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1 Centre for Cognitive Science, Department of Applied Informatics, Faculty of Mathematics,
Physics and Informatics, Comenius University in Bratislava,

Mlynská dolina, Bratislava, Slovakia
matus.tomko@fmph.uniba.sk

2 Faculty of Medicine, ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research,
Justus-Liebig-University, Giessen, Germany

3 Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany

Abstract. It is widely accepted that in the brain processes related to learning
and memory there are changes at the level of synapses. Synapses have the abil-
ity to change their strength depending on the stimuli, which is called activity-
dependent synaptic plasticity. To date, many mathematical models describing
activity-dependent synaptic plasticity have been introduced. However, the remain-
ing question is whether these rules apply in general to the whole brain or only to
individual areas or even just to individual types of cells. Here, we decided to
test whether the well-known rule of Spike-Timing Dependent Plasticity (STDP)
extended by metaplasticity (meta-STDP) supports long-term stability of major
synaptic inputs to hippocampal CA1 pyramidal neurons. For this reason, we have
coupled synaptic models equipped with a previously established meta-STDP rule
to a biophysically realistic computational model of the hippocampal CA1 pyrami-
dal cell with a simplified dendritic tree. Our simulations show that the meta-STDP
rule is able to keep synaptic weights stable during ongoing spontaneous input
activity as it happens in the hippocampus in vivo. This is functionally advanta-
geous as neurons should not change their weights during the ongoing activity of
neural circuits in vivo. However, they should maintain their ability to display plas-
tic changes in the case of significantly different or “meaningful” inputs. Thus, our
study is the first step before we attempt to simulate different stimulation protocols
which induce changes in synaptic weights in vivo.

Keywords: Synaptic plasticity · Metaplasticity · Meta-STDP · Computational
model · CA1 pyramidal cell

1 Introduction

Hippocampal CA1 pyramidal cells are crucially involved in processes associated with
a learning and memory. That includes working memory [1–3], temporal processing of
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information [4], and several others. CA1 pyramidal cells are the major excitatory cells
of the CA1 region of hippocampus.

Synaptic plasticity is believed to be a key neural mechanism behind major types of
memory. It represents the ability of neurons to strengthen and weaken synaptic weights
or synaptic transmission depending on input/output activity. The most studied forms of
long-term synaptic plasticity are long-term changes in synaptic weights referred to as
long-term potentiation (LTP) and long-term depression (LTD) [5] as it is reviewed for
instance in the paper ofMartin et al. [6], which states: “activity-dependent synaptic plas-
ticity is induced at appropriate synapses during memory formation and is both necessary
and sufficient for the encoding and trace storage of the type of memory mediated by the
brain area in which it is observed” [6].

So far, several models of synaptic plasticity have been introduced [7]. The meta-
STDP rule of synaptic plasticity [8] used in our project is the nearest-neighbor imple-
mentation of the STDP rule [9], which is extended by metaplasticity [10]. The prefix
“meta” points to the fact that synaptic plasticity itself is regulated by variousmechanisms
and thus manifests its higher-order character. One of the important factors of metaplas-
ticity is the dependence of the outcome of synaptic plasticity upon the previous history
of firing of the postsynaptic neuron [10]. This idea was used by Benuskova and Abraham
[8] in modifying the classical STDP rule. Due to the use of metaplasticity, the ampli-
tudes of LTP and LTD become dynamic and change their actual values depending on the
previous postsynaptic activity [8]. The meta-STDP rule has already been successfully
used in modeling studies of heterosynaptic plasticity in the hippocampal granule cells
[8, 11]. Heterosynaptic plasticity means that stimulation of one input pathway leads to
synaptic changes not only of the stimulated pathway (homosynaptic plasticity) but also
of the neighboring unstimulated pathway, which receives only the spontaneous activity.
The computational model of granule cell endowed with this meta-STDP rule was able
to reproduce the experimental results of synaptic plasticity observed in these neurons.
Among other things, ongoing spontaneous activity simulated in the model proved to be
a key factor influencing the magnitude of homo-LTP and hetero-LTD. The phenomenon
of spontaneous activity affecting the magnitude of synaptic changes was previously
demonstrated experimentally by Abraham et al. [12]. As in hippocampal granule cells,
homosynaptic and heterosynaptic plasticity has also been observed in CA1 pyramidal
cells.

In this work, we applied the meta-STDP synaptic plasticity to a realistic compart-
mental model of CA1 pyramidal cell with reduced morphology. Our aimwas to simulate
the effects of ongoing spontaneous activity [13, 14] on the long-term stability of synaptic
weights in the hippocampus. After optimization of model parameters and parameters
of the meta-STDP rule, the result of this process was the achievement of dynamically
stable synaptic weights.

2 Methods

2.1 Computational Model of CA1 Pyramidal Cell

In creating of our model, we were inspired by a previously published model from Cut-
suridis et al. [15], which is available online in the ModeDB database under accession
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No. 123815, and which we used in our previous study [16]. However, we have extended
the morphology since this model did not contain the side dendritic branches where the
majority of excitatory inputs is located in the real cell especially in the proximal and
medial parts of the dendritic tree [17]. Basal dendrites in the stratum oriens (SO) were
modeled by two thicker proximal sections, followed by 2 thinner distal sections. We
added another 2 distal sections while maintaining the same parameters as the original
distal sections. An apical trunk 400 µm long in the stratum radiatum (SR) consisted of
3 interconnected sections, which decreased in thickness with increasing distance from
the soma. We attached one section to the center of each section of the apical trunk, rep-
resenting thin oblique dendrites. A dendritic tuft in the stratum lacunosum-moleculare
(SLM) was represented by two dendrites, each consisting of 3 sections with gradually
decreasing thickness. We have kept this part unchanged [15]. The original model also
contained an axon, which we also preserved. The structure of the model and typical
somatic responses are shown in the Fig. 1.

Fig. 1. Morphology and typical somatic responses of the model. (A) The reduced morphology
of the model captures all essential parts of the dendritic tree of CA1 neurons. (B), (C) The typical
somatic responses of the model to the positive and negative somatic current injections.

Passive and active properties of our model were adapted from the full-morphology
model of CA1 pyramidal cell presented in the paper of the Migliore et al. [18] which
is accessible in the ModelDB database (accession No. 244688). All apical and basal
sections have uniformly distributed sodium current, a delayed rectifier K+ current (Kdr),
a dendritic A-Type K+ current (KA), a hyperpolarization-activated cation current (Ih),
tree types of Ca2+ currents (CaL, CaN, CaT), and two types of calcium-activated K+
currents (KCa and Cagk). The somatic section has the same set of currents. However,
a dendritic A-Type K+ current is exchanged for a somatic A-Type K+ current and a
somatic M-Type K+ current (KM) is included. The axonal section contains a sodium
current, a delayed rectifier K+ current, and M-Type and A-Type K+ currents. Each
section containing calcium current contains a simple calcium extrusion mechanism. The
peak conductivity of Ih and KA were calculated separately for each section according
to its distance from the soma. Similarly, the equilibrium potential of the passive current
(e_pas) was calculated for each section [18].
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2.2 Model Synaptic Inputs

Excitatory synapses are modeled using NEURON [19] built-in synapse class Exp2Syn.
Synaptic conductivity is expressed using a two-state kinetic scheme described by two
exponential functions:

g(t) = w
(
e
− t

τ2 − e
− t

τ1

)
(1)

wherew is the synaptic weight, τ1 = 0.5ms is the rise time constant, and τ2 = 3ms is the
decay time constant [15]. The synaptic weight is modified according to the meta-STDP
plasticity rule (see below).

Each synapse received a train of presynaptic spikes that were generated by indepen-
dent spikes generators. In NEURON it is taken care of by the built-in process NetStim.
Presynaptic spikes sequence delivered to one synapse consisted of a combination of
random and periodic spike trains. We have chosen this strategy because we can thus
simulate the theta activity that is a prominent state of the hippocampal network [20],
plus the random spikes.

2.3 Synaptic Plasticity Rule

To model synaptic plasticity, we used the meta-STDP rule with the nearest neighbor
implementation. In this implementation, each presynaptic spike is paired with two
time-closest postsynaptic spikes. One occurring before the presynaptic spike and the
other occurring after the presynaptic spike. The choice of this pairing scheme is related
to the fact that it is biologically relevant, as it agrees with the Bienenstock-Cooper-
Munro (BCM) theory [21] as shown by Izhikevich and Desai [22]. The weight change
is calculated as:

w(t + �t) = w(t)
(
1 + �wp − �wd

)
(2)

where �wp is positive weight change and �wd is negative weight change.
The positive weight change (potentiation) occurs when the presynaptic spike pre-

cedes the postsynaptic spike. On the other hand, weakening of the weight (depression)
occurs when the postsynaptic spike precedes the presynaptic spike. It is formulated as:

�wp(�t) = Apexp

(
−�t

τp

)
�t > 0 (3)

�wd (�t) = Adexp

(
�t

τd

)
if �t < 0 (4)

where �t = tpost − tpre, Ap and Ad are potentiation and depression amplitudes, respec-
tively, τp and τd are decay constants for the time windows over which synaptic change
can occur. Parameter tpost represents the instant of time at which the local voltage on the
postsynaptic dendrite, where a synapse is located, exceeds the threshold of −30 mV.

Amplitudes of LTP/LTD in the meta-STDP are dynamically changed as a function
of a previous temporal average of soma spiking θS :

Ap(t) = Ap(0)

(
1

θS(t)

)
(5)
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Ad (t) = Ad (0)θS(t) (6)

θS(t) = α〈c〉τ = α

τ

∫ t

−∞
c
(
t′
)
exp

(
−(

t − t′
)

τ

)
dt′ (7)

where Ap(t) and Ad (t) are amplitudes for potentiation and depression at time t, and
α is a scaling constant. Ap(0) and Ad (0) are initial values at time 0. The term <cτ>

expresses the weighted temporal average of the postsynaptic spike count, with the most
recent spikes entering the sumwith bigger weight than the previous ones [8]. The source
code of Exp2Syn endowed with the meta-STDP rule is available on ModelDB database
under accession number 185350. The simulations were performed with the NEURON
simulation environment (version 7.7.2) [19] embedded in Python 2.7.16.

3 Results

When stabilizing the model, we worked with parameters from two groups. On the one
hand, it was the number of synapses, the distribution of synapses on the dendrites and
their initial weight values. The second group were the parameters of synaptic plasticity
and metaplasticity. We analyzed the simulation results from both perspectives at the
same time, but we always modified only one selected parameter. All these parameters
were optimized by trial and error.

3.1 Number of Synapses, Distribution of Synapses and Initial Weights

We started with an initial number of synapses of 600, which we uniformly randomly dis-
tributed to the dendritic tree, maintaining the ratio of synapses on the individual branch
parts according to Table 3 from the paper of Megías et al. [17]. The total number of exci-
tatory synapses impinging on a single CA1 neuron was estimated to be about 30 000.
Their relative representation on individual parts of the dendritic tree is as follows: 38.3%
on the stratum oriens distal dendrites, 0.8% on the stratum oriens proximal dendrites,
0.9% on the stratum radiatum thick medial dendrites, 7.1% on the stratum radiatum
thick distal dendrites, 47.1% on the stratum radiatum thin dendrites, 1.6% on the stra-
tum lacunosum-moleculare thick dendrites, 1.4% on the stratum lacunosum-moleculare
medial dendrites, and 2.8% on the stratum lacunosum-moleculare thin dendrites [17].
The number of synapses in individual layers were: stratum oriens – 240 (40%), stratum
radiatum – 330 (55%), and stratum lacunosum-moleculare – 30 (5%).

The meta-STDP synaptic plasticity rule requires the model cell to fire as is the
case in vivo. Our goal was to achieve an output firing frequency of about 2 Hz, which
was also observed in vivo [23]. We decided to generate the initial synaptic weights
from the normal distribution, while we experimentally found suitable parameters of
the normal distribution, namely μ = 0.000165 and σ = 0.000015. For any randomly
generated initial synaptic weights from the normal distribution thus defined, the meta-
STDP rule ensured that the synaptic weights were dynamically stable during ongoing
spontaneous activity and at the same time the output frequency was around 2 Hz. This
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result is important because even in in vivo experiments, the stable baseline ismeasured for
some time before applying the stimulation protocol [12]. We also experimented with the
lognormal distribution of initial weights, which was observed in several in vitro, -ex vivo,
and in vivo studies [24]. Our unpublished results suggest that the meta-STDP rule is able
to maintain dynamically stable weights generated from the lognormal distribution.

When generating weights from the normal distribution with the indicated parameters
and simulating spontaneous activity for 20 min, 3 groups of synapses were formed at
the end of the simulation. The first group consisted of synapses, the final weights of
which were more or less the same as the initial ones (change in weights ±5%). The
second group consisted of synapses that were attenuated, and their final weights were
approximately 50% lower than the initial ones. The last group consisted of synapses with
weight changes between 5–50%. It should be noted here that in each group there were
synapses with different initial weights and from different parts of the dendritic tree. At
this point, we asked ourselves the question of whether synapses, whose weights have
significantly decreased as a result of spontaneous activity, are necessary to stabilize the
entire system.We decided to remove them, reducing the total number of synapses to 391.
Thus, the resulting number of synapses in individual layers is as follows: stratum oriens
– 158 (40.4%), stratum radiatum – 203 (51.9%), and stratum lacunosum-moleculare – 30
(7.6%) As we can see from the results, the percentage of synapses within each layer was
maintained as in [17]. Due to the removal of synapses, we increased all initial weights
by 20% in order to maintain cell firing which is necessary to activate synaptic plasticity
and metaplasticity in our meta-STDP rule.

3.2 Synaptic Plasticity Parameters

In evaluating the stability of synaptic plasticity and metaplasticity parameters, we mon-
itor the evolution of depression and potentiation amplitudes and the evolution of the
integrated spike count scaled by alpha over time (Eq. 7). The integrated spike count is
important because the amplitudes are adjusted based on it. This mechanism represents
metaplasticity. In simulations, it is crucial that its value oscillates around the value 1.
Values higher than one results in increased depression and weakened potentiation. Con-
versely, values less than one yield potentiation to be attenuated and depression enhanced.
Slight oscillations around 1will ensure dynamically stable amplitudes and thus the entire
system. The free parameters are mainly alpha and the average time constant τ for the
postsynaptic spike count (Eq. 7). The following proved to be the most suitable parameter
values: Ap(0) = 0.0001, Ad (0) = 0.0003, τp = 20ms, τd = 20ms, τ = 100000ms,
and α = 500. The following figures show the results of potentiation and depression
amplitudes (Fig. 2) and integrated spike count θS scaled by alpha (Fig. 3) for any typical
simulation.

3.3 Results of Simulations

After simulating spontaneous activity for 20min, we achieved dynamically stable synap-
tic weights in all layers. The figures (Fig. 4, 5, 6 and 7) show the results for any simulation
with the best parameters of the meta-STDP plasticity rule for the period of 20 min.
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Fig. 2. The CA1 pyramidal cell model depression and potentiation amplitudes were stabilized
after a short transitory period with employed meta-STDP rule.

Fig. 3. Evolution of the integrated spike count scaled by alpha with employed meta-STDP rule
applied to the synapses of the CA1 pyramidal cell model.

The results document that the weights are stable on average in all layers of the
dendritic tree of the CA1 pyramidal cell model endowed with the meta-STDP synaptic
plasticity rule.
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Fig. 4. Evolution of synaptic weights in the distal stratum oriens (left) and the proximal stratum
oriens (right) of the CA1 pyramidal cell model. The x-axis denotes time in ms and the y-axis
denotes values of synaptic weights.

Fig. 5. Evolution of synaptic weights in the proximal stratum radiatum (left) and the medial
stratum radiatum (right) of the CA1 pyramidal cell model. The x-axis denotes time in ms and the
y-axis denotes values of synaptic weights.

Fig. 6. Evolution of synaptic weights in the distal stratum radiatum (left) and the stratum lacuno-
sum moleculare (right) of the CA1 pyramidal cell model. The x-axis denotes time in ms and the
y-axis denotes values of synaptic weights.

4 Discussion

Computational studies that model synaptic plasticity in vivo neglect the fact that in vivo
neurons exhibit an ongoing spontaneous spiking in the neural circuits [14]. The first
synaptic plasticity theory that explicitly took into account ongoing neuronal activity
was the BCM theory [21]. A key element of this BCM theory is a whole-cell variable
termed the modification threshold, the tipping point at which the presynaptic activity
either leads to long-term depression (LTD) or long-term potentiation (LTP) of synaptic
efficacy. A second key element is the theory’s postulate that the average ongoing level of



678 M. Tomko et al.

Fig. 7. Evolution of synaptic weights average in the stratum oriens, radiatum, and lacunosum-
moleculare of the CA1 pyramidal cell model. The x-axis denotes time in ms and the y-axis denotes
values of average synaptic weights.

spontaneous activity dynamically sets the position of the LTD/LTP tipping point in such
a way that potentiation is favored when the postsynaptic cell firing is low on average and,
vice versa, depression is favored when the postsynaptic activity is high on average. The
BCM model has been used to account for experimental findings of experience-evoked
plasticity in the developing visual [21] and adult somatosensory cortices in vivo [25]. The
proposal of a modifiable plasticity threshold foreshadowed the concept of metaplasticity
[10], developed to account for the abundant experimental evidence that prior neural
activity can change the state of neurons and synapses such that the outcome of future
synaptic plasticity protocols is altered.

Here we study how key components of learning mechanisms in the brain, namely
spike timing-dependent plasticity and metaplasticity, interact with spontaneous activity
in the input pathways of the CA1 neuron model.

In this study we optimized the synaptic model parameters to achieve the long-term
stability of synaptic weights under in vivo-like conditions mimicking ongoing sponta-
neous activity as recorded in neuronal circuits [20]. Each synapse received an inde-
pendent spike train input consisting of periodic spikes corresponding to theta activity
and random spikes corresponding to random background activity. Average frequency
of spikes in the one spike train was ~8 Hz. During the 20-min simulation of sponta-
neous activity, the individual synaptic weights and synaptic plasticity parameters are
dynamically stable. These results provide a good basis for experimenting with synap-
tic plasticity stimulation protocols and ultimately for modeling the synaptic plasticity
observed in CA1 pyramidal cells in vivo.

In our previous study [16], we used a model from Cutsuridis et al. [15]. Using
HippoUnit tests [26], we tested and compared the latter model and our currently used
model. As a result, our model achieved better results than the Cutsuridis model [15],
which is more excitable (data not shown/paper in preparation). The consequence of the
higher excitability of the Cutsuridis model was that at the beginning of each simulation
there was a significant increase in the integrated spike count function θS and at the same
time a decrease in the weights [16]. In our current model, the weights are dynamically
stable from the beginning of the simulation (Fig. 4, 5, 6 and 7) and the integrated spike
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count function θS saturation occurs gradually (Fig. 3). By adding side branches, we have
ensured that experimentally observed non-linear summation of synaptic inputs occurs
on these branches, resulting in dendritic spikes.

In summary, we have modified existing compartmental model of the CA1 pyramidal
cell by adding the side dendrites, synapses, and by implementing synaptic plasticity
rule, namely the meta-STDP rule. Our model exhibits realistic input-output spontaneous
activity as neurons in vivo. During ongoing spontaneous activity, synapses should not
change their weights. This has been achieved after manual optimization of synaptic
model parameters. Next, we intend to implement several of synaptic plasticity protocols
which were experimentally studied for CA1 pyramidal cells.
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16. Tomko, M., Jedlička, P., Beňušková, Ľ.: Computational model of CA1 pyramidal cell with
meta-STDP stabilizes under ongoing spontaneous activity as in vivo. In: Kognícia a umelý
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