland AG 2020
R.-D. Kutsche and E. Zimányi (Eds.): eBISS 2019, LNBIP 390, pp. 1–24, 2020.
https://doi.org/10.1007/978-3-030-61627-4_1
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2 J. Carmona et al.

or manually created, can be confronted with event data. On its core, conformance
checking relies on the fundamental problem of identifying, among the set of runs
of a process model (which can be infinite), the run that mostly resembles an
observed trace.

In general, conformance checking has been applied to very different domains,
including healthcare, banking, finance, transportation, manufacturing among
others. The reader can see detailed use cases of all these fields in the web of
the IEEE Task Force on Process Mining : https://www.tf-pm.org.

In this paper we aim at providing a gentle introduction to the conformance
checking field, by describing its main techniques. Furthermore, we show code
snippets illustrating some of the conformance checking techniques presented in
this paper. The code snippets provided in this paper and related data is available
in https://github.com/matthiasweidlich/conf tutorial/.

2 Related Work

The field of conformance checking is relatively new. The definition of the area
and a proposal of initial algorithms was presented in the scope of Anne Rozi-
nat’s PhD thesis at the TU/e [3] and corresponding publications [4–7]. Impor-
tant notions arise from this work, like fitness or appropriateness between a pro-
cess model and log. Also, important algorithms result from this work, including
the techniques to evaluate fitness based on the replay of the traces and the miss-
ing/remaining/produced/consumed tokens. Also in the scope of the TU/e, the
seminal work under the PhD thesis of Arya Adriansyah is crucial for formalizing
the notion of alignments [8]. Several applications of alignments are explored in the
related publications, like performance analysis [9,10], high-level deviations [11],
privacy analysis of user behaviour [12], and alignment-based precision metrics [13].

Another work that has been important for conformance checking is the
log conformance analysis presented in the scope of Matthias Weidlich’s PhD
thesis [14]. The thesis introduces the concept of behavioural profiles, as a tai-
lored abstraction for processes that allows comparing recorded and modelled
behaviour.

3 Process Models and Event Logs

Process models and event logs represent different conceptualizations of processes.
When describing a process, a process model provides an abstraction, capturing
some of the process’ activities by means of tasks. A specific instance of a process,
i.e., a case, then corresponds to a sequence of task executions, denoted run. In
contrast, event logs store the executions of a certain process in a organization.
In the remainder of this section we informally introduce these two conceptual-
izations with the help of a real-life example.

A process model that describes how a loan application is handled is illustrated
in Fig. 1. This model is captured in the Business Process Model and Notation
(BPMN). In BPMN, tasks are represented by rectangles; instantaneous events

https://www.tf-pm.org
https://github.com/matthiasweidlich/conf_tutorial/


Actionable Conformance Checking 3

are visualised by circles (in Fig. 1 they start or end the process); and execu-
tion dependencies are modelled by control flow arcs and diamond-shaped nodes,
called gateways. The semantics of such a gateway determines the exact behaviour
of a process, e.g., whether incoming arcs are synchronised (AND-gateway with
a ‘plus’ symbol) or not (XOR-gateway with a ‘cross’ symbol); or whether outgo-
ing arcs are enabled concurrently (AND-gateway) or mutually exclusive to each
other (XOR-gateway). A run of the model (a sequence from start to end that
agrees with the aforementioned semantics) is 〈As,Aa,Fa,Sso,Ro,Ao,Aaa,Af〉.

According to this model, a submitted application is either accepted or
rejected, based on the aforementioned rules to check plausibility of the appli-
cant’s data. An accepted application is finalised by a worker, in parallel with the
offer process. For each application, an offer is selected and sent to the customer.
The customer reviews the offer and sends it back. If the offer is accepted, the
process continues with the approval of the application and the activation of the
loan. If the customer declines the offer, the application is also declined and the
process ends. However, the customer can also request a new offer, in which case
the offer is cancelled and a new offer is sent to the customer.

Fig. 1. Example process model of a loan application process in BPMN.

The recording of a single execution of an activity of a process in a information
system is called an event. Typically, events are performed in a certain context,
such as for example a specific loan application. This context is commonly given
by the case as part of which an activity was executed. The notion of a case,
therefore, binds together events, thereby allowing us to track the evolution of a
case over time. The events related to a single case are called a trace.

The notion of a trace is fundamental for event logs. In essence, an event log
is a collection of traces, each trace comprising events that can be sorted by their
occurrence time. Consider for example our loan application process of Fig. 1.
Table 1 shows an excerpt of such event log. The application with id A5634 is
accepted by the system on January 1st at 12:32 and the customer asks for a
e2,000 loan. On January 3rd the application is finalised and two days later, an
offer is made to the customer for a e1,500 loan. The offer is received back on
January 10th and the customers did not sign it, nor did they indicate they want
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Table 1. Example of a log of the loan application process.

Event Application Offer Activity Amount Signed Timestamp

. . . . . . . . . . . . . . . . . . . . .
e13 A5634 Application sub-

mitted
2,000 Jan 01, 12:31

e14 A5634 Accept application 2,000 Jan 01, 12:32
e15 A5635 Application sub-

mitted
5,000 Jan 02, 04:31

e16 A5635 Accept application 5,000 Jan 02, 04:32
e17 A5636 Application sub-

mitted
200 Jan 03, 06:59

e18 A5636 Accept application 200 Jan 03, 07:00
. . . . . . . . . . . . . . . . . . . . .
e22 A5634 Finalise application Jan 03, 09:00
e23 A5636 Finalise application Jan 03, 09:01
e24 A5635 Decline application Jan 03, 09:02
e25 A5635 Decline application Jan 03, 09:03
. . . . . . . . . . . . . . . . . . . . .
e30 A5636 O3521 Select and send of-

fer
500 Jan 04, 16:32

. . . . . . . . . . . . . . . . . . . . .
e37 A5634 O3541 Select and send of-

fer
1,500 Jan 05, 12:32

e38 A5636 O3521 Receive offer NO Jan 05, 12:33
e38 A5636 O3521 Cancel offer Jan 05, 12:34
e39 A5636 O3542 Select and send of-

fer
500 Jan 05, 13:29

e40 A5636 O3542 Receive offer YES Jan 08, 08:33
e41 A5636 O3542 Accept offer Jan 08, 16:34
e42 A5634 O3541 Receive offer NO Jan 10, 10:00
. . . . . . . . . . . . . . . . . . . . .
e54 A5634 O3541 Decline offer Jan 10, 10:04
. . . . . . . . . . . . . . . . . . . . .
e64 A5634 Decline application Jan 10, 10:05
e65 A5634 Application fin-

ished
Jan 10, 10:06

e66 A5636 Approve and acti-
vate application

Jan 10, 10:07

e67 A5636 Application fin-
ished

Jan 10, 10:08

. . . . . . . . . . . . . . . . . . . . .

any changes. Therefore, a few minutes later, the offer is declined, which is also
done for the application as a whole.
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4 Conformance Checking

4.1 Quality Dimensions to Relate Process Models and Event Logs

By relating observed and modeled behavior, an organization can get insights on
the execution of their processes with respect to the expectations as described in
the models. If both process model M and event log L are considered as languages,
their relation can be used to measure how good is a process model in describing
the behavior recorded in an event log.

Hence, confronting M and L can help into understanding the complicate
relation between modeled and recorded behavior. We now provide two visions of
this relation, that represent two alternative perspectives: fitness and precision.

Fitness measures the ability of a model to explain the recorded execution of
a process as recorded in an event log (see the example of Fig. 2 for an example of
fitting behavior). It is the main measure to assess whether a model is well-suited
to explain the recorded behaviour. To explain a certain trace, the process model
is queried to assess its ability in replaying the trace, taking into account the
control flow logic expressed in the model.

In general, fitness is the fraction of the behaviour of the log that is also
allowed by the model. It can be expressed as follows.

fitness =
|L ∩ M |

|L| (1)

Let us have a look at this fraction in more detail by examining the extreme
cases. Fitness is 1, if the entire behaviour that we see in the log L is covered by
the model M . Conversely, fitness is 0, if no behaviour in the log L is captured by
the model M . In the Sect. 4.2 we will describe three different algorithms deriving
artefacts that can be used to evaluate fitness.

We define a trace to be either fitting (it corresponds to a run of the model)
or non-fitting (there is some deviation with respect to all runs of the model). For
instance, the trace corresponding case A5634 in our running example is fitting,
since there is a model run that perfectly reproduces this case, as shown in Fig. 2.
In contrast, Fig. 3 shows the information for a trace that does not contain the
event to signal that the application has been finalised (Fa).

Precision is the counterpart of fitness. It can be calculated by looking at the
fraction of the model behaviour that is covered in the log.

precision =
|L ∩ M |

|M | (2)

We see that precision shares the numerator in the fraction with fitness from (1).
This implies that if we have a log and a model with no shared behaviour, fitness
is zero, and by definition also precision is zero. However, the denominator is
replaced with the amount of modelled behaviour.

In summary, for the two main metrics reported above, algorithms that can
assess the relation between log and model need to be considered. In the next
section, we describe the three main algorithmic perspectives to accomplish this
task.
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Fig. 2. Loan application process model with highlighted path corresponding to the
fitting trace of case A5634 from the event log of Table 1.

Fig. 3. Loan application process model with highlighted path corresponding to one
trace, which does not include an event to signal that the application has been finalised
(Fa). In magenta we show that the task (Fa) has not been observed but it is required
to reach the final state of the process model.

4.2 Computing Conformance Checking Artefacts

The relation between a trace observed in the event log, and a process model, is
described as a conformance checking artefact. In this section we will introduce
three possible conformance checking artefacts, overviewed in Fig. 4. The reader
is refered to [1] for a detailed explanation of the contents of this section.

Rule Checking. The basic idea of rule-based conformance checking is to exploit
rules that are satisfied by all the runs of a process model as the basis for analysis.
Such rules define a set of constraints that are imposed by the process model.
The verification of these constraints with respect to the traces of an event log,
therefore, enables the identification of conformance issues.

Considering the running example of our loan application process as depicted
in Fig. 1, rules derived from the process model include:

R1: An application can be accepted (Aa) at most once.
R2: An accepted application (Aa), that must have been submitted (As) earlier,

and eventually an offer needs to be selected and sent (Sso) for it.
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Fig. 4. General approaches to conformance checking and resulting conformance arte-
facts (from [1]).

R3: An application must never be finalised (Fa), if the respective offer has been
declined (Do) already.

R4: An offer is either accepted (Ao) or declined (Do), but cannot be both
accepted and declined.

A careful inspection of each one of the rules above would reveal that they
are different in nature: rule R1 is an example of cardinality rule, which defines
an upper and lower bound for the number of executions of an activity. Rule
R2 contains a precedence rule, which establishes that the execution of a certain
task is preceded by at least on execution of another task. Rule R3 establishes an
ordering rule, whereas rule R4 represents an exclusiveness rule. Tables 2 and 3
show examples of cardinality and exclusiveness rules, respectively, for the run-
ning example and two log traces.

By assessing to what extent the traces of a log satisfy the rules derived
from a process model, rule-based conformance checking focuses on the fitness
dimension, i.e., the ability of the model to explain the recorded behaviour. Traces
are fitting, if they satisfy the rules, or non-fitting if that is not the case. Let RM

be a predefined set of rules. Fitness can be defined according1 to RM :

fitness(L,M) =
|{r ∈ RM | r is satisfied by all t ∈ L}|

|RM | (3)

1 Notice that this makes fitness to depend on a particular set of rules, which is a
limitation of the rule-based fitness checking.
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Table 2. Precedence rules derived for the process model of the running exam-
ple and their satisfaction (✓) and violation (✗) by the exemplary log trace
〈As,Sso,Fa,Ro,Co,Ro,Aaa,Af〉.

Table 3. Exclusiveness rules derived for the process model of the running exam-
ple and their satisfaction (✓) and violation (✗) by the exemplary log trace
〈As,Aa,Sso,Ro,Fa,Ao,Do,Da,Af〉.

As the reader may already have grasped, the dimension of precision is not
targeted by rule-checking.

Token Replay. Intuitively, this technique replays each trace of the event log
in the process model by executing tasks according to the order of the respective
events. By observing the states2 of the process model during the replay, one can

2 A state of a BPMN model is a distribution of tokens over the control flow arcs. A task
is enabled in a state if its incoming control flow arc is assigned a token by the respective
distribution. If it executes, this token is consumed, i.e., no longer assigned to the arc.
Moreover, a token is produced on the outgoing control flow arc of the task.
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Fig. 5. State reached after replaying the full trace 〈As,Aa,Sso,Ro,Ao,Aaa,Aaa〉. One
can see that there are three remaining tokens (denoted by yellow background), and
two missing tokens (denoted by discontinuous red lines). (Color figure online)

determine whether, and to what extent, the trace indeed corresponds to a valid
run of the process model.

In essence, token replay postulates that each trace in the event log corre-
sponds to a valid execution sequence of the process model. This is verified by
step-wise executing tasks of the process model, according to the order of the
respective events in the trace. During this replay, we may observe two cases that
hint at non-conformance (see Fig. 5):

(i) the execution of a task requires the consumption of a token on the incoming
arc, but the arc is not assigned any token in the current state, i.e., a token
is missing during replay;

(ii) the execution of a task produces a token at an outgoing arc, but this token
is not consumed eventually, i.e., a token is remaining after replay.

By exploring whether the replay of a trace yields missing or remaining tokens,
replay-based conformance checking mainly focuses on the fitness dimension. That
is, the ability of the model to explain the recorded behaviour is the primary
concern. Traces are fitting if their replay does not yield any missing or remaining
tokens, and non-fitting otherwise:

fitness(L,M) =
1

2

(
1 −

∑
t∈L missing(t,M)∑

t∈L consumed(t,M)

)
+

1

2

(
1 −

∑
t∈L remaining(t,M)∑
t∈L produced(t,M)

)

(4)

In contrast to rule checking, precision can be estimated using token
replay [15], but unfortunately, the corresponding technique strongly relies on
the assumption that traces are fitting; if they are not, then the estimation of
precision through token replay can be significantly degraded [13].
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Alignments. Alignments take a symmetric view on the relation between mod-
elled and recorded behaviour. Specifically, they can be seen as an evolution of
token replay. Instead of establishing a link between a trace and sequences of task
executions in the model through replay, alignments directly connect a trace with
a model run.

An alignment connects a trace of the event log with a run of the process
model. It is represented by a two-row matrix, where the first row consists of
activities as their execution is signalled by the events of the trace and a special
symbol � (jointly denoted by ei below), and the second row consists of the
activities that are captured by task executions of a run of the process model and
a special symbol � (jointly denoted by ai):

log trace e1 e2 . . . en
model run a1 a2 . . . am

Each column in this matrix, a pair (ei, ai), is a move of the alignment, mean-
ing that an alignment can also be understood as a sequence of moves. There
are different types of such moves, each encoding a different situation that can
be encountered when comparing modelled and recorded behaviour. We consider
three types of moves:

– Synchronous move: A step in which the event of the trace and the task in
the run correspond to each other. Synchronous moves denote the expected
situation that the recorded events in the trace are in line with the tasks of
a run of the process model. In the above model, a synchronous move means
that it holds ei = ai and ei �=� (and thus ai �=�).

– Model move: When a task should have been executed according to the model,
but there is no related event in the trace, we refer to this situation as a model
move. As such, the move represents a deviation between the trace and the
run of the process model in the sense that the execution of an activity has
been skipped. In the above model, a model move is denoted by a pair (ei, ai)
with ei =� and ai �=�.

– Log move: When an event in the trace indicates that an activity has been
executed, even though it should not have been executed according to the
model, the alignment contains a log move. Being the counterpart of a model
move, a log move also represents a deviation in the sense of a superfluous
execution of an activity. A log move is denoted by a pair (ei, ai) with ei �=�
and ai =�.

Alignments are constructed only from these three types of moves (see an
in-depth explanation on this in [1]).

For instance, let us use the running example (see Fig. 1) and the trace
〈As,Aa,Sso,Ro,Ao,Aaa,Aaa〉. A possible alignment with this trace is:

log trace As Aa Sso Ro � Ao Aaa Aaa �
model run As Aa Sso Ro Fa Ao Aaa � Af
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This alignment comprises six synchronous moves, one log move, (Aaa,�),
and two model moves, (�,Fa) and (�,Af). The log move (Aaa,�) indicates
that the application had been approved and activated, even though this was
not expected in the current state of processing (as this had just been done).
The model move (�,Fa) is the situation of the process model requiring that
the application be finalised, which has not been done according to the trace.
Furthermore, one can easily extract the original trace by projecting away the
special symbol for skipping from the top row. Applying the projection to the
bottom row yields the run of the model (〈As,Aa,Sso,Ro,Fa,Ao,Aaa,Af〉).

In general, optimal alignments, i.e., alignments with minimal number of move
or log moves, are preferred. The alignment shown above is optimal since there
is no other alignment with least number of deviations. Computing (optimal)
alignments is a hot research topic, which has been addressed in many papers in
the last years [8,16–27]. In this paper, however, we will refrain from describing
the state-of-the-art methods for alignment computation, and refer the interested
reader to the aforementioned papers, or to [1].

Remarkably, alignments provide a simple means to quantify fitness. Again,
this may be done based on the level of an individual trace or the event log as
a whole. However, the aggregated cost of log moves and model moves may be
a misleading measure, though, as it is not normalised. A common approach,
therefore, is to normalise this cost by dividing it by the worst-case cost of a
aligning the trace with the given model. Under a uniform assignment of costs
to log and model moves, such a worst-case cost originates from an alignment in
which each event of the trace Ti relates to a log move, whereas all task executions
of a run σ of the model relate to a model move and σ is as short as possible.
Since the cost induced by the model moves of a model run depends on its length,
the shortest possible model run leading from the initial state to a final state in
the model is considered for this purpose.

Realising the above idea, we obtain two ratios that denote the relative share
of non-fitness in the alignments of a trace or an event log, respectively. Let M
be a model and L an event log. Then, we denote by cost(t,M) the cost of an
optimal alignment of a trace t ∈ L with respect to the model. Furthermore, let
cost(t, 〈〉) and cost(〈〉, x) be the costs of aligning a trace t with an empty model
run, or some run x ∈ M of the model with an empty trace, respectively. Then,
fitness based on alignments is quantified for a trace or an event log:

fitness(L,M) = 1 −
( ∑

t∈L cost(t,M)∑
t∈L (cost(t, 〈〉)) + |L| × minx∈M cost(〈〉, x)

)
(5)

A simple precision metric based on alignments is grounded in the general idea
of escaping edges [15]. To give the intuition, we assume that (i) the event log fits
the process model; and (ii) that the process model is deterministic. The former
means that we simply exclude non-fitting traces, for which the optimal alignment
contains log moves or model moves, from the assessment of the precision of the
model. The latter refers to a process model not being able to reach a state, in
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which two tasks that capture the same activity of the process are enabled. The
model of our running example (see Fig. 1) is deterministic.

For the activity of each event of a trace of the event log, we can determine
a state of the process model right before the respective task would be executed.
Under the above assumptions, this state is uniquely characterised. What is rel-
evant when assessing precision, is the number of tasks enabled in this state of
the process model. Let M be a process model and L an event log, with t ∈ L as
a trace and, overloading notation, e ∈ t as one of the events of the trace. Then,
by enabledM (e), we denote the number of tasks and, due to determinism of the
process model also the number of activities that can be executed in the state
right before executing the task corresponding to e.

Similarly, we consider all traces of the log that also contain events related to
the activity of event e, say a, and have the same prefix, i.e., events that indicate
that the same sequence of activities has been executed before an event signalling
the execution of activity a. Then, we determine the number of activities for which
events signal the execution directly after this prefix, i.e., the set of activities that
have been executed in the same context as the activity a as indicated by event
e. Let this number of activities be denoted by enabledL(e), which, under the
above assumptions, is necessarily less than or equal to enabledM (e). Then, the
ratio of both numbers captures the amount of ‘escaping edges’ that represent
modelled behaviour that has not been recorded. As such, precision of log L and
M is quantified as follows:

precision(L,M) =

∑
t∈L,e∈t enabledL(e)∑
t∈L,e∈t enabledM (e)

(6)

5 Code Snippets for Conformance Checking

In the previous section an informal introduction to conformance checking has
been provided. Concepts like event log, process model, deviation, rule checking,
token replay, alignment, fitness and precision should now be familiar to the
reader. They are meant to define the complicate relation between modeled and
recorded behavior. In this section we take the reader to practice, by introducing
simple and intuitive Python code to make most of the aforementioned concepts
actionable. Hopefully, the contents of this section can contribute to unleash the
application of conformance checking.

5.1 Event Log Exploration

We start by providing examples on how to read an event log, and for extracting
different types of information from it. The code provided is a subset of the one
available in the repository used for this paper, where several other analyses can
be found. The following code reads a log in XES format, the standard format
for event logs approved by the IEEE [28] (Fig. 6).
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1 import xml.etree.ElementTree as et

2

3 def load_xes(file):

4 log = []

5

6 tree = et.parse(file)

7 data = tree.getroot()

8

9 # find all traces
10 traces = data.findall('{http://www.xes-standard.org/}trace')

11

12 for t in traces:

13 trace_id = None

14

15 # get trace id
16 for a in t.findall('{http://www.xes-standard.org/}string'):

17 if a.attrib['key'] == 'concept:name':

18 trace_id = a.attrib['value']

19

20 events = []

21 for event in t.iter('{http://www.xes-standard.org/}event'):

22

23 e = {'name': None, 'timestamp': None, 'resource': None,

'transition': None}↪→

24

25 for a in event:

26 e[a.attrib['key'].split(':')[1]] = a.attrib['value']

27

28 events.append(e)

29

30 # add trace to log
31 log.append({'trace_id': trace_id, 'events': events})

32

33 return log

Fig. 6. Code for reading an event log.

Once a log is read, one can extract valuable information from traversing it.
For instance, the following code shows the length of the shortest and the longest
trace in the log.
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7 if len(trace['events']) > max_length:

8 max_length = len(trace['events'])

9

10 if len(trace['events']) < min_length:

11 min_length = len(trace['events'])

12

13 print('The longest trace contains %s events. The shortest trace: %s

events.' %(max_length, min_length))↪→

1 log_file = 'conf_tutorial/financial_log.xes'

2 log = load_xes(log_file)

3 max_length = 0

4 min_length = 1000

5

6 for trace in log:

Also, the number of trace variants, i.e., number of different traces, of the log
can be determined:

1 trace_list = []

2

3 for trace in log:

4 events = []

5 for event in trace['events']:

6 events.append(event['name'])

7

8 trace_list.append(tuple(events))

9

10 trace_variants = set(trace_list)

11

12 print('The log contains %s trace variants.' %len(trace_variants))

Events in the event log may have several attributes, like a timestamp or a
resource. We can use these timestamps to compute the duration of a single trace.
The following code returns the shortest and longest duration of all traces in the
event log.
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1 def get_timestamp(input_str: str):

2 """
3 Method to convert a string into a timestamp.
4

5 :param input_str: timestamp as string
6 """
7 timestamp_format = '%Y-%m-%dT%H:%M:%S.%f%z'

8

9 return datetime.strptime(''.join(input_str.rsplit(':', 1)),

timestamp_format)↪→

10

11 from datetime import datetime, timedelta

12

13

14 max_duration = timedelta(microseconds=1)

15 min_duration = timedelta(days=10000)

16

17 for trace in log:

18

19 # we only need to consider the first and last event in the
trace↪→

20 first_e = trace['events'][0]

21 last_e = trace['events'][-1]

22

23 t0 = get_timestamp(first_e['timestamp'])

24 t1 = get_timestamp(last_e['timestamp'])

25 duration = t1 - t0

26

27 if duration > max_duration:

28 max_duration = duration

29 elif duration < min_duration:

30 min_duration = duration

31

32 print('The shortest process instance took %s; the longest %s'

%(min_duration, max_duration))↪→

As a final illustration of event log exploration, we focus on another event
attribute. In the following code, we output how many different resources are
used across the process instances, and the ratio of events that are processed by
a resource.
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1 resources = []

2

3 for trace in log:

4 for event in trace['events']:

5 resources.append(event['resource'])

6

7 print('All process instances use %s different resource in total' %

len(set(resources)))↪→

8 no_res = resources.count(None)

9 print('%.2f%% of all events are processed by a resource.'

%(((len(resources)-no_res)/len(resources))*100 ))↪→

5.2 The Computation of Conformance Checking Artefacts

We now consider how conformance checking artefacts can be computed so that
deviations between modeled and recorded behavior can be obtained.

Process models will be assumed to be defined as Petri nets. In the repository
provided with this paper, a Petri net Python class (denoted PetriNet in the
code) will be used, which contains the standard helper functions to manage it.
We assume the reader to be familiar with Petri nets in this paper (if not, a nice
tutorial can be found in [29]). The following code reads a process model for the
running example, sets the initial state, and finally draws it.

1 %run ./conf_tutorial/pn.py

2

3 net = PetriNet()

4 load(net, "./conf_tutorial/financial_log_80_noise.pnml")

5

6 # mark the initial place
7 net.add_marking(1,1)

8 # visualise it
9 draw_petri_net(net)

Importantly, mapping events in the event log and tasks in the process model
is an important step so that the conformance checking artefacts can be com-
puted. The following code sets up some helper dictionaries to relate Petri net
transition IDs and activity labels in the event log to each other. Observe that
for the sake of simplicity, an activity label is only assigned to a single transition.
However, multiple transitions may carry a τ label, representing a silent transition
(a transition that does not correspond to any event in the log).
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1 # helper mappings between ids and labels
2 mapping = net.get_mapping()

3 rev_mapping = {}

4 for k, v in net.get_mapping().items():

5 for k2 in v:

6 rev_mapping[k2] = k

7

8 from pprint import pprint

9 # mapping from labels to LISTS of transitions ids
10 pprint(mapping)

11

12 # mapping from transitions id to label
13 pprint(rev_mapping)

The next code illustrates how, given an initial marking, the currently enabled
transitions may be identified, how the marking is changed by firing a transition,
and how the marking may be adapted to enable a transition.

1 print("Initial marking: ", net.get_marking())

2

3 enabled = net.all_enabled_transitions()

4 print("Enabled transitions in initial marking: ",

5 list(map((lambda k: rev_mapping[k]), enabled)))

6

7 # Fire enabled transition (take the first, but there is only one)
8 net.fire_transition(enabled[0])

9 enabled = net.all_enabled_transitions()

10 print("Enabled transitions after firing first transition: ",

11 list(map((lambda k: rev_mapping[k]), enabled)))

12

13 # Check whether the transition with label 'O_CREATED' is enabled
14 # (there is only one transition carrying this label)
15 print("Is transition 'O_CREATED' enabled?",

16 net.is_enabled(net.get_mapping()['O_CREATED'][0]))

17

18 # Enable the transition by changing the marking and adding tokens to
the input↪→

19 # places of the transition with label 'O_CREATED'
20 input_places =

net.get_input_places(net.get_mapping()['O_CREATED'][0])↪→

21
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22 for p in input_places:

23 net.add_marking(p,1)

24

25 # Again, check whether the transition with label 'O_CREATED' is
enabled↪→

26 print("Is transition 'O_CREATED' enabled after tokens have been

added to the places in its preset?",↪→

27 net.is_enabled(net.get_mapping()['O_CREATED'][0]))

28

29 # Check whether further transitions have been enabled by adding the
token to↪→

30 # the places in the preset of the transition with label 'O_CREATED'
31 enabled = net.all_enabled_transitions()

32 print("Enabled transitions after adapting the marking: ",

33 list(map((lambda k: rev_mapping[k]), enabled)))

34

35 print("Current marking: ", net.get_marking())

We are now ready to define and use conformance checking artefacts. We will
start with rule checking. Specifically, we consider a cardinality rule that checks
a lower and an upper bound for the number of executions of an activity for a
particular trace, as well as an ordering rule that checks whether executions of
one activity happen only after executions of another activity.

More concretely, we check whether the five most frequent trace variants sat-
isfy the following rules:

1. The application is completed at least once (activity “W Completeren aan-
vraag”).

2. The application is submitted at most once (activity “A SUBMITTED”).
3. The income lead (“W Afhandelen leads”) is fixed only after the preacceptance

(“A PREACCEPTED”), but never before.

1 def check_lower_bound(trace: [], act: str, bound: int) -> bool:

2 count = trace.count(act)

3 return count >= bound

4

5 def check_upper_bound(trace: [], act: str, bound: int) -> bool:

6 count = trace.count(act)

7 return count <= bound

8

9 def check_order_after(trace: [], act_1: str, act_2: str) -> bool:

10 if act_1 not in trace or act_2 not in trace:
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11 return True

12 idx_1 = [i for i, x in enumerate(trace) if x == act_1]

13 idx_2 = [i for i, x in enumerate(trace) if x == act_2]

14 return idx_1[0] >= idx_2[-1]

15

16 # compute the trace variants sorted by frequency
17 trace_variants = {}

18 for trace in log:

19 events = []

20 for event in trace['events']:

21 events.append(event['name'])

22 trace_variants[tuple(events)] =

trace_variants.get(tuple(events), 0) + 1↪→

23 trace_variants_sorted_by_freq = sorted(trace_variants.items(),

key=lambda kv: kv[1], reverse=True)↪→

24

25 for k in range(5):

26 trace_k = list(trace_variants_sorted_by_freq[k][0])

27 print("Checking trace: %s" % trace_k)

28 print("Application completed at least once? ",

check_lower_bound(trace_k, 'W_Completeren aanvraag', 1))↪→

29 print("Application submitted at most once? ",

check_upper_bound(trace_k, 'A_SUBMITTED', 1))↪→

30 print("Fixing income lead only after preaceptance? ",

check_order_after(trace_k, 'W_Afhandelen leads',

'A_PREACCEPTED'))

↪→

↪→

We can also apply token replay on the running example. The following code
illustrates how to do token replay for a trace, and how to evaluate fitness for the
30 most frequent variants of the event log.

1 def replay_trace(net: PetriNet, trace: []) -> (int, int, int, int):

2 produced = 1

3 consumed = 1

4 missing = 0

5

6 # replay trace, event by event
7 for event in trace:

8 # identify transition, assumption here is that there is only
one transition for the label↪→

9 transition = net.get_mapping()[event][0]

10 # check if the transition is enabled
11 if not net.is_enabled(transition):

12 # not enabled, so add a token to all input places that
are not marked↪→

13 for p in net.get_input_places(transition):

14 if net.marking[net.index_of_place(p)] == 0:



20 J. Carmona et al.

15 # record the token as missing
16 missing += 1

17 net.add_marking(p, 1)

18

19 # record the numbers produced and consumed tokens when
firing the transition↪→

20 produced += len(net.get_input_places(transition))

21 consumed += len(net.get_output_places(transition))

22 net.fire_transition(transition)

23

24 # we expect one token left, everything else counts as remaining
25 remaining = sum(net.get_marking()) - 1

26 return produced, consumed, missing, remaining

27

28

29 def fitness(net: PetriNet, log_freq: dict) -> float:

30 sum_prod = 0

31 sum_cons = 0

32 sum_miss = 0

33 sum_rema = 0

34

35 for trace_var, freq in log_freq.items():

36 # keep copy of marking
37 marking = list(net.get_marking())

38 # replay trace

39 replay_values = replay_trace(net, trace_var)

40 sum_prod += log_freq[trace_var] * replay_values[0]

41 sum_cons += log_freq[trace_var] * replay_values[1]

42 sum_miss += log_freq[trace_var] * replay_values[2]

43 sum_rema += log_freq[trace_var] * replay_values[3]

44 # restore marking
45 for k,v in net.places.items():

46 net.add_marking(v, marking[k])

47

48 return 0.5 * (1 - sum_miss / sum_cons) + 0.5 * (1 - sum_rema /

sum_prod)↪→

49

50 fitness_value = 0

51 for k in range(30):

52 log_k = {t[0]:t[1] for t in

trace_variants_sorted_by_freq[k:k+1]}↪→

53 log_x = {t[0]:t[1] for t in

trace_variants_sorted_by_freq[0:k+1]}↪→

54 fitness_value_k = fitness(net, log_k)

55 fitness_value = fitness(net, log_x)

56 print("Fitness value of the single %s-most frequent trace

variant: %f" % (k+1, fitness_value_k))↪→

57 print("Fitness value of %s-most frequent trace variants: %f" %

(k+1, fitness_value))↪→
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Finally, we provide code to illustrate how alignments can be also used as
conformance checking artefact. The following code illustrates how to use them
to show deviations. We will be using the alignment functionality that is contained
in the Python class Astar, provided also in the repository of this paper. In the
following code snippets, we will use some of the objects computed before, like
the Petri net, and the most frequent variants in the event log.

1 from pprint import pprint

2 %run ./conf_tutorial/alignment.py

3

4 # select some most frequent traces
5 traces = dict()

6 for k in range(10):

7 traces[k] = list(trace_variants_sorted_by_freq[k][0])

8

9 # capture details on which places denote the start and the end of
the process model↪→

10 index_place_start = 0

11 index_place_end = 1

12

13 # run alignment construction
14 a = Astar()

15 alignments = a.Astar_Exe(net, traces, index_place_start,

index_place_end, no_of_solutions=1)↪→

16

17 # print the alignments
18 for k,t in traces.items():

19 print('Trace in the log: ', t)

20 print('Optimal alignment: ')

21 pprint(alignments[k][0])

And now alignment-based fitness can be reported, as illustrated in the code
below:

1 def fitness(net: PetriNet, alignments: list, log_freq: list) ->

float:↪→

2 # the shortest model run in our example contains seven elements
3 shortest_seq_in_net = 7

4

5 async_moves = 0

6 max_cost = 0

7

8 for k in range(len(alignments)):

9 async_moves += log_freq[k] * len([x for x in alignments[k]

if (x[0] == '-' or x[1] == '-')])↪→

10 max_cost += log_freq[k] * (shortest_seq_in_net +

len(alignments[k]))↪→

11

12 return round(float(async_moves) / float(max_cost), 3)
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13

14 fitness_value = 0

15 for k in range(len(alignments)):

16 alignments_simple_k = [alignments[k][0]]

17 alignments_simple = [alignments[x][0] for x in range(k+1)]

18 log_freq_k = [trace_variants_sorted_by_freq[k][1]]

19 log_freq = [trace_variants_sorted_by_freq[x][1] for x in

range(k+1)]↪→

20 fitness_value_k = fitness(net, alignments_simple_k, log_freq_k)

21 fitness_value = fitness(net, alignments_simple, log_freq)

22 print("Fitness value of the single %s-most frequent trace

variant: %f" % (k+1, fitness_value_k))↪→

23 print("Fitness value of %s-most frequent trace variants: %f" %

(k+1, fitness_value))↪→

6 Concluding Remarks

In this paper we have introduced conformance checking and provided code snip-
pets to make the discipline actionable in practice. The paper focuses in the defini-
tion and use of the main conformance checking artefacts, namely rule checking,
token replay and alignments, so that a clear insight on the relation between
modeled and observed behavior can be obtained from them.

To make it accessible, we have chosen to stay on simple, specially tailored,
Python code that is sufficient for the main purpose of this paper. For the reader
that became interested, we strongly advice to look for other open-source scripting
libraries that can be also used to make conformance checking and process mining
actionable: PMLAB [30], BupaR [31], pm4py [32] are some examples.
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Abstract. Data processing regards analysis of various types of data,
including numerical data, signals, texts, pictures, videos, etc. This paper
focuses on defining and studying various tasks of text analytics following
the typical processing pipeline. Sources of textual data are introduced
and related challenges are discussed. Along with the process of text ana-
lytics, examples are presented to demonstrate how text analytics should
be carried out. Finally, potential applications of text analytics are given
including sentiment analysis and automatic generation of content.
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1 Introduction

Big data analytics concerns processing variety of data from variety of sources.
Recent years, companies focus on analysing data coming directly from users/-
customers to provide personalised user experience. Examples of such content
include customer reviews published online regarding, e.g., products or services
purchased. Based on reviews one may not only study the personal attitude of
a customer towards a product or a service, but also identify features important
from a customer’s perspective. Such information may then greatly influence the
product development or marketing activities [4].

However, analysis of text faces multiple challenges. Texts coming from blogs,
reviews, etc. are an example of a user-generated content, what influences qual-
ity (inconsistencies, spelling mistakes, etc.), questions their origin (reviews of
products may be written by a producer himself or by a competition) or logical
content flow. Also, different languages pose different challenges related to their
grammar or inflection as well as technicalities such as encoding [11].

This paper is to provide insights into the process of text analysis and related
challenges. Following a tutorial format, it firstly discusses sources of textual data
and key aspects of text analysis. Then, along with the process of text analytics,
examples are presented to demonstrate how text analytics should be carried
out (steps to be presented include tokenization, lemmatization, disambiguation,
etc.). Finally, potential applications of text analytics are discussed (including
sentiment analysis or automatic generation of content).
c© Springer Nature Switzerland AG 2020
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2 Definition of Text Analytics

Text analytics, text data mining or text mining is the process of deriving infor-
mation from textual sources. The input in the process is some text being a
website, email, tweet or a document, and an output is in a format requested by
a user being a chart, a list of features, an alert, etc. The goal is to transform
text into meaningful data that may be used, e.g., in a decision process1.

Typically, text analytics is used for several purposes, examples of which
include:

– text summarization – trying to find the key content across a larger body of
information or in a single document,

– document retrieval – retrieving documents referring to a concept or containing
a specific phrase,

– sentiment analysis – identifying what is the nature of a commentary on an
issue,

– event extraction – informing on events described within the text,
– explanation– finding what is the key issue driving a commentary,
– investigation – investigating what are the particular cases of a specific issue

included and described within a text,
– classification – focusing on a subject or key content pieces the text talks

about, enabling for grouping of documents.

To address these goals, various approaches were designed and implemented
to identify the key concepts or emotional attitude of a text author to these
concepts. The simplest form of text analytics involves extraction of keywords to
create “bag of words” and developing a cloud of keywords. More sophisticated
approaches include, e.g., named entities extraction, theme extraction, concept
extraction, or sentiment analysis [8,9].

Dealing with texts means addressing the data quality issue, e.g., spelling
errors, grammar errors. When people refer to Named Entities being brands or
product names, they sometimes write these names from capital letters, some-
times with a dash, sometimes with some spelling errors, etc. Other challenges
include, e.g., free word order, homonyms, rich inflection, lack of data model
behind the textual content. Another issue concerns a comparison between out-
comes of an analysis. How to compare two different documents? How to deal
with the multidimensionality (the more words or phrases, the more dimensions
and the more complex is the analysis)?

These challenges impose certain requirements on each step in the text analysis
process and are referred to while discussing how the text analysis should be
carried out.

3 Sources of Textual Data

Text to be analysed comes from monitoring of diverse data sources and includes,
e.g., HTML pages, RSS feeds, Facebook feeds, blogs, ... How to find these
1 https://en.wikipedia.org/wiki/Text mining.

https://en.wikipedia.org/wiki/Text_mining
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sources? In many scenarios, sources that are monitored are the ones that have sig-
nificant number of users or are known to provide insights into a specific domain.
Such sources are either known to domain experts or are present in the first 10
links on Google search results. Finding a proper source of data is out of scope
fo this paper, but some details may be found in [2].

Text is always more difficult to analyse than numerical data in databases,
but still there are less and more difficult texts to analyse. For example, if text
was automatically generated in the process of filling in a template with data
from a database, we may use patterns based on a set of historical documents to
extract the meaningful content. On the other hand, we may deal with a customer
review written on a mobile phone while commuting that will be full or errors,
inconsistencies or automatically-corrected words. Different types of texts usually
need different approaches in the text processing process. Here, also the domain-
specifics needs to be addressed - different domains have their own terminology
and also phrasing may be greatly influenced.

The typical data sources being subject to the process of text analysis include:

– documents created automatically based on predefined templates and includ-
ing data from structured data sources,

– documents (formal) created by humans following (or not) a certain template,
– documents published on the Web, e.g., press articles, product descriptions,

legal documents, etc.,
– blog entries being articles published online,
– tweets, customer reviews, comments, etc.

It should be noted that the more user-related the content is, the more difficult it
is to analyse. However, the more the content reflects the user opinion, the more
valuable it is for a company or an entity.

4 Processing of Texts: The Pipeline

The text processing pipeline depends on the challenge to be solved. Sometimes,
texts are not even initially pre-processed before an alert is created based on their
content. However, a typical process of the data analysis consists of the following
steps:

1. Data parsing (preprocessing).
2. Text segmentation.
3. Named Entity Extraction.
4. Data refinement.
5. Data description/structuring (if needed).
6. Text analytics/application of a chosen method of analysis.
7. Text visualisation.
8. Preparing data for usage in application scenarios, e.g., document search/re-

trieval.

The following sections address each of these steps showing potential tech-
niques that may be applied. Some more details on the process of text processing
may be found in, e.g., [5].
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4.1 Step 1. Data Parsing

Parsing is a process of structuring the structured/un-structured content (to
enable for further analyses) and concerns “reading” texts such as webblogs,
RSS feeds, XML files, HTML files with the goal to find the part of text that
we care about. Parsing is about identification of a block of text and making it
available for further analyses2. However, parsing may be also understood as a
more complex process consisting of the following steps:

1. Retrieving a document from a given source.
2. Using regular expression filters to pre-process the data.
3. Detecting paragraphs/removing HTML tags.
4. Tokenisation and detection of sentences.
5. Stopwords removal.
6. Identification of wordforms and morphology.

Regular Expressions (“regex” or “regexp”) provide concise and flexible means
for matching strings of text, such as particular characters, words, or patterns of
characters. A regular expression is written in a formal language that can be
interpreted by a regular expression processor3.

Regular expressions descend from a fundamental concept in Computer Sci-
ence called finite automata theory. A regular expression describes a pattern to
match multiple input strings and therefore the simplest regular expression is a
string of literal characters to match. A string matches a regular expression, if it
contains the sub-string described by a regular expression. A regular expression
can match a string in more than one place in a given text.

Examples of regular expressions encompass:

– (abc)* matches abc, abcabc, abcabcabc, . . .
– (abc){2, 3} matches abcabc or abcabcabc
– Section [0–9]+ enables to find all numbered sections
– Section [0–9]+\.[0–9]+ enables to find also all subsections, e.g., Sect. 4.3
– (a*)|([bcd]+) describes the following strings a AND aaa BUT ALSO bbb

AND cc AND d
– (bc|de)g describes the following strings abcg AND adeg AND ...

where:

– (...) represents characters to be captured as a group,
– [0−9] indicates a number,
– * means zero or more repetitions,
– {m, n} stands for m to n repetitions,
– + means one or more repetitions,
– ? indicates an optional character.

2 https://en.wikipedia.org/wiki/Parsing.
3 https://en.wikipedia.org/wiki/Regular expression.

https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Regular_expression
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Why do we need regular expressions? While looking at a website using a Web
browser we see nicely formatted content with pictures, but from the processing
perspective this content being an HTML/Java Script code mixes the interesting
text with code snippets, formatting instructions, metadata, etc. Using regu-
lar expressions, we may extract only interesting phrases/elements matching the
regular expressions. When do we need regular expressions? If the task is to find
strings or phrases matching a specific pattern either to identify a specific phrase
(name of a product) or to remove some part of a text, e.g., html marks. In case
of dealing with HTML/XML some other solution may be of use, e.g., XPath.

xPath (XML Path Language) is an alternative to regular expressions based
on the Document Object Model (DOM) being a cross-platform and language-
independent application programming interface that treats an HTML, XHTML
or XML document as a tree structure where in each node there is an object
representing a part of the document4. XPath being a W3C standard and a query
language for selecting nodes from an XML document, describes paths to elements
in XML in a similar way an operating system describes paths to files and may be
also used to compute values (e.g., strings, numbers, or Boolean values) from the
content of an XML document. A path that begins with a/represents an absolute
path, starting from the top of the document, e.g., /html/head/title. A path
that does not begin with a/represents a path starting from the current element.
Example: head/title. A path that begins with // can start from anywhere in the
document, e.g., //body/h1 selects every element h1 that is a child of an element
body. For example, in Fig. 1 element title contains text “My title” that should
be retrieved. XPath would define then a path html/head/title to identify the
correct leaf and a function text() to get its content.

When to use regular expressions and when XPath? It is usually not a choice
as they suit different needs, with XPath being used to retrieve text blocks from
websites or XML files and regular expressions applied to further clean these
documents or to check, e.g., if a document contains a specific phrase.

4.2 Step 2. Text Segmentation

After the textual content is extracted, one may focus on structuring the text to
enable for further processing [13]. Text is just a sequence of characters and the
two types of text segmentation involve:

– Low-level text segmentation (performed at the initial stages of text process-
ing): tokenisation and sentence splitting.

– High-level text segmentation:

• Segmentation of linguistic groups such as Named Entities or Noun Phrases.
• Grouping sentences and paragraphs into discourse topics.

4 https://en.wikipedia.org/wiki/XPath.

https://en.wikipedia.org/wiki/XPath
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Fig. 1. An example of DOM. Source: https://en.wikipedia.org/wiki/Document Obj
ect Model

Tokenisation is the process of segmenting text into linguistic units such as
words, punctuation, numbers, alphanumerics, etc. Difficulty depends on the lan-
guage as tokenisation in languages that are segmented is considered a relatively
easy and uninteresting part of text processing (words delimited by blank spaces
and punctuation), e.g., English. On the other hand in non-segmented languages,
it is more challenging as no explicit boundaries between words are given, e.g.,
Chinese.

Sentence Splitting is the task of segmenting a text into sentences. The task
may be perceived simple and as a general heuristic use punctuation marks such
as . ? ! that usually signal a sentence boundary. The simplest algorithm that
enables sentence splitting is known as ‘period-space-capital letter’. It should be
however noted that sometimes a period denotes a decimal point or is a part of
an abbreviation. Therefore, lists of abbreviations, a lexicon of frequent sentence
initial words and/or machine learning techniques shall be applied in case of more
advanced scenarios in the group of Latin languages. In case of Chinese or Arabic
different techniques need to be studied.

Removing Stopwords concerning removal of words that are the most com-
mon words in a language, e.g., “a”, “and”, “but”, “how”, “or”, and “what”. Stop-
words are not content-bearing words and while analysis they introduce additional
dimensions, so they are filtered out. Of course, in case of a full-text processing,
stopwords should not be removed.

https://en.wikipedia.org/wiki/Document_Object_Model
https://en.wikipedia.org/wiki/Document_Object_Model
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Part of Speech Tagging is the process of assigning a part-of-speech or
lexical class marker, e.g., [X]Noun to each word in a corpus [7]. This may be due
to the fact that nouns bring more value in terms of a topic of text, what may
improve further processing.

Stemming is a reduction of as many related words and word forms as pos-
sible to a common canonical form – not necessarily the base form – which can
then be used in the retrieval process. Term groups such as, e.g., CONNECT,
CONNECTED, CONNECTING, CONNECTION, CONNECTIONS are con-
flated into a single term (by removal of the various suffixes -ED, -ING, -ION,
-IONS to leave the single term CONNECT).

Lemmatisation is looking for a transformation to apply on a word to get
its normalized form (identification of word endings: what word suffix should be
removed and/or added to get the normalized form of a word). Lemmatisation
is a process of grouping the inflected forms of a word together under a base
form or of recovering the base form from an inflected form, e.g., grouping the
inflected forms COME, COMES, COMING, CAME under the base form COME.
The whole process is dictionary based. It takes a token (a word) and its part
of speech information as an input. The output is a lemma of this word. The
difference between stemming and lemmatisation is that stem might not be an
actual word, but lemma is.

4.3 Step 3. Identification of Named Entities

Identification of Named Entities concerns a process aiming at finding proper
names in texts and classifying these names into a set of predefined categories of
interest, for example:

– entities: organizations, persons, locations,
– temporal expressions: time, date,
– quantities: monetary values, percentages, numbers.

There are two types of approaches to identification of named entities in text,
often used together to enable achieving better insights:

– Knowledge Engineering: rule based, rules developed by experienced lan-
guage engineers (time consuming as it requires manual work and rule coding).

– Learning Systems: use statistics or machine learning techniques to auto-
matically learn the rules (requires large amounts of annotated training data).

More information on identification of Named Entities in text may be found in
[10,12].



32 A. Filipowska and D. Filipiak

4.4 Step 4. Disambiguation

Disambiguation concerns selecting a sense for a word from a set of predefined
possibilities. This sense usually comes from a dictionary (being a gazetter, a
thesaurus or an ontology). Where is the challenge? When a person studying a
text finds a word having one form, but several meanings, she extracts the sense
based on a context. But from the perspective of an automated processing while
having only a token, selecting a proper interpretation may be difficult when a
word has several (sometimes contradictory meanings), e.g., title – a right of legal
ownership, a document that is evidence of the legal ownership (closely related),
a headline of a book or article.

Two phenomena related to this fact are called polysemy and homonymy.
Polysemy concerns a situation where a single word form is associated with two
or several related senses. In homonymy, a single word form is associated with
two or several unrelated meanings [3].

There are three groups of approaches that enable dealing with the ambiguity:

– Knowledge-Based Disambiguation (use of external lexical resources such as
dictionaries and thesauri),

– Supervised Disambiguation (based on a labelled training set),
– Unsupervised Disambiguation (based on unlabelled corpora, so we don’t have

proper labels for words in text).

Knowledge-based approaches attempt to disambiguate all open-class words
in a text, e.g., “He put his suit over the back of the chair” using, e.g., informa-
tion from dictionaries (definitions and examples for each meaning that enable
to find similarity between definitions and current context), position in a seman-
tic network (we may find that “table” is closer to “chair/furniture” than to
“chair/person”) or by using discourse properties (a word exhibits the same sense
in a discourse/in a collocation).

Knowledge-based approaches are often used, e.g., for disambiguation of peo-
ple names or geographical places. For example, in order to disambiguate if Lon-
don refers to a capital of Great Britain or a city in Canada, one may apply the
following heuristics:

– Relative importance of place (disambiguate based on the number of citizens).
– Comparison of a location to other places in the text (measuring distance

between places). If a text is on sightseeing Canada, it probably refers to
London in Canada.

– Context-based triggering, e.g., based on the name of a city mayor or event
that is happening.

Supervised approaches concern learning to disambiguate words using anno-
tated corpora. In this sense the disambiguation is viewed as a typical classifi-
cation problem and therefore a training corpus is prepared and the rules are
automatically discovered.

Unsupervised disambiguation means disambiguating without supporting
tools such as dictionaries and thesauri and without a labelled training text.
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Firstly, context vectors corresponding to all occurrences of a particular word are
identified. Then, they are partitioned into regions of high density. In a next step
the contexts of an ambiguous word are clustered to assign a sense to each such
region (discriminate between these groups without actually labelling them).

One of the tools that may be used to support the process and that does
not require advanced programming capabilities is Open Refine (formerly Google
Refine)5 that enables working with messy data: cleaning it, transforming it from
one format into another and extending it with external data.

4.5 Step 5. Describing the Text

After processing, the document needs to be represented for the needs of using
it in the future application scenarios. This includes creating the following repre-
sentations:

– “Bag of words”: common representation of texts in which all words from a
document are represented, e.g., in a vector containing them. While repre-
senting a document as a “bag of words” stemming/lemmatisation are applied
and stop words are eliminated to decrease the number of dimensions. Each
word in a bag or words is presented only once, however frequency is often
associated.

– Features of text: identifying title, keywords, date information, source informa-
tion, named entities, what relates to creating metadata for the text concerning
major features of an analysed document.

– Indexes: creating indexes of documents, e.g., nouns or phrases explaining what
content the text described, coming directly from text or being derived from
an ontological description of the text.

While representing a corpus (collection of documents) usually the indexing
approach is applied as it enables for an efficient processing. A “reverse index”
provides a way of keeping track of a list of all documents that contain a spe-
cific feature and for every possible feature, e.g., for every word/phrase a list of
documents containing that word/phrase is identified.

When representing a document within the corpus to describe its importance
from the perspective of a specific index, corpus-wide term frequency metrics are
of use. Popular example here is TF*IDF. The concept behind the measure is
that preferred indexes of text are terms frequent in a given document and rare
in the whole collection. TF*IDF is a product of two statistics:

– TF: term frequency (the number of occurrences of a word in a document ni,j

divided by the number of occurrences of all words in a document
∑

k nk,j),
– IDF: inverse document frequency (|D| is a number of documents in a corpus

(collection of documents) and |d : ti ∈ d| – a number of documents with a
given word (appearing at least once).

Figure 2 presents formulas for calculation of TF and IDF.
5 http://openrefine.org/download.html.

http://openrefine.org/download.html
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Fig. 2. TF*IDF formulas.

Documents in a corpus are often represented as vectors or pairs of words
with these words’ frequency. Such vectors are analysed in a vector space, where
terms are axes and docs are put somewhere in this space depending on the
frequency of the terms in each of these documents (please see Fig. 3). Even, with
a proper initial pre-processing this may lead to over 20.000 dimensions. Such
representation of documents simplifies the problem of finding similar documents
(in terms of content, not length) using the cosine measure. The idea behind
the cosine measure is to measure the distance between vectors, e.g., D1 and D2

captured by the cosine of the angle θ between them (please note this is similarity,
not a distance).

Fig. 3. Documents representation in a form of vectors. Source: [1]

The following example6 explains the idea behind comparison of two docu-
ments. Having two documents (each represented by one line below):

J u l i e l o v e s me more than Linda l ov e s me .
Jane l i k e s me more than Ju l i e l o v e s me .

6 https://medium.com/@sumn2u/cosine-similarity-between-two-sentences-
8f6630b0ebb7.

https://medium.com/@sumn2u/cosine-similarity-between-two-sentences-8f6630b0ebb7
https://medium.com/@sumn2u/cosine-similarity-between-two-sentences-8f6630b0ebb7
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in the first step a list of words used in both documents is created: me Julie
Jane loves likes Linda than more. Then, two vectors with frequencies of
occurrence of the words in the texts are developed:

a : [ 2 , 1 , 0 , 2 , 0 , 1 , 1 , 1 ]
b : [ 2 , 1 , 1 , 1 , 1 , 0 , 1 , 1 ]

In the end, the cosine measure is applied using the formula:

cosine =
∑n

i=1(ai · bi)
(
√∑n

i=1 a2 · √∑n
i=1 b2)

which in the discussed case is 0,822.

4.6 Step 6: Analytics: Topic Tagging

The goal of the topic extraction is to tag names of people, places or organizations
in any type of content, in order to make them more findable and linkable to other
contents. Unfortunately, the topic tagging highly depends on the type of content
that is analysed. Example heuristics that may be applied to this tasks involve:

– Counting a number of occurrences of a given named entity in the document.
– Checking the document features: is the entity name in the title of the docu-

ment, how often it appears in the text, are there any abbreviations that are
used, etc.

– Identifying hashtags, e.g., in tweets.
– Deriving topic based on classification rules that were previously trained.
– Identifying the frequently used named entities with their polarity metrics.

5 Application Scenarios

The text analysis is always implemented bearing in mind scenarios that are to
be implemented. Two most frequent use cases involve sentiment analysis and
search.

5.1 Sentiment Analysis

Sentiment is a view or attitude towards and object, based on emotion instead of
a reason. The attitude may be positive, negative or neutral, or when following
another classification it may refer to emotions, e.g., anger, sadness, happiness.
Sentiment Analysis (opinion mining) is application of NLP (natural language
processing) to extraction or classification of sentiment from typically unstruc-
tured text, e.g., reviews, tweets [6].

While analysing documents with the goal of sentiment study, one identifies:

– opinion holder: a person or organization that holds a specific opinion on a
particular object,
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– object: on which an opinion is expressed,
– opinion: a view, attitude, or appraisal on an object from an opinion holder.

The sentiment analysis may be performed studying a document with goals
and from different perspectives, e.g.,:

– On the document (or review) level the task is to classify the documents.
The assumption behind is that each document (or review) focuses on a single
object (not true in many discussion posts) and contains opinion from a single
opinion holder.

– On the sentence level subjective sentences may be identified to enable quick
reaction or detailed sentiment may be studied.

– On the feature level the task may be to identify and extract object features
that have been commented on by an opinion holder (e.g., a reviewer), to
determine whether the opinions on the features are positive, negative or neu-
tral and as the last step to group feature synonyms producing a feature-based
opinion summary of multiple reviews.

As a result of such an analysis based on a document we may derive, e.g.:

– sentiment towards a certain feature of a product,
– sentiment expressed in the whole document,
– sentiment expressed in a collection of documents,
– comparison of views on a product,
– comparison of our brand with our competitor.

Sentiment analysis is more difficult than topical classification, with which
bag of words performs well. This mainly due to the fact that it must consider
other features due to subtlety of sentiment expression, irony and expression of
sentiment using neutral words and is greatly domain dependent (words/phrases
can mean different things in different contexts and domains).

5.2 Search and Retrieval

Search and retrieval of documents is about answering the following questions:

– Which documents have this word or this phrase?
– Which documents concern this topic or this entity?

The collection of texts to be processed needs to be initially processed to enable for
searching. The techniques originate from the field of library science and usually
concern as their foundation creation of the previously described inverted index.

However, when searching not only the initial preparation of documents to be
found is important, but also future assessment of results achieved. The metrics
that may be used to assess the quality of search include:

– Relevance: is this document what I wanted? Is a document a relevant answer
to my query?
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– Precision: what % of documents in the result are relevant as a response to a
query (are referring to the topic mentioned in a query)?

– Recall: of all the relevant documents in the corpus, what % were returned to
me?

– “Authoritativeness”: how authoritative a source is? How many other sources
refer to the source?

– Recency of a document: when was the document created (new documents are
more relevant than old ones)?

– Popularity: how often the document has been retrieved by other users?

Please note that authoritativeness, recency or popularity of documents may be
also easily combined while preparing a response to a query posed by a user
(together with TF*IDF metric).

6 Case Study

Nowadays, a frequent application scenario for text analysis is brand management.
This concerns monitoring Internet sources to learn inter alia:

– Are people mentioning the brand and products?
– What do people say? Is it positive or negative?
– And how about the products of the competitors?

Table 1 presents how a process of brand management could look like. Specific
tasks are identified and exemplary methods to be applied are mentioned.

Table 1. Text analytics for the needs of brand management.

Task/Goal Method to be applied

1. Monitor social networks,
review sites for mentions of
products

Parse the data feeds to get the content. Find the
product names (using, e.g., regular expressions or
Named Entity Recognition)

2. Collect the reviews Extract the relevant text. Convert the text into a
suitable representation, e.g., indexes

3. Sort the reviews by
product

Classification (Topic Tagging)

4. Are they bad or good? Classification (Sentiment Analysis)

5. Marketing department
reads selected reviews in full
to get an insight

Search/Information Retrieval
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7 Summary

Text analysis is a complex process which steps heavily depend on the analytical
task that is to be achieved. Before applying any of the previously described
methods, it is important to identify a problem that is to be solved and align the
process to the needs of addressing the problem. The following step will concern
finding the right structure for the unstructured data and selecting the proper
analysis method. It should be explicitly written that many known methods such
as k-NN and k-Means may work well in some of the scenarios.

Summarising, the paper presented the typical process of text analysis. It
started from the presentation of challenges within text analysis, especially emerg-
ing from the data quality. Then, the paper discusses use of regular expressions
and XPath in the text parsing. Following, key tasks in text analysis are pre-
sented. In the concluding part of the paper application scenarios are presented.
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Abstract. Nowadays, machine learning techniques and algorithms are
employed in almost every application domain (e.g., financial applica-
tions, advertising, recommendation systems, user behavior analytics). In
practice, they are playing a crucial role in harnessing the power of mas-
sive amounts of data which we are currently producing every day in our
digital world. In general, the process of building a high-quality machine
learning model is an iterative, complex and time-consuming process that
involves trying different algorithms and techniques in addition to having
a good experience with effectively tuning their hyper-parameters. In par-
ticular, conducting this process efficiently requires solid knowledge and
experience with the various techniques that can be employed. With the
continuous and vast increase of the amount of data in our digital world,
it has been acknowledged that the number of knowledgeable data scien-
tists can not scale to address these challenges. Thus, there was a crucial
need for automating the process of building good machine learning mod-
els (AutoML). In the last few years, several techniques and frameworks
have been introduced to tackle the challenge of automating the machine
learning process. The main aim of these techniques is to reduce the role
of humans in the loop and fill the gap for non-expert machine learn-
ing users by playing the role of the domain expert. In this chapter, we
present an overview of the state-of-the-art efforts in tackling the chal-
lenges of machine learning automation. We provide a comprehensive cov-
erage for the various tools and frameworks that have been introduced in
this domain. In addition, we discuss some of the research directions and
open challenges that need to be addressed in order to achieve the vision
and goals of the AutoML process.

1 Introduction

Due to the increasing success of machine learning techniques in several applica-
tion domains, they have been attracting a lot of attention from the research and
business communities. In general, the effectiveness of machine learning tech-
niques mainly rests on the availability of massive datasets. Recently, we have
been witnessing a continuous exponential growth in the size of data produced
by various kinds of systems, devices and data sources. It has been reported that
there are 2.5 quintillion bytes of data is being created every day where 90% of
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stored data in the world, has been generated in the past two years only1. On the
one hand, the more data that is available, the richer and the more robust the
insights and the results that machine learning techniques can produce. Thus,
in the Big Data Era, we are witnessing many leaps achieved by machine and
deep learning techniques in a wide range of fields [1,2]. On the other hand, this
situation is raising a potential data science crisis, similar to the software cri-
sis [3], due to the crucial need of having an increasing number of data scientists
with strong knowledge and good experience so that they are able to keep up
with harnessing the power of the massive amounts of data which are produced
daily. In particular, it has been acknowledged that data scientists can not scale2

and it is almost impossible to balance between the number of qualified data
scientists and the required effort to manually analyze the increasingly growing
sizes of available data. Thus, we are witnessing a growing focus and interest to
support automating the process of building machine learning pipelines where
the presence of a human in the loop can be dramatically reduced, or preferably
eliminated.

In general, the process of building a high-quality machine learning model
is an iterative, complex and time-consuming process that involves a number
of steps. In particular, a data scientist is commonly challenged with a large
number of choices where informed decisions need to be taken. For example, the
data scientist needs to select among a wide range of possible algorithms includ-
ing classification or regression techniques (e.g. Support Vector Machines, Neural
Networks, Bayesian Models, Decision Trees, etc.) in addition to tuning numerous
hyper-parameters of the selected algorithm. In addition, the performance of the
model can also be judged by various metrics (e.g., accuracy, sensitivity, speci-
ficity, F1-score). Naturally, the decisions of the data scientist in each of these
steps affect the performance and the quality of the developed model [4–6]. For
instance, in yeast dataset3, different parameter configurations of a Random
Forest classifier result in different range of accuracy values, around 5%4. Also,
using different classifier learning algorithms leads to widely different performance
values, around 20%, for the fitted models on the same dataset. Although making
such decisions require solid knowledge and expertise, in practice, increasingly,
users of machine learning tools are often non-experts who require off-the-shelf
solutions. Therefore, there has been a growing interest to automate and democ-
ratize the steps of building the machine learning pipelines.

In the last years, several techniques and frameworks have been introduced to
tackle the challenge of automating the process of Combined Algorithm Selection
and Hyper-parameter tuning (CASH) in the machine learning domain. These
techniques have commonly formulated the problem as an optimization problem
that can be solved by a wide range of techniques [7–9]. In general, the CASH
problem is described as follows:

1 Forbes: How Much Data Do We Create Every Day? May 21, 2018.
2 https://hbr.org/2015/05/data-scientists-dont-scale.
3 https://www.openml.org/d/40597.
4 https://www.openml.org/t/2073.
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Fig. 1. The general workflow of the AutoML process.

Given a set of machine learning algorithms A = {A(1), A2, ...}, and a dataset
D divided into disjoint training Dtrain, and validation Dvalidation sets. The goal
is to find an algorithm A(i)∗

where A(i) ∈ A and A(i)∗
is a tuned version of

A(i) that achieves the highest generalization performance by training A(i) on
Dtrain, and evaluating it on Dvalidation. In particular, the goal of any CASH
optimization technique is defined as:

A(i)∗ ∈ argmin
A ε A

L(A(i),Dtrain,Dvalidation)

where L(A(i), Dtrain, Dvalidation) is the loss function (e.g.: error rate, false
positives, etc.). In practice, one constraint for CASH optimization techniques is
the time budget. In particular, the aim of the optimization algorithm is to select
and tune a machine learning algorithm that can achieve (near)-optimal perfor-
mance in terms of the user-defined evaluation metric (e.g., accuracy, sensitivity,
specificity, F1-score) within the user-defined time budget for the search process
(Fig. 1).

In this chapter, we present an overview of the state-of-the-art efforts for
the techniques and framework in the automated machine learning domain. The
remainder of this chapter is organized as follows. Section 2 covers the various
techniques and frameworks that have been introduced to tackle the challenge of
the automated machine learning process while Sect. 3 covers the automated deep
learning process. We discuss some of the research directions and open challenges
that need to be addressed in order to achieve the vision and goals of the AutoML
process in Sect. 4 before we finally conclude the chapter in Sect. 5.
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Fig. 2. An overview of meta-learning process.

2 Automated Machine Learning

In general, meta-learning can be described as the process of learning from pre-
vious experience gained during applying various learning algorithms on different
kinds of data, and hence reducing the needed time to learn new tasks [10]. In the
context of machine learning, several meta learning-techniques have been intro-
duced as an effective mechanism to tackle the challenge of warm start for opti-
mization algorithms. Figure 2 illustrates an overview of the meta-learning pro-
cess. These techniques can generally be categorized into three broad groups [11]:
learning based on task properties, learning from previous model evaluations and
learning from already pretrained models (Fig. 3).

One group of meta-learning techniques has been based on learning from task
properties using the meta-features that characterize a particular dataset [9].
Generally speaking, each prior task is characterized by a feature vector, of k
features, m(tj). Simply, information from a prior task tj can be transferred to
a new task tnew based on their similarity, where this similarity between tnew
and tj can be calculated based on the distance between their corresponding
feature vectors. In addition, a meta learner L can be trained on the feature
vectors of prior tasks along with their evaluations P to predict the performance
of configurations θi on tnew.

Some of the commonly used meta features for describing datasets are sim-
ple meta features including number of instances, number of features, statistical
features (e.g., skewness, kurtosis, correlation, co-variance, minimum, maximum,
average), landmark features (e.g., performance of some landmark learning algo-
rithms on a sample of the dataset), and information theoretic features (e.g., the
entropy of class labels) [11]. In practice, the selection of the best set of meta
features to be used is highly dependent on the application [12]. When comput-
ing the similarity between two tasks represented as two feature vectors of meta
data, it is important to normalize these vectors or apply dimensionality reduc-
tion techniques such as principle component analysis [12,13]. Another way to
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Fig. 3. A taxonomy of meta-learning techniques.

extract meta-features is to learn a joint distribution representation for a set of
tasks.

Another meta-learning approach is to learn from prior tasks properties is
through building meta-models. In this process, the aim is to build a meta model
L that learns complex relationships between meta features of prior tasks tj .
For a new task tnew, given the meta features for task tnew, model L is used
to recommend the best configurations. There exists a rich literature on using
meta models for model configuration recommendations [14–18]. Meta models can
also be used to rank a particular set of configurations by using the K−nearest
neighbour model on the meta features of prior tasks and predicting the top
k tasks that are similar to new task tnew and then ranking the best set of
configurations of these similar tasks [19,20]. Moreover, they can also be used to
predict the performance of new task based on a particular configuration [21,22].
This gives an indication about how good or bad this configuration can be, and
whether it is worth evaluating it on a particular new task.

Another group of meta-learning techniques are based on learning from previ-
ous model evaluation. In this context, the problem is formally defined as follows.

Given a set of machine learning tasks tj ∈ T , their corresponding learned
models along their hyper-parameters θ ∈ Θ and Pi,j = P (θi, tj), the problem
is to learn a meta-learner L that is trained on meta-data P ∪ Pnew to predict
recommended configuration Θ∗

new for a new task tnew, where T is the set of all
prior machine learning tasks. Θ is the configuration space (hyper-parameter set-
ting, pipeline components, network architecture, and network hyper-parameter),
Θnew is the configuration space for a new machine learning task tnew, P is the
set of all prior evaluations Pi,j of configuration θi on a prior task tj , and Pnew

is a set of evaluations Pi,new for a new task tnew.
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Fig. 4. A taxonomy for the hyper-parameter optimization techniques.

Learning from prior models can be done using Transfer learning [23], which
is the process of utilization of pretrained models on prior tasks tj to be adapted
on a new task tnew, where tasks tj and tnew are similar. Transfer learning has
received lots of attention especially in the area of neural network. In particular,
neural network architecture and neural network parameters are trained on prior
task tj that can be used as an initialization for model adaptation on a new
task tnew. Then, the model can be fine-tuned [24–26]. It has been shown that
neural networks trained on big image datasets such as ImageNet [17] can be
transferred as well to new tasks [27,28]. Transfer learning usually works well
when the new task to be learned is similar to the prior tasks, otherwise transfer
learning may lead to unsatisfactory results [29]. In addition, prior models can be
used in Few-Shot Learning where a model is required to be trained using a few
training instances given the prior experience gained from already trained models
on similar tasks.

2.1 Hyper-parameter Optimization

In general, several hyper-parameter optimization techniques have been based and
borrowed ideas from the domains of statistical model selection and traditional
optimization techniques [30–32]. In principle, the automated hyper-parameter
tuning techniques can be classified into two main categories: black-box optimiza-
tion techniques and multi-fidelity optimization techniques (Fig. 4).

Black-Box Optimization. Grid search is a simple basic solution for the hyper-
parameter optimization [33] in which all combinations of hyper-parameters are
evaluated. Thus, grid search is computationally expensive, infeasible and suffers
from the curse of dimensionality as the number of trails grows exponentially with
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the number of hyper-parameters. Another alternative is random search in which
it samples configurations at random until a particular budget B is exhausted [34].
Given a particular computational budget B, random search tends to find better
solutions than grid search [33]. One of the main advantages of random search,
and grid search is that they can be easily parallelized over a number of workers
which is essential when dealing with big data.

Bayesian Optimization is one of the state-of-the-art black-box optimization
techniques which is tailored for expensive objective functions [35,36]. Bayesian
optimization has received huge attention from the machine learning community
in tuning deep neural networks for different tasks including classification tasks [37,
38], speech recognition [39] and natural language processing [40]. Bayesian opti-
mization consists of two main components which are surrogate models for mod-
eling the objective function and an acquisition function that measures the value
that would be generated by the evaluation of the objective function at a new point.
Gaussian processes have become the standard surrogate for modeling the objec-
tive function in Bayesian optimization [38,41]. One of the main limitations of the
Gaussian processes is the cubic complexity to the number of data points which
limits their parallelization capability. Another limitation is the poor scalability
when using the standard kernels. Random forests [42] are another choice for mod-
eling the objective function in Bayesian optimization. First, the algorithm starts
with growing B regression trees, each of which is built using n randomly selected
data points with replacement from training data of size n. For each tree, a split
node is chosen from d algorithm parameters. The minimum number of points
are considered for further split are set to 10 and the number of trees B to grow
is set be 10 to maintain low computational overhead. Then, the random forest
predicted mean and variance for each new configuration is computed. The ran-
dom forests’ complexity of the fitting and predicting variances are O(n log n) and
O(log n) respectively which is much better compared to the Gaussian process.
Random forests are used by the Sequential Model-based Algorithm Configura-
tion (SMAC) library [43]. In general Tree-structured Parzen Estimator (TPE) [44]
does not define a predictive distribution over the objective function but it cre-
ates two density functions that act as generative models for all domain variables.
Given a percentile α, the observations are partitioned into two sets of observations
(good observations and bad observations) where simple Parzen windows are used
to model the two sets. The ratio between the two density functions reflects the
expected improvement in the acquisition function and is used to recommend new
configurations for hyper-parameters. Tree-Structured Parzen estimator (TPE)
has shown great performance for hyper-parameter optimization tasks [44–48].

Simulated Annealing is a hyper-parameter optimization approach which is
inspired by the metallurgy technique of heating and controlled cooling of materi-
als [49]. This optimization technique goes through a number of steps. First, it ran-
domly chooses a single value (current state) to be applied to all hyper-parameters
and then evaluates model performance based on it. Second, it randomly updates
the value of one of the hyper-parameters by picking a value from the immediate
neighborhood to get neighboring state. Third, it evaluates the model performance
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based on the neighboring state. Forth, it compares the performance obtained from
the current and neighbouring states. Then, the user chooses to reject or accept the
neighbouring state as a current state based on some criteria.

Genetic Algorithms (GA) are inspired by the process of natural selection [50].
The main idea of genetic-based optimization techniques is simply applying mul-
tiple genetic operations to a population of configurations. For example, the
crossover operation simply takes two parent chromosomes (configurations) and
combines their genetic information to generate new offspring. More specifically,
the two parents configurations are cut at the same crossover point. Then, the
sub-parts to the right of that point are swapped between the two parents chro-
mosomes. This contributes to two new offspring (child configuration). Mutation
randomly chooses a chromosome and mutates one or more of its parameters that
results in a totally new chromosome.

Multi-fidelity Optimization. Multi-fidelity optimization is an optimization
technique which focuses on decreasing the evaluation cost by combining a large
number of cheap low-fidelity evaluations and a small number of expensive high-
fidelity evaluation [51]. In practice, such an optimization technique is essential
when dealing with big datasets as training one hyper-parameter may take days.
More specifically, in multi-fidelity optimization, we can evaluate samples in dif-
ferent levels. For example, we may have two evaluation functions: high-fidelity
evaluation and low-fidelity evaluation. The high-fidelity evaluation outputs pre-
cise evaluation from the whole dataset. On the other hand, the low-fidelity eval-
uation is a cheaper evaluation from a subset of the dataset. The idea behind
the multi-fidelity evaluation is to use many low-fidelity evaluation to reduce the
total evaluation cost. Although the low fidelity optimization results in cheaper
evaluation cost that may suffer from optimization performance, but the speedup
achieved is more significant than the approximation error.

Modeling learning curves is an optimization technique that models learn-
ing curves during hyper-parameter optimization and decides whether to allocate
more resources or to stop the training procedure for a particular configuration.
For example, a curve may model the performance of a particular hyper-parameter
on an increasing subset of the dataset. Learning curve extrapolation is used in
predicting early termination for a particular configuration [36]; the learning pro-
cess is terminated if the performance of the predicted configuration is less than
the performance of the best model trained so far in the optimization process.
Combining early predictive termination criterion with Bayesian optimization
leads to more reduction in the model error rate than the vanilla Bayesian black-
box optimization. In addition, such a technique resulted in speeding-up the opti-
mization by a factor of 2 and achieved the state-of-the-art neural network on
CIFAR-10 dataset [52].

Bandit-based algorithms have shown to be powerful in tackling deep learn-
ing optimization challenges. In the following, we consider two strategies of
the bandit-based techniques which are the Successive halving and HyperBand.
Successive halving is a bandit-based powerful multi-fidelity technique in which
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given a budget B, first, all the configurations are evaluated. Next, they are
ranked based on their performance. Then, half of these configurations that per-
formed worse than the others are removed. Finally, the budget of the previous
steps is doubled and repeated until only one algorithm remains. It is shown that
the successive halving outperforms the uniform budget al.location technique in
terms of the computation time, and the number of iterations required [53]. On
the other hand, successive halving suffer from the following problem. Given a
time budget B, the user has to choose, in advance, whether to consume the larger
portion of the budget exploring a large number of configurations while spending
a small portion of the time budget on tuning each of them or to consume the
large portion of the budget on exploring few configurations while spending the
larger portion of the budget on tuning them.

HyperBand is another bandit-based powerful multi-fidelity hedging technique
that optimizes the search space when selecting from randomly sampled configu-
rations [54]. More specifically, partition a given budget B into combinations of
number of configurations and budget assigned to each configuration. Then, call
successive halving technique on each random sample configuration. Hyper-Band
shows great success with deep neural networks and performs better than random
search and Bayesian optimization.

2.2 AutoML Tools and Frameworks

In this section, we provide a comprehensive overview of several tools and frame-
works that have been implemented to automate the process of combined algo-
rithm selection and hyper-parameter optimization process. In general, these tools
and frameworks can be classified into two main categories: centralized and dis-
tributed.

Centralized Frameworks. Several tools have been implemented on top of
widely used centralized machine learning packages which are designed to run in
a single node (machine). In general, these tools are suitable for handling small
and medium sized datasets. For example, Auto-Weka5 is considered as the first
and pioneer machine learning automation framework [7]. It was implemented in
Java on top of Weka6, a popular machine learning library that has a wide range
of machine learning algorithms. Auto-Weka applies Bayesian optimization using
Sequential Model-based Algorithm Configuration (SMAC) [43] and tree-structured
parzen estimator (TPE) for both algorithm selection and hyper-parameter opti-
mization (Auto-Weka uses SMAC as its default optimization algorithm but the
user can configure the tool to use TPE). In particular, SMAC tries to draw the
relation between algorithm performance and a given set of hyper-parameters
by estimating the predictive mean and variance of their performance along the
trees of a random forest model. The main advantage of using SMAC is its robust-
ness by having the ability to discard low performance parameter configurations
5 https://www.cs.ubc.ca/labs/beta/Projects/autoweka/.
6 https://www.cs.waikato.ac.nz/ml/weka/.

https://www.cs.ubc.ca/labs/beta/Projects/autoweka/
https://www.cs.waikato.ac.nz/ml/weka/
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quickly after the evaluation on a low number of dataset folds. SMAC shows
better performance on experimental results compared to TPE [43].

Auto − MEKAGGP [55] focuses on the AutoML task for multi-label classifi-
cation problem [56] that aims to learn models from data capable of representing
the relationships between input attributes and a set of class labels, where each
instance may belong to more than one class. Multi-label classification has lots
of applications especially in medical diagnosis in which a patient may be diag-
nosed with more than one disease. Auto − MEKAGGP is a grammar-based
genetic programming framework that can handle complex multi-label classifica-
tion search space and simply explores the hierarchical structure of the problem.
Auto−MEKAGGP takes as input both of the dataset and a grammar describing
the hierarchical search space of the hyper-parameters and the learning algorithms
from MEKA7 framework [57]. Auto − MEKAGGP starts by creating an initial set
of trees representing the multi-label classification algorithms by randomly choos-
ing valid rules from the grammar, followed by the generation of derivation trees.
Next, map each derivation tree to a specific multi-label classification algorithm.
The initial trees are evaluated on the input dataset by running the learning algo-
rithm, they represent, using MEKA framework. The quality of the individuals
are assessed using different measures such as fitness function. If a stopping con-
dition is satisfied (e.g. a quality criteria), a set of individuals (trees) are selected
in a tournament selection. Crossover and mutation are applied in a way that
respects the grammar constraints on the selected individuals to create a new
population. At the end of the evolution, the best set of individuals representing
the well performing set of multi-label tuned classifiers are returned.

Auto-Sklearn8 has been implemented on top of Scikit-Learn9, a popu-
lar Python machine learning package [8]. Auto-Sklearn introduced the idea
of meta-learning in the initialization of combined algorithm selection and hyper-
parameter tuning. It used SMAC as a Bayesian optimization technique too. In
addition, ensemble methods were used to improve the performance of output
models. Both meta-learning and ensemble methods improved the performance
of vanilla SMAC optimization. hyperopt-Sklearn [58] is another AutoML frame-
work which is based on Scikit-learn machine learning library. Hyperopt-Sklearn
uses Hyperopt [59] to define the search space over the possible Scikit-Learn main
components including the learning and preprocessing algorithms. Hyperpot sup-
ports different optimization techniques including random search, and different
Bayesian optimizations for exploring the search spaces which are characterized
by different types of variables including categorical, ordinal and continuous.

TPOT 10 framework represents another type of solution that has been imple-
mented on top of Scikit-Learn [60]. It is based on genetic programming by
exploring many different possible pipelines of feature engineering and learning
algorithms. Then, it finds the best one out of them. Recipe [61] follows the
same optimization procedure as TPOT using genetic programming, which in turn

7 http://waikato.github.io/meka/.
8 https://github.com/automl/auto-sklearn.
9 https://scikit-learn.org/.

10 https://automl.info/tpot/.

http://waikato.github.io/meka/
https://github.com/automl/auto-sklearn
https://scikit-learn.org/
https://automl.info/tpot/
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exploits the advantages of a global search. However, it considers the unconstrained
search problem in TPOT, where resources can be spent into generating and evalu-
ating invalid solutions by adding a grammar that avoids the generation of invalid
pipelines, and can speed up optimization process. Second, it works with a bigger
search space of different model configurations than Auto-SkLearn and TPOT.

ML-Plan11 has been proposed to tackle the composability challenge on build-
ing machine learning pipelines [62]. In particular, it integrates a super-set of both
Weka and Scikit-Learn algorithms to construct a full pipeline. ML-Plan tackles
the challenge of the search problem for finding optimal machine learning pipeline
using a hierarchical task network algorithm where the search space is modeled
as a large tree graph where each leaf node is considered as a goal node of a
full pipeline. The graph traversal starts from the root node to one of the leaves
by selecting some random paths. The quality of a certain node in this graph is
measured after making n such random complete traversals and taking the mini-
mum as an estimate for the best possible solution that can be found. The initial
results of this approach has shown that the composable pipelines over Weka and
Scikit-Learn do not significantly outperform the outcomes from Auto-Weka
and Auto-Sklearn frameworks because it has to deal with larger search space.

SmartML12 has been introduced as the first R package for automated model
building for classification tasks [9]. In the algorithm selection phase, SmartML
uses a meta-learning approach where the meta-features of the input dataset is
extracted and compared with the meta-features of the datasets that are stored
in the framework’s knowledge base, populated from the results of the previous
runs. The similarity search process is used to identify the similar datasets in the
knowledge base, using a nearest neighbor approach, where the retrieved results
are used to identify the best performing algorithms on those similar datasets in
order to nominate the candidate algorithms for the dataset at hand. The hyper-
parameter tuning of SmartML is based on SMAC Bayesian Optimisation [43].
SmartML maintains the results of the new runs to continuously enrich its knowl-
edge base with the aim of further improving the accuracy of the similarity search
and thus the performance and robustness for future runs.

Autostacker [63] is an AutoML framework that uses an evolutionary
algorithm with hierarchical stacking for efficient hyper-parameters search.
Autostacker is able to find pipelines, consisting of preprocessing, feature engi-
neering and machine learning algorithms with the best set of hyper-parameters,
rather than finding a single machine learning model with the best set of hyper-
parameters. Autostacker generates cascaded architectures that allow the compo-
nents of a pipeline to ”correct mistakes made by each other” and hence improves
the overall performance of the pipeline. Autostacker simply starts by selecting a
set of pipelines randomly. Those pipelines are fed into an evolutionary algorithm
that generates the set of winning pipelines.

AlphaD3M [64] has been introduced as an AutoML framework that uses meta
reinforcement learning to find the most promising pipelines. AlphaD3M finds

11 https://github.com/fmohr/ML-Plan.
12 https://github.com/DataSystemsGroupUT/SmartML.

https://github.com/fmohr/ML-Plan
https://github.com/DataSystemsGroupUT/SmartML
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patterns in the components of the pipelines using recurrent neural networks,
specifically long short term memory (LSTM) and Monte-Carlo tree search in
an iterative process which is computationally efficient in large search space. In
particular, for a given machine learning task over a certain dataset, the network
predicts the action’s probabilities which lead to sequences that describe the whole
pipeline. The predictions of the LSTM neural network are used by Monte-Carlo
tree search by running multiple simulations to find the best pipeline sequence.

OBOE 13 is an AutoML framework for time constrained model selection and
hyper-parameter tuning [65]. OBOE finds the most promising machine learning
model along with the best set of hyper-parameters using collaborative filtering.
OBOE starts by constructing an error matrix for some base set of machine learn-
ing algorithms, where each row represents a dataset and each column represents
a machine learning algorithm. Each cell in the matrix represents the perfor-
mance of a particular machine learning model along with its hyper-parameters
on a specific dataset. In addition, OBOE keeps track of the running time of each
model on a particular dataset and trains a model to predict the running time
of a particular model based on the size and the features of the dataset. Simply,
a new dataset is considered as a new row in the error matrix. In order to find
the best machine learning algorithm for a new dataset, OBOE runs a particular
set of models corresponding to a subset of columns in the error matrix which
are predicted to run efficiently on the new dataset. In order to find the rest of
the entries in the row, the performance of the models that have not been eval-
uated are predicted. The good thing about this approach is that it infers the
performance of lots of models without the need to run them or even computing
meta-features and that is why OBOE can find a well performing model within
a reasonable time budget.

The PMF 14 AutoML framework is based on collaborative filtering and
Bayesian optimization [66]. More specifically, the problem of selecting the best
performing pipeline for a specific task is modeled as a collaborative filtering
problem that is solved using probabilistic matrix factorization techniques. PMF
considers two datasets to be similar if they have similar evaluations on a few set
of pipelines and hence it is more likely that these datasets will have similar eval-
uations on the rest of the pipelines. This concept is quite related to collaborative
filtering for movie recommendation in which users that had the same preference
in the past are more likely to have the same preference in the future. In par-
ticular, the PMF framework trains each machine learning pipeline on a sample
of each dataset and then evaluates such pipeline. This results in a matrix that
summarizes the performance (accuracy or balanced accuracy for classification
tasks and RMSE for regression tasks) of each machine learning pipeline of each
dataset. The problem of predicting the performance of a particular pipeline on
a new dataset can be mapped into a matrix factorization problem.

VDS [67] has been recently introduced as an interactive automated machine
learning tool, that followed the ideas of a previous work on the MLBase

13 https://github.com/udellgroup/oboe/tree/master/automl.
14 https://github.com/rsheth80/pmf-automl.

https://github.com/udellgroup/oboe/tree/master/automl
https://github.com/rsheth80/pmf-automl


52 R. Elshawi and S. Sakr

framework [68]. In particular, it uses a meta learning mechanism (knowledge from
the previous runs) to provide the user with a quick feedback, in few seconds, with
an initial model recommendation that can achieve a reasonable accuracy while,
on the back-end, conducting an optimization process so that it can recommend
to the user more models with better accuracies, as it progresses with the search
process over the search space. The VDS framework combines cost-based Multi-
Armed Bandits and Bayesian optimizations for exploring the search space while
using a rule-based search-space as query optimization technique. VDS prunes
unpromising pipelines in early stages using an adaptive pipeline selection algo-
rithm. In addition, it supports a wide range of machine learning tasks including
classification, regression, community detection, graph matching, image classi-
fication, and collaborative filtering. ATMSeer15 is an interactive visualization
tool that has been introduced to support users for refining the search space of
AutoML and analyzing the results [69]. Table 1 shows a summary of the main
features of the centralized state-of-the-art AutoML frameworks.

Several cloud-based solutions have been introduced to tackle the automated
machine learning problem using the availability of high computational power on
cloud environments to try a wide range of models and configurations. For exam-
ple, Google AutoML16 supports training a wide range of machine learning models
in different domains with minimal user experience. Azure AutoML17 is a cloud-
based service that can be used to automate building machine learning pipeline
for both classification and regression tasks. AutoML Azure uses collaborative
filtering and Bayesian optimization to search for the most promising pipelines
efficiently [66] based on a database that is constructed by running millions of
experiments of evaluation of different pipelines on many datasets. Amazon Sage
Maker18 provides its users with a wide set of most popular machine learning,
and deep learning frameworks to build their models in addition to automatic
tuning for the model parameters.

Distributed Frameworks. As the size of the dataset increases, solving the
CASH problem in a centralized manner turns out to be infeasible due to the
limited computing resources (e.g., Memory, CPU) of a single machine. Thus,
there is a clear need for distributed solutions that can harness the power of
computing clusters that have multiple nodes to tackle the computational com-
plexity of the problem. MLbase19 has been the first work to introduce the idea
of developing a distributed framework of machine learning algorithm selection
and hyperparameter optimization [68]. MLbase has been based on MLlib [70], a

15 https://github.com/HDI-Project/ATMSeer.
16 https://cloud.google.com/automl/.
17 https://docs.microsoft.com/en-us/azure/machine-learning/service/.
18 https://aws.amazon.com/machine-learning/.
19 http://www.mlbase.org/.

https://github.com/HDI-Project/ATMSeer
https://cloud.google.com/automl/
https://docs.microsoft.com/en-us/azure/machine-learning/service/
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Spark-based ML library. It attempted to reused cost-based query optimization
techniques to prune the search space at the level of logical learning plan before
transforming it into a physical learning plan to be executed.

Auto-Tuned Models (ATM) framework20 has been introduced as a parallel
framework for fast optimization of machine learning modeling pipelines [71]. In
particular, this framework depends on parallel execution along multiple nodes
with a shared model hub that stores the results out of these executions and
tries to enhance the selection of other pipelines that can outperform the current
chosen ones. The user can decide to use either of ATM’s two searching methods,
a hybrid Bayesian and multi-armed bandit optimization system, or a model
recommendation system that works by exploiting the previous performance of
modeling techniques on a variety of datasets.

TransmogrifAI 21 is one of the most recent modular tools written in Scala.
It is built using workflows of feature preprocessors, and model selectors on
top of Spark with minimal human involvement. It has the ability to reuse the
selected work-flows. Currently, TransmogrifAI supports eight different binary
classifiers and five regression algorithms. MLBox 22 is a Python-based AutoML
framework for distributed preprocessing, optimization and prediction. MLBox
supports model stacking where a new model is trained from the combined pre-
dictors of multiple previously trained models. It uses hyperopt23, a distributed
asynchronous hyper-parameter optimization library, in Python, to perform the
hyper-parameter optimisation process.

Rafiki 24 has been introduced as a distributed framework which is based
on the idea of using previous models that achieved high performance on the
same tasks [72]. In this framework, regarding the data and parameter storage,
the data uploaded by user to be trained is stored in a Hadoop Distributed File
System (HDFS). During training, there is a database for each model storing the
best version of parameters from hyper-parameter tuning process. This database
is kept in memory as it is accessed and updated frequently. Once the hyper-
parameter tuning process is finished, the database is dumped to the disk. The
types of parameters to be tuned are either related to model architecture like
number of Layers, and Kernel or related to the training algorithm itself like
weight decay, and learning rate. All these parameters can be tuned using a
random search or Bayesian optimization. Table 2 shows a summary of the main
features of the distributed AutoML frameworks.

20 https://github.com/HDI-Project/ATM.
21 https://transmogrif.ai/.
22 https://github.com/AxeldeRomblay/MLBox.
23 https://github.com/hyperopt/hyperopt.
24 https://github.com/nginyc/rafiki.

https://github.com/HDI-Project/ATM
https://transmogrif.ai/
https://github.com/AxeldeRomblay/MLBox
https://github.com/hyperopt/hyperopt
https://github.com/nginyc/rafiki


Automated Machine Learning: Techniques and Frameworks 55

T
a
b
le

2
.
S
u
m

m
a
ry

o
f
th

e
m

a
in

fe
a
tu

re
s

o
f
d
is

tr
ib

u
te

d
A

u
to

M
L

fr
a
m

ew
o
rk

s

R
el

ea
se

d
a
te

C
o
re

la
n
g
u
a
g
e

O
p
ti

m
iz

a
ti

o
n

te
ch

n
iq

u
e

T
ra

in
in

g
fr

a
m

ew
o
rk

M
et

a
-l
ea

rn
in

g
U

se
r

in
te

rf
a
ce

O
p
en

so
u
rc

e

M
L
B

a
se

2
0
1
3

S
ca

la
C

o
st

-b
a
se

d
m

u
lt

i-
a
rm

ed
b
a
n
d
it

s
S
p
a
rk

M
L
li
b

×
×

×

A
T

M
2
0
1
7

P
y
th

o
n

H
y
b
ri

d
B

ay
es

ia
n
,

a
n
d

m
u
lt

i-
a
rm

ed
b
a
n
d
it

s
o
p
ti

m
iz

a
ti

o
n

S
ci

k
it

-l
ea

rn
�

×
�

M
L
B

ox
2
0
1
7

P
y
th

o
n

D
is

tr
ib

u
te

d
ra

n
d
o
m

se
a
rc

h
,
T
re

e-
P
a
rz

en
es

ti
m

a
to

rs

S
ci

k
it

-l
ea

rn
K

er
a
s

×
×

�

R
a
fi
k
i

2
0
1
8

P
y
th

o
n

D
is

tr
ib

u
te

d
ra

n
d
o
m

se
a
rc

h
,
B

ay
es

ia
n

o
p
ti

m
iz

a
ti

o
n

T
en

so
rF

lo
w

S
ci

k
it

-l
ea

rn
×

�
�

T
ra

n
sm

o
g
ri

fA
I

2
0
1
8

S
ca

la
B

ay
es

ia
n

o
p
ti

m
iz

a
ti

o
n
,
a
n
d

ra
n
d
o
m

se
a
rc

h

S
p
a
rk

M
L

×
×

�



56 R. Elshawi and S. Sakr

T
a
b
le

3
.
S
u
m

m
a
ry

o
f
th

e
m

a
in

fe
a
tu

re
s

o
f
th

e
n
eu

ra
l
a
rc

h
it

ec
tu

re
se

a
rc

h
fr

a
m

ew
o
rk

s

R
el

ea
se

d
a
te

O
p
en

so
u
rc

e
O

p
ti

m
iz

a
ti

o
n

te
ch

n
iq

u
e

S
u
p
p
o
rt

ed
fr

a
m

ew
o
rk

s
In

te
rf

a
ce

A
u
to

K
er

a
s

2
0
1
8

�
N

et
w

o
rk

m
o
rp

h
is

m
K

er
a
s

�
A

u
to

N
et

2
0
1
6

�
S
M

A
C

P
y
T
o
rc

h
×

N
N

I
2
0
1
9

�
R

a
n
d
o
m

se
a
rc

h
d
iff

er
en

t
B

ay
es

ia
n

o
p
ti

m
iz

a
ti

o
n
s

a
n
n
ea

li
n
g

n
et

w
o
rk

m
o
rp

h
is

m
h
y
p
er

-b
a
n
d

n
a
iv

e
ev

o
lu

ti
o
n

g
ri

d
se

a
rc

h

P
y
T
o
rc

h
,
T
en

so
rF

lo
w

,
K

er
a
s,

C
a
ff
e2

,
C

N
T

K
,

C
h
a
in

er
T

h
ea

n
o

�

en
a
s

2
0
1
8

�
R

ei
n
fo

rc
em

en
t

le
a
rn

in
g

T
en

so
rfl

ow
×

N
A

O
2
0
1
8

�
G

ra
d
ie

n
t

b
a
se

d
o
p
ti

m
iz

a
ti

o
n

T
en

so
rfl

ow
,
P

y
T
o
rc

h
×

D
A

R
T

S
2
0
1
9

�
G

ra
d
ie

n
t

b
a
se

d
o
p
ti

m
iz

a
ti

o
n

P
y
T
o
rc

h
×

L
E

A
F

2
0
1
9

×
E

v
o
lu

ti
o
n
a
ry

a
lg

o
ri

th
m

s
–

×



Automated Machine Learning: Techniques and Frameworks 57

Fig. 5. The relationship between machine learning and deep learning.

3 Automated Deep Learning

3.1 Neural Architecture Search for Deep Learning

In general, deep learning techniques [73] represent a subset of machine learn-
ing methodologies that are based on artificial neural networks (ANN) which
are mainly inspired by the neuron structure of the human brain (Fig. 5). It is
described as deep because it has more than one layer of nonlinear feature trans-
formation. Neural Architecture Search (NAS) is a fundamental step in automat-
ing the machine learning process and has been successfully used to design the
model architecture for image and language tasks [74–78]. Broadly, NAS tech-
niques falls into five main categories including random search, reinforcement
learning, gradient-based methods, evolutionary methods, and Bayesian optimiza-
tion (Fig. 6).

Random search is one of the most naive and simplest approaches for network
architecture search. For example, Hoffer et al. [79] have presented an approach
to find good network architecture using a random search combined with well-
trained set of shared weights. Li and Talwalkar [80] proposed new network archi-
tecture search baselines that are based on a random search with early-stopping
for hyper-parameter optimization. Results show that random search along with
early-stopping achieves the state-of-the-art network architecture search results
on two standard NAS bookmarkers which are PTB and CIFAR-10 datasets.

Reinforcement learning [81] is another approach that has been used to find
the best network architecture. Zoph and Le [74] used a recurrent neural net-
work (LSTM) with reinforcement to compose neural network architecture. More
specifically, recurrent neural network is trained through a gradient based search
algorithm called REINFORCE [82] to maximize the expected accuracy of the gen-
erated neural network architecture. Baker et al. [83] introduced a meta-modeling
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Fig. 6. A taxonomy for the Neural Network Architecture Search (NAS) techniques

algorithm called MetaQNN based on reinforcement learning to automatically gen-
erate the architecture of a convolutional neural network for a new task. The
convolutional neural network layers are chosen sequentially by a learning agent
that is trained using Q−learning with ε−greedy exploration technique. Simply,
the agent explores a finite search space of a set of architectures and iteratively
figures out architecture designs with improved performance on the new task to
be learned.

Gradient-based optimization is another common way for neural network archi-
tecture search. Liu et al. [84] proposed an approach based on continuous relax-
ation of the neural architecture allowing using a gradient descent for archi-
tecture search. Experiments showed that this approach excels in finding high-
performance convolutional architectures for image classification tasks on CIFAR-
10, and ImageNet datasets. Shin et al. [85] proposed a gradient-based optimiza-
tion approach for learning the network architecture and parameters simultane-
ously. Ahmed and Torresani [86] used gradient based approach to learn network
architecture. Experimental results on two different networks architecture ResNet
and ResNeXt show that this approach yields to better accuracy and a significant
reduction in the number of parameters.

Another direction for architecture search is evolutionary algorithms which
are well suited for optimizing arbitrary structure. Miller et al. [87] considered
an evolutionary algorithm to propose the architecture of the neural network and
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network weights as well. Many evolutionary approaches based on genetic algo-
rithms are used to optimize the neural networks architecture and weights [88–90]
while others rely on hierarchical evolution [78]. Some recent approaches consider
using the multi-objective evolutionary architecture search to optimize training
time, complexity and performance [91,92] of the network. LEAF [93] is an evolu-
tionary AutoML framework that optimizes hyper-parameters, network architec-
ture and the size of the network. LEAF uses CoDeepNEAT [94] which is a powerful
evolutionary algorithm based on NEAT [95]. LEAF achieved the state-of-the-art
performance results on medical image classification and natural language anal-
ysis. For supervised learning tasks, evolutionary based approaches tend to out-
perform reinforcement learning approaches especially when the neural network
architecture is very complex due to having millions of parameters to be tuned.
For example, the best performance achieved on ImageNet and CIFAR-10 has
been obtained using evolutionary techniques [96].

Bayesian optimization based on Gaussian processes has been used by Kan-
dasamy et al. [97] and Swersky et al. [98] for tackling the neural architecture
search problem. In addition, lots of work focused on using tree based models
such as random forests and tree Parzen estimators [44] to effectively optimize the
network architecture as well as its hyper-parameters [45,52,99]. Bayesian opti-
mization may outperform evolutionary algorithms in some problems as well [100].

3.2 AutoDL Frameworks

Recently, some frameworks (e.g., Auto-Keras [101], and Auto-Net [99]) have
been proposed with the aim of automatically finding neural network architec-
tures that are competitive with architectures designed by human experts. How-
ever, the results so far are not significant. For example, Auto-Keras [101] is an
open source efficient neural architecture search framework based on Bayesian
optimization to guide the network morphism. In order to explore the search
space efficiently, Auto-Keras uses a neural network kernel and tree structured
acquisition function with iterative Bayesian optimization. First, a Gaussian pro-
cess model is trained on the currently existing network architectures and their
performance is recorded. Then, the next neural network architecture obtained
by the acquisition function is generated and evaluated. Moreover, Auto-Keras
runs in a parallel mode on both CPU and GPU.

Auto-Net [99] is an efficient neural architecture search framework based on
SMAC optimization and built on top of PyTorch. The first version of Auto-Net
is implemented within the Auto-sklearn in order to leverage some of the existing
components of the machine learning pipeline in Auto-sklearn such as preprocess-
ing. The first version of Auto Net only considers fully-connected feed-forward
neural networks as they are applied on a large number of different datasets.
Auto-net accesses deep learning techniques from Lasagne Python deep learning
library [102]. Auto Net includes a number of algorithms for tuning the neural
network weights including vanilla stochastic gradient descent, stochastic gradient
descent with momentum, Adadelta [103], Adam [104], Nesterov momentum [105]
and Adagrad [106].
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Neural Network Intelligence (NNI)25 is an open source toolkit by Microsoft
that is used for tuning neural networks architecture and hyper-parameters in
different environments including local machine, cloud and remote servers. NNI
accelerates and simplifies the huge search space using built-in super-parameter
selection algorithms including random search, naive evolutionary algorithms,
simulated annealing, network morphism, grid search, hyper-band, and a bunch
of Bayesian optimizations like SMAC [43], and BOHB [47]. NNI supports a large
number of deep leaning frameworks including PyTorch, TensorFlow, Keras,
Caffe2, CNTK, Chainer and Theano.

DEvol 26 is an open source framework for neural network architecture search
that is based on genetic programming to evolve the number of layers, kernels,
and filters, the activation function and dropout rate. DEvol uses parallel train-
ing in which multiple members of the population are evaluated across multiple
GPU machines in order to accelerate the process of finding the most promising
network.

enas [107] has been introduced as an open source framework for neural archi-
tecture search in Tensorflow based on reinforcement learning [74] where a con-
troller of a recurrent neural network architecture is trained to search for optimal
subgraphs from large computational graphs using policy gradient. Moreover,
enas showed a large speed up in terms of GPU hours thanks to the sharing of
parameters across child subgraphs during the search process.

NAO [108], and Darts [84] are open source frameworks for neural architec-
ture search which propose a new continuous optimization algorithm that deals
with the network architecture as a continuous space instead of the discretization
followed by other approaches. In NAO, the search process starts by encoding an
initial architecture to a continuous space. Then, a performance predictor based
on gradient based optimization searches for a better architecture that is decoded
at the end by a complementary algorithm to the encoder in order to map the
continuous space found back into its architecture. On the other hand, DARTS
learns new architectures with complex graph topologies from the rich continuous
search space using a novel bilevel optimization algorithm. In addition, it can be
applied to any specific architecture family without restrictions to any of the con-
volutional and recurrent networks only. Both frameworks showed a competitive
performance using limited computational resources compared with other neural
architecture search frameworks.

Evolutionary Neural AutoML for Deep Learning (LEAF) [93] is an AutoML
framework that optimizes neural network architecture and hyper-parameters
using the state-of-the-art evolutionary algorithm and distributed computing
framework. LEAF uses CoDeepNEAT [94] for optimizing deep neural network
architecture and hyper-parameters. LEAF consists of three main layers which
are algorithm layers, system layer and problem-domain layer. LEAF evolves deep
neural networks architecture and hyper-parameters in the algorithm layer. The
system layer is responsible for training the deep neural networks in a parallel

25 https://github.com/Microsoft/nni.
26 https://github.com/joeddav/devol.
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mode on a cloud environment such as Microsoft Azure27, Google Cloud28 and
Amazon AWS29, which is essential in the evaluation of the fitness of the neural
networks evolved in the algorithm layer. More specifically, the algorithm layer
sends the neural network architecture to the system layer. Then, the system
layer sends the evaluation of the fineness of this network back to the algorithm
layer. Both the algorithm layer and the system layer work together to support
the problem-domain layers where the problems of hyper-parameter tuning of
network architecture search are solved. Table 3 shows a summary of the main
features of the state-of-the-art neural architecture search frameworks.

4 Open Challenges and Future Directions

Although in the last years, there has been increasing research efforts to tackle
the challenges of the automated machine learning domain, however, there are
still several open challenges and research directions that needs to be tackled to
achieve the ultimate goals and vision of the AutoML domain. In this section,
we highlight some of these challenges that need to be tackled to improve the
state-of-the-art.

Scalability: In practice, a main limitation of the centralized frameworks
for automating the solutions for the CASH problem (e.g., Auto-Weka,
Auto-Sklearn) is that they are tightly coupled with a machine learning library
(e.g., Weka, scikit-learn, R) that can only work on a single node which makes
them not applicable in the case of large data volumes. In practice, as the scale of
data produced daily is increasing continuously at an exponential scale, several
distributed machine learning platforms have been recently introduced. Examples
include Spark MLib [70], Mahout30 and SystemML [109]. Although there have
been some initial efforts for distributed automated framework for the CASH
problem. However, the proposed distributed solutions are still simple and lim-
ited in their capabilities. More research efforts and novel solutions are required
to tackle the challenge of automatically building and tuning machine learning
models over massive datasets.

Optimization Techniques: In practice, different AutoML frameworks use dif-
ferent techniques for hyper-parameter optimization of the machine learning algo-
rithms. For instance, Auto-Weka and Auto-Sklearn use the SMAC technique
with cross-fold validation during the hyper-parameter configuration optimiza-
tion and evaluation. On the other hand, ML-Plan uses the hierarchical task net-
work with Monte Carlo Cross-Validation. Other tools, including Recipe [61] and
TPOT, use genetic programming, and pareto optimization for generating candi-
date pipelines. In practice, it is difficult to find a clear winner or one-size-fits-all

27 https://azure.microsoft.com/en-us/.
28 https://cloud.google.com/.
29 https://aws.amazon.com/.
30 https://mahout.apache.org/.
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technique. In other words, there is no single method that will be able to outper-
form all other techniques on the different datasets with their various characteris-
tics, types of search spaces and metrics (e.g., time and accuracy). Thus, there is a
crucial need to understand the Pros and Cons of these optimization techniques so
that AutoML systems can automatically tune their hyper-parameter optimiza-
tion techniques or their strategy for exploring and traversing the search space.
Such decision automation should provide improved performance over picking and
relying on a fixed strategy. Similarly, for the various introduced meta-learning
techniques, there is no clear systematic process or evaluation metrics to quan-
titatively assess and compare the impact of these techniques on reducing the
search space. Recently, some competitions and challenges31,32 have been intro-
duced and organized to address this issue such as the DARPA D3M Automatic
Machine Learning competition [67].

Time Budget: A common important parameter for AutoML systems is the
user time budget to wait before getting the recommended pipeline. Clearly, the
bigger the time budget, the more the chance for the AutoML system to explore
various options in the search space and the higher probability to get a better
recommendation. However, the bigger time budget used, the longer waiting time
and the higher computing resource consumption, which could be translated into
a higher monetary bill in the case of using cloud-based resources. On the other
hand, a small-time budget means a shorter waiting time but a lower chance to get
the best recommendation. However, it should be noted that increasing the time
budget from X to 2X does not necessarily lead to a big increase on the quality
of the results of the recommended pipeline, if any at all. In many scenarios, this
extra time budget can be used for exploring more of the unpromising branches
in the search space or exploring branches that have very little gain, if any. For
example, the accuracy of the returned models from running the AutoSklearn
framework over the Abalone dataset33 with time budgets of 4 h and 8 h are
almost the same (25%). Thus, accurately estimating or determining the adequate
time budget to optimize this trade-off is another challenging decision that can not
be done by non-expert end users. Therefore, it is crucial to tackle such challenge
by automatically predicting/recommending the adequate time budget for the
modeling process. The VDS [67] framework provided a first attempt to tackle
this challenge by proposing an interactive approach that relies on meta learning
to provide a quick first model recommendation that can achieve a reasonable
quality while conducting an offline optimization process and providing the user
with a stream of models with better accuracy. However, more research efforts to
tackle this challenge are still required.

Composability. Nowadays, several machine learning solutions (e.g., Weka,
Scikit-Learn, R, MLib, Mahout) have become popular. However, these ML solu-
tions significantly vary in their available techniques (e.g., learning algorithms,

31 https://www.4paradigm.com/competition/nips2018.
32 http://automl.chalearn.org/.
33 https://www.openml.org/d/183.
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preprocessors, and feature selectors) to support each phase of the machine learn-
ing pipeline. Clearly, the quality of the machine learning pipelines that can be
produced by any of these platforms depends on the availability of several tech-
niques/algorithms that can be utilized in each step of the pipeline. In partic-
ular, the more available techniques/algorithms in a machine learning platform,
the higher the ability and probability of producing a well-performing machine
learning pipeline. In practice, it is very challenging to have optimized imple-
mentations for all of the algorithms/techniques of the different steps of the
machine learning pipeline available in a single package, or library. The ML-Plan
framework [62] has been attempting to tackle the composability challenge on
building machine learning pipelines. In particular, it integrates a superset of
both Weka and Scikit-Learn algorithms to construct a full pipeline. The initial
results of this approach have shown that the composable pipelines over Weka and
Scikit-Learn do not significantly outperform the outcomes from Auto-Weka
and Auto-Sklearn frameworks especially with big datasets and small time bud-
gets. However, we believe that there are several reasons behind these results.
First, combining the algorithms/techniques of more than one machine learning
platform causes a dramatic increase in the search space. Thus, to tackle this
challenge, there is a crucial need for a smart and efficient search algorithm that
can effectively reduce the search space and focus on the promising branches.
Using meta-learning approaches can be an effective solution to tackle this chal-
lenge. Second, combining services from more than one framework can involve
a significant overhead for the data and message communications between the
different frameworks. Therefore, there is a crucial need for a smart cost-based
optimizer that can accurately estimate the gain and cost of each recommended
composed pipeline and be able to choose the composable recommendations when
they are able to achieve a clear performance gain. Third, the ML-Plan has been
combining the services of two single node machine learning services (Weka and
Scikit-Learn). We believe that the best gain of the composability mechanism
will be achieved by combining the performance power of distributed systems
(e.g., MLib) with the rich functionality of many centralized systems.

User Friendliness: In general, most of the current tools and framework can not
be considered to be user friendly. They still need sophisticated technical skills
to be deployed and used. Such challenge limits its usability and wide acceptance
among layman users and domain experts (e.g., physicians, accountants) who
commonly have limited technical skills. Providing an interactive and light-weight
web interfaces for such framework can be one of the approaches to tackle these
challenges.

Continuous Delivery Pipeline: Continuous delivery is defined as creating
a repeatable, reliable and incrementally improving process for taking software
from concept to customer. Integrating machine learning models into continuous
delivery pipelines for productive use has not recently drawn much attention,
because usually the data scientists push them directly into the production envi-
ronment with all the drawbacks this approach may have, such as no proper unit
and integration testing.
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5 Conclusion

Machine learning has become one of the main engines of the current era. The
production pipeline of a machine learning models passe through different phases
and stages that require a wide knowledge of several available tools, and algo-
rithms. However, as the scale of data produced daily is increasing continuously
at an exponential scale, it has become essential to automate this process. In
this chapter, we provided an overview of the state-of-the-art research effort in
the domain of AutoML frameworks. We have also highlighted research direc-
tions and open challenges that need to be addressed in order to achieve the
vision and goals of the AutoML process. We hope that our overview serves as
a useful resource for the community, for both researchers and practitioners, to
understand the challenges of the domain and provide useful insight for further
advancing the state-of-the-art in several directions.
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optimization. In: Advances in Neural Information Processing Systems, pp. 2546–
2554 (2011)

45. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: hyperpa-
rameter optimization in hundreds of dimensions for vision architectures (2013)

46. Eggensperger, K., et al.: Towards an empirical foundation for assessing Bayesian
optimization of hyperparameters. In: NIPS Workshop on Bayesian Optimization
in Theory and Practice, vol. 10, p. 3 (2013)

47. Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter
optimization at scale. arXiv preprint arXiv:1807.01774 (2018)

48. Sparks, E.R., Talwalkar, A., Haas, D., Franklin, M.J., Jordan, M.I., Kraska, T.:
Automating model search for large scale machine learning. In: Proceedings of the
Sixth ACM Symposium on Cloud Computing, pp. 368–380. ACM (2015)

49. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

50. Holland, J.H., et al.: Adaptation in Natural and Artificial Systems: an Introduc-
tory Analysis with Applications to Biology, Control, and Artificial Intelligence.
MIT press, Cambridge (1992)

https://doi.org/10.1007/978-1-4612-0663-7
http://arxiv.org/abs/1707.05589
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
http://arxiv.org/abs/1807.01774


Automated Machine Learning: Techniques and Frameworks 67

51. Fernández-Godino, M.G., Park, C., Kim, N.-H., Haftka, R.T.: Review of multi-
fidelity models. arXiv preprint arXiv:1609.07196 (2016)

52. Domhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic hyperparam-
eter optimization of deep neural networks by extrapolation of learning curves. In:
Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

53. Jamieson, K.G., Talwalkar, A.: Non-stochastic best arm identification and hyper-
parameter optimization. In: AISTATS, pp. 240–248 (2016)

54. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband:
a novel bandit-based approach to hyperparameter optimization. arXiv preprint
arXiv:1603.06560 (2016)
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Abstract. The volume of GPS data collected from moving vehicles has
increased significantly over the last years. We have gone from GPS data
being collected every few minutes to data being collected every second.
With large quantities of GPS data available it is possible to analyze
the traffic on most of the road network without installing road-side
equipment.

A very important key performance indicator (KPI) in traffic planning
is travel time. For this reason, this paper describes how travel time can
be computed from GPS data. Of particular interest is how the travel
time is affected by the weather.

The work presented here is an extension of previous work on com-
puting accurate travel time from GPS data. In this paper, the logical
data model is explained in more details and the result section showing
weather’s impact on travel time has been significantly extended with
previously unpublished material.

1 Introduction

Estimating travel times in road networks is important for a wide range of appli-
cations such as road-network monitoring, driving directions, and traffic planning.
When a user requests the travel time from point A to point B, it is expected that
the estimated travel time is as accurate as possible particularly for professional
drivers such as taxi drivers. However, travel time is complex to estimate because
it is affected by many factors such as rush hours, road construction, accidents,
and weather.

Even though single trips are sensitive to variations in travel times the impact
becomes very significant when it is scaled to the planning of multiple trips for
large fleets. Demand Responsive Transport (DRT) is a form of public transport
with flexible routes and schedules. A trip is booked in advance to optimize the
usage of the vehicles in the fleet. Such trips are being planned from speedmaps,
describing the average speeds on a road network during some time interval,
e.g., Mondays 10:00 to 12.00. These speedmaps make it is possible to estimate
the expected duration of transports to ensure timeliness. Further, with accurate
travel-times it is possible to estimate when a vehicle is ready for the next trip.

In DRT, the haulers are often paid by the expected average travel time. The
speedmaps are therefore important for calculating the actual cost of a trip and
c© Springer Nature Switzerland AG 2020
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these maps are the main data foundation for companies like FlexDanmark for
optimize the timeliness and the cost of trips.

Until now, the work of determining weather’s impact on travel time has
mainly focused on analyzing single or a few selected road segments and the
data foundation is often fairly limited. In this paper, we determine the weather’s
impact on a country-size road network using 1.6 billion GPS positions collected
from 10,560 vehicles over 5 years. We present a generic model for integrating large
scale GPS data with weather information for country-size road networks. We
present a model for storing and preparing data for performing a wide variety of
travel-time analysis related to weather’s impact. The GPS data is map-matched
to the road-network of Denmark (∼1.8 million edges). Using this data model,
we analyze in detail how the weather conditions dry, fog, rain, and snow affects
the travel time on the entire road network. The analysis includes determining
the correlation between air temperature and travel time and the impact of wind
(headwind, tailwind, and crosswind) on travel time. Regional studies are carried
out to determine if the weather’s impact on travel time is different across regions
or different between cities and rural areas.

The content of this paper is an extension of two papers by the authors [5,6].
Compared to [6] the description of the data model is extended with additional
details. Compared to [5] the results presented have been significantly extended
with previously unpublished material.

The paper is organized as follows. Section 2 describes the data foundation.
Section 3 describes the data warehouse star schema used to store the GPS and
weather data. Section 4 presents in detail the method used for data integration.
A thorough analysis of the weather’s impact on travel time is presented in Sect. 5.
Section 6 lists related work and Sect. 7 concludes the paper (Fig. 1).
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2 Data Foundation

This section describes the GPS data, the map, and the weather data sources
integrated to be able to analyze the weather’s impact on travel time. First, the
data model is presented, next, the concrete data sources used are introduced.

2.1 Data Model

The positions of vehicles are tracked using GPS data. A GPS record, r, is a
6-tuple defined as follows.

r = 〈vid, lat, lon, time, speed, course〉
The tuple contains a unique vehicle id, vid, the position as latitude, lat,

and longitude, lon, a timestamp, time, a vehicle speed, speed, and a compass
direction, course. The course is used for bidirectional map-matching, i.e., to get
a travel times in each direction for road segments that allow two-way traffic.
The attributes in r can be collected from most modern GPS devices. The set R
denotes all GPS records.

The map foundation is a directed, weighted graph G = 〈V,E,W 〉 where V
is a set of vertices and E ⊆ V × V is a set of edges. Each v ∈ V is defined by
two attributes v = 〈lat, lon〉 that denote the latitude and longitude. For each
edge e ∈ E we define two attribute e = 〈course,road-category〉 where course is
the compass direction defined by the straight line between the two vertices that
define e (or the endpoints of e). The road-category is the road category, e.g.,
motorway or residential road (from the map foundation). The weight w ∈ W
is an array of four values containing the average speed for a segment for four
intervals types listed in Table 2 that is free-flow, non-peak, morning peak, and
afternoon peak.

A set of weather observations o are reported from a set of stationary weather
stations s. A weather station is defined by a three tuple s = 〈sid, lat, lon〉
where sid is a unique station ID, and lat and lon are the latitude and longi-
tude of the weather station. A weather observation is defined as o = 〈weather-
class, time, speed, course, temperature, sid〉 where weather-class is the type of
weather, e.g., rain or snow, time is the timestamp when the weather observation
is recorded, speed is the mean wind speed in m/s, course is the wind direction,
and temperature is the temperature.

The complete history of GPS records for a single vehicle is denoted by
H = [r1, r2, . . . , rn] where ri is a GPS record and ri.time < ri+1.time. Each
GPS record is map-matched to an edge in the road-network G and a weather
observation in O, see Sect. 4. A matched GPS record is called a point p = 〈r, e, o〉
where r ∈ R, e ∈ E, and o ∈ O. A history H when matched is denoted
Ĥ = [p1, p2, . . . , pm] where pi.time < pi+1.time.

2.2 Data

The map foundation is OpenStreetMap (OSM) [16], from Geofabrik [11]. Road
categories associated with the edges are extracted from the OpenStreetMap
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Table 1. NOAA weather classes

Weather class Automated weather report Manual weather report

Dry 0–5 10 12 18 0–6 10 13–16 18 19

Rain 21–23 40–46 50–53 57 58 60–63 20 21 25 50–55 60–65 80–82 91 92

80–84 92 93

Freezing ppt. 25 47 48 54–56 64–66 74–76 78 89 96 24 27 56–59 66–69 96 97 99

Snow 24 67 68 70–73 77 85–87 22 23 26 70–79 83–90 93 94

Fog 20 30–35 11 12 28 40–49

Thunder 26 90–96 17 29 91–99

Drifting 27–29 7–9 30–39 98

Tornado 99

Highway tag [17] and the four categories, motorway, secondary, tertiary, and
residential are selected for analysis. The other road categories have not been
included in this paper as they show similar results as the four selected cate-
gories. In particular, the results for the road category primary are very similar
to the results for the secondary road category. In addition, a map [2] contain-
ing the polygons for all cities in Denmark is used for the analysis presented in
Sect. 5.

The GPS data coverage for the four selected road categories motorway, sec-
ondary, and tertiary is 99% of road segments are cover. For the residential road
category, approximately 91% of segments are covered.

Historic weather data is publicly available from the National Oceanic and
Atmospheric Administration (NOAA) [3,7]. Denmark is covered by 77 weather
stations. This data is used to provide the set of weather stations S and the
weather observations O.

The information on wind speed and course is directly available [7]. The
weather class associated with each weather observation is retrieved using the
approach described next. Each weather observation can have one or more Auto-
matic Weather report (AW ) values and Manual Weather report (MW ) values [7].
The AW and MW values are integers that identify a specific weather class. We
construct eight classes of weather and map the weather codes of AW and MW
to these conditions as shown in Table 1. Please note that Freezing ppt. (pre-
cipitation) includes many descriptions, e.g., ice pellets, hail, freezing rain. Also
note that Drifting includes both snow and sand. There is no scale on rain or
snow as limited data is available. If both an AW and an MW value exist for
a weather observation then MW precedes AW . If more than one AW or MW
values exist, the highest value is used.

3 Logical Model

This section describes the logical data model used to store GPS data and the
integration with weather information. The section is a significant extension of
the description found in [5].
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The logical model for the data warehouse is a star schema [13]. The overall
design is shown in Fig. 2. The figure shows that there one fact table and 13
dimension tables. The fact table is shown in black and the dimensions tables are
grouped and colored by their category.

Fig. 2. Logical model (Color figure online)

3.1 Dimensions

The dimensions of the data warehouse are shown in five different colors in Fig. 2.
The red dimensions are the spatial dimensions adding locality context to the
GPS data. The blue dimensions describe the spatio-temporal weather-related
dimensions. The brown dimensions describe date, time, and vehicles. The green
dimensions is related to metadata. The gray dimension describes different char-
acteristics and qualities of the data loaded.

The dimdate dimension has 12 attributes. It does not represent any time-
zone information. This makes it possible to use one date entry for both local
time and UTC time. The primary key is a smart key, i.e., the date 24th of
December 2020 has the key value 20201224. The dimension describes typical
attributes on dates, along with ISO year, week numbers, and weekdays, where
the last week of a year is a full week and a year always starts on a Monday
[12]. The dimension has multiple hierarchies since dates both can be grouped
into quarters and seasons, e.g., winter and spring. The attributes year, month,
and day describes the date, where the day belongs to the specific month, and
the month to the specific year. weekday and day us str describes the days of the
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week from Monday through Sunday, where weekday is an integer from 0 to 6
and day us str is the name Monday through Friday. iso year, iso weeknumber,
and iso weekday stores fiscal years, useful for sorting and aggregating on weeks.
quarter contains the values 0 to 3, describing the first, second, third, or fourth
quarter of the year. season us str describes Winter, Spring, Summer, or Fall,
where season stores a corresponding integer for the seasons, from 0 to 3. date is
a SQL date, without time zones information.

The dimtime dimension contains 8 attributes. Like the dimdate dimension,
it does not contain time-zone information and a timestamp can therefore be used
for both local time and UTC time. The primary keys is a smart key and, e.g., the
timestamp 0:11 has the smart key 11 and the timestamp 12:34 is the smart key
1234. The attributes are the typical time descriptors, e.g., the attributes hour
and minute describe the current time, quarter counts the number of quarters
from midnight, i.e. increments by one every fifteen minutes (0 to 95), five minute
counts the number of ‘five minutes’ from midnight, i.e. increments by one every
five minutes (0 to 287). quarter str and five minute str are textually strings for
these two groupings of fifteen and five minutes. min from midnight is a minute
counter from midnight (0 to 1439), and time is a SQL time without a timezone.
The granularity is one minute. Seconds and sub-seconds are stored as measures
on the factgpsdata fact table. This is to be able to store GPS data collected with
different sampling frequencies, e.g., 0.1, 0.2, 1, 5, or 10 Hz.

Having a finer granularity, e.g., down to seconds, on the dimtime dimension is
not needed for traffic analysis. Separating date and time dimensions is a common
practice [13].

The dimvehicle dimension contains a surrogate key and 9 other attributes.
A vehicle is identified by sourcekey (referencing the dimdatasource dimension)
and vehicleid. The reference to dimdatasource is necessary because vehicleid only
is unique for a certain data source. The other attributes describe general vehicle
attributes. namely make, model, capacity (number of passengers), and weight.
The average km l and average km kwh describes average fuel consumption and is
computed and updated during ETL for vehicles with fuel or electrical measures.

The vehicletypekey references the dimvehicletype dimension. The dimvehi-
cle dimension is sparsely populated as it is hard to get access to such data from
the transportation companies.

The dimfactgpsdata attributes dimension contains 9 Boolean flags com-
puted during the data cleaning fourth each row in the table factgpsdata. Each flag
describes quality characteristics or use cases of a row of data for data profiling [13]
and an attribute can be either true or false, e.g., whether the vehicle is parked,
whether timestamp is valid, or whether a GPS observation can be used for
map-matching. The flags are has speed, correct timestamp, is driving, has fuel,
has electric, and custom speed indicates the quality of data, and the quality
is assisting in determining whether a row is used for which of the three map-
matching methods, usable for point, usable for trip, or usable for trajectory.
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(a) Overlapping Cells (b) Definition of Square Grid

Fig. 3. Handling grids (Color figure online)

The dimweathermeasure dimension is a spatio-temporal dimension that
stores weather measurements referenced by the factgpsdata table. To save space,
dimweathermeasure references dimweatherstation as in a snowflake schema. The
logical schema is therefore not a pure star schema. A weather measure is only valid
for a certain time interval where the start is time defined using the datekey and
timekey columns. The current lifetime of a weather measure is one hour, but this
can easily be reconfigured. The dimension dimweathermeasure references the
dimweatherstation and the dimdate dimensions using weatherstationkey and
datekey, respectively. Each row describes the weather condition at a given station
at a given date and hour, hour. The weather measures available arewind direction,
sky condition, air temperature, dew point temperature, sea level preasure, wind
speed ms, liquid precipitation mm 1 hr, and liquid precipitation mm 6 hr.

The dimweatherstation dimension table stores spatio-temporal informa-
tion on all weather stations. A weather station has a position and is only valid
for a given interval defined by the station begin and station end columns that
are date keys referencing the dimdate dimension. A weather station is identified
by the usaf and wban attributes that are codes defined by the United States Air
Force and the Weather Bureau Army Navy, respectively. coordinate is a geogra-
phy data type that stores the (latitude, longitude) of each weather station. This
is used to find the nearest station nearest. The primary key is a surrogate key.
The station begin and station end describes the dates when a station did start
to report weather data and possible when it stopped reporting weather data.
last updated stores the date for when information of the weather station was
last read from NOAA. usaf and wban are identifiers for weather stations, where
usaf is short for United States Air Force, and wban is short for Weather-Bureau-
Army-Navy. name and country is a name and country for the weather station,
stationid is an optional identifier for the station. geog is a PostGIS geography
data type.

The dimsquaregrid dimension stores a grid representation of UTM coor-
dinates. The grid is created in multiple layers from the most coarse cell size of
100 × 100 km, named 100 km, through 50 × 50 km, named 50 km, 10 × 10 km,
1 × 1 km, 250 × 250 m to the finest cell of 100 × 100 m, named 100 m. The hier-
archy is not strict as the 100 m level is not fully contained by the 250 m level.
This can be seen in Fig. 3a, where one 100 m cell (blue) can exist in either 1,
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2, or 4 different 250 m cells (green). Therefore the finest level, 100 m, cannot
be used as a unique identifier since it can be represented up to 4 times in the
dimension table. A pseudo level is therefore introduced as shown in Fig. 3b. It
has a surrogate key and no further attributes. There is a value for each of the
combinations of the 250 m and 100 m levels.

The dimmunicipalities dimension is a spatial dimension storing contex-
tual information about municipalities and their spatial regions (polygon). The
dimension is pre-loaded and a GPS observation is spatially matched against
the polygon. The dimension contains all municipalities in Denmark and is used
for matching positions with localities. It consists of 5 elements: A code for the
municipality, region code for the code of the region, name of the municipality,
region name for the name of the region, and geog storing a PostGIS geography
polygon.

The dimzipcodes dimension is a spatial dimension for matching GPS obser-
vations with zip-code regions. Zip codes are not related to the dimmunicipality
dimension as one zip code can span several municipalities and one municipality
can span multiple zip codes. Zip codes are intervals, and described by zip start,
zip end, zip, and name for the name of the zip region. The polygon is stored in
a PostGIS Geography column geog.

The dimtimezones dimension is a spatial dimension used when GPS obser-
vations have UTC timestamps. To determine the corresponding local timestamp,
it is necessary to determine in which time zone the GPS observation is in. This
is done by finding the nearest timezone polygon. The tzid attributes describes
the time-zone name and how UTC time is converted to local time.

The map dimension is a structure, that is used as a map dimension when
a new map is loaded. A map is a graph, storing road segments (edges) with
information on intersections (vertices) connecting the road segments. The pri-
mary key is a surrogate key and the segmentid is an non-unique identifier of the
segment (e.g., one OpenStreetMap segment with a single ID might be split into
several segments). startpoint and endpoint describe the connecting vertices of
the segment. meters describes the segment length, minutes describes the travel
time one the segment if it represents a ferry route. segangle describes the com-
pass direction from the startpoint to endpoint. categoryid is an numeric value
describing the category and category is a textual description of the category.
speedlimit forward and speedlimit backward are the speed limits for the forward
and backward directions on the segment. name is the road name, logprime is
the logarithmic value of a unique large prime number, used for when performing
trajectory analysis. Finally, segmentgeo is a PostGIS Geography type storing the
segment as a linestring.

The dimbatchload dimension has one entry for each batch load of data.
The dimension contains 20 attributes. Five attributes describe the performance
of the ETL process and 13 attributes describe the quality of the data. The pri-
mary keys is a surrogate key and the sourcekey is referencing the dimdatasource
dimension, because only data from one data source can be loaded at a time.
file lines read has the number of lines read from raw data files, file lines parsed
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has the number of lines that are recognized and parsed by the data extractor.
duplicates removed tells how many lines are duplicates (exact vehicle and times-
tamp already exists in the data warehouse). Duplicates are simply removed.
data rows inserted describes the total number of rows inserted. Some cleaning
rules are applied, to classify data during ETL. The number of rows, that meets
the different rules of cleaning, is reported to the has speeds, correct timestamp,
is driving, has fuel, and has electric. The custom speed describes, how many rows
speeds were not available on from data source but where the speed could be com-
puted. This can be done, if high-frequency data is available. usable for point,
usable for trip, and usable for trajectory describes how much data is usable for
three different map-matching algorithms. reading started, reading done, clean-
ing started, and cleaning done are timestamps with time zone, describing when
data extraction started and ended, and when cleaning and integrating data
started and ended. etl seconds describes the total running time in seconds for
performing an ETL batch, and description is a short description of the data
source.

The dimsourcefile has a single text attribute that describes the path of
the source file a fact originates from. Since the single attribute is not unique
for each row of factgpsdata, this is located in a dimension [13]. This is useful
for verification, debugging, and analysis of data loads. The dimsourcefile is not
an attribute of dimbatchload to allow a batch load to include data from several
source files.

The dimdatasource dimension describes the data sources available as sev-
eral organizations provide data. Each data source has a different data format
(column in a CSV or XML file) and data is handled fairly differently. The iden-
tifier is a textual identifier for a data source, etl plugin describes which ETL
plugin is used, and etl postprocess plugin is an optional plugin, that can be exe-
cuted after data is loaded. The description is a short description of the data
source.

3.2 Fact Table

The factgpsdata fact table contains one row for each GPS observation. All GPS
data is represented here. This means that even though some data is classified as
being invalid, e.g., due to a timestamp in the future, it is still being stored in the
data warehouse for analytical purposes. Note that due to the metadata stored,
it is easy to include/exclude such data when doing analysis.

The fact table references all the dimensions, see Fig. 2. The table has the fol-
lowing columns: First, there is a unique id. The id is included to make it possible
to reference a fact from another fact table (we do this in other work outside the
scope of this paper). The id is followed by the dimension references. utc datekey
and local datekey reference the dimdate dimension to represent the UTC date
and the local date, respectively. Similarly, utc timekey and local timekey stores
the UTC time and the local time, respectively.

The weathermeasurekey is added during ETL transformation but it may hap-
pen that the external weather entry is not yet available. Therefore this fact table
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can contain early arriving facts [13] which are updated later when the weather
entry becomes available. The source data is identified by a dimension reference
in sourcefilekey and a degenerate dimension [13] in sourcefileline.

After the dimension references, the GPS observation data is represented. The
coordinate is a latitude/longitude, which is a fixed-size data type that stores lati-
tude and longitude coordinates. This is useful because it enables us to use a range
of spatial functions for analysis. The seconds is an addition to the utc timekey
and local timekey, where the seconds and milliseconds of a timestamp is stored
as a real value.

The complete timestamp is stored in timestamp, which is useful for sorting
data and to calculate the vehicle’s (average) speed between two GPS observa-
tions. Eight measures from the CAN bus system can be represented. The four
measures (“ev ”) are values only available from electric vehicles.

4 Data Cleaning Method

In this section, we describe how data is prepared to produce the results presented
in Sect. 5. The data foundation presented in Sect. 2 is referenced intensively in
this section. We use the dot-notation to access a specific attribute in a tuple,
e.g., ri.lat denotes the latitude of a GPS record ri.

The cleansing method consists of three steps. First, a GPS record is map-
matched to the road network. Second, the record is matched to a weather obser-
vation. Finally, from the matched points P and the weight W associated with
each edge in the graph G are computed. We describe these three steps in the
following. Again part of the description is from previous work.

4.1 Map-Matching

Informally, a GPS record r ∈ H is map-matched to the nearest edge emm ∈ E.
The GPS records of H are low-frequent with a sampling rate of 15–60 s between
each record, thus a trajectory cannot be reconstructed from a set of GPS records.
A record is map-matched with the conditions that 1) the distance between emm

and r is maximum 25 m and 2) that the angle difference between emm and r is
up to 22.5◦. However, because GPS devices generally have problems computing
the compass directions at low speed there is the additional condition that if the
speed is below 2 km/h then the edge that the previous position record in H was
map-matched to is reused for the current record.

The values 25 m, 22.5◦, and 2 km/h have been found by analyzing one month
of GPS data. Figure 4a shows how many GPS records can be map-matched when
limiting the allowed distance between emm and r. It can be seen, that allowing
a distance of up to 5 m will accept 77% of data to be map-matched, while if
allowing up to 25 m will accept 97% of data to be map-matched.
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Fig. 4. Analysis of map-matching parameters

Figure 4b shows how many GPS observations are accepted when limiting the
angle offset between a emm and r, searching within a 25 m radius. By allowing an
angle offset of up to 22.5◦ a total of 76% of GPS measurements can be matched
to a road segment.

Using an offset angle of 22.5◦ Fig. 4c shows how many GPS records are
accepted by this angle at different speeds. It can be seen that the course of
GPS positions have some imprecision at low speeds. A threshold of 2 km/h has
been chosen when using the GPS course.

The algorithm for map-matching the GPS records r in a history H to the road
network G is described in Algorithm 1. The input to the map-matching algorithm
mm is a history H of GPS records and a road network (a map) G. An empty
matched history ĥ is created. Then the records ri in the history H are mapped
in sequential order. For each record ri the function nearest neighbor finds the
nearest edge emm in G. However, the distance between the GPS record and emm

must be less than 25 m and the angle between the ri.course and emm.course
must be less than 22.5◦. If these two conditions are not fulfilled it is checked if
the speed is below 2 km/h. If yes, then the edge of the previous point is reused
for pi. Otherwise, the GPS record ri is discarded and is not a part of ĥ.

We denote the distance between a position record, p ∈ P , and a road seg-
ment, e ∈ E, as dist(p, e). Concretely, we use the Euclidean distance in the
implementation.

The angular difference angle between two position records, where p ∈ P ,
e ∈ E is defined as follows.

angle(p, e) =

{
|p.course − e.course| if |p.course − e.course| ≤ 180
360 − |p.course − e.course| otherwise

4.2 Weather Class

To determine the weather’s impact on travel time we also match each GPS record
to the weather class at the nearest weather station at the time the GPS record
was recorded. The work presented here is a generalization and an extension of
existing work [5].
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Algorithm 1. Map-Matching Algorithm

function mm(H,G) //H=GPS record history, G=map
ĥ ← [ ]
for all ri ∈ H do

pi.r ← ri //pi stores map-matched information for ri
emm ← nearest neighbor((ri.lat, ri.lon), G)
if dist(ri, emm) ∧ angle(ri.course − emm.course) < 22.5◦ then

pi.e ← emm

else if ri.speed < 2km/h ∧ pi−1.e = emm then
pi.e ← emm

else
continue //Skip this record

end if
ĥ.append(pi)

end for
return ĥ

end function

The algorithm for matching a position to a weather observation is listed in
Algorithm 2. It takes a map-matched history Ĥ, produced by Algorithm 1, and
the set of weather stations S as input. For each point pi the nearest weather
station is found. If this weather station is more than 200 km away the point is
removed from Ĥ. Otherwise, the weather observation, omm, valid at the nearest
station, smm, is found and assigned to the observation attribute of the pi point.
Note that Algorithm 2 is a procedure that changes the parameter Ĥ and does
not have an explicit return value.

To study the effects of the wind, we define three wind attack classes, that is
tailwind, crosswind, and headwind. The three classes are defined by an angle β
describing the accepted offset from direct tailwind, crosswind, or headwind.

Figure 5 illustrates the angles, βt for tailwind, βc for crosswind, and βh for
headwind. The yellow arrow illustrates a vehicle and its driving direction. When
the angle between the driving direction and the wind is less than βc the wind
is classified as tailwind. When the angle between the opposite direction of the
driving direction and the wind direction is less than βh then wind is classified as
headwind. When the angle between the perpendicular direction of the driving
direction and wind direction is less than βc then the wind is classified as cross-
wind. The mean wind speed is classified into four speed groups. These groups are
1–5 m/s, 6–10 m/s, 11–15 m/s, and 16- m/s. These groups describe calm, light,
moderate, and heavy wind conditions.

4.3 Speedmaps

The results presented in Sect. 5 are based on speedmaps, which are the weighted,
directed graph presented in Sect. 2. In this section, we describe how the weights
W are added to a graph G.

Vehicles that move slowly will produce more GPS records on an edge
(road segment) than vehicles that move fast. To avoid the slow-moving vehicles
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Fig. 5. Wind direction identifiers

Table 2. Time-of-day intervals

Interval Name

00:00–06:00 free-flow

06:00–07:30 non peak

07:30–08:15 morning peak

08:15–15:00 non peak

15:00–16:30 afternoon peak

16:30–20:00 non peak

20:00–24:00 free-flow

Algorithm 2. Weather-Matching Algorithm

procedureweather-match(Ĥ, S) //Ĥ=Map-matched history, S=weather stations
for all pi ∈ Ĥ do

smm ← nearest station((p.r.lat, p.r.lon), S)
if dist(smm, p.r) > 200km then

Ĥ.remove(pi)
continue //Weather station too far away

end if
omm ← weather at station(smm, p.r.time)
ĥ.o ← omm

end for
end procedure

weighing too much, the GPS records for a single vehicle that traverses an edge
is grouped and the average speed for the GPS records is computed. The idea is
shown in Fig. 6. Here the triangles illustrate GPS records from a slowly moving
record and the circle illustrates a single GPS record from a fast-moving vehicle.
The speed of the fast-moving vehicles is directly associated with the edge e1. For
the slow-moving vehicles, only the average speed of the GPS records are associ-
ated with the edge. We showed earlier, that more than 90% of the map is covered
by GPS data. To cover the remaining segments, with no GPS coverage, we have
implemented a trivial spatio-temporal smearing algorithm, where speeds from
similar road segments are utilized. Further description is omitted due to space
limitations.

We only use GPS records from workdays, i.e., Monday through Friday, and
due to congestion, we split the time-of-day into the non-overlapping time inter-
vals shown in Table 2. These time intervals are developed in association with
road authorities and can easily be changed.

The time-intervals are used to create an average speed within an interval,
i.e., four intervals in total for each edge. Thus for each edge, the weight W is an
array with four values, which are the average speed in the intervals, free-flow,
non peak, morning peak, and afternoon peak.
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Fig. 6. Weighted average for speed

The speed for the time intervals is used to study the relation between con-
gestion and weather class. To do this we introduce a congestion level, C, shown
by Eq. 1.

C =
vfree-flow − vmorning peak

vfree-flow
(1)

C is zero there is no congestion on an edge and when C is 1 the traffic has
come to a complete stop. The congestion level is calculated from the relative
speed difference between free-flow speed, vfree-flow, and morning peak speed,
vmorning peak.

5 Results

The results related to weather are presented in a top-down manner. We first
analyze the weather implications on the entire road network, next the focus is to
compare weather impact in urban versus rural areas. Finally, the weather impact
on individual streets is examined.

Next, the impact of congestion and weather is studied. All trips with weather
information from 2014 are analyzed with respect to different weather conditions.
Wind effects on the traffic are studied to determine the impact of the wind attack
angle and then selected road segments are analyzed to determine the impact of
tail-, cross-, and headwind.

5.1 Weather Classes to Include

Denmark is a country with limited climatic differences between regions. The
climate is temperate coastal climate, i.e., often mild winters, approximately 120
days of precipitation annually, and rarely dangerous weather, e.g., hurricanes and
tornadoes. Figure 7 shows the distribution of GPS reports from vehicles within
eight weather classes. Denmark is dominated by dry weather and rain, along
with some periods of fog and snow. Due to this uneven distribution only the top
four classes, dry, fog, rain, and snow, are used for further analysis. Freezing ppt.,
drifting, thunder, and tornado are removed from the rest of the weather analysis
as they rarely occur.

From Fig. 8 it can be seen that snow is typically present from November
through March, while fog is fairly evenly distributed over the year. Dry and rain
are varying across the seasons from year to year. February, March, October, and
November are the driest months with more than 50% of observations being Dry.
Most of the months the observations are fairly evenly distributed between being
Dry and Wet or Snow having August and December with less than 40% Dry
weather. Fog is present in 5–10% of the observations and Snow observations are
mainly present from November through March.
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Fig. 7. Weather distribution
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Fig. 9. Average speed on road categories in different intervals

Road Categories and Weather. The average speeds on all roads in an entire
road network is a good indicator of the weather’s impact in general.

Figure 9a shows the average speed on the four road categories in non-peak
intervals, depending on different weather classes. It can be seen that dry, fog, and
rain are very comparable and the speed only varies 2% on all road categories.
Snow has an impact of up to 8% on motorway, secondary, and tertiary. On
residential roads, there is no measurable impact of snow. The effects are similar
when looking at the morning peak, Fig. 9b, and the afternoon peak, Fig. 9c,
where dry, fog, and rain are comparable, while snow leads to increased lower
speeds in morning traffic.

Road Categories and Temperature. The relation between temperature and
average speed on the road categories are relevant to examine to determine if they
are related. Figure 10 shows the distribution of weather observations depending
on the temperature. This figure shows that snow is most likely to occur between
0 and −6 ◦C. When temperatures drop below −6 ◦C the number of observations
with precipitation decreases while fog increases below −6 ◦C.

Figure 11 shows the average speeds on the four road categories at different
temperatures, ranging from −15 to +25 ◦C. It can be seen that from +3 to
+25 ◦C there is little or no variation while below 3 ◦C there is a decline in the
speed of 5–9% on all road categories. The drop in speed is most likely due
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Fig. 12. Regional average speeds

to an increased risk of frosty and icy roads. Also, sleet and snow occur when
temperatures get close to or less than 0 ◦C.

In general, it can be seen that speed drops when the temperature gets close
to 0 ◦C, but when temperatures drop below −10 ◦C the speed on motorway
and tertiary increases by 2–3 km/h. This can be due to snow and sleet mainly
occurring between −6 and +2 ◦C, which can be seen in Fig. 10.

Regional Impact. We study the impact of weather in the four largest cities
in Denmark and compare these to all urban and all rural areas. Morning peak
interval will be the outset for analyzing the changes in speed.

Figure 12a shows that the motorway speed varies significantly across the
regions. In Copenhagen and Odense dry weather leads to increased speeds, while
for the rest of the regions the weather impact is very limited. Secondary roads,
Fig. 12b, have different speeds over the different regions, while weather impact
is very limited, except for fog, which shows a tendency to slightly faster speeds.
The speed on Tertiary and residential roads, Fig. 12c and Fig. 12d, is limited
affected by the weather.

There are regional differences in speeds, which makes it clear that road
category comparisons should be done carefully. There is only a little differ-
ence between dry weather and rain. Fog tends to, unexpectedly, show increased
speeds, which can be due to fog can be a very local phenomenon and weather
stations covers a relatively large area.
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Fig. 13. Speed at congestion level

Congestion Impact. Congestion is an everyday phenomenon for many drivers.
Here we determine whether the average speeds at different weather classes are
dependent on the congestion levels, described by Eq. 1.

Figure 13a shows the average speed in morning traffic on motorways. The
x-axis shows the congestion levels and four weather classes are present for each
interval. A congestion level of 0.1 means a half-open interval of [0.1,0.2). The
average speed decreases almost linearly for all weather classes, but as congestion
level increases the weather classes ends up with similar speeds at a congestion
level around 0.6. Congestion levels above 0.6 only have little data. Secondary
and tertiary roads, Fig. 13b and Fig. 13c, show similar results where the gap
between the average speeds closes in as congestion levels increase. Residential
roads, Fig. 13d, indicates that there is limited difference between the four weather
classes.

In general, it can be seen from the results that as congestion increases the
impact on different weather classes decreases. Congestion can though be seen as
a primary factor here and weather impact becomes a minor factor.

Speed Distribution. The average speed on a road segment is an indication
of how fast the average vehicle is driving but does not tell anything about the
distribution of the speeds. Four road segments have been selected for detailed
analysis in Fig. 14, two motorway segments, a rural segment, and an urban seg-
ment. All four segments are analyzed using data from Monday through Friday
between 9 a.m. and 14 p.m.

For each boxplot, a blue box shows the quartiles and a red line the median.
The red square shows the mean and the whiskers and fliers show the reach past
the first and third quartile of 1.5 (upper whisker is Q3 + 1.5 ∗ (Q3 − Q1)). From
Fig. 14a through Fig. 14d it can be seen that for all four road segments there is
little to no variation between the speed distribution between dry, rain, and fog.
Speeds at snow are in general a bit slower but the quartiles show no increased
variation in the data, except for outliers with high speeds when snow.

Road Stretch Analysis. While aggregated analysis is good at providing an
overall view of the weather’s impact, more detailed analysis can give a deeper
insight on individual road. We study the weather’s impact on four different
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Fig. 14. Vehicle speed statistics (Color figure online)

Table 3. Travel minutes on weather conditions

Type Trips Weather speedmap, min. Baseline Speedmap, min. Relative gain

Dry 434,027 8,205,992 8,295,145 −1.07%

Fog 77,265 1,512,784 1,536,979 −1.57%

Rain 418,827 7,794,186 7,848,050 −0.69%

Snow 50,319 985,827 919,851 7.17%

Total 997,578 18,498,789 18,600,025 −0.54%

motorway stretches, labeled M1 through M4, two rural stretches, labeled R1 to
R2 and four urban stretches, labeled U1 through U4.

Figure 15 shows heat maps of the routes in the morning traffic, where D is
Dry, F is Fog, R is Rain, and S is Snow. Dry speeds are the baseline speeds
and the cells are colored by their relative difference to dry speed, that is the
percentage for each weather class. Yellow/red indicates slower speeds and dark
green/blue indicates faster speeds than dry weather. Figure 15a shows only lim-
ited impact by rain for all routes. Fog shows a significant impact on three routes,
M2, M3, and U1, while only limited impact for the remaining seven routes. Only
snow causes a significant reduction in speed by up to 13.8% for the M1, M3, M4,
R1, and R2. The urban roads are only affected by snow in a less degree. Morn-
ing peak speeds, Fig. 15b, shows that fog is quite often faster than dry weather.
Speeds while snow are more impacted and reduced by up to 27%. Afternoon
peak speeds, Fig. 15c, also shows tendencies to faster speed at fog similar to
non-peak, with relative speed differences of up to 16%.

When comparing road stretches it is interesting that afternoon peak is more
closely related to non-peak intervals than morning peak. This is probably due
to that morning peak traffic is more condensed where the afternoon peak traffic
is stretched over a longer interval.

Trip Analysis. A set of trips are examined to study how the travel time is
affected by the weather conditions. The travel time in dry weather conditions is
used as the baseline (Table 4).

Table 3 shows that the trips are divided into mainly dry and rain. The
weather speedmap is 0.7 to 1.6% faster than the baseline speedmap for trips
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Table 4. Road stretches to analyze

ID Km Description ID Km Description

M1 98.4 Aalborg - Aarhus R2 13.6 Mou - Aalborg

M2 16.1 Koege - Copenhagen U1 5.7 Aarhus North - C

M3 13.4 Farum - Copenhagen U2 2.6 Aalborg O2 East - West

M4 19.9 Tylstrup - Aalborg U3 9.4 Aarhus O2 South - North

R1 13.1 Aalborg - Mou U4 9.5 Aarhus O2 North - South

D F F % R R % S S %
M1 111 107 -3.8 111 -0.3 103 -7.5
M2 86 90 5.1 88 2.3 86 0.4
M3 85 95 11.4 89 4.5 75 -12.3
M4 101 99 -1.9 100 -0.6 88 -13.2
R1 82 81 -0.9 82 0.1 70 -13.8
R2 77 77 0.4 77 0.7 66 -14.2
U1 48 44 -7.9 48 -0.6 44 -6.9
U2 38 38 0.4 37 -0.3 35 -6.4
U3 45 46 0.6 45 -1.1 43 -5.3
U4 46 47 1.9 45 -1.1 44 -4.9

(a) Non Peak

D F F % R R % S S %
M1 110 106 -3.5 109 -0.7 98 -10.2
M2 60 91 50.3 58 -3.6 55 -9.5
M3 75 93 23.9 77 1.9 57 -23.7
M4 87 77 -11.3 86 -0.9 71 -18.2
R1 80 81 1.7 80 -0.4 67 -16.7
R2 70 76 9.2 71 2.5 50 -28.1
U1 35 46 32.1 32 -8.4 30 -12.2
U2 32 33 1.5 31 -3.4 27 -15.2
U3 37 44 20.3 34 -6.0 30 -17.0
U4 39 45 15.7 38 -4.2 33 -15.5

(b) Morning Peak

D F F % R R % S S %
M1 111 106 -4.2 110 -0.6 102 -8.1
M2 96 100 4.7 94 -1.9 94 -2.1
M3 92 95 2.8 88 -3.9 83 -9.7
M4 102 99 -3.4 100 -2.1 86 -16.2
R1 80 78 -2.4 81 0.9 68 -14.6
R2 78 76 -2.3 77 -1.5 69 -11.6
U1 47 47 0.6 47 -0.2 45 -5.1
U2 33 34 1.9 34 0.8 30 -8.7
U3 40 44 11.9 38 -4.1 37 -6.2
U4 39 46 16.1 39 -1.1 37 -6.8

(c) Afternoon Peak

Fig. 15. Weather impact on road stretches (Color figure online)

during dry, fog, and rain conditions. During snow the weather-dependent
speedmap yields 7.2% longer travel time compared to the baseline speedmap.
When summing up all trips it shows that if weather-dependent speedmaps are
used, compared to a non-weather speedmap, a total reduction in travel time of
0.5% can be expected when planning trips, that is a saving of approximately
101 K travel minutes.

5.2 Wind Analysis

This section studies the impact of the wind. The impact will be measured by the
average speed on different conditions. The wind is classified into four groups, as
shown by Table 5, where the number of GPS records for every wind-speed class
can be seen. The wind speeds are mean wind and gusts of stronger speed are
likely to occur.

Effect of Wind. To analyze the impact of wind we will study the wind impact
on motorway segments as vehicles tend to have relatively stable speeds on these
segments.

Figure 16a shows the effect of tailwind on motorway stretches. The figure
shows that the speed is slightly affected by the angle of the wind used. A nar-
rower angle means only a very direct tailwind is accepted, while a broader angle
means accepting more crosswind. Accepting a wider angle only yields a decreased
speed of 1 km/h, except for very strong winds where speeds decrease by 2 km/h
going from a β of 10 to 90. Figure 16b shows the impact of increasing the angle
for accepting crosswinds. It can be seen that for winds of 11–15 and 16- m/s there
is an impact when increasing β, thus accepting evenly more tail- and headwind.
It can be seen that a wider angle yields faster speeds for 16- m/s winds, which
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(a) Tailwind (b) Crosswind (c) Headwind

Fig. 16. Wind impact

Table 5. Wind
classes

M/s Obs.

0 59.3M

1–5 1,012M

6–10 513M

11–15 43.7M

16– 2,6M

indicates tailwind has a stronger effect than headwind. Figure 16c shows accept-
ing more crosswind has a little impact in speed, mainly at 16- m/s, though speed
is only varying 1 km/h.

Due to the analysis of the wind attack angle, we decide on an angle (β) of
45◦. That yields a total angle of 90◦ head and tailwind while crosswind covers
90 degrees to the left of the vehicle and 90◦ to the right of the vehicle, thus
180◦. Comparing Fig. 16a through Fig. 16c it can be seen, that for wind speeds
≤10 m/s there is no significant difference between tail-, cross-, and headwind,
while stronger winds of 11–15 and 16- m/s indicate faster speeds of tailwind than
crosswind and faster speeds of crosswind than headwind.

Vehicle Type Impact. Two road segments have been selected for performing
detail analysis of the wind impact, along with an aggregated analysis on all
motorwaysegments, Fig. 17. The driving direction is indicated in the caption, N
for North, E for East, and so on.

In general, it can be seen, that vehicle speed decreases at crosswind and
headwind when the wind speed increases. Figure 17e shows though that this road
stretch is not impacted by wind, except at wind speeds of 11 m/s or stronger.
Tailwind show tendencies to often result in slightly increased speeds. Figure 17a
indicates that cars traveling at faster speeds than minibuses and wind speed only
have limited influence. The same tendency shows at Fig. 17b through Fig. 17e,
where cars and minibuses show comparable speeds while they only show little
impact by the wind speed. The two motorway bridges at Fig. 17c and Fig. 17d
indicates that there are slightly faster speeds when tailwind is available and as
cross and headwind increases the speed is reduced. The primary road, Fig. 17e
shows that minibuses are driving faster than cars at this stretch, though when
wind increases in strengths the headwind of minibuses have an impact and speed
is reduced by 5 to 10 km/h at 11 and 12 m/s. Finally, Fig. 17f shows all motorway
stretches combined. Here there is a clear tendency to that when wind increases
in strength, from 5 m/s and up, the speed decreases slightly. This is the case
for both cars and minibuses for both head, cross, and at some extend tailwind,
though do tailwind seems to be less impacted.



90 K. Torp et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Wind speed (m/s)

70

80

90

100

K
m

/h

Tail
Cross
Head

(a) Motorway, Vejle, S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Wind speed (m/s)

90

100

110

120

K
m

/h

Tail
Cross
Head

(b) Motorway, E39, N

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Wind speed (m/s)

75

85

95

105

K
m

/h

Tail
Cross
Head

(c) Motorway, E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Wind speed (m/s)

75

85

95

105

K
m

/h

Tail
Cross
Head

(d) Motorway, Ll.baelt, W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Wind speed (m/s)

65

75

85

95

K
m

/h

Tail
Cross
Head

(e) Rural, W

0 2 4 6 8 10 12 14 16 18 20 22
Wind speed (m/s)

80

90

100

110

K
m

/h

Tail
Cross
Head

(f) All Motorways

Fig. 17. Speed and wind relation

6 Related Work

The field of analyzing weather impact on vehicle speeds have been studied for
years. Most existing work, [1,4,8–10,14,15,18–21,23], utilizes induction loop
detectors to obtain traffic data. The works study the impact of weather on travel
time, traffic flow, and traffic levels. In general, they find that rain has a varying
impact on travel time while snow can have a great impact. As the studies are
limited to induction loop detectors, the studies are mainly on single or few road
segments. Most of the work utilizes data for shorter periods, weeks or months,
while some have data for multiple years.

In contradiction to using loop detectors, [22] uses an Automated Number
Plate Recognition (ANPR) system for obtaining similar results for London,
showing that temperatures below 0 ◦C imply delays and the intensity of rain
and snow can impact speeds.

GPS data has been utilized by [25] where 8,000 taxis provide 800,000 records
over 4 months in Hongzhou, China. They propose a prediction framework and
while doing so they analyze weather impact. Another work, [24], utilizes 10 M
GPS records over 2 months from 1,570 taxis in Nagoya City, Japan.

Existing work for analyzing weather impact on road networks often suffer
from at least one of two factors. Firstly, most related work only utilizes data for
shorter periods, e.g., a few months, making the analysis suffering from seasonal
variations. Secondly, existing studies only perform analysis on reduced samples
of a road networks, either due to fixed measuring stations (loop detectors, ANPR
detectors, etc.) or spatially limited extent of GPS data.
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7 Conclusion

This paper presents a large-scale nation-wide study of how weather impacts the
speed in road networks. 1.6 billion GPS data is collected from 10,560 vehicles over
five years from 2010 through 2014 across all of Denmark. The data is integrated
with OpenStreetMap and detailed weather information from NOAA.

A generic data model is presented which has a global scope and is applicable
if a set of GPS data and a road network graph is present.

Using the weather classes dry, fog, rain, and snow we show that snow has the
greatest impact, primarily on motorway, secondary, and tertiary roads with a
reduction in speed of up to 27%. Residential roads show only little to no impact
on snow. For the other weather classes (dry, fog, and rain) there are only smaller
differences across all road categories.

Analyzing regional differences we show that the weather impact is different
between cities. Congestion and snow both affect speed negatively. However, at
higher congestion levels there is little difference between snow and the other
weather classes. The outside temperature is correlated with speeds, as low tem-
perature implies up to 9% reduction in speed. Similarly, we show that wind can
reduce speeds with up to 19%.

In conclusion, to compute or predict the average speed accurately it is nec-
essary to take into consideration, the three factors, weather class, temperature,
and wind speed.

Acknowledgment. This paper is partly based on papers coauthered with Benjamin
B. Krogh and Christian S. Jensen.
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Abstract. Many problems in machine learning can be expressed by
means of a graph with nodes representing training samples and edges
representing the relationship between samples in terms of similarity, tem-
poral proximity, or label information. Graphs can in turn be represented
by matrices. A special example is the Laplacian matrix, which allows us
to assign each node a value that varies only little between strongly con-
nected nodes and more between distant nodes. Such an assignment can
be used to extract a useful feature representation, find a good embedding
of data in a low dimensional space, or perform clustering on the original
samples. In these lecture notes we first introduce the Laplacian matrix
and then present a small number of algorithms designed around it for
data visualization and feature extraction.

Keywords: Dimensionality reduction · Embedding · Clustering ·
Spectral graph theory · Laplacian matrix · Laplacian eigenmaps
(LEM) · Locality preserving projections (LPP) · Spectral clustering

1 Intuition

The Laplacian matrix can be used to model heat diffusion in a graph. Its theory
can thus be understood intuitively with the help of the heat diffusion analogy.1

1.1 Heat Diffusion Analogy of Laplacian Eigenmaps

First consider a very simple heat diffusion analogy for nonlinear dimensionality
reduction from 2D to 1D with the Laplacian eigenmaps algorithm. Fig. 1 (left)
shows seven points in 2D, labeled A through G. Their position might not be very
meaningful but we assume that we have some similarity function that induces

L. Wiskott—This contribution is a modified version of [13].
1 This section is meant to give an intuitive introduction into the Laplacian matrix,

Laplacian eigenmaps, and spectral clustering. It is not necessary to understand the
remainder of the lecture notes but hopefully makes it easier. If you are short on time
and rich in math and machine learning background, you might prefer to skip it.

c© Springer Nature Switzerland AG 2020
R.-D. Kutsche and E. Zimányi (Eds.): eBISS 2019, LNBIP 390, pp. 93–119, 2020.
https://doi.org/10.1007/978-3-030-61627-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61627-4_5&domain=pdf
http://orcid.org/0000-0001-6237-740X
https://doi.org/10.1007/978-3-030-61627-4_5


94 L. Wiskott and F. Schönfeld

relationships between these points. This results in a simple undirected graph
with seven nodes and six edges in this example. We see already that the graph
is a simple linear graph, a chain, but in high dimensions with many more nodes
and a slightly more complicated structure, this might not be so obvious anymore.
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Fig. 1. Heat diffusion analogy of the Laplacian eigenmaps algorithm.

The heat diffusion analogy now says that nodes are considered heat reservoirs
and heat can diffuse from one node to neighboring nodes via the edges, but no
heat gets lost or added. So, let us randomly initialize the nodes with arbitrary
temperatures, Fig. 1 (middle). What happens if we wait? Well, it is obvious
that heat diffuses from warmer to colder nodes until temperature has balanced
out completely. It is also obvious that local temperature differences balance
out quickly, while global temperature differences between distant nodes (distant
in terms of the graph connectivity) take more time to balance out. So if one
measures the temperatures quite late in the process, one finds a distribution like
the one shown in Fig. 1 (right). One end of the chain is slightly warmer than
the other end, and from one end to the other there is a monotonic decrease
of temperature. This is interesting, because if one now plots the seven points
again, but now in a 1D space according to their temperature, one gets the plot
in Fig. 1 (bottom right). The points are nicely ordered by their position in the
linear graph. This is much better for visualization and interpretation and possibly
further processing of the points, since the position in space now reflects similarity
relations well. (The details of the spacing reveal a flattening of the temperature
profile towards the ends, an effect that takes more effort to understand intuitively
and is beyond the scope of this introduction.)

This is essentially how the Laplacian eigenmaps algorithm works, except that
one does not really use heat diffusion but finds the resulting heat distribution
analytically in a more efficient and robust way. It is also possible to map the
points into a 2D or even higher-dimensional space by taking more than one heat
diffusion mode into account.
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1.2 Heat Diffusion Analogy of Spectral Clustering

For a heat diffusion analogy of spectral clustering consider a different connectiv-
ity of the graph, like the one shown in Fig. 2 (left). The difference to the example
above is that now the graph has two disconnected subgraphs. No heat can diffuse
from one subgraph to the other. If one waits long enough, the temperature within
each subgraph has completely balanced out, but the two subgraphs have differ-
ent temperature, because there is no edge between them, Fig. 2 (right). If one
now plots the seven points in a 1D space according to their temperature, Fig. 2
(bottom right), all points of one subgraph cluster at one value and the points of
the other subgraph cluster at another value. Thus, in this space separating the
two subgraphs is trivial.
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Fig. 2. Heat diffusion analogy of spectral clustering.

This is essentially how spectral clustering works. In real data the clusters,
i.e. subgraphs, might not be completely disconnected, but with some tricks one
can also deal with that.

The first step in spectral clustering is the Laplacian eigenmaps algorithm
applied under the assumption that the graph consists of disconnected subgraphs
and therefore results in clusters in the embedding. The second step in spectral
clustering then discovers these clusters and partitions the nodes accordingly.

The graphs in Figs. 1 and 2 in the x1-x2-plane (not the embedding on the
h-axis, of course) are drawn in a way that the position of the nodes actually has
no meaning at all. This is to emphasize that the edges are the only thing that
matters for the result of Laplacian eigenmaps and spectral clustering. In real
world examples, however, spatial proximity often plays an important role and
edges are preferably inserted between neighboring data points.
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1.3 Heat Diffusion Equation for Connected Heat Reservoirs

How can we model heat diffusion mathematically, and how can we figure out the
relevant temperature distributions analytically? Heat diffusion is a continuous
process, so we need a differential equation (DE) for it. Since we consider heat
diffusion between a discrete set of heat reservoirs rather than on a continuous
medium, the DE is a system of ordinary DEs and not a partial DE. It is linear,
e.g. if you have twice as much heat, diffusion will be twice as strong. And it is
homogeneous, because if there is no heat, then there is no diffusion. Thus we
consider the following system of ordinary linear DEs

ḣ(t) = −Lh(t) (1)

⇐⇒ ḣ1(t) = −L11h1(t) − L12h2(t) − L13h3(t) (2)

∧ ḣ2(t) = −L21h1(t) − L22h2(t) − L23h3(t) (3)

∧ ḣ3(t) = −L31h1(t) − L32h2(t) − L33h3(t) (4)

spelled out for three heat reservoirs, where h(t) is a nonnegative vector rep-
resenting the temperatures of the nodes as a function of time. L is a matrix
representing the heat diffusion between the nodes, and it will be explained in a
moment.

Readers not so familiar with differential equations might find it easier to
consider the temporally discretized version of it,

h(t + Δt) − h(t)
Δt

= ḣ(t) (for Δt → 0) (5)

(1)
= −Lh(t) (6)

⇐⇒ h(t + Δt) = h(t) − ΔtLh(t) (7)
= (I − ΔtL)h(t) (with identity matrix I) (8)

⇐⇒ h1(t + Δt) = h1(t) − Δt(L11h1(t) + L12h2(t) + L13h3(t)) (9)
∧ h2(t + Δt) = h2(t) − Δt(L21h1(t) + L22h2(t) + L23h3(t)) (10)
∧ h3(t + Δt) = h3(t) − Δt(L31h1(t) + L32h2(t) + L33h3(t)) (11)

which is an approximation of the differential equation ḣ(t) = −Lh(t), which is
exact for Δt → 0.

1.4 Laplacian Matrix

In either case, it is clear that L is responsible for any change of h and that
the physics of the heat diffusion process imposes constraints on L. If L = 0
then h(t) is constant, which would correspond to three disconnected nodes (=
heat reservoirs) that do not exchange any heat. A negative Lij indicates that hi

increases proportional to hj with factor −Lij . A positive Lij indicates that hi

decreases proportional to hj with factor −Lij .
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We want that no heat gets lost or added to the system, thus
∑

i Lij = 0
must be fulfilled, as one can easily verify by setting ḣ1(t) + ḣ2(t) + ḣ3(t) = 0 or
h1(t + Δt) + h2(t + Δt) + h3(t + Δt) = const for any values of h1(t), h2(t), and
h3(t). Since the heat one node gains must come from some other nodes, one can
say that −Lijhj (with negative Lij) indicates the amount of heat node i gains
from node j for i �= j. The term −Ljjhj (with positive Ljj) indicates how much
heat node j looses to the other nodes.

If we consider the situation that all three nodes are connected and one node,
say Node 1, is hot and the other two nodes are absolutely freezing, i.e. h2 =
h3 = 0 (Kelvin not Celsius) then initially only L11, L21, and L31 matter. It is
intuitively clear that in this situation heat diffuses from Node 1 to Nodes 2 and 3,
i.e. h1 decreases and h2 as well as h3 increase proportionally to h1. This implies
0 < L11, indicating that Node 1 looses heat, and L21, L31 < 0, indicating that
Nodes 2 and 3 gain heat from Node 1. If a connection would be absent, e.g.
between Nodes 2 and 1, then no heat diffuses between these two nodes and the
corresponding entry is zero, L21 = 0. If a node, let say Node 1, is not connected
to any other node, then it cannot gain or loose heat at all, resulting in L11 = 0.
Thus, by symmetry arguments we have 0 ≤ Lii and Lij ≤ 0 ∀j �= i.

Finally, it is clear that if two different nodes i and j have same tempera-
ture, hi = hj , then the heat −Lijhj diffusing from node j to node i equals the
heat −Ljihi diffusing from node i to node j, because otherwise one node would
spontaneously become warmer and the other cooler, which would allow us to
build a perpetual mobile. This implies Lij = Lji. Please notice here that if two
connected nodes have same temperature, it does not mean that no heat diffuses
from one to the other, it only means that the heat flows cancel out each other.

If we summarize the insights above we find that

Lij = Lji (L is symmetric) (12)
∑

i

Lij
(12)
=

∑

j

Lij = 0 (rows and columns add up to zero) (13)

Lii ≥ 0 (diagonal elements are non-negative) (14)
Lij ≤ 0 ∀j �= i (off-diagonal elements are non-positive)

(15)

An example of a matrix with all these properties is

L =

⎛

⎝
0.2 −0.2 0

−0.2 1.0 −0.8
0 −0.8 0.8

⎞

⎠ (16)

The corresponding graph is shown in Fig. 3.

1.5 Solution of the Heat Diffusion Equation

For a given square matrix L, the solutions to the so-called eigenvalue equation

Luα = γαuα (17)
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are called eigenvectors uα and eigenvalues γα. Normally, when multiplying a
matrix with a vector the matrix changes length and direction of a vector. Eigen-
vectors are special in that they are changed only in length but not in direction,
thus the effect of the matrix can be expressed by simply multiplying with a
scalar, which is what Eq. (17) represents. Equations that are originally written
with matrices can thus simplify significantly for eigenvectors, which makes it
often very useful to represent normal vectors as linear combinations of eigenvec-
tors.

Assume the eigenvectors uα and eigenvalues γα of the Laplacian matrix are
known and ordered such that γ1 ≤ γ2 ≤ ... ≤ γI . It turns out that all eigenvalues
are non-negative (Property 〈4〉 in Sect. 2.8) and from (13) follows directly that
one can chose u1 = (1, 1, ..., 1)T (usually normalized to norm one by convention)
with γ1 = 0 as the first eigenvector and -value (Property 〈7〉 in Sect. 2.8).

Because the Laplacian matrix is symmetric and real, the set of eigenvectors is
complete and forms a basis for the vector space. Any initial temperature vector
h(t = 0) can thus be written as a linear combination of the eigenvectors

h(t = 0) =
∑

α

ωαuα (18)

with some appropriate prefactors ωα.
From the theory of systems of homogeneous linear differential equations we

know that the general solution of (1) for this h(t = 0) is then

h(t) =
∑

α

ωα exp(−γαt)uα (19)

which, for non-negative eigenvalues γα, is a superposition of eigenvectors with
exponentially decaying weights.

For the discretized version of the differential equation we first observe that

(I − ΔtL)
︸ ︷︷ ︸

=:P

uα = (Iuα − ΔtLuα) (20)

(17)
= (uα − Δtγαuα) (21)
= (1 − Δtγα)

︸ ︷︷ ︸
=: ξα

uα (22)

⇐⇒ Puα = ξαuα (23)
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Thus the uα are also eigenvectors of P but with eigenvalues ξα = (1 − Δtγα)
with 1 = ξ1 ≥ ξ2 ≥ ... ≥ ξI > 0 for small enough Δt. With this we find

h(t = NΔt)
(8,20)
= PNh(0) (24)

(18)
= PN

∑

α

ωαuα (25)

=
∑

α

ωαPNuα (26)

(23)
=

∑

α

ωαξN
α uα (27)

which, for eigenvalues ξα between zero and one, again is a superposition of eigen-
vectors with exponentially decaying weights.

In either case, if one waits long enough, only the first eigenvectors with
eigenvalue γα = 0 respectively ξα = 1 will still contribute to h(t), and one
can show that if the graph is connected, only the contribution of u1 survives
indefinitely long, because exp(−γ1t) = exp(−0t) = 1 and ξN

1 = 1N = 1 for any
t. The last eigenvector fading away is u2, and that is exactly the vector we are
interested in for the Laplacian eigenmaps algorithm, see Fig. 1 (right).

If the graph is disconnected then it is intuitively clear that each subgraph
balances out its heat over time, but there is no heat exchange between sub-
graphs. The corresponding Laplacian matrix becomes a block matrix with as
many blocks on the diagonal as there are subgraphs. In the example above in
Fig. 2, there are two subgraphs, and because of the block structure of the Lapla-
cian matrix and the fact that rows add up to zero, one can verify that the second
eigenvector u2 = (1/4,−1/3, 1/4,−1/3, 1/4,−1/3, 1/4)T (usually normalized to norm
one by convention) is constant within each subgraph and has eigenvalue γ2 = 0.
This again reflects the temperature distribution that remains if one waits for
a long time, and that is exactly the vector we are interested in the spectral
clustering algorithm, see Fig. 2 (right).

In summary, the second eigenvector of the Laplacian matrix provides a nice
1D arrangement of the nodes of a similarity graph. In practice one often also
uses the third and possibly the forth eigenvector to get visualizations in 2D or
3D, but that is not so easy to understand with this intuitive explanation.

2 Formalism

After the intuitive explanation we now consider Laplacian eigenmaps and spec-
tral clustering more directly and more formally. For both algorithms data must
first be represented as a graph. Nodes represent data samples and edges represent
similarities between data samples. The samples could be anything, e.g. words,
persons, or melodies, they need not be vectors in a vector space. We just need a
non-negative function that measures similarity between two data samples. And
this function does not even need to be consistent with a metric, i.e. does not
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need to fulfill the triangle inequality stating that the distance between A and C
cannot be greater than the sum of distances from A to B and B to C, where
A,B, and C are arbitrary points in space. We first introduce some notions from
graph theory and then consider the optimization problem.

2.1 Simple Graphs

A graph G = (V,E) is a set of nodes (or vertices or points) V = {v1, ..., vI} and
a set of edges E = {e1, ..., eL}. An edge el connects two nodes vi and vj and is
therefore defined by a pair of nodes. Edges may be directed, going from node vi

to node vj , indicated by el = (vi, vj). Edges may also be undirected, in which
case the order of the nodes does not matter and we can write el := {vi, vj},
where the curly brackets imply that the order does not matter. Simple graphs
are undirected graphs without loops, which are edges that connect a node with
itself, and no parallel edges, which are edges that connect the same pair of nodes.
Here we consider mainly simple graphs.

Further reading: [8].

2.2 Matrix Representation

Graphs can be conveniently represented by real matrices. The adjacency matrix
A = (Aij) of an undirected graph is I × I and defined as

Aij :=

{
1 if {vi, vj} ∈ E

0 otherwise
(28)

i.e. it has a one in entry Aij if and only if nodes vi and vj are connected with
each other. Matrix A is naturally symmetric, since the edges are not directed.

The degree matrix D = (Dij) of an undirected graph is a diagonal matrix,
where the diagonal entries Dii indicate the number of edges connected to node
vi.

In context of the Laplacian matrix, we generalize these definitions to weighted
graphs, where the edges are labeled with a real (positive) number indicating their
weight Wij . If one simply replaces the 1 values in (28) by these weights, then A
becomes the (edge) weight matrix W, and the weighted degree matrix D = (Dij)
gets the sum over all weights of the edges converging on a node in their diagonal
entries.

Dii :=
∑

j

Wij =
∑

j

Wji (29)

Figure 3 shows a simple weighted graph. The weighted adjacency matrix, or
weight matrix, of the undirected graph is

W =

⎛

⎜
⎜
⎝

v1 v2 v3
v1 0 0.2 0
v2 0.2 0 0.8
v3 0 0.8 0

⎞

⎟
⎟
⎠ (30)
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1

2

3

1

2

0.2

0.8

Fig. 3. Example of a simple, weighted, undirected graph. Edges are numbered with
blue (or gray) integers, their real valued weights are shown in black. Weights do not
need to add up to one, like here for Node 2. (Color figure online)

The weighted degree matrix of the undirected graph is

D =

⎛

⎜
⎜
⎝

v1 v2 v3
v1 0.2 0 0
v2 0 1.0 0
v3 0 0 0.8

⎞

⎟
⎟
⎠ (31)

The Laplacian matrix L is defined as the difference between weighted degree
matrix D and weight matrix W

L = D − W. (32)

It is easy to verify that it has all the properties (12–15) derived in Sect. 1.4 from
the heat diffusion analogy.

The Laplacian matrix for the example above is

L =

⎛

⎝
0.2 −0.2 0

−0.2 1.0 −0.8
0 −0.8 0.8

⎞

⎠ (33)

2.3 Optimization Problem

The objective of Laplacian eigenmaps as well as spectral clustering is to assign2

similar values to similar nodes, i.e. strongly connected nodes, and dissimilar val-
ues to nodes that are not similar. This is a non-trivial operation, since similarity
is a property of a pair of nodes, or an edge, while value is a property of a single
node. It is not guaranteed that there is a good solution at all. Consider, for

2 A remark on terminology: We use assign/assignment for giving data samples an
associated value. These values implicitly define a mapping from (possibly high-
dimensional or non-vectorial) data samples to points in a low-dimensional space,
the mapped space. In LPP the mapping is defined more explicitly by a linear func-
tion. The collection of points in mapped space form an embedding. Thus, all these
terms refer to the same process.
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instance, three nodes A, B, and C. If A and B are very similar as well as B
and C, but A and C are very dissimilar, then there are no values that could
reflect that. However, reasonable similarity measures usually do not lead to such
conflicts, definitely not those inducing a proper metric. In any case, the objective
is to

minimize
1
2

∑

ij

(ui − uj)2Wij (34)

subject to 1T u = 0 (zero mean) (35)

and uT u = 1 (unit variance) (36)

or subject to 1T Du = 0 (weighted zero mean) (37)

and uT Du = 1 (weighted unit variance) (38)

with u = (u1, u2, ..., uI)T and 1 = (1, 1, 1, ..., 1)T indicating the one-vector.
Objective (34) favors solutions where strongly connected nodes with a large edge
weight Wij have similar values ui and uj . Constraints (35) and (36) in conjunc-
tion avoid the trivial constant solution, which implicitly guarantees that nodes
that are not similar get assigned dissimilar values. Constraints (37) and (38)
have the same function but imply some normalization, see Sect. 2.5.

If we need more than one solution in order to map the nodes into a higher
dimensional space, we add a subscript index to u and solve the same optimization
problem multiple times subject to the additional constraint

uT
β uα = 0 ∀β < α (decorrelation to previous solutions) (39)

or uT
β Duα = 0 ∀β < α (decorrelation to previous solutions) (40)

for the second and later solutions uα to make them different (orthogonal) to the
previous solutions uβ .

2.4 Associated Eigenvalue Problem

It is known that the normalized eigenvectors uα of the ordinary eigenvalue equa-
tion

Luα = γαuα (41)

ordered by increasing eigenvalues γα solve the optimization problem

minimize u
T
αLuα =

1

2

∑

ij

(uα,i − uα,j)
2
Wij (42)

subject to u
T
αuα = 1 (unit norm) (43)

and u
T
β uα = 0 ∀β < α (order and orthogonality) (44)

where constraint (44) induces an order such that u1 is the optimal solution
without any orthogonality constraint (only the unit norm constraint), u2 is the
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optimal solution with the additional constraint of being orthogonal to u1, u3 is
the optimal solution with the additional constraint of being orthogonal to u1

and u2, etc. Constraints (43, 44) can be combined to uT
β uα = δβα ∀β ≤ α.

Identity (42) is left to the reader as an exercise. If one orders the eigenvalues
by ascending rather than descending value, the corresponding eigenvectors solve
the maximization rather than minimization problem.

The zero mean constraint (35) is implicit here. Since the first solution u1

is a scaled version of 1, Constraint (44) with β = 1 is equivalent to (35). The
solutions of interest thus start with index 2 rather than 1.

Since
uT

αLuα
(41)
= uT

αγαuα = γαuT
αuα

(43)
= γα (45)

the eigenvalues are the optimal values of the objective function.
In the algorithms below the constraint is usually wT Dw = 1 rather than

uT u = 1 (we switch here from u to w to indicate solutions with this weighted
normalization). Thus we note that the appropriately normalized eigenvectors wα

of the generalized eigenvalue equation

Lwα = λαDwα (46)

ordered by increasing eigenvalues λα solve the optimization problem

minimize w
T
αLwα =

1

2

∑

ij

(wα,i − wα,j)
2
Wij (47)

subject to w
T
αDwα = 1 (weighted unit norm) (48)

and w
T
β Dwα = 0 ∀β < α (order and weighted orthogonality) (49)

The derivation (45) does not hold here, since the eigenvectors must have
weighted unit norm, not standard unit norm. But still we find analogously

wT
αLwα

(46)
= wT

αλαDwα = λαwT
αDwα

(48)
= λα (50)

Thus, in both cases the eigenvalues are the value of the objective function for
the different eigenvectors. Eigenvectors with small eigenvalue are smooth in the
sense that connected nodes tend to have similar values while eigenvectors with
large eigenvalue are more rugged, i.e. connected nodes tend to have different
values, see Eqs. (42, 47) and Fig. 4.

Further reading: [10].

2.5 The Role of the Weighted Normalization Constraint

What is the difference between the constraints uT
αuα = 1 (43) and wT

αDwα = 1
(48)? Since D is a diagonal matrix, this simply means that in the constraint
the components of the generalized eigenvectors get weighted by

√
Dii (29) (the

square root comes from the fact that in wT
αDwα the Dii has to be equally

distributed over the two wα). For the term wiDiiwi to have the same effect size



104 L. Wiskott and F. Schönfeld

2 4

5 63

1

0.41 0.41

0.41 0.41 0.41

0.410.41

0.41

0

2 5

u

u uγ  = γ  = 

γ  = 

0.5 0 −0.5

0

u

−0.5

−0.29 0.58 −0.29

−0.580.29

0.5 0 −0.5

0.5 0

1u γ  = 

−0.29

−0.29

3u γ  = 2 4

5 63

1

−0.29

−0.29

0.58

0.41

−0.41 −0.41 −0.41

−0.5

0.5 0.29

0.58

γ  = 3

+−

−

+ −

+ −

+

+ + +

+ ++

+ + +

− − −

+

+

+

−

− −

−−

−+

+

−

Fig. 4. Example of eigenvectors and -values for a graph with six nodes for the opti-
mization problem with standard norm (34–36) corresponding to the ordinary eigenvalue
problem (41). Eigenvectors uα with small eigenvalue γα tend to have similar values for
connected nodes and are correspondingly smooth; those with large eigenvalues tend to
have different values for connected nodes and are correspondingly rugged. Notice that
u4 and u5 have the same eigenvalue 3, so that any linear combination of them is also
an eigenvector with eigenvalue 3. Thus, these eigenvectors are not unique.

iilarge D  direction

jjsmall D  direction

Fig. 5. Visualization of the role of the constraint on the optimization problem. The
dotted ellipses illustrate the quadratic form being minimized (42, 47), which is the
same for both problems. The blue dashed circle and green solid ellipse illustrate the
constraints (43) and (48), respectively. The corresponding arrow indicates the optimal
solution, which is the point on the circle or ellipse that comes closest to the inner
dashed ellipses. (Color figure online)

in the constraint, a component wi with large Dii must be smaller than one with
a small Dii. This is illustrated in Fig. 5 by the green solid ellipse vs the blue
dashed circle. The latter is the set of points with uT

αuα = 1, the former the set
with wT

αDwα = 1 with large Dii and small Djj .
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In the figure it is assumed that the determinant of D is one. That does not
need to be the case. It could be any other positive value, depending on how
strong the weights of the edges are. However, a consistent scaling of the weights
does not change the solution, so we can assume w.l.o.g. that they are scaled such
that |D| = 1.

While the constraint differs, the objective function (42, 47) is the same in both
cases. It takes the form of an unisotropic paraboloid, like a squeezed champagne
glass, indicated in Fig. 5 by dotted ellipses. Minimizing it under the constraint
means finding the point on the blue circle or green ellipse that comes closest to
the inner ellipses. To the extent the Dii differ, the components with larger Dii

are favored over components with smaller Dii, because they allow the vector wα

to move closer to the origin, where the true minimum of the objective function
with value 0 lies.

However, this does not mean that all components of wα with large Dii

become larger relative to those with small Dii. That depends also on the objec-
tive function. But the general tendency is that the change from constraint
uT

αuα = 1 to constraint wT
αDwα = 1 makes the values of highly connected

nodes (with large Dii) larger relative to less connected nodes (with small Dii).
Why might that be useful? Imagine a square lattice of 7×7 nodes, connected

with their four nearest neighbors with equal edge weights one. This looks like
a pretty good connectivity to represent the 2D layout of the grid. Now, imag-
ine in the right half of the grid, each node is connected to its eight nearest
neighbors instead of four. Both, the four- as well as the eight-neighbor connec-
tivity, are perfectly fine representations of the 2D layout. But because the nodes
on the right side have more edges, heat would diffuse faster and temperature
would equalize more quickly, leading to more similar values, the nodes would
move closer together in the embedding. If one uses constraint wT

αDwα = 1 this
advantage of the more densely connected half would be somewhat compensated
by scaling up the values, which also leads to larger differences. This leads to a
value distribution that better reflects the 2D layout and is less influenced by the
different density of connections between left and right half.

It is probably also possible to construct examples where the constraint
uT

αuα = 1 gives more desirable results. But at least it should be clear now
what the effect of the constraint wT

αDwα = 1 is, it somewhat counteracts the
effect of systematically strong (or weak) connections in a region of the graph.
This does not tell much about the effects on a more microscopic level. But it
is clear that it makes no sense to change the value of a single highly connected
node and make it too different from the values of its neighbors, because that
really contributes to a bad value in the objective function.

2.6 Symmetric Normalized Laplacian Matrix

For the algorithms below, we consider the eigenvalues and -vectors of the gener-
alized eigenvalue equation Lwα = λαDwα. Since most of us are more familiar
with the ordinary eigenvalue equation, it is interesting to note that one can con-
vert the generalized eigenvalue equation into an ordinary one and back again.
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This allows us to transfer what we know about ordinary eigenvalue equations to
the generalized ones.

First assume Dii �= 0 ∀i (0 ≤ Dii is true in any case) and define

d := (D11, ...,DII)T (51)

d := (
√

D11, ...,
√

DII)T (52)

d := (1/
√

D11, ..., 1/
√

DII)T (53)

D := diag(d) = DT (54)

D := diag(d) = D
T

(55)

D := diag(d) = DT (56)

so that, for instance, DD = DD = I and DD = D.
Now we convert the generalized eigenvalue equation into an ordinary one.

Lwα
!= λαDwα | D· (57)

⇐⇒ DLDD
︸︷︷︸
= I

wα = Dλα DD︸︷︷︸
=D

wα (since D is invertible) (58)

⇐⇒ DLD
︸ ︷︷ ︸
=: L̂

Dwα︸ ︷︷ ︸
=: ŵα

= λα DD
︸︷︷︸
= I

Dwα︸ ︷︷ ︸
=: ŵα

(59)

⇐⇒ L̂ŵα = λαŵα (60)

with

ŵα = Dwα (61)
⇐⇒ wα = Dŵα (62)

and the symmetric normalized Laplacian matrix

L̂ := DLD (63)

Thus, if and only if wα is an eigenvector of the generalized eigenvalue equation
with eigenvalue λα, then ŵα is an eigenvector of the ordinary eigenvalue equation
with same eigenvalue λα. It is sometimes helpful to switch back and forth between
these two views.

For the example above we find

L̂ =

⎛

⎜
⎜
⎜
⎜
⎝

÷√
0.2 ÷√

1.0 ÷√
0.8

↓ ↓ ↓
÷√

0.2 → 0.2 −0.2 0
÷√

1.0 → −0.2 1.0 −0.8
÷√

0.8 → 0 −0.8 0.8

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎝
1.0 −√

0.2 0
−√

0.2 1.0 −√
0.8

0 −√
0.8 1.0

⎞

⎠ (64)

where ÷√· indicates multiplication with D from the left along the rows and
from the right along the columns. It is easy to see that L̂ii = 1 by construction,
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since DLD = D(D − W)D = (I − DWD) and DWD has only zeroes on the
diagonal. But the rows and columns do not add up to zero anymore.

The objective function related to the eigenvalue equation of the symmetric
normalized Laplacian matrix is

ŵT
α L̂ŵα

(63)
= ŵT

αDLDŵα (65)
= (Dŵα)T LDŵα (since D is diagonal, thus D = DT ) (66)
(42)
=

1
2

∑

ij

((Dŵα)i − (Dŵα)j)2Wij (67)

(56,53)
=

1
2

∑

ij

(
ŵα,i√
Dii

− ŵα,j√
Djj

)2

Wij (since D is diagonal) (68)

2.7 Random Walk Normalized Laplacian Matrix

Another possibility to convert the generalized eigenvalue equation into an ordi-
nary one is simply to multiply (46) from the left with the inverse of the weighted
degree matrix.

Lwα
(46)
= λαDwα | D−1· (69)

⇐⇒ D−1L︸ ︷︷ ︸
=: L̂

rw

wα = λαwα (since D is invertible) (70)

⇐⇒ L̂
rw

wα = λαwα (71)

L̂
rw

:= D−1L is the random walk normalized Laplacian matrix and has the
same eigenvalues and eigenvectors as the generalized eigenvalue equation of the
Laplacian matrix. Its main disadvantage is that it is non-symmetric.

For the example above we find

L̂
rw

=

⎛

⎝
÷ 0.2 → 0.2 −0.2 0
÷ 1.0 → −0.2 1.0 −0.8
÷ 0.8 → 0 −0.8 0.8

⎞

⎠ =

⎛

⎝
1.0 −1.0 0

−0.2 1.0 −0.8
0 −1.0 1.0

⎞

⎠ (72)

where ÷· indicates multiplication with D−1 from the left along the rows. Notice
that L̂rw

ii = 1 and that the rows, but not the columns, add up to zero. P :=
I− L̂

rw
is a right stochastic matrix [12], which can be interpreted as a transition

matrix for a random walk between the nodes of the graph. Therefore the name.
We are not sure how useful this intuition is, since the right stochastic matrix
has to be multiplied from the right, in order to simulate a random walk, but in
the eigenvalue equation L̂

rw
is multiplied from the left.

In what follows we focus on L̂ rather than L̂
rw

, because the non-symmetry
makes the latter more difficult to deal with.
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2.8 Summary of Mathematical Properties

The Laplacian matrix appears in a multitude of different algorithms, three of
which will be discussed in this lecture: Laplacian eigenmaps (LEM), locality pre-
serving projections (LPP), and spectral clustering. When using the Laplacian
matrix in an algorithm, we are usually interested in its eigenvectors and eigen-
values. The set of eigenvalues of a matrix is referred to as its spectrum.

The Laplacian matrix, its eigenvectors, and its spectrum have the following
properties (see also Table 1):

1. L and L̂ are both symmetric (and real). The symmetry of L follows directly
from Eq. (32) since D is diagonal and W is symmetric. The symmetry of
L̂ follows from Eq. (63) and the symmetry of L. See (33) and (64) for the
example above.

2. L and L̂ each have a complete set of orthogonal eigenvectors uα and ŵα,
respectively, with real eigenvalues. This is true for any real symmetric
matrix, see Property 〈1〉.

3. L and L̂ are both positive semi-definite (meaning that xT Lx ≥ 0 for any
vector x). For L this follows directly from (42) and the fact that all weights
are positive; for L̂ this follows from Eq. (63) and the fact that it holds for
L.

4. L and L̂ have only non-negative eigenvalues. This follows from Property 〈3〉.
Note, however, that the eigenvalues of L and L̂ may be different. We indicate
the eigenvalues of L by γα and those of L̂ by λα.

5. L̂ŵα = λαŵα and Lwα = λαDwα have the same set of eigenvalues λα and
their eigenvectors are related by wα = Dŵα ⇔ ŵα = Dwα, see Sect. 2.6.

6. The generalized eigenvalue equation Lwα = λαDwα has only non-negative
eigenvalues λα and a full set of eigenvectors wα that are orthogonal with
respect to the inner product wβDwα for β �= α. This follows from Proper-

ties 〈2,4〉 with Property 〈5〉, since ∀β �= α : 0
〈2〉
= ŵT

β ŵα
(61)
= wT

β DDwα =
wβDwα.

7. 1 := (1, 1, ..., 1)T (the one-vector) is a solution of the ordinary eigen-
value equation Luα = γαuα as well as the generalized eigenvalue equation
Lwα = λαDwα with eigenvalue 0. This follows directly from the defini-
tion of L (32), since its rows sum up to zero, so that L1 = 0 = 0 · 1, and
because the two eigenvalue equations are identical for γα = λα = 0. We
chose the appropriately normalized one-vector to be the first eigenvectors
u1 = 1/

√
1T 1 and w1 = 1/

√
1T D1 with γ1 = λ1 = 0.

8. d, see (52), is a solution of the ordinary eigenvalue equation L̂ŵα = λαŵα

with eigenvalue 0. This follows from Property 〈7〉 and Eq. (62) since Dd =

1
〈7〉
= w1. We chose this ‘square-root degree-vector’ normalized to norm one

to be the first eigenvector ŵ1 = d/

√

d
T
d with λ1 = 0.

9. Property 〈7〉 generalizes to several eigenvalues with eigenvalue 0 for discon-
nected graphs (the proof is left to the reader as an exercise). If a graph has
C subgraphs that are intrinsically connected but not mutually, then L has
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C orthogonal eigenvectors with eigenvalue 0. Each of these eigenvectors has
identical values within each of the connected subgraphs and possibly differ-
ent values between subgraphs. Since it is possible to arbitrarily rotate a set
of eigenvectors with identical eigenvalue and still get a set of eigenvectors,
it is possible to chose the eigenvectors with eigenvalue 0 such that each one
has the value 1 within a subgraph and value 0 on all other nodes. Such
vectors are referred to as indicator vectors [7]. These indicator vectors can
then be normalized to fulfill the convention of normalized eigenvectors.

10. If we do not perform the rotation mentioned in Property 〈9〉 to get indicator
vectors, but rather choose the first eigenvector to be the one-vector, then
all higher eigenvectors of the ordinary eigenvalue equation Luα = γαuα

have zero mean, since ∀α �= 1 : 0
〈2〉
= uT

1 uα
〈7〉⇐⇒ 0 = 1T uα =

∑
j uαj by

Properties 〈2,7〉.
11. Similarly, if the first eigenvector is the one-vector all higher eigenvectors

of the generalized eigenvalue equation Lwα = λαDwα have weighted zero

mean since ∀α �= 1 : 0
〈6〉
= wT

1 Dwα
〈7〉⇐⇒ 0 = 1T Dwα =

∑
j wαjDjj by

Properties 〈6,7〉.
12. The eigenvectors are solutions to the optimization problems and the eigen-

values are the values that the objective functions assume for the opti-
mal solutions, see Sect. 2.4. Equation (45) yields uT

αLuα = γα, and
ŵT

α L̂ŵα = λα holds analogously. For the generalized eigenvalue equation,
we find (50) wT

αLwα = λα.

Further reading: [9].

3 Algorithms

3.1 Similarity Graphs

The algorithms presented in the following are all based on the properties of the
Laplacian matrix discussed above. In order to take advantage of the Laplacian
matrix, though, any input data first has to be represented as a graph, commonly
referred to as a similarity graph: A simple graph where the nodes represent
individual data samples and edge weights denote the similarity (or distance)
between two connected nodes, i.e. data samples. Appropriate similarity metrics
depend on the problem and can be as simple as the Euclidean or Manhattan
distance between two points.

Thus, the first step in each algorithm is to construct the similarity graph,
which is described here. There are different ways to construct a similarity
graph, depending on the problem at hand [1,2,6]. Three common methods are
ε-neighborhood, k-nearest neighbors, and fully connected graphs:

– ε-neighborhood: Two nodes are connected if the distance between them is
smaller than a given threshold ε. Often ε is chosen so small that the distance
values within an ε-neighborhood do not carry much useful information. In this
case edges are often weighted binary, i.e., with 1 or 0 depending on whether
the data samples in question are close enough or not, respectively.
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– k-nearest neighbors: Node vi is connected to vj if vj is among the k nearest
neighbors of vi. Note that this neighborhood relation is not symmetric and
yields a directed graph, thus some cleanup is required. To arrive at a simple
graph we take each unilateral edge that has no mirrored counterpart and
either remove it or keep it and set it as bilateral. Removal results in a graph
where each node has at most k neighbors (mutual k-nearest neighbor graph),
while setting unilateral edges to bilateral results in a graph where each node
has at least k neighbors (k-nearest neighbor graph). All edges are weighted by
the similarity between the two nodes they connect. Binary weighting, as in the
preceding method, is more dangerous here, because it cannot be guaranteed
that connected nodes are close to each other.

– Fully connected: To construct a fully connected graph each data sample is
simply connected to all others. In this case, using binary weights renders the
graph entirely meaningless. A fully connected graph always requires weighting
the edges with a similarity function (e.g. a Gaussian similarity function for
vectorial data wij = wji = s(xi,xj) = exp(−||xi − xj ||2/(2σ2)) where σ
defines the extent of local neighborhoods).

3.2 Laplacian Eigenmaps (LEM)

Motivation. Many algorithms work only on vectorial data and are limited in
the dimensionality they can process efficiently. This causes problems if one has
data that is either not vectorial, such as text, or too high dimensional, such as
images, or both. If one can define a similarity function on the data, yielding a
scalar similarity value for each pair of data samples, the Laplacian eigenmaps
algorithm can provide a low-dimensional vectorial embedding of the data that
tends to preserve similarity relationships and allows to apply other algorithms
to the data that would not be applicable directly [1]. Laplacian eigenmaps are
also very good for a 2- or 3-dimensional visualization of data.

For example, imagine a drone hovering through the air while equipped with
a downward facing camera. Using the high dimensional pictures from its camera,
we could, in theory, precisely compute the drone’s current position and eleva-
tion. Unfortunately, the space of all possible high dimensional images is effec-
tively intractable. Luckily though, we are merely interested in a small subset of
this space, namely only those images the drone’s camera can actually produce
in a particular environment. And while each data point of this vastly smaller
subset still is of the original, high dimensionality, it can be fully described by six
dimensions alone: the position and orientation of the drone in 3D space. Lapla-
cian eigenmaps can be used to find a low dimensional embedding of the images
that still permits extracting positional and orientation information.
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Objective. The objective of the Laplacian eigenmaps algorithm is to find an
embedding of a set of I data samples (do not need to be vectors, but there
must be a similarity function) in a low-dimensional vector space {y1, ...yI} such
that samples with high similarity are close to each other in the embedding. For
dimensionality M = 1, i.e. an embedding in only a 1-dimensional space, this
objective translates into minimizing

1
2

∑

ij

(yi − yj)2Wij (73)

where the yi are the values assigned to the samples and Wij indicates the simi-
larity between two samples. We have already seen above how this optimization
problem is solved by the second eigenvector of the Laplacian matrix, (42) or (47)
depending on the constraint. Each additional eigenvector adds one orthogonal
(meaning the values are uncorrelated) dimension to the embedding provided by
the other eigenvectors already. The quality of the embedding induced by each
eigenvector is given by its associated eigenvalue, which directly relates to the
actual value of sum (73). The best M -dimensional embedding is thus given by
the first M eigenvectors uα or wα of the Laplacian matrix with smallest eigen-
values (excluding the first one).

Please notice that the dimension of the eigenvectors corresponds to the num-
ber I of data points, because the Laplacian matrix is I × I by construction.
Thus, if you arrange the first M eigenvectors as rows in a matrix, this matrix
will be M×I and the column vectors are the data points yi in the M -dimensional
embedding. For instance, three data samples embedded in a 2-dimensional space
with LEM using (left) the ordinary eigenvalue problem and (right) the general-
ized eigenvalue problem could yield

⎛

⎜
⎜
⎝

y1 y2 y3

↓ ↓ ↓
u2 → −1/

√
2 0 +1/

√
2

u3 → −1/
√

6 +2/
√

6 −1/
√

6

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

y1 y2 y3

↓ ↓ ↓
w2 → w2,1 w2,2 w2,3

w3 → w3,1 w3,2 w3,3

⎞

⎟
⎟
⎠ (74)

As usual, we have dropped u1 and w1, because they have equal components
throughout, e.g. u1 = (1, 1, 1)T /

√
3; u2 and u3 have zero mean, because they

need to be orthogonal to u1; and u2 and u3 are orthogonal to each other as well.
Analogous relations hold for wα, but are numerically less intuitive.

We now have all the required components to formulate the Laplacian eigen-
maps algorithm with constraints (48, 49).

Algorithm

Laplacian Eigenmaps Algorithm [1]

1. Given a set of I data samples, construct a similarity graph G according to
one of the methods described in Sect. 3.1.
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2. Construct the I × I weight matrix W, degree matrix D (29), and Laplacian
matrix L (32) for G as described in Sect. 2.2.

3. Compute the first M+1 eigenvectors wα of the generalized eigenvalue problem

Lwα = λαDwα (75)

ordered by increasing eigenvalues, see Sect. 2.4.
4. An M -dimensional representation yi of data sample i is now given by

(w2,i, ..., wM+1,i)T , see (74).

Sample Application. Figures 6 and 7 show an application of Laplacian eigen-
maps to a set of 300 frequently used words [1]. Each word was represented by a
600-dimensional vector indicating how often any of the other words was found
to the left or to the right of the considered word. Similarity was defined based
on these 600-dimensional vectors. Zooming into Fig. 7 shows that grammatically
closely related words are grouped together.

Further reading: [1].

Fig. 6. Dimensionality reduction for 300 frequently used words from their word context
data. Figure by Belkin and Niyogi, 2003 [1].
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Fig. 7. Zoom-in into the three subregions marked in Fig. 6. Left infinitives, middle
prepositions, and right mostly modal and auxiliary verbs. Figure by Belkin and Niyogi,
2003 [1].

3.3 Locality Preserving Projections (LPP)

Linear LPP. Laplacian eigenmaps have the disadvantage that they only pro-
vide values for the data used during training. There is no straight forward way
to process new data. This can be changed if the nodes vi are data points in
Euclidean space vi = xi ∈ R

N and the values of the eigenvectors wα are approx-
imated by linear functions in the data points [2]. Since the values of the nodes
are now computed with a linear function rather than assigned freely, new data
can be processed by applying the same linear function. On the training data the
linear function yields the values of the nodes as follows

wα,i = xT
i zα (76)

⇐⇒ wα = XT zα (77)
with data X := (x1,x2, ...,xI) (78)

The vectors zα are the variables to be optimized. Inserting this in (47) and the
corresponding constraints (48, 49) yields

minimize wT
αLwα

(77)
= zT

α XLXT
︸ ︷︷ ︸
=:L′

zα = zT
αL′zα (79)

subject to 1 = wT
αDwα

(77)
= zT

α XDXT
︸ ︷︷ ︸
=:D′

zα = zT
αD′zα (80)

and 0 = wT
β Dwα

(77)
= zT

β XDXT
︸ ︷︷ ︸
=:D′

zα = zT
β D′zα ∀β < α (81)
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This optimization problem can again be solved through a generalized eigen-
value problem, much like the original one. Notice, however, that the eigenvalues
and the approximated eigenvectors wα are not necessarily identical to those of
the original eigenvalue problem, because wα ∈ R

I is not free but constrained to
be a linear function in the xi ∈ R

N . Notice also that this problem is not of the
dimensionality of the number I of data points as before but only of the dimension
N of the data points, which is usually much smaller and, consequently makes
this approximation more computationally efficient. For instance, if you have 100
data points in 3D, the problem is 3-dimensional not 100-dimensional as for the
LEM algorithm. The main advantage, however, is that new data points xj can
easily be mapped into the low-dimensional space by applying the linear func-
tion xT

j zα. Performing Laplacian eigenmaps with this linear approximation is
referred to as locality preserving projections (LPP).

Sample Application. An application of LPP to face images of a single person
is shown in Fig. 8 [2]. Even though the mapping is only linear, LPP still captures
some prominent variations and orders the images nicely in 2D. The person looks
to the left (or right) at the top (or bottom) of the plot, and it smiles on the right
side while it makes faces on the left.

Nonlinear LPP. LPP can be generalized to nonlinear functions by adding a
nonlinear expansion prior to the algorithm. Assume f(x) is such a nonlinear
expansion from R

N → R
P with N � P , then one can define

wα,i = f(xi)T zα (82)

⇐⇒ wα = FT zα (83)
with F := (f(x1), f(x2), ..., f(xI)) (84)

and then run the algorithm as before. Notice that now zα ∈ R
P rather than R

N .
Further reading: [2].

3.4 Spectral Clustering

Objective. Spectral clustering is an umbrella term for a number of algorithms
that use the eigenvectors of the Laplacian matrix to perform clustering on a
given set of data points. In particular, spectral clustering is often used in image
processing to identify connected parts of a given image and, ideally, identify
the extent of the individual components of an image, a process called image
segmentation.
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Fig. 8. Dimensionality reduction of face images of a single person down to two dimen-
sions with linear LPP. Face images in the plot indicate what some points stand for
and the line of faces at the bottom corresponds to the line of data points on the right.
Figure by He and Niyogi, 2004 [2].

As illustrated intuitively in Fig. 2 the eigenvectors of the Laplacian matrix
place the nodes of connected subgraphs at the same location, even in two, three,
or higher dimensions, if the graph has several subgraphs. This also holds for the
eigenvectors of the generalized eigenvalue problem, and this also holds approxi-
mately if the subgraphs are not completely separate from each other. Given this
representation it is much easier than on the original data to cluster the nodes
with some standard clustering algorithm.

Remember that for C intrinsically connected but mutually disconnected sub-
graphs, i.e. clusters, there are exactly C eigenvectors with constant values on
each of the clusters. For extracting C clusters one would therefore use the first
C eigenvectors, this time including also the first one, see Property 〈9〉.
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Algorithm

Normalized Spectral Clustering Algorithm [3]

1. Given a set of I data samples, construct a similarity graph G according to
one of the methods described in Sect. 3.1. For instance, when performing
segmentation on a single image, each pixel becomes a node of the graph
with similarity between nodes usually being a function of color and spatial
distance.

2. Compute the weight matrix W, degree matrix D (29), and Laplacian matrix
L (32) for G.

3. Compute the first C eigenvectors of the generalized eigenvalue problem

Lwα = λαDwα (85)

ordered by increasing eigenvalue.
4. Arrange the eigenvectors w1, ..,wC in the rows3 of a matrix U and normalize

its columns to one to get matrix T with

Tij = Uij/

(
∑

i′
U2

i′j

)1/2

(86)

A C-dimensional representation yi of data sample i is now given by the i-th
column vector of T.

5. Perform the k-means algorithm on the set of embedded data points {y1, ...yI}
to partition the data into C clusters.

Sample Application. Figure 9 shows an example of applying spectral clus-
tering to an old data set collected by Edgar Anderson [11]. He measured length
and width of the sepal and petal from 50 exemplars of three types of iris. One
species (red in the left plot) is well separated from the other two, which in turn
are hard to distinguish in the 2D plots. Spectral clustering performs fairly well
on this task in 4D as one can see by comparing ground truth on the left with
the clustering result on the right.

Further reading: [6], an excellent tutorial on spectral clustering.

3 In the original formulation [3], the vectors were arranged in columns. We use rows
here for consistency with the LEM algorithm, see Sect. 3.2.
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Fig. 9. Spectral clustering on iris (the plant, not the eye) data. Top: length and width
of the sepal and petal from 50 exemplars of three types of iris as indicated by the
three colors. Figure by Nicoguaro on Wikimedia, 2017 [4]. Bottom: Result of spectral
clustering on the 150 four-dimensional data points. Figure by Sigbert on Wikimedia,
2017 [5].
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https://de.wikipedia.org/w/index.php?title=Spectral Clustering&oldid=17042
8156. Accessed 2 Dec 2017

12. Wikipedia: Stochastic matrix – Wikipedia, The Free Encyclopedia (2017). https://
en.wikipedia.org/w/index.php?title=Stochastic matrix&oldid=813141273.
Accessed 3 Dec 2017

13. Wiskott, L., Schönfeld, F.: Laplacian matrix for dimensionality reduction and clus-
tering - lecture notes. e-print arXiv:1909.08381 (2019)

http://papers.nips.cc/paper/2359-locality-preserving-projections.pdf
http://papers.nips.cc/paper/2359-locality-preserving-projections.pdf
https://commons.wikimedia.org/w/index.php?title=File:Iris_dataset_scatterplot.svg&oldid=235116001
https://commons.wikimedia.org/w/index.php?title=File:Iris_dataset_scatterplot.svg&oldid=235116001
https://commons.wikimedia.org/w/index.php?title=File:Specclus_iriscluster.svg&oldid=235116126
https://commons.wikimedia.org/w/index.php?title=File:Specclus_iriscluster.svg&oldid=235116126
https://en.wikipedia.org/w/index.php?title=Indicator_vector&oldid=743797854
https://en.wikipedia.org/w/index.php?title=Graph_(discrete_mathematics)&oldid=800782160
https://en.wikipedia.org/w/index.php?title=Graph_(discrete_mathematics)&oldid=800782160
https://en.wikipedia.org/w/index.php?title=Laplacian_matrix&oldid=812863352
https://en.wikipedia.org/w/index.php?title=Laplacian_matrix&oldid=812863352
https://en.wikipedia.org/w/index.php?title=Rayleigh_quotient&oldid=808561799
https://en.wikipedia.org/w/index.php?title=Rayleigh_quotient&oldid=808561799
https://de.wikipedia.org/w/index.php?title=Spectral_Clustering&oldid=170428156
https://de.wikipedia.org/w/index.php?title=Spectral_Clustering&oldid=170428156
https://en.wikipedia.org/w/index.php?title=Stochastic_matrix&oldid=813141273
https://en.wikipedia.org/w/index.php?title=Stochastic_matrix&oldid=813141273
http://arxiv.org/abs/1909.08381


Author Index

Andersen, Ove 70

Carmona, Josep 1

Dongen, Boudewijn van 1

Elshawi, Radwa 40

Filipiak, Dominik 25
Filipowska, Agata 25

Sakr, Sherif 40
Schönfeld, Fabian 93

Thomsen, Christian 70
Torp, Kristian 70

Weidlich, Matthias 1
Wiskott, Laurenz 93


	Preface
	Organization
	Contents
	Actionable Conformance Checking: From Intuitions to Code
	1 Introduction
	2 Related Work
	3 Process Models and Event Logs
	4 Conformance Checking
	4.1 Quality Dimensions to Relate Process Models and Event Logs
	4.2 Computing Conformance Checking Artefacts

	5 Code Snippets for Conformance Checking
	5.1 Event Log Exploration
	5.2 The Computation of Conformance Checking Artefacts

	6 Concluding Remarks
	References

	Introduction to Text Analytics
	1 Introduction
	2 Definition of Text Analytics
	3 Sources of Textual Data
	4 Processing of Texts: The Pipeline
	4.1 Step 1. Data Parsing
	4.2 Step 2. Text Segmentation
	4.3 Step 3. Identification of Named Entities
	4.4 Step 4. Disambiguation
	4.5 Step 5. Describing the Text
	4.6 Step 6: Analytics: Topic Tagging

	5 Application Scenarios
	5.1 Sentiment Analysis
	5.2 Search and Retrieval

	6 Case Study
	7 Summary
	References

	Automated Machine Learning: Techniques and Frameworks
	1 Introduction
	2 Automated Machine Learning
	2.1 Hyper-parameter Optimization
	2.2 AutoML Tools and Frameworks

	3 Automated Deep Learning
	3.1 Neural Architecture Search for Deep Learning
	3.2 AutoDL Frameworks

	4 Open Challenges and Future Directions
	5 Conclusion
	References

	Travel-Time Computation Based on GPS Data
	1 Introduction
	2 Data Foundation
	2.1 Data Model
	2.2 Data

	3 Logical Model
	3.1 Dimensions
	3.2 Fact Table

	4 Data Cleaning Method
	4.1 Map-Matching
	4.2 Weather Class
	4.3 Speedmaps

	5 Results
	5.1 Weather Classes to Include
	5.2 Wind Analysis

	6 Related Work
	7 Conclusion
	References

	Laplacian Matrix for Dimensionality Reduction and Clustering
	1 Intuition
	1.1 Heat Diffusion Analogy of Laplacian Eigenmaps
	1.2 Heat Diffusion Analogy of Spectral Clustering
	1.3 Heat Diffusion Equation for Connected Heat Reservoirs
	1.4 Laplacian Matrix
	1.5 Solution of the Heat Diffusion Equation

	2 Formalism
	2.1 Simple Graphs
	2.2 Matrix Representation
	2.3 Optimization Problem
	2.4 Associated Eigenvalue Problem
	2.5 The Role of the Weighted Normalization Constraint
	2.6 Symmetric Normalized Laplacian Matrix
	2.7 Random Walk Normalized Laplacian Matrix
	2.8 Summary of Mathematical Properties

	3 Algorithms
	3.1 Similarity Graphs
	3.2 Laplacian Eigenmaps (LEM)
	3.3 Locality Preserving Projections (LPP)
	3.4 Spectral Clustering

	References

	Author Index



