
Compressing Genomic Sequences
by Using Deep Learning

Wenwen Cui, Zhaoyang Yu, Zhuangzhuang Liu, Gang Wang,
and Xiaoguang Liu(B)

College of CS, TJ Key Lab of NDST, Nankai University, Tianjin, China
{cuiww,yuzz,liuzhuangzhuang,wgzwp,liuxg}@nbjl.nankai.edu.cn

Abstract. Huge amount of genomic sequences have been generated
with the development of high-throughput sequencing technologies, which
brings challenges to data storage, processing, and transmission. Stan-
dard compression tools designed for English text are not able to com-
press genomic sequences well, so an effective dedicated method is needed
urgently. In this paper, we propose a genomic sequence compression algo-
rithm based on a deep learning model and an arithmetic encoder. The
deep learning model is structured as a convolutional layer followed by an
attention-based bi-directional long short-term memory network, which
predicts the probabilities of the next base in a sequence. The arithmetic
encoder employs the probabilities to compress the sequence. We evaluate
the proposed algorithm with various compression approaches, including
a state-of-the-art genomic sequence compression algorithm DeepDNA,
on several real-world data sets. The results show that the proposed algo-
rithm can converge stably and achieves the best compression perfor-
mance which is even up to 3.7 times better than DeepDNA. Furthermore,
we conduct ablation experiments to verify the effectiveness and necessity
of each part in the model and implement the visualization of attention
weight matrix to present different importance of various hidden states
for final prediction. The source code for the model is available in Github
(https://github.com/viviancui59/Compressing-Genomic-Sequences).

Keywords: Genomic sequence compression · Deep learning ·
Arithmetic coding

1 Introduction

Due to the development of high-throughput sequencing technologies, the cost of
sequencing has gradually decreased and the amount of genomic sequences has
increased explosively [3]. Both researchers and doctors can gain the scientific
knowledge of genomic sequences information, thereby promoting the develop-
ment of biological science, as well as the therapy and diagnosis of patients.

This work is partially supported by National Science Foundation of China (61872201,
61702521, U1833114) and Science and Technology Development Plan of Tianjin
(18ZXZNGX00140, 18ZXZNGX00200).

c© Springer Nature Switzerland AG 2020
I. Farkaš et al. (Eds.): ICANN 2020, LNCS 12396, pp. 92–104, 2020.
https://doi.org/10.1007/978-3-030-61609-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61609-0_8&domain=pdf
https://github.com/viviancui59/Compressing-Genomic-Sequences
https://doi.org/10.1007/978-3-030-61609-0_8


Compressing Genomic Sequences by Using Deep Learning 93

But the storage, processing and transmission of genomic sequences data have
become major challenges [17]. Data compression can not only reduce the size of
data storage, but also reduce the cost of processing and the time of transmission,
which makes it become one of key ways to alleviate these problems [3].

A genomic sequence mainly consists of four nucleotides that is adenine (A),
cytosine (C), guanine (G), and thymine (T). There are also many unknown
nucleotides in genomic sequences which are generally represented by N [16].
General compression algorithms are designed dedicatedly for English text com-
pression and they are not able to get an ideal compression performance for
genomic sequences [1], in which the regularities are very small. The standard
compression tools such as compress, gzip and bzip2 have poor compression
ratios [2]. Besides, the content of genomic sequences are different from general
random text sequences, and the characteristics of sequences need to be taken
into account for better compression, such as exact repeat, approximate repeat
of a sub-string and complementary palindromes that may occur many times in
a given genome sequence [1]. Furthermore, the probabilities of these base occur-
rence are not so different and inappropriate compression methods will decrease
the speed of decompression, both making genomic sequence compression become
a tough task [15,20]. Consequently, the compression of genomic sequence has
become an important challenge and a specific method is needed urgently.

Arithmetic coding, a lossless data compression method, can minimize the
redundancy of information and is optimal within one bit of the Shannon limit
of log21/P (x) bits, where P (x) is the probability of the entire input sequence
x. However, its compression ratio depends almost entirely on the predictor [14],
which is the key to high-quality compression. Recently, deep learning has devel-
oped as one of the most promising prediction methods. In particular, Recurrent
Neural Networks (RNNs) have been widely used to deal with sequence data,
such as the tasks of text, audio sequence prediction, and language translation,
which are able to extract better structured information from vast amounts of
sequences and find dependent relationship between contexts.

In this paper, we propose an effective genomic sequence compression algo-
rithm combining a deep learning model comprising Convolutional Neural Net-
work (CNN) and attention-based Bi-directional Long Short-Term Memory Net-
works (BiLSTM), and an arithmetic encoder. In summary, the contributions of
this article are as follows:

– We introduce a deep learning model that automatically learns and captures
features of genomic sequences to predict the probability of the each base at
the next position.

– We use CNN to exact the local features of the sequences and use BiLSTM to
learn the long-term dependence features of sequences as well as the charac-
teristics of palindromes, considering both forward and backward directions.

– We exploit an attention mechanism to learn the importance of the hidden
states and features provided by the BiLSTM for global situation. Higher
weights are given to more important features to estimate the final probability
more accurately.



94 W. Cui et al.

– We conduct experiments based on several real-world genomic data sets and
demonstrate the superior performance of the proposed approach for compress-
ing genomic sequences. Ablation experiments verify the effectiveness of each
part of the model and the visualization of attention weight matrix shows the
various importance of hidden states and features of sequences for the proba-
bility estimation.

The rest of the paper is organized as follows: Sect. 2 discusses related work.
Section 3 presents the overview of the proposed algorithm. Section 4 details the
experimental settings and analyzes the results of experiments, and we conclude
in Sect. 5.

2 Related Work

In this section, we report some main studies on genomic sequences compres-
sion, and divide them into two categories which are traditional methods and
learning-based methods, according to whether deep learning methods are used.
To compress genomic sequences, the former detects exact repeats or approximate
repeats , while the latter resorts to deep learning technologies.

Traditional Methods. Biocompress [9] was the first genomic sequence compres-
sion algorithm, which detects exact and palindromes repeats in DNA sequence
through an antomaton and encodes the lengths and positions of their earliest
occurrences through Fibonacci encoding. The extension version, Biocompress-2
algorithm [10] uses a Markov model of order-2 to encode when there is non-
repeat region. Besides, other algorithms exploit approximate repeats to encode
sequences, such as GenCompress proposed by Chen et al. [5]. The followed DNA-
Compress algorithm [6] searches all approximate repeats in the first phase and
uses the Ziv and Lempel compression algorithm to encode them in the second
phase. Behzadi and Le Fessant proposed DNAPack [2] which uses dynamic pro-
gramming to find better repeats, achieving better average compression ratios.

In addition, some studies provide the probability of next symbol to the arith-
metic coder in various ways. XM introduced by Cao et.al [4], applies Bayesian
averaging of a mixture of experts to provide the probability, including an order-1
Markov, an order-2 Markov, and a copy expert. Although it gains better com-
pression performance, it is not suitable for long sequences. MFCompress [18]
uses single finite-context models for encoding the header text, as well as multi-
ple competing finite-context models for encoding the main stream of the DNA
sequences, but its main problem is memory limitation.

Learning-based Methods. Deep learning approaches such as CNN can be applied
for predicting various biological targets through genomic sequences [19,22].
Inspired by DeepZip [8], Wang et al. [21] introduced DeepDNA for the human
mitochondrial genomes compression. It relies on CNN to extract the local fea-
tures and LSTM to capture the long-term dependence of the sequences to provide
the probability for compression. Since only approximately 0.1% of 3GB human



Compressing Genomic Sequences by Using Deep Learning 95

genome is specific [7], so DeepDNA shows excellent performance compared with
gzip. But it does not consider the importance of chunks of sequences for the
probability estimation of next base. Nor does it consider the feature of global
sequences, such as complementary palindromes.

We improve DeepDNA by proposing a compression algorithm using deep
learning based on local and global features of genomic sequences, including palin-
dromes, approximate repeats and exact repeats.

3 Proposed Algorithm

The overview of our algorithm is illustrated in Fig. 1, including the following
two main parts: a deep learning model to estimate probability of next base
and an arithmetic encoder to encode this base. The process of compression is
follows. A sliding window of a genomic sequence as the input is transformed
into vectors in the pre-processing stage. Then the CNN and attention-based
BiLSTM are used to extract the local and global features respectively. Through
the fully connected layer and softmax layer on the top, we obtain a vector of the
probabilities of bases. The probabilities are send to arithmetic encoder to obtain
the final compressed data.

ACGTNACGTN...AGCC
GGTTAAGG

A sliding window of 
a genomic sequence

One-hot

A C G T N

.

.

.

Input data

64
bases

Pre-process

1D - Conv
Max 

pooling
Batch 

normalization

CNN

LSTMLSTMLSTMLSTM

LSTMLSTMLSTMLSTM

Y
softmax

Attention Layer

Output data

Bidirectional LSTM model with Attention

Arithmetic encodingCompressed 
data

Deep Learning Model

Arithmetic Encoder
A

C

G

T

N

Probabilities 
estimation

Feature map Important 
features

Fully Connected 
Layer 

Fig. 1. The overview of proposed algorithm.

3.1 Deep Learning Model

Pre-processing. After inputting a sliding window of length n to the model, each
base in it is firstly processed through one-hot encoding and represented by a 5-
dimensional vector xi ∈ R

5, where i is the i-th base in the sliding window. Each
dimension represents one kind of base, and the dimension corresponding to the



96 W. Cui et al.

current base is set to 1 while the other dimensions are set to 0. For example, we
transform a A into {1, 0, 0, 0, 0} and a C into {0, 1, 0, 0, 0}. So the sequences can
be denoted by a set of vectors finally.

CNN. In this stage, the input set of n vectors of the sliding window x is processed
by the weight-sharing strategy of filters to capture simple local patterns through
a convolution unit. The exact repeated patterns have the same features, and the
approximate repeated patterns have similar features. The calculation process of
a convolution unit is represented by

zi,f (x) = σ (Wf x̂i + bf ) (1)

where zi,f (x) gives the feature map of filter f for the i-th base of x, Wf is
the parameters matrix of filter f for the feature map, x̂i = [xi, xi+1, ..., xi+k−1]
denotes the concatenation of the vectors for k bases from the i-th base to the
i + k − 1-th base of input x, bf is a shared value of filter f for bias, and σ (·) is
a non-linear activation function.

The max-pooling operation is taken for each feature map to select the most
important features by choosing the max value in each block. Meanwhile, the
size of the output is reduced by one third in the proposed model, reducing the
complexity of computation.

As network depth increases, the changes of parameter during training pro-
cess will cause the hidden layer to face the covariate shift problem that could
reduce the convergence rate. We use batch normalization [12] to perform the
normalization for each mini-batch, making the input of each layer keep the same
distribution. It improves the training speed and the generalization of models,
accelerates the convergence process, and alleviates over-fitting.

BiLSTM with Attention mechanism. LSTM was proposed to solve existing long-
term dependencies problem of RNN. We use LSTM to extract sequential features
between local patterns captured by CNN. The main idea of it is to use cell state
with gates. Firstly, the forget gate decides what information is maintained from
the last cell state. Next, the input gate controls what information updates the
new cell state. Finally, the output gate decides what information of new cell
state to be the next state. However, unidirectional LSTM is not enough for the
genomic sequences because they contain many special features such as palin-
drome. Therefore, we employ an advanced bi-directional long short-term mem-
ory(BiLSTM), which is able to process sequences in both forward and backward
directions for better capturing the long dependence in genomic sequences.

We use
−→
h and

←−
h to represent the hidden state of forward and backward

direction respectively. The output of the t-th hidden state is a list of two
directions of hidden states that can be represented as ht =

[−→
ht ,

←−
ht

]

. Due to
the occurrence of approximate repeats in genomic sequences, various hidden
states contribute differently to probability estimation. Therefore, we apply an
attention mechanism to learn the importance of various parts automatically,
which improves the performance of prediction and overall compression ratio.



Compressing Genomic Sequences by Using Deep Learning 97

Assuming that the LSTM layer produces m hidden states ht, t = 1, 2, ...,m, and
a score ut is calculated by Eq. (2) to evaluate the importance for each hidden
state.

ut = σ(WTht + b) (2)

where WT is the parameter vector and b is the bias. Finally, the softmax function
αt given by Eq. (3) is used to calculate the weighted average coefficient of score
ut, and the output of attention mechanism o is the sum of the products of hidden
states and theirs scores, which is shown in Eq. (4).

αt =
exp(ut)

∑m
t=1 exp(ut)

(3)

o =
m

∑

t=1

αtht (4)

3.2 Arithmetic Coder

Arithmetic coding maps the data to be encoded, that is the gene sequence, to
a decimal between the interval [0, 1]. The concrete algorithm is described in
Algorithm 1. levellow and levelhigh represent the lower and upper boundaries of
the current interval. delta represents the length of the interval. base.levellow and
base.levelhigh represent the lower and upper boundaries of the coding interval
for each base respectively. When coding, starting from the initial interval [0, 1],
the current interval is divided into multiple sub-intervals according to the prob-
ability of the bases (A, C, G, T, N). Then, select the corresponding sub-interval
according to the current input base and use this sub-interval as the current
interval for the next coding step. Repeat this process until all bases are encoded.
Finally, assign a unique decimal from the final sub-interval as the encoding result
of the gene sequence.

Algorithm 1. Arithmetic Encoding
Input: The base table dict = {A,C,G, T,N}, the probability P of five bases in dict

and the gene sequence Seq
Output: a decimal

1: levellow, inter ← 0
2: levelhigh, delta ← 1
3: for base in dict do
4: base.levellow ← inter
5: base.levelhigh ← inter + Pbase

6: inter ← base.levelhigh
7: end for
8: for base in Seq do

9: delta ← levelhigh − levellow
10: levelhigh ← levellow + delta ∗

base.levelhigh
11: levellow ← levellow + delta ∗

base.levellow
12: end for
13: return a random decimal between

levellow and levelhigh



98 W. Cui et al.

Algorithm 2. Arithmetic Decoding
Input: The base table dict = {A,C,G, T,N}, the probability P of five bases in dict,

the encoded decimal d and the length of compressed sequence len
Output: the gene sequence Seq

1: inter ← 0
2: num ← 1
3: for base in dict do
4: base.levellow ← inter
5: base.levelhigh ← inter + Pbase

6: inter ← base.levelhigh
7: end for
8: while num ≤ len do

9: find the base base whose interval cov-
ers d

10: append base to Seq
11: delta ← base.levelhigh −base.levellow

12: d ← (d − base.levellow)/delta
13: num ← num + 1
14: end while
15: return the gene sequence Seq

The process of decoding which is described in Algorithm 2 is equivalent to
the inverse operation of the encoding process. When decoding, only one decimal
is entered. First, divide the initial interval [0, 1] according to the probability of
bases. Second, observe which sub-interval the input decimal is in and output
the corresponding base. Third, select this sub-interval and divide it continually.
Repeat this process until all bases of the gene sequence are decoded.

4 Experiments and Evaluation

4.1 Data Sets and Baselines

The effectiveness of proposed algorithm is evaluated through several data sets,
including 2851 mitochondrial sequences of various fishes species and 745 mito-
chondrial sequences of various bird species downloaded from National Cen-
ter for Biotechnology Information1, 303 transcriptome sequences of ray-finned
fishes used in [11] and 1000 human mitochondrial sequences obtained from
DeepDNA [21] respectively. We use 70% of each data set for training, 20%
for validation, and the rest of 10% for testing. The statistics of data sets are
summarized in Table 1.

Table 1. The statistics of data sets

Data sets Bases Sequences Size (KB) Proportion

A C G T N

Fishes 5 2851 53336 29.28% 27.86% 16.37% 26.48% 0.0024%

Birds 5 745 12703 30.44% 31.22% 14.35% 23.95% 0.04%

Human 4 1000 16532 30.90% 31.25% 13.15% 24.70%

Ray-finned fishes 5 305 169385 14% 17% 17% 12% 40%

1 https://www.ncbi.nlm.nih.gov/.

https://www.ncbi.nlm.nih.gov/


Compressing Genomic Sequences by Using Deep Learning 99

Based on these data sets, we compare the performance of proposed algorithm
with (a) Gzip and 7-zip, classic standard compression tools, (b) MFCompress:
a traditional and state-of-the-art compression algorithm, which can compress
multi-fasta files, and (c) DeepDNA, a learning-based method, which applies
deep learning methods, i.e. CNN and LSTM, for compressing genomes.

4.2 Configurations of Our Deep Learning Model

We set the sliding window size to be 64, the number of filters of CNN layer to be
1024 and the size of the convolution unit to be 24 with step of 1. For max-pooling
layer, the size of the window is 3 with the same size of step. The dimension of
LSTM is set to be 256, which makes BiLSTM to be 512 dimensions for each
hidden state. We train the deep learning model until it converges.

The loss function in the training process based on cross entropy. The smaller
the value of loss function is, the better the model’s performance manifests. And
we use a optimizer in [13] to directly minimize the loss function with a mini-
batch size of 128. The learning rate is set to 0.0001 at the beginning and changes
adaptively by the optimizer during the training process. The size of the model
weights is only 11.8MB. We explore more innovations in the model structure to
achieve superior compression performance rather than just stacking parameters
and the experimental results are shown in Sect. 4.3. So our model can be used
in various sequences with a wider application prospect.

4.3 Experimental Results and Analysis

Compression Performance. Table 2 presents the results of the experiment
comparing the proposed algorithm with the baselines based on the data sets, in
terms of bpb (bit per base).

Table 2. Compression performance of various methods (bpb)

Methods Name Fishes Birds Human Ray-finned fishes

Traditional Gzip 2.4968 2.47 2.519 1.69

7-zip 1.2628 1.1692 0.0929 0.6698

MFCompress 1.42 1.364 1.5572 1.1155

learning-based DeepDNA 1.3591 1.363 0.0548 1.4693

Proposed algorithm 0.7036 0.6655 0.01456 0.8193

From Table 2, the following observations can be made. First, The proposed
algorithm beats all the traditional or learning-based methods on Fishes, Birds
and Human data sets. That is because the proposed algorithm can learn more
complicated patterns from the sequences to be utilized in compression. Second,
the learning-based methods achieve even greater advantages over the traditional
methods on the Humans data set, since it has a higher genetic similarity than



100 W. Cui et al.

other data sets. Meanwhile, the performance of the proposed method outper-
forms DeepDNA’s, even up to 3.7 times. Third, the traditional methods per-
form better on the data set of Ray-finned fishes than the learning-based method
DeepDNA. The 7-zip achieves the best result of 0.6698, because this data set
contains many continuous ‘N’ bases, fitting in the mechanism of traditional com-
pression algorithm. However, the proposed algorithm obtains the performance
that is next to 7-zip closely.

Comparison with DeepDNA. Learning-based methods can mine the poten-
tial connections of genetic information more intelligently meeting the com-
pression needs, so we compare learning ability of the deep learning model in
our proposed algorithm with another learning-based method DeepDNA. From
the results of experiments in Table 2, our algorithm performance better than
DeepDNA on all data sets. Due to the limitation of space, we only display the
results on Fishes data. To verify its convergence, we plot the average loss of
validation set after each epoch in the training process in Fig. 2. We can see that
the average loss of our model steadily decreases as traing processes while the loss
of DeepDNA increases after epoch 1 and the loss of subsequent epochs fluctu-
ates up and down repeatedly, which shows that our model gradually converges
and learns the features of sequences better than DeepDNA during the training
process.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

epoch

lo
ss

OurModel
DeepDNA

Fig. 2. The average loss of validation
set during training.

DeepDNA
Our Model

sequence

Fig. 3. The test loss of our model com-
pared with DeepDNA

We then calculate the loss of all sequences in the test data sets as shown
in Fig. 3 to verify the efficiency of the proposed model. Each sample of the
horizontal axis represents a complete genomic sequence and the vertical axis
shows its average loss. As the figure shown, for each sample (281 in total), the
loss of our model is lower obviously than that of DeepDNA.

Since the average loss of a sequence is susceptible to the extreme loss of some
slide windows in the sequence, so we randomly select a sequence whose ID is
NC 011180.1 in the test set and plot the average loss of every ten consecutive
sliding windows for further exploration and illustration. The result is shown



Compressing Genomic Sequences by Using Deep Learning 101

(a) Our Model (b) DeepDNA

Fig. 4. Average loss of ten consecutive sliding windows in sequence NC 011180.1.

in Fig. 4. We can see that the values of loss fluctuation are relatively smooth
between samples, which are in 0-0.5 in general from Fig. 4 (a) while in 0.5-2 for
DeepDNA in Fig. 4 (b). The average loss of this sequence is 0.35 when using our
model and 1.33 when using DeepDNA.

Ablation Experiments. We also conduct ablation experiments that delete
or replace one part of our model to verify their importance based on training,
validation, and test data sets respectively. The results are shown in Table 3, in
which Without CNN means removing the CNN layer and the max-pooling
layer, Without BiLSTM means replacing the BiLSTM with a unidirectional
LSTM, Without Attention means removing the top-layer attention mecha-
nism of the model and Complete Model denotes the one combining all the
parts. Except for the removed parts, the remaining parts of these models are
consistent with those in the complete model.

Table 3. Results of ablation experiments

Model Training Validation Test

Without CNN 0.6978 + 15.2% 0.7232 + 3.5 % 0.7137 + 1.4 %

Without BiLSTM 0.6710 + 10.8% 0.7321 + 4.8 % 0.7320 + 4.0 %

Without Attention 0.5964−1.4% 0.7107 + 1.7 % 0.7174 + 1.9 %

Complete Model 0.6053 0.6982 0.7036

As shown in the table, each part of our model is indispensable. Although
Complete Model is 1.4% worse than Without Attention on the training
set, it has the best performance on both the validation set and the test set
and outperforms other models up to 4.8% and 4% respectively. In addition, the
results of Without BiLSTM show that bi-directional LSTM is able to capture
long-term dependency and learn the special features such as complementary
palindromes much better in the genomic sequences.



102 W. Cui et al.

Fig. 5. The attention weights in four sliding windows

Visualizing Attention. For LSTM network without attention mechanism,
each hidden state has the same weight of the final feature representation or
is merely based on the last hidden state. However, various hidden states con-
tribute to the final prediction differently. The attention mechanism automatically
learns the importance of hidden states to assign higher weights for more impor-
tant ones. To better interpret the attention mechanism, as shown in Fig. 5, we
visualize the attention weight matrix of four randomly selected sliding windows
and there are 512 features being generated in each hidden state. Different col-
ored bars display the different ranges of the weight values of high-level features
learned by BiLSTM.

We can observe that the seventh hidden state and the last hidden state are
assigned higher weights in Fig. 5 (a), while the first hidden state has a higher
weight in Fig. 5 (c), and there is the same regularity in (b) and (d). What’s more,
it can be seen that the contributions of 512 features in each hidden state are
different, too. So the learned varieties of weight values promoting the accuracy
for the final prediction, indicting the effectiveness of attention mechanism.

5 Conclusion

Facing the challenges of genomic sequences compression, we propose an algo-
rithm including a deep learning model and arithmetic encoder. The deep learn-
ing model consists of CNN, BiLSTM and attention mechanism that learns the
characteristics of the genomic sequences to estimate the probability needed in
the arithmetic encoder for compression. Also, we conduct experiments on vari-
ous data sets, indicating the proposed algorithm outperforms the learning-based
method DeepDNA and traditional compression methods. At the same time, addi-
tional ablation experiments prove the importance of each part of the proposed
algorithm and the visualization of attention weights shows various importance
of hidden states to the final prediction.



Compressing Genomic Sequences by Using Deep Learning 103

In the future, we intend to input pure sequences and additional information
of them, such as the species of sequence or any other properties to the algorithm.
It may help reduce the redundancy of genomic sequences for better compression.

References

1. Bakr, N.S., Sharawi, A.A., et al.: DNA lossless compression algorithms. Am. J.
Bioinf. Res. 3(3), 72–81 (2013)

2. Behzadi, B., Le Fessant, F.: DNA compression challenge revisited: a dynamic pro-
gramming approach. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM
2005. LNCS, vol. 3537, pp. 190–200. Springer, Heidelberg (2005). https://doi.org/
10.1007/11496656 17

3. Berger, B., Peng, J., Singh, M.: Computational solutions for omics data. Nat. Rev.
Genet. 14(5), 333 (2013)

4. Cao, M.D., Dix, T.I., Allison, L., Mears, C.: A simple statistical algorithm for
biological sequence compression. In: 2007 Data Compression Conference (DCC
2007), pp. 43–52. IEEE (2007)

5. Chen, X., Kwong, S., Li, M.: A compression algorithm for DNA sequences and its
applications in genome comparison. Genome Inform. 10, 51–61 (1999)

6. Chen, X., Li, M., Ma, B., Tromp, J.: Dnacompress: fast and effective DNA sequence
compression. Bioinformatics 18(12), 1696–1698 (2002)

7. Deorowicz, S., Grabowski, S.: Robust relative compression of genomes with random
access. Bioinformatics 27(21), 2979–2986 (2011)

8. Goyal, M., Tatwawadi, K., Chandak, S., Ochoa, I.: Deepzip: lossless data compres-
sion using recurrent neural networks. arXiv preprint arXiv:1811.08162 (2018)

9. Grumbach, S., Tahi, F.: Compression of DNA sequences. In: Proceedings of DCC93:
Data Compression Conference, pp. 340–350. IEEE (1993)

10. Grumbach, S., Tahi, F.: A new challenge for compression algorithms: genetic
sequences. Inf. Process. Manage. 30(6), 875–886 (1994)

11. Hughes, L.C., et al.: Comprehensive phylogeny of ray-finned fishes (Actinopterygii)
based on transcriptomic and genomic data. Proc. Natl. Acad. Sci. 115(24), 6249–
6254 (2018)

12. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448–456 (2015)

13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

14. Mahoney, M.V.: Fast text compression with neural networks. In: FLAIRS Confer-
ence, pp. 230–234 (2000)

15. Matsumoto, T., Sadakane, K., Imai, H.: Biological sequence compression algo-
rithms. Genome Inf. 11, 43–52 (2000)

16. Mishra, K.N., Aaggarwal, A., Abdelhadi, E., Srivastava, D.: An efficient horizontal
and vertical method for online DNA sequence compression. Int. J. Comput. Appl.
3(1), 39–46 (2010)

17. Muir, P., et al.: The real cost of sequencing: scaling computation to keep pace with
data generation. Genome Biol. 17(1), 53 (2016)

18. Pinho, A.J., Pratas, D.: Mfcompress: a compression tool for fasta and multi-fasta
data. Bioinformatics 30(1), 117–118 (2013)

https://doi.org/10.1007/11496656_17
https://doi.org/10.1007/11496656_17
http://arxiv.org/abs/1811.08162
http://arxiv.org/abs/1412.6980


104 W. Cui et al.

19. Quang, D., Xie, X.: DanQ: a hybrid convolutional and recurrent deep neural net-
work for quantifying the function of DNA sequences. Nucleic Acids Res. 44(11),
e107–e107 (2016)

20. Sato, H., Yoshioka, T., Konagaya, A., Toyoda, T.: DNA data compression in the
post genome era. Genome Inform. 12, 512–514 (2001)

21. Wang, R., et al.: Deepdna: a hybrid convolutional and recurrent neural network
for compressing human mitochondrial genomes. In: 2018 IEEE International Con-
ference on Bioinformatics and Biomedicine (BIBM), pp. 270–274. IEEE (2018)

22. Zhou, J., Troyanskaya, O.G.: Predicting effects of noncoding variants with deep
learning-based sequence model. Nat. Methods 12(10), 931 (2015)


	Compressing Genomic Sequences by Using Deep Learning
	1 Introduction
	2 Related Work
	3 Proposed Algorithm
	3.1 Deep Learning Model
	3.2 Arithmetic Coder

	4 Experiments and Evaluation
	4.1 Data Sets and Baselines
	4.2 Configurations of Our Deep Learning Model
	4.3 Experimental Results and Analysis

	5 Conclusion
	References




