
Improving Multi-agent Reinforcement
Learning with Imperfect Human

Knowledge

Xiaoxu Han1,2, Hongyao Tang1, Yuan Li3(B), Guang Kou2(B), and Leilei Liu1

1 College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
{xiaoxu.han,bluecontra,liuleilei}@tju.edu.cn

2 Artificial Intelligence Research Center, National Innovation Institute of Defense
Technology, Beijing 100072, China

kg5188@163.com
3 Academy of Military Sciences, Beijing 100091, China

yuan.li@nudt.edu.xn

Abstract. Multi-agent reinforcement learning has gained great success
in many decision-making tasks. However, there are still some challenges
such as low efficiency of exploration, significant time consumption, which
bring great obstacles for it to be applied in the real world. Incorporat-
ing human knowledge into the learning process has been regarded as a
promising way to ameliorate these problems. This paper proposes a novel
approach to utilize imperfect human knowledge to improve the perfor-
mance of multi-agent reinforcement learning. We leverage logic rules,
which can be seen as a popular form of human knowledge, as part of
the action space in reinforcement learning. During the trial-and-error,
the value of rules and the original action will be estimated. Logic rules,
therefore, can be selected flexibly and efficiently to assist the learning.
Moreover, we design a new exploration way, in which rules are preferred
to be explored at the early training stage. Finally, we make experimen-
tal evaluations and analyses of our approach in challenging StarCraftII
micromanagement scenarios. The empirical results show that our app-
roach outperforms the state-of-the-art multi-agent reinforcement learn-
ing method, not only in the performance but also in the learning speed.

Keywords: Multi-agent reinforcement learning · Logic rules ·
Exploration · StarCraftII

1 Introduction

Over the past few years, multi-agent reinforcement learning (MARL) has
achieved significant progress in various tasks. However, there are still some prob-
lems that have not been solved. With the increase of agents, the policy space is
dramatically expanded, and the simultaneous learning of multiple agents makes
the environment non-stationary, which brings great difficulties to find a con-
verged policy for each agent. Furthermore, due to the nature of reinforcement
c© Springer Nature Switzerland AG 2020
I. Farkaš et al. (Eds.): ICANN 2020, LNCS 12397, pp. 369–380, 2020.
https://doi.org/10.1007/978-3-030-61616-8_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61616-8_30&domain=pdf
https://doi.org/10.1007/978-3-030-61616-8_30


370 X. Han et al.

learning (RL), learning from scratch, MARL algorithms learn good control poli-
cies only after millions of steps of very poor performance in simulation.

These problems are well-known and there has been much work focusing on
them. An effective approach to these problems is leveraging human knowledge
to guide learning, which can reduce the inefficient exploration of agents. In many
tasks, humans usually have accumulated much useful experience, which should
be well utilized. The way of combining human knowledge with RL has attracted
much attention. A straightforward method [12] is to utilize logic rules in pri-
ority. If a rule is matched in any state, the agent will act following the rule
without any judgment. The drawback of this approach resides in the excessive
dependence on the quality of rules. In fact, human knowledge may be subopti-
mal. Therefore, how to improve learning with imperfect human knowledge has
become a key problem. A natural idea is to balance the usage of human knowl-
edge and the policy learned by trial-and-error by evaluating the value of the two
action sources and reusing knowledge selectively during the learning process.
[7,11] designed complicated mechanisms to calculate and update the confidence
of knowledge and the learned policy, and the agent chooses actions from the two
action sources accordingly. However, such a method increases the computational
complexity, and it is inefficient to be applied in problems with large state space.
Training additional action selector can also learn to select proper action source
under a certain state. [2] trained a DQN model additionally to make decisions
from knowledge-based policy or the policy learned by the A3C algorithm. Never-
theless, adding a network means increasing training difficulty and training time,
contrary to the original intention of leveraging human knowledge.

In this paper, we propose a novel approach to improve MARL with high-
level human knowledge represented in the form of logic rules. Different from
previous methods that require designing complicated mechanisms to calculate
confidences, we leverage the Q-value in RL as a uniform criterion to judge the
value of rules and original actions. We expand the action space of RL with the
selection of rules; once an extended action is chosen, its corresponding rule will
be parsed and executed. Therefore, the Q-value of these two types of actions will
be estimated and updated during the trial-and-error. In this way, agents have the
ability to automatically balance the usage of rules and its own self-learned policy
and utilize proper rules under certain states. Further, we find the traditional
ε-greedy exploration cannot exploit the advantages of rules, so we propose Rule-
Prioritized Exploration mechanism to accelerate learning by efficiently using the
rules. Our approach can be easily combined with existing MARL algorithms to
improve their performance. In this paper, we apply our method to QMIX [8],
VDN [9], and IQL [10] and make experiments in challenging micromanagement
scenarios of StarCraftII. The empirical results show that our approach achieves
significant improvement in the performance of MARL algorithms.



Improving MARL with Imperfect Human Knowledge 371

2 Background and Related Work

2.1 Partially Observable Stochastic Games

In this paper we consider a partially observable stochastic game which can be
defined as a tuple 〈N ,S,A1, · · · ,An, T ,R1, · · · ,Rn,O1, · · · ,On〉. S denotes the
environmental information and the possible configurations of the environment.
Ai is the set of available actions of agent i. Ri : S×A → R is the reward function
of agent i. T : S×A×S → [0, 1] is the transition function which defines transition
probability between global states and Oi is the set of observation of agent i.

At each time step, each agent i chooses an action ai ∈ Ai, forming a joint
action a = (a1, a2, · · · , an). Policy πi : Oi × Ai → [0, 1] specifies the probability
distribution over the action space of agent i. The goal of agent i is to learn the
optimal policy π∗

i that maximizes the expected return with a discount factor γ:
Eπi

{
∑∞

t=0 γtri
t}. Let π = (πi, · · · , πn) denote the joint policy of all agents. The

state-action value function of an agent i under a joint policy π can be defined
as Qπ

i = Eπ {
∑∞

t=0 γtri
t|O,A}.

2.2 MARL Algorithms

In this paper, we apply our approach to three representative MARL algorithms:

1. IQL: In this method, agents are trained independently and simultaneously in
a common environment. The action-value function for each agent i is updated
following (1). This method has a problem: each agent updates its policy inde-
pendently, resulting in a non-stationary environment with no convergence
guarantees even with infinite exploration.

Qi(oi, ai) ← Qi(oi, ai) + α[ri + γmaxaQi(o′
i, ai) − Qi(oi, ai)] (1)

2. VDN: While each agent learns individual Qi independently, VDN learns a
centralized but factored Qtot. VDN assumes the joint action-value function
for the multi-agent system can be additively decomposed into value functions
across agents, see Eq. (2).

Qtot((o1, o2, ..., oN ), (a1, a2, ..., aN )) =
N∑

i=1

Qi(oi, ai) (2)

3. QMIX: Assuming that ∂Qtot

∂Qi
≥ 0, QMIX factors the joint action-value Qtot

into a monotonic non-linear combination of individual Qi via a mixing net-
work, as (3):

Qtot((o1, o2, ..., oN ), (a1, a2, ..., aN )) = M(Q1(o1, a1), ..., QN (oN , aN )) (3)

Where M represents the monotonic function of Qtot and individual value func-
tions Qi(oi, ai). Such monotonic decomposition ensures that a global argmax
performed on Qtot yields the same result as a set of individual arg max oper-
ations performed on each individual Qi.



372 X. Han et al.

2.3 Related Work

Different approaches to incorporating human knowledge into RL have been pro-
posed. Some works consider improving the state representation in RL through
embedding external knowledge. The knowledge graph has been used as a repre-
sentation of high-dimensional information in RL. [1] expressed the entities and
relationships in text-based adventure games as knowledge graphs. The sophisti-
cated models developed for disposing domain knowledge had also been studied.
[4] utilized the predication of dynamic models about the environment to improve
the state representation for the policy network.

An important cluster of related research is Imitation Learning (IL), which
aims to imitate expert behaviors from demonstration data. [6] introduced an
adversarial training mechanism into IL, where the generator attempted to imi-
tate expert and the discriminator distinguished between the fake sample and the
expert sample. To address the ‘cold start’ problem, [5] leveraged a combinatorial
loss function to pre-train neural network based on demonstration data and then
updated the model with RL methods.

The form of human knowledge is not limited to the demonstrations but can
be extended to logic rules. A wide range of expert systems making use of such
rules have been developed, but many of them turn out to be ineffective. The main
reason is that expert systems do not have the ability to learn. Several studies have
been conducted in combining rules with RL. [3] leveraged rules to reduce the size
of the state space by dividing state space into several patterns. Nevertheless, it
is inefficient to classify all states, and the approach is only suitable for problems
with extremely small state space. [13] interposed the training of DQN with a
decaying probability to follow the rules. However, this approach cannot filter
suboptimal rules so that it works only with high-quality rules.

3 Methodology

3.1 Extending Action Space with Rule Selection

Let Γ = {Γ1, ...ΓK} represents the rule set consisting of K rules, which is shared
among n agents. A mapping function set F = {f1, ..., fk, ..., fK}, where the
fk represents a parsing map for rule Γk. The rule parsing map takes the cur-
rent state as input and outputs the action to be performed under rule pol-
icy. For agent i with the length J of action space, ȧj

i , 1 ≤ j ≤ J denotes
agent’s original actions. We extend the rule actions which are denoted with
äk

i , 1 ≤ k ≤ K with the original action space. Thus, the action space of agent i
becomes ai = {ȧ1

i , ...ȧ
J
i , ä1

i , ..., ä
K
i }. Once a rule action äk

i is selected, the corre-
sponding mapping function fk will be triggered to find the corresponding action
ȧj

i ← fk(äk
i ) under the rule policy Γk.

The rule actions and the original actions under certain states are both evalu-
ated by the Q-value, which represents the expected cumulated reward from the
current state to the final state by performing the current policy. Whether to use
the original action or the rule action can be determined by Qi, which is updated



Improving MARL with Imperfect Human Knowledge 373

following Eq. (4), where oi is the current local observation state and o′
i is the

next observation state for agent i.

Qi(oi, ȧi) ← Qi(oi, ȧi) + α[ri + γmaxȧi
Qi(o′

i, ȧi) − Qi(oi, ȧi)], 1 ≤ i ≤ N

Qi(oi, äi) ← Qi(oi, äi) + α[ri + γmaxäi
Qi(o′

i, äi) − Qi(oi, äi)], 1 ≤ i ≤ N
(4)

3.2 Rule-Prioritized Exploration

A traditional exploration strategy is ε-greedy. In this method, exploration and
exploitation divide the probability of choosing actions into two sections, and the
probability of exploration ε is decaying during learning. During exploration, ε-
greedy does not distinguish between actions, and the probability of each action
being explored is uniform.

However, treating rule actions and original actions indiscriminately cannot
exploit the advantages of rules. Therefore, we design a new mechanism, Rule-
Prioritized Exploration, to distinguish the exploration of the rule action and the
original action. To encourage agents to explore from rule actions, we define a
parameter δ to balance the probability of choosing the rule actions and original
actions. The probability interval of choosing action in our method is shown in
Fig. 1. Notice that the probability for selecting rule actions is also decaying with
the decline of ε, which means the agent explores rules preferentially at the early
training process.

Fig. 1. The probability interval of Rule-Prioritized Exploration

The procedure of Rule-Prioritized Exploration is shown in Algorithm1. Func-
tion rand() is used to generate a random number. If it is in the range of 0 and
ε ∗ δ, the rule action is selected. If the number is in the range of ε ∗ δ and ε, an

Algorithm 1. Rule-Prioritized Exploration
Input: Exploration probability δ, ε, original action set {ȧj

i}J
j=1, and rule action set

{äk
i }K

k=1

Output: a
1: if 0 ≤ rand() ≤ ε ∗ δ then
2: a is sampled from {ȧj

i}J
j=1

3: else if ε ∗ δ ≤ rand() ≤ ε then
4: a is sampled from {äk

i }K
k=1

5: else if rand() ≥ ε then
6: a = argmaxa′Q(o, a′)
7: end if



374 X. Han et al.

Fig. 2. The overall architecture of RMLPE-QMIX. Red dashed lines indicate the gra-
dient flow. (Color figure online)

action (either a rule action or an original action) is randomly selected. In this
way, the rule action is well used during the exploration. At last, if the number
is bigger than ε, the action that maximizes Qi will be chosen.

3.3 Rule Mixing Learning with Prioritized Exploration

We define the integration of the above two methods as Rule Mixing Learning
with Prioritized Exploration method (RMLPE). Our approach can be easily
applied to various MARL algorithms: the agents share a predefined rule set Γ ,
and rule actions are added in the action space of each agent. The Q-values for
rule actions and original actions will be used to make decisions following at each
time step, and updated under the network of agent i based on the feedback of
the environment. To illustrate the whole procedure of RMLPE, we take QMIX
as an example and show the architecture of the method combining RMLPE with
QMIX (RMLPE-QMIX) in Fig. 2.

The network of agent i takes its local observation information oi as input
and outputs Qi, which contains Qi(oi, ȧi) and Qi(oi, äi). According to the rule
prioritized exploration, agent i will select an action x. Then x ∈ {ȧ1

i , ...ȧ
J
i } or

x ∈ {ä1
i , ..., ä

K
i } will be determined as presented in Algorithm 1. If x represents

one of rule actions äk
i , the mapping fk will be triggered to figure out the cor-

responding executable primitive action ȧj
i and execute. Otherwise, x will be

executed directly. No matter x belongs to which kind of action source, the tran-
sition 〈ot, x, r, ot+1〉 will be stored in the replay buffer. The mixing network and
decentralized network of each agent will be updated through sample transitions.
The pseudocode of RMLPE is described in Algorithm 2.



Improving MARL with Imperfect Human Knowledge 375

Algorithm 2. Rule Mixing Learning with Prioritized Exploration
Input: Rule set Γ , MARL model, rule mapping function set F , the exploration prob-

ability δ and ε
Output: MARL model with RMLPE method
1: Initialize MARL model with random weights θ and the replay buffer D
2: while not done do
3: for agent i do
4: Get current observation oi for each agent i
5: Compute Qi according to MARL models based on oi and select an action xi

following Rule-Prioritized Exploration
6: if xi ∈ {ȧj

i}J
j=1 then

7: Execute xi in the environment
8: end if
9: if xi ∈ {äk

i }K
k=1 then

10: Execute fk(xi) ∈ Γi in the environment
11: end if
12: Get reward rt and next observation onext

13: Store transition (ot, xt, rt, ot+1) in D
14: Train MARL models (e.g., IQL, QMIX) with mini-batch samples from replay

buffer D
15: end for
16: end while

4 Experimental Setup

4.1 Environments

Our experiments are carried out on StarCraft Multi-Agent Challenge(SMAC),
an open-source environment1 for evaluating MARL approaches. SMAC contains
various micromanagement combat scenarios in which each of the learning agents
controls an individual army unit based only on local observations, and the oppo-
nent’s units are controlled by the handcrafted heuristics.

We adopt two challenging combat scenarios: 5 Marines and 6 Marines (5m v
6m), 27 Marines and 30 Marines (27m v 30m). Both scenarios are asymmetric,
in which the enemy army outnumbers the allied army by one or more units. The
environment is partially observable: each unit has a certain sight range based
on its local observation, and the information about allied or enemy units out of
range cannot be received. The action space consists of the following set of discrete
actions: noop, stop, move[direction], attack[enemy id]. The attack[enemy id]
action is available only if the enemy is within shoot range. Figure 3 shows the
screenshots of the scenarios.

4.2 Imperfect Rules

In our experiments, we leverage rules derived from human experience in firing
strategy. The premise of firing is that there are enemies within the agent’s shoot
1 https://github.com/oxwhirl/smac.

https://github.com/oxwhirl/smac


376 X. Han et al.

(a) 5m v 6m (b) 27m v 30m

Fig. 3. Screenshots of the combat scenrios in StarCraft II

range. The firing micromanagement of human players in combat games is: attack
the nearest enemy or the enemy with the least hit points; attack an enemy with
several companions to concentrate fire. Therefore, we incorporate the following
rules into learning. For the third rule, we work out the number of allied units
focusing fire on one enemy is 3, based on the firepower and hit points per unit.

1. IF there are enemies within shoot range THEN attack the nearest enemy.
2. IF there are enemies within shoot range THEN attack the least hit points

enemy.
3. IF there are enemies within shoot range THEN attack the enemy which is

aimed by less than three allied units.

These rules are imperfect for two reasons. Firstly, in a specific state, at most
one of the three rules can take effect, which means these rules are mutually
exclusive. Secondly, even if the condition of a rule is satisfied, it is merely an
option as whether the rule is beneficial to the final performance is doubtful.

4.3 Experimental Settings

For the adopted scenarios in StarCraftII, the difficulty level of the opponent is set
to be 7, very difficult. Besides, our proposed approaches share the same learning
parameters with the original MARL algorithms. The shared learning setting is
as follows: we use the RMSprop optimizer with a learning rate of 5 × 10−4, and
the discounting factor γ is set to 0.99. The ε is annealed linearly from 1.0 to 0.05
over 50k time steps and is kept constant for the rest of the learning. The replay
buffer contains the most recent 5000 episodes and a batch of 32 episodes will be
sampled for training. Due to the partially observable settings, the architecture
of each agent is a Deep Recurrent Q-networks (DRQN) with a recurrent layer
comprised of a GRU with a 64-dimensional hidden state.

5 Experimental Results

Combined with various famous MARL algorithms, including QMIX, VDN, and
IQL, RMLPE is evaluated in several experiments. We firstly illustrate the



Improving MARL with Imperfect Human Knowledge 377

improvements brought by RMLPE to three baseline algorithms. Then, we show
RMLPE is capable of leveraging rules with different qualities to improve learn-
ing. Finally, we investigate the impact of the exploration ratio: δ.

The test win rate is leveraged as an indicator to evaluate the performance of
methods. For each run of a method, we run 24 test episodes every 5000 training
steps in which agents performing action selection greedily in a decentralized
fashion. The percentage of episodes where the agents defeat all enemy units
within the permitted time limit is referred to as the test win rate. Besides, all
the experimental results are performed at least 5 runs with different seeds.

5.1 Improvement over Baselines

Figure 4 illustrates comparisons between RMLPE enabled and non-RMLPE
enabled MARL algorithms in 5m v 6m and 27m v 30m scenarios. It is obvious
that RMLPE improves the learning process of all the baseline MARL methods
in two scenarios, at both the win rate and the learning speed. For the baseline
algorithms, QMIX performs best, whereas IQL performs worst due to the non-
stationary problem. To investigate the performance brought by pure rules, we
design experiments where agents act following rules only. When the pre-condition
of rules is satisfied, i.e., the conditions for firing are met, the agent will randomly
select one rule to execute. In our design, the agents move toward the location of
enemies. The performance of pure rules is presented in the dashed line in Fig. 4.

Fig. 4. Median win rate of different algorithms on two scenarios, [25%, 75%] percentile
interval is shaded. (a), (b), (c) represent the comparisons of RMLPE-QMIX/VDN/IQL
method and their baseline algorithms on the hard scenario: 5m v 6m. (d), (e), (f) show
the results on the super hard scenario: 27m v 30m.



378 X. Han et al.

The results demonstrate that RMLPE can dramatically improve the learning
process even with such poor performance rules.

5.2 Ability of Dealing with Imperfect Rules

To investigate the effectiveness of each rule in learning and to show RMLPE
can optionally leverage uneven quality rules, we present the usage rate of rules
during training. We record the number of times each rule is used for every 5000
train steps. The mean using frequency of rules in final 50k train steps is shown
in Table 1, with the peak in bold. As we can see, most methods tend to use the
second rule more frequently, indicating that RMLPE picks out the second rule
which appears to be more effective in learning. As for the total rule usage, rules
are used much less frequently in 27m v 30m than 5m v 6m. Different dimensions
of the action space between two scenarios cause this phenomenon. The action
space in 27m v 30m is three times the size of 5m v 6m, there are fewer times to
choose rules as the action space gets bigger.

Table 1. Mean usage frequency of rules

Methods 5m v 6m 27m v 30m

Rule1 Rule2 Rule3 Total Rule1 Rule2 Rule3 Total

RMLPE-QMIX 0.0667 0.2830 0.0392 0.3889 0.0537 0.0730 0.0536 0.1803

RMLPE-VDN 0.0762 0.2850 0.0432 0.4044 0.0158 0.0270 0.0899 0.1327

RMLPE-IQL 0.0464 0.2800 0.03852 0.3649 0.0045 0.0243 0.0268 0.0556

The curves in Fig. 5(a) show the mean using frequency of each rule during
the training process of RMLPE-QMIX method in 5m v 6m scenario. In the
beginning, all using frequencies increase significantly in both scenarios, due to
the Rule-Prioritized Exploration. Then the using frequencies of rule 1 and rule
3 maintain a low level while that of rule 2 continues to increase quickly and
converges at a high level. From the results of using frequency curve, we can
find that rule 2 appears to the most useful rule for the training in 5m v 6m. To
further investigate the impact of each rule on training, we perform an experiment
in which the rules in the RMLPE method are set to be rule 1, rule 2, rule 3
respectively and the results are shown in Fig. 5(b). It is obvious that in terms of
contribution to the performance of RMLPE, rule 2 ranks top, rule 1 s and rule
3 third. These results illustrate that RMLPE can identify the useful rule from
rule set and decide which rule should be applied under a different state.

5.3 Effect of the Exploration Ratio

The exploration parameter δ plays an important role in balancing the exploration
between the rule action and the original action. In our experiments on combat
tasks (see Fig. 4), we choose the best hyperparameters δ for each method inde-
pendently. In this section, we make comparisons of the impact of different values



Improving MARL with Imperfect Human Knowledge 379

(a) Mean rule usage rate curve (b) Median test win rate of only using one
rule

Fig. 5. The mean rule usage rate curve and the median test win rate during the training
of RMLPE-QMIX only with rule 1/2/3 respectively in 5m v 6m scenario.

of δ (varying from 0.1 to 0.5) on the performance of RMLPE. Figure 6 depicts the
final mean win rate of RMLPE method combined with three baseline algorithms
for each exploration ratio δ. Comparing to the baseline algorithms (dashed line
in Fig. 6), we find that RMLPE enabled algorithms beat all the baselines, with
any exploration ratio. The proper value of δ varies with the MARL methods, and
it should not be too big or too small for most algorithms. Therefore a suitable
value interval of exploring rules exists for the different methods.

Fig. 6. The above figures: the median win rate in final 50k train steps for RMLPE-
QMIX/VDN/IQL methods in 5m v 6m map, as a function of exploration ratio δ. The
square markers for each ratio denote the mean win rate, and the error bars show [25%,
75%] percentile interval for the mean win rate. The dashed line represents the final
win rate of the baseline MARL algorithms. (d), (e), (f) show the learning curves of
RMLPE methods with different δ.



380 X. Han et al.

6 Conclusion

In this paper, we propose a novel approach called Rule Mixing Learning with
Prioritized Exploration, RMLPE, to improve MARL by incorporating logic rules
into the learning. The incorporated rules can be imperfect, that is, rules are not
necessarily guaranteed to be effective under all circumstances. RMLPE can effi-
ciently select useful rules and exploit them to facilitate learning by extending the
action space with rules. A new exploration method is also proposed to accelerate
learning in the early training stage. The evaluation of our methods is conducted
on challenging StarCraftII micro scenarios and the results show RMLPE can
greatly improve and accelerate the learning process of MARL methods even
with suboptimal rules. In the future, it is worthwhile to investigate combining
large-scale human knowledge with RL to solve more challenging problems.

References

1. Ammanabrolu, P., Riedl, M.O.: Playing text-adventure games with graph-based
deep reinforcement learning. arXiv preprint arXiv:1812.01628 (2018)

2. Bougie, N., Ichise, R.: Deep reinforcement learning boosted by external knowledge.
In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, pp.
331–338 (2018)

3. Bougie12, N., Ichise, R.: Rule-based reinforcement learning augmented by external
knowledge

4. Du, Y., Narasimhan, K.: Task-agnostic dynamics priors for deep reinforcement
learning. arXiv preprint arXiv:1905.04819 (2019)

5. Hester, T., Vecerik, M., et al.: Deep q-learning from demonstrations. In: Thirty-
Second AAAI Conference on Artificial Intelligence (2018)

6. Ho, J., Ermon, S.: Generative adversarial imitation learning. In: Advances in Neural
Information Processing Systems, pp. 4565–4573 (2016)

7. Moreno, D.L., Regueiro, C.V., et al.: Using prior knowledge to improve reinforce-
ment learning in mobile robotics. In: Proceedings of the Towards Autonomous
Robotics Systems, University of Essex, UK (2004)

8. Rashid, T., Samvelyan, M., et al.: QMIX: monotonic value function factorisation for
deep multi-agent reinforcement learning. In: Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, pp. 4292–4301 (2018)

9. Sunehag, P., Lever, G., et al.: Value-decomposition networks for cooperative multi-
agent learning based on team reward. In: Proceedings of the 17th International
Conference on Autonomous Agents and Multiagent Systems, pp. 2085–2087 (2018)

10. Tan, M.: Multi-agent reinforcement learning: Independent vs. cooperative agents.
In: Proceedings of the Tenth International Conference on Machine Learning, pp.
330–337 (1993)

11. Wang, Z., Taylor, M.E.: Interactive reinforcement learning with dynamic reuse
of prior knowledge from human and agent demonstrations. In: Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, pp. 3820–3827. ijcai.org (2019)

12. Zhang, G., Li, Y., et al.: Efficient training techniques for multi-agent reinforcement
learning in combat tasks. IEEE Access 7, 109301–109310 (2019)

13. Zhang, H., Gao, Z., et al.: Faster and safer training by embedding high-level knowl-
edge into deep reinforcement learning. arXiv preprint arXiv:1910.09986 (2019)

http://arxiv.org/abs/1812.01628
http://arxiv.org/abs/1905.04819
http://arxiv.org/abs/1910.09986

	Improving Multi-agent Reinforcement Learning with Imperfect Human Knowledge
	1 Introduction
	2 Background and Related Work
	2.1 Partially Observable Stochastic Games
	2.2 MARL Algorithms
	2.3 Related Work

	3 Methodology
	3.1 Extending Action Space with Rule Selection
	3.2 Rule-Prioritized Exploration
	3.3 Rule Mixing Learning with Prioritized Exploration

	4 Experimental Setup
	4.1 Environments
	4.2 Imperfect Rules
	4.3 Experimental Settings

	5 Experimental Results
	5.1 Improvement over Baselines
	5.2 Ability of Dealing with Imperfect Rules
	5.3 Effect of the Exploration Ratio

	6 Conclusion
	References




