
Adaptive, Neural Robot Control – Path
Planning on 3D Spiking Neural Networks

Lea Steffen(B), Artur Liebert, Stefan Ulbrich, Arne Roennau,
and Rüdiger Dillmannn

FZI Research Center for Information Technology, Karlsruhe, Germany
{steffen,liebert,stefan.ulbrich,roennau,dillmann}@fzi.de

Abstract. Safe, yet efficient, Human-robot interaction requires real-
time-capable and flexible algorithms for robot control including the
human as a dynamic obstacle. Even today, methods for collision-free
motion planning are often computationally expensive, preventing real-
time control. This leads to unnecessary standstills due to safety require-
ments. As nature solves navigation and motion control sophisticatedly,
biologically motivated techniques based on the Wavefront algorithm have
been previously applied successfully to path planning problems in 2D.
In this work, we present an extension thereof using Spiking Neural Net-
works. The proposed network equals a topologically organized map of the
work space, allowing an execution in 3D space. We tested our work on
simulated environments with increasing complexity in 2D with different
connection types. Subsequently, the application is extended to 3D spaces
and the effectiveness and efficiency of the used approach are attested
by simulations and comparison studies. Thereby, a foundation is set to
control a robot arm flexibly in a workspace with a human co-worker. In
combination with neuromorphic hardware this method will likely achieve
real-time capability.

Keywords: Cognitive robotics · Neural motion control · Spiking
Neural Networks · Wavefront algorithm

1 Introduction

Nowadays, robots are crucial for the production in several major industries. Until
recently, robots were applied isolatedly, enabling work with exclusively prede-
fined paths. As product individualization and diverse product needs increase,
the production moves away from repetitive high precision tasks evolving into
more complex processes. Additionally, the demand for human-robot interac-
tion requires flexible and real-time capable robot control, considering humans
as dynamic obstacles, to meet safety precautions. State-of-the-art algorithms
following the Sense-Plan-Act cycle do not meet these requirements. Nature’s
sophisticated manner of fast and reactive motion control has been an inspiration
to scientists for decades. Hence, it is not a new idea to use Artificial Intelli-
gence (AI), and more precisely, Artificial Neural Networks (ANN), to solve path
c© Springer Nature Switzerland AG 2020
I. Farkaš et al. (Eds.): ICANN 2020, LNCS 12397, pp. 509–520, 2020.
https://doi.org/10.1007/978-3-030-61616-8_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61616-8_41&domain=pdf
https://doi.org/10.1007/978-3-030-61616-8_41


510 L. Steffen et al.

planning [9] and also motion planning problems [23] for robotics. However, it
is still an active field of research as well in navigation [19] as in motion control
[3,4,18]. Algorithms creating collision-free motions as the A* algorithm [12],
Rapidly Exploring Random Trees [16] (RRT) and the Wavefront Algorithm [15]
already exist but are far from realtime-capable on conventional hardware due to
extensive computing times caused by high complexity.

The fundamental concept of path planning, motion control and navigation in
humans is formed by the Place Cells [14] discovered in 1971 by O’Keefe. These
cells are located in the hippocampus. If an organism enters a particular location,
the respective place cells fire simultaneously. The location responsible for this
impulse is called Place Field. Place Cells depict the environment as a cognitive
map [21], which is resistant to rotation and changes in lightning, and therefore
not relying on visual input. ANNs, are usually applied to model an artificial
system for robotic control but recently, also Spiking Neural Networks (SNN) are
used [1]. A major advantage is their massive parallelism, but to benefit from
it, dedicated hardware, referred to as neuromorphic, is needed to compute the
underlying differential equations efficiently. Neuromorphic hardware has already
been an active research topic for years, as shown by the development of SpiN-
Naker [6]. However, as of recently, companies like Intel (Loihi [2]) and IBM
(TrueNorth [13]) have also invested in this technology.

Neural adaptations of the Wavefront algorithm using SNNs have been applied
successfully to path planning problems in 2D [8]. In this work, we present an
extension of this approach where the network represents a topologically orga-
nized map of the navigational space of a robot cell in 3D. This system forms the
basis of a reactive real-time capable technique to control a robot arm flexibly
considering humans and, in general, static as well as dynamical obstacles.

2 Related Work

Already in 1995, a Hopfield-type ANN has proven as effective for path plan-
ning and obstacle avoidance [7]. A biologically plausible alternative is presented
in [22], whereby random exploration is used to learn the state space. However,
there is a lack of neural path planning algorithms in 3D as up until now neu-
ral path planning has mostly been applied to 2D surroundings. Our method is
based on the work of Qu et al. [8], a mathematically profound technique using
SNNs. Nonetheless, there are several related methods employing a similar net-
work architecture. [11,17,24] cover a wide spectrum from simplified to complex
and biologically plausible neuron models. Furthermore, they differ in how the
membrane potential is determined, weight adaptation and path calculation.

Most methods introduced in this section rely on Spike-time-dependent Plas-
ticity (STDP), a neurobiological process that regulates the strength of synaptic
connections in the brain [10]. If an incoming spike into a neuron occurs imme-
diately before the neuron’s own spike, STDP amplifies the respective synapse’s
weight. If the incoming spike into a neuron occurs immediately after its own
spike, the synapse responsible for the incoming signal gets weakened. The pro-
cess thus reinforces the relevance of the inputs potentially responsible for the



Adaptive, Neural Robot Control – Path Planning on 3D SNN 511

excitation of the postsynaptic neuron. As a consequence, such inputs will have
a higher impact on the postsynaptic neuron in the future.

In [17], Ponulak et al. introduce an approach for parallel path planning using
the Wavefront algorithm and neural plasticity. The neurons of the applied SNN
are organized as a 2D topological map and represent biological Place Fields. In
this method, the environment has to be learned before path planning is exe-
cutable. Hence, an initial exploration phase creates a cognitive map of the sur-
roundings by strengthening neurons which represent nearby locations through
STDP. Afterwards, a neural wave, travelling the entire network, is initiated by
activating the neuron representing the target location. Synapses are strength-
ened by anti-Hebbian STDP [5]. As the wave travels from the goal to the start
position and anti-Hebbian STDP strengthens weights in the opposite direction,
the optimal path can be determined by retracing the strongest synapses from the
start to the target neuron. The network’s architecture and synaptic connections
are similar to our approach, but everything else is not. In particular, the cal-
culation of the membrane voltage, and how synaptic connections are altered is
different. Our approach and [8] determine the optimal path by following the par-
ent of every neuron. In [17] the path is found by following the strongest synapse
weights, which are a result of learning with STDP.

Another method for neural path planning based on Place Cells and cognitive
maps was presented in [24]. Also here, impulses travel wave-like through a 2D
network. The unique feature of this work is an additional same-sized network,
referred to as the occupancy map. Synaptic connections, between a neuron of
the main network and the occupancy grid are only established if they cover the
same part of the environment. These connections are either inhibitory, in case of
an obstacle, excitatory in case of a robot or neutral for empty spaces. Learning,
and thus updating the synaptic weights is achieved by STDP. The similarities of
this method and our work lie in the network architecture. They differ through
the application of an occupancy grid and STDP as the learning rule in [24].

A scale-free navigational approach for planning by neural waves was intro-
duced in [11]. The navigational space is represented by a topological graph where
exciting synapses connect neurons of the free space representing portions of the
surrounding which are close to each other. Neurons representing obstacles are iso-
lated. What distinguishes this technique the most is that each neuron is excited
periodically. The target neuron is excited with a higher frequency than the oth-
ers, influencing their respective frequencies. The optimal path emerges along the
phase-shifted frequencies.

3 Methodology

The core idea of our approach is mostly based on the work of [8]. However, our
work differs to [8] in several ways. The nature of the network is merely outlined
mathematically in [8], hence we used our own implementation to generate a
neural representation of the environment but kept in line with the mathematical
features of [8]. Furthermore, it is not stated in [8] how neighbor neurons are



512 L. Steffen et al.

determined. We solved this issue initially with Euclidean vector metric to ensure
an easy transition from 2D to 3D environments. As we managed to reduce the
generation time by using a direct mapping we replaced the Euclidean vector
metric with that. To boost the performance even more, we used precise instead
of equidistant time steps. The time steps are adapted to the occurrence of spikes,
thus the network is only simulated if spikes are emitted. The method of [8] uses
the differential equation in Eq. (7) to calculate the internal activity of every
neuron in every single time step. Hence, even intern activities of neurons which
have not had an input yet are calculated resulting in U(t) = 0. In our work we
assigned the value of neurons which had no input yet to zero. Another aspect
that differs from the method of [8] is that in their method the simulation iterates
over every single neuron in every single time step. In contrast, we delete neurons
which have already spiked which reduces the simulation time massively. Finally,
we want to emphasize the most important difference, that there is no execution
on 3D environments in [8].

3.1 Network Architecture and Synaptic Connections

The network’s finite set of neurons is called N . Every neuron i ∈ N , used for our
system is a modified pulse-coupled neuron. We will describe their specific features
in more detail in Sect. 3.2. Our algorithm operates on a discrete topologically
organized map which is arranged as a 2D or 3D grid with solely local lateral
connections among neurons. The synaptic weight between the neuron i and j is
called ωij and is corresponding to the Euclidean distance of the neurons. Hence
ωij =

√
2 if i and j are diagonally connected and ωij = 1 if i and j are crosswise

connected. As all weights are symmetrical, ωij = ωji, the system with its synaptic
connections corresponds to an undirected graph. While neurons representing
free space are connected to their neighbors, neurons representing obstacles are
isolated. Two network structures are possible, the Manhattan method and the
Chamfer Method. The former only considers direct neighbors, in contrast to the
latter, which additionally takes diagonal neighbors into account. It is noteworthy
that, in 3D, the diagonal connections are alongside two axes, meaning they run
on the convex hull of the ‘cube’ between two neurons.

3.2 Neural Features and Information Processing

Every neuron i has a set of neighbors Ri which is expressed by Ri = {j ∈
N, j is connected to i}. This set can be separated into two subsets Rr

i = {j ∈
Ri | ωij =

√
2} and Rl

i = {j ∈ Ri | ωij = 1}. Rl
i contains every neighbor

connected crosswise to i and Rr
i holds all diagonal neighbors of i. A neuron i is

said to fire at time T ≥ 0, if ∃ε ≥ 0 such that

Yi(t) =

⎧
⎪⎨

⎪⎩

0, if T − ε ≤ t < T

1, if t = T

0, if T < t ≤ T + ε

(1)



Adaptive, Neural Robot Control – Path Planning on 3D SNN 513

(a) t =
√
2 (b) t = 1 + 2

√
2 (c) t = 5 (d) t = 2 + 4

√
2

Fig. 1. Expansion of a neural wave in the network at different stages from the initiation
in (a) to the termination in (d). The start neuron is marked in green while the target
neuron and the resulting path are indicated in blue and obstacles are marked by an x.
The parameter t states the number of time steps passed since the wave’s onset. The
time is unit less as explained in Sect. 4. (Color figure online)

The firing time is tifire. The output function Yi(t) and neurons’ output Yi are
explained in more detail later on.

To describe the internal neural activity, we need to introduce an additional
concept. The first neighbor of neuron i that fires is denoted as RF

i . It is referred
to as the pseudo parent neuron of i. If a spike emitted by i is a direct consequence
of the stimulation from RF

i the pseudo parent becomes the parent neuron RP
i of

neuron i. However, if another neighbor j spikes after the initial pseudo parent
RF

i causing an earlier firing event of neuron i, then j is called the new pseudo
parent neuron RF

i . The entirety of every potential parent of a neuron i at time
t is called the changing set ξ(t, i). This set is time-dependent, at first it contains
every neighbor of i. When t approaches tifire the changing set ξ(i, t) empties.

Auxiliary fields are needed to describe the internal activity Ui(t) of a neuron i.
The linking field Li(t) and feeding field Fi(t) of each neuron are expressed as

Li(t) = f(Yr1 , · · · , Yrk , t) =

{
0, if t < t

RF
i

fire

1, else
(2)

Fi(t) = −g(ωir1 , · · · , ωirk , t)Ui(t) (3)

where ωir1 , · · · , ωirk are linking strengths from neuron i to every k neighbors.
The internal activity of each neuron determines if a spike is emitted and can be
solved via an initial value problem
⎧
⎨

⎩

dUi(t)
dt = Fi + CLi = −g(ωir1 , · · · , ωirk , t)Ui(t) + CLi, for t ≥ t

RP
i

fire

U
(
t
RP

i

fire

)
= 0

(4)

where C is a positive constant and g(·) is a function which uses connection
weights from neighboring neurons and the time as an input. It has a positive
output. The function g can be depicted as

gi(ωir1 , · · · , ωirk , t) =

{
0, if t < t

RF
i

fire

μ(ωij), if t ≥ tjfire for a j ∈ ξ(i, t)
(5)



514 L. Steffen et al.

where μ(ωij) is given by

μ(ωij) =
B

ωij
=

{
B, if j ∈ Rl

B√
2
, if j ∈ Rr (6)

In this case, B is also a positive constant. The particularity of the system is that
if the parent of neuron i changes, the intern activity Ui of i is reset to 0 and the
process of solving the changed differential equation starts all over again.

The final differential equation for the internal activity Ui(t) for a neuron i
results from this derivation and is expressed as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ui(t) = 0, if 0 ≤ t < t
RF

i

fire

Ui(t) = 0, if t = tjfire for any j ∈ ξ(i, t)

dUi(t)
dt = −μ(ωiRP

i
)Ui(t) + C, if t ≥ t

RP
i

fire.

(7)

Since the membrane potential behaviour of a neuron has been described, the
next step is to formulate the process of spiking.

It requires a output function Yi(t) of a neuron i which has the time t as input
and compares the internal activity Ui(t) of a neuron i with its threshold function
θi(t) at time t as follows

Yi(t) = Step(Ui(t) − θi(t)) =

{
1, if Ui(t) ≥ θi

0, else
(8)

The threshold function θi(t) is expressed as

θi(t) =

⎧
⎪⎨

⎪⎩

Ainit, if t < t
RF

i

fire

Aij , if tjfire ≤ t < tifire, j ∈ ξ(i, t)
Vθ, if t ≥ tifire

(9)

for all i, where Ainit and Vθ are real-valued, positive constants. Vθ is set to be a
very large value, such that every neuron will not spike a second time, once they
have already spiked. Aij is expressed as

Aij =

{
Ar, falls j ∈ Rr

i

Al, falls j ∈ Rl
i

(10)

where Ar and Al are also real-valued, positive constants. Aij describes the chang-
ing value of the threshold which depends on the type of connection of i to its
neighbor j.



Adaptive, Neural Robot Control – Path Planning on 3D SNN 515

The fundamental difference to a pulse coupled neural network (PCNN) [20]
lies in the structure of the threshold function. In modified PCNN (MPCNN) the
threshold function can receive simulated inputs from neighboring neurons, which
can then artificially change their value. This is not possible with PCNN. The
presented neuron model is described in its entirety from the output function,
the threshold function, the linking- and feeding fields, g, μ and the final form
of the differential Eq. (7). However, a special case has to be considered here. If

more than one neuron fires at the same time t
RP

i

fire, the neuron with the lowest
connection strength is selected as the parent neuron RP

i .

3.3 Expansion of the Neural Wave and Path Calculation

In order to generate a neural wave in the network, its origin, the initial start
neuron which represents the robot cell, referred to as start, must be declared.
This is done by raising the internal current of the neuron in question, such that
Ustart(0) > Ainit. This excites its neighbors activating the neural wave, impulses
forwarded by the neurons via spikes. Four stages of a neural wave expansion in
an environment with four dot obstacles is visualized in Fig. 1. Here, the start
neuron is marked in green and the target neuron as well as the resulting path in
blue. In Fig. 1(a), the artificially altered membrane potential of the start neuron
surpasses a threshold starting the wave expansion in all directions generating
a vector field. The wave is terminated when the target neuron is reached, as
shown in Fig. 1(d). During this process, each neuron stores internally its parent.
Finally, the path is determined by following the stored parent-child connections
from the start neuron to the target neuron.

4 Evaluation and Simulation

For all experiments presented in this section, the necessary parameters are chosen
as follows:

Ainit = 0, 5 Vθ = 20

B = 1 Ar =
√

2C
(
1 − e−1

)

C = 10 Al = C
(
1 − e−1

)

The thresholds Ar and Al were chosen such that the time the wave needs to travel
from neuron to neuron corresponds to the Euclidean distance of the neurons. It
is hence unit less. The other constants are chosen such that the three conditions
from the mathematical analysis of the proposed model hold [8]. The naming
of Table 1 and 2 is uniform. Generation time refers to the amount of time (in
seconds), needed to construct the 2D or 3D network, the neural representation
of the environment. Simulation time is the time necessary to simulate the wave
and calculate the optimal path through the network.



516 L. Steffen et al.

(a) (b) (c) (d)

Fig. 2. 2D environments with different complexity. In (a), the obstacle is formed like a
rectangle and is placed on the upper border. In (b), an obstacle shaped like a horseshoe
is enclosing the start position. In (c), a square- and in (d) a circle-shaped obstacle are
placed in the center.

4.1 Experiments in 2D Environments

All experiments presented in this section are carried out on 2D maps, thus they
are quite similar to the results of [8]. However, these tests provide a basis for
the more advanced results of Sect. 4.2 and 4.3. The experiments carried out on
2D maps are all performed on a network connected by the Chamfer method. 2D
Experiments regarding the Manhattan method are neglected due to triviality. In
Fig. 2(d) four experiments in different 2D environments are shown. It is obvious
that in each one of them the optimal path (marked in blue) was found. It is
noticeable that mostly lateral connections are used in Fig. 2(a) and Fig. 2(c) as
the optimal path is alongside axis. Diagonal connections are solely applied to
get around the corners. A more balanced combination of lateral and diagonal
connections is necessary for the optimal path in Fig. 2(b) and 2(d). Furthermore,
it can be seen that the neural wave, displayed by red vectors did not reach all
free neurons as the expansion of the wave is terminated immediately when the
target neuron is found.

Details about the experimental results are provided in Table 1. The simula-
tion on the map displayed in Fig. 2(c) requires the least amount of time as the
majority of neurons could be discarded by the algorithm. In contrast to that, the
performance shown in Fig. 2(a) is quite bad even though many neurons could be
ignored here due to a huge obstacle as well. This can be explained by the fact

Table 1. All results of this table were obtained on a 2D grid connected by the Chamfer
method. The respective environments are visualized in Fig. 2.

Rectangle Horseshoe Square Circle

Generation time 1.93 s 2.38 s 1.71 s 2.49 s

Simulation time 26.04 s 22.72 s 14.56 s 15.80 s

Start neuron (3, 18) (8, 10) (1, 1) (2, 2)

Target neuron (17, 18) (3, 10) (18, 18) (17,1 7)

Path length 42 27 32 26



Adaptive, Neural Robot Control – Path Planning on 3D SNN 517

that the length of the optimal path also influences the simulation time. These
results lead to three conclusions about the general performance of our system.
The generation time, the time needed to generate a neural representation of a
map, increases with more complex obstacles. The simulation time on the other
hand decreases if the number of neurons representing obstacles rises. This is not
surprising as a large amount of obstacles decreases the neurons which need to
be considered by the algorithm. Lastly, the simulation time is also related to the
size of the resulting vector field.

4.2 3D Experiments with the Manhattan Method

Networks connected via the Manhattan method are visualized in Fig. 3(a), (b),
(c) and (d). The results of these experiments are shown in Table 2. All grids of
Fig. 3, also the once covered in Sect. 4.3, have the size 12 × 12 × 12. The map
of Fig. 3(a) is completely free of obstacles and serves as a basis for comparisons.
The optimal path is of length 33 and changes its direction twice. In Fig. 3(a) a
wall, parallel to the x-y plane, is inserted. Even though the length of the optimal
path does not change from Fig. 3(a) to (b), the generation time increases and
the simulation time decreases. The second observation can be explained by the
fact that neurons representing obstacles are neglected by the algorithm. In (c) a
second wall, parallel to the first one, is added extending the optimal path to 55
steps. The last experiment regarding the Manhattan method is carried out on a
3D map with a sphere located at the center, as shown in (d).

The data of Table 2 shows that the generation time does not always increase
with complexity. If many neurons are removed, the algorithm does not need to
determine all their values and neighbors. As the generation times are all within
3.7 s to 4.36 s they show only minor variations.

The worst simulation time, 0.71 s, is obtained in (a), the map without any
obstacles. This is because while simulation, the wave could expand over the
entire network meaning vectors needed to be calculated for every neuron. In
contrast, the shortest simulation time of 0.51 s was achieved in (c). The neural
wave only expanded over a subset of the network’s neurons. It is remarkable
that this simulation time was achieved even though the optimal path of (c) is
the longest. However, the length of the optimal path does have a great influence
on the simulation time as a short optimal path terminates the expansion of the
wave. This effect is noticeable in (c) and the last column of Table 2.



518 L. Steffen et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. The 12 × 12 × 12 network includes 1728 neurons. The networks of (a), (b),
(c) and (d) apply the Manhattan, whereby (e), (f), (g) and (h) the Chamfer method.
All obstacles are marked in red and the optimal path is visualized in green. The net-
works (a) and (e) consist only of free space while the environment of (b) and (f) embody
a wall. In (c) and (g) two walls are present and the obstacle in (d) and (h) is a sphere.
For all experiments, except (d) and (h), the start neuron is (0, 0, 0) and the target
neuron is (11, 11, 11). (Color figure online)

Table 2. Results about experiments on a 3D grid connected by the Manhattan vs the
Chamfer method. The first three rows correspond to Fig. 3(a), (b), (c) and (d) while
the results of the last three rows belong to Fig. 3(e), (f), (g) and (h).

None Wall 2 walls Sphere

Manhattan Generation time 4.02 s 4.36 s 4.0 s 3.7 s

Simulation time 0.71 s 0.62 s 0.51 s 0.53 s

Path length 33 33 55 21

Chamfer Generation time 5.5 s 5.36 s 5.43 s 5.12 s

Simulation time 7.34 s 6.79 s 10.59 s 4.78 s

Path length 16 16 33 12

4.3 3D Experiments with the Chamfer Method

The experiments displayed in Fig. 3(e), (f), (g) and (h) are connected by the
Chamfer method. Hence the network including 1728 neurons is not only con-
nected with lateral but also diagonal synapses. Information about time and path
length for those tests is given in the lower half of Table 2. The most obvious differ-
ence between the results with the Manhattan method and the Chamfer method
(see Table 2) is the length of the optimal path. For the map of Fig. 3(a) and (e)
as well as Fig. 3(b) and (f), the optimal path is reduced by half. Also the other
experiment show a significantly shorter optimal path if the network is connected
via the Chamfer method. The effect on the computation time, even though it was



Adaptive, Neural Robot Control – Path Planning on 3D SNN 519

expected, is less desirable. Comparing the results of Table 2 shows that the gen-
eration time is increased by ca 20% while the simulation time rises massively. In
some cases, the simulation time is increased by factor 10. This is simply because
each neuron has up to 12 synapses more due to the Chamfer method.

In Fig. 3(e), a map with no obstacles, the approach only finds a poor solution.
This observation can be explained as the synaptic connections of the Chamfer
model in 3D were intentionally chosen to resemble those in 2D. For (e) the
resulting path would be improved if the synaptic connections would go along
the 3D diagonal. However, in cases where the optimal path is approximately
along the 2D-diagonals the opposite is true. As an extension of the network to
embody both diagonals for distant neurons would decelerate computations two
potential solutions exist. Firstly, this issue is easily overcome with an increased
number of neurons, as the approximation of the optimal path would improve.
Secondly, it is possible to switch between connection types by simply changing
the neighborhood definition without adversely affecting the performance.

5 Discussion

The progress with spiking neurons has resulted in a model that can be used
effectively for robot path planning. MPGNN are a strong simplification of the
biological basis. By eliminating superfluous influences and neuronal properties,
the computing time is greatly reduced. This neuron model is effectively tailored
to the problem of path planning and accordingly delivers results efficiently with-
out being hindered by disturbing factors. If a target neuron can be reached from
the start neuron, the optimal path is found without exception. Although the
system does not yet achieve real time, neuromorphic hardware still promises a
significant improvement in this respect. It was found that the generation time
hardly depends on the type of obstacle, but on the number of neurons and,
above all, the type of connection. In general, it was shown that the MPGNN-
based model can be successfully used for motion planning in 3D.

Acknowledgments. The research leading to this paper received funding as the
project NeuroReact from the Baden-Württemberg Stiftung under the research pro-
gram Neurorobotik.

References

1. Bing, Z., Meschede, C., Röhrbein, F., Huang, K., Knoll, A.: A survey of robotics
control based on learning-inspired spiking neural networks. Front. Neurorobot. 12,
35 (2018)

2. Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning.
IEEE Micro 38(1), 82–99 (2018)

3. De Momi, E., Kranendonk, L., Valenti, M., Enayati, N., Ferrigno, G.: A neural
network-based approach for trajectory planning in robot-human handover tasks.
Front. Robot. AI 3(JUN), 34 (2016)



520 L. Steffen et al.

4. Ewerton, M., et al.: Learning trajectory distributions for assisted teleoperation and
path planning. Front. Robot. AI 6, 89 (2019)

5. Feldman, D.: The spike-timing dependence of plasticity. Neuron 75(4), 556–571
(2012)

6. Furber, S., Galluppi, F., Temple, S., Plana, L.: The SpiNNaker project. Proc. IEEE
102(5), 652–665 (2014)

7. Glasius, R., Komoda, A., Gielen, S.C.: Neural network dynamics for path planning
and obstacle avoidance. Neural Netw. 8(1), 125–133 (1995)

8. Qu, H., Yang, S., Willms, A., Yi, Z.: Real-time robot path planning based on a
modified pulse-coupled neural network model. Trans. NN 20(11), 1724–1739 (2009)

9. Janglová, D.: Neural networks in mobile robot motion. Int. J. Adv. Robot. Syst.
1(1), 15–22 (2004)

10. Jost, J.: Temporal correlation based learning in neuron models. Theory Biosci.
125(1), 37–53 (2006)

11. Khajeh-Alijani, A., Urbanczik, R., Senn, W.: Scale-free navigational planning by
neuronal traveling waves. PLoS ONE 10(7), e0127269 (2015)

12. Koenig, S., Likhachev, M.: Incremental A*. NIPS2001, pp. 1539–1546 (2002)
13. Merolla, P.A., et al.: A million spiking-neuron integrated circuit with a scalable

communication network and interface. Science 345(6197), 668–673 (2014)
14. O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. Preliminary evi-

dence from unit activity in the freely-moving rat. Brain Res. 34(1), 171–175 (1971)
15. Pal, A., Tiwari, R., Shukla, A.: A focused wave front algorithm for mobile robot

path planning. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011.
LNCS (LNAI), vol. 6678, pp. 190–197. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-21219-2 25

16. Polyakova, M., Rubin, G., Danilova, Y.: Method for matching customer and manu-
facturer positions for metal product parameters standardization. In: AIP, vol. 1946
(2018)

17. Ponulak, F., Hopfield, J.: Rapid, parallel path planning by propagating wavefronts
of spiking neural activity. Front. Comp. Neurosci. 7, 98 (2013)

18. Qureshi, A., Simeonov, A., Bency, M., Yip, M.: Motion planning networks (2019)
19. Raković, M., Savić, S., Santos-Victor, J., Nikolić, M., Borovac, B.: Human-inspired

online path planning and biped walking realization in unknown environment. Front.
Neurorobot. 13, 36 (2019)

20. Subashini, M., KumarSahoo, S.: Pulse coupled neural networks and its applica-
tions. Expert Syst. Appl. 41(8), 3965–3974 (2014)

21. Tolman, E.C.: Cognitive maps in rats and men. Psychol. Rev. 55(4), 189 (1948)
22. Weber, C., Triesch, J.: From exploration to planning. In: Kůrková, V., Neruda, R.,

Koutńık, J. (eds.) ICANN 2008. LNCS, vol. 5163, pp. 740–749. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87536-9 76

23. Zeller, M., Sharma, R., Schulten, K.: Motion planning of a pneumatic robot using
a neural network. IEEE Control Syst. 17(3), 89–98 (1997)

24. Zennir, M., Benmohammed, M., Boudjadja, R.: Spike-time dependant plasticity in
a spiking neural network for robot path planning. In: AIAI, vol. 1539 (2015)

https://doi.org/10.1007/978-3-642-21219-2_25
https://doi.org/10.1007/978-3-642-21219-2_25
https://doi.org/10.1007/978-3-540-87536-9_76

	Adaptive, Neural Robot Control – Path Planning on 3D Spiking Neural Networks
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Network Architecture and Synaptic Connections
	3.2 Neural Features and Information Processing
	3.3 Expansion of the Neural Wave and Path Calculation

	4 Evaluation and Simulation
	4.1 Experiments in 2D Environments
	4.2 3D Experiments with the Manhattan Method
	4.3 3D Experiments with the Chamfer Method

	5 Discussion
	References




