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Abstract. Hierarchical abstraction and curiosity-driven exploration are
two common paradigms in current reinforcement learning approaches to
break down difficult problems into a sequence of simpler ones and to over-
come reward sparsity. However, there is a lack of approaches that combine
these paradigms, and it is currently unknown whether curiosity also helps
to perform the hierarchical abstraction. As a novelty and scientific contri-
bution, we tackle this issue and develop a method that combines hierar-
chical reinforcement learning with curiosity. Herein, we extend a contem-
porary hierarchical actor-critic approach with a forward model to develop
a hierarchical notion of curiosity. We demonstrate in several continuous-
space environments that curiosity can more than double the learning
performance and success rates for most of the investigated benchmark-
ing problems. We also provide our source code (https://github.com/
knowledgetechnologyuhh/goal conditioned RL baselines) and a supple-
mentary video (https://www2.informatik.uni-hamburg.de/wtm/videos/
chac icann roeder 2020.mp4).

1 Introduction

A general problem for reinforcement learning (RL) is sparse rewards. For exam-
ple, tasks as simple as drinking water involve a complex sequence of motor
commands, and only upon completion of this complex sequence, a reward is
provided, which destabilizes the learning of value functions. Hierarchical rein-
forcement learning (HRL) partially alleviates this issue by decomposing difficult
tasks into simpler subtasks, providing additional intrinsic rewards upon comple-
tion of the subtasks. Therefore, HRL is a major step towards human-like cogni-
tion [24] and decision-making [4]. There exists a considerable body of research
demonstrating that hierarchical architectures provide a significant performance
gain compared to non-hierarchical architectures by performing such abstractions
[9,19,30].

However, HRL does not completely eliminate the problem of reward sparsity.
By adding intrinsic rewards for achieving subtasks, it rather transforms the
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I. Farkaš et al. (Eds.): ICANN 2020, LNCS 12397, pp. 408–419, 2020.
https://doi.org/10.1007/978-3-030-61616-8_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61616-8_33&domain=pdf
https://github.com/knowledgetechnologyuhh/goal_conditioned_RL_baselines
https://github.com/knowledgetechnologyuhh/goal_conditioned_RL_baselines
https://www2.informatik.uni-hamburg.de/wtm/videos/chac_icann_roeder_2020.mp4
https://www2.informatik.uni-hamburg.de/wtm/videos/chac_icann_roeder_2020.mp4
https://doi.org/10.1007/978-3-030-61616-8_33


Curious Hierarchical Actor-Critic Reinforcement Learning 409

Fig. 1. The CHAC Architecture with two layers of hierarchy. A forward model is
employed to compute the prediction error Li

fw(ŝit+1, s
i
t+1), which provides an additional

curiosity-based reward ric,t for the layer i of hierarchy. This intrinsic reward is added
to the extrinsic reward rie,t to train the actor-critic.

problem of reward sparsity into the problem of selecting the appropriate subgoals
or subtasks. Learning the subgoal or subtask-selection still suffers from reward
sparsity. So how can we improve the learning of subtask selection under sparse
rewards?

Current RL literature offers two commonly used methods for overcoming
rewards sparsity that we will investigate to address this question. The first
method is hindsight experience replay (HER) [2]. The idea behind HER is to
pretend in hindsight that the final state of a rollout was the goal of the rollout,
regardless of whether it was actually the original one. This way, unsuccessful roll-
outs get rewarded by considering in hindsight that they were successful. In recent
work, Levy et al. [19] have successfully combined HER with a hierarchical actor-
critic reinforcement learning approach, demonstrating a significant performance
gain for several continuous-space environments. The second method to densify
rewards is curiosity. Existing curiosity-based approaches in non-hierarchical rein-
forcement learning (e.g. [13,23]) provide additional rewards when the agent is
surprised. Following research around Friston et al. [11], the notion of surprise is
based on the prediction error of an agent’s internal forward model. That is, the
agent is surprised when its internal prediction of the world dynamics does not
coincide with its actual dynamics.



410 F. Röder et al.

There exists a significant amount of recent approaches on hierarchical rein-
forcement learning (e.g. [3,15,16,18,19,22,30]). We are also aware of significant
recent improvements in curiosity-driven non-hierarchical reinforcement learning
(e.g. [1,5,6,8,10,13,14,23,31]). However, despite significant evidence from Cog-
nitive Sciences, suggesting that curiosity is a hierarchical phenomenon [24], there
exist no functional computational models to verify this hypothesis.

In this paper, we address this lack and ask the following central research
question: To what extent can we alleviate reward-sparsity and improve the learn-
ing performance of hierarchical actor-critic reinforcement learning with a hier-
archical curiosity mechanism?

We address this question by extending the hierarchical actor-critic approach
by Levy et al. [19] with a reward signal that fosters the agent’s curiosity. We
extend the approach with Friston et al.’s proposal to model surprise based on
prediction errors [11] and provide the agent with intrinsic rewards if it is surprised
(cf. Fig. 1). As a novelty and scientific contribution, we are the first to present
a computational model that combines curiosity with hierarchical reinforcement
learning, and that considers also hindsight experience replay as an additional
method to overcome reward sparsity. We refer to our method as Curious Hier-
archical Actor-Critic (CHAC) and evaluate our approach in several continuous-
space benchmark environments.

2 Background and Related Work

Our research integrates hierarchical reinforcement learning with a curiosity and
surprise mechanism inspired by the principle of active inference [11]. In the
following, we provide the background of these mechanisms and methods.

2.1 Reinforcement Learning

Reinforcement learning (RL) involves a Markov Decision Process (MDP) to
maximize the long-term expected reward. An MDP is defined as a tuple,
〈S,A,R, T , γ〉, where S is a set of states, A is a set of actions, R : S × A
is a reward function, T : S × A �→ Pr(S) = p(st+1|st, at) is a transition proba-
bility of reaching state st+1 from the current state st when executing action at,
and γ ∈ [0, 1) is a discount factor, indicating how much the agent prefers short-
term to long-term rewards. In our setting, the agent takes actions drawn from a
probability distribution over action, a policy, denoted π(a|s) : S �→ A. The goal
of the agent is to take actions that maximize long-term expected reward. In this
work, we employ the Deep Deterministic Policy Gradient (DDPG) algorithm [20]
for the policy learning. DDPG is a model-free off-policy actor-critic algorithm,
which combines the Deterministic Policy Gradient (DPG) algorithm [29] with
Deep Q-network (DQN) [21]. This enables agent with DDPG to work in con-
tinuous space while learning with large, non-linear function approximators more
stably and efficiently. In Sect. 3, we define how this non-hierarchical notion of
reinforcement learning is extended to the hierarchical actor-critic case.
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2.2 Curiosity-Driven Exploration

Friston et al. [11] describe surprise as “the improbability of sampling some sig-
nals, under a generative model of how those signals were caused.”. Hence, curios-
ity can be achieved by maximizing surprise, i.e., by maximizing the probability
of sampling signals that do not coincide with the predictions by the generative
model [7,11]1.

A common method realizing this in practical reinforcement learning applica-
tions is to define a generative forward model ffw : S × A �→ S that maps states
and actions to successive states. One can then use the forward model to imple-
ment surprise as a function of the error between the successive states predicted
by the model and the actual successive states. This strategy and derivatives
thereof have been successfully employed in several non-hierarchical reinforce-
ment learning approaches [1,5–7,10,13,14,23,27,28,31].

For example, Pathak et al. [23] propose an Intrinsic Curiosity Module, intro-
ducing an additional internal reward that is defined as the squared error of the
predictions generated by a forward model. Similarly, Hafez et al. [13] implement
surprise as the absolute error of a set of forward models, and Watters et al. [31]
use the squared error as a reward signal.

3 Curious Hierarchical Actor-Critic

The hierarchical actor-critic (HAC) approach by Levy et al. [19] has shown
great potential in continuous-space environments. At the same time, there exists
extensive research [13,23] showing how curious agents striving to maximize their
surprise can improve their learning performance. In the following, we describe
how we combine both paradigms.

3.1 Hierarchical Actor-Critic

Hierarchical actor-critic (HAC) [19] is a framework that enables agents to learn
a nested hierarchy of policies. It uses hindsight experience replay (HER) [2] to
alleviate reward-sparsity. Each layer of the hierarchy learns to solve a subproblem
defined by the spaces and a transition function of the layers below: It produces
actions that are subgoals for the next lower level. The highest layer receives the
current state and the overall extrinsic goal as input. The lowest layer produces
motor commands that are executable by the agent in the environment. HAC
involves the following three kinds of state transitions that implement HER in a
hierarchical setting.

Hindsight Goal Transitions are akin to the transitions in the non-hierarchical
HER method: After a rollout has completed, the agent pretends in hindsight that
the actually achieved state was the goal state. They enable the critic function to

1 Note that curiosity is a broad term and there exist other rich notions of curiosity
[12]. However, for this paper we focus on the well-defined and established notion of
curiosity as maximizing a function over prediction errors.
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encounter at least one sparse reward after a sequence of actions. Hindsight Action
Transitions: These additional state transitions are generated by pretending in
hindsight that the action provided as subgoal to the low-level layer has been
achieved. This alleviates the slow learning of a hierarchical layer due to the
sparsity in achieving the subgoal provided by a higher level. As a result, HAC
can learn multiple levels of policies in parallel, even if the lower-level policies
are not yet fully trained. Subgoal Testing Transitions foster the generation of
subgoals that are actually achievable by the low-level layer. They are used to
test whether subgoals can be achieved and penalize a subgoal that could not be
reached. Since difficult subgoals are penalized in the beginning of the training,
but not anymore when the agent’s performance has improved, subgoal testing
mechanism provides HAC with a method to automatically generate a curriculum.

We build our approach on these transitions using the following formal frame-
work: We define a hierarchy of k layers with each containing an actor-critic net-
work and a replay buffer to store experiences. Here the RL setting (cf. Sect. 2.1)
is expanded for hierarchical agents. Each layer Πi of the hierarchy is described
as a Universal Markov Decision Process (UMDP), an extension of MDP with
an additional set of goals by applying universal value function approximator
(UVFA) [26]. An UMDP is a tuple Ui = 〈Si,Gi,Ai, Ti,Ri, γi〉 containing the
state space Si, the goal space Gi, the action space Ai, the transition probabil-
ity function Ti = pi(sit+1|ai, sit), the reward function Ri, and the discount rate
γi ∈ [0, 1) for each layer i. The state space of each layer is identical to the orig-
inal, namely Si = S. The produced subgoals by the policy πi : S × Gi �→ Ai of
each layer are within S, and therefore Gi = S. The action space is equal to the
goal space of the next lower layer, except the lowest one, thus Ai = S, i > 0.
Only in the lowest layer, we execute the so-called primitive actions of the agent
within the environment and therefore have A0 = A [19].

3.2 Combining Hierarchical Actor-Critic with Curiosity

To combine HAC with curiosity-based rewards, we implement a forward model
based on a multi-layered perceptron that learns to predict the successive state
ŝt+1 given the current state st and an action at at time t. Formally, this mapping
is given as follows, with the model parameters θ:

ffw(st, at; θ) ⇒ ŝt+1 (1)

An action ai
t produced by a policy πi of the layer i (except the bottom layer,

where i = 0) at time t is a subgoal for the subsequent level. We implement one
forward model f i

fw(st, ai
t; θ

i) per layer. That is, we define a forward model not
only for the primitive action ai=0 ∈ A in the lowest layer but also for the subgoal
action ai ∈ Ai = S in the higher layers. The learning objective for training the
forward model is to minimize the prediction loss, defined as:

Li
fw(ŝit+1, s

i
t+1) =

(sit+1 − ŝit+1)
2

2
. (2)
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Similar to the approach by Pathak et al. [23], the forward model’s error of the
layer i is used to realize the curiosity-based bonus, denoted as ric,t. We calculate
the mean-squared-error as follows:

ric,t =
(sit+1 − ŝit+1)

2

2
(3)

The regular extrinsic rewards (from the environment) are defined in the range
of [−1, 0], hence we need to normalize the curiosity reward rit,c resulted of Eq. 3.
The normalization of the curiosity reward is conducted with respect to the max-
imum and minimum values of the curiosity level in the whole history (stored in
a buffer), ric,max and ric,min respectively, as follows:

ric,t =
ric,t − ric,min

ric,max − ric,min

− 1 (4)

In other words, if the prediction error is high, corresponding to high curiosity,
the normalized value will be close to 0, otherwise, it is close to −1.

The total reward rit at time t that layer i receive, given the extrinsic reward
rie,t and the curiosity reward ric,t, is controlled by the hyper-parameter η as
follows:

rit = η · rie,t + (1 − η) · ric,t (5)

This part is crucial in determining the balance of changing the reward, since
rit = rie,t if η = 1, which is identical to HAC. We further elaborate on the different
values of η in Sect. 4.

3.3 Architecture and Training

We implement the forward model (of each hierarchical layer i) as a multilayer
perceptron (MLP), receiving the concatenated current state st and action at,
to generate a prediction for the successor state ŝt+1 as output (cf. Eq. 1). For
all experiments in this paper (see Sect. 4), we use an MLP with 3 hidden layers
of size 256 (cf. Fig. 2) to learn the forward model from the agent’s experiences.
Experimentally, we found that this setting yields the best performance results.
Following Levy et al. [19], we also realize the actor and critic networks with
MLPs of 3 hidden layers of size 64.

Both the forward model and actor-critic are trained consecutively with a
learning rate of 0.001 using the ADAM optimizer [17]. After each interaction
episode, 1024 samples are randomly drawn from the replay buffer for training
the network parameters of all components, including the forward model. The
hyper-parameters used were either adapted from HAC [19] or fine-tuned with
preliminary experiments.
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Fig. 2. Forward model architecture

4 Experiments

We compare the performance of our framework in several goal-based environ-
ments with continuous state and action spaces. All environments provide a sparse
extrinsic reward when the goal is reached. To evaluate our approach, we record
the learning performance in terms of successful rollouts in relation to training
rollouts. Therefore, we alternate training (with exploration using ε-greedy) and
testing rollouts (without exploration) and measure the success rate as the aver-
age number of successful testing rollouts within a testing batch.

4.1 Environments

Our proposed approach is evaluated in the following simulated environments:

Ant Reacher Ant Four Room Fetch Reacher

UR5 Reacher Causal Dependency CoppeliaSim Reacher

Fig. 3. Simulated environments for experiments

– Ant reacher: The Ant reacher environment (see Fig. 3a) consists of a four-
legged robotic agent that must learn to walk to reach a target location. The
action space is based on the joint angles of the limbs, and the observation
space consists of the Cartesian locations and velocities of the body parts of
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the agent. The target location is random Cartesian coordinates of the agent’s
torso. The yellow and pink spheres in the figure indicate the end-goal and
subgoal respectively.

– Ant four rooms: This environment is the same as Ant reacher, except that
there are walls in the environments that the agent cannot pass (see Fig. 3b).
The walls form four rooms that are connected by passages to transition from
one room to another, increasing the difficulty compared to Ant reacher.

– Fetch robot reacher: This reacher environment (see Fig. 3c) is based on an
inverse kinematics model that provides a 3D continuous action space. The
task of the robot is to move the gripper to a target position (indicated in the
figure by the black sphere), defined in terms of Cartesian coordinates.

– UR5 reacher: This environment consists of the first three DoFs (two shoulder
joints and one elbow joint) of a UR5 robotic arm that must reach (feasible)
random joint configurations indicated by yellow boxes in Fig. 3d. The action
space is determined by the angles of the joints, and the state space consists
of joint velocities angles.

– Causal Dependency: The robotic arm of this environment needs to address a
simple causal dependency. This dependency is implemented by a button (blue
button) that needs to be pressed before a target position (red button) can be
reached (cf. Fig. 3e). The button press opens the lid over the target location
so that the arm must first move towards the button and then towards the
target location.

– CoppeliaSim Reacher: This environment is based upon the robot simulation
CoppeliaSim [25] and is structured similarly to Fetch robot reacher, containing
the same task. The task differs from the Fetch robot reacher in terms of its
goal and observational space. It also makes use of inverse kinematics to reach
a target location (red object) seen in Fig. 3f.

4.2 Results

Results from Fig. 4 reveal significant performance gains in terms of the learning
progress for most of the investigated environments. For each environment, we
use at least seven experiments to calculate the mean. For the shaded area, we
use the standard deviation and sometimes apply a bit of smoothing. The benefit
of curiosity differs depending on the task. Hence, we show up four values of η
for each environment. For the ant environments (Fig. 4a and Fig. 4b), curiosity
shows different effects. One assumption is that Ant reacher is an easier envi-
ronment and curiosity-driven exploration is not as useful as it is in the more
difficult Ant four rooms. For Ant reacher, the performance of HAC is quite sim-
ilar to what CHAC is able to achieve. Both settle in at a mean success rate of
0.9 (cf. Fig. 4a). In Ant four rooms, the mean success rate of HAC is between
0.4 and 0.5. When using CHAC with curiosity and η = 0.5, the performance
rises and achieves mean success rates between 0.65 and 0.8 (cf. Fig. 4b). Within
the Fetch reacher environment, HAC cannot achieve success rates greater than
0.12. Using CHAC with η ∈ {0.25, 0.75} improves the success rates roughly by
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Ant reacher Ant four rooms

Fetch Reacher UR5

Causal Dependency CoppeliaSim Reacher

Fig. 4. Learning performance of the four environments

a factor of 2 (cf. Fig. 4c). The HAC-based UR5 agent achieves a different per-
formance than reported in the paper of HAC [19]2. However, CHAC speeds up
learning by a factor of up to 1.67 with η ∈ {0.5, 0.75} (cf. Fig. 4d). A perfor-
mance gain is also achieved within the Causal Dependency environment. While
HAC fails to learn a good policy, also CHAC struggles with most of its values of
η. Both of them are not able to exceed a mean success rate of 0.12. Except with
η = 0.75, CHAC shows up a mean success rate between 0.3 and 0.4 (cf. Fig. 4e),

2 Our implementation contains a slightly different initialization and gain RPM values
for the robot’s joints. Nevertheless, the comparison is given.
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resulting in a performance gain of more than 200%. The CoppeliaSim Reacher
shows performance differences right from the start. Even if the training fluctu-
ates, CHAC achieves an improvement roughly 1.5 times better than HAC with
η = 0.25.

5 Conclusion

Curiosity and the ability to perform problem-solving in a hierarchical manner
are two important features of human-level problem-solving and learning. As a
novelty and scientific contribution, this paper presents the first computational
approach that combines both features by extending hierarchical actor-critic rein-
forcement learning with a curiosity-enabled reward function. The level of curios-
ity is modeled by the prediction error of learnable forward models included in
all hierarchical layers. Our experimental results provide significant evidence that
curiosity improves hierarchical problem-solving. Specifically, using the success
rate as evaluation metrics, we show that curiosity can more than double the
learning performance for the proposed hierarchical architecture and benchmark
problems.
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