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Abstract. Multi-Task Learning (MTL) goal is to achieve a better gen-
eralization by using data from different sources. MTL Support Vector
Machines (SVMs) embrace this idea in two main ways: by using a combi-
nation of common and task-specific parts, or by fitting individual models
adding a graph Laplacian regularization that defines different degrees of
task relationships. The first approach is too rigid since it imposes the
same relationship among all tasks. The second one does not have a clear
way of sharing information among the different tasks. In this paper,
we propose a model that combines both approaches. It uses a convex
combination of a common model and of task specific models, where the
relationships between these specific models are determined through a
graph Laplacian regularization. We write the primal problem of this for-
mulation and derive its dual problem, which is shown to be equivalent to
a standard SVM dual using a particular kernel choice. Empirical results
over different regression and classification problems support the useful-
ness of our proposal.

1 Introduction

Standard Machine Learning (ML) often seeks to minimize a fixed overall loss.
This is the optimal goal when the training dataset is associated to a single
homogeneous task, but less so when there might be somehow different subtasks
underlying the common objective. If this is the case, it is natural to share the
common task learning while allowing for specific learning procedures for the
individual tasks. Among other advantages, this approach, known as Multi-Task
Learning (MTL), complements data augmentation with task focusing, introduces
inductive bias in the learning process and even performs implicit regularization.
Starting with the work of R. Caruana [1], MTL has been applied to a large
number of problems and under different underlying ML techniques.

Support Vector Machines (SVMs) are a natural choice for MTL. Although
SVM models were originally formulated as linear models, the kernel trick allows
to find the optimal hyperplane in a high-dimensional, even theoretically infinite
space. Additionally, the ε-insensitive loss makes these models robust to noise
in regression problems. Among the first approaches to SVM-based MTL is the
Regularized Multi-Task Learning proposal in [2], where the primal problem for
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linear SVM is expressed in a multi-task framework by introducing common and
specific parts of each task model and penalizing these independently in the reg-
ularizer. This work is extended in [3], where a variety of kernel methods for
multi-task problems with quadratic regularizers are reduced to solving a single-
task problem using a multi-task kernel. This result is used in [4,5] for multi-task
feature and structure learning. Also, multi-task regularizers with different goals
have been proposed: for instance, in [6] the tasks are clustered, the intra-cluster
distance is minimized while the inter-cluster distance is maximized. The ideas of
Evgeniou et al. presented in [2] are extended in [7] to the use of multiple kernels
for different tasks in regression, and they are generalized in [8] for classification
and regression, addressing the use of task specific biases.

The initial approach, used in [2,8], is to consider the task models to be a
sum of a common model and a task specific one, where a penalty μ controls the
regularization balance between these common and specific parts. This is then
transformed into a dual problem where μ is incorporated into the kernel matrix.
With this formulation, the relationship between all tasks is assumed to be the
same. The differences from the common model are all equally penalized, forcing
the tasks to be equidistant to the common model. Other interesting approach
shown in [3] and extended in [9] is to use a Graph Laplacian regularization, where
the tasks are represented as nodes in a graph, and the distance between two
task parameters is penalized according to the edge weight between those tasks.
In this multi-task approximation, one can define different relations between the
task pairs.

In this work we propose a new formulation, which we name Convex Graph
Laplacian SVM-MTL, where the MTL models are a convex combination of com-
mon and specific components. A graph defines the relationships between the
task-specific models, while the common model ensures the sharing of informa-
tion across tasks. By using this formulation we can obtain the flexibility of using
both different task relationships and the explicit shared information, represented
in the common model. More precisely, our contributions in this work are:

– We introduce linear Convex Graph Laplacian MTL-SVMs.
– We extend this initial linear set-up to a multi-kernel setting where each com-

ponent of the multi-task model can have its own kernel.
– We show numerically that our proposal gives competitive and often better

results that either a single SVM model for all tasks, a combination of inde-
pendent models, or Graph Laplacian MTL-SVMs.

The rest of the paper is organized as follows. In Sect. 2 we will briefly review
previous formulations of the MTL and Graph MTL primal and dual problems
and we present our approach in Sect. 3. We show our experimental results in
Sect. 4, and the paper ends in Sect. 5, where we briefly discuss our results, offer
some conclusions on them and present lines of further work.
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2 Multi-Task Learning Support Vector Machine

We briefly review first standard SVMs. In order to show a more general result,
we introduce a notation that allows to write Support Vector Classification (SVC)
and Support Vector Regression (SVR) problems in a unified way. Following [10],
consider a sample S = {(xi, yi, pi), 1 ≤ i ≤ N}, where yi = ±1, and a primal
problem of the form

arg min
w,b,ξ

J(w, b, ξ) = C

N∑

n=1

ξi +
1
2
‖w‖2

s.t. yi(w · xi + b) ≥ pi − ξi, ξi ≥ 0, i = 1, . . . , N.

(1)

It is easy to check [10] that for a classification sample {(xi, yi), 1 ≤ i ≤ M},
Problem (1) is equivalent to the SVC primal problem when choosing N = M and
pi = 1 for all i. In a similar way, for a regression sample {(xi, ti), 1 ≤ i ≤ M},
Problem (1) is equivalent to the ε-insensitive SVR primal problem when we set
N = 2M and yi = 1, pi = ti − ε, yM+i = −1, pM+i = −ti − ε for i = 1, . . . , M .
With this notation any result obtained for (1) will be valid for both SVC and
SVR. The dual problem for this general formulation can be written as follows:

arg min
α

Θ(α) = αᵀQα − pᵀα

s.t. 0 ≤ αi ≤ C, i = 1, . . . , N,

N∑

i=1

yiαi = 0,
(2)

where we use the vectors αᵀ = (α1, . . . , αN ), pᵀ = (p1, . . . , pN ) and Q is the
kernel matrix. To present our results in a compact way we will use this unified
formulation in the rest of this work.

Turning our attention to Convex Multi-Task SVM, their formulation in [11]
has the following primal problem:

arg min
w,vr,br,ξ

J(w, vr, br, ξ) = C

T∑

r=1

N∑

i=1

ξr
i +

1
2

‖w‖2 +
1
2

T∑

r=1

‖vr‖2

s.t. yr
i (λw · xr

i + (1 − λ)vr · xr
i + br) ≥ pr

i − ξr
i ,

ξr
i ≥ 0, i = 1, . . . , nr, r = 1, . . . , T.

(3)

It can be shown that the dual problem of (3) is the following:

arg min
α

Θ(α) = αᵀQ̂α − pᵀα

s.t. 0 ≤ αr
i ≤ C, i = 1, . . . , nr, r = 1, . . . , T,

nr∑

i=1

yiα
r
i = 0 , r = 1, . . . , T,

(4)

where Q̂ is the multi-task kernel matrix defined by the multi-task kernel k̂:

k̂(xr
i , x

s
j) = λ2k(xr

i , x
s
j) + (1 − λ)2δrskr(xr

i , x
s
j).
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Here k and kr are the common and task-specific kernels, and δ denotes the
Kronecker delta function. Also, multiple equality constraints are included in (4),
which are not compatible with the SMO algorithm used to solve the SVM dual.
We will discuss below how to deal with this issue. One drawback of this approach
is that every task-independent part is equally penalized. This implicitly assumes
all models fr to be equidistant to the common model f . This could be detrimental
in those cases where not all the tasks are related in the same way.

Finally, another approach that can introduce different relations between tasks
is the Graph Laplacian Multi-Task SVM introduced in [3]. Here the tasks are seen
as nodes in a complete graph G and the edge weights Ars control the relationship
between the task nodes that they connect. The primal problem is defined as

arg min
vr,br,ξ

J(vr, br, ξ) = C
T∑

r=1

N∑

i=1

ξr
i +

μ

4

T∑

r=1

T∑

s=1

Ars ‖vr − vs‖2

s.t. yr
i (vr · xr

i + br) ≥ pr
i − ξr

i , ξr
i ≥ 0, i = 1, . . . , nr, r = 1, . . . , T ;

(5)

note that in this formulation no common part is shared across tasks. Moreover,
consider the following extended vector v ∈ R

T×d with vᵀ = (vᵀ
1 , . . . , vᵀ

T ) and
the graph Laplacian L = D − A, where A is the graph weight matrix and D is
the corresponding degree matrix, i.e., Drs = δrs

∑T
q=1 Arq. Denoting by ⊗ the

Kronecker product, it can be proved that

vᵀ(L ⊗ Id)v =
1
2

T∑

r=1

T∑

s=1

Ars ‖vr − vs‖2 . (6)

Given this, and as shown in [3], the corresponding dual problem is

arg min
α

Θ(α) = αᵀQ̃α − pᵀα

s.t. 0 ≤ αr
i ≤ C, i = 1, . . . , nr, r = 1, . . . , T,

nr∑

i=1

yiαi = 0, r = 1, . . . , T,

(7)

where Q̃ is the kernel matrix corresponding to the multi-task kernel k̃(xr
i , x

s
j) =

L+
rsk(xr

i , x
s
j), and L+ is the pseudo-inverse of the graph Laplacian matrix L.

Notice that problem (7) is formally identical to (4), although using a different
multi-task kernel.

We point out that in (5) only the distance between vectors is penalized,
but the weight vector norms vr are not regularized. This can lead to overfit-
ting when the tasks are highly related. Also, the sharing of information is only
made through the Graph Laplacian regularization term. To improve on this, we
propose the Convex Graph Laplacian Multi-Task SVM described next.

3 Convex Graph Laplacian Multi-Task SVM

Convex Graph Laplacian Multi-Task SVM combines the two approaches above,
working with a convex combination of a common component w and of specific
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models vr. We also use both their individual regularizers and a Graph Laplacian
regularization term. The multi-task models fr are defined as fr = λf + (1 −
λ)gr + br where f is the common model, gr are the individual models, br are the
bias terms and λ ∈ [0, 1]. Hence, this reduces to the common model by setting
λ = 1, and to the individual models when λ = 0; in this last case we would have
a Graph Laplacian model with additional individual weight regularization.

3.1 Convex Graph Laplacian Linear Multi-Task SVM

We consider first the case of the common and specific models being linear. More
precisely, the primal problem is defined now as:

arg min
w,vr,br,ξ

J(w, vr, br, ξ) = C

T∑

r=1

N∑

i=1

ξr
i +

1
2

‖w‖2

+
1
2

T∑

r=1

‖vr‖2 +
μ

4

T∑

r=1

T∑

s=1

Ars ‖vr − vs‖2

s.t. yr
i (λw · xr

i + (1 − λ)vr · xr
i + br) ≥ pr

i − ξr
i ,

ξr
i ≥ 0, i = 1, . . . , nr, r = 1, . . . , T.

(8)

We can write this primal problem in a more compact way as

arg min
w,vr,br,ξ

J(w, v, br, ξ) = C

T∑

r=1

N∑

i=1

ξr
i +

1
2

‖w‖2 +
1
2
vᵀ(B ⊗ Id)v

s.t. yr
i (λw · xr

i + (1 − λ)vr · xr
i + br) ≥ pr

i − ξr
i ,

ξr
i ≥ 0, i = 1, . . . , nr, r = 1, . . . , T.

(9)

Here we have vᵀ = (vᵀ
1 , . . . , vᵀ

T ) and B = (IT + μL); also, ⊗ denotes again the
Kronecker product, L is the Laplacian matrix of the task graph and Id is the
identity matrix of dimension d. To prove the equivalence between (8) and (9),
we simply observe that

vᵀ(IT ⊗ Id)v =
T∑

r=1

‖vr‖2 , vᵀ(L ⊗ Id)v =
1
2

T∑

r=1

T∑

s=1

Ars ‖vr − vs‖2 ,

and that the Kronecker product is bilinear. The second equality also uses (6).
We derive next the dual problem corresponding to (9). Its Lagrangian is

L(w, v, br, ξ, α, β) = C

T∑

r=1

N∑

i=1

ξr
i +

1
2

‖w‖2 +
1
2
vᵀ(B ⊗ Id)v

+
T∑

r=1

nr∑

i=1

αr
i p

r
i −

T∑

r=1

nr∑

i=1

αr
i ξ

r
i −

T∑

r=1

nr∑

i=1

αr
i y

r
i br

− λ

T∑

r=1

nr∑

i=1

αr
i y

r
i w · xr

i − (1 − λ)
T∑

r=1

nr∑

i=1

αr
i y

r
i vr · xr

i −
T∑

r=1

nr∑

i=1

βr
i ξr

i .

(10)
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Taking derivatives with respect to the primal variables and equating them to
zero, we obtain the stationary conditions, of which the one involving v becomes

v = (1 − λ)(B ⊗ Id)−1Ψα, (11)

where αᵀ = (α1
1, . . . , α

T
nT

), and where the matrix Ψ of extended patterns is
defined as:

Ψ =

⎛

⎜⎜⎜⎝

Ψ1 0 . . . 0
0 Ψ2 . . . 0
...

...
. . .

...
0 0 . . . ΨT

⎞

⎟⎟⎟⎠

(Td)×N

, Ψᵀ
r =

⎛

⎜⎜⎜⎝

yr
1(x

r
1)

ᵀ

yr
2(x

r
2)

ᵀ
...

yr
nr

(xr
nr

)ᵀ

⎞

⎟⎟⎟⎠ .

nr×d

Note that the inverse in (11) is well defined since (B ⊗ Id)−1 = (B−1 ⊗ Id),
and B = IT + μL is an invertible matrix. Using the stationary conditions, the
Lagrangian becomes the function of α:

L(α) = −λ2

2

∑T

r,s=1

nr∑

i=1

ns∑

j=1

αr
i α

s
jy

r
i ys

jx
r
i x

s
j

− (1 − λ)2

2

∑T

r,s=1

nr∑

i=1

ns∑

j=1

αr
i α

s
jy

r
i ys

jB
−1
rs xr

i x
s
j +

T∑

r=1

nr∑

i=1

αr
i p

r
i ,

and, therefore, we arrive at the dual problem:

arg min
α

Θ(α) =
1
2

∑T

r,s=1

nr,ns∑

i,j=1

αr
i α

s
jy

r
i ys

j

[
λ2 + (1 − λ)2B−1

rs

]
xr

i x
s
j −

T∑

r=1

nr∑

i=1

αr
i p

r
i

s.t. 0 ≤ αr
i ≤ C, i = 1, . . . , nr, r = 1, . . . , T,

nr∑

i=1

αr
i y

r
i = 0, r = 1, . . . , T.

(12)
Note that the quadratic part of the objective function has two different terms.
The first one, corresponding to the common part, involves the dot products of all
the points in the training set independently of their task, while the second term,
which corresponds to the specific part, takes into account the task relationships
via B−1

rs . Once the dual problem is solved, the prediction of this multi-task
model for a new point z from task t ∈ {1, . . . , T} can also be written as ft(zt) =
λf(zt) + (1 − λ)gt(zt) + bt, where the f and gt models are defined as:

f(zt) = λ

T∑

r=1

nr∑

i=1

αr
i y

r
i xr

i · zt, gt(zt) = (1 − λ)
T∑

r=1

nr∑

i=1

αr
i y

r
i B−1

rt xr
i · zt.

3.2 Convex Graph Laplacian Kernel Multi-Task SVM

The above division in two differentiated parts is the starting point to extend the
preceding linear discussion to a kernel setting, where we will work in different
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Hilbert spaces for the common f and specific gr model functions. We can observe
this by extending (12) to the kernel case, which can be expressed as a standard
SVM dual problem with an MTL kernel, namely

arg min
α

Θ(α) =
1
2
αᵀQ̃α − pα

s.t. 0 ≤ αr
i ≤ C, i = 1, . . . , nr, r = 1, . . . , T,

nr∑

i=1

αr
i y

r
i = 0, r = 1, . . . , T,

(13)

where the kernel matrix Q̃ is computed using the kernel function k̃ defined as:

k̃(xr
i , x

s
j) = λ2k(xr

i , x
s
j) + (1 − λ)2(IT + μ2L)−1

rs kg(xr
i , x

s
j);

here, k and kg are the kernels corresponding to the common and specific parts
respectively. When comparing (13) with the standard SVM dual (2), the dif-
ferences are in the definition of the kernel matrix and the multiple equality
constraints in (13), which have their origin at the multiple biases in (8). How-
ever, if we impose a single bias in all models, we have a dual problem that can
be solved using the standard SMO algorithm.

Finally, we can write the kernel multi-task model prediction over a new pat-
tern zt from task t as ft(zt) = λf(zt) + (1 − λ)gt(zt) + bt, where

f(zt) = λ
T∑

r=1

nr∑

i=1

αr
i y

r
i k(xr

i , z
t), gt(zt) = (1 − λ)

T∑

r=1

nr∑

i=1

αr
i y

r
i B−1

rt kg(xr
i , z

t).

4 Numerical Experiments

4.1 Datasets and Models

We test our method over eight different problems: majorca, tenerife, california,
boston, abalone and crime for regression and landmine and binding for clas-
sification. In majorca and tenerife each task goal is to predict the photovoltaic
production in these islands at different hours. In california and boston datasets
the target is the price of houses and the tasks are defined using different location
categories of these houses. In abalone we define three tasks: the prediction for
male, female and infant specimens. The target in crime is to predict the num-
ber of crimes per 100 000 people in different cities of the U.S.; the prediction
in each state is considered a task. For classification, in binding, the goal is to
predict whether peptides will bind to a certain MHC molecule and each molecule
represents a different task. In landmine the goal is the detection of landmines;
each type of landmine defines a task. In Table 1 we can see the characteristics
of the different datasets. We will compare the performance of our multi-task
approach against four alternative models, described next. All of them are built
using Gaussian kernels.
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Table 1. Sample sizes, dimensions and number of tasks of the datasets used.

Dataset Size No. features No. tasks Avg. task
size

Min. task
size

Max. task
size

majorca 15330 765 14 1095 1095 1095

tenerife 15330 765 14 1095 1095 1095

binding 32302 184 47 687 59 3089

landmine 14820 10 28 511 445 690

california 19269 9 5 3853 5 8468

boston 506 12 2 253 35 471

abalone 4177 8 3 1392 1307 1527

crime 1195 127 9 132 60 278

Common Task Learning SVM (CTL). A single SVM model is fitted on all
the data, ignoring task information.

Independent Task learning SVM (ITL). Specific models are fitted for each
task using only the tasks data; no cross-model learning takes place.

Convex Multi-Task learning SVM (cvxMTL). Here a convex combination
between the common and the independent models is used. This multi-task
approach uses both common and task-specific kernels.

Graph Laplacian MTL-SVM (GLMTL). This is the multi-task approach
defined in [3]. It only uses specific models with a Graph Laplacian regular-
ization term. In this approach, a single kernel is used for all tasks and there
is no common part to be shared among the specific models.

Convex Graph Laplacian MTL-SVM (cvxGLMTL). This is our proposal,
in which we use a convex combination of the common model and the spe-
cific models with their own regularizers to which we add a Graph Laplacian
regularization.

4.2 Experimental Setup

Since each model taken has a different set of hyperparameters, their selection
has been done in various ways. Model hyperparameters are basically chosen by
cross-validation (CV) with some simplifications that we detail next. The three
parameters of CTL, i.e., (C, ε, γc), are all chosen via CV and we do the same
for the parameters (Cr, εr, γr

s ) of each specific model in the ITL approach. For
cvxMTL we will use the width γc selected for CTL and the specific widths γr

s

obtained for ITL, whereas C, λ and ε are selected by CV. We use the γc selected
for CTL in the GLMTL kernel and we select (C, ε, μ) by CV. For cvxGLMTL we
use the γc from CTL in both the common and graph Laplacian kernels, the μ
selected for GLMTL, and apply a CV procedure to select C, λ and, for regression,
ε. In Table 2 we show the grids where the optimal values are searched and the
procedure used to select each model’s hyperparameters. Notice that only three
hyperparameters per model are chosen by CV, to alleviate computational costs.
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Table 2. Hyper-parameters, grids used to select them (when appropriate) and hyper-
parameter selection method for each model.

Grid CTL ITL cvxMTL GLMTL cvxGLMTL

C
{
4k : −2 ≤ k ≤ 2

}
CV CV CV CV CV

ε
{

σ
4k

: 1 ≤ k ≤ 6
}

CV CV CV CV CV

γc

{
4k

d
: −2 ≤ k ≤ 3

}
CV - CTL CTL CTL

γs

{
4k

d
: −2 ≤ k ≤ 3

}
- CV ITL - CTL

λ {0.2k : 0 ≤ k ≤ 5} - - CV - CV

μ
{
4k : −1 ≤ k ≤ 3

}
- - - CV GLMTL

Cross-validation has been done in the following way. In majorca and tenerife,
with time-dependent data, we have data for the years 2013, 2014 and 2015, which
have been used for train, validation and test respectively. For the rest of the
problems we have used a nested cross-validation scheme, using the inner CV to
select the optimal hyperparameters and the outer folds to measure the fitness
of our models. We work with 3 outer folds, using cyclically two thirds of the
data for train and validation and keeping one third for test. We also use 3 inner
folds, with 2 folds used for training and the remaining one for validation. These
folds are selected randomly using the StratifiedKFold class of Scikit-learn; the
stratification is made using the task labeling, so every fold has a similar task
distribution. The regression CV score is the Mean Absolute Error (MAE), the
natural measure for SVR fitness. The classification CV score is the F1 score,
more informative than accuracy when we deal with unbalanced datasets. For all
problems, we scale the data feature-wise into the [0, 1] interval and normalize the
regression targets to have zero-mean and one-standard deviation. As mentioned
before, the multiple biases of the multi-task approaches cvxMTL and cvxGLMTL
imply the existence of multiple dual equality constraints. To avoid this and be
able to apply the standard SMO algorithm, we use a simplified version of the
MTL models in which a common bias is shared among all tasks.

Finally, for cvxGLMTL it is necessary to define a graph over the tasks. The
weights of the edges connecting two tasks define the degree of relationship wanted
or expected between them. This predefined graph information is included in the
model through the Laplacian matrix regularization. Choosing a useful graph
is not a trivial task and it may also be harmful when the prior information
used does not match the characteristics of the data. In our experiments no prior
information is given to the model, and we use a graph in which every task (node)
is connected to all the others with the same constant weight. To normalize the
Graph Laplacian regularization term we will use Ars = 1

T (T−1) .

4.3 Experimental Results

Table 3 shows the scores obtained in every problem considered. In the case of the
regression tasks, we give both the MAE and R2 scores. Moreover, in Table 5 we
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Table 3. Test MAE (top), and test R2 scores (bottom) in the regression problems.

maj. ten. boston california abalone crime

MAE

CTL 5.265 5.786 2.254±0.035 41870.820 ± 76.723 1.483±0.039 0.078±0.001

ITL 5.119 5.341 2.779±0.134 37043.664 ± 371.549 1.488±0.038 0.082±0.006

cvxMTL 5.077 5.351 2.228±0.006 36848.971 ± 242.052 1.466±0.028 0.074±0.003

GLMTL 5.291 5.840 3.070±0.391 37123.515 ± 404.205 1.690±0.017 0.094±0.006

cvxGLMTL 4.917 5.335 2.230±0.038 36720.854 ± 225.335 1.467±0.026 0.074±0.003

R2

CTL 0.831 0.902 0.843±0.044 0.638 ± 0.005 0.560±0.017 0.743± 0.022

ITL 0.843 0.904 0.776±0.017 0.696 ± 0.005 0.550±0.024 0.711±0.006

cvxMTL 0.845 0.907 0.850±0.045 0.700 ± 0.003 0.566±0.013 0.755±0.016

GLMTL 0.832 0.894 0.490±0.264 0.695 ± 0.007 0.366±0.027 0.596±0.033

cvxGLMTL 0.849 0.905 0.852±0.046 0.702± 0.003 0.566±0.013 0.752±0.016

Table 4. Test F1 score (left), and accuracy (right) in the classification problems.

F1 Accuracy

landmine binding landmine binding

CTL 0.106 ± 0.016 0.868 ± 0.002 0.942 ± 0.004 0.791 ± 0.003

ITL 0.183 ± 0.034 0.901 ± 0.000 0.942 ± 0.004 0.850 ± 0.000

cvxMTL 0.150 ± 0.023 0.906 ± 0.001 0.943 ± 0.004 0.858 ± 0.002

GLMTL 0.227 ± 0.042 0.896 ± 0.003 0.935 ± 0.002 0.844 ± 0.005

cvxGLMTL 0.163 ± 0.031 0.908 ± 0.001 0.944 ± 0.004 0.862 ± 0.002

show the p-values of the paired signed rank Wilcoxon tests we will perform. With
these tests we can reject the null hypothesis, which states that the distribution
of the differences of two related samples is symmetrical around zero. Given that
there are several models to be compared, we proceed in the following manner: we
first rank the models by their MAE score and, then, the absolute and quadratic
error distributions of each model are compared using the Wilcoxon test with the
immediately following model. With this, we can determine whether the error
distributions of two consecutive models are significantly different. The rankings
given in the Table show ties for those model pairs where the null hypothesis
is rejected at the 5% significance level. It can be observed that, in terms of
MAE, the proposed cvxGLMTL model obtains the best results in most regression
problems and, even when cvxGLMTL does not achieve the smaller error, Table 5
shows that it is not significantly worse than the best model. Only for abalone

the cvxMTL model obtains the significantly best result in terms of R2 scores.
In the case of classification, we show in Table 4 both accuracy and F1 score.

We notice that in the landmine problem the accuracies obtained are high whereas
the F1 scores are low, due to the unbalanced nature of the problem. In contrast,
in binding, a balanced problem, both F1 score and accuracy have similar values.
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Table 5. Top: Wilcoxon p-values of absolute errors of a regression model and the one
following it in the MAE ranking and similar accuracy p values. Bottom: with the same
scheme, p values of quadratic errors and the R2 score ranking and F1 scores.

majorca tenerife boston california abalone crime classif.

CTL 0.0000 (3) 0.0000 (4) 0.2554 (1) 0.0000 (4) 0.0002 (2) 0.0000 (2) 0.0277 (3)

ITL 0.8131 (2) 0.0035 (2) 0.0001 (2) 0.0318 (3) 0.2546 (2) 0.3995 (2) 0.3454 (1)

cvxMTL 0.0000 (2) 0.0000 (3) - (1) 0.0000 (2) - (1) - (1) 0.0277 (2)

GLMTL 0.4183 (3) 0.5962 (4) 0.0621 (2) 0.5658 (3) 0.0000 (3) 0.0000 (3) - (1)

cvxGLMTL - (1) - (1) 0.4113 (1) - (1) 0.0771 (1) 0.6093 (1) 0.3454 (1)

CTL 0.0032 (3) 0.0000 (2) 0.1791 (1) 0.0000 (4) 0.0016 (3) 0.0001 (2) 0.3454 (4)

ITL 0.6340 (2) 0.5999 (1) 0.0001 (2) 0.0035 (3) 0.3096 (3) 0.3972 (2) 0.0277 (3)

cvxMTL 0.0000 (2) 0.0815 (1) - (1) 0.0000 (2) - (1) - (1) 0.0431 (2

GLMTL 0.2040 (3) 0.7790 (2) 0.0384 (3) 0.6759 (3) 0.0000 (4) 0.0000 (3) 0.0277 (4)

cvxGLMTL - (1) - (1) 0.2606 (1) - (1) 0.0181 (2) 0.7262 (1) - (1)

Table 6. Train MAE in the regression problems (smallest values in bold face).

maj. ten. boston california abalone crime

MAE

CTL 3.440 4.183 1.557± 0.198 40502.686 ± 222.209 1.434± 0.019 0.055± 0.006

ITL 3.590 3.914 1.883± 0.224 34403.940 ± 83.583 1.399± 0.025 0.050± 0.004

cvxMTL 3.649 3.921 1.522± 0.248 35061.556 ± 118.259 1.399± 0.027 0.055± 0.007

GLMTL 2.630 3.728 2.077± 0.447 33984.568±151.998 1.594± 0.023 0.038±0.002

cvxGLMTL 3.344 4.141 1.516±0.270 34409.942 ± 101.472 1.406±0.023 0.057± 0.007

Given the small number of accuracy or F1 values, the validity of applying a
Wilcoxon test is not guaranteed. In any case and for illustration purposes, we
have combined the score (either F1 or accuracy) obtained by the models in each
one of the three CV outer folds of both landmine and binding problems. We
thus obtain six paired samples which we use as inputs for the Wilcoxon test; we
show the resulting p values and rankings in the last column of Table 5.

Finally, when comparing the two graph based MTL approaches, GLMTL per-
forms quite well in the classification problems but less so in the regression ones.
As a possible explanation we point out to Table 6, which shows the train MAEs
of each regression model. Recall that GLMTL does not have an explicit weight
regularization term and, thus, may be more susceptible of overfitting the train-
ing sample. This may be the case here since, as it can be seen, GLMTL has the
smallest MAE in majorca, tenerife, california and crime. In these problems,
where the tasks we consider may be more informative, it seems that GLMTL
overfits on them and, hence, has worse test MAE values than cvxGLMTL.

5 Discussion and Conclusions

The Multi-Task learning paradigm incorporates data from multiple sources with
the goal of achieving a better generalization than that of a common model or
independent models per task. The idea is to make use of all the information, but
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at the same time refining each model for its particular task. Multi-Task Support
Vector Machines are adapted into this framework usually in two ways: either a
common part shared by all tasks and a task-specific part are combined, or a graph
is defined over the tasks and an independent model is fitted for each task, while
trying to be similar to the models of the most related tasks. The first approach
imposes the same relationship between all the tasks, while the second one allows
for different degrees of task relationships but loses the common part where the
information is shared across tasks. In this work we have proposed a hybrid model
that combines both approaches in a convex manner by incorporating both the
common part and a graph which defines the task relationships. The numerical
results over eight different problems show that our proposal performs better than
both previous MTL approaches, and also better than either a global model or
task-independent models, while the computational cost is similar. To finish, we
mention two possible venues of further research that we are pursuing. The first
one would be to learn the task relationship graph by exploring the data, instead
of using predefined task relation values as we have done here. The second one
would be to improve on using just a single convex combination parameter for all
tasks by learning task specific λ values.
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