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Abstract. Image recognition by deep learning usually requires many sample
images to train. In case of a small number of images available for training, data
augmentation techniques should be applied. Here we propose a novel image aug-
mentation technique based on a random permutation of coefficients of within-
class principal components obtained after applying Principal Component Analy-
sis (PCA). After reconstruction, newly generated surrogate images are employed
to train a deep network. In this study, we demonstrated the applicability of our
approach on training a custom convolutional neural network using the CIFAR-
10 image dataset. The experimental results show an improvement in terms of
classification accuracy and classification ambiguity.
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1 Introduction

The neural network (NN) is considered as one of main models of deep learning. The
advantage of NN is the ability to effectively learn useful domain features in diverse
areas such as image and signal processing [1]. This ability enables the neural network
to learn deep models on domain data, which have proven successful in numerous areas
of Artificial Intelligence (AI) such as object detection, defect recognition, speech recog-
nition, voice evaluation, remote sensing, and medical decision support. Convolutional
neural networks (CNNs) have been popularly used in computer vision and other related
fields [2]. Recently, a lot of very large-scale deep CNN models were proposed such as
VGG and ResNet. However, previous studies showed that despite increase in accuracy,
oversized deep neural network models contribute to generate a lot of redundant features
which are either the shifted version of one another or are closely related or display slight
or no variations, thus resulting in redundant computations [3]. However, many parame-
ters to be trained can be a disadvantage when training is performed on a limited amount
of data available.
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Data augmentation can be applied for training of neural network models to enhance
the classification accuracy and model performance. The main idea of data augmentation
is that the transformations applied to the already labeled data result in new, surrogate
training data. Image augmentation techniques include geometric image transforms, mix-
ing images, color space transforms, feature space augmentation, kernel filters, random
erasing, etc. [4]. Data augmentation is relevant in case of small data problem [5], when
a dataset is too small to train a deep neural network effectively.

The aim of this paper is to propose a novel image augmentation technique based on
random permutation of coefficients of within-class principal components (PCs) obtained
after Principal Component Analysis (PCA). The remaining parts of the paper are as
follows: relatedwork is presented inSect. 2,while Sect. 3 discusses the proposedmethods
with detailed description. Section 4 discusses results and compares with known state-
of-the-art methods. Finally, the paper concludes in Sect. 5.

2 Related Work

The use of data augmentation techniques has been considered in several recent papers.
Leng et al. [6] presented joint Bayesian analysis for augmenting, while Chen et al. [7]
proposed fuzzy operation rules for developing new data attributes and increasing data
dimensionality for the small dataset learning. Truong et al. [8] presented augmentation
methods based on 2D image sequence and 3D transformation. The classification model
used was cascaded fully convolutional neural architecture. Li et al. [9] suggested to pair
adjacent pixels and to use their combinations as additional data for hyperspectral image
classification with deep CNN. Haut et al. [10] used random occlusions to generate new
images for training of CNN for hyperspectral image classification. Finally, our proposed
method has similarity to method for microscopy images proposed by Drivinskas et al.
[11], however they use a different (multiplication) based scheme to modify principal
components for augmentation. Similarly in [21] Najgebauer et al. proposed also deep
learning basedmicroscopic image processing for special sampling. Some other examples
of data augmentation were given in [22] and [23]. Despite their usefulness, the existing
data augmentation methods have limitations such as over-fitting, high computational
time, poor accuracy of models, etc. In this article, a novel image augmentation technique
based on a random permutation of coefficients of within-class PCs obtained after PCA.
After image reconstruction, new images are used to train a deep network.

3 Proposed Method

This section presents a detailed description of the neural network models and the data
augmentation techniques used in this study as depicted in Fig. 1.

3.1 Neural Network

This study focuses on small data [5] and tiny neural networks [12] for object recognition,
these restrictions were applied for the design of the neural network. We do not use the
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Fig. 1. Outline of the proposed method

ensemble models [13] and focus on a simpler structure. We did not adopt long training
with more than 300 epochs (as suggested in [14]) due to hardware and time limitations.
Different from very large very deep network models, we focused on a simple custom
model allowing to demonstrate the advantages of data augmentation.

A 15-layer CNN with one input layer followed by 13 hidden layers and one output
layer was designed (Fig. 2). The input layer consists of 32× 32× 3 pixel images, i.e. it
has 3072 neurons. The first hidden layer is the convolution layer 1 which is responsible
for feature extraction from an input data. This layer performs convolution operation to
small localized areas by convolving a 5 × 5 × 3 filter with the previous layer. Rectified
linear unit (ReLU) is used as an activation function at the end of each convolution layer to
enhance the performance of the model. The next max pooling layers are used after each
ReLU layer to reduce the output from the convolution layer and diminish the complexity
of the model. The layer is followed by the convolution layer 2, ReLU layer 2 and pooling
layer 2, operate in the same way except for their feature maps and kernel size varies.
These are followed by a third set of layers (convolution layer 3, ReLU layer 3 and pooling
layer 3). A fully connected layer FC 1 with 576 inputs and 64 outputs is followed by the
final ReLU layer 4 and final fully connected layer FC 2 with 64 inputs and 10 outs, each
corresponding to the target class. Using the FC layers is essential for the wider datasets,
which have fewer examples per class for training [15]. Finally, softmax was employed
as predictor to distinguish the classes. For optimization, we used the stochastic gradient
descent with momentum (SGDM) optimizer with a learning rate of α= 0.001, a learning
rate drop factor of 0.1 and learning rate drop period of 8. The network is trained for 40
epochs.

3.2 Data Augmentation

In this study, we use a lower-dimensional representation of images obtained using Prin-
cipal Component Analysis (PCA). PCA performs data decomposition into multiple
orthogonal principal components (PCs) using the variance criterion. The PCs are the
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Fig. 2. Architecture of neural network and its parameters

projections of the data along the eigenvectors of the covariance matrix of a dataset. The
first PC is the axis with the most variance and each subsequent PC is calculated in the
order of decreasing variance. The first PCs are the most significant, while the last ones
are considered to represent only the “noise”.

First, PCA discovers the eigenvectors and their matching eigenvalues of the covari-
ance matrix of a data set and the eigenvectors are sorted by their decreasing eigenvalues.
Given a dataset χ = {x1, . . . , xM } of samples drawn from a data source representing
a specific class ₡, and the covariance matrix C of the data set; the eigenvectors E are
found by solving equation

CE = λE, (1)

here λ is the eigenvalue that matches E. Each eigenvector ei can be expressed as

ei =
∑

j
αi
jxj, (2)

The original data can be reconstructed by multiplying principal components with
their loadings W as follows:

X̂ = WE (3)

Now each eigenvector ei represents a specific independent aspect of data samples
belonging to the class ₡. Next, we perform random reshuffling of these values:

Ŵ = �W , (4)
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where � is a random permutation operator applied with a specific probability of p.
Then the modified image dataset is reconstructed using the reshuffled loadings W̃

and eigenvectors E. Note that in order to avoid excessive variability in the surrogate
images, we did not perform permutation of loading on first two PCs, which encode the
most essential information of image class. The outcomes of image augmentation are
illustrated in Fig. 3 and the image augmentation method is summarized as:

Fig. 3. Illustration of image augmentation: original images (left) and surrogate (augmented)
images (right)

1. Compute PCs for each class in dataset using classical PCA.
2. Perform random permutations of the PC loadings (with a predefined probability)

starting from the loading representing the third principal component.
3. Construct surrogate images using the randomly permuted loadings.
4. Use the surrogate image dataset to perform pre-training of a neural network.
5. Freeze the learned weights of the selected layers of the neural network and perform

post-training using the original (unchanged) training dataset.

The computational complexity of the method is determined by the calculation of
PCA, which is O

(
min

(
p3, n3

))
, here p is the number of pixels in an image, and n is the

number images. For our experiments we construct different surrogate image datasets
using 2%, 3%, 4%, 5%, 7%, 10%, 15%, 20%, 25% and 30% of permutations of the
PC loadings. We generated 1000 new images for each image class and used them for
network pre-training. For final training, we used the original images from the training
set, while we explored different training scenarios: 1) Freeze only the first convolutional
layer (CL) conv_1; 2) Freeze two first CLs conv_1 and conv_2; 3) Freeze all CLs conv_1
and conv_2, conv_3.

4 Experimental Results

We use the CIFAR-10 dataset [16], which is a known benchmark dataset in image
classification and recognition domain. The dataset has 60,000 32 × 32 color images
between 10 different classes, which represent the images of both natural (birds, cats,
deer, dogs, frogs, horses) and artificial (airplanes, cars, ships, and trucks) objects. The
dataset has 6,000 images of each class. The training set has 50,000 images (equally
balanced), while a testing set has 10,000 images (1,000 images of each class). The
classes do not overlap and they are fully mutually exclusive.
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We evaluated the performance using accuracy and uncertainty of classification based
on ambiguity, i.e. the ratio of the second-largest probability to the largest probability of
the softmax layer activations. The ambiguity is between zero (nearly certain classifica-
tion) and 1 (the network is unsure of the class due to inability to learn the differences
between them). We also evaluated the mean value of accuracy and ambiguity over the
testing image set and the results are depicted in Tables 1 and 2.

Table 1. Accuracy improvement with image augmentation using CIFAR-10 dataset (larger values
are better, best value is shown in bold). All improvement values are given with respect to the
accuracy of baseline network on testing data without any image augmentation applied

PC loadings
reshuffled, %

Accuracy improvement,
% (first CL frozen)

Accuracy improvement,
% (first two CLs frozen)

Accuracy
improvement, % (all
CLs frozen)

2 3.6600 −0.4900 −3.0900

3 6.5400 4.2400 2.9900

4 6.1200 4.3900 2.7500

5 3.5500 1.2800 −0.6100

6 4.7300 2.2900 0.5000

7 6.0100 2.4100 0.9600

10 3.7200 1.1700 −0.1600

15 4.9200 1.8700 0.4400

20 6.3700 5.3100 3.9100

25 7.1800 4.8500 3.0500

30 5.8200 5.0700 3.6700

Mean 5.3291 2.9445 1.3100

Std. dev 1.2795 1.9260 2.1679

The results show that best improvement in accuracy is achieved using a neural net-
work pretrained with surrogate images generated with 25% of principal component
loadings reshuffled and then post-trained with the weights of the first CL frozen (the
improvement is significant at p < 0.001 using one-sample t-test). In terms of classifica-
tion ambiguity, the best results are also obtained with the weights of only the first CL
frozen (the reduction is significant at p < 0.001 using one-sample t-test).

The results are also summarized in Fig. 4. Note that here we presented the reduction
of error rate instead of the improvement of accuracy for better comparison. These results
show that larger shuffling rates lead to better results, while the best results are achieved
by leaving the first CL frozen while retraining other layers.

For visualization of the activation maps, we use t-distributed stochastic neighbor
embedding (t-SNE). Themethod uses a nonlinearmap that attempts to preserve distances
and maps network activations in a layer to two dimensions. See the results for the fully
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Table 2. Classification ambiguity with image augmentation using CIFAR-10 dataset (smaller
values are better, best value is shown in bold)

PC loadings
shuffled,%

Ambiguity (first CL
frozen)

Ambiguity (first two
CLs frozen)

Ambiguity (all CLs
frozen)

2 0.1552 0.2408 0.3206

3 0.0811 0.1102 0.1612

4 0.0871 0.1088 0.1632

5 0.1367 0.1714 0.2348

6 0.1202 0.1533 0.2035

7 0.0929 0.1408 0.1890

10 0.1319 0.1782 0.2456

15 0.1210 0.1476 0.2252

20 0.0883 0.1054 0.1499

25 0.0788 0.1014 0.1554

30 0.0901 0.0974 0.1366

Mean 0.1076 0.1414 0.1986

Std. dev 0.0262 0.0438 0.0547

Fig. 4. Classification error and ambiguity vs principal component shuffling rate with trend lines.
The results are shown after the network was post-trained with original training dataset with its 1st,
1st and 2nd, and all convolutional layers frozen, respectively.

connected fc2 layer in Fig. 5. One can see that the network tends to put natural and
artificial object classes closer. This may mean that any misclassifications arise due to
the similarity of semantically close classes such as dogs and cats.
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Fig. 5. Activation visualization of the final fully connected layer using t-SNE

The examples of misclassification by the neural network are presented in Fig. 6.
They confirm that most misclassifications are between similar classes such as dog and
cat images.

Fig. 6. Examples of misclassifications: images classified as dog, dog, dog, bird (top row), bird,
frog, cat, deer (bottom row)

In order to visualize the features learned by the network, we use DeepDream [17]
to obtain images that fully activate a specific channel of the network layers. The results
for conv2 and conv3 layers are presented in Fig. 7.

Fig. 7. Feature visualization of outputs from convolutional layers conv2 and conv3
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Finally, a comparison of the results of our approach with the results of other authors
in Table 3. Our results compare well in the context of other state-of-the art methods,
considering that we used a smaller neural network with only 15 layers.

Table 3. Comparison with other works using CIFAR-10 dataset

Method description Error rate (%) Reference

Maxout Networks 9.38 [18]

Densely Connected CNN-BC (100-layer DenseNet) 6.3 [19]

CNN with PCA based data augmentation 5.34 This paper

16-layer-deep Wide Residual Network 3.8 [20]

5 Conclusion

This paper presents a novel image data augmentation technique based on the random
permutation of coefficients of within-class principal component scores obtained after
Principal Component Analysis (PCA). After reconstruction, the newly generated sur-
rogate images are used to pretrain a deep network (we used a custom 15-layer convo-
lutional neural network). Then one or more convolutional layers of the neural network
were frozen and the final training was performed using the original images.

This study also showed the practical applicability of our approach on training the
custom-made neural network using CIFAR-10 image dataset. The approach allowed
both to improve accuracy (up to 7.18%) and reduce ambiguity of classification. Thus, it
can be used for addressing the small data problem, when there is only a small number
of images available for training a neural network.

In future work, wewill examine and compare our approach with other types of image
dataset augmentation approaches. Also, we will explore the use of dropout and batch
regularization to improve the accuracy of the custom neural network.
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