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Abstract. Our brain receives a dynamically changing stream of senso-
rimotor data. Yet, we perceive a rather organized world, which we seg-
ment into and perceive as events. Computational theories of cognitive
science on event-predictive cognition suggest that our brain forms gen-
erative, event-predictive models by segmenting sensorimotor data into
suitable chunks of contextual experiences. Here, we introduce a hierar-
chical, surprise-gated recurrent neural network architecture, which mod-
els this process and develops compact compressions of distinct event-
like contexts. The architecture contains a contextual LSTM layer, which
develops generative compressions of ongoing and subsequent contexts.
These compressions are passed to a GRU-like layer, which uses surprise
signals to update its recurrent latent state. The latent state is passed
on to another LSTM layer, which processes actual dynamic sensory flow
in the light of the provided latent, contextual compression signals. Our
model develops distinct event compressions and achieves the best perfor-
mance on multiple event processing tasks. The architecture may be very
useful for the further development of resource-efficient learning, hierar-
chical model-based reinforcement learning, as well as the development of
artificial event-predictive cognition and intelligence.
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1 Introduction

The way our brain perceives information and organizes it remains an open ques-
tion. It appears that we have a tendency to perceive, interpret, and thus under-
stand our sensorimotor data streams in the form of events. The so-called Event
Segmentation Theory (EST) [23] suggests that we utilize temporary increases
in prediction errors for segmenting the stream of sensorimotor information into
separable events [8]. As a result, compact event encodings develop.
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Event encodings certainly do not develop for their own sake or for the mere
sake of representing sensorimotor information, though. Rather, it appears that
event encodings are very useful for memorizing events and event successions, as
well as for enabling effective hierarchical reinforcement learning [3], amongst
other benefits [4]. Indeed it appears that our brain prepares for upcoming
events in the prefrontal cortex [21]. Moreover, the whole midline default net-
work [20] seems to actively maintain a push-pull relationship between externally-
generated stimulations and internally-generated imaginations, including retro-
spective reflections and prospective anticipations.

We have previously modeled such processes with REPRISE – a retrospective
and prospective inference scheme [5,6] – showing promising planning and event-
inference abilities. However, the retrospective inference mechanism is also rather
computationally expensive; plus, a more constant representation of the event is
desired. Here, we introduce a complementary surprise-processing modular archi-
tecture, which may support the event-inference abilities of REPRISE and the
development of event-predictive compressions in general. We show that when
contextual information is selectively routed into a predictive processing layer
via gated recurrent unit (GRU)-like [7] switching-gates, suitable event compres-
sions are learned via standard back-propagation through time. As a result, the
architecture can generate and switch between distinct functional operations.

After providing background on related event processing mechanisms in
humans and neural models, we introduce our surprise-processing modular archi-
tecture. We evaluate our system exemplarily on a set of simple function predic-
tion tasks, where the lower-layer network needs to predict function value outputs
given inputs and contextual information. Meanwhile, deeper layers learn to dis-
tinguish different functional mappings, compressing the individual functions into
event-like encodings. In the near future, we hope to scale this system to more
challenging real-world tasks and to enhance the architecture such that upcoming
surprise signals and consequent event switches are anticipated as well.

2 Related Work

The ability to distinguish different contexts was previously tested in humans
[18,23,24]. Segmenting these events was suggested to make use of the prediction
failures to update the internal model and suggest that a new event has begun.
Loschky and colleagues [13] showed a group of participants selected parts of a
film. They showed that when the clip could be put within a larger context, the
participant had more systematic eye movements. Baldassano and colleagues [2]
showed that the participants had consistently different brain activity patterns
for different ongoing contexts (flying from the airport and eating at a restau-
rant). Pettijohn and colleagues have shown that increasing the number of event
boundaries can have a positive effect on memory [16].

From the computational aspect, the usage of prediction error to predict the
next stimulus was presented in the work of Reynolds and colleagues [17] who
used a feed forward network in combination with a recurrent neural network
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module, memory cells, and a gating mechanism. This model was later extended
with a reinforcement learning (RL) agent that controls the gating mechanism
with a learned policy [15]. Successfully segmenting the information stream into
understandable units was also attempted with reservoir computing [1]. It was
shown that this mechanism can be sufficient to identify event boundaries. How-
ever, it did not develop a hierarchical structure that is believed to be present
when considering action production and goal directed behaviors [11].

[12] offers a background survey and a general hierarchical framework for
neuro-robotic systems (NRS). In this framework, the processing of the percep-
tual information happens in a high level cognition layer whose output passes
via middle to a lower level execution layer, which includes the sensory feedback
between the agent and the surrounding environment. An interesting hierarchi-
cal structure for spatial cognition was presented in the work of Martinet and
colleagues [14]. Their presented model showed how interrelated brain areas can
interact to learn how to navigate towards a target by investigating different poli-
cies to find the optimal one. However, this structure focused on a certain maze
and only used the size of the reward at the goal location to make decisions.

Another important aspect of forming loosely hierarchical structured event
compressions lies in the prediction of event boundaries. Indeed, it was shown that
having background knowledge about the ongoing activities while an event unfolds
can help to predict when the current event might end [9]. This means that the
developing event-generative compression structure may develop deeper knowl-
edge about the currently unfolding event. Amongst other things, such structures
may develop event boundary anticipating encodings, which, when activated, pre-
dict initially unpredictable event changes.

3 Surprise-Processing Modular Architecture

We present a hierarchical surprise-gated recurrent neural network architecture.
The system simulates the flow of contextual information from a deep layer, which
prepares the processing of upcoming events developing event-compressing encod-
ings. These encodings are used tomodify the processing of the lower-level sensor- or
sensorimotor-processing layer. In between, a GRU-like gating layer controls when
novel context modifying signals are passed on to the lower-level layer and when the
old signal should be kept. As a result, the lower-level layer is generating predictions
context-dependently, effectively learning to distinguish different events.

3.1 The Structure

Theproposed structure is composed of a contextual recurrent neural network layer,
implemented using a long short-term memory (LSTM) network (called LSTMc)
[10], which is responsible for generating an event compression that is representing
the currently ongoing or next upcoming context. While a simple recurrent neural
network (RNN) is alsowell-suited for time series prediction, it will notmaintain the
long-term temporal dependency. This contextual information is fed into a middle
layer, which is implemented by a GRU-like gate [7]. The gate decides how much of
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Fig. 1. The hierarchical structure composed of a deep contextual layer (LSTMc), a
GRU-like gating layer and a low-level function processing layer (LSTMf). Additionally,
we added an MLP to preprocess the function input (inputPrePro).

the novel contextual information in proportion to the previous contextual infor-
mation will be passed on to the lower level layer based on the received surprise
value, which represents an increased prediction error. This lower level function
processing layer, which is also implemented by an LSTM, predicts a function value
(LSTMf). The function input is preprocessed using a multilayer perceptron (MLP)
unit (inputPrePro), before being provided to LSTMf. The structure is shown in
Fig. 1. Note that the dotted lines denote unweighted inputs.

The decision about the current context is taken at the GRU-like top down gat-
ing layer. When a new event begins, LSTMf will produce erroneous predictions
as the function switched. As a result, this correspondingly large surprise value,
representing the unexpectedly high prediction error [5], may be provided to the
gating layer. A surprise signal can thus be used to manipulate the update gate of
a GRU layer, receiving and passing on new contextual information from LSTMc
surprise-dependently. If the context has not changed, then the gate stays closed,
and the same old event compression is provided as the contextual information to
the LSTMf layer.

3.2 The Switch GRU

The used GRU structure was adapted to act as a switch to decide when (i) to
keep the gate closed, in which case the already saved context compression from
the previous time step will be maintained and passed on, or (ii) to open the gate,
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in which case the new context generated by LSTMc will flow in. To perform this
task, the update gate at the GRU is modified to be unweighted, with its input
being the surprise signal. The combined gate is now getting the new context
compression from LSTMc and the hidden cell state (context compression of the
previous time step) inputs. The reset gate is removed as it has no role here. The
output of the this layer can be expressed as:

cell statet = (σ(sur) ∗ cell statet−1) + ((1 − σ(sur)) ∗ σ(LSTMc output)) (1)

4 Experiments and Results

For evaluation purposes, we used an example of a time series that includes four
functions fe(x, y) representing four different contexts or events e. Converting this
into a continuous time series, the previous function output is used as the first
function input at the following time step t, that is, xt = fe(xt−1, yt−1). Mean-
while, function inputs yt are generated independently and uniformly distributed
between −1 and 1. Function switches occurred uniformly randomly every 5 to
12 times steps. The four functions are:

1. An addition function (add): fadd(x, y) = 0.9x + y,
2. A sine function (sin): fsin(x, y) = x + sin(πy),
3. A subtraction function (sub): fsub(x, y) = 0.9x − y,
4. A constant function (con): fcon(x, y) = x.

4.1 Single Network Experiments

As an upper error baseline, we first evaluated the performance of a single LSTM
layer or a two-layer perceptron (MLP), which receives x and y as input and is
trained to learn fe(x, y) without providing any direct information about e. Next,
as a lower error baseline, we evaluate the performance of the two networks when
we augment the input with a one-hot vector denoting the ongoing event. Finally,
to make the problem harder again and enforce the anticipation of an event switch,
we switched the event information at a time point uniformly randomly earlier
than the actual next scheduled event switch, but at least two time steps after the
last event switch. This was done to simulate the idea of preparing for the next
event switch before it actually happens. In addition, we distinguish between runs
in which the consecutive functions were in the same order and runs in which the
next function type e ∈ {add, sub, con, sin} is randomly chosen each time.

The used LSTM network had 10 hidden units and the MLP had two hidden
layers each with 50 units. The weights of the networks were updated at a fixed
rate every 20 time steps. We used a learning rate of 10−4 and trained every
network for 2 000 epochs each with 2 000 steps. Finally, we tested every net-
work for 150 test iterations. Reported performance results are averaged over ten
differently initialized networks.

The results are shown in Table 1. As expected, worst performance is obtained
when the network does not receive any context-related information, while best
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Table 1. Average training error in single LSTM and MLP layer experiments.

Experiment LSTM MLP

Avg. error Stdev. Avg. error Stdev.

No CI provided 0.2670 0.0272 0.4180 0.0016

CI provided with fixed function order 0.0533 0.0292 0.0098 0.0011

CI provided with random function order 0.0551 0.0215 0.0139 0.0022

CI provided but switched earlier 0.1947 0.0134 0.3180 0.0012

performance is achieved when context information is provided. When the order
of the successive functions is randomized, performance only slightly degrades.
When the context information switches earlier than the actual function, perfor-
mance degrades, yielding an average error between the case when no context
information is provided and when context information is provided perfectly in
tune with the actual context switches.

When comparing the performance of the LSTM with the MLP, several obser-
vations can be made. First, when no context information or ill-tuned context
information is provided, LSTM outperforms the MLP. This is most likely the
case because the LSTM can in principle infer the function that currently applies
by analyzing the successive input signals. As a result, it appears to decrease its
prediction error via its recurrent information processing ability. On the other
hand, when perfect context information is provided, the MLP learns to approxi-
mate the function even better than the LSTM module, indicating that the MLP
can play out its full capacity, while the recurrent connections are somewhat
prohibiting better performance with the LSTM module.

4.2 Full Network Experiments

Next, we performed the experiments using the introduced surprise-processing
modular neural architecture. We evaluated the structure by testing four cases:

– The gate is always closed: The GRU-like layer output is constantly zero
(approximately corresponding to the upper error baseline).

– The gate is always open: The GRU-like layer output is continuously controlled
by the new context compression from LSTMc.

– The gate is only open at context switches: The GRU-like layer output
maintains the context prediction generated by LSTMc when the context is
switched.

– The gate is gradually open at context switches: The GRU-like layer switches
its context output more smoothly.

Note that the fourth scenario is meant to probe whether a gradual surprise signal,
i.e., a set of discrete surprise values, can help to predict the switches between the
contexts in a smoother manner. The gate in this case turns from being closed,
to being half-open, to being fully opened, and back to half-open and closed.
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Table 2. Average training prediction error and average distance between the centers
of the clusters formed by the context compressions’ values in different gate states. The
lowest average error and largest average distances are marked in bold.

Gate status Avg. error Stdev. error Compared clusters Avg. distance Stdev. distance

Always closed 0.280 0.059 Any 0.0 0.0

Always open 0.206 0.014 Add Sin 0.28 0.17

Add Sub 1.22 0.42

Add Const 0.64 0.19

Sin Sub 1.27 0.34

Sin Const 0.70 0.24

Sub Const 0.7 0.26

Only open at switch 0.059 0.017 Add Sin 0.69 0.15

Add Sub 3.12 0.42

Add Const 1.46 0.27

Sin Sub 2.59 0.47

Sin Const 0.92 0.17

Sub Const 1.72 0.4

Gradually opened 0.083 0.030 Add Sin 0.61 0.17

Add Sub 2.17 0.69

Add Const 1.35 0.56

Sin Sub 1.81 0.39

Sin Const 1.00 0.20

Sub Const 0.82 0.31

Final test errors – again averaged over ten independently randomly weight-
initialized networks - are shown in Table 2. The results show that the best results
are obtained by keeping the gate closed while the same context is progressing,
and only opening it when a new event starts. As expected, the worst performance
is achieved when the gate is always closed. Note also that the performance only
slightly improves when the gate is always open, indicating that the architecture
cannot detect the event switches on its own. Gradually opening and closing the
gate slightly degrades the performance in comparison to when the gate is only
open at the actual switch. When considering the differences in the compression
codes that are passed down to LSTMf in the different events, the largest distances
are generated by the network when the GRU-like update gate is open at the
switch, only, thus indicating that it generated the most distinct compressions
for the four function events.

Figure 2 shows the development of the average prediction error and its stan-
dard deviation with respect to the best performing network setup, that is, the
one where the gate only opens as the switches. As can be seen, the error first
plateaus at a level of 0.4, which approximately corresponds to an identity map-
ping. It then rather reliably appears to find the gradient towards distinguishing
the four functions over the subsequent training epochs, thus converging to an
error level that corresponds to the lower-error boundary of the single-layer LSTM
network with perfect context information (cf. Table 1).
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Fig. 2. Prediction error average and standard deviation during training over ten dif-
ferently initialized networks. Gate is only open at the switches.

All the above-mentioned results were obtained using a fixed weight update
frequency of 20 time steps, backpropagating the error 20 time steps into the
past. Table 3 shows the effect when the update frequency is changed. In this
case, the gradually changing surprise signal provides better results because in
some of the runs, the network with the gate open at the context switch only fails
to find the gradient down to the 0.05 error niveau. The gradual opening and
closing effectively increases the error flow into LSTMc, increasing the likelihood
of convergence. Thus, in the future a gradual change from weak, smooth surprise
signals to strong and progressively more punctual surprise signals should be
investigated further. Indeed such a surprise signal can be expected when derived
from LSTMf during learning [5].

Please remember that in the experiments above the context switch provided
to LSTMc switches earlier than the actual function event switch. As a result,
LSTMc can prepare for the switch but should only pass the information down
when the event switch is actually happening. This is accomplished by the GRU-
like module. Instead, when the surprise signal is provided to LSTMc and the

Table 3. Average training prediction error while using different weight update fre-
quency settings.

Weight update frequency Fixed at 35 Random 20–50 Random 10–30

Avg. error Stdev. error Avg. error Stdev. error Avg. error Stdev. error

Always closed 0.365 0.070 0.428 0.083 0.345 0.078

Always open 0.270 0.071 0.224 0.022 0.206 0.018

Open at context switch 0.200 0.142 0.318 0.122 0.166 0.149

Gradually opened 0.106 0.077 0.103 0.041 0.070 0.013
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Table 4. Average prediction error when (i) the surprise signal is fed to LSTMc, whereby
the GRU-like gate is always open (Surp. to LSTMc), (ii) the context information is
provided to LSTMc exactly in tune with the function event (In-tune CI to LSTMc),
and when an MLPf is used instead of an LSTMf (MLPf).

Input to LSTMc/Gate status Surp. to LSTMc In-tune CI to LSTMc MLPf

Avg. error Stdev. Avg. error Stdev. Avg. error Stdev.

0/Always closed 0.2515 0.0678 0.310 0.080 0.4213 0.00164

1/Always open 0.2280 0.0198 0.066 0.040 0.4215 0.00123

1 at c.s./open at c.s 0.1031 0.0555 0.055 0.019 0.4211 0.00165

GRU-like gate is always open, the error less reliably drops to the 0.05 niveau,
as shown in Table 4. On the other hand, when the contextual information was
provided exactly in tune with the currently ongoing event to LSTMc – opening
the gate only at the switches still yielded a slightly better performance than
when the gate was always open (cf. Table 4).

It is also worth mentioning that when we ran the architecture with an MLP
(an MLPf module) as the function processing layer (instead of LSTMf), the
error stayed on an average of 0.42, without any difference between the gating
mechanisms (cf. Table 4). It thus appears that the gradient information from
LSTMf is more suitable to foster the development of distinct contextual codes.

Finally, we took a closer look at the event-encoding compressions generated
by the contextual layer and passed on by the GRU-like layer. Figure 3 shows
the context compression vector values produced by the deep context layer over
time. Figure 4 shows the outputs of the GRU-like gating layer. We can see stable
compressions when the gate is only open at the switches. When the gate is always
open, the context also switches systematically but much more gradually and thus
less suitably.

(a) Gate open at switch (b) Gate always open

Fig. 3. Context compressions produced by the context layer. Background colors indi-
cate the different contexts.
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(a) Gate open at switch (b) Gate always open

Fig. 4. Context compressions produced by the GRU-like gating layer. Background
colors indicate the different contexts. Note that as the gate was still closed during the
first event in (a), context values are still on zero.

Fig. 5. Context compressions in nine differently initialized networks.

The results confirm that our surprise-processing modular architecture can
clearly distinguish between the different contexts and the generated compres-
sions vary between different networks. Figure 5 shows the context compressions
for nine differently initialized networks. It is interesting to note that the context-
respective code for increasing is always close to zero, which is because the data
always started with the increasing function at the beginning of an epoch and a
network reset to zero activities. Moreover, it can be noted that, albeit clearly dif-
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ferent, the constant function code lies somewhat in between the code for increas-
ing and the code for decreasing. Finally, the sine function compression is distinct
but also somewhat in between the increasing and constant function code (except
for that in the lower right graph). Further investigations with larger networks are
pending to evaluate whether the sine function may be predictable more exactly
with larger networks and whether the compression code from the GRU-like layer
for the sine function may become more distinct from the others in that case.

5 Discussion

Motivated by recent theories on event-predictive cognition [4,22,23], this paper
has investigated how dedicated neural modules can be biased towards reli-
ably developing event-predictive compressions. We have introduced a surprise-
processing modular neural network architecture, which contains a deep contex-
tual layer that learns to generate suitable event-encoding compressions. These
compressions are selectively passed through a GRU-like top-down layer, depend-
ing on current estimates of surprise. If the surprise is low, then the old compres-
sion is used. On the other hand, the larger the current surprise, the more the
current context compression is adapted and passed onto the function processing
layer, effectively invoking an event transition. As a result, the function process-
ing layer predicts subsequent function values dependent on the currently active,
compressed, top-down event-predictive signal.

Our surprise-processing modular architecture was able to generate best pre-
dictive performance when the GRU-like gating structures was opened only at
or surrounding the event switch, mimicking the processing of a surprise sig-
nal. When the upcoming context information is provided in advance, the deep
context layer does not only consider the currently ongoing event, but it also pre-
pares the processing of the next one. The prepared transition, however, should
only be passed down to the function processing layer when a new event actu-
ally starts. Elsewhere, event-triggered learning was proposed for control, such
that the system requests new information and the model is updated only when
learning is actually needed [19]. Our structure shows that even when the context
layer receives always the information regarding the actual ongoing event, the
gate may still open only at the context switch, since this is the time point when
new information must be passed onto the event dynamics processing layer. As a
result, the same prediction accuracy is achieved more resource-efficiently.

In future work, we will integrate surprise estimates from the LSTMf module
directly (cf. [5]). Moreover, we will enhance the architecture further to enable it
to predict event boundaries, which initially can be identified by surprise signals
[9]. Combinations with retrospective and prospective inference, as implemented
in REPRISE, may yield faster and more reliable event compressions. Finally, we
plan to scale up the mechanism to more challenging problems, including robot
control, object and tool usage, as well as language grounding.
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