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Abstract. Supervised Learning requires a huge amount of labeled data,
making efficient labeling one of the most critical components for the suc-
cess of Machine Learning (ML). One well-known method to gain labeled
data efficiently is Active Learning (AL), where the learner interactively
asks human experts to label the most informative data point. Neverthe-
less, even by applying AL in labeling tasks the amount of human effort
is still too high and should be minimized further.

In this paper therefore we propose WeakAL, which incorporates
Weak Supervision (WS) techniques directly into the AL cycle. This
allows us to reduce the number of annotations by human experts while
keeping the same level of ML performance. We investigate different WS
strategies as well as different parameter combinations for a wide range of
real-world datasets. Our evaluation shows that for example in the context
of Web table classification, 55% of otherwise manually retrieved labels
can be generated by WS techniques with a negligible loss of test accuracy
by 0.31% only. To further prove the general applicability of our approach
we applied it to six datasets from the AL challenge from Guyon et al.,
where over 90% of the labels could be computed by the WS techniques,
while still achieving competitive competition results.

Keywords: Information extraction · Active Learning ·
Semi-supervised · Machine Learning · Weak Supervision · Classification

1 Introduction

Acquiring training data for supervised learning, such as classification, requires
substantial human effort, which already led to many research activities with the
goal to increase data efficiency and to minimize the need for manual annotation.
The first one is Active Learning (AL) that deals with the problem of selecting
samples from an unlabeled pool for labeling, e.g. by a human annotator, such
that the performance of the model to be learned is maximized. The second one
is Weak Supervision (WS) that uses a labeled ground-truth to compute labels
for the unlabeled data, to improve the quality of the classifier.
Traditionally WS is applied after a small high-quality dataset has been obtained,
e.g. through AL. In an optimal setting, AL would query only a few represen-
tative samples for each class and the other labels would be derived using WS
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Fig. 1. WeakAL Overview

techniques. However, in practice this is often not the case: Either too many
redundant labels from the AL cycle were obtained, which could also have been
generated by WS, or the obtained labels don’t work well in combination with
WS and produce a lot of false labels.
Therefore, in this paper, we propose WeakAL, which extends the AL cycle by
different WS techniques (see Fig. 1). Given a small initial labeled dataset L and
a large unlabeled pool U , we first cluster the combined samples of L and U .
Then the classifier is trained on L, and as long as the human labor budget is
not exhausted, WeakAL augments the labeled dataset by additional samples.
At this point, in the traditional AL cycle, only human experts would be queried.
In WeakAL however, also WS techniques are directly incorporated to obtain
labels. If a minimum amount of labeled data is available, which is ensured by
an accuracy threshold M , the WS strategies are queried. We propose to use two
WS techniques: WeakClust and WeakCert. The first one propagates the
majority label in a cluster to the unlabeled samples of the cluster, whereas the
second one uses the predicted label by the classifier. Based on the parameters for
the respective WS strategies, they either return so-called weak labels or noth-
ing, indicating that they are not confident enough. Depending on the present
labeled data L and the parameters, the weak labels add more or less label noise.
However, by using well-tweaked parameters this can be kept to a minimum. If
the WS strategies are not confident enough human experts are consulted, where
first a cluster query strategy (CQS) identifies a cluster, from which thereafter the
query selection strategy (QS) selects the samples for the query. The generated
labels are be added to the labeled set L and the cycle starts again.

Contribution. In this paper, we introduce WeakAL that extends the AL cycle
by different WS techniques. In a comprehensive experimental study, we show
that combining AL and WS provides very good results in terms of human effort
and classification accuracy for many real-world datasets. Our experiments show
that the classification models trained on the data determined by AL and WS
can safely reduce the amount of human-retrieved annotations by 50%–90% while
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maintaining the same level of accuracy, and even improving it by a few percent-
age points.

Outline. The remainder of this paper is organized as follows: In Sect. 2, we
present the typical methods used within an AL cycle, which is extended by
WS strategies in Sect. 3. Section 4 describes the setup of the experiments we
conducted to prove our hypothesis. We compare different evaluation metrics
and combinations of WS strategies on multiple real-world datasets. The results
are shown and discussed in Sect. 5. Finally, we present related work in Sect. 6
and conclude in Sect. 7.

2 Active Learning Foundations

WeakAL makes use of typical AL techniques, such as a cluster query strategy, a
query strategy as well as batching of samples. Therefore, in Subsect. 2.1, we give
an overview of some popular query strategies, which are used in our experiments
and emphasize the importance of the right batch size in Subsect. 2.2.

2.1 Active Learning Query Strategies

In this section, we shortly introduce the different strategies for choosing the
most informative queries out of a set of given unlabeled samples. Each strategy
approximates the contained informativeness of unlabeled data for a potential
classifier.

Random Sampling is a common AL query strategy and found application
in [1]. Unlike the other methods, random sampling chooses queries at random
and fully independently of their informativeness. However, even with this strat-
egy, a rise in prediction accuracy is possible, since the amount of training data is
steadily increased. We use random sampling as a baseline to compare the other
strategies.

Uncertainty Sampling chooses queries that are the most uncertain to pre-
dict. Hence, learning these queries should result in more certain predictions of
the classifier. We compare three uncertainty metrics: least confident, margin
sampling, and entropy [2]. Least confidence [3] tries to capture the probability,
that the classifier is mislabeling the data using the posterior probability P where
ŷ is the most likely prediction:

QSx,LC = argmax
x

1 − P (ŷ|x), x ∈ U (1)

Information about other classes next to the most probable one is not taken into
account by this strategy. Margin sampling [4] in contrast uses the posteriors for
the first ŷ1 and second most probable classes ŷ2 and samples the instances with
the smallest margin between those two:

QSx,SM = argmin
x

P (ŷ1|x) − P (ŷ2|x) (2)
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Entropy uncertainty [5,6] uses all possible classes and captures the entropy of a
given distribution. It should, therefore, work well on classification problems with
many classes:

QSx,E = argmax
x

−
∑

i

P (yi|x) log P (yi|x) (3)

2.2 Batch Sizes

It is common practice in machine learning to train a model on batches of samples
instead of single data points. As the retraining of the classifier cannot be done
in real-time it is also easier for human experts to label a batch of data points at
once. Batches also allow parallelization of the human annotation process. Early
experiments suggested that the batch size has no real impact on the efficiency
of the AL process. We use therefore a reasonably small batch size of 10, which
is small enough to show changes during the AL cycle in detail, but also large
enough to keep the experiment runtime under control.

3 Weak Supervision Enhanced Active Learning Cycle

In this section, we propose WeakAL, combining the strengths of AL and WS.
We claim, that it is beneficial, to prioritize during AL the retrieval of those unla-
beled data points, which do not only directly increase the classifier’s performance
but also lead to more weakly labeled data. We propose an active learning cycle
that incorporates WS, resulting in significantly less human interaction, whereas
the accuracy achieved is kept on the same level.
Algorithm 1 shows the overall WeakAL cycle. The AL process starts with two
datasets: the unlabeled sample set U and the already labeled dataset L, where
|L| << |U|. WeakAL requires that both L and U consist of clusters, Lc, and
Uc. Each cluster is defined as a tuple consisting of the feature vector x and, in
case of the labeled set, the corresponding label y:

Lc =
{
(xl1, yl1), (xl2, yl2), . . .

}

Uc = {xu1, xu2, . . .}
(4)

The main task of the AL cycle is to iteratively increase the set of labeled data L
by identifying the most promising cells in U . The cycle stops when a predefined
budget B (line 1 in Algorithm 1) of available user interaction is exhausted. At
the beginning of each cycle, the classifier f is retrained on the labeled set L.
If a minimum training accuracy M is reached (line 3), WeakAL utilizes Weak-
Clust and WeakCert (Subsect. 3.2) instead of asking the human experts. The
budget remains untouched for WS labels, as these queries come for free with-
out human interaction. Both WS strategies have threshold parameters, α, β,
and γ. If the thresholds are not met, human experts are used instead. For that,
first, a cluster Uc of the unlabeled data is selected based on the cluster query
strategy CQS (line 10, (Subsect.. 3.1). Then the utilized query strategy (line 14,
(Subsect. 2.1) selects as much, as per the batch size BS defined, unlabeled
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samples q from the selected cluster Uc. The human experts are then asked for
the label, and the budget is reduced accordingly. At the end of each cycle the
newly labeled data Lq is added to L (line 18) and q removed from U (line 19),
and the process starts again by retraining the classifier on the extended dataset.

3.1 Cluster Query Strategies to Support WeakClust

The basic idea of the clustering approach is to save human effort by labeling the
entire cluster instead of individual data points. This strategy requires a mini-
mum amount of labels per cluster. We investigate the following three clustering
strategies:

Single Cluster Strategy. To compare the approach of limiting the human
experts’ queries to a single cluster Uc per AL cycle to the typical approach of
using the entire set of unlabeled points U , the single cluster strategy puts all
unlabeled data into a single cluster, simulating thereby the absence of a cluster
strategy.
Random Cluster Strategy. This strategy selects a cluster at random and acts
as a second baseline.
Most Uncertain Cluster Strategy. The most uncertain cluster strategy can
be used in three different flavors, depending on the used uncertainty query strat-
egy: least confidence, smallest margin, and entropy (see Subsect. 2.1). By obtain-
ing the labels for the most uncertain points per cluster only those remain unla-
beled that are more likely part of the class-homogeneous core of the cluster. For
each cluster Uc ∈ U , the query selection strategy is used first to calculate QS(x)
for each sample x. After that, the cluster samples are sorted in descending order



WeakAL: Combining Active Learning and Weak Supervision 39

based on the value of the query selection strategy. The highest most uncertain
data points within the batch size BS are stored in Uc. The cluster with the
highest sum of query selection certainties is selected accordingly:

Uc = argmax
Uc

∑

x∈Uc

QS(x), for Uc ∈ U (5)

3.2 Weak Supervision Techniques

We selected two WS techniques, WeakClust and WeakCert, which we
believe work best alongside the AL process, and can easily be incorporated into
it. WeakClust propagates the labels of a partially labeled cluster to the entire
cluster, and WeakCert returns the predicted labels of the trained classifier.
Especially the WeakClust technique is optimal for AL, as in an ideal scenario
first one sample gets queried per cluster, and then using more most uncertain
samples from the cluster, the hypothesis of the first sample gets confirmed or
dismissed. Each WS strategy has thresholds that have to be met to confidently
add the weak labels to the labeled dataset. A minimum amount of labeled data
M needs to be made available first for both WS techniques to justify applying
WS. Otherwise, the risk of many false labels from a severely overtrained classifier
is increasing. All parameters have to be chosen carefully, as WS automatically
computes the annotations and with a suboptimal starting point, many wrong
labels can be produced.

Weak Certainty uses the probability of the trained classifier to decide for
the unlabeled samples. The pseudocode is given in Algorithm2. Contrary to the
uncertainty AL query strategies, the most certain data points are labeled by this
WS strategy. For each unlabeled sample x the predicted label y and the probabil-
ity σ of the classifier f are calculated (line 4 in Algorithm 2). If the probability is
higher than the threshold α (line 5), the predicted label gets assigned. All found
labels and samples are stored in the lists ys and q (line 6 and 7). WeakCert is
therefore basically the application of a single iteration of self-training [7].

Algorithm 2 WeakCert
Input: unlabeled data points U , trained classi-
ficator f , minimum certainty threshold γ

Output: labels y for a set of unlabeled
data points q

1: Init(q, ys)
2: for Uc ∈ U do
3: for x ∈ Uc do
4: y, σ ← ClassWithProb(f, x)
5: if σ > α then
6: Append(ys, y)
7: Append(q, x)
8: end if
9: end for
10: end for
11: return q, ys

Algorithm 3 WeakClust
Input: labeled data L, unlabeled data U , mini-
mum cluster homogeneity size β, minimum ratio
labeled-unlabeled samples γ
Output: labels ŷ for the cluster of unlabeled
data Uc

1: for Lc, Uc ∈ L, U do
2: if Count(Lc)/Count(Uc) > γ then
3: ŷ ← MostFrequentLabel(Lc)
4: if Count(ŷ)/Count(Lc) > β then
5: return Uc, ŷ
6: end if
7: end if
8: end for
9: return ∅, ∅
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Table 1. Datasets used in experiments

Name Domain #Classes #Features #Samples Majority class

DWTC [9] Table classification 4 227 5,777 39.84%

HIVA [8] Chemoinformatics 2 1,617 42,678 96.48%

IBN SINA [8] Handwriting recognition 2 92 20,722 62.16%

ORANGE [8] Marketing 2 230 50,000 98.22%

SYLVA [8] Ecology 2 216 145,252 93.85%

ZEBRA [8] Embryology 2 154 61,488 95.42%

Weak Cluster identifies clusters that contain i) a lot of labeled data and ii)
almost only samples of with the same label (Algorithm 2). To achieve i) the ratio
between labeled and unlabeled samples of the cluster is computed. Only clusters
where the ratio is above the threshold γ are considered further (line 2). The
second criteria, ensuring ii), is checked by calculating the ratio between the most
common class ŷ and the size of the cluster (line 4). The first cluster, with a ratio
above a threshold β, is returned with ŷ as the label for the unlabeled portion.
The quality of the underlying clusters has a high impact on the quality of this
WS technique. Desirable are many smaller clusters containing only samples of
the same class. Note that the propagation of labels from the cluster only applies
to unlabeled samples. Possible noise in the clusters should have already been
removed by the most uncertainty query strategies (see Subsect. 2.1) before the
thresholds for WeakClust are met.

4 Experimental Setup

We first introduce the datasets used in our evaluation in Subsect. 4.1. In
Subsect. 4.2, we discuss the parametrization of the clustering approaches. To
evaluate the performance of WeakAL we conduct a large hyperparameter search
on different real-world datasets, which is described in Subsect. 4.3. Finally, in
Subsect. 4.4 we present the evaluation metrics used for our experiments. The
code for all experiments is publicly available1 under the AGPL-3.0 license.

4.1 Datasets

We perform our experiments using six real-world datasets described in Table 1.
All datasets are used to train classification models and most of them contain
noisy data, have missing values, sparse feature representation, and unbalanced
class distributions. Except for DWTC, all datasets come from the Active Learn-
ing Challenge performed by Guyon et al. in 2010 [8]. In our experiments, 50 %
of the data was withheld as a test set.

1 https://github.com/jgonsior/weakal.

https://github.com/jgonsior/weakal
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Table 2. Hyperparameter search space

Hyperparameter Search Range

Query Selection random, uncertainty least confidence, uncertainty max
margin, uncertainty entropy

Cluster Selection dummy, random, most uncertain least confidence, most
uncertain max margin, most uncertain entropy

WeakClust? Yes/No

WeakCert? Yes/No

M, α, β, γ [0.5, 1.0]

4.2 Performed Clustering Strategies

As stated in Sect. 3, WeakAL expects the input data to be clustered. Since
the underlying data characteristics for a dataset to be labeled are often not
known, we decided for generally applicable clustering algorithms: For the large
datasets, SYLVA and HIVA, we used Mini-batch k-Means [10] and Agglom-
erative Clustering [11] for the smaller ones. The parameter k, represent-
ing the number of clusters, is set to n samples/8 and the batch size to
min(n samples/100, n features). These parameters ensure an average number
of 8 data points per cluster, which proved to work best in our experiments.
For our use case, the high number of clusters is not a problem as long as their
homogeneity is high. Note, that WeakAL does not depend on a specific cluster
strategy, i.e. others can be used as well.

4.3 Hyperparameter Search

The quality of the used WS technique depends highly on the correct selection
of the parameter values. We chose therefore an extensive random hyperparame-
ter search to find optimal values and obtain an understanding of the sensitivity
of the WS techniques regarding their parameters. Table 2 lists all the relevant
hyperparameters. In total, 37,290 hyperparameters for the DWTC dataset have
been tested, which was possible due to its smaller size and 4,922 hyperparame-
ters for all other datasets.
We used a random forest [12] classifier with standard parameters in all experi-
ments since it showed good results for every dataset and is comparatively fast.
In addition to that, it has been reported that random forest classifiers are good
at dealing with potentially noisy, weak labels [13].

4.4 Evaluation Metrics

To compare the results of an AL run we need to measure its effectiveness in
achieving the overall goal of AL, to learn an accurate model with a minimum
amount of labeling cost. A desirable metric for WeakAL takes into account a)
amount of user-retrieved labels, b) classifier evaluation metrics, such as accuracy,



42 J. Gonsior et al.

F1-Score or AUC, and c) an average of the classifier evaluation metrics through-
out all AL iterations. The last two options are quite similar but have different
objectives. The average is desirable, to not only compare AL runs where only
the final iteration resulted in a high-quality run but also those, where no mea-
surable quality drop occurred. As one normally does not know a priori when to
optimally stop the AL process, one has to look at the average to not stop before
the final “good” queries. As a direct result of this, the final accuracy is needed,
as the average loses the information if the quality is good in the end or just in
the beginning.
We determine two basic metrics that should be analyzed in conjunction for a
meaningful evaluation: the ratio of weakly labeled data % saved human effort
hu and the final test accuracy acc end. For the saved human effort 0.0 equals
zero savings and 1.0 is the optimal case where no human experts were needed
for labeling at all. Besides, two compound metrics are calculated: The first one
is called combined score, which is the harmonic mean of the two basic metrics:

combined score =
2 ∗ acc end ∗ hu

acc end + hu
(6)

It captures the tradeoff between a desired low amount of saved human effort and
high test accuracy.
To compare ourselves to the results of the Active Learning Challenge described
in Subsect. 4.1, we further report the global score, which was used in the chal-
lenge [8]. Note, that we compute the AUC values for the global score only for
human experts’ queries, where WS queries are considered “free”.

5 Evaluation

In this section, we want to investigate the feasibility of WeakAL and show
whether the integration of weak supervision techniques in the AL cycle has
the potential to reduce the human labeling effort. We start in Subsect. 5.1 by
analyzing the impact of the human experts’ query budget. In Subsect. 5.2, we
compare the effect of no WS, WeakCert, and WeakClust individually. Fur-
ther, we combine both strategies, WeakCert and WeakClust, and report the
results for the best working parameter combinations for the DWTC dataset. In
Subsect. 5.3, we show that the combination of AL and WS even can achieve
higher accuracies than AL alone. In Subsect. 5.4 we show on an example how
the two WS strategies are applied in practice. The results on the datasets from
the AL challenge are given in Subsect. 5.5. In Subsect. 5.6, we provide some rules
of thumb for good hyperparameter values.

5.1 Budget Size Matters

As stated in Subsect. 4.4 the used budget size has a direct impact on the evalua-
tion metrics. Figure 2 plots the best-achieved accuracy for the DWTC dataset for
budgets between 0 and 3,000. It can seen that the accuracies for smaller budgets
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fluctuate a lot. We focus the following analysis therefore on larger budgets, due
to stable and more reproducible results. The best result for the combined score,
representing the balance of the tradeoff between a low amount of saved human
effort and high test accuracy, is achieved for a budget of 260 human experts’
queries, with an accuracy of 79.20%.

Fig. 2. Comparison of best-achieved test
accuracy for different budgets for the
DWTC dataset

Fig. 3. Comparison of the best result for
all possible WS combinations with a bud-
get of 1,500, selected after test accuracy

5.2 Comparison of Best-in-class AL + WS

In this analysis, we compare the results for an AL cycle without WS, with each
of WeakClust and WeakCert on their own, and with a combination of both.
Again we used the DWTC dataset for this experiment. As the saved human effort
cannot be calculated, when no WS is being applied, the best results are selected
based on the test accuracy, whereas the budget was kept to a fix value of 1,500.
Figure 3 shows that the accuracy of WeakAL using a combination of both WS
techniques is only 0.31%, WeakCert 0.45%, and WeakClust 1.39% lower
than the AL cycle without WS. Hence, it can be concluded that application of
WS techniques in WeakAL provides a significant saving of human effort, with
a negligible reduction of the test accuracies. WeakCert and WeakClust in
combination only achieve a slightly better accuracy than the individual tech-
niques since both often label the same samples. While the savings of human
effort are higher for WeakClust compared to WeakCert in this example,
this is not true in general but highly depends on the budget.

5.3 General Improvement Using WS

So far we only compared the results for selected examples of good parameter com-
binations. In the following, we investigate the overall distribution of all possible
parameter combinations for a fairly small budget of 200, due too limitations in
compute time, for the DWTC dataset. Figure 4 shows three distributions: in blue
all parameter combinations without using WS strategies, in orange all parameter
combinations showing an accuracy improvement due to the WS-labels, and in
green all parameter combinations using WS and showing a performance decline.
The improvement was measured by comparing the test accuracy of a classi-
fier trained on the human experts’ queries alone, to a classifier trained on the
human expert queries and the automatically generated WS-labels. In addition
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Fig. 4. Kernel density estimation and mean including 95% confidence interval given a
budget of 200 samples for the DWTC dataset

Fig. 5. Highest achieved accuracy result for the DWTC with a budget of 1,500(Color
figure online)

to the kernel density estimations of the distribution, the mean value is shown
including the 95% confidence interval. It can been seen that incorporating WS
into AL even can improve the average test accuracy by 1.81%. There also exists,
a large subset of parameters, which consistently achieve a lower accuracy using
WS. Nevertheless, using WS directly within the AL cycle, with the right param-
eters, has the potential to not only lower the human effort drastically but also
to even increase the accuracy.

5.4 Detailed Results for DWTC Dataset

This section gives some deeper insights into how WeakCert and WeakClust
work together in detail, shown exemplarily for the DWTC dataset. Figure 5
shows the best-achieved accuracy result for the DWTC dataset with a budget of
1,500 human experts’ queries. Fig. 5.a made up of colored rectangles, one for each
iteration of the AL cycle. The width of a rectangle is the number of retrieved
labels during the iteration, the height the achieved test accuracy. In the begin-
ning, a lot of human experts’ queries (blue) are requested, until WeakAL is con-
fident enough to apply the WS techniques. From then on, WeakClust (orange),
WeakCert (green), and the human expert queries alternate constantly. Most
of the labels can be generated automatically by WS, without negatively influenc-
ing the accuracy. The alternation between WS and the human experts’ queries
shows, that it is indeed beneficial to apply WS during the AL cycle, and not
after a gold standard is obtained.
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Fig. 6. Best-achieved test accuracy result for DWTC with a budget of 200

Fig. 7. Comparison of all analyzed datasets with a budget of 1,000 and the combination
based on the global score

In contrast, Fig. 6.a displays the test accuracies for a significantly smaller
budget of only 200 human experts’ queries. Here, most of the labels are generated
by WeakCert. Interestingly the accuracy is dropping after the first big block
of WeakCert labels, but rises quickly again after a few oracle queries. After
the second smaller block of human expert queries at around 1,450, the accuracy
goes even up purely based on WS labels. So without human interaction, the
accuracy of the classifier can be improved, which shows that the effectiveness of
WS goes further than just producing redundant labels.

The bar charts in Fig. 5.b and Fig. 6.b illustrate the results for different eval-
uation metrics. It is obvious, that smaller budget results in more saved human
effort, accepting a loss of the test accuracy. The combined score metric shows,
that the tradeoffs between the saved human effort and the test accuracy are
worse for the bigger budget. This is not surprising, as it always takes much more
data to further improve an already good accuracy than a poor one.

5.5 Active Learning Challenge Datasets

To compare our results to other common AL strategies we selected the training
datasets from the AL challenge [8]. The respective best results are shown in
Fig. 7. We used a budget of 1,000 and the global score of the AL challenge as the
evaluation metric to select the best results. A budget of 500 was too small for
most of the datasets and resulted in highly overfitted classifiers with reported
test accuracies of under 1%. The figures show, that all AL challenge datasets
have high values for all metrics. As the datasets all are highly imbalanced binary
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decision problems, a vast amount of labels can be generated automatically by
WS, as most samples are of the same label anyway. Since we have been not able
to determine the budgets used in the AL challenge, a comparison of the results
is only partly fair. Nevertheless, under the assumption, that a budget of 1,000 is
close to the budget used in the competition, our achieved results are competitive
to the winners of the AL challenge. Not all datasets are suited for WeakClust
as the underlying data could not be clustered well. Clustering worked good for
HIVA, IBN SINA, and ZEBRA.

Fig. 8. Best-achieved global score result for IBN SINA with a budget of 1,000(Color
figure online)

Figure 8 shows the results for the IBN SINA dataset in detail. In the begin-
ning, human experts’ queries are being collected (blue bars). After that, almost
all labels can be generated using the WeakCert (orange) and WeakClust
(green). Both WS techniques alternate between each other, with few human
experts’ queries in between. Again, this is an argument for directly embedding
WS into the AL process in WeakAL. The plots for the other datasets from the
AL competition looked quite similar. We therefore based our evaluation primar-
ily on the more interesting results for the DWTC dataset.

5.6 Recommended Parameters

Based on the investigation in Subsect. 5.3, we would like to make recommen-
dations which parameter combinations work well in practice: First, the best
parameters depend a lot on the desired test accuracy. The higher the test accu-
racy, the more data is needed, and the higher the thresholds should be set.
The minimum training accuracy M should be approximately 10% less than the
desired test accuracy. For the query sampling strategies, uncertainty max mar-
gin performed best, closely followed by uncertainty least confident. The selected
cluster strategy depends heavily on the quality of the underlying clusters and the
amount of available data. For the several datasets, such as ZEBRA, which could
be clustered well, and, therefore, WeakClust is applied often, most uncertain
least confident works best, whereas for those where no meaningful clusters could
be found, the dummy cluster strategy is leading. Good values for the thresh-
old α are values between the desired test accuracy up to 1.0. The parameters
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for WeakClust, β, and γ, should be considered jointly. The lower the cluster
homogeneity ratio β, the higher the minimum labeled cluster size γ should be.
Good values for both are between 0.75 and 0.95, keeping in mind the reverse
dependency between both.

6 Related Work

Semi-Supervised Learning. There exist various techniques to combine the
abundance of unlabeled data with labeled data in a classification setting, and
the terminology about that is not always clear according to our experience. The
most common term is semi-supervised learning, which uses unlabeled data to
verify assumptions based on labeled data [14]. Semi-supervised learning also
has been incorporated with AL, e.g. using Expectation-Maximization [15] or
using multi-view co-training [16]. Adjacent to semi-supervised learning, weak
supervision assumes that high-quality ground truth labels exist, and many noisy
labels for the rest of the data. In our case, we produce high-quality data when
querying the human experts, and noisy labels when using the WS. Following the
terminology introduced in [17], we use the term weak supervision when talking
about inaccurate supervision. We focus on the aspect of generating labels of
weak-supervised learning, intending to reduce the amount of needed ground-
truth labels.

Clustering. [18] proposes to query only the cluster centers in different feature
spaces, and to use a majority vote afterward for the unlabeled data to deter-
mine their labels. In [19] graph-based clustering was directly incorporated into
an AL setting. Other techniques, such as label propagation [20] iteratively prop-
agate labels based on a small labeled ground truth set using a combination of
random walk and clamping. Another approach is to use a small set of ground
truth labels and program synthesis techniques to automatically generate labeling
functions [21].

7 Conclusions

Annotating training data for supervised learning, such as classification, requires
substantial human effort. While utilizing Active Learning during the annotation
process already decreases the amount of human labor, we argue that AL should
be combined with WS to further reduce the number of annotations made by
human experts. Therefore, we proposed WeakAL, a WS extension to a typical
AL cycle employing different cluster query strategies to query those samples,
which further supports the WS strategies. In a comprehensive study, we selected
and compared the proposed strategies as well as multiple parameter combina-
tions. For a Web table classification task the results show that 55.30% of human
labeling effort can be saved using automatic WS labels, with only a negligible
loss of test accuracy by 0.31%. We showed, that with optimal parameters, a
test accuracy improvement by 1.81% can be attributed solely to WS. We fur-
ther applied WeakAL on datasets from the AL challenge from Guyon et al.,
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where over 90% of the labels could be generated automatically, while still achiev-
ing competitive results, thus proving the general applicability of our proposed
approach.
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