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Abstract. Neural networks, especially deep architectures, have proven
excellent tools in solving various tasks, including classification. How-
ever, they are susceptible to adversarial inputs, which are similar to
original ones, but yield incorrect classifications, often with high confi-
dence. This reveals the lack of robustness in these models. In this paper,
we try to shed light on this problem by analyzing the behavior of two
types of trained neural networks: fully connected and convolutional, using
MNIST, Fashion MNIST, SVHN and CIFAR10 datasets. All networks
use a logistic activation function whose steepness we manipulate to study
its effect on network robustness. We also generated adversarial examples
with FGSM method and by perturbing those pixels that fool the network
most effectively. Our experiments reveal a trade-off between accuracy
and robustness of the networks, where models with a logistic function
approaching a threshold function (very steep slope) appear to be more
robust against adversarial inputs.
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1 Introduction

Neural networks (especially with deep architectures) have demonstrated excel-
lent performance in various complex machine learning tasks such as image clas-
sification, speech recognition, or natural language processing [1]. At the same
time, neural networks in general are due to their multilayer nonlinear structure
not transparent and so it is hard to understand their behavior. Therefore, a
lot of effort has been dedicated to uncovering their function [6]. In addition,
it was discovered that solutions they provide are surprisingly not robust, and
that they can be fooled with carefully crafted images called adversarials, which
are similar to original ones. The notion of adversarial images was introduced
in [14], where it was shown that even small perturbations of input can lead to
misclassification with a high confidence. It is even possible to fool the classi-
fier with single pixel attacks as demonstrated in [12]. There exist multiple ways
to generate these adversarial inputs and it is applicable not only for images
but many other kinds of neural network as for example voice recognition [16].
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Thus the ability of a network to resist adversarial attacks (robustness) became
a major concern. Several papers already proposed methods how to alleviate the
problem. For instance, enforcing compactness in the learned features of a convo-
lutional neural network by modifying the loss function was observed to enhance
robustness [9]. Alternatively, a modified version of conditional GAN network was
used to generate boundary samples with true labels near the decision boundary
of a pre-trained classifier, and these were added to the pre-trained classifier
as data augmentation to make the decision boundary more robust [13]. Other
papers have focused on the relationship between robustness and model accuracy.
In [8] this opposing relationship is more formally explored and shown how the
evoked tension between the two properties impacts the accuracy of models.

Related line of research has focused on looking at internal representations and
their relation to model performance. In our recent work, we analyzed trained
deep neural network classifiers in terms of learned representations (and their
properties) and confirmed that there exist qualitatively different, but quantita-
tively similar (with similar testing errors) solutions to the complex classification
problems, depending on activation functions used in the hidden layers [4]. One
of these standard activations is the logistic function whose effect is investigated
here, but in the context of robustness.

In the following, we provide our pilot results on the analysis of the robustness
and its relation to accuracy of the trained relatively simple feedforward networks.
We introduce four image datasets and the models used (Sect. 2), methods of anal-
ysis of trained models (Sect. 3), their results (Sect. 4), and conclusion (Sect. 5).

2 Data and Models

We used four well-known datasets, with increasing levels of complexity, namely
MNIST, Fashion-MNIST, SVHN and CIFAR10, to be able to better track the
analysis.

The MNIST database is a set of 28 × 28 pixel grayscale images correspond-
ing to ten classes. It is made of centered, upright hand-written digits on black
background, with 60000 samples in the training set and 10000 in the testing set.
Since MNIST is one of the most basic datasets for image classification, one does
not require a deep convolutional network to classify the images with satisfying
accuracy [5].

Fashion MNIST (referred to as F-MNIST) is a dataset created due to overuse
of MNIST. It consists of 28 × 28 pixel grayscale images, where each of them
belongs to one of ten classes describing clothing or accessory. Training set (50000
samples) and testing set (10000 samples) make up all 60000 samples of the
dataset [15].

The SVHN (Street View House Numbers) database consists of 32 × 32 pixel
RGB images of house numbers, each image centered on one digit, thus belonging
to one of ten classes. We used ∼73000 images for training and ∼26000 for testing
[7].
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CIFAR10 provides variety of 32× 32 pixel RGB images, belonging to one of
ten classes representing an animal or a vehicle. The number of images included
in training and testing sets are 50000 and 10000 respectively [3].

For easier datasets (MNIST and F-MNIST) we use a multilayer perceptron
with a single hidden layer containing 256 neurons with a logistic sigmoid acti-
vation function and softmax outputs. An architecture for SVHN and CIFAR10
classification is depicted in Fig. 1. To optimize the learning process we use Adam
optimizer and cross entropy loss. The training length of models is set to 100
epochs for MNIST and F-MNIST and 50 epochs for SVHN and CIFAR10. All
models are trained with a batch size 64 and their properties are evaluated after
each epoch.

Fig. 1. SVHN and CIFAR10 classifier architecture (plotted using NN-SVG tool).

3 Methods of Analysis

In our computational analysis we monitored the distribution of neuron’s activa-
tion values during training and computed the gradient of the loss function with
respect to the input. To make the monitoring of the neuron activation levels
more understandable, we quantized these into three regimes. We expected to
find a relation between these regimes and the network robustness, evaluated by
generating adversarial examples using two different methods.

3.1 Quantized Activation Levels

We investigated the effect of temperature T in the logistic sigmoid defined as

f(net) =
1

1 + exp(−net/T )
(1)

By modifying the value of T one can adjust the slope at net = 0, thus affecting
the distribution of function values. We considered T = {1/64, 1/32, . . . , 4, 16}
for MNIST and F-MNIST datasets and T = {1/8, 1/4, . . . , 4, 8} for SVHN and
CIFAR10, since these temperatures allowed to train the models with higher
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accuracy. Using values beyond these ranges in many cases led to significant drop
of network performance.

To test how the choice of temperature affects the activations of hidden neu-
rons, we divide net values of neurons on the last hidden layer, which is a set of real
numbers R into three disjoint regions – linear, nonlinear and saturated, depen-
dent on T . We define the linear part as follows: first we calculate the tangent
line of the logistic sigmoid at net = 0. Since the first derivative is symmetrical
and monotonous for net ∈ [0,∞), with an increasing (or decreasing) net, the
value f(net) moves away from (closer to) this line. We choose a threshold δ1 and
numerically approximate the smallest net > 0, for which the Euclidean distance
of (net, f(net)) from this tangent line is larger than δ1. Let’s denote it r1. Then
the linear part is L = [−r1, r1].

The saturated part is defined using derivatives. The first derivative of logistic
sigmoid is zero for net = ±∞, so these should be included in the saturated part.
The same as with the linear part, we pick a threshold value δ2 and numerically
approximate the greatest positive net with the absolute value of the first deriva-
tive greater than threshold. We denote it r2. Then the saturated part is defined
as S = (−∞, r2] ∪ [r2,∞).

The remaining, nonlinear part N = R\L\S = (−r2,−r1) ∪ (r1, r2). It’s
important to note, that depending on the temperature and choice of δ1 and
δ2, r2 > r1 does not always hold. In that case, N = ∅, so to avoid this, we
choose δ1 = 0.05 and δ2 = 0.0005. Corresponding values of r1 and r2 for tested
temperatures are shown in Fig. 2.

Then, we define the operation of a tested network in the respective regime
as a fraction of net values occurred in that region.

Fig. 2. Logistic sigmoid f(net) with various temperatures. The larger dots denote ±r2,
and smaller ones ±r1. These dots delineate the three different activity regions used in
analysis.
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3.2 Robustness

For testing the robustness we use fast gradient sign method (FGSM) described
in [2], which works as follows. First, the gradient of loss function with respect to
input image is calculated. This gradient shows such a local change of each pixel
of input image that the loss of network increases the most. Second, the attack
itself is executed by adding the sign of the corresponding gradient multiplied by
a small factor ε to each input pixel. For creating adversarial examples we mainly
use ε = 0.1 for each sample from the testing sets. Then the class robustness
is defined as 1− fraction of adversarial inputs created from samples belonging
to the given class that are classified incorrectly. Finally, network robustness is
evaluated as an average robustness over all classes. This is the most frequent
way to analyze the network robustness and is used in many applications such
as [11]. On the other hand, there exist more complex definitions of robustness,
that mainly involve measuring the strength of perturbation. Some examples can
be found in [9,13]. Since we generate the adversarial examples with a given
magnitude of perturbation, we stick to the most basic but effective evaluation
of robustness.

In the FGSM attack, the original input image is changed by adding the sign of
a gradient of the loss function with respect to the input. Thus the magnitude of
change is the same for each pixel (except for pixels whose values in adversarials
would exceed [0, 1]; these are trimmed). This does not take into account the
magnitude of gradients, or differences among pixels. Some sources [10] suggest
the use of fast gradient value method (FGVM) that does not incorporate the
sign. We decided to use FGSM but we also analyzed the values of gradients
by computing G(xi) =

∑N,M
n=1,m=1 | ∂L

∂xi(n,m) |/(N.M), i.e. the arithmetic mean
of absolute values of partial derivatives of the loss function L with respect to
individual pixels (in case of SVHN and CIFAR10 also for individual channels).

3.3 Pixel Attack

Another way to generate adversarial examples besides FGSM (which adds min-
imal perturbation to all pixels) is to seek such (greater) perturbations of only
a few pixels so that the modified input would not be classified correctly. An
important step here is the pixel selection. In order to select those, which cause
the biggest change in the output probabilities, we look at the gradients mentioned
above. We sort the pixels by absolute values of the corresponding gradients. If
we choose top n pixels, there is a chance for misclassification. Naturally, the
higher n implies the bigger chance to misclassify the input, but as we show, in
many cases even one pixel can do the trick. Therefore, using the same definition
of class robustness as above, we get another measure of model’s robustness just
by changing the way of generating the adversarials.

4 Experiments

We managed to train all our models with up to 98%, 90%, 92% and 65% testing
accuracy on MNIST, F-MNIST, SVHN and CIFAR10 respectively. In some cases
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(mainly for CIFAR10) the accuracy could have been significantly improved by
using a more sophisticated architecture and training methods, but for subsequent
analysis of robustness the given accuracy was satisfactory. In all four datasets,
the models with extreme temperatures (too high or too low) were the most
difficult to train, as shown in Fig. 3. Large values of T yield too small gradients,
and too small T leads to zero gradients except net ≈ 0 where they are enormous.
Under these extreme circumstances the hardest task for a given network is to
start the learning procedure.

Fig. 3. Learning curves for all four datasets using selected temperatures. Figures on
either side use the same temperatures, shown in upper figure.

4.1 Quantized Activation Levels

After each epoch of training we analyzed our model’s properties. All of the
trained networks show similar behavior. Linearity drastically drops with decreas-
ing temperature. In these areas high level of saturation is detected. Detailed
caption of these properties is shown in Fig. 4.

All the figures, quite consistent for all four datasets, reveal the dynamics
of gradual transitions between respective operation modes during learning. For
most values of T , the network gradually spends less time in the linear and non-
linear modes (albeit the baseline for the latter is significantly higher), and more
time in the saturation mode. All transitions highly depend on T . In case of
MNIST, these transitions are quite smooth, probably due to lower task com-
plexity.

Figure 5 shows how FGSM robustness evolves during training, evaluated for
fixed ε = 0.1. One can notice that all of the trained classifiers on four datasets
are more robust when using lower sigmoid temperatures and less robust for high
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Fig. 4. Operation in the three modes during training for all datasets and various values
of T (on x-axis). Consistent gradual shift of the dominant regime is observed in all cases,
in terms of gradual transition from linear and nonlinear modes towards the saturation
mode.

Fig. 5. Development of network robustness during training on all datasets. The same
pattern is visible in all cases.
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Fig. 6. Development of network robustness during training on Fashion-MNIST dataset
evaluated for different values of ε.

temperatures. Also, evolution of robustness profiles (for any T ) tends to corre-
late with that of the saturation modes in all datasets, implying that increasing
robustness is associated with growing contribution of the saturation mode. We
can also observe vast difference in the level of robustness between feedforward
and convolutional networks. CIFAR10 and SVHN are much less robust in com-
parison to MNIST and F-MNIST, regardless the temperature and network accu-
racy. We also generated adversarial examples using different values of ε and then
evaluated the robustness of individual networks. According to our expectations
we consistently see that the higher ε we use, the more successful the attack is.
Also it is still clear that networks trained with lower temperatures are more
robust. This phenomenon is demonstrated on F-MNIST dataset in Fig. 6.

(a) MNIST (b) F-MNIST (c) SVHN (d) CIFAR10

Fig. 7. Examples of images from the four datasets with large G(xi), all obtained using
models with T = 1. These images are more susceptible to misclassification.

Next, we looked at gradients. First we tried to average G(xi) (described in
Sect. 3.2) across all samples from the testing sets, hoping to find some relation
between T and G(xi). However, we found that some inputs had much higher
gradient magnitudes than others, thus affecting the average value significantly.
So, we eventually used the median instead. Also, after plotting a few exam-
ples of these high gradient inputs, we found (as shown in Fig. 7) that they were
not “pretty”. Some of them are cropped incorrectly (MNIST dataset), blurred
(SVHN dataset), or too dark (F-MNIST dataset). Some are ambiguous even
to humans. Therefore, we also looked at the correlation coefficient between the
output confidence of the correct class (given by the activation value of the repre-
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Fig. 8. Class-specific medians of input gradients G(xi) and the correlation coefficients
between G(xi) and the target class confidence. All pictures showing correlations are
in the range [−1, 0]. Figures showing gradient magnitudes are in range [0, 0.0002] for
MNIST, [0, 0.2] for Fashion-MNIST, [0, 0.04] for SVHN and [0, 0.15] for SVHN. All
ranges are scaled from black to white.

senting output neuron) and the input gradient G(xi) to find out if these inputs
are indeed for our models hard to classify correctly.

Figure 8 depicts how the median values of G(xi) depend on T and an input
class. It seems that the network has generally higher gradients when it is trained
with too big or too small temperatures, exception being networks trained on
Fashion-MNIST, where gradients depend more on input class than T . The cor-
relation between median of G(xi) and the correct class confidence is similar in
all datasets (strong and negative), significant at p < .001 in almost all cases
(exception being the class 3 in CIFAR10 dataset). This means that inputs with
greater gradients are more likely to be classified incorrectly.

4.2 Pixel Attack

We conducted the search for perturbations changing up to 3 pixels in case of
MNIST and F-MNIST images, and up to 2 pixels in SVHN and CIFAR10 images.
After selecting the pixels for perturbation, we sought all combinations until the
adversarial input was found (or not). For simplicity we tried to change each
pixel to the lowest and highest value, i.e. 0 and 1, respectively. After running
through the test set, we evaluated the percentage of images for which we found
at least one perturbation that caused misclassification. It holds that the lower
the percentage, the more robust is the network.

Pixel attack on SVHN and CIFAR10 images is slightly different because of 3
color channels. In this case, the arithmetic mean of absolute values of gradients
was computed for each pixel, as we get 3 gradients per pixel, each for one of the
color channels. Pixel attack then consists of perturbation of three times more
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Fig. 9. Success of pixel attack for different classes and all four datasets for different T .
Columns correspond to the number of perturbed pixels and rows to class index. The
lower the temperature, the less likely it is to generate successful perturbation resulting
in misclassification. Relative robustness remains the same for all temperatures. We
see that in MNIST and F-MNIST, different classes yield different robustness, while in
SVHN and CIFAR10 dataset, they are more equal.

1: 1.000 1: 0.001
7: 0.000 7: 0.999

2: 1.000 2: 0.445
8: 0.000 8: 0.555

0: 0.999 0: 0.227
6: 0.000 6: 0.757

1: 0.998 1: 0.228
9: 0.001 9: 0.766

4: 1.000 4: 0.000
9: 0.000 9: 1.000

6: 1.000 6: 0.119
5: 0.000 5: 0.881

2: 0.988 2: 0.002
3: 0.006 3: 0.475

6: 0.947 6: 0.398
5: 0.053 5: 0.602

8: 1.000 8: 0.260
3: 0.000 3: 0.740

9: 1.000 9: 0.080
3: 0.000 3: 0.920

8: 0.996 8: 0.353
6: 0.003 6: 0.646

9: 0.798 9: 0.002
2: 0.185 2: 0.983

Fig. 10. Visualization of input images (from MNIST and SVHN datasets), classified
correctly and adversarials created by altering only two pixels (for T = 1). Below the
individual images is shown the network confidence (after softmax) for correct classifica-
tion as well as for the winner class of the corresponding adversarial input. Interestingly,
even the perturbed pixels at the boundaries (outside the digits) can evoke successful
adversarials as seen in case of MNIST digits.
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values. Results depicted in Fig. 9 reveal high similarity between pixel attack
and FGSM robustness, since the higher the temperature, the less robust is the
network, except for F-MNIST dataset. Figure 10 shows a few examples on two
selected datasets of original and perturbed images, along with network’s output
confidences. One can notice that perturbation of even two pixels may cause
misclassification with a high confidence score.

5 Conclusion

We looked at potential factors affecting the robustness which has been revealed as
a general problem of end-to-end trained neural network classifiers. This gradient-
based approach apparently does not induce any stability of categories during
learning, despite the finding that hidden layers tend to learn features with a
growing abstraction that eventually enable correct classification on novel data.
In our computational experiments, we found many significant differences among
classifiers for various temperatures, most crucial being the ability to train and
solve the task satisfactorily, which is lost for too extreme temperatures. The
speed of training is also altered, with greater temperatures converging more
slowly. That also implies the difference in the network’s linearity/saturation.

Probably the most interesting result is that two different methods of evaluat-
ing robustness both showed that lower temperatures lead to higher robustness of
the models. On the other hand, shallow and simple feed-forward network yielded
much higher level of robustness than a convolutional network. Another impor-
tant finding are the inter-class differences in robustness, but the similarity of
robustness for different temperatures. Our analysis of input gradients discovered
some similarities even between MNIST and SVHN dataset classes. There was a
strong negative correlation between the magnitude of input gradients and the
network output confidence of the correct class, suggesting that by evaluating
input gradients one can select inputs that are likely to be classified incorrectly.
These findings might be informative for the training methods that could lead to
increased robustness of the networks against adversarial inputs.
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