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Abstract. When comparing human with artificial intelligence, one
major difference is apparent: Humans can generalize very broadly from
sparse data sets because they are able to recombine and reintegrate data
components in compositional manners. To investigate differences in effi-
cient learning, Joshua B. Tenenbaum and colleagues developed the char-
acter challenge: First an algorithm is trained in generating handwritten
characters. In a next step, one version of a new type of character is
presented. An efficient learning algorithm is expected to be able to re-
generate this new character, to identify similar versions of this character,
to generate new variants of it, and to create completely new character
types. In the past, the character challenge was only met by complex algo-
rithms that were provided with stochastic primitives. Here, we tackle
the challenge without providing primitives. We apply a minimal recur-
rent neural network (RNN) model with one feedforward layer and one
LSTM layer and train it to generate sequential handwritten character
trajectories from one-hot encoded inputs. To manage the re-generation
of untrained characters when presented with only one example of them,
we introduce a one-shot inference mechanism: the gradient signal is back-
propagated to the feedforward layer weights only, leaving the LSTM layer
untouched. We show that our model is able to meet the character chal-
lenge by recombining previously learned dynamic substructures, which
are visible in the hidden LSTM states. Making use of the compositional
abilities of RNNs in this way might be an important step towards bridg-
ing the gap between human and artificial intelligence.
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1 Introduction

Despite numerous recent success stories with Deep Learning (DL) [10] including
game playing as well as image and speech recognition, over the last years various
limitations in DL have been uncovered. One important issue lies in the fact that
DL algorithms lack mechanisms that lead to the development of hierarchical,
generative structures in a natural way [11]. Current DL algorithms essentially
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learn correlations between features on a flat plane. When dealing with hierarchi-
cal problems, approximations are applied, which are often incorrect and do not
generalize well. As a result, DL algorithms are still easily fooled [12] and are not
particularly or naturally noise-robust [2].

Following the same line of reasoning, Lake and colleagues [6] stated that
Recurrent Neural Networks (RNNs) do not develop compositional representa-
tions. That is, they are not able to parse an object or event into its components
and flexibly recombine them in novel ways, making generalization hard, espe-
cially when training and test sets differ significantly. A related phenomenon was
also analyzed by Otte and colleagues [13], showing that the compositional disen-
tanglement of superimposed dynamics is only possible when additional inductive
learning biases of modularization and error distribution are added to the stan-
dard backpropagation through time weight adaptation mechanism in RNNs.

In the light of these current DL deficiencies, one may state that there exist
two different kinds of artificial intelligence (AI) systems: ones that are inspired by
human cognition and ones that are not. Current DL techniques are mostly of the
second type. Accordingly, Marcus [11] and Lake et al. [9] propose that in order
to overcome the flaws of current DL systems, researchers should apply human
cognition as a model for AI systems. Marcus [11] advises against using findings
of the human brain, since the insights of neuroscience are not yet advanced
enough. He even assumes that we will need advanced AI systems to understand
the human brain in the future. In his view, cognitive science and developmental
psychology are more promising models than neuroscience, since they already
provide helpful insights into human intelligence.

In line with this argument, Hassabis et al. [3], Lake et al. [6], and Marcus [11]
identify several key areas of cognition, in which human intelligence still outper-
forms artificial intelligence. These include intuitive physics and folk psychology,
imagination, reasoning, and planning, as well as learning efficiency. Here we focus
on imagination and efficient learning.

Humans have mental models, which enable the anticipation of future out-
comes based on experiences. As a result, actions can be chosen in explicitly goal-
directed manners. Moreover, imaginations are compositional in nature, that is,
we are able to recombine previous experiences in innovative but meaningful man-
ners. Hassabis and colleagues [3] pose the challenge that DL algorithms should
be enhanced such that generative models of the environment are developed that
allow compositional, simulation-based planning – ideally without handcrafting
strong priors into the DL network architecture.

Another main superiority of human compared to artificial intelligence is effi-
cient learning [3]: Humans but not DL algorithms generalize very broadly from
a sparse amount of data [3,9]. The resulting rich conceptual representations
can then be applied to a wide range of tasks, like parsing an object into its
components or generating new examples of a concept. They even allow the cre-
ative generation of novel concepts by putting components together in a new
but somewhat meaningful manner [3]. This ability to re-combine structures
in a compositional manner is a very important ingredient of efficient human
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learning and productivity because a finite number of conceptual primitives can
be recombined into a mere infinite number of instances. Lake et al. [9] argue that
this enables the brain to think an infinite number of thoughts and understand
an infinite number of sentences.

To investigate efficiency differences between human and artificial learning,
Lake et al. [7] developed the character challenge. It investigates one-shot clas-
sification and generation of handwritten characters. Those are well-suited for
investigation because they are two-dimensional, clearly separated from the back-
ground, and unoccluded [9]. The character challenge consists of the following
tasks, combining several fundamental AI challenges [4]:

i. Free generation of characters (after a single example)
ii. Generation of new samples of a concept (after a single example)
iii. Identifying novel instances of a concept (after a single example)
iv. Generation of whole new concepts (after single examples of some concepts)

Lake and colleagues [7] applied Bayesian program learning (BPL), repre-
senting concepts as stochastic programs to achieve results in machines that are
comparably efficient to those generated by humans. Structure sharing across con-
cepts was accomplished by re-using the components of stochastic motor primi-
tives. The motor primitives were handcrafted and provided as priors to the BPL
architecture.

Following the demand of Hassabis et al. [3] to build simple models with-
out handcrafted priors by the experimenter, in this paper, we aim at building
a generative neural network model that faces the character challenge without
providing handcrafted motor primitives. As a result, we are addressing efficient
learning with respect to the character challenge, investigating to which extent
imagination, planning, and compositional encodings and recombination abilities
develop. In particular, this paper introduces a generative RNN architecture that
integrates the request for simulation-based planning, thereby managing the char-
acter challenge without prior information about stochastic primitives. We show
that our recurrent LSTM network, when trained on some characters, becomes
able to recombine previously learned dynamical substructures when facing the
task of generating untrained characters, of which only one variant is presented.
With such compositional structures at hand, the network is not only able to
re-generate those untrained characters, but it is also able to create new exam-
ples of a particular type of character and even totally new ones. Moreover, we
show that the network is able to recognize similar variants of a (potentially just
recently learned) character.

2 Data and Model

Handwritten characters of the Latin alphabet were collected from 10 subjects,
obtaining 440 samples per character in total. Each character trajectory was a
sequence of a variable amount of time steps with two positional features that
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Fig. 1. Model architecture: At every time step, the one-hot encoded input of length
26 is processed in a first fully-connected feed-forward layer with 100 neurons, followed
by one recurrent LSTM layer with 100 units, which generates the output trajectory
(change in x and y direction, pressure, and stroke for every time step). During the one-
shot inference mechanism, only the weights into the feedforward layer were adapted
(blue). (Color figure online)

indicated the relative change in position in x and y direction, one feature repre-
senting the pressure with which the character was written and one representing
the onset of a stroke. The labels, which served as the input, consisted of one-hot
encoded input vectors with length 26 for every time step. The first 50% of the
characters of the alphabet (a–m) were used to train the network, whereas only
one variant of the remaining untrained characters (n–z) each was presented to
the network during the different character challenge tasks.

The model architecture is shown in Fig. 1. The input is the one-hot encoded
vector of length 26 for every time step, which is first processed in a fully-
connected feedforward layer of 100 neurons, followed by one LSTM layer of
100 units, resulting in the output of pressure, stroke, and the relative change in
x and y direction for every time step, which constitute the trajectory over time.
As we will see below, the fully-connected feedforward layer is highly useful when
intending to recombine attractor dynamics in the RNN layer to quickly learn to
generate untrained characters. In preliminary experiments, the size of the archi-
tecture has been proven to be a good trade-off between model complexity and
the quality of the generated outputs.

The model’s weight parameters were trained for 500k training steps. We
applied the mean squared error (MSE) loss function for training the model.
For gradient computation, we used Backpropagation Through Time [14]. The
weights of the network were optimized with Adam [5] using default parameters
(learning rate of 0.001, β1 = 0.9 and β2 = 0.999).
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After training, when presented with an untrained character trajectory and
an unknown one-hot encoded label, the model generated a character trajectory
that did, of course, not match the target trajectory. To probe the ability to freely
generate new characters with only one example, we implemented the following
one-shot inference mechanism. The gradient signals of the loss function were
again propagated backwards through time. However, only the weights into the
feedforward layer were adapted. The weights of the LSTM layer were not adapted
at all. This iterative process was repeated 13,000 times with a learning rate of
0.001. As a result, the feedforward layer activities can be tuned such that the
constant input activity flowing into the LSTM structure systematically activates
those dynamic attractors and attractor successions that are best-suited to gen-
erate the novel character. From a cognitive perspective, this iterative inference
process may be viewed as an imagination phase, in which the network essentially
infers how to redraw the presented trajectory.

3 Experiments

In our experiments, we address the aforementioned four points of the character
challenge. After learning, we probe if the network can re-generate a character,
when presented with one example of a novel character, whether it can reliably
identify such a novel character correctly as one particular novel type of charac-
ter, and whether it can generate new variations of that novel character. More-
over, we probe if the network can generate completely new but related characters
after being confronted with single examples of some new characters and we fur-
ther analyse the hidden LSTM states. Remember, that we applied varying human
handwritten trajectories that are not always easily readable. Hence, it might be
difficult to recognize some of the (realistically) generated letters by the model, too.

3.1 Free Generation of Characters (After a Single Example)

Training against multiple training samples per character leads to a character
model that generates one variant per character, essentially producing the mean
of the encoded character concept. When presented with untrained inputs, the
model is obviously not able to generate the correct trajectories (cf. Fig. 2, red
trajectories). But by means of our one-shot inference mechanism, our RNN archi-
tecture is indeed able to re-generate different untrained character trajectories
(cf. Fig. 2, blue trajectories). Note that we do not provide or explicitly train our
RNN architecture to encode basic motion primitives, that is sub-trajectories, as
was done in [7]. Instead, our architecture has developed such sub-trajectories
implicitly in its LSTM layer. As a result, it is able to compose the trajectory
components it needs to generate the target trajectory by selective activation via
the inferred, constant feed-forward layer activities, providing first hints that our
architecture develops compositional, generative structures.
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Fig. 2. Top: Three examples of re-generated trajectories after applying our one-shot
inference mechanism (blue) given single examples of untrained characters (green), when
applied in our character generation network architecture that was previously trained on
other characters. Middle: Generated trajectories from unknown one-hot input vectors of
the trained model without the one-shot inference mechanism (red). Bottom: Generated
trajectories after the one-shot inference mechanism was applied to an untrained model
(orange). (Color figure online)

In contrast, an untrained model of the same architecture is not able to re-
generate the characters via our one-shot inference mechanism, as shown in orange
in Fig. 2. The only exception for which the re-generated character looked similar
to the original one in the untrained case was the ‘v’ – probably because of its
simplicity. Even for this ‘v’, the shape is less edged than in the original version.
These results confirm that the training of other characters is indeed crucial,
presumably because it fosters the development of character sub-trajectories that
can be flexibly adapted and recombined to generate other characters of the
alphabet.

The importance of backpropagating the gradient onto the weights into the
feedforward layer is further substantiated by the fact that similar attempts with-
out the feedforward layer, like backpropagating the gradient onto constant one-
hot mixture input vectors, have not been successful.

3.2 Generation of New Samples of a Concept (After Single
Example)

Next, we evaluate if the network architecture is able to generate new samples
of a character that was learned from one single example presented to the model
via our one-shot inference mechanism. After the adaptation of the weight vector
into the feed-forward layer, we then added normally distributed noise (M = 0,
0.009 ≤ SD ≤ 0.07) to the input label with 26 dimensions at every time step,
allowing the network to create new instances of the presented target character.
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Fig. 3. The first column displays the re-generated character via one-shot inference,
followed by generated variants via the addition of normally distributed noise to the
inputs.

The generated variants shown in Fig. 3 confirm that the network is indeed able
to generate similar character variants.

3.3 Identifying Novel Instances of a Concept (After Single
Example)

The next task of the character challenge is to distinguish a novel instance of an
untrained character from other characters. We thus present the trained model
first with one instance each for each untrained character (i.e. characters n–z),
applying our one-shot inference mechanism with a distinct one-hot encoded input
for each untrained character. We then probe character type inference when con-
fronted with a similar instance of one of those novel characters. During charac-
ter type inference we do not provide any label (one-hot encoded) information,
that is, we start with a zero vector of length 26 as the input vector. We then
backpropagate the gradient from the L2 loss onto that input vector, enforcing
constant values for every time step. This iterative inference process is repeated
1k times with a learning rate of 0.01 for every character. As a consequence of this
setup, the model is allowed to recombine the information of previously learned
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Fig. 4. Left: Variant of a ‘p’ (green) and its reproduced trajectory through character
type inference (blue) with the inferred generative input code. In 12 out of the 13
cases, the correct character type has been inferred. Right: Another type of ‘p’ with
different orientation (first stroke from top right to bottom left instead of top left to
bottom right), resulting in an incorrect classification. Nevertheless, similarities between
characters have been recognized by the model. (Color figure online)

character codes, inferring a mixed label. The highest value of the inferred label
determines the classification. If the highest value is at the true position of the
character, the classification is considered successful. An example of a correctly
and an incorrectly inferred input and the corresponding re-generated trajectory
can be found in Fig. 4. When applying very similar variants of the characters
generated as explained in the last section, the model successfully infers the cor-
rect class in 12 out of the 13 cases. When using dissimilar variants of characters
(for example print and script versions), the model is not able to determine the
class reliably, which is not surprising because it has been shown only either one
or the other variant. Nevertheless, the inferred inputs show that the system can
detect similarities, since the correctly inferred ‘p’ on the left in Fig. 4 shares some
components with a ‘v’, leading to an input vector that has high values both at
the ‘p’ and the ‘v’ position. Even for the incorrectly classified ‘p’ on the right,
the high values at the ‘n’, ‘o’, ‘p’, ‘q’, and ‘d’ positions seem reasonable given
their shared components.

3.4 Generation of Entirely New Concepts (After Single Examples
of Some Concepts)

Finally, we investigate whether the system is able to generate novel characters in
a somewhat innovative manner, ideally generating characters that do not exist
but that nonetheless look like plausible characters. We realize this aspect by
investigating the effects of blending two characters. Again, we use the trained
model with the feedforward layer input weights for the characters n–z optimized
via one-shot inference. We present the resulting model with blending input vec-
tors with two non-zero values that sum up to one. In a sense, this input vec-
tor instructs the model to generate a trajectory that expresses a compromise
between two character trajectories, mixing and blending sub-trajectories of each
character. Figure 5 shows that our network trajectory indeed generates innova-
tive character blendings. The observable smooth blending transitions from one
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Fig. 5. Blending of single examples of untrained characters in ten steps. The second
column shows blendings of 90% of the first and 10% of the second character, the third
column 80% of first and 20% of second character and so on. Note that blending for
trained characters (a - m) looks conceptually similar.

character to the other underline the compositional recurrent codes that devel-
oped in the LSTM layer. A video that illustrates the blending between different
characters can be found here: https://youtu.be/VyqdUxrCRXY

3.5 Analysis of Hidden LSTM States

To shed more light on the nature of the encodings that have developed in the
hidden LSTM cell states, we further analyzed the neural activities while gen-
erating particular character trajectories. Hidden neural cell state activities c
of the LSTM layer and the corresponding trajectories are plotted in Fig. 6.
Although only exemplarily, the analysis confirms that similar sub-dynamics
unfold when similar sub-trajectories are generated: For the character ‘v’, the
downward (approx. steps 1–16) and upward (approx. steps 21–37) strokes reveal
distinct but partially stable patterns in the LSTM cell states. Most interestingly,
a closely related pattern can be detected for the first part of the trajectory of
the character ‘y’ (approx. steps 2–30), essentially drawing a similar ‘v’ shaped
sub-trajectory.

https://youtu.be/VyqdUxrCRXY
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Fig. 6. Re-generated trajectories with time steps and the values (represented by color)
of the corresponding hidden cell states c of the LSTM cells over time. (Color figure
online)

Fig. 7. Re-generated trajectories with time steps and the values (represented by color)
of the corresponding hidden states h of the LSTM cells over time. (Color figure online)

Figure 7 shows some exemplary hidden states h of the LSTM layer. When
generating the character ‘u’ a pattern repetition can be detected for the two
upwards-downwards motions. For the character ‘x’, distinct diagonal upwards,
jump, and cross-diagonal downwards patters are visible in the hidden states.

4 Conclusion

In a review on the models having attempted to solve the character challenge until
2019, Lake and colleagues [8] stated that except for the one-shot classification
task, there has not been a lot of progress on the other tasks. They expressed
their hopes that ‘researchers will take up the challenge of incorporating compo-
sitionality and causality into more neurally-grounded architectures’. The current
paper provides important insights regarding efficient learning, the emergence of
compositional encodings and recombinations thereof, and the integration of a
type of imagination and planning into RNNs.

Our generative feed-forward-LSTM model, combined with a one-shot infer-
ence mechanism, was able to meet the character challenge. Deep learning meth-
ods are usually bottom-up methods that need a large number of training
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examples. Lake and colleagues [7] applied a top-down approach by giving their
program information about the existence of components, like strokes, half-circles
and so on. Our approach was able to re-generate unseen character trajectories
over time from just one example of a novel character, without providing any a
priori structured motor primitives. This indicates that the system combined the
knowledge of previously learned characters in an innovative manner to generate
untrained characters, providing evidence that LSTM networks can indeed (i) par-
tition time-series data implicitly into components, which encode sub-trajectories,
and (ii) recombine them in a compositional manner to efficiently learn new
characters.

The network and inference mechanisms were furthermore able to classify
different variants of a character as belonging to the same one, as long as the
presented trajectory variants were closely related. However, when the network
was presented, for example, with a print ‘t’, it was not able to classify the tra-
jectory of a script ‘t’ – which starts at the bottom and continues upward instead
of starting at the top, continuing downward. This makes sense conceptually
because our model encodes the motor trajectory in a recurrent, generative man-
ner. It does not encode the actual image of the character that was generated.
As a consequence, it classifies trajectory similarities, not image similarities. This
corresponds to the fact that humans may classify both a script and a print ‘t’
as the character ‘t’ but indeed need to invoke very different motor programs
when generating the one or the other, and switching between both styles comes
with effort. Accordingly, one-shot classification is only possible for similar tra-
jectory variants with the presented method. In the future, we intend to enhance
our model with an encoder-decoder-oriented convolutional module, which may
indeed interact with our trajectory generation module and the one-hot encoded
classification layer, which we used as input to our generative architecture.

A further interesting result is that by using the learned components from
the known characters, the model generated new examples of a particular type of
character and even novel but plausibly looking character trajectories by blending
previously seen ones in a somewhat innovative, smooth manner. Additionally, the
visualization of recurrent hidden states showed similar patterns for characters
that share similar sub-trajectories, providing interesting insights regarding the
explainability of LSTMs, indicating the emergence of compositional dynamic
attractor patterns within LSTM’s hidden states. Further analyses should be
conducted to shed additional light on the nature of these dynamic patterns.

Overall, these results provide strong evidence that LSTM networks tend to
develop kinds of compositional encodings, which may be reused to generate
untrained, but related trajectories in fast and innovative manners. Such combi-
natorial generalization abilities are of course not restricted to letter trajectories,
but can be applied to all time series patterns. They are of major significance,
since they seem to be a key ingredient of human intelligence, which is why AI
researchers have been interested in combinatorial abilities since the origins of
AI [1]. The awareness and utilization of these compositional abilities of RNNs
will hopefully inspire future research and may be an essential aspect towards
bridging the gap between human and machine intelligence.
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