®

Check for
updates

Methods of Searching for Similar Device
Fingerprints Using Changes in Unstable
Parameters

Marcin Gabryel! ®0 and Krzysztof Przybyszewski>3

! Institute of Computational Intelligence, Czestochowa University of Technology,
Al. Armii Krajowej 36, 42-200 Czestochowa, Poland
marcin.gabryel@iisi.pcz.pl
2 Information Technology Institute, University of Social Sciences, 90-113 Lodz, Poland
3 Clark University Worcester, Worcester 01610, MA, USA

Abstract. Web-based device fingerprints (also known as browser fingerprints) are
designed to identify the user without leaving a trace in the form of cookies. Some
institutions believe that this technique violates the privacy of Internet users; how-
ever, it allows for an effective fight against fraudsters generating abusive traffic,
which brings losses in Internet advertising. Acquiring the parameters that make
up a device fingerprint is rather easy as it is done using JavaScript. Most available
parameters, however, do not allow for a clear distinction between users or change
quite often over time and are therefore considered unstable. This paper presents an
algorithm for searching similar web-based device fingerprints, taking into account
changing, unstable parameters obtained from the browser and HTTP headers. The
presented algorithm is based on the LSH (Locality-Sensitive Hashing) algorithm,
which is commonly used to quickly search for similar documents. The effective-
ness of the algorithm performance has been checked by using a database of several
thousand visits to various websites.

Keywords: Web-based device fingerprint - Browser fingerprint -
Locality-Sensitive Hashing

1 Introduction

By using the HTTP mechanism - the so-called cookies, i.e. the ability to store certain
information on the client’s computer — it is rather easy to identify the user by giving them
a unique identifier. Many websites tracking their users use this technique, among other
things, to keep track of their current interests and to adjust relevant advertising themes.
Nowadays, there is a growing emphasis on privacy, and users are increasingly aware of
the possibility of being tracked. This information is provided by the websites themselves,
which have been forced to provide information about the use of cookies. There are a
number of tools that block user tracking. However, apart from obvious privacy issues,
user identification has positive applications. Internet advertising is repeatedly abused in
connection with the generation of Internet abusive traffic. This most often manifests itself

© Springer Nature Switzerland AG 2020
L. Rutkowski et al. (Eds.): ICAISC 2020, LNAI 12416, pp. 325-335, 2020.
https://doi.org/10.1007/978-3-030-61534-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61534-5_29&domain=pdf
https://doi.org/10.1007/978-3-030-61534-5_29

326 M. Gabryel and K. Przybyszewski

in the generation of unnatural clicks, advertisement displays or an automatic entering
of personal data into contact forms. Cookies are the easiest method of tracking a user
on the Internet and at the same time the easiest one to avoid. Therefore, other methods
are used to identify the user online. One method is to generate a so-called web-based
device fingerprint (or browser fingerprint), which attempts to identify the user’s device
and browser on the basis of the unique properties and parameters of the browser. Among
the parameters that are obtained are the name and version of the browser and of the
operating system, screen information, system font set, canvas fingerprint, HTTP headers,
WebGL fingerprint, AudioContext fingerprint, timezone, languages set in the browser,
information about installed plug-ins and many others.

The challenge of generating a device fingerprint is to balance fingerprint features with
regard to their diversity and stability. The more features are used to create a fingerprint,
the more likely it is that all data records will be different. The more traits are used, the
more likely it is that individual parameter values will change, thus affecting the stability
of a fingerprint. In practice, the values of some features naturally tend to change over
time. This is due to browser or operating system updates, installation of new fonts or
plugins. Therefore, in most cases, a high level of feature variation reduces the stability. A
high level of stability can often only be achieved by including as few features as possible.
As far as fingerprint extraction is concerned, it is necessary to find a compromise between
diversity and stability.

There are many studies in the literature which describe new methods of obtaining
parameters improving the determination of the uniqueness of a given device. At the
same time, many organizations (including browser manufacturers) are announcing that
the possibility of user identification through fingerprinting mechanisms will be limited.
There are also tools available that hinder the process of acquiring parameter values that
make up the device fingerprint [8]. One of the first descriptions of the browser fingerprint
identification technique appeared in 2011 [3]. The authors proved that by using only a
few parameters, such as part of the IP address, font list, time zone, and screen resolution,
they were able to discern most users of popular browsers. A major breakthrough was the
introduction of canvas fingerprint [4], which based its operation on generating images
using the possibilities offered by HTMLS. It turns out that graphic processing units
generate images in different ways. This allows for a relatively good identification of
the user’s browser. A similar principle is used to gen-erate AudioContext fingerpint,
where it is a property of machine’s audio stack itself. This is conceptually similar to
canvas fingerprinting: audio signals processed on dif-ferent machines or browsers can
vary slightly due to hardware or programming dif-ferences between machines, while the
same combination of a machine and browser will still give the same output.

There are a number of studies and compilations providing information concerning
the analysis of parameters constituting device fingerprints [5, 6]. One of the most recent
studies [1] describes in quite a detailed way the capabilities of the acquired data and the
usefulness of creating unique identifiers for browsers. It also contains information about
the stability of particular parameters during the tests carried out on working websites.
A quite interesting observation from the conducted research is the fact that the stability
of collected parameters is maintained for an average of 6 days. However, individual
parameters may change earlier.

Methods of Searching for Similar Device Fingerprints 327

Another problem is storing such a large and diverse amount of data. For the purpose
of a quick search for similar fingerprints, their values are stored in a database in the form
of hashes (generated, for example, by the SHA1 algorithm). A pair of fingerprints is
considered identical when their hashes are the same. Unfortunately, a change of at least
one parameter forming a fingerprint causes the whole hash to change.

The conclusions from the studies described above and the access to several thousand
data collected from different types of websites have prompted the author to develop an
algorithm that could allow for a comparison of device fingerprints, taking into account
parameter changes occurring in particular parameters. The algorithm is based on the
popular and fast Locality-Sensitive Hashing (LSH) similar documents search algorithm.
The parameters were divided in terms of stability into two groups: one with low or no
variability at all and the other with high variability. The algorithm consists of two parts:

— Search for fingerprints potentially similar to the tested fingerprint by using the first
group of stable parameters.

— The fingerprints obtained in the search described in the previous point are then
searched for target fingerprints using the values of the unstable group parameters.
This is done with a much greater degree of probability that the two fingerprint pairs
are similar to each other.

The paper presents experimental studies showing the influence of the values of
different parameters of the LSH algorithm on the search results, the selection of their
optimal values and a comparison with the results obtained from the search conducted
using hashing.

The article is divided into the following sections where Sect. 2 describes the LSH
algorithm and details of device fingerprinting. Section 3 presents the algorithm for
generating and searching for fingerprints. The next section presents the results of the
algorithm’s performance. The paper ends with conclusions.

2 Algorithms Used in the Research

2.1 Locality-Sensitive Hashing

The main task of the Locality-Sensitive Hashing (LSH) algorithm is to quickly compare
documents in terms of their contents. The LSH algorithm consists of three steps:

— transforming the document into a set of characters of length k (the shingling method,
also known as k-shingles or k-grams method),

— compressing the shingles set using the “minhashing” method, so that the similarity of
the base sets of documents in their compressed versions can still be checked.

— the LSH algorithm, which allows us to find the most similar pairs of documents or all
pairs that are above some lower bound in similarity.

Shingling is an effective method of representing a document as a set. To generate
the set, we need to select short phrases or sentences from the document, the so-called

328 M. Gabryel and K. Przybyszewski

shingles. This causes documents to have many common elements in their sets even if
the sentences appear in documents in a different order.

The next step consists in creating the so-called characteristic matrix, where the
columns contain sets of shingles of individual documents, and the consecutive lines
correspond to individual shingles. In the matrix cells at the intersection of row i and
column j there is value 1 in the case of the i-th shingle in the j-th document.

The idea of hashing is to convert each document to a small signature using hashing
function H. If d stands for a document, then H(d) stands for the signature. The H function
should be selected so that if the similarity of sim(dy, d>) is high, then the probability that
H(dy) = H(d) would also be high. If the similarity of sim(dy, d») is small, then the
probability that H (d1) = H (d>) would be low. In the case when the well-known Jaccard
similarity index is used, then MinHash is an appropriate hash function.

In the MinHash algorithm a so-called SIG signature matrix is created with the dimen-
sions m x n, where each of the m documents corresponds to n signatures. The matrix is
calculated by performing random and independent n permutations of m rows of the char-
acteristic matrix. The MinHash value for the column of the j-th document is the number
of the first row (in the order resulting from the permutations), for which this column has
value 1. These calculations are time-consuming, therefore instead of selecting random
n row permutations, random n hash functions hy, h, ..., h, are selected. The signature
matrix is built taking into account each row in the given order. Let SIGy ; be an element
of the signature matrix for the k-th hash function and column j of document d;. Initially,
set SIGy j to oo for all values of k and j. For each row i from the signature matrix, follow
these steps:

1. Calculate k1 (j), h2 (), . .., h,()).
For each column j, check if there is 1 in row i. If yes, then foreach k = 1,2, ..., n,
set SIGy ; = min(SIGy j, hic(j)).

The idea of the LSH algorithm allows to check similarity of two elements. As a
result of its operation, information is returned whether the pair forms a so-called “candi-
date pair”, i.e. whether their similarity is greater than a specified threshold 7 (similarity
threshold). Any pair that hashed to the same bucket is considered as a “candidate pair”.
Dissimilar pairs that do hash to the same bucket are false positives. On the other hand,
those pairs, which despite being similar do not hash to the same bucket under at least
one of the hash functions, are false negatives.

A possible approach to the LSH algorithm is to generate hashes for elements several
times. For this purpose a suitable signature matrix can be generated:

1. The signature matrix is divided into b bands, and each band is divided into r rows.
For each band, pairs of columns that have the same values are checked. If there is
such a pair in one band, it becomes a candidate pair and is thrown into the bucket.

3. Parameters b and r should be selected so as to find as many similar pairs as possible,
but at the same time as few false positives and false negatives as possible.

Methods of Searching for Similar Device Fingerprints 329

If s is the Jaccard similarity index between a pair of documents, the probability that
they are a one-candidate pair equals:

b
pe=1—(1-5"), (1)
where s is the Jaccard similarity coefficient defined by the following formula:

_ldind;]

- = 2
S Ul @

for two documents d; and d. A detailed description of particular parts of the LSH
algorithm can be found in a number of works including [2].

2.2 Device Fingerprint

Fingerprint is generated on the basis of the parameters provided by a browser and on
the basis of hardware capabilities of the device. This operation requires analysis of
the JavaScript language of many web browsers, including those running on mobile
devices. The algorithm for generating a unique fingerprint identifier given to identify the
browser and the device on which the browser is operating consists in collecting as many
parameters as possible the browser’s API and performing the hash function on them. It
is assumed that the generated hash should be unique enough to distinguish between the
devices used.

To quantify the level of identifying information in a fingerprint is used the entropy.
The higher the entropy is, the more unique and identifiable a fingerprint will be. Let
H be the entropy, X — a discrete random variable with possible values {x1, ..., x,} and
P(X) - a probability mass function. The entropy follows this formula:

HX) =~ P(x)logyP (). (3)

For b = 2 it is the Shannon entropy and the result is in bits. One bit of entropy
reduces by half the probability of an event occurring.

A device fingerprint is created from many different parameters with a varied number
of bits of the entropy. For the tests carried out in this work, the set presented in Table 1
was downloaded from the browser. The data was obtained from 80,000 different devices
from which the users accessed different websites. The table does not include parameters
with entropy below 0.1. Some parameters, such as screen_id and User-agent were broken
down into individual elements. For screen_id it is width, height, available_width and
available height. In the case of User-agent the whole sequence was divided into elements
starting with prefix ua. The parameters were divided into two groups: group 1 — stable
parameters, which do not get changed naturally and group 2 — parameters which get
changed naturally (unstable).

330 M. Gabryel and K. Przybyszewski

Table 1. Device fingerprint obtainable features

Feature No. of | Group | Feature No. of | Group
bits of bits of
entropy entropy

device_memory 1.84 1 browser_plugins_hash 1.59 2

do_not_track_val_id 0.39 1 user-agent 9.80 —

fonts 3.15 1 br_version 3.08 2

audio_params_id 0.98 1 os_version 3.59 2

webgl_vendor_id 1.84 1 app_version 9.79 2

webgl_renderer_id 6.99 1 platform 1.74 1

logic_cores 1.64 1 ua_device_brand_name 2.52 1

platform_id 1.74 1 ua_device_model 4.88 1

timezone 0.43 1 ua_client_name 217 1

app_version_id 9.79 1 ua_client_version 4.03 2

touch_enabled 1.00 1 ua_client_type 0.41 1

max_touch_points 1.28 1 ua_device_type 1.34 1

screen_id 5.87 - ua_device_brand 2.52 1

width 3.83 2 ua_device_code 5.07 1

height 4.50 2 ua_os_name 1.21 1

av_width 3.96 2 ua_os_version 3.42 1

av_height 5.33 2 ua_preferred_client_name 2.56 1

adblock_enabled 0.59 1 ua_preferred_client_version |4.31 2

canvas_2d_fingerprint |6.34 1 ua_preferred_client_type 0.25 1

3 Proposed Algorithm

Commonly used algorithms used for generating device fingerprint [6, 7] generate a
unique fingerprint identifier in the form of a hash, which is an alphanumeric sequence
of a fixed length. To this end is used a hash function which generates a short hash as
an identifier of a large set of data. Two identical sets of data always generate the same
hash value. The prerequisite for selecting a new hash function is to check whether the
same hash value exists for different datasets. The identifiers created in this way make
it impossible to quickly compare them with each other instead of comparing the data
set values. However, commonly used hash functions have one disadvantage, i.e. even a
small change of one parameter generates a completely different hash value. In the case
of a device fingerprint, many of the values that make up a fingerprint are variable over
the length of time during which a given device or browser is used, and they, for instance,
include screen sizes or software versions. The purpose of this paper is to try to find such
a method of fingerprint encoding so that it would be possible to efficiently determine the
similarity of two fingerprints despite minor parameter changes. This in turn will make it

Methods of Searching for Similar Device Fingerprints 331

possible to identify the browser as the same even if there are changes in the parameters
during subsequent visits to the website.

The algorithm is based on the LSH and uses the possibility of adjusting the similarity
probability value of two documents. This algorithm needs to have the following operating
parameters adjusted — the number of bands b and the resulting number of rows r. The
adjustment of these values results from the adopted number of MinHash signatures n
encoding the documents and similarity threshold 7.

For a given number of signatures n, the choice of b and r depends on value s calculated
by using formula (2), following the algorithm:

1. Prepare the signature matrix SIG for a given value of MinHash n.

2. Determine the similarity threshold ¢.

3. Establish the proportions in the form of weights wy, and wy;, between the number of
false positive and false negative samples among the candidate pairs. The following
condition needs to be met w,, wp, € (0, 1) and wy, + wp, = 1.

4. For each possible pair combination b, r find the optimal pair b;, r; for which the
weighted total of the probability value of false positive and false negative samples:

t
pp(t, b, r) = / 1= (1 =) ds 4)
0
and
! b
pfn(t,b,r)=/ 1—(1—sr) ds (5)
t
will be the smallest:
b, rp=argmin o (wppp(t, by 1) + Wi (t, b, 1) (6)
r=1,...,n/b

In the proposed algorithm the fingerprint parameters need to be divided into the
stable and unstable ones (see Sect. 2.2). The algorithm is created following the steps
presented below:

Prepare two sets of parameters: stable ones f; and unstable ones f;,.

Determine the number of signatures for stable and unstable ng and n,, respectively.
Determine the similarity thresholds #; and #,.

Create two signature matrixes: SIG and SIG,,.

Sl

In order to find fingerprints similar to fingerprint f; the following steps need to be
carried out:

1. Start the LSH algorithm using the stable parameters to find similar candidate pairs

qu:

332 M. Gabryel and K. Przybyszewski

fas = LSH(SIG,(f,). SIG;(fy), ;) (7

where: SIG; (fq), SIG,(fs) — signature matrix values for stable parameters obtained for
the parameters of fingerprint f; and f;.

2. Having found fingerprints f;; do one more search for similar fingerprint, but this
time using unstable parameters:

fan = LSH(SIG,(f;), SIGu(fy). tn) ®)

where: SIG, (fq), SIG, (f;) — signature matrix values for unstable parameters obtained
for the parameters of fingerprints f; and f;.

3. Return obtained similar fingerprints f;,.

4 Study Results

The study was carried out on the authentic data collected by a specially prepared script
run in the browser during the visits made to the website. The script collected data from
26 websites of various types (Internet shops, loan companies, advertising companies,
banks and others) for 3 months. During this period of time several hundred thousand data
of different browsers were collected. Using cookies it was possible to identify further
visits made by the same users. Thanks to this, it was possible to monitor the changes in
the parameters of the browsers. For the study, the data were selected from those persons
where the changes occurred in 6, 7 or 8 cases during all the visits made. The most
frequent changes occurred in the parameters listed in Table 1 as the second group.

According to the algorithm presented in Sect. 3, for the first group of parameters f;
(the stable ones) the search for similar parameters using the LSH algorithm working on
the values of the SIGs matrix with the number of signatures ny = 128 and the similarity
threshold #; = 1 were applied. For the obtained candidates f;; the LSH algorithm was
applied once again in the second group of parameters f,, (the unstable ones). In this step of
the algorithm a number of experiments were carried out where the number of signatures
ny, of the MinHash algorithm and the similarity threshold #, were changed. Precision
and recall measures were used as a measure of the effectiveness of the conducted studies
[14]. Precision is the ratio of the number of correctly classified data to the total number
of irrelevant and relevant data classified:

tp
tp+fp

and recall is the ratio between the number of data that are correctly classified to the total
number of positive data:

precision =

tp
p+fn

recall =

Methods of Searching for Similar Device Fingerprints 333

where fp — true positive, fp — false positive, fin — false negative and they can be derived from
a confusion matrix [14]. The effectiveness of the algorithm performance was analyzed
on 100 randomly selected users. The test consisted in determining whether despite the
changes occurring in the fingerprint parameters assigning a particular visit to the user
that had actually made it (repeat visits) was correct. The obtained precision and recall
values are presented in Tables 2 and 3.

For the same data, the method of generating the hash from the acquired parameters
was also used. The search for identical devices is therefore a search for identical hash
values. In this experiment the obtained values were: precision = 0.53 and recall = 0.13.

In Tables 2 and 3 the results with better precision and recall values than those obtained
using only hashes were marked in bold. When analyzing the results one can see that the
best results of the comparison of the devices can be obtained for 7, = 1, 0.9 or 0.8 and
n, = 8.

Table 2. Precision for different probabilities of similarity #,, and MinHash value n,,.

I ny

2 4 8 16 |24 |32 |48 |64 (96 |128
1 1050(0.52/0.56 |0.56 | 0.57 | 0.58 | 0.58 | 0.58 | 0.59 | 0.59
0.90.50{0.52]0.56 | 0.56 | 0.54 | 0.54 | 0.54 | 0.54 0.54 | 0.55
0.810.50|0.52]0.55|0.53|0.51{0.52|0.52/0.510.51 0.51
0.710.500.52|0.510.49|0.49|0.47 | 0.48 | 0.50 | 0.50 | 0.50
0.6/ 0.50 | 0.46 | 0.47 1 0.48 | 0.47 | 0.47 | 0.47 | 0.46 | 0.46 | 0.46
0.5/047]0.46|0.46|0.46|0.45|0.46|0.46 045 0.46 | 0.45

Table 3. Recall for different values of probability ,, and value of MinHash n,.

Iy |ny

2 4 8 16 24 |32 |48 |64 |96 | 128
1 10.19/0.14 | 0.14 | 0.13|0.13|0.13|0.13|0.13|0.13 | 0.13
0.9/0.19 |0.14 | 0.14 | 0.13|0.13|0.13/0.13/0.13/0.13 1 0.13
0.8/0.19|0.14 | 0.14 | 0.14 | 0.14| 0.13|0.13/0.13 / 0.13 /1 0.13
0.7/0.19/0.14 | 0.14 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14
0.6/0.190.24 | 0.17 | 0.14 | 0.15| 0.14 | 0.15 | 0.14 | 0.15 | 0.17
0.5/0.27 | 0.24 | 0.25 | 0.20 | 0.22 | 0.16 | 0.19 | 0.19 | 0.19 | 0.20

5 Conclusion

The paper presents a quick method of comparing device fingerprint using the LSH
algorithm. It requires creating hashes using the MinHash method and saving them to the

334 M. Gabryel and K. Przybyszewski

database. Proper selection of parameters of the LSH algorithm requires creating several
columns in a table. Indexing these columns will then allow for an easy comparison of
the values of subsequent fingerprints.

The algorithm can be extended by using neural networks [11, 15, 18] with an appro-
priate network structure [10, 13], the big data algorithms [9], fuzzy methods [12, 16]
and other [17]. There are also plans for using such parameters as: I[P number, Internet
Service Provider (ISP), geolocation and additional parameters that can be obtained from
the browser of a given device. The problem of similarity of the same mobile phone
models whose browsers return exactly the same parameters remains yet to be solved.

References

1. Kobusinska, A., Pawluczuk, K., Brzezinski, J.: Big Data fingerprinting information analytics
for sustainability. Future Generation Comput. Syst. 86, 1321-1337 (2018)

2. Leskovec,J.,Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University
Press, Cambridge (2014)

3. Boda, K., Foldes, AM., Gulyas, G.G., Imre, S.: User Tracking on the Web via Cross-Browser
Fingerprinting. In: Laud, P. (ed.) NordSec 2011. LNCS, vol. 7161, pp. 31-46. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29615-4_4

4. Mowery, K., Shacham, H.: Pixel perfect: Fingerprinting canvas in HTMLS. In: Proceedings
of W2SP, pp. 1-12 (2012)

5. Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, A., Diaz, C.: The web never
forgets: persistent tracking mechanisms in the wild. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pp. 674-689, November 2014

6. Laperdrix, P., Rudametkin, W., Baudry, B.: Beauty and the beast: Diverting modern web
browsers to build unique browser fingerprints. In: 2016 IEEE Symposium on Security and
Privacy (SP), pp. 878-894. IEEE, May 2016

7. https://github.com/Valve/fingerprintjs2. Accessed 06 Feb 2020

8. Englehardt, S., Narayanan, A.: Online tracking: a 1-million-site measurement and analysis.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1388-1401, October 2016

9. Koren, O., Hallin, C.A., Perel, N., Bendet, D.: Decision-making enhancement in a big data
environment: application of the K-means algorithm to mixed data. J. Artif. Intell. Soft Comput.
Res. 9(4), 293-302 (2019)

10. Shewalkar, A., Nyavanandi, D., Ludwig, S.A.: Performance Evaluation of Deep Neural Net-
works Applied to Speech Recognition: RNN, LSTM and GRU. J. Artif. Intell. Soft Comput.
Res. 9(4), 235-245 (2019)

11. Ludwig, S.A.: Applying a neural network ensemble to intrusion detection. J. Artif. Intell. Soft
Comput. Res. 9(3), 177-188 (2019)

12. D’Aniello, G., Gaeta, M., Loia, F., Reformat, M., Toti, D.: An environment for collective
perception based on fuzzy and semantic approaches. J. Artif. Intell. Soft Comput. Res. 8(3),
191-210 (2018)

13. Liu, J.B., Zhao, J., Wang, S., Javaid, M., Cao, J.: On the topological properties of the certain
neural networks. J. Artif. Intell. Soft Comput. Res. 8(4), 257-268 (2018)

14. Leskovec, J., Rajaraman, A., Ullmanm, J.D.: Mining of Massive Datasets. Cambridge
University Press, Cambridge (2014)

15. Bilski, J., Wilamowski, Bogdan M.: Parallel levenberg-marquardt algorithm without error
backpropagation. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 25-39. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_3

https://doi.org/10.1007/978-3-642-29615-4_4
https://github.com/Valve/fingerprintjs2
https://doi.org/10.1007/978-3-319-59063-9_3

16.

17.

18.

Methods of Searching for Similar Device Fingerprints 335

Korytkowski, M., Senkerik, R., Scherer, M.M., Angryk, R.A., Kordos, M., Siwocha, A.:
Efficient image retrieval by fuzzy rules from boosting and metaheuristic. J. Artif. Intell. Soft
Comput. Res. 10(1), 57-69 (2020)

Wrébel, M., Starczewski, Janusz T., Napoli, C.: Handwriting recognition with extraction of
letter fragments. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 183-192. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59060-8_18

Gabryel, M., Grzanek, K., Hayashi, Y.: Browser fingerprint coding methods increasing the
effectiveness of user identification in the web traffic. J. Artif. Intell. Soft Comput. Res. 10(4),
243-253 (2020)

https://doi.org/10.1007/978-3-319-59060-8_18

	Methods of Searching for Similar Device Fingerprints Using Changes in Unstable Parameters
	1 Introduction
	2 Algorithms Used in the Research
	2.1 Locality-Sensitive Hashing
	2.2 Device Fingerprint

	3 Proposed Algorithm
	4 Study Results
	5 Conclusion
	References

