
On the Security Relevance of Initial
Weights in Deep Neural Networks

Kathrin Grosse1,2(B), Thomas A. Trost2,3, Marius Mosbach2,3,
Michael Backes1, and Dietrich Klakow2,3

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
kathrin.grosse@cispa.saarland

2 Saarland University, SIC, Saarbrücken, Germany
3 Spoken Language Systems (LSV), Saarbrücken, Germany

Abstract. Recently, a weight-based attack on stochastic gradient
descent inducing overfitting has been proposed. We show that the threat
is broader: A task-independent permutation on the initial weights suffices
to limit the achieved accuracy to for example 50% on the Fashion MNIST
dataset from initially more than 90%. These findings are supported on
MNIST and CIFAR. We formally confirm that the attack succeeds with
high likelihood and does not depend on the data. Empirically, weight
statistics and loss appear unsuspicious, making it hard to detect the
attack if the user is not aware. Our paper is thus a call for action to
acknowledge the importance of the initial weights in deep learning.

Keywords: Adversarial machine learning · Security · Initializations

1 Introduction

One of many security concerns about machine learning (ML) [4] is the threat of
poisoning : The attacker manipulates the training data to alter the resulting clas-
sifier’s accuracy [3,20,21,25,26]. Recent work tailored poisoning to deep neural
networks [18,20,34] or targeted the untrained, initial weights [18].

Training and in particular initialization of deep neural networks is still based
on heuristics, such as breaking symmetries in the network, and avoiding that
gradients vanish or explode [2,23]. State of the art approaches rely on the idea
that given a random initialization, the variance of weights is particularly impor-
tant [9,10] and determines the dynamics of the networks [13,24]. In accordance
with this, weights are nowadays usually simply drawn from some zero-centered
(and maybe cut-off) Gaussian distribution with appropriate variance [7], while
the biases are often set to a constant. The order of the weights is typically not
considered, so an adversarial (or simply unlucky) permutation with particularly
bad properties has a good chance of being overseen, if the user is caught unaware.

Contributions. We propose a data-independent-training attack on neural net-
works that underlines the importance of the initial weights. Specifically, we show

K. Grosse and T. A. Trost—Equal contribution.

c© Springer Nature Switzerland AG 2020
I. Farkaš et al. (Eds.): ICANN 2020, LNCS 12396, pp. 3–14, 2020.
https://doi.org/10.1007/978-3-030-61609-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61609-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-61609-0_1

4 K. Grosse et al.

data design

training

model

application

poisoning [20,26,18] model stealing [30]

model reverse engineering [22]

membership inference [27]

evasion
[6,28]

adversarial initialization (ours)

Fig. 1. An overview of attacks on Machine Learning.

ways to permute initial weights before training (such that all statistics are pre-
served and seem inconspicuous) that effectively reduce the network capacity,
implying decreased accuracy and increased training time. More concretely, on
the MNIST benchmark, where benign accuracy is easily >98%, the attacker is
able to limit the accuracy to 50%. On Fashion MNIST, she reduces the accuracy
from >90% to slightly more than 50%. For CIFAR, the accuracy of our simple
LeNet [17] model is reduced from 65% to 50%.
Related Work. We give an overview over attacks on ML in Fig. 1. Closest
to our work, yet orthogonal, is poisoning for deep learning. These attacks cause
misclassification of individual points [34] or introduce backdoors [20,26,29]. Such
a backdoor pattern is small, yet tricks the model into reliably outputting an
attacker-chosen class. All these approaches rely on altering the training data.
Also orthogonally, Cheney et al. [5] investigate adversarial weight perturbations
at test time (not at training time of the initial weights). In general, benign
hardware failures during training have been studied as well [31].

Liu et al. [18], however, target the weights of an SGD-trained model which
consecutively over-fits the data. There are several differences to our contribution:
(1) our attacks are independent of the optimizer and other hyper-parameters,
and (2) the damage of decreased accuracy is more severe than overfitting. Fur-
thermore, (3) our attack is also more stealthy, as the statistics of the original
weights are preserved, and (4) our attacks take place before training.

2 Adversarial Initialization

We introduce attacks that alter the initial weights of a neural network. The goal
of the attacker is to decrease accuracy drastically, or to increase training time.
Ideally, this is done in a stealthy way: the victim should not spot the attack.

Before we discuss specifics and the generalization of our attacks, we moti-
vate our approach by discussing its most basic version. The following equation
represents two consecutive layers in a fully connected feed-forward network with

On the Security Relevance of Initial Weights in Deep Neural Networks 5

weight matrices A ∈ R
m×n and B ∈ R

�×m, corresponding biases a ∈ R
m as well

as b ∈ R
�, and ReLU activation functions

y = ReLU
(
BReLU(Ax + a) + b

)
. (1)

This vulnerable structure or similar vulnerable structures (like two consecutive
convolutional layers) can be found in a plethora of typical DNN architectures.
We assume that the neurons are represented as column vectors. The formulation
for a row vector is completely analogous. We further assume that the compo-
nents of x are positive. This corresponds to the standard normalization of the
input data between 0 and 1. For input vectors x resulting from the application of
previous layers it is often reasonable to expect an approximately normal distri-
bution with the same characteristics for all components of x. This assumption is
(particularly) valid for wide previous layers with randomly distributed weights
because the sum of many independent random variables is an approximately
normally distributed random variable due to the central limit theorem [24].

The idea behind our approach is to make many components of y vanish
with high probability and is best illustrated by means of the sketches in Eq. 2
and Eq. 3. The components of the matrices and vectors are depicted as little
squares. Darker colors mean larger values. In addition, hatched squares indicate
components with a high probability of being zero.

In matrix A, the largest components of the original matrix are distributed in
the lower (1 − rA)m rows. rA ∈ { 1

m , 2
m , ..., 1} controls the fraction of rows that

are filled with the “small” values. The small and often negative components are
randomly distributed in the upper rAm rows. The products of these negative
rows with the positive x are likely negative. If the bias a is not too large, the
resulting vector has many zeros in the upper rows due to the ReLU-cutoff.

ReLU

matrix A
x

+a =

(2)

Next, a similar approach can be used with matrix B to eliminate the remain-
ing positive components. Let rB control the fraction of “small” columns of B.

ReLU

matrix B

+ b =

y (3)

6 K. Grosse et al.

In summary, we concentrate the positive contributions in a few places and
“cross” A and B in order to annihilate them. For the typical case of weights
drawn from a zero mean distribution, rA = rB = 1

2 effectively kills all the
neurons and makes training impossible.

The probability for obtaining a matrix like A in Eq. 2 by chance is very small
and given by ((rAmn)!((1−rA)mn)!)/(mn)!.

With the general idea of our attack in mind, we can now discuss specifics. A
complete blockade of the entire network obviously contradicts the idea of stealth-
iness because at least some learning is expected by the user. The prototypical
attack must thus be “weakened” in a controlled manner to be stealthy.

Soft Knockout Attack. The first way of controlling the network capacity is
by varying rA and rB in such a way that some but not all of the neurons have
some non-vanishing probability of being non-zero. This is achieved by choosing
rA < 1/2 or rB < 1/2, respectively rA � 1/2 or rB � 1/2.

Shift Attack. As an alternative, we can choose rA = rB = 1/2 and shift the
columns of B periodically by s positions. In a fully connected network, this
corresponds to s active neurons, yielding specific control over capacity.

We formalize both algorithms a long version of this paper [8]. The attack’s
computational complexity is linear in the number of components of the matri-
ces because one pass over them is sufficient for the split into large and small
weights.

2.1 Statistical Analysis of Adversarial Initialization

The matrices which are permuted in the above attacks are initialized randomly.
To establish that we can expect to observe a sufficiently large fraction of negative
weights, we proceed with a formal analysis of the statistics of the attacks. The
goal is to give estimates of the probabilities of deactivating certain neurons by
means of malicious initialization in the above sense. We investigate how the layer
size, the variance of the weights and the magnitude of the biases influence our
attack and show that the input data is indeed not important for its success.
For clarity, we consider the case of two fully connected layers as presented as
the prototype of our attack. Thus, our architecture is described by the formula
y = ReLU

(
BReLU(Ax+a)+b

)
. Note that the analysis of this case is not merely

relevant for two-layer networks. For the attack it does not matter whether the
two layers are part of a bigger network or not and whether they are the first layers
or somewhere in between other layers, as long as they interrupt the data flow by
deactivating neurons. Additionally, the analysis of the two fully connected layers
basically carries over to convolutions, shifting and soft knockout attack because
the corresponding parameters can be adapted to all cases.

Statistics of Adversarial Weights. As groundwork for the subsequent dis-
cussion, we first look at the statistics of the components of the block matrices
A in Eq. 2, where the randomly sampled components are split into two sets
of large respectively small values. In particular, we are interested in the mean

On the Security Relevance of Initial Weights in Deep Neural Networks 7

values μA,S and μA,L as well as the variances σ2
A,S and σ2

A,L of the components
of the two blocks of A, depending on the parameter rA that determines the
size of the split. The subscript A denotes matrix A, so that we can distinguish
the values from those for B (from Eq. 3) for which the respective values can be
calculated in a completely analogous way. The quantities that refer to the block
of small values have the subscript S and the respective quantities for the block
of large values are sub-scripted with L. We later need the means and variances
for estimating the probability of knocking out neurons.

−3

−2

−1

0

1

2

3

0 0.2 0.4 0.6 0.8 1
rA

µA,S
µA,L

σ2
A,S/σ2

A
σ2
A,L/σ2

A

Fig. 2. Mean and variance of the weights in the “small
values” respectively “large values” blocks of A.

We focus on the most
relevant case of components
that are drawn from a nor-
mal distribution with mean
μA and variance σ2

A, now
without the subscripts S or
L because we refer to the
unsplit values. The distribu-
tion of the weights in the
“small values” block of A
can then be approximated as
a normal distribution that is
cut off (i.e. zero for all val-
ues greater than some c) depending on the parameter rA in such a way that the
respective part of the original distribution covers the fraction rA of the over-
all probability mass. Formalizing this, the value of the cut-off-parameter c is
obtained by solving the equation

rA =
∫ c

−∞

1√
2πσA

exp
(

− z2

2σ2
A

)
dz (4)

for c. We obtain c =
√

2σA erf−1(2rA − 1), where erf−1 is the inverse error
function. As a result, we get the following probability density distribution for
the weights of the “small values” block of A:

fA,S(z) =

{
1√

2πσArA
exp

(
− z2

2σ2
A

)
for z < c,

0 else.
(5)

The density fA,L for the “large values” block is found accordingly.
Before proceeding, we introduce the shorthand notation

g(r) :=
√

π exp
((

erf−1(2r − 1)
)2)

, (6)

which will prove useful for presenting the results in a more succinct form. From
Eq. 5 a straightforward integration yields

μA,S = − σA√
2rAg(rA)

, μA,L =
σA√

2(1 − rA)g(rA)
. (7)

8 K. Grosse et al.

0
0.2
0.4
0.6
0.8
1

0 0.2 0.4 0.6 0.8 1

P
[h

i
≤

0]

rA

σ2
x

μ2
x
= 2, ai

σAμx
= 0.2

n = 4
n = 16
n = 128
n = 1024

0 0.2 0.4 0.6 0.8 1
rA

n = 16, ai
σAμx

= 0.2

σ2
x/μ2

x = 0
σ2
x/μ2

x = 0.5
σ2
x/μ2

x = 1
σ2
x/μ2

x = 2

0 0.2 0.4 0.6 0.8 1
rA

σ2
x

μ2
x
= 2, n = 16

ai/(σAμx) = 0
ai/(σAμx) = 1
ai/(σAμx) = 2
ai/(σAμx) = 4

Fig. 3. Probability to obtain deactivated neurons after the first layer, depending on
the relative block size rA and selected values for the other parameters.

Likewise, the variances of the components of the blocks are:

σ2
A,S = σ2

A +
√

2σA erf−1(2rA − 1)μA,S − μ2
A,S (8a)

σ2
A,L = σ2

A +
√

2σA erf−1(2rA − 1)μA,L − μ2
A,L (8b)

The means and variances are plotted in Fig. 2. Here, μA,S is always negative
while μA,L is always positive because there is always an imbalance between
positive and negative values. Large or small values of rA make the statistics of
the larger block look like those of the original matrix A, while the few values in
the small block have a mean with large absolute value and small variance.

First Layer. With these results in mind, we are ready to analyze the effect of
the first layer of Eq. 1 with a weight matrix A that is split according to Eq. 2
and a bias a. With the convenient definition h = Ax + a we can estimate the
expected value μh,i := E[hi] of the components of h given random inputs and
fixed weights and biases. We define the expected values μx := E[xi] (for any i,
see below) as well as μA,i := E[Ai:] and get

μh,i =
n∑

j=1

Aij E[xj] + ai ≈ nμx
1
n

n∑

j=1

Aij + ai ≈ nμxμA,i (9)

The first approximation is based on the premise that the components of x are
approximately equally distributed while the second approximation gets better
with increasing n. The assumption of equal distributions is particularly justified
if the first layer of our model is not the first layer of the network because in that
case input differences are evened out by forming sums with random weights in
the previous layers. If x is actually the input layer, we can of course not always
guarantee a particular distribution of its components. Nevertheless, given typical
datasets, it is still reasonable to assume similar distributions for a sufficiently
large part of the features so that the approximation is meaningful.

Under the same assumptions and with the variance σ2
A,i of the elements of the

i-th row of A as well as the variance σ2
x of the components of x, together with the

On the Security Relevance of Initial Weights in Deep Neural Networks 9

premise that the components of A and those of x are statistically independent,
we obtain:

E[h2
i] ≈ E[x]2n(n − 1)μ2

A,i + 2ainE[x] E[Ai:] + E[x2]n
(
σ2

A,i + μ2
A,i

)
+ a2

i (10)

With that, we get the variance of hi:

σ2
h,i := E[h2

i] − E[hi]2 ≈ n
(
μ2

A,iσ
2
x + σ2

A,iσ
2
x + σ2

A,iμ
2
x

)
(11)

As we assume n to be large enough for our approximations to be reasonable, we
can apply the central limit theorem that tells us that hi will approximately follow
a normal distribution N (μh,i, σ

2
h,i). Because of this, Eq. 9 and Eq. 11 completely

determine the distribution of hi and the probability for hi to be smaller than or
equal to zero is readily estimated as

P[hi ≤ 0] =
∫ 0

−∞
N (h;μh,i, σ

2
h,i)dh =

1
2

− 1
2

erf

(
μh,i

σh,i

√
2

)

. (12)

For normally distributed weights, Eq. 9 and Eq. 11 can be calculated on the
basis of our previous results for the statistics of A, given in Eq. 7 and Eq. 8.
Under our assumptions, the row index i matters only in so far that it either
belongs to the (hopefully) deactivated neurons or to the other block. We find
that μh,S/σh,S equals

2√
n

(
ai

σAμx

)
rAg(rA) − √

n
2√(

r2A g(rA)2 − rA erf−1(2rA − 1)g(rA)
) (

σ2
x

μ2
x

+ 1
)
− 1

2

. (13a)

The analogous expression for μh,L/σh,L with r̄A=1− rA is

2√
n

(
ai

σAμx

)
r̄Ag(rA) +

√
n
2√(

r̄2A g(rA)2 + r̄A erf−1(2rA − 1)g(rA)
)(σ2

x
μ2
x

+ 1
)
− 1

2

. (13b)

Together with Eq. 12 we obtain estimations for the probabilities of switching
off neurons after the first layer. The behavior depends on three dimensionless1

parameters that are given due to the setup: The input dimension n, the ratio
ai/σAμx that corresponds to the relative importance of the bias and σ2

x/μ2
x, which

can roughly be described as a measure of sharpness of the input distribution. The
influence of these parameters can be observed in Fig. 3. As expected, a significant
positive bias deteriorates the probability; nevertheless it must be unusually high
to have a significant effect. For large n, the probabilities are more distinct because
the statistics get sharper. The characteristics of the input data, on the other
hand, do not play a big role, as it can be seen in the second diagram. Note
that the variance of the weights does not directly influence the probabilities.
1 Here, “dimensionless” stems from physics and related disciplines, where similar quan-

tities are used to describe and classify complex systems in a unit-independent way.

10 K. Grosse et al.

Overall we can conclude that the chances of deactivating neurons is indeed high
for realistic choices of parameters and that the characteristics of the input data
hardly influence the system.

Second Layer. The statistical analysis of the effect of the second layer is very
similar to that of the first layer, just significantly more complex in terms of the
length of the expressions and cases that have to be distinguished. As there is not
much to learn from that, we leave out the details of the respective computation
and simply remark that after the second layer neurons are indeed deactivated
with a high probability for realistic parameters.

3 Empirical Evaluation

We evaluate the previously derived attacks. We first detail the setting, datasets
and architectures and explain how we illustrate findings.

0
2
4
6
8

10
12

0 0.25 0.5 0.75 1pr
ob

ab
ili
ty

de
ns
it
y

0
5

10
15
20
25
30
35
40
45
50

0 100 200 300

nu
m
be

r
of

ca
se
s

best epoch

baseline
attack

0
2
4
6
8

10
12

0 0.25 0.5 0.75 1pr
ob

ab
ili
ty

de
ns
it
y

best accuracy

0
1
2
3
4
5
6
7
8

0 100 200 300

nu
m
be

r
of

ca
se
s

best epoch

baseline
attack

Fig. 4. The soft knockout attack allows little control over
final accuracy: Fashion-MNIST, fully connected network,
r = 0.25 (upper) versus r = 0.2 (lower).

Setting. We deploy the
attacks on a range of
datasets, including MN-
IST [17], Fashion MN-
IST [32] and CIFAR10
[14]. We evaluate two
different kinds of archi-
tectures, fully connected
networks and convo-
lutional networks. All
our fully connected net-
works contain n/2 neu-
rons in the first hidden
layer, where n is the
number of features. The
second hidden layer has
49 neurons for the two
MNIST tasks. As an
example for a convolu-
tional architecture, we
use LeNet on CIFAR.

All networks are initialized with He initializer [11] and constant bias. The fully
connected networks are trained for 300 epochs on both MNIST variants. LeNet
is trained for 200 epochs. We optimize the nets with the Adam optimizer with
a learning rate of 0.001. However, in a long version of this paper, we show that
initializer, optimizer, learning rate and even activation function do not affect
vulnerability.

Presentation of Results. We are interested in how our attacks affect the
probability to get a well performing network after training. Towards this end,
we mainly consider two quantities: the best accuracy that is reached during
training and the epoch in which it has been reached. We approximate both

On the Security Relevance of Initial Weights in Deep Neural Networks 11

distributions by evaluating a sample of 50 networks with different seeds for the
random initializer.2 We plot the smoothed probability density function over the
best test accuracies during training and the epochs at which this accuracy was
observed. While we use Gaussian kernel density estimation for the former, the
latter is depicted using histograms. Both distributions are compared to a baseline
derived from a sample of 50 clean networks with the same 50 random seeds.

0
2
4
6
8

10
12

0 0.25 0.5 0.75 1pr
ob

ab
ili
ty

de
ns
it
y

best accuracy

0
1
2
3
4
5
6

0 100 200 300

nu
m
be

r
of

ca
se
s

best epoch

baseline
attack
se
t
se
t ck

0
2
4
6
8

10
12

0 0.25 0.5 0.75 1pr
ob

ab
ili
ty

de
ns
it
y

best accuracy

0
5

10
15
20
25
30
35
40

0 66 132 198

nu
m
be

r
of

ca
se
s

best epoch

baseline
attack

bbb

Fig. 5. The shift attack on Fashion MNIST (upper) and
CIFAR10 (lower). In both cases, shift is set to eight, for
the convolutional network on CIFAR, we apply the shift
to one filter.

Knockout Attack. In
this attack, we control
the size of the split
between small and large
values of the weight
matrices in order not
to knock out all the
neurons at once. The
experiments show that
this gives little con-
trol over performance:
On fully connected net-
works, when r > 0.3
training fails entirely.
when r ≤ 0.2 the
network achieves nor-
mal accuracy (however
needs more of epochs).
As soon as the networks
have some non-vanishing
chance of updating the
weights (which is the
idea of a soft knockout),
they can recover from the bad initialization.

We plot the results on Fashion-MNIST for r = 0.2 and r = 0.25 in Fig. 4. A
parameter r > 0.3 leads to complete failure to learn: all accuracies are equivalent
to guessing. Networks that perform with random guess accuracy usually perform
best in their first iteration, and do not improve during training. This is visible
as well for r = 0.25. We picked Fashion-MNIST to illustrate this, although it
occurs in general. For slightly lower r = 0.2, however, most seeds achieve baseline
accuracy, where training time increases on average.
Shift Attack. This attack gives more fine-grained control over the network.
In fully connected networks, the shift parameter is equivalent to the number
of active neurons. Our experiments show that a number of 10 (MNIST)/12
(Fashion MNIST) neurons suffices to learn the task with unchanged accuracy.
We set the shift of 4 and 8 on MNIST and Fashion MNIST (see Fig. 5). In
2 We keep the same 50 seeds in all experiments for comparability. However, due to

effects from parallelization on GPUs, the accuracy might differ by up to 2% for
seemingly identical setups.

12 K. Grosse et al.

both cases, the maximal accuracy is around 50%, but the network still learns.
On Fashion-MNIST, training time increases by around 50 epochs. This is less
clear for MNIST, where several networks are failing, and achieve their best (ran-
dom guess) accuracy in epoch one.

The results of convolutional networks on CIFAR10 are in Fig. 5. We apply
a shift of eight (more plots are in a long version of this paper) and apply it to
one or sixteen filters. As for the fully connected networks, accuracy decreases
strongly. The average accuracy is around 43% if one filter is affected and around
50% if the number of filters is increased to sixteen. Intriguingly, training time
decreases for one filter and slightly increases if 16 filters are targeted.

4 Why Would I Care?

One might wonder how an attacker might even be able to alter the code of
the library. In both security [1,15] and ML [19,33], trust in libraries has been
recognized as a threat. A simple drive-by download is enough to infect a machine
with the malicious code [16], if no corresponding defense is in place [12].

1
1.2
1.4
1.6
1.8
2

2.2
2.4

0 100 200 300

lo
ss

iterations

With attack.

Training
Test

−0.2
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

0 100 200 300
iterations

Without attack.

Fig. 6. Loss during training on Fashion MNIST (fully con-
nected network, shift is 4). Along with the achievable accu-
racy, the scale of the loss is unknown to the victim.

Furthermore, one
might ask whether a
user would actually
fall for such an easy-
to-fix attack as mali-
ciously permuted wei-
ghts. We argue that
this hinges on the
user’s awareness of the
attack and that cur-
rent debugging rou-
tines hardly take ini-
tialization into account.
In order to underpin

this statement, we carry out a study on www.stackoverflow.com and
www.stackexchange.com, popular and typical Q&A sites for programming-
related issues. We browse the replies to questions concerning neural network
failure and check whether people would discover our attack based on this advice
(the full study can be found in a long version of this paper [8]). In a nutshell, for
the specific setting the attack causes, in 115 relevant questions, the majority of
the answers either point out a bug (32.2%), concern the data (31.3%), or suggest
altering the model (30.4%). In only 3.5% (i.e. four) of the cases the suggestions
hint at initializations or information flow. However, in three of these cases, the
model is described as not learning at all, or the loss is severely diverging. For
our attack, the loss does not look that suspicious, as can be seen in Fig. 6. This
leaves one answer that would actually point into the direction of our attack
for the symptoms it causes: “Gradient check your implementation with a small
batch of data and be aware of the pitfalls” This is still far from a direct hint—
we conclude that there is a lack of awareness on the importance of the initial
weights.

www.stackoverflow.com
www.stackexchange.com

On the Security Relevance of Initial Weights in Deep Neural Networks 13

5 Conclusion

We show that the threat of adversarial initialization goes far beyond previously
known attacks that induced overfitting. A permutation of the initial weight
matrices before training suffices to limit the victim’s accuracy <50% on the
MNIST benchmark, where benign accuracy is easily >98%. On Fashion MNIST,
the attacker limits the accuracy from >90% to around 50%. Furthermore, the
loss looks unsuspicious, and a user, given current knowledge, will not discover the
source of the bad performance. In addition to these empirical results, we formally
derive statistical evidence that the attacks succeed for standard initializations
and are independent of the input distribution and the task at hand.

Acknowledgments. This work was supported by the German Federal Ministry of
Education and Research (BMBF) through funding for the project CISPA AutSec
(FKZ: 16KIS0753). Marius Mosbach acknowledges partial support by the German
Research Foundation (DFG) as part of SFB 1102.

References

1. Backes, M., Bugiel, S., Derr, E.: Reliable third-party library detection in android
and its security applications. In: CCS. pp. 356–367. ACM (2016)

2. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

3. Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector
machines. In: ICML (2012)

4. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine
learning. Pattern Recogn. 84, 317–331 (2018)

5. Cheney, N., Schrimpf, M., Kreiman, G.: On the robustness of convolutional neu-
ral networks to internal architecture and weight perturbations. arXiv preprint
arXiv:1703.08245 (2017)

6. Dalvi, N., Domingos, P., Mausam, Sanghai, S., Verma, D.: Adversarial classifica-
tion. In: KDD. pp. 99–108 (2004)

7. Giryes, R., Sapiro, G., Bronstein, A.M.: Deep neural networks with random gaus-
sian weights: a universal classification strategy? IEEE Trans. Signal Process.
64(13), 3444–3457 (2016)

8. Grosse, K., Trost, T.A., Mosbach, M., Backes, M., Klakow, D.: On the security rel-
evance of initial weights in deep neural networks. arXiv preprint arXiv:1902.03020
(2019)

9. Hanin, B.: Which neural net architectures give rise to exploding and vanishing
gradients? pp. 580–589 (2018)

10. Hanin, B., Rolnick, D.: How to start training: the effect of initialization and archi-
tecture. In: NeurIPS, pp. 569–579 (2018)

11. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on imagenet classification. In: ICCV. pp. 1026–1034 (2015)

12. Javed, A., Burnap, P., Rana, O.: Prediction of drive-by download attacks on twit-
ter. Inf. Process. Manage. 56(3), 1133–1145 (2019)

13. Kadmon, J., Sompolinsky, H.: Transition to chaos in random neuronal networks.
Phys. Rev. X 5, 041030 (2015)

http://arxiv.org/abs/1703.08245
http://arxiv.org/abs/1902.03020

14 K. Grosse et al.

14. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical Report, Citeseer (2009)

15. Lauinger, T., Chaabane, A., Arshad, S., Robertson, W., Wilson, C., Kirda, E.:
Thou shalt not depend on me: analysing the use of outdated javascript libraries
on the web. In: NDSS (2017)

16. Le, V.L., Welch, I., Gao, X., Komisarczuk, P.: Anatomy of drive-by download
attack. In: Eleventh Australasian Information Security Conference, AISC 2013,
Adelaide, Australia, February 2013. pp. 49–58 (2013)

17. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

18. Liu, S., Papailiopoulos, D., Achlioptas, D.: Bad global minima exist and sgd can
reach them. In: ICML (2019)

19. Liu, Y., Wei, L., Luo, B., Xu, Q.: Fault injection attack on deep neural network.
In: Proceedings of the 36th International Conference on Computer-Aided Design.
pp. 131–138. IEEE Press (2017)

20. Liu, Y., Ma, S., Aafer, Y., Lee, W., Zhai, J., Wang, W., Zhang, X.: Trojaning
attack on neural networks. In: NDSS (2018)

21. Mei, S., Zhu, X.: Using machine teaching to identify optimal training-set attacks
on machine learners. In: AAAI. pp. 2871–2877 (2015)

22. Oh, S.J., Augustin, M., Fritz, M., Schiele, B.: Towards reverse-engineering black-
box neural networks. In: ICLR (2018)

23. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural
networks. In: ICML. pp. 1310–1318 (2013)

24. Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential
expressivity in deep neural networks through transient chaos pp. 3360–3368 (2016)

25. Rubinstein, B.I., et al.: Antidote: understanding and defending against poisoning
of anomaly detectors. In: ACM SIGCOMM Conference on Internet Measurement
(2009)

26. Shafahi, A., et al.: Poison frogs! targeted clean-label poisoning attacks on neural
networks. NeurIPS pp. 6106–6116 (2018)

27. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models pp. 3–18 (2017)

28. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)
29. Tan, T.J.L., Shokri, R.: Bypassing backdoor detection algorithms in deep learning.

arXiv preprint arXiv:1905.13409 (2019)
30. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine

learning models via prediction apis. In: USENIX Security. pp. 601–618 (2016)
31. Vialatte, J.C., Leduc-Primeau, F.: A Study of Deep Learning Robustness Against

Computation Failures. ArXiv e-prints (2017)
32. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-

marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)
33. Xiao, Q., Li, K., Zhang, D., Xu, W.: Security risks in deep learning implementa-

tions. In: IEEE S&P Workshops. pp. 123–128 (2018)
34. Zhu, C., Huang, W.R., Li, H., Taylor, G., Studer, C., Goldstein, T.: Transferable

clean-label poisoning attacks on deep neural nets. In: ICML. pp. 7614–7623 (2019)

http://arxiv.org/abs/1905.13409
http://arxiv.org/abs/1708.07747

	On the Security Relevance of Initial Weights in Deep Neural Networks
	1 Introduction
	2 Adversarial Initialization
	2.1 Statistical Analysis of Adversarial Initialization

	3 Empirical Evaluation
	4 Why Would I Care?
	5 Conclusion
	References

