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Abstract. We consider the problem of classifying images, ordered in
a sequence (series), to several classes. A distinguishing feature of this
problem is the presence of a slowly varying, reoccurring concept drift
which results in the existence of relatively long subsequences of similar
images from the same class. It seems useful to incorporate this knowledge
into a classifier. To this end, we propose a novel idea of constructing a
Markov chain (MC) that predicts a class label for the next image to be
recognized. Then, the feedback is used in order to modify slightly a priori
probabilities of class memberships. In particular, the a priori probability
of the class predicted by the MC is increased at the expense of decreasing
the a priori probabilities of other classes.

The idea of applying an MC predictor of classes with the feedback to
a priori probabilities is rather general. Thus, it can be applied not only
to images but also to vectors of features arising in other applications.
Additionally, this idea can be combined with any classifier that is able
to take into account a priori probabilities. We provide an analysis when
this approach leads to the reduction of the classification errors in com-
parison to classifying each image separately.

As a vehicle to elucidate the idea we selected a recently proposed
classifier (see [23,25]) that is based on assuming matrix normal distribu-
tion (MND) of classes. We use a specific structure of the MND’s covari-
ance matrix that can be estimated directly from images without feature
extraction.

The proposed approach was tested on simulated images as well as
on an example of the sequence of images from an industrial gas burner’s
flames. The aim of the classification is to decide whether natural gas con-
tains a sufficient amount of methane (the combustion process is proper,
lower air pollution) or not.

Keywords: Classification of ordered images · Reoccurring concept
drift · Generalized matrix normal distribution · Classifier with
feedback · Markov chain predictor
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1 Introduction

A large number of examples can be pointed out when images should be con-
sidered as a series (i.e., a sequence of images that are ordered in time). This is
of particular importance when we want to observe and classify selected features
over time. We assume that the features of interest can fluctuate over a long
time intervals without changing their class membership of subsequent images.
At unknown time instants, the observed features can change (abruptly or grad-
ually), leading to the change of their classification for a longer period. Then, the
next parts of the series can return to previously visited class memberships. We
shall name such sequences image series with a slow reoccurring concept drift.
The assumption that we are faced with an image series with a slow reoccurring
concept drift is crucial for this paper. The reason is that we can use this fact
in order to increase the classification accuracy by predicting a class label of the
next image and incorporating this a priori knowledge into a classifier.

The following examples of such image series can be pointed out.

– Quality control of manufacturing processes monitored by cameras. The fol-
lowing two cases can be distinguished:
1. Separate items are produced and classified as proper or improper (con-

forming to requirements or not). One can expect long sequences of con-
forming items and shorter sequences of non-conforming ones.

2. Production is running continuously in time (e.g., molding and rolling of
copper, other metals or steel alloys). Here also slow changes of the quality
can be expected, while the proper classification of a product is crucial for
economic efficiency.

– Combustion processes monitored by a camera (see [20,29] and the bibliogra-
phy cited therein).

– Automated Guided Vehicles (AGV) are more and more frequently monitored
by cameras and/or other sensors. Most of the time they operate in an environ-
ment which is well defined and built-in into their algorithms, but sometimes
it happens that they meet other AVG’s or other obstacles to be recognized.

For simplicity of the exposition we impose the following constraints on an
image series:

– it is not required that class labels of subsequent images strictly form a Markov
chain (MC), but if it is possible to indicate the corresponding MC, then the
proposed classification algorithm has a stronger theoretical justification,

– images are represented as matrices, i.e., only their grey levels are considered,
– an image series has slow reoccurring concept drift in the sense explained

above,
– the probability density functions (p.d.f.’s) of images in each class have covari-

ance structures similar to that of matrix normal distributions (MND’s).

The last assumption will be stated more formally later. We usually do not have
enough learning images to estimate the full covariance matrix of large images.
An alternative approach, that is based projections is proposed in [26].
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The paper is organized as follows:

– in the section that follows we provide a short review of the previous works,
– in Sect. 3, we state the problem more precisely,
– in the next sections, we provide a skeletal algorithm, then its exemplifications

and the results of testing are discussed.
– an example of classifying flames of an industrial gas burner is discussed in

the section before last.

Notice that we place an emphasis on classifying images forming a time series, but
avoiding a tedious (and costly) features extraction step (an image is considered
as an entity).

2 Previous Work

We start from papers on the bayesian classifiers that arise in cases when the
assumption that class densities have the MND distribution holds. This assump-
tion will be essentially weakened in this paper, but it cannot be completely
ignored when one wants to avoid the feature extraction step without having
millions of training and testing images.

Then, we briefly discuss classic papers on classifying images when their class
labels form a Markov chain. We also indicate the differences in using this infor-
mation in classic papers and here.

As mentioned in [25], “The role of multivariate normal distributions with the
Kronecker product structure of the covariance matrix for deriving classifiers was
appreciated in [15], where earlier results are cited. In this paper the motivation
for assuming the Kronecker product structure comes from repeated observations
of the same object to be classified.”

It was also documented in [22,23] and [24] that the classifier based on the
MND’s assumption is sufficiently efficient for classifying images without features
extraction. Furthermore, in [25] it was documented that an extended version of
such classifiers is useful for recognizing image sequences, considered as whole
entities.

The second ingredient that is used in the present paper is a Markov chain
based predictor of class labels, which is used as feedback between the classifier
output and a priori class probabilities for classifying the next image in a sequence.
This idea was proposed by the first author (see Fig. 1 for a schematic view of
the overall system).
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Fig. 1. A general scheme of classifying an image series.
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The idea of using the assumption that class labels form a Markov structure
has a long history [13] and its usefulness is appreciated up to now (see, e.g.,
[14,28]). In these and many other papers, the Markov chain assumption was
used in order to improve the classification accuracy of a present pattern using
its links to the previous one. Here, we use a Markov chain differently, namely, it
serves in the feedback as a predictor of the next class label.

A recurrence in neural networks has reappeared several times. A well-known
class is Elman networks (see the original paper [9] and [4] for a learning process
of Elman’s networks which is so laborious that it requires parallel computing
tools). In Elman’s networks, an input vector is extended by stacking values of
all the outputs from the previous iteration.

Hopfield neural networks (HNN) have even a more complicated structure.
Their learning is also rather laborious, since after presenting an input vector
the HNN internally iterates many times until a stable output is attained. We
refer the reader to [18] for the description of the HNN that is dedicated to
change detection between two images and to [2] for the HNN designed to classify
temporal trajectories.

In the context of Elman’s and Hopfield’s nets, our feedback can be called
weak, for the following reasons:

1. only limited information (class labels) is transmitted back to the recognizer,
2. the transmission is done once per image to be recognized (there are no inner

loop iterations),
3. feedback information does not influence an input image, but provides only an

outer context for its classification, by modifying a priori class probabilities.

The problem of dealing with reoccurring concept drift has been intensively
studied in recent years. We refer the reader to [8,10] and the bibliography cited
therein. We adopt the following definition from [8]: “We say that the changes are
reoccurring if we know that the concept can appear and disappear many times
during processing the stream.” We agree also with the following opinion: “Many
methods designed to deal with concept-drift show unsatisfactory results in this
case [3].”

Our approach can also be used for data streams, but after a learning phase
that is based on long historical sequences of images. We shall not emphasise this
aspect here. We refer the reader to [12] for the recent survey paper on learning
for data stream analysis.

3 Problem Statement

In this section, we first recall the pattern recognition problem for matrices in the
Bayesian setting. Then, we specify additional assumptions concerning a series of
images and reoccurring concept drift.
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3.1 Classic Bayesian Classification Problem for Random Matrices

A sequence of ordered images Xk, k = 1, 2, . . . , K is observed one by one. Grey
level images are represented by m × n real-valued1 matrices.

Each image Xk, k = 1, 2, . . . , K can be classified to one of J > 1 classes,
labeled as j = 1, 2, . . . , J . The following assumptions apply to all J classes.

As 1) Each Xk is a random matrix, which was drawn according to one of
the probability density functions (p.d.f.’s), denoted further by fj(X),
j = 1, 2, . . . , J , of the m × n matrix argument X

As 2) Random matrices Xk, k = 1, 2, . . . , K are mutually independent (this
does not exclude stochastic dependencies between elements of matrix
Xk).

As 3) Each matrix Xk is associated with class label jk ∈ J , k = 1, 2, . . . , K,

where J def
= {j : 1 ≤ j ≤ J}.

Labels jk’s are random variables, but – as opposed to the classic problem
statement – they are not required to be mutually independent. When
new matrix (image) X0 has to be classified to one of the classes from J ,
then the corresponding label j0 is not known. On the other hand, when
ordered pairs (Xk, jk), k = 1, 2, . . . , K are considered as a learning
sequence, then both images Xk’s and the corresponding labels jk’s are
assumed to be known exactly, which means that a teacher (an expert)
properly classified images Xk’s.

As 4) We assume that for each class there exists a priori probability pj > 0
that X and Xk’s were drawn from this class. Clearly

∑J
j=1 pj = 1.

Notice that here a priori probabilities are interpreted in the classic way,
namely, as the probabilities drawing some of Xk’s from j-th class. In
other words, in specifying pj ’s we do not take into account the fact that
Xk’s form an image series with possible concept drift. Later, we modify
this assumption appropriately.

As 5) (optional) In some parts of the paper we shall additionally
assume that class densities fj(X)’s have matrix normal distributions
Nn, m(Mj , Uj , Vj), i.e., with the expectation matrices Mj and Uj as
n × n inter-rows covariance matrices and Vj as an m × m covariance
matrix between columns, respectively. We refer the reader to [23] and
the bibliography cited therein for the definition and basic properties of
MND’s.

It is well-known (see, e.g., [7]) that for the 0–1 loss function the Bayes risk
of classifying X is minimized by the following classification rule:

j∗ = arg max
1≤j≤J

pj fj(X), (1)

since a posteriori probabilities P (j|X) of X being from class j ∈ J are propor-
tional to pj fj(X), j ∈ J for each fixed X.

In [23] particular cases of (1) were derived under assumption As 5).
1 In implementations, grey levels are represented by integers from the range 0 to 255,

but for theoretical considerations we consider them to be real numbers.
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3.2 Classification of Images in a Series

Consider a discrete-time and discrete states Markov chain (MC) that is rep-
resented by J × J matrix P with elements pj j′ ≥ 0, j, j′ ∈ J , where pj j′ is
interpreted as the probability that the chain at state j moves to state j′ at the
next step. States of the MC are further interpreted as labels attached to X’s.
Clearly, P must be such that

∑
j′∈J pj j′ = 1 for each j ∈ J . Additionally, the

MC is equipped with column vector q̄0 ∈ RJ with nonnegative elements that
sum up to 1. The elements of this vector are interpreted as the probabilities that
the MC starts from one of the states from J . According to the rules governing
Markov chains, vectors q̄k of the probabilities of the states in subsequent steps
are given by q̄k = P q̄k−1, k = 1, 2, . . . , K. At each step k a particular state of
the MC is drawn at random according to the probabilities in q̄k.

As 6) Class labels jk in series of images (Xk, jk), k = 1, 2, . . . , K are gener-
ated according to the above described Markov chain scheme.

In order to assure that the MC P is able to model reoccurring concept drifts,
represented by changes of jk’s, we impose the following requirements on P:

As 7) The MC P possesses the following properties: all the states are commu-
nicating and recurrent, the MC is irreducible and aperiodic.

In the Introduction (see also the section before last) it was mentioned that our
motivating example is the combustion process of natural gas, which can have
slowly varying contents of methane modelled here as slowly varying, reoccurring
concept drift. Similar concept drift changes can be observed in drinking water
and the electricity supply networks in which concept drifts appear as changes of
parameters of a supplied medium (e.g., the purity of water or the voltage of the
current).

The ability of MC to generate long sequences of the same labels is guaranteed
by the following assumption.

As 8) Transition matrix P of the MC has strongly dominating diagonal ele-
ments (by strong dominance we mean the diagonal elements are about
5–10 times larger than other entries of P.

Mimicking decision rule (1) for images in a series, under assumptions A1)-
A4) and A6)-A8), it is expedient to consider the following sequence of decision
rules:

j∗
k = arg max

1≤j′≤J

[
pj∗

(k−1) j′ fj′(Xk)
]
, k = 1, 2, . . . , K, (2)

where it is assumed that at step (k − 1) it was decided that j∗
k−1 is the label

maximizing the same expression (2), but at the previous step.
Under assumptions As 1) - As 4) and As 6) - As 8), our aim in this paper is

the following:

1. having learning sequences of images: (X̂k, ĵk), k = 1, 2, . . . , K̂
2. and assuming proper classifications ĵk to one of the classes
3. to construct an empirical classifier that is based on (2) decision rules.

and to test this rule on simulated and real data.
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4 A General Idea of a Classifier with the MC Feedback

Decision rules (2) suggest the following empirical version of decision rules: X′
k

is classified to class j̃k at k-th step if

j̃k = arg max
1≤j′≤J

[
p̃j̃(k−1) j′ f̂j′(X′

k)
]
, k = 1, 2, . . . , K, (3)

where j̃(k−1) is the class indicated at the previous step, while:

1. f̂j′(Xk), j′ ∈ J are estimators of p.d.f.’s fj′(Xk) that are based on the
learning sequence.

2. p̃j̃(k−1) j′ , j′ ∈ J plays the role of the a priori class probabilities at k-th step.
Possible ways of updating them are discussed below.

As estimators in 1) one can select either

– parametric families with estimated parameters (an example will be given in
the next section),

– nonparametric estimators, e.g., from the Parzen-Rosenblat family or apply
another nonparametric classifier that allows specifying a priori class proba-
bilities, e.g., the support vector machine (SVM) in which class densities are
not explicitly estimated (see an example in the section before last).

The key point of this paper is the way of incorporating the fact that we are
dealing with an image series with a reoccurring concept drift into the decision
process. As already mentioned (see Fig. 1), the idea of a decision process is to
modify a priori class probabilities taking into account the result of classifying
the previous image by giving preferences (but not a certainty) to the latter class.

This idea can be formalized in a number of ways. We provide two of them
that were tested and reported in this paper.

Skeletal classifier for image series with the MC feedback

Step 0 Initial learning phase: select estimators f̂j′(X), j′ ∈ J and calculate
them from the learning sequence, estimate the original a priori class
probabilities p̃0j′ , j′ ∈ J as the frequencies of their occurrence in the
learning sequence. Then, set

p̃j̃0 j′ = p̃0j′ , for all j′ ∈ J (4)

for the compatibility of the notations in further iterations, where for
k = 0 we select j̃0 = arg max1≤j≤J [p̃0j ] as the maximum a priori prob-
ability. Estimate transition matrix P̂ of the MC from the labels of the
learning sequence. Select γ ∈ [0, 1] and Δp ∈ [0, 1) as parameters of the
algorithm (see remarks after the algorithm for explanations). Set k = 1
and go to Step 1.
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Step 1 Decision: acquire the next image in the series X′
k and classify it to class

j̃k = arg max
1≤j′≤J

[
p̃j̃(k−1) j′ f̂j′(X′

k)
]
. (5)

Step 2 Prediction: run one step ahead of the MC P̂, starting from the initial
state: [0, 0, . . . , 1︸︷︷︸

j̃k

, . . . , 0, 0]. Denote by ǰk the label resulting from

this operation.
Step 3 Update the probabilities in (5) as follows:

p̃j̃k j′ = p̌j̃k j′

/ J∑

j=1

p̌j̃k j for all j′ ∈ J , (6)

where p̌j̃k j′ ’s are defined as follows: if j′ �= ǰk, then for all other j′ ∈ J

p̌j̃k j′ = (1 − γ) p̃0j′ + γ p̃j̃(k−1) j′ , (7)

otherwise, i.e., for j′ = ǰk

p̌j̃k j′ = (1 − γ) p̃0j′ + γ p̃j̃(k−1) j′ + Δp . (8)

Step 4 If X′
k is not the last image in the series (or if X′

k’s form a stream), then
set k := k + 1 and go to Step 1, otherwise, stop.

The following remarks are in order.

1. In (7) and (8) parameter γ ∈ [0, 1] influences the mixture of the original
a priori information and information gathered during the classification of
subsequent images from the series.

2. Parameter Δp ∈ [0, 1) is added only to the probability of the predicted class
ǰk in order to increase its influence on the next decision. The necessary nor-
malization is done in (6). In the example presented in the section before last
the influence of Δp on the classification accuracy is investigated.

5 Classifying Series of Images Having Matrix Normal
Distributions

In this section, we exemplify and test the skeletal algorithm when As 5) is in
force. In more details, for m × n images (matrices) X class distributions have
the MND’s of the following form (see [17]):

fj(X) =
1
cj

exp
[

−1
2

tr[U−1
j (X − Mj)V −1

j (X − Mj)T ]
]

, j ∈ J , (9)
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where it is assumed that n × n matrices Uj ’s and m × m matrices Vj ’s are
assumed to be nonsingular, while n × m matrices Mj ’s denote the class means.
The normalization constants cj ’s are defined as follows:

cj
def
= (2π)0.5n m det[Uj ]0.5n det[Vj ]0.5m , j ∈ J . (10)

As one can observe, (9) has a special structure of the covariance matrix, namely,
Uj ’s are the covariance matrices between rows only, while Vj ’s between columns
only, which makes it possible to estimate them from learning sequences of rea-
sonable lengths. This is in contrast to a general case when the full covariance
matrix would have m n × m n elements, which is formidable for estimation even
for small images m = n = 100. We refer the reader to [16,27] for the method of
estimating Uj ’s and Vj ’s from the learning sequence. Further on we denote these
estimates by Ûj ’s and V̂j ’s, respectively. Analogously, we denote by M̂j ’s the
estimates of the expectations of fj ’s that are obtained as the mean values of the
corresponding matrices from the learning sequence, taking into account, how-
ever, that the entries of Xk’s are contained either in [0, 255] or [0 1], depending
on the convention.

Matrix Classifier with a Markov Chain Feedback (MCLMCF)

Step 0: Select 0 < κmax ≤ 100. Select Δp ∈ (0, 1).
Step 1: Initial learning phase: estimate M̂j , Ûj , V̂j ,ĉj for j ∈ J from a learn-

ing sequence. Select cmin = min(ĉj), estimate the original a priori
class probabilities p̃0j , j ∈ J as class occurrence frequencies in a learn-
ing sequence. Calculate j̃0 = max(p̃0j ). Set k = 1. Estimate P̂ based
on the learning sequence. If P̂ has an absorbing state then use MCL
[23]), otherwise go to step 2.

Step 2: Verify whether the following conditions hold:

λmax(Ûj)
λmin(Ûj)

< κmax, j ∈ J and
λmax(V̂j)
λmin(V̂j)

< κmax, j ∈ J (11)

If so, go to step 3a, otherwise, go to step 4.
Step 3a: Classify new matrix X′

k to class, according to (12). Go to step 3b.

j̃k = argmin0<j′≤J

[1
2
tr[Ûj′

−1
(X′

k − M̂j′)V̂j′
−1

(X′
k − M̂j′)T ]

]
(12)

− log(p̃j̃(k−1)j′/cmin)

Step 3b: Update estimate of a priori probability p̃, using the following proce-
dure:

(a) Select class ǰ, according to probabilities in j̃k row of transition matrix P̂.
(b) Set p̃j̃k ǰ = p̃j̃(k−1)ǰ

.

(c) For every j′ �= ǰ, j′ ∈ J check if p̃j̃(k−1)j′ − Δp

J−1 > 0, if so then update
p̃j̃kj′ and p̃j̃k ǰ according to (13), else p̃j̃kj′ and p̃j̃k ǰ remain unchanged.
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p̃j̃kj′ = p̃j̃(k−1)j′ − Δp

J − 1
and p̃j̃k ǰ = p̃j̃k ǰ +

Δp

J − 1
(13)

Set k = k + 1. If k ≤ K then go to step 3a else stop.
Step 4: Classify new matrix X′

k according to the nearest mean rule. Add the
current result (X′

k, j̃k) to the training set, then update the estimates
of p̃j0 , M̂j , Ûj , V̂j , ĉj and select cmin for j ∈ J in the same manner,
as described in step 1. Set k = k + 1. If k ≤ K then go to step 2,
otherwise stop.

6 Experiments on Simulated Data

In this section, we present the results of experiments performed on simulated
data for the evaluation of the proposed classifier performance. We generated 486
sequences, each consisting of 300 matrices. Matrices were randomly generated
according to one of the three matrix normal distributions, which represents three
classes. MNDs parameters are presented in Table 1, where J8 is an 8 × 8 matrix
of ones and D8 is an 8 × 8 tridiagonal matrix with 2 at the main diagonal
and 1 along the bands running above and below the main diagonal. The order
of classes in the sequence was modeled by the MC with transition probability
matrix P (see Eq. (14)). In the conducted experiments, the data were divided
into a training and testing set in the following manner: the first 100 matrices of
a sequence were used as a training set for classifiers, the remaining matrices were
used as a test set. Then Gaussian noise with (σ = 0.05) was added to matrices
in the test set.

Table 1. Parameters of MND for each class and transition matrix P.

Class M U V
1 0.1J8 I8 D8

2 0.2J8 D8 I8
3 0.5J8 D8 D8

P =

⎡
⎣
0.9 0.1 0
0.1 0.8 0.1
0 0.15 0.85

⎤
⎦ (14)

In order to analyze the impact of value of parameter Δp on the MCLMCF
performance, we performed tests for Δp = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5]. Table 2,
which presents the results obtained with the MCL and MCLMCF with different
Δp parameter, reveals that increasing the value of Δp improves the classifica-
tion performance of the MCLMCF. We can observe that the proposed classifier
outperforms the MCL. We also analyzed the characteristics of sequences in the
test set. We divided sequences into two groups: the first group (improved or the
same) contains 411 sequences that were classified with higher or same accuracy
with the use of MCLMCF with Δp = 0.5, the second group (worse) comprises
75 sequences that were better classified with the MCL. Then we measured the
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Table 2. Left panel – the results of the experiments for different values of Δp. Right
panel – the lengths of homogeneous class sub-sequences in the test set.

Classifier Mean acc Var of acc
Δp = 0.5 0.7757 0.0142
Δp = 0.2 0.7627 0.0154
Δp = 0.01 0.7237 0.0167

MCL 0.7212 0.0142
Δp = 0.1 0.7190 0.0199
Δp = 0.05 0.7165 0.0185
Δp = 0.02 0.6913 0.0206

lengths of the homogeneous class subsequences (Table 2 - right panel). Our anal-
ysis shows that the proposed classifier performs better than MCL on sequences
that contain long subsequences of the same class.

7 Case Study – Classifying an Image Series of Gas
Burner Flames

The proposed approach was also tested on an image series of industrial gas
burner flames. The contents of methane in natural gas fluctuate over longer
periods of time, leading to proper, admissible or improper combustion that can
be compensated by regulating the air rate supply. Thus, the contents of methane
in the gas have all the features of the reoccurring concept drift. The mode of the
combustion is easy to classify by an operator simply by visual inspection since
the flame is either blue, blue and yellow, but still laminar or only yellow with a
turbulent flow (see [19] and [20] for images and more details). It is however more
difficult to derive an image classifier that works properly in heavy industrial
conditions.

In order to test the Skeletal algorithm with the MC predictor, we selected the
support vector machine (SVM) as the classifier in Step 1. The learning sequence
consisted of 90 images in the series while the testing sequence length was 55.
Having such a small testing sequence, we decided to extend it by adding 100 of
its repetitions with the noise added (see [1] for the survey of methods of testing
classifiers and to [11] for handling possibly missing data). The noise was rather
heavy, namely, it was uniformly distributed in [−0.25, 0.25] for grey level images
represented in [0, 1] interval.

In this study, we apply the estimated transition matrix shown in Fig. 2(left
panel). Properties of the MC with matrix P̂ are listed in Table 3(right panel).
Alternatively, one can consider the optimization of this matrix so as to attain
better classification accuracy. This is however not such an easy task because we
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P̂ =

⎡
⎣
0.87 0.03 0.09
0.06 0.77 0.16
0.07 0.23 0.69

⎤
⎦

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

16.5

17.0
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Error vs dp

Fig. 2. Left panel – estimated P matrix of the MC. Right panel – the classification
error vs Δp.

Table 3. Left panel – the fraction of the mean occupation time (fMOT) for the labels
of the learning system (2nd column) and for the states of MC P (3rd column) Right
panel – basic properties of MC P.

State fMOT L.S. fMOT MC P
1 0.367 0.365

2 0.344 0.365

3 0.289 0.270

”Communicating”, [1, 2, 3],
”RecurrentClasses”, [1, 2, 3],
”Irreducible”, True,
”Aperiodic”, True

have to take into account many constraints (see [21] for a global search algorithm
that is able to handle complicated constraints).

The mean occupation time (MOT) of the MC state is the number of discrete
times (steps of the MC) that are spent by the MC in a given state. We apply
this notion also to the labels of the learning sequence. By the fraction of the
MOT (fMOT) we understand MOT’s of the states divided by the length of the
observations or the length of the learning sequence, respectively. The comparison
of the second and the third columns of Table 3 shows a very good agreement of
the fMOT’s, which justifies the usage of our prediction model.

Then the Skeletal algorithm with γ = 0.5 and SVM as the basic classifier
was run 100 times for Δp varying from 0 (i.e., there is no feedback from the MC
predictor) to 0.35. As one can observe in Fig. 2 (right panel), for properly selected
Δp = 0.2 we can reduce the classification error by about 3 % in comparison to
the case when the MC feedback is not applied. For long runs of industrial gas
burners, the improvements of the decisions by 3 % may lead to essential savings.
On the other hand, the same figure indicates the optimum is rather flat and
selecting Δp in the range for 0.1 to 0.25 provides similar improvements.

8 Concluding Remarks

The problem of classifying a series of images with a reoccurring concept drift was
considered. The class of algorithms for such problems was proposed and tested
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both on simulated and industrial images. The idea of introducing feedback from
the MC predictor of class labels to a priori class probabilities occurred to be
fruitful in both cases, leading to the reduction of the classification error by about
3%, especially when we observe a long series of images from the same class.

Possible applications of the proposed approach include a long image series
arising in the medical diagnostics (see, e.g., [5]). One can also combine the idea
of the MC predictor with classifiers that are based on deep neural networks, e.g.,
in the version that was proposed in [6].
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