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Abstract. Algorithm selection (AS) deals with the automatic selection
of an algorithm from a fixed set of candidate algorithms most suitable
for a specific instance of an algorithmic problem class, e.g., choosing
solvers for SAT problems. Benchmark suites for AS usually comprise can-
didate sets consisting of at most tens of algorithms, whereas in algorithm
configuration (AC) and combined algorithm selection and hyperparam-
eter optimization (CASH) problems the number of candidates becomes
intractable, impeding to learn effective meta-models and thus requir-
ing costly online performance evaluations. In this paper, we propose the
setting of extreme algorithm selection (XAS), which, despite assuming
limited time resources and hence excluding online evaluations at predic-
tion time, allows for considering thousands of candidate algorithms and
thereby facilitates meta learning. We assess the applicability of state-
of-the-art AS techniques to the XAS setting and propose approaches
leveraging a dyadic representation, in which both problem instances and
algorithms are described in terms of feature vectors. We find this app-
roach to significantly improve over the current state of the art in various
metrics.

Keywords: Extreme algorithm selection · Dyadic ranking · Surrogate
model

1 Introduction

Algorithm selection (AS) refers to a specific recommendation task, in which
the choice alternatives are algorithms: Given a set of candidate algorithms to
choose from, and a specific instance of a problem class, such as SAT or integer
optimization, the task is to select or recommend an algorithm that appears to be
most suitable for that instance, in the sense of performing best in terms of criteria
such as runtime, solution quality, etc. Hitherto practical applications of AS, as
selecting a SAT solver for a logical formula, typically comprise candidate sets
consisting of at most tens of algorithms, and this is also the order of magnitude
that is found in standard AS benchmark suites such as ASlib [2].

This is in contrast with the problem of combined algorithm selection and
hyperparameter optimization (CASH) [24] as considered in automated machine
c© Springer Nature Switzerland AG 2020
A. Appice et al. (Eds.): DS 2020, LNAI 12323, pp. 309–324, 2020.
https://doi.org/10.1007/978-3-030-61527-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61527-7_21&domain=pdf
http://orcid.org/0000-0002-2415-2186
http://orcid.org/0000-0001-9782-6818
http://orcid.org/0000-0002-9944-4108
https://doi.org/10.1007/978-3-030-61527-7_21


310 A. Tornede et al.

learning (AutoML), where the number of potential candidates is very large and
potentially infinite [6,16,24]. Corresponding methods heavily rely on computa-
tionally extensive search procedures combined with costly online evaluations of
the performance measure to optimize for, since learning effective meta models
for an instantaneous recommendation becomes infeasible.

In this paper, we propose extreme algorithm selection (XAS) as a novel set-
ting in-between traditional AS and AC/CASH, which is motivated by application
scenarios characterized by

– the demand for prompt recommendations in quasi real time,
– an extremely large (though still finite) set of candidate algorithms.

An example is the scenario of “On-the-fly computing” [10], including “On-the-fly
machine learning” [17] as one of its instantiations, where users can request online
(machine learning) software services customized towards their needs. Here, users
are unwilling to wait for several hours until their service is ready, but rather claim
a result quickly. Hence, for providing a first version of an appropriate service,
costly search and online evaluations are not affordable. As will be seen, XAS
offers a good compromise solution: Although it allows for the consideration of
extremely many candidate solutions, and even offers the ability to recommend
configurations that have never been encountered so far, it is still amenable to
AS techniques and avoids costly online evaluations.

In a sense, XAS relates to standard AS as the emerging topic of extreme
classification (XC) [1] relates to standard multi-class classification. Similar to
XC, the problem of learning from sparse data is a major challenge for XAS: For
a single algorithm, there are typically only observations for a few instances. In
this paper, we propose a benchmark dataset for XAS and investigate the ability
of state-of-the-art AS approaches to deal with this sparsity and to scale with
the size of candidate sets. Furthermore, to support more effective learning from
sparse data, we propose methods based on “dyadic” feature representations,
in which both problem instances and algorithms are represented in terms of
feature vectors. In an extensive experimental study, we find these methods to
yield significant improvements.

2 From Standard to Extreme Algorithm Selection

In the standard (per-instance) algorithm selection setting, first introduced in [20],
we are interested in finding a mapping s : I −→ A, called algorithm selector.
Given an instance i from the instance space I, the latter selects the algorithm
a∗ from a set of candidate algorithms A, optimizing a performance measure
m : I × A −→ R. Furthermore, m is usually costly to evaluate. The optimal
selector is called oracle and is defined as

s∗(i) ..= arg max
a∈A

E
[
m(i, a)

]
(1)
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for all i ∈ I. The expectation operatorE accounts for any randomness in the appli-
cation of the algorithm—in the non-deterministic case, the result of applying a to
i, and hence the values of the performance measure, are random variables.

Most AS approaches leverage machine learning techniques, in one way or
another learning a surrogate (regression) model m̂ : I × A −→ R, which is fast
to evaluate and thus allows one to compute a selector ŝ : I −→ A by

ŝ(i) ..= arg max
a∈A

m̂(i, a) . (2)

In order to infer such a model, we usually assume the existence of a set of training
instances ID ⊂ I for which we have instantaneous access to the associated
performances of some or often all algorithms in A according to m.

The XAS setting distinguishes itself from the standard AS setting by two
important properties. Firstly, we assume that the set of candidate algorithms
A is extremely large. Thus, approaches need to be able to scale well with the
size of A. Secondly, due to the size of A, we can no longer reasonably assume to
have evaluations for each algorithm on each training instance. Instead, we assume
that the training matrix spanned by the training instances and algorithms is only
sparsely filled. In fact, we might even have algorithms without any evaluations
at all. Hence, suitable approaches need to be able to learn from very few data
and to tackle the problem of “zero-shot learning” [29].

Similarly, the XAS setting differs from the AC and CASH settings in two main
points. Firstly, dealing with real-valued hyperparameters, the set of (configured)
algorithms A is generally assumed to be infinite in both AC and CASH, whereas
A is still finite (even if extremely large) in XAS. More importantly, in both AC
and CASH, one usually assumes having time to perform online evaluations of
solution candidates at recommendation time. However, as previously mentioned,
this is not the case in XAS, where instantaneous recommendations are required.
Hence, the XAS setting significantly differs from the AS, AC, and CASH settings.
A summary of the main characteristics of these settings is provided in Table 1.

Table 1. Overview of the characteristics of the problem settings we distinguish.

Characteristics/Setting AS XAS AC CASH

Size of A at most tens extremely many potentially infinite potentially infinite

Training data complete sparse mostly not present mostly not present

Online evaluations no no yes yes

3 Exploiting Instance Features

Instance-specific AS is based on the assumption that instances can be represented
in terms of feature information. For this purpose, fI : I −→ R

k denotes a
function representing instances as k-dimensional, real-valued feature vectors,
which can be used to learn a surrogate model (2). This can be done based
on different types of data and using different loss functions.
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3.1 Regression

The most common approach is to tackle AS as a regression problem, i.e., to
construct a regression dataset for each algorithm, where entries consist of an
instance representation and the associated performance of the algorithm at ques-
tion. Accordingly, the dataset associated with algorithm a ∈ A consists of tuples
of the form

(
fI(i),m(i, a)

)
, created for those instances i ∈ ID to which a has

been applied, so that a performance evaluation m(i, a) ∈ R is available. Using
this dataset, a standard regression model m̂a can be learned per algorithm a,
and then used as a surrogate. The model can be realized as a neural network
or a random forest, and trained on loss functions such as root mean squared or
absolute error. For an overview of methods of this kind, we refer to Sect. 6.

This approach has two main disadvantages. Firstly, it is not well suited for
the XAS setting, as it requires learning a huge number of surrogate models,
one per algorithm. Although these models can usually be trained very quickly,
the assumption of sparse training data in the XAS setting requires them to be
learned from only a handful of training examples—it is not even uncommon to
have algorithms without any performance value at all. Accordingly, the sparser
the data, the more drastically this approach drops in performance, as will be
seen in the evaluation in Sect. 5. Secondly, it requires precise real-valued eval-
uations of the measure m as training information, which might be costly to
obtain. In this regard, one may also wonder, whether regression is not solving
an unnecessarily difficult problem: Eventually, AS is only interested in finding
the best algorithm for a given problem instance, or, more generally, in ranking
the candidate algorithms in decreasing order of their expected performance. An
accurate prediction of absolute performances is a sufficient but not a necessary
condition for doing so.

3.2 Ranking

As an alternative to regression, one may therefore think of tackling AS as a rank-
ing problem. More specifically, the counterpart of the regression approach out-
lined above is called label ranking (LR) in the literature [28]. Label ranking deals
with learning to rank choice alternatives (referred to as “labels”) based on given
contexts represented by feature information. In the setting of AS, contexts and
labels correspond to instances and algorithms, respectively. The type of training
data assumed in LR consists of rankings πi associated with training instances
i ∈ ID, that is, order relations of the form (fI(i), ai,1) � . . . � (fI(i), ai,li), in
which � denotes an underlying preference relation; thus, (fI(i), a) � (fI(i), a′)
means that, for instance i represented by features fI(i), algorithm a is preferred
to (better than) algorithm a′. If i is clear from the context, we also represent
the ranking by a1 � . . . � ali . Compared to the case of regression, a ranking
dataset of this form can be constructed more easily, as it only requires qualitative
comparisons between algorithms instead of real-valued performance estimates.

A common approach to label ranking is based on the so-called Plackett-
Luce (PL) model [4], which specifies a parameterized probability distribution
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on rankings over labels (i.e., algorithms in our case). The underlying idea is to
associate each algorithm a with a latent utility function m̂a : I −→ R+ of a
context (i.e., an instance), which estimates how well an algorithm is suited for
a given instance. The functions m̂a are usually modeled as log-linear functions

m̂a(i) = exp
(
θ�

a fI(i)
)
, (3)

where θa ∈ R
k is a real-valued, k-dimensional vector, which has to be fit for

each algorithm a. The PL model specifies a probability distribution on rankings:
given an instance i ∈ I, the probability of a ranking a1 � . . . � az over any
subset {a1, . . . , az} ⊆ A is

P(a1 � . . . � az |Θ) =
z∏

n=1

m̂an
(i)

m̂an
(i) + . . . + m̂az

(i)
. (4)

A probabilistic model of that kind suggests learning the parameter matrix Θ =
{θa | a ∈ A} via maximum likelihood estimation, i.e., by maximizing

L(Θ) =
∏

i∈ID

P(πi |Θ)

associated with (4); this approach is explained in detail in [4]. Hence, the asso-
ciated loss function under which we learn is now of a probabilistic nature (the
logarithm of the PL-probability). It no longer focuses on the difference between
the approximated performance m̂a(i) and the true performance m(i, a), but on
the ranking of the algorithms with respect to m—putting it in the jargon of
preference learning, the former is a “pointwise” while the latter is a “listwise”
method for learning to rank [3].

This approach potentially overcomes the second problem explained for the
case of regression, but not the first one: It still fits a single model per algorithm
a (the parameter vector θa), which essentially disqualifies it for the XAS setting.

3.3 Collaborative Filtering

This may suggest yet another approach, namely the use of collaborative filtering
(CF) [8], in the setting of AS originally proposed by [23]. In CF for AS, we assume
a (usually sparse) performance matrix R|ID|×|A|, where an entry Ri,a = m(i, a)
corresponds to the performance of algorithm a on instance i according to m if
known, and Ri,a = ? otherwise. CF methods were originally designed for large-
scale settings, where products (e.g. movies) are recommended to users, and data
to learn from is sparse. Hence, they appear to fit well for our XAS setting.

Similar to regression and ranking, model-based CF methods also learn a
latent utility function. They do so by applying matrix factorization techniques
to the performance matrix R, trying to decompose it into matrices U ∈ R

|ID|×t

and V ∈ R
t×|A| w.r.t. some loss function L(R,U, V ), such that

R ≈ R̂ = UV � , (5)
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where U (V ) can be interpreted as latent features of the instances (algorithms),
and t is the number of latent features. Accordingly, the latent utility of a known
algorithm a for a known instance i can be computed as

m̂a(i) = Ui,•V �
•,a , (6)

even if the associated value Ri,a is unknown in the performance matrix used for
training. The loss function L(R,U, V ) depends on the exact approach used—
examples include the root mean squared error and the absolute error restricted
by some regularization term to avoid overfitting. In [15], the authors suggest
a CF approach called Alors, which we will use in our experiments later on. It
can deal with unknown instances by learning a feature map from the original
instance to the latent instance feature space. Alors leverages the CF approach
CoFiRANK [31] using the normalized discounted cumulative gain (NDCG) [30] as
loss function L(R,U, V ). Since the NDCG is a ranking loss, it focuses on decom-
posing the matrix R so as to produce an accurate ranking of the algorithms.
More precisely, it uses an exponentially decaying weight function for ranks, such
that more emphasis is put on the top and less on the bottom ranks. Hence, it
seems particularly well suited for our use case.

4 Dyadic Feature Representation

As discussed earlier, by leveraging instance features, or learning such a represen-
tation as in the case of Alors, the approaches presented in the previous section
can generalize over instances. Yet, none of them scales well to the XAS setting,
as they do not generalize over algorithms; instead, the models are algorithm-
specific and trained independently of each other. For the approaches presented
earlier (except for Alors), this does not only result in a large number of models
but also requires these models to be trained on very few data. Furthermore, it
is not uncommon to have algorithms without any observation. A natural idea,
therefore, is to leverage feature information on algorithms as well.

More specifically, we use a feature function fA : A −→ R
d representing

algorithms as d-dimensional, real-valued feature vectors. Then, instead of learn-
ing one latent utility model per algorithm, the joint feature representation of a
“dyad” consisting of an instance and an algorithm, allows us to learn a single
joint model

m̂ : fI(I) × fA(A) −→ R , (7)

and hence to estimate the performance of a given algorithm a on a given instance
i in terms of m̂(fI(i), fA(a)).

4.1 Regression

With the additional feature information at hand, instead of constructing one
dataset per algorithm, we resolve to a single joint dataset comprised of examples
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(
ψ

(
fI(i), fA(a)

)
,m(i, a)

)
with dyadic feature information for all instances i ∈

ID and algorithms a ∈ A for which a performance value m(i, a) is known. Here,

ψ : Rk × R
d −→ R

q (8)

is a joint feature map that defines how the instance and algorithm features are
combined into a single feature representation of a dyad. What is sought, then,
is a (parametrized) latent utility function m̂θ : Rq −→ R, such that

m̂θ

(
ψ

(
fI(i), fA(a)

))
(9)

is an estimation of the performance of algorithm a on instance i. Obviously, the
choice of ψ will have an important influence on the difficulty of the regression
problem and the quality of the model (9) induced from the data DREG . The
regression task itself comes down to learning the parameter vector θ. In principle,
this can be done exactly as in Sect. 3.1, also using the same loss function. Note
that this is a generalization of the approach used by SMAC [11] for predicting
performances across instances in algorithm configuration. We allow for a generic
joint feature map ψ and an arbitrary model for m̂θ , whereas SMAC limits itself
to a concatenation of features and trains a random forest for modeling m̂θ . Once
again, it is noteworthy that SMAC by itself is not applicable in the XAS setting,
as it relies on costly online evaluations.

4.2 Ranking

A similar adaptation can be made for the (label) ranking approach presented in
Sect. 3.2 [25]. Formally, this corresponds to a transition from the setting of label
ranking to the setting of dyad ranking (DR) as recently proposed in [21]. The first
major change in comparison to the setting of label ranking concerns the training
data, where the rankings πi over subsets of algorithms {ai,1, . . . , ai,li} ⊆ A for
instance i are now of the form

ψ
(
fI(i), fA(ai,1)

) � . . . � ψ
(
fI(i), fA(ai,li)

)
. (10)

Thus, we no longer represent an algorithm a simply by its label (a) but by
features fA(a). Furthermore, like in the case of regression, we no longer learn
one latent utility function per algorithm, but a single model of the form (9)
based on a dyadic feature representation. In particular, we model m̂θ as a feed-
forward neural network, where θ represents its weights, which, as shown in [21],
can be learned via maximum likelihood estimation on the likelihood function
implied by the underlying PL model. Note that the use of a neural network is of
particular interest here, since it allows one to learn the underlying joint feature
map φ implicitly. Although both instance and algorithm features are simply fed
as a concatenated vector into the network, it can recombine these features due
to its structure and thus implicitly learn such a joint feature representation.

In contrast to the methods presented in the previous section, the methods
based on dyadic feature information are capable of assigning a utility to unknown
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algorithms. Thus, they are well suited for the XAS setting and in principle even
applicable when A is infinite, as long as a suitable feature representation fA is
available. Furthermore, as demonstrated empirically in Sect. 5, the dyadic feature
approaches are very well suited for dealing with sparse performance matrices that
are typical of the XAS setting.

5 Experimental Evaluation

In our experiments, we evaluate well established state-of-the-art approaches to
algorithm selection as well as the proposed dyadic approaches in the XAS set-
ting. More specifically, we consider the problem of selecting a machine learning
classifier (algorithm) for a new classification dataset (instance) as a case study
related to the “on-the-fly machine learning” scenario [17]. Please note that this
is just one amongst many conceivable instantiations of the XAS setting, which is
supposed to demonstrate the performance of the presented methods. To this end,
we first generate a benchmark and then use this benchmark for comparison. The
generated benchmark dataset as well as the implementation of the approaches
including detailed documentation is provided on GitHub1.

5.1 Benchmark Dataset

In order to benchmark the generalization performance of the approaches pre-
sented above in the XAS setting, we consider the domain of machine learning.
More precisely, the task is to select a classification algorithm for an (unseen)
dataset. Therefore, a finite set of algorithms A for classification and a set of
instances I corresponding to classification datasets need to be specified. Further-
more, a performance measure is needed to score the algorithms’ performance.

The set of candidate algorithms A is defined by sampling up to 100 differ-
ent parameterizations of 18 classification algorithms from the machine learning
library WEKA [7], ensuring these parameterizations not being too similar. An
overview of the algorithms, their parameters and the number of instantiations
contained in A is given in Table 2. This yields |A| = 1, 270 algorithms in total.
The last row of the table sums up the items of the respective column, providing
insights into the dimensionality of the space of potential candidate algorithms.

The set of instances I is taken from the OpenML CC-18 benchmarking suite2

[27], which is a curated collection of various classification datasets that are con-
sidered interesting from a model selection resp. hyperparameter optimization
point of view. This property makes the datasets particularly appealing for the
XAS benchmark dataset, as it ensures more diversity across the algorithms.

Accordingly, the total performance matrix spanned by the algorithms and
classification datasets in principle features 1, 270 · 71 = 88, 900 entries for which
the benchmark contains 55, 919 actual values and the rest are unknown.
1 https://github.com/alexandertornede/extreme algorithm selection.
2 https://docs.openml.org/benchmark/#openml-cc18 (Excluding datasets 554,

40923, 40927, 40996 due to technical issues.).

https://github.com/alexandertornede/extreme_algorithm_selection
https://docs.openml.org/benchmark/#openml-cc18
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In the domain of machine learning, one is usually more interested in the
generalization performance of an algorithm than in the runtime. Therefore, m
is chosen to assess the solution performance of an algorithm. To this end, we
carry out a 5-fold cross validation and measure the mean accuracy across the
folds3. As the measure of interest, accuracy is a reasonable though to some extent
arbitrary choice. Note that in principle any other measure could have been used
for generating the benchmark as well.

Table 2. The table shows the types of classifiers used to derive the set A. Additionally,
the number of numerical parameters (#num.P), categorical parameters (#cat.P), and
instantiations (n) is shown.

Learner 0
R

1
R

B
N

D
S

D
T

IB
k

J
4
8

J
R

K
S

L L
M

T

M
P

N
B

P
A
R
T

R
E
P
T

R
F

R
T

S
M

O

#num.P 0 1 0 0 1 1 2 2 1 1 2 2 0 2 3 3 4 1

#cat.P 0 0 2 0 3 3 6 2 2 0 5 6 2 2 2 2 4 2

n 1 30 12 1 45 89 100 100 99 100 100 100 3 91 100 99 100 100

Training data for CF and regression-based approaches can then be obtained
by using the performance values as labels. In contrast, for training ranking
approaches, the data is labeled with rankings derived by ordering the algorithms
in a descending order w.r.t. their performance values. Note that information
about the exact performance value itself is lost in ranking approaches.

We would like to note that the problem underlying this benchmark dataset
could of course be cast as an AC or CASH problem. However, here we make the
assumption that there is no time for costly online evaluations due to the on-the-
fly setting and hence standard AC and CASH methods are not applicable.

Instance Features. For the setting of machine learning, the instances are classi-
fication datasets and associated feature representations are called meta-features
[18]. To derive a feature description of the datasets, we make use of a specific
subclass of meta-features called landmarkers, which are performance scores of
cheap-to-validate algorithms on the respective dataset. More specifically, we use
all 45 landmarkers as provided by OpenML [27], for which different configura-
tions of the following learning algorithms are evaluated based on the error rate,
area under the (ROC) curve, and Kappa coefficient: Naive Bayes, One-Nearest
Neighbour, Decision Stump, Random Tree, REPTree and J48. Hence, in total
we use 45 features to represent a classification dataset.

Algorithm Features. The presumably most straight-forward way of repre-
senting an algorithm in terms of a feature vector is to use the values of its
hyperparameters. Thus, we can describe each individual algorithm by a vector
of their hyperparameter-values. Based on this, the general feature description

3 The standard deviation of the performance values per dataset is on average 0.101,
minimum 0.0064 and maximum 0.33.
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is obtained by concatenation of the vectors. As already mentioned, the neu-
ral network-based dyad ranking approach implicitly learns a more sophisticated
joint feature map. Due to the way in which we generated the set of candidate
algorithms A, we can compress the vector sharing features for algorithms of the
same type. Additionally, we augment the vector by a single categorical feature
denoting the type of algorithm. Given any candidate algorithm, its feature rep-
resentation is obtained by setting the type of algorithm indicator feature to its
type, each element of the vector corresponding to one of its hyperparameters to
the specific value, and other entries to 0. Categorical parameters, i.e. features,
are one-hot encoded yielding a total of 153 features to represent an algorithm.

5.2 Baselines

To better relate the performance of the different approaches to each other
and to the problem itself, we employ various baselines. While RandomRank
assigns ranks to algorithms simply at random, AvgPerformance first averages
the observed performance values for each candidate algorithm and predicts the
ranking according to these average performances. k-NN LR retrieves the k near-
est neighbors from the training data, averages the performances and predicts
the ranking which is induced by the average performances. Since AvgRank is
commonly used as another baseline in the standard AS setting, we note that
we omit this baseline on purpose. This is because meaningful average ranks of
algorithms are difficult to compute in the XAS setting, where the number of
algorithms evaluated, and hence the length of the rankings of algorithms, vary
from dataset to dataset.

5.3 Experimental Setup

In the following experiments, we investigate the performance of the different
approaches and baselines in the setting of XAS for the example of the proposed
benchmark dataset as described in Sect. 5.1.

We conduct a 10-fold cross validation to divide the dataset into 9 folds of
known and 1 fold of unknown instances. From the resulting set of known per-
formance values, we then draw a sample of 25, 50, or 125 pairs of algorithms for
every instance under the constraint that the performances of the two algorithms
is not identical. Thus, a maximum fill degree of 4%, 8% respectively 20% of the
performance matrix is used for training, as algorithms may occur more than once
in the sampled pairs. The sparse number of training examples is motivated by
the large number of algorithms in the XAS setting. The assumption that per-
formance values are only available for a small subset of the algorithms is clearly
plausible here. Throughout the experiments, we ensure that all approaches are
provided the same instances for training and testing, and that the label infor-
mation is at least based on the same performance values.

In the experiments, we compare various models with each other. This includes
two versions of Alors, namely Alors (REGR) and Alors (NDCG) optimizing for
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a regression respectively ranking loss. Furthermore, we consider a state-of-the-
art regression approach learning a RandomForest regression model per algorithm
(PAReg). Note that for those algorithms with no training data at all, we make
PAReg predict a performance of 0, as recommending such an algorithm does not
seem reasonable. Lastly, we consider two approaches leveraging a dyadic feature
representation, internally fitting either a RandomForest for regression (DFReg)
or a feed-forward neural network for ranking (DR). For both dyadic approaches,
the simple concatenation of instance and algorithm features is used as a feature
map. In contrast to the other methods, the ranking model is only provided the
information which algorithm of a sampled pair performs better, as opposed to
the exact performance value that is given to other methods. A summary of the
type of features and label information used by the different approaches/baselines
is given on the left side of Table 3.

Table 3. Overview of the data provided to the approaches and their applicability to
the considered scenarios.

Approach fI fA Label Approach fI fA Label

a
p
p
ro

a
c
h
e
s Alors (REGR) ✓ ✗ m

b
a
se

li
n
e
s RandomRank ✗ ✗

Alors (NDCG) ✓ ✗ m AvgPrfm ✗ ✗ m

PAReg ✓ ✗ m AvgRank ✗ ✗ π

DFReg ✓ ✓ m k-NN LR ✓ ✗ m

DR ✓ ✓ π

The test performance of the approaches is evaluated by sampling 10 algo-
rithms for every (unknown) instance to test for. The comparison is done with
respect to different metrics detailed further below, and the outlined sampling
evaluation routine is repeated 100 times.

Statistical significance w.r.t performance differences between the best method
and any other method is determined by a Wilcoxon rank sum test with a thresh-
old of 0.05 for the p-value. Significant improvements of the best method over
another one is indicated by •.

Experiments were run on nodes with two Intel Xeon Gold “Skylake” 6148
with 20 cores each and 192 GB RAM.

5.4 Performance Metrics

On the test data, we compute the following performance metrics measuring
desirable properties of XAS approaches.

regret@k is the difference between the performance value of the best algo-
rithm within the predicted top-k of algorithms and the actual best algorithm.
The domain of regret@k is [0, 1], where 0 is the optimum meaning no regret.
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NDCG@k is a position-dependent ranking measure (normalized d iscounted
cumulative gain) to measure how well the ranking of the top-k algorithms can
be predicted. It is defined as

NDCG@k(π, π∗) =
DCG@k(π)
DCG@k(π∗)

=

(
k∑

n=1

2m(i,πn)−1

log(n+2)

)

(
k∑

n=1

2m(i,π∗
n)−1

log(n+2)

) ,

where i is a (fixed) instance, π is a ranking and π∗ the optimal ranking, and πn

gives the algorithm on rank n in ranking π. The NDCG emphasizes correctly
assigned ranks at higher positions with an exponentially decaying importance.
NDCG ranges in [0, 1], where 1 is the optimal value.

Kendall’s τ is a rank correlation measure. Given two rankings (over the
same set of elements) π and π′, it is defined as

τ(π, π′) =
C − D

√
(C + D + Tπ) · (C + D + Tπ′)

(11)

where C/D is the number of so-called concordant/discordant pairs in the two
rankings, and Tπ/Tπ′ is the number of ties in π/π′. Two elements are called
a concordant/discordant pair if their order within the two rankings is identi-
cal/different, and tied if they are on the same rank. Intuitively, this measure
determines on how many pairs the two rankings coincide. It takes values in
[−1, 1], where 0 means uncorrelated, −1 inversely, and 1 perfectly correlated.

Table 4. Results for the performance metrics Kendall’ tau (τ), NDCG@k (N@3, N@5),
and regret@k (R@1, R@3) for varying number of performance value pairs used for train-
ing. The best performing approach is highlighted in bold, the second best is underlined,
and significant improvements of the best approach over others is denoted by •.

Approach
4% fill rate / 25 performance value pairs 8% fill rate / 50 performance value pairs

τ N@3 N@5 R@1 R@3 τ N@3 N@5 R@1 R@3

PAReg 0.1712 • 0.9352 • 0.9433 • 0.0601 • 0.0185 • 0.2537 • 0.9453 0.9594 0.0493 0.0136

Alors (NDCG) 0.0504 • 0.9205 • 0.9223 • 0.0686 • 0.0225 0.0472 • 0.9155 • 0.9164 • 0.0614 • 0.0208

Alors (REGR) 0.0303 • 0.9117 • 0.9191 • 0.0794 • 0.0190 • 0.0807 • 0.9172 • 0.9304 • 0.0754 • 0.0285 •
DR 0.3445 0.9523 0.9604 0.0381 0.0089 0.3950 0.9584 0.9685 0.0322 0.0087

DFReg 0.3819 0.9564 0.9652 0.0302 0.0079 0.3692 0.9573 0.9661 0.0300 0.0123

RandomRank -0.0038 • 0.8933 • 0.9105 • 0.0878 • 0.0272 • -0.0038 • 0.8933 • 0.9105 • 0.0878 • 0.0272 •
AvgPerformance 0.1384 • 0.9388 • 0.9433 • 0.0337 0.0090 0.2083 • 0.9355 • 0.9508 • 0.0493 • 0.0199 •
1-NN LR 0.1227 • 0.9290 • 0.9310 • 0.0733 • 0.0230 • 0.1059 • 0.9246 • 0.9296 • 0.0564 • 0.0209

2-NN LR 0.1303 • 0.9278 • 0.9310 • 0.0642 • 0.0193 • 0.0874 • 0.9269 • 0.9343 • 0.0541 • 0.0206

Approach
20% fill rate / 125 performance value pairs

τ N@3 N@5 R@1 R@3

PAReg 0.3003 • 0.9525 0.9632 0.0395 0.0107

Alors (NDCG) 0.0540 • 0.9220 • 0.9242 • 0.0542 • 0.0228 •
Alors (REGR) 0.1039 • 0.9160 • 0.9329 • 0.0604 • 0.0222 •
DR 0.4507 0.9696 0.9715 0.0241 0.0055

DFReg 0.4264 0.9629 0.9720 0.0292 0.0071

RandomRank -0.0038 • 0.8933 • 0.9105 • 0.0878 • 0.0272 •
AvgPerformance 0.2541 • 0.9437 • 0.9536 • 0.0523 • 0.0084

1-NN LR 0.1152 • 0.9245 • 0.9318 • 0.0594 • 0.0249 •
2-NN LR 0.1142 • 0.9292 • 0.9350 • 0.0412 0.0176 •
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5.5 Results

The results of the experiments are shown in Table 4. It is clear from the table
that the methods for standard algorithm selection tend to fail especially in the
scenarios with only few algorithm performance values per instance. This includes
the approach of building a distinct regression model for each algorithm (PAReg)
as well as for the collaborative filtering approach Alors, independently of the
loss optimized for, even though the NDCG variant has a slight edge over the
regression one. Moreover, Alors even fails to improve over simple baselines, such
as AvgPerformance and k-NN LR. With an increasing number of training exam-
ples, PAReg improves over the baselines and also performs better than Alors, but
never yields the best performance for any of the considered settings or metrics.

In contrast to this, the proposed dyadic feature approaches clearly improve
over both the methods for the standard AS setting and the considered baselines
for all the metrics. Interestingly, DFReg performs best for the setting with only
25 performance value pairs, while DR has an edge over DFReg for the other two
settings. Still, the differences between the dyadic feature approaches are never
significant, whereas significant improvements can be achieved in comparison to
the baselines and the other AS approaches.

Moreover, our study demonstrates the heterogeneity of the benchmark
dataset. As described in [22], a relevant measure for heterogeneity is the per-
instance potential for improvement over a solution that is static across instances,
i.e., what is often called the single best algorithm or solver (SBS). In this case
study, the SBS is represented by the AvgPerformance baseline, which is always
worse than the oracle with respect to all measures and in particular the regret@k
measures. Hence, as the superior performances of our approach compared to the
AvgPerformance demonstrate, the benchmark dataset offers a potential for per-
instance algorithm selection.

The results of our study show that models with strong generalization perfor-
mance can be obtained despite the small number of training examples. Moreover,
the results suggest that there is a need for the development of specific methods
addressing the characteristics of the XAS setting. This concerns the large number
of different candidate algorithms as well as the sparsity of the training data.

6 Related Work

As most closely related work, we subsequently highlight several AS approaches
to learning latent utility functions. For an up-to-date survey, we refer to [12].

A prominent example of a method learning a regression-based latent utility
function is [32], which features an empirical hardness model per algorithm for esti-
mating the runtime of an algorithm, i.e., its performance, for a given instance based
on a ridge regression approach in the setting of SAT solver selection. Similarly,
[13] learn per-algorithm hardness models using statistical (non-)linear regression
models for algorithms solving the winner determination problem. Depending on
whether a given SAT instance is presumably satisfiable or not, conditional runtime
prediction models are learned in [9] using ridge linear regression.
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In [5], a label-ranking-based AS approach for selecting collaborative filtering
algorithms in the context of recommender systems is presented leveraging nearest
neighbor and random forest label rankers.

Similar to our work, [19] leverages algorithm features in the form of a binary
vector indicating which algorithm is considered to learn a probabilistic ranking
model considering up to tens of algorithms. AS was first modeled as a CF prob-
lem in [23], using a probabilistic matrix factorization technique to select algo-
rithms for the constraint solving problem. Assuming a complete performance
matrix for training, low-rank latent factors are learned in [14] using singular
value decomposition to obtain a selector en par with the oracle. Lastly, in [26] a
decision-theoretic approach is proposed leveraging survival analysis to explicitly
acknowledge timeouts of algorithms in the learning process.

7 Conclusion

In this paper, we introduced the extreme algorithm selection (XAS) setting and
investigated the scalability of various algorithm selection approaches in this
setting. To this end, we defined a benchmark based on the OpenML CC-18
benchmark suite for classification and a set of more than 1,200 candidate algo-
rithms. Furthermore, we proposed the use of dyadic approaches, specifically dyad
ranking, taking into account feature representations of both problem instances
(datasets) and algorithms, which allows them to work on very few training data.
In an extensive evaluation, we found that the approaches exploiting dyadic fea-
ture representations perform particularly well according to various metrics on
the proposed benchmark and outperform other state-of-the-art AS approaches
developed for the standard AS setting.

The currently employed algorithm features allow for solving the cold start
problem only to a limited extent, i.e., only algorithms featuring known hyperpa-
rameters can be considered as new candidate algorithms. Investigating features
to describe completely new algorithms is a key requirement for the approaches
considered in this paper, and therefore an important direction for future work.
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