
Simultaneous Process Drift Detection and
Characterization with Pattern-Based

Change Detectors

Angelo Impedovo(B), Paolo Mignone, Corrado Loglisci, and Michelangelo Ceci

Department of Computer Science, University of Bari “Aldo Moro”, 70125 Bari, Italy
{angelo.impedovo,paolo.mignone,corrado.loglisci,

michelangelo.ceci}@uniba.it

Abstract. Traditional process mining approaches learn process models
assuming that processes are in steady-state. This does not comply with
the flexibility and adaptation often requested for information systems
and business models. In fact, these approaches should discover varia-
tions to adapt to new circumstances, which is a peculiarity that conven-
tional change analysis based on time-series, could not provide, because
the processes are complex artifacts. This problem can be handled with
change-aware structured representations, such as those typically used for
network data. In this paper, we propose a novel pattern-based change
detection (PBCD) algorithm for discovering and characterizing changes
in event logs encoded as dynamic networks. In particular, PBCDs are
unsupervised change detection methods, based on observed changes in
sets of patterns observed over time, which are able to simultaneously
detect and characterize changes in evolving data. Experimental results,
on both real and synthetic data, show the usefulness and the increased
accuracy with respect to state-of-the-art solutions.

1 Introduction

The aim of the process mining techniques is learning models (for instance, in
the form of Petri nets or heuristic maps) from collections of traces recording
observed process executions. Thus, the models can be seen as an abstract form of
the really-performed processes and can therefore be used for predictive problems,
such as the prediction of outcomes and for conformance checking, that is, the
adherence of new traces to the models.

A common assumption of many process mining algorithms is the “invariabil-
ity” of the process model, meaning that the traces are in a steady-state, that is,
they should obey the configuration dictated by the models, without any devi-
ation with respect to the reference process. This aspect has been investigated
by methods which recognize variations present in the traces and learn process
variants [2]. In many information systems this is not sufficient because the traces
might present frequent or regularly repeated changes. A change becomes neces-
sary whenever there is a need for people and institutions to adapt their ordi-
nary behavior to changing circumstances and environments. Various examples
c© Springer Nature Switzerland AG 2020
A. Appice et al. (Eds.): DS 2020, LNAI 12323, pp. 451–467, 2020.
https://doi.org/10.1007/978-3-030-61527-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61527-7_30&domain=pdf
https://doi.org/10.1007/978-3-030-61527-7_30


452 A. Impedovo et al.

can be found both in society and nature. For example, new regulations and
laws require citizens and organizations to change their processes. In a dynamic
market, flexible organizations should quickly adapt their internal and external
operating procedures to natural disasters as well as to the introduction of new
laws and regulations. Therefore, the presence of substantial changes could make
the process model inconsistent with respect to the (actual) instances. In order to
effectively deal with this, we should revise the working hypothesis and consider
the processes as non-stationary, allowing for abrupt or gradual changes exhibited
over time. Consequently, the process modeling approaches should react to such
process drifts by quickly detecting and understanding them [5].

Existing methodologies suffer from several drawbacks. In particular, they
work on an over-simplified data representation which does not account for the
traces as complex artifacts. This leads to considering only one set of numeri-
cal features [4] of the executed traces, while neglecting the temporal component
associated to the activities and interactions among the activities, actors and
resources, which are sources of information able to explain drifts between traces
of the same process model. These representational forms often limit the task of
drift detection to a mere quantification of the magnitude of the change between
different traces, without providing an explanation of the nature of the change.
Thus, any attempt to explain or characterize the changes requires the inter-
vention of the human process modeler or reference knowledge to identify the
components of a trace which determine the changes [14].

In this work, we simultaneously solve the problems of process drift detection
and characterization with Pattern-based Change Detectors (PBCDs hereafter).
PBCDs refer to a class of change detection algorithms in which i) the change
is detected on patterns discovered from the data over time, and ii) the pat-
terns responsible for a given change already constitute an off-the-shelf descriptive
model of the change. They have been exploited to study changes on dynamic
networks [11] thanks to the peculiarities to identify sub-graphs related to the
changes, associate changes to variations of the occurrences of the sub-graphs
and quantify the magnitude order of the changes with frequency-based quan-
titative measures. Thus, our intuition is that of encoding process traces (from
the event log) into a graph-based representation and detecting process drifts
through PBCDs. This perspective offers several advantages: i) the use of an
established unsupervised approach to simultaneously solve the problems of drift
detection and characterization, ii) a computational solution able to account for
the temporal order of the activities, iii) a method able to determine the most
promising set of features mirroring the changes and represent them in form of
sub-graph patterns, iv) the possibility to capture both gradual changes and sud-
den changes, which, thus, would appear as mild frequency-based variations and
strong frequency-based variations respectively.

The manuscript is organized as follows. Firstly, we introduce some related
works in process drift detection and motivate the adoption of PBCDs. Then,
we discuss some preliminary notions about processes and dynamic networks,
so as to explain how event logs can be transformed into dynamic networks.



Simultaneous Process Drift Detection and Characterization with PBCDs 453

The adopted PBCD methodology is then discussed by emphasizing how process
drifts are detected and characterized. Then experimental results on both syn-
thetic and real-world event logs are illustrated before drawing some conclusions.

2 Related Works

The adoption of PBCDs for detecting and characterizing the process drifts in
event logs occurs at the intersection of two research directions: one concerning
pattern-based learning of process models and the other concerning process drift
detection methods.

A well-known result in process mining is that frequent sequential patterns
offer an alternative way of representing process models instead of Petri nets,
discovered by the traditional α algorithm [1], or heuristic maps learned by the
HeuristicMiner algorithm [17]. Specifically, while sequential patterns model the
contiguous sequence of executed activities, frequent sequential patterns are used
to discover statistical evident paths of executions in an event log seen as a
database of sequence. Hence, sequential pattern mining algorithms can be used
to learn process models as done in [7,8]. An aspect worth mentioning is that fre-
quent patterns effectively model stable features of the process over time. Conse-
quently, our claim is to effectively leverage such features when executing PBCDs
on event logs. Unfortunately, to the best of our knowledge, no PBCD based on
sequential patterns exists.

As for the process drift detection methods in process mining, different
methodologies have been proposed, although none of them is pattern-based.
The first is proposed in [4] and implemented in ProM1, in which the change
detection approach is able to detect drifts, via statistical significance testing, by
considering a set of four numeric global and local features. In this approach, the
event log is transformed into a multivariate time-series, and, hence, changes are
detected in such an intermediate representation in which the original control-
flow perspective is lost. The second method is the ProDrift algorithm defined
in [13] and implemented in the Apromore framework2. ProDrift also performs a
statistical significance test on a run-based encoding of the traces, obtained prior
to the detection phase. Both methods adopt the sliding window model. In par-
ticular, the statistical significance test is assessed by comparing the populations
of two sliding windows, the reference and the detection windows, that slide over
the data whenever a new trace is observed. Both the methods are parametric
change detection algorithms, working on an intermediate representation of traces
and, lastly, they do not characterize the detected changes.

3 Background

Let A be the set of activities, then an event log over A is defined as the time series
of n traces E = {Tt}n

t=1. Each trace Ti = 〈a1, . . . , ak〉 captures the sequence of
k activities ai ∈ A as executed at the time point ti in a given process instance.
1 https://svn.win.tue.nl/trac/prom/browser/Packages/ConceptDrift.
2 https://apromore.org/platform/tools/.

https://svn.win.tue.nl/trac/prom/browser/Packages/ConceptDrift
https://apromore.org/platform/tools/


454 A. Impedovo et al.

Since PBCDs leverage differences between patterns exhibited by the data
over time for detecting changes, the principal requirement for their use is the
existence of a pattern mining methodology that best suits the data representation
at hand. In their natural formulation, event logs are not immediately compatible
with traditional pattern mining methods. On the other hand, various existing
PBCDs are specifically designed for dynamic networks. Therefore, we encode
event logs in the form of dynamic networks as an intermediate representation
compatible with existing graph-based PBCDs. Let N be the set of nodes, L be
the set of edge labels and I = N ×N ×L the alphabet of all the possible labeled
edges. A dynamic network is defined as the time series of n graph snapshots
G = {Gt}n

t=1. Each snapshot Gi ⊆ I is a set of edges denoting a directed graph
observed in ti allowing self-loops and multiple edges with different labels.

3.1 From Event Logs to Dynamic Networks

Encoding the event log E = {Tt}n
t=1 as the dynamic network G = {Gt}n

t=1 is
done by transforming every trace Ti into the associated graph snapshot Gi =
g(Ti). The map g(Ti) allows us to consider the dynamic network G = {g(Tt)}n

t=1

in place of the initial event log. In particular, let T = 〈a1, . . . , ak〉 be a trace, the
graph G = g(T ) is built by considering i) the set of edge labels L = {a1, . . . , ak},
ii) the set of nodes N = {0, 1, . . . , n} and iii) I = N ×N ×L. Then, G = g(T ) =
{(i − 1, i, ai) ∈ I | ai ∈ T} ⊆ I is a labeled graph in which edge labels denote
activities, and nodes denote natural numbers. This graph-based representation
of traces keeps the temporal ordering of activities in a trace, as shown in Fig. 1,
and this is a necessary condition to preserve the process control-flow perspective
in the drift detection activity.

T : a1 a2 a3 G = g(T ) : n0 n1 n2 n3

a1 a2 a3

Fig. 1. Example of a trace T made of 3 activities (a1, a2 and a3) represented as the
graph snapshot G = g(T ). Activity names in T become edge labels in G.

3.2 Frequent and Emerging Subgraph Discovery

The representation of event logs as dynamic networks fits the one adopted in
transactional data mining, meaning that it is possible to discover interesting
sub-graphs with traditional sub-graph mining algorithms designed for dynamic
networks. In the transactional setting, a snapshot Gtid ∈ G is a transaction
uniquely identified by tid, whose items are labeled edges from I. A sub-graph
S ⊆ I, with length |S|, can be seen as a word S = 〈i1 . . . in〉 of n lexicographic
sorted items, with prefix P = 〈i1 . . . in−1〉 and suffix in.



Simultaneous Process Drift Detection and Characterization with PBCDs 455

For this work frequent connected sub-graphs (FCSs hereafter) are deemed to
be interesting, as they denote stable features that are useful for the drift detection
step. FCSs are discovered from graph snapshots belonging to time windows. A
window W = [ti, tj ], with ti < tj , is the sequence of snapshots {Gi, . . . , Gj} ⊆ G.
Consequently, the width |W | = j − i + 1 is equal to the number of snapshots
collected in W . Let S be a sub-graph, then the tidset of S in the window W is
defined as tidset(S,W ) = {tid | ∃Gtid ∈ W ∧ S ⊆ Gtid}, while the support of S

in W is sup(S,W ) = |tidset(S,W )|
|W | . S is frequent in W if sup(S,W ) > minSUP ,

where minSUP ∈ [0, 1]. We term FW the set of all the FCSs in the window W .
Once detected a process drift needs to be characterized. While the FCSs

support the drift detection by capturing statistically evident parts of the process,
as observed in a time window, they do not characterize drifts. To this end, we
deem interesting the emerging connected sub-graphs (ESs hereafter), discovered
between two time windows by evaluating the growth-rate of sub-graphs. Let S be
a sub-graph, W and W ′ two consecutive time windows, then the growth-rate of
S between W and W ′ is gr(S,W,W ′) = max(sup(S,W ),sup(S,W ′))

min(sup(S,W ),sup(S,W ′)) . S is emerging
between W and W ′ if gr(S,W,W ′) > minGR, where minGR > 1. We term
es(W,W ′) the set of the ESs between W and W ′ according to minGR.

The ESs are the building blocks of the change characterizations. However, i)
the combinatorial explosion of the ESs worsens the readability of characteriza-
tions, and ii) ESs singularly add small contributions to the characterizations. To
tackle these problems, we only consider the maximal emerging connected sub-
graphs (MESs hereafter). Let S ∈ es(W,W ′), then S is maximal if there is not
another sub-graph Q ∈ es(W,W ′) such that S ⊂ Q. We term ms(W,W ′) the
set of all the MESs between W and W ′ according to minGR.

3.3 Problem Statement

Let E = {Tt}n
t=1 be an event log, minSUP ∈ [0, 1] be the minimum support

threshold, minMC ∈ [0, 1] the minimum change threshold, minGR > 1 be the
minimum growth-rate threshold. Then:

– the dynamic network G = {g(Tt)}n
t=1 of E is built as a pre-processing step.

– pattern-based change detection finds pairs of windows W = [tb, te] and W ′ =
[te+1, tc] from D, where tb ≤ te < te+1 ≤ tc. Each pair of windows denotes a
change which is:

• quantified by the pattern dissimilarity score d(FW , FW ′) > minMC
• explained by the maximal emerging sub-graphs ms(FW , FW ′) discov-
ered according to minGR

where FW (FW ′) denote the FCSs discovered on W (W ′) according to minSUP.
Process drifts are detected on the dynamic network encoding of the event log.

Specifically, a drift is detected every time a relevant difference between the set
of FCSs FW and FW ′ is measured. Finally, the drift is explained by the MESs,
as they describe the (appearing or disappearing) sequences of activities involved
in the change of the underlying process model.



456 A. Impedovo et al.

3.4 Computational Approach

The afore-mentioned change detection and explanation problem can be solved by
various computational solutions. Among them, we mention the class of pattern-
based change detection algorithms (PBCD). In general, a PBCD forms a two-step
approach in which: i) a pattern mining algorithm extracts the set of patterns
observed from the incoming data, and ii) the amount of change is quantified by
adopting a dissimilarity measure defined between sets of patterns. More specifi-
cally, a PBCD is an iterative algorithm that consumes data coming from a data
source, in our case a dynamic network, and produces quantitative measures of
changes. For instance, the KARMA algorithm proposed in [11] is a PBCD for
detecting and characterizing changes in network data. KARMA is based on the
exhaustive mining of FCSs, whose general workflow can be seen in Figure 2.
The algorithm iteratively consumes blocks Π of graph snapshots coming from
D (Step 2) by using two successive landmark windows W and W ′ (Step 3).
Thus, it mines the complete sets of FCSs, FW and FW ′ , which are necessary for
the detection steps (Steps 4–5). The window grows (W = W ′) with new graph
snapshots, and the associated set of FCSs is kept updated (Steps 8–9) until the
change score d(FW , FW ′) exceeds β and a change is detected. In that case, the
algorithm drops the content of the window by retaining only the last block of
transactions (W = Π, Steps 6–7). Then the analysis restarts.

init. W with
first block of G

1
new block Π

from G

2

W ′ = W ∪ Π

3
update

FW ′ and FW

4
evaluate

d(FW , FW ′ )

5

> minMC

explain with
es(W, W ′)

6
W = Π

FW = FΠ

7

≤ minMC
W = W ′

FW = FW ′

8

Fig. 2. The KARMA algorithm flowchart

However, KARMA does not naturally fit the given problem statement and is
not the optimal solution. Firstly, while KARMA relies on successive landmark
windows of increasing size, our problem statement compares two successive non-
overlapping windows of different size. Secondly, KARMA discovers FCSs on data
represented in a more general representation than the dynamic network encoding
of event logs in the form of sequences of graph chains. Consequently, no FCS,
which is not a simple chain, would be returned by the mining algorithm: chains
are only discovered when mining FCSs in sequences of chains. However, although
this solution is always able to discover FCSs that are also chains, it is also
inefficient: the mining algorithm would also generate and discard the FCSs which
are not chains. Therefore, we restrict the pattern language to frequent subtrees



Simultaneous Process Drift Detection and Characterization with PBCDs 457

(FSs hereafter), that is, FCSs in which every node is connected to a parent node,
except for the root node. To meet these requirements, we adapt the KARMA
algorithm to the KARMATree approach depicted in Fig. 3. In this case, an
alternative time window model is used to arrange incoming blocks of transactions
(Steps 3, 7 and 8). Then sets FW and FW ′ of FSs are discovered instead of FCSs
(Step 4). Lastly, changes are characterized by discovering the maximal emerging
subtrees (Step 6) instead of the emerging ESs by KARMA.

Let G be a dynamic network over |I| = k possible edges, with n snapshots and
m = n

|Π| blocks of size |Π|. KARMA requires time proportional to O(m · |FCSs|)
in the worst case scenario [11], while KARMATree requires O(m · |FSs|) where
|FSs| << |FCSs| < ek, since the number of subtrees is lower than the number of
subgraphs in a network. However, KARMATree is an exhaustive PBCD, relying on
complete mining of FSs, which could not work well in limited memory scenarios. As
a solution, a non-exhaustive variant could be obtained by equipping KARMATree
with the heuristic mining approach shown in [10].

init. W with
first block of G

1
new block Π

from G

2

W ′ = Π

3
update

FW ′ and FW

4
evaluate

d(FW , FW ′ )

5

> minMC

explain with
ms(W, W ′)

6
W = Π

FW = FΠ

7

≤ minMC
W = W ∪ Π
FW = FW ′

8

Fig. 3. The KARMATree algorithm flowchart

4 Experiments

The experiments are organized according to different perspectives concerning
both synthetic and real-world processes. In particular, we answer the following
research questions: Q1) Is the proposed PBCD approach more accurate than
existing process drift detection approaches when detecting changes on synthetic
processes? Q2) Is the proposed PBCD approach more efficient than existing pro-
cess drift detection approaches when detecting changes on synthetic processes?
Q3) Do the characterizations describe changes in real-world process?

Assessing the accuracy of the proposed approach compared with competitor
methodologies is not an easy task. Although the process evolution is a well-
established concept in process mining, to the best of our knowledge, no proper
ground truth for process drift detection is known. The main consequence is the
difficulty of measuring the accuracy on real-world datasets. Moreover, existing
synthetic log generators are not flexible enough. For instance, the one proposed



458 A. Impedovo et al.

in [6] randomly builds and evolves single process models and simulates their
execution to synthesize event logs.

The major limitation is that the simulation is based only on a single process
model, and hence none of its evolutions is considered. This means that i) traces
in the resulting event log conform to the process model used in the simulation,
and ii) consequently no evident change is injected into the resulting log. To
overcome this limitation, we extended the process log generator3 to i) build a
chain of n process models where the first is randomly generated and the others
are subsequent random evolutions, and ii) generate the complete event log by
simulating an equal number of traces for every process model in the chain. We
synthesized 10 event logs, each built by considering a chain made of 20 evolving
process models. In particular, each model has been used to simulate a block made
of 100 traces, for a total number of 2,000 traces per each log, thus ensuring a
change between every pair of subsequent blocks.

By so doing, every generated log can be used as a ground-truth about the
presence of changes when evaluating the accuracy of the proposed PBCD app-
roach.

randomly
init M0

M0 M1 M2 M3

ET0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

evolve M0 evolve M1 evolve M2

simulate M0 simulate M1 simulate M2 simulate M3

Fig. 4. Synthetic event log E built by simulating the execution of a process model M0

which evolves 3 times. Each model evolution produces a block of 3 traces.

To answer the afore-mentioned research questions, we first discuss the results
of a comparative evaluation between our approach and existing drift detectors
for process data. Then a case study is shown to illustrate the usefulness of
KARMATree for simultaneously detecting and characterizing changes in real
world datasets. In particular we compare our proposed KARMATree PBCD
approach with two state-of-the-art process drift detection algorithms, the Pro-
Drift [13] available in the Apromore framework and the drift detector by Bose et
al. [4] available in the ProM framework, respectively. Both the competitors are
parametric change detection algorithms specifically designed for process data.
They are built so as to embed the ADWIN [3] algorithm, therefore, they dis-
cover changes in event logs by scanning them through adaptively-sized time win-
dows (we term these two algorithms ProDrift (adwin) and Bose et al. (adwin)).
The ProDrift algorithm can also be used with fixed-size windows, termed as
ProDrift (fixed). Another difference between KARMATree and both ProDrift

3 https://bitbucket.org/carbonkid/process/.

https://bitbucket.org/carbonkid/process/


Simultaneous Process Drift Detection and Characterization with PBCDs 459

and Bose et al. is their detection method. In fact, while KARMATree is a non-
parametric drift detection approach, relying on pattern-set dissimilarities, both
ProDrift and Bose et al. seek changes by performing statistical hypothesis test-
ing, at a given p-value, between the data population in the time windows. Specif-
ically, Bose et al. employ two global features which are defined over an event log,
and two local features, which are defined at a trace level by considering a fixed-
size window, while ProDrift works only at trace level by considering an event
log as a continuous stream of traces and it is designed to adaptively identify the
right window size.

4.1 The Most Accurate Process Drift Detection Approach

In this set of experiments we executed KARMATree and the three competitor
algorithms on 10 synthetic event logs, generated according to the procedure
previously described, and collected their accuracies, false positive rates (FPRs)
and false negative rates (FNRs). We fixed the initial size of time windows to
20 in every considered approach, as for KARMATree, we fixed the minimum
support threshold to minSUP = 0.1 and the minimum growth-rate threshold
to minGR = 1.0. On the contrary, we tuned the minimum change threshold as
minMC = {0.5, 0.6, 0.7, 0.8, 0.9}. On the other hand, we fixed a critical p-value
of 0.95 for both ProDrift and Bose et al.

Table 1. Accuracy of KARMATree against ProDrift (fixed, adwin) and Bose et al.
(adwin) when tuning minMC on 10 synthetic event logs.

dataset Accuracy @ minMC

KARMATree ProDrift ProDrift Bose et al.

0.5 0.6 0.7 0.8 0.9 (fixed) (adwin) (adwin)

synth-log-01 0.989 0.989 0.989 0.959 0.918 1 0.846 0.959

synth-log-02 0.959 0.959 0.948 0.928 0.867 0.989 0.877 0.858

synth-log-03 1 1 1 0.979 0.959 1 0.816 0.909

synth-log-04 1 1 0.989 0.938 0.857 1 0.846 0.898

synth-log-05 0.959 0.969 0.959 0.948 0.918 0.959 0.857 0.929

synth-log-06 0.989 0.979 0.959 0.908 0.867 0.928 0.846 0.898

synth-log-07 0.989 0.979 0.979 0.938 0.908 1 0.816 0.929

synth-log-08 0.969 0.969 0.948 0.928 0.887 1 0.846 0.939

synth-log-09 0.979 0.969 0.928 0.908 0.857 1 0.826 0.959

synth-log-10 0.969 0.969 0.969 0.959 0.938 1 0.826 0.939



460 A. Impedovo et al.

As for the accuracy (Table 1), we report that KARMATree always outper-
forms ProDrift (adwin) for every value of minMC. The same is not true for Bose
et al. (adwin), which is outperformed by KARMATree when minMC ≤ 0.8,
and outperforms KARMATree when minMC = 0.9. On the contrary, Pro-
Drift (fixed) is a top competitor based on time windows of fixed size, differently
from KARMATree and every adwin-based competitor adopting time windows of
dynamic size. Specifically, since i) ProDrift (fixed) consumes blocks of 20 traces,
and ii) the synthetic datasets are generated so to report a change once every 100
traces, the algorithm compares two clearly distinct group of traces once every 5
windows, on which a change is detected. However, knowing in advance the tem-
poral distribution of changes (once every 100 traces) requires prior knowledge
on the observed process, which could not always be available. In this perspec-
tive, differently from the remaining adwin-based competitors, KARMATree still
outperforms ProDrift (fixed) on synth-log-03/05/06 (for minMC ≤ 0.7), and
synth-log-04 (for minMC ≤ 0.6).

This analysis is confirmed by the false positive rates (FPRs) and false nega-
tive rates (FNRs). As expected, ProDrift (fixed) exhibits both FPRs and FNRs
approximately equal to 0 on every dataset. Also, ProDrift (adwin) exhibits very
low FPRs but moderately high FNRs. On the contrary Bose et al. exhibits the
worst FPR on almost every dataset (except for synth-log-09) and remarkable
FNRs, which in turn are no worse than ProDrift (adwin). As for KARMATree,
the algorithm always outperforms the competitors with respect to their FPRs.
As for the FNRs, KARMATree outperforms every competitor for low values
of minMC. From these results, two tendencies arise: i) both FPRs and FNRs
decrease with minMC, and ii) the accuracy increases for low values of minMC
(Table 2).

4.2 The Most Efficient Process Drift Detection Approach

In this set of experiments we compared the running times (seconds) of KAR-
MATree against the ones of the three competitors on 10 synthetic event logs
(Table 3). As before, we fixed the initial size of time windows to 20 in every
considered approach. As for KARMATree we fixed the minimum support to
minSUP = 0.1 and the minimum growth-rate to minGR = 1.0. On the contrary,
we tuned the minimum change threshold as minMC = {0.5, 0.6, 0.7, 0.8, 0.9}.
We fixed a critical p-value of 0.95 for ProDrift and Bose et al. No clear tendency
emerges when looking at decreasing values of minMC for KARMATree. This is
an expected result, since minMC does not influence the running times, which are
strongly determined by the mining step in the PBCD pipeline. However, when
comparing KARMATree with respect to both ProDrift fixed and adwin-based,



Simultaneous Process Drift Detection and Characterization with PBCDs 461

Table 2. False positive rate (FPR) and False negative rate (FNR) of KARMATree
against ProDrift (fixed, adwin) and Bose et al. (adwin) when tuning minMC on 10
synthetic event logs.

dataset False positive rate @ minMC

KARMATree ProDrift ProDrift Bose et al.

0.5 0.6 0.7 0.8 0.9 (fixed) (adwin) (adwin)

synth-log-01 0 0 0 0 0 0 0 0

synth-log-02 0 0 0 0 0 0.013 0 0.087

synth-log-03 0 0 0 0 0 0 0.013 0.062

synth-log-04 0 0 0 0 0 0 0 0.087

synth-log-05 0.013 0 0 0 0 0.051 0.013 0.0375

synth-log-06 0 0 0 0 0 0.051 0.063 0.075

synth-log-07 0 0 0 0 0 0 0 0

synth-log-08 0 0 0 0 0 0 0 0.05

synth-log-09 0.013 0 0 0 0 0 0 0

synth-log-10 0 0 0 0 0 0 0 0

dataset False negative rate @ minMC

KARMATree ProDrift ProDrift Bose et al.

0.5 0.6 0.7 0.8 0.9 (fixed) (adwin) (adwin)

synth-log-01 0.053 0.053 0.053 0.211 0.421 0 0.789 0.211

synth-log-02 0.211 0.211 0.263 0.368 0.684 0 0.632 0.368

synth-log-03 0 0 0 0.105 0.211 0 0.895 0.211

synth-log-04 0 0 0.053 0.316 0.737 0 0.789 0.158

synth-log-05 0.158 0.158 0.211 0.263 0.421 0 0.684 0.211

synth-log-06 0.053 0.105 0.211 0.474 0.684 0.158 0.526 0.211

synth-log-07 0.053 0.105 0.105 0.316 0.474 0 0.947 0.368

synth-log-08 0.158 0.158 0.263 0.368 0.579 0 0.789 0.105

synth-log-09 0.053 0.158 0.368 0.474 0.737 0 0.895 0.211

synth-log-10 0.158 0.158 0.158 0.211 0.316 0 0.895 0.316

our approach is more efficient than the two competitors (except for synth-log-03
when minMC ≤ 0.7). Moreover, KARMATree is more efficient than Bose et al.
by at most two orders of magnitude. Therefore, we conclude that KARMATree
is able to devise more accurate and more efficient drift detection on almost every
considered dataset.



462 A. Impedovo et al.

Table 3. Running times (seconds) of KARMATree against ProDrift (fixed, adwin) and
Bose et al. (adwin) when tuning minMC on 10 synthetic event logs.

dataset Running times (seconds) @ minMC

KARMATree ProDrift ProDrift Bose et al.

0.5 0.6 0.7 0.8 0.9 (Fixed) (Adwin) (Adwin)

synth-log-01 0.86 0.874 0.891 1.106 0.856 3.38 3.453 28.284

synth-log-02 1.499 1.625 1.688 1.782 1.58 3.908 3.411 47.411

synth-log-03 6.107 6.155 5.932 4.966 5.735 5.005 5.054 187.65

synth-log-04 3.188 3.257 3.392 3.203 3.705 4.932 4.753 92.523

synth-log-05 1.471 1.452 1.592 1.532 1.437 4.172 3.558 47.311

synth-log-06 0.658 0.628 0.629 0.642 0.606 2.79 2.795 18.789

synth-log-07 3.047 2.764 2.954 3.066 3.065 4.4 4.251 96.541

synth-log-08 2.489 2.496 2.717 2.584 2.562 4.777 4.449 70.165

synth-log-09 3.85 3.504 4.43 4.353 5.105 6.243 5.421 101.7

synth-log-10 1.436 1.375 1.445 1.512 1.367 3.83 3.714 42.003

4.3 Case Study

We illustrate a case study in which KARMATree is used to detect and characterize
the changes in a real process. When a change is detected between two windows,
the reference window and the target window, it is reasonable to expect some dif-
ferences between the two associated process models. Intuitively, the change can
be characterized by listing the modifications necessary to transform the process
model, learned fromtraces in the referencewindow, into the one learned fromtraces
in the target window. We recall that KARMATree characterizes changes by list-
ing the maximal emerging subtrees between the reference and the target windows.
Twoconsiderations arise: first, it is possible that a subtreewhichwas frequent in the
reference window becomes infrequent in the target window, and second, a subtree
which was infrequent in the reference window may become frequent in the target
window. Since an emerging subtree denotes an appearing (disappearing) sequence
of activities, then the associated activities will (will not) be included in the process
models. Furthermore, sinceKARMATree discoversmaximal emerging subtrees, the
change is characterized in terms of the longest sequences of activities which appear
or disappear over time.

The real process we consider is the hospital billing process collected in [15].
The event log collects events related to the billing of medical services as provided
by a regional hospital. The dataset was collected from the financial modules
of the ERP system of the hospital. Specifically, the event log contains 100.000
anonymized traces recorded over a period of three years. Our purpose is to detect
and characterize the changes in the hospital billing process. With this objective
in mind, we first encoded the dataset as a dynamic network by following the
procedure described in Sect. 3. Then we executed the KARMATree algorithm



Simultaneous Process Drift Detection and Characterization with PBCDs 463

on the resulting dynamic network by fixing the input parameters as follows:
the minimum support threshold was fixed at minSUP = 0.1, the minimum
change threshold at minMC = 0.5 and the minimum growth-rate threshold at
minGR = 1.0. Once it had been executed, the algorithm was able to detect and
characterize 95 change points out of 1000 blocks.

We report two changes detected by KARMATree, by focusing on the associ-
ated characterizations. In particular, given a change detected between a reference
window W and a target window W ′, we match the MESs against the two heuris-
tic maps discovered by running the HeuristicMiner algorithm (available in ProM
[17]) on traces from the two windows, respectively. Thus, we show how MESs,
discovered by KARMATree, mirror the differences between the two heuristic
maps. We note that heuristic maps highlight the frequently executed parts of
the process in black, while the less executed ones appear in gray.

The first change is detected when KARMATree consumes 6000 traces. Specif-
ically, the change score amounts to 54% and is spotted between the reference
window containing the first 5900 traces (W = [1, 5900]) and the target window
containing the remaining 100 (W ′ = [5901, 6000]). The billing process in W is
depicted in Fig. 5. First, a new billing is created and the associated diagnosis
is set. Then, the fine is created and released. Consequently, the bill is closed
only when the fine is released with success. Occasionally, the diagnosis can be
changed multiple times before deleting the billing prematurely (due to errors,
for example). Errors can also affect the fine, in that case a new one is created by
returning to the create fine activity. However, the billing process looks different
when observed in W ′ (Fig. 6). The change diagnosis activity is less frequently
executed than in W , and may cause the deletion of the bill. Consequently, a
new fine is created right after the billing process starts. When comparing this
heuristic map to the previous one, it emerges that the billing process has been
shortened by avoiding the change diagnosis activity.

Fig. 5. Heuristic map for the billing process in the reference window W = [1, 5900].



464 A. Impedovo et al.

Fig. 6. Heuristic map for the billing process in the target window W ′ = [5901, 6000].

KARMATree explains the change with a single maximal emerging pattern S
which is frequent in W , with a support of 39%, and infrequent in W ′ with a
support of 7%. Therefore, S emerges with a growth-rate of 558%:

S = {(0, 1,new billing), (1, 2, change diagnosis), (2, 3, create fine),
(3, 4, release fine), (4, 5, code ok), (5, 6,billed)}

Since S is emerging and infrequent in W ′, it suggests that the billing process, as
performed in W , is not compliant with the process model observed on W ′. This is
an expected result, since the heuristic map discovered on W ′ does not depict the
billing process as S does. On the contrary, S is compliant with the heuristic map
discovered on W . Clearly, every subtree S′ ⊂ S involving the change diagnosis
activity also characterizes the change occurring between W and W ′ (for example,
S′ = {(0, 1, new billing), (1, 2, change diagnosis), (2, 3, create fine)}). Indeed,
the same change could have been represented by various emerging subtrees,
each of which adds a small contribution to the remaining ones. The usefulness of
discovering maximal emerging subtrees is precisely the characterizing of changes
in a succinct way, that is, by only considering the longest sequences of activities.

KARMATree detects a second change (54%) immediately after the arrival of
100 new traces. In this case, the reference window is W = [5901, 6000] and is
equivalent to the target window of the previous example, while the current target
window is W ′ = [6001, 6100]. Consequently, the heuristic map associated to W
is depicted in Fig. 6, and the one associated to W ′ is depicted in Fig. 7. This new
heuristic map specifies that the billing process can be alternatively completed
by either changing the diagnosis associated to the billing or not. Moreover, the
map also states that i) new billings have been immediately deleted after their
creation and ii) no fine is reopened. The change is characterized by two maximal
emerging subtrees S1 and S2 which are infrequent in W (support of 7% and 4%,
resp.) and frequent in W ′ (support of 42% and 12%, resp.).

S1 = {(0, 1,new billing), (1, 2, change diagnosis), (2, 3, create fine),
(3, 4, release fine), (4, 5, code ok), (5, 6,billed)}

S2 = {(0, 1,new), (1, 2,delete)}



Simultaneous Process Drift Detection and Characterization with PBCDs 465

Fig. 7. Heuristic map for the billing process in the reference window W = [6001, 6100].

Since both the subtrees are frequent and emerging in W ′, they denote novel parts
of the process, as executed according to the heuristic map on W ′. In particular,
while S1 reintroduces the change diagnosis activity in the billing process, S2

states that new billings are immediately deleted right after their creation. We
note that the two subtrees are compliant with the heuristic map learned on W ′.

5 Conclusions

We have presented the KARMATree for simultaneously detecting and charac-
terizing process drifts. KARMATree detects changes in an intermediate repre-
sentation of event logs in the form of dynamic networks. Specifically, changes
are i) sought by tracking variations in the frequent subtrees observed over time
on non-overlapping time windows and ii) characterized with maximal emerging
subtrees. Experiments have shown that KARMATree is more efficient and more
accurate than existing state-of-the-art process drift detection algorithms. Fur-
thermore, a case study on real world data has shown that the characterizations
provided by KARMATree spot parts of the process involved in a given change.
As to future research directions, we plan to i) improve the efficiency through
the use of filter-and-refinement techniques, already explored on spatio-temporal
data [16], ii) work on the conciseness of the changes through condensed repre-
sentations of the patterns [9], iii) study the process drift over a longer temporal
horizon through evolution chains [12].

Acknowledgments. We acknowledge the support of the MIUR - Ministero
dell’Istruzione dell’Universitàe della Ricerca through the project “TALIsMan - Tec-
nologie di Assistenza personALizzata per il Miglioramento della quAlità della vitA”
(Grant ID: ARS01 01116), funding scheme PON RI 2014–2020. We would also like to
thank Lynn Rudd for her help in reading the manuscript.



466 A. Impedovo et al.

References

1. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004). https://doi.org/10.1109/TKDE.2004.47

2. Assy, N., van Dongen, B.F., van der Aalst, W.M.P.: Discovering hierarchical con-
solidated models from process families. Adv. Inf. Syst. Eng. - CAiSE 2017, 314–329
(2017). https://doi.org/10.1007/978-3-319-59536-8 20

3. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing.
In: Proceedings of the Seventh SIAM International Conference on Data Mining,
pp. 443–448 (2007).https://doi.org/10.1137/1.9781611972771.42

4. Bose, R.P.J.C., van der Aalst, W.M.P., Zliobaite, I., Pechenizkiy, M.: Handling
concept drift in process mining. In: Advances Information Systems Engineering,
pp. 391–405 (2011). https://doi.org/10.1007/978-3-642-21640-4 30

5. Bose, R.P.J.C., van der Aalst, W.M.P., Zliobaite, I., Pechenizkiy, M.: Dealing with
concept drifts in process mining. IEEE Trans. Neural Networks Learn. Syst. 25(1),
154–171 (2014). https://doi.org/10.1109/TNNLS.2013.2278313

6. Burattin, A.: PLG2: multiperspective process randomization with online and offline
simulations. BPM Demo Track 2016, 1–6 (2016)

7. Ceci, M., Lanotte, P.F., Fumarola, F., Cavallo, D.P., Malerba, D.: Completion
time and next activity prediction of processes using sequential pattern mining. In:
Discovery Science - 17th International Conference, pp. 49–61 (2014). https://doi.
org/10.1007/978-3-319-11812-3 5

8. Hassani, M., Siccha, S., Richter, F., Seidl, T.: Efficient process discovery from
event streams using sequential pattern mining. In: IEEE Symposium on Computer
Intelligence 2015, pp. 1366–1373 (2015). https://doi.org/10.1109/SSCI.2015.195

9. Impedovo, A., Loglisci, C., Ceci, M., Malerba, D.: Condensed representations of
changes in dynamic graphs through emerging subgraph mining. Eng. Appl. Artif.
Intell. 94 (2020). https://doi.org/10.1016/j.engappai.2020.103830

10. Impedovo, A., Ceci, M., Calders, T.: Efficient and accurate non-exhaustive pattern-
based change detection in dynamic networks. In: Discovery Science - 22nd Interna-
tional Conference, DS 2019, Split, Croatia, 28–30 October 2019, Proceedings, pp.
396–411 (2019). https://doi.org/10.1007/978-3-030-33778-0 30

11. Loglisci, C., Ceci, M., Impedovo, A., Malerba, D.: Mining microscopic and macro-
scopic changes in network data streams. Knowl. Based Syst. 161, 294–312 (2018)

12. Loglisci, C., Ceci, M., Malerba, D.: Discovering evolution chains in dynamic net-
works. In: New Frontiers in Mining Complex Patterns - First International Work-
shop, NFMCP 2012, Held in Conjunction with ECML/PKDD 2012, Bristol, UK,
24 September 2012, Revised Selected Papers, pp. 185–199 (2012). https://doi.org/
10.1007/978-3-642-37382-4 13

13. Maaradji, A., Dumas, M., Rosa, M.L., Ostovar, A.: Fast and accurate business pro-
cess drift detection. In: Business Process Management - 13th International Con-
ference, pp. 406–422 (2015). https://doi.org/10.1007/978-3-319-23063-4 27

14. Maaradji, A., Dumas, M., Rosa, M.L., Ostovar, A.: Detecting sudden and gradual
drifts in business processes from execution traces. IEEE Trans. Knowl. Data Eng.
29(10), 2140–2154 (2017). https://doi.org/10.1109/TKDE.2017.2720601

15. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Data-driven
process discovery - revealing conditional infrequent behavior from event logs. In:
Advances Information Systems Engineering - 29th International Conference, pp.
545–560 (2017). https://doi.org/10.1007/978-3-319-59536-8 34

https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1007/978-3-319-59536-8_20
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1007/978-3-642-21640-4_30
https://doi.org/10.1109/TNNLS.2013.2278313
https://doi.org/10.1007/978-3-319-11812-3_5
https://doi.org/10.1007/978-3-319-11812-3_5
https://doi.org/10.1109/SSCI.2015.195
https://doi.org/10.1016/j.engappai.2020.103830
https://doi.org/10.1007/978-3-030-33778-0_30
https://doi.org/10.1007/978-3-642-37382-4_13
https://doi.org/10.1007/978-3-642-37382-4_13
https://doi.org/10.1007/978-3-319-23063-4_27
https://doi.org/10.1109/TKDE.2017.2720601
https://doi.org/10.1007/978-3-319-59536-8_34


Simultaneous Process Drift Detection and Characterization with PBCDs 467

16. Vieira, M.R., Bakalov, P., Tsotras, V.J.: On-line discovery of flock patterns in
spatio-temporal data. In: 17th ACM International Symposium on Advances in
Geographic Information Systems, pp. 286–295 (2009). https://doi.org/10.1145/
1653771.1653812

17. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: Proceed-
ings of the IEEE Symposium on Computational Intelligence and Data Mining,
CIDM 2011, part of the IEEE Symposium Series on Computational Intelligence
2011, France, pp. 310–317 (2011). https://doi.org/10.1109/CIDM.2011.5949453

https://doi.org/10.1145/1653771.1653812
https://doi.org/10.1145/1653771.1653812
https://doi.org/10.1109/CIDM.2011.5949453

	Simultaneous Process Drift Detection and Characterization with Pattern-Based Change Detectors
	1 Introduction
	2 Related Works
	3 Background
	3.1 From Event Logs to Dynamic Networks
	3.2 Frequent and Emerging Subgraph Discovery
	3.3 Problem Statement
	3.4 Computational Approach

	4 Experiments
	4.1 The Most Accurate Process Drift Detection Approach
	4.2 The Most Efficient Process Drift Detection Approach
	4.3 Case Study

	5 Conclusions
	References




