
A New Efficient Finger-Vein Verification
Based on Lightweight Neural Network

Using Multiple Schemes

Haocong Zheng1,2, Yongjian Hu1,2(B), Beibei Liu1, Guang Chen1,3,
and Alex C. Kot4

1 South China University of Technology, Guangzhou 510640, Guangdong, China
eeyjhu@scut.edu.cn

2 Sino-Singapore International Joint Research Institute, Guangzhou 10700,
Guangdong, China

3 GRG Banking Equipment Co., Ltd., Guangzhou 510663, Guangdong, China
4 Rapid-Rich Object Search (ROSE) Lab, Nanyang Technological University,

Singapore 639798, Singapore

Abstract. Existing deep learning-based finger-vein algorithms tend to
use large-scale neural networks. From the perspective of computational
complexity, this is not conducive to practical applications. Besides, in
our opinion, finger-vein images often have relatively simple textures and
are small in image size, it is not economical to use large-scale neural net-
works. Inspired by the increasing accuracy of lightweight neural networks
on ImageNet, we introduce the lightweight neural network ShuffleNet V2
as a backbone to construct a basic pipeline for finger-vein verification.
To customize the network for this application, we propose schemes to
improve it from the aspects including data input, network structure, and
loss function design. Experimental results on three public databases have
exhibited the excellence of the proposed model.
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1 Introduction

Biometric features are widely used for authentication and identification appli-
cations. The most commonly used ones are the fingerprint, human face, voice,
iris and finger-vein. Compared with other biometric features, the finger-vein has
some prominent advantages. For example, the finger-vein is an internal biometric
modality, and thus is much harder to copy and forge. On the other hand, the
acquisition of finger-vein images is quick and friendly.
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However, there are also some challenges for finger-vein verification. For exam-
ple, the captured finger-vein images usually have low contrast and are easy to
be affected by uneven illumination, temperature changes, 2D or 3D rotation,
and other noise. Low-quality finger-vein images are difficult to classify correctly
by employing manual feature extraction and matching methods. Compared with
hand-crafted features, deep learning features extracted by convolutional neural
networks (CNN) have proven to be more general and representative, and are
being used in various computer vision tasks.

To use deep learning features for finger-vein verification, one needs to train
the convolutional neural network with a huge amount of training data. Unfor-
tunately, the size of public finger-vein databases is relatively small. As a result,
the issue of creating training samples through data augmentation has attracted
much attention. It is obvious that good recognition performance and satisfac-
tory robustness can only be achieved by a deliberately designed and well trained
neural network. Recent finger-vein studies mainly discuss these problems. For
industrial applications, the computational complexity is also highly concerned.

Qiu et al. [1] proposed a region of interest (ROI) extraction method which is
robust to light illumination and 3D rotation, but the performance is not satis-
factory. Qin et al. [2] first designed a CNN to extract the vein patterns from any
image region, and then recovered the missing finger-vein patterns in the binary
image based on a fully convolutional network. They employed a template match-
ing method for finger-vein verification. The whole process is too complex and
time-consuming. Fang et al. [3] proposed a two-channel network to tackle the
problem of lack of finger-vein data, and a two-stream network to overcome image
displacement. The above two types of networks are integrated with a selective
network to achieve good performance. Hu et al. [4] proposed the Finger-vein Net-
work (FV-Net) to learn more discriminative features of finger-vein and addressed
the misalignment problem like translation and rotation in vein imaging. Zeng
et al. [5] proposed a new fully convolutional neural network (FCN) and inte-
grated it with conditional random field to extract vein textures. The FCN takes
the U-Net [6] as its basic structure and introduces deformable convolution and
residual recurrent convolution to extract and retain deeper and more complex
features. Hao et al. [7] proposed a multi-task neural network model algorithm
to jointly carry out the ROI extraction task and the feature extraction task. By
combining these two tasks, the quality of extracted vein features is improved.

In this article, we propose a lightweight deep learning model for finger-vein
verification. We introduce a data augmentation scheme to mitigate the pressure
of lack of training samples with brightness weakness, being partially cropped or
rotated. We further modify a lightweight ShuffleNet V2 [8] to extract a more
efficient feature map with a larger size. The label smoothing [9] and the joint
loss function from [10] are also introduced for learning discriminative features.
Experiments on databases including SDUMLA-HMT [11], FV-USM [12], and
MMCBNU 6000 [13] have demonstrated that the proposed method is efficient
and outperforms five current methods in literature.
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2 The Basic Framework for Finger-Vein Verification

2.1 The Baseline

The pipeline of our basic model is shown in Fig. 1(a). We introduce the ShuffleNet
V2 as the backbone network for our finger-vein verification task. In the training
stage, we train the network with cross-entropy loss. In the inference stage, we
compare the images by using the cosine similarity of features learned from the
network. The cross-entropy loss is shown in Eq. (1).

LS = −
M∑

i=1

pi log qi (1)

Where p is the truth probability distribution, q is the prediction probability
distribution and M is the number of categories. Assume that the true label of
the image is y. We let pi = 1 if i = y and pi = 0 otherwise.

ShuffleNet V2
features 

Cross-entropy loss

Inference stage

ROI FC layers

(a) Basic pipeline

Inference stage

BN layers

FC layers

Triplet loss

Cross-entropy 
loss + label 
smoothing

features features 
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w/o first max 
pooling layer
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Joint Loss function

ROI

(b) Modified pipeline after using all schemes

Fig. 1. Basic pipeline and our proposed framework

2.2 Training and Inference

The training procedure employed is listed as follows.

1. We set the number of epochs to 500 and the batch size to 128. For each
epoch, we randomly shuffle the images and normalize pixel value to [0, 1] as
the input.
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2. Finger-vein images are fed into the network to get the feature ft. We obtain
the prediction probability distribution by passing ft through the fully con-
nected layer and softmax function. After that, we calculate the cross-entropy
loss based on the prediction probability distribution and the truth probability
distribution, and update loss through backpropagation.

3. We adopt Adam optimizer and use Eq. (2) to determine the learning rate,
where t is the number of epochs. We first adopt a gradual warmup strat-
egy [14] to linearly increase the learning rate from 0 to the initial learning
rate. Because at the beginning of network training, the network parameters
are far away from the final solution. In this situation, using a large learn-
ing rate may result in model instability. With a warmup strategy, the model
can become more stable. During training deep neural networks, it is usually
helpful to drop the learning rate over time. Therefore we use a step decay
learning rate schedule that drops the learning rate by a factor according to
some predefined steps. The factor and the predefined steps are determined
by manual tuning.

lr(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t
10 × 3.5 × 10−3, t ≤ 10
3.5 × 10−3, 10 < t ≤ 180
7 × 10−4, 180 < t ≤ 300
1.4 × 10−4, 300 < t ≤ 360
2.8 × 10−5, 360 < t ≤ 500

(2)

In our inference procedure, we normalize the input image to the value interval
[0, 1], and feed the normalized data to the trained network to get the features.
During finger-vein verification, the cosine similarity between features is used
directly for comparison.

3 Our Improvement Schemes

The basic model proposed above is an end-to-end algorithm. It is simple but
the performance is not good. We improve it from several aspects including input
data augmentation, network structure, and loss function design.

3.1 Input Data Augmentation

Deep learning model often needs a large training set. Unfortunately, there are
not many databases available for finger-vein. For public finger-vein databases
like SDUMLA-HMT, FV-USM, and MMCBNU 6000, the size of databases is
still small. Meanwhile, some finger-vein images suffer from uneven brightness,
missing textures, cropping, translation, rotation, and so on. To let the model
learn about the invariance of vein pattern, we present a data augmentation
scheme to simulate sample generation. The overall data augmentation pipeline
is shown in Fig. 2.
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Fig. 2. Data augmentation pipeline

During the model training, the brightness of each input ROI image is ran-
domly adjusted with a factor in a range of 0.7–1.3. Then, the ROI image is
randomly cropped with a crop box of 0.9 times the original image size and
resized back to the original image size. Next, the ROI image is randomly rotated
by an angle between –3 and 3◦. Finally, random erasing [15] is adopted. It can
be seen that this data augmentation pipeline can greatly increase the number
and varieties of training samples, making the model more robust against the
mentioned disadvantages.

3.2 Network Improvement

ShuffleNet V2 network has been proven to achieve excellent performance in mul-
tiple computer vision tasks, including classification and object detection tasks.
And the ShuffleNet V2 network is lightweight and efficient, so we take this net-
work as the basic structure. However, the ShuffleNet V2 network was originally
designed for 224× 224 input images. If it is directly applied to the 128× 64 ROI
image, the output feature maps only have the size of 4×2. Apparently, that size
is too small for the extraction of detailed features. Considering that a pooling
layer would cause information missing, we remove the first max pooling layer
so as to generate the feature map of size 8 × 4. This modification seems simple
and straightforward, but the effect on performance improvement is enormous, as
will be seen later. In fact, the output feature map with a larger size can better
preserve the fine-grained features, which is especially important for finger-vein
images. The modified network structure is shown in Table 1.

For model training, one serious problem would be raised due to lack of finger-
vein training samples. If the weights are initialized by random initialization like
Xavier, the network would hardly learn discriminative features from the limited
data, and the final model would perform poorly. Therefore, we use the transfer
learning concept and pre-train our backbone network on the ImageNet dataset.
ImageNet is a large dataset that has a wide variety of objects. The massive data
set ensures that the pre-trained network provides high generalization. Partic-
ularly, the shallow features learned by the pre-trained network, such as edges,
textures, and curves, have excellent versatility. These shallow features also play
an important role in finger-vein verification. Therefore, the pre-trained model can
provide a useful starting point for the finger-vein verification task. The weights
obtained are saved as the initial weights.
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Table 1. The modified ShuffleNet V2 structure. The stage layer is constructed by
repeatedly stacking the spatial down sampling unit and the basic unit proposed in [8].

Layer Output
size

Kernel size Stride Repeat Output channels

Image 128 × 64 – – – 3

Conv1 64 × 32 3 × 3 2 1 24

Stage2 32 × 16
32 × 16

– 2
1

1
7

116

Stage3 16 × 8
16 × 8

– 2
1

1
7

232

Stage4 8 × 4
8 × 4

– 2
1

1
3

464

Conv5 8 × 4 1 × 1 1 1 1024

GlobaPool 1 × 1 8 × 4 – – –

3.3 Label Smoothing and Loss Function

We adopt the label smoothing to reduce overfitting. It changes the truth prob-
ability distribution to li as shown in Eq. (3), where ε is a small constant to
encourage the model to be less confident on training set. Empirically, ε is set to
be 0.1.

li =
{

ε/(M − 1), i �= y
1 − ε, i = y

(3)

We define the loss after adding label smoothing LSl as follows

LSl = −
M∑

i=1

li log qi (4)

The cross-entropy loss is suitable for feature separation of different categories but
does not consider intra-class feature gathering. The learned features which are
not compact within the intra class would reduce the performance of our finger-
vein verification. On the other hand, the widely used triplet loss can effectively
enhance the intra-class compactness in Euclidean space but can not provide glob-
ally optimal constraint. It would be more conducive for model training if these
two loss functions are combined. However, the learning targets of these two loss
functions are inconsistent. Cross-entropy loss mainly optimizes the cosine dis-
tance while triplet loss mainly optimizes the Euclidean distances. Luo et al. [10]
proposed a simple way that added a batch normalization (BN) layer after features
to solve the problem. It can help reduce the constraint between cross-entropy
loss and triplet loss. Therefore, more discriminative features can be learned with
the joint loss function. The triplet loss is shown in Eq. (5).

LTri = [dp − dn + α]+ (5)
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Where dp and dn are the Euclidean distances between positive and negative
pairs. α is the margin of triplet loss. Empirically, α is set to 0.3. The triplet
selection scheme is to randomly select P fingers, and each finger randomly selects
K images to form a batch. For each image in the batch, it selects one image
from different classes with the smallest Euclidean distance of the corresponding
features and another image of the same class with the largest Euclidean distance
to form a triplet. In our work, P is set to 32 and K to 4. The total loss function
is L = LSl + LTri.

The modified pipeline is shown in Fig. 1(b). In the inference stage, the batch
normalized feature fi is used to measure the similarity.

4 Experiment and Analysis

In the training stage, we train the model on Ubuntu 18.04 system with a CPU
E5-2683 v3@2.00 GHz and an NVIDIA Corporation GP102 (TITAN XP). In
the test stage, the trained model runs on a Windows 10 system with a Ryzen 5
2500U@2.00 GHz. We conduct experiments on three public finger-vein databases
which are SDUMLA-HMT, FV-USM, and MMCBNU 6000. The outline of the
three databases are given in Table 2. Note that the ROI images are extracted
using the method similar to the literature [16] to extract the ROI image. The
difference is that we crop the outer rectangle of the whole finger area as the ROI
and resize to 128×64. The extracted ROIs are shown in the second line of Fig. 3.

For the division of dataset, we randomly choose one half of the classes for
training, and the remaining is only used for testing. For each class in the test
set, half of the images are randomly selected as the gallery, and the remaining
half is used as the probes. The probes and the samples in the gallery are used
to construct the positive and negative sample pairs. We use the equal error rate
(EER) to evaluate the performance of our finger-vein verification model. The
EER is the ratio when the false acceptance rate and false rejection rate are
equivalent. The lower the EER, the better the verification performance.

Fig. 3. Example images and their extracted ROIs from the three finger-vein databases
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Table 2. The outline of three Finger-vein Databases

Databases Subjects Fingers per subject Images per finger Image size Total images

SDUMLA-HMT 106 6 6 320 × 240 3816

FV-USM 123 4 12 640 × 480 5904

MMCBNU 6000 100 6 10 640 × 480 6000

4.1 Effect of Our Schemes on Model Performance

We use an ablation study to analyze the effect of our schemes on the input,
network, and loss function. The results are shown in Table 3. Our data aug-
mentation and the joint loss function can train the model well so it performs
better than the baseline model. Next, the modified network further decreases
the EERs due to the output of larger feature maps. Moreover, by using the pre-
training, our model can further improve the performance. The additional use of
label smoothing and joint loss function can make our model achieve the lowest
EERs in all three databases. In summary, after applying all the schemes, the
EERs of our finger-vein verification model decrease from 6.59%, 2.24%, 2.03%
to 0.37%, 0.31%, and 0.05% in the order of SDUMLA-HMT, FV-USM, and
MMCBNU 6000.

Table 3. Effect of our schemes on model performance (EER%)

Model SDUMLA-HMT FV-USM MMCBNU 6000

Baseline 6.59 2.24 2.03

+Data augmentation 3.19 1.59 0.85

+Modified network 2.72 0.84 0.39

+Pre-trained 0.96 0.63 0.33

+Label smoothing 0.77 0.54 0.15

+Joint loss function 0.37 0.31 0.05

4.2 Effect of Backbone Network on Model Performance

We analyze the effect of different backbone networks on model performance. To
investigate the effect in detail, we replace the backbone network with MobileNet
V2 [17], ResNet18 [18], ResNet50 [18], and DenseNet121 [19] one by one under
the same schemes such as data augmentation, ImageNet pretraining, label
smoothing and joint loss function. As shown in Table 4, DenseNet121 and the
modified ShuffleNet V2 achieve better results than the other networks. It is
because both networks use a feature reuse structure, which can combine the
advantages of low-level features and high-level features. Between them, our mod-
ified ShuffleNet V2 can better suit the finger-vein input size, so it gets the best
results in the three public databases.
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Table 4. Effect of different backbone networks on model performance (EER%)

Backbone SDUMLA-HMT FV-USM MMCBNU 6000

MobileNet V2 0.82 0.48 0.21

ResNet-18 1.21 0.52 0.5

ResNet-50 0.80 0.45 0.21

DenseNet-121 0.73 0.33 0.14

Modified ShuffleNet V2 0.37 0.31 0.05

4.3 Comparison with Other Methods

The classical machine learning-based method DWP [1], and four state-of-the-art
deep learning-based methods, Selective-network [3], FV-Net [4], FCN [5] and
MTL [7] are selected for comparison. Tables 5 and 6 show that DWP runs the
fastest in feature extraction and matching, but its performance is the worst
among 6 methods. Our method is mainly compared with the four deep learning-
based methods. FV-Net uses a modified VGGFace-Net as the backbone and the
FLOPs (floating-point operations) are about 51 times of ours. Selective-network
uses a lightweight neural network, but it needs to extract the mini-ROI as an
additional input, and the average time spent on mini-ROI extraction is 50ms.
FCN introduces deformable convolution and recursive convolution in the U-Net
structure, which will result in some computational cost. And FCN uses multiple
overlapping patches for prediction, which increases the FLOPs, it is the most
time-consuming among all methods. MTL takes the original image as input.
Since the original image has a large size, it will bring additional computational
cost. Note that the FCN method and the MTL method have different input
sizes for different databases, so the FLOPs are not fixed. It can be seen that our
method can reach the lowest EERs in all three databases. In terms of FLOPs,
the number of weights, and the average feature extracting time, our model per-
forms the best. As for the average matching time, our model is slightly slower
than Selective-network and MTL. On the whole, our model has the best overall
performance.

Table 5. EER (%) of different methods

Methods SDUMLA-HMT FV-USM MMCBNU 6000

DWP [1] 1.59 2.78 2.32

Selective-network [3] 0.47 – 0.30

FV-Net [4] 1.20 0.76 0.30

FCN [5] 5.827 – 0.364

MTL [7] 1.17 0.74 0.29

Proposed method 0.37 0.31 0.05
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Table 6. Detailed comparison of different methods in the test stage

Methods FLOPs Number
of
weights

Average
extracting
time

Average
matching
time

DWP [1] – – 0.0175ms 0.13ms

Selective-network [3] 119.2M 6.04M 140ms 0.18ms

FV-Net [4] 4.88G 3.51M 684ms 0.98ms

FCN [5] 0.17–2.67T 193.22M 217 s 630ms

MTL [7] 2.04–6.94G 13.16M 121ms 0.19ms

Proposed method 95.4M 1.26M 97ms 0.20ms

5 Conclusion

In this article, we have presented a method of using the lightweight neural net-
work for finger-vein verification. We first introduced a baseline network, and
then discussed the schemes of how to improve the model from several aspects
including data augmentation, network modification and loss function design. The
experiments validate the proposed framework. The test results on the three pub-
lic databases have demonstrated that our method can significantly outperform
one traditional method and well outperform four state-of-the-art CNN-based
methods in terms of verification performance. Meanwhile, it needs less FLOPs
and smaller memory than the four CNN-based methods.
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