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Preface

This volume contains the papers selected for presentation at the 23rd International
Conference on Discovery Science (DS 2020), which was organized to be held in
Thessaloniki, Greece, during October 19–21, 2020. Due to the outbreak of the
COVID-19 pandemic, the conference was moved online and held virtually over the
same time period. The conference was organized by the Aristotle University of
Thessaloniki, Greece, in cooperation with the Open University of Cyprus, Cyprus,
Dalhousie University, Canada, and University of Bari Aldo Moro, Italy.

DS is a conference series that started in 1986. Held every year, DS continues its
tradition as the unique venue for the latest advances in the development and analysis of
methods for discovering scientific knowledge, coming from machine learning, data
mining, and intelligent data analysis, with their application in various scientific
domains. In particular, major areas selected for DS 2020 include: artificial intelligence
applied to science; machine learning; knowledge discovery and data mining; causal
modeling; AutoML, meta-learning, and planning to learn; machine learning and
high-performance computing; grid and cloud computing; literature-based discovery;
ontologies for science, including the representation and annotation of datasets and
domain knowledge; explainable AI, interpretability of machine learning, and deep
learning models; process discovery and analysis; computational creativity; anomaly
detection and outlier detection; data streams, evolving data, change detection, concept
drift, and model maintenance; network analysis; time-series analysis; learning from
complex data; data and knowledge visualization; human-machine interaction for
knowledge discovery and management; evaluation of models and predictions in dis-
covery setting; machine learning and cybersecurity; as well as applications of the above
techniques in scientific domains.

DS 2020 received 76 international submissions that were carefully reviewed by
three or more Program Committee (PC) members or external reviewers. After a rig-
orous reviewing process, 26 regular papers and 19 short papers were accepted for
presentation at the conference and publication in the DS 2020 volume. Short papers
were just allotted a smaller presentation time compared to regular ones.

The conference program included three invited keynotes. Prof. Myra Spiliopoulou
from Otto von Guericke University Magdeburg, Germany contributed a talk titled
“Knowledge Discovery in mHealth – dealing with few noisy data.” Prof. Peter A. Flach
from University of Bristol, UK, contributed a talk titled “The highs and lows of
performance evaluation: Towards a measurement theory for machine learning.”
Prof. Gustau Camps-Valls from Universitat de València, Spain, gave a presentation
titled “Machine learning for Modelling and Understanding in Earth Sciences.”
Abstracts of the invited talks with short biographies of the invited speakers are included
in this volume.

We would like to sincerely thank all people who helped this volume come into being
and made DS 2020 a successful and exciting event. In particular, we would like to



express our appreciation for the work of the DS 2020 PC members and external
reviewers who helped assure the high standard of accepted papers. We would like to
thank all authors of DS 2020, without whose high-quality contributions it would not
have been possible to organize the conference.

We are grateful to the Steering Committee chair, Sašo Džeroski, and the whole
Steering Committee for their extraordinary support in critical decisions concerning the
event plan. We wish to express our thanks to local organization chairs, Anastasios
Gounaris and Apostolos Papadopoulos, and the whole organization team for their
support and incredible work. We would also thank the treasurer, Richard Chbeir, for his
professional work. We would like to express our deepest gratitude to all those who
served as organizers, session chairs, and hosts, who made great efforts to meet the
online challenge to make the virtual conference a real success. Finally, our thanks are
due to Alfred Hofmann and Anna Kramer of Springer for their continuous support and
work on the proceedings. We are grateful to Springer for a special issue on Discovery
Science to be published in the Machine Learning journal. All authors were given the
possibility to extend and rework versions of their papers presented at DS 2020 for a
chance to be published in this prestigious journal. For DS 2020, Springer also sup-
ported a Best Paper Award to Riku Laine, Antti Hyttinen, and Michael Mathioudakis
for their paper “Evaluating Decision Makers over Selectively Labelled Data:
A Causal Modeling Approach.” We would also like to honorary mention the
runner-up paper “Explaining Sentiment Classification with Synthetic Exemplars and
Counter-Exemplars” by Orestis Lampridis, Riccardo Guidotti, and Salvatore Ruggieri.

September 2020 Annalisa Appice
Grigorios Tsoumakas
Yannis Manolopoulos

Stan Matwin

vi Preface
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Knowledge Discovery in mHealth – Dealing
with Few Noisy Data

Myra Spiliopoulou

Research Group on Knowledge Management and Discovery (KMD), Faculty of
Computer Science, Otto von Guericke University Magdeburg, PO Box 4120,

39016 Magdeburg, Germany
myra@iti.cs.uni-magdeburg.de

Abstract. Patients with chronic diseases can greatly benefit from mHealth
technology. There are solutions assisting them in measuring signals (e.g., blood
pressure, sugar level, etc.), in keeping a diary with Ecological Momentary
Assessments (EMA), such as physical exercise, onset of symptoms, and sub-
jective perception of health condition. Machine learning can deliver useful
insights from data thus collected. While sensor signals can be collected without
interruption, EMA recording depends on patients’ self-discipline and compli-
ance.
The talk starts with an overview of the role of mHealth applications in

diagnostics and treatment support. Then, we focus on EMA for chronic con-
ditions. We discuss challenges of learning from few and noisy recordings, and
methods for prediction and risk factor identification on these data.

Keywords: mHealth � Multidimensional sequences � Gaps � Time series
prediction � Adherence



The Highs and Lows of Performance
Evaluation: Towards a Measurement Theory

for Machine Learning

Peter A. Flach

Intelligent Systems Laboratory, Department of Computer Science, University of
Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK

Peter.Flach@bristol.ac.uk

Abstract. Our understanding of performance evaluation measures for
machine-learned classifiers has improved considerably over the last decades.
However, there is a range of areas where this understanding is still lacking,
leading to ill-advised practices in classifier evaluation. This is clearly prob-
lematic, since if machine learning researchers are unclear about what exactly
their experiments are telling them about their machine learning algorithms, then
how can end-users trust systems deploying those algorithms?
I suggest that in order to make further progress we need to develop a proper

measurement theory of machine learning. Measurement theory studies the
concepts of measurement and scale. If you have a way to measure, say, the
length of individual rods or planks, this should also allow you to then calculate
the combined length of concatenated rods or planks. What relevant concatena-
tion operations are there in data science and AI, and what does that mean for the
underlying measurement scale?
I discuss by example what such a measurement theory might look like and

what kinds of new results it would entail. I furthermore argue that key properties
such as classification ability and data set difficulty are unlikely to be directly
observable, suggesting the need for latent-variable models. Ultimately, machine
learning experiments need to go beyond simple correlations and aim to make
causal inferences of the form ‘Algorithm A outperformed algorithm B because
two classes were highly imbalanced,’ or counterfactually, ‘if the classes were
rebalanced, the observed performance difference between A and B would
disappear.’

Keywords: Machine learning experiments � Classification performance �
Psychometrics � latent variables � Levels of measurement � Causal inference



Machine Learning for Modelling
and Understanding in Earth Sciences

Gustau Camps-Valls

Image Processing Lab, Universitat de València, Spain
https://isp.uv.es

@isp_uv_es

Abstract. The Earth is a complex dynamic network system. Modelling and
understanding the system is at the core of scientific endeavour. We approach
these problems with machine learning (ML) algorithms. I will review several
ML approaches we have developed in the last years: 1) advanced Gaussian
processes models for bio-geo-physical parameter estimation, which can incor-
porate physical laws, blend multisensor data while providing credible confi-
dence intervals for the estimates, and improved interpretability, 2) nonlinear
dimensionality reduction methods to decompose Earth data cubes in
spatially-explicit and temporally-resolved modes of variability that summarize
the information content of the data and allow for identifying relations with
physical processes, and 3) advances in causal inference that can uncover cause
and effect relations from purely observational data.
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Evaluating Decision Makers over
Selectively Labelled Data: A Causal

Modelling Approach

Riku Laine1(B), Antti Hyttinen2 , and Michael Mathioudakis2

1 University of Helsinki, Helsinki, Finland
riku.laine@helsinki.fi

2 HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
{antti.hyttinen,michael.mathioudakis}@helsinki.fi

Abstract. We present a Bayesian approach to evaluate AI decision sys-
tems using data from past decisions. Our approach addresses two chal-
lenges that are typically encountered in such settings and prevent a direct
evaluation. First, the data may not have included all factors that affected
past decisions. And second, past decisions may have led to unobserved
outcomes. This is the case, for example, when a bank decides whether
a customer should be granted a loan, and the outcome of interest is
whether the customer will repay the loan. In this case, the data includes
the outcome (if loan was repaid or not) only for customers who were
granted the loan, but not for those who were not. To address these chal-
lenges, we formalize the decision making process with a causal model,
considering also unobserved features. Based on this model, we compute
counterfactuals to impute missing outcomes, which in turn allows us to
produce accurate evaluations. As we demonstrate over real and synthetic
data, our approach estimates the quality of decisions more accurately and
robustly compared to previous methods.

Keywords: Selective labels · Selection bias · Causal modelling ·
Bayesian inference · Model evaluation

1 Introduction

Today, more and more decisions are made by algorithms based on statistical
models learned from data [7,10]. This is quite prevalent on the Web, where
algorithms decide search engine results or product recommendations in online
stores. But automated decision systems are used also in other situations – for
credit scoring, insurance pricing, and also judicial decisions (e.g., COMPAS [2]
and RisCanvi [20] are algorithmic tools used to evaluate the risk for recidivism
in the US and Catalan prison systems, respectively).

In this work, we present a Bayesian approach to evaluate decision
algorithms—a task that often must be performed before algorithms are actually
deployed. In practice, this is done by simulating the deployment of the algorithm
c© Springer Nature Switzerland AG 2020
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Fig. 1. Bail-or-jail: a machine decides for the same defendants considered by a judge.
When the machine decides to allow bail but the judge had denied it, we cannot evaluate
directly the machine’s decision.

over a log of past cases and measuring how well it would have performed, if it had
been used to replace the human decision makers or other decision system cur-
rently in place. Herein lies a challenge: previously-made decisions affect the data
on which the evaluation is performed, in a way that prevents straightforward
evaluation. Let us explain this with an example, also illustrated in Fig. 1.

Example. In some judicial systems, a person who is arrested may stay out of jail
if the judge allows them to post bail (i.e., deposit money as a promise to attend
the trial and honour other conditions). The decision (bail or jail) is successful
if bail is not allowed for defendants who violate its conditions. Now consider a
machine-based system with the potential to replace the judge as decision maker.
Before the machine is actually deployed, we wish to evaluate its decisions for
past cases decided by judges. However, we are only able to directly evaluate
the machine’s decisions for cases where bail was allowed. Why? Because if bail
was not allowed, we do not know whether the defendant would have violated it.
In such cases, one approach would be to infer the defendant’s behaviour in the
hypothetical case they had been allowed bail. Here lie some challenges. First, the
inference should take into account the bias in the observed data. And second,
the judge might have made their decision based on more information than is
available to the machine – e.g., if the judge witnessed aggressive behaviour by
the defendant during the ruling.

General Cases. The above exemplifies a general class of cases: a machine is
asked to make a binary decision (e.g., whether to allow bail, grant a loan, etc.)
for a specific case, based on a set of recorded features; the decision leads to
an outcome that is successful or unsuccessful; and some decisions prevent us
from directly evaluating alternative decisions. Our task, then, is to evaluate the
quality of machine decisions against a log of past cases. For accurate evaluation,
we should account for the bias in the observations and the possibility that non-
recorded information influenced past decisions.
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Recent Related Work. There is a rich literature on problems that arise in
similar settings (see related work in Sect. 5). Recently, Lakkaraju et al. [12]
referred to the evaluation in such settings as the ‘selective labels problem’ (also
considered by [5,10]). They presented contraction, a method to evaluate decision
makers in a setting where subjects are randomly assigned to decision makers with
varying leniency levels. Contraction takes advantage of the assumed random
assignment and variance in leniency: essentially it measures the performance of
the evaluated system using the cases of the most lenient judge – and so it works
well when lenient decision makers decided a large number of cases.

Our Contributions. We build upon the setting of [12] and present a novel
approach to evaluate decision makers over selectively labelled data, using causal
modelling to represent assumptions about the process that generated the data
and counterfactual reasoning to impute unobserved outcomes. We experiment
with synthetic data to highlight various properties of our approach and study a
case of real recidivism data [2]. Our results indicate that our method achieves
more accurate results with considerably less variation than the state-of-the-art,
and unlike the contraction approach that is tailored to this setting [12], it does
not depend only on the most lenient decision makers in the data.

2 Setting and Problem Statement

We consider data recorded from a decision making process with the following
characteristics [12]. Each case is decided by a decision maker and let J index
the decision maker the case is assigned to. For each case, described by a set of
features F, the assigned decision maker Hj (where j is a particular value for J)
makes a binary decision T ∈ {0, 1}, nominally referred to as positive (T = 1)
or negative (T = 0). In our bail-or-jail example of Sect. 1, Hj corresponds to
the judge deciding whether to grant bail or not (positive or negative decision,
respectively). The decision is followed with a binary outcome Y, which is nomi-
nally referred to as successful (Y = 1) or unsuccessful (Y = 0). An outcome can
be unsuccessful only if the decision that preceded it was positive. If the decision
was negative, then the outcome is considered by default successful. Back in our
example, the decision of the judge is unsuccessful only if the judge grants bail
and the defendant violates its terms. Otherwise, if the decision of the judge was
to keep the defendant in jail, the outcome is by default successful since there
can be no bail violation.

For each case, a record (j, x, t, y) is produced that contains only a subset
X ⊆ F of the features of the case, the decision T of the judge and the outcome
Y – but leaves no trace for a subset Z = F \X of the features. In our example, X
corresponds to publicly recorded information about the bail-or-jail case (e.g., the
charged crime) and Z corresponds to features that are observed by the judge but
do not appear on record (e.g., exact verbal response of the defendant in court).
The set of records D = {(j, x, t, y)} comprises what we refer to as the dataset.
Figure 2 shows the causal diagram of this decision making process.
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We wish to evaluate a decision maker M that considers a case from the
dataset – and makes its own binary decision T based on the recorded features
X. In our example, M corresponds to a machine-based system that is considered
for bail-or-jail decisions. For M, the definition and semantics of decision T and
outcome Y are the same as for decision makers H, described above.

The quality of a decision maker M is measured in terms of its failure rate
FR – i.e., the fraction of unsuccessful outcomes out of all the cases for which
a decision is made. A good decision maker achieves as low failure rate FR as
possible. Note, however, that a decision maker that always makes a negative
decision T = 0, has failure rate FR = 0, by definition. Thus, for the evaluation
to be meaningful, we evaluate decision makers at given leniency levels R, defined
as the fraction of cases with positive decisions.

Problem 1 (Evaluation). Given a dataset {(j, x, t, y)}, and a decision maker M,
provide an estimate of the failure rate FR at a given leniency level R = r.

3 Counterfactual-Based Imputation for Selective Labels

Problem 1 is challenging because the dataset does not directly provide a way to
evaluate FR. If decision maker M makes a positive decision for a case for which
the dataset has negative decision by a decision maker Hj , how can we infer
the outcome Y in the hypothetical case where M’s decision had been followed?
Such questions fall straight into the realm of causal analysis and particularly the
evaluation of counterfactuals [4] – an approach that we follow in this paper.

A first thought is to simply predict the outcomes based on the features of the
case. In the bail-or-jail example, we could investigate whether certain features of
the defendant (e.g., their age and marital status) are good predictors of whether
they comply to the bail conditions – and use them if they do. However, not all
features that are available to Hj are available to M in the setting we consider,
which forms our second major challenge. These complications mean that making
direct predictions based on the available features can be suboptimal and even
biased. However, important information regarding the unobserved features Z can
often be recovered via careful consideration of the decisions in the data, which
our counterfactual approach achieves [8,16].

For illustration, let us consider a defendant who received a negative decision
by a human judge Hj . Suppose also that, among defendants with similar recorded
features X who were released, none violated the bail conditions – and therefore,
judging from observations alone, the defendant should be considered safe to
release based on X. However, if the judge was both lenient and precise – i.e.,
was able to make those positive decisions that lead to successful outcome – then
it is very possible that the negative decision is attributed to unfavourable non-
recorded features Z. And therefore, if a positive decision were made, the above
reasoning suggests that a negative outcome is more likely than what would have
been predicted based alone on the recorded featuresX of released defendants.

Our approach for evaluating M on cases where negative decision by Hj is
recorded in the data, unfolds over three steps: first, we learn a causal model over
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the dataset; then, we compute counterfactuals to predict unobserved outcomes;
and finally, we use these predictions to evaluate a set of decisions by M.

Fig. 2. Causal diagram for the selective labels setting

3.1 The Causal Model

Recall from Sect. 2 that Fig. 2 provides the general structure of causal relation-
ships for quantities of interest. We use the following causal model over this
structure, building on what is used by Lakkaraju et al. [12] and others [8,16].
First, we model the unobserved features Z as a (continuous) one-dimensional
risk factor. This is motivated by the standard use of propensity scores [1,18] to
account for confounding, as well as the COMPAS risk score in the context of
recidivism [2]. Motivated by the central limit theorem, we use a Gaussian distri-
bution for it, and since Z is unobserved we can assume without loss of generality
that Z ∼ N(0, 1). For presentation, we use here a single observed feature X – it
is straightforward to extend the model to multiple features X.

In our setting, a negative decision T = 0 leads to a successful outcome Y = 1.
When T = 1, the outcome is modelled with a logistic regression model over the
features X and Z (σ is the standard logistic function):

P(Y = 1 | T, x, z) =

{
1, if T = 0
σ(αY + βXx + βZz), o/w

(1)

We model the decisions in the data similarly with a logistic regression:

P(T = 1 | j, x, z) = σ(αj + γXx + γZz) (2)

Although we model the decision makers here probabilistically, we do not imply
that their decisions are necessarily probabilistic. The probabilistic model arises
from the unknown specific details of reasoning employed by each decision maker
Hj . Note also that we are making the simplifying assumption that coefficients
γX, γZ are the same for all Hj , but decision makers are allowed to differ in inter-
cept αj . Parameter αj controls the leniency of a decision maker Hj ∈ H.

We take a Bayesian approach to learn the model from the dataset. In partic-
ular, we consider the full probabilistic model defined in Eqs. 1 and 2 and obtain
the posterior distribution of its parameters θ = {αY, βX, βZ, γX, γZ}∪⋃

Hj∈H{αj},
which includes intercepts αj for all Hj employed in the data. We use suitable
prior distributions to ensure the identifiability of the parameters (Appendix 2).
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3.2 Computing Counterfactual Outcomes

We remind that the goal is to provide a solution to Problem 1 – and, to do
that, we wish to address those cases where M decides T = 1 while the data
has a negative decision T = 0, where evaluation cannot be performed directly.
In other words, we wish to answer a ‘what-if’ question: for each specific case
where a decision maker Hj decided T = 0, what if we had intervened to alter the
decision to T = 1? In the formalism of causal inference [17], we wish to evaluate
the counterfactual expectation

Ŷ = ET←1[Y |x, j,T = 0;D] (3)

The expression above concerns a specific entry in the dataset with features X = x,
for which decision maker Hj made a decision T = 0. It expresses the probability
that the outcome would have been positive (Y = 1) had the decision been positive
(T = 1), conditional on what we know from the data entry (X = x, T = 0,
J = j) as well as from the entire dataset D. Notice that the presence of D in the
conditional part of 3 gives us more information about the data entry compared to
the entry-specific quantities and is thus not redundant. In particular, it provides
information about the leniency and other parameters of the decision maker Hj ,
which is important to infer information about the unobserved variables Z.

Fig. 3. CFBI. Negative decisions (T = 0) by decision maker M are evaluated as success-
ful (Ŷ = 1), shown with dashed arrows. Positive decisions (T = 1) by decision maker M
for which the decision in the data was also positive (T = 1) are evaluated according to
the outcome Y in the data, as marked by the solid arrow. For the other cases (second
and third), the evaluated outcomes Ŷ are based on CFBI. The estimated failure rate of
the decision maker M is 2.7/7 = 38.6% here.

For the model defined above, the counterfactual Ŷ can be computed by the
approach of Pearl [17]. For a fully defined model (with fixed parameters) the
counterfactual expectation can be determined by the following expression:

ET←1(Y|j,T = 0, x) =
∫

P(Y = 1|T = 1, x, z)P(z|j,T = 0, x)dz (4)
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In essence, we determine the distribution of the unobserved features Z using the
decision, observed features x, and the leniency of the employed decision maker,
and then determine the distribution of Y conditional on all features, integrating
over the unobserved features (Appendix 1). Note that the decision maker model
in Eq. 2 affects the distribution of the unobserved features P(Z|j,T = 0, x).

Having obtained a posterior probability distribution for parameters θ we can
estimate the counterfactual outcome value based on the data:

Ŷ =
∫

P(Y = 1|T = 1, x, z, θ)P(z|j,T = 0, x, θ)dzP(θ|D)dθ (5)

For all data entries other than the ones with T = 0 we have Ŷ = Y where Y is
the outcome recorded in D. The result of Eq. 5 can be computed numerically:

Ŷ =
1
N

N∑
k=1

P(Y = 1|T = 1, x, zk, θk) (6)

where the sums are taken over N samples of θ and Z obtained from their poste-
riors. In practice, we use the MCMC functionality of Stan to obtain the samples.

3.3 Evaluating Decision Makers

Expression 6 gives us a direct way to evaluate the outcome of a positive decisions
for any data entry for which T = 0. Note though that, unlike Y that takes integer
values {0, 1}, Ŷ may take also fractional values Ŷ ∈ [0, 1]. Having obtained
outcome estimates for all data entries, it is now straightforward to obtain an
estimate for the failure rate FR of decision maker M: it can be computed as a
simple average over all data entries. Our approach is summarized in Fig. 3. We
will refer to it as CFBI, for counterfactual-based imputation.

4 Experiments

We test the accuracy and robustness of CFBI in evaluating the performance of
decision makers of different kinds. Towards this end, we employ both synthetic
and real data. We compare CFBI especially with Contraction [12]. The imple-
mentation is available online.1 Our manuscript contains the specification of the
parameters and datasets we used for reproducibility.

4.1 Synthetic Data

We begin our experiments with synthetic data, in order to investigate various
properties of our approach. To set up the experimentation, we follow the set-
ting of [12]. Each synthetic dataset we experiment with consists of n = 5,000

1 https://version.helsinki.fi/rikulain/CFBI-public.

https://version.helsinki.fi/rikulain/CFBI-public
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randomly generated cases. The features X and Z of each case are drawn inde-
pendently from a standard Gaussian. Each case is assigned randomly to one out
of m = 50 decision makers, such that each decision maker receives a total of 100
cases. The leniency R of each decision maker is drawn from Uniform(0.1, 0.9).
A decision T is made for each case by the assigned decision maker. The exact
method of assigning a decision is specified in the next subsection (Sect. 4.2).
If the decision is positive, then a binary outcome is sampled from a Bernoulli
distribution:

P(Y = 0 | T = 1, x, z) = σ(bXx + bZz + eY) (7)

with bX = bZ = 1. Additional noise is added to the outcome of each case via eY,
which was drawn from a zero-mean Gaussian distribution with small variance,
eY ∼ N (0, 0.1). The data set was split in half to training and tests sets, such
that each decision maker appears only in one. The evaluated decision maker M
is trained on the training set while the evaluation is based only on the test set.

Fig. 4. Left: evaluation of Batch decision maker on data with Independent. Error bars
show std. of the FR estimate across 10 datasets. In this basic setting, both our CFBI and
contraction follow the true evaluation curve closely but CFBI exhibits lower variation.
Right: evaluating Batch on data employing Independent and with leniency at most
0.5. CFBI offers sensible estimates of the failure rates for all levels of leniency, whereas
Contraction only up to leniency 0.5.

4.2 Decision Makers

Our experiments involve two categories of decision makers: (i) the set of decision
makers H, the decisions of which are reflected in a dataset, and (ii) the decision
maker M, whose performance is to be evaluated on the log of cases decided by H.

Decisions by H. Decision makers H base their decision on their perception of
the dangerousness of a case, to which we refer as the risk score. We compute the
risk score as

risk score = bXX + bZZ. (8)

For the first type of decision makers we consider, we assume that decisions
are rational and well-informed, and that a decision maker with leniency r makes
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a positive decision only for the r fraction of cases that are most likely to lead
to a positive outcome. Specifically, we assume that the decision-makers know
the cumulative distribution function F that the risk scores s = bXx + bZz of
defendants follow. This is a reasonable assumption to make when decision mak-
ers have accurate knowledge of the joint feature distribution. For example, an
experienced judge who has tried a large volume and variety of defendants may
have a good idea about the various cases that appear at court and which of them
pose higher risk. Considering a decision maker with leniency R = r who decides
a case with risk score s, a positive decision is made only if s is in the r portion
of the lowest scores according to F . Since in our setting the distribution F is
given and fixed, such decisions for different cases happen independently based
on their risk score – and we refer to such decision makers as Independent.

In addition, we consider a different type of decision makers, namely Batch,
also used in [12]. Decision makers of this type consider all cases assigned to
them at once, as a batch; sort them by the risk score in Eq. 8; and, for leniency
R = r, release r portion of the batch with the lowest risk score. Such decision
makers still have a good knowledge of the relative risk that the cases assigned
to them pose, but they are also short-sighted, as they make decisions for a case
depending on other cases in their batch. For example, if a decision maker is
randomly assigned a batch of cases that are all very likely to lead to a good
outcome, a large portion 1 − r of them will still be handed a negative decision.

Finally, we consider a third type of decision maker, namely Random. It sim-
ply makes a positive decision with probability r. We include this to test the
evaluation methods also in settings where some of their assumptions may be
violated.

Decisions by M. For M, we consider the same three types of decision makers
as for H above, with one difference: decision makers H have access to Z, while
M does not. Their definitions are adapted in the obvious way. Risk scores are
computed with a logistic regression model which is trained on the training data
set. For the Independent decision maker M, the cumulative distribution function
of the risk scores is constructed using the empirical distribution of risk scores of
all the observations in the training data.

4.3 Evaluators

We aim to investigate the performance of different methods in evaluating M on
a dataset that records cases decided by H. We call those methods “evaluators”.
Desired evaluator properties are accuracy (i.e., the evaluator should estimate
well the failure rate of M), but also robustness (i.e., consistent performance).

The first evaluator we consider is CFBI, the method we propose in Sect. 3.
To summarize: CFBI uses the dataset to learn a model, i.e., a distribution for
the parameters involved in formulas 1 and 2; using this distribution, it predicts
the outcome of the cases for which H made a negative decision and M makes a
positive one; and finally it evaluates the failure rate of M on the dataset.

The second evaluator we consider is Contraction, proposed in recent
work [12]. It is designed specifically to estimate the failure rate of a machine



12 R. Laine et al.

Fig. 5. Mean absolute error (MAE) of estimate w.r.t. true evaluation. Error bars show
std. of the absolute error over 10 datasets. CFBI offers robust estimates across all
decision makers. The error of Contraction varies within and across different decision
makers.

decision maker in the selective labels setting. Contraction bases its evaluation
only on the cases assigned to the most lenient decision maker Hl in the data.
Because of the lower leniency of the evaluated decision maker M, the approach
assumes M makes a negative decision for all cases for which Hl makes a negative
decision. The cases with a positive decision by Hl are sorted according to the
lowest leniency level at which they receive positive decisions by M. The sorted
list is then contracted to match the leniency level r at which M is evaluated.
Because all outcomes for cases in this list are available in the data, FR is esti-
mated as the fraction of cases in the contracted list with a negative outcomes
among cases assigned to Hl.

In addition, we consider two baselines. As a first baseline, we consider
the method that evaluates the failure rate M based only on those cases that
received a positive decision by H in the data. Following [12], it is referred to
as LabeledOutcomes. As a second baseline, we consider a method that per-
forms straightforward imputation: given a training dataset, it considers only
those cases that were accompanied with a positive decision and builds a logistic
regression model on them; it then uses the prediction of this logistic regression
to impute the outcome in the test data for those cases where M makes a posi-
tive decision but H had made a negative decision. We refer to this evaluator as
LogisticRegression.

Finally, all evaluators are compared with the optimal evaluator that has
access to actual outcomes. While such an evaluator is unavailable in practice, it
is available for synthetic data. Following [12], it is referred to as TrueEvaluation.

4.4 Results

We show the accuracy of the different evaluators (Sect. 4.3) on different decision
makers M over data sets employing different decision makers H (Sect. 4.2).
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The Basic Setting. Figure 4 (left) shows estimated failure rates for each of
the evaluators, at different leniency levels, when decisions in the data were made
by Independent decision maker, while M was of Batch type. In interpreting
this plot, we should consider an evaluator to be accurate if its curve follows
well that of the optimal evaluator TrueEvaluation. In this scenario, CFBI and
Contraction are quite accurate, while the naive evaluation of LabeledOutcomes,
but also the straightforward imputation by LogisticRegression perform
quite poorly. In addition, CFBI exhibits considerably lower variation than
Contraction.

Figure 5 shows the aggregate absolute error rates of the two evaluators, CFBI
and Contraction. Each error bar is based on all datasets and leniencies from 0.1
to 0.8, for different types of decision makers for H and for M. The overall result is
that CFBI evaluates the decision makers accurately and robustly across different
decision makers. It is able to learn model parameters that capture the behaviour
of decision makers employed in the data and use that model to evaluate any
decision maker M. Contraction shows consistently poorer performance, and
markedly larger variation as shown by the error bars. Again, we postulate this
happens because Contraction crucially depends on the cases assigned to the
most lenient decision makers, while CFBI uses all data.

The Effect of Limited Leniency. Figure 4 (right) shows the results when the
leniency of decision makers in the data was restricted below 0.5, and not up to
0.9 as for Fig. 4 (left). Here, Contraction is only able to estimate the failure rate
up to 0.5 – but for higher leniency rates it does not output any results. On the
contrary, CFBI produces failure rate estimates for all leniencies. We note that,
when we compare with TrueEvaluation, the accuracy CFBI decreases for the
largest leniencies – as expected, since such cases do not exist in the data. This
observation is important in the sense that decision makers based on elaborate
machine learning techniques, may well allow for evaluation at higher leniency
rates than those (often human) employed in the data.

The Effect of Unobservables. To explore situations where the importance
of unobservables is higher, we now set bX = 1, bZ = 5. The results are shown
in Fig. 6. In these settings, the decisions in the data are made mostly based on
background factors not observed by the decision maker M being evaluated, thus
the performance M is worse than in Fig. 5. Nevertheless, the proposed method
(CFBI) is able to evaluate different decision makers M accurately. Contraction
shows again consistently worse performance in comparison. Furthermore, when
compared to the basic case (Fig. 5), the performance of Contraction is also
worse, indicating some sensitivity to unobservables.

Thus overall, in these synthetic settings CFBI achieves more accurate results
with considerably lower variation than Contraction, allowing for evaluation
in cases where the strong assumptions of Contraction inhibit evaluation alto-
gether.
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Fig. 6. MAE of estimate w.r.t true evaluation when the effect of the unobserved Z is
high (bZ = 5). The decision quality is poorer, but CFBI can still evaluate the decisions
accurately. Contraction shows higher variance and lower accuracy.

Fig. 7. Results with COMPAS data. Error bars show std. of the absolute FR estimate
errors across all levels of leniency w.r.t. true evaluation. CFBI gives both more accurate
and precise estimates despite of the number of judges used.

4.5 COMPAS Data

COMPAS is a set of tools for assisting decisions in the criminal justice system.
It is derived from prior criminal history, socio-economic and personal factors
and it predicts recidivism for two years [2]. The COMPAS dataset used in this
study is recidivism data from Broward county, California, USA made available
by ProPublica. Judges and defendants in the data correspond to decision makers
and cases in our setting (Sect. 2), respectively. The original data contained infor-
mation on 18,610 defendants who were given a COMPAS score during 2013 or
2014. Following ProPublica’s data cleaning process, finally the data consisted of
n = 6,172 offenders. Data includes the subjects’ demographic information such
as gender, age and race together with information on their previous offences.

For the analysis, we deployed m ∈ {12, 24, 48} synthetic judges with fixed
leniency levels 0.1, 0.5 and 0.9 so that a third of the decision makers shared
a leniency level. The n subjects were distributed to the m judges uniformly
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at random. In this scenario, the judges based their decisions on the COMPAS
score, releasing the fraction of defendants with the lowest score according to
their leniency. E.g. if a synthetic judge had leniency 0.5, they would release
50% of defendants with the lowest COMPAS score. Those who were given a
negative decision had their outcome label set to positive Y = 1. After assigning
the decisions, the data was split 10 times to training and test sets containing
the decisions of half of the judges each. A logistic regression model was trained
on the training data to predict two-year recidivism from categorised age, race,
gender, number of prior crimes and the degree of crime COMPAS screened for
(felony or misdemeanour) using only observations with positive decisions. As the
COMPAS score is derived from a larger set of predictors than the aforementioned
five [2], the unobservable information would then be encoded in the COMPAS
score. The built logistic regression model was used in decision maker M in the test
data and the same features were given as input for the counterfactual imputation.
The deployed machine decision maker was defined to release r fraction of the
defendants with the lowest probability for negative outcome.

Figure 7 shows the errors of failure rate of Batch as a function of the number
of judges in the data (also batch decision makers). The MAE of our CFBI at all
levels of leniency is consistently lower than that of Contraction for each number
of judges used in the experiments. Quite notably, the error of Contraction gets
larger when there are more judges in the data and the variance of the failure
rate estimates it produces increases as the most lenient judge is assigned fewer
subjects. We attribute this to the fact that Contraction crucially depends on
the most lenient decision makers, while CFBI makes full use of the data.

5 Related Work

We adopted the setting of [12], and showed that causally informed counterfac-
tual imputation can achieve accurate results. In addition, Kleinberg et al. [10]
present an in-detail account of employing Contraction on real data. In their
experiments, they use a decision maker that is set-up similarly to Independent
decision makers discussed in our work – but that makes decisions determined by
utility values.

Unlike our imputation approach (CFBI), De-Arteaga et al. [5] directly impute
decisions as outcomes and consider learning automatic decision makers from
such augmented data. In [10], a multiplicative correction term is used to adjust
the bias observed for more conventional imputation. In comparison, CFBI uses
rigorous causal modelling to account for leniency and unobservables, and gives
accurate results even the expert consistency assumption of [5] is violated.

In reinforcement learning, a related scenario is that of offline policy evalua-
tion, where the objective is to determine a quality of a policy from data recorded
under some other baseline policy [8,19]. In particular, Jung et al. [8] consider
sensitivity analysis in a similar scenario as ours, but without directly modelling
decision makers with multiple leniencies. Mc-Candless et al. perform Bayesian
sensitivity analysis while taking into account latent confounding [15,16]. Kallus
et al. obtain improved policies from data possibly biased by a baseline policy [9].
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More generally, our setting exhibits selection bias [6], latent confounding [17],
and missing data [13] (depending on how the outcomes for negative decisions
are interpreted). In particular, our setting violates ignorability and missing
at random (MAR) in the context of missing data. The effectiveness of causal
modelling and counterfactuals is also demonstrated in recent work on e.g. fair-
ness [3,4,11,14,21]. More applied work related to recidivism, can be found e.g.
in [2,7,20].

6 Conclusions and Future Work

We considered the task of evaluating (automated) decision makers, which is cru-
cially needed in replacing human decisions with automated ones. We presented
CFBI, an approach based on proper causal modelling that makes full use of the
available data, and demonstrated that automated decision makers can be eval-
uated on data that are selectively labelled. Via thorough experimentation we
found that CFBI allows for accurate and robust evaluations, also in settings that
evaluation was not possible before (i.e., for a leniency level higher than the one
present in the data). In future work, we will generalize our setting and modelling
assumptions – e.g., to consider more elaborate behaviour for decision makers and
additional dependencies between model variables.
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Appendix 1 Counterfactual Inference

Here we derive Eq. 4, via Pearl’s counterfactual inference protocol involving three
steps: abduction, action, and inference [17]. Our model can be represented with
the following structural equations over the graph structure in Fig. 2:

J := εJ, Z := εZ, X := εX, T := g(H,X,Z, εT), Y := f(T,X,Z, εY).

For any cases where T = 0 in the data, we calculate the counterfactual
value of Y if we had T = 1. We assume here that all these parameters,
functions and distributions are known. In the abduction step we determine
P(εH, εZ, εX, εT, εY|j, x,T = 0), the distribution of the stochastic disturbance
terms updated to take into account the observed evidence on the decision maker,
observed features and the decision (given the decision T = 0 disturbances are
independent of Y). We directly know εX = x and ε

J
= j. Due to the special form

of f the observed evidence is independent of εY when T = 0. We only need to
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determine P(εZ, εT|h, x,T = 0). Next, the action step involves intervening on T
and setting T = 1 by intervention. Finally in the prediction step we estimate Y:

ET←1(Y|j,T = 0, x) =

∫
f(T = 1, x,Z = εZ, εY)P(εZ, εT|j,T = 0, x)P(εY)dεZdεYdεT

=

∫
P(Y = 1|T = 1, x, z)P(z|j,T = 0, x)dz

where we used εZ = z and integrated out εT and εY. This gives us the counter-
factual expectation of Y for a single subject.

Appendix 2 On the Priors of the Bayesian Model

The priors for γX, βX, γZ and βZ were defined using the gamma-mixture repre-
sentation of Student’s t-distribution with ν = 6 degrees of freedom. The gamma-
mixture is obtained by first sampling a precision parameter from Γ (ν/2, ν/2) and
then drawing the coefficient from zero-mean Gaussian with that precision. This
procedure was applied to the scale parameters ηZ, ηβX

and ηγX
as shown below.

For vector-valued X, the components of γX (βX) were sampled independently
with a joint precision parameter ηγX

(βγX
). The coefficients for the unobserved

confounder Z were bounded to the positive values to ensure identifiability.

ηZ, ηβX
, ηγX

∼ Γ (3, 3), γZ, βZ ∼ N+(0, η−1
Z ), γX ∼ N(0, η−1

γX
), βX ∼ N(0, η−1

βX
)

The intercepts for the decision makers in the data and outcome Y had hierarchi-
cal Gaussian priors with variances σ2

T and σ2
Y. The decision makers had a joint

variance parameter σ2
T.

σ2
T, σ2

Y ∼ N+(0, τ2), αj ∼ N(0, σ2
T), αY ∼ N(0, σ2

Y)

The parameters σ2
T and σ2

Y were drawn independently from Gaussian distribu-
tions with mean 0 and variance τ2 = 1, and restricted to the positive real axis.
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Abstract. Discrimination on the basis of protected characteristics -
such as race or gender - within Machine Learning (ML) is an insufficiently
addressed yet pertinent issue. This line of investigation is particularly
lacking within clinical decision-making, for which the consequences can
be life-altering. Certain real-world clinical ML decision tools are known
to demonstrate significant levels of discrimination. There is currently
indication that fairness can be improved during algorithmic processing,
but this has not been widely examined for the clinical setting. This paper
therefore explores the extent to which novel algorithmic processing tech-
niques may be able to mitigate discrimination against protected groups
in clinical resource-allocation ML decision-support algorithms. Specifi-
cally, three state-of-the-art discrimination mitigation techniques are com-
pared, one for each stage of algorithmic processing, when applied to a
real-world clinical ML decision algorithm which is known to discriminate
with regards to racial characteristics. The results are promising, revealing
that such techniques could significantly improve the fairness of clinical
resource-allocation ML decision tools, particularly during pre- and post-
processing. Discrimination is shown to be reduced to arbitrary levels at
little to no cost to accuracy. Similar studies are needed to consolidate
these results. Other future recommendations include working towards a
generalisable framework for ML fairness in healthcare.

Keywords: Fairness · Machine Learning · Clinical decision support ·
Resource-allocation

1 Introduction

Due to increased attention within data science and medical research, the use of
Machine-Learning (ML) techniques to inform clinical decisions is gaining trac-
tion which lend themselves to myriad applications within healthcare, such as
risk-prediction and resource-allocation [1,2]. Many of these have already suc-
cessfully been implemented in clinics worldwide [3]. With such techniques so
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widely adopted, it is more vital than ever that they are non-discriminatory with
regards to protected groups such as ethnic minorities or those originating from
disadvantaged socioeconomic backgrounds.

From the data science perspective, fairness in ML is said to occur when
the following constraints are satisfied (for direct and indirect non-discrimination
respectively):

(1) Those who are similar, as defined by their non-protected characteristics,
should receive similar predictions

(2) Any differences in predictions across groups of people must be justifiable by
non-protected characteristics [4].

Consequently, failure to meet both these criteria indicates discrimination, which
is a violation of both legal and ethical regulations [5,6]. Unfortunately, this easily
and often goes undetected, rendering it a particularly pervasive problem [7,8].
Discrimination in clinical resource-allocation decision-support could have severe
consequences, such as limiting access to vital resources for those within certain
ethnic groups [9]. Alarmingly, even algorithms currently implemented in real-
world settings have been found to be highly discriminatory. For instance, one
recent study revealed that a US algorithm used to help determine future medical
treatment for patients was highly biased against African-Americans [9]. Many
such algorithms employ the use of Electronic Health Record (EHR) data, which
contains sensitive information. There are known to be three major sources of
discrimination on the basis of sensitive attributes when using EHR data to train
ML algorithms: missing data, a biased sampling procedure, and misclassification
or measurement error [6,10].

Refusing to address issues with discrimination could also lead to the stag-
nancy of implementation of certain machine-learning decision-support tools in
healthcare, on the basis that such tools use algorithms which are simply too unre-
liable to employ. Unfortunately, it is not explicitly clear how to accommodate for
fairness is at any stage of the decision-making process and so the discrimination
problem is not trivial [6]. Simple ‘solutions’ such as just removing the sensitive
attributes or creating separate models for segregated groups (as organised by
sensitive attributes) are considered näıve [5,8].

With regards to the data mining process, there are two parts which the data
scientist can control: data collection, and data processing [6]. In terms of data
collection, supplying an ML algorithm with biased data has a high potential to
reinforce pre-existing discriminatory biases, causing the phenomenon known as
digital redlining [11] However, unbiased, representative data can be difficult to
obtain, and it can be more difficult still to guarantee impartiality. Therefore, tak-
ing such measures solely at the collection phase is inadequate and also not always
possible, and so action must also be taken at the processing stages of the ML
algorithm. There are three major data processing stages at which adjustments
may be made: (1) pre-processing, (2) in-processing, and (3) post-processing [12].

Previous research has investigated effective methods of bias mitigation in
machine-learning algorithms, and there are already numerous supervised ML
models employed in the clinical setting which are used to predict certain risks
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for patients in hospitals and allocate and distribute medical resources, for exam-
ple [3,13]. Although limited, and more often performed in other fields outside
of healthcare, research into methods to tackle discrimination in such algorithms
does exist [1,12]. However, what does not exist is both an assessment of differ-
ent mitigation methods when applied to the clinical resource-allocation setting,
and a direct comparison and appraisal of these methods - which correspond to
employment at different stages within the ML approach - within such a setting.

2 Related Research

In this section we briefly review some of the latest related work on mitigat-
ing discrimination within ML and the current state of fairness within clinical
algorithmic decision-making strategies.

2.1 Measuring Fairness in Machine Learning

It is commonly established that ML fairness can broadly relate to either group
fairness or individual fairness [14]. Although opinions are divided when it comes
to emphasising one over the other, much of the current research places a larger
focus on ensuring group fairness with a view to avoiding mass discrimination
and eliminating prejudice. This is also due to the fact that it can be difficult
to concretise individual fairness. Reducing disparate impact is one of the most
common investigations in discrimination mitigation and aims to ensure that
each protected group does not suffer a disadvantage when compared to the
general population. However, solely focusing on group fairness does risk over-
generalisation. There is an abundance of existing fairness metrics for ML models
and they often correlate with each other [14]. They may broadly be organised
into the following four categories [4]:

(1) Statistical tests
(2) Absolute measures
(3) Conditional measures
(4) Situation measures

Ambiguity still exists with regards to concretising the concept of fair-
ness in ML decision tools and an interdisciplinary approach to achieve this,
involving policy makers, decision makers and algorithm developers, is strongly
recommended [15].

2.2 Algorithmic Processing Techniques

Numerous potential solutions have been proposed with varying success, the
majority having been assessed in applications unrelated to the clinical setting,
such as credit risk score generation, salary estimation and recidivism rate analy-
sis [14,16,17]. The following table displays an overview of some of the techniques
found when scoping the current literature.
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Table 1. Summary of variety of pre-, in-, and post- processing techniques for discrim-
ination mitigation in ML

Processing stage Paper
(Mentioned
in)

Technique name Brief description

Pre-processing [18], Khan S
R. et al. 2019

Reweighing Altering object weights based
on the protected attribute
value

[18], Khan S
R. et al. 2019

Sampling Either uniform sampling or
preferential sampling using
the stratified dampling
technique

[18], Khan S
R. et al. 2019

Suppression Suppressing attributes which
have the strongest correlation
with the sensitive attribute

[18], Khan S
R. et al. 2019

Massaging Altering the labels of
particular objects according
to fairness constraints

[19], Calmon F
P. et al. 2017

Optimised
pre-processing

A convex optimisation
technique for transforming
data with respect to fairness
objectives

In-processing [20], Zhang B
H. et al. 2018

Adversarial
de-biasing

Introduces an adversary
which counteracts fairness
constraints

[21], Slack D.
et al. 2019

Fair-MAML Adjusting the Meta-Agnostic
Machine Learning (MAML)
algorithm, adding a fairness
regularisation term to model
learning task losses

[21], Slack D.
et al. 2019

K-Shot fairness Fair model training with a
limited sample size

Post-processing [17], Kamiran
F. et al. 2012

Discrimination-
aware
ensemble

Examines the disagreement
region of theclassifier, making
compensations for
underprivileged groups

[17], Kamiran
F. et al. 2012

Reject-option -
based
classification

A cost-based fairness
technique which assigns costs
to generating false outcomes

Alternative ML Fairness Solutions. This particular study focuses on group
fairness as pertains to ensuring distributive fairness in supervised ML models,
which aligns with the chosen context of investigating group discrimination in dis-
tributive clinical decision-support tools. However, it should be mentioned that
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there also exists a growing body of work utilising unsupervised learning tech-
niques to improve fairness, in clustering and network representation algorithms,
for example [22,23]. Given the wealth of alternative techniques available, Table 1
by no means contains an exhaustive list. Many other techniques exist which
seek to satisfy ML fairness beyond the scope of this study, such as manipula-
tion using monotonicity constraints, for example, which especially encourages
individual fairness and has been shown to be an effective way to ensure that
reasoning behind ML decision-making is fair and justifiable, in contexts ranging
from medicine to law [24].

2.3 Discrimination in Clinical Decision-Support

There is plenty of evidence to suggest that discrimination may easily arise in ML
algorithms for clinical decision-support, in contexts such as Intensive Care Unit
(ICU) monitoring to predict risk of deterioration of patients, length of hospital
stay estimation, and admission to specialised healthcare treatment programmes
[9,25].

Since most of the current novel techniques for discrimination mitigation have
not been assessed in conjunction with clinical datasets, researchers in the clini-
cal field strongly recommend leveraging the discoveries made in other domains
and beginning to test the potential of state-of-the-art techniques in healthcare
decision-support [10].

3 Empirical Investigation

This paper applies the empirical research methodology of experiment science to
evaluate current discrimination mitigation techniques when applied to clinical
ML decision support.

3.1 Dataset

The dataset selected for the experiments originates from a widely-cited study,
[9], investigating the extent to which racial discrimination is embedded in a par-
ticular healthcare risk-prediction and resource-allocation ML tool employed in
the US to help determine future clinical treatment plans for millions of patients.
The researchers worked with a large academic hospital in the US: one of the
many hospitals to have adopted the algorithmic decision tool. Together they
curated a comprehensive healthcare dataset using a combination of EHR data,
containing a rich set of health measures and demographic variables, along with
medical claims data. A synthetic dataset which replicates the characteristics and
summary statistics of the original dataset (not publicly available on the grounds
of patient anonymity) was produced by these researchers with the sole purpose
of being conducive to further research in clinical ML fairness.
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This dataset is the one employed within this study. It contains 48,784 obser-
vations and 150 variables. The protected attribute in this scenario is race with
white being the privileged category and black being the underprivileged cat-
egory. The remaining feature variables may be categorised as follows: Demo-
graphic Variables (e.g. Age, Gender, Race), Biomarker Variables (e.g. Blood
Pressure, Creatinine), Chronic Illness Indicators (e.g. the presence or absence
of conditions such as Hypertension, Diabetes), and Healthcare Service Use (e.g.
No. of Hospital Days, Emergency Visits).

The label assigned by the original algorithm is a predicted risk score cor-
responding to estimated future healthcare expenditure for each patient, which
helps determine whether or not they are allocated future enrolment in specialised
care treatment programs. The algorithm-generated score is said to play a major
role in this decision. The authors of [9] who uncovered the discriminatory nature
of this algorithmic tool suggest altering the label itself by way of successfully
improving model fairness.

However, it is also acknowledged that this is not the only - and not neces-
sarily the optimal - solution to the discrimination problem for clinical resource-
allocation algorithms. First of all, many such algorithms necessitate a cost-based
design in order to comply with regulations, and using cost predictors can be a
very effective way of signalling health requirements [9]. Therefore, label choice
is accepted as an ongoing dilemma [9]. The two most popular choices of label
for risk-prediction- generating ML algorithms in the clinical setting are service
utilisation (i.e. a combinatory score for hospital visits, emergency stays etc.)
and medical expenditure forecast (for the following year, based on the previous
year’s data) [9]. In addition, past costs and service use to indicate future costs
and resource utilisation is a popular approach in real-world clinical resource-
allocation tools, especially in the US where this is one of the most widely-adopted
techniques [9,26]. Therefore this study adheres to the original label choice, focus-
ing on the ability of algorithmic processing techniques to enhance fairness rather
than label adjustment. This line of investigation has a great advantage in that it
is not a solution solely applicable to this particular algorithm but a generalisable
method of tackling the discrimination problem in clinical ML decision-making.
The final algorithmic decision outcome is a binary variable based on the esti-
mated risk score, with 1 denoting acceptance into the care treatment program
and 0 denoting non-acceptance.

The dataset is available at [27] and will hereon be referred to as ‘Dissecting-
Bias.’

3.2 Algorithmic Setup

The algorithmic processing techniques and model fairness metrics are taken
from IBM’s comprehensive open-source ML fairness toolkit, Artificial Intelli-
gence Fairness 360 (AIF 360), publicly available on GitHub [28]. This partic-
ular toolkit was developed with the aim to consolidate a vast array of current
research findings on ML fairness, and therefore seeks to represent pioneering ML
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bias mitigation techniques from many sources [28]. It currently offers 10 state-of-
the-art fairness algorithms and over 70 fairness metrics for predictive Artificial
Intelligence (AI) models. It is constantly updated by experts according to new
developments and findings. The classification algorithms used for these experi-
ments are the ones prescribed by the examples in the toolkit for each mitigation
method.

These experiments are reproducible using the open-source code for the
selected algorithmic techniques at [28] and the Dissecting-Bias dataset at [27].
For this study, the dataset and algorithmic techniques were integrated using
Jupyter Notebooks.

3.3 Optimising Fairness at the Pre-processing Stage

The selected pre-processing technique for this stage is Reweighing. This was
chosen primarily because it is a popular method amongst other applications of
discrimination mitigation in ML and it is known to work highly successfully for
these other settings [18,29].

Furthermore, this approach works well in optimising group fairness, adhering
to the primary goal of the experiments within this study: to reduce discrimination
with regards to a specific protected attribute (‘race’). This process does also take
into account individual fairness constraints; however, these are not guaranteed
satisfaction and group fairness takes precedence [18]. The Reweighing technique
is mainly recommended if there is pre-existing discrimination in the dataset as
it works to combat historical discrimination. Therefore, it is considered highly
suitable for the chosen dataset, which is known to contain a high level of pre-
existing bias against those from the protected attribute category black.

The Reweighing technique was first proposed in paper [30] and works by
assigning weights to tuples and then altering these weights in such a way that
those from the underprivileged group are more inclined towards the favourable
outcome and those from privileged groups are slightly inclined towards the
unfavourable outcome. The weights are graded as follows: those from under-
privileged groups with a ‘positive’ decision outcome receive higher weights than
those with a ‘negative’ decision outcome, and those from privileged groups with
a ‘negative’ decision outcome receive higher weights than those with a ‘positive’
decision outcome. The classifier is then given both the dataset and the weights
as decision input. It doesn’t require any adjustment in labelling and so doesn’t
skew the data as much as techniques such as Massaging do. Instead of drasti-
cally altering the dataset itself, it rather ensures that underprivileged groups are
prioritised in the decision-making process where they would have been discrim-
inated against [29].

3.4 Optimising Fairness at the In-Processing Stage

Adversarial De-biasing is the chosen technique for this stage. It is considered to
be more generalisable than comparable in-processing techniques and is therefore
often favoured for this reason. It is also model-agnostic and fairly robust [20].

https://jupyter.org
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This suits the aim to work towards a more generalisable framework for mitigating
discrimination in a variety of clinical decision-making applications.

Adversarial De-biasing, presented in paper [20], learns a classifier to maximise
model accuracy whilst introducing another network - known as an adversary –
with biased behaviour: it works, for example, to try and detect the protected
attribute using only the class label predictions. The adversary’s ability to per-
form such tasks gives an insight into the level of discrimination present in the
model. The original learning algorithm is then adjusted to compensate the loss
function of the adversary, thereby countering the discrimination.

In this way, the model’s predictions are modified based on a singular fairness
constraint at a time. Adversarial De-biasing works well with both regression and
classification- based models and is a model-agnostic approach [20].

3.5 Optimising Fairness at the Post-processing Stage

The final technique to be adopted is Reject-Option - based classification [17]. This
is often preferred over other post-processing techniques due to its deterministic
nature, as opposed to equalised odds - based post-processing algorithms which
contain a randomised component. Other benefits of this technique lie in its ease
of use and flexibility.

Reject-Option – based classification manipulates the outcome of the algo-
rithm based on protected groups: it improves the outcomes for underprivileged
groups whilst making those for privileged groups slightly less favourable. It
achieves this by rejecting traditional decision rules of assigning instances solely
based on posterior probabilities, instead establishing a critical region whereby
instances are assigned opposing labels to either improve or impair their desig-
nated outcome depending on the value of their sensitive attribute.

It is acknowledged that this method works well with any probabilistic clas-
sifier and supposedly can greatly improve discrimination-awareness in standard
classifiers. Furthermore, it is suggested that this method facilitates interpretabil-
ity and gives more control to decision-makers, as is often the case for post-
processing techniques [17].

3.6 Fairness Metrics

The fairness metrics were selected from the available range in the toolkit, focusing
on those which measure group discrimination and were deemed most appropriate
for the context of resource-allocation. In light of this, the selected metrics are:Dis-
parate Impact, Statistical Parity, Average Odds, and Equal Opportunity [28].

For each metric, the ‘ideally fair’ value, i.e. the value which denotes no dis-
crimination towards either group, is 0. For Disparate Impact, any value > 0
indicates a decision made in favour of the privileged group, with values < 0
representing a preference for the underprivileged group, and vice versa for all
remaining metrics. For an ML model to be recognised as acceptably fair given
some fairness metric, it must score beneath a specified ‘fairness threshold’: a
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value indicating permissible deviations from the ideally fair value for this met-
ric. The chosen metrics are briefly described below.

Statistical Parity Difference. The Statistical Parity difference is the differ-
ence between the rate of desirable outcomes for an underprivileged group and
the rate of desirable outcomes for a privileged group. The fairness threshold for
Statistical Parity is 0.1. Here, Statistical Parity ensures that any given patient
has an equal probability of enrolment in the care treatment program, regardless
of race.

Disparate Impact. The Disparate Impact measure is calculated based on the
ratio of the rate of a favourable outcome for an underprivileged group against
that for a privileged group. It should be noted that the Disparate Impact measure
included here is 1 - min(DI, 1/DI), where DI is the original Disparate Impact
measure with ideally fair value of 1. This transforms the ideally fair value to 0
which is consistent with the remaining fairness metrics. The fairness threshold
for Disparate Impact is 0.2. In this scenario, Disparate Impact ensures both black
and white patients have an equal probability of enrolment in the care treatment
program, but also takes into account proportional representation.

Average Odds Difference. The Average Odds difference is the difference
between a privileged group and an underprivileged group in terms of the mean
average of the True Positive (TP) rate and False Positive (FP) rate for the
classification outcome. The fairness threshold for Average Odds is 0.1. In this
scenario, Average Odds ensures that, when making predictions, the classifier
correctly assigns patients and incorrectly assigns patients to the care treatment
program, on average, at the same rate across both racial categories.

Equal Opportunity Difference. The Equal Opportunity Difference repre-
sents the difference of TP rates in the classification outcome when comparing
one value of the sensitive attribute with another. The fairness threshold for
Equal Opportunity is 0.1. In this scenario, Equal Opportunity ensures that,
when making predictions, the classifier correctly assigns patients to the care
treatment program at the same rate across both racial categories.

4 Results

Table 2 below presents a summary of the performance of all three techniques and
how this relates to that of their equivalent plain model without discrimination
mitigation. A ‘Mean Fairness Measure’ was included to gauge a sense of the
overall performance of each model – in terms of fairness – by calculating the
mean average of the deviation from the ideally fair value (in this case, 0) across
all fairness metrics.
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Table 2. Model performance for each technique across a range of performance indica-
tors, including balanced accuracy and fairness metrics

Balanced
accuracy

Statistical
parity
difference

Disparate
impact
measure

Average
odds
difference

Equal
opportunity
difference

Mean
fairness
measure:
overall

Mean
fairness
measure:
improve-
ment

Reweighing:
plain

0.6899 −0.0988 0.2613 −0.0667 −0.0350 0.11545 -

Reweighing:
logistic
regression

0.6855 −0.0486 0.1312 −0.0364 −0.0236 0.05995 −0.0555

Adversarial
de-biasing:
plain

0.6048 0.0482 0.1368 −0.00495 −0.0006 0.0475 -

Adversarial
de-biasing

0.5987 0.0254 0.1912 −0.0110 −0.0146 0.0723 +0.0248

Reject-
option -
based classi-
fication:
plain

0.6853 −0.1324 0.3384 −0.0956 0.0448 0.1530 -

Reject-
option -
based classi-
fication:
statistical
parity

0.6880 −0.0604 0.1851 −0.0240 0.0260 0.0881 −0.0652

Each technique is represented by the version which outperformed all others
for the Dissecting-Bias dataset, other versions here referring to those recom-
mended in the AIF360 toolkit [28]. For example, the Reject-Option - Based
Classification experiment included three different versions, each conditioned on
a different fairness metric (to construct the critical region for rejection). The ver-
sion conditioned on Statistical Parity was the one which performed with optimal
fairness.

Figure 1 provides an overview for the comparison of the three techniques.
Taking the Mean Fairness Measure, it displays the deviation of fairness from
the ‘ideally fair’ value achieved by the adjusted model when compared with the
unadjusted model corresponding to the same technique. It is important to note
that any reduction in the deviation represents a positive outcome, as the closer
to the ideal value, and therefore a deviation value closest to 0 is desired.
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Fig. 1. Bar graph showing overall average deviation from ideally fair value for each
technique, both before and after making adjustments for discrimination mitigation

5 Discussion

As is evident from Figure 1, fairness was substantially improved when applying
Reweighing and Reject-Option – based classification, but not when applying
Adversarial Debiasing. Given the suspiciously low initial fairness value for the
model employed when applying Adversarial Debiasing, this increase could be due
to the model failing to detect any substantial discrimination when processing the
data. Although Reject-Option – based classification saw the greatest reduction
in fairness deviation, the final Reweighing model was the most fair of all adjusted
models.

In light of this, it became clear that overall performance in this scenario was
largely dependent on algorithmic technique. The pre- and post – processing tech-
niques proved to be the most successful, as not only did they improve the fairness
measures, they also brought each metric well beneath the threshold for permissi-
ble deviations in fairness. This has a twofold benefit: it implies that algorithmic
pre- and post- processing techniques have the potential to successfully reduce
inexplainable discrimination in clinical resource-allocation algorithms and bring
it to an negligible level. Considering the extent of discrimination present in the
initial algorithm and the potential implications associated with this, this proves
highly promising. An additional merit - as can be observed from Table 2 - was
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that model accuracy was not demonstrably affected to any great extent when
applying mitigation.

Findings from previous research into ML fairness in other disciplines indicate
that it is perhaps more beneficial to abate discrimination earliest in the process as
possible before it becomes heavily embedded in the model, rendering it difficult
to both identify and remove [6,11]. The findings of this study largely support
this hypothesis, given the success of the Reweighing technique. This encourages
the adoption of fairness-enhancing measures to be implemented during the pre-
processing stage of algorithmic processing within clinical ML.

It is important to note that addressing discrimination in ML is a complex,
multi-faceted issue, in terms of both measuring and optimising fairness [15].
Therefore, progress may be made towards a more generalisable framework for
clinical resource-allocation decision models but no singular method can be said
to be best-suited for all contexts especially as it is difficult to even define the
‘best’ performance in terms of fairness, given the fluidity of the definition of ML
fairness [6,15]. In this study, adjustments at the pre- and post- processing stages
were shown to have the greatest impact on improving fairness; however, given
that only one technique (and its associated variations) was tested at each stage,
a repetition of similar experiments using other techniques would be advanta-
geous. Moreover, although the techniques in the AIF360 toolkit are effective in
optimising distributive fairness, this particular toolkit was designed exclusively
for distributive fairness and so would not be suitable for other types of fair-
ness which may also easily occur in clinical ML-based decision-making, such as
fairness in offering equal diagnostic accuracy [2,25,28].

Complications arise when considering the source of discrimination when mak-
ing decisions guided by ML, as this is often a combination of both computational
processes and human error [15]. In clinical decision-making, it is important to be
wary of automation complacency and ensure that algorithmic output is used as
an aid to physician judgement rather than a replacement [31]. Adjusting algo-
rithmic processes cannot completely eliminate discrimination in clinical decision-
making: societal developments to promote fairness are also necessary [15].

6 Conclusion

This work was motivated by the challenge of addressing the current lack of inves-
tigation into discrimination in ML in clinical decision-making due to the myr-
iad potential repercussions of this [10,14,25]. The originality of the work arises
in the comparison of state-of-the-art fairness-enhancing algorithmic processing
techniques across every stage of processing for clinical ML resource allocation.

Specifically, the algorithmic techniques Reweighing, Adversarial De-biasing,
and Reject-Option – based Classification were employed and compared by their
ability to improve fairness in the context of a known discriminatory clinical
ML decision tool used to make decisions on treatment allocation for millions
of patients in the US [9]. In this way, this study leverages previous work on
algorithmic discrimination mitigation by incorporating scientifically validated
techniques available through IBM’s AIF 360 toolkit, which offers the latest
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pioneering techniques substantiated by expert researchers in the bias-mitigation
field [28]. In combination with this, it builds upon similar work which aims to
combat the known problem of discrimination arising when using ML-based deci-
sion support in healthcare [9]. This helps integrate the latest progress of both
the data science and healthcare communities.

The results proved to be very promising: two of the three techniques showed
a substantial reduction in discrimination against the protected group. Discrim-
ination was reduced to the extent that it was brought under the threshold for
acceptable deviation from the ‘ideally fair’ value. These benefits were reaped
without any considerable detriment to model accuracy.

For this particular scenario, mitigating discrimination at the pre-processing
stage was found to be the most effective, which is consistent with multiple find-
ings from other applications outside of the medical domain [16,29]. Reduction
beneath the threshold for permissible deviations in fairness not only implies
that adopting such a technique would make such algorithms fairer, it also sug-
gests that algorithmic pre-processing potentially has the capacity to eradicate
all traces of inexplainable discrimination in clinical risk-prediction and resource-
allocation models. Considering the extent of discrimination present in the initial
algorithm and its possible implications, this is highly encouraging.

It must be noted that discrimination mitigation is a complicated issue in
the domain of clinical resource-allocation models, and approaches should also be
tailored to individual context. However, given the fact that the methods used
in this study were chosen due to their flexibility and generalisability, it can be
anticipated that they would also perform successfully given a different dataset.
This paper sheds light on the high potential for success when applying discrim-
ination mitigation techniques to algorithmic decision models in the context of
clinical resource-allocation (with particular evidence in favour of making adjust-
ments at the pre-processing stage), and therefore further steps should be taken
to ensure the inclusion of these or similar methods in similar algorithms.

Finally, it is recommended that future research focuses on consolidating the
results found in this paper, expanding the investigation to include wider clini-
cal contexts and other types of fairness, and taking necessary steps to enforce
fairness requirements in real-world algorithmic clinical decision models. This
topic demands further attention given that one of the key components of high-
quality healthcare is equitability [32]. It cannot be ignored that fairness in clin-
ical decision-making of all forms - including algorithmic decision-making - is
paramount to providing equitable care.
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Abstract. Supervised Learning requires a huge amount of labeled data,
making efficient labeling one of the most critical components for the suc-
cess of Machine Learning (ML). One well-known method to gain labeled
data efficiently is Active Learning (AL), where the learner interactively
asks human experts to label the most informative data point. Neverthe-
less, even by applying AL in labeling tasks the amount of human effort
is still too high and should be minimized further.

In this paper therefore we propose WeakAL, which incorporates
Weak Supervision (WS) techniques directly into the AL cycle. This
allows us to reduce the number of annotations by human experts while
keeping the same level of ML performance. We investigate different WS
strategies as well as different parameter combinations for a wide range of
real-world datasets. Our evaluation shows that for example in the context
of Web table classification, 55% of otherwise manually retrieved labels
can be generated by WS techniques with a negligible loss of test accuracy
by 0.31% only. To further prove the general applicability of our approach
we applied it to six datasets from the AL challenge from Guyon et al.,
where over 90% of the labels could be computed by the WS techniques,
while still achieving competitive competition results.

Keywords: Information extraction · Active Learning ·
Semi-supervised · Machine Learning · Weak Supervision · Classification

1 Introduction

Acquiring training data for supervised learning, such as classification, requires
substantial human effort, which already led to many research activities with the
goal to increase data efficiency and to minimize the need for manual annotation.
The first one is Active Learning (AL) that deals with the problem of selecting
samples from an unlabeled pool for labeling, e.g. by a human annotator, such
that the performance of the model to be learned is maximized. The second one
is Weak Supervision (WS) that uses a labeled ground-truth to compute labels
for the unlabeled data, to improve the quality of the classifier.
Traditionally WS is applied after a small high-quality dataset has been obtained,
e.g. through AL. In an optimal setting, AL would query only a few represen-
tative samples for each class and the other labels would be derived using WS
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Fig. 1. WeakAL Overview

techniques. However, in practice this is often not the case: Either too many
redundant labels from the AL cycle were obtained, which could also have been
generated by WS, or the obtained labels don’t work well in combination with
WS and produce a lot of false labels.
Therefore, in this paper, we propose WeakAL, which extends the AL cycle by
different WS techniques (see Fig. 1). Given a small initial labeled dataset L and
a large unlabeled pool U , we first cluster the combined samples of L and U .
Then the classifier is trained on L, and as long as the human labor budget is
not exhausted, WeakAL augments the labeled dataset by additional samples.
At this point, in the traditional AL cycle, only human experts would be queried.
In WeakAL however, also WS techniques are directly incorporated to obtain
labels. If a minimum amount of labeled data is available, which is ensured by
an accuracy threshold M , the WS strategies are queried. We propose to use two
WS techniques: WeakClust and WeakCert. The first one propagates the
majority label in a cluster to the unlabeled samples of the cluster, whereas the
second one uses the predicted label by the classifier. Based on the parameters for
the respective WS strategies, they either return so-called weak labels or noth-
ing, indicating that they are not confident enough. Depending on the present
labeled data L and the parameters, the weak labels add more or less label noise.
However, by using well-tweaked parameters this can be kept to a minimum. If
the WS strategies are not confident enough human experts are consulted, where
first a cluster query strategy (CQS) identifies a cluster, from which thereafter the
query selection strategy (QS) selects the samples for the query. The generated
labels are be added to the labeled set L and the cycle starts again.

Contribution. In this paper, we introduce WeakAL that extends the AL cycle
by different WS techniques. In a comprehensive experimental study, we show
that combining AL and WS provides very good results in terms of human effort
and classification accuracy for many real-world datasets. Our experiments show
that the classification models trained on the data determined by AL and WS
can safely reduce the amount of human-retrieved annotations by 50%–90% while
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maintaining the same level of accuracy, and even improving it by a few percent-
age points.

Outline. The remainder of this paper is organized as follows: In Sect. 2, we
present the typical methods used within an AL cycle, which is extended by
WS strategies in Sect. 3. Section 4 describes the setup of the experiments we
conducted to prove our hypothesis. We compare different evaluation metrics
and combinations of WS strategies on multiple real-world datasets. The results
are shown and discussed in Sect. 5. Finally, we present related work in Sect. 6
and conclude in Sect. 7.

2 Active Learning Foundations

WeakAL makes use of typical AL techniques, such as a cluster query strategy, a
query strategy as well as batching of samples. Therefore, in Subsect. 2.1, we give
an overview of some popular query strategies, which are used in our experiments
and emphasize the importance of the right batch size in Subsect. 2.2.

2.1 Active Learning Query Strategies

In this section, we shortly introduce the different strategies for choosing the
most informative queries out of a set of given unlabeled samples. Each strategy
approximates the contained informativeness of unlabeled data for a potential
classifier.

Random Sampling is a common AL query strategy and found application
in [1]. Unlike the other methods, random sampling chooses queries at random
and fully independently of their informativeness. However, even with this strat-
egy, a rise in prediction accuracy is possible, since the amount of training data is
steadily increased. We use random sampling as a baseline to compare the other
strategies.

Uncertainty Sampling chooses queries that are the most uncertain to pre-
dict. Hence, learning these queries should result in more certain predictions of
the classifier. We compare three uncertainty metrics: least confident, margin
sampling, and entropy [2]. Least confidence [3] tries to capture the probability,
that the classifier is mislabeling the data using the posterior probability P where
ŷ is the most likely prediction:

QSx,LC = argmax
x

1 − P (ŷ|x), x ∈ U (1)

Information about other classes next to the most probable one is not taken into
account by this strategy. Margin sampling [4] in contrast uses the posteriors for
the first ŷ1 and second most probable classes ŷ2 and samples the instances with
the smallest margin between those two:

QSx,SM = argmin
x

P (ŷ1|x) − P (ŷ2|x) (2)
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Entropy uncertainty [5,6] uses all possible classes and captures the entropy of a
given distribution. It should, therefore, work well on classification problems with
many classes:

QSx,E = argmax
x

−
∑

i

P (yi|x) log P (yi|x) (3)

2.2 Batch Sizes

It is common practice in machine learning to train a model on batches of samples
instead of single data points. As the retraining of the classifier cannot be done
in real-time it is also easier for human experts to label a batch of data points at
once. Batches also allow parallelization of the human annotation process. Early
experiments suggested that the batch size has no real impact on the efficiency
of the AL process. We use therefore a reasonably small batch size of 10, which
is small enough to show changes during the AL cycle in detail, but also large
enough to keep the experiment runtime under control.

3 Weak Supervision Enhanced Active Learning Cycle

In this section, we propose WeakAL, combining the strengths of AL and WS.
We claim, that it is beneficial, to prioritize during AL the retrieval of those unla-
beled data points, which do not only directly increase the classifier’s performance
but also lead to more weakly labeled data. We propose an active learning cycle
that incorporates WS, resulting in significantly less human interaction, whereas
the accuracy achieved is kept on the same level.
Algorithm 1 shows the overall WeakAL cycle. The AL process starts with two
datasets: the unlabeled sample set U and the already labeled dataset L, where
|L| << |U|. WeakAL requires that both L and U consist of clusters, Lc, and
Uc. Each cluster is defined as a tuple consisting of the feature vector x and, in
case of the labeled set, the corresponding label y:

Lc =
{
(xl1, yl1), (xl2, yl2), . . .

}

Uc = {xu1, xu2, . . .}
(4)

The main task of the AL cycle is to iteratively increase the set of labeled data L
by identifying the most promising cells in U . The cycle stops when a predefined
budget B (line 1 in Algorithm 1) of available user interaction is exhausted. At
the beginning of each cycle, the classifier f is retrained on the labeled set L.
If a minimum training accuracy M is reached (line 3), WeakAL utilizes Weak-
Clust and WeakCert (Subsect. 3.2) instead of asking the human experts. The
budget remains untouched for WS labels, as these queries come for free with-
out human interaction. Both WS strategies have threshold parameters, α, β,
and γ. If the thresholds are not met, human experts are used instead. For that,
first, a cluster Uc of the unlabeled data is selected based on the cluster query
strategy CQS (line 10, (Subsect.. 3.1). Then the utilized query strategy (line 14,
(Subsect. 2.1) selects as much, as per the batch size BS defined, unlabeled
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samples q from the selected cluster Uc. The human experts are then asked for
the label, and the budget is reduced accordingly. At the end of each cycle the
newly labeled data Lq is added to L (line 18) and q removed from U (line 19),
and the process starts again by retraining the classifier on the extended dataset.

3.1 Cluster Query Strategies to Support WeakClust

The basic idea of the clustering approach is to save human effort by labeling the
entire cluster instead of individual data points. This strategy requires a mini-
mum amount of labels per cluster. We investigate the following three clustering
strategies:

Single Cluster Strategy. To compare the approach of limiting the human
experts’ queries to a single cluster Uc per AL cycle to the typical approach of
using the entire set of unlabeled points U , the single cluster strategy puts all
unlabeled data into a single cluster, simulating thereby the absence of a cluster
strategy.
Random Cluster Strategy. This strategy selects a cluster at random and acts
as a second baseline.
Most Uncertain Cluster Strategy. The most uncertain cluster strategy can
be used in three different flavors, depending on the used uncertainty query strat-
egy: least confidence, smallest margin, and entropy (see Subsect. 2.1). By obtain-
ing the labels for the most uncertain points per cluster only those remain unla-
beled that are more likely part of the class-homogeneous core of the cluster. For
each cluster Uc ∈ U , the query selection strategy is used first to calculate QS(x)
for each sample x. After that, the cluster samples are sorted in descending order



WeakAL: Combining Active Learning and Weak Supervision 39

based on the value of the query selection strategy. The highest most uncertain
data points within the batch size BS are stored in Uc. The cluster with the
highest sum of query selection certainties is selected accordingly:

Uc = argmax
Uc

∑

x∈Uc

QS(x), for Uc ∈ U (5)

3.2 Weak Supervision Techniques

We selected two WS techniques, WeakClust and WeakCert, which we
believe work best alongside the AL process, and can easily be incorporated into
it. WeakClust propagates the labels of a partially labeled cluster to the entire
cluster, and WeakCert returns the predicted labels of the trained classifier.
Especially the WeakClust technique is optimal for AL, as in an ideal scenario
first one sample gets queried per cluster, and then using more most uncertain
samples from the cluster, the hypothesis of the first sample gets confirmed or
dismissed. Each WS strategy has thresholds that have to be met to confidently
add the weak labels to the labeled dataset. A minimum amount of labeled data
M needs to be made available first for both WS techniques to justify applying
WS. Otherwise, the risk of many false labels from a severely overtrained classifier
is increasing. All parameters have to be chosen carefully, as WS automatically
computes the annotations and with a suboptimal starting point, many wrong
labels can be produced.

Weak Certainty uses the probability of the trained classifier to decide for
the unlabeled samples. The pseudocode is given in Algorithm2. Contrary to the
uncertainty AL query strategies, the most certain data points are labeled by this
WS strategy. For each unlabeled sample x the predicted label y and the probabil-
ity σ of the classifier f are calculated (line 4 in Algorithm 2). If the probability is
higher than the threshold α (line 5), the predicted label gets assigned. All found
labels and samples are stored in the lists ys and q (line 6 and 7). WeakCert is
therefore basically the application of a single iteration of self-training [7].

Algorithm 2 WeakCert
Input: unlabeled data points U , trained classi-
ficator f , minimum certainty threshold γ

Output: labels y for a set of unlabeled
data points q

1: Init(q, ys)
2: for Uc ∈ U do
3: for x ∈ Uc do
4: y, σ ← ClassWithProb(f, x)
5: if σ > α then
6: Append(ys, y)
7: Append(q, x)
8: end if
9: end for
10: end for
11: return q, ys

Algorithm 3 WeakClust
Input: labeled data L, unlabeled data U , mini-
mum cluster homogeneity size β, minimum ratio
labeled-unlabeled samples γ
Output: labels ŷ for the cluster of unlabeled
data Uc

1: for Lc, Uc ∈ L, U do
2: if Count(Lc)/Count(Uc) > γ then
3: ŷ ← MostFrequentLabel(Lc)
4: if Count(ŷ)/Count(Lc) > β then
5: return Uc, ŷ
6: end if
7: end if
8: end for
9: return ∅, ∅
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Table 1. Datasets used in experiments

Name Domain #Classes #Features #Samples Majority class

DWTC [9] Table classification 4 227 5,777 39.84%

HIVA [8] Chemoinformatics 2 1,617 42,678 96.48%

IBN SINA [8] Handwriting recognition 2 92 20,722 62.16%

ORANGE [8] Marketing 2 230 50,000 98.22%

SYLVA [8] Ecology 2 216 145,252 93.85%

ZEBRA [8] Embryology 2 154 61,488 95.42%

Weak Cluster identifies clusters that contain i) a lot of labeled data and ii)
almost only samples of with the same label (Algorithm 2). To achieve i) the ratio
between labeled and unlabeled samples of the cluster is computed. Only clusters
where the ratio is above the threshold γ are considered further (line 2). The
second criteria, ensuring ii), is checked by calculating the ratio between the most
common class ŷ and the size of the cluster (line 4). The first cluster, with a ratio
above a threshold β, is returned with ŷ as the label for the unlabeled portion.
The quality of the underlying clusters has a high impact on the quality of this
WS technique. Desirable are many smaller clusters containing only samples of
the same class. Note that the propagation of labels from the cluster only applies
to unlabeled samples. Possible noise in the clusters should have already been
removed by the most uncertainty query strategies (see Subsect. 2.1) before the
thresholds for WeakClust are met.

4 Experimental Setup

We first introduce the datasets used in our evaluation in Subsect. 4.1. In
Subsect. 4.2, we discuss the parametrization of the clustering approaches. To
evaluate the performance of WeakAL we conduct a large hyperparameter search
on different real-world datasets, which is described in Subsect. 4.3. Finally, in
Subsect. 4.4 we present the evaluation metrics used for our experiments. The
code for all experiments is publicly available1 under the AGPL-3.0 license.

4.1 Datasets

We perform our experiments using six real-world datasets described in Table 1.
All datasets are used to train classification models and most of them contain
noisy data, have missing values, sparse feature representation, and unbalanced
class distributions. Except for DWTC, all datasets come from the Active Learn-
ing Challenge performed by Guyon et al. in 2010 [8]. In our experiments, 50 %
of the data was withheld as a test set.

1 https://github.com/jgonsior/weakal.

https://github.com/jgonsior/weakal
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Table 2. Hyperparameter search space

Hyperparameter Search Range

Query Selection random, uncertainty least confidence, uncertainty max
margin, uncertainty entropy

Cluster Selection dummy, random, most uncertain least confidence, most
uncertain max margin, most uncertain entropy

WeakClust? Yes/No

WeakCert? Yes/No

M, α, β, γ [0.5, 1.0]

4.2 Performed Clustering Strategies

As stated in Sect. 3, WeakAL expects the input data to be clustered. Since
the underlying data characteristics for a dataset to be labeled are often not
known, we decided for generally applicable clustering algorithms: For the large
datasets, SYLVA and HIVA, we used Mini-batch k-Means [10] and Agglom-
erative Clustering [11] for the smaller ones. The parameter k, represent-
ing the number of clusters, is set to n samples/8 and the batch size to
min(n samples/100, n features). These parameters ensure an average number
of 8 data points per cluster, which proved to work best in our experiments.
For our use case, the high number of clusters is not a problem as long as their
homogeneity is high. Note, that WeakAL does not depend on a specific cluster
strategy, i.e. others can be used as well.

4.3 Hyperparameter Search

The quality of the used WS technique depends highly on the correct selection
of the parameter values. We chose therefore an extensive random hyperparame-
ter search to find optimal values and obtain an understanding of the sensitivity
of the WS techniques regarding their parameters. Table 2 lists all the relevant
hyperparameters. In total, 37,290 hyperparameters for the DWTC dataset have
been tested, which was possible due to its smaller size and 4,922 hyperparame-
ters for all other datasets.
We used a random forest [12] classifier with standard parameters in all experi-
ments since it showed good results for every dataset and is comparatively fast.
In addition to that, it has been reported that random forest classifiers are good
at dealing with potentially noisy, weak labels [13].

4.4 Evaluation Metrics

To compare the results of an AL run we need to measure its effectiveness in
achieving the overall goal of AL, to learn an accurate model with a minimum
amount of labeling cost. A desirable metric for WeakAL takes into account a)
amount of user-retrieved labels, b) classifier evaluation metrics, such as accuracy,
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F1-Score or AUC, and c) an average of the classifier evaluation metrics through-
out all AL iterations. The last two options are quite similar but have different
objectives. The average is desirable, to not only compare AL runs where only
the final iteration resulted in a high-quality run but also those, where no mea-
surable quality drop occurred. As one normally does not know a priori when to
optimally stop the AL process, one has to look at the average to not stop before
the final “good” queries. As a direct result of this, the final accuracy is needed,
as the average loses the information if the quality is good in the end or just in
the beginning.
We determine two basic metrics that should be analyzed in conjunction for a
meaningful evaluation: the ratio of weakly labeled data % saved human effort
hu and the final test accuracy acc end. For the saved human effort 0.0 equals
zero savings and 1.0 is the optimal case where no human experts were needed
for labeling at all. Besides, two compound metrics are calculated: The first one
is called combined score, which is the harmonic mean of the two basic metrics:

combined score =
2 ∗ acc end ∗ hu

acc end + hu
(6)

It captures the tradeoff between a desired low amount of saved human effort and
high test accuracy.
To compare ourselves to the results of the Active Learning Challenge described
in Subsect. 4.1, we further report the global score, which was used in the chal-
lenge [8]. Note, that we compute the AUC values for the global score only for
human experts’ queries, where WS queries are considered “free”.

5 Evaluation

In this section, we want to investigate the feasibility of WeakAL and show
whether the integration of weak supervision techniques in the AL cycle has
the potential to reduce the human labeling effort. We start in Subsect. 5.1 by
analyzing the impact of the human experts’ query budget. In Subsect. 5.2, we
compare the effect of no WS, WeakCert, and WeakClust individually. Fur-
ther, we combine both strategies, WeakCert and WeakClust, and report the
results for the best working parameter combinations for the DWTC dataset. In
Subsect. 5.3, we show that the combination of AL and WS even can achieve
higher accuracies than AL alone. In Subsect. 5.4 we show on an example how
the two WS strategies are applied in practice. The results on the datasets from
the AL challenge are given in Subsect. 5.5. In Subsect. 5.6, we provide some rules
of thumb for good hyperparameter values.

5.1 Budget Size Matters

As stated in Subsect. 4.4 the used budget size has a direct impact on the evalua-
tion metrics. Figure 2 plots the best-achieved accuracy for the DWTC dataset for
budgets between 0 and 3,000. It can seen that the accuracies for smaller budgets
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fluctuate a lot. We focus the following analysis therefore on larger budgets, due
to stable and more reproducible results. The best result for the combined score,
representing the balance of the tradeoff between a low amount of saved human
effort and high test accuracy, is achieved for a budget of 260 human experts’
queries, with an accuracy of 79.20%.

Fig. 2. Comparison of best-achieved test
accuracy for different budgets for the
DWTC dataset

Fig. 3. Comparison of the best result for
all possible WS combinations with a bud-
get of 1,500, selected after test accuracy

5.2 Comparison of Best-in-class AL + WS

In this analysis, we compare the results for an AL cycle without WS, with each
of WeakClust and WeakCert on their own, and with a combination of both.
Again we used the DWTC dataset for this experiment. As the saved human effort
cannot be calculated, when no WS is being applied, the best results are selected
based on the test accuracy, whereas the budget was kept to a fix value of 1,500.
Figure 3 shows that the accuracy of WeakAL using a combination of both WS
techniques is only 0.31%, WeakCert 0.45%, and WeakClust 1.39% lower
than the AL cycle without WS. Hence, it can be concluded that application of
WS techniques in WeakAL provides a significant saving of human effort, with
a negligible reduction of the test accuracies. WeakCert and WeakClust in
combination only achieve a slightly better accuracy than the individual tech-
niques since both often label the same samples. While the savings of human
effort are higher for WeakClust compared to WeakCert in this example,
this is not true in general but highly depends on the budget.

5.3 General Improvement Using WS

So far we only compared the results for selected examples of good parameter com-
binations. In the following, we investigate the overall distribution of all possible
parameter combinations for a fairly small budget of 200, due too limitations in
compute time, for the DWTC dataset. Figure 4 shows three distributions: in blue
all parameter combinations without using WS strategies, in orange all parameter
combinations showing an accuracy improvement due to the WS-labels, and in
green all parameter combinations using WS and showing a performance decline.
The improvement was measured by comparing the test accuracy of a classi-
fier trained on the human experts’ queries alone, to a classifier trained on the
human expert queries and the automatically generated WS-labels. In addition
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Fig. 4. Kernel density estimation and mean including 95% confidence interval given a
budget of 200 samples for the DWTC dataset

Fig. 5. Highest achieved accuracy result for the DWTC with a budget of 1,500(Color
figure online)

to the kernel density estimations of the distribution, the mean value is shown
including the 95% confidence interval. It can been seen that incorporating WS
into AL even can improve the average test accuracy by 1.81%. There also exists,
a large subset of parameters, which consistently achieve a lower accuracy using
WS. Nevertheless, using WS directly within the AL cycle, with the right param-
eters, has the potential to not only lower the human effort drastically but also
to even increase the accuracy.

5.4 Detailed Results for DWTC Dataset

This section gives some deeper insights into how WeakCert and WeakClust
work together in detail, shown exemplarily for the DWTC dataset. Figure 5
shows the best-achieved accuracy result for the DWTC dataset with a budget of
1,500 human experts’ queries. Fig. 5.a made up of colored rectangles, one for each
iteration of the AL cycle. The width of a rectangle is the number of retrieved
labels during the iteration, the height the achieved test accuracy. In the begin-
ning, a lot of human experts’ queries (blue) are requested, until WeakAL is con-
fident enough to apply the WS techniques. From then on, WeakClust (orange),
WeakCert (green), and the human expert queries alternate constantly. Most
of the labels can be generated automatically by WS, without negatively influenc-
ing the accuracy. The alternation between WS and the human experts’ queries
shows, that it is indeed beneficial to apply WS during the AL cycle, and not
after a gold standard is obtained.
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Fig. 6. Best-achieved test accuracy result for DWTC with a budget of 200

Fig. 7. Comparison of all analyzed datasets with a budget of 1,000 and the combination
based on the global score

In contrast, Fig. 6.a displays the test accuracies for a significantly smaller
budget of only 200 human experts’ queries. Here, most of the labels are generated
by WeakCert. Interestingly the accuracy is dropping after the first big block
of WeakCert labels, but rises quickly again after a few oracle queries. After
the second smaller block of human expert queries at around 1,450, the accuracy
goes even up purely based on WS labels. So without human interaction, the
accuracy of the classifier can be improved, which shows that the effectiveness of
WS goes further than just producing redundant labels.

The bar charts in Fig. 5.b and Fig. 6.b illustrate the results for different eval-
uation metrics. It is obvious, that smaller budget results in more saved human
effort, accepting a loss of the test accuracy. The combined score metric shows,
that the tradeoffs between the saved human effort and the test accuracy are
worse for the bigger budget. This is not surprising, as it always takes much more
data to further improve an already good accuracy than a poor one.

5.5 Active Learning Challenge Datasets

To compare our results to other common AL strategies we selected the training
datasets from the AL challenge [8]. The respective best results are shown in
Fig. 7. We used a budget of 1,000 and the global score of the AL challenge as the
evaluation metric to select the best results. A budget of 500 was too small for
most of the datasets and resulted in highly overfitted classifiers with reported
test accuracies of under 1%. The figures show, that all AL challenge datasets
have high values for all metrics. As the datasets all are highly imbalanced binary
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decision problems, a vast amount of labels can be generated automatically by
WS, as most samples are of the same label anyway. Since we have been not able
to determine the budgets used in the AL challenge, a comparison of the results
is only partly fair. Nevertheless, under the assumption, that a budget of 1,000 is
close to the budget used in the competition, our achieved results are competitive
to the winners of the AL challenge. Not all datasets are suited for WeakClust
as the underlying data could not be clustered well. Clustering worked good for
HIVA, IBN SINA, and ZEBRA.

Fig. 8. Best-achieved global score result for IBN SINA with a budget of 1,000(Color
figure online)

Figure 8 shows the results for the IBN SINA dataset in detail. In the begin-
ning, human experts’ queries are being collected (blue bars). After that, almost
all labels can be generated using the WeakCert (orange) and WeakClust
(green). Both WS techniques alternate between each other, with few human
experts’ queries in between. Again, this is an argument for directly embedding
WS into the AL process in WeakAL. The plots for the other datasets from the
AL competition looked quite similar. We therefore based our evaluation primar-
ily on the more interesting results for the DWTC dataset.

5.6 Recommended Parameters

Based on the investigation in Subsect. 5.3, we would like to make recommen-
dations which parameter combinations work well in practice: First, the best
parameters depend a lot on the desired test accuracy. The higher the test accu-
racy, the more data is needed, and the higher the thresholds should be set.
The minimum training accuracy M should be approximately 10% less than the
desired test accuracy. For the query sampling strategies, uncertainty max mar-
gin performed best, closely followed by uncertainty least confident. The selected
cluster strategy depends heavily on the quality of the underlying clusters and the
amount of available data. For the several datasets, such as ZEBRA, which could
be clustered well, and, therefore, WeakClust is applied often, most uncertain
least confident works best, whereas for those where no meaningful clusters could
be found, the dummy cluster strategy is leading. Good values for the thresh-
old α are values between the desired test accuracy up to 1.0. The parameters
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for WeakClust, β, and γ, should be considered jointly. The lower the cluster
homogeneity ratio β, the higher the minimum labeled cluster size γ should be.
Good values for both are between 0.75 and 0.95, keeping in mind the reverse
dependency between both.

6 Related Work

Semi-Supervised Learning. There exist various techniques to combine the
abundance of unlabeled data with labeled data in a classification setting, and
the terminology about that is not always clear according to our experience. The
most common term is semi-supervised learning, which uses unlabeled data to
verify assumptions based on labeled data [14]. Semi-supervised learning also
has been incorporated with AL, e.g. using Expectation-Maximization [15] or
using multi-view co-training [16]. Adjacent to semi-supervised learning, weak
supervision assumes that high-quality ground truth labels exist, and many noisy
labels for the rest of the data. In our case, we produce high-quality data when
querying the human experts, and noisy labels when using the WS. Following the
terminology introduced in [17], we use the term weak supervision when talking
about inaccurate supervision. We focus on the aspect of generating labels of
weak-supervised learning, intending to reduce the amount of needed ground-
truth labels.

Clustering. [18] proposes to query only the cluster centers in different feature
spaces, and to use a majority vote afterward for the unlabeled data to deter-
mine their labels. In [19] graph-based clustering was directly incorporated into
an AL setting. Other techniques, such as label propagation [20] iteratively prop-
agate labels based on a small labeled ground truth set using a combination of
random walk and clamping. Another approach is to use a small set of ground
truth labels and program synthesis techniques to automatically generate labeling
functions [21].

7 Conclusions

Annotating training data for supervised learning, such as classification, requires
substantial human effort. While utilizing Active Learning during the annotation
process already decreases the amount of human labor, we argue that AL should
be combined with WS to further reduce the number of annotations made by
human experts. Therefore, we proposed WeakAL, a WS extension to a typical
AL cycle employing different cluster query strategies to query those samples,
which further supports the WS strategies. In a comprehensive study, we selected
and compared the proposed strategies as well as multiple parameter combina-
tions. For a Web table classification task the results show that 55.30% of human
labeling effort can be saved using automatic WS labels, with only a negligible
loss of test accuracy by 0.31%. We showed, that with optimal parameters, a
test accuracy improvement by 1.81% can be attributed solely to WS. We fur-
ther applied WeakAL on datasets from the AL challenge from Guyon et al.,
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where over 90% of the labels could be generated automatically, while still achiev-
ing competitive results, thus proving the general applicability of our proposed
approach.
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Abstract. Constrained clustering has received much attention since its inception
as the ability to add weak supervision into clustering has many uses. Most exist-
ing work is algorithm-specific, limited to simple together and apart constraints
and does not attempt to satisfy all constraints. This limits applications including
where satisfying all constraints is required such as fairness. In this work, we take
the novel direction of post-processing the results of a clustering algorithm (con-
strained or unconstrained) as a combinatorial optimization problem to find the
best allocation of instances to clusters whilst enforcing constraints. Experiments
show that when evaluated on a ground truth, our method is competitive in terms
of clustering quality with the more recent approaches while being more compu-
tationally efficient. Finally, since all constraints are satisfied, our work can be
applied to areas such as fairness including both group level and individual level
fairness.

Keywords: Constrained clustering · Combinatorial optimization · Fairness
constraints

1 Introduction

The area of constrained clustering has been well studied since the seminal papers nearly
twenty years ago. The addition of constraints allows domain knowledge or partial super-
vision from labels to be added to clustering. Constrained versions of a variety of dif-
ferent algorithms exist such as k-means [1], EM [2], spectral [3]. This has allowed
application of clustering in domains it has previously been problematic to apply due to
strong domain knowledge such as neuroscience [4], intelligent tutoring systems [5] and
GPS data [6].

Table 1 surveys classic well known constrained clustering algorithms with respect
to the constraint types they can integrate and whether all the constraints are satisfied. As
can be seen, most existing work is limited: a) to simple together and apart constraints
and b) only partially satisfying them. This is due to a number of reasons including
that satisfying constraints is typically intractable [7,8], so approaches for satisfying all
constraints will be time-consuming. Finally, a limitation with the entire field is that
constrained clustering is typically for a given algorithm (i.e. not algorithm agnostic).
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Table 1. A brief survey of constrained clustering algorithms.

Algorithm Constraint types (Satisfaction of all constraints)

k-Means [1] Together/Apart (Yes)

EM [2] Together/Apart (No)

Spectral clustering [3] Together/Apart (No)

Deep clustering [9] Together/Apart, Cardinality, Triplet (No)

In this work we take the novel direction of taking the results of an unconstrained
or constrained clustering algorithm and post-processing them to satisfy the constraints.
The process considers as a combinatorial optimization problem with the objective of
assigning instances to the most likely clusters while satisfying all the constraints. This
has the benefit of allowing algorithms for which there are no constrained versions to
enjoy the benefit of being constrained. Algorithms for which there are no constrained
versions are not uncommon and quite popular such as the Louvain method [10] and
DBScan [11]. The only requirement of our method is that the result of the clustering
algorithm can be represented as a degree of membership to each and every cluster. This
is represented by a matrix that we call cluster fractional allocation matrix (CFAM). For
probabilistic algorithms such as EM this is directly produced by the algorithm but for
other methods it can also be calculated. For example, this can be calculated using the
distance to the cluster centroid for k-means. We show in Table 2 for several clustering
algorithms how to obtain a CFAM. Our method therefore can be used with a wide vari-
ety of clustering algorithms including distance based, probabilistic and deep learning.

Table 2. An overview of how to obtain a cluster fractional allocation matrix from several algo-
rithm outputs.

Algorithm Method to obtain a CFAM

Centroid based (i.e. K-means) Normalized distance to centroids

Exemplar based (i.e. K-Medoids) Normalized distance to exemplar

Graph based (i.e. Spectral Clustering) Distance in embedded space

Deep clustering (i.e. DEC) Renormalized embedding vector

Modularity based (i.e. Louvain Method) Normalized geodesic distance between node and
centroid node

Density based (i.e. DB-Scan) Normalized distance to core points

Our method takes as input a cluster fractional allocation matrix and formulates a
combinatorial optimization problem to assign the instances based on these whilst sat-
isfying the constraints. We take the novel direction of modeling this as an affectation
problem which can be extended to a general Integer Linear Program (ILP) formulation.
This allows us to model a variety of new styles of constraints not previously explored.
These new types of constraints and their use are shown in Table 3. Individually though
these constraints are useful, together they can be used for innovative applications such
as satisfying both individual and group level fairness.
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Table 3. An overview of the new constraint types that our approach can integrate.

Constraint Use Example

Cluster-overlap Constrain the amount of overlap
between clusters

Each instance can belong to at
least r and at most s clusters

Neighborhood Link the instances to their
neighbors

Each person should be in the
same group with at least 50% of
persons having the same level
(individual level fairness)

Property-
cardinality

Constrain the number of a
specific type of instances in each
cluster

The ratio of males/females in the
clusters are approximately
equivalent (group level fairness)

Attribute level Constrain number of possible
clusters for instances with
specific property

Distribute young people across at
least r and at most s clusters

Our work makes several contributions:

– We formulate a novel direction of post-processing a clustering to satisfy constraints
and we model it by an Integer Linear Program (ILP). We show that it can integrate
several existent and new types of constraints.

– We experimentally verify our method can post-process the results of unconstrained
and constrained algorithms improving the results of both (Table 4).

– We explore the direction of using our framework to ensure both group level and
individual level fairness (Table 10).

We begin by covering related work in Sect. 2, review and introduce constraint types
in Sect. 3 then overview preliminaries before covering our formulation in Sect. 4. We
experimentally verify our work in the semi-supervised setting in Sect. 5 and in the fair-
ness domain in Sect. 6.

2 Related Work

Constrained clustering is a central area of AI. It enables the integration of prior knowl-
edge, in the form of constraints, to guide a clustering algorithm. To our knowledge all
existing work attempts to simultaneously find a clustering which satisfies prior knowl-
edge in the form of constraints.

Prior knowledge is typically from the labels of some objects, which generate pair-
wise must-link/cannot-link constraints (two objects must be/cannot be in the same clus-
ter) [2]. These kinds of constraints are the most popular and lots of work are devel-
oped to handle them [1,3,6,7,12]. Domain expert can also provide guidance beyond
pairwise constraints, which can be requirements at cluster level. Several methods have
been developed to integrate these constraints: minimal cluster size constraint [13], bal-
anced clustering [14,15], or bounds on the density of the clusters [7]. However, these
types of constraints cannot be combined as they are formulated in different paradigms.
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More generic methods that allow integrating several different types of constraints are
declarative approaches, which are developed using a general optimization tool, such
as ILP [16–18], SAT [8,19] or constraint programming [20,21]. These methods find
a global optimal solution that satisfy all the constraints, they suffer however from a
lack of efficiency, which prevent them to handle large datasets. Deep clustering meth-
ods [22] have recently been proposed that simultaneously optimize the representation
and a clustering objective. Based on this approach deep constrained clustering methods
such as [9] integrate several types of constraints by adding a satisfaction loss in the
objective function. They can handle large datasets but do not guarantee satisfying all
the constraints.

In contrast in our work constraints are enforced a posteriori. We use a matrix that
presents the degree of membership of each instance to each cluster, which can be com-
puted by a clustering method, or a constrained clustering method, for it does not satisfy
all the constraints. Our method finds the best assignment that satisfies all the constraints.
It can integrate different types of constraints without relearning the model and can be
used with a wide variety of clustering algorithms including distance based, probabilistic
and deep learning.

3 Existing and New Constraint Types

Consider the problem of clustering a dataset of N instances into K clusters. Sim-
ple pairwise constraints are typically generated from labeled data: must-link (if labels
agree) or cannot-link (if labels disagree). An extension of this idea to continuous side
information was recently explored [9] to generate triplet constraints: ab|c which means
a is more similar to b than to c. As a consequence if a and c belong to the same cluster,
or so do b and c, then a, b, c must all belong to the same cluster [23]. Our framework can
model both these popular existing constraints and in addition the following constraints.
Though some of these have been studied before, our framework allows using all these
constraint types simultaneously.

– Geometric constraint gives an upper/lower bound on the diameter of each cluster or
on the split between the clusters [7].

– Cluster size constraint requires an upper/lower bound on the number of instances in
each cluster. Balanced clustering constraint [13] is a special case, where the clusters
are of approximately equal size.

– Cluster-overlap constraint limits the amount of overlapping between clusters by con-
straining the number of clusters each instance can belong to.

– Property-cardinality constraint gives a lower/upper bound on the number of
instances satisfying a property in each cluster. Group-level fairness can be expressed,
which requires that in each cluster, the ratio of a type of instances (e.g. females) is
approximately the same as the ratio in the whole dataset [24].

– Neighborhood constraint links instances with one or more of their neighbors. An
example is individual fairness [25] which requires that individuals who are close
together should be grouped together.

– Attribute level constraint limits the number of possible clusters for all the instances
with a specific property.



Constrained Clustering via Post-processing 57

Satisfying all these types of constraints is a NP-Hard problem [7] which makes them
difficult to satisfy after each iteration of an algorithm. Instead we attempt to satisfy them
only once after the clustering algorithm has converged.

4 Constraint Post-processing Formulation

Consider a cluster fractional allocation matrix (CFAM), which is a N × K matrix P of
real numbers, where Pik indicates the allocation score of assigning instance i into clus-
ter k (the larger Pik the more likely instance i is to belong to cluster k). This matrix can
be directly the result of any probabilistic (constrained or not) clustering method, such
as EM. It can also be computed from the clustering result of other (constrained) clus-
tering algorithms such as k-means, as stated in Table 2. We consider a set of constraints
C that must be satisfied. As it is stated in Sect. 3, satisfying all the types of constraints
is typically a NP-Hard problem, we propose a formulation based on Integer Linear Pro-
gramming for this problem.

Objective. We aim at finding an assignment of instances to the most likely clusters
while satisfying all the constraints. The problem is therefore finding a N ×K matrix Z
of {0, 1} with the objective function

argmax
N∑

i=1

K∑

k=1

PikZik

such that the constraints in C are satisfied. The matrix Z represents a hard assignment:
Zik = 1 means instance i is assigned to cluster k. The constraints in C can be of
different types (see Sect. 3). They can be formulated as follows.
Pairwise Constraint. A must-link (or a cannot-link) constraint on two instances i, j
is formulated by ∀k = 1, . . . ,K, Zik = Zjk (or Zik + Zjk ≤ 1, for a cannot-link
constraint).
Triplet Constraint. A triplet constraint ab|c is formulated by:

∀k = 1, ..,K, Zbk ≥ Zak + Zck − 1 and Zak ≥ Zbk + Zck − 1

This formulation yields Zbk = 1 if Zak = Zck = 1 and Zak = 1 if Zbk = Zck = 1.
Cluster-Overlap Constraint. Each instance belonging to at least α and at most β clus-
ters can be expressed by:

∀i = 1, . . . , N, α ≤
∑

k=1..K

Zik ≤ β

To enforce hard clustering, i.e. each instance in one cluster, α and β is set to 1.
Cluster Size Constraint. Each cluster must contain at least α and at most β instances
can be expressed by:

∀k = 1, ..,K, α ≤
∑

i=1..N

Zik ≤ β
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Property-Cardinality Constraint. Let p(i) be 1 when an instance i has a property p
and 0 otherwise. The fact that each cluster must have at least α and at most β instances
having the property p can be enforced by:

∀k = 1, ..,K, α ≤
∑

i=1..N

p(i)Zik ≤ β

The constraint such that in each cluster, the ratio of the instances having p over the size
of the cluster is bounded by [α, β] is expressed by:

∀k = 1, ..,K, α.
∑

i=1..N

Zik ≤
∑

i=1..N

p(i)Zik ≤ β.
∑

i=1..N

Zik

Neighborhood Constraint. A neighborhood constraint requires that each instance i
must be in the same cluster with at least a ratio α of its neighborhood Ni. Let Ni(j) = 1
if instance j is in the neighborhood of i and 0 otherwise. This constraint is expressed
by: ∀i = 1, . . . , N,∀k = 1, . . . ,K,

∑

j=1..N

Ni(j)Zjk ≥ α(
∑

j=1..N

Ni(j))Zik

Attribute Level Constraint. An attribute-level constraint limits the number of possible
clusters for the instances having a specific property. Let p(i) be 1 when the instance i
has the property and 0 otherwise. We introduce a variable tk ∈ {0, 1} for each clus-
ter k, tk = 1 if and only if the cluster k contains some instances having p. This is
expressed by:

tk ≤
∑

i

p(i)Zik and ∀i = 1, . . . , N, tk ≥ p(i)Zik

The first constraint ensures tk = 0 if there is no instance having p in cluster k. The
second sets tk = 1 as soon as an instance having p is in cluster k. Bounds [α, β] on
the number of clusters containing the instances having the property p are given by:
α ≤ ∑

k=1..K tk ≤ β.

5 Experiments

Our experiments attempt to address several core questions to understand how our work
can be used in conjunctions with existing algorithms and its limitations and benefits.
We attempt to address the following questions.

– Does our method improve the result/output of unconstrained and constrained clus-
tering algorithms? (See Table 4)

– Is our method comparable with baseline constrained clustering methods? (See
Tables 4 and 6)

– How useful are the new types of constraints and their use in combination? (See
Tables 7 and 8)

– How does our method scale to large datasets? (See Tables 6, 7 and 8)
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5.1 Experiment Setting

Datasets. We use 3 datasets, which are challenging and also used in a recent deep
constrained clustering method [9].
MNIST: The dataset is composed of 60,000 handwritten single-digits, with a size of
28-by-28 pixels.
FASHION-MNIST: The dataset contains 60,000 images associated to a label from 10
classes.
REUTERS-10K: Reuters contains around 810,000 English news stories labeled with a
category tree [26]. Following DEC [22], we consider only the single label documents
belonging to the corporate/industrial, government/social, markets
and economics categories. A subset of 10,000 examples is randomly sampled and
the TF-IDF measure is computed on the 2000 most frequent words.
Baseline Algorithms. The following systems are used in our experiments.
IDEC: (Improved Deep Embedded Clustering) [27] a popular deep clustering method
based on auto-encoder.
Kmeans: the classic algorithm but run on the deep embedding representation learned by
IDEC.
COP-Kmeans: the classic constrained clustering algorithm for pairwise constraints but
again run on the embedded space [6].

MSE-Kmeans: a modified K-means relying on minimum-cost flow algorithm to sat-
isfy cluster size constraints [15], which is run on the embedded space.
DCC: Deep Constrained Clustering [9] which handles pairwise, triplet and balanced-
clustering constraints during the clustering process.
Kmeans-Post, IDEC-Post, DCC-Post: our constraint post-processing method applied on
the results of K-means, IDEC and DCC, respectively. IDEC and DCC output a cluster
fractional allocation matrix (CFAM) which is then used in our method. For K-means,
we generate the CFAM P as follows. Let the centroids be μk (1 ≤ k ≤ K), the matrix
P is computed by the t-distribution:

Pik = − log
(1+ ‖ xi − μk ‖2)−1

∑
k′(1+ ‖ xi − μk′ ‖2)−1

For fairness, since IDEC is a probabilistic algorithm, we run it once and we gave the
learned embedded representation to all the systems. Moreover, DCC is initialized with
the network and the parameters learned by IDEC. All algorithms are implemented in
Python. We use the ILP solver Gurobi version 8.01. Experiments are run on a 2.8 GHz
Intel Core i7 processor with 16GB of RAM. The source code is made available and
easy to replicate2.
EvaluationMetric. In all the datasets, the true class of objects is available and we use it
as the ground truth to evaluate the accuracy of the clustering. We consider two measures:
Normalized Mutual Information (NMI) and clustering accuracy (ACC), with a one-to-
one mapping between clusters and labels, computed by The Hungarian algorithm [28].
In both cases the higher the better.

1 https://www.gurobi.com/.
2 https://github.com/dung321046/ConstrainedClusteringViaPostProcessing.

https://www.gurobi.com/
https://github.com/dung321046/ConstrainedClusteringViaPostProcessing
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5.2 Baseline Comparisons

Pairwise Constraints. We compare our method with baseline systems on MNIST and
Fashion datasets with 3,600, 30,000 and 60,000 pairwise constraints. To measure per-
formance, for each number of constraints we average performance over five sets of
constraints and report the average and standard deviation over the five trials. Table 4
reports the results on MNIST. Our post-processing method with pairwise constraints
always improves the input in terms of NMI and accuracy, with the benefit of satisfying
all the constraints. Moreover, it always obtains better results compared to COP-Kmeans
and comparable results to DCC. Similar results are also observed on the Fashion dataset
see Table 5.

Table 4. Results with pairwise constraints on MNIST

#Pw Method NMI ACC

0 Kmeans 0.8644 ± 0.0000 0.8838 ± 0.0000

IDEC 0.8539 0.8799

3600 COP-Kmeans 0.8237 ± 0.0324 0.7372 ± 0.0630

DCC 0.8637 ± 0.0012 0.8938 ± 0.0075

Kmeans-Post 0.8649 ± 0.0001 0.8843 ± 0.0001

IDEC-Post 0.8547 ± 0.0002 0.8804 ± 0.0001

DCC-Post 0.8640 ± 0.0013 0.8940 ± 0.0077

30000 COP-Kmeans 0.8477 ± 0.0195 0.8302 ± 0.0314

DCC 0.9407 ± 0.0032 0.9786 ± 0.0013

Kmeans-Post 0.8689 ± 0.0003 0.8876 ± 0.0003

IDEC-Post 0.8602 ± 0.0007 0.8839 ± 0.0005

DCC-Post 0.9429 ± 0.0026 0.9796 ± 0.0011

60000 COP-Kmeans 0.8146 ± 0.0319 0.8039 ± 0.0644

DCC 0.9549 ± 0.0029 0.9847 ± 0.0012

Kmeans-Post 0.8739 ± 0.0004 0.8917 ± 0.0003

IDEC-Post 0.8668 ± 0.0005 0.8887 ± 0.0004

DCC-Post 0.9581 ± 0.0021 0.9860 ± 0.0009

Cluster Size Constraints. Here we compare our method on MNIST and Fashion, with
MSE-Kmeans [15], which is developed specifically for cluster size constraints. We use
the minimum and the maximum of the true class sizes as a lower bound and a upper
bound on the cluster sizes for all the clusters. The results are shown in Table 6. The
results show that our general method of incorporating this constraint is competitive
compared to a method which is developed specifically for this type of constraints.

5.3 New Constraint Types and Constraint Combinations

Attribute Level Constraints. This new type of constraints requires that the instances
having a specific property cannot be widespread over a large number of clusters.
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Table 5. Results with pairwise constraints on Fashion

#Pw Method NMI ACC

0 Kmeans 0.6319 ± 0.0000 0.5877 ± 0.0000

IDEC 0.6320 0.5879

3600 COP-Kmeans 0.6222 ± 0.0152 0.5808 ± 0.0092

DCC 0.6403 ± 0.0192 0.6378 ± 0.0277

Kmeans-Post 0.6306 ± 0.0003 0.5877 ± 0.0002

IDEC-Post 0.6315 ± 0.0003 0.5880 ± 0.0002

DCC-Post 0.6402 ± 0.0191 0.6377 ± 0.0276

30000 COP-Kmeans 0.6175 ± 0.0043 0.5974 ± 0.0199

DCC 0.7421 ± 0.0158 0.7989 ± 0.0279

Kmeans-Post 0.6253 ± 0.0005 0.5901 ± 0.0005

IDEC-Post 0.6293 ± 0.0005 0.5905 ± 0.0003

DCC-Post 0.7446 ± 0.0159 0.8019 ± 0.0282

60000 COP-Kmeans 0.6023 ± 0.0059 0.5853 ± 0.0175

DCC 0.6430 ± 0.2882 0.7180 ± 0.2891

Kmeans-Post 0.6219 ± 0.0007 0.5923 ± 0.0008

IDEC-Post 0.6276 ± 0.0008 0.5940 ± 0.0008

DCC-Post 0.6624 ± 0.2705 0.7409 ± 0.2671

Table 6. Clustering accuracy and NMI for clustering with cluster size constraints

Data - Method NMI ACC Data - Method NMI ACC

MNIST - IDEC 0.8539 0.8799 Fashion - IDEC 0.6320 0.5879

MNIST - MSE 0.8536 0.8816 Fashion - MSE 0.5363 0.5387

MNIST - Post 0.8520 0.8796 Fashion - Post 0.5301 0.5425

We consider Reuters-10K and we require that documents that contain some given words
should be covered by at most s clusters. We consider two cases with 5 (resp. 10) con-
straints by randomly selecting 5 (resp. 10) sets of three words, among those whose doc-
uments widespread on at most 2 clusters (s = 2). We post-process the initial clustering
given by IDEC.

Table 7 reports the quality in NMI and accuracy (ACC), the number of instances
involved in all the constraints, the number of constraints that are not satisfied by the
clustering given by IDEC (it is the input clustering of our system, note that our sys-
tem produces a clustering satisfying all the constraints), the number of documents that
have been assigned to a different cluster after post-processing and the runtime in sec-
onds. The impact of attribute level constraints is quite high. While a pairwise constraint
only affects two instances, the average number of instances that are concerned in an
attribute level constraint is around 200. The number of instances that have been reas-
signed is therefore also high. That could explain the slight decrease of NMI and the
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Table 7. Impacts of attribute level constraints on Reuters-10K

#Constraints 0 5 10

NMI 0.5279 0.5253 ± 0.0039 0.5219 ± 0.0055

ACC 0.7452 0.7474 ± 0.0070 0.7499 ± 0.0088

#Involved Inst - 1168.0000 ± 50.5332 2128.0000 ± 143.6760

#Unsat Constr - 4.8000 ± 0.4000 9.8000 ± 0.4000

#Changed Inst - 96.6000 ± 57.4895 212.4000 ± 42.9679

Runtime (s) - 0.0831 ± 0.0147 0.3052 ± 0.3010

slight increase of accuracy, the random constraints without specific domain knowledge
could be too strong.
Combinations of Constraints. One benefit of our framework is that it can integrate
and satisfy several types of constraints. Among existing constrained clustering methods,
only declarative methods can integrate several types of constraints [8,21] while satisfy
them all. However they suffer from scalability and cannot handle datasets as big as
MNIST and Fashion. In this part, we consider both pairwise (PW) and cluster size (CS)
constraints simultaneously. The number of pairwise constraints is set to 30,000 for both
runs.

Table 8. Runtime (in seconds) with/without pairwise (PW) and cluster size (CS) constraints on
MNIST and Fashion.

Cases NMI ACC # Changes # Positive changes Runtime (s)

MNIST

No constraint 0.85 0.88 - - -

CS 0.85 0.88 445.00 18.00 3.95 ± 0.12

PW 0.86 ± 0.00 0.88 ± 0.00 878.80 ± 21.50 507.00 ± 25.27 3.86 ± 0.32

PW + CS 0.86 ± 0.00 0.88 ± 0.00 1067.00 ± 18.77 596.20 ± 23.28 3.86 ± 0.32

Fashion

No constraint 0.63 0.59 - - -

CS 0.53 0.54 8748.00 977.00 4.06 ± 0.21

PW 0.63 ± 0.00 0.59 ± 0.00 2747.40 ± 43.51 977.40 ± 13.84 3.51 ± 0.02

PW + CS 0.54 ± 0.00 0.55 ± 0.00 9600.80 ± 38.28 1580.20 ± 28.08 24.78 ± 2.76

Table 8 reports results for the MNIST and Fashion datasets. It reports the number
of instances that have been assigned to a different cluster by the post-process and the
number of changes that have lead to the right cluster.

We notice a difference in behavior between MNIST and Fashion. For the first
dataset, adding cluster size constraints improves the results while it is not true for Fash-
ion. It can perhaps be explained by a tighter constraint (upper bound minus lower bound
is smaller) for Fashion than for MNIST.
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For the pairwise constraint, adding constraints has been shown in our experiments
to consistently improve the quality of cluster, while the use of cluster size constraints
needs more careful consideration. It is worth to study further for a way to relax this
constraints when its impact is too high.
Runtime. We report the runtime in seconds of COP-Kmeans, DCC and our method
with pairwise constraints in Table 9. To have a fair comparison, we focus only on the
computational time for integrating constraints to the initial clustering provided by IDEC
without any constraints.

Table 9. Runtime (in seconds) with pairwise constraints using COP-Kmeans, DCC and
postprocess.

Data #Pairwise IDEC-Post COP-Kmeans DCC

MNIST 3600 1.00 ± 0.04 132.38 ± 18.72 1013.76 ± 790.91

30000 3.86 ± 0.32 103.77 ± 56.39 1381.73 ± 1067.07

60000 6.81 ± 0.39 70.95 ± 38.41 3277.37 ± 1555.83

Fashion 3600 0.99 ± 0.02 71.00 ± 57.77 5579.30 ± 2761.33

30000 3.51 ± 0.02 103.71 ± 35.26 7359.35 ± 3927.79

60000 6.55 ± 0.43 95.28 ± 37.90 3207.00 ± 1057.71

The runtime of each test mainly depends on the number of pairwise constraints.
Our method usually gives comparable results for quality but it is substantially faster.
On average, our method is more than 10 times faster than COP-Kmeans and 500 times
faster than DCC. Indeed, COP-Kmeans has to compute the distance matrix after updat-
ing the cluster centers, whereas DCC has to apply back propagation to update all the
model parameters. Moreover, post-processing time has a smaller variance between each
test than the other methods.

Concerning other constraints, as given in Tables 7 and 8 our method performs in a
very reasonable time.

6 Application: Improving the Fairness of Clustering Algorithms

The previous section performed standard comparisons to show our method was compa-
rable in accuracy to existing methods. Here we show the real worth of our approach as it
allows combining multiple constraints to address the challenging problem of fairness in
clustering. The area of fair clustering has drawn much recent attention. Fairness in clus-
tering can be classified into group fairness and individual fairness. Group-level fairness
usually represents statistical fairness notions based on a protected status variable (PSV).
Group fairness typically requires that in each cluster, the ratio of each PSV value is
approximately equal to the ratio of this type in the whole dataset [24]. Individual-level
fairness corresponds to requirements made to individuals. An example of individual
fairness requires individuals who are close together to be treated in the same way [25].
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Existing work usually ensures just one of these types of fairness, either group fair-
ness [24,29] or individual fairness [30]. In our best knowledge, no work has considered
both individual fairness and group fairness. Taking advantage that our constraint post-
processing method can integrate different types of constraints, both types of fairness
can be ensured.

We consider the classic fairness dataset Adult with 48,842 instances. Data to cluster
on is described by continuous attributes such as age or working hours, and PSV such as
gender, education or marital-status.
Group and Individual Fairness. Group fairness is expressed by the requirement that
in each cluster, the ratio of each type of instances is approximately the same as this
ratio when computed on the whole dataset. The ratio of females in the dataset is about
33.15%. To ensure group fairness, we require that in each cluster, the ratio of females
is between 0.3315 − ε and 0.3315 + ε with ε = 0.01. This is ensured by property-
cardinality constraints, as defined in Sect. 4.

To ensure individual fairness, we require that each instance i must be in the same
cluster as at least 50% of the elements in its neighborhood Ni. For each instance i, the
neighborhood Ni is defined by the set of instances having exactly the same education
and occupation, and a difference in age less than or equal to 2. This requirement is
ensured by neighborhood constraints, as defined in Sect. 4, with α = 0.5. We prove that
with α ≥ 0.5, if x and y have exactly the same value on the attributes used to define
the neighborhood, then to satisfy the fairness constraints x and y must be in the same
cluster.
Baseline Individual Fairness - Most Votes Greedy Method. In order to ensure indi-
vidual fairness, as a baseline method, we have implemented a greedy method as below.
We iterate t times the following procedure: for each unfair instance x, find the cluster
k that contains the most instances in the neighborhood of x and change the assignment
of x to the cluster k. In the experiment t = 10.
Baseline Group Fairness - Fairlet. We use the code produced by [29] which is an
improvement of the method ensuring group fairness using fairlets [24]. Fairlets are sub-
sets of objects that respect the given ratio between the two values of a binary attribute.
They are computed first then clustering is achieved on them to ensure group fairness.
For the dataset Adult, we require the minimum ratio of females over males is higher
than 49.37% so that the lower bound for the percentage of females in each cluster is
33.05%.
Our Post-processing K-means Results. Let μk (1 ≤ k ≤ K) be the cluster centers
obtained from K-means with the input X = {xi : i ∈ [1, N ]}. Then, the allocation
matrix P is computed using the t-distribution.

Pik = − log
(1+ ‖ xi − μk ‖2)−1

∑
k′(1+ ‖ xi − μk′ ‖2)−1

Finally, we optimize P under three scenarios: only with individual constraints (Post-
Ind.), only with group constraints (Post-Group), and both (Post-Combine).
Results and Analysis. Table 10 reports the result obtained on 10 runs with K = 5.
It reports the clustering quality in terms of the within cluster sum WCS, the number
of instances that are unfairly grouped according to individual fairness, the number of
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clusters that are unfair according to group fairness and the runtime in seconds. The
within cluster sum WCS is defined by the sum of squared distances from each instance
to the centroid of its cluster.

K-means gives a clustering that is unfair with respect to both group fairness and
individual fairness. As expected, ensuring fairness decreases the clustering quality
measured by WCS. However, post-processing achieves better quality than the greedy
method. We can observe that group fairness and individual fairness are not relevant,
ensuring one type of fairness does not ensure the other type, but even worsen. For
instance, Fig. 1 shows that clusters computed while ensuring only individual fairness
(Post-Ind.) are group unfair (see for instance Cluster 4 with a very low rate of females).

1 2 3 4 5
0.2

0.3

0.4

0.33

K-means Post-Ind. Fairlet Post-Group

Fig. 1. The ratio of females in each of the five clusters by different methods.

On the other hand, Table 10 shows that Fairlet and Post-Group methods that ensure
group fairness do not ensure individual fairness, even the numbers of unfair individuals
are higher than the traditional K-means (around 7812 and 5809 respectively, compared
to 5686). For group fairness, without upper-bound constraint, Fairlet sometimes pro-
duces unfair groups (averaging 0.6 group per test case) while Post-Group ensures both
bounds.

In terms of efficiency, the post-processing performs with a very reasonable runtime.

Table 10. Runtime and constraint satisfaction with individual fairness or/and group fairness.

Method WCS # Indiv. unfair inst. # Group unfair clust Runtime (s)

K-means 8477.14 ± 1.89 5685.60 ± 21.12 5.00 ± 0.00 2.62 ± 0.30

Individual-level fairness

Most-vote 9071.63 ± 1.84 113.10 ± 5.68 4.70 ± 0.46 18.06 ± 0.71

Post-Ind 9064.86 ± 1.83 0 4.00 ± 0.00 3.93 ± 0.11

Group-level fairness

Fairlet 9587.47 ± 113.95 7812.30 ± 1102.79 0.60 ± 0.49 36.90 ± 0.84

Post-Group 8581.52 ± 1.30 5809.40 ± 41.81 0 3.16 ± 0.17

Both individual-level and group-level fairness

Post-Combine 9175.91 ± 1.50 0 0 6.66 ± 1.23
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7 Conclusion

Constrained clustering methods can integrate prior knowledge in term of constraints,
but they are usually limited on the type of constraints. Moreover, they do not guar-
antee the satisfaction of the constraints. Declarative methods can handle several types
of constraints and satisfy all of them, but they suffer from a lack of efficiency, which
prevent them to handle large datasets. In our work, we propose the novel direction of
post-processing the results of an unconstrained or constrained clustering algorithm to
enforce the constraints a posteriori. Given a matrix that presents the cluster fractional
allocation of instances to clusters, our method assigns instances to the most likely clus-
ters while satisfying all the constraints. Our method can handle large datasets, it can
integrate all types of popular constraints as well as a variety of new styles of constraints.
It can be used with a wide variety of clustering algorithms, including deep learning and
we demonstrated its use in the complex setting of ensuring group and individual level
fairness using multiple constraints which to our knowledge has not been attempted.
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Abstract. Clustering artworks is a very difficult task. Recognizing
meaningful patterns in accordance with domain expertise and visual per-
ception, in fact, can be extremely hard. On the other hand, applying tra-
ditional clustering and feature reduction techniques to the highly dimen-
sional raw pixel space can be ineffective. To overcome these problems,
we propose to use a deep convolutional embedding clustering framework.
The model simultaneously optimizes the task of mapping the input pixel
data to a latent feature space and the task of finding cluster centroids
in this latent space. A quantitative and qualitative preliminary study
on a collection of artworks made by Pablo Picasso shows the effective-
ness of the model. The proposed method may assist in art-related tasks,
in particular visual link retrieval and historical knowledge discovery in
painting datasets.

Keywords: Deep clustering · Autoencoders · Cultural heritage

1 Introduction

Cultural heritage, in particular visual arts, are of paramount importance for the
cultural, historic and economic growth of the human society. In recent years, due
to technology improvements and dramatically declining costs, a large scale digi-
tization effort has been made leading to a growing availability of large digitized
art collections. Remarkable examples include WikiArt1 and the MET collection.2

This availability, along with the recent advancements in Pattern Recognition and
Computer Vision, has opened new opportunities to computer science researchers
to assist the art community with intelligent tools to analyze and further under-
stand visual arts. Among the other benefits, a deeper understanding of visual
arts has the potential to make them more accessible to a wider population, both
in terms of fruition and creation, thus supporting the spread of culture.

The ability to recognize meaningful patterns in visual artworks inherently
falls within the domain of human perception [11]. Distinguishing stylistic and
semantic attributes of a painting, in fact, originates from the composition of the
1 https://www.wikiart.org.
2 https://www.metmuseum.org/art/collection.
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colour, texture and shape features visually perceived by the human eye. Unfor-
tunately, this human perception can be extremely hard to conceptualize and
verbalize. However, visual-related features, such as those Convolutional Neural
Networks (CNNs) are able to automatically learn (e.g., [3,4]), can be effective
to tackle the problem of extracting useful patterns from the low-level colour and
texture features. These patterns may be beneficial to various art-related tasks,
ranging from object detection in paintings [9] to artistic style categorization [20].

While a large body of literature deals with the application of Pattern Recog-
nition and Computer Vision strategies to art-related supervised tasks, e.g.
[7,10,12,17], little work has been done in the clustering setting [1,6,13,19].
Having a model capable of clustering artworks in accordance with their visual
appearance can be useful for many tasks. The model can be used to support art
experts in finding trends and influences among painting schools, i.e. in perform-
ing historical knowledge discovery. Analogously, it can help discover different
periods in the production of the same artist. The model may discover which art-
works mostly influenced the work of current artists. Moreover, it may support
interactive navigation on online art galleries by finding visually linked artworks.

In this paper, by taking inspiration from the deep convolutional embedding
clustering (DCEC) model recently introduced in [14], we propose DCEC-Paint
as a method for grouping digitized paintings in an unsupervised fashion. To
develop DCEC-Paint, we added some implementation changes to the original
DCEC definition, making the model better suited to the specific image domain.
Experimentally, we report the results of a preliminary case study, aimed at eval-
uating the effectiveness of the method in finding meaningful clusters in a dataset
of works made by the same artist, namely Pablo Picasso.

In the rest of this paper: Sect. 2 describes the proposed method; Sect. 3
reports the experimental results; Sect. 4 concludes the work.

2 Method

Clustering is one of the historical tasks of Machine Learning. It is notoriously
difficult, mainly because of the absence of supervision in the model generation
and evaluation process. In particular, since its appearance, k-means has been
extensively used for its ease of implementation and effectiveness [15]. Neverthe-
less, especially in complex image domains, such as the artistic one, its application
may be useless. On one hand, it is widely acknowledged that clustering based on
traditional distance measures in the highly dimensional raw pixel space is ineffec-
tive. Beside, extracting meaningful features in accordance with domain-specific
expertise can be extremely difficult. On the other hand, applying well-known
dimensionality reduction techniques, such as PCA, either to the original pixel
space or to a manually engineered feature space, can ignore possible nonlinear
relationships between the original input and the latent feature space.

The last few years have been witnessing the emergence of a deep clustering
paradigm, in which the capability of deep neural networks of finding complex non-
linear relationships among data is exploited for clustering purposes [14,21,22].
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Fig. 1. Architecture of DCEC-Paint.

The idea is to simultaneously optimize the task of mapping the input data to a
lower dimensional space and the task of finding a set of centroids in this latent fea-
ture space.

Inspired by the deep convolutional embedding clustering (DCEC) framework
recently proposed by Guo et al. in [14], we propose DCEC-Paint, as a neural net-
work model for clustering images of digitized paintings. The proposed method is
depicted in Fig. 1. The network is based on a convolutional autoencoder and on
a clustering layer attached to the embedded layer of the autoencoder. Autoen-
coders are neural networks that are trained to reconstruct their input. More
precisely, an autoencoder is made up of two modules: an encoder φ, which learns
a nonlinear mapping between the input data and a smaller hidden latent space,
and a decoder ψ, which learns to reconstruct the original input by using these
latent features. The parameters of the model are updated by minimizing a classic
mean squared reconstruction loss:

Lr =
1
n

n∑

i=1

(x′
i − xi)

2 =
1
n

n∑

i=1

(ψ (φ (xi)) − xi)
2
,

where n is the number of samples, xi is the i-th input sample and x′
i its recon-

struction. The network receives an input consisting of 128 × 128 RGB images,
scaled in the range [0, 1]. This input is then propagated through a stack of con-
volutional layers which learn to extract hierarchical visual features. The first
convolutional layer is characterized by 32 filters, with kernel size 5 × 5. The
second convolutional layer by 64 filters, with kernel size 5 × 5. The third con-
volutional layer by 128 filters, with kernel size 3 × 3. All convolutional layers
adopt strides 2 and zero-padding, and they are followed by an exponential lin-
ear unit (ELU) nonlinearity [8]. We preferred this activation function to the



Deep Clustering for Picasso’s Paintings 71

originally proposed ReLU, as ELU tries to make the mean activations closer
to zero, thus speeding up learning. All units in the last convolutional layer are
flattened and given as an input to a fully-connected layer with 32 units, which
represent the latent embedding space. In the original formulation [14], the num-
ber of units in this layer is 10. However, we found that this low dimensionality
is too constraining, making the reconstruction of complex artistic images slower.
The embedding features are then reshaped and propagated through deconvolu-
tional layers, which mirror, in a reverse layer-wise fashion, the hyper-parameters
of the encoder and restore the embedding features back to the original input.

As in [14], the formulation of the clustering layer is based on the Deep Embed-
ded Clustering (DEC) proposed in [21]. This layer is connected to the embedding
layer of the autoencoder and its task is to assign the latent features of each sam-
ple to a cluster. Given an initial estimate of the nonlinear mapping φ : X → Z
and initial cluster centroids {μj}kj=1, the clustering layer maps each latent point,
zi, to a cluster centroid, μj , by using Student’s t distribution:

qij =

(
1 + ‖zi − μj‖2

)−1

∑
j

(
1 + ‖zi − μj‖2

)−1 ,

where qij represents the membership probability of zi of belonging to cluster j
(as if it were a soft assignment). The membership probabilities are then used to
compute an auxiliary target distribution P :

pij =
q2ij/

∑
i qij∑

j

(
q2ij/

∑
i qij

) ,

where
∑

i qij are soft cluster frequencies. Clustering is finally performed by min-
imizing the Kullback-Leibler (KL) divergence between P and Q:

Lc = KL(P ‖ Q) =
∑

i

∑

j

pij log
(

pij
qij

)
.

In practice, each qij provides a measure of the similarity between a data point
and the different k centroids. Higher values for qij indicate a higher confidence
in assigning a data point to a particular cluster. The auxiliary target distribu-
tion is conceived to put more emphasis on the data points assigned with higher
confidence while normalizing the loss contribution of each centroid. Hence, by
minimizing the divergence between the membership probabilities and the target
distribution, the network improves upon the initial estimate by learning from
previous high confidence predictions.

In [21], the network discards the decoder and fine-tunes the encoder by only
minimizing the clustering loss Lc. However, this approach could distort the embed-
ded space, harming the clustering performance. Instead, as in [14], we propose
to keep the decoder attached to the encoder during training. This can help
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DCEC-Paint preserve the data structure of the latent feature space. Overall, the
network tries to minimize the following composite loss function:

L = λLr + (1 − λ)Lc,

where λ ∈ [0, 1] is a hyper-parameter that balances the contribution of Lr and
Lc. In the original formulation [14], λ is set to = 0.1 and weights are inverted,
thus giving more importance to the reconstruction loss rather than the clustering
loss. However, since the accuracy of the reconstruction is not the primary task of
the model, we found that putting more emphasis on the clustering term improves
cluster assignment.

The overall training works in two steps. In a first pre-training step, the convo-
lutional autoencoder learns an initial set of embedding features, by minimizing
Lr and keeping λ = 1. After this pre-training, the learned features are used
to initialize the cluster centroids μj by applying traditional k-means. Finally,
embedding feature learning and cluster assignment are jointly optimized by set-
ting λ = 0.1. The overall weights are updated by backpropagation. It is worth
noting that, to avoid instability, the auxiliary distribution P is not updated at
each iteration using only a batch of data, but by using all embedded points
every t iterations. The training procedure stops when a termination criteria is
met, that is a change in cluster assignment between two consecutive updates less
than a given threshold δ.

3 Experiment

To evaluate the effectiveness of the proposed DCEC-Paint method, we employed
a database collecting 439 artworks of a very popular artist, i.e. Pablo Picasso.
More precisely, we used a subset of the data provided by the Kaggle platform,3

scraped from an art challenge website.4 This was done in order to evaluate the
effectiveness of the proposed method in finding meaningful clusters within the
production of the same artist.

3.1 Setting

Experiments were carried out on an Intel Core i5 equipped with the NVIDIA
GeForce MX110 (dedicated memory of 2 GB). As deep learning framework, we
used TensorFlow 2.0 and the Keras API. To speed up calculations, each image
was scaled to 128×128 pixels; moreover, to improve the network’s performance,
images were normalized in the range [0, 1] before training.

It is worth noting that the convolutional autoencoder integrated within the
framework was pre-trained end-to-end for 200 epochs using the AdaMax opti-
mizer [16] and mini-batches of size 128. To initialize cluster centroids, we run

3 https://www.kaggle.com/ikarus777/best-artworks-of-all-time.
4 http://artchallenge.ru.

https://www.kaggle.com/ikarus777/best-artworks-of-all-time
http://artchallenge.ru
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k-means with 20 restarts, picking the best solution. Finally, the convergence
threshold δ was set to 0.001 and the update interval t to 140.

Since clustering is unsupervised, it is hard to know a priori which grouping
of paintings is the best. Moreover, since two artworks made by the same artist
could have been produced in different stylistic periods, it is difficult to assign a
precise label to a given painting, thus providing a form of supervision. Hence, for
clustering evaluation, we used two classic internal metrics: the silhouette score
[18] and the Calinski-Harabasz index [2], which are based on the model itself.
The silhouette score is defined for each sample and is calculated as follows:

s =
b − a

max(a, b)
,

where a is the mean distance between a data point and all other points in the
same cluster, and b is the mean distance between a data point and all other
points in the nearest cluster. The final score is obtained by averaging over all
data points. The silhouette score ranges between −1 and 1, which respectively
represent the worst and best possible value. Values nearby 0 indicate overlapping
clusters. The Calinski-Harabasz index is the ratio of the sum of between-cluster
dispersion and of inter-cluster dispersion for all clusters. More precisely, for a
dataset D of size nD, which has been partitioned into k clusters, the index is
defined as:

i =
tr(Bk)
tr(Wk)

× nD − k

k − 1
,

where tr(Bk) is the trace of the between group dispersion matrix and tr(Wk) is
the trace of the within-cluster dispersion matrix. These matrices are defined as
follows:

Wk =
k∑

q=1

∑

x∈Cq

(x − cq)(x − cq)T ,

Bk =
k∑

q=1

nq(cq − cD)(cq − cD)T ,

where Cq is the set of points in cluster q, cq the center of cluster q, cD the center
of D, and nq the size of cluster q. It is worth noting that the Calinski-Harabasz
index is not bounded within a given interval, but its value tends to grow. For this
reason, in the following, we report only normalized values, obtained by dividing
the original score by the maximum score. Finally, we also drew some qualitative
observations on the cluster assignments provided by the method.

3.2 Results

Table 1 reports the clustering performance of the proposed DCEC-Paint over the
whole dataset, by varying the number of clusters k. By looking at the silhouette
score, it can be seen that well-defined clusters are obtained in all cases, with
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Table 1. Clustering performance.

# clusters Silhouette score Calinski-Harabasz index

2 0.933 0.737

3 0.936 0.771

4 0.951 0.768

5 0.965 1.000

6 0.962 0.812

the highest value at k = 5. The values for the Calinski-Harabasz index tend to
increase or decrease accordingly.

From a qualitative point of view, Figs. 2, 3, 4, 5 and 6 show sample images
from the clusters obtained with DCEC-Paint when k = 5. The cluster assignment
suggests that the model is able to separate artworks in accordance with their
stylistic and semantic features. The first two clusters are clearly related to the
“cubist” period, with the first cluster containing works mostly depicting people,
while the second cluster concerns with objects of the daily life. The third cluster
is made up of paintings of the typical “rose” period of the author. Analogously,
the fourth cluster contains works from the so-called “blue” period. Finally, the
last cluster contains some drawings the dataset we used is composed of.

It is worth remarking that we quantitatively compared the proposed method
to other traditional and deep clustering approaches, particularly k-means and
DEC. DEC compared favorably with DCEC-Paint, obtaining slightly lower per-
formance. Instead, k-means turned out to be ineffective. We also compared the
proposed variant to the originally proposed DCEC, finding out that giving grad-
ually more importance to the clustering loss rather than the reconstruction loss
improves prediction performance, while reducing computational effort. The inter-
ested reader may refer to [5], for comparative evaluations.

Fig. 2. Sample artworks from the first cluster.
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Fig. 3. Sample artworks from the second cluster.

Fig. 4. Sample artworks from the third cluster.

Fig. 5. Sample artworks from the fourth cluster.

On the overall, we can conclude that the proposed method is able to group
together works whose distinctive features are not in contrast with the human
perception. The clusters discovered by the method are sufficiently justifiable
by a human observer and in most cases resemble the intrinsic criteria humans
adopt to group artworks together. These criteria combine visual elements, such
as colors, and conceptual elements, such as subject matter and visual style.
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Fig. 6. Sample artworks from the fifth cluster.

4 Conclusion

We addressed the problem of grouping together digitized paintings in a fully
unsupervised way. To this end, we proposed to use a deep convolutional embed-
ding clustering framework which relies only on visual features to automatically
group paintings (and drawings). The model was able to find well-separated clus-
ters when focusing on the works produced by the same artist. Quantitative and
qualitative results, in fact, confirmed the effectiveness of the method. In partic-
ular, from a qualitative point of view, it seems that the model is able to recog-
nize stylistic or semantic attributes of paintings to group them. The proposed
method may assist in several art-related tasks, particularly historical knowledge
discovery and visual link retrieval. More in general, the experimental results here
reported are encouraging, as they confirm the effectiveness of the deep clustering
approach for tackling highly complex image domains, such as the artistic one.

Future work will use much of the existing literature on Picasso to try to
label the paintings in the dataset we used in order to perform a much more
systematic evaluation, in accordance with not only internal but also external
clustering criteria. Finally, it is worth noting that the first convolutional layer
of the encoder could be analyzed to find out what are the distinctive objects in
the paintings that have led to their clustering.

Acknowledgement. Gennaro Vessio acknowledges funding support from the Ital-
ian Ministry of Education, University and Research through the PON AIM 1852414
project.
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Abstract. Bipolar Disorder (BD) is a chronic mental illness charac-
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through the interaction of patients with smartphones enable the creation
of predictive models to support the early prediction of a starting episode.
Previous research on predicting a new BD episode use mostly supervised
learning methods that require labeled data and hence force a filtering of
the available data to retain only those data that have valid labels (from
the psychiatric assessment). To avoid limitations of supervised learning,
in this paper we investigate the use of a semi-supervised learning app-
roach that combines both labeled and unlabeled data to derive a model
for BD episode prediction. Specifically we apply the DISSFCM (Dynamic
Incremental Semi-Supervised Fuzzy C-Means) algorithm which offers the
possibility to process in an incremental fashion the data stream of the
voice signal captured by the smartphone, thus exploiting the evolving
time structure of data which is ignored by static learning methods. DISS-
FCM processes data in form of chunks and creates a dynamic collection
of clusters thanks to a splitting mechanism that generates new clusters
to better capture the hidden geometrical structure of data. This gives
DISSFCM the ability to detect changes in data and dynamically adapt
the model to them, thus improving the prediction accuracy. Preliminary
results on real-world data collected at the Department of Affective Dis-
orders, Institute of Psychiatry and Neurology in Warsaw (Poland) show
that DISSFCM is able to predict some of healthy episodes (euthymia)
and disease episodes even when only 25% of labeled data are available.
Moreover DISSFM performs better than its previous version without split
(ISSFCM) and it also overcomes the batch algorithm (SSFCM) that uses
the whole dataset to create the model.

Keywords: Semi-supervision · Fuzzy C-Means · Clustering ·
Incremental learning · Bipolar Disorder episode prediction ·
Smartphone data · Acoustic features · Pervasive computing ·
mHealth · Digital health

c© Springer Nature Switzerland AG 2020
A. Appice et al. (Eds.): DS 2020, LNAI 12323, pp. 79–93, 2020.
https://doi.org/10.1007/978-3-030-61527-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61527-7_6&domain=pdf
http://orcid.org/0000-0003-0713-2260
http://orcid.org/0000-0002-6489-8628
http://orcid.org/0000-0003-0422-9366
https://doi.org/10.1007/978-3-030-61527-7_6


80 G. Casalino et al.

1 Introduction

In the last decades, with the increase of technologies and the spreading of intel-
ligent objects, the way medicine and healthcare are practiced is rapidly chang-
ing. In 2019, the World Health Organization officially proposed Digital health as
new discipline that combines Artificial Intelligence, Internet of Things, Big Data
and Data Analytics techniques for the health sector1. Mobile Health and Remote
Monitoring, Sensors and Ambient Assisted Living together with Artificial Intelli-
gence, Robotics and Data Analytics are just some examples of this new research
branch [8].

From one hand, automatic techniques have became necessary to manage and
analyse the huge amount of daily produced medical data. In this context learning
and predictive algorithms are critical to support the medical decisions [28,32,34].
On the other hand, everyday objects have became more and more smart by embed-
ding computational capabilities. Pervasive computing has grown interest in the
medical field since it minimizes the need of interaction between patients and physi-
cians, by collecting daily information that will be analyzed by the medical experts.
Wearable objects and smartphones are widely used to easily acquire the most var-
ied daily users’ information such as kinematic and physiological data [9,31], visual
scenes and geolocation information to assist visually-impaired and blind people
[22] or to monitor vital parameters [12,25] such as oxygen saturation to prevent
COVID-19 infection [3,7], just to mention few examples. This has led to a new
frontier of tele-medicine known as mHealth (mobile health) [33].

A promising mHealth application is represented by smartphone-based moni-
toring of patients affected by mental disorders [20,21,26]. In this work, we focus
on Bipolar Disorder (BD) which is a serious mental disorder characterized by
manic episodes (states) of elevated mood and overactivity, interspersed with
periods of depression. Since BD is a chronic and recurrent disease, effective
monitoring of changing state is of particular importance. Typically, the psychi-
atric assessment of patient’s state is carried out by a psychiatrist during routine
check-up visits. However, the frequency of control visits is usually insufficient
to provide early intervention at the start of the episode. The management of
BD could be significantly improved by real-time monitoring of illness activity
via smartphone [1] and early detection of changes of patient’s phase. In this
context, the time structure of data should be taken into account to model the
interepisodic mood instability [2].

Previous studies on BD episode prediction concentrated primarily on the phase
detection formulated as a supervised classification task [13,23]. However, the use of
supervised learning methods in this context requires labeled data and hence forces
a filtering of the available data to retain only those data that have valid labels.
Labels describing patients state are assigned by a doctor during an interview, the
so called the psychiatric assessment. Following [13], data collected 7 days before
and 2 days after the assessment can be labeled with the outcome of this psychiatric
assessment. In [11], label validity is considered even less - only to 3 days before the

1 Global Strategy on Digital Health 2020–2024 https://extranet.who.int/.

https://extranet.who.int/
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assessment and on the day of it as the depression (HDRS-17) and mania (YMRS)
rating scales address symptoms over the last four days. Furthermore, the frequency
of interviews is usually insufficient to assign labels to all data.

Contrary to the supervised approaches, there are works that apply completely
unsupervised approaches to monitor changes in the severity of the depressive and
manic symptoms [24] or to analyze behavioural data about smartphone usage
[15,16]. However, unsupervised learning approaches insufficiently benefit of the
a-priori knowledge given by labeled data of the psychiatric assessments [27].

Alternatively to state-of-art methods that use supervised or unsupervised
learning approaches, in [5] we initially explored the use of a semi-supervised
learning approach that combines both labeled and unlabeled data to derive a
model for BD episode prediction. Specifically, the ISSFCM (Incremental Semi-
Supervised Fuzzy C-Means) [6] and its batch version SSFCM [30] were compared
with standard classification algorithms to predict bipolar disorder. ISSFCM offers
the possibility to process in an incremental fashion the data stream of the voice
signal obtained from the interaction of the patients with their smartphone, thus
exploiting the time structure of data which is ignored by static learning meth-
ods [18]. Moreover, the results in [5] showed that ISSFCM achieves good results
thanks to fuzzy clustering that enhances the detection of patterns in data and
provides interpretable results in terms of labeled prototypes that represent data
in a synthetic manner.

However, one limitation of ISSFCM when applied to data streams for BD pre-
diction is the static nature of the created model which is based on a fixed number
of cluster prototypes that is given in advance according to the known number
of classes. In an attempt to better cope with the evolving nature of acoustic
data produced by patients interacting with their smartphone, in this paper we
explore the use of DISSFCM (Dynamic Incremental Semi-Supervised FCM) algo-
rithm [4] that improves ISSFCM by adding the possibility to dynamically adapt
the number of clusters.

The structure of the paper is as follows. Section 2 describes materials and
methods applied in this research, starting from the observational study on bipo-
lar disorder that led to data collection, up to the description of the DISSFCM
algorithm. Then, experimental results are presented in Sect. 3 where a compar-
ison among DISSFCM, ISSFCM and SSFCM is also reported. In Sect. 4, main
conclusions are discussed and future work is outlined.

2 Materials and Methods

2.1 Observational Study on Bipolar Disorder Patients

Motivation for this research comes from analyzing real-world data collected in a
recent observational study2 that was conducted in the Department of Affective
2 Data considered in this paper come from CHAD project − entitled “Smartphone-

based diagnostics of phase changes in the course of bipolar disorder” (RPMA.01.
02.00-14-5706/16-00) that was financed from EU funds (Regional Operational Pro-
gram for Mazovia) in 2017–2018.
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Disorders, Institute of Psychiatry and Neurology in Warsaw, Poland. The study
included patients diagnosed with bipolar disorder (F31 according to ICD-10 clas-
sification). In total, 33 patients were enrolled and used a dedicated smartphone
application in everyday life for up to 15 months. This dedicated mobile appli-
cation, called BDMon was able to collect acoustic features about phone calls.
Within this paper, preliminary results for data of two exemplary patients are
presented.

During the observational study, each patient was associated to a psychiatrist
who evaluated his mental state. Psychiatrists were using standardized measures
of depressive and manic symptoms, that are Hamilton Depression Rating Scale
and Young Mania Rating Scale to assess the psychiatric state of a patient (BD
episode). The interviews were performed with various frequency depending on
the need identified by the doctor or a patient. The outcomes of psychiatric
assessments are used as labels for classification, namely depression, mania, mixed
state and euthymia (the only healthy state). Following [13], labels from the
psychiatric assessments are assigned to smartphone data collected 7 days before
the psychiatric assessment and 2 days after the day of the visit. Within this
research, we concentrate on predicting healthy from unhealthy episodes and
therefore, annotate data with either healthy or sick label.

2.2 Acoustic Feature Extraction and Selection

The sound signal was obtained directly from the smartphone’s microphone to
avoid recording of the interlocutor’s speech. The voice signal was processed in
real time to extract its physical descriptors, which were transferred to a secure
server and stored in a database for analyses. Each phone call was divided into
short 10–20 ms frames, in which it is approximately stationary. An adopted ver-
sion of openSMILE library [10] was used to collect a rich dataset of 86 acoustic
features, such as time-domain descriptors (zero crossing rate, amplitude statis-
tics, signal energy), spectral features (distribution of energy, mel-cepstral coeffi-
cients, fundamental frequency and its harmonics), voice quality (jitter, shimmer,
harmonics to noise ratio) and prosodic features (voicing probability, normalized
loudness).

To reduce the number of attributes, in [13] a manual selection of the features
for classification is performed. In [17] an advanced approach to feature selec-
tion using fuzzy clustering, self organizing maps and psychiatric assessments
is presented. In this study, to obtain most significant voice features, Recursive
Feature Elimination (RFE) [14] is applied and as a result, the following features
are considered in the semi-supervised approaches: (1) envelope of the fundamen-
tal frequency contour (2) spectrum slope in the range 0–500 Hz (3) spectrum
slope in the range 500–1500 Hz (4) the Zero-Crossing rate (5) the first MFCC
mel-cepstral coefficient. Data representing each feature from each phone call are
summarized with their average values and standard deviation. Thus, 10 variables
are used as input data to describe patient state.
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2.3 Dynamic Incremental Semi-supervised Fuzzy C-Means

In this work we investigate the use of DISSFCM (Dynamic Incremental Semi-
Supervised Fuzzy C-Means) [4] to analyze the acoustic data that have been col-
lected during the clinical study. The basic idea of the DISSFCM algorithm is
to incrementally apply the semi-supervised fuzzy clustering algorithm (SSFCM)
[30] to subsequent portions (chunks) of a data stream. SSFCM is an alternate
optimization algorithm that iteratively updates both cluster centers and the par-
tition matrix by minimizing the objective function in (1). Whilst the first part
of the equation is the classical objective function of FCM (Fuzzy C-Means), the
second part adds partial supervision into the clustering process.

J =
K∑

k=1

Nt∑

j=1

u2
jkd

2
jk + α

K∑

k=1

Nt∑

j=1

(ujk − bjfjk)
2
d2jk (1)

where K ≥ C is the number of clusters, Nt = |Xt| is the cardinality of the t-th
chunk in the data stream, ujk ∈ [0, 1] is the membership degree of a sample xj

in the k-th cluster, djk is the Euclidean distance between jth sample and center
ck of the k-th cluster, α ≥ 0 is a regularization parameter for the second part of
the objective function that exploits class information, bj = b(xj) and fjk = 1 iff
the j-th sample belongs has the same class label of the k-th cluster.

The DISSFCM process starts when the first chunk of data is available. At the
beginning, one cluster prototype is assigned to each class by randomly selecting
a labeled sample from the chunk. SSFCM is then applied to all data in the chunk,
and cluster prototypes together with membership matrix are returned. Cluster
prototypes are defined as medoids, namely the prototype of each cluster is the
data sample that is closest to the cluster center ck. Each prototype is tagged
with the class label of the corresponding cluster. When a new chunk arrives,
the process is repeated starting from the prototypes generated on the previous
chunk. In this way information about old data are injected in the new chunk in
a synthetic form (the prototypes) thus preserving history of data without saving
the old data.

After each chunk is processed, the quality of the resulting clusters is evaluated
in terms of Reconstruction Error (RE) [29] and a split mechanism is applied to
the worst-quality cluster, i.e. the cluster corresponding to the highest value of RE
(indicated by HRE). Specifically, while the value of HRE in the current chunk
is higher than the HRE in the previous chunk, a splitting step is performed to
divide the worst cluster in two novel clusters. The maximum number of splits is
set to 10 to avoid an excessive growth of the number of clusters. In DISSFCM
the splitting is performed by means of the CFCM (Conditional FCM) algorithm
[19] which is applied to data belonging to the worst cluster in order to derive
two new cluster prototypes. After splitting the same data are re-assigned to the
new clusters according to the membership degree computed by CFCM.

Cluster prototypes generated by DISSFCM provide an evolving classification
model than can be used to classify new unlabeled data leveraging a simple match-
ing mechanism. Indeed, any new data sample is matched against all prototypes
and the label of the closest prototype is assigned to the sample.
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The incremental nature of DISSFCM, as well as its semi-supervised learn-
ing mechanism, make it a suitable candidate to process evolving data streams
including labeled and unlabeled data. The acoustic data considered in this study
may be actually characterized by a partial labeling, since not all data coming
from interaction of BD patients using their smartphone app may be annotated
by the psychiatrist. Moreover these data may contain both abrupt concept drifts
as well as smoother changes in the data distribution. The aim of this empirical
study is to investigate potential applicability of DISSFCM to deal with these
problems that are common in real-world data streams.

3 Experimental Results

Experiments have been conducted in order to prove the effectiveness of DISSFCM
in classifying bipolar disorder data, available at different time intervals (chunks).
In particular the aim was to assess the extent to which DISSFCM is capable to
create classification models that can adapt to the data by coping with abrupt
concept drifts. Moreover we evaluated the influence of the labeling percentage
of data on the performance of DISSFCM.

3.1 Experimental Settings

In this preliminary study, the BD event prediction problem was reduced to a
binary classification task by considering only the sick class including depres-
sion, mania and mixed states of BD, and the healthy class corresponding to
the euthymic state. Data from two patients were considered. The number of
total labeled data extracted from phone calls for each patient is summarized
in Table 1. As it can be observed, data coming from Patient 1 are imbalanced.
Indeed, Patient 1 was in a sick state almost as much as in healthy episode. Differ-
ently, there are almost the same number of healthy and sick episodes for Patient
2. Due to the very different behavior of the two patients, data streams of each
patient were treated separately to create a classification model for each patient.

To better evaluate how the presence of unlabeled data may influence the clas-
sification results of DISSFCM, for each patient we started with a set of labeled
data and then randomly removed labels to simulate different labeling percent-
ages, i.e. 25%, 50%, 75% and 100% of labeled data. To reduce the random factor
in the simulation of unlabeled data, five fold cross validation was used. For
each fold and for each percentage of labeling, five different sets of labeled and
unlabeled data have been used. Furthermore, in order to investigate the DISS-
FCM capabilities in dealing with changes in data distributions, the available
data stream of each patient was temporally split in two different sets of chunks,
named set(a) and set(b). The first set is very challenging since it contains abrupt
concept drifts from one chunk to the subsequent, whilst the second set presents
more smooth changes. Figures 2 and 3 show the number of chunks in each set
and the class distributions for Patient 1 and Patient 2, respectively. For each
chunk, 70% of data were used as training set (i.e. to create the prototype-based
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Table 1. Class distribution of smartphone-based acoustic data considered in this study.

Condition Class Patient 1 Patient 2

Euthymia Healthy 142 148

Depression, mania, mixed Sick 261 144

Tot 403 292

Fig. 1. An example of the HRE trend. (Color figure online)

classification model) and 30% as test set. It should be noted that we created a
reduced number of chunks so as to assure the presence of both classes in each
chunk. Indeed, due to the sequential nature of data, the creation of a higher
number of chunks would lead to smaller chunks where each chunk would contain
only samples from one of the two classes.

Standard classification evaluation measures were considered, namely accu-
racy, precision and recall. After the processing of each chunk, the average values
of such measures were computed on the corresponding test sets.

First of all, to show how the quality of clusters created by DISSFCM improves
during the processing of chunks, an example of the trend of the HRE value is
reported in Fig. 1 for a run on patient 2. Green dots indicate the HRE computed
on clusters generated when a new chunk arrives, whilst blue dots indicate the
HRE computed on clusters after a split. It can be observed that when the third
chunk arrives, the HRE increases with respect to the previous chunk, so the
splitting mechanism is activated and the cluster with the worst RE value is
divided in two clusters. The number of clusters is thus increased by one unit. It
can be seen that the HRE decreases after splitting, indicating that the splitting
actually improves the quality of clusters. When the forth chunk is processed, the
HRE raises again, so a new split is necessary. Finally, the DISSFCM ends up
with four clusters that adequately represent the two classes.
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(a) (b)

Fig. 2. Proportion of learning examples from the sick (disease episode) and healthy
classes in chunks of Patient 1.

Table 2. Average accuracy through the data chunks for Patient 1.

Chunk Accuracy

Set(a) Set(b)

25% 50% 75% 100% 25% 50% 75% 100%

#1 0.66 0.61 0.47 0.74 0.61 0.65 0.61 0.65

#2 0.31 0.45 0.83 0.83 0.59 0.59 0.59 0.66

#3 0.69 1.0 1.0 1.0 – – – –

3.2 Patient 1

DISSFCM was firstly evaluated on acoustic data of Patient 1. Table 2 shows the
average accuracy obtained on the test set, through the different chunks of set(a)
and set(b), varying the labeling percentage.

It can be seen that in case of set(a) (which is the more challenging than
set(b)) with a low labeling percentage (≤50%) the chunk #1 and the chunk #3
are more easily modeled than the chunk #2, where the class healthy appears
with more evidence, and the class sick almost disappears. Thus the model is
not able to cope properly with the drift that occurs with the second chunk,
when data are poorly labeled. It is worth noting that, when processing the third
chunk, the model evolves and succeeds again to catch the data distribution, even
if one class is not represented at all in this chunk. Hence we can say that the
high variance and imbalancing of data distribution through the chunks, strongly
influence the results of DISSFCM in set(a). A similar behavior is observed from
the recall and precision measures in Table 3. These values are very dependent on
the chunk composition. Precision strongly depends on the most represented class,
and when the percentage of labeled data increases, the algorithm discriminates
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(a) (b)

Fig. 3. Proportion of learning examples from the sick (disease episode) and healthy
classes in chunks of Patient 2.

better the two classes. However it is worth noting that DISSFCM is also able to
correctly detect at least the 70% of sick episodes with only 25% of data labeling.

Conversely, in set(b) more stable results are observed when varying the label-
ing percentages. In this case data are divided in two chunks, hence there are more
samples per chunks and changes in class distributions are more gradual, if com-
pared to set(a). Thus, the greater the chunks are, the less the influence of the
labeling percentage on the classification results of DISSFCM.

On the overall, the classification results achieved by DISSFCM on the two
different sets of chunks are quite satisfying if we consider that BD episode pre-
diction is a very difficult task due to several factors involved in the human brain
activities. This is confirmed also by the empirical study in [5] where standard
classification algorithms such as SVM, Decision Trees and Random Forest return
relatively low accuracy values on the same dataset. The best accuracy achieved
by Random Forest, with all the data labeled is of 67% on patient 1, and 57% on
patient 2. Moreover, these methods do not exploit the evolving nature of the data
stream being all batch learning algorithms. Conversely, DISSFCM implements an
incremental learning scheme, thus it is more suitable to process streams of data
like the acoustic data considered in this study.

3.3 Patient 2

As for Patient 1, the set(a) of Patient 2 is more critical than set(b) as it includes
four chunks containing abrupt drifts and highly imbalanced classes, whilst set(b)
divides data in three more balanced chunks.

When applied to set(a), DISSFCM generates a classification model that is
capable to detect the sick class more easily than the healthy one. This justifies
high accuracy values (see Table 4), for those chunks (#2 and #4) where the sick
class is the over represented. On the contrary the accuracy decreases on the other
chunks (#1 and #3) where the sick class is under represented and the most of
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Table 3. Recall and Precision values through the chunks for Patient 1.

Chunk Recall Precision

25% 50% 75% 100% 25% 50% 75% 100%

S H S H S H S H S H S H S H S H

Set(a)

#1 0.65 1.0 0.59 1.0 0.46 1.0 0.49 1.0 1.0 0.07 1.0 0.06 1.0 0.05 1.0 0.25

#2 1.0 0.26 1.0 0.41 0.5 0.85 0.5 0.85 0.09 1.0 0.11 1.0 0.2 0.96 0.06 0.92

#3 0.69 – 1.0 – 1.0 – 1.0 – 1.0 – 1.0 – 1.0 – 1.0 –

Set(b)

#1 0.57 0.71 0.62 0.71 0.54 0.79 0.62 0.71 0.84 0.38 0.85 0.42 0.87 0.39 0.85 0.42

#2 0.60 0.57 0.60 0.57 0.60 0.57 0.69 0.64 0.60 0.57 0.67 0.55 0.60 0.57 0.78 0.66

the data belong to the healthy class. Of course, when all the data are labeled
high accuracy values are returned.

Moreover, the labeling percentage highly influences the recall and precision
results. Indeed when the labeling percentage is low, the sick class is more easily
recognized (recall values higher than 0.75 with only 25% of labels). On the
contrary, when more labels are available (≥50%), healthy and sick classes are
both recognized. This result suggests that with highly imbalanced data streams,
the labeling percentage highly influences the classification results of DISSFCM.
Indeed, when the chunk is imbalanced, the under represented class has a low
number of samples, that become lower due to the presence of unlabeled data.
Thus, there are not enough labeled data to properly learn that class.

As concerns the set(b), the DISSFCM algorithm classifies better samples in
the second chunk, but it needs labels to better perform on the first and third
chunk. This behavior is confirmed by the recall and precision values in Table 5.
Also in this case, it is worth noting that DISSFCM correctly recognizes almost the
90% of sick episodes using only 25% of labeled data. Instead a higher percentage
of labeled data (≥75%) is necessary to correctly detect both classes.

3.4 Empirical Comparison

A further set of simulations was devoted to assess the effectiveness of the split
mechanism implemented in DISSFCM which provides an adaptation of the num-
ber of clusters during the processing of chunks. To this aim, we compared DISS-
FCM with its previous version ISSFCM [6] that keeps unchanged the number of
clusters and with its batch version SSFCM [30].

For a fair comparison the same experimental setting (as described in the
previous section) was used for the three algorithms. However, since SSFCM is
not an incremental clustering algorithm, the whole dataset was considered to
apply SSFCM, i.e. all chunks have been merged to compose the training ad
test set.



Dynamic Incremental Semi-supervised Fuzzy Clustering 89

Table 4. Average accuracy through the data chunks for Patient 2.

Chunk Accuracy

Set(a) Set(b)

25% 50% 75% 100% 25% 50% 75% 100%

#1 0.43 0.79 0.57 0.79 0.55 0.4 0.55 0.6

#2 0.73 0.87 0.93 0.87 0.93 0.93 0.8 0.93

#3 0.33 0.39 0.55 0.83 0.65 0.61 0.78 0.74

#4 0.92 1.0 0.75 1.0 – – – –

Table 5. Recall and Precision values through the chunks, varying the labeling per-
centage. Patient 2, set(a) and set(b).

Chunk Recall Precision

25% 50% 75% 100% 25% 50% 75% 100%

S H S H S H S H S H S H S H S H

Set(a)

#1 1.0 0.27 0.67 0.82 0.67 0.82 0.33 0.45 0.27 1.0 0.5 0.90 0.20 0.78 0.5 0.90

#2 0.75 0.67 1 0.33 1 0.67 0.92 0.67 0.9 0.4 0.86 1 0.92 1 0.92 0.67

#3 1.0 0.25 1.0 0.31 1.0 0.5 0.5 0.88 0.14 1.0 0.16 1.0 0.2 1.0 0.33 0.93

#4 0.92 – 1.0 – 0.75 – 1.0 – 1.0 – 1.0 – 1.0 – 1.0 –

Set(b)

#1 0.89 0.27 0.78 0.09 0.44 0.64 0.78 0.45 0.5 0.75 0.41 0.33 0.5 0.58 0.54 0.71

#2 0.83 1.0 1.0 0.89 1.0 0.67 0.83 1.0 1.0 0.9 0.85 1.0 0.66 1.0 1.0 0.9

#3 0.93 0.22 0.79 0.33 0.79 0.78 1.0 0.33 0.65 0.67 0.65 0.5 0.85 0.7 0.7 1.0

Figures 4 and 5 report for each patient and for each chunk set the average
accuracy of the classification model after each chunk processing, varying the
percentage labels. We can observe that in all cases DISSFCM overcomes the
results obtained with the other algorithms. Particularly, thanks to the splitting
mechanism, DISSFCM is able to cope with abrupt changes as well as imbalanced
classes that characterize data chunks in set(a). In this case, ISSFCM obtains lower
results than the baseline SSFCM. When the class distribution through chunks
changes slowly and more samples are present in chunks (as in set(b)), ISSFCM
outperforms the batch algorithm, and the dynamic approach of DISSFCM fur-
ther improves the results. The improved classification results of DISSFCM show
that the dynamic mechanism of cluster generation through splitting provides
classification models that can better capture the structure of the data stream
with respect to more static incremental methods like ISSFCM where the number
of clusters is fixed a-priori and kept unchanged.
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(a) (b)

Fig. 4. Comparison in terms of average accuracy through chunks, varying the labeling
percentage for set(a) and set(b) of Patient 1.

(a) (b)

Fig. 5. Comparison in terms of average accuracy through chunks, varying the labeling
percentage for set(a) and set(b) of Patient 2.

4 Conclusions

In this work, we have investigated the effectiveness of the DISSFCM data stream
classification method to predict Bipolar Disorder episodes on the basis of acoustic
data collected during the interaction of patients with a dedicated smartphone
application. Preliminary results on data of two different patients showed that
DISSFCM provides good results with respect to the baseline provided by fully
supervised learning methods applied to the same BD data [5], even when working
on partially labeled data. Compared to its previous static versions, DISSFCM
shows a better capability in capturing changes in data thanks to a splitting
mechanism that adapts the number of clusters.
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It should be noted that the obtained results are of preliminary nature since
they are limited to only two BD patients. Further work is in progress to derive BD
event prediction models for all patients of the considered study. Moreover, a more
extensive comparison among different semi-supervised learning algorithms will
be carried out to better assess the effectiveness of the semi-supervised approach
in the context of BD episode prediction from acoustic data streams.
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Anna Antosik-Wójcińska and �Lukasz Świecicki from Institute of Psychiatry and Neu-
rology for their advice and comments. This work has been partially supported by the
GNCS-INDAM (Gruppo Nazionale per il Calcolo Scientifico of Istituto Nazionale di
Alta Matematica) within the research project “Computational Intelligence methods
for Digital Health”.

References
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Abstract. We introduce a new concept called “Iterative Multi-Mode Discretiza-
tion (IMMD)” which is a new type of efficient data sparsification that can scale
up many tasks in data mining. In this paper we demonstrate the application of
IMMD in co-clustering, i.e. simultaneous clustering of the rows and columns in a
matrix. We propose IMMD-CC, a novel co-clustering algorithm, which is devel-
oped based on IMMD. IMMD-CC has attractive properties. First, its time com-
plexity is linear, so it can be used in large-scale problems. In addition, IMMD-CC
is able to estimate the number of co-clusters automatically, and more accurate
than state-of-the-art methods. We demonstrate the performance of IMMD-CC in
comparison to several state-of-the-art methods on 100 data sets from a bench-
mark cohort, as well as 35 real-world datasets. The results show the promising
potential of the proposed method.

Keywords: Co-clustering · Bi-clustering · Discretization

1 Introduction

Many real-life datasets are represented by a two-dimensional n by m data matrix, some-
times referred to as two-mode data [5]. The first mode is usually samples (e.g. cases,
persons) and the second dimension refers to features (e.g. measurements, genes). It is
of great interest in many applications to group rows or columns to meaningful clusters.
In the recent years several algorithms are developed for clustering. Recently, motivated
by applications in text/web mining, bioinformatics, marketing, and ecology [5] a new
version of clustering methods are being developed that simultaneously cluster rows
and columns of a data matrix. These methods are usually referred to as co-clustering,
biclustering, block clustering, or two-mode clustering. For instance, in analyzing gene
expression data, co-clustering can discover functionally related gene sets under differ-
ent subsets of experimental conditions [17].

The main problem with current co-clustering methods is that many of the them are
developed for applications where the volume of data is considered small, so the major-
ity of developed methods are not scalable and are not feasible for very large datasets.
Second, the majority of methods, as their clustering counterparts, require the number
of clusters as an input, which is much more complicated to set when there are complex
c© Springer Nature Switzerland AG 2020
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two-way structures in the data. Besides, since some of these methods have no restric-
tion regarding overlapping co-clusters, they produce an extremely large solution space
as the output.

In a very large matrix with billions of rows and columns, where we should look
for the co-clusters? Can we somehow limit our search space to more interesting parts
of the matrix? Can we find the approximate locations of co-clusters more efficiently
(preferably with a linearly in time) and without requiring the user to set the number of
co-clusters? These are the questions we attempt to answer in this research. We demon-
strate that they can be addressed via Iterative Multi-Mode Discretization (IMMD), a
new general concept that we propose. So, our contributions are as follows.

• We propose “Iterative Multi-Mode Discretization” (IMMD), a general and efficient
sparsification method for large matrices with real values.

• We propose a new method based on the IMMD concept to extract the matrix’s point
of interests and then approximate co-clusters without any requirement for the user
to specify the number of co-clusters.

• We provide empirical evidences on the promising performance of our method in
spotting the known clusters by exhaustive comparison against state-of-the-art meth-
ods on tens of benchmark simulated and real-life data sets.

2 Background

Suppose that A is an n × m data matrix, where the elements of this matrix are real
numbers and n and m represent the number of samples and features, respectively repre-
sented by sets of rows X and columns Y. Each element of the matrix aij represents the
relation between row i and column j. The matrix A can be defined with its set of rows
X = {x1, .., xn} and columns Y = {y1, .., ym}, so that we can denote A with (X,Y ).

Also let’s denote a set of rows I ⊆ X and columns J ⊆ Y , that constitute the
submatrix AIJ = {I, J} that contains only those elements of aij belonging to the
subset of rows I = {i1, .., id}; d ≤ n and columns J = {j1, .., jr}; r ≤ m, and vice
versa.

Co-clustering is defined as a task of finding a set of elements Ck = (Ik, Jk), specif-
ically sets of rows Ik that exhibit similar behavior across the set of columns Jk, and
vice versa.

Several methods have been developed for co-clustering, which the majority of them
are covered in the recent surveys [1,12,13,19,23].

3 Co-clustering via Iterative Multi-mode Discretization

In this section we introduce the idea of Iterative Multi-Mode Discretization and later
show how we extend this idea to co-clustering.
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3.1 Multi-mode Discretization

Continuous data are among the most common data types and can be found in all areas.
They can be positive or negative with different units and variances. Hence, normaliza-
tion or transformation is an essential step in any co-clustering algorithm. Normalization
is typically performed column-wise using the following formula.

Ac
i,j =

aij − minj

maxj − minj
(1)

Similarly, a row-wise normalization can be performed as follows.

Ar
i,j =

aij − mini

maxi − mini
(2)

We can extend Eq. 1 to obtain the discretized matrix Zc with elements Zc
i,j between

1 and s.
Zc = round((s − 1) × Ac) + 1 (3)

Similarly, we can obtain the row-wise discretization as well:

Zr = round((s − 1) × Ar) + 1 (4)

Here, s is a scale parameter which should be an odd, natural number ≥ 3. This
multi-mode transformation converts the continuous data matrix A with elements ∈ R

to two discrete matrices Zr and Zc with elements ∈ {1, . . . , s}.
The benefit of this type of discretization is that similar data points in any row or

column will automatically get allocated the same value. So there will be no need to per-
form the exhaustive search to find groups of similar elements across rows and columns.
This is the main and the most important trick. A real-world example of this can be
wavelengths in the eye’s color perception. Among several lights arriving to our eye we
simply focus on one specific wavelength to identify, for example a red object. So, in
the co-clustering case, if we want to find the first group of data items, we just need to
retrieve the elements whose values are equal to 1 in the transformed matrices.

The reason why we do the transformation across both rows and columns (multi-
mode) is to capture the joint information among samples (rows) and features (columns),
in a more efficient way without the need for searching.

3.2 Iterative Removal of Non-interesting Elements

The second component of IMMD relies on the removal of non-interesting data elements
in an iterative process.

After obtaining Zr and Zc with scale parameter s, from these matrices we remove
those elements that are not equal to either {1, v, s}, where v is the median of {1, . . . , s}.
For instance, if s = 9, v will be equal to 5. So all elements except those that are equal
to 1, 5, and 9 are removed. The goal of this stage is to reduce the search space as much
as possible by keeping only floor, median, and ceiling values at each iteration. Our
assumption is that the co-clusters of interest should appear with more signal power in
the final sparse matrices. After the removal phase we generate a new copy of the input
matrix that contains only the values of non-removed indices, and for the rest we put
missing value (denoted by N/A). We repeat this procedure iteratively, for both modes
until we obtain a high-quality sparse discrete matrix for both modes.
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3.3 Intersection of Hotspots Across the Modes

After removing phase in an iterative process on both modes and after reaching to the
stopping criterion (obtaining an empty matrix), we have to the select the iteration that
leads to a better sparsification quality (the statistics we use is described in the algorithm
details). In the final matrices we replace those elements that are equal to either 1, v,
or s with 1 and replace the other elements with zero, which leads to a binary matrix
respectively for column-wise and row-wise discretization. We then add these two binary
matrices, which leads to the intersection matrix. The elements with value of 2 in the
intersection matrix represent the matrix’s point of interest that appeared as hotspots in
both row-wise and column-wise discretization.

3.4 Finding Co-clusters

Due to the high-level of sparsity in the output matrices, co-clusters normally appear
with a reasonable distance from each other and we can identify them by connectivity
criteria (a bit similar, but different to algorithms like DBSCAN [4]). We first sort the
elements based on the repeated counts of their indices in the remaining items. Then we
start from the points whose elements have higher frequent indices. We create a cluster
for the first point. If the second point is reachable (either via row or column) from the
first point with a reasonable support it goes to the same cluster, otherwise we create a
new cluster for the second point. We continue this procedure until we have no further
non-allocated points.

3.5 Pruning Co-clusters

In this phase we remove those clusters that have a low number of members, lower than
a predefined threshold. This is a controlling parameter to avoid overwhelming number
of clusters with low number of members.

3.6 Algorithm IMMD-CC

Our proposed algorithm IMMD-CC is presented in Algorithm 1. The input of the algo-
rithm are as follows. The input matrix A(n × m) with continuous real numbers; ε,
co-cluster’s connectivity support threshold; q, the minimum number of members for
each co-cluster; h, the top-h number of hotspots in the mode intersection phase; s, the
scale parameter for discretization. The output of the algorithm is the co-clusters in the
form of indices of rows and columns of the matrix grouped in each cluster.

Note that lines 4–13 and 14–23 are identical. The former is the process based on
row-wise normalization and the latter is same process with column-wise normalization.
Here we describe the process for the former, but the same explanations can be used for
the column-wise part.

We begin with multi-mode discretization as described in Sect. 3.1. We first obtain
the discretized version of the matrix (Zr) in line 7 using the parameter s. Then we create
a copy of the original matrix A called Ii and remove from Ii those elements where
their corresponding values in Zr is not either 1 (floor), v (median), nor s (ceiling).
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This is done in line 9. For instance, suppose a 3 × 2 matrix which original values
are A = {0.1, 0.1; 0.2, 0.3; 0.3, 0.9}. Its column-wise discretization transformation is
Zc = {1, 1; 3, 2; 5, 5} in the scale of s = 5. The median of {1 : s} = {1, 2, 3, 4, 5}
is 3. So, from A we remove those elements that are neither 1, 3 nor 5. So the new
data becomes {0.1, 0.1; 0.2, N/A; 0.3, 0.9}. Then this new data gets replaced with the
original data (new A) and we repeat this procedure until all values of the matrix becomes
N/A.

At each iteration we also keep a statistics Oi,k (line 12) that allows us chose the
best sparsification. Let us denote the number of elements whose values are equal to
1, v, or s in the matrix Zr, respectively with n1, nv , and ns. Then our statistics is
computed as follows. The sum of absolute values of pairwise differences between n1,
and nv and ns divided by number of available elements in the iteration. For instance,
in the above example n1 = 1, n3 = 2, n5 = 1. Also the number of available elements
is 4 out 5 (only one N/A at the first iteration). So, Oi at iteration k = 1 is computed as
(|1− 2|+|1− 1|+|2− 1|)/4 = 2/4 = 0.5. We keep this statistics at each step, because
later at line 24 we want to select the best sparsification based on the lowest obtained
value for O over all iterations.

After selecting the best sparsification, the lines after line 26 correspond to the co-
clustering phase. Based on the selected iteration ks and ps we pick the data output
at the end of these iterations. Then we make two temporary matrices Ti and Tj , that
are binary (boolean) copy of the data for respectively row-wise and column-wise sce-
narios. Following the above example, let us suppose that we conclude the first itera-
tion (k = 1) gives the best sparsification. Then we have Tj = {1, 1; 1, 0; 1, 1}, and
Ti = {1, 1; 1, 1; 1, 1}. Since normalization based on row and column give different
discretization transformation the values of these are certainly different.

At line 28 we add Ti to Tj and generate the intersection matrix T . Again following
the above example our intersection matrix is T = {2, 2; 2, 0; 2, 2}. Since both matrices
are binary, the values equal to 2 in T demonstrate the intersection of hotspots obtained
both row-based and column-based. They are somehow important points of data that
depending on the level of sparsification can be exactly the centroid or important mem-
bers of co-clusters. So, in the next lines (30–31) we obtain the corresponding indices
related to these hotspots.

Next, in a procedure that is outlined in lines 32–41 we first generate a new empty
matrix G which is the same size as the original data matrix. Then we start from the list
of hotspots and add +1 to the corresponding indices of rows and columns of hotspot. If
we sort the elements based on their count in the G matrix from higher to lower values
we obtain a list of ranked hotspots from the highest important ones to less important
items at the end of list.

The first item in the ranked list is with high probability the centroid of the most
important cluster. So we create a cluster with this item as its first member (line 42).
Then we check the second-ranked item in the list of hotspots. If there is a sufficient
connectivity support of this point with the previously allocated element, then it goes
to the same cluster, otherwise we create a new cluster and put the new element inside
that. The criterion we use for connectivity support is that we count of the number of
times that either the row or column index of the candidate has appeared jointly in the
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pair of hotspots. Then we divide this by the maximum obtained repeating count, which
gives a value between 0 and 1. Values close to 0 indicates that the candidate is less
connected to the previous member, and values close to 1 means that the candidate is
very well connected to the previous element. This procedure continues until all items
of hotspots are allocated to a cluster. In order to make the algorithm more efficient we
set a parameter h to only do the allocation for top-h hotspots.

Finally, the algorithm ends after a pruning step (line 51) to remove those co-clusters
that do not have sufficient number of members. This is controlled with the parameter q.

4 Experimental Evaluation

4.1 Datasets

Simulated Datasets. The simulated datasets are generated by [15]. We have five groups
of 20 datasets, each composed of 500 rows and 200 columns with a constant number
of k co-clusters in each group. Each co-cluster (sub-matrix of 50 × 50) contains zero
values on its elements and the remaining elements of each dataset that do not belong to
that co-cluster, are generated i.i.d. from N(0, 1).

Real-World Datasets. The real datasets are publicly available benchmark datasets
[21], which consists of 35 microarray datasets related to cancer for different tissue types
(eg., blood, lung, colon, breast, skin, prostate, etc.).

4.2 Compared Methods

We compare our method with 11 state-of-the-art methods from five categories of tech-
niques: (1) Greedy methods: Cheng and Church (CC) [2], Large Average Submatri-
ces (LAS) [20]; (2) Divide-and-conquer algorithms: Binary Inclusion-Maximal Biclus-
tering Algorithm (BiMax) [18], Qualitative BiClustering (QUBIC) [11]; (3) Distribu-
tion parameter identification method: Modified Plaid Algorithm (Plaid) [22], Spectral
Biclustering (kSpectral), Bipartite Spectral Graph Partitioning (BSGP) [10], Factor
Analysis for Bicluster Acquisition (FABIA) [6]; and (4) Information-theoretic algo-
rithms: Information-Theoretic Co-clustering (ITL) [3]; and Fuzzy methods: FuzzyBi-
Clustering [8].

4.3 Evaluation Metric

Accuracy. Horta and Campello [7] benchmarked 14 quality metrics for co-clustering
algorithms and suggested that co-clustering error (CE) proposed by [16] is one of the
most appropriate metrics for comparison of co-clustering algorithms. So, we exploit CE
as our accuracy metric. Let us denote the found co-cluster with C1 and the reference co-
clusters with C2. Then let us denote the union of two co-clusterings by U = |C1 ∪ C2|.
Now we can define CE as:

Sce = 1 − |U |−Dmax

|U | (5)

Where Dmax is the sum of the diagonal elements of the confusion matrix of C1 and
C2 whose elements are the intersection of C1 and C2, i.e., mij = |C1 ∩ C2|.
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Algorithm 1. IMMD-CC
Input A (n × m), ε, q, h, s � Refer to section 3.6
Output C

1: v ← med(1 : s) � Median, Refer to section 3.2
2: Ai

′ ← A

3: Aj
′ ← A

4: while Ai
′ is not empty do

5: k ← k + 1

6: Ar ← Row-wise Normalization of Ai
′

7: Zr ← round((s − 1) × Ar) + 1 � Refer to section 3.1
8: Ii ← Ai

′
9: Ai

′ ← Remove from Ii if their Zr �= {1, v, s}
10: Ai,k

′ ← Ai
′

11: Ui ← Count of Non-zero elements in Ai
′

12: Oi,k ← |nv−n1|+|ns−nv|+|n1−ns|
Ui

13: end while
14: while Aj

′ is not empty do
15: p ← p + 1
16: Ac ← Column-wise Normalization of Aj

′
17: Zc ← round((s − 1) × Ac) + 1 � Refer to section 3.1
18: Ij ← Aj

′
19: Aj

′ ← Remove from Ij if their Zc �= {1, v, s}
20: Aj,p

′ ← Aj
′

21: Uj ← Count of Non-zero elements in Aj
′

22: Oj,p ← |nv−n1|+|ns−nv|+|n1−ns|
Uj

23: end while
24: ks ← iteration k that have Min(Oi,k)

25: ps ← iteration p that have Min(Oj,p)
26: Ti ← Ai,ks

′, Ti = 1 if Ai,ks �= 0, else Ti = 0

27: Tj ← Aj,kp
′, Tj = 1 if Aj,ps �= 0, else Tj = 0

28: T ← Ti + Tj

29: W ← T , where T == 2

30: H1 ← Row indices of W
31: H2 ← Column indices of W

32: cmax ← length of H1 or H2

33: G ← Zeros(n, m)
34: while c ≤ cmax do
35: c ← c + 1

36: Li ← id of nonzero elements H1,c’s column of T
37: Lj ← id of nonzero elements H2,c’s column of T

38: G(Li, Lj) ← G(Li, Lj) + 1
39: H3,c ← G(Li, Lj)
40: end while
41: Descend Sort H based on third column H3

42: Create cluster C1 and Add (H1,1, H2,1) to it
43: c ← 0, i ← 1

44: while c ≤ h do
45: c ← c + 1

46: if ConnSupport≤ ε then � Refer to section 3.6
47: i ← i + 1

48: end if
49: Add (H1,c, H2,c) to Ci

50: end while
51: Remove co-clusters that do not have at least q members
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Estimation of Number of Clusters. Another important factor that needs to be taken
into account when choosing a co-clustering method is how accurately the method can
identify the true clusters without having prior knowledge about the true number of clus-
ters. We use this as one of our evaluation metrics.

Coverage. Co-clustering is a more difficult problem compared to regular clustering
algorithms that do not have any restrictions with regard to overlapping co-clusters. So
we might have two co-clusters with a large portion of overlap. In order to evaluate this
we introduce a measure called Coverage as the following. This metric is relative and can
be used only for comparison. It penalizes the methods that produce lots of overlapping
co-clusters.

Covg =
∑

Cc

M
(6)

Where
∑

Cc represents the total area of found co-clusters and M is total area. Val-
ues closer to zero demonstrates compact solution space and less overlapping clusters.

4.4 Experimental Configurations

We set the parameters as follows. For our method IMMD-CC we set the following
parameters ε = 0.3, q = 2, s = 9, and h = ∞. For other methods we use the implemen-
tations available in the MTBA toolbox [9] (Available publically at http://www.iitk.ac.in/
idea/mtba/) with the default parameters suggested by the toolbox. Two methods (kSpec-
tral and FuzzyBiClustering) were excluded on experiments with real-life datasets, due
to the some bugs in the implementation, which made them infeasible for some datasets.

4.5 Results

In this section we report the results from the analysis of both simulated datasets and
real-world datasets.

Simulated Datasets. The box plot of co-clustering accuracy (measured by CE) for 100
datasets is presented in Fig. 1. The surprising observation is that among 11 compared
methods only five has a reasonable performance on the simulated datasets. The rea-
son might be that our simulated datasets include only non-overlapping co-clusters and
some of these methods may be designed for particular types of co-clusters with specific
patterns (see examples in Fig. 1 of [14]).

As we can see from the results, among the 11 compared methods, only ITL [3] out-
performs IMMD-CC. However, when we look at the number of times where IMMD-CC
identifies exactly the correct number of simulated co-clusters with zero error tolerance
(k = {1, 2, 3, 4, 5}) with respect to the ground truth, IMMD-CC stands out by a large
difference beyond the other methods, including ITL. In 35 out of 100 datasets, IMMD-
CC finds the exact number of simulated co-clusters, while the second-ranked method,
CC [2] and third-ranked method, Qubic [11] find the correct number in 20, and 17
respectively of the datasets.

http://www.iitk.ac.in/idea/mtba/
http://www.iitk.ac.in/idea/mtba/
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Fig. 1. Co-clustering quality

Fig. 2. True estimation of number of co-clusters

Real-Life Datasets. One of the limitations of the studies on co-clustering problems is
the lack of availability of datasets with a ground truth. This is already pointed out by
[15] in their co-clustering benchmarking study. They used regular clustering datasets to
evaluate the performance of co-clustering algorithms. This makes sense because each
cluster in a matrix is a special case of a co-cluster, where one mode includes all rows
or columns. However, still the real value of co-clustering algorithms that generate sub-
matrices cannot be evaluated via this strategy.
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Regarding the simulated datasets, since the ground truth on the exact location of
co-clusters is available we could directly measure the accuracy of co-clustering using
co-clustering evaluation metrics. However, regarding the real datasets, since we do not
have real co-clusters, maybe using the same measures for co-clustering might not be
ideal. Besides, neither of the metrics measure the compactibility of solution space. For
this reason, we instead measure the performance of algorithms in estimation of clusters
with respect to their output coverage (see Sect. 4.3). In Table 1 we present the estimated
number of clusters together with the coverage.

Table 1 should be read as follows. The first column is the true number of clusters
chosen by domain experts in different cancer studies. Then we have pairs of columns
for each method. The first column of each pair illustrates how many of the clusters were
found by each method, and the next column is the Covg value described in Sect. 4.3.

IMMD-CC has identified the true clusters with the tolerance of 1 error on at least
14 out of 35 datasets. Regarding these 14 datasets the average coverage is 0.04. On
the other hand ITL can find the true clusters in 12 datasets with a tolerance of 1 error.
However, average coverage for ITL is 43.72 which is almost 1000 times larger than
IMMD-CC. This is an evidence on the effectiveness of the IMMD method in high-
quality sparsification, so that the clusters of interest can be identified from a much more
compact subspace, compared to methods like ITL (Fig. 2).

5 Conclusion and Future Work

We introduce a new family of co-clustering methods based on a new concept called iter-
ative multi-mode discretization. We demonstrate the effectiveness of the method both
on simulated and real-life benchmark datasets. Although in terms of accuracy, meth-
ods such as ITL [3] present a better average performance compared to our method, if
we consider other factors such as true estimation of co-clusters, as well as coverage,
our approach is a more competitive technique. Still there are some issues left for future
research. As an example, applying IMMD-CC to higher order tensors is one poten-
tial direction. Another direction is tuning of the parameters for performance improve-
ment. For instance, we empirically found the scale parameter s = 9 good enough for
all datasets we experimented. However, still there is no systematic way to choose this
parameter for other datasets, which should be investigated further. The more important
future research should be focused on other applications of IMMC, and not necessarily
co-clustering application per se. The IMMC can be considered a highly potential versa-
tile tool in data mining and machine learning. Preliminary work have shown some good
results in applications in other problems such as sorting and regular clustering.
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Abstract. The abundance of literature related to the widespread
COVID-19 pandemic is beyond manual inspection of a single expert.
Development of systems, capable of automatically processing tens of
thousands of scientific publications with the aim to enrich existing empir-
ical evidence with literature-based associations is challenging and rele-
vant. We propose a system for contextualization of empirical expression
data by approximating relations between entities, for which representa-
tions were learned from one of the largest COVID-19-related literature
corpora. In order to exploit a larger scientific context by transfer learning,
we propose a novel embedding generation technique that leverages SciB-
ERT language model pretrained on a large multi-domain corpus of scien-
tific publications and fine-tuned for domain adaptation on the CORD-19
dataset. The conducted manual evaluation by the medical expert and the
quantitative evaluation based on therapy targets identified in the related
work suggest that the proposed method can be successfully employed for
COVID-19 therapy target discovery and that it outperforms the baseline
FastText method by a large margin.

Keywords: Knowledge discovery · Literature mining · Representation
learning · Contextual embeddings · COVID-19

1 Introduction

Scientific knowledge for a specific domain is in most cases given in an unstruc-
tured form, as a set of scientific papers covering a variety of findings, experiments
and methodologies related to a specific scientific field or problem. The current
speed and quantity of scientific research production makes manual inspection of
the literature from a specific field virtually impossible. The recent trend of inter-
disciplinary research complicates things even more, as it would require from a
researcher to understand all the aspects, from which a specific research problem
can be covered in order to “connect all the dots” and advance the field by the
discovery of the so-called latent scientific knowledge.
c© Springer Nature Switzerland AG 2020
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To solve this problem, several automated strategies for uncovering this knowl-
edge have been proposed. Somewhat older studies proposed literature-based dis-
covery (LBD) [8] focusing especially on cross-domain literature mining, which
aims at finding interesting bridging terms (b-terms) or bridging links revealing
the potentially new connections between separate domain corpora of interest. On
the other hand, more recent approaches to latent knowledge discovery from the
scientific literature employ word embeddings [26]. For example, a study by [34]
showed that latent knowledge regarding future discoveries is to a large extent
embedded in past publications by retrieving information from the scientific lit-
erature with the usage of Word2Vec embeddings [26].

The latest development in the natural language processing (NLP) is a new
type of embeddings called contextual embeddings. ELMo (Embeddings from
Language Models) [29] and BERT (Bidirectional Encoder Representations from
Transformers) [12] are the most prominent representatives of this type of con-
textual embeddings, and have been also adapted to scientific literature [3]. The
main difference between these novel contextual embeddings and older “static”
embeddings is that in these embeddings a different vector is generated for each
context a word appears in, i.e., for each specific word usage in the corpus. These
new contextual embeddings solve the problems with word polysemy and other
changes in word meaning given different context. On the other hand, it is not
entirely clear how to generate a meaningful general word representation from the
word usage embeddings. This means that the usage of contextual embeddings
for LBD is not entirely straight forward, since they can not be used in the same
way as the traditional static embeddings, and have at least to our knowledge
not been used for the task at hand.

In this work, we explore how contextual embeddings can be leveraged for
the task of discovering latent scientific knowledge in the very topical scientific
literature about the COVID-19 disease. More specifically, we are interested in
the discovery of new COVID-19 therapy targets from the targets discovered in
the past research. The novelty of this work is two-fold:

– The paper contributes a new methodology of generating general word rep-
resentations from contextual embeddings, proposes an entire workflow for
acquisition of novel COVID-19 therapy targets and shows that our method
of using contextual embeddings for LBD outperforms the baseline method of
using static embeddings by a large margin.

– Medically, the paper contributes to identifying new potential COVID-19 ther-
apy targets, motivated by a recent proof-of-concept study that used a state-
of-the-art omics approach to identify new possible targets for existing drugs,
such as ribavirin [5].

2 COVID-19 Medical Background and Recent Therapy
Targets

In late 2019 a novel coronavirus disease (COVID-19), caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China [38,39].
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COVID-19 quickly spread and was declared a pandemic by the World Health
Organization.

While new targeted therapies and vaccines against SARS-CoV-2 virus are
being actively developed, their potential use in the clinics is not imminent.
Therefore, until effective pharmacological therapies and/or vaccines are avail-
able, medicine needs to resort to other approaches to treat patients with COVID-
19 or prevent transmission of SARS-CoV-2. One approach is to identify which
among the antiviral drugs that were developed to treat other viral diseases might
be effective against SARS-CoV-2. A preliminary report suggests that remdesivir
seems to be the most promising candidate among these drugs [2]. Another app-
roach is to identify drugs that are used for other purposes but also exert antiviral
effects. The most prominent example among these is hydroxychloroquine, which
is used for chronic treatment of rheumatic diseases but also suppresses SARS-
CoV-2 in vitro [22]. Identifying a known drug with well-characterized adverse
effects would certainly save time and lives before more specific treatments are
developed. However, repurposing of existing drugs is also a challenge as high-
lighted by a recent controversy with hydroxychloroquine [7,25] and new candi-
date drugs and/or therapeutic targets are needed.

3 Related Work

The related work is divided into three Sections, namely related work on
Literature-based discovery in Sect. 3.1, related work on text representation learn-
ing in Sect. 3.2 and selected overview of recent NLP research on COVID-19 in
Sect. 3.3.

3.1 Literature-Based Discovery

Literature-based discovery (LBD) aims to generate new knowledge by combining
what is already known in the literature. It has been used to (semi-automatically)
identify new connections between genes, drugs and diseases, etc. [18]. Tradition-
ally, LBD has been addressed as finding interesting bridging terms revealing the
potentially new connections between separate domain corpora of interest [8].
Swanson [33] developed one of the early LBD approaches, the so-called ABC
model, to detecting interesting b-terms to uncover the possible cross-domain
relations among previously unrelated concepts.

On the other hand, a more recent state-of-the art tool LION LBD [31] enables
researchers to navigate published information and supports hypothesis genera-
tion and testing. The system is built with a particular focus on the molecular
biology of cancer. LBD has led to discovery of potential treatments in other
domains, including multiple sclerosis [19], and has been applied successfully in
drug development and repurpusing [11]. Recent LBD approaches benefit from
word embeddings. One is the study by [34] already mentioned in Sect. 1 and the
other is the work by [9], who proposed graph-based, neural network methods
to perform open and closed LBD and demonstrated improved performance on
existing tasks.
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3.2 Text Representation and Embeddings

Recently, the embedding approach became a prevalent way to build represen-
tations for many different types of entities, e.g., texts, graphs, electronic health
records, images, relations, recommendations, etc. Text embeddings use large
corpora of documents to extract vector representations for words, sentences,
and documents. The first neural word embeddings like Word2vec [26] produced
one vector for each word, irrespective of its polysemy. These so-called static
embeddings have been further developed and the most popular static embed-
dings currently in use besides Word2Vec are GloVe (Global vectors for word
representation) [28] and FastText [4]. Recent developments like ELMo [29] and
BERT [12] take a context of a sentence into account and produce different word
vectors for different contexts of each word. Another novelty of these approaches
is the employment of the transfer learning technique, which has recently become
a well established procedure in the field of NLP. This procedure relies on a
language model pretraining on very large unlabeled textual resources and after
that transfer of the knowledge obtained by the language model onto a specific
downstream task by further fine-tuning the model.

3.3 Text Mining and NLP Research Related to COVID-19

With regard to biomedical research on COVID-19, time is a central factor as
scientists try to design treatments and vaccines amid the pandemic caused by
the SARS-CoV-2 virus, therefore leveraging LBD and its potential to reduce
scientific discovery time could prove crucial.

Many search platforms emerged for retrieving COVID-19 related papers.
For example, Neural Covidex1 is based on neural ranking architecture and pro-
vides information access capabilities to the COVID-19 Open Research Dataset
(CORD-19) (see Sect. 4.1). SciSight [17] in contrast to standard targeted search
facilitates finding connections between biomedical concepts that are not obvious
from reading individual papers. It displays a network of top related terms mined
from the corpus, based on the co-appearance in the same sentence.

Studies that can generate new knowledge about COVID-19 by applying
embeddings are still scarce but do exist. For example, a recent study has pro-
jected Covid-related medical texts in a 3D human atlas space that helps to navi-
gate the literature [14]. The objective was to learn semantically aware groundings
of sentences with five different BERT models [12].

4 Background Knowledge and Resources

We describe the CORD-19 corpus (Sect. 4.1) and embeddings technology
(Sect. 4.2) used in this study.

1 https://covidex.ai/.

https://covidex.ai/
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4.1 CORD19 Database

The scientific literature considered in this work has been recently introduced as
the CORD-19 corpus2. CORD-19 is a resource of over 135,000 scholarly articles,
including over 68,000 with full text, about COVID-19, SARS-CoV-2, and related
coronaviruses. This freely available data set is provided to the global research
community to apply recent advances in NLP and other AI techniques to generate
new insights in support of the ongoing fight against this infectious disease.

We use the corpus version 12, published on May 1st 2020, from which we
extract only full text scholarly articles converted into xml from a pdf format.
This results in altogether 48,410 papers, which are summarized in Table 1.

Table 1. CORD-19 dataset statistics.

Origin Number of papers Number of tokens

Commercial use subset 9,918 46,206,453

Non-commercial use subset 2,584 10,732,608

PMC custom license subset 32,450 156,247,363

bioRxiv (not peers reviewed) 2,670 8,968,183

medRxiv subset (not peer reviewed) 788 3,285,558

All 48,410 225,440,165

4.2 Considered Embeddings

We use FastText [4] embeddings as a baseline in this study. The main advantage
of FastText embeddings is its word representation as a sum of n-grams, which
allows the model to, in addition to leveraging semantic relations, also leverage
morphological information.

One of the most oftenly used models for the generation of contextual embed-
dings is the BERT model [12] that was originally pretrained on the Google
Books Corpus (800 million tokens) and Wikipedia (2,500 million tokens). This
pretraining is however not entirely appropriate for the text mining tasks on the
scientific literature due to specificities of the scientific language and vocabulary.
For this reason, in this research we opted for SciBERT [3], a version of BERT
pretrained on a large multi-domain corpus of scientific publications, a random
sample of 1.14 M papers from Semantic Scholar. SciBERT model has 12 encoder
layers with the attention mechanism and a hidden layer size of 768.

5 Methodology

In this section, we present the methodology of the proposed approach by explain-
ing how we obtain word representations, how we acquire therapy target candi-
dates and how we evaluate the approach.
2 https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge.

https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge


114 M. Martinc et al.

5.1 Word Representations

First, we fine-tune SciBERT as a masked language model for domain adaptation
on the lowercased CORD-19 dataset. Next, we generate word representations for
each word in the vocabulary. Figure 1 visualizes the process described below. The
documents from the corpus are split into sequences of byte-pair encoded tokens
[20] of a maximum length of 256 tokens and fed into the fine-tuned SciBERT
model. For each of these sequences of length n, we create a sequence embedding
by summing the last four encoder output layers. The resulting sequence embed-
ding of size n times embeddings size represents a concatenation of contextual
embeddings for the n tokens in the input sequence. By chopping it into n pieces,
we acquire a representation, i.e. a contextual token embedding, for each word
used in the corpus. Note that these representations vary according to the con-
text in which the token appears, meaning that the same word has a different
representation in each specific context (sequence).

Finally, the resulting embeddings are aggregated on the token level (i.e. for
every token in the corpus vocabulary, we create a list of all their contextual
embeddings) and are averaged, in order to get one representation for each token
in the vocabulary. We enforce a constraint that a list of contextual embeddings
for a specific token should contain at least five elements, otherwise the specific
token is discarded. This is done in order to remove tokens that do no appear
in the corpus enough times for the model to learn a meaningful representation
(e.g., mostly tokens that contain typos or very rare technical terms). Since the
byte-pair input encoding scheme [20] employed by the SciBERT model does
not necessarily generate tokens that correspond to words but rather generate
tokens that correspond to parts of words, we also propose the following on the
fly reconstruction mechanism that allows us to get word representations from
byte pair tokens. If a word is split into more than one byte pair token, we take
an embedding for each byte pair token constituting a word and build a word
embedding by averaging these byte pair tokens. The resulting average is used as
a context specific word representation.

The final result are static embeddings for each word in the vocabulary, capa-
ble of leveraging a broader semantic knowledge due to the SciBERT being pre-
trained on a large corpus of scientific articles. As a baseline, we also train a
FastText skip-gram model with an embedding dimension of 100 (which is the
default) on the lowercased CORD-19 dataset. Once again we enforce the con-
straint that a word should appear in the corpus at least five times.

5.2 Synonym Resolution

Once embeddings are generated, we conduct synonym resolution with the help of
a list of 19,302 gene names and their most common synonyms [30]. The embed-
ddings belonging to the synonyms of the same gene are averaged in order to
combine contextual information of different identifiers referring to the same gene
and in order to avoid possible mismatches due to different naming.
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Fig. 1. Extraction of word usage embeddings from BERT. Note that only the last 4
out of 12 BERT encoder layers are used for the embedding generation. This was done
in accordance with the previous studies that suggested that the last four layers carry
the bulk of the semantic information obtained by the model [24].

5.3 Candidate Acquisition

The main idea of our approach is to leverage semantic similarity in order to
derive new scientific knowledge from an already existing one. For this to work,
some initial seed concepts need to be acquired and used as a starting point. We
explore two possibilities for this:

– Seed Concepts Recommended by the Expert: The experts with a
medical background were asked to recommend genes and/or proteins with
a known and confirmed link to COVID-19. The final consensus was to focus
on angiotensin-converting enzyme 2 (ACE2) and transmembrane protease
serine 2 (TMPRSS2). ACE2, a receptor for the spike S protein, is important
because SARS-CoV-2 uses it to enter the host cell [16]. TMPRSS2 promotes
SARS-CoV-2 entry into the cell by priming the spike S protein [16]. Blockage
of binding of SARS-CoV-2 to ACE2 or inhibition of TMPRSS2 are therefore
two possible approaches to treat COVID-19.

– Seed Concepts Found in the Literature: Due to the abundance of recent
research on COVID-19 it is also possible to find seed concepts in the related
research. We opted for a study by [5] in which a set of COVID-19 therapy
targets were identified. The considered list of altogether 2802 potential tar-
gets3 is the result of a large-scale screening for active proteins, and offers a
starting set of candidates obtained empirically. The list is ranked according
to the increase or decrease of production of a specific protein at a specific

3 Note that the original list contains 2715 targets (see Supplementary Table 1 in [5]).
Some of them are however represented as a set of similar genes/proteins belonging
to the same family. On the other hand, we treat each individual gene/protein as a
separate target, which results in a set of 2802 targets.
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time point. We explore what is the optimal number of seed candidates by
exponentially enlarging the size of the seed candidate set. Sampling from the
list is conducted according to the ranking of the protein candidates, i.e., we
sample 2, 4, 8, 16, 32 and 64 best ranked seed candidates according to the
increase in their production 24 h after the infection (column Ratio 24h in
Supplementary Table 1 in the study by [5]).

Once seed concepts are acquired, we calculate their embeddings and look
for semantically similar concepts by finding the concepts that are the closest to
seed concepts according to the cosine distance between the embeddings4. More
specifically, we find a set of 2802 closest candidate concepts for each gene/protein
in each seed candidate set, and the acquired candidates are ranked according to
the cosine similarity. Finally, we calculate the average ranking for each candidate
(i.e. by averaging ranks for each seed concept in the set) and therefore obtain
NumOfCandidatesInSet ∗ 2802 closest candidates for each of the seed concept
sets with possible duplicates originating from different seed concepts.

Since the initial experiments showed that many of the most similar concepts
are in fact variations of the same base concept (e.g., the closest neighbours to
ACE2 being ACE, ACE2M, ACE2S...) and since we are interested in maximiz-
ing the variety of the acquired candidates, we conduct an additional filtering
according to the normalized Levenshtein distance defined as:

normLD = 1 − LD

max(len(w1), len(w2))
,

where normLD stands for normalized Levenshtein distance, LD for Levenshtein
distance, w1 is either a seed concept or a concept already in the list of acquired
neighbours and w2 is the new candidate neighbour. Concepts for which nor-
malized Levenshtein difference is bigger than 0.7 are discarded5. The filtering is
conducted in order from the top of the list (neighbours with the best average
rank) to the bottom.

At the end of the candidate acquisition process, we cut the ranked list of
neighbours at 2802 target candidates for each of the distinct seed concept sets
used in the evaluation.

5.4 Evaluation

The methods for discovering new therapy targets are evaluated in two evaluation
settings, quantitative and qualitative.

4 Note that these concepts obtained according to semantic similarity are not neces-
sarily proteins/genes but rather any word in the embedding vocabulary.

5 The normalized Levenshtein difference threshold of 0.7 was chosen empirically.
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Quantitative Evaluation. We evaluate if therapy target candidates acquired
in the previous step have been confirmed as targets in the study by [5], i.e.
how many of them appear in the list of 2802 candidates they identified6. Note
that in this setting we only evaluate the proposed method on the previously
existing knowledge, therefore in the quantitative evaluation we can not asses,
if the method has managed to discover some potentially useful and previously
undiscovered knowledge.

We are interested in precision at rank k. This means that only the candidates
ranked equal to or higher than k are considered and the rest are disregarded.
Precision is the ratio of the number of relevant candidates divided by the number
of candidates returned by the system, or more formally:

precision =
|relevant candidates@k|
|returned candidates|

Recall@k is the ratio of the number of relevant candidates ranked equal to
or higher than k by the system divided by the number of correct ground truth
candidates:

recall =
|relevant candidates@k|

|correct candidates|
We measure precision and recall at k = 100 and k = 2802 in order to inves-

tigate how different number of retrieved candidates for each seed concept set
affects the precision and recall of the methods. More specifically, we are trying
to confirm or deny a hypothesis that larger k values degrade the overall precision
of the method.

The relevance of the candidate is determined according to two matching
criteria. First one is the exact match, where the candidate is deemed relevant
if it appears in the list of identified targets in the study by [5]. The second is
the fuzzy match, where we check if the targets belong to the same “family” as
a specific confirmed target. This strategy was proposed by the medical experts
and checks whether the prefix of the specific gene (characters in the gene name
that appear before the first digit in the name) matches a prefix of a specific
gene name in the list. We enforce an additional constraint that the matching
prefixes need to be at least three characters long for a successful match in order
to minimize the false positive rate.

Qualitative Evaluation. We generated two distinct therapy target candidate
lists using the proposed SciBERT based embedding method. First one contained
100 closest neighbours to the protein ACE2 according to the cosine distance
between embeddings, and the second one contained 100 closest neighbours to the
protein TMPRSS2. Both lists were given to the medical expert who inspected
the list for possible previously undiscovered candidates.

6 Note that the study by [5] is not included in the CORD-19 corpus used for training
the embeddings, since it was published on May 14th 2020 and we use the CORD-19
version published on May 1st 2020.
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6 Results

Here we present the results of the quantitative and qualitative evaluation.

6.1 Results of the Quantitative Evaluation

The results of the quantitative evaluation are presented in Table 2. In column
ACE2 + TMPRSS2 we present results when these two proteins are used as
seed concepts, and in column UBA2 + NCKAP1 we present results when these
two proteins, which were chosen according to the largest value of the Ratio 24h
criterion (see Sect. 5.3) are used as seed concepts. Left part of the Table presents
results for the proposed approach based on SciBERT and the right part of the
Table presents results for the baseline FastText approach in terms of precision
and recall at two distinct k values (100 and 2802). EXACT indicates that exact
matching is used and FUZZY indicates fuzzy matching (see Sect. 5.4).

SciBERT based method outperforms the FastText baseline by a large mar-
gin in both seed therapy target acquisition scenarios and according to all the
criteria. Using UBA2 + NCKAP1 works better than using ACE2 + TMPRSS2,
achieving the best fuzzy precision@100 of 0.490 and the best exact precision@100
of 0.220. FastText baseline also works fairly well in this scenario, achieving fuzzy
precision@100 of 0.380 and the best exact precision@100 of 0.170. When more
(2802) candidates are obtained, the recall increases for both methods but at an
expense of a significant drop in precision for both methods and for almost all
configurations. The only exception is the increase in fuzzy precision by about
2% points when FastText method and ACE2 + TMPRSS2 seed concepts are
used. The most likely reason for the drop is that at larger k values some of the
target candidates acquired by the method might be semantically too dissimilar
to the seed targets, since more candidates per each seed therapy target need to
be acquired in order to get the required amount of semantic neighbours (e.g.,
for k=2802, we get about 1401 semantic neighbours for each of the seed genes).

This raises the question of how many seed terms should be supplied to the
system for the best performance when a large number of target candidates is

Table 2. Results (precision@k and recall@k) of the quantitative evaluation for two
seeds by the expert and two seeds from the literature. Best result in each row is bolded.

SciBERT FastText

ACE2 + TMPRSS2 UBA2 + NCKAP1 ACE2 + TMPRSS2 UBA2 + NCKAP1

EXACT P@100 0.110 0.220 0.040 0.170

EXACT R@100 0.004 0.008 0.001 0.006

EXACT P@2802 0.097 0.118 0.025 0.076

EXACT R@2802 0.097 0.118 0.025 0.076

FUZZY P@100 0.290 0.490 0.070 0.380

FUZZY R@100 0.010 0.017 0.002 0.014

FUZZY P@2802 0.222 0.252 0.092 0.183

FUZZY R@2802 0.222 0.252 0.092 0.183
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Fig. 2. Relation between recall and the number of seed candidates.

required as output. Figure 2 shows the relation between the achieved recall@2802
(exact and fuzzy) of both methods when we increase the number of seed can-
didates (see Sect. 5.3 for details about our sampling procedure). For SciBERT
based method, the best fuzzy and exact recalls are achieved when 32 seed candi-
dates are used (28.2% and 14.1% respectively). On the other hand, the FastText
based method shows a spike in performance when 4 seed concepts are used. This
indicates that for some reason the two seed candidates ranked third and fourth
(ENO1 and ATP5O, respectively) according to the Ratio 24 criterion have a
very positive effect on the FastText model but not SciBERT. While we do not
have a clear explanation for this phenomenon, it is hypothesized that it might
be connected with morphological similarity between these two genes and other
genes in the list of candidates proposed by [5], since FastText can also leverage
morphological similarity. Spikes asides, the general trend for both methods and
both recalls is quite similar. There is a gradual increase in performance for up to
32 seed candidates and after that the performance decreases.

6.2 Results of the Qualitative Evaluation

Nine genes/proteins were the same in the ACE2 and TMPRSS2 lists, indicat-
ing they might be important for pathogenesis of COVID-19. The role of these
genes/proteins in pathogenesis of COVID-19 has not been established, but indi-
rect evidence supports this notion at least for some of them. Indeed, most of
these genes/proteins have been previously linked to viral diseases, including
those caused by SARS-CoV (a virus, which causes SARS, and is related to
SARS-CoV-2), and other coronaviruses (Table 3). Furthermore, METAP2 and
DPP7, which we identified as potentially relevant for COVID-19, were altered in
cells infected with SARS-CoV-2, although the difference for DPP7 did not reach
the level of statistical significance [5].

Interestingly, three proteins in Table 3 (PTGS2, CRTH2, and PLA2R1)
are linked to infection with coronaviruses as well as metabolism of phospho-
lipids and/or prostaglandin synthesis and action. Furthermore, both the ACE2
and TMPRSS2 lists contain genes/proteins, such as PLA2 (phospholipase A2,
PLA2G2D (Group IID secretory phospholipase A2), and SPLA2 (secretory
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PLA2), which do not match directly, but are involved in the same or related
cellular processes. Notably, increased expression of Pla2g2d in older mice was
shown to be linked with increased mortality due to SARS-CoV infection [36]. In
addition, a recent proteomic analysis has demonstrated that protein abundance
of PLAA (phospholipase A2-activating protein), PLA2G4A (cytosolic phospho-
lipase A2), and PLA2G2 (Group IIA phospholipase A2) is altered in cultured
cells infected with SARS-CoV-2 [5], which gives further credence to the idea
that phospholipid metabolism is important under these conditions. In summary,
taken together with published experimental data, our analysis suggests that
phospholipases and/or prostaglandins might represent a target for treatment of
COVID-19.

Table 3. Genes/proteins (in alphabetical order) which are common to the TMPRSS2
and ACE2 list and their (putative) relevance to COVID-19.

Gene Protein Relevance to COVID-19

ATP2B2

(PMCA2)

Plasma membrane

Ca2+-transporting

ATPase

?

CRTH2

(PTGDR2)

Prostaglandin D2

(PGD2) receptor

PGD2 is important for survival of mice

infected with neurotropic coronavirus.

Increased production of PGD2 is linked

to increased mortality in aged mice.

PGD2blockade improves survival in mice

infected with SARS-CoV [35,37].

DPP7

(DPP2)

Dipeptidyl peptidase 2 DPP7 is associated with the magnitude

of the antibody response to influenza

vaccination [15].

MECP2 Methyl-CpG-binding

protein 2

MECP2 duplication in humans is

associated with IgA/IgG2 antibody

deficiency and severe infections. Mice

overexpressing MECP2 are

hypersensitive to influenza A virus

[1,10].

METAP2

(P67EIF2)

Methionine

aminopeptidase 2

(Initiation factor

2-associated 67 kDa

glycoprotein)

Plays a role in regulation of protein

synthesis during vaccinia virus infection

[6].

PLA2R1 Secretory phospholipase

A2 (PLA2) receptor

Restricted activity of PLA2 is associated

with improved survival in mice infected

with HCoV-OC43. Inhibition of cytosolic

PLA2 suppresses replication of

HCoV-229E [13,27].

PTGS2

(COX2)

Prostaglandin G/H

synthase 2

(cyclooxygenase-2)

SARS-CoV induces cyclooxygenase 2

[23].

SOX2 Transcription factor

SOX-2

SOX2+ cells are important for

regeneration of airway epithelium after

severe influenza infection in mice [32].

SSTR2

(SST2)

Somatostatin receptor

type 2

?
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7 Conclusions and Further Work

In this paper we presented a method for discovering new COVID-19 therapy
targets by leveraging contextual embeddings, which outperforms the method
based on FastText embeddings. We explored the best tactics for acquiring seed
targets from the related work if expert knowledge is not available. The results
of the manual qualitative evaluation by the expert indicate that at least two
groups of novel therapy target candidates have been discovered.

The proposed method outperforms the baseline FastText method by a large
margin, which can be explained by the fact that SciBERT is also leveraging
knowledge gained during the pretraining on the large corpus of scientific litera-
ture, which enables the model to generate vector representations that reflect this
wider semantic context. The drawback is however the difference in the amount of
computational resources required by the two methods. We also acknowledge that
the proposed method, which constructs static embeddings from the SciBERT
contextual embeddings is not the only possibility for construction of meaningful
semantic representations. Other possibilities and models (e.g., BioBERT [21])
will be explored in the future work. The quantitative evaluation indicates that
the precision and recall of the method are still relatively low in most cases. This
can on one side indicate that COVID-19 topic is not researched enough to con-
firm relations between COVID-19 and some candidates found by the proposed
method. Another indication of this is the qualitative study, which confirmed that
some of the proposed candidates found by the system have research potential
but have not yet been explicitly confirmed as being related to COVID-19 in the
existing literature.

On the other hand, low precision most likely also indicates that there is still
a large amount of proposed candidates, which play no role in the advancement
and prevention of the COVID-19 disease. Some of these false positives can be
attributed to inadequate synonym resolution since the list used for that task (see
Sect. 5.2) most likely covers only a small percentage of genes and their synonyms
found in the CORD-19 corpus. Other mistakes can be contributed to the byte
pair encoding scheme SciBERT employs. Since the model generates embeddings
for subword tokens instead for an entire words (see how we deal with this problem
in Sect. 5.1), some words with similar roots or affixes can perhaps appear closer
in the semantic space as they should according to their semantic relatedness
because of the morphological resemblance. We will address this issues in the
future work.
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Abstract. In this paper, we address the task of representation, seman-
tic annotation, storage, and querying of predictive modelling experi-
ments. We introduce OntoExp, an OntoDM module which gives a more
granular representation of a predictive modeling experiment and enables
annotation of the experiment’s provenance, algorithm implementations,
parameter settings and output metrics. This module is incorporated in
SemanticHub, an online system that allows execution, annotation, stor-
age and querying of predictive modeling experiments. The system offers
two different user scenarios. The users can either define their own exper-
iment and execute it, or they can browse the repository of completed
experimental workflows across different predictive modelling tasks. Here,
we showcase the capabilities of the system with executing multi-target
regression experiment on a water quality prediction dataset using the
Clus software. The system and created repositories are evaluated based
on the FAIR data stewardship guidelines. The evaluation shows that
OntoExp and SemanticHub provide the infrastructure needed for seman-
tic annotation, execution, storage, and querying of the experiments.

Keywords: Computational experiments · Semantic annotation ·
Ontology · Predictive modelling

1 Introduction

Data mining and machine learning experiments are conducted in higher vol-
ume than ever before, in various settings and domains. In the case of predictive
modelling, the users usually aim to produce a model that will provide the best
predictive performance. However, in practice, almost none of the settings regard-
ing the experimental setup are stored. We usually do not keep track of the exact
software environment, the exact dataset that was used to train the model, the
duration of the experiment, and the hardware specification of the machine the
experiments were performed on.
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The same problem arises when it comes to the models produced by the per-
formed experiments. Regarding the algorithm setup, almost no information is
stored about the parameter values of the algorithm implementation which pro-
duced the models, and the evaluation scenario used to validate the results. These
predicaments make the conducted research hard to verify, reproduce and reuse.
There have been previous efforts to address this problem such as the ones devel-
oped by Vanschoren et al. [18], Google (AI hub)1, Schelter et al. [14], and others.

Having access to a repository of computational experiments that are rep-
resented by a schemata based on logical formalism is beneficial from several
perspectives. First, the results can be accessed, easily verified, and predictive
models can be retrieved for their further reuse. We can utilize the logic behind
the schema to pose queries that will allow searching not only through the explicit
axioms that are asserted but also on the implicit axioms that the reasoners have
produced. From this, we can derive new information based on results already
stored in the knowledge base.

However, producing the experiments and then transforming their outputs
into this logical formalism can be a tedious and error-prone task when repeated
for each experiment. Therefore, one can assume that having a framework that
will execute the experiments and format the output according to the defined
logical formalism, i.e., ontology-based annotation schema, store the annotations
in a database, which will be open for querying through a query endpoint, will
provide an easy access to a vast knowledge base of experimental workflows,
benefiting both data mining practitioners and domain experts. In the litera-
ture, there had been efforts for development of ontological resources that allow
semantic representation of different entities in the domain of data mining and
machine learning. Examples of state-of-the-art resources OntoDM [12], DMOP
[9], Exposé [17], MEX [7], MLSchema [6] and others.

The paper is organized as follows. In Sect. 2, we introduce an ontology module
for semantic representation of predictive modelling experiments named OntoExp.
Next, in Sect. 4, we demonstrate the use of OntoExp within SemanticHub, a
system for execution, semantic annotation, storage and querying of experiments.
In Sect. 5, we showcase the use of SemanticHub in a water quality prediction
use case scenario. Finally, in Sect. 6, we evaluate the system and the created
repository according to the DANS FAIR questionnaire, and in Sect. 7 we give
our concluding remarks.

2 Representation of Experiments with OntoExp

To create a repository of semantically annotated predictive modeling experi-
ments, we need to create a more granular representation of a predictive mod-
eling experiment that will enable annotation of the experiment’s provenance,
algorithm implementations, and results.

1 https://cloud.google.com/ai-hub/.

https://cloud.google.com/ai-hub/
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Table 1. Examples of competency questions addressed by OntoExp.

# Competency question

1 List all experiments that address the multi-target regression task

2 List all experiments that used an ensemble learning algorithm

3 List all experiments that had a specific dataset, given as input

4 Return the best predictive model learned on a specific given dataset

5 List all experiments that used cross-validation

For this purpose, we introduce OntoExp, an extension of OntoDM-core [12]
for representation of predictive modeling experiments. OntoExp provides a repre-
sentation of different types of predictive modeling experiments on the execution
level. Each experiment type, as well as all of the involved entities and processes,
need to be formally represented and connected to provide an annotation schema
that will used to produce a comprehensive metadata for the experiment.

The main focus of OntoExp is on representing different types of experimental
data mining workflow executions, including the executions of different algorithm
implementations together with their parameter setup for various data mining
tasks. A connection is made with the inputs and outputs of the execution process,
i.e., the datasets, predictive models, and experimental results as concretizations
of the evaluation measure implementations. In Table 1, we outline the compe-
tency questions that are addressed by our developed extension.

Ontology Design. OntoDM [12] was developed in a modular fashion, making
it suitable for extension. It adheres to the Open Biomedical Ontologies (OBO)
Foundry principles [16] for ontology design. These include the use of an upper-
level ontology, formal ontology relations, absence of orphan classes, single inher-
itance, as well as integration and reusing of terms that are already defined in
other ontologies. It is based on the Basic Formal Ontology (BFO) [1] as the
upper-level ontology, and the relations are reused from the Relations Ontology
(RO) [15]. Furthermore, OntoDM reuses classes defined in other ontologies which
are relevant to the domain, such as the Information Artefact Ontology (IAO) [3],
OntoDT ontology of datatypes [13], Software Ontology (SWO) [11], Ontology of
Biomedical Investigations (OBI) [2], and others. All of the reused classes from
these ontologies are imported following the Minimum Information to Reference
an External Ontology Term (MIREOT) [5] principles.

OntoExp builds on top of the current ontology structure following the same
class taxonomy, as well as design and class reuse principles. Supporting the mod-
ularity of OntoDM, it is designed as a separate module that can be used by itself
or preferably together with OntoDM for a more comprehensive representation of
the domain. The ontology module consists of 296 classes in total, 146 of which
are novel classes, and 150 are reused from OntoDM. Since the resource is not
introduced as a novel standalone ontology, it is licensed under the same license
as OntoDM. The ontology module is available at the following PURL https://
w3id.org/ontoexp.

https://w3id.org/ontoexp
https://w3id.org/ontoexp
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Core Classes. OntoExp follows the Algorithm-Implementation-Execution
Design Pattern and principles defined by Lawrynowicz et al. [10]. The most
important classes are algorithm, algorithm implementation, and algorithm exe-
cution.

Data mining algorithms are represented as a subclass of the general algorithm
class from the IAO ontology [3] and represents a specification of an algorithm.
We distinguish between DM algorithms that output a single model, and the ones
that output an ensemble of models.

Algorithm implementation is a concretization of a algorithm specification,
implemented in some software product, and written in a specific programming
language. In the ontology, we also explicitly represent the provenance information
for both the software and the programming language.

An algorithm execution is a process that represents the training part of a pre-
dictive modeling experiment. It realizes the algorithm implementation, receives
a DM-dataset with a train set role as an input, and outputs a predictive model.
This process precedes the predictive model execution that represents the process
which realizes the predictive model in order to output the DM-dataset with
the predicted values of the target variables.

Following the predictive model execution (see Fig. 1c), there is the evalua-
tion calculation process which uses the predicted DM-dataset from the predic-
tive model execution process as an input to calculate a specific implementation
of an evaluation measure. Depending on the type of experiment, or task, the
calculation process can vary in different ways. If the experiment has a N-fold
cross-validation model evaluation, we need to represent each per-fold evaluation
measure calculation, and calculate the average value across all measurements.
Additionally, if we have complex tasks, such as for example multi-target predic-
tion task, we need to calculate the evaluation measures for each target separately.
More details and examples are provides further on in Sect. 3.

Workflow Representation. In OntoExp, we represent the predictive model
evaluation train/test workflow execution and the N-fold cross-validation work-
flow execution processes and their inputs and outputs. The first workflow can use
either a separate test set for evaluation or validation of results on the training
set, while the second uses N-fold cross-validation as the evaluation method.

N-fold cross-validation workflow execution contains the predictive model
train/test evaluation workflow execution as one of the sub-process. In a cross-
validation scenario (see Fig. 1a), we first perform the sampling of the dataset
on N folds, and in each iteration (see Fig. 1b), we build a predictive model on
N−1 folds and evaluate it on the one fold that was not used for training. Finally,
at the end we calculate the average average value of the evaluation measure
from all the folds. These repetitive evaluations are represented by the per fold
evaluation workflow execution process (see Fig. 1b) which consists of two sub-
processes, i.e., train/test dataset construction, and predictive model evaluation
workflow execution. Each per fold evaluation process is a sub-process of the
N-fold cross-validation workflow execution process connected to it with the has
part relation.
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Fig. 1. A representation of a predictive modeling experiment: a) N-fold cross-validation
scenario. b) Representation of the evaluation for each fold. c) Representation of the
train/test evaluation workflow execution. Red boxes represent processes, blue boxes
represent information entities, green boxes represent roles and pink boxes represent
realizable entities. (Color figure online)

3 Semantic Annotation of Experiments Using OntoExp

In this section, we describe the complete annotation schema derived from
OntoDM and OntoExp on an example of an experiment that involves a cross-
validation evaluation for a multi-target regression task using an algorithm that
solves that task. In order to represent a cross-validation experimental sce-
nario, we use the N-fold cross-validation evaluation workflow execution class
(see Fig. 2). This evaluation scenario consists of three consecutive processes: data
sampling process, model construction process, and model evaluation process.
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First, we focus on the data sampling process represented with the N-fold
sampling process. We relate this process with a datatype property that carries
information about the number of folds the data should be split in. The input
of the process is the original dataset used for the experiment, while the output
is a set of folds which is related to each fold that will be used for the model
evaluation process.

Another part of the data sampling process are the different combinations
of folds used for the training and testing purpose. We represent this with the
train/test dataset construction, which is a part of the per-fold evaluation workflow
execution and outputs two DM-datasets, one that consists of N−1 folds and will
be used with a train set role, and the one fold to be used with a test set role.

Next, in a cross-validation scenario, there is a separate model creation and
evaluation process for each fold. This is then repeated N times, N being the
number of folds. To represent this, we use the per fold evaluation workflow exe-
cution class. This process consists of two parts, train/test dataset construction,
which we introduced before, and predictive model train/test evaluation workflow
execution. The latter is the process that connects the model creation and model
evaluation process for a given training and test set. The resulting output of the
model creation process is a predictive model.

Next is the evaluation process, which starts with a predictive model execution
process that uses the already built predictive model to produce a dataset with
the predictions for the target variables. This dataset is then used to calculate the
evaluation metrics for each target, since we are dealing with the task of multi-
target prediction. The evaluation measures are always dependent on the task at
hand. This is a part of the predictive model evaluation calculation process.

Finally, once these calculations are finished for all folds, we use them as an
input of the N-fold cross-validation evaluation calculation, which then calculates
the averages for each target across all folds, and also the final average value
across the final per-target values.

4 System for Executing and Querying Predictive
Modeling Experiments

In this section, we present SemanticHub, a web-based system for remote exper-
iment execution, semantic annotation, storage, and querying of predictive mod-
eling experiments. The presented system provides an infrastructure for running
experiments on a remote server, annotating their outputs and experimental set-
tings, storing the raw files in a file storage system, and the annotations in a
triple store database. The stored annotations are available for querying either
through a user interface or using a querying endpoint. The prototype version of
the system is available at http://semantichub.ijs.si/clus/experiment.

System Architecture. SemanticHub is constructed in modular fashion as
a synthesis of several independent web services (see Fig. 3). First, the input
datasets are sent to our file storage through the a FTP server. The experiment is

http://semantichub.ijs.si/clus/experiment
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Fig. 3. The architecture of SemanticHub.

defined through interaction with SemanticHub’s UI, which sends the parameters
and the setup to our server where our data mining software is hosted. Currently,
we are using the Clus software2 for executing the experiments. Clus is a decision
tree and rule induction system that implements the predictive clustering frame-
work and has been applied to many different tasks including multi-task learning,
structured output learning, multi-label classification, hierarchical classification,
and time series prediction.

The whole setup as well as the experimental outputs are annotated with
entities and processes defined in OntoExp using a REST API. The annotated
experimental setup, metrics, and results are sent to the Fuseki2 server3 as sets of
RDF triples4. The resulting predictive models are stored as raw files the file sys-
tem. The Fuseki2 server hosts the triple-store database which is used for storage
and retrieval of the RDF triples. These triples are available to the users through
SemanticHub’s querying engine, which generates SPARQL queries based on the
user’s input. The results are shown to the users in SemanticHub’s UI.

Running Computational Experiments. Here, we describe the implementa-
tion of the framework that allows users to set up and execute computational
experiments on our remote servers. One of the two user scenarios for this system
allows users to run their own experiments. This is done in two stages. First,
the user needs to define the experimental setup, by uploading an experimental
specification or setting up the experiment through the user interface. This step
includes selecting the datasets, the algorithm for training the models, as well
as its parameter values. The dataset is uploaded through a HTTP request to a
repository that is open to the users through FTP requests.

For running predictive modeling experiments we use the Clus software for
data mining. As examples here, we focus on the tasks of single-target regression
and classification, as well as multi-target regression and multi-label classification.

2 http://clus.sourceforge.net/doku.php.
3 https://jena.apache.org/documentation/fuseki2/.
4 https://www.w3.org/TR/rdf11-primer/.

http://clus.sourceforge.net/doku.php
https://jena.apache.org/documentation/fuseki2/
https://www.w3.org/TR/rdf11-primer/
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For these tasks, the software has two main inputs: a settings file, and the datasets,
both for training and testing purposes. The settings file contains the complete
experimental setup, i.e., it defines the input data, specifies which part of it is
descriptive and which are the target attributes, as well as all of the model con-
straints and algorithm parameters (for more details please check 5). Depending on
the criteria set in the settings file, Clus can output predictive models, experimental
results, as well as predictions for each test example.

The user interface for setting up and executing an experiment in the Clus
software consists of a single screen, where the user needs to upload the train and
test datasets, as well as the settings file. Additionally, there are two checkboxes,
one for the selection of the validation scenario, and one for defining whether a
single model or an ensemble algorithm will be run on top of the selected data.
Each of these settings/flags runs Clus in a different mode, changing the number
of output files, as well as the type of the output files.

Semantic Annotation Workflow. Following the experiment execution, the
system utilizes the designed annotation schemata for predictive modeling exper-
iments to create semantic annotations in the form of RDF graphs. The RDF
graphs consist of triplets representing the inputs and outputs of the experi-
ment, the algorithm used, its parameter values, as well as the evaluation results
(see Fig. 4). Formalized in this way, the RDF graphs are then uploaded to a
TDB2 triplet database hosted on a Fuseki2 server. The upload is executed by
the SPARQL Graph Store HTTP Protocol.

The CLUS library we use for running predictive modeling experiments pro-
vides a comprehensive output, once the experiment is completely finished. Thus,
we semantically annotate the experiments after the execution of the experiment.
The complete settings file with all default, and user-defined values are contained
in the output file for each experiment, enabling us to annotate the experimental
setup, runtime provenance information, and results in one step. We should also
note that the annotations are solely based on the annotation schemata designed
for predictive modeling experiments that use the OntoExp ontology.

Querying the Repository of Predictive Modeling Experiments. The
second user scenario of our system is the one where users can query or browse
through the database of completed experiments. We use the Graph Store HTTP
Protocol for storing and querying the semantic annotations, which are in the form
of RDF graphs. The SPARQL endpoint provides the presence on the HTTP
network for receiving and handling Graph Store HTTP or SPARQL Protocol
requests. The SPARQL querying interface enables users to write raw SPARQL
queries directly for each RDF dataset. However, our system provides a simple
graphical user interface, where users can define their queries by interacting with
the user interface.

For the predictive modeling experiments conducted in the Clus framework,
users can query the repository of experiments based on several criteria. These

5 http://clus.sourceforge.net/doku.php?id=doc:main.

http://clus.sourceforge.net/doku.php?id=doc:main
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RDF triplets representing an evaluation measure calculation process outputting
measurements for 3 target variables.

Measurement datum and its value for the first target.

Fig. 4. Examples of annotations of experimental results.

Fig. 5. An example of querying interface for CLUS experiments.

include the user, the data mining task that was addressed, the validation method,
algorithm type, datasets included, evaluation measure, as well as the date or
range of dates when the experiment was conducted. The querying screen from
the user interface is shown in Fig. 5. All of the fields allow multiple selections,
therefore, the query result can be a set of experiments, not just a single instance.
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Fig. 6. A specification of the experiment (a screenshot of a Clus settings file).

5 Use Case: Water Quality Prediction

In this section, we present a use case scenario of SemanticHub’s predictive mod-
eling system integration with the Clus data mining framework. Specifically, we
will showcase the data import, construction of the experimental setup through
the settings file, as well as the remote execution of an experiment. Finally, we
will use SemanticHub’s SPARQL endpoint access to formulate a SPARQL query.

We define the experiment specification through the settings file, as shown in
Fig. 6. Here, we provide information about the input datasets for this experi-
ment, together with the parameters and constraints for the model that will be
trained. Namely, we will use the Andro datasets6 for water quality prediction [8]
for training a single multi-target predictive clustering regression tree. Addition-
ally, we define the descriptive, clustering, key, and target variables. The datasets
contain 30 descriptive, as well as 6 target features (temperature, turbidity, oxy-
gen, pH, conductivity, salinity). Regarding the model constraints, we do not limit
the tree size in terms of depth, or the minimum number of examples in the leaf
(see Fig. 6). We choose the variance reduction heuristic for making the splits,
with N2 complexity. Additionally, we set the rest of the parameters with their
default values recommended by the Clus development community.

Finally, we define the output settings, i.e., the verbosity of Clus. Normally,
in this section, the user can choose which resources are to be stored for memory
optimization. However, in this case, our system overrides the user’s preference
and selects the settings for maximum verbosity. Doing so, we can successfully
annotate not only the experimental setup but the experimental outputs as well.

Once the users have set their experimental setup, the data and settings files
are uploaded through SemanticHub’s API in our file system. At this point, the
experiment is set and the execution has begun. The user is notified when the
execution has finished with a server response.

6 https://www.openml.org/d/41392.

https://www.openml.org/d/41392
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Fig. 7. Generated SPARQL query in the SPARQL endpoint for the experiment ran in
Clus.

Once a user has completed the experiments, we can use SemanticHub’s
SPARQL endpoint to browse through the repository of completed experiments.
For example, we can formulate a query that returns details for the experiment
executed previously. For this purpose, we search for an experiment that has the
Andro dataset as input, addresses the multi-target regression task, has a train-
test evaluation scenario, and outputs a single model. The generated SPARQL
query, by the UI, is shown in Fig. 7.

6 Evaluation According to the FAIR Guidelines

The FAIR principles are focused on the findability, accessibility, interoperability,
and reproducibility of the resources [19]. Here, we evaluate our experiment repos-
itories based on the checklist7 for evaluation of data FAIRness introduced by the
Data Archiving and Networked Services (DANS). We can distinguish between
five types of questions, regarding the trustworthiness, findability, accessibility,
interoperability, and reproducibility of the repository. In Table 2, we present the
assessment questions and discuss the results of the evaluation.

Trustworthiness Assessment. Since we strongly abide by the FAIR principles,
we cover the questions of public findability and accessibility of our repository
of computational experiments. Additionally, we provide metadata that enables
reproducibility of the experimental results, together with raw files that allow
reusability of the trained models. However, one additional criteria for the trust-
worthiness is the CoreTrustSeal [4] certificate that unfortunately we have not
obtained yet, hence we obtain two out of four points for this assessment (Q1).

7 https://tinyurl.com/yyx5uc5k.

https://tinyurl.com/yyx5uc5k
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Table 2. Evaluation questions from the DANS FAIRness assessment

Data trustworthiness Answer Points

Q1 Is the data repository you have chosen trustworthy? Yes 2/4

Data findability Answer Points

Q2 Will your dataset have a Persistent Identifier after deposit? Yes 1/1

Q3 Did you provide enough information (metadata) about
your data for others to understand and reuse your data?

Yes 1/1

Q4 Did you provide rich additional documentation? Yes 1/1

Data accesibility Answer Points

Q5 Is the metadata publicly accessible? Yes 1/1

Data interoperability Answer Points

Q6 Are the data stored and archived in preferred archival
formats?

Yes 1/1

Q7 Did you use standardized vocabulary? Yes 1/1

Data reusability Answer Points

Q8 Did you give detailed provenance information for the data? Yes 1/1

Q9 Do you make use of relevant community standards? Yes 1/1

Q10 Does the data have a usage licence? Yes 1/1

Findability Assessment. Both our resources and our repository, have persis-
tent URIs (Q2). Next, the annotation schemata introduced in Sect. 2 provides
a comprehensive representation of the experiments in the domain of predictive
modelling, together with essential provenance information such as creator, date,
software environment, hardware capabilities of the machine, etc. (Q3). Finally,
we (can) provide additional documentation in the form of a link to the publica-
tion where a certain computational algorithm was introduced (Q4).

Accessibility Assessment. All of the metadata stored about the conducted
computational experiments, as well as the ontologies describing them, are pub-
licly available through SemanticHub’s querying interface, and the SPARQL end-
point hosted on the Fuseki2 server (Q5).

Interoperability Assessment. The metadata that we generate for the com-
putational experiments is stored in the RDF format. This format is preferred in
the knowledge representation and semantic web community. Additionally, RDF
has several syntax variations and the users can switch between different syntax
models to their preference (Q6). For semantic annotation, we used ontologies
designed by following the state-of-the-art best practices in ontology engineering.
All of the resources, are publicly available and uniquely identified (Q7).

Reusability Assessment. We provide provenance data for each computational
experiment regarding the creator, software environment, hardware capabilities,
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as well as the date of the creation of the experiment (Q8). Since we create and
are in full control of the data that enters our repository, we make sure that the
generated metadata is in consistent format, which was previously determined to
follow community standards regarding the information it contains (Q9). Finally,
all of our resources, as well as the metadata in the experiment repository are
published under the Creative Commons CC 4.0 usage license, which enables free
use for all non-commercial use provided the work is referenced (Q10).

Summary. To evaluate our input for this questionnaire, each of the questions
participate with one point in the final score with the exception of the first ques-
tion regarding the trustworthiness of the repository which has a score of 4 points.
For this question, we achieve 2 out of the 4 possible points, since we have not yet
obtained the CoreTrustSeal certificate. Regarding the data findability, since we
have positive score on all three questions, we achieve 3/3 points. For the acces-
sibility of our repository, we achieve 1/1 point. Storing the data in community-
preferred and versatile archival format combined with the use of standardized
vocabulary helps us score 2/2 points for the interoperability of our metadata.
For the reusability of our metadata for computational experiments we score 3/3
points since we have affirmative answers to the listed questions. In total, we
achieve 11/13 points for this assessment.

7 Conclusion

In this paper, we focus on the semantic representation and annotation of predic-
tive modelling experiments. First, we outlined the need and the benefits of creat-
ing a semantically annotated repository in the domain. We proposed OntoExp,
a resource that provides a semantic representation for each conducted experi-
ment. In addition, we incorporate OntoExp in SemanticHub, a system that can
execute, annotate and store the experiments. The conducted experiments in the
system are annotated and stored in a TDB2 triplet database hosted on Fuseki2
server. SemanticHub allows for these experiments to be executed through its
own infrastructure, meaning that the users can define and run the experiments
on our physical servers. In addition, we provided a querying interface from which
the users can query the repositories of experiments. Finally, we evaluated the
produced experiment repository according to the DANS FAIRness checklist.

In future work, we plan to upgrade this prototype system with more func-
tionalities. These will include the use of different software platforms to execute
the experiments and building a user management module. We also plan to use
the representational power of ontologies and reasoners to enhance the system’s
querying engine and capabilities.

Acknowledgements. The authors would like to acknowledge the support of the
Slovenian Research Agency through the grant J2-9230.
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Abstract. With the pervasiveness of data mining (DM) in many areas
of our society, the management of digital data, readily available for anal-
ysis, has become increasingly important. Consequently, nearly all com-
munity accepted guidelines and principles (e.g. FAIR and TRUST) for
publishing such data in the digital ecosystem, stress the importance of
semantic data enhancement. Having rich semantic annotation of DM
datasets would support the data mining process at various choice points,
such as data understanding, automatic identification of the analysis task,
and reasoning over the obtained results. In this paper, we report on
the developments of an ontology-based annotation schema for seman-
tic description of DM datasets. The annotation schema combines three
different aspects of semantic annotation, i.e., annotation of provenance,
data mining specific, and domain-specific information. We demonstrate
the utility of these annotations in two use cases: semantic annotation of
remote sensing data and data about neurodegenerative diseases.

Keywords: Data mining · Datasets · Knowledge representation ·
Semantic annotation · Ontology

1 Introduction

Recently, the success of Data Mining (DM) and Machine Learning (ML) in
a broad range of applications has led to a growing demand for ML systems.
However, this success heavily relies on the ML expertise of the practitioners,
and on the quality of the analyzed data, both of which are in short supply.
One potential solution for overcoming the shortage of expertise is to develop
more intelligent data analysis systems, that will assist domain practitioners in
the construction of analysis pipelines and the interpretation of results. Such an
intelligent DM system would we able to reason over distributed heterogeneous
data and knowledge bases, automatically define the learning task, recommend
the most suitable algorithms for the task at hand, and correctly interpret the
induced predictive models [17,18].
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The first step towards the development of such systems is the improvement
of data management and data understanding. Research data must be enriched
with formal and logical descriptors that capture the characteristics of the data
relevant for the task of automation of the data analysis process. Additionally,
these descriptors have the potential to significantly improve interdisciplinary
research by helping ML practitioners better understand the data originating
from the application domains, as well as easily incorporate domain knowledge
in the process of analysis. Formal descriptors, when published on the Web, can
also improve the accessibility and reusability of scientific data.

Many academic institutions have recognized the importance of effective man-
agement of scientific data, making it their central mission. For example, the FAIR
(Findable, Accessible, Interoperable, and Reusable) principles [26] are a set of
guiding principles that have been introduced to support and promote proper data
management and stewardship. In that context, data must be discoverable and
it should be semantically annotated with rich metadata. The metadata should
always be accessible by standardized communication protocols. The data and the
metadata have to be interoperable with external data from the same domain.
Finally, both data and metadata should be released with provenance details so
that the data can be easily replicated and reused.

Another set of principles that builds upon FAIR data are the TRUST princi-
ples [13]. The TRUST principles go a level higher by focusing on data repositories
and providing them with guidance to demonstrate Transparency, Responsibility,
User focus, Sustainability, and Technology (TRUST).

At the core of both principles lies the semantic enrichment of research data.
Semantic annotation of data, as a powerful technique, has attracted attention
in many domains. Unfortunately, semantic annotation of DM and ML datasets
is still in the early phases of development. To the best of our knowledge, there
are no semantic dataset repositories from the general area of data science that
completely adhere to the FAIR and TRUST principles.

In this paper, we report on the development of an ontology-based annota-
tion schema for semantic annotation of DM datasets. Our main objective is to
provide a rich vocabulary for data annotation, that will serve as a basis for the
construction of a dataset repository that closely follows the FAIR and TRUST
principles. The annotation schema we proposed includes three different types
of information: provenance, DM-specific, and domain-specific. The provenance
information improves the transparency and reusability of data. The DM-specific
information provides means for reasoning over the analyzed data and helps (in
a semi-automatic way) in the construction of the DM workflows (or pipelines).
The domain-specific information helps to bridge the gap between ML practition-
ers and domain experts, as well as to improve cross-domain research. Finally, we
demonstrate the utility of domain-specific annotations in two use cases from
the domains of neurodegenerative diseases and Earth Observation (EO), respec-
tively.
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2 Background and Related Work

In the context of computer science, ontologies are “an explicit formal specifica-
tions of the concepts and the relations among them that can exist in a given
domain” [9]. In other words, they provide the basis for an unambiguous, logi-
cally consistent, and formal representation of knowledge. It is important to note
that, the logical component of ontologies allows knowledge to be shared mean-
ingfully both at machine and human level. Also, an immediate consequence of
having formal ontologies based on logic is that they can be used in a variety
of reasoning tasks, as well as in the inference of new knowledge. The benefits
of having ontology-based knowledge representations have been demonstrated in
many data- and knowledge-driven applications. The research areas that retained
most attention and contributed the most to the technological breakthrough of
ontologies are bioinformatics and biomedicine. For example, the Open Biological
and Biomedical Ontology (OBO) Foundry [21] is a collective of ontology devel-
opers that have developed and maintain over 100 publicly-available ontologies
related to the life sciences. When it comes to the process of ontology engineer-
ing, the OBO Foundry has played a key role, as they have proposed ontology
design principles that promote open, orthogonal, and strictly-scoped ontologies
with collaborative development. These principles have further widened the use
of ontologies across different fields of science.

In the area of DM and ML, a large body of research has focused on the devel-
opment of ontologies, vocabularies and schemas that cover different aspects of
the domain. Examples of such resources include the Data Mining OPtimiza-
tion Ontology (DMOP) [11], Exposé [24], MEX vocabulary [8], and the ML
schema [7]. DMOP has been designed to support automation at various choice
points of the DM process. The Exposé ontology provides the vocabulary needed
for a detailed description of machine learning experiments. MEX represents a
lightweight interchange format for ML experiments. ML Schema represents an
effort to unify the representation of machine learning entities.

The OntoDM suite of ontologies is of particular interest, as this paper extends
its line of work. OntoDM includes three different ontologies: OntoDM-core,
OntoDM-KDD, and OntoDT. OntoDM-core [17] is an ontology of core data min-
ing entities, such as dataset, DM task, generalizations, DM algorithms, imple-
mentations of algorithms, and DM software. OntoDM-KDD [16] is an ontology
for representing the process of knowledge discovery following the CRISP-DM
methodology [5]. OntoDT [18] is a generic ontology for the representation of
knowledge about datatypes.

Another type of information related to DM datasets that is important to
be formally represented is the provenance information. Provenance information
refers to the kind of information that describes the origin of a resource (in our
case a dataset), i.e., who created the resource, when was it published, and what
is its usage license. Provenance information is valuable when it comes to deciding
whether a specific resource can be trusted. This extra information also helps the
users better understand it, easily cite and reuse the resource for their purposes.
For the computers to make use of the provenance information, it has to be given
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explicitly, and it has to be based on common provenance vocabularies, such as the
Dublin Core vocabulary [25], the PROV ontology [2], Data Catalog Vocabulary
[1], or Schema.org [3].

3 Semantic Description of DM Datasets

To semantically describe a DM dataset, we consider three different types of
vocabularies/ontologies: (1) vocabularies for annotation of provenance informa-
tion, such as title, description, license, and format; (2) ontologies for annotation
of datasets with DM-specific characteristics, i.e., data mining task, datatypes,
and dataset specification; and (3) ontologies for annotation of domain-specific
knowledge that helps to contextualize the data originating from a given domain.

In this section, we discuss the first two aspects of the semantic enrichment
of datasets. We describe the Schema.org vocabulary, which we reuse for the
purpose of annotation of the dataset’s provenance details. Also, we outline the
main characteristics of the OntoDT and OntoDM-core ontologies and we further
extend their structure with terms essential for semantic description from a DM
perspective. In Sect. 4 we discuss the annotation of domain specific knowledge
through examples from two different domains.

3.1 Provenance Information Annotation

To annotate DM datasets with provenance information, we have chosen the
Schema.org vocabulary, one of the most widely used vocabularies that provides
descriptors for provenance information in a structured manner. When annotating
the datasets, we usually use a subset of the list of provided descriptors as the
complete provenance information is not always available.

Figure 1 depicts an example annotation of provenance information in JSON-LD
format1. For this example, we used a dataset from the domain of Earth Obser-
vation (EO), named Forestry Kras LiDAR Landsat. The dataset was used in
a study that investigates the possibility of predicting forest vegetation height
and canopy cover in the Karst region in Slovenia by building predictive mod-
els using EO data [23]. For semantic annotation of provenance information for
this dataset, we used several terms from Schema.org, such as name, description,
URL, keywords, creator, distribution, temporal and spatial coverage, citation,
and license.

3.2 Data Mining Specific Annotations

The second type of annotation considers explicit specification of dataset charac-
teristics from a DM perspective, e.g., the format of the data, the type of learning
task, and the features’ datatypes. Data used in the process of DM can take vari-
ous forms, but the standard one assumes that there is a set of objects of interest

1 https://json-ld.org/.

https://json-ld.org/


144 A. Kostovska et al.

{
"@context":"https:// schema.org/",
"@type":"Dataset",
"name":"Forestry_Kras_LiDAR_Lansat",
"description":"This dataset was employed in a study that investigates the possibility of predicting forest

vegetation height and canopy cover in the Karst region, Slovenia by building predictive models
using remotely sensed data."

"url":"http:// semantichub.ijs.si/ontodm",
"keywords":["remote sensing", "Karst region", "LiDAR", "Landsat"],
"creator":{

"@type":"Person",
"url": "https://www.researchgate.net/profile/Daniela_Stojanova2",
"name":"Daniela Stojanova"

},
"distribution":{

"@type":"DataDownload",
"encodingFormat":"ARFF",
"contentUrl":""

},
"temporalCoverage":"2001-08-03, 2002-05-18, 2002-11-10, 2003-03-18",
"spatialCoverage":{

"@type":"Place",
"geo": {

"@type": "GeoCoordinates",
"latitude": 45.3818,
"longitude": 13.4815

}
},
"citation": {

"@type": "ScholarlyArticle",
"name": "Estimating vegetation height and canopy cover from remotely sensed data with machine learning"

,
"identifier": "https://doi.org/10.1016/j.ecoinf.2010.03.004"

},
"license": "https:// creativecommons.org/licenses/by/4.0/"

}

Fig. 1. An example provenance information annotation for the Forestry Kras
Lidar/Landsat dataset [23] using the Schema.org vocabulary.

described with features (or attributes). In that sense, the term data example, or
(more commonly) data instance, refers to a tuple of feature values corresponding
to an observed object.

The features are formally typed, meaning that each of them has a designated
datatype. In general, there are many different datatypes such as boolean, real,
discrete datatype, to name a few. Having standardized datatype information at
disposal can enable the development of knowledge-based systems that automate
parts of data analysis workflows, e.g., assist DM practitioners in choosing a
suitable learning algorithm for the data at hand.

Data examples in DM can be described with different characteristics, which
can lead to treating the data in radically different ways. We identified four differ-
ent (orthogonal) characteristics that we believe are important to be represented
appropriately. These include (1) the availability of data examples, (2) the exis-
tence of missing values, (3) the mode of learning, and (4) the type of target in
the case of (semi-)supervised learning tasks.

Extending the OntoDT and OntoDM-core Ontologies. While the
OntoDT and OntoDM-core ontologies offer a rich vocabulary for the annotation
of DM datasets, they do not cover all of the above aspects. Thus, we extended
OntoDT with new DM-specific datatypes and provided an updated datatype tax-
onomy that allows us to properly describe DM datasets. The proposed taxonomy
of datatypes was then used as a basis for the update of the taxonomies of DM
tasks and data specification, which are part of the OntoDM-core ontology. The
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extended OntoDT and OntoDM-core ontologies are available at https://w3id.
org/OntoDT-extended and https://w3id.org/OntoDM-core-extended, respec-
tively.

Availability of the Data Examples. Based on the availability of the data
examples, we distinguish between two types of data, i.e., batch data (or datasets)
and online data (or data streams). The batch setting is the more traditional
approach where large volumes of data are collected over a longer period. On
the other hand, online data refers to the type of data that is continuously being
generated by heterogeneous data sources.

The availability of data examples is the first dimension we considered when we
updated the taxonomies of core classes of OntoDT and OntoDM-core. In Fig. 2,
we depict the top-level classes of the taxonomies of datatypes, data mining tasks,
and data specifications. At the second level, we have the corresponding classes
that represent the specifications of the availability of data examples. For instance,
the OntoDT: record(tuple) datatype and OntoDT: sequence datatype classes refer
to the datatypes of data examples in batch and online mode, respectively.
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Fig. 2. Top level overview of the taxonomies of data mining tasks, datatypes and data
specifications for the batch setting (right-hand side) and online setting (left-hand side).

Type of Learning. According to the type of learning, DM learning meth-
ods can be categorized into three groups, i.e., unsupervised, supervised, and

https://w3id.org/OntoDT-extended
https://w3id.org/OntoDT-extended
https://w3id.org/OntoDM-core-extended
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Fig. 3. A part of the OntoDT datatype taxonomy.

semi-supervised learning. The key difference between them is the completeness
of the data they use for training. Unsupervised learning makes use of unlabeled
data examples that are only composed of descriptive features. Supervised learn-
ing, in contrast to unsupervised learning, uses labeled data that, apart from the
descriptive features, has some special feature of interest usually referred to as
target. Finally, in semi-supervised learning, we have learning from both labeled
and unlabeled data examples.

In the updated taxonomies, we modeled this characteristic at the second
level. Hence, for both batch and online learning, we defined classes that specify
information about the type of learning (see Fig. 2). If we take the taxonomy of
data types as an example, in the batch learning scenario the OntoDT: record
(tuple) datatype class further resolves into two classes: OntoOT: record with one
component and OntoDT: record with two components. OntoOT: record with one
component class represents the datatype of data examples used in unsupervised
batch learning mode, where there is only one descriptive component that aggre-
gates the descriptive features of the data example. The OntoDT: record with
two components class represents the datatype of data examples that have one
descriptive and one target component and are used in either supervised or semi-
supervised learning. Figure 3 illustrates in greater detail the taxonomy of data
types and the four dimensions that it is based on. Finally, the taxonomies of tasks
and dataset specifications are designed similarly following the same principles
(see Fig. 2).
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Missing Values. Another property we consider when describing data examples,
which is important for DM algorithms, is the existence of missing values (see
Fig. 3) since some DM algorithms cannot function properly in the presence of
missing values. We say that one data example has missing values when there
is no recorded value for at least one descriptive feature. This is different from
having missing values in the target space, which, as we discussed above, leads
to semi-labeled data. Missing values affect the data quality; thus they must be
handled accordingly by the DM algorithms.

Fig. 4. A Protégé snapshot of the taxonomy of supervised and semi-supervised batch
predictive modeling tasks.
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Fig. 5. An example of modeling online data mining tasks with the corresponding
datatypes from OntoDT.

Type of Target. In the case of (semi-)supervised learning, data examples can
become even more complex as the target/output itself can have a complex struc-
ture. Based on the type of target we have primitive and structured output predic-
tion tasks. Primitive output prediction tasks predict a single target, as in classi-
fication (a discrete value) and regression (a real value). In the case of structured
output prediction tasks, there is more than one target that has to be predicted.
Examples of such tasks are multi-target regression, multi-label classification, and
hierarchical multi-label classification. Figure 4 presents the complete taxonomy
of supervised and semi-supervised predictive modeling tasks.
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Concerning the (semi-)supervised online predictive modeling tasks, the base
datatypes of the target can be the same as the target datatypes in the batch pre-
dictive modeling tasks. Figure 5 illustrates how this is achieved in the OntoDT
and OntoDM-core ontologies. For instance, OntoDM-core: online predictive mod-
eling task class is related with the OntoDT: sequence of records with two compo-
nents class. Sequence datatypes have a base datatype, in this example, it is the
OntoDT: record with two components base type, which has the datatype role of
OntoDT:record of two components. Note that OntoDT:record of two components
is the same class used for the representation of the data examples’ datatype in
the batch predictive learning mode.

3.3 Example Annotations of DM Datasets

Using this annotation schema, we have annotated 496 DM datasets in total,
all containing data from different application domains. The generated semantic
annotations are publicly available in RDF format and can be queried via the
Jena Fuseki server2.

After describing the four characteristics that govern the modeling of the
taxonomies of datatypes, data specification, and tasks, we provide an illustrative
example that shows how we can combine them in a single annotation schema for
the purpose of semantic annotation of DM datasets. Namely, Fig. 6 depicts the
classes needed for annotation of a data stream with missing values applicable to
the learning task of semi-supervised multi-label classification.

To represent the datatype of the data examples, we use the OntoDT:feature-
based semi-labeled stream data with missing values and with a set of discrete
output class. This class is connected via the has-part relation with the classes
that represent the corresponding data mining task and data specification defined
in the OntoDM-core ontology, i.e., OntoDM-core: online semi-supervised multi-
label classification task and OntoDM-core: multi-label semi-labeled classification
data stream. The annotation schema for data streams includes also a specification
of a base datatype. Next, we have the classes used for describing the datatypes
of the descriptive and target component. On the descriptive side, some of the
examples can have missing values, thus, we use a record/tuple of choice (prim-
itive, void) datatypes. For the target component, we have two alternatives, one
of which is a discrete datatype used for annotation of labeled examples, and the
other is a void datatype used to annotate unlabeled data examples.

4 Domain-Specific Annotations: Use Cases

In this section, we demonstrate the utility of the annotation schema we intro-
duced in the previous section on two use cases, i.e., annotation of datasets for the
domains of neurodegenerative diseases and Earth Observation (EO). For the two

2 Fuseki dataset containing the semantic annotations in RDF format: http://
semantichub.ijs.si/fuseki/dataset.html?tab=query&ds=/DMDatasets.

http://semantichub.ijs.si/fuseki/dataset.html?tab=query&ds=/DMDatasets
http://semantichub.ijs.si/fuseki/dataset.html?tab=query&ds=/DMDatasets
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Fig. 6. An example of an annotation schema for data streams applicable to semi-
supervised multi-label classification.

use cases, we also enriched the annotation schema with terminology specific to
the domain at hand. The inclusion of domain-specific annotations improves the
representation of the datasets, making them accessible and reusable, offers the
possibility of execution of advanced query scenarios, and enables interoperability
with other data from the domain.

On a technical level, the alignment of the DM-specific annotation schema
with the annotation schemas designed for the particular domains is straightfor-
ward. In that sense, the proposed ontology-based annotation schema enables the
direct extension of the datatype classes at any level in the taxonomy with classes
that define the semantic meaning of the domain-specific datatypes. The newly
introduced datatype classes are then linked to the corresponding entities in the
domain ontologies.

4.1 Neurodegenerative Disease Datasets

Neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease
(PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD) are a
group of diseases caused by a progressive loss of structure or function of neurons.
They can lead to irreversible deterioration of cognitive functions like memory loss,
cause problems with movement, and spatial orientation. In the past two decades,
researchers have been investigating new treatments that can slow or stop the pro-
gression of the diseases. There are two widely-known studies concerning neurode-
generative diseases, i.e., Alzheimer’s disease Neuroimaging Initiative (ADNI) [19]
and Parkinson’s Progression Markers Initiative (PPMI) [4].
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To annotate the datasets with terms relevant to the domain, we use the
NDDO (Neurodegenerative Disease Data Ontology) ontology [12]. NDDO is
designed in accordance with the ADNI and PPMI studies and it is aligned with
the OntoDT and OntoDM-core ontologies. Thus, it can be easily adjusted to
annotate the four aspects of data examples we considered in Sect. 3. To illus-
trate this, we use an instance dataset from the PPMI study that [15] used for
the task of predicting the motor impairment assessment scores by utilizing the
values of regions of interest (ROIs) from fMRI imaging assessment and DaT
scans. The DM task they were solving was multi-target regression (MTR).
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Fig. 7. A semantic annotation schema for the PPMI dataset [15]: a) top level classes
from OntoDM and OntoDT; b) specific classes and relations required for annotation
of datasets used in cluster analysis and c) specific NDDO datatype classes.

Figure 7, depicts the point of alignment of the domain classes defined in
NDDO with classes from the extended versions of the OntoDT and OntoDM-
core ontologies. To represent the MTR task and MTR dataset specification, we
use the classes defined in OntoDM-core, and connect them with the correspond-
ing datatype class from OntoDT (in our case OntoDT: feature-based completely
labeled data with record of numeric ordered primitive output) (see Fig. 7 b). This
class has two field components. The first one describes the datatypes of the
descriptive features, which are of a primitive datatype. The latter describes the
datatypes of the features on the target side. In the MTR learning setting each
target feature is described with the numeric datatype. The sub-classes of the
numeric datatype, real and integer datatype, are positioned at the bottom of
the datatype taxonomy, and we link them with the domain datatypes.
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For example, NDDO: 3rd Ventricle Score is one of the descriptive features
present in the PPMI dataset and it is linked with the NDDO: 3rd Ventricle
Datatype class that semantically defines its datatype. Similarly, NDDO: Arising
from the chair Score is a target and its associated datatype is the NDDO: Arising
from the chair Datatype class. Other features are connected with the respective
datatypes in the same way.

4.2 Earth Observation (EO) Datasets

Remote sensing (RS) is the process of monitoring specific physical characteristics
of an area of interest by measuring the reflected and emitted energy at a distance
from the target area. Satellite-based remote sensing technologies are commonly
used for Earth Observation (EO) to monitor characteristics that change over
time, i.e., weather prediction, natural changes of the Earth, and development of
the urban area.

Due to the increasing availability of EO data, it is essential to develop an
ontological approach to managing this kind of data. However, to the best of our
knowledge, a general ontology that systematically describes the EO domain is
still lacking. Nonetheless, some ontologies formalize the knowledge of specific
parts of the domain, i.e., Semantic Sensor Network (SSN) ontology [6], SOSA
(Sensor, Observation, Sample, and Actuator) ontology [10], Semantic Web for
Earth and Environment Technology (SWEET) ontology [20], and the Extensible
Observation Ontology (OBOE) [14].

For semantic annotation of EO data, we have designed a lightweight ontol-
ogy that is aligned with the aforementioned EO ontologies. The ontology is
available at https://w3id.org/eo-ontology. The ontology was constructed using
the bottom-up approach, based on 4 instances of datasets we have available at
our side from previous research [22].

The datasets contain two target features (forest vegetation height and canopy
cover) whose values are obtained via the LiDAR technology. But since LiDAR
can sometimes be inconvenient or expensive, [22] examined the possibility of
using remote sensing data generated from satellites, such as Landsat 7, IRS-P6,
SPOT, as well as aerial photographs for the construction of descriptive features
that can be relevant for the prediction of the two targets. The Landsat 7, IRS-
P6, and SPOT satellites use multiple channels for collecting reflected energy,
and one channel of emitted energy, that operate on different wavelengths.

In this study, when designing the EO ontology, we took into consideration
the process of data collection and data preprocessing described in the study
mentioned above. In the preprocessing phase, the raw satellite image is converted
into a standard geo-referenced data format, which then undergoes the process
of image segmentation (see Fig. 8). A key characteristic of the different image
segments is the resolution of the segment size. The image segment size is modeled
as a data property of the image segmentation specification class.

https://w3id.org/eo-ontology
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Fig. 8. Core entities of the Earth Observations ontology. Rectangular boxes represent
continuant classes, while ellipses represent process classes. The color scheme was chosen
for better visual perception.

All features present in the datasets are EO properties observed at a specific
point in time, and they are related to a specific image segment. We define two
subclasses of the EO property class, i.e., SOSA: observable property class and
EO aggregated property class. The first one refers to the properties observed with
a remote sensor (SOSA: Sensor) hosted on a given platform/satellite (SOSA:
Platform). The latter defines the type of properties that are the result of some
process of EO property aggregation that transforms the originally observed mea-
surements. The process uses multiple EO properties as input and produces one
EO aggregated property. The aggregation can be based on some statistical char-
acteristics, such as STATO: minimum value, STATO: maximum value, STATO:
average value and STATO: standard deviation, where STATO is an ontology of
statistical methods. This was also the case in our observed datasets. Addition-
ally, we define the EO property transformation process that transforms one EO
property into another.

Similarly, as in Sect. 4.1, to achieve full interoperability, we integrated the
general DM annotations with the domain-specific ones. The integration was per-
foremed at the level of features appearing in the dataset. Thus, the OntoDM-
core: feature specification class connects with the datatype of the feature via
the has-identifier relation, while it also connects with the EO property class
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via the is-about relation. Additionally, the OntoDM-core: feature-based data
example class is composed of multiple OBOE: Measurements. In OBOE, mea-
surement represents a measurable characteristic of an observed property, which
in our case is EO property.

5 Conclusions and Future Work

We have developed an ontology-based annotation schema for rich semantic anno-
tation of DM datasets that takes into consideration 3 different semantic aspects
of the datasets: provenance, DM-specific characteristics of the data, and domain-
specific information. The annotation schema is generic enough to support the
easy extension of its core classes with information relevant to the application
domain. The utility of the designed schema was demonstrated through semantic
annotation of data from two different domains: neurodegenerative diseases and
Earth observation.

Annotations based on this schema provide means for support of the complete
data analysis process, e.g., enable cross-domain interoperability, assist in the def-
inition of the learning task, ensure consistent representation of datatypes, assess
the soundness of data, and automatically reason over the obtained results. These
annotations also enable the development of applications that require advanced
data querying capabilities. They also enable the development of data repositories
that adhere to the highest standards of the Open data initiative.
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16. Panov, P., Soldatova, L., Džeroski, S.: OntoDM-KDD: ontology for representing
the knowledge discovery process. In: Fürnkranz, J., Hüllermeier, E., Higuchi, T.
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Abstract. Data-driven algorithms are employed in many applications, in which
data become available in a sequential order, forcing the update of the model with
new instances. In such dynamic environments, in which the underlying data dis-
tributions might evolve with time, fairness-aware learning cannot be considered
as a one-off requirement, but rather it should comprise a continual requirement
over the stream. Recent fairness-aware stream classifiers ignore the problem of
class distribution skewness. As a result, such methods mitigate discrimination by
“rejecting” minority instances at large due to their inability to effectively learn
all classes. In this work, we propose FABBOO, an online fairness-aware app-
roach that maintains a valid and fair classifier over a stream. FABBOO is an
online boosting approach that changes the training distribution in an online fash-
ion based on both stream imbalance and discriminatory behavior of the model
evaluated over the historical stream. Our experiments show that such long-term
consideration of class-imbalance and fairness are beneficial for maintaining mod-
els that exhibit good predictive- and fairness-related performance.

Keywords: Data streams · Fairness-aware classification · Class-imbalance

1 Introduction

Data-driven decision support systems have become a necessity nowadays for many
applications where huge amounts of historical data are available for analysis. Their per-
formance in many tasks is comparable or has even surpassed human performance [15]
and therefore, for many processes, human decisions are substituted by algorithmic ones.
Such a replacement, however, has raised a lot of concerns [4] regarding the fairness,
accountability and transparency of such methods in domains of high societal impact
such as risk assessment, recidivism, predictive policing, etc. For example, Google’s
AdFisher online recommendation tool showed significantly more highly paid jobs to
men than women [10]. Many similar incidents of algorithmic unfairness have been
reported in recent years [1,18,26].

As a result of the ever-increasing interest in issues of fairness and responsibility
of data-driven systems, a large body of work exists already in fairness-aware learning
[17,19–21,23–25,31]. Only a few recent works, however, investigate the problem
of fair learning in non-stationary environments [22,30]. Nonetheless, these methods
ignore an important aspect of the learning problem, namely that the majority of (stream-
ing) datasets suffer from class-imbalance. Class imbalance refers to the disproportion
c© Springer Nature Switzerland AG 2020
A. Appice et al. (Eds.): DS 2020, LNAI 12323, pp. 159–174, 2020.
https://doi.org/10.1007/978-3-030-61527-7_11
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among classes i.e., when one class, called minority class, has significantly fewer exam-
ples than another class, called majority class. If the imbalance problem is not tack-
led, the learner mainly learns the majority class and strongly misclassifies/rejects the
minority. Such methods might appear to be fair for certain fairness definitions that rely
on parity in the predictions between the protected and non-protected groups. In reality
though the low discrimination scores are just an artifact of the low prediction rates for
the minority class. This observation has been made in [21] but for the static case. We
observe the same issue for the streaming case and propose an imbalance monitoring
mechanism based on which we adapt the weighted training distribution.

Moreover, in a stream environment the decisions do not only have a short-term
effect, but rather they might incur long-term effects. In case of discrimination, this
means that discriminatory model decisions affect not only the immediate outcomes, but
they might also affect future outcomes [9]. For example, [9] indicates small wage gaps
between college-educated blacks and whites when they are first hired, but the pay gap
increased over the years. To this end, we propose to define discrimination cumulatively
over the stream rather than based only on the most recent outcomes. This is in contrast
to recent stream fairness-aware approaches that focus only on short term outcomes,
e.g., [22]. Our experiments verify that when treating for short-term discriminatory out-
comes, the cumulative effects can be substantially higher over time and therefore, a
cumulative approach is better.

Our contributions are summarized as follows: i) we propose FABBOO, a fairness
and class imbalance-aware boosting method that is able to tackle class-imbalance as
well as mitigate different parity-based discriminatory outcomes, ii) we introduce the
notion of cumulative fairness in streams, which accounts for cumulative discriminatory
outcomes, iii) our experiments, in a variety of real-world and synthetic datasets, show
that our approach outperforms existing approaches that either do not consider class-
imbalance or are based on short-term fairness evaluation.

2 Basic Concepts and Problem Definition

LetX be a sequence of instances x1, x2, · · · , arriving over time at timepoints t1, t2, · · · ,
where each instance x ∈ R

d. Similarly, let y be a sequence of corresponding class
labels, such that each instance in X has a corresponding class label in y. Without loss
of generality, we assume a binary classification problem, i.e., y = {+1,−1}, and we
denote by y+ (y−) the positive (negative, respectively) segments. We denote the classi-
fier by f : X → y. We follow the online learning setting, where new instances from the
stream are processed one by one. For each new instance x arriving at t, its class label
ft−1(x) is predicted by the current model ft−1. The true class label of the instance is
revealed to the learner before the arrival of the next instance, and it is used for model
updating, thus resulting into the updated model ft. This setup is known as first-test-
then-train or prequential evaluation [14].

We assume that the underlying stream distribution is non-stationary, that is, the
characteristics of the stream might change with time leading to concept drifts, i.e.,
changes in the joint distribution so that Pt1(X, y) �= Pt2(X, y) for two different time-
points t1 and t2. We are particularly interested in real concept drifts, that is when
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Pt1(y|X) �= Pt2(y|X), as such changes make the current classifier obsolete and call
for model update. Moreover, we consider the scenario where the stream population is
imbalanced, that is, one of the classes dominates the stream impacting the learning abil-
ity of the classifiers that traditionally tend to ignore the minority to foster generalization
and avoid overfitting [29]. We, however, do not require that the minority class is prede-
fined and fixed over the course of the stream. Instead, we assume that this role might
alternate between the two classes.

We also assume the existence of a sensitive feature SA, e.g., gender or race, which
is binary with values SA = {z, z}, e.g., gender={female, male}; we refer to z, z as
protected, non-protected group respectively1. Traditional fairness-aware classification
aims to learn a mapping f : X → y that accurately maps instances x to their cor-
rect classes without discriminating between the protected and non-protected groups.
The discrimination is assessed in terms of some fairness measure. Formalizing fair-
ness is a hard topic per se, and there has already been a lot of work in this direction.
For example, [27] overview more than twenty measures of fairness; however, there is
no clear indication which measure is the most appropriate for classification tasks. In
this work, we investigate parity-based notions of fairness such as the well-known sta-
tistical parity [23] and equal opportunity [16]; however, FABBOO can accommodate
various parity-based fairness notions such as disparate mistreatment [31], predictive
quality [27], and so on.

Statistical parity (S.P.) measures the difference in the probability of a random indi-
vidual drawn from z to be predicted as positive and the probability of a random indi-
vidual drawn from the complement z to be predicted as positive:

S.P. = P (f(x) = y+|z) − P (f(x) = y+|z) (1)

The S.P. values lie in the [−1, 1] range, with 0 meaning the decision does not depend
on the sensitive value (aka fair), 1 meaning that the protected group is totally discrim-
inated (aka discrimination), and −1 that the non-protected group is discriminated (aka
reverse discrimination).

S.P. does not take into account the real class labels, and therefore may allow indi-
viduals to be assigned to the positive class, even though they do not satisfy the require-
ments, thus causing reverse discrimination. Equal opportunity (EQ.OP.) resolves this
issue by measuring the difference in the True Positive Rates (TPR) between the two
groups, i.e.:

EQ.OP. = P (f(x) = y+|z, y+) − P (f(x) = y+|z, y+) (2)

Similar to S.P., EQ.OP’s values lie in the [−1, 1] range.
Our work investigates the problem of fair classification in a stream environment.

Fairness-aware stream learning refers to the problem of maintaining a valid and fair
classifier over the stream. The term valid refers to the ability of the model to adapt
to the underlying evolving population and deal with concept drifts. At the same time,
the classifier should be fair according to the adopted S.P. or EQ.OP. fairness measures.
Ensuring fairness is much harder in such an online environment comparing to the tra-
ditional batch setting. First, the model should be continuously updated to reflect the
underling non-stationary population. The typically accuracy-driven update of the model

1 SA definition could also be extended to cover feature combinations such as race and gender.
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cannot ensure fairness, so even if the initial model was fair, its discriminatory behavior
might get affected by the model updates. Second, small amounts of unfairness at each
time point might accumulate into significant discrimination as the learner typically acts
as an amplifier of whatever biases exist in the data and furthermore, reinforces its errors.
So, model update should consider fairness constraints and long term effects of discrim-
ination beyond the point of its evaluation.

3 Related Work

Static Fairness-Aware Learning: Static fairness-aware approaches have received a lot
of attention over the recent years. Literature in this area can be categorized in: i) pre-
processing methods [5,20,23], where data are processed, transformed, or augmented
to reduce discrimination or remove the correlation between various attributes and the
sensitive attribute. ii) In-processing methods [21,25,31] focus on facilitating a fairness
notion into a model’s objective function. iii) Post-processing methods [12,16,19] alter
a model’s predictions or adjust a model’s decision boundary to reduce unfairness.

Stream Fairness-Aware Learning: Stream fairness-aware approaches aim to remove
unfair outcomes when data are presented sequentially. In [22], authors present a chunk
based stream classification approach in which they apply pre-processing methods, such
as label swapping, to remove discrimination, which is measured by statistical par-
ity, from data before updating an online classifier; however, this approach accounts
for short-term outcomes. In [30], they incorporate the notion of statistical parity into
Hoeffding’s Tree split criterion so that it accounts for cumulative discriminatory out-
comes.

Stream Learning: In stream learning, data arrive sequentially and their distributions
can change over time, the so-called concept drifts [14]. Concept drifts can be handled
explicitly through informed adaptation, where the model adapts only if a change has
been detected, or implicitly through blind adaptation, where the model is updated con-
stantly to account for changes in the underlying data distributions. In addition, models
developed for stream learning are categorized as incremental and online [28]. Incremen-
tal models are trained in batches [13], with the help of a chunk (window), while online
models are updated continuously to accommodate newly incoming examples [7].

The goal of this paper is to highlight the importance of class-imbalance problem
in fairness-aware stream learning; therefore, we select as competitors fairness-aware
stream learners [22,30] and omit class-imbalance stream learners.

4 Online Fairness- and Class Imbalance-Aware Boosting

An overview of FABBOO, standing for online fairness and class imbalance-aware
boosting, is shown in Fig. 1. Our method consists of a class-imbalance monitoring com-
ponent that keeps track of the class ratios over the stream and adjusts the weights of the
new training instances accordingly to ensure that the learner properly learns both classes
(Sect. 4.1), while adapting to concept drifts via blind model adaptation [14]. In addition,
the cumulative discriminatory behavior of the learner is monitored, and when it exceeds
a user-defined tolerance threshold ε, the decision boundary is adjusted to ensure that the
learner does not incur discrimination (Sect. 4.2).
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Fig. 1. An overview of FABBOO

4.1 Online Monitoring of Class Imbalance and Model Update

In evolving data streams, the role of minority and majority classes can exchange and
what is now considered to be minority might turn later into a majority class or vice
versa [28]. Knowing the class ratio over the stream is important for our method as it
directly affects the instance weighting during training. Therefore, we keep track of the
stream imbalance using the online class imbalance monitor (OCIS) of [28].

OCISt = W+
t − W−

t (3)

where W y
t is the percentage of class y at timepoint t maintained in an online fashion. In

particular, upon the arrival of a new instance x at timepoint t, the percentage of a class
y is updated as follows:

W y
t = λ · W y

t−1 + (1 − λ) · I[(yt, y)] (4)

where λ ∈ [0, 1] is a user-defined decay factor that controls the extent to which old
class percentage information should be considered, and I[(yt, y)] is an identity function
which equals to 1 if the true class label of xt is y, otherwise 0.

The imbalance index OCIS takes values in the [−1, 1] range, with 0 indicating a
perfectly balanced stream and −1 or 1 indicating the total absence of one class.

Model Adaptation: Our basic model is OSBoost [7] that generates smooth distribu-
tions over the training instances, and guarantees to achieve small error if the number of
weak learners and training instances is large enough. We extend OSBoost to take into
account class imbalance by changing the weighted instance distribution so that minority
instances become more prominent during the training process.

The pseudocode of the algorithm is shown in Algorithm 1. OSBoost comes with a
set of predefined parameters: γ ∈ [0, 1] that is an online analog of the “edge” of the
weak learning oracle, and N ∈ Z

+ that is the number of online weak learners. Upon
the arrival of a new instance x at timepoint t, the class imbalance status is updated (line
2) according to Eq. 3. Then, the weak learners are updated sequentially (lines 4–11) so
that the predictions of model Ht

i (line 6) affect the training of its successor model Ht
i+1

by changing the weight/contribution of instance x to the model accordingly. The weight
of instance x is tuned per learner Ht

i based on the error of the predecessor model Ht
i−1

on x, but also based on current class imbalance (lines 8–11).
To summarize, traditional OSBoost performs error-based instance weight tuning

but does not adjust for class-imbalance. On the contrary, FABBOO adjusts the instance
weights also based on the dynamic class ratio (c.f. Eq. 3) so that minority instances
receive extra “boosting” during training. Note that if the stream is balanced, i.e., W+

t −
W−

t ≈ 0, the weights are only slightly affected.
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Algorithm 1 FABBOO training procedure

1: procedure TRAIN(xt, yt, γ, Ht−1
1:N ) � xt: newly arrived instace, yt: label of xt, γ: learning

rate, Ht−1
1:N : current ensemble

2: OCISt = W+
t − W−

t � Update the class imbalance status
3: w1 = 1, q0 = 0
4: for i = 1 to N do
5: Train Ht

i on xt with weight wi

6: qi = qi−1 + yt · Ht
i (xt) − γ

2+γ

7: wi+1 = min{(1 − γ)qi/2, 1}
8: if xt ∈ y+ and OCISt < 0 then � y+ is minority at timepoint t
9: wi+1 = wi+1

1+OCISt

10: if xt ∈ y− and OCISt > 0 then � y− is minority at timepoint t
11: wi+1 = wi+1

1−OCISt

12: return updated ensemble Ht
1:N

4.2 Online Monitoring of Cumulative Fairness and Boundary Adjustment

Methods which restore fairness only on short-term (recent) outcomes fail to mitigate
discrimination over time as discrimination scores that might be considered negligible
when evaluated individually (i.e., at a single time point) might accumulate into signif-
icant discrimination in the long run [9]. In this work, we aim to mitigate cumulative
discrimination accumulated from the beginning of the stream in order to remove such
long term discriminatory effects and adjust the decision boundary not only based on the
recent behavior of the model, but rather on its historical performance.

Cumulative fairness monitoring accounts for discriminatory outcomes from the
beginning of the stream until time point t. We introduce the cumulative fairness notion
for non-stationary environments w.r.t. statistical parity and equal opportunity as follows:

Definition 1. Cumulative Statistical Parity (Cum.S.P.)

t∑

i=1

1 · I[fi(xi) = y+|xi ∈ z̄]

t∑

i=1

1 · I[xi ∈ z̄] + l

−

t∑

i=1

1 · I[fi(xi) = y+|xi ∈ z]

t∑

i=1

1 · I[xi ∈ z] + l

Definition 2. Cumulative Equal Opportunity (Cum. EQ.OP.)

t∑

i=1

1 · I[fi(xi) = y+|xi ∈ z̄, y+
i ]

t∑

i=1

1 · I[xi ∈ z̄, y+
i ] + l

−

t∑

i=1

1 · I[fi(xi) = y+|xi ∈ z, y+
i ]

t∑

i=1

1 · I[xi ∈ z, y+
i ] + l

where parameter l is employed for correction in the early stages of the stream. Cum.S.P.
or Cum.EQ.OP. are maintained online using incremental counters updated with the
arrival of new instances from the stream, and therefore, it is appropriate for stream



FABBOO - Online Fairness-Aware Learning Under Class Imbalance 165

applications where typically random access to historical stream instances is not pos-
sible. The cumulative fairness notions are employed by FABBOO for discrimination
monitoring. When their values exceed a user-defined discrimination tolerance threshold
ε, the decision boundary should be adjusted i.e., Cum.S.P. > ε or Cum.EQ.OP. > ε.

Decision Boundary Adjustment: Post-processing adjustment of the decision bound-
ary for discrimination elimination has been investigated in the literature, e.g., [12,16].
Closer to our approach is [12], where the authors adjust the decision boundary of an
AdaBoost classifier based on the (sorted) confidence scores of misclassified instances
of the protected group. However, in contrast to [12], we deal with stream classification,
and therefore, we do not have access to historical stream instances in order to adjust the
boundary accurately. Except for the access-to-the-data constraint, another reason for not
considering the whole history for the adjustment of the boundary is the non-stationary
nature of the stream. In such a case, adjusting the boundary based on the whole history
of the stream will hinder the ability of the model to adapt to the underlying data and
will eventually hurt predictive performance.

To overcome this issue, we use a sliding window model of a pre-defined size M
for the adjustment. In particular, we maintain a sliding window of size M for each seg-
ment to allow for boundary adjustment for different parity-based notions based on each
discriminated segment. In the case of statistical parity or equal opportunity, the only rel-
evant sliding window is the one for the protected positive segment (denoted by SW+

z ).
The number of examples (nt) which are needed in order to mitigate discrimination at
timepoint t is given by:

nt =

⌊
t∑

i=1

1 · I[xi ∈ z] ·

t∑
i=1

1 · I[fi(xi) = y+|xi ∈ z̄]

t∑
i=1

1 · I[xi ∈ z̄]
−

t∑

i=1

1 · I[fi(xi) = y+|xi ∈ z]

⌋

(5)

Similar to statistical parity, to estimate the number of examples (nt) for equal oppor-
tunity, we follow the same logic:

nt =

⌊
t∑

i=1

1 · I[xi ∈ z, y+i ] ·

t∑
i=1

1 · I[fi(xi) = y+|xi ∈ z̄, y+]

t∑
i=1

1 · I[xi ∈ z̄, y+i ]

−
t∑

i=1

1 · I[fi(xi) = y+|xi ∈ z, y+]

⌋

(6)
Afterwards, the misclassified instances in SW+

z are sorted based on the confidence
scores in a descending order. The decision boundary is adjusted according to the nt-th
instance of the sorted window (SW+

z ). In particular, if θt−1 is the decision boundary
value (original value θ0 is 0.5) of the nt−1-th, the fair-boundary is adjusted to θt. Note
that in the early stage of the stream, where the sliding window does not contain a suffi-
cient number of instances, the boundary is tweaked based on the misclassified instance
with the highest confidence within the window.

4.3 FABBOO Classification

FABBOO is an online ensemble of sequential weak learners that tackles class imbalance
and cumulative discriminatory outcomes in the stream. Moreover, FABBOO deals with
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concept drifts, through blind adaptation, by employing a base learner that is able to
react to concept drifts. In particular, we employ Adaptive Hoeffding Trees (AHT) [3] as
weak learners; AHT is a decision-tree induction algorithm for streams that ensures DT
model adaptation to the underlying data distribution by not only updating the tree with
new instances from the stream, but also by replacing sub-trees when their performance
decreases.

The classification of a new unseen instance at time point t, i.e., xt, is based on
weighted majority voting and depends on its membership to z. If the instance does
not belong to z (i.e., it is a non-protected instance), then the standard boundary of the
ensemble is used. Otherwise, the adjusted boundary is used. More formally:

ft(xt) =

{
y+ if xt ∈ z and Ht

1:N (xt) ≥ θt

Ht
1:N (xt) otherwise.

(7)

where N is the number of weak learners of the ensemble, and θt is the fair adjusted
boundary at timepoint t. For Cum.S.P. and Cum.EQ.OP., only the boundary of the
protected group is tweaked. Other parity-based notions (such as Disparate Mistreat-
ment [31]) may also tweak the boundary of the non-protected group. Note that the
adjustment of the boundary based on θt is applied at the ensemble level and not at each
individual weak learner predictions.

5 Evaluation

In this section, we introduce the employed baselines as well as variants of FABBOO2

that help us to demonstrate the behavior of FABBOO’s individual components. The
employed datasets as well as the performance measures are given below. For the exper-
imental evaluation, in order to get the best γ, λ and M parameters, we performed a
grid-search and selected γ = 0.1, λ = 0.9, M = 2, 000 that showed an overall good
performance across all datasets. We also set N = 20 for all the ensemble methods
and a very small value ε = 0.0001, which means no tolerance to discriminatory out-
comes. Finally, for the prequential evaluation of the non-stream datasets, we report on
the average of 10 random shuffles (same as in [22,30]).

5.1 Competitors and Performance Measures

We evaluate FABBOO against two recent state-of-the-art fairness-aware stream classi-
fiers [22,30] and the fairness agnostic non-stationary OSBoost [7]. We also employ two
variations of FABBOO to show the impact of its different components, namely class-
imbalance and cumulative fairness. All methods employ AHTs as weak learners and
therefore are able to handle concept drifts. The only exception is FAHT [30] which is
an incremental Hoeffding Tree that not tackle concept drifts. An overview follows:

1. Fairness Aware Hoeffing Tree (FAHT) [30]: FAHT is an extension of the Hoeffd-
ing tree that accounts for statistical parity by alternating the node split procedure
to facilitate information as well as fairness gain (statistical parity). FAHT grows

2 https://iosifidisvasileios.github.io/FABBOO.

https://iosifidisvasileios.github.io/FABBOO
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Table 1. An overview of the datasets.

#Instances #Attributes Sen.Attr. z z̄ Class ratio (+:-) Stream Positive class Source

Adult Cen 45,175 14 Gender Female Male 1:3.03 - <50K [2]

Bank 40,004 16 Marit. Status Married Single 1:7.57 - subscription [2]

Default 30,000 24 Gender Female Male 1:3.52 - default payment [2]

Kdd Cen 299,285 41 Gender Female Male 1:15.11 - <50K [2]

Loan 21,443 38 Gender Female Male 1:1.26 � paid [8]

NYPD 311,367 16 Gender Female Male 1:3.68 � felony [6]

Synthetic 150,236 6 synth. synth. synth. 1:3.13 � synth. [22]

according to the joint split of information and fairness gain, thus accounts for cumu-
lative outcomes; however, it does not handle concept drifts nor class-imbalance.

2. Massaging (MS) [22]: a chunk based model-agnostic approach which minimizes
S.P. on recent discriminatory outcomes. It detects and removes discrimination within
the chunk by performing label swaps and retrains the model based on the “corrected”
chunk. MS is dealing with concept drifts by blind adaptation (using an adaptive
learner), but is considering short-term discrimination outcomes and does not account
for class imbalance. We use the default chunk size of 1,000 instances.

3. Online Smooth Boosting (OSBoost) [7]: OSBoost does not consider fairness nor
class imbalance.

4. Online Fair Imbalanced Boosting (OFIB): A variation of FABBOO that does not
account for class imbalance i.e., it does not use OCIS during training. This variation
helps to show the importance of tackling class imbalance.

5. Chunk Fair Balanced Boosting (CFBB): A variation of FABBOO that tackles
short-term, instead of cumulative, discrimination. This variation helps to show the
importance of long term fairness assessment. Instead of accounting for discrimina-
tion from the beginning of the stream, it monitors the 1,000 most recent instances.

To evaluate the performance of FABBOO and baselines, we employ a set of mea-
sures which are able to show the performance in the presence of class-imbalance. Same
as in [11], we employ gmean, recall, and balanced accuracy (Bal.Acc.). For measuring
discrimination, we report on cumulative statistical parity in Sect. 5.3 and cumulative
equal opportunity in Sect. 5.4.

5.2 Datasets

To evaluate FABBOO, we employ a variety of real-world as well as synthetic datasets
which are summarized in Table 1. The datasets vary in terms of class imbalance, dimen-
sionality and volume. Same as in [22,30], we useAdult census dataset (Adult) andKdd
Census dataset (Kdd Cen.) as well as Bank dataset, and Default dataset by randomly
shuffling them, since they are not streaming datasets. We also employ Loan,NYPD and
a synthetic dataset, all of which have temporal characteristics. For synthetic dataset, we
follow the authors’ initialization process [22], where each attribute corresponds to a dif-
ferent Gaussian distribution, and also inject class-imbalance and concept drifts to the
stream. Concept drifts in this scenario are performed by shifting the mean average of
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Table 2. Overall predictive and fairness performance for Cum.S.P. (Winner in bold)

Method Bal. Acc. (%) Gmean (%) Recall (%) Cum.S.P. (%)

Adult FAHT 72.14± 1.4 68.65± 2.2 50.11± 3.5 16.51± 1.3

MS 72.31± 1.2 69.00± 1.8 50.91± 2.9 22.93± 1.6

OSBoost 73.90± 0.5 71.11± 0.8 53.73± 1.3 18.05± 0.6

OFIB 74.21± 0.3 72.92± 0.4 60.01± 1.0 0.26± 0.1

CFBB 74.12± 0.6 73.74± 0.6 66.95± 1.1 −5.00± 2.0

FABBOO 76.58± 0.1 76.57± 0.1 73.98± 0.7 0.21± 0.1

Bank FAHT 61.92± 2.0 50.64± 4.4 26.51± 4.4 2.58± 0.5

MS 63.21± 1.9 53.54± 3.6 29.75± 4.1 8.10± 1.2

OSBoost 64.41± 0.6 55.54± 1.1 31.81± 1.3 3.37± 0.2

OFIB 67.90± 0.7 62.04± 1.2 40.21± 1.6 0.22± 0.1

CFBB 78.37± 0.5 78.08± 0.6 71.24± 1.5 −6.06± 1.3

FABBOO 83.39± 0.4 83.38± 0.4 83.36± 1.4 0.22± 0.1

Default FAHT 62.72± 0.6 53.48± 1.2 29.95± 1.4 1.80± 0.4

MS 63.76± 0.5 55.53± 1.4 32.4± 2.0 12.16± 1.5

OSBoost 63.06± 0.6 53.87± 1.3 30.32± 1.7 1.89± 0.4

OFIB 63.79± 0.7 55.41± 1.6 32.36± 2.1 0.29± 0.1

CFBB 65.82± 0.6 65.44± 0.4 58.58± 3.0 −7.74 ± 2.2

FABBOO 67.49± 0.6 66.89± 0.5 58.66± 2.8 0.17± 0.1

Kdd Cen. FAHT 62.80± 2.3 51.04± 4.6 26.45± 4.7 2.82± 0.6

MS 62.02± 1.2 49.71± 2.3 24.91± 2.4 15.8± 0.97

OSBoost 65.55± 0.8 56.28± 1.3 31.97± 1.5 3.62± 0.3

OFIB 67.55± 0.9 60.48± 1.5 37.59± 1.9 0.13± 0

CFBB 78.40± 0.5 77.58± 0.6 66.60± 1.1 1.34± 0.5

FABBOO 81.48± 0.3 81.41± 0.4 77.98± 0.6 0.04± 0

Loan FAHT 62.61 60.14 70.21 6.41

MS 61.44 59.64 69.31 60.13

OSBoost 63.84 60.31 76.13 8.14

OFIB 62.41 58.34 78.63 1.12

CFBB 63.15 60.05 79.73 −2.72

FABBOO 63.47 60.22 79.91 0.51

NYPD FAHT 50.15 6.13 0.37 0.09

MS 56.93 41.06 17.47 5.87

OSBoost 52.24 24.33 6.01 0.75

OFIB 52.32 24.96 6.36 0.05

CFBB 62.48 59.48 43.63 −6.46

FABBOO 62.96 60.78 46.83 0.03

synthetic FAHT 57.12 42.56 18.90 8.31

MS 62.43 53.81 30.90 15.26

OSBoost 63.42 54.87 31.61 7.97

OFIB 64.01 57.54 35.85 −0.56

CFBB 65.93 64.75 53.75 −9.68

FABBOO 69.09 69.01 60.11 0.66
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each Gaussian distribution (5 non-reoccuring concept drifts have been inserted at ran-
dom points, see Fig. 2 or 3).

5.3 Results on Cumulative Statistical Parity

In this section, we compare our approach against the employed competitors for
Cum.S.P., and report the overall results in Table 2. As we see, FABBOO is able to miti-
gate unfair outcomes and maintain the best performance in terms of balanced accuracy,
gmean, and recall for all datasets. E.g., for Adult Cen., the best balanced accuracy is
achieved by FABBOO followed by OFIB (2.3%↓), the best gmean is achieved by FAB-
BOO followed by CFBB (2.8%↓), and the best recall is achieved by FABBOO followed
by CFBB (7%↓). OFIB is able to reduce discrimination, same as FABBOO, in expense
of sacrificing 2.3%↓ balanced accuracy.

Overall, FABBOO achieves the best balanced accuracy, across all datasets, with an
average score of 72.01%, followed by CFBB with an average score of 69.73%. In terms
of discrimination, FABBOO is the clear winner, across all datasets, with an average
score of 0.26%, followed by OFIB with an average score of 0.37%. Although the dif-
ference in terms of discrimination is small, OFIB has an average balanced accuracy

Fig. 2. Cum.S.P. and boundary adjusting for Loan (top), NYPD (middle) and Synthetic (bottom)
datasets
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score of 64.57%. CFBB achieves an average score of 5.57% in terms of Cum.S.P, while
FAHT and MS achieve an average score of 5.49% and 20.02%, respectively.

To get a closer look at the over time performance of the different methods, we show
in Fig. 2 the Cum. S.P. (left) and the required decision boundary adjustment (right), i.e.,
the boundary threshold θt, for the datasets with temporal information. Looking at the
Cum.S.P.(left), we see that for all datasets, CFBB is not able to mitigate discrimination;
instead, it propagates reverse discrimination (negative Cum. S.P.) and discriminates the
non-protected group. MS falls in the same pitfall; by “correcting” the data based solely
on the chuck it is not able to tackle unfair cumulative outcomes. Both CFBB and MS
results show that a short-term consideration of fairness is unable to tackle discrimination
propagation and reinforcement in the stream. The fairness-agnostic OSBoost is also not
able to tackle discrimination. The only exception is theNYPD dataset. However, a closer
look shows that the achieved low S.P. is only a result of vast rejecting the minority class
(c.f., Table 2). On the other hand, FABBOO and OFIB (the FABOO variation that does
not tackle class-imbalance) are able to tackle discrimination overtime, and outperform
FAHT and MS.

Looking at the required adjustments of the decision boundary (right), we notice that
OFIB tends to produce higher boundary values than FABBOO. This is caused due to
OFIB’s inability to learn the minority class effectively; therefore, it rejects more minor-
ity instances from both protected and non-protected groups. For Loan dataset FABOO
and OFIB are performing similarly since the dataset is not severely imbalanced. Finally,
we observe that CFBB has high fluctuation when adjusting the decision boundary due
to its inability to adapt to underlying changes in data distributions w.r.t. fairness.

5.4 Results on Cumulative Equal Opportunity

For Cumul. EQ.OP., we report the results of OSBoost, OFIB, CFBB, and FABOO on
Table 3. We exclude FAHT and MS since they are designed to mitigate unfair outcomes
based on statistical parity. To the best of our knowledge, there are no fairness-aware
stream learning methods that mitigate unfair outcomes based on equal opportunity.

The results indicate that FABBOO performs good in terms of balanced accuracy,
gmean, and recall in all datasets except Compass and Loan, which are balanced datasets.
E.g., for Adult Cen. dataset, the best balanced accuracy is achieved by FABBOO fol-
lowed by CFBB (2%↓), the best Gmean is achieved by FABBOO followed by CFBB
(2.9%↓), and the best recall is achieved by FABBOO followed by CFBB (7.9%↓). OFIB
achieves slightly better Cumul. EQ.OP. than FABBOO (0.01%↓), however OFIB rejects
more instances in the positive class. Similar behavior can be observed in all datasets,
where FABBOO is able to tackle class imbalance and mitigate unfair outcomes bet-
ter than the other methods. OSBoost fails to learn the positive (minority) class, thus
under-performs in almost all datasets. In some cases, it produces low discriminatory
outcomes; however, this is a result of misclassifying huge portions of the positive class.

We also demonstrate how Cumul. EQ.OP. and the decision boundary (FABBOO,
OFIB and CFBB) vary over time for the stream datasets in Fig. 3. In all datasets, we
observe that CFBB’s decision boundary is highly fluctuating in contrast to OFIB and
FABBOO. CFBB is also unstable in terms of Cumul. EQ.OP., since it is not mitigating
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Table 3. Overall predictive and fairness performance for Cum.EQ.OP. (Winner in bold)

Method Bal.Acc. (%) Gmean (%) Recall (%) Cum.EQ.OP. (%)

Adult OSBoost 73.90± 0.5 71.13± 0.8 53.73± 1.3 18.41± 3.2

OFIB 74.74± 0.5 72.36v0.7 56.07± 1.1 3.14± 1.4

CFBB 76.70± 0.4 75.46± 0.5 62.96± 1.1 9.34± 1.6

FABBOO 78.71± 0.2 78.38± 0.3 70.83± 0.9 3.27± 1.6

Bank OSBoost 64.41± 0.6 55.54± 1.1 31.81± 1.3 5.51± 1.1

OFIB 65.42± 0.6 57.46± 1.2 34.17± 1.4 1.5± 0.8

CFBB 76.74± 0.8 75.27± 1.1 61.88± 2.0 −1.85± 1.2

FABBOO 82.58± 0.5 82.44± 0.5 78.05± 1.7 0.1± 0.6

Compass OSBoost 65.25± 0.3 64.91± 0.4 58.74± 1.4 29.81± 1.7

OFIB 64.58± 0.2 64.53± 0.2 62.51± 1.5 4.84± 2.5

CFBB 64.76± 0.4 64.69± 0.4 62.07± 1.3 14.73± 3.3

FABBOO 64.52± 0.3 64.50± 0.3 64.40± 1.5 4.76± 2.9

Default OSBoost 63.06± 0.6 53.87± 1.3 30.32± 1.7 79.01± 0.9

OFIB 63.14± 0.6 54.06± 1.5 30.57± 1.8 0.26± 0.6

CFBB 66.61± 0.3 65.75± 0.4 56.31± 2.6 −2.21± 0.9

FABBOO 67.55± 0.5 66.78± 0.5 57.79± 2.7 0.93± 0.7

Kdd Cen. OSBoost 65.55± 0.8 56.28± 1.3 31.97± 1.5 15.99± 0.3

OFIB 66.85± 0.8 58.88± 1.3 35.21± 1.6 0.83± 0.2

CFBB 78.52± 0.5 77.30± 0.7 64.75± 1.2 2.72± 0.9

FABBOO 82.39± 0.4 82.16± 0.4 76.26± 0.5 0.6± 0.3

Loan OSBoost 63.84 60.31 76.13 1.25

OFIB 61.51 58.59 78.31 0.12

CFBB 62.61 59.84 79.03 12.89

FABBOO 63.06 60.18 80.73 0.07

NYPD OSBoost 52.24 24.33 6.01 1.25

OFIB 52.31 24.75 6.22 0.12

CFBB 62.17 58.84 42.08 12.89

FABBOO 62.65 60.38 45.92 0.07

synthetic OSBoost 63.42 54.87 31.61 5.18

OFIB 63.75 56.67 34.55 −6.04
CFBB 66.97 65.02 50.92 −18.10
FABBOO 69.13 68.17 57.68 −0.17

cumulative unfair outcomes. OFIB tweaks the boundary less than FABBOO, while it
fails to learn the minority class well enough, thus rejects more positive instances.



172 V. Iosifidis and E. Ntoutsi

Fig. 3. Cum.EQ.OP. and boundary adjusting for Loan (top), NYPD (middle) and Synthetic (bot-
tom) datasets

6 Conclusion

In this paper, we proposed FABBOO, an online fairness-aware learner for data streams
with class imbalance and concept drifts. Our approach changes the training distribution
online taking into account class-imbalance. Moreover, our method can facilitate differ-
ent fairness notions by adjusting the decision boundary on demand. Our experiments
show that our approach outperforms other methods in a variety of datasets w.r.t. both
predictive- and fairness-performance. In addition, we show that recent fairness-aware
methods reject the minority class at large to ensure fair results. On the contrary, our
class-imbalance-oriented approach effectively learns both classes and fulfills different
fairness criteria while achieving good predictive performance for both classes. Finally,
we show that our cumulative definitions enable the model to mitigate long-term discrim-
inatory effects, in contrast to a short-term definition like in CFBB and MS which are
unable to deal with discrimination propagation and reinforcement in the stream. As part
of our future work, we plan to embed the decision boundary adjustment directly into
the training phase by altering the weighted training distribution, as proposed in [21].
Finally, we have assumed that the role of the minority class is not fixed over the stream;
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however, we have assumed that the protected group is fixed over the stream. We intend
to waive this assumption and extend FABBOO to tackle reverse discrimination as well.
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cation. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A.M., Khalil,
I. (eds.) DEXA 2019. LNCS, vol. 11706, pp. 261–276. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-27615-7 20

23. Kamiran, F., Calders, T.: Data preprocessing techniques for classification without discrimi-
nation. Knowl. Inf. Syst. 33(1), 1–33 (2012)

24. Kamiran, F., Mansha, S., Karim, A., Zhang, X.: Exploiting reject option in classification for
social discrimination control. Inf. Sci. 425, 18–33 (2018)

25. Krasanakis, E., Xioufis, E.S., Papadopoulos, S., Kompatsiaris, Y.: Adaptive sensitive
reweighting to mitigate bias in fairness-aware classification. In: WWW, pp. 853–862. ACM
(2018)

26. Vafa, K., Haigh, C., Leung, A., Yonack, N.: Price discrimination in the princeton review’s
online sat tutoring service. JOTS Technol, Sci (2015)

27. Verma, S., Rubin, J.: Fairness definitions explained. In: 2018 IEEE/ACM InternationalWork-
shop on Software Fairness (FairWare), pp. 1–7. IEEE (2018)

28. Wang, S., Minku, L.L., Yao, X.: A learning framework for online class imbalance learning.
In: 2013 IEEE Symposium on Computational Intelligence and Ensemble Learning (CIEL),
pp. 36–45. IEEE (2013)

29. Weiss, G.M.: Mining with rarity: a unifying framework. ACM SIGKDD Explor. Newsl. 6(1),
7–19 (2004)

30. Wenbin, Z., Ntoutsi, E.: Faht: an adaptive fairness-aware decision tree classifier. arXiv
preprint arXiv:1907.07237 (2019)

31. Zafar, M.B., Valera, I., Gomez Rodriguez, M., Gummadi, K.P.: Fairness beyond disparate
treatment & disparate impact: learning classification without disparate mistreatment. In: Pro-
ceedings of the 26th International Conference on World Wide Web, pp. 1171–1180. WWW
(2017)

http://ceur-ws.org/Vol-2103/#paper_5
https://doi.org/10.1007/978-3-030-27615-7_20
https://doi.org/10.1007/978-3-030-27615-7_20
http://arxiv.org/abs/1907.07237


FEAT: A Fairness-Enhancing
and Concept-Adapting Decision Tree

Classifier

Wenbin Zhang1(B) and Albert Bifet2,3

1 University of Maryland, Baltimore County, MD 21250, USA
wenbinzhang@umbc.edu

2 University of Waikato, Hamilton 3216, New Zealand
albert.bifet@waikato.ac.nz
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Abstract. Fairness-aware learning is increasingly important in socially-
sensitive applications for the sake of achieving optimal and non-
discriminative decision-making. Most of the proposed fairness-aware
learning algorithms process the data in offline settings and assume that
the data is generated by a single concept without drift. Unfortunately, in
many real-world applications, data is generated in a streaming fashion
and can only be scanned once. In addition, the underlying generation pro-
cess might also change over time. In this paper, we propose and illustrate
an efficient algorithm for mining fair decision trees from discriminatory
and continuously evolving data streams. This algorithm, called FEAT
(Fairness-Enhancing and concept-Adapting Tree), is based on using the
change detector to learn adaptively from non-stationary data streams,
that also accounts for fairness. We study FEAT’s properties and demon-
strate its utility through experiments on a set of discriminated and time-
changing data streams.

Keywords: AI ethics · Online fairness · Online classification

1 Introduction

Artificial Intelligence (AI)-based decision making systems are routinely being
used in both online as well as offline settings to assist or even completely auto-
mate the decision-making. Yet, these automated data-driven tools may, even in
the absence of intent, lead to a loss of fairness and accountability in the employed
models. A plethora of such kind of AI-based discriminatory incidents have been
observed and reported [1,2,7,12]. As a recent example, the AI algorithm behind
Amazon Prime has suggested signs of racial discrimination when deciding which
areas of a city are eligible for advanced services [13]. Areas densely populated by
black people are excluded from services and amenities even though race is blind
to the AI algorithm. Such incidents have sparked heated debate on the bias and
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discrimination in AI decision systems, pulling in scholars from a diverse of areas
such as philosophy, law and public policy.

The growing concern over discriminative behavior of AI models has motivated
a number of approaches, ranging from defining discrimination to discrimination
discovery and prevention for the development of AI tools that are discrimination-
conscious by-design. Up to now, more than twenty notions have been proposed
to measure the discriminative behavior of AI models [19]. One of the most widely
used measures is the statistical parity [19] which examines whether the proba-
bility of being assigned a positive target class, for example allocating healthcare
resources, is the same for both privileged and unprivileged groups. Formally put:

Discrimination(D) =
PP

PP + PN
− UP

UP + UN
(1)

where D is the labeled dataset, PP and PN refer to privileged community
receiving positive and negative classification, respectively. So are UP and UN
for unprivileged community. Here, the attribute that distinguishes privileged
groups from unprivileged ones is referred as the sensitive attribute with the sen-
sitive value defining the unprivileged community. Take “race” as the sensitive
attribute for example, then the sensitive value is “black” and the positive class
value as allocating healthcare resources. The four communities PP, PN, UP and
UN therefore represent “non-black” being allocated healthcare resources, “non-
black” being denied healthcare resources, “black” receives healthcare resources
and “black” does not receive healthcare resources, respectively.

The aim of fairness-aware learning is then to train a decision model which pro-
vides accurate predictions, yet does not unduly bias against unprivileged groups.
That is to say, from statistical parity point of view, equally granting a benefit
to both privileged and unprivileged groups. While a large number of methods
have been proposed to achieve this goal, most of them tackle fairness as a static
problem. In many applications, however, data is generated sequentially and its
characteristics might also evolve over time. Therefore, fairness-aware learning
for such sort of applications should also be able to adapt to non-stationary dis-
tribution simultaneously.

Compared with the booming approaches in static settings, fairness-aware
learning in data stream is highly under-explored because of its significant chal-
lenges [23]. To address this issue, this paper introduces a fairness-enhancing
classifier that also equips with drift adaptation capability. The contribution of
this paper is three-fold:

• We define the problem of fairness-aware learning in non-stationary data dis-
tribution. Then, we propose FEAT, a discrimination-conscious learner with
add-on concept drift adaptation ability to handle discriminated and non-
stationary data streams.

• We introduce fair-enhancing information gain that also accounts for the local
discrimination to maximize the cumulative fairness, thus providing enhanced
fairness-awareness learning.
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• The conducted experiments verify the capability of the proposed model in
online settings. To the best of our knowledge, this is the first work that jointly
addresses fairness and concept drift.

The rest of the paper is organized as follows. Related studies are first reviewed
in Sect. 2. We describe the proposed FEAT in Sect. 3 and discuss the experimen-
tal results in detail in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Related Work

The tremendous societal importance of AI fairness has arose growing con-
cern with ever increasing amount of discrimination-conscious models being pro-
posed [1,2,24]. These approaches typically can be categorized into three main
families: i) pre-processing approaches, ii) in-processing approaches and ii) post-
processing approaches, based on whether they mitigate bias at the data level,
the algorithm design or the output of model, respectively.

The first strategy, pre-processing solutions, consists of performing different
data level operations such as transformation and augmentation to neutralize or
eliminate the extent of inherited bias of the data. The rationale for such type of
approaches is that classifiers trained on the fairly represented data could make
fair predictions. These methods are model-agnostic and can be employed in con-
junction with any applicable classifier after the pre-processing step. Representa-
tive works include massaging [15] and reweighting [5]. The former directly swaps
the class labels of selected instances to change data distribution for the sake
of balanced representation. The swapped instances are selected using a ranker
based on the potential accuracy deterioration in order to minimize accuracy loss
while reducing discrimination. While the latter, instead of intrusively relabel-
ing the instances, assigns different weights to different communities to reduce
discrimination. Instances belonging to the protected group will receive higher
weighs comparing to instances from the unprotected group. In [14], these two
methods have also been extended for online classification. However, methods in
this category are typically not quite effective as standalone approaches unless
being used in conjunction with other methods with sophisticated design.

In contrast, the second category, in-processing approaches, consists of modi-
fying existing algorithms, usually integrating fairness as a part of the objective
function through constraints or regularization, to mitigate discrimination, and
is therefore algorithm-specific. [16] is one of the seminal in-processing works,
in which discrimination, reflected by the entropy w.r.t. sensitive attribute, is
incorporated into the splitting criterion for fair tree induction. In [20], the mea-
sure of “decision boundary fairness” is leveraged to penalize discrimination in
the formulation of a set of convex margin-based classifiers. More recently, [23]
improves the splitting strategy of [16] and operates their model in the online set-
ting. However, research efforts in this direction have still been limited. Our work
situates in this highly under-explored research direction to provide fair online
decision-making.
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The last category, postprocessing techniques, consists of either adjusting the
decision boundary of a model or directly changing the prediction labels. [12]
processes with additional prediction thresholds to work against discrimination
while the decision boundary of AdaBoost is shifted w.r.t. fairness in [6]. The
latter approaches pay attention to the outcome of a classifier. In [16], for exam-
ple, relabeling is performed on selected leaves of the decision tree to decrease
discrimination while minimizing the effect on predictive accuracy. We empha-
size that transferring such techniques to online settings is not straightforward
as the boundary/prediction could evolve themselves due to the non-stationary
distributions in online settings.

Fairness in data streams further requires the addressing of non-stationary dis-
tributions, known as concept drift [4,10,22,25]. The learning algorithms there-
fore should be able to remain stable on previously learned and not outdated
concepts while adapting to such drifts. The adaptation is typically enabled by
learning incrementally from new instances [11,17] and by forgetting outdated
information from the model [4,18]. A significant amount of work has been done
with respect to this specific issue. However, the combined approach of address-
ing both fairness and concept drift has enjoyed relatively little research. Our
work situates in this research direction to enable fairness-aware learning in non-
stationary data streams.

3 FEAT: Fairness-Enhancing and Concept-Adapting
Tree

This section first outlines the vanilla Hoeffding Tree (HT), then the reformulated
fair information gain splitting criterion for fairness enhancement is introduced,
followed by the adaption of changes in the example-generating process. A number
of refinements and modifications that instantiate the fairness enhancement and
concept-adapting learning are specified thereafter.

3.1 The Hoeffding Tree (HT) Classifier

Our Fairness-Enhancing and concept-Adapting hoeffding Tree (FEAT) is built
on top of the Hoeffding Tree (HT) classifier [9]. To mine high-speed data stream,
HT induces a decision tree from the given stream incrementally, briefly scanning
each example in the stream only once and storing sufficient information in its
leaves in order to grow. The crux decisions needed during the induction of the
tree are when to split a node and with which example-discriminating test. To
this end, the authors employ the Hoeddding bound [9] to guarantee that the
tree learned probably converges to the conventional static tree built by a batch
learner, given enough examples. In HT, these two decisions are based on the
informationgain, which is exclusively accuracy-oriented and does not consider
fairness. In addition, the construction of tree assumes the distribution generating
examples does not change over time.
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In this work, to enable fairness-aware learning and concurrently adapt to
non-stationary data distributions, we extend the HT model in two ways: i) by
introducing an enhanced fair splitting criterion that enables the fairness-aware
learning (c.f., Subsect. 3.2) and ii) by adding the ability to detect and adapt to
the evolution of underlying distribution (c.f., Subsect. 3.3).

3.2 The Fair-Enhancing Information Gain

The informationgain (IG) [21] splitting criterion measures the uncertainty
reduction due to a split during the tree construction. It is proposed purely from
the data encoding perspective without considering fairness of the tree construc-
tion. To address the fairness-free issue of IG, previous studies reformulate the
IG by incorporating the discrimination gain into the splitting criterion of the
decision tree construction [16,23]. Inspired by these ideas, we propose the fair-
enhancing information gain (FEIG) as follows,

FEIG(D,A) =
{
IG(D,A) , if FEG(D,A) = 0
IG(D,A) × FEG(D,A) , otherwise (2)

where A is an attribute relative to the collection of instances D that stored in
sufficient statistics, Dv, v ∈ dom(A) are the partitions/subsets induced by A,
and FEG refers to fair-enhancing gain (FEG) that measures the difference in
discrimination due to the split and is formulated as:

FEG(D,A) = |Disc(D)| −
∑

v∈dom(A)

|Disc(Dv)| (3)

where each corresponding discrimination value Disc is gauged according to
Eq. (1).

In fair-enhancing gain, different from the previous proposed fair splitting
criteria [16,23], the gain in fairness is directly gauged according to the dis-
crimination difference due to the split rather than entropy in regards to the
sensitive attribute. In addition, in fairness-aware learning, it is expected that
all groups being treated equally regardless of their population sizes. That is to
say, discrimination is discrimination regardless the number of population being
discriminated. To align with this idea, our splitting evaluation metric also cares
for local discrimination to maximize the cumulative fairness by assigning equal
weights to different discrimination representations. Specifically, each partition
induced by the attribute A contributes equally to the cumulative fairness of
A regardless the number and size of branches. In the general case, the higher
reduction in discrimination the merrier, the fair-enhancing gain therefore would
like a larger merit to be assigned when evaluating the fairness suitability of a
candidate splitting attribute and ignores the number of its distinct values and
of each specific value.

The FEG is then tied with IG through multiplication as the FEIG. Multipli-
cation is favoured, when combining them as a conjunctive objective, over other
operations for example addition as the values of these two metrics could be in
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different scales, and in order to promote fair splitting which results in a reduc-
tion in the discrimination after split, i.e., FEG is a positive value. In the end,
this conjunctive metric would be used as the alternative fair-enhancing split-
ting criterion during the construction of the tree to enable discrimination-aware
learning while maintaining predictive performance over the course of the stream.

3.3 The FEAT Algorithm

HT learns incrementally from the high-speed data streams by incorporating the
incoming data in the stream into the model while simultaneously maintaining the
performance of the classifier on the previous information. The tree is adapted,
in practice grow, based on the newly available data in the stream and does not
forget the obsolete concept that not following the current example-generating
process. Therefore, HT assumes the distribution generating examples does not
change over time and cannot adapt to the evolving example-generating process.

To overcome this drawback, we further extend HT and propose FEAT which
maintains HT’s capabilities of processing high speed data stream and data-driven
encoding, also with enhanced fairness-aware learning by employing the previ-
ous introduced fair-enhancing information gain as well as the ability of change
detection and concept forgetting.

To detect and react promptly to the evolution of the stream, FEAT keeps
its model consistent with the example-generating process of the current stream,
creates and replaces alternative decision subtrees when evolving data distribution
is detected at a node. FEAT extends HT which is incremental, so the tree is
adapted based on new instances. General speaking, the performance of such
model, under stationary distribution without drift, improves over the course of
the stream as it generalizes better after incorporating more examples into the
model. Therefore, performance deterioration is a good indicator of drift. FEAT
employs the sliding window size free ADWIN [3] to monitor the error rate of
the non-leaf node and declare when branch replacement is necessary. ADWIN
recomputes online whether two “large enough” subwindows of the most recent
data exhibit “distinct enough” averages, and the older portion of the data is
dropped when such distinction is detected. ADWIN therefore eases the burden of
selecting a fixed window size that the distribution likely remains to be stationary
within this window and adapts to the rate of change observed in the data itself.
The use of ADWIN and the sketch of FEAT is shown in Algorithm (1).

FEAT grows similarly to HT (line 1–2 and 6–16). The difference is that
HT depends on IG while FEAT employs FEIG to enable accuracy-oriented and
fairness-enhanced construction of the tree. What’s more, in order to keep the
model it is learning in sync with changes in the example-generating process,
FEAT continuously monitors the quality of old search decisions with respect to
the latest instances from the data stream (line 17). FEAT creates an alternative
subtree for each node that change in the underlying distribution is detected
by ADWIN (line 19). Under the condition that an alternative subtree already
exists, FEAT checks whether the alternative branch performs better than the
old branch (line 21). The old branch will be replaced by the alternative one if so
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Algorithm 1. The FEAT induction algorithm
Input: a discriminated data stream D,

confidence parameter δ,
tie breaking parameter τ .

FEAT(D, δ, τ)

1: Let FEAT be a tree with a single leaf (the root)
2: Init sufficient statistics at root
3: for each instance x in D do
4: FEATGrow(x, FEAT, δ, τ)
5: end for

FEATGrow(x, FEAT , δ, τ)

1: Sort example into leaf l using FEAT
2: Update sufficient statistics in l and nodes traversed in the sort
3: for traversed node that has an alternate tree Talt do
4: FEATGrow(x, Talt, δ, τ)
5: end for
6: if examples seen at l are not all of the same class then
7: Calculate FEIGl(Ai) for each attribute according to Equation (2)
8: Let Aa be the attribute with highest FEIGl

9: Let Ab be the attribute with second-highest FEIGl

10: Compute Hoeffding bound ε =

√
R2 ln(1/δ)

2nl

11: if Aa �= A∅ and (FEIGl(Aa) − FEIGl(Ab) > ε or ε < τ) then
12: for each branch of the split do
13: Start a new leaf and initialize sufficient statistics
14: end for
15: end if
16: end if
17: for non-leaf node that its ADWIN detects change do
18: if Talt== null then
19: Create an alternative subtree Talt

20: else
21: if Talt is more accurate then
22: replace current node with its Talt

23: else
24: prune its Talt

25: end if
26: end if
27: end for

(line 22), otherwise the alternative branch will be pruned (line 24). Compared
to HT, FEAT also maintains sufficient statistics of the nodes traversed in the
sort in order to update alternative branches (line 3–5). The learning process is
therefore fairness-enhancing and concept-adapting.
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3.4 The FEAT System

Our FEAT induction algorithm is built on top of the HT classifier. FEAT
therefore still holds HT’s theoretical guarantees and theorems can be proven
accordingly. Moreover, FEAT aims at enhancing fairness-aware learning while
optimizing predictive performance by alleviating the discrimination bias
towards the unprivileged group through the proposed fair splitting criterion,
the fair-enhancing information gain (Subsect. 3.2), and by equipping itself
with the ability of change detection and concept forgetting (Subsect. 3.3). The
modifications and refinements being included to Algorithm (1) to instantiate the
fairness-enhancing and concept-adapting learning over streams are discussed
hereafter.

Pre-pruning. HT detects the case of not splitting a node benefits more than
splitting by considering the merit of no split, represented by the null attribute
X∅ at each node to enable pre-pruning. A node is thus only allowed to split
when the candidate attribute is sufficiently better, according to the same
Hoeffding bound test that determines differences among other attributes,
than X∅. In the implementation of FEAT, the merit to be maximized is the
previous introduced FEIG. Thus, the FEIG of the best split found should be
sufficiently better than X∅’s. In terms of the FEIG of the null attribute, the
current level of class distribution and discrimination are used to represent IG
and FEG, respectively.

Sufficient Statistics. HT briefly inspects each instance in the stream only
once and store sufficient information in the leaves to enable the calculation
of the splitting merit afforded by each possible split. In FEAT, the statistics
required for the calculation of FEIG should also be maintained. For the
discrete attributes, each node in the tree maintains a separate table per
attribute, containing the counts of the class labels that apply for each
attribute value for the calculation of IG, and the counts of unprivileged
group and privileged group as well as receiving positive classification in
unprivileged group and privileged group that apply for each attribute value
for the calculation of FEG. The learning process updates appropriate entries
based on the attribute value, sensitive attribute value and class of the
examples over the stream accordingly. As for the numeric attribute, FEAT
maintains a separate Gaussian distribution per class label that apply for
each attribute. So are the four previous mentioned FEG calculation related
statistics. The appropriate distribution statistics is updated according to
the sensitive attribute value and class of the examples over the stream. The
most appropriate binary split point for each distribution is evaluated based
on the allowing test and the merit of each allowed threshold candidate is
also calculated according to the proposed FEIG. With the selected split
points, the weight of values to their either side are approximated for each
class and four FEG calculation related statistics, and the FEIG merit of each
numericattribute candidate is thus computed from these weights.
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Memory Management. Efficient storage of the sufficient statistics is crucial
in stream environment. In case of the non-leaf node, FEAT prunes the
alternative branch if its performance is inferior to the old one. FEAT also
reduces the size of the sufficient statistics in each leaf by removing poor
attributes when their FEIG is less than the current best attribute by more
than the Hoeffding bound. The rationale is that, according to the bound,
such attributes are unlikely to be selected in that leaf. In addition, assuming
there are d attributes with a maximum number of v values per attribute and
c possible classes in total, the required memory of FEAT is O((d + 2)vc)
compared to the O(dvc) of HT. FEAT therefore incurs negligible extra costs
especially when d � 2.

4 Experimental Evaluation

In this section, we conduct experiments to evaluate the accountability and fair-
ness of the proposed discrimination-aware data stream learner. To this end, we
first investigate the enhanced discrimination reduction capability of the proposed
fair splitting criterion. We also show a comprehensive quantitative evaluation to
verify the concept adaptation capability of our approach.

4.1 Dataset

Contrary to a growing body of discrimination-conscious approaches motivated
by the increasing attentive AI fairness, related datasets and benchmarks are still
in a shortage [1]. With respect to the highly under-explored online fairness, this
challenge is further magnified by the drift and the demanding requirement of
the number of instances contained therein. We evaluate our approach on the
datasets used in the recent work of this research direction [23], the Adult and
the Census datasets [8] both targeting on identical learning task of determining
whether a person earns more than 50K dollars per annum.

There are 48,843 instances in the Adult dataset and each instance is described
by 14 employment and demographic attributes (attribute “fnlwg” is removed as
suggested). We follow the same options in [23] by setting “gender” as the sensitive
attribute with sensitive value equals to “female” being the protected group. The
positive class is people making an annual income of more than 50K dollars. The
Census dataset is significantly bigger in size including 299,285 instances and
41 attributes. It has an identical prediction task as the Adult dataset. So are
the setting of sensitive attribute, sensitive value and positive classification. The
intrinsic discrimination levels, according to Eq. (1), of the these two datasets are
19.45% and 7.63%, respectively.

Existing works mostly address these two datasets from the static learning per-
spective [19,24,27]. In our experiments we randomize the order of the instances
then process them in sequence to simulate discriminated data streams, follow-
ing [23]. The prequential evaluation [10] is employed in which each incoming
instance is first being predicted upon arrival then is available for model training.
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4.2 Justification of FEIG

The proposed FEIG is designed to enhance the learning idea of all groups being
treated equally regardless of their population sizes for fair-enhancing learning.
To validate this enhanced fairness-aware learning, we incorporate FEIG into
the model proposed in [23] denoted as FAHT+ and FEAT- representing FEAT
driven by the splitting criterion proposed in [23] and compare them respectively.
We further incorporates the discrimination-aware splitting criterion of [16] into
our model in replacing of FEIG, referred as Kamiran’s. We do not incorporate
FEIG into their model as it is designed for offline setting. Our motivation for
using the identical classifiers is that, since our main interest at this stage is to
compare the fair-enhancing learning of FEIG with other discrimination-aware
splitting criteria, we would like to minimize the influences on the results from
the bias of classifiers due to their versatile difference. The obtained results are
shown in Table 1.

Table 1. Accuracy-vs-discrimination between FEIG and other discrimination-aware
splitting criteria. Percentage in parenthesis is the relative difference over the perfor-
mance of its corresponding comparing method.

Methods Metric

Adult dataset Census dataset

Discrimination Accuracy Discrimination Accuracy

FAHT 16.29% 81.83% 3.20% 94.28%

FAHT+ 15.62% 81.01% 2.61% 92.82%

(−4.11%) (−1.0%) (−18.44%) (−1.55%)

FEAT- 19.14% 83.76% 2.20% 94.14%

FEAT 15.26% 84.01% 1.25% 95.03%

(−20.27%) (+0.3%) (−43.18%) (+0.95%)

Kamiran’s 22.61% 83.92% 6.59% 94.82%

FEAT 15.26% 84.01% 1.25% 95.03%

(−32.51%) (+0.11%) (−81.03%) (+0.22%)

As shown in Table 1, it is clear that FEIG consistently enhances the fairness-
aware learning by diminishing the discrimination to a lower level while main-
taining a high prediction capability. The best discrimination reduction obtained
by FEIG is 81.03% on Census dataset comparing with the discrimination-aware
splitting criterion proposed by Kamiran et al. [16]. FEIG’s learning idea of all
groups being treated equally therefore indeed pushes the discrimination to a
lower level, which is consistent with its theoretical design. This enhanced anti-
discrimination ability is also statistically verified, comparing to the more effective
fair splitting criterion among the baseline criteria, as shown in Table 2.
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Table 2. The McNemar’s test on the datasets for two different splitting criteria: FEIG
and FAHT, testing whether FEIG worked to enhance the positive classification of the
unprivileged group.

FAHT
FAHT+ Adult dataset1 Census dataset2

Granted Rejected Granted Rejected
Granted 716 110 1,120 263
Rejected 173 15,193 468 153,924

1 Chi-squared = 13.583, df = 1, p-value = 0.0002282
2 Chi-squared = 56.93, df = 1, p-value 4.516e-14

FEAT-
FEAT Adult dataset3 Census dataset4

Granted Rejected Granted Rejected
Granted 1,127 80 1,331 359
Rejected 153 14,832 658 153,427

3 Chi-squared = 22.249, df = 1, p-value = 2.395e-06
4 Chi-squared = 87.32, df = 1, p-value < 2.2e-16

With respect to the attributes being selected for the construction of trees,
both FAHT+ and FEAT select “marital status” as their root on Adult dataset,
while FAHT and FEAT- are rooted on “age”. Neither of these two attributes is
discrimination-inclined compared to the root attribute “capital gain” of Kami-
ran’s, which encodes the intrinsic discrimination bias of the historic data as
members from the unprivileged group, i.e., the sensitive value is female, are less
like to receive higher capital-gain than the privileged group’s. On the other hand,
age, generally speaking, is positively correlated with income per annum and holds
that regardless of the sensitive attribute value. However, it is also possible that
age could have local discrimination. That is to say, within a small age range,
male could more likely to have a higher income than female as they tend to
mature at different ages therefore differ in career age which could reflect income.
FEIG’s learning idea of all groups being treated equally regardless of their pop-
ulation sizes aims to detect and reflect such type of discrimination encoding.
Such fair-enhancing attribute selection can also be concluded from the Pearson
correlation coefficients between sensitive attribute and decision boundaries as
shown in Table 3. As one can see, FEIG based models’ predicted boundaries
are less correlated with the sensitive attribute than FAHT’s due to its fairness-
enhancing ability. In addition, different from the tree induction in static setting,
the selected attributes are still splitting candidates for the succeeding splitting
selection, such fairness-enhancing decisions therefore have impacts on follow-
ing decisions as well (feedback loops) and could further enhance fairness-aware
learning.
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Table 3. Pearson analysis on sensitive attribute, predicted decision boundary and
actual decision boundary. Comparison values within each cell are formatted by (FAHT:
FAHT+‖ FEAT-: FEAT) with results on Adult and Census dataset in the above and
below table, respectively.

Entity Sensitive attribute Predicted boundary Actual boundary
Sensitive attribute 1:1 ‖ 1:1 -0.16:-0.14 ‖ -0.19:-0.14 -0.21:-0.21 ‖ -0.21:-0.21
Predicted boundary -0.16:-0.14 ‖ -0.19:-0.14 1:1 ‖ 1:1 0.44:0.41 ‖ 0.49:0.50
Actual boundary -0.21:-0.21 ‖ -0.21:-0.21 0.44:0.41 ‖ 0.49:0.50 1:1 ‖ 1:1

Entity Sensitive attribute Predicted boundary Actual boundary
Sensitive attribute 1:1 ‖ 1:1 -0.09:-0.07 ‖ -0.07:-0.05 -0.16:-0.16 ‖ -0.16:-0.16
Predicted boundary -0.09:-0.07 ‖ -0.07:-0.05 1:1 ‖ 1:1 0.56:0.53 ‖ 0.57:0.57
Actual boundary -0.16:-0.16 -0.16:-0.16 0.56:0.53 0.57:0.57 1:1 1:1

4.3 Drift Adaptation Capability

FEAT is designed for enhanced fairness-aware learning with add-on concept
drift adaptation ability to handle non-stationary discriminated data streams.
For comparison, we implemented two recently proposed fairness-aware online
learners FAHT [23] and FEI [14]. In addition, we compared against two baselines,
the Hoeffding Tree (HT) and Kamiran’s which incorporates the discrimination-
aware splitting criterion of [16] into FEAT in replacing of FEIG. We also trained
a concept-adapting learner, denoted HAT [4], as a baseline. All methods are
trained in the same way for all datasets and the results are summarized in
Table 4.

Table 4. Accuracy-vs-discrimination between FEAT and baseline models. The best
performance of the compared baselines is marked in boldface. Percentage in parenthesis
is the relative difference over the performance of the best baseline method.

Methods Metric

Adult dataset Census dataset

Discrimination Accuracy Discrimination Accuracy

HT 22.59% 83.91% 6.84% 95.06%

Kamiran’s 22.61% 83.92% 6.59% 94.82%

FAHT 16.29% 81.83% 3.20% 94.28%

FEI 22.16% 75.51% 6.34% 81.26%

HAT 22.3% 84.7% 6.54% 95.64%

FEAT 15.26% 84.01% 1.25% 95.03%

(−6.32%) (−0.7%) (−60.94%) (−0.64%)
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As one can see, FEAT consistently pushes the discrimination to lower val-
ues while maintaining fairly comparable predictive performance in all datasets.
Compared with the best accuracy results, FEAT has a small drop of 0.7% and
0.64% on Adult and Census dataset, respectively. This is expected as HAT is
exclusively accuracy-driven while FEAT optimizes for data encoding as well as
enhanced discrimination reduction. In comparison with the most fair baselines,
FEAT achieves 6.32% and 60.94% discrimination reduction on Adult and Census
dataset, respectively. We also observe that FEI performances poorly although it
is proposed for online setting. This verifies that online fairness cannot be triv-
ially solved by a simple combination of existing techniques from corresponding
communities. We further posit that such theoretical design is fundamental to
progress in fairness in evolving data streams and not ad hoc.

5 Conclusions

This paper focuses on the highly under-explored discrimination-conscious learn-
ing in evolving data streams. To address this challenge, we propose FEAT with
embedded fair-enhancing splitting criterion and further equip it with the ability
of change detection and concept forgetting to handle discriminated and non-
stationary data streams. The positive results of conducted experiments show
the versatility of FEAT in online settings. One immediate future direction is
to have an ensemble as random forests based on FEAT. A different avenue is
to extend these results in conjunction with our previous work [26] to situations
where the class label is not available for fair clustering. Here there are multiple
unique challenges including appropriately defining and assessing fairness in the
unsupervised scenarios.
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Abstract. Concept drift detection is a crucial task in data stream evolv-
ing environments. Most of the state of the art approaches designed to
tackle this problem monitor the loss of predictive models. Accordingly,
an alarm is launched when the loss increases significantly, which trig-
gers some adaptation mechanism (e.g. retrain the model). However, this
modus operandi falls short in many real-world scenarios, where the true
labels are not readily available to compute the loss. These often take
up to several weeks to be available. In this context, there is increasing
attention to approaches that perform concept drift detection in an unsu-
pervised manner, i.e., without access to the true labels. We propose a
novel approach to unsupervised concept drift detection, which is based on
a student-teacher learning paradigm. Essentially, we create an auxiliary
model (student) to mimic the behaviour of the main model (teacher). At
run-time, our approach is to use the teacher for predicting new instances
and monitoring the mimicking loss of the student for concept drift detec-
tion. In a set of controlled experiments, we discovered that the proposed
approach detects concept drift effectively. Relative to the gold standard,
in which the labels are immediately available after prediction, our app-
roach is more conservative: it signals less false alarms, but it requires
more time to detect changes. We also show the competitiveness of our
approach relative to other unsupervised methods.

Keywords: Concept drift detection · Data streams ·
Unsupervised learning · Model compression

1 Introduction

Learning from data streams is a continuous process. When predictive models
are deployed in environments susceptible to changes, they must detect these
changes and adapt themselves accordingly. The phenomenon in which the data
distribution evolves is referred to as concept drift, and a sizeable amount of
literature has been devoted to it [7].

Concept drift detection and adaptation are typically achieved by coupling
predictive models with a change detection mechanism [10]. The detection algo-
rithm launches an alarm when it identifies a change in the data. Typical concept
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drift strategies are based on sequential analysis [18], statistical process control
[6], or monitoring of distributions [3]. When change is detected, the predictive
model adapts by updating its knowledge with recent information. A simple exam-
ple of an adaptation mechanism is to discard the current model and train a new
one from scratch. Incremental approaches are also widely used [9].

The input data for the majority of the existing drift detection algorithms
is the performance of the predictive model over time, such as the error rate.
In many of these detection methods, alarms are signalled if the performance
decreases significantly. However, in several real-world scenarios, labels are not
readily available to estimate the performance of models. Some labels might arrive
with a delay or not arrive at all due to labelling costs. This is a major challenge
for learning algorithms that rely on concept drift detection as the unavailability
of the labels precludes their application [10].

In this context, there is increasing attention toward unsupervised approaches
to concept drift detection. These assume that, after an initial fit of the model,
no further labels are available during the deployment of this model in a test
set. Most works in the literature handle this problem using statistical hypothesis
tests, such as the Kolmogorov-Smirnov test. These tests are applied to the output
of the models, either the final decision or the predicted probability.

1.1 Contributions and Paper Organisation

Our goal in this paper is to address concept drift detection in an unsupervised
manner. To accomplish this, we propose a novel approach to tackle this problem
using a student-teacher (ST) learning paradigm. The gist of the idea is as follows.
On top of the main predictive model, which we designate as the teacher, we also
build a second predictive model, the student. Following the literature on model
compression [5] and knowledge distillation [13], the student model is designed to
mimic the behaviour of the teacher.

Using the ST framework, our approach to unsupervised concept drift detec-
tion is carried out by monitoring the mimicking loss of the student. The mim-
icking loss is a function of the discrepancy between the prediction of the teacher
and the prediction of the student in the same instance. In summary, we use the
loss of the student model as a surrogate for the behaviour of the main model.
Accordingly, we can apply any state of the art approach in the literature which
takes the loss of a model as the main input, for example, ADWIN [3] or the
Page-Hinkley test [18].

When concept drift occurs, it causes changes in the prior probabilities of the
classes or changes in the class conditional probabilities of the predictor variables.
In effect, we hypothesise that these changes disrupt the collective behaviour
between the teacher and student models. In turn, this change of behaviour may
be captured by monitoring the mimicking loss of the student model.

We validate the proposed method using a set of experiments with an artifi-
cial drift process, which we adapt from Žliobaite [23]. The proposed method is
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publicly available online to support reproducible science1. Our implementation
is written in Python and is based on the scikit-multiflow framework [17].

2 Background

2.1 Problem Definition

Let D(X, y) = {(X1, y1), . . . , (Xt, yt)} denote a possibly infinite data stream,
where each X is a q-dimensional array representing the input predictor variables.
Each y represents the corresponding output label. We assume that the values of y
are categorical. The goal is to use this data set {Xi, yi}t1 to create a classification
model to approximate the function which maps the input X to the output y.
Let T denote this classifier. The classifier T can be used to predict the labels of
new observations X. We denote the prediction made by the classifier as ŷT .

Many real-world scenarios exhibit a non-stationary nature. Often, the under-
lying process causing the observations changes in an unpredictable way, which
degrades the performance of the classifier T . Let p(X, y) denote the joint dis-
tribution of the predictor variables X and the target variable y. According to
Gama et al. [7], concept drift occurs if p(X, y) is different in two distinct points
in time across the data stream. Changes in the joint probability can be caused
by changes in p(X), the distribution of the predictor variables or changes in
the class conditional probabilities p(X|y) [8]. These may eventually affect the
posterior probabilities of classes p(y|X).

2.2 Label Availability

When concept drift occurs, the changes need to be captured as soon as possi-
ble, so the decision rules of T can be updated. The vast majority of concept
drift detection approaches in the literature focus on tracking the predictive per-
formance of the model. If the performance degrades significantly, an alarm is
launched and the learning system adapts to these changes.

The problem with these approaches is that they assume that the true labels
are readily available after prediction. In reality, this is rarely the case. In many
real-world scenarios, labels can take too long to be available, if ever. If labels do
eventually become available, often we only have access to a part of them. This
is due to, for example, labelling costs. The different potential scenarios when
running a predictive model are depicted in Fig. 1.

Precisely, a predictive model is built using an initial batch of training data,
whose labels are available. When this model is deployed in a test set, concept
drift detection is carried out in an unsupervised or supervised manner.

In unsupervised scenarios, no further labels are available to the predictive
model. Concept drift detection must be carried out using a different strategy
other than monitoring the loss. For example, one can track the output probability
of the models [23] or the unconditional probability distribution p(X) [15].
1 https://github.com/vcerqueira/unsupervised concept drift.

https://github.com/vcerqueira/unsupervised_concept_drift
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Fig. 1. The distinct potential scenarios regarding label access after the initial fit of the
model (adapted from Gomes et al. [9]).

Concept drift detectors have access to labels when the scenario is supervised.
On the one hand, the setting may be either strongly supervised or weakly super-
vised [22]. In the former, all labels become available. In the latter, the learning
system only has access to a part of the labels. This is common in applications
which data labelling is costly. On the other hand, labels can arrive immediately
after prediction, or they can arrive with some delay. In some domains, this delay
may be too large, and unsupervised approaches need to be adopted.

In this paper, we address concept drift detection from an unsupervised per-
spective. In this setting, we are restricted to use p(X) to detect changes, as the
probability of the predictor variables is not conditioned on y.

3 Related Research

3.1 Concept Drift Detection

Concept drift can occur in three different manners: suddenly, in which the current
concept is abruptly replaced by a new one; gradually, when the current concept
slowly fades; and reoccurring, in which different concepts are prevalent in distinct
time intervals (for example, due to seasonality).

We split concept drift detection into two dimensions: supervised and unsuper-
vised. The supervised type of approaches assumes that the true labels of obser-
vations are available after prediction. Hence, they use the error of the model as
the main input to their detection mechanism. On the other hand, unsupervised
approaches preclude the use of the labels in their techniques.

Plenty of error-based approaches have been developed for concept drift detec-
tion. These usually follow one of three sort of strategies: sequential analysis,
such as the Page-Hinkley test (PHT) [18]; statistical process control, for exam-
ple the Drift Detection Method (DDM) [6] or the Early Drift Detection Method
(EDDM) [1]; and distribution monitoring, for example the Adaptive Windowing
(ADWIN) approach [3].
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Although the literature is scarce, there is an increasing interest in approaches
which try to detect drift without access to the true labels. Žliobaite [23] presents a
work of this type. She proposed the application of statistical hypothesis testing
to the output of the classifier (either the probabilities or the final categorical
decision). The idea is to monitor two samples of one of these signals. One sample
serves as the reference window, while the other represents the detection window.
When there is a statistical difference between these, an alarm is launched. In
a set of experiments, Žliobaite shows that concept drift is detectable using this
framework. The hypothesis tests used in the experiments are the two-sample
Kolmogorov-Smirnov test, the Wilcoxon rank-sum test, and the two-sample t-
test.

Reis et al. [20] follow a strategy similar to Žliobaite [23]. They propose an
incremental version of the Kolmogorov-Smirnov test and use this method to
detect changes. In the same line of research, Yu et al. [21] apply two layers of
hypothesis testing hierarchically. Kim et al. [14] also apply a windowing app-
roach. Rather than monitoring the output probability of the classifier, they use
a confidence measure as the input to drift detectors.

Pinto et al. [19] present an automatic framework for monitoring the perfor-
mance of predictive models. Similarly to the above-mentioned works, they per-
form concept drift detection based on a windowing approach. The signal used to
detect drift is computed according to a mutual information metric, namely the
Jensen-Shannon Divergence [16]. The window sizes and threshold above which
an alarm is launched is analysed, and the approach is validated in real-world
data sets. The interesting part of the approach by Pinto et al. [19] is that their
method explains the alarms. This explanation is based on an auxiliary binary
classification model. The goal of applying this model is to rank the events that
occurred in the detection window according to how these relate to the alarm.
These explanations may be crucial in sensitive applications which require trans-
parent models.

Gözüaçık et al. [11] also develop an auxiliary predictive model for unsu-
pervised concept drift detection, which is called D3 (for (Discriminative Drift
Detector). The difference to the work by Pinto et al. [19] is that they use this
model for detecting concept drift rather than explaining the alarms.

3.2 Student–Teacher Learning Approach

Model compression, also known as student-teacher (ST) learning, is a technique
presented by Buciluǎ et al. [5]. The goal is to train a model, designated as a
student, to mimic the behaviour of a second model (the teacher). The authors
use this approach to compress a large ensemble (the teacher) into a compact
predictive model (the student).

Hinton et al. [13] developed the idea of model compression further, denoting
their compression technique as knowledge distillation. Distillation works by soft-
ening the probability distribution over classes in the softmax output layer of a
neural network. The authors address an automatic speech recognition problem
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by distilling an ensemble of deep neural networks into a single and smaller deep
neural network.

Both Buciluǎ et al. [5] and Hinton et al. [13], show that combining the pre-
dictions of the ensemble leads to a comparable performance relative to a single
compressed model.

While our concerns are not about decreasing the computational costs of a
model, we can leverage model compression approaches to tackle the problem of
concept drift detection. Particularly, by creating a student model which mimics
the behaviour of a classifier, we can perform concept drift detection using the
loss of the student model. Since this loss is not conditioned on the target variable
y, concept drift detection is carried out in an unsupervised manner.

4 Methodology

In this section, we formalise our approach to concept drift detection. Our method
is based on a student-teacher (ST) learning approach. The only information
required from the environment is predictor variables of testing instances (X).
Since the proposed method is not conditioned on the labels of the target variable
(y), we refer to it as unsupervised.

From a high-level perspective, the proposed approach settles on three main
steps:

1. Creating the main model T , which is the teacher;
2. Creating the student model S, which mimics the behaviour of T ;
3. Deploying the main model T and performing concept drift detection based

on the loss of S;

In the next subsections, we will detail each step in turn.

4.1 Creating the Teacher and Student Models

Main Classifier T . Let Dtr(X, y) denote the available training instances. We
use Dtr(X, y) to train the classifier T , where Dtr(X, y) is an initial batch of
training instances. This model is used to make predictions on new upcoming
instances in the stream D, which we denote as Xnew. We assume that the model
is incremental [9]. T is updated when new labels become available.

Student–Teacher Approach. We assume that the corresponding labels of
Xnew are not available for a long period after making the prediction. Hence, we
cannot rely on approaches that monitor the loss of T to detect concept drift.

We adopt a student-teacher (ST) learning approach to circumvent this prob-
lem. In the ST framework, T is the teacher model. Then, we create a second
predictive model S, the student, which is trained to mimic the behaviour of the
teacher, T . This is accomplished as follows. We obtain the predictions ŷ{T ,tr}
of T in the available data Dtr used to create it. In effect, we can set up a new
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data set Dtr(x, ŷT ), which can be used to train S. In other words, we train the
student model using the same observations used to train the teacher. However,
the target variable is replaced with the predictions of the teacher.

It might be argued that using the same instances to train both the teacher
and the student models leads to overfitting. However, Hinton et al. [13] show
that this is not a concern.

In the typical student-teacher approaches, designed for model compression
[5] or knowledge distillation [13], the goal is to compress a model with a large
number of parameters (usually an ensemble) into a more compact model with
comparable predictive performance. In these cases, the student model is deployed
in the test set, while the teacher is not used. Conversely, in our methodology,
we leverage the student-teacher framework differently. The student model is
regarded as a model which can make predictions regarding the behaviour of T ,
i.e., what the output of T will be for a given input observation. Both T and S
models are used in practice, as explained below.

4.2 Concept Drift Detection

Since we assume that the true labels are unavailable, we cannot measure the loss
of the main model, T . But we can measure the loss of the student model: the
discrepancy between the prediction of T (ŷT ) and the prediction of S about ŷT
(ŷS). The loss of S is then defined as L(ŷT , ŷS), where L is the loss function, for
example, the error rate.

In effect, our approach to unsupervised concept drift detection is to monitor
the error of the student model. This can be accomplished with any state of the
art concept drift detection approach, e.g. ADWIN [3]. Essentially, we use the
loss of the student model as a surrogate signal for concept drift detection. While
S is monitored for detecting drift, the model T is used to make predictions on
new instances Xnew.

Our working hypothesis is the following. When concept drift occurs, it poten-
tially causes changes in the posterior probability of classes p(y|X). Consequently,
this change in the behaviour of T will perturb the mimicking loss of the stu-
dent model, L(ŷT , ŷS). Therefore, tracking this signal may enable us to capture
changes in the environment without access to any labels.

5 Experiments

In this section, we detail the experiments carried out to validate the proposed
approach to unsupervised concept drift detection.

The experiments are designed to address the following research questions:

– RQ1: Is the proposed unsupervised ST approach able to detect concept drift
in the data?

– RQ2: How does the proposed method compare with the gold standard, in
which all the labels are immediately available after prediction? Note that
even though this scenario is unlikely in real applications, it may still serve as
a benchmark of performance for other approaches;
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– RQ3: How does the proposed approach compare with other unsupervised
approaches, namely the statistical hypotheses tests described by Žliobaite
[23]?

– RQ4: Finally, what is the relative drift detection performance between the
different label availability scenarios (see Fig. 1)?

We used two data sets in our experiments: electricity demand [12], and forest
cover type [2]. The electricity data set refers to the electricity market in Aus-
tralian New South Wales. There are a total of 45.312 observations in the data
set, which are captured every half-hour. There are eight predictor variables, all
of which numeric. The predictive task is binary classification; to predict whether
the price will go up or down relative to a moving average of 24 h.

The second data set represents the forest cover type and was obtained by
the US Forest Service. In the data set, there is a total of 581.012 observations
and 54 predictor variables (10 of which numeric, and the remaining are binary).
The data set contains five classes regarding the cover type. Both these data sets
have been used in multiple works on data stream mining [2,6,9].

5.1 Synthetic Drift Injection

We perform experiments using artificial drift in order to understand better the
relative behaviour of drift detectors in different scenarios. This is accomplished
by following a process similar to that described by Žliobaite [23]. We assume
that the initial 60% of the observations are labelled and that these observations
are used for an initial fit of the models T and S. Then, we proceed as follows.

1. We randomly select a point between 70% and 90% of the total observations
available. After this point, all subsequent observations are contaminated with
drift (see Fig. 2);

– Note that we leave a 10% interval on each side (after 60% and before
100%) for securing enough observations to evaluate the behaviour of a
concept drift detector; for example, its rate of false alarms or its reactive-
ness to drift;

2. We randomly select half of the predictor variables from a randomly selected
class. The values of these variables are randomly shuffled. Žliobaite [23] hand-
picks the columns to be swapped. Conversely, we introduce randomness.
Essentially, this process injects drift in the conditional probabilities p(X|y).

In order to produce a robust estimate of performance, this process is repeated
50 times in a Monte Carlo approximation manner.

5.2 Methods

We carry out a learning plus testing cycle for each one of the 50 Monte Carlo
repetitions. We use an Adaptive Random Forest (ARF) as learning algorithm [9]
for training both T and S. As the name implies, the ARF method extends the
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Fig. 2. Workflow for injecting drift. This random process is repeated 50 times following
a Monte Carlo approximation approach.

widely used Random Forest approach by Breiman [4] to evolving data stream
classification problems.

We focus on performing concept drift detection in an unsupervised manner.
Notwithstanding, we also test several variants of supervised scenarios. All of
these are detailed below.

Unsupervised Approaches (U). After the initial training with 60% of the
observations, our unsupervised setup assumes that no further label is available.
For each upcoming instance, we only have access to the predictor variables (X).
Accordingly, as we described in Sect. 4, concept drift is performed by monitoring
the error of S. In this scenario, we also apply the ADWIN and PHT methods
using the error rate of S. These are denoted as U-ADWIN and U-PHT, respec-
tively. Note that the model S can be updated online, because its labels are the
predictions of model T .

As benchmarks, we also include the following statistical tests suggested by
Žliobaite [23]:

– U-KS: The two-sample Kolmogorov-Smirnov test, which tests whether two
samples come from the same distribution;

– U-WRS: The Wilcoxon rank sum test, which tests whether two samples have
equal medians;

– U-TT: The two-sample t-test, which tests whether two samples have equal
means;

Each of these tests are applied using the class output predicted by T using a
sliding window fashion [23]. Specifically, suppose we are at time step i. We create
two contiguous samples of the same size (w) up to point i (see Fig. 3). The first
sample, which represents the reference window, includes the data in the interval
[i − 2 × w + 1; i − w]. The second sample, which denotes the detection window
[23], contains the information in the interval [i−w + 1; i]. An hypothesis test is
carried out using these two samples. An alarm is issued, and i + 1 is a change
point, if the p-value returned by the test is below α.
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Fig. 3. Detection framework based on windowing.

Supervised Approaches. We also include the following supervised approaches
in our experiments.

– Strongly Supervised (SS): We apply the typical procedure which assumes
that all the true labels are immediately available after making a prediction.
This can be regarded as the gold standard. The term strong means refers to
the fact that all labels are available during testing [22];

– Weakly Supervised (WS): In many real-world scenarios, particularly in
high-frequency data streams, data labelling is costly. Hence, predictive models
can only be updated using a part of the entire data set. This process is com-
monly referred to as weakly supervised learning [22]. We simulate a weakly
supervised scenario in our experiments. Accordingly, predictive models only
have access to l access% of the labels. In other words, after a model predicts
the label of a given instance, the respective label is immediately available
with a l access% chance;

– Delayed Strongly Supervised (DSS): Labels can take some time to arrive.
We study this aspect by artificially delaying the arrival of the labels by l delay
instances. After a label becomes available, the respective predictive model is
updated;

– Delayed Weakly Supervised (DWS): We combine the two previous sce-
narios. In the DWS setup, only l access% of the labels are available. Those
which are available arrive with a delay of l delay observations.

In the supervised variants, the classifier T is updated online as soon as
each new label is available. In all these variants, concept drift detection is car-
ried out using the error rate of T with two state of the art approaches: the
ADWIN [3] method and the PHT [18] approach. We denote these approaches as
Prefix -ADWIN and Prefix -PHT, respectively. For example, SS-ADWIN refers to
the ADWIN method applied using a strongly supervised model.

Parameter Setup. The significance level for the hypothesis tests, also known
as p-value, is set to 0.001. The window size for carrying these tests is set to
500 for the electricity data set and 1500 for the cover type data set (see Fig. 3).
As Žliobaite [23] points out, these values usually depend on the task at hand.
The number of trees in the ARF models is set to 25. ARF comprises an internal
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concept drift detection mechanism based on ADWIN [3]. Since our goal is to
detect drift, we disabled this process within the ARF model. We set l access to
50 for both data sets. This setup means that, in the weakly supervised schemes,
only about 50% of observations are available. The value of l delay was set to 1000
on the electricity data set, and 5000 on the cover type data set. These values
were set arbitrarily; the difference between data sets is related to their difference
is the sample size. The remaining parameters are set to default according to
their respective implementation.

5.3 Evaluation Metrics

We apply the following metrics described by Bifet [2] to evaluate the drift detec-
tors:

– Mean Time between False Alarms (MTFA): How often there is a false alarm
when there is no change (the higher, the better). MTFA is measured by aver-
aging the distance between consecutive (false) alarms before the change point.
Moreover, this score is also averaged across the 50 Monte Carlo repetitions;

– Mean Time to Detection (MTD): After a change occurs, how long it takes for
the method to detect it, on average (the lower, the better). In practice, we
measure the number of points between the change point and the next alarm
launched by the respective method. Similarly to MTFA, the score of MTD is
averaged across the 50 repetitions;

– Missed Detection Ratio (MDR): The probability of failing to detect a drift.
This is measured by taking the fraction of repetitions (across the 50 simula-
tions) in which the drift method fails to launch an alarm after the onset of
the drift. Ideally, this value should be zero, meaning all drifts are captured
irrespective of how long it takes to accomplish this;

On top of these, we also include the total number of detections (ND) launched
by a model. This metric is also averaged across the 50 repetitions.

5.4 Results

The results of our experiments are reported in Tables 1 and 2, for the electricity
and cover type data sets, respectively. For the MTFA, MTD, and ND metrics,
we also include the standard deviation of the results across the 50 Monte Carlo
repetitions.

The first research question is related to the analysis of the ability of the pro-
posed approach to detect concept drift (RQ1). According to the results obtained,
the proposed methods (U-ADWIN, U-PHT) have an MDR of 12 and 6% (U-ADWIN)
and 18 and 17% (U-PHT) in the electricity and cover type data sets, respec-
tively. This result shows that most of the drifts introduced synthetically were
captured by both approaches. Moreover, it also shows that the proposed con-
cept drift detection methodology is not constrained to a single detector: both
ADWIN and PHT present a good detection ability. Other approaches could be
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Table 1. Results on the electricity dataset

Method MTFA MTD MDR ND

SS-ADWIN 18372± 29514 986± 689 0.00 7± 2

SS-PHT 1024± 284 508± 687 0.88 9± 4

DSS-ADWIN 677± 216 525± 572 0.00 19± 4

DSS-PHT 357± 60 346± 290 0.00 26± 5

WS-ADWIN 21287± 34634 1229± 646 0.00 6± 2

WS-PHT 1355± 451 503± 301 0.90 8± 5

DWS-ADWIN 6749± 1672 1274± 1448 0.00 10± 3

DWS-PHT 517± 158 533± 629 0.06 21± 7

U-ADWIN 11439± 30002 2786± 3225 0.12 4± 4

U-PHT 11823± 28244 3050± 4778 0.18 4± 2

U-WRS 2040± 158 597± 246 0.04 17± 3

U-TT 611± 36 316± 284 0.00 27± 2

U-KS 2071± 200 574± 268 0.04 16± 3

used for detection, e.g. DDM [6] or EDDM [1]. We focus on only two methods for
two main reasons: first, these are representative of the state of the art; second,
the detection method is orthogonal to our contributions. Therefore, we designed
the experiments to show the effectiveness of the proposed method rather than
comparing the performance of multiple detectors.

Relative to the gold standard (RQ2), the proposed approach is more con-
servative. Both U-ADWIN, and U-PHT present a higher MTFA and MTD scores
relative to a strongly supervised approach in most of the cases. The unsuper-
vised approaches take more time to detect changes (higher MTD). However, they
also show a larger interval between false alarms (higher MTFA) – except for the
SS-ADWIN approach.

We also compare the hypothesis tests suggested by Žliobaite [23] with the pro-
posed approach (RQ3). Overall, the statistical tests are more sensitive as they
launch more alarms (column ND). The MDR is close or equal to zero in all variants,
which means they capture almost all the drifts injected in the data.

Finally, we analyse the different scenarios in terms of label availability (RQ4).
We start by comparing the strongly supervised scenario with their weakly super-
vised counterpart, i.e., SS with WS and DSS with DWS. Overall, the weakly
supervised approaches tend to launch fewer alarms. The results suggest that
having less information leads to more conservative behaviour by the ADWIN
and PHT detectors.

We now analyse the impact of delaying information. This is done by comparing
the SS variants with the DSS variants, and the WS variants with DWS variants.
Contrary to weak supervision, delaying the arrival of the labels appears to lead to
much more sensitive detectors. Note that these results are constrained on many
aspects, for example, data sets, parameter setup, or the drift synthetic process.
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Table 2. Results on the cover type dataset

Method MTFA MTD MDR ND

SS ADWIN 5806± 3354 3070± 2919 0.00 12± 2

SS PHT 6317± 1117 6012± 8017 0.22 14± 6

DSS ADWIN 1532± 493 2154± 2802 0.00 28± 4

DSS PHT 389± 44 406± 410 0.00 140± 34

WS ADWIN 14731± 6036 4185± 3579 0.00 9± 2

WS PHT 7099± 2286 10200± 13882 0.28 16± 7

DWS ADWIN 4925± 1117 2689± 3043 0.00 14± 3

DWS PHT 629± 477 5441± 5902 0.06 42± 16

U ADWIN 15792± 3213 5411± 6465 0.06 10± 4

U PHT 21864± 7720 5877± 6857 0.17 6± 3

U WRS 2055± 348 1341± 1118 0.00 25± 2

U TT 2208± 384 1416± 1056 0.00 24± 3

U KS 1771± 138 850± 867 0.00 30± 2

5.5 Discussion

In the experiments, we showed that the proposed student-teacher approach can
detect concept drift. While it shows a more conservative behaviour relative to
the gold standard, the probability of detecting a drift is comparable.

We focused on two state of the art drift detection approaches; ADWIN and
PHT. The underlying method applied is orthogonal to our contributions, and we
designed the experiments to show the usefulness of the student-teacher approach
to unsupervised concept drift detection. In this context, other detectors can be
used, such as DDM [6] or EDDM [1].

We controlled the experiments by injecting artificial concept drift in the
conditional probabilities p(X|y). This was achieved by randomly swapping the
predictors variables in a randomly selected class. The goal of this synthetic pro-
cess was to enable us to analyse better how the different detection approaches
react to drift. In future work, we will develop this analysis from two perspectives:

1. We can analyse the behaviour of the detectors in the presence of drift in the
class priors, p(y). To accomplish this, we can follow the strategy by Žliobaite
[23], which deletes randomly selected instances from a selected class;

2. We will study the application of the proposed method in a real-world setup
without any synthetic process. For example, we can measure its impact by
computing the difference in predictive performance. Alternatively, a trade-off
between predictive performance and the cost of retrieving a batch on labels
to run a supervised approach.

Besides showing the usefulness of the proposed method, we also analysed the
behaviour of the two detectors (ADWIN and PHT) under different supervised
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conditions. Specifically, whether the supervision was strong or weak, in which
the latter means that only part of the labels become available. We also analysed
the impact of feedback delay, in which the labels take a fixed time to arrive.

We will extend this analysis in future work. For example, we will perform a
sensibility analysis to study how these conditions affect not only the performance
of drift detectors but also the performance of the predictive models. We will also
evaluate the proposed approach on purely real data sets.

6 Final Remarks

The literature for concept drift detection is mostly focused on detecting changes
by discovering significant deviations in the loss of the model. In this paper, we
follow the hypothesis that it is too optimistic to assume that the labels are
readily available for computing the loss [19,23]. Therefore, we tackle the concept
drift detection problem in an unsupervised manner.

We develop a novel approach based on an ST learning paradigm. ST
approaches are commonly applied to model compression [5] or knowledge dis-
tillation [13]. To our knowledge, this is the first work attempting to use an ST
approach for concept drift detection.

We validate our proposal with synthetic experiments using two benchmark
data sets. The results are promising. The developed method can detect the drifts
induced artificially as well as the gold standard, which represents the approach
that assumes that labels are immediately available after prediction. Our app-
roach is more conservative relative to the gold standard, and competitive relative
to other unsupervised baseline approaches.
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Abstract. Since early 2000, Microfinance Institutions (MFI) have been
using credit scoring for their risk assessment. However, one of the main
problems of credit scoring in microfinance is the lack of structured
financial data. To address this problem, MFI have started using non-
traditional data which can be extracted from the digital footprint of their
users. The non-traditional data can be used to build algorithms that can
identify good borrowers as in traditional banking. This paper proposes an
assembled method to evaluate the predictive power of the non-traditional
method. By using the Weight of Evidence (WoE), a transformation based
on the distribution within the feature, as feature transformation method,
and then applying extremely randomized trees for feature selection, we
were able to improve the accuracy of the credit scoring model by 20.20%
when compared to the credit scoring model built with the traditional
implementation of WoE. This paper shows how the assembling of WoE
with different feature selection criteria can result in more robust credit
scoring models in microfinance.

Keywords: Credit scoring · Microfinance · Logistic regression ·
Weight of Evidence · Emerging markets · Feature selection

1 Introduction

Microfinance in emerging markets is an exciting and growing market with chal-
lenges very different from the ones present in developed economies. Even though
studies show that 85% of the world population is in emerging markets [1], they
still lack a proper finance infrastructure. According to the World Bank, it is
estimated that there are 2.5 billion unbanked adults who lack access to finan-
cial services. From these financial services, access to credit is the most relevant
and requested service. In emerging markets, customers cannot rely on banks to
have access to credit as they usually lack a verifiable credit history. Microfinance
Institutions (MFI) target these customers, by providing access to basic financial
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services. However, due to the high risk involved in this kind of service, MFI’s
loan process tends to be slow and cumbersome. In most processes, customers are
required to provide an identification card, employment letter, utility bills, loan
application letter, and guarantors. Although it is a common practice to require
this type of information in developed economies, most customers in emerging
markets do not have them. Also, it represents too much effort for such a small
amount. Furthermore, MFI apply high-interest rates which can directly affect the
utility of this service. These factors reduce significantly the number of customers
that can repay a loan.

Digital technologies bring a new dynamic to the finance market in emerg-
ing markets. Smartphone adoption in these markets is approaching the num-
bers of developed economies [9] and new fintech solutions for unbanked people
are surfacing. On this decade, several companies proposed loan products across
emerging markets where a customer can apply for a loan through a mobile appli-
cation [6]. However, challenges in customer classification and eligibility for a loan
arise. Credit scoring has been the way to go in traditional credit institutions and
normally rely on a reliable credit history of the customer under evaluation. These
new loan pipelines lack access to traditional data. They only have access to data
that is input by customer and data collected from the logs of their smartphones,
such as Short Message Service (SMS) logs, mobile applications installed and
social network relationships.

In [10] we have shown how a credit scoring algorithm built with these non-
traditional features can help to improve the risk evaluation process. However,
that was only the first step as we aim for an optimal solution. This paper pro-
poses an assembled feature selection method based on the traditional Weight
of Evidence (WoE) and replacing the rules of the Information Value (IV) by a
second feature selection mechanism as used in [10].

The remainder of this paper is organized as follows. In the next section, we
will revise related work on credit scoring and how different approaches have
been taken to select the relevant features. Section 3 describes the dataset used
in the experimentation phase. Section 4 describes the methodology used in the
experiment. Section 5 presents the results of the credit scoring model built with a
different subset of features generated with the different techniques. Conclusions
and the limitations of this approach are highlighted in the Sect. 6.

2 Related Work

Since the early 2000s Mark Schreiner, one of the main contributors of credit
scoring for microfinance, started using structured databases to train credit scor-
ing algorithms. These algorithms were implemented on MFIs located in Latin
America. The credit scoring models built by Schreiner were based on scorecards
that include details from the customer, loan, and loan officer. The features were
selected by Schreiner based on his experience in microfinance. He tried to know
as much as he could about the financial capability of the person based on the
goods the customer had and the conditions of the accommodation. The scor-
ing model had positive results, however, it was difficult to implement since loan
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officers had to do the process manually. In some cases, the loan officer had to
visit the customer in order to validate the information about household goods.
These models can be seen on [13,14] and [12]. Schreiner proved to MFIs that
credit scoring could work for their institutions. His approach worked both with
non-traditional variables and also with financial system information from the
bureaus.

More recently, at the start of the decade of 2010, the usage of credit scoring in
microfinance has become a common practice as seen in [4,11,18], among others.
However, there is not a consensus on the algorithm to use and even less on
which features to use. [4] shows a classical approach to the feature selection by
looking at the significant variables using Linear Discriminant Analysis (LDA)
and Logistic Regression (LR). In [18] we can observe a more classic approach in
finance, the use of WoE. In the second encoding method presented in [18], the
features are transformed and filtered by using the WoE. The WoE can also be
seen in [16], where is used for feature selection on credit scoring for mortgages
and credit cards. However, in our case, we do not have structured financial data
as in [4] or [16]. As referred to in the previous section, we have data gathered only
by mobile phone. A similar case can be seen in [11]. Where the use of features
derived from mobile phone usage is used to build credit scoring algorithms for
credit cards. There is no specific method for feature selection shown in [11] and
one of the conclusions is to further evaluate the predictive power of their features.
In [8] the use of Feature Importance (FI) is applied in microfinance using a
Support Vector Machine (SVM) model. The model built in [8] outperformed the
previous models without the FI filtering. In our case, we intend to evaluate the
predictive power of the mobile phone features with an assembling method. We
have shown in [10] that a logistic regression built with a dataset transformed with
WoE and filtered with IV performs well even while lacking structured financial
data.

3 Dataset

This section describes the dataset used to test the different feature selection
methods and their performance. For this study, we granted a dataset of loans
from a MFI based on the Sub-Saharan region. The original dataset had ten times
more, good users, than bad users. Therefore, we applied random undersampling
of good users in order to achieve a balanced dataset. After then undersampling,
the dataset contained 3,094 loans and it was balanced by the target. This is
1,547 of loans paid on time (good class) and an equal amount of unpaid or paid
after an additional process of recovery (bad class). To be more precise, the bad
class contains all the unpaid loans and the loans that were paid 5 or more days
after their respective due date. The dataset contains only the first application
of each customer. Therefore, no previous financial information is present in this
dataset.

The dataset is composed by a list of features gathered from the mobile device,
those features can be grouped into three sources, personal information, Mobile
Network Operator (MNO) and device information and loan characteristics.
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First, we gathered the personal information, this personal information,
including demographics, is collected when the customer opens the mobile appli-
cation for the first time and set up his/her customer profile. Some variables refer
to the goods the customers have (e.g., house, car) and go through their employ-
ment status (e.g., employed, self-employed). It also collects information about
the dependents of the customer thought marital status and number of children.
This type of data has been considered since the building of scorecards on [13] to
the use of more advanced classification techniques as shown in [4,11,18], among
others.

We also gathered device characteristics and MNO related features. These
variables capture whenever the customer uses one of the services provided by
the MNO, e.g. sending or receiving SMS, buying data, etc. [2] show that having
a service of a given MNO can have an impact when building a scoring model. The
hypothesis is that customer with higher acquisition level will relate with MNO
that provide more complete services hence more expensive. From the mobile
phone, we collected the system information, e.g. mobile applications installed,
and android system version. With the categories of the applications installed
in the device, we can create a complete profile of the customers by grouping
the applications by their core function (e.g., financial applications, social media,
etc.). The applications installed are a proxy to the likes and shares presented
in [5]. Providing an idea of the real interests of the customers.

Finally, we add loan characteristics and conditions, which are: length of the
loan, amount requested, and purpose of the loan.

Notice that the features gathered through the logs are features that come
directly from the mobile device log on which the user have no direct way to
modify (e.g., number of SMS received, device brand, number of applications
installed). While the features from the personal information are filled by the
user before the credit application and some of them cannot be verified (e.g.,
education level, number of children, employment status).

Table 1. Table of features considered on datasets.

Features considered on datasets grouped by source
Personal information MNO and device features Loan characteristics

Age Airtime Loan amount
Gender Airtime top ups Loan length
Marital status Number of calls Loan reason
Education level Number of SMS
Number of children Device Brand
Employment status Last mobile update
Ownership of house Number of apps installed
Monthly Income
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Table 1 shows in detail the list of the features used. This list presents only
the core variables, we did feature engineering to create the following variables:

– debt_ratio = amount requested/monthly income
– telco_usage = airtime/monthly income
– income_split = monthly income/number of dependants
– average_top_up = airtime/number of airtime top ups
– delta_calls = number of calls 0–30 days/number of calls 31–60 days
– delta_sms = number of SMS 0–30 days/number of SMS 31–60 days.

The notation 0–30 days refers to the number of calls made in the last 30
days prior to applying for a loan, the same logic applies to 31–60 days which
refers to the number of calls made from 31 to 60 days prior to applying. Note
that for building the income_split we have used the number of dependants
which is calculated as 1 + number of children as it considers that the applicant
depends on itself. Some previous works also have a similar building of features.
Such is the case of the MobiScore [11], which considers the number of SMS and
the number of calls as relevant features. Also, [3] conclude that the use of mobile
data usage patterns can be a valuable input to build a scoring model even when
lacking formal financial history.

4 Assembling of Feature Selection Methods

As presented in the Sect. 3, the target to predict is a binary variable where 1
represents the bad class and 0 represents the good class.

First, we applied the WoE to all the features. The WoE is a method that
transforms a feature based on the distribution of good cases and bad cases within
the feature. Assume a feature X with domain {X1, . . . , Xi} The WoE of Xi is
computed as:

WoE(Xi) = ln
(
TotalGoods(Xi)
TotalBads(Xi)

)
(1)

In Eq. 1, TotalGoods(Xi) refers to the number of customers that paid on
time for category i in feature X. The same concept applies to TotalBads(Xi)
but considering the customers that did not pay or paid late. Note that the value
of the WoE is 0 when both the distribution of the good class and the distribution
of the bad class are equal. This means that the category evaluated does not allow
to differentiate between classes. Using the transformed dataset, we calculated the
IV of each feature. The IV for a category i of a feature X with n number of
categories is as follow:

IV (Xi) =
WoEXi∑n
i=1 WoEXi

(2)

The IV for feature X is the sum of the IV of each category i of X. It can be
calculated as IV(X):

IV (X) =
i∑

i=1

[
(TotalGoodsi − TotalBadsi) ∗ ln

(
TotalGoods(Xi)
TotalBads(Xi)

)]
(3)
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The IV is the main indicator used by [15] to select the features that will
be used in the modelling phase. [15] proposes intervals to relate the IV to the
strength of the relationship with the target to predict. These intervals can relate
the feature under analysis in order to determine a weak, medium, strong or non-
existent relationship between a feature and the target variable. The relation can
be set as shown in the conditions below.

When IV:

– Less than 0.02, the variable does not differentiate the Goods/Bads odds ratio.
– Between 0.02 to 0.1, the variable has only a weak relationship to the

Goods/Bads odds ratio.
– Between 0.1 to 0.3, the predictor has a medium-strength relationship to the

Goods/Bads odds ratio.
– Equal 0.3 or higher, the predictor has a strong relationship to the Goods/Bads

odds ratio.

In Table 2 we present an example of the calculation of IV and the correspond-
ing WoE for each category of X. In the example, the values of each customer on
the feature X will be replaced by the corresponding WoE for that category. A
customer with X1 on feature X will now have −0.2337 on feature X. The IV for
variable X is 0.0257 meaning it has a weak relationship with the Goods/Bads
odds ratio.

We can say that the methodology proposed by [15] has two phases, a trans-
formation based on the distribution within the feature (WoE) and filtering of
features based on rules using the IV. On this experiment, we challenged the rules
presented by [15] when introducing the WoE and the IV. We propose to replace
the filtering part with a feature selection method. Therefore, we will transform
the initial dataset following the WoE but instead of selecting the variables by
their IV we will apply FI with Extra-trees Feature Selection (ETFS), Recursive
Feature Elimination (RFE) and Lasso-Based Feature Selection (L1). The results
of these methods will then be compared to the filtering by rules using the IV.

The FI is one of the measures obtained while training a Random Forest (RF).
The importance of a feature is obtained as the loss of accuracy in the classifica-
tion caused by the random permutation of feature values between objects. The
accuracy loss is calculated for all trees in the forest which use the feature for
classification. Then the average and standard deviation of the accuracy loss are
computed. Then the feature importance is obtaining by dividing the average
accuracy loss over its standard deviation [7].

For the ETFS we use a similar approach as in FI. The main difference between
ETFS and FI lies in the fact that, instead of computing the locally optimal
feature/split combination as done for RF, for each feature under consideration,
a random value is selected for the splitting. The goal of this mechanism is to
obtain more diversified trees and fewer split points to evaluate when training
the extra-tress.

The RFE is a simple yet powerful method. Given an external estimator that
assigns weights to features, in our case the weights assigned to the features by the
LR, the RFE will select features by recursively considering smaller and smaller
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sets of features. First, the estimator is trained on the initial set of features and
the weight of each feature is obtained through the coefficient attribute. Then,
the least important features are pruned from the current set of features. That
procedure is recursively repeated on the pruned set until the desired number of
features to select is eventually reached (in our case ten) or the performance gain
in between iteration is smaller than a given threshold. This technique has been
proven to provide good results when paired with LR as seen in [19].

The Least Absolute Shrinkage and Selection Operator (LASSO), also known
as L1 is a common practice for feature selection introduced in [17]. The L1 tech-
nique has is able to shrink some of the coefficients to zero. The L1 method puts
an upper limit to the sum of the absolute values of the weights of the features. In
order to avoid passing the limit, the method applies a shrinking process where
it penalizes the coefficients of the regression features. In this process some of
the features can end with a coefficient of zero, therefore, eliminated from the
training set.

Table 2. Example of IV calculation and WoE for variable X.

Domain of X Good Bad Total Dist. of Good Dist. of Bad Category IV WoE

X1 523 414 937 0.3381 0.2576 0.0165 −0.2337

X2 753 805 1558 0.4867 0.5204 0.0022 0.0667

X3 271 328 599 0.1752 0.2120 0.0070 0.1909

Total 3,094 1,547 1,547 1.0000 1.0000 0.0257

To do a fair evaluation, we trained the same algorithm, with the different
subsets of features selected using the different feature selection techniques. As a
classification algorithm, we used logistic regression. This algorithm has proven
to provide accurate predictions with this type of data in the past [10]. For this
experimentation, we trained the logistic regression with penalty set to ‘L1’, the
parameter C equal to 1.0, a SAGA solver, for multi_class we used ‘one-vs-rest’
which refers to a binary target as in our case. Finally, we used the same random
state for the training phase.

To maintain consistency we selected the ten most relevant features selected
by each method. We selected only ten in order to compare with the features
that had a strong or medium relationship with the target based on IV (IV >
0.1) which are also ten.

For metrics of evaluation, we used the Area under Receiver Operating Char-
acteristic (AUROC) and the Kolmogorov-Smirnov (K-S). These metrics are com-
monly used to evaluate the performance of a scoring algorithm as seen in [4,18],
among others. We used 10-fold cross-validation to test the performance of the
algorithms using a given dataset. This validation technique helps us to maximize
the use of the data as it uses each case both for training and validating.
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5 Analysis of Results

As explained in the previous section, the results will be compared with the results
obtained by using the IV and the rules proposed by [15].

In Table 3, we present the results for the logistic regression using the different
subsets of features generated using the different feature selection techniques.

Table 3. Table of the performance of the different feature selection methods.

Selection method Kolmogorov-Smirnov AUROC

Feature importance 0.2500 0.6540
Extra-Trees 0.3103 0.7016
RFE 0.2802 0.6707
L1 0.3491 0.6975
Information value 0.2004 0.6327

The bottom line of the table shows the results of using the rules presented
on [15] and is the basis for comparison. We can observe that all the remaining
methods achieved better performance both in K-S and AUROC when compared
to the IV. The ETFS presented the best performance on the AUROC with
0.7016, which represents an increase of 20.28% to the previous result obtained
with IV. However, when comparing the K-S, the L1 outperformed the other
methods by achieving a K-S of 0.3491, a 74.20% increase relative to the IV
performance. This means that the scoring model built with the features selected
by L1 is able to differentiate better the distributions of the classes of the target.
Therefore, the percentage of correct predictions within the good and bad class
is more similar. In our case, the primary goal was to reduce miss-classification
of bad cases which in this context is to classify a customer with bad credit as a
customer with good credit, therefore granting a loan. We would prefer to have a
model with better prediction of the bad customers even if this means to lose some
prediction power in the good customers since the cost of default overweight the
cost of opportunity. This being said, the model built with the features selected
by L1 provided the best accuracy for both the good and the bad class. However,
notice that the performance of these models is around 70% overall accuracy.
Therefore, these models are only useful to display the difference between the
selection methods. In order to build more robust models, we should consider a
higher number of features since we capped the number of features to the first ten
selected by each method. As for the features selected, 25 unique features were
selected by the 5 different feature selection methods. The only feature to be
selected as relevant by all the methods was “number_of_apps_installed”. This
feature refers to the number of different apps installed on the mobile phone of the
applicant. Only 11 features were selected by at least 2 feature selection methods
and 14 features selected by only 1 method. The top five relevant features selected
by ETFS matches the top five selected by L1. This explains why the results of
these two methods are similar in terms of AUROC and K-S.
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6 Conclusions

As we have shown in the previous section, we can build more robust scoring
models by transforming the original dataset with the WoE and then applying
a feature selection method. Not only the models generated with the assembled
method are more accurate but also the distance between the classes to predict is
higher as indicated by the results above. However, some of the feature selection
methods have different stopping criteria for selecting the number of features. For
this study, we used the ten with a higher score on the respective feature selection
method.

For future work, we will focus on using different stopping criteria for the
different methods. We believe this can be a determining factor of the performance
scoring algorithm as we might be losing relevant features in some methods due
to the limitation of using the top ten features. Furthermore, we will study the
optimal stopping criteria for the different methods. As some of them do not have
a clear threshold to cut as the IV. We will also explore how the different methods
for binning the numerical features with the WoE transformation can affect the
features predictive power.
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jure.brence@ijs.si

2 Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
3 Institute for Computational Biomedicine, Faculty of Medicine,

Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany
4 Φ-lab, ESA/ESRIN, Frascati, Italy

5 Earth and Mission Science Division, ESA/ESTEC, Noordwijk, The Netherlands

Abstract. Surrogate models approximate the predictions of other mod-
els. The motivation for learning surrogate models can come from com-
putational concerns, when the predictions of the original model are com-
putationally expensive to obtain. In contrast, the surrogate models are
computationally efficient.

In this paper, we propose a framework for machine learning of sur-
rogate models, which operate on the same input and output spaces as
their original models. Instead of learning direct mappings from the input
to the output space (and vice versa), we first assess the intrinsic dimen-
sionality of the input and output spaces and reduce it appropriately,
by using PCA and autoencoders. Predictive models are learned on the
reduced spaces by the use of neural networks and their predictions are
mapped to the original spaces.

We apply the framework to learn a surrogate model for a complex
radiative transfer model RemoTeC, designed and built at SRON in the
Netherlands. The original model predicts shortwave infrared (SWIR)
spectra, for a given state vector of atmospheric parameters, represen-
tative of any geo-location that the Sentinel 5P satellite may encounter.
The results indicate a low dimensionality of both the input and the out-
put space and are accurate in both the forward and reverse direction.
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1 Introduction

The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Coperni-
cus Sentinel-5 Precursor (S5P) satellite is an important step forward in Earth
Observation. TROPOMI provides global information on air quality and green-
house gases such as methane, carbon monoxide and water vapour, as well as
many others. TROPOMI products, such as gas concentrations, are generated
through schemes knows as atmospheric retrievals. The retrieval schemes of some
of these products, for example methane, typically rely on “optimal estimation
methods”, which although well proven, require large processing resources due to
the running of forward models.

In physical sciences and engineering, theories are often tested by comparing
measured or experimental data with the results of computational methods. These
methods are expensive to compute, especially when the parameter space is large
or an iterative approach is used. In such cases, the simulation or a part of it, can
be replaced by a surrogate model - a computationally efficient approximation
of a computationally complex function. Machine learning models are typically
computationally expensive during the training process, but cheap when used
for prediction. The use of a surrogate model speeds up the simulation, which
allows researchers to spend their computational time on exploring larger parts
of the parameter space, or improving the accuracy of their methods through
more iterations [14].

In the case of TROPOMI trace gas retrievals, surrogate models that emulate
the full forward physical model are gaining interest recently, since running the
complex forward models is a bottleneck in the provision of operational and/or
near-real time products. Being able to reduce computational and timing costs
provides an opportunity for using more advanced physics for trace gas retrievals,
without the overhead penalty on operational retrievals.

In this study we present our work on implementing a surrogate model that
would emulate the simulations of the RemoTeC algorithm (currently the main
source of TROPOMI trace gas concentrations) accurately and in a computation-
ally efficient way. In addition to forward models learning to predict the output
of the simulation, we also train reverse models to predict simulation parameters,
based on the outputs. Reverse models can be considered as surrogates for the
task of estimating the parameters of a complex system, given real measurements
or simulation.

Emulating the RemoTeC algorithm presents unique challenges, because the
algorithm features a large number of dimensions in both input and output spaces,
compounded by the requirement of developing both forward and backward mod-
els. Many machine learning algorithms have trouble with predictions in settings
like this due to the curse of dimensionality. Dimensionality reduction is a family
of unsupervised learning methods that can be helpful in approaching such prob-
lems. These methods try to find an embedding - a projection of the data to a space
of fewer dimensions that preserves as much information as possible [4]. Some well
known algorithms include principal component analysis (PCA) [13], kernel PCA
[4], t-SNE [11], UMAP [12] and autoencoders [3]. We investigate different methods
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of dimensionality reduction for both input and output spaces and evaluate their
effect on the performance of the predictive models as surrogates for the task of
simulation and parameter estimation.

2 RemoTec Radiative Transfer Model for Sentinel 5P
TROPOMI Simulations

2.1 Copernicus Sentinel-5 Precursor

The S5P satellite was launched in October 2017 with the aim to provide global
information on air quality and greenhouse gases. S5P is a joint venture between
the European Space Agency (ESA) and the Netherlands, and is the first of
several planned missions for air quality monitoring in the ESA/European Com-
mission Copernicus program. Onboard S5P is the TROPOMI instrument which
is an imaging spectrometer, providing data in a number of wavebands, of which
the SWIR band (2300–2380 nm) is the subject of this work. The SWIR band
(typically known as SWIR3) is focused on providing data on atmospheric con-
centrations of methane, carbon monoxide and water vapour, all of which are
important in the context of a changing global climate [9].

2.2 RemoTec Code and LINTRAN RTM

A “retrieval algorithm” is used to convert the spectra captured by TROPOMI
(known as Level 1 data) into trace gas concentrations (known as Level 2 data),
for example the RemoTeC algorithm, the details of which are covered in [2,7].
RemoTec simulates a realistic approximation of the instrument response of S5P
SWIR band, given a wide range of atmospheric parameters, including scattering
by aerosols and variations in surface albedo and solar zenith angle, and is one of
the current key methods for methane retrievals from S5P/TROPOMI. The core
of the RemoTeC algorithm is the LINTRAN radiative transfer model [6], which
calculates synthetic spectra based on a set of input atmospheric, spectroscopic,
surface and instrument properties/assumptions. The whole retrieval process is
computationally intensive, and the speed up of these algorithms is the subject
of much work in the atmospheric communities.

The RemoTeC algorithm is split into two components, operational and syn-
thetic, where the operational aspect deals with the active retrievals of methane
from TROPOMI [8] and is not the subject of this work. The synthetic component
was designed to test the RemoTeC algorithm prior to the launch of S5P, and is
based on the retrievals of synthetically generated atmospheric scenarios, where
the synthetic scenarios are used to generate synthetic spectra using LINTRAN.
These scenarios form the basis of the training data set used in this study, and
are described in more detail below.
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Table 1. Input atmospheric parameters for the RemoTec model, value distribution
and source of information.

Parameter Variation/distribution Source

SZA 0–70 deg

Albedo 0.01, 0.1, 0.3, 0.5, 0.8 ADAM database

CH4 profile Arctic, mid-latitude and tropical conditions TM5 model

CO profile Arctic, mid-latitude and tropical conditions TM5 model

H20 profile Arctic, mid-latitude and tropical conditions ECMWF

Aerosols Five different aerosol types ECHAM-HAM

Temperature Arctic, mid-latitude and tropical conditions ECMWF

Pressure Arctic, mid-latitude and tropical conditions ECMWF

2.3 Inputs: Atmospheric Parameters

The training dataset is generated using the RemoTeC tool, provided by Dr. J.
Landgraf at the Dutch Space Research Organisation (SRON). The atmospheric
parameters input into RemoTec are designed to cover the range of atmospheric
conditions that S5P/TROPOMI is expected to encounter, in order to develop
a surrogate model capable of approximating both realistic atmospheric condi-
tions and S5P/TROPOMI measurements. The input state vectors are generated
from a combination of chemistry transport models. Table 1 outlines each of the
atmospheric parameter inputs, their possible associated values and the source
of information (either from chemistry transport models, meta-data or explicitly
defined). A combination of values, one for each parameter shown in Table 1, is
fed into RemoTeC/LINTRAN as a state vector.

In total, a dataset of 50,000 input state vectors is generated. This dataset
comprises 10,000 individual measurement points, split into a global dataset of
3×3 degree bins, representing one day from each season, i.e. January, April, July
and October. The dataset is generated by varying the surface albedo conditions
between 0.01 and 0.8 (as shown in Table 1) for each of 10k simulated measure-
ment points. Land conditions are considered only, and no sea environments are
included in the dataset.

2.4 Outputs: S5P TROPOMI L1 Synthetic Spectra

Given each set of state vectors, synthetic Level 1 radiance (defined as the radiant
flux emitted, reflected, transmitted or received by a given surface, per unit angle
per unit projected area) spectra are simulated using the RemoTec RTM in the
S5P/TROPOMI Shortwave InfraRed (SWIR3) band. An example of the SWIR-3
band spectra produced by RemoTec is given in Fig. 1. In total, 50,000 synthetic
spectra were generated under a given state vector of atmospheric parameters,
outlined in the Section above.
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Fig. 1. An example SWIR3 spectrum from RemoTeC, assuming a realistic atmospheric
profile and TROPOMI instrument characteristics.

3 Surrogate Model Learning

Surrogate models are commonly used to replace computationally expensive sim-
ulations of complex models. However, constructing surrogate models and mak-
ing predictions can still be computationally complex. This is the case when the
dimensionality of the input or the output space is large, increasing the complex-
ity of model construction, as well as the computation time required to make
predictions. One way to address this issue is through the use of methods for
dimensionality reduction.

In our framework, depicted in Fig. 2, preprocessing and dimensionality reduc-
tion is performed on the input and the output spaces, i.e. on atmospheric param-
eters and spectra, separately. The forward model takes an embedded represen-
tation of the parameters as input and predicts the representation of spectra as
output. The predictions in the embedding of the output space are then inversely
transformed to obtain predictions in the original space of spectra. For the back-
ward model, the roles of input and output are reversed, with the representation
of spectra acting as input and the representation of atmospheric parameters
acting as output to be predicted.

3.1 Data Exploration and Preprocessing

Initial exploration of the dataset revealed three features with constant values
among the atmospheric parameters, which we removed from the data. The
remaining 122 features have magnitudes on different scales. The distributions
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Fig. 2. The architecture of our framework for learning surrogate models.

of the variables are either bimodal or heavy-tailed unimodal, with high density
around the modes. We normalized the atmospheric parameter data to a standard
distribution by applying the transformation x−μ

σ .
The spectral space contains 834 targets, all on a similar scale. Their dis-

tributions are predominantly exponential. We divided all values by 1011 and
applied a logarithmic transformation, followed by normalization to a standard
distribution.

3.2 Dimensionality Reduction

We have studied and compared two methods of dimensionality reduction within
our framework: principal component analysis (PCA) and autoencoders. PCA is a
popular method that is easy to implement and cheap to compute. Autoencoders
feature a number of hyperparameters and are computationally more expensive,
but have the potential to find better embeddings than PCA, due to the nonlinear
transformations they make.

Principal Component Analysis. is a linear method of dimensionality reduc-
tion that finds projections into lower-dimensional subspaces, so that variance in
the data is maximized. We can gain some insight about the intrinsic dimensional-
ity of our data by looking at how the cumulative relative variance depends on the
number of principal components, as depicted in Fig. 3. For the 122-dimensional
atmospheric parameter space, we need:

– 23 dimensions to explain 95% of the variance,
– 45 dimensions to explain 99% of the variance, and
– 73 dimensions to explain 99.9% of the variance.
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Fig. 3. Dependence of the cumulative relative variance on the number of principal
components for both the input and the output space.

In the 834-dimensional spectral space,

– 1 dimension is enough for 95% of the variance,
– 2 dimensions are enough for 99% of the variance, and
– 9 dimensions are enough for 99.9% of the variance.

The spectral space has peculiar properties and an extremely low intrinsic dimen-
sionality. In particular, the first principle component is very high, which might
indicate an artifact in the simulations or in the sampling of the dataset. The
atmospheric parameter space appears to be overdetermined as well, allowing a
reduction from 122 dimensions to 45, while keeping 99% of the variance. The
observed properties of the spectral space are worrying and warrant further inves-
tigation by domain experts. Nevertheless, the dataset presents an interesting
opportunity for the study of the impact of dimensionality reduction on the pre-
diction task at hand.

Autoencoders. are a type of neural network that is used to learn low dimen-
sional embeddings. The network is trained to reproduce the input data on the
output layer, with the defining characteristic that the network architecture fea-
tures a bottleneck - the embedding layer. A concern when designing autoencoders
is that a network with sufficient capacity would memorize the entire dataset and
simply learn the identity function to satisfy the reproduction loss function. To
combat this issue and improve the ability of an autoencoder to capture important
information and learn richer representations, different methods of regularization
are employed. Some common methods include batch normalization, adding a
sparsity term to the loss function and adding noise to the input.

We performed dimensionality reduction using a denoising autoencoder [5].
Adding some amount of Gaussian noise to the input data forces the autoen-
coder to learn meaningful features. We treated the variance of the noise as a
dimensionality reduction hyperparameter and tested several options. Note that
the noise is only added during training.
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We experimented with a number of autoencoder architectures and settled on
a model with a total of 7 layers, including input and output. The structure of
the autoencoder for the parameter space can be summarized as follows:

1. input layer of size N0 = 122 + Gaussian noise layer,
2. fully connected layer of size N1 < N0 and activation ReLu,
3. fully connected layer of size N2 = 1

2N1 and activation ReLu,
4. fully connected (embedding) layer of size N3 < N2 and linear activation,
5. fully connected layer of size N2 and activation ReLu,
6. fully connected layer of size N1 and activation ReLu,
7. output layer of size N0 = 122 and linear activation.

For the spectral space, the architecture is the same, with N0 = 834. The
models were trained using the Adam optimizer [10] and a MSE loss function.
The models were implemented with Tensorflow 2.0 [1].

3.3 Learning Forward/Backward Models on Reduced Spaces

Our method of choice for learning the predictive models were feedforward neural
networks. In our experiments, we used a network with two fully connected hid-
den layers and ReLu activation functions on every layer, except the output layer,
which used a linear activation function. Since we investigated the effect of differ-
ent levels of dimensionality reduction on both the input and the output space,
the number of neurons in each layer varied and was treated as a hyperparameter
to be optimized.

The models were trained on the preprocessed training set with reduced
dimensions. The hyperparameters defining the network architecture were opti-
mized by using a validation set. The test set was used to compute the prediction
errors for evaluating the model and for comparing different combinations of
dimensionality reduction and prediction models.

4 Experiments and Results

We tested and evaluated two methods for dimensionality reduction and predic-
tion to identify the best choice for our particular problem. We compared the
properties of different methods of dimensionality reduction and how well they
are able to reconstruct the original data. We then implemented predictive mod-
els that map between the reduced input and output spaces and compared their
predictive performance. The workflow can be summarized as follows:

1. Randomly split the data into a training set (80%), validation set (10%) and
test set (10%).

2. Preprocess the features and targets.
3. Compute a dimensionality reduction projection on the feature space of the

training set, then transform all three sets using the learned projection. Eval-
uate by using the error of reconstruction on validation set as a measure of
quality. Repeat for the target space.
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4. Train the neural network to predict from the reduced feature space to the
reduced target space. Optimize the hyperparameters of the network by using
the validation set. Vice-versa for the backward model.

5. Evaluate the forward and the backward model on the test set.

Note that step 1 - the splitting of the dataset - was done only once, with all
subsequent experiments working on the same split.

4.1 Dimensionality Reduction

We compared the different methods for dimensionality reduction on both the
atmospheric parameter and the spectral space separately. We reduced the dimen-
sionality of the parameter space from 123 down to 45 dimensions and the dimen-
sionality of the spectral space from 834 to 2. The lowest numbers of dimensions,
45 and 2, correspond to the numbers of principle components in the parame-
ter and the spectral space, respectively, that are needed to explain 99% of the
variance.

The reconstruction errors, i.e., the root mean squared errors (RMSE), of the
models constructed using reduced dimensions obtained with autoencoders and
PCA are shown in Table 2. When training the denoising autoencoder, we added
Gaussian noise with mean μ = 0 and different values for the standard deviation
σ. The models were trained on the train set and evaluated on the validation
set. Unsupervised learning normally does not require a train-test split. Here, we
train the autoencoders on the train set only, since the dimensionality reduction
models are used to inverse transform the predictions from the embedded space
back into the original space. The error of this reconstruction is more objectively
estimated by evaluating it using unseen data from the validation set.

Table 2. The reconstruction error (RMSE) of an autoencoder with three different
input noise levels (σ) compared to PCA. For the atmospheric parameter space (X), we
reduce the dimensions from 123 to 45. For the spectral space (Y), the dimensions are
reduced from 834 to 2.

σ Autoencoder PCA

0 0.1 0.5

X 0.58 0.71 1.51 0.62

Y 1.51 1.52 1.57 1.67

We observed that adding noise resulted in worse reconstruction error on the
test set for high noise values. The reconstruction error of the autoencoder on
the parameter space is lower than the error of PCA for no added noise, and
higher for both nonzero levels of noise. In the spectral space, the autoencoder
reconstruction error is lower than the error of PCA for all levels of noise.
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4.2 Predictive Models

We compared the prediction error of the models, mapping between the embed-
ding spaces, created by different methods of dimensionality reduction, using the
root mean squared error of the predictions. The error was computed in the orig-
inal space, after inversely transforming the predictions. To provide a reference
for the quality of our models, we compared the prediction errors to the error of a
conservative baseline model that always predicts the average value of the target
from the train set.

Table 3. Comparison of the prediction error of the predictive models with different
reduced input and output spaces. The reduced dimensions are 45 for the atmospheric
parameter space and 2 for the spectral space, in all four cases.

σ Autoencoder PCA Baseline

0 0.1 0.5

Forward 3.8 2.2 2.7 2.4 33.5

Backward 11.4 11.4 11.8 11.4 16.5

Table 3 shows the performance of the predictive models using different dimen-
sionality reduction methods. For the forward model, the prediction using autoen-
coder representations works best with a noise level of σ = 0.1. Regularization
by adding noise improved the performance of prediction. PCA reduction outper-
forms reduction with autoencoders without noise, as well as high noise. For the
backward model, the performances are similar.

We further compared the effect of input and output space dimensionality
on the predictive performance of the learned models. Considering the results
of the previous step, we chose σ = 0.1 for the noise level. We compared
the prediction error for different combinations of embedding dimensionality as
dim(X) − dim(Y ):

– 45-2, which explains 99% of variance in PCA,
– 73-9, which explains 99.9% of variance in PCA, and
– 102-50, which explains nearly 100% of variance in PCA.

We chose 50 as the largest output dimension, because it resulted in best per-
formance and at the same time represents a large reduction in dimensionality.
In Table 4, we show the results and compare the performance of the predic-
tive models using different levels of dimensionality reduction, as well as to the
performance of the predictive model without any dimensionality reduction.

Models using PCA for dimensionality reduction outperform models using
autoencoders for all pairs of reduced dimensions, except for 45-2. For both the
forward and the backward model, all combinations of dimensionality reduction
outperform the baseline predictor. After dimensionality reduction, the predictive
model can have an error, higher than the error of a model constructed on data
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Table 4. Comparison of the prediction error on the test set for different dimensions of
the atmospheric parameter and spectral space representations. The noise level of the
autoencoder was set to σ = 0.1.

Forward model

Dimensions (X-Y) Autoencoder multicolumn1l—PCA No DR Baseline

45-2 2.2 2.4

73-9 1.9 1.1

102-50 0.95 0.85

All 0.98 33.5

Backward model

Dimensions (X-Y) Autoencoder PCA No DR Baseline

45-2 11.4 11.4

73-9 7.0 5.0

102-50 5.9 4.2

All 4.7 16.5

with no dimensionality reduction. Interestingly, the predictive performance for
the forward model is improved by using an embedding of 102 dimensions in the
parameter space and 50 dimensions in the spectral space, as compared to using
the full spaces.

The results for the backward models are similar, with one important dif-
ference: the performance of the backward models is generally lower than the
performance of the forward models. While still better than the baseline predic-
tor, the difference is not large. The best performing combination is the same
as in the forward model: PCA with 102 dimensions in the parameter space and
50 dimensions in the spectral space. Using autoencoders results in lower per-
formance than using PCA. Models using dimensionality reduction outperform
models working in the original space.

To confirm the effect of dimensionality reduction, we took the best perform-
ing models using dimensionality reduction, as well as models working in the
original space, and re-evaluated them by 10-fold cross validation. We compare
the coefficient of determination

R2 = 1 − MSE(model)
MSE(baseline)

in Table 5.
After re-evaluation, the forward models in the original space achieve the same

R2 as forward models in reduced space, up to the fourth decimal. However, the
backward models experience a great improvement in performance by reducing
the dimensionality, bringing the coefficient of determination from 0.906 to 0.973.
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Table 5. Coefficient of determination for the best performing models using dimen-
sionality reduction (PCA 102-50) and the models with no dimensionality reduction,
estimated by 10-fold cross validation.

DR No DR

Forward 0.9999 0.9999

Backward 0.9733 0.9060

5 Discussion

The results of our study are very promising. The RemoTeC simulation can be
emulated well by predictive models based on neural networks in both the forward
and backward directions. The use of dimensionality reduction on the parame-
ter and spectral spaces considerably improves the performance of the backward
model and does not degrade the performance of the forward model. Furthermore,
the predictive model can be simpler when mapping between spaces with fewer
dimensions, leading to improved computational efficiency. In our experiments,
making predictions using the neural network was approximately 33% faster when
mapping between the reduced spaces than when working in the original space.
Both options need only a few tenths of a second to make predictions for 5000
examples, while the original simulation requires hours or days of computation.
The main motivation for developing surrogate models is to improve computa-
tional efficiency and the developed models proved to be very successful at that
task.

Our analysis of the dataset revealed an extremely high first principal compo-
nent in the spectral space and low intrinsic dimensionality of the spectral, as well
as the parameter space. This property is likely linked to limitations in the set
up of the training dataset and associated sampling of certain parameters. It is
unclear how the presence of this artifact affects the performance of the presented
methodology.

A large part of this study was devoted to investigating how techniques for
dimensionality reduction can be used to improve the performance and com-
putational efficiency of surrogate models. However, the choice of algorithm for
prediction was given relatively little attention. Further work will likely include
a comparison of different models, with a focus on ensembles of regression trees
- the random forest family of methods.

The eventual aim of this study is to input the surrogate model developed here
into retrieval algorithms for various trace gases, that currently rely on the full
forward physical models. This would allow us to firstly determine the uncertainty
of the surrogate model compared to the full physical forward model at the trace
gas level with respect to uncertainty requirements developed for the mission.
Secondly, given this uncertainty information with respect to requirements, we
can assess the trade-off between reduction in computational and timing costs of
the surrogate model with potential losses in accuracy, compared with the original
physical model.



Surrogate Models with Application to Sentinel 5P 229

One of the key advantages of using surrogate over physical models, is the
ability to retrieve trace gases using more accurate but computationally expen-
sive models that make use of more complex physics. In operational or real-time
use, employing more complex physics (for example retrievals of individual aerosol
types, or employing line-by-line spectroscopic parameter calculation) is often not
possible. However, surrogate models that learn from more accurate models but
perform computations in a fraction of the time (given a possible loss in accuracy)
can be extremely useful. Accordingly, further work intends to explore the learn-
ing of surrogate models from either more complex physical models or models
that include more advanced physics. With large numbers of Earth Observation
missions planned in the coming decades, huge volumes of additional data will
need to be analysed. By using the methods highlighted in this work, it may be
possible to speed up this analysis, while retaining high levels of accuracy without
making the assumptions and sacrifices made by current retrieval algorithms in
order to remain quick.
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Abstract. We investigate several global variable importance measures
derived from artificial neural networks (ANN) to address the challenging
problem of feature ranking in high-dimensional unstructured problems.
While several ANN (local) importance measures have been validated in
the context of computer vision or natural language processing tasks, it
is not clear how these methods perform on unstructured problems where
many variables are expected to be irrelevant. We empirically compare
these ANN measures with one standard and state-of-the-art Random
forests (RF) importance measure on several artificial and real datasets.
These experiments show that ANN measures can achieve performance
similar to the RF measure, sometimes outperforming it. On some prob-
lems however, the feature rankings returned by ANN are not as good as
the ones returned by RF, despite significantly better predictive perfor-
mance. Importantly, reaching the best performance with the ANN-based
methods often comes at the cost of introducing a so-called selection layer
at the beginning of the network. Using this specific neural architecture
has proven to be critical both in terms of feature ranking and predic-
tive performance on datasets with many irrelevant variables. Finally, we
evaluate these methods on the problem of gene network inference, where
they yield decent performance, without however outperforming RF.

Keywords: Feature ranking · Deep learning · Neural networks · Gene
regulatory network inference · Random forests

1 Introduction

In many supervised learning applications, one is more interested by the inter-
pretability of the trained model than by its actual predictive performance. One
way to gain such interpretability is through the application of feature selection
(or ranking) techniques, which aim at identifying the most relevant input features
for predicting a given output. Recently, motivated by the advent of deep learn-
ing, there has been a resurgence of interest towards (old and new) techniques to
derive variable importance scores from artificial neural networks (ANN) [1,7,16].
However, these methods have been mostly evaluated in the context of computer
vision or text mining applications, where input relevance is typically computed
c© Springer Nature Switzerland AG 2020
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61527-7_16&domain=pdf
https://doi.org/10.1007/978-3-030-61527-7_16


232 N. Vecoven et al.

on a per sample basis (usually referred to as local importance measure) and can
be assessed easily by human inspection. It is hence not clear how these ANN-
based methods perform on unstructured, high-dimensional datasets where many
variables are expected to be irrelevant. Furthermore, only very few works have
focused on deriving feature importances in a global way, i.e., at the dataset level.

Feature selection techniques are traditionally divided into three families: fil-
ter, wrapper and embedded approaches [5]. Filters perform feature selection by
looking at the intrinsic properties of the data. They are simple and fast, but they
however work independently of the training of the predictive model. On the other
hand, wrapper and embedded methods depend on the trained model. Wrappers
use the model as a black box and exploit the predictions returned by the black
box for deriving feature importance scores, e.g., by measuring how the output
changes when perturbing the input or by training different models on different
subsets of features. Embedded approaches directly incorporate feature selection
in the training of the model and compute variable importance scores using for-
mulae based on the internal parameters of the trained model. Like wrappers,
embedded methods have the advantage to interact with the learning algorithm,
while being typically much less computationally intensive.

In this paper, we focus our analysis on embedded approaches for ANN. We
extend several existing approaches to derive global variable importance scores
from ANN and compare them to a popular embedded approach, which derives
variable importance scores from Random forests (RF) [12]. We carry out exper-
iments on benchmark datasets, which show that ANN measures can achieve
performance similar to the RF measure, sometimes outperforming it. On some
problems however, the feature rankings returned by ANN are not as good as the
ones returned by RF, despite significantly better predictive performance. Our
experiments also show that the introduction of a selection layer at the beginning
of the neural network allows to strongly improve the performance, both in terms
of prediction and feature ranking. Finally, we compare ANN and RF on a chal-
lenging task in computational biology, namely the inference of gene regulatory
networks, where RF are currently amongst the state-of-the-art approaches. While
the ANN-based approaches do not outperform RF, they nevertheless return very
promising results.

In the following, Sect. 2 formalizes the feature ranking problem, Sect. 3 intro-
duces three ANN-based global variable importance measures, and Sects. 4 and 5
show our results on benchmark problems and on the gene network inference task
respectively.

2 Problem Definition

In this paper, we tackle the problem of identifying relevant variables in a high-
dimensional dataset comprising many irrelevant variables. We consider that a
variable is relevant if it conveys information about the output, either in isolation
or in conjunction with other relevant variables. More formally, let us consider
a set X = {X1, . . . , Xp} ∈ R

p of p input random variables and an output Y
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that can be either continuous (regression problem) or categorical (classification
problem). Let X−i be the set X\Xi. Following the standard definition in [9],
a variable Xi is said to be relevant if there exists a subset B ⊆ X−i (possibly
empty) such that Xi brings additional information about Y conditionally to B,
i.e. if there exist some values xi and b with probability P (Xi = xi,B = b) > 0
and a value y such that1:

P (Y = y|Xi = xi,B = b) �= P (Y = y|B = b). (1)

A variable is thus irrelevant if it is independent of the output conditionally to
any subset of the other variables.

We assume that we have at our disposal a training set of N instances of
input-output pairs, drawn from the unknown probability distribution P (X, Y ):

S = {(xk, yk)}N
k=1. (2)

A feature ranking method is then defined here as a procedure that exploits S to
associate an importance score Imp(Xi) to each input variable Xi(i ∈ {1, . . . , p}),
with the aim of assigning the highest scores to the relevant variables. Note that
while our goal is to rank all the relevant variables above the irrelevant ones, we
do not evaluate the ranking of the relevant variables among them.

3 Variable Importances from Neural Networks

In the past few years, numerous approaches have been developed for explaining
predictions returned by ANN, among which are embedded methods that com-
pute importance measures for input features. These approaches usually provide
local importance scores, measuring the relevance of each input feature for a given
individual prediction. They can be broadly divided into two families: gradient-
based methods (e.g., [3,22]), which compute the gradient of the output with
respect to the input, and decomposition-based methods (e.g., [2,21,24]), which
decompose the output prediction (or the difference with respect to a baseline)
into a sum of contributions from the different input features. Both gradient-based
and decomposition-based methods are backpropagation approaches that propa-
gate the importance signal from an output neuron to the input neurons through
each layer of the network. Note that there exists a third category of embedded
approaches, which identify the input pattern that activates the neurons in the
different ANN layers (e.g., [8,23,26]). These approaches were however specifi-
cally developed for visualizing the predictions of a convolutional neural network
in the context of image classification, and are therefore out of the scope of our
analysis.

Our goal in this paper is to study how ANN-based importance measures
perform with respect to standard measures derived from Random forests, rather

1 Note that this definition applies to discrete variables, but can be easily extended to
continuous variables by changing probabilities P (Xi = xi) to P (Xi ≤ xi).
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than comparing the existing ANN-based measures among them. We thus analyze
in this paper only one representative method from each family. For a detailed dis-
cussion and comparison of the different existing approaches for ANN, the reader
can refer to [1,7,16]. As representatives of the gradient-based and decomposition-
based approaches, we choose, respectively, a standard approach that computes
the absolute value of the derivative of the output with respect to each input fea-
ture (called GRAD in the following) [10,22] and the layer-wise relevance prop-
agation (LRP) technique [2]. Both GRAD and LRP can be used with any pre-
trained network with an arbitrary feed-forward structure. These methods (and
some of their variants) have been previously discussed in the context of image
classification, where they were shown to be able to identify the pixels that are
useful for classifying a given image [2,22]. As mentioned above, GRAD and LRP
provide local importance measures. Although local interpretation can provide
fine-grained information about individual predictions, our goal here is different
as we would like to derive a global measure of importance over all the instances,
in order to get insights into the learned input-output relationships at the dataset
level. To compute such global importance, we simply sum (or average) the local
measures over all the training samples. In addition to GRAD and LRP, we also
study a third approach based on the introduction of a so-called selection layer
(SL), which thus requires to train a specific network structure.

Note that since we are targeting high-dimensional unstructured datasets, we
focus on fully-connected feed-forward neural networks, although every method
investigated in this work can be extended to more complex architectures in a
straightforward way. We also assume here for simplification that all the hidden
neurons use ReLU activations [17] and we expose each method in a (multi-
output) regression setting. In the case of classification, a softmax layer is added
and variable importances are derived by considering the inputs of the softmax
layer—the logits—as multiple regression outputs. Python source codes of the
different ANN-based methods presented below are available at https://github.
com/nvecoven/ann fsl.

3.1 Gradient (GRAD)

Let f(x) be the ANN output for a given sample x. A standard variable impor-
tance measure for the input xi is given by the absolute (or squared) value of
the derivative ∂f(x)

∂xi
[10,22]. This importance score thus measures how much the

network output for the sample x changes regarding an infinitesimal change in
xi, and can be efficiently computed using back-propagation. To obtain a global
importance score, we extend this approach by simply taking the sum of the
derivatives over all the instances of the training set:

Imp(Xi) =
N∑

k=1

∣∣∣∣
∂f(xk)

∂xi

∣∣∣∣ , (3)

When there are multiple outputs, the importance score can be summed over
the different outputs. Note that when using ReLU activation functions, one can

https://github.com/nvecoven/ann_fsl
https://github.com/nvecoven/ann_fsl
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show that:
∂f(x)
∂xi

=
∑

∀P∈Γi(x)

∏

w∈wP

w, (4)

where Γi(x) is the set of all non-blocked paths from input xi to the ANN output
for the example x and wP is the set of all the weights along the path P . A path
is said to be blocked if it passes through an inactive neuron (i.e. a ReLU neuron
that has a negative input).

3.2 Layer-Wise Relevance Propagation (LRP)

Although commonly used, the gradient method has the drawback that it does
not explain the output of the network but rather how the output varies when
the input is changed [16]. Clearly, an input could be relevant even if (3) is zero
at a given point. Several alternative importance measures have been proposed
to circumvent these limitations. As a representative of these methods, we use
below a particular instance of the generic LRP method proposed in [2].

Let us consider a rectified fully-connected feedforward network and let a
(j)
i

be the activation (i.e. output) of the ith neuron in the jth layer (0 ≤ j ≤ L,
1 ≤ i ≤ pj). In such network, a

(0)
i = xi is the ith input (with p0 = p). For j ≥ 1,

a
(j)
i = ReLU

(∑pj−1
k=1 a

(j−1)
k w

(j)
ik + b

(j)
i

)
, where weights w

(j)
ik , corresponding to

connections from the kth neuron of the j − 1th layer to the ith neuron of the
jth layer, and biases b

(j)
i are learnable parameters. In classification, the outputs

of the Lth layer are called the logits, which can be turned into probabilities by
running them through a softmax function. The relevance of the ith neuron of
the jth layer can be computed with

Imp
(j)
i (x) =

⎧
⎪⎨

⎪⎩

|a(L)
i | if j = L

∑pj+1
k=1

a
(j)
i ReLU

(
w

(j+1)
ki

)

∑pj
l=1 a

(j)
l ReLU

(
w

(j+1)
kl

)Imp
(j+1)
k otherwise

(5)

This propagation rule corresponds to the LRP rule with α = 1 and β = 0
[2]. In the case of ReLU activations, it can be shown that applying this rule
at a given layer can be viewed as a Taylor decomposition of the importance at
that layer onto the lower layer [16]. The importance of an input Xi is eventually
computed as the sum of Imp

(0)
i (x) over all the training examples x. In essence,

while GRAD uses the samples to identify the (in)active paths, LRP looks at the
activations.

3.3 Selection Layer (SL)

This method is inspired by sparse linear regression [25]. As illustrated in Fig. 1,
a one-to-one connected layer with linear activations and no bias, called here
selection layer, is introduced between the inputs and the first hidden layer of
the network [11]. As all the other weights of the network, the weights of SL are
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x1
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wsl
3

y1

y2

Fig. 1. Example of selection layer architecture. The selection layer consists of a one-
to-one connected layer between the input variables xi and the first hidden layer of the
network. Dashed (resp. plain) circles represent neurons with linear (resp. non-linear)
activations.

initialized with random values drawn from a truncated normal distribution with
0 mean and 0.1 standard deviation, and the network is trained while penalizing
them to ensure that only useful information goes through the network. The
importance Imp(Xi) is then simply set to the weight

∣∣wsl
i

∣∣ of Xi in the selection
layer. Penalization can be achieved through elastic net [27], where the overall
loss function is of the form:

Lθ,sl(B) =
1

|B|
∑

(x,y)∈B

Cθ(x, y) +
α1

p

p∑

i=1

|wsl
i | +

α2

p

p∑

i=1

(
wsl

i

)2
(6)

where Lθ,sl is the loss of the network indexed by parameters θ, Cθ(x, y) is the
regular cost function (cross-entropy for classification problems or least-square
error for regression problems) over batch B ⊆ S, |B| is the batch size, and
α1 ≥ 0 and α2 ≥ 0 are hyper-parameters balancing the penalty terms. Unless
otherwise mentioned, in our experiments we focus on a L1 penalty only, i.e. we
set α2 = 0.

3.4 Hybrid Methods

Below, we also experiment with mixed strategies, called SL+GRAD and
SL+LRP, that train the network using the selection layer but compute the vari-
able importances using the GRAD and LRP techniques respectively. We will
show in Sect. 4 that these hybrid methods allow to strongly increase the perfor-
mance on benchmark datasets.

4 Experiments on Benchmark Problems

We use datasets with a known ground-truth (i.e. known relevant features) in
order to evaluate the five ANN-based approaches (GRAD, LRP, SL, SL+GRAD,
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SL+LRP) introduced in the previous section. We compare them to standard RF
mean decrease impurity (MDI) score, using as impurity measure the Gini index
in classification and the variance in regression [12]. Since the relevant features
are known, the variable rankings are assessed using the area under the precision-
recall curve (AUPR). The AUPR will be equal to 1 if the ranking is perfect,
i.e., if all the relevant variables receive a higher importance than the irrelevant
ones, while the AUPR will be close to the proportion of relevant variables for
a random ranking. In all the experiments, the inputs are centered and re-scaled
according to their standard deviation prior to training. RF models are composed
of 1000 unpruned trees. The parameter α1 of SL (and α2 when a L2 penalty is
used), as well as the main parameter of RF (i.e., the number K of randomly
chosen variables at each tree node) are tuned to minimize the generalization
error (misclassification rate for classification, mean squared error for regression),
estimated either using a validation set or by cross-validation (details are given
in each respective section).2

4.1 Simulated Problems

We consider four different simulated problems:

LR A linear regression problem generated using the make regression function
in scikit-learn [18]. Output Y is computed as

∑25
i=1 wiXi, where weights wi

are randomly and uniformly selected in [0, 100], and inputs Xi are N (0, 1)
distributed.

LC A linear, binary classification problem generated by thresholding the LR
problem output so that the two classes are perfectly balanced.

NLR A non-linear regression problem generated using the make friedman1
function in scikit-learn, which generates the following problem:
Y = 10 ∗ sin(π ∗ X1 ∗ X2) + 20 ∗ (X3 − 0.5)2 + 10 ∗ X4 + 5 ∗ X5 + 0.1 ∗ ε,
where ε is a N (0, 1) noise and the inputs Xi are uniformly distributed in
[0, 1].

NLC A non-linear, binary classification problem generated using the
make classification function of scikit-learn with 25 relevant features.
Briefly, one of the two classes is associated randomly to each vertex of
a hypercube of dimension 25 and training examples of the corresponding
class are generated in the neighbourhood of each vertex by using a normal
distribution centered on the vertex (with Σ = I).

For each problem, we generate 10 datasets with 2000 training samples, 1000
validation samples and 8000 test samples, and we add in each dataset a varying
number of irrelevant features. These irrelevant features are generated using the
same type of distribution as for the relevant features (i.e. N (0, 1) for LR, LC
and NLC and U(0, 1) for NLR). In all the experiments, unless otherwise stated,
each ANN is composed of 3 hidden layers of respectively 300, 150 and 75 ReLU
2 Unless otherwise stated, values of the parameter K of RF are optimized in

{√
p, log(p), p/3, p/2, p}, where p is the number of inputs.
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Table 1. AUPR and ER/MSE for the four simulated problems, with 5000 variables
in total in each problem. Values indicate means and standard deviations computed
over 10 datasets. The best results are indicated in bold.

SL+GRAD SL+LRP SL GRAD LRP RF

LC ER 0.057±0.011 0.364± 0.006 0.239± 0.014

AUPR 0.902±0.044 0.881± 0.040 0.855± 0.048 0.730± 0.037 0.729± 0.038 0.724± 0.038

NLC ER 0.049±0.007 0.390± 0.025 0.186± 0.021

AUPR 0.945± 0.026 0.941± 0.025 0.896± 0.039 0.599± 0.074 0.604± 0.074 0.996± 0.008

LR MSE 0.007±0.003 0.740± 0.018 0.618± 0.018

AUPR 0.976±0.026 0.969± 0.028 0.967± 0.029 0.864± 0.064 0.860± 0.075 0.815± 0.079

NLR MSE 0.152±0.044 0.862± 0.010 0.237± 0.008

AUPR 0.860± 0.091 0.860± 0.091 0.860± 0.091 0.800± 0.000 0.800± 0.000 1.000±0.000

Table 2. Results on the NLC problem with an increasing number of irrelevant features
(from 25 to 9975 irrelevant features, in addition to the 25 relevant ones).

# feat. SL+GRAD SL+LRP SL GRAD LRP RF

50 ER 0.039±0.011 0.040± 0.005 0.094± 0.014

AUPR 0.998± 0.003 0.995± 0.005 0.986± 0.011 0.999± 0.001 1.000±0.000 1.000±0.000

2500 ER 0.051±0.010 0.352± 0.025 0.171± 0.017

AUPR 0.960± 0.025 0.955± 0.043 0.895± 0.000 0.595± 0.051 0.606± 0.052 0.997± 0.005

5000 ER 0.049±0.007 0.390± 0.025 0.186± 0.021

AUPR 0.945± 0.026 0.941± 0.025 0.896± 0.039 0.599± 0.074 0.604± 0.074 0.996± 0.008

10000 ER 0.065±0.016 0.418± 0.027 0.193± 0.037

AUPR 0.905± 0.052 0.916± 0.052 0.897± 0.064 0.603± 0.086 0.607± 0.085 0.988±0.015

neurons, and is trained for 30000 steps on batches of size 50 using dropout and
AdamOptimiser with a learning rate of 10−3. Values of the SL parameter α1 are
optimized in {10, 100, 1000} on the validation set.

Table 1 reports the AUPR for all the methods on the four benchmark datasets
with 4975 irrelevant variables for LC, LR, and NLC and 4995 for NLR (for a
total of 5000 variables in each dataset), and Table 2 shows the impact of the
number of irrelevant variables on the NLC problem. We also report the predic-
tive performance of each model, i.e., the error/ misclassification rate (ER) in
classification and the mean squared error (MSE) in regression, computed on the
independent test set. The results clearly show the lack of robustness of stan-
dard neural networks (i.e., without any selection layer) in the presence of a large
number of irrelevant features. Without SL, ANN are usually worse than RF
along both ER/MSE and AUPR, while adding SL allows to strongly increase
the performance along both criteria in high-dimensional datasets. Compared to
RF, ANN with SL yield higher performance in terms of ER/MSE on all the
problems, as well as higher performance in terms of AUPR on the linear prob-
lems (LC and LR). RF are better at highlighting the relevant variables on the
non-linear problems, despite worse predictive performance. Among the three SL
methods, SL+GRAD and SL+LRP yield equivalent AUPR while SL returns
inferior results, showing that the weights of SL are not enough to measure fea-
ture importances (see also Fig. 2).
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Fig. 2. Impact of α1 and α2 for NLC with 4975 irrelevant variables. The figure plots
the means and standard deviations of the AUPR over the ten different NLC datasets.

The results in Tables 1 and 2 were obtained using a L1 regularization (i.e.,
with α2 in Eq. (6) set to 0) on the weights of SL. Other regularization schemes
could be used instead, such as a L2 regularization (with a corresponding regu-
larization coefficient α2 > 0) or a combination of both. However, as shown in
Fig. 2, these other regularization schemes do not yield better results than L1 for
SL+GRAD and SL+LRP and return lower AUPR for SL.

The network architecture has also a great impact on the AUPR and ER/MSE.
For example, we observe in Fig. 3 that networks with three or four hidden layers
tend to yield the best results on the NLC problem. The figure also shows that
although the ER/MSE and the AUPR are not perfectly correlated, for a single
dataset a lower ER/MSE generally corresponds to a higher AUPR. An unbiased
estimate of ER/MSE using a validation set (or by cross-validation) thus seems
to be a good indicator for automatically selecting the hyper-parameter values.

4.2 HIV Drug Resistance

We also apply the ANN and RF approaches for identifying mutations in the
Human Immunodeficiency Virus Type 1 (HIV-1) that are associated with drug
resistance [20]. Datasets are available for respectively 16 drugs from 3 different
classes (called PI, NRTI and NNRTI, respectively).3 In each dataset, the out-
put is the drug resistance level and each input feature indicates the presence or
absence of a particular mutation at a specific genotype position. Following the
same protocol as in [4,13], for each dataset we remove the samples with missing
drug resistance information, we keep only the mutations appearing more than

3 The HIV-1 datasets are available at: https://hivdb.stanford.edu/pages/
published analysis/genophenoPNAS2006/.

https://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006/
https://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006/
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Fig. 3. Impact of the number of hidden layers (150 neurons each) for the NLC dataset
with 4975 irrelevant variables. Each scatter plot shows the performance metrics of one
feature ranking method for five datasets. The bottom right figure shows the means and
standard deviations over the five datasets.

three times in the dataset and we remove duplicated input columns to allow for
identifiability. Resulting datasets have thus different sizes, with ∼800 samples
and ∼200 mutations for the datasets of the PI class, ∼600 samples and ∼300
mutations for the datasets of the NRTI class, and ∼700 samples and ∼300 muta-
tions for the datasets of the NNRTI class. To evaluate the mutation rankings
returned by ANN and RF, we use the genotype positions found, in a separate
study, to be associated with a treatment by each class of drug [19]. Still following
the protocol used in [4,13], for each drug we consider that a mutation is relevant
if it is located at a position found to be associated with the treatment by the
corresponding drug class. This results in ∼120,∼70 and ∼50 relevant mutations
for the PI, NRTI and NNRTI classes respectively.

Table 3 shows the results obtained with the different methods. Again, we see
here that the addition of the selection layer allows to improve the predictive per-
formance, yielding lower MSE than RF. The selection layer also allows to improve
the AUPR: SL+LRP outperforms LRP on all the datasets, while SL+GRAD out-
performs GRAD on 11 datasets (out of 16). These improvements are however less
impressive than the ones observed on the simulated problems (Sect. 4.1). This can
probably be explained by the fact that the proportion of relevant variables is much
higher in theHIV-1datasets compared to the simulatedproblems.Among the three
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Table 3. AUPR and MSE obtained on the HIV-1 datasets. Best results are shown in
bold. For each dataset, we use an ANN composed of 3 hidden layers of respectively 100,
50 and 25 ReLU neurons, trained for 10000 steps on batches of size 50 using dropout
and AdamOptimiser with a learning rate of 10−3. Values of the hyper-parameter α1

of SL are tuned in {2, 5, 10, 20, 50, 100} by cross-validation, and variable importance
scores are computed from the ANN trained on the whole dataset using the optimized
α1 value. Likewise, the hyper-parameter K of RF is tuned in {√

p, log(p), p/3, p/2, p},
where p is the number of inputs. The generalization error (MSE) of ANN without SL is
estimated by cross-validation while the MSE of ANN with SL and of RF are estimated
by a double cross-validation loop (using the inner loop for hyper-parameter tuning and
the outer loop for error estimation).

PI

Dataset GRAD LRP SL+GRAD SL+LRP SL RF

APV AUPR 0.678 0.598 0.687 0.617 0.686 0.759

MSE 0.401 ± 0.469 0.341 ± 0.448 0.608 ± 0.793

ATV AUPR 0.686 0.597 0.750 0.696 0.703 0.739

MSE 0.410 ± 0.478 0.358 ± 0.403 0.788 ± 0.876

IDV AUPR 0.741 0.605 0.745 0.690 0.724 0.686

MSE 0.420 ± 0.563 0.364 ± 0.388 0.651 ± 0.646

LPV AUPR 0.772 0.640 0.728 0.666 0.701 0.726

MSE 0.367 ± 0.400 0.186 ± 0.108 0.448 ± 0.502

NFV AUPR 0.739 0.618 0.765 0.719 0.771 0.748

MSE 0.464 ± 0.648 0.423 ± 0.627 0.712 ± 1.112

RTV AUPR 0.721 0.609 0.757 0.645 0.743 0.771

MSE 0.347 ± 0.266 0.259 ± 0.194 0.500 ± 0.347

SQV AUPR 0.683 0.628 0.720 0.709 0.735 0.761

MSE 0.409 ± 0.353 0.481 ± 0.382 0.603 ± 0.460

NRTI

Dataset GRAD LRP SL+GRAD SL+LRP SL RF

3TC AUPR 0.331 0.349 0.337 0.357 0.336 0.376

MSE 0.036 ± 0.039 0.032 ± 0.038 0.036 ± 0.028

ABC AUPR 0.482 0.254 0.415 0.356 0.374 0.423

MSE 0.409 ± 0.860 0.353 ± 0.806 0.740 ± 1.769

AZT AUPR 0.381 0.298 0.341 0.346 0.418 0.519

MSE 0.439 ± 0.284 0.325 ± 0.267 0.526 ± 0.313

D4T AUPR 0.480 0.292 0.470 0.383 0.432 0.495

MSE 0.273 ± 0.289 0.261 ± 0.251 0.403 ± 0.359

DDI AUPR 0.476 0.294 0.416 0.359 0.400 0.459

MSE 0.240 ± 0.237 0.095 ± 0.131 0.196 ± 0.219

TDF AUPR 0.289 0.308 0.473 0.389 0.446 0.529

MSE 0.490 ± 1.450 0.726 ± 1.541 1.028 ± 2.863

NNRTI

Dataset GRAD LRP SL+GRAD SL+LRP SL RF

DLV AUPR 0.463 0.196 0.473 0.301 0.474 0.399

MSE 0.365 ± 0.182 0.204 ± 0.135 0.324 ± 0.182

EFV AUPR 0.513 0.193 0.546 0.326 0.534 0.540

MSE 0.515 ± 0.211 0.287 ± 0.184 0.447 ± 0.203

NVP AUPR 0.543 0.228 0.586 0.385 0.580 0.570

MSE 0.323 ± 0.125 0.149 ± 0.082 0.284 ± 0.143

No. wins AUPR 3 0 4 0 2 7

MSE 2 14 0
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SL-based methods, SL+GRAD tends to be the best performer, having the highest
AUPR on 11 datasets. Compared to RF, the performance of SL+GRAD is however
rather disappointing, with a higher AUPR than RF on 7 datasets only, despite a
better predictive performance.

5 Application to Gene Network Inference

An open problem in computational biology is the reconstruction of gene regula-
tory networks (GRNs) from gene expression data. A GRN aims at explaining the
joint variability in the expression levels of a group of genes through a directed
graph, where an edge eij going from gene gi to gene gj indicates that gi regulates
the expression of gj . Often, the aim is to reconstruct a weighted network, where
each putative edge is associated with a confidence weight. One approach to the
reconstruction of weighted GRNs consists in solving one regression problem for
each gene gj in turn, with the expression of gj as output variable and the expres-
sions of the other genes as input variables. The variable importance score of gene
gi in the model predicting the expression of gj is then used as weight for the
edge eij . Using this framework, the RF are currently one of the state-of-the-art
approaches for GRN inference [6].

We use the ANN-based variable importance scores to reconstruct the five arti-
ficial networks of the DREAM4 multifactorial challenge and the real Escherichia
coli network [15] used in the DREAM5 challenge [14]. Each DREAM4 network
is composed of 100 genes, for which the simulated expressions in 100 samples are
available. The E. coli dataset contains the expression levels of 4511 genes in 805
experimental conditions. In this dataset, 334 genes are known to be transcription
factors, and thus we use only those genes as input variables. A gold standard net-
work is available for each dataset, allowing the evaluation of a predicted ranking
of edges in the form of an AUPR. Note that while the DREAM4 gold standard
networks are the true (artificial) networks, the E. coli gold standard was built
from experimentally confirmed interactions and is thus not perfect.

Table 4 shows the AUPR for the five DREAM4 networks. Results for ANN
are shown for a fixed architecture and parameter α1 (columns 1–3 of Table 4)
and when both of them are tuned by five-fold cross validation (columns 4–6). To
save some computing time, we did not use a standard cross-validation scheme,
but rather adopted the following strategy: the samples were divided in five folds
S1, . . . , S5 and the genes were also divided in five folds G1, . . . , G5. For each
gene in subset Gi, the ANN was trained on the learning set composed of the
four subsets Sj �=i and its MSE was evaluated using subset Si. The mean MSE
across all genes/ANN was then used to select the ANN architecture and α1

value. As shown in Table 4, the cross-validation procedure allows to improve
the AUPR, but however does not allow the ANN to outperform, and even be
competitive with, the state-of-the-art RF. When the number of genes is high, the
cross-validation becomes too computationally expensive, and hence could not be
applied for the inference of the E. coli network. Results with a fixed architecture
are shown in Fig. 4, where we see that, for this specific network, the ANN-based
approaches are competitive with RF.
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Table 4. AUPR for the five DREAM4 networks. The first three columns indicate the
results obtained when using a fixed ANN architecture with three layers of 75, 50 and 25
neurons respectively and setting the regularization parameter α1 = 10. Columns 4–6
indicate the results when we select the ANN architecture and the parameter α1 that
optimize the prediction error (MSE) computed using cross-validation. The number of
hidden layers was optimized in {2,3}, the number of neurons per layer was optimized
in {50,150} and the value of α1 was optimized in {0,5,60,300,800,1500}. Each network
was trained for 10000 steps on batches of size 35, with a learning rate of 10−4. The
parameter K of RF was optimized in {√

p, log(p), p/3, p/2}, where p is the number of
inputs (99 in this case). The highest AUPR are indicated in bold.

Fixed architecture and α1 Tuned architecture and α1 RF Random

SL+GRAD SL+LRP SL SL+GRAD SL+LRP SL

Net 1 0.127 0.148 0.137 0.148 0.143 0.126 0.171 0.018

Net 2 0.079 0.095 0.087 0.109 0.101 0.121 0.156 0.025

Net 3 0.147 0.169 0.145 0.178 0.193 0.191 0.262 0.020

Net 4 0.141 0.155 0.134 0.184 0.172 0.192 0.240 0.021

Net 5 0.116 0.142 0.114 0.187 0.180 0.166 0.231 0.020

Fig. 4. Precision-recall curves obtained for the E. coli network, when using an ANN
architecture with 4 layers of 100 neurons each and α1 = 10. The RF performance is
shown for two values of the parameter K (K =

√
nTF and K = nTF , where nTF = 334

is the number of transcription factors).

6 Conclusion

We evaluated several feature ranking techniques based on ANN and compared
them on several problems with RF, chosen as a state-of-the-art reference. While
the ANN importance measures can yield performance similar to the RF measure,
they remain outperformed by RF on most problems we studied, despite hav-
ing significantly better predictive performance. Importantly, for datasets with a
large number of irrelevant features, reaching good performance, both in terms of
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feature ranking (AUPR) and generalization error, comes at the cost of introduc-
ing a selection layer within the neural network architecture, with a correspond-
ing tuning of the regularization hyper-parameter. Regarding the problem of gene
network inference, ANN are competitive with RF on the real E. coli network, but
are inferior on the artificial DREAM4 networks, even after an extensive tuning
of the ANN architecture and regularization parameter.

The fact that the ANN approaches yield better predictive models than RF
but not as good feature rankings suggest that the studied ANN-based importance
measures could potentially be improved. Future works will include the analysis of
other ANN-based importance scores, possibly with different ANN architectures,
as well as a better characterization of these different scores.
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Abstract. Molecular gene-expression datasets consist of samples with
tens of thousands of measured quantities (e.g., high dimensional data).
However, there exist lower-dimensional representations that retain the
useful information. We present a novel algorithm for such dimensionality
reduction called Pathway Activity Score Learning (PASL). The major
novelty of PASL is that the constructed features directly correspond to
known molecular pathways and can be interpreted as pathway activity
scores. Hence, unlike PCA and similar methods, PASL’s latent space
has a relatively straight-forward biological interpretation. As a use-case,
PASL is applied on two collections of breast cancer and leukemia gene
expression datasets. We show that PASL does retain the predictive infor-
mation for disease classification on new, unseen datasets, as well as out-
performing PLIER, a recently proposed competitive method. We also
show that differential activation pathway analysis provides complemen-
tary information to standard gene set enrichment analysis. The code is
available at https://github.com/mensxmachina/PASL.

Keywords: Pathway activity · Dimensionality reduction · Disease
classification · Differential activation analysis

1 Introduction

Molecular data, such as gene expressions, are often very high dimensional, mea-
suring tens of thousands molecular quantities. For example, the Affymetrix
micro-array platform GPL570 for humans measures the expressions of 54675
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probe-sets, corresponding to all known human genes. As such, visually inspect-
ing the data, understanding the multivariate gene correlations, and biologically
interpreting the measurements is challenging. To address this problem, several
methods have appeared that reduce the dimensionality of the data. Dimension-
ality reduction (a.k.a. latent representation learning) constructs new dimensions
(features, quantities, variables). The purpose is to reduce the number of features
making them amenable to inspection while maintaining all “useful” informa-
tion. For example, consider the representation of music. The raw data (original
measured quantities) correspond to the sound spectrum which is visually incom-
prehensible to humans. However, music at each time-point can be represented
as a sum of prototypical states (notes) and musical scores, which are much more
intuitive. Similarly, we can ask the questions: Are there prototypical cell states
whose sum can represent any cell state (e.g., gene expression profile)? What are
the “notes” of biology? How can we learn such representations automatically?

Numerous dimensionality reduction techniques have been proposed. Some of
the most prevalent ones are arguably the PCA, Kernel PCA [15], t-SNE [11],
and Neural Network autoencoders. All of these methods learn a lower dimen-
sional space (latent space) of newly constructed features and represent the data
as a linear combination of those. The projection aims to retain the data variance
and exhibit a low data reconstruction error. However, the data representation
in the new feature space is biologically unintepretable. To improve interpretabil-
ity other methods introduce sparsity to the latent space in the sense that new
features are constructed as linear combinations of only a few of the original
molecular quantities. Such methods are the Sparse PCA [20] and sparse vari-
ants of Non-negative Matrix Factorization [10] for molecular data [4,6]). The
new constructed features are sometimes called meta-genes [3]. Any clustering
method could also be defined as creating meta-genes and new features. How-
ever, the meta-genes are still hard to interpret biologically as they do not directly
correspond to the known biological pathways or other known gene sets.

In this work, we develop a novel method for unsupervised feature construction
and dimensionality reduction based on the availability of prior knowledge, called
Pathway Activity Score Learning or PASL. PASL aims at a trade-off between
biological interpretability, and computational performance. PASL accepts as
input a collection of predefined sets of genes, hereafter called genesets, such
as molecular pathways or gene ontology groups. It has two phases, the inference
phase and the discovery phase. During the inference phase, PASL constructs
new features that are constrained to directly correspond to the avail-
able genesets. The new features could be thought as activity scores of the
corresponding genesets. The inference phase ends when it has captured as much
information as possible (maximum explained variance) given only the provided
genesets. However, a large percentage of the measured quantities is not mapped
to any known genesets. In the discovery phase, PASL constructs features that
are not constrained to correspond to the given genesets trying to capture the
remaining information (variance) in the data.
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We evaluate PASL in two sets of computational experiments. (a) We use
two collections of real micro-array gene expression datasets, one for Breast Can-
cer and one for Leukemia. It is shown that PASL learns latent representations
that allow it to perform predictive modeling based on the novel features. The
computational experiments are performed on test datasets never seen by PASL
during feature construction. Predictive modeling uses an AutoML platform for
molecular data called Just Add Data Bio or JADBIO [17] that searches thou-
sands of machine learning pipelines to identify the optimally predictive one and
estimates the out-of-sample predictive performance of the final model in a con-
servative fashion. Analysis in the new feature space is orders of magnitude faster
than the one performed using the original feature space. In addition, the result-
ing predictive models are on par and often outperform the ones constructed
using the original molecular quantities. PASL is compared against PLIER [12],
arguably the algorithm closer in spirit to PASL. PASL outperforms PLIER in
terms of predictive performance.

In the second set of computational experiments, (b) we show that PASL’s
constructed features can complement standard gene set enrichment analysis
(GSEA). Specifically, the geneset activity scores output by PASL can be
employed to perform differential activation analysis (DAA) and identify the
genesets that behave differently between two different classes (e.g., cases vs con-
trols, or treatment vs controls). Conceptually, this is equivalent to gene differen-
tial expression analysis that identifies genes whose expression behaves differently
in two classes. Our experiments indicate that DAA complements GSEA: it can
identify genesets that are not identified by GSEA as statistically significant.
Moreover, DAA has larger statistical power than GSEA and, in general, it iden-
tifies the affected genesets with lower p-values than GSEA.

2 Pathway Activity Score Learning Algorithm

2.1 Preliminaries

The PASL algorithm accepts as input two 2D matrices X and G. Matrix X ∈
IRn×p contains the molecular measurements, where n is the number of samples
and p the number of features. Typically n � p. For micro-array gene expression
data, the rows of X correspond to molecular profiles while the columns to the
gene expressions of the probe-sets. Hereafter, we will refer to probe-sets as genes
for simplicity, unless otherwise noted; however, the reader is warned that there is
not a one-to-one correspondence between probe-sets and genes. PASL also accepts
a gene membership matrix G ∈ {0, 1}g×p with g being the number of predefined
groups of genes. Each row of G, denoted by gi for the i-th row, corresponds to
a molecular pathway, gene ontology set, or any other predefined gene collection
of interest called geneset hereafter. We set Gij = 1 if gene j belongs to the i-th
geneset, and 0 otherwise.

PASL assumes the data X can be decomposed as: X = L · D + σI , where
D ∈ IRa×p is a sparse matrix. In other words, each molecular profile at row j of
X is a linear combination of rows of D with coefficients in the jth row of L with an
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isotropic noise added to it. D is called the dictionary and its rows the dictionary
atoms, denoted withdi. Given training data X, PASL outputs the two matrices D
and L. D is the concatenation of two sub-dictionaries D1 and D2 (D = [D1;D2])
with dimensions a1 × p and a2 × p, respectively (hence, a = a1 + a2). D1 is a
dictionary where each atom di is constrained to correspond to only one geneset of
the matrix G, in the sense that the non-zero elements of di correspond to the genes
in the particular geneset. Thus, D1 is the part of the dictionary that is biological
interpretable. D2 is just a sparse dictionary meant to explain the remaining vari-
ance of the data and suggest the existence of yet-to-be-discovered genesets. D1 is
the outcome of the first phase of PASL, called inference phase, while D2 is the
outcome of the second phase, called the discovery phase. L ∈ IRn×a is the rep-
resentation of the data in the latent feature space (PASL scores). It provides the
optimal projection of X on the row space of D and it is computed by minimizing
the Frobenius norm between X and L · D.

2.2 Inference Phase

One approach to extract the genesets with the highest variance in the dataset
is to restrict the data matrix to the features that correspond to a pathway,
estimate the first principal component, repeat the same for all pathways and then
keep the principal component with the highest variance (dynamic approach). We
mathematically formulate this problem as

i∗ = arg max
i=1,...,g

max
d∈IR||gi||0

||X(:,gi)d||22 (1)

where X(:,gi) denotes the data matrix restricted by the i-th geneset. Then, we
add the i∗ principal component to the dictionary, remove its contribution from
the dataset and repeat the same procedure until a pre-specified criterion is met.
The described algorithm is guaranteed to return an ordered dictionary whose
atoms have the highest variance. Nevertheless, it can be prohibitively expensive
in terms of computational cost since at each iteration it computes thousands
of principal components that are discarded. In order to remedy the computa-
tional burden, one solution could be to pre-compute the principal components
for all restricted-to-the-pathways data matrices, then, order them and keep the
principal components with the highest variance (static approach). Despite being
relatively computationally efficient, this approach does not necessarily lead to an
optimal solution. Specifically, the ordering of the genesets is fixed, but at each
iteration the data matrix changes because the contribution of each new atom is
removed from it. This might affect the actual ordering of the variance, hence the
optimality of the solution.
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Algorithm 1 Pathway Activity Score Learning
Input:Data Xn×p, Geneset Matrix Gg×p

Output:Dictionary Da×p, Representation of data in D: Ln×a

1: //Inference Phase

2: Xz ← zscore(X)
3: X ← Xz

4: i ← 1, i′ ← 1 //i: running geneset index, i′: atom counter

5: [iḠ, vḠ] ← OrderOfGenesets(X,G) //vḠ : pre-computed variance

6: Ḡ ← G(iḠ, :) //Ḡ: ordered geneset matrix

7: while i′ ≤ a1 do
8: Xr ← X(:, ḡi)
9: [dr, vr] ← pca(Xr, #pc = 1) //vr : current variance

10: if vr
vḠ(i)

≤ t then //how close is vr to vḠ(i)

11: [iḠ, vḠ] ← OrderOfGenesets(X,G)
12: Ḡ ← G(iḠ, :)
13: i ← 1 //Reset counter

14: Xr ← X(:, ḡi)
15: [dr, vr] ← pca(Xr,#pc = 1)
16: end if
17: D1 ← [D1; expand(dr;gi)] //Insert the new atom in D1

18: X ← X I − D1(i,gi)TD1(i,gi)
)

//Remove the contribution

19: vz ← ||Xz(I − D+
1 D1)||2F / ||Xz||2F

20: if |vz − vz−1| < tol then break end if
21: i ← i+ 1, i′ ← i′ + 1
22: end while
23: //Discovery Phase

24: Xz ← zscore(X)
25: D2 ← spca(Xz, #pc = a2, #nz = m) //a2 = a − i′

26: D ← [D1;D2]
27: L ← XzD

+

28: return D, L

29: function OrderOfGenesets(X,G)
30: vG ← ∅, iG ← ∅
31: for i ← 1 to g do
32: Xr ← X(:,gi)
33: [∼, vr] ← pca Xr, #pc = min(n, ||gi||0)

)

34: vG ←
[
vG; λ·vr

(||gi||λ0 −1)

]
//Box-Cox normalization

35: iG ← [iG|i|...|i] //Insert min(n, ||gi||0) elements

36: end for
37: [vḠ, j] ← sort(vG)
38: iḠ ← iG(j)
39: return iḠ, vḠ //ordered genesets ids and their corresponding variance

40: end function

The inference phase of PASL shown in Algorithm 1 (lines 1–22 and 29–40)
balances between the dynamic and the static approach. As in the static app-
roach, it computes the ordering of the principal components’ variance (lines 5
and 29–40) and iteratively select the atoms based on this ordering (while loop;
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lines 7–22). The difference between PASL and the static approach is that PASL
checks how close is the current variance from the expected pre-computed vari-
ance (line 10). If the relative change is below a threshold then PASL recomputes
the ordering of the principal components’ variance (lines 11–15). The hyper-
parameter t, which takes values between [0, 1], controls how often the variance
reordering is performed henceforth the proximity to optimality. The higher the
value of t the more often the evaluation of the ordering is happening thus more
accurate the dictionary in terms of explained variance is on the cost of being
computationally more expensive.The stopping criterion asserts that the inference
phase of PASL stops when there is no further decrease in the relative reconstruc-
tion error (i.e., the variance of the normalized residual error) (line 20). Finally,
we remark that the variance values are normalized before they are ordered (line
34). This is absolutely necessary due to the wide variation of the number of
genes in each geneset which varies from few dozens to few thousands of genes.
We choose as normalization method the Box-Cox transformation on the number
of genes and optimize over its hyper-parameter λ.

2.3 Discovery Phase

After the inference phase where we extracted as much as possible variance from
prior knowledge, we will distill the remaining variance of the data without restric-
tions on the location of the non-zero elements of the dictionary atoms using
a sparse –hence, interpretable– dimensionality reduction technique aiming to
reveal new potential pathways which were previously unknown. Based on its
generality, efficiency and speed, we employ in our experiments Sparse Principal
Component Analysis (SPCA) [20] (line 25 in Algorithm 1). We note though that
any sparse dimensionality reduction technique can be utilized. SPCA applies
both l1 and l2 penalties in order to regularize and enforce sparsity.

However, we do not tune the respective hyper-parameters, instead, we require
the SPCA algorithm to return a fixed number of non-zero elements per atom.
We denote this number with m and we set it to 2000 in our experiments.

2.4 Selection of the Hyper-Parameters’ Value

Effect of t on the explained variance and the execution time. The most
time-consuming part of PASL is the execution of the function OrderOfGenesets
in Algorithm 1 due to the large number of PCA calculations (one for each gene-
set). Hyper-parameter t controls how often the function OrderOfGenesets will
be called. When t = 1 then it is called at every iteration while it is called once
at the beginning and never again when t = 0. In order to determine the optimal
value for t, we perform an experiment with a merged collection of microarray
datasets where the total number of samples is n = 4235, the number of genes
p = 54675 and a fixed number of atoms a1 = 200. Figure 1(a) demonstrates the
explained variance as a function of the execution time for different values of t.
Based on this plot, we set t to be equal to 0.9 (cyan star symbol in Fig. 1(a)).
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Fig. 1. (a) The explained variance (y-axis) as a function of the execution time (x-axis)
is shown for different values of t. For 0.4 ≤ t ≤ 0.9, the execution time is reduced by
a percentage between 65% and 85% with minimal impact on the explained variance.
(b) The simulated dictionary (ground truth; left bar) consists of equally distributed
pathways with 30, 50, 100, 200 genes. The middle bar shows the distribution of selected
pathways when PASL is applied without normalization while the right bar shows the
selected pathways when Box-Cox normalization is applied with λ = 1/3. Apparently,
the normalization of the variance is necessary for PASL in order to avoid being biased
towards selecting genesets with a larger number of genes.

Box-Cox Normalization of the Variance. The number of genes, i.e., the
number of non-zero elements in each row of the geneset matrix G, varies from
few dozens to several thousands making the geneset ordering based on variance
susceptible to such variations. Indeed, we experimentally observe that genesets
with more genes tend to be selected frequently while genesets with a low number
of genes were rarely selected (see also the middle plot of Fig. 1(b)). Therefore,
it is essential to normalize the variance of each geneset relative to the number
of genes it contains. We propose to normalize the variance using the Box-Cox
transformation [2] on the number of genes (i.e., on ‖gi‖0) which is given by

y′ =

{
(yλ − 1)/λ if λ �= 0

log(y) if λ = 0
(2)

where λ is a tunable hyper-parameter which controls the power scaling on y.
The value of λ is determined by a targeted experiment using simulated data

which are generated using genesets with both small and large numbers of genes.
Simulated data are generated by first creating the prior information matrix G
consisting of equally distributed genesets with specific number of genes. Then, we
construct a dictionary using randomly selected genesets which are also equally
distributed. Specifically, we create n = 400 samples with p = 500 features while
the numbers of genes per geneset take the values 30, 50, 100, 200.

After extensive tests with different values of Box-Cox transformation hyper-
parameter, we set λ = 1/3. The geneset selection results obtained with PASL
are presented in Fig. 1(b). Evidently, the use of Box-Cox transformation with
λ = 1/3 (right bar) produced results similar to the ground truth (left bar) while
PASL without normalization failed to correctly infer the true dictionary (middle
bar).
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3 PASL Evaluation on Real Gene Expression Data

Dataset Collections. For our experiments we downloaded microarray datasets
available in the Biodataome database [9]. Specifically, we downloaded all the
available Breast cancer and Leukemia datasets as of May 2020 measured with
the Affymetrix Human Genome U133 Plus 2.0 - GPL570 platform, each having at
least 20 samples. The datasets form the Breast Cancer collection and Leukemia
collection. For each collection we select 80% of the datasets to pool together
and use them as training data. PASL and PLIER dimensionality reduction algo-
rithms are applied on this training set to learn a dictionary matrix D of atoms
(Fig. 2(a)). The remaining 20% of the available datasets are employed as test
dataset and are not seen by neither PASL or PLIER during training. The selec-
tion of datasets used for the train or the test set is random, with the restriction
that test datasets have to be accompanied by a discrete outcome (phenotype)
for each sample, e.g., disease or mutation status or multiple phenotypes related
to the diseases (e.g. rapid/slow early responder). The outcome is either binary
or multiclass. The training set for the Breast cancer and the Leukemia collection
contains 4200 and 5600 unique gene-expression profiles respectively.

Provided Genesets. In all experiments with real data, the gene membership
matrix G includes 1974 pathways found in KEGG [7], Reactome [5] and Biocarta
[14] which were downloaded from Molecular Signatures Database (MSigDB) of
the Broad Institute [16].

Constructing a Latent Feature Space with PASL and PLIER. Applied
to a training dataset Xtrain, PASL learns a transformation to a new feature
space given data Xtrain and a geneset matrix G. Subsequently, PASL learns a
dictionary D and scores Ltrain such that X ′

train ≈ Ltrain ·D. Each atom (row) in
D corresponds to only one geneset in G or a newly discovered geneset (Fig. 2(a)).
To apply the transformation to new test data Xtest one projects them to the
row space of D by computing Ltest = Xtest · D+ (Fig. 2(b)). An important
detail is that both train and test data are first standardized using the means
and standard deviations of the training data; thus, the transformation does not
require to estimate any quantity from the test data. This is important to avoid
information when evaluating predictive performance on the transformed data.

We comparatively evaluate PASL against a recently introduced algorithm
called PLIER [12]. Like PASL, PLIER learns a latent feature space that corre-
sponds to known genesets. PLIER also accepts as input data X and a geneset
matrix G. Similarly to PASL, it returns the scores L and the dictionary D,
such that X ≈ L · D. PLIER accepts several hyper-parameters. The maxpath
hyper-parameter indicates how many genesets an atom of D is supposed to cor-
respond to. We set maxpath = 1 requesting that each atom in D corresponds
to one and only geneset, so that the output is comparable to PASL. Unfortu-
nately, PLIER treats maxpath as indicative; atoms in D may correspond to the
union of several genesets, even when maxpath = 1. In that sense, the atoms in D
are not as easy to interpret as the ones returned by PASL. PLIER also ignores
genesets with fewer features than minGenes. We set minGenes = 1 so that no
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Fig. 2. Experimental Setup. For the construction of the latent feature space, the meth-
ods are trained on a collection of gene expression datasets. The evaluation is performed
on new unseen test datasets, where the recostruction ability, predictive performance
and the significance of the pathways of the latent feature space are examined.

genesets are ignored. Finally, we note that in PLIER the scores L are computed
as X · DT · (DDT + λ2I)−1, where λ2 is a parameter learned by the algorithm.

The atoms of PLIER are not as sparse as the ones output by PASL. For
example, for the Breast Cancer collection analysis, the mean number of non-
zero coefficients in each atom of PLIER is 25833 (almost half of the original
feature size), while for PASL it is 1329. For the same number of atoms, PLIER
uses more degrees of freedom (non-zero coefficients) to find a suitable transfor-
mation to a latent space. For a fair comparison in the subsequent experiments,
we impose the restriction that the learned dictionaries DPLIER and DPASL have
approximately the same number of non-zero elements. To this end, we first run
PLIER allowing it to construct a large number of atoms and estimate the num-
ber of atoms a required to reach approximately the same number of non-zeros
as PASL. Then, we re-run PLIER constrained to produce only a atoms. Specifi-
cally, when PASL is restricted to 500 atoms, its dictionary contains 664695 and
700020 non-zeros for the Breast Cancer and the Leukemia collections, respec-
tively. PLIER is limited to 29 and 30 atoms instead, producing dictionaries with
699976 and 782114 non-zeros, respectively.

3.1 Predictive Performance in Latent Feature Space

This set of experiments examines the following research question: does the trans-
formation to the latent feature space capture all important information, defined as
the information required to classify to typical outcomes (phenotypes) such as the
disease state. To this end, we employ predictive modeling on the test datasets
and estimate the predictive performance of the best identified model. Each test
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Fig. 3. (a), (b) Mean AUC of Breast Cancer and Leukemia test datasets Lower row:
Out-of-sample probability of selected results of (c) The best visualization for PASL
vs Original, (d) The best visualization for PASL vs PLIER (The outcome stands for
the mutation status of immunoglobulin heavy chain (IGHV) gene) and (e) The best
visualization for PLIER vs PASL.

dataset’s outcome leads to binary or multiclass classification tasks. For the clas-
sification, we employ an automated machine learning architecture (AutoML),
called JADBIO (Just Add Data Bio, www.jadbio.com), version 1.1.21. JADBIO
has been developed specifically for small-sample, high-dimensional data, such as
multi-omics data. The use of JADBIO is meant to ensure that (a) out-of-sample
AUC estimates are accurate, and (b) performance does not depend on a single
classifier tried with just the default hyper-parameters. Instead, for classifica-
tion, JADBIO uses the SES feature selection algorithm [8], combined with ridge
logistic regression, decision trees, random forests, and SVMs for modelling. It
automatically tunes the hyper-parameters of the algorithms, trying thousands of
combinations of algorithms and hyper-parameters. It estimates the performance
of the final winning model produced by the best configuration (pipeline of algo-
rithms and hyper-parameter values) using the BBC-CV protocol [19]. The latter
is a version of cross-validation that adjusts the estimate of performance of the
winning configuration for multiple tries to provide conservative AUC estimates.
A detailed description of the platform along with a massive evaluation on hun-
dreds of omics datasets is included in [17]. JADBIO has produced novel scientific
results in nanomaterial prediction [18], suicide prediction [1] and others.

We performed classification analysis using JADBIO on 13 and 15 test datasets
for Breast Cancer and Leukemia, respectively. The analysis uses the original
feature space, as well as the PLIER and PASL feature spaces, for different
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Table 1. AUC of the test datasets for PASL, PLIER and Original space (initial test
datasets). PASL and PLIER are tested for approximately equal number of non-zero
entries in the dictionary matrix. For Breast cancer data PASL’s latent space consists
of 500 dimensions-664695 non-zeros. PLIER’s latent space consists of 29 dimensions
of 699976 non-zeros. For Leukemia, PASL’s latent space consists of 500 dimensions of
700020 non-zeros. PLIER’s latent space consists of 30 dimensions of 782114 non-zeros.

Breast Cancer Leukemia

Data ID PASL PLIER Original Data ID PASL PLIER Original

54002 0.999 1 0.995 15434 0.985 0.747 0.987

5460 0.952 0.958 0.96 14924 0.996 0.987 0.91

36771 0.935 0.933 0.963 23025 0.762 0.766 0.741

66161 0.664 0.486 0.579 21029 0.95 0.694 0.966

76124 0.976 0.98 0.97 28654 0.767 0.616 0.762

66159 0.759 0.506 0.776 14671 0.59 0.674 0.625

66305 0.513 0.569 0.535 7440 0.73 0.52 0.736

10780 0.976 0.995 0.962 66006 0.926 0.792 0.952

27562 0.835 0.776 0.914 28460 0.719 0.542 0.697

27830 0.725 0.671 0.759 26713 0.998 0.997 0.952

36769 0.953 0.963 0.96 31048 0.984 0.981 0.99

29431 0.997 0.982 0.991 39411 0.997 0.956 0.985

42568 0.991 0.975 0.927 49695 1 0.612 0.998

50006 0.979 0.994 0.983

61804 0.823 0.744 0.869

Mean 0.8673 0.830 0.868 Mean 0.8804 0.7748 0.876

Median 0.952 0.958 0.96 Median 0.95 0.747 0.952

dimensionalities. For PASL, the number of atoms to learn take the values 250, 400,
and 500. The number of atoms with approximately the same number of non-zeros
in the dictionary of PLIER is 20, 25, and 30. Thus, there are 7 analyses for each
dataset, and 91+105 analyses in total.For the Breast Cancer (Leukemia) datasets
860002 (983425) classification models were trained in total by JADBIO with differ-
ent combinations of algorithms and hyper-parameter values on different subsets of
the input data (cross-validation).

Regarding the execution time, the analysis in the space of PASL or PLIER
takes about 1 order of magnitude less time than in the original space. The
exact execution time in JADBIO depends on several factors, such as the load of
the Amazon servers on which the platform runs, and thus exact timing results are
meaningless. Indicatively, we mention a typical case: the analysis of GSE61804
for the original space took 1.15 h, 9 min and 5 min for PASL and PLIER respec-
tively. Figure 3(a),(b) shows the average AUC over all test datasets for each
disease for increasing number of non-zeros. PASL outperforms PLIER and
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Fig. 4. Upper row: Interaction plots of DAA and GSEA. The x-axis represents the
total number of significant genesets. The y-axis represents the number of significant
genesets that come from DAA and GSEA. Lower row: Box-plots of the activation
scores that correspond to the first, second, third differentially activated PASL fea-
ture/pathway. It is verified that the differentially activated pathways behave differ-
ently between the phenotypes. The outcome of GSE10780 stands for Invasive Ductal
Carcinoma/Unremarkable breast ducts, and the outcome of GSE15434 stands for the
mutation status of Nucleophosmin 1 (NPM1).

it is on par with analyses on the original space. Thus, the learned dic-
tionary by PASL generalizes to new test data and captures the important infor-
mation to perform classification with various disease-related outcomes. At the
same time, PASL achieves 2-orders of magnitude dimensionality reduction by a
sparse matrix whose atoms directly correspond to known genesets (pathways).

We now focus on the experiments for the largest dimension of PASL and
PLIER. The number of atoms in PASL is set to 500 (664695 non-zeros for Breast
Cancer, 700020 non-zeros for Leukemia). PLIER’s latent space consists of 29
(699976 non zeros) and 30 (782114 non-zeros) atoms for Breast Cancer and
Leukemia respectively. Table 1 contains the detailed results for each dataset and
method. The worst case (best case) for PASL is dataset with ID 27562 (14924)
where it achieves 8 AUC points (8 AUC points) lower (higher) performance vs
no dimensionality reduction. In contrast, there are several datasets (IDs 66161,
66159, 27562, 15434, 21029, 7440, 66006, 28460, 28460, 49695, 61804) where
PLIER’s performance is lower than 10 or more AUC points.

In the lower row of Fig. 3 we visually demonstrate the ability of PASL to lead
to highly predictive models. Each panel corresponds to a different test dataset.
Specifically, we chose to present the visualizations from datasets that lead to
the “best” visual differences for PASL vs the original space, PASL vs PLIER,
and PLIER vs PASL, in Fig. 3(c)–(e), respectively. Each panel shows the box-
plots of the out-of-sample probability of each molecular profile to belong to the
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positive class for the models produced in the original, PASL, and PLIER feature
space. The out-of-sample predictions are calculated by JADBIO during the cross-
validation of the winning model and thus, they do not correspond to the fitting
of the samples used for training. The larger the separation of the distribution of
the predicted probabilities, the larger the AUC.

3.2 From Gene Set Enrichment Analysis to Differential Activation
Analysis

The biological interpretability of PASL’s feature space is demonstrated in the
following experiments. Since the constructed features correspond to the genesets
(atoms of D), we can use their values (stored in the columns of L) to find which
genesets behave differently under two conditions, e.g., disease vs. healthy or
treatment vs. control. In other words, we can perform Differential Activation
Analysis (DAA) in a similar fashion that differential expression analysis iden-
tifies the genes that behave differently. A current standard alternative method
that provides insight into the underlying biology is to use Gene Set Enrichment
Analysis (GSEA). GSEA first summarizes the probesets that correspond to the
same gene e.g. by taking the minimum, maximum or average expression value.
Inherently, GSEA loses information by applying this summarization and by not
taking into account the covariances of the gene expressions. Subsequently, the
null hypothesis is that the p-values of the genes in a pathway have the same
distribution as the p-values of the genes that do not belong to the pathway.

We next examine the ability of PASL to identify genesets (pathways) that
behave differently between two classes and compare it against GSEA. We employ
the GSEA v4.0.3 tool from https://www.gsea-msigdb.org/gsea/index.jsp [13,
16]. We run GSEA on the test datasets in the original feature space using 10000
phenotype permutations for the permutation-based statistical test employed in
the package. The input genesets are the same as the ones provided to PASL
in the geneset matrix G. We also perform DAA on the test datasets projected
to the latent space of PASL (activity scores) using the Matlab’s t-test function
mattest with 10000 permutations. The list of p-values from DAA and GSEA can
then be used to identify the affected pathways.

Figure 4 (upper row) shows the number of pathways identified by each
method (y-axis) in the top k (lowest p-value) pathways, for each k (x-axis).
Each panel corresponds to a different test dataset. We observe that the path-
ways identified by PASL have lower p-values and are encountered first on the
list; PASL has higher statistical power in identifying some genesets that behave
differently. PASL’s features correspond to pathways. The statistically significant
ones are referred as differentially activated. Figure 4 (bottom row) visualizes why
the PASL features are identified as differentially activated. Each panel shows the
box-plots for the activation scores corresponding to the first, second, and third
most statistically significant PASL feature/pathway (denoted with names 1DA,
2DA, and 3DA, respectively).

https://www.gsea-msigdb.org/gsea/index.jsp
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Specifically, the top 3 differentially activated pathways of GSE10780 are the
“Reactome signaling by GPCR”, “Reactome Fructoce Catabolism” and “Reac-
tome Hemostasis”. The top 3 differentially activated pathways of GSE14924
is the “Reactome metabolism of Lipids”, “Reactome Chromatin Organization”
and “Reactome Gene Expression Transcription”. The top 3 differentially acti-
vated pathways of GSE15434 are the “Reactome Transport of Small Molecules”,
“Reactome Developmental Biology”, “Reactome Post Translational Protein
Modification”. It is visually verified that the scores are different between the
phenotypes in an easy to understand and intuitive plot.

While DAA using PASL seems to offer several advantages (lower p-values,
intuitive visualization), it also has a major limitation. PASL requires a train-
ing set that is related to the application (test) set. It learns atoms that only
pertain to capturing information regarding the train data. For example, DAA
using PASL cannot be applied to a schizophrenia dataset, before we construct
a sufficiently large training dataset for the disease. As such, we consider DAA
and GSEA complementary and synergistic.

4 Conclusions

Molecular omics and multi-omics data are notoriously high-dimensional. Statis-
tical or machine learning analysis of such data could hit computational obstacles
due to the high dimensionality; results may be hard to interpret (e.g. interpreting
thousands of differentially expressed genes or pair-wise correlations and covari-
ances). As a result, several dimensionality reduction methods for such data have
been proposed, but usually end up with an unintepretable new feature space. To
the extent of our knowledge, PASL is the first technique where the new features
directly correspond to prior knowledge about genesets. PASL is relatively com-
putationally efficient by relying on a greedy, yet effective heuristic to construct
the next atom. PASL projects the data to a new feature space that maintains the
predictive information for a wide range of outcomes, e.g., disease or mutation
status, dietary restrictions and others. The classification models created on this
space outperform the ones created on the PLIER space and are on par with the
ones using the original features. Classification analysis is one order of magni-
tude faster in PASL space than in the original space. PASL’s learned features
can be used for Differential Activation Analysis identifying the pathways that
behave differently between the phenotypes. This analysis is synergistic to gene
set enrichment analysis, it is intuitively visualized, and often produces smaller
p-values. Based on these promising results, in a future work PASL will be applied
on a much larger corpus of gene expression data, spanning a wide plethora of
diseases and conditions.
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Abstract. As big data sources providing time series increase, and data
is provided in increased velocity and volume, we need to efficiently recog-
nize data provided, classifying it according to their type, origin etc. This
is a first important step in doing analytics on data provided from dis-
parate data sources, such as archival sources, multiple sensors, or social
media feeds. Time series classification is the task labeling time series
using a set of predefined labels.

In this paper we present the K-BOSS-VS algorithm for time series
classification. The proposed algorithm is based on state-of-the-art sym-
bolic time series classification algorithms, and aims to achieve high accu-
racy, balancing with computational efficiency. K-BOSS-VS exploits K
representatives of each time series class to classify new series. This pro-
vides opportunities for representing intra-class differences, thus increas-
ing the classification accuracy, while incurring a small performance over-
head compared to methods using one class representative. Additionally,
K-BOSS-VS offers a solution for classifying time-series in batch and
streaming settings, due to the opportunities for increasing computational
efficiency and the low memory requirements.

Keywords: Time series classification · Distributed processing ·
Streaming data

1 Introduction

As more and more devices are getting smarter, and sensors become ubiquitous,
in conjunction to the increase of media channels and their users, time series data,
i.e. data that is tagged with time-stamps, become bigger and bigger. This neces-
sitates to recognize time series flowing into a system from disparate data sources
efficiently, classifying data according to their type, origin, quality, trustworthi-
ness etc. with high accuracy. This is a first important step in doing analytics on
data provided from disparate data sources, such as archival data sources, mul-
tiple sensors, or social media feeds. The task, named time series classification
c© Springer Nature Switzerland AG 2020
A. Appice et al. (Eds.): DS 2020, LNAI 12323, pp. 265–279, 2020.
https://doi.org/10.1007/978-3-030-61527-7_18
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has become an important task in data analytics pipelines, classifying the type
of time series flowing into a system using a set of predefined labels. Time series
classification has gained popularity in a variety of fields such as signal processing,
environmental sciences, health care, and chemistry.

In this paper we address the problem of time series classification both in batch
and streaming settings, with the objective to balance between computational
efficiency and accuracy. Efficiency is important in dealing with big data sources
(either due to volume or velocity), while accuracy is needed for automating the
task: Addressing this trade-off is the objective of recent works in time-series
classification, e.g. in [3,20,23].

In this paper we present the K-BOSS-VS algorithm for time series classi-
fication, which is based on state-of-the-art symbolic time series classification
algorithms, such as BOSS-VS [20]. In contrast to these, K-BOSS-VS exploits K
representatives of each class to classify new series. This provides opportunities
for increasing the degrees of parallelism used - although it incurs a computational
overhead compared to methods that use a single representative, while increasing
the classification accuracy, due to addressing intra-class time series modalities, in
contrast to methods using a single representative per class (e.g. class centroid).

More specifically, our proposed algorithm achieves high accuracy, which is
comparable, if not higher, to state of the art algorithms. Additionally, it offers
a solution for classifying time-series in batch and streaming settings, due to
the opportunities for distributing the task in multiple workers and due to the
low memory requirements compared to methods comparing a new series to each
class member. However, as already pointed out, it incurs a small performance
overhead compared to methods using one class representative, which is due to
the need to compare with K representatives per class.

The contributions made in this work are as follows:

– We introduce a new method that scales for big data sources, without sacri-
ficing accuracy on time series classification.

– We evaluate and compare the proposed method against state of the art algo-
rithms, showing its ability to achieve highly accurate results, with a small
performance overhead that can be absorbed in distributed settings.

– We show the efficacy of the proposed method in batch and streaming settings.

The structure of the paper is as follows: Sect. 2 describes the time series
classification problem, while Sect. 3 describes related work and explains the con-
tributions made in this paper. Section 4 gives a high-level description of the
proposed algorithm and Sect. 5 describes the actual implementation on top of
Apache Spark. Section 6 provides experimental results of the proposed algorithm,
compared against state of the art algorithms. Finally, Sect. 7 concludes the paper.

2 Problem Formulation

In our problem definition a time-series T is defined as a series of values ordered
by their timestamp, i.e. T = t0, t1..., tm−1....
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Given a set of n labels L = {l0, l1..., ln−1} the goal is to train a classifier
f : T → L to label time-series in T (target time series) using a label in L.

In this paper we treat all data sources as sources providing batches of time
series data: This means that given a time horizon H, we consider all values that
are provided within that time horizon. Thus, the time series provided within H
time instants from a specific source is of specific length. Of course, this length
may vary between data sources, depending on data source velocity and frequency
of sampling. In batch settings we fetch series of values within time windows of
duration H, while in streaming settings we get values from a starting time point
t0, until t0 +H. The time horizon may be tuned in different cases, depending on
the data sources used, and according to domain-specific requirements concerning
the classification speed. We do not deal with this problem in this paper.

Having fixed the time horizon H, the classification task follows the λ archi-
tecture [17] paradigm, where, while sources might very well be streams, a pre-
processing step converts part of the stream (i.e. the values provided within a
specified time horizon) to a batch dataframe.

3 Related Work

As we are focusing on symbolic representations of time series, below we provide
state of the art methods in this line of research: Starting from SAX and SAX-
VSM, SFA, BOSS, BOSS-VS and WEASEL.

In [23] the authors present the SAX-VSM classification algorithm that uses
SAX representation and tf-idf weighting. SAX transforms a series of values into
a word. The range of values is first divided into segments usually following the
Gaussian distribution and then each segment is mapped to a letter from a given
alphabet. A tf-idf vector is created for each class of the training, after the train-
ing set has been transformed into SAX words. Then the set of target time series
is transformed into SAX words and the Term Frequency (TF) vector is cre-
ated for each time-series in the target set. Finally, to classify a time series, the
cosine similarity between the TF vectors of that series and of classes’ centers is
computed.

In [19] the authors introduce the Bag of SFA Symbols Ensemble classifier
(BOSS) that uses Symbolic Fourier Approximation (SFA) [21] to classify a time
series. To compute SFA words, a number of Fourier coefficients are computed,
which are grouped based on common prefixes, building histograms per group,
discretized, and mapped to an alphabet. Thus, the SFA approximation, and thus
BOSS, uses a symbolic representation based on the frequency domain, providing
information about the whole series. Properties of this representation lead to
significant lower training times compared to using the SAX representation. The
BOSS ensemble classifier is based on 1-NN classification using multiple BOSS
models at different time series substructural sizes. However, BOSS requires the
entire training set to be available while classifying target time series. Because the
training set is large, the memory requirements, in addition to the computational
complexity incurred, prevent BOSS from being a candidate for big data time
series classification, although it is very accurate.
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In [20] the authors present the BOSS-VS classification algorithm where each
data point in the training set is transformed into SFA words. Then a centroid is
created for each class and the cosine similarity is computed between centroids
and target series, as in [23]. This significantly reduces computational complexity
and the memory footprint of the classification algorithm, since now each tar-
get time-series is only compared to each class centroid. This makes BOSS-VS
suitable for big data and streaming data sources, but it is less accurate than
BOSS. This trade-off between computational complexity/scalability and accu-
racy of classification motivates our work, addressing issues concerning bid data,
streaming and batch data sources.

In [22] the authors propose WEASEL as a middle ground between BOSS-VS
[20] and BOSS [19] for time series classification, balancing between accuracy and
scalability. It uses SFA, but it does a few novel things: First, WEASEL considers
differences between classes during feature discretisation, second it uses windows
of variable lengths, also considering the order of windows, and finally it uses
statistical feature selection, leading to significantly reduced runtime.

There is not much available work on distributed time series classification. A
work that is close to our aims is [3]; where the authors present a distributed
algorithm that uses shapelets and a random forest classifier. Their algorithm
scales well compared to the centralized version and achieves an average accuracy
of 82% for one of the data sets and 99% for the other.

Concerning classification of time series in streaming settings, in [15] the
authors present a method for classifying time series data using Time Series
Bitmaps (TSBs) based on SAX, which are shown to be maintained in constant
time. Given that TSBs are very close to a normalized Term Frequency vector,
this work is considered to be using a compact signature of the training set’s
time series to classify a streaming time series. While TSBs are robust to concept
drift and spotting new behaviour, authors in [15] use a single centroid per class,
resulting to accuracy that is not as high as that achieved by state of the art
methods mentioned above.

Finally, in [16] the authors propose a method based on Piecewise Linear
Approximation (PLA). Each streaming time series is transformed to a vector by
means of a PLA technique. The PLA vector is a sequence of symbols denoting
the trend of the series (either UP or DOWN), and it is constructed incrementally.
The author proposes efficient in-memory methods in order to a) determine the
class of each streaming time series, and b) determine the streaming time series
that comprise a specific trend class. In contrast to that approach we do not
explicitly model trends, we use SFA for the symbolic representation of time series,
and we do not compute things incrementally. Modelling trends and incremental
computations are useful features that we shall consider in future work.

In addition to the above approaches, there are recent proposals for time series
classification using deep learning methods:

While deep learning approaches, such as [7,10,13,14,24,25], report results
that are better than baseline approaches and close to the state of the
art time series classification methods, their computational complexity and
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sample-efficiency while training, together with their memory requirements and
accuracy scores, impose specific limitations.

Other methods, such as the Leveraging Bagging method in [5], combining
bagging with randomization to the input and output of the classifiers using
the ADWIN [4] change detector, the Adaptive Random Forests (ARF) in [12],
including a theoretically sound resampling method and adaptive operators that
can cope with different types of concept drift, Kappa Updated Ensemble (KUE)
[6] using an ensemble classification algorithm for drifting data streams, address
explicitly the concept drift problem that we do not address in this work.

4 Algorithm Description

As described in Sect. 3, BOSS is highly accurate but requires that the entire
training set is compared to each target time-series using an 1-NN classifier. This,
implying that the entire training set is available during classification, incurs spe-
cific scalability limitations, which are crucial for big data, batch and streaming
settings. On the other hand, BOSS-VS and SAX-VSM use a single centroid for
each class label. This makes them more suitable for big data and streaming set-
tings since the computational complexity in terms of comparisons needed, as
well as their memory footprint, is significantly reduced compared to BOSS. The
problem with using a single centroid to represent a class label is the reduction on
the accuracy achieved, given that a single centroid may not be representative of
all time series patterns in a class (this is apparent when comparing the accuracy
of BOSS-VS and SAX-VSM against BOSS).

The main intuition behind the method proposed here is that instead of having
a single centroid to represent each class label, we can have K representatives per
class. Our approach requires that K is a bound constant so that the memory and
computation time remains close to BOSS-VS and SAX-VSM, while at the same
time the use of K representatives preserves, or even increases, the classification
accuracy of BOSS-VS. We choose SFA as the symbolic representation for our
algorithm, similarly to BOSS, given its representation flexibility and superiority
compared to SAX. In addition, BOSS-VS has been proved superior to SAX-VSM
in terms of accuracy, something which is also shown in our experiments.

We apply K-means to each class label of the training set to obtain K repre-
sentatives per class. After we have obtained the representatives for each class, to
classify a target time series we compute the cosine similarity between the nor-
malized term frequency vector of that series and the normalized term frequency
vector of each of these representatives. The target time series is assigned the
label of the closest class representative, using an 1-NN classifier.

5 Implementation

We implemented the proposed method in Apache Spark [29] using Spark’s
MLLIB [18] for computing the tf-idf vector of each time series, as well as for
determining the K representatives per class using K-means. To implement the
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1-NN classification step we use the Dataframe API. For the streaming use case
we used Spark Streaming, more specifically the Spark Structured Streaming [1]
API. The Structured Streaming API makes Dataframe operations of Apache
Spark available in a streaming environment.

Before delving into the implementation, we provide very succinctly some
preliminaries on Apache Spark.

Apache Spark [29] is a unified engine for distributed data processing. Spark
uses the MapReduce [8] programming model, but extends it with an abstraction
called Resilient Distributed data sets (RDDs) [27]. RDDs provide a distributed
memory abstraction that allows in-memory computations on large clusters in a
fault-tolerant manner. Using RDDs, Spark can express a vast array of workloads
that needed separate processing engines. Example workloads include SQL [2,9],
streaming workloads [28], machine learning [18] and graph processing [26]. Apart
from RDDs another Spark abstraction that is relevant to our case is Spark
DataFrames which are RDDs of records with a known schema. Spark DataFrames
get most of their functionality from the DataFrame abstraction for tabular data
in R and Python, and essentially model a database table. Dataframes provide
methods for filtering data, computing new columns, and aggregating data. In
Spark Dataframes, operations map down to operations of the Spark SQL engine
and as such, they use all available optimizations.

Coming to the implementation of K-BOSS-VS, Algorithm1 shows the aux-
illiary function for data pre-processing. Line 1 first groups the data from each
data source to H-time instances’ chunks to create the time series. Then it sorts
the target column (the column containing the measurements) by the column
containing the time stamp, to account for data points that are out of (temporal)
order in the data set. This is important, because real-world time series might
contain out-of-order values. It must be noted that we have set an horizon of 24 h,
that fits better in the data sets used in our experiments. Different time horizons
could be applied for other data sets.

Lines 2 to 8 transform time series to SFA words and then create windows
of the SFA representation (SFA windows: In our experiments the SFA window
length is 4 h). Finally, the algorithm returns a dataframe with the transformed
column together with its label.

Algorithm 2 shows the algorithm for computing the representatives per class.
In line 2 the algorithm pre-processes the data set using the auxiliary functions
provided above. Then in line 3 it creates the hashing term frequency for each
document corresponding to the SFA windows of a single time-series of time
horizon H. Then in line 4 each term frequency vector is normalized using L2-
normalization. The next step of the algorithm is to compute the representatives
for each class label (column) of the data set (line 5) using MLLIB’s K-means.
After that, each column (class) of the data set has K class representatives.



Balancing Between Scalability and Accuracy in Time-Series Classification 271

Algorithm 1: processColumnTrain Algorithm
Input : timestampColumn: The name of the column containing the timestamp
Input : inputDF: The input Dataframe to be processed
Input : field groupedBy: The field to group by the measurement, usually the

data source ID
Input : outputFunction: The function that transforms the time-series into the

symbolic representation
Input : outputColumnName: The column of the input Dataframe containing

the measurements
Output: someDF: the Dataframe with the transformed column and associated

label
1 grouped2 ← inputDF. groupBy (inputDF.col (field groupedBy), window

(inputDF.col (timestampColumn),“1 day”)) .agg ( collect list

(struct(inputDF.col (timestampColumn), inputDF.col (outputColumnName)))
.as (“columnSorted”)) .withColumn
(outputColumnName+“SortedByTimestamp”, getValueFromTuple(sort array

(“columnSorted”, asc = false)))
2 withAppendedColumnsRdd ← grouped2.rdd.map (row => {
3 myArray ← row.get(outputColumnName+“SortedByTimestamp”)
4 newColumn2 ← outputFunction(myArray)
5 getColumns ← List(row.get(field groupedBy))
6 Row.fromSeq(getColumns :+newColumn2) } )
7 someDF ← withAppendedColumnsRdd.toDF
8 return someDF.withColumn (“variable name”, lit(outputColumnName))

To classify a set of target time series, we use the following process:

1. The data set is grouped into intervals of length H and then converted into
SFA windows similarly to the training set.

2. Each group of SFA windows is converted to a term frequency vector and
normalized as in the training set.

3. The similarity between the normalized term frequency vector of the target
time series and the class representatives is computed.

The proposed K-BOSS-VS approach borrows from BOSS-VS and SAX-VSM
the low memory footprint, as it uses only a subset of training examples as class
representatives. Indeed, it uses a number of representatives per class to balance
between scalability (of BOSS-VS) and accuracy (of BOSS): The number of class
representatives is small compared to all the series available in the training set,
but can be large enough to represent different intra-class modalities and provide
accuracy improvement compared to BOSS-VS and SAX-VSM. Furthermore, the
additional number of class representatives must be small enough that it can be
stored in memory.

It must be noted that both, BOSS-VS and the K-BOSS-VS implementations
are inspired by the Lambda Architecture [17], where models are trained in batch
setting and tested on an setting that can be either batch or streaming.
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Algorithm 2: ComputeRepresentatives Algorithm
Input : training: The Dataframe containg the training set
Input : columns: List of column names
Input : timestampColumn: The name of the column containing the timestamp
Input : fieldGroupBy: The field to group by the measurement, usually the

data source ID
Input : windowsColumnName: The label of the column to contain the result

of the output function
Input : outputFunction: The function that transforms the time-series into the

symbolic representation
Output: retVector: The class representatives together with their label

1 for column ← columns do
2 currDataframe ← processColumnTrain(timestampColumn, training,

fieldGroupBy, outputFunction, windowsColumnName, column)
3 rescaledData2 ← hashingTF.transform (currDataframe)
4 l2NormTrain ← normalizer.transform (rescaledData2)
5 model ← kmeans.fit(l2NormTrain)
6 retVector += (column -> model.classRepresentatives)

7 end for
8 return retVector

6 Evaluation

In our evaluation we examine SAX-VS, BOSS, BOSS-VS, K-BOSS-VS, in terms
or their accuracy, execution time and scalability. We implemented parallel ver-
sions of SAX-VSM, BOSS and BOSS-VS in Apache Spark [29] using Spark’s
MLLIB [18] for tf-idf and term frequency weighting, so as to have a fair com-
parison with the parallel version of the proposed K-BOSS-VS method.

For the batch setting we compared our algorithm against BOSS (since it pro-
vides state-of-the-art classification accuracy), SAX-VSM and BOSS-VS (since
they are more efficient and scalable than BOSS). For the streaming case we
compared K-BOSS-VS with BOSS-VS (since, it outperforms SAX-VSM in all
the cases in the batch setting, and it is more suitable for streaming settings),
and we evaluated the execution time and scalability of the algorithms for both
the training phase and the testing phase. As part of the evaluation we mea-
sured both the total execution time and speedup, while for the streaming case
we also provide results concerning the testing time. For the K-BOSS-VS method
the scalability and execution time measurements both in the batch and in the
streaming use-case are performed with K equal to 16. This is further justified
below.
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6.1 Experimental Setup and Data Sets

We tested all algorithms in a cluster with 10 computing nodes in total, where one
node of the cluster is reserved as the driver-node in Spark, and the remaining 9
nodes are used as workers. The hardware specifications for each computing node
is as follows: 2*XEON e5-2603v4 6-core 1.7 GHz with 15 MB cache, with 128 GB
of RAM and 256 GB SSD.

Details of the configurations of parallelism are depicted in Table 1.

Table 1. Configurations of parallelism

Number of executors Number of cores per executor Parallelism

9 4 36

4 4 16

1 4 4

1 1 1

To evaluate the algorithms we have used the following data sets:

1. The power measurement data set1 used in [11]. This data set contains two
classes, one for watts and another for temperature.

2. The Intel Data Lab Sensor (lab data) data set2. This data set contains 2.3
Million readings from sensors with classes temperature, humidity, light and
voltage.

The time horizon in our experiments for both data sets is equal to 24 in order
to create time-series per day. This created time series of different length for each
data data set: In Intel Lab data set we have about 58415 data points per day
for a total of 38 days (0.67 datapoints per second). In power measurements data
we have a data point every 10 s which means we have 8640 points per day.

In our tests 80% of each data set is randomly assigned to the training set,
and the remaining 20% to the test set.

In the streaming case we used the training set to obtain the representative
vectors per class, and then we used the test set to simulate a streaming setting:
For this purpose the test set in JSON was fed into the Apache Spark structured
streaming readStream function.

6.2 Evaluation Results

As we can see from Fig. 1a the K-BOSS-VS method is a middle ground between
BOSS and BOSS-VS in terms of accuracy, while it outperforms SAX-VSM. This

1 https://github.com/UniSurreyIoT/KAT/raw/master/logic/data.csv.
2 http://db.csail.mit.edu/labdata/labdata.html.

https://github.com/UniSurreyIoT/KAT/raw/master/logic/data.csv
http://db.csail.mit.edu/labdata/labdata.html
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Fig. 1. Accuracy results

proves that having multiple class representatives per class (in contrast to BOSS-
VS and SAX-VSM) provides increased accuracy especially on classification tasks
with multiple labels, as in the Intel Data Lab Sensor data set. All the algorithms
provide high accuracy in the power measurement data set, but the performance
of the algorithms differs in the lab data case. The K-BOSS-VS algorithm provides
an accuracy of 96% for the power measurement data set and 86% for the lab
data data set for K = 16 compared to 96% and 98% accuracy scores, respectively,
from BOSS.

Figure 1b shows the accuracy of K-BOSS-VS for varying values of parameter
K. This algorithm reaches high accuracy for the power measurement data set
even for low values of K. For the lab data data set the increase of K proves
beneficial. For K = 16 K-BOSS-VS uses 41% of the time series per class for
the lab data and 48% of the time series per class for the power measurements
data set. While increasing K would result in accuracy similar to BOSS, the
comparisons needed per target time series would also be similar to BOSS, as the
percentage of representatives per class would increase. These results supports
our intuition that a sufficient number of class representatives is beneficial to

Fig. 2. Speedup of methods in the batch setting, per data set.
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the accuracy of the algorithm, while we can effectively reduce the comparisons
needed per target case.

Figures 2a and 2b show the speedup for the batch settings for all four algo-
rithms on the two data sets. As we can see, based on our implementations, BOSS
scales better than SAX-VSM and BOSS-VS as parallelism increases, given that
it can distribute comparisons of test cases with each of the class members effec-
tively. For the power measurement data set the K-BOSS-VS method provides
the best speedup, while is has the second best speedup after BOSS for the lab
data set.

Fig. 3. Total methods’ execution time in the batch setting, per data set.

Fig. 4. Training time in the streaming setting for K-BOSS-VS and BOSS-VS, per data
set.

Figures 3a and 3b show the total execution time (i.e., the time for the train-
ing and test-phase of the algorithms) in the batch setting. On the power mea-
surements data set the results are not what we would expect, especially when
comparing BOSS with BOSS-VS and SAX-VSM (and with K-BOSS-VS): This
may be due to the fact that the data set is small and auxiliary operations add
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non-trivial execution time. On the larger and more complex data set the pic-
ture is different. BOSS, as expected, has the largest execution time in the low
parallelism settings, but as parallelism increases it becomes competitive to the
other algorithms. The K-BOSS-VS algorithm reports high execution time in low
parallelism settings, compared to BOSS-VS and SAX-VSM, although it is much
faster than BOSS. In high parallelism setting K-BOSS-VS matches the perfor-
mance of BOSS-VS and SAX-VSM. It must be noted that for parallelism equal
to 36 the training time for K-BOSS-VS is 47 s and the test time is 6 s. More
results regarding the test time are provided in the streaming settings, where
these are more relevant.

Figures 4a and 4b show the execution time for training on the two data sets
for BOSS-VS and the K-BOSS-VS method for the streaming case. As we can see
the K-BOSS-VS algorithm takes longer time to train, as expected, due to the
cost incurred on computing the K representatives per class. However, it becomes
more competitive with increased parallelism.

Figures 5a and 5b show the execution time for the test part of the algorithms
in streaming settings. The time needed for online classification is important
- especially in the streaming case, since, the training phase of the streaming
algorithm can be performed offline in the fashion of the Lambda Architecture
[17]. As we can see, although the K-BOSS-VS algorithm is competitive to BOSS-
VS, it is still slightly slower in low parallelism settings, as it incurs additional
cost for testing with multiple representatives per class. The performance benefits
of BOSS-VS are less apparent with increased parallelism and the two algorithms
perform identically for parallelism equal to 36 (given that K = 16), although K-
BOSS-VS achieves similar (in the power measurements data set) or better (in
the lab data set) accuracy scores, as shown above.

Fig. 5. Testing time in the streaming setting, for K-BOSS-VS and BOSS-VS, per data
set.

Figures 6a and 6b show the scalability of the test phase in the streaming
setting. As we can see the K-BOSS-VS method scales better than BOSS-VS due
to higher opportunities for parallelism, given that it can compare each target
time series to K representatives for each of the classes, in parallel.
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Fig. 6. Speedup for testing in the streaming setting, for K-BOSS-VS and BOSS-VS,
per data set.

Figures 7a and 7b compare the scalability of BOSS-VS with the scalability of
the K-BOSS-VS algorithm in the training phase. As we can see, in the smaller
data set K-BOSS-VS scales better, whereas in the larger data set BOSS-VS scales
better, given the cost incurred by K-BOSS-VS in comparing each target series
with K representatives per class. However, despite the fact that the algorithms
are close in terms of scalability, K-BOSS-VS is significantly more accurate than
BOSS-VS in the later case.

Fig. 7. Speedup for training in the streaming setting, for K-BOSS-VS and BOSS-VS,
per data set.

7 Conclusions

In this paper we have introduced the K-BOSS-VS algorithm for time-series clas-
sification in batch and streaming settings. Our proposed algorithm uses K repre-
sentatives per class to compare each test case using an 1-NN classifier, providing
accuracy similar or better than state of the art classifiers that compare each test
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case with every member of each class. On the contrary, although the algorithm
incurs a performance overhead compared to algorithms using a single representa-
tive (centroid) per class, maintaining K representatives per class, achieves higher
accuracy. However, on high parallelism settings it matches the performance of
algorithms that use a single centroid due to better scalability. The small memory
footprint of the algorithm, the high accuracy, and the efficiency of the classifi-
cation despite the performance overhead that it incurs - mainly in the training
phase, make it suitable for streaming applications.

As future work we plan to investigate trends’ representations by means of
class representatives, as well as incremental computations, aiming to further
increase the computational efficiency of the method while increasing further its
accuracy. We also plan to investigate time series classification methods following
paradigms that are different to the methods used here, such as decision trees,
also addressing the concept drift problem. Finally, we plan to investigate time
series classification purely on a stream setting without having to train on batch.

Acknowledgement. This work is partially supported by the University of Piraeus
Research Center.
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Abstract. Cloud services have become increasingly popular during
the past few years. Through these services, users can store their data
remotely and access them any time and from anywhere. These services
are offered by centralized systems where an organization or company
usually offers their resources to users. The centralized nature of these
systems causes several problems; a single point of failure exists, secu-
rity issues might provide unwarranted access to intruders and there are
privacy issues to consider as well. A solution to these problems is the
decentralization of the system. A core technology that can help in this
respect is the blockchain. It does not require any centralized control and
its security model is based on the nodes of the blockchain network to
share and verify transactions. This work aims to develop a secure decen-
tralized cloud service, which does not expose the users’ personal data.
To this effect, a framework that implements a cloud service using the
Ethereum blockchain ecosystem and the Swarm decentralized storage
platform was developed. In this, file access is provided through user-
specific decryption keys. By developing a decentralized cloud, using a
secure encryption model for the data, a service which is more secure,
and where the users have full control over their data is possible.

Keywords: Blockchain · Cloud storage · Decentralization · Security ·
Privacy

1 Introduction

Advances in networking technologies in recent years, along with an ever increas-
ing need for computing resources has prompted individuals and organizations
around the world to outsource their storage needs to cloud storage providers.
These providers, offer on-demand network access to a shared pool of configurable
computing resources that can be rapidly provisioned and released with minimal
management effort or service provider interaction [22] and provide benefits like
flexibility, convenience, reliability, access to resources from anywhere and at any
time etc. In most cases, in addition to providing an online storage space, they
also provide the means for file sharing and collaboration. Their business model
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usually dictates a free service tier, which most individuals find adequate for their
needs, while anyone with increased needs can purchase additional resources at a
cost effective level. These fall into the category of public cloud service providers.
While generally convenient and cost effective, they introduce significant security
and privacy risks. A potential breach in the security of the cloud storage provider
may allow the attacker access to private data. This issue is important for indi-
viduals, organizations and enterprises as well. Cloud service providers usually
implement strong security policies, and the potential security risks may be neg-
ligible, but they certainly exist. Privacy may be an even more important concern
though. It is widely known that most cloud service providers access user files,
stored on their premises, with the intent to harvest information about the users.
They can then use that information to direct the user to other paid services, or
simply target them with more effective advertisements of third party products
and services. While this may be an acceptable trade-off for a large number of
individuals, it is certainly not acceptable by everyone. And especially for enter-
prises and government organizations, this access to potentially mission-critical
data may not be acceptable at all.

To counter these problems, private cloud solutions have been developed. In
these, infrastructure is managed by the user, organization or enterprise. While
these may address most of the privacy related issues with public cloud services,
the cost of supporting their infrastructure falls on the end user. What’s more
important, they are also more susceptible to security issues. This is due to the
fact that a small organization or an individual may lack the resources for proper
maintenance of the infrastructure and related software, leaving known security
issues unpatched for large periods of time.

In order to address these concerns, we argue for designing a framework which
allows the users to privately and securely share files using public blockchain
technologies. Blockchain technologies have become increasingly popular since
the introduction of Bitcoin [23]. The blockchain is an immutable ledger of inter-
linked blocks. In each block, transactions between its users are recorded. Apart
from their primary use as a value store and currency, they can also be used for
recording arbitrary data. In later blockchain technologies, such as Ethereum [11],
it is also possible to execute computer code in a decentralized manner. However,
it is not cost-effective to store large amounts of data on the blockchain itself. For
that reason, it is most often the case that only metadata are stored. Recently,
several decentralized storage solutions have emerged, mostly based on blockchain
technologies, such as IPFS [1], Sia [3], Storj [4] and Swarm [5]. Our proposed
framework is based on Ethereum and Swarm technologies. Ethereum has been
chosen as it is the most mature public smart contract platform at this point and
Swarm is a technology that is closely linked to Ethereum. However, the same
methodology that is used with our proposed framework could easily be used with
other technologies. Key characteristics of our proposal, mostly inherited by the
underlying technologies, include:

– reliability: all data is redundantly stored in multiple locations
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– confidentiality: nobody other than the user the files belong to may learn any
information about their data

– integrity: no unauthorized modification of data may take place
– availability: data should be available from anywhere with an Internet access,

at all times
– cost effectiveness: access to the provided services should not incur prohibitive

costs
– data sharing: users may share their data with other users that they choose

to, and those users only

The added value provided by our proposal, includes the combination of these
underlying technologies in a novel way, coupled with an encryption scheme that
allows for private and data sharing that is isolated for individual users.

The structure of this paper is as follows: in the next section, related work is
outlined. In Sect. 3, the DeCStor framework is presented in detail. In Sect. 4, a
cost analysis with respect to our proposal’s use is performed. Finally, conclusions
are drawn in the last section, potential limitations of our work and possible
mitigations actions are also listed and ways of possibly extending this work are
indicated.

2 Related Work

There has been extensive work pertaining to the security and privacy of cen-
tralized cloud solutions during the past years. In [17], several architectures that
combine recent and non-standard cryptographic primitives in order to provide
security on public cloud infrastructure, are considered. A review of cryptographic
techniques that are used on existing cloud storage, their adoption and role are
analyzed in [28]. Moreover, the security issues that are the major concerns in a
cloud environment, along with issues related to data location, storage, availabil-
ity and integrity are noted in [18]. Security in public cloud storage solutions is
also discussed in [16], followed by possible mitigation techniques.

Users’ privacy concerns with respect to cloud storage solutions are recorded
in [15], indicating that their privacy requirements are different than those of
companies. Risks, solutions, and open problems related to ensuring privacy of
users accessing services or resources in the cloud, sensitive information stored at
external parties, and access to such information is discussed in [12].

A comprehensive review of existing privacy and security issues in cloud com-
puting, along with the relationships between them, potential vulnerabilities that
may be exploited by attackers, threat models as well as existing defense strategies
appear in [33]. The unique issues of cloud computing that exacerbate security
and privacy challenges in clouds along with various approaches to address these
challenges are illustrated in [31].

The ways that security, trust and privacy issues occur in the context of cloud
computing and how these may be addressed are presented in [27]. It is noted
that in order to provide and support trustworthy and innovative cloud computing
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services that are useful for a range of different situations, problems with privacy
and security should be addressed.

Unsolicited government access to end user data in cloud storage solutions is
discussed in depth in [30], together with potential mitigations that include data
encryption and strict adherence to no-logging policies.

Several cloud computing system providers are investigated with respect to
their concerns on security and privacy issues in [34]. The researchers find that
these impose strong barriers for users’ adoption of cloud systems and cloud
services and conclude that more security strategies should be deployed in the
cloud environment and that privacy acts should be altered to that end.

The privacy challenges that software engineers face when targeting the cloud
as their production environment are outlined in [26].

With respect to blockchain based solutions, a modified version of the Inter-
Planetary File System (IPFS) that leverages Ethereum smart contracts to pro-
vide access controlled file sharing is described in [10].

A blockchain based data provenance architecture to provide assurance of
data operations in a cloud storage application, while enhancing privacy and
availability is presented in [21]. A decentralized document version control system
that uses the Ethereum blockchain [11] together with IPFS [1] is described in
[25], with the authors claiming that their proposed solution is free of commonly
known security vulnerabilities and attacks.

A blockchain-based security architecture for distributed cloud storage, where
users can divide their own files into encrypted data chunks, and upload those
data chunks randomly into the P2P network nodes is introduced in [20]. The
authors employ a genetic algorithm to solve the file block replica placement
problem and find that the proposed architecture outperforms the traditional
cloud storage architectures in terms of file security.

In [19], a data-sharing mechanism that enables users to share their encrypted
data under a blockchain-based decentralized storage architecture is presented.
Encrypted data are stored in dedicated storage nodes and a proxy re-encryption
mechanism is used to ensure secure data-sharing in this untrusted environment.

The present work aims at improving the security and privacy implications of
using public decentralized storage, through the use of strong encryption ciphers
and user-specific decryption keys. Our solution involves the Ethereum blockchain
and the Swarm decentralized storage platform with a smart contract controlling
the upload and sharing of files that are stored on Swarm.

3 The DeCStor Framework

In this section, the DeCStor framework is outlined. The most important tech-
nologies, that DeCStor builds upon, are presented, accompanied by a brief
description of how they are used to overcome different problems. The encryp-
tion model that is used by DeCStor is analyzed in depth and the way account
management functions is presented. The role of smart contracts is detailed and
the different components of a proof-of-concept implementation are described.
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The most important aims of the DeCStor framework design are complete
decentralization and data protection. Technological solutions that have been
adopted and design details have been carefully chosen with those in mind.

3.1 Building Blocks

The following technologies are key parts of the DeCStor framework, as it was
designed and implemented. A brief introduction to these technologies follows:

Ethereum provides a public blockchain platform, accessible to anyone, in which
smart contracts can be executed. It was first released in 2013, with the goals
of improving the scripting and other restrictions of bitcoin and other cryp-
tocurrencies. Smart contracts are usually written using Ethereum’s dedicated
programming language, Solidity. These are executed in the Ethereum Virtual
Machine (EVM), which is a decentralized Turing complete virtual machine.
Using the EVM, smart contracts in Ethereum are possible to carry arbitrary
state and perform any arbitrary computation. The code that is included with
a smart contract is executed on all participating nodes of the Ethereum net-
work, as part of the block creation process [11].

Swarm is a “distributed storage platform and content distribution service, a
native base layer service of the ethereum web3 stack that aims to provide a
decentralized and redundant store for Distributed Application (DApp) code,
user data, blockchain and state data” [5]. Swarm is a service available to
the Ethereum blockchain. It essentially allows users to store and distribute
DApp code and data utilizing its peer-to-peer data sharing network. In this,
files are addressed by the hash value of their content. Instead of storing files
in individual servers, these are hosted in this peer-to-peer data storage net-
work. Implementing cross-node replication and erasure coding ensures data
availability. These traits makes Swarm fault-tolerant and censorship resistant.
Its decentralized nature also means that it is resistant to DDoS (distributed
denial of service) types of attacks, with effectively zero-downtime. It is also
designed to use an incentive system, so that the network’s viability is ensured
[13].

Public Key Infrastructure is a system that enables users of an insecure public
network to securely and privately exchange data through the use of private
and public cryptographic key pairs. These key pairs are commonly obtained
and shared through a trusted authority, although self-creation is also quite
common. PKI assumes the use of public key cryptography, a cryptographic
technique that reliably verifies the identity of an entity via digital signatures.
The main features that PKI offers are non-repudiation, privacy, integrity,
accountability and trust [14,32].

The Advanced Encryption Standard (AES) cipher is an iterative cipher
that implements a symmetric encryption algorithm. It is widely adopted for
the secure and private communication of data and is supported in both soft-
ware and hardware. Until now, there exist no practical attacks against AES.
It can use keys of variable length, which allows a degree of “future-proofing”
against progress in the ability to perform exhaustive key searches.
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3.2 Encryption Model

The most important feature of the DeCStor framework is data security. User
uploaded data should remain private and accessible only to specific users that
the owner provides access to. Therefore, the selection and design of a suit-
able encryption model, that implements strong cryptographic principles, is of
paramount importance.

The encryption model that DeCStor uses, combines two cryptographic primi-
tives that are commonly used and are currently impossible to break, in practical
terms. The first one is the Advanced Encryption Standard (AES) cipher [7],
which is a symmetric-key algorithm. That means that the same key is used for
both the encryption and the decryption of data. AES has a block size of 128
bits, and the configuration that is used by DeCStor uses a key length of 256
bits, commonly called the AES-256 algorithm. The second is Public Key Infras-
tructure (PKI) [9]. In public-key cryptography, a pair of keys is used. This key
pair consists of a “private key” and a “public key”. The private key is known
only to the owner of the key pair, while the public key, as the name suggests,
may be disseminated publicly. The public key is actually derived from the private
key by applying certain cryptographic functions. This is performed in a manner,
so that someone can encrypt a message with a public key provided to them,
with only the owner of the corresponding private key being able to decrypt the
message [24]. The most typically used algorithm used in PKI is RSA [29], but
other algorithms can be used as well.

Before any file operations are performed, a private/public key pair is issued
for each user. When a user uploads a new file, a “File-key” that corresponds
to that specific file is generated. This File-key is simply a 32-byte randomly
generated number that is then encoded as a base-64 ASCII string. The file is
then encrypted with the AES-256 cipher, using the File-key as the encryption
key. The encrypted file is then uploaded to Swarm and a hash that corresponds
to the file’s location in Swarm is returned to the file owner.

In order to provide access to the encrypted file to another user, the owner
of the file needs to obtain the potential recipient’s public key. The owner then
encrypts the File-key with that public key, thus creating a “Share-key”. The
Share-key is then sent to the recipient, along with the Swarm hash that indicates
the location of the file.

When the recipient wants to download the encrypted file, they use their own
private key to decrypt the Share-key, recreating the File-key in the process. They
can then download the AES-256 encrypted file using its hash from Swarm and
decrypt it using the File-key they obtained.

3.3 Account Management

A user account management system typically identifies users in a centralized
cloud based storage platform. Since the adoption of such an account manage-
ment system would add a centralized component to DeCStor, the adoption of
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Ethereum addresses as the user accounts was preferred. This way, user manage-
ment is decoupled from the DeCStor framework and a completely decentralized
solution can be implemented. An additional benefit is that a cryptographically
secure solution that is already used widely is adopted.

An Ethereum address is derived from a user’s private key. Specifically, for
a given private key, an Ethereum address (a 160-bit number) to which it cor-
responds is defined as the right most 160-bits of the Keccak hash of the corre-
sponding ECDSA public key [11]. The same private key that is used to derive the
Ethereum address, is also used for PKI operations in the DeCStor framework.

In order to use Ethereum addresses for user identification, an Ethereum “wal-
let” application is required. In general, and despite the name, a wallet application
for any cryptocurrency does not hold any amount of currencies. It just stores
and manages user accounts in the form of private/public key pairs. For this pur-
pose, a web-based browser plugin wallet application, such as Metamask [2] may
be chosen. This has the additional benefit that a web application can interface
with the plugin by using a library such as web3.js [6].

3.4 Smart Contract

A smart contract, deployed on the Ethereum blockchain is used to manage file
access, including file access request actions and file sharing actions.

When a file is uploaded, through the smart contract, to Swarm, the smart
contract stores the file’s Swarm hash, along with the owner’s address to the
Ethereum blockchain (Fig. 1).

Fig. 1. File upload process
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During a file access request by a user, an appropriate method in the smart
contract is initiated (Fig. 2). The information that is passed to this method
includes the recipient’s address in the Ethereum network, as well as the public
key that is attached to that address. These will be used by the file owner to
encrypt the File-key before providing access to the file itself. The smart contract
also notifies the owner for the file access request by means of emitting an appro-
priate message in the Ethereum event logging system. This can be typically read
by a monitoring application so that the owner is aware of the access request.

Fig. 2. File access request process

When a file owner responds to a file access request, they use the recipient’s
public key to encrypt the File-key to a Share-key that is specific to the recipient
(Fig. 3). That way, only the recipient, using their own private key, is able to
later decrypt the Share-key. Having the Share-key, they can then get back the
File-key, and in turn decrypt the AES-encrypted file to its unencrypted form.
The smart contract is used to store the file’s Swarm hash, that is the address
of the file in Swarm, the recipient’s address as well as the corresponding public
key. In that way, the smart contract acts as a logging mechanism of all people
that have been provided access to the file.

During a file download (Fig. 4), no data is stored by the smart contract. Only
data that has been previously shared between the file’s owner and recipient is
used to download the file from Swarm and decrypt it using the File-key.
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Fig. 3. File sharing process

Fig. 4. File download process
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3.5 Implementation

A proof-of-concept implementation has been developed, in order to showcase that
the DeCStor framework can be practically used. The implementation consists of
different components:

– a smart contract,
– a web3 javascript library and
– an HTML5 front-end

All of these components are available, in source code form, under a free
software license1.

The smart contract is written in the Solidity programming language [8], which
is the most common programming language for developing smart contracts for
the Ethereum blockchain. This essentially functions as the “back-end” part of
the proof-of-concept application. Access to the methods that the smart con-
tract includes, is provided by an Application Binary Interface (ABI). Using this
ABI, users are allowed to interact with the Ethereum blockchain network in the
manner specified by the smart contract. The smart contract is responsible for
storing and retrieving data to and from the Ethereum blockchain. It stores data
with respect to the identities of users (in the form of Ethereum addresses) that
upload files, request access to files and ultimately share files with other users.
This information is stored using so called “mappings”, which are in essence key-
value data stores. In any case, the key is always an Ethereum address and the
value is a struct. A struct is a composite data type, similar to that found in
other common programming languages, such as C. A struct defines a grouped
list of related variables under one name. In this case, structs contain the owner’s
and recipient’s Ethereum addresses as well as the Swarm hash of the uploaded
files and access information according to the action that is being requested by
the user (Figs. 1-3). In addition, it is designed to emit the respective events for
any changes that might occur in the data that the smart contract manages.

The web3 [6] javascript library interfaces with the web3.js libraries, that use
a generic JSON-RPC interface to connect with one or more active nodes in the
Ethereum network. Users may select to connect to a full node, locally or remotely,
or they may use a lightweight client, such as the Metamask web browser plugin to
establish a connection with the Ethereum network. The DeCStor library includes
functionality that facilitates the following actions:

– Data upload. The function encrypts the contents of a user provided file and
uploads the encrypted file to Swarm. It is also responsible for uploading Share-
keys when the file’s owner elects to do so.

– Data re-encryption. The function receives the encrypted data from Swarm,
decrypts them and in turn encrypts them again using new encryption keys.
All relevant information is stored back on the blockchain.

– Request for access permission. This is a small function that stores the request
on the blockchain.

1 https://gitlab.com/datalab-auth/blockchain/decstor.

https://gitlab.com/datalab-auth/blockchain/decstor
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– Data download. This function facilitates the data download from Swarm.
The downloaded data are stored as a file locally in the user’s device, which is
decrypted using the respective Share-key. In contrast to all previous functions,
it does not interact with the blockchain in any way.

The front-end web application is a simple implementation, written using
HTML5/Javascript technologies. It includes forms for file upload, file access
request, file sharing and file download providing simple and user-friendly inter-
faces to all functionality.

All of these components are actually parts of a Decentralized Application
(DApp). With DApps, in general, the “back-end” part of the application runs in a
completely decentralized manner, on blockchain networks, such as the Ethereum
network. Therefore, DApps inherit all characteristics of blockchain networks,
such as immutability, increased security, fault tolerance and zero downtime. The
“front-end” part of a DApp can be a Web UI, built with common web tech-
nologies, as in this case. However, there is no need to host this Web UI in a
centralized manner. In fact, there can be multiple instances of the front-end
code running simultaneously on different web servers. Front-end code can also
be ran as mobile phone or desktop computer applications, with no restriction to
the number of running instances. It is also possible to have the front-end code
stored in a decentralized manner on decentralized storage, such as Swarm or
IPFS, that way making the entire DApp completely decentralized.

4 Cost Analysis

In this section, costs associated with using the DeCStor framework are going to
be calculated and compared to respective costs of traditional cloud providers.

Cost analysis for the DeCStor implementation was held in May 2020. At that
time, the recommended gas price was approximately 15 gwei (1 gwei = 109 ETH),
while 1 ETH cost approximately $180. Due to the volatility of cryptocurrency
market prices, calculations will probably differ for different timeframes.

Deployment of the smart contract that has been developed for DeCStor, to
the Ethereum blockchain, incurs a cost of approximately 30000 gas, which equals
approximately 0.00045 ETH. That translates to $0.081, an amount that can be
considered trivial for most. This is also a one-time cost and should not concern
users that employ the smart contract to upload and share files.

When users issue a transaction to the smart contract, either for uploading a
file, requesting access to a file, or providing access to it, the cost is not propor-
tional to the file’s size. This is due to the fact that all the significant calculations
that pertain to the file’s contents occur in the front-end part of the DApp. The
data that is relayed to the smart contract, for each one of the respective functions
is always constant. The cost of executing any of the smart contracts methods is
between 15–20 gas, which translates to about 0.00000023-0.00000030 ETH, or
roughly, $0.00005. It has to be noted, that even this cost relates to file upload,
file access request and file sharing actions. The actual file download does not call
the smart contract and has no cost whatsoever.
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With such small operational costs, the most important costs are likely to
be Swarm storage costs. However, Swarm is still in early access stage and it
has not been deployed to the main network yet. There is no way to guess how
much it will ultimately cost to store data on Swarm, but judging from similar
implementations, such as IPFS, that is not expected to be significant. For these
reasons, storage costs are not included in our calculations.

5 Conclusions and Future Work

In this section, the general outcome of this work is briefly outlined. Possible
limitations are also discussed and ideas for future work are presented.

Our goal was to design a framework for secure and private file access and
sharing using public blockchain technologies. Our proposed architecture involves
the encryption of data with strong encryption ciphers and decryption keys that
are specific to each user that requests access to the data. A smart contract is
used for requesting and providing access to data uploaded to the Swarm decen-
tralized network storage platform. A proof-of-concept implementation has also
been created in order to prove the practical application of our design. Finally,
costs associated with its use have been calculated.

A potential issue with our architecture, is that once a Share-key has been
decrypted to the File-key that is used to encrypt and decrypt the data, the File-
key, or indeed the entire decrypted file may be shared between third parties,
without the original owner being aware of it. While a solution to this issue
could involve the use of some access control technologies, such as Digital Rights
Management (DRM) in order to restrict access, it is out of scope with respect to
this work. Such technologies could be used on top of our proposed framework,
without significant, or in fact any, alterations to it.

Access revocation is however something to consider. If a user that has received
access to a file is now considered untrustworthy, or the File-key has been otherwise
compromised, access to the original file should be revoked.To that effect, our proof-
of-concept implementation includes functionality to re-encrypt and re-upload data
to Swarm. During this action, the originally uploaded file gets downloaded, a new
File-key is generated, the file is encrypted with this new File-key and it is uploaded
as a new file to Swarm. If the original file’s owner stops providing incentive to other
Swarm nodes, in order for them to keep hosting the contents of the original file, this
will in time be garbage collected and entirely removed from Swarm. Nevertheless,
a window of opportunity for potentially malicious users that want to freely share
the file with other parties still exists. Additionally, if the malicious user has already
downloaded the full data from Swarm, there is no way to stop them from sharing
them using any other means.

As already noted, at the time of writing, the Swarm decentralized storage plat-
form that is used by DeCStor, has yet to be deployed to the main network and is to
be considered experimental. Once it is finally released, exact storage costs will be
possible to calculate, in proportion to the uploaded files’ size. Until that time, it is
not possible to know what these costs might be, however these are expected to be
similar or lower than offerings by centralized cloud storage providers.
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Future improvements and changes may include the potential deployment on
different decentralized network storage platforms, such as IPFS, since our solu-
tion could ultimately be used with almost any underlying storage platform. Addi-
tionally, the development of a more polished front-end application, together with
mobile device applications that may facilitate the use of our solution is one of
our future goals.

Acknowledgement. This research has been co-financed by the European Union
H2020 Research and Innovation Programme under Grant Agreements No. 826404 and
No 871403.
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Abstract. We propose a meta-learning framework to distribute Model-
Agnostic Meta-Learning (DMAML), a widely used meta-learning algo-
rithm, over multiple workers running in parallel. DMAML enables us to
use multiple servers for learning and might be crucial if we want to tackle
more challenging problems that often require more CPU time for simula-
tion. In this work, we apply distributed MAML on supervised regression
and image recognition tasks, which are quasi benchmark tasks in the field
of meta-learning. We show the impact of parallelization w.r.t. wall clock
time. Therefore, we compare distributing MAML over multiple workers
and merging the model parameters after parallel learning with paralleliz-
ing MAML itself. We also investigate the impact of the hyperparameters
on learning and point out further potential improvements.

Keywords: Meta-learning · Distributed learning · Few-shot learning ·
Parallel computing · MAML

1 Introduction

In machine-learning, models are traditionally learned by applying a vast dataset
on a specific task and train a model from scratch. Artificial learners perform
poorly when only a small amount of data is available, or the task is changing,
and they need to adapt.

In contrast, humans can abstract problems and effectively utilize prior knowl-
edge to learn new skills quickly and can learn with just a few samples. Meta-
learning is an emerging trend of research and tackles the problem of learning
to learn. Meta-learning can be seen as a generalization of using experience and
knowledge acquired earlier and is related to techniques for fine-tuning a model
on a task or hyperparameter optimization.

Model-Agnostic Meta-Learning (MAML) is a popular and influential meta-
learning algorithm. On a broad set of tasks, the MAML algorithm estimates a set
of parameters, which is used as a starting point for fast adaptation so that new
tasks can be learned quickly. MAML also has the benefit of being model-agnostic
in a way, that it can be applied to many different instances of structurally similar
tasks, solvable using gradient descent.
c© Springer Nature Switzerland AG 2020
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In this paper, we apply MAML in a distributed manner using multiple work-
ers and compare it to a parallelization of MAML itself. We provide an empirical
hyperparameter study and show the impact on the learning outcome. We can
show that the benefit of parallelization highly depends on how we can sample
the tasks for learning, and we recommend how to train MAML accordingly.

2 Related Work

MAML is a highly popular meta-learning algorithm for few-shot learning prob-
lems and achieves competitive performance on common benchmark few-shot
learning problems [10,14,16,18–20]. It is an optimization-based meta-learning
algorithm learning the parameters of a task-specific classifier. Other approaches
in the same family of meta-learning are [3,7,11,12,21]. Where, for example, in
[21], a concept generator is learned parallel with a meta-learner, the meta-learner
learns in a high-level concept space instead of the original representation.

Of all the algorithms in the family of optimization-based meta-learning algo-
rithms, MAML is especially influential and inspired many direct extensions in
literature recently [1,2,6,8,13,17,22]. These extensions critically rely on the
core structure of the MAML algorithm, using an outer-learning loop (for meta-
training) and an inner-learning loop (for task-specific adaptation). In [2,13] an
approach for implementing regimes to learn the inner learning rate α is proposed
and in [15] in the inner-learning loop only the last layer of the model is adapted
leading to less parameter updates. [22] divides the model parameters which are
learned into context and shared parameters aiming to make MAML easier to
parallelize and more interpretable.

In this work, we also aim to parallelize MAML by distributing learning over
multiple workers. This approach is similar to [4], where the learning is per-
formed by individual workers in a federated learning setting. Federated learning
aims at training on heterogeneous datasets, whereas distributed learning aims
on parallelizing computing power. In this work, we are performing an empirical
investigation of MAML in the distributed learning setting.

3 Distributed Model-Agnostic Meta-Learning

3.1 Model-Agnostic Meta-Learning

The main goal of MAML introduced by [5] is to find model parameters fθ which
serve as a good starting point for training the model on new instances of tasks
by applying just a few gradient steps

We sample training tasks Ti from a distribution of tasks p(T ). A task Ti

consists of a support and query set Ti = (Ds
i ,D

q
i ):

1. The support set is used to fit the model parameters for solving the task by
using a high inner-loop learning rate α and

2. the query set is used for slow training the meta-model parameters using a
lower meta-learning rate β.



296 J. Bollenbacher et al.

In MAML, we apply learning by two nested loops:
Inner-learning loop: Using the support set Ds

i of a task Ti, we calculate the
gradient of the loss function L w.r.t. the parameters of fθ and store these in γi

(Eq. 1).
γi ← α∇θLDs

i
(fθ) (1)

Outer-learning loop: Using the Adam optimizer, we update the meta-model
parameters θ in a way that the error loss using the query set Dq

i is minimized
for all task specific values γi (Eq. 2).

θ ← θ − β
∑

Ti

∇θLDq
i
(fθ−γi

) (2)

The quantity of data points and the structure of the sets are highly dependent
on the task domain. We evaluate the domains supervised regression and image
recognition; the tasks are described in detail in Sect. 4.

3.2 Distributed Learning

meta-
model

meta-
model

mergecopy

worker 1

worker 2

MAML

Fig. 1. One complete DMAML run: The central learner sends a copy of the meta-model
to both workers. The workers perform 2 MAML steps and send the model parameters
back to the central learner where they are merged.

We parallelize learning by distributing the learning over several workers. The
central learner holds the meta-model parameters and sends a copy to the workers.
Each worker is applying MAML steps to its model parameters in parallel. One
MAML step is one update of the model parameters, as described in the previous
Sect. 3.1. After the workers performed their MAML steps, the model parameters
are sent back to the central learner. The central learner averages all parameters
and starts over again. We call this procedure from copying the model parameters
to the workers until averaging the adapted parameters one run. One Distributed
Model-Agnostic Meta-Learning (DMAML) run is shown on Fig. 1.

The central learner receives the updated model parameters of each worker
along with the following metrics: loss and accuracy. Therefore, strategies can be
implemented on how to merge the model parameters. It is possible to drop model
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parameters of underperforming workers or give parameters of a well-performing
worker a greater weight.

Workers can be run in parallel and are not increasing wall clock time used,
while the consecutive MAML steps are executed sequentially and increase wall
clock time linearly.

4 Experiments

The goal of our experimental evaluation is to answer the following questions:

1. Which impact does parallelization have on learning?
2. Which impact do the number of workers and MAML steps have, and is it

beneficial to use more tasks during one MAML step?
3. Which parameters are best if tasks are either perfectly parallelized or

serialized?

We compare our model to plain MAML, which is equivalent to DMAML using
only one worker. In all of our experiments, we use TensorFlow 2 (without GPU
support). All parameters used for training are listed in the Appendix B.

4.1 Regression Task

The task domain of tasks Ti is to perform a regression to data points produced
by a sine function y(x) = A · sin(ωx − b) with constant frequency ω = 1 but
random amplitude A ∈ [0.1, 5.0] and phase b ∈ [0, π].

The regressor fθ(x) is a simple neural network with parameters θ consisting
of one input neuron, 2 hidden layers of size 40, and ReLU nonlinearities followed
by an output layer with size one following [5]. The loss is the mean-squared error
between fθ(x) and the true value y(x).

For each experiment we apply 10,000 consecutive MAML steps on the model
parameters θ and use n ∈ {1, 4, 16, 64} workers. Validation is performed by
optimizing the model parameter θ for a given validation task Ti and applying
5 gradient steps. As stated in [5], we use K = 10 points for training, randomly
chosen from x ∈ [−5.0, 5.0] and K ∈ {5, 10, 20} for validation.

Results show that all models trained with more than one worker perform
better (Fig. 2). Table 1 shows that we achieve similar results for more than
4 workers and comparable results with even more data points for validation.
We compare the mean loss and standard deviation after 600 tasks and with a
confidence interval of 95%. We assume that the increase in performance is a
result of the quantity of tasks the meta-learner observes.
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Fig. 2. The data points used for the gra-
dient steps for validation are all sampled
on the left side, so the model needs to
extrapolate the values on the right side.

Table 1. Validation loss for n workers after
training a meta-learner for 10,000 MAML
steps and one gradient step w.r.t. the vali-
dation task

n K

5 10 20

1 1.24 ± 0.1 0.78 ± 0.05 0.52 ± 0.04

4 1.02 ± 0.08 0.63 ± 0.05 0.43 ± 0.04

16 0.83 ± 0.07 0.53 ± 0.05 0.32 ± 0.03

64 0.9 ± 0.08 0.54 ± 0.05 0.33 ± 0.03

4.2 Image Recognition Task

We evaluate DMAML on Omniglot, and miniImageNet image recognition
tasks, which are the most common recently used few-shot learning benchmarks
[16,18,20].

We split the 50 available Omniglot alphabets into 30 alphabets for training
and 20 for testing, as proposed by [18]. The dataset is augmented by rotating
each instance by 90◦, and every rotated class is treated as a new class. The
training dataset consists of 3.760 classes, the validation dataset of 2.732 classes.
Every class consists of 20 images, which are resized to 28 × 28 pixels and are
treated as grayscale images.

The miniImageNet dataset proposed by [16] consists of 64 training, 12 val-
idation, and 24 test classes. As we are just doing validation, we aggregate the
validation and test classes.

As proposed by [20], we apply the N -way, K-shot task as follows:

1. We apply fast learning using a support-set consisting of N (5 or 20) different
classes and K (1 or 5) instances per class and

2. evaluate the models’ ability to classify new instances of the N classes using
a query-set consisting of K (Omniglot K = 1, miniImagenet K = 15) unseen
instances of the N classes.

The models used for training have a simple architecture following [20]:

For Omniglot image recognition task we use a model with an input shape
of (28, 28, 1), four modules with a 3× 3 convolution with 64 filters, and a
stride of 2. Each module followed by batch normalization [9] and a ReLU
nonlinearity.

The miniImageNet model follows a similar architecture: The model has an
input shape of (84, 84, 3) and consists of four modules with a 3× 3 convolution
with 32 filters, followed by a batch normalization, ReLU nonlinearity, and
2 × 2 max-pooling.

For all models, the output layer has a size of N and a softmax nonlinearity. The
loss function is the cross-entropy error between the predicted and true class.
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The following experiments were performed on the Omniglot image recogni-
tion task as a 5-way, 1-shot problem. In our experiments, we focus on the first
1,000 runs, which show a comparable trend in learning without training the
algorithm exceedingly long. All experiments run with 3 different seeds, recog-
nizing the need for more runs for a confidential result. The validation accuracy
is the average over 10 different validation tasks, taken after fitting the model
parameters to each task for 3 (Omniglot) and 10 (miniImageNet) gradient steps.
We show the standard deviation of all 3 models and the output of a polynomial
model fitted to the experiment data. The detailed results for both data sets are
shown in the Appendix A.

4.3 Parallel Workers

Fig. 3. Validation accuracy using n workers for learning. Learning is accelerated, when
more workers are used. There also seems to be a breakeven point where more workers
do not result in faster learning.

We run DMAML using n ∈ {1, 2, 3, 8, 16, 32} parallel workers for learning. On
the image recognition task, a small increase of workers leads to a steeper slope
and faster convergence on a higher accuracy level (Fig. 3). The difference in
accuracy between 16 and 64 workers is much smaller than the difference between
1 and 4 workers. This small difference leads us to the assumption that there
must be a breakeven point, where increasing the parallel workers n does not
increase the outcome significantly. The maximum tradeoff between CPU-time
and performance in this example is 2 or 4 workers. We run our experiments also
for 10,000 MAML steps and can observe an acceleration of learning for the first
1,000 MAML steps. If n is higher, we can observe a divergence of the validation
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accuracy after 1,500 MAML steps (Appendix A). This divergence reinforces our
assumption that 2 or 4 workers might be optimal for this setting. Also, a form
of schedule to decrease n over time or a strategy to drop the parameters of
underperforming workers might be helpful.

4.4 MAML Steps per Run

Fig. 4. The performance is shown depending on MAML steps. There seems to be no
advantage in increasing the consecutive MAML steps in one run.

In this experiment, we increase the number of consecutive MAML steps per run.
One worker performs multiple MAML steps before the model parameters are
merged in the central learner. The resulting graphs for 1, 2, 4 and 8 consecutive
MAML steps are shown on Fig. 4. Less consecutive MAML steps increase the
acceleration of learning at first but converge to the same level of accuracy. This
convergence leads to the conclusion that there is no advantage in increasing the
number of MAML steps in one run.

4.5 Tasks per MAML Step

In the meta-learning setting, tasks are costly, as most of the time, time-
consuming simulations need to be run. Therefore, we try to minimize overall
tasks needed for training. In this experiment, we also want to determine how we
can obtain the greatest output out of one single task.

On Fig. 5 (left), we assume a perfect level of parallelization of tasks and
show that the accuracy rises with an increasing number of tasks observed in one
MAML step. If we assume complete serialization of tasks, it is favorable to use
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Fig. 5. Applying on Omniglot dataset (left) perfect parallelization: an increase of tasks
perceived in one MAML step increases performance. (right) perfect serialization: an
increase of tasks perceived in one MAML step increases wall clock time linearly. If we
use fewer tasks per MAML step, we achieve a higher performance in a shorter amount
of time. (top) we average the gradient over all tasks and apply the same learning rate
β. (bottom) we sum over the gradients and apply a learning rate scheme.

less tasks per MAML step (Fig. 5 (right)). In the top section, we show the results
when averaging the gradients in the outer-learning loop over all tasks and apply
the same learning rate β, resulting in a similar step size for each MAML step.

In contrast, we sum the gradients of all tasks in the outer-learning loop
and apply a learning rate scheme (Fig. 5, bottom). We set the learning rate
for 32 tasks β = 0.001 as proposed by [5]. If we double the tasks used in one
MAML step, we can be more certain that the gradient is more accurate, so we
also double the learning rate and vice versa. Due to this learning rate scheme,
learning is stabilized using less than 32 tasks, and learning is accelerated when
using more tasks. As more tasks are used to determine the gradient, we can be
more confident of the gradient’s accuracy and perform a more significant update
on the model parameters.

In one MAML step, the meta-model parameters are adapted to perform
better for all observed tasks. With the same total number of tasks across all
workers, the meta-learner achieves a higher accuracy if a single worker observes
more tasks in one MAML step instead of distributing them to more workers (Fig.
6). This observation leads to the conclusion that we should aim at assigning as
many tasks per MAML step as possible.
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Fig. 6. The same amount of tasks distributed over multiple workers does not result in
the same performance as using just one worker.

5 Conclusion

We found two ways to parallelize MAML: 1. Parallelize the computation of the
tasks or 2. distribute learning over multiple workers, DMAML.

In DMAML, every worker receives a copy of the model parameters and
updates the parameters by applying MAML. We have investigated the impact of
DMAML and the influence of hyperparameters on learning (consecutive MAML
steps, number of workers and tasks).

In this work, we have shown:

1. If perfect parallelization of tasks is possible, meaning every MAML step takes
the same amount of wall clock time, we should aim at using as many tasks
as possible in one MAML step to increase performance.

2. If we need to serialize tasks, meaning the sum of computing all training tasks
results in the same amount of wall clock time, we should aim for many MAML
steps with fewer tasks per step. This results in an acceleration of learning.

3. Distributing learning over multiple workers does not improve learning com-
pared to parallelizing the inner-learning loop of MAML.

Further research can investigate if other strategies of merging the model
parameters in the central learner improves learning and suppresses the diver-
gence (e.g., dropping the parameters of a worker with a high loss).

As mentioned, using more tasks in one MAML step is beneficial and, due to
the averaging, can be expected to lead to a more accurate gradient. Therefore,
it might be possible to increase the learning rate. We also worked with a con-
stant learning rate β, however, if we optimize the learning rate individually, the
optimal solution might be shifted. This requires further investigation.
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A Detailed Experiment Results

The validation accuracy after training DMAML using n workers for a number of
MAML steps is calculated using the model with the highest validation accuracy
after 10.000 steps out of three trained models, each using a different seed. We
use a confidence interval of 95% and use 600 tasks for validation.

The result for Omniglot few-shot tasks are shown in Tables 2, 3 and 4, and
the results for miniImageNet few-shot tasks are shown in Table 5.

Table 2. Comparison of n workers training for a number of MAML steps on the
Omniglot image recognition task (5-way, 1-shot)

n 500 1000 2000 4000 8000 10000

1 0.81± 0.006 0.82± 0.007 0.87± 0.005 0.88± 0.006 0.85± 0.007 0.86± 0.007

2 0.84± 0.006 0.86± 0.006 0.87± 0.006 0.89± 0.005 0.89± 0.005 0.9± 0.005

4 0.87± 0.005 0.88± 0.005 0.88± 0.005 0.89± 0.006 0.91± 0.005 0.93± 0.004

8 0.88± 0.005 0.88± 0.005 0.86± 0.006 0.83± 0.007 0.88± 0.006 0.91± 0.005

16 0.88± 0.005 0.89± 0.005 0.84± 0.006 0.77± 0.01 0.86± 0.006 0.87± 0.007

32 0.89± 0.005 0.89± 0.005 0.85± 0.006 0.81± 0.009 0.75± 0.016 0.9± 0.005

Table 3. Comparison of n workers training for a number of MAML steps on the
Omniglot image recognition task (5-way, 5-shot).

n 500 1000 2000 4000 8000 10000

1 0.96± 0.002 0.96± 0.002 0.97± 0.002 0.97± 0.002 0.97± 0.002 0.97± 0.003

2 0.95± 0.003 0.95± 0.003 0.96± 0.003 0.97± 0.002 0.97± 0.002 0.97± 0.002

4 0.96± 0.002 0.97± 0.002 0.97± 0.002 0.94± 0.005 0.97± 0.002 0.97± 0.004

8 0.96± 0.002 0.97± 0.002 0.97± 0.003 0.92± 0.009 0.85± 0.016 0.72± 0.021

16 0.96± 0.002 0.97± 0.002 0.97± 0.002 0.92± 0.008 0.84± 0.015 0.95± 0.007

32 0.97± 0.002 0.97± 0.002 0.97± 0.002 0.94± 0.005 0.67± 0.020 0.71± 0.019

Table 4. Comparison of n workers training for a number of MAML steps on the
Omniglot image recognition task (20-way, 1-shot).

n 500 1000 2000 4000 8000 10000

1 0.59± 0.004 0.68± 0.004 0.73± 0.004 0.75± 0.004 0.76± 0.004 0.76± 0.004

2 0.66± 0.004 0.73± 0.004 0.77± 0.004 0.78± 0.004 0.78± 0.004 0.79± 0.004

4 0.71± 0.004 0.79± 0.004 0.81± 0.004 0.81± 0.004 0.81± 0.003 0.78± 0.004

8 0.74± 0.003 0.82± 0.003 0.84± 0.003 0.85± 0.002 0.75± 0.004 0.73± 0.003

16 0.77± 0.003 0.83± 0.003 0.83± 0.003 0.8± 0.004 0.77± 0.004 0.77± 0.003

32 0.76± 0.003 0.82± 0.003 0.81± 0.003 0.71± 0.004 0.76± 0.004 0.77± 0.003
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Table 5. Comparison of n workers training for a number of MAML steps on the
miniImageNet image recognition task (5-way, 1-shot and 5-way, 5-shot).

n 5-way, 1-shot 5-way, 5-shot

500 1000 2000 500 1000 2000

1 0.21± 0.003 0.21± 0.003 0.23± 0.004 0.3± 0.004 0.35± 0.005 0.39± 0.006

2 0.27± 0.005 0.27± 0.005 0.29± 0.005 0.38± 0.005 0.43± 0.006 0.46± 0.006

4 0.31± 0.005 0.32± 0.005 0.34± 0.006 0.44± 0.006 0.46± 0.006 0.5± 0.006

8 0.33± 0.005 0.36± 0.006 0.37± 0.006 0.46± 0.006 0.49± 0.006 0.52± 0.006

16 0.34± 0.006 0.37± 0.006 0.39± 0.006 0.47± 0.006 0.5± 0.006 0.53± 0.006

32 0.35± 0.006 0.36± 0.006 0.4± 0.006 0.48± 0.006 0.51± 0.006 0.53± 0.006

B Training Parameters

The parameters used for training DMAML are shown in Table 6.

Table 6. Experiment parameters

Experiment parameter Omniglot MiniImageNet Regression

Support-set samples (k) 1 1 10

Query-set samples (k′) 1 15 10

Inner-loop learning rate (α) 0.4 0.4 0.01

Meta-learning rate (β) 0.01 0.01 0.01

Tasks (i) 32 4 10

MAML steps 1 1 1

Gradient steps 1 5 1

Validation steps 3 10 1

Validation tasks 10 10 10
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Abstract. Algorithm selection (AS) deals with the automatic selection
of an algorithm from a fixed set of candidate algorithms most suitable
for a specific instance of an algorithmic problem class, e.g., choosing
solvers for SAT problems. Benchmark suites for AS usually comprise can-
didate sets consisting of at most tens of algorithms, whereas in algorithm
configuration (AC) and combined algorithm selection and hyperparam-
eter optimization (CASH) problems the number of candidates becomes
intractable, impeding to learn effective meta-models and thus requir-
ing costly online performance evaluations. In this paper, we propose the
setting of extreme algorithm selection (XAS), which, despite assuming
limited time resources and hence excluding online evaluations at predic-
tion time, allows for considering thousands of candidate algorithms and
thereby facilitates meta learning. We assess the applicability of state-
of-the-art AS techniques to the XAS setting and propose approaches
leveraging a dyadic representation, in which both problem instances and
algorithms are described in terms of feature vectors. We find this app-
roach to significantly improve over the current state of the art in various
metrics.

Keywords: Extreme algorithm selection · Dyadic ranking · Surrogate
model

1 Introduction

Algorithm selection (AS) refers to a specific recommendation task, in which
the choice alternatives are algorithms: Given a set of candidate algorithms to
choose from, and a specific instance of a problem class, such as SAT or integer
optimization, the task is to select or recommend an algorithm that appears to be
most suitable for that instance, in the sense of performing best in terms of criteria
such as runtime, solution quality, etc. Hitherto practical applications of AS, as
selecting a SAT solver for a logical formula, typically comprise candidate sets
consisting of at most tens of algorithms, and this is also the order of magnitude
that is found in standard AS benchmark suites such as ASlib [2].

This is in contrast with the problem of combined algorithm selection and
hyperparameter optimization (CASH) [24] as considered in automated machine
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learning (AutoML), where the number of potential candidates is very large and
potentially infinite [6,16,24]. Corresponding methods heavily rely on computa-
tionally extensive search procedures combined with costly online evaluations of
the performance measure to optimize for, since learning effective meta models
for an instantaneous recommendation becomes infeasible.

In this paper, we propose extreme algorithm selection (XAS) as a novel set-
ting in-between traditional AS and AC/CASH, which is motivated by application
scenarios characterized by

– the demand for prompt recommendations in quasi real time,
– an extremely large (though still finite) set of candidate algorithms.

An example is the scenario of “On-the-fly computing” [10], including “On-the-fly
machine learning” [17] as one of its instantiations, where users can request online
(machine learning) software services customized towards their needs. Here, users
are unwilling to wait for several hours until their service is ready, but rather claim
a result quickly. Hence, for providing a first version of an appropriate service,
costly search and online evaluations are not affordable. As will be seen, XAS
offers a good compromise solution: Although it allows for the consideration of
extremely many candidate solutions, and even offers the ability to recommend
configurations that have never been encountered so far, it is still amenable to
AS techniques and avoids costly online evaluations.

In a sense, XAS relates to standard AS as the emerging topic of extreme
classification (XC) [1] relates to standard multi-class classification. Similar to
XC, the problem of learning from sparse data is a major challenge for XAS: For
a single algorithm, there are typically only observations for a few instances. In
this paper, we propose a benchmark dataset for XAS and investigate the ability
of state-of-the-art AS approaches to deal with this sparsity and to scale with
the size of candidate sets. Furthermore, to support more effective learning from
sparse data, we propose methods based on “dyadic” feature representations,
in which both problem instances and algorithms are represented in terms of
feature vectors. In an extensive experimental study, we find these methods to
yield significant improvements.

2 From Standard to Extreme Algorithm Selection

In the standard (per-instance) algorithm selection setting, first introduced in [20],
we are interested in finding a mapping s : I −→ A, called algorithm selector.
Given an instance i from the instance space I, the latter selects the algorithm
a∗ from a set of candidate algorithms A, optimizing a performance measure
m : I × A −→ R. Furthermore, m is usually costly to evaluate. The optimal
selector is called oracle and is defined as

s∗(i) ..= arg max
a∈A

E
[
m(i, a)

]
(1)
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for all i ∈ I. The expectation operatorE accounts for any randomness in the appli-
cation of the algorithm—in the non-deterministic case, the result of applying a to
i, and hence the values of the performance measure, are random variables.

Most AS approaches leverage machine learning techniques, in one way or
another learning a surrogate (regression) model m̂ : I × A −→ R, which is fast
to evaluate and thus allows one to compute a selector ŝ : I −→ A by

ŝ(i) ..= arg max
a∈A

m̂(i, a) . (2)

In order to infer such a model, we usually assume the existence of a set of training
instances ID ⊂ I for which we have instantaneous access to the associated
performances of some or often all algorithms in A according to m.

The XAS setting distinguishes itself from the standard AS setting by two
important properties. Firstly, we assume that the set of candidate algorithms
A is extremely large. Thus, approaches need to be able to scale well with the
size of A. Secondly, due to the size of A, we can no longer reasonably assume to
have evaluations for each algorithm on each training instance. Instead, we assume
that the training matrix spanned by the training instances and algorithms is only
sparsely filled. In fact, we might even have algorithms without any evaluations
at all. Hence, suitable approaches need to be able to learn from very few data
and to tackle the problem of “zero-shot learning” [29].

Similarly, the XAS setting differs from the AC and CASH settings in two main
points. Firstly, dealing with real-valued hyperparameters, the set of (configured)
algorithms A is generally assumed to be infinite in both AC and CASH, whereas
A is still finite (even if extremely large) in XAS. More importantly, in both AC
and CASH, one usually assumes having time to perform online evaluations of
solution candidates at recommendation time. However, as previously mentioned,
this is not the case in XAS, where instantaneous recommendations are required.
Hence, the XAS setting significantly differs from the AS, AC, and CASH settings.
A summary of the main characteristics of these settings is provided in Table 1.

Table 1. Overview of the characteristics of the problem settings we distinguish.

Characteristics/Setting AS XAS AC CASH

Size of A at most tens extremely many potentially infinite potentially infinite

Training data complete sparse mostly not present mostly not present

Online evaluations no no yes yes

3 Exploiting Instance Features

Instance-specific AS is based on the assumption that instances can be represented
in terms of feature information. For this purpose, fI : I −→ R

k denotes a
function representing instances as k-dimensional, real-valued feature vectors,
which can be used to learn a surrogate model (2). This can be done based
on different types of data and using different loss functions.
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3.1 Regression

The most common approach is to tackle AS as a regression problem, i.e., to
construct a regression dataset for each algorithm, where entries consist of an
instance representation and the associated performance of the algorithm at ques-
tion. Accordingly, the dataset associated with algorithm a ∈ A consists of tuples
of the form

(
fI(i),m(i, a)

)
, created for those instances i ∈ ID to which a has

been applied, so that a performance evaluation m(i, a) ∈ R is available. Using
this dataset, a standard regression model m̂a can be learned per algorithm a,
and then used as a surrogate. The model can be realized as a neural network
or a random forest, and trained on loss functions such as root mean squared or
absolute error. For an overview of methods of this kind, we refer to Sect. 6.

This approach has two main disadvantages. Firstly, it is not well suited for
the XAS setting, as it requires learning a huge number of surrogate models,
one per algorithm. Although these models can usually be trained very quickly,
the assumption of sparse training data in the XAS setting requires them to be
learned from only a handful of training examples—it is not even uncommon to
have algorithms without any performance value at all. Accordingly, the sparser
the data, the more drastically this approach drops in performance, as will be
seen in the evaluation in Sect. 5. Secondly, it requires precise real-valued eval-
uations of the measure m as training information, which might be costly to
obtain. In this regard, one may also wonder, whether regression is not solving
an unnecessarily difficult problem: Eventually, AS is only interested in finding
the best algorithm for a given problem instance, or, more generally, in ranking
the candidate algorithms in decreasing order of their expected performance. An
accurate prediction of absolute performances is a sufficient but not a necessary
condition for doing so.

3.2 Ranking

As an alternative to regression, one may therefore think of tackling AS as a rank-
ing problem. More specifically, the counterpart of the regression approach out-
lined above is called label ranking (LR) in the literature [28]. Label ranking deals
with learning to rank choice alternatives (referred to as “labels”) based on given
contexts represented by feature information. In the setting of AS, contexts and
labels correspond to instances and algorithms, respectively. The type of training
data assumed in LR consists of rankings πi associated with training instances
i ∈ ID, that is, order relations of the form (fI(i), ai,1) � . . . � (fI(i), ai,li), in
which � denotes an underlying preference relation; thus, (fI(i), a) � (fI(i), a′)
means that, for instance i represented by features fI(i), algorithm a is preferred
to (better than) algorithm a′. If i is clear from the context, we also represent
the ranking by a1 � . . . � ali . Compared to the case of regression, a ranking
dataset of this form can be constructed more easily, as it only requires qualitative
comparisons between algorithms instead of real-valued performance estimates.

A common approach to label ranking is based on the so-called Plackett-
Luce (PL) model [4], which specifies a parameterized probability distribution
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on rankings over labels (i.e., algorithms in our case). The underlying idea is to
associate each algorithm a with a latent utility function m̂a : I −→ R+ of a
context (i.e., an instance), which estimates how well an algorithm is suited for
a given instance. The functions m̂a are usually modeled as log-linear functions

m̂a(i) = exp
(
θ�

a fI(i)
)
, (3)

where θa ∈ R
k is a real-valued, k-dimensional vector, which has to be fit for

each algorithm a. The PL model specifies a probability distribution on rankings:
given an instance i ∈ I, the probability of a ranking a1 � . . . � az over any
subset {a1, . . . , az} ⊆ A is

P(a1 � . . . � az |Θ) =
z∏

n=1

m̂an
(i)

m̂an
(i) + . . . + m̂az

(i)
. (4)

A probabilistic model of that kind suggests learning the parameter matrix Θ =
{θa | a ∈ A} via maximum likelihood estimation, i.e., by maximizing

L(Θ) =
∏

i∈ID

P(πi |Θ)

associated with (4); this approach is explained in detail in [4]. Hence, the asso-
ciated loss function under which we learn is now of a probabilistic nature (the
logarithm of the PL-probability). It no longer focuses on the difference between
the approximated performance m̂a(i) and the true performance m(i, a), but on
the ranking of the algorithms with respect to m—putting it in the jargon of
preference learning, the former is a “pointwise” while the latter is a “listwise”
method for learning to rank [3].

This approach potentially overcomes the second problem explained for the
case of regression, but not the first one: It still fits a single model per algorithm
a (the parameter vector θa), which essentially disqualifies it for the XAS setting.

3.3 Collaborative Filtering

This may suggest yet another approach, namely the use of collaborative filtering
(CF) [8], in the setting of AS originally proposed by [23]. In CF for AS, we assume
a (usually sparse) performance matrix R|ID|×|A|, where an entry Ri,a = m(i, a)
corresponds to the performance of algorithm a on instance i according to m if
known, and Ri,a = ? otherwise. CF methods were originally designed for large-
scale settings, where products (e.g. movies) are recommended to users, and data
to learn from is sparse. Hence, they appear to fit well for our XAS setting.

Similar to regression and ranking, model-based CF methods also learn a
latent utility function. They do so by applying matrix factorization techniques
to the performance matrix R, trying to decompose it into matrices U ∈ R

|ID|×t

and V ∈ R
t×|A| w.r.t. some loss function L(R,U, V ), such that

R ≈ R̂ = UV � , (5)
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where U (V ) can be interpreted as latent features of the instances (algorithms),
and t is the number of latent features. Accordingly, the latent utility of a known
algorithm a for a known instance i can be computed as

m̂a(i) = Ui,•V �
•,a , (6)

even if the associated value Ri,a is unknown in the performance matrix used for
training. The loss function L(R,U, V ) depends on the exact approach used—
examples include the root mean squared error and the absolute error restricted
by some regularization term to avoid overfitting. In [15], the authors suggest
a CF approach called Alors, which we will use in our experiments later on. It
can deal with unknown instances by learning a feature map from the original
instance to the latent instance feature space. Alors leverages the CF approach
CoFiRANK [31] using the normalized discounted cumulative gain (NDCG) [30] as
loss function L(R,U, V ). Since the NDCG is a ranking loss, it focuses on decom-
posing the matrix R so as to produce an accurate ranking of the algorithms.
More precisely, it uses an exponentially decaying weight function for ranks, such
that more emphasis is put on the top and less on the bottom ranks. Hence, it
seems particularly well suited for our use case.

4 Dyadic Feature Representation

As discussed earlier, by leveraging instance features, or learning such a represen-
tation as in the case of Alors, the approaches presented in the previous section
can generalize over instances. Yet, none of them scales well to the XAS setting,
as they do not generalize over algorithms; instead, the models are algorithm-
specific and trained independently of each other. For the approaches presented
earlier (except for Alors), this does not only result in a large number of models
but also requires these models to be trained on very few data. Furthermore, it
is not uncommon to have algorithms without any observation. A natural idea,
therefore, is to leverage feature information on algorithms as well.

More specifically, we use a feature function fA : A −→ R
d representing

algorithms as d-dimensional, real-valued feature vectors. Then, instead of learn-
ing one latent utility model per algorithm, the joint feature representation of a
“dyad” consisting of an instance and an algorithm, allows us to learn a single
joint model

m̂ : fI(I) × fA(A) −→ R , (7)

and hence to estimate the performance of a given algorithm a on a given instance
i in terms of m̂(fI(i), fA(a)).

4.1 Regression

With the additional feature information at hand, instead of constructing one
dataset per algorithm, we resolve to a single joint dataset comprised of examples
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(
ψ

(
fI(i), fA(a)

)
,m(i, a)

)
with dyadic feature information for all instances i ∈

ID and algorithms a ∈ A for which a performance value m(i, a) is known. Here,

ψ : Rk × R
d −→ R

q (8)

is a joint feature map that defines how the instance and algorithm features are
combined into a single feature representation of a dyad. What is sought, then,
is a (parametrized) latent utility function m̂θ : Rq −→ R, such that

m̂θ

(
ψ

(
fI(i), fA(a)

))
(9)

is an estimation of the performance of algorithm a on instance i. Obviously, the
choice of ψ will have an important influence on the difficulty of the regression
problem and the quality of the model (9) induced from the data DREG . The
regression task itself comes down to learning the parameter vector θ. In principle,
this can be done exactly as in Sect. 3.1, also using the same loss function. Note
that this is a generalization of the approach used by SMAC [11] for predicting
performances across instances in algorithm configuration. We allow for a generic
joint feature map ψ and an arbitrary model for m̂θ , whereas SMAC limits itself
to a concatenation of features and trains a random forest for modeling m̂θ . Once
again, it is noteworthy that SMAC by itself is not applicable in the XAS setting,
as it relies on costly online evaluations.

4.2 Ranking

A similar adaptation can be made for the (label) ranking approach presented in
Sect. 3.2 [25]. Formally, this corresponds to a transition from the setting of label
ranking to the setting of dyad ranking (DR) as recently proposed in [21]. The first
major change in comparison to the setting of label ranking concerns the training
data, where the rankings πi over subsets of algorithms {ai,1, . . . , ai,li} ⊆ A for
instance i are now of the form

ψ
(
fI(i), fA(ai,1)

) � . . . � ψ
(
fI(i), fA(ai,li)

)
. (10)

Thus, we no longer represent an algorithm a simply by its label (a) but by
features fA(a). Furthermore, like in the case of regression, we no longer learn
one latent utility function per algorithm, but a single model of the form (9)
based on a dyadic feature representation. In particular, we model m̂θ as a feed-
forward neural network, where θ represents its weights, which, as shown in [21],
can be learned via maximum likelihood estimation on the likelihood function
implied by the underlying PL model. Note that the use of a neural network is of
particular interest here, since it allows one to learn the underlying joint feature
map φ implicitly. Although both instance and algorithm features are simply fed
as a concatenated vector into the network, it can recombine these features due
to its structure and thus implicitly learn such a joint feature representation.

In contrast to the methods presented in the previous section, the methods
based on dyadic feature information are capable of assigning a utility to unknown
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algorithms. Thus, they are well suited for the XAS setting and in principle even
applicable when A is infinite, as long as a suitable feature representation fA is
available. Furthermore, as demonstrated empirically in Sect. 5, the dyadic feature
approaches are very well suited for dealing with sparse performance matrices that
are typical of the XAS setting.

5 Experimental Evaluation

In our experiments, we evaluate well established state-of-the-art approaches to
algorithm selection as well as the proposed dyadic approaches in the XAS set-
ting. More specifically, we consider the problem of selecting a machine learning
classifier (algorithm) for a new classification dataset (instance) as a case study
related to the “on-the-fly machine learning” scenario [17]. Please note that this
is just one amongst many conceivable instantiations of the XAS setting, which is
supposed to demonstrate the performance of the presented methods. To this end,
we first generate a benchmark and then use this benchmark for comparison. The
generated benchmark dataset as well as the implementation of the approaches
including detailed documentation is provided on GitHub1.

5.1 Benchmark Dataset

In order to benchmark the generalization performance of the approaches pre-
sented above in the XAS setting, we consider the domain of machine learning.
More precisely, the task is to select a classification algorithm for an (unseen)
dataset. Therefore, a finite set of algorithms A for classification and a set of
instances I corresponding to classification datasets need to be specified. Further-
more, a performance measure is needed to score the algorithms’ performance.

The set of candidate algorithms A is defined by sampling up to 100 differ-
ent parameterizations of 18 classification algorithms from the machine learning
library WEKA [7], ensuring these parameterizations not being too similar. An
overview of the algorithms, their parameters and the number of instantiations
contained in A is given in Table 2. This yields |A| = 1, 270 algorithms in total.
The last row of the table sums up the items of the respective column, providing
insights into the dimensionality of the space of potential candidate algorithms.

The set of instances I is taken from the OpenML CC-18 benchmarking suite2

[27], which is a curated collection of various classification datasets that are con-
sidered interesting from a model selection resp. hyperparameter optimization
point of view. This property makes the datasets particularly appealing for the
XAS benchmark dataset, as it ensures more diversity across the algorithms.

Accordingly, the total performance matrix spanned by the algorithms and
classification datasets in principle features 1, 270 · 71 = 88, 900 entries for which
the benchmark contains 55, 919 actual values and the rest are unknown.
1 https://github.com/alexandertornede/extreme algorithm selection.
2 https://docs.openml.org/benchmark/#openml-cc18 (Excluding datasets 554,

40923, 40927, 40996 due to technical issues.).

https://github.com/alexandertornede/extreme_algorithm_selection
https://docs.openml.org/benchmark/#openml-cc18
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In the domain of machine learning, one is usually more interested in the
generalization performance of an algorithm than in the runtime. Therefore, m
is chosen to assess the solution performance of an algorithm. To this end, we
carry out a 5-fold cross validation and measure the mean accuracy across the
folds3. As the measure of interest, accuracy is a reasonable though to some extent
arbitrary choice. Note that in principle any other measure could have been used
for generating the benchmark as well.

Table 2. The table shows the types of classifiers used to derive the set A. Additionally,
the number of numerical parameters (#num.P), categorical parameters (#cat.P), and
instantiations (n) is shown.

Learner 0
R

1
R

B
N

D
S

D
T

IB
k

J
4
8

J
R

K
S

L L
M

T

M
P

N
B

P
A
R
T

R
E
P
T

R
F

R
T

S
M

O

#num.P 0 1 0 0 1 1 2 2 1 1 2 2 0 2 3 3 4 1

#cat.P 0 0 2 0 3 3 6 2 2 0 5 6 2 2 2 2 4 2

n 1 30 12 1 45 89 100 100 99 100 100 100 3 91 100 99 100 100

Training data for CF and regression-based approaches can then be obtained
by using the performance values as labels. In contrast, for training ranking
approaches, the data is labeled with rankings derived by ordering the algorithms
in a descending order w.r.t. their performance values. Note that information
about the exact performance value itself is lost in ranking approaches.

We would like to note that the problem underlying this benchmark dataset
could of course be cast as an AC or CASH problem. However, here we make the
assumption that there is no time for costly online evaluations due to the on-the-
fly setting and hence standard AC and CASH methods are not applicable.

Instance Features. For the setting of machine learning, the instances are classi-
fication datasets and associated feature representations are called meta-features
[18]. To derive a feature description of the datasets, we make use of a specific
subclass of meta-features called landmarkers, which are performance scores of
cheap-to-validate algorithms on the respective dataset. More specifically, we use
all 45 landmarkers as provided by OpenML [27], for which different configura-
tions of the following learning algorithms are evaluated based on the error rate,
area under the (ROC) curve, and Kappa coefficient: Naive Bayes, One-Nearest
Neighbour, Decision Stump, Random Tree, REPTree and J48. Hence, in total
we use 45 features to represent a classification dataset.

Algorithm Features. The presumably most straight-forward way of repre-
senting an algorithm in terms of a feature vector is to use the values of its
hyperparameters. Thus, we can describe each individual algorithm by a vector
of their hyperparameter-values. Based on this, the general feature description

3 The standard deviation of the performance values per dataset is on average 0.101,
minimum 0.0064 and maximum 0.33.
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is obtained by concatenation of the vectors. As already mentioned, the neu-
ral network-based dyad ranking approach implicitly learns a more sophisticated
joint feature map. Due to the way in which we generated the set of candidate
algorithms A, we can compress the vector sharing features for algorithms of the
same type. Additionally, we augment the vector by a single categorical feature
denoting the type of algorithm. Given any candidate algorithm, its feature rep-
resentation is obtained by setting the type of algorithm indicator feature to its
type, each element of the vector corresponding to one of its hyperparameters to
the specific value, and other entries to 0. Categorical parameters, i.e. features,
are one-hot encoded yielding a total of 153 features to represent an algorithm.

5.2 Baselines

To better relate the performance of the different approaches to each other
and to the problem itself, we employ various baselines. While RandomRank
assigns ranks to algorithms simply at random, AvgPerformance first averages
the observed performance values for each candidate algorithm and predicts the
ranking according to these average performances. k-NN LR retrieves the k near-
est neighbors from the training data, averages the performances and predicts
the ranking which is induced by the average performances. Since AvgRank is
commonly used as another baseline in the standard AS setting, we note that
we omit this baseline on purpose. This is because meaningful average ranks of
algorithms are difficult to compute in the XAS setting, where the number of
algorithms evaluated, and hence the length of the rankings of algorithms, vary
from dataset to dataset.

5.3 Experimental Setup

In the following experiments, we investigate the performance of the different
approaches and baselines in the setting of XAS for the example of the proposed
benchmark dataset as described in Sect. 5.1.

We conduct a 10-fold cross validation to divide the dataset into 9 folds of
known and 1 fold of unknown instances. From the resulting set of known per-
formance values, we then draw a sample of 25, 50, or 125 pairs of algorithms for
every instance under the constraint that the performances of the two algorithms
is not identical. Thus, a maximum fill degree of 4%, 8% respectively 20% of the
performance matrix is used for training, as algorithms may occur more than once
in the sampled pairs. The sparse number of training examples is motivated by
the large number of algorithms in the XAS setting. The assumption that per-
formance values are only available for a small subset of the algorithms is clearly
plausible here. Throughout the experiments, we ensure that all approaches are
provided the same instances for training and testing, and that the label infor-
mation is at least based on the same performance values.

In the experiments, we compare various models with each other. This includes
two versions of Alors, namely Alors (REGR) and Alors (NDCG) optimizing for
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a regression respectively ranking loss. Furthermore, we consider a state-of-the-
art regression approach learning a RandomForest regression model per algorithm
(PAReg). Note that for those algorithms with no training data at all, we make
PAReg predict a performance of 0, as recommending such an algorithm does not
seem reasonable. Lastly, we consider two approaches leveraging a dyadic feature
representation, internally fitting either a RandomForest for regression (DFReg)
or a feed-forward neural network for ranking (DR). For both dyadic approaches,
the simple concatenation of instance and algorithm features is used as a feature
map. In contrast to the other methods, the ranking model is only provided the
information which algorithm of a sampled pair performs better, as opposed to
the exact performance value that is given to other methods. A summary of the
type of features and label information used by the different approaches/baselines
is given on the left side of Table 3.

Table 3. Overview of the data provided to the approaches and their applicability to
the considered scenarios.

Approach fI fA Label Approach fI fA Label

a
p
p
ro

a
c
h
e
s Alors (REGR) ✓ ✗ m

b
a
se

li
n
e
s RandomRank ✗ ✗

Alors (NDCG) ✓ ✗ m AvgPrfm ✗ ✗ m

PAReg ✓ ✗ m AvgRank ✗ ✗ π

DFReg ✓ ✓ m k-NN LR ✓ ✗ m

DR ✓ ✓ π

The test performance of the approaches is evaluated by sampling 10 algo-
rithms for every (unknown) instance to test for. The comparison is done with
respect to different metrics detailed further below, and the outlined sampling
evaluation routine is repeated 100 times.

Statistical significance w.r.t performance differences between the best method
and any other method is determined by a Wilcoxon rank sum test with a thresh-
old of 0.05 for the p-value. Significant improvements of the best method over
another one is indicated by •.

Experiments were run on nodes with two Intel Xeon Gold “Skylake” 6148
with 20 cores each and 192 GB RAM.

5.4 Performance Metrics

On the test data, we compute the following performance metrics measuring
desirable properties of XAS approaches.

regret@k is the difference between the performance value of the best algo-
rithm within the predicted top-k of algorithms and the actual best algorithm.
The domain of regret@k is [0, 1], where 0 is the optimum meaning no regret.
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NDCG@k is a position-dependent ranking measure (normalized d iscounted
cumulative gain) to measure how well the ranking of the top-k algorithms can
be predicted. It is defined as

NDCG@k(π, π∗) =
DCG@k(π)
DCG@k(π∗)

=

(
k∑

n=1

2m(i,πn)−1

log(n+2)

)

(
k∑

n=1

2m(i,π∗
n)−1

log(n+2)

) ,

where i is a (fixed) instance, π is a ranking and π∗ the optimal ranking, and πn

gives the algorithm on rank n in ranking π. The NDCG emphasizes correctly
assigned ranks at higher positions with an exponentially decaying importance.
NDCG ranges in [0, 1], where 1 is the optimal value.

Kendall’s τ is a rank correlation measure. Given two rankings (over the
same set of elements) π and π′, it is defined as

τ(π, π′) =
C − D

√
(C + D + Tπ) · (C + D + Tπ′)

(11)

where C/D is the number of so-called concordant/discordant pairs in the two
rankings, and Tπ/Tπ′ is the number of ties in π/π′. Two elements are called
a concordant/discordant pair if their order within the two rankings is identi-
cal/different, and tied if they are on the same rank. Intuitively, this measure
determines on how many pairs the two rankings coincide. It takes values in
[−1, 1], where 0 means uncorrelated, −1 inversely, and 1 perfectly correlated.

Table 4. Results for the performance metrics Kendall’ tau (τ), NDCG@k (N@3, N@5),
and regret@k (R@1, R@3) for varying number of performance value pairs used for train-
ing. The best performing approach is highlighted in bold, the second best is underlined,
and significant improvements of the best approach over others is denoted by •.

Approach
4% fill rate / 25 performance value pairs 8% fill rate / 50 performance value pairs

τ N@3 N@5 R@1 R@3 τ N@3 N@5 R@1 R@3

PAReg 0.1712 • 0.9352 • 0.9433 • 0.0601 • 0.0185 • 0.2537 • 0.9453 0.9594 0.0493 0.0136

Alors (NDCG) 0.0504 • 0.9205 • 0.9223 • 0.0686 • 0.0225 0.0472 • 0.9155 • 0.9164 • 0.0614 • 0.0208

Alors (REGR) 0.0303 • 0.9117 • 0.9191 • 0.0794 • 0.0190 • 0.0807 • 0.9172 • 0.9304 • 0.0754 • 0.0285 •
DR 0.3445 0.9523 0.9604 0.0381 0.0089 0.3950 0.9584 0.9685 0.0322 0.0087

DFReg 0.3819 0.9564 0.9652 0.0302 0.0079 0.3692 0.9573 0.9661 0.0300 0.0123

RandomRank -0.0038 • 0.8933 • 0.9105 • 0.0878 • 0.0272 • -0.0038 • 0.8933 • 0.9105 • 0.0878 • 0.0272 •
AvgPerformance 0.1384 • 0.9388 • 0.9433 • 0.0337 0.0090 0.2083 • 0.9355 • 0.9508 • 0.0493 • 0.0199 •
1-NN LR 0.1227 • 0.9290 • 0.9310 • 0.0733 • 0.0230 • 0.1059 • 0.9246 • 0.9296 • 0.0564 • 0.0209

2-NN LR 0.1303 • 0.9278 • 0.9310 • 0.0642 • 0.0193 • 0.0874 • 0.9269 • 0.9343 • 0.0541 • 0.0206

Approach
20% fill rate / 125 performance value pairs

τ N@3 N@5 R@1 R@3

PAReg 0.3003 • 0.9525 0.9632 0.0395 0.0107

Alors (NDCG) 0.0540 • 0.9220 • 0.9242 • 0.0542 • 0.0228 •
Alors (REGR) 0.1039 • 0.9160 • 0.9329 • 0.0604 • 0.0222 •
DR 0.4507 0.9696 0.9715 0.0241 0.0055

DFReg 0.4264 0.9629 0.9720 0.0292 0.0071

RandomRank -0.0038 • 0.8933 • 0.9105 • 0.0878 • 0.0272 •
AvgPerformance 0.2541 • 0.9437 • 0.9536 • 0.0523 • 0.0084

1-NN LR 0.1152 • 0.9245 • 0.9318 • 0.0594 • 0.0249 •
2-NN LR 0.1142 • 0.9292 • 0.9350 • 0.0412 0.0176 •
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5.5 Results

The results of the experiments are shown in Table 4. It is clear from the table
that the methods for standard algorithm selection tend to fail especially in the
scenarios with only few algorithm performance values per instance. This includes
the approach of building a distinct regression model for each algorithm (PAReg)
as well as for the collaborative filtering approach Alors, independently of the
loss optimized for, even though the NDCG variant has a slight edge over the
regression one. Moreover, Alors even fails to improve over simple baselines, such
as AvgPerformance and k-NN LR. With an increasing number of training exam-
ples, PAReg improves over the baselines and also performs better than Alors, but
never yields the best performance for any of the considered settings or metrics.

In contrast to this, the proposed dyadic feature approaches clearly improve
over both the methods for the standard AS setting and the considered baselines
for all the metrics. Interestingly, DFReg performs best for the setting with only
25 performance value pairs, while DR has an edge over DFReg for the other two
settings. Still, the differences between the dyadic feature approaches are never
significant, whereas significant improvements can be achieved in comparison to
the baselines and the other AS approaches.

Moreover, our study demonstrates the heterogeneity of the benchmark
dataset. As described in [22], a relevant measure for heterogeneity is the per-
instance potential for improvement over a solution that is static across instances,
i.e., what is often called the single best algorithm or solver (SBS). In this case
study, the SBS is represented by the AvgPerformance baseline, which is always
worse than the oracle with respect to all measures and in particular the regret@k
measures. Hence, as the superior performances of our approach compared to the
AvgPerformance demonstrate, the benchmark dataset offers a potential for per-
instance algorithm selection.

The results of our study show that models with strong generalization perfor-
mance can be obtained despite the small number of training examples. Moreover,
the results suggest that there is a need for the development of specific methods
addressing the characteristics of the XAS setting. This concerns the large number
of different candidate algorithms as well as the sparsity of the training data.

6 Related Work

As most closely related work, we subsequently highlight several AS approaches
to learning latent utility functions. For an up-to-date survey, we refer to [12].

A prominent example of a method learning a regression-based latent utility
function is [32], which features an empirical hardness model per algorithm for esti-
mating the runtime of an algorithm, i.e., its performance, for a given instance based
on a ridge regression approach in the setting of SAT solver selection. Similarly,
[13] learn per-algorithm hardness models using statistical (non-)linear regression
models for algorithms solving the winner determination problem. Depending on
whether a given SAT instance is presumably satisfiable or not, conditional runtime
prediction models are learned in [9] using ridge linear regression.
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In [5], a label-ranking-based AS approach for selecting collaborative filtering
algorithms in the context of recommender systems is presented leveraging nearest
neighbor and random forest label rankers.

Similar to our work, [19] leverages algorithm features in the form of a binary
vector indicating which algorithm is considered to learn a probabilistic ranking
model considering up to tens of algorithms. AS was first modeled as a CF prob-
lem in [23], using a probabilistic matrix factorization technique to select algo-
rithms for the constraint solving problem. Assuming a complete performance
matrix for training, low-rank latent factors are learned in [14] using singular
value decomposition to obtain a selector en par with the oracle. Lastly, in [26] a
decision-theoretic approach is proposed leveraging survival analysis to explicitly
acknowledge timeouts of algorithms in the learning process.

7 Conclusion

In this paper, we introduced the extreme algorithm selection (XAS) setting and
investigated the scalability of various algorithm selection approaches in this
setting. To this end, we defined a benchmark based on the OpenML CC-18
benchmark suite for classification and a set of more than 1,200 candidate algo-
rithms. Furthermore, we proposed the use of dyadic approaches, specifically dyad
ranking, taking into account feature representations of both problem instances
(datasets) and algorithms, which allows them to work on very few training data.
In an extensive evaluation, we found that the approaches exploiting dyadic fea-
ture representations perform particularly well according to various metrics on
the proposed benchmark and outperform other state-of-the-art AS approaches
developed for the standard AS setting.

The currently employed algorithm features allow for solving the cold start
problem only to a limited extent, i.e., only algorithms featuring known hyperpa-
rameters can be considered as new candidate algorithms. Investigating features
to describe completely new algorithms is a key requirement for the approaches
considered in this paper, and therefore an important direction for future work.
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17. Mohr, F., Wever, M., Tornede, A., Hüllermeier, E.: From automated to on-the-fly
machine learning. In: INFORMATIK (2019)

18. Nguyen, P., Hilario, M., Kalousis, A.: Using meta-mining to support data mining
workflow planning and optimization. JAIR 51, 605–644 (2014)

19. Oentaryo, R.J., Handoko, S.D., Lau, H.C.: Algorithm selection via ranking. In:
AAAI (2015)

20. Rice, J.R.: The algorithm selection problem. In: Advances in computers, vol. 15.
Elsevier (1976)
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Abstract. Ensemble learning has been shown to significantly improve
predictive accuracy in a variety of machine learning problems. For a given
predictive task, the goal of ensemble learning is to improve predictive
accuracy by combining the predictive power of multiple models. In this
paper, we present an ensemble learning algorithm for regression problems
which leverages the distribution of the samples in a learning set to achieve
improved performance. We apply the proposed algorithm to a problem
in precision medicine where the goal is to predict drug perturbation
effects on genes in cancer cell lines. The proposed approach significantly
outperforms the base case.
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1 Introduction

In a standard regression setting, one builds a model on pre-existing learning data
with the goal of making predictions on future unseen samples. In this case, a
single model is built using a preferred learning algorithm. However, it has been
demonstrated that one can improve predictive accuracy even further by aggre-
gating the predictive power of multiple models built using the same learning data
[14]. These models can be built in a variety of ways, from varying the attributes
used in building the models to using multiple learning algorithms. This is done
to ensure heterogeneity in the models, such that given a set of new samples, they
are all wrong in different ways and their aggregation leads to improved predic-
tions [5]. The typical approach in the use of a single model or an ensemble is that
the distribution of the continuous response one is interested in predicting is often
not given much thought. For example, if one imagines that the response for the
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samples in a dataset follows a normal distribution. Then it also follows that any
model that is naively built using this data is going to be very good at predicting
samples that a near the centre of the distribution, but not those at the tails.
A close analogy to this phenomenon is the class imbalance problem in a clas-
sification setting. Where given a dataset in which one class is over-represented,
models built on this dataset using machine learning algorithms typically perform
poorly when presented with a sample from the under-represented class [2,15].
Therefore, we hypothesised that predictive performance in a regression setting
can be improved by accounting for the distribution of the response.

We take an ensemble learning approach to solving this problem. First, we split
the learning data into a pre-specified number of bins using a known discretization
technique [9]. We then build a regressor for each bin using only the samples that
belong to that bin, each of which generalises on only a restricted portion of
the distribution. We then build a classifier for each bin, treating the samples
which belong to said bin as the positive samples, and the samples in the other
bins as the negative samples. Therefore, there is a classifier-regressor pair for
each bin. Given an unseen sample, real-valued predictions are made using the
regressor for each bin. The corresponding classifier for each regressor is then
used to predict the probability that the unseen sample is similar to the samples
used in building the regressor. The predictions are then aggregated by weighting
the probabilities and applying them to the predictions. This process is described
diagrammatically in Fig. 1.

Fig. 1. Representation of the proposed approach when bin size is 3.

This approach is valuable to problems in precision medicine, where tail case
prediction is of vital importance. An example of such a problem is the prediction
of drug perturbation effects on genes in cancer cell lines, which, with improved
predictive accuracy, has the potential to dramatically improve the rate at which
new cancer drugs are developed. In our evaluation, we used data from the library
of integrated network-based cellular signatures (LINCS) [16], which curates the
drug perturbation effects on human genes. Our evaluation shows a significant
improvement in performance over the base case. Our contributions are as follows:
1. An ensemble learning approach which considers response distribution for

regression problems.
2. An application to a real-world dataset in precision medicine.
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2 Related Work

Ensemble learning takes a variety of forms, from bootstrap aggregating (bagging)
which is central to popular and robust learning algorithms like random forests [4],
to methods like stacking [3]. The proposed approach shares some similarities with
both of these methods. Stacking is most commonly used when one intends on
aggregating the predictions made by multiple learning algorithms, or if a single
learning algorithm is used, multiple models are built using subsets of the feature
space [18]. There are three main processes in a stacking procedure: meta-feature
generation, pruning, and aggregation [17]. Assume one has a learning and a test
set. In the meta-feature generation phase, meta-features are generated for both
the learning and test sets, and total to the number of models whose predictive
power one wants to aggregate. Pruning is then used to optimise for the best meta-
features. Finally, aggregation is done by learning weights using the learning set
meta-features and then applying these weights to the test meta-features to form
the final prediction.

In contrast to a typical stacking approach which we have described, we do not
generate meta-features in our approach. The utility of the meta-features is that
they provide a mechanism through which aggregating weights can be learned
using a meta-level learning algorithm. Instead, we opt for a scheme where given
a new sample, individual classifiers predict how much we can trust the predic-
tions of their corresponding regressor as described in the introduction, which
is more closely aligned with the concept of local classifiers in the hierarchical
classification literature [20]. This implies that we also do not perform a pruning
step. It is worth noting that while aggregation in stacking can be performed
using weights learned with a meta-learner, it is also possible to simply average
the predictions, we explore this in our evaluation. Other similarities exist. For
example, one can argue that our weighting and aggregating procedure is a form
of dynamic weighting, where new samples are weighted based on their similar-
ities to samples used in building a model [19]. However, rather than being a
separate step, dynamic weighting is implicit in the proposed learning procedure.

Central to the proposed method is the discretization of the continuous
response one is interested in learning how to predict. Several methods to perform
this task have been proposed, and they have been classed into supervised and
unsupervised methods [7,9]. We considered only unsupervised methods in our
evaluation. However, the use of supervised methods will be explored in future
work. Methods which use classification as a means to perform regression in an
ensemble setting have also been proposed. Ahmad et al. proposed the use of
extreme randomized discretization to perform regression via classification [12].
In contrast to what we propose, the authors do not use a classifier-regressor
pair to estimate the prediction for a new sample. Rather they do this using the
minimum or maximum of the training data points and the bin boundary [1,12].
Also closely related to what we propose is work by Gonzalez et al. for prob-
lems that involve multi-variate spatio-temporal data [11]. The main differences
in our approaches is two-fold. Firstly, they are interested in classifying bands of
attributes before performing regression. Secondly, aggregation is done by first
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selecting the best models using leave-one-out cross-validation and the median
predicted values by these models is treated as the final prediction for a new
sample.

3 Methodology

3.1 Algorithm

The proposed approach can be split into a training and a prediction phase. An
informal description follows, however, a more formal representation is given in
Algorithm 1. In the training phase, given a training set with input vectors, a
response, and a pre-specified number of bins c:

1. Discretize the response into c bins, forming c datasets.
2. For each c bin, build a regressor Rc and a classifier Cc. The regressor is built

using the training samples for the particular bin. Whereas, the classifier is
built by treating the samples in the current bin as the positive class and all
other samples in the training set as the negative class.

In the prediction phase, given a new sample:

1. With all the Rc regressors, predict values for the new sample.
2. With all the Cc classifiers, predict the probability that the sample belongs in

that c bin.
3. Generate weights using the c probabilities such that they sum to 1. This is

done by summing the c probabilities and then dividing each c probability by
this sum.

4. Get the final prediction by summing the values generated by applying each
corresponding c weight to the prediction made by its c regressor in step (1).

3.2 Considerations

When tackling a machine learning problem, the choice of learning algorithm is
vital as it plays a crucial role in predictive performance. However, it is clear
from the description of the proposed approach outlined above that it is learner
agnostic. That is, one can choose to build the classifiers and regressors using
their preferred algorithm of choice. This property is particularly useful as one
can choose to optimise for different properties using approaches from multiple
kernel learning [22] or even stack multiple learning algorithms if they so choose.
The choice of discretization technique is also open-ended, where one can choose
to use known supervised or unsupervised discretization techniques, or a custom
technique tailored to a particular problem.

When the number of bins is greater two, it will generally be the case that
there will be some form of class imbalance. This may be in favour of the positive
or negative class, and can be quite severe, depending on the distribution of the
response variable under consideration, choice of discretization technique, and
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the number of specified bins. Therefore, it is important that this be taken into
consideration, as it is known that class imbalance can have significant effects on
predictive accuracy [2]. To combat this, methods which balance an imbalanced
dataset such as oversampling methods like the synthetic minority oversampling
technique (SMOTE) [6] should be considered. We explore the effects of dis-
cretization technique and class imbalance in our evaluation.

Algorithm 1. Federated Ensemble Learning using Classification
Input: Training set matrix L ∈ IRm×b, response vector y, c bins, and test set matrix

T ∈ IRn×b

Output: Test set predictions
Training :

1: Split y into c bins using a discretization technique of choice, producing L =
(L1, . . . ,Lc) and Y = (y1 . . . yc)

2: for each c bin in L and Y do
3: Build a regressor Rc using Lc and yc
4: Build a classifier Cc using Lc as the positive samples and L − Lc as negative

samples. Note: class balancing may be required
5: end for

Prediction:
6: for each c regressor-classifier pair Rc and Cc do
7: Predict the response for T using Rc

8: Predict the probability that the samples in T belong in c using Cc

9: end for
The process above generates predicted response and probability matrices R,P ∈
IRn×c

10: vn =
∑c

j=1 pn,j

11: Create weight matrix W ∈ IRn×c by dividing all elements in each row in P by the
value in the corresponding row index in vn

12: Create weighted response matrix Rw ∈ IRn×c by performing the element-wise
multiplication of R and W

13: The final prediction T =
∑c

j=1 r
w
n,j

14: return T

4 Evaluation Setup

We used data from the general LINCS Phase II dataset with accession code
GSE70138. We had 7000 training samples and 3000 test samples. The predictive
task is the expression levels of 20 cancer-related genes [8,10] using perturbation
conditions as input. We evaluated four bin sizes: 2,3,4, and 5. We also considered
four discretization methods. The first involves randomly assigning samples to
bins, the second involves splitting samples evenly into bins after sorting, the third
and fourth are equal frequency interval and k-means clustering. It worth noting
that even splitting and frequency interval are the same in that they discretize a
vector of continuous variables evenly given a specified size. However, they differ
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in that equal frequency does not achieve perfect equally sized groups if there are
duplicates, naive even splitting does. For aggregation methods, we considered
simple averaging, a case in which no classifiers are used in aggregation. For the
cases in which classifiers are involved, we considered one in which class imbalance
is ignored, we refer to this simply as imbalanced for the rest of the manuscript.
The other classifier approaches used are one in which undersampling is used
to reduce the number of samples in one class when it outweighs those in the
other, and oversampling, which is the reverse. Undersampling was performed by
randomly selecting samples from the over-represented class equal to that of the
under-represented class. Oversampling was performed using SMOTE with the
smotefamily package [21], where k = 5. We used random forests as our learning
algorithm. All models were built using 1000 trees and default settings with the
ranger [24] library in R [13]. The reported performance metric for regression is
the coefficient of determination (R2), as we are interested in the amount of the
observed variance explained by the ensemble. We also report the performance
of the classifying aggregators, for these we report accuracy, precision, recall and
the F1 score. The dataset used in our experiment is available here http://dx.doi.
org/10.17632/8mgyb6dyxv.2, and it is named base fp, and the code is available
here https://www.github.com/oghenejokpeme/FERUC.

5 Results

5.1 Overall Performance

We observed that on average multiple combinations of the considered discretizer-
aggregator pairs generally outperformed the base case (see Table 1). Certain
discretizer-aggregator pairs tended to consistently perform well or poorly. Even
split and frequency interval combined with oversampling outperformed all other
combination pairs, whereas k-means combined with averaging or undersampling
generally underperformed when compared to the others (see Table 2). When
paired with oversampling, the even split and frequency interval discretizers both
achieved an average percentage performance increase of approximately 100%
over the base case. Combined, both of these methods performed best when the
number of bins is set to 5 (Table 3). With the assumption that there is no
difference in performance between these two combinations and the base case,
paired t-tests suggest that the null hypothesis can be rejected with a significance
level of 0.01, with p-values of 2.6×10−8 and 9.7×10−9 respectively. Note that the
average percentage performance difference between two competing approaches is
calculated by estimating the percentage difference in performance for each gene
pair, and then finding the mean.

5.2 Discretizer Effects

Discretization is the first step in the proposed learning algorithm, and the
method by which we stratify the distribution of the response one might be inter-
ested in predicting into narrow-bins (Algorithm 1). It is clear from Fig. 2 that

http://dx.doi.org/10.17632/8mgyb6dyxv.2
http://dx.doi.org/10.17632/8mgyb6dyxv.2
https://www.github.com/oghenejokpeme/FERUC
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Table 1. Mean predictive performance (R2) of the 20 considered cancer genes for bin
sizes 2, 3, 4, and 5. Discretization methods: random, even split, frequency interval, and
k-means. Aggregation methods: simple averaging (AVG), class imbalance is ignored
(RG), undersampling (US), and oversampling (OS). The best performing method for
each bin size is underlined.

Bins Base Random Even Split Frequency Interval K-means

AVG RG US OS AVG RG US OS AVG RG US OS AVG RG US OS

2 0.075 0.079 0.079 0.079 0.079 0.057 0.081 0.081 0.081 0.057 0.082 0.082 0.082−0.496 0.080−0.451 0.054

3 0.075 0.081 0.083 0.083 0.085 0.040 0.085 0.088 0.100 0.040 0.085 0.086 0.094−0.678 0.082−0.500 0.050

4 0.075 0.082 0.084 0.084 0.088 0.031 0.086 0.084 0.103 0.031 0.086 0.084 0.102−0.567 0.081−0.432 0.036

5 0.075 0.082 0.084 0.082 0.091 0.024 0.087 0.078 0.103 0.024 0.087 0.078 0.104−0.433 0.082−0.302 0.031

Table 2. Average percentage performance difference of the two best and worst per-
forming discretizer-aggregator combinations compared to the base case for each bin.
The percentage increase or decrease is given, followed by the number of genes for which
a discretizer-aggregator pair outperforms the base case. The best and worst performers
are in boldface.

Bin Best performers Worst performers

2 Frequency interval – oversampling k-means – undersampling

26.5%(17) −1324.2%(3)

Frequency interval – imbalanced k-means – averaging

26.4%(17) −1289.0%(1)

3 Even split – oversampling k-means – averaging

105.5%(20) −1732.5%(0)

Frequency interval – oversampling k-means – undersampling

75.3%(20) −1460.3%(0)

4 Even split – oversampling k-means – averaging

118.3%(20) −1643.3%(1)

Frequency interval – oversampling k-means – undersampling

113.4%(20) −1520.4%(0)

5 Even split – oversampling k-means – averaging

117.5%(20) −856.5%(1)

Frequency interval – oversampling k-means – undersampling

116.7%(20) −864.2%(0)
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Table 3. Predictive performance (R2) of the considered genes when bin size is 5.
Shown are the results for the base case, the even split – oversampling pair (ES–OS),
and frequency interval – oversampling pair (FRQ–OS). The percentage increase over
the base case is also given.

Genes Base ES–OS FRQ–OS

AKT1 0.197 0.207 (5.1) 0.208 (5.6)

APOE 0.071 0.088 (23.9) 0.090 (26.8)

BRCA1 0.111 0.152 (36.9) 0.152 (36.9)

CDH3 0.032 0.056 (75.0) 0.058 (81.2)

CDK4 0.291 0.294 (1.0) 0.296 (1.7)

CFLAR 0.017 0.049 (188.2) 0.049 (188.2)

EGF 0.055 0.076 (38.2) 0.076 (38.2)

EGFR 0.051 0.090 (76.5) 0.089 (74.5)

FGFR2 0.059 0.086 (45.8) 0.085 (44.1)

IGF1R −0.007 0.042 (700.0) 0.041 (685.7)

KIT 0.069 0.096 (39.1) 0.098 (42.0)

LYN 0.083 0.109 (31.3) 0.112 (34.9)

PAX8 0.011 0.041 (272.7) 0.040 (263.6)

PTK2 0.069 0.082 (18.8) 0.082 (18.8)

RAD51C 0.057 0.087 (52.6) 0.087 (52.6)

STK10 0.044 0.066 (50.0) 0.067 (52.3)

TERT 0.073 0.107 (46.6) 0.108 (47.9)

TGFBR2 0.010 0.045 (350.0) 0.044 (340.0)

TNFRSF21 −0.022 0.042 (290.9) 0.042 (290.9)

TP53 0.228 0.245 (7.5) 0.247 (8.3)

the choice of discretizer plays a crucial role in predictive performance. When
averaging is used as the aggregator, random sampling outperforms all other dis-
cretizers, with even split and frequency interval performing equally well. This
is interesting as it shows that without the aggregating classifiers, the regressors
built using methods like frequency interval perform worse than those built using
random sampling. The reason is because when the response is put into bins
using random sampling, the values in each of these bins will generally follow the
same distribution as the overall response. Therefore, aggregating the predictions
made by regressors built using these bins by averaging will generally yield good
results. This is in contrast to when methods like even split or frequency interval
are used, as each bin comprises of narrow generally non-intersecting bands of
the overall distribution. It is worth noting here though that k-means performs
remarkably poorly, producing negative R2 values, suggesting that it fits worse
than the horizontal line. One might be quick to note that this is one of the dis-
advantages of using R2 as a performance metric in a regression problem when
there is the potential for non-linearity. However, we would argue that for this
particular application, it is vital that we have a clear representation of how much
of the observed variance is explained by the proposed ensemble.

When class imbalance is ignored as is the case in the imbalanced aggregators,
we observed that even split and frequency interval have near identical perfor-
mance, with k-means and random sampling coming third and fourth depending
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on bin size. When undersampling is used to balance the dataset before building
the classifying aggregators, we observed that as the number of bins increases,
random sampling tended to outperform the even split and frequency interval
discretizers. This is because as bin size increases, the number of samples in
each bin decreases, and by undersampling, the classifying aggregators are built
using fewer and fewer samples, making them less powerful. The performance of
the random sampling discretizer does not suffer as much from this because its
regressors are built using bins which generally represent the overall distribution
of the response. We discuss this further when we discuss aggregator effects in
the next section.

The performance of the discretizers when oversampling is used to handle class
imbalance supports and contrasts with their performance when undersampling
is used. We observed that the even split and frequency interval discretizers gen-
erally perform vastly better than how they do when undersampling is used to
deal with class imbalance. In contrast to undersampling, the classifying aggre-
gators are built using datasets in which the positive class has been oversampled,
improving the models which classify new samples into bins. Given that the over-
all distribution of a response is represented in each bin when random sampling
is used, building accurate bin delineating classifiers becomes more difficult as
the samples in the positive and negative classes are very much alike. However,
the expectation is that these classifiers will essentially predict that a new sample
belongs in its bin, and produce a probability based on how closely related it is
to the positive samples used in their construction. Therefore, for the random
sampling discretizer, one would expect better performance when undersampling
is used, which is what we observed (see Fig. 2).

Fig. 2. Average discretizer performance (R2) for the considered bin sizes across the
considered aggregation approaches. Frequency interval is excluded from averaging and
undersampling aggregation results because it consistently produced negative R2 values.
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5.3 Aggregator Effects

In the previous section, we discussed the effects the choice of discretizer can
have on predictive performance. Although the discretizers were our main focus,
it is clear that there is a synergistic effect between the choice of discretizer
and aggregator. Figure 2 also shows that the choice of aggregator has a clear
effect on predictive performance, with averaging performing worse overall, over-
sampling outperforming all the others, and undersampling generally performing
worse than imbalanced. Here, our primary focus is to discuss why this is the
case, especially as it has to do with the classifying aggregators. Table 4 shows
the average predictive performance (accuracy, precision, recall, and F1 score)
for all discretizer-aggregator pairs, and for all bin sizes we considered. These
results explain the observed predictive performance discussed in the previous
two sections. Although the accuracy of the classifying models are also reported,
our discussion will be mostly centered around the precision and recall metrics,
given that we are dealing with input datasets which may be class imbalanced.

Table 4. Average predictive performance of the aggregating classifiers built using
datasets whose class representations are imbalanced (RG), undersampled (US), and
oversampled (OS) for the considered discretizers. The reported performance metrics
are accuracy (Acc), precision (Prec), recall (Rec), and F1 score.

Discretizer Aggregators Bins

2 3 4 5

Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1

Random RG 0.50 0.50 1.00 0.67 0.13 0.13 1.00 0.23 0.05 0.05 1.00 0.09 0.02 0.02 1.00 0.03

US 0.50 0.50 1.00 0.66 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67

OS 0.50 0.50 1.00 0.67 0.17 0.17 1.00 0.29 0.10 0.10 1.00 0.18 0.06 0.06 1.00 0.11

Even split RG 0.58 0.58 0.58 0.58 0.65 0.23 0.45 0.30 0.73 0.10 0.37 0.16 0.79 0.06 0.32 0.10

US 0.58 0.58 0.58 0.58 0.56 0.56 0.39 0.46 0.55 0.55 0.29 0.38 0.54 0.54 0.23 0.32

OS 0.58 0.57 0.58 0.58 0.65 0.26 0.44 0.33 0.72 0.17 0.35 0.22 0.77 0.12 0.30 0.17

Frequency interval RG 0.58 0.58 0.58 0.58 0.65 0.23 0.45 0.30 0.73 0.10 0.37 0.16 0.79 0.06 0.32 0.10

US 0.58 0.58 0.58 0.58 0.56 0.56 0.39 0.46 0.55 0.55 0.29 0.38 0.54 0.54 0.23 0.32

OS 0.58 0.58 0.58 0.58 0.65 0.25 0.44 0.32 0.72 0.15 0.36 0.21 0.77 0.12 0.30 0.16

K-means RG 0.80 0.55 0.67 0.55 0.73 0.36 0.52 0.34 0.77 0.24 0.37 0.15 0.80 0.15 0.15 0.06

US 0.60 0.60 0.55 0.52 0.60 0.60 0.39 0.42 0.60 0.60 0.30 0.34 0.60 0.60 0.24 0.29

OS 0.79 0.58 0.62 0.58 0.73 0.42 0.47 0.43 0.76 0.32 0.39 0.34 0.79 0.25 0.33 0.27

When random sampling the discretizer, we observed that across all bin sizes,
the recall of all the classifying aggregators is exactly 1. This is consistent with
previously discussed results. It shows that the classifiers are classifying all the test
samples as being similar to those used in their building. This is unsurprising since
the samples used in building each bin’s classifier follows the same distribution as
the original response vector. The precision of the aggregating methods is more
nuanced. In the case in which class imbalance is ignored, although the recall
maintains its value of 1 as bin size increases, the precision steadily decreases. This
makes sense, as the expectation is that the models will consistently become worse
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at identifying false positives. The results for undersampling and oversampling are
contrasting. While recall is also consistently 1 as bin size increases, the precision
for undersampling stays at approximately 50%, while like the class imbalance
case, the precision for oversampling steadily declines. This is also consistent with
expectation. In the case of undersampling, we are building binary bin classifiers
using a perfect 50−50 split in class representation, but with fewer samples as
bin size increases. It is no surprise that accuracy is also approximately 50%.
For oversampling, accuracy and precision both hold 50% when bin size is 2, but
steadily declines as it increases. Here, we argue that oversampling the samples in
the imbalanced class, which is usually the positive class, makes the classifiers even
worse at predicting false positives. This is to be expected, due to the properties
of the random sampling discretizer.

For the even split and equal frequency discretizers, all three aggregators have
an average value of 58% for accuracy, precision, recall, and F1 when the bin size
is 2. This suggests that the models are capable of classifying positive and nega-
tive samples equally well. However, this changes as bin size increases. When the
input dataset is imbalanced, we observed that both precision and recall steadily
decreases, with precision getting remarkably worse-off than recall. The explana-
tion for this is that the class imbalance is exacerbated by the increasing bin size
with fewer samples in each bin, making it harder for the models to identify false
positives. When undersampling is used, precision generally remains the same as
bin size increases but recall decreases. This shows that while the classifiers’ false
positive prediction rate does not get significantlyworse, its number of false negative
predictions increases. This phenomenon can be easily explained by the fact that as
bin size increases, fewer samples in general are used in building the classifiers. For
oversampling, what we observe for recall and precision are in contrast to those of
undersampling. Though they both decrease as bin size increases, recall is better
than precision. When compared to the imbalanced case, although the recall values
are similar, the precision in the oversampling case is generally better, especially
as bin size increases. This explains why oversampling outperforms the imbalanced
and undersampling cases. The difference in performance between even split and
frequency interval as seen in Table 2 can be explained by a slight increase in preci-
sion and a slight decrease in recall for even split compared to frequency interval (see
Table 4). Therefore, it is worth noting that for the proposed approach, seemingly
duplicate values should not be excluded during discretization.

For k-means, the precision and recall values are generally similar to those
of even split and frequency interval for the considered bin sizes with the excep-
tion of when bin size is 2. However, even with this similarity, we still observed
that the undersampling aggregator performed remarkably poorly when paired
with k-means (see Tables 1 and 2). Our analysis of the results showed that
this is because of a known limitation of k-means discretization, which is that
it is very sensitive to outliers [7], which we expect to mainly be at the tails of
the response distribution. Individual investigation of classifier performance for
each gene showed that this occurs because the models built using samples at
the tails have either very low precision and very high recall, or the opposite.
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This is in contrast to other discretizers, for which the precision-recall ratio is
better balanced. This is evident from the difference in F1 scores between the
different discretizers across the considered bin sizes (see Table 4).

5.4 Bin Size Effects

Figure 3 shows how aggregator predictive performance changes as bin size
increases for the considered discretizers. For the random discretizer, most aggre-
gators tend to steadily improve as bin size increases. The exception to this is
undersampling, which peaks at a bin size of 4. For even split and frequency
interval, the four aggregators behave similarly as expected. The imbalanced and
oversampling aggregators get better as bin sizes increases, with the imbalanced
aggregator doing so at a slower rate. Averaging gets worse as bin size increases
as discussed in previous sections. Lastly, the undersampled aggregators reach
peak performance at a bin size of 3 and begin to decline. When the k-means
discretizer is paired with averaging and undersampling, we see a performance
decrease from bin size 2 to 3, then steady increase from 3 to 5. However, as
noted in the previous two sections, the performance is still remarkably poor. For
oversampling, predictive performance sees a slow decline as bin size increases.
Whereas the imbalanced aggregator tends to hold its performance. From these
results, it is clear that bin size also plays a crucial role in the performance of
the proposed ensemble regression approach. However, to what extent this is the
case is beyond the scope of this work and will be the subject of future work.

Fig. 3. Average aggregator performance (R2) for the considered discretizers as bin size
increases.
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6 Discussion

An important task in the machine learning model building process is the selection
of the right parameters. Our results show that the choice of bin size, discretizer,
and aggregator all play an important role in predictive performance. Although
we do not directly evaluate it here, we argue that these parameters can be easily
optimised using the standard model selection approach with cross-validation.
Assuming a near optimal bin size has been selected, the proposed ensemble
learning algorithm is limited by the fact that it can only do as well the classifier-
regressor pairs. Although we used only random forests in our evaluation, which
is capable of building both classifiers and regressors, one can choose to use one
learning algorithm for the classifiers and another for the regressors. In fact, it
is possible to extend what we have proposed using traditional stacking, where
multiple learning algorithms are used as classifiers and regressors. Of course this
will come with increased cost in the form of computational time complexity.
Another obvious extension is in multi-target regression problems. For example,
one can imagine using this as the core predictor in an ensemble of regressor
chains [23]. All of this, along with evaluations on other datasets will be the
subject of future work.

7 Conclusion

We have presented an ensemble learning algorithm for regression using classifica-
tion which leverages the underlying distribution of the response one is interested
in predicting. We evaluated this approach on an important problem in precision
medicine, which is the in silico estimation of drug perturbation effects on genes
in cancer cell lines. We found that this approach significantly outperforms the
base case, with several directions for extension which we conjecture will further
improve its predictive capabilities.
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Abstract. The next-generation sequencing revolution has impacted bio-
logical research by allowing the collection and analysis of very large
datasets. However, despite the large availability of data, current com-
putational methods used by biologists present some limitations in chal-
lenging domains, such as extremely imbalanced datasets characterized by
almost only negative examples. In this paper, we address the problem of
identifying sequences from the zebra finch (songbird) germline-restricted
chromosome (GRC), which is present only in reproductive tissues and
missing from all other cells. Since the germline contains the GRC in
addition to other chromosomes, sequencing germline DNA must be fol-
lowed by separation into GRC or non-GRC sequences. The complexity of
this task depends on the limited availability of known GRC sequences. In
this paper, we propose a one-class ensemble learning method to solve this
problem, and we compare its performance with state-of-the-art methods
for one-class classification. Our results show that the proposed method
is able to identify positive sequences with high accuracy, having been
trained only with negative sequences, and tuned with a limited number
of positive sequences. Moreover, a biological analysis revealed that pos-
itive sequences from a verified GRC gene were ranked in the top third
of all the sequences, showing that our method is successful in demar-
cating GRC from non-GRC sequences. Our method thus represents a
valuable tool for biologists, since model predictions can allow them to
focus their limited resources towards the experimental validation of a
subset of higher confidence sequences.

Keywords: Machine learning · One-class learning · Anomaly
detection · Genomics · Biology

1 Introduction

The next-generation sequencing revolution has fundamentally impacted biolog-
ical research, with researchers sequencing and assembling very large datasets.
Although biologists have relied on computational methods to handle this mas-
sive amount of data for several decades, they face many problems that cannot
be tackled by the currently available tools.
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In this paper, we focus on the identification of sequences from the zebra finch
(songbird) germline-restricted chromosome (GRC). Differently than most organ-
isms, in which every cell contains the same genome [14], the Zebra Finch germline
presents an extra “germline-restricted chromosome” (GRC) in the ovaries and
the testes [34], that is missing in all its other tissues composed by somatic cells.

For this reason, sequencing germline DNA must be followed by separa-
tion between GRC (positive class) sequences and non-GRC (negative class)
sequences. The GRC has been found in Bengalese Finch [37] and 14 other exam-
ined song bird species, suggesting a wide or even ubiquitous distribution in song-
birds [45]. However, only two GRC genes have been identified and sequenced to
date. The only known genetic sequences from the GRC are a non-coding repeat
[18] and a single coding transcript [9].

The limited number of GRC genes identified so far depends also on the fact
that the isolation of GRC sequences from total cell sequences is a challenging
scientific problem. Unfortunately, the GRC cannot be physically isolated by con-
ventional methods due to its size [17]. Moreover, the germline genome consists
primarily of chromosomes also present in somatic cells, with approximately 10%
of sequence complexity deriving from GRC and thus unique to germline cells. It
is thought that the GRC is derived by ancient duplication of specific genomic ele-
ments, which subsequently diverged along a distinctive evolutionary trajectory,
because only mutations obtained in females are inherited [34,35]. For this rea-
son, GRC elements identified to date have been divergent copies of sequences on
other chromosomes [9,18] making computational subtraction [5] alone ineffective
in distinguishing GRC from non-GRC sequences with high confidence.

Since biological experimental validation through Polymerase Chain Reaction
(PCR) can only be performed for a small number of sequences, a machine learn-
ing method could provide a valuable computational strategy to rapidly identify
bona fide rare GRC sequences on a large scale, and allow researchers to only
test a limited number of sequences that the model classifies as GRC with high
confidence.

However, the classification task in this domain poses two main challenges:
i) the large number of data sequences, and ii) the rarity of positively labeled
data sequences. While the former calls for efficient algorithms that are capable
to process large-scale data, the latter requires machine learning approaches that
can handle extreme class imbalance.

In this paper, we propose a one-class learning method for sequence classifica-
tion. Our method trains a model on somatic (non-GRC) negative sequences rep-
resented as merged pairs of raw reads, and predicts the class of unseen sequences
(GRC or non-GRC) in the germline DNA, consisting of assembled contiguous
sequences (contigs). Our method can be applied to any dataset where sequences
experience a distinctive mutational pattern relative to other genomic elements,
such as the exposure to the germline milieu of only a single sex, as in the case
addressed in our study.

The paper is structured as follows. In Sect. 2, we provide an overview of
related works in the biological and machine learning fields. In Sect. 3, we present
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our proposed method. In Sect. 4 we describe the datasets and the experimental
results obtained in our study. Finally, Sect. 5 concludes the paper.

2 Background

2.1 Biological Background

Early in embryonic development, the GRC is eliminated from every cell except
for the germline, and it is expelled during spermatogenesis in adult males so it
is passed down through the maternal lineage only [34,35]. Similar to the mode
of inheritance of the mitochondrial DNA in humans, the GRC has a uniparental
inheritance from the mother, because any mutations that occur in the males
are not passed on to the next generation. However, the GRC is not found in
an organelle, making it analogous to the human Y chromosome in terms of its
nuclear environment, and suggesting it may display a mutational signature dif-
ferent from other chromosomes [21,39]. The association of the GRC with female
biology makes it a particularly intriguing genomic element and an important
counterpoint to Y-chromosome analysis. Of particular interest are any genes it
may harbor.

Unlike the Y chromosome, where many genes involved in the development
and function of the testis are known [26] the function of any potential genes on
the GRC are unknown. Given that the GRC is the longest chromosome in zebra
finch, encoding an estimated 10% of the total sequence complexity [34] it may
encode hundreds of genes.

2.2 Machine Learning Background

The one-class classification concept, also called outlier detection [38] and novelty
detection [10], was first proposed by [32] and subsequently analyzed in depth by
[19] and [44]. Unlike traditional binary classification approaches which learn
to discriminate between positive and negative examples, one-class classification
methods train on negative (or positive) instances only and learn to recognize
instance from the class they were trained on. By default, instances not recognized
by the method are labeled as negative (positive). While this approach is generally
not as effective as binary classification [8], it is sometimes the only approach
available given a particular problem. General surveys of one-class classification
methods can be found in [22,23], and [36], while surveys of anomaly or outlier
detection methods that includes one-class classification can be found in [1,13].

Many one-class classification methods have been proposed including One-
Class SVM [40], Autoencoder-based classification [15,16,20], One-Class Local
Outlier Factor (LOF) [11], and most recently, Isolation Forests [30]. Other meth-
ods are based on clustering [7] and ensembles of Support Vector Machines [47]
[48]. In order to improve one-class classification results, many different combi-
nations have been proposed in [2].
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3 Method

Given the large availability of true-negative data and the rarity of true-positive
data, the problem addressed in this study provides a canonical case for one-class
learning. In order to analyze large datasets, it is important to leverage machine
learning methods that exhibit low time and space efficiency. Isolation Forest and
LOF represent two efficient methods for one class learning, and were shown to
provide high accuracy performance in different domains [41,43].

LOF works by comparing the local density of a point to that of its neighbors.
If a point has a much lower density than its neighbor, it is considered an outlier.
Isolation Forest works quite differently. It consists of building trees in which the
data is cut to isolate data points. The fewer cuts it takes to isolate a data point,
the higher on the tree the point appears and the more likely it is to be an outlier.

In our method, we adopt Isolation Forest and LOF as base learning methods,
and we subsequently combine their outputs in an ensemble. The rationale for
our mixed ensemble is that combining the outcome of different learners has the
potential to reduce prediction errors, and reduce the bias deriving from single-
model specifications.

Each method outputs anomaly scores, where a lower score represents a
stronger anomaly. However, Isolation Forest produces anomaly scores between
−0.5 and 0.5, whereas LOF produces both positive and negative scores in an
unbounded range. For this reason, we adopt a normalization approach. More
specifically, we find the value such that 95% of all scores below 0 are greater
than that value, and found the multiplier such that the value multiplied by
the multiplier is −0.5. Symmetrically, we find the value such that 95% of all
scores above 0 are greater than that value, and identify the multiplier such that
the value multiplied by the multiplier is 0.5. We perform the same process for
both Isolation Forest and LOF models. The multipliers allow us to calculate
new normalized transformation scores for all models. We also devise a combi-
nation strategy based on model averaging (formally described in Algorithm 1)

Fig. 1. A graphical representation of our proposed mixed ensemble method.
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in order to extract a final anomaly score from the mixed ensemble. A graphical
representation of the method is shown in Fig. 1.

Algorithm 1: Combined prediction strategy with mixed ensemble
Input: Sequence S,

Ensemble of Isolation Forest models I,
Isolation Forest transformation scores Iα, Iβ

Ensemble of LOF models L,
LOF transformation scores Lα, Lβ

Result: Final anomaly score Sscore

1 P = {}
2 for s ∈ S do
3 IS = predict(I, s)
4 for s ∈ IS do
5 if if s < 0 then
6 s = s × Iβ

7 else
8 s = s × Iα

9 end

10 end
// Average score for Isolation Forest sub-ensemble

11 IS =
∑

s∈IS
|IS |

12

13 LS = predict(L, s)
14 for s ∈ LS do
15 if if s < 0 then
16 s = s × Lβ

17 else
18 s = s × Lα

19 end

20 end
// Average score for LOF sub-ensemble

21 LS =
∑

s∈LS
|LS |

22

23 s = IS+LS
2

24 P = P ∪ s

25 end

26 Sscore =
∑

s∈P

|P |

Effectively, the final anomaly score for a sequence can be described as an
average of averages, as we first average the transformed anomaly scores gener-
ated by each model on a particular subsequence, and then average that score
across all subsequences. In accordance with the behavior of the base learners,
our method returns low scores for high-confidence anomalous sequences, that
are consequently labeled as positive.
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3.1 Biological Data Preparation

A first step of merging and quality filtering of sequences was performed using
the software PEAR v0.9.11 [49] specifying a minimum length of 50 bp and a
phredscore of 30. This process led to a resulting dataset of 26,198,608 liver and
69,911,879 testis sequences. Subsequently, high-confidence testis merged reads
mapping to the alpha-SNAP were identified with BWA v0.7.12 [27]. These high-
confidence reads were considered the “true-positive” data for our validation and
testing sets, while the liver data was considered “true-negative”.

Quality filtered DNA sequences from male testis tissue were corrected for read
errors using Karect Master v2 [3]. Corrected data was assembled using SPAdes
v3.12.0 [6] using the options -s for unpaired reads, --sc for single-celled data,
and --only-assembler.

The error corrected reads were mapped onto two published genome assem-
blies [25,46] and the SPAdes assembly of testis DNA. BBMAP [12] was used with
options: minid = 0.98 for the minimum alignment identity, idfilter = 0.98
sets minimum identity separate of minid, and the rest of the options in default.
We used 98% identity to allow alleles to map but not paralogs. SNPs were called
using SAMtools v1.9 [28] and BCFtools v1.9 [29].

Scaffolds that did not contain any SNPs were isolated and subtractive blast
methods were used to remove any remaining somatic sequences that match
known somatic references [5]. To ensure that only matches with a greater than
98% identity are included, blast v2.9.0 [4] was run using the -perc_identity=98.
The two published assemblies [25,46] were masked using RepeatMasker v4.0.5
[31] with the custom repeat library from zebra finch using RepeatModeler v1.0.8
[42]. The masked assemblies were used as references, or databases for the blast
search, for the somatic genome. The output after two rounds of subtraction were
the hypothetical GRC sequences, a set of 13, 818 sequences.

Qualitative polymerase chain reaction (qPCR) was used to validate a contig
predicted to be a part of the GRC. This process is a way to validate that the
sequences identified by the machine learning approach are correct from a biolog-
ical viewpoint. The contig was identified by machine learning and through blast
search for contigs with the known non-coding repetitive element on the GRC.
DNA from brain, heart, and testis using primers specific for a 400 bp region of the
contig was used that codes for Splicing Factor 38 A. qPCR was run as a two-stage
cycle with 95 ◦C for 10 min for the initial melt, followed by 40 cycles of 95 ◦C
for 30 s, 55 ◦C for 15 s. Signals from qPCR were measured relative to β-actin
using ΔCt. The averages and standard deviations of 2−(gene Ct − β−actinΔCt)

were calculated and statistical significance was measured using an ANOVA test.
Concerning data availability, two of the assemblies used in our dataset are

publicly available [24]1 [45]2. The in-house SPAdes assembly was obtained from
raw reads from our laboratory, which are publicly available3.

1 https://www.ncbi.nlm.nih.gov/nuccore/MUGN00000000.1/.
2 https://www.ncbi.nlm.nih.gov/bioproject/?term=ABQF00000000.
3 https://www.ncbi.nlm.nih.gov/sra/SRR6896648.

https://www.ncbi.nlm.nih.gov/nuccore/MUGN00000000.1/
https://www.ncbi.nlm.nih.gov/bioproject/?term=ABQF00000000
https://www.ncbi.nlm.nih.gov/sra/SRR6896648
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3.2 Data Pre-processing

GRC Dataset. Somatic (liver) DNA represent our training data (non-GRC,
negative class). For all our analyses we select 10,000 random sequences for each
model in the ensemble, and we split the data sequences into subsequences of
size 60 to provide a constant size and avoid bias due to variation in sequence
length between datasets. For the positive class, we derive 183 high-confidence
GRC subsequences from the 109 high-confidence testis DNA reads that map to
the single known GRC transcript. We use half of the 183 true-positive GRC sub-
sequences and 10, 000 true-negative liver subsequences as our validation dataset.
We select the other half of the 183 true-positive GRC subsequences and 10, 000
true-negative liver subsequences as our testing data.

Hypothetical GRC Dataset. Based on the methods described in the biolog-
ical data preparation section above, we construct a second test dataset made of
13, 818 sequences, derived by assembling and processing testis DNA, and hypoth-
esize them to be part of the GRC (positive class). For each dataset, we counted
the instances of overlapping 4-grams4 in each sequence as features, providing
256 possible features given that the DNA alphabet contains four characters.

4 Experiments

We present our results in the following four subsections. In the first subsection,
we compare the classification performance of our method and competitor meth-
ods on the GRC dataset (validation data). For this purpose, we tuned the models
and attempted alternative configurations on this dataset. For all methods, we
use the Python implementations available in the SciKit-Learn library [33].

Therefore, we construct five candidate model specifications: a single Isola-
tion Forest, a single LOF, an ensemble of 10 Isolation Forest model5, an ensem-
ble of ten LOFs, and a mixed ensemble of 10 Isolation Forests and 10 LOFs6.

4 We also evaluated alternative constructions with 5-grams, which exhibited similar
performance but substantial increases in computation time, as the feature space size
is 4n. Larger complexity n-grams were deemed infeasible for this application, due to
this exponential feature space growth.

5 Experimentation yielded that performance was asymptotic to the number of models.
8 models was approximately optimal, but 10 was selected to be conservative and so
that we could experiment with dropping out the maximum and minimum score,
leaving 8 scores.

6 Experimentally, we observed that an homogeneous ensemble of size 10 IF or LOF
models exhibits roughly equivalent performance to a size 20, within a delta of 0.0001.
Therefore, comparing a mixed-model ensemble with 10 IF and 10 LOF models to
size 10 IF or LOF homogenous ensemble is equivalent to comparing to a size 20 IF
or LOF homogenous ensemble.
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Each model was trained on separate, unique sets of 10, 000 subsequences with
length 60 from the training dataset7.

In the second subsection, we discuss the results obtained on the GRC dataset
(test data). In the third section, we discuss the results we obtained by applying
our selected model to the hypothetical GRC dataset. Given the large size of
the dataset and the scarcity of positive examples, we used a train-validation-
test rather than a cross-validation evaluation scheme. While this scheme may be
less reliable than cross-validation, it appears more feasible for this study from a
computational cost perspective. A blind test allowed us to further validate the
significance of the results obtained from a biological point of view. Following
the analysis of the two datasets, the fourth subsection contains the results of
our blind test. Finally, the fifth subsection contains a biological analysis of the
results obtained.

4.1 Evaluation on the GRC Dataset (Validation Data)

We first evaluated the mixed LOF/Isolation Forest ensemble against homoge-
neous ensembles of Isolation Forest and LOF, as well as single models of each
type, using the validation dataset. After tuning, parameters for Isolation For-
est were n estimators = 100 and max samples = 256. Parameters for LOF
were n neighbors = 25, leaf size = 30, p = 2, and novelty = True. Results
in Table 1 show that the mixed model exhibits a higher AUC than the other
candidate specifications. Alternative configurations, using more data per model
(25,000 and 50,000) did not affect significantly the performance of the model,
but did substantially increase the computational cost. Similarly, dropping out
the highest and lowest scores from the ensembles before averaging did not affect
AUC. Lastly, we tested whether summed anomaly scores instead of averaging
them was better, but observed no effect on performance in terms of accuracy.

4.2 Evaluation on the GRC Dataset (Test Data)

This subsection presents results of all methods on test data. From the results
shown in Table 1 we can observe that most methods present a slightly higher
AUC score than the validation data results. However, in accordance with results
obtained on the validation data, the proposed method based on mixed ensemble
outperforms other methods.

7 We experimented with larger and smaller training data sizes per model. Smaller
size training sets exhibited AUC performance losses, while larger sizes demonstrated
no significant performance gains, paired with substantial additional computational
expense, particularly for LOF.
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Table 1. Classification accuracy results in terms of Area Under The Curve (AUC)
obtained by all methods with the GRC dataset on validation and test data. The best
result is marked in bold.

Method AUC (Validation data) AUC (Test data)

Single Isolation Forest 0.5807 0.6062

Single LOF 0.7441 0.7845

Isolation Forest Ensemble 0.6918 0.6759

LOF Ensemble 0.7655 0.8101

Mixed Ensemble 0.8107 0.8416

Fig. 2. High-confidence GRC vs Liver Anomaly Scores

In order to visually inspect the results, we plot the anomaly scores of the
183 known-GRC subsequences against the 20,000 somatic subsequences in our
testing and validation datasets (Fig. 2). A lower score indicates a more anoma-
lous sequence. In this graph, we merge the scores obtained on both validation
and test sets. From the graph it is possible to observe a consistent difference
in distribution between the known-GRC and somatic sequences. The somatic
distribution appears to be skew-normal, while the GRC appears to be more nor-
mal. However, we note additional possible peaks at 0.25 as well as below −0.1 in
the known-GRC. This raises the possibility of the true GRC distribution being
multi-modal, but it is possible that the limited size of the known-GRC dataset
puts too much emphasis on each observation. The clear differences in distribution
between known-GRC and liver subsequences provide a benchmark against which
we can compare the anomaly score distribution of hypothetical GRC sequences.



One-Class Ensembles for Rare Genomic Sequences Identification 349

Fig. 3. Hypothetical GRC vs Liver Anomaly Scores

4.3 Evaluation on the Hypothetical GRC Dataset

Next, we evaluate the 13,818 hypothetical GRC sequences, adopting the aver-
aging approach described in Algorithm 1 to generate final anomaly scores. We
compare the hypothetical GRC anomaly score to 15,000 randomly selected liver
sequences in Fig. 2. We apply the same average of averages prediction approach
to generate scores for the liver sequences, by averaging the anomaly scores of
their component subsequences. The liver distribution precisely mimics that of
the test and validation data liver set. The hypothetical GRC sequences, similar
to the known-GRC subsequences, have a much lower average anomaly score. We
note that there appears to be a second peak in the hypothetical-GRC distribu-
tion around 0.27, close to the liver mean of 0.25. Given that the combination
of genomic methods used to isolate the hypothetical GRC are imperfect, the
machine learning approach appears to be both confirming the overall distinct-
ness of these data from liver and the presence of some contaminating somatic
data remaining to be separated out (Fig. 3).

Finally, we compare the hypothetical GRC to the known-GRC in Fig. 4.
Though the known-GRC graph is unfortunately sparse and noisy, it is clear the
hypothetical GRC closely follows this distribution. It is unclear if there is support
for the secondary hypothetical GRC peak in the known-GRC distribution, as
there is possibly a secondary peak in the known-GRC distribution around the
same point. However, we cannot rule out this is not merely noise from our limited
known-GRC data size.
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Fig. 4. Known-GRC vs High-Confidence GRC

4.4 Blind Test Results

It is important to independently verify that our classifier correctly identifies
GRC sequences. For this reason, we searched for additional validated GRC genes.
One of the sequences from the hypothetical GRC set, encoding a splicing factor
38 A gene, was physically linked with a known GRC sequence [18] in one of our
assemblies (not shown here), giving us reason to pursue it further. Using qPCR
we verified experimentally that this sequence is encoded on the GRC and is
present in multiple copies, based on elevated copynumber only observed in testis
DNA (Fig. 5).

The splicing factor 38A-containing contig has an anomaly score of 0.027,
making it number 3, 753 of 13, 818 total sequences in the hypothetical GRC list
(ranked in descending order of anomaly score). This puts it in the top 27% of
all hypothetical GRC sequences, suggesting that anomaly scores of this value or
lower are likely to be real GRC genes, and that thousands of hypothetical GRC
sequences identified in our experiments are likely to be correct. This result,
along with the results found in the previous sections, suggests that the machine
learning approach proposed in this study is, indeed, successful at predicting GRC
sequences and can accelerate the pace of genomic sequencing.

4.5 Biological Discussion

The inheritance of the Y-chromosome in a single sex imparts a distinctive muta-
tional signature relative to the other chromosomes which spend half their time
in each sex [21,39]. Mutational rates in males are higher because sperm undergo
many more rounds of cell division than eggs, so chromosomes which are inherited
only through males average a higher mutational rate than sequences inherited
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Fig. 5. Confirmation that GRC Splicing Factor 38A is GRC-encoded by qPCR of the
gene in brain, testis or heart relative to β-actin single-copy control.

both through males and females; consequently, sequences inherited through only
female lineages should experience the fewest mutations [21,39]. The bird sex-
determination system has ZZ males and ZW females, thus a female-only W
chromosome, which has a very low mutation rate [24]. We hypothesized that
the GRC should similarly reflect a protection from mutations accumulated in
males, and this signature should be detectable relative to other chromosomes.
By training a one-class anomaly detector we are the first to identify this sig-
nature and use it to identify many more high-confidence GRC sequences by
anomaly score. Because our second validated GRC gene, a splicing factor 38A
gene was number 3, 753 on the list by anomaly score, we suggest that there are
likely thousands of true-positive GRC sequences in our hypothetical dataset, sig-
nificantly expanding known GRC sequences. In doing so, we demonstrate that
one-class machine learning methods applied to genomic data can assist subject
matter experts in identifying anomalous sequences. Specifically, we permit biol-
ogists with hypothetical anomalous data to rank-order their sequences, allowing
them to be more confident about the anomalous nature of some sequences ver-
sus others. This significantly narrows the scope of which sequences must be
experimentally verified through PCR, a process which is extremely time inten-
sive. As researchers are likely only able to experimentally PCR test a few dozen
sequences, our model permits the biologist to focus their limited resources on
the hypothetical sequences that are most in doubt—or on finding the anomaly
score threshold that approximately demarcates the line between true-positives
and true-negatives.

5 Conclusion

In this study, we proposed an ensemble-based machine learning method to
identify rare genomic sequences in imbalanced datasets. In more detail, our
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study considers the problem of identifying sequences from a specific chromosome
present in certain types of songbirds (GRC) from datasets containing mixtures of
this chromosome and common chromosomes. The results showed highly accurate
classification results, also when compared to state-of-the-art one class machine
learning methods.

We found that the anomaly scores our method obtained on the hypothetical
GRC data were very close to those obtained on known GRC data. Furthermore,
their distribution differed from that of the non-GRC sequences in a way similar
to the way in which the known GRC differed from the non-GRC sequences. Our
method assigned a high anomaly score to the gene presented as a blind test,
thus ranking it as GRC with high confidence. The results extracted can help
biologists prioritize thousands of candidate sequences and facilitate discoveries
that would, otherwise, be highly laborious or impossible to do experimentally
due to financial or temporal constraints.

In the future, we plan to experimentally verify more sequences that we
ranked with high confidence to test whether, indeed, our tool is indicative of
GRC sequences. We hypothesize that this tool may be useful in examining other
anomalous sequences such as the finch W chromosome, another female-specific
element, which should reflect altered mutation rates like the GRC. In addition
to continuing to verify our computational findings in biology laboratories, we
also intend to optimize our approach further, by exploring more complex combi-
nation methods. Finally, we will try to quantify the differential in speed of GRC
identification with machine learning tools and, on the other hand, proceeding in
a traditional manner.
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Abstract. We present xspells, a model-agnostic local approach for
explaining the decisions of a black box model for sentiment classification
of short texts. The explanations provided consist of a set of exemplar sen-
tences and a set of counter-exemplar sentences. The former are examples
classified by the black box with the same label as the text to explain. The
latter are examples classified with a different label (a form of counter-
factuals). Both are close in meaning to the text to explain, and both are
meaningful sentences – albeit they are synthetically generated. xspells
generates neighbors of the text to explain in a latent space using Varia-
tional Autoencoders for encoding text and decoding latent instances. A
decision tree is learned from randomly generated neighbors, and used to
drive the selection of the exemplars and counter-exemplars. We report
experiments on two datasets showing that xspells outperforms the well-
known lime method in terms of quality of explanations, fidelity, and
usefulness, and that is comparable to it in terms of stability.

Keywords: Explainable sentiment classification · Synthetic exemplars

1 Introduction

Opinions expressed by people in social media are increasingly being collected for
several purposes [24]. People look at others’ opinions on a product before buying
it, on a restaurant or hotel before making a reservation. Managers take decisions
supported by consumers’ opinions on company brand, products, and services.
Public decision makers care for what the citizens in their community want.

The massive amount of online texts (posts, tweets, reviews, etc.) makes it
necessary to automate the analyses of such data. Sentiment classification is the
task of learning a model that is able to predict the sentiment of a given text from
labeled examples [31]. These machine learning models are exploited in various
applications, e.g., personalization of advertisements, peer suggestion in social
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networks, recommendations of news, movies, etc. The analysis of short texts,
which abound in micro-blogging sites such as Twitter and in online reviews, is
especially challenging, due to their sparsity, non-uniformity, and noisiness. Deep
Neural Networks (DNNs) [23,40] and Random Forests (RFs) [6,39], have been
shown to be effective in terms of predictive accuracy and robustness to noise.
However, the logic learned by a DNN or by a RF to classify a given text remains
obscure to human inspection. These inscrutable “black box” models may hide
biases learned from data, such as prejudice [2] or spurious correlations [33]. Con-
sequently, they may reproduce and amplify such biases in their predictions [10].

Explainability of black box decisions is nowadays a mandatory require-
ment [9,11]. Developers need to understand model’s decisions for debugging
purposes. People subject to black box decisions may inquire to be provided with
“meaningful information of the logic involved” (right to explanation [26] in the
European Union GDPR). For example, if a comment in a social network has
been removed because it has been classified as hate speech, the author has the
right to know why the machine learning system has assigned such a label to her
comment.

In this paper, we investigate the problem of explaining the decisions of a black
box for sentiment classification on a given input (short) text. We design and
experiment with a model-agnostic local approach named xspells (explaining
sentiment prediction generating exemplars in the latent space). xspells’s
explanations for the sentiment y = b(x) assigned by a black box b to a text
x consists of set of exemplar texts E, a set of counter-exemplar texts C, and
the most frequent words in each of those sets W = WE ∪ WC . Exemplars are
sentences classified by the black box as x and close in meaning to x. They are
intended to provide the user with hints about the kind of texts in the neighbor-
hood of x that the black box classifies in the same way as x. Counter-exemplars
are sentences that the black box classifies differently from y, but like exemplars,
are also close in meaning to x. They are intended to provide the user with hints
about the kind of texts in the neighborhood of x that the black box classifies
differently from x. The usefulness of counter-factual reasoning has been widely
recognized in the literature on explainable machine learning [4], particularly as
a tool for causal understanding of the behavior of the black box. By contrasting
exemplars and counter-exemplars, the user can gain an understanding of the
factors affecting the classification of x. To help such an understanding, xspells
provides also the most frequent words appearing in E and C.

The main novelty of our approach lies in the fact that the exemplars and
counter-exemplars produced by xspells are meaningful texts, albeit syntheti-
cally generated. We map the input text x from a high-dimensional vector space
into a low-dimensional latent space vector z by means of Variational Autoen-
coders [22], which couple encoding and decoding of texts. Then we study the
behavior of the black box b in the neighborhood of z, or, more precisely, the
behavior of b on texts decoded back from the latent space. Finally, we exploit a
decision tree built from latent space neighborhood instances to drive the selec-
tion of exemplars and counter-exemplars. Experiments on two standard datasets
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and two black box classifiers show that xspells overtakes the baseline method
lime [33] by providing understandable, faithful, useful, and stable explanations.

This paper is organized as follows. Section 2 discusses related work. Section 3
formalizes the problem and recalls key notions for the proposed method, which
is described in Sect. 4. Section 5 presents an experimental validation. Finally,
Sect. 6 summarizes our contribution, its limitations, and future work.

2 Related Work

Research on interpretability and explainability in machine learning has bloomed
over the last few years [17,28]. Explanation methods can be categorized as: (i)
model-specific or model-agnostic, depending on whether or not the approach
requires access to the internals of the model; (ii) local or global, depending on
whether the approach explains the prediction for a specific instance or the overall
logic of the machine learning model.

xspells, falls into the category of local, model-agnostic methods which origi-
nated with [33] and extended along diverse directions by [12] and by [14,16]. Well
known model-agnostic local explanation methods able to also work on textual
data include lime, anchor and shap. lime [33] randomly generates synthetic
instances in the neighborhood of the instance to explain. An interpretable lin-
ear model is trained from such instances. Feature weights of the linear model
are used for explaining the feature importance over the instance to explain. In
the case of texts, a feature is associated to each word in a vocabulary. lime
has two main weaknesses. First, the number of top features/words to be consid-
ered is assumed to be provided in input by the user. Second, the neighborhood
texts are generated by randomly removing words, possibly generating meaning-
less texts [15]. anchor [34] is developed following principles similar to lime
but it returns decision rules (called anchors) as explanations. It adopts a bandit
algorithm that randomly constructs anchors with predefined minimum preci-
sion. Its weaknesses include the discretization of continuous features, the need
for user-defined precision threshold parameters, and, as for lime, the usage of
meaningless synthetic instances. shap [25] relates game theory with local expla-
nations and overcomes some of the limitations of lime and anchor. Also shap
audits the black box with possibly meaningless synthetic sentences. The method
xspells proposed in this paper recovers from this drawback by generating the
sentences for the neighborhood in a latent space by resorting to Variational
Autoencoders.

lionets, deeplift and neurox are model-specific local explanation meth-
ods designed to explain deep neural networks able to work also on textual data.
deeplift [36] decomposes the prediction of neural networks on a specific input
by back-propagating the contributions of all neurons in the network to the input
features. Then it compares the activation of each neuron to its “reference activa-
tion” and it assigns contribution scores according to the difference. neurox [7]
facilitates the analysis of individual neurons in DNNs. In particular, it identi-
fies specific dimensions in the vector representations learned by a neural net-
work model that are responsible for specific properties. Afterwards, it allows
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the ranking of neurons and dimensions based on their overall saliency. Finally,
lionets [29] looks at the penultimate layer of a DNN, which models texts in an
alternative representation, randomly permutes the weights of nodes in that layer
to generate new vectors, classifies them, observes the classification outcome and
returns the explanation using a linear regressor like lime. Differently from these
model-specific methods, xspells is not tied to a specific architecture and it can
be used to explain any black box sentiment classifier.

3 Setting the Stage

We address the black box outcome explanation problem [17] in the domain of
sentiment classification, where machine learning classifiers are trained to predict
the class value (sentiment) of a natural language text (simply, a text). We will
mainly consider short texts such as posts on social networks, brief reviews, or
single sentences, as these are typically the subject of sentiment classification. In
this context, a black box model is a non-interpretable or inaccessible sentiment
classifier b which assigns a sentiment label y to a given text x, i.e., b(x) = y.
Example of black box models include Random Forests (RF) and Deep Neural
Networks (DNN). We assume that the black box b can be queried at will. We
use the notation b(X) as a shorthand for {b(x) | x ∈ X}. Formally, we have:

Definition 1. Let b be a black box sentiment classifier, and x a text for which
the decision y = b(x) has to be explained. The black box outcome explanation
problem for sentiment classification consists of providing an explanation ξ ∈ Ξ
belonging to a human-interpretable domain Ξ.

We introduce next the key tools that will be used in our approach.

3.1 Factual and Counter-Factuals

A widely adopted human-interpretable domain Ξ consists of if-then rules. They
provide conditions (in the if-part) met by the instance x to be explained, that
determined the answer of the black box (then-part). Rules can also be used
to provide counter-factuals, namely alternative conditions, not met by x, that
would determine a different answer by the black box [4]. In our approach, we
will build on lore [14], a local explainer for tabular data that learns a decision
tree from a given neighborhood Z of the instance to explain. Such a tree is a
surrogate model of the black box, i.e., it is trained to reproduce the decisions of
the black box. lore provides in output: (i) a factual rule r, corresponding to the
path in the surrogate tree that explains why an instance x has been labeled as y
by the black box b; and (ii) a set of counter-factual rules Φ, explaining minimal
changes in the features of x that would change the class y assigned by b. In
lore, the neighborhood Z is synthetically generated using a genetic algorithm
that balances the number of instances similar to x and with its same label y, and
the number of instances similar to x but with a different label y′ �= y assigned
by b.
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Algorithm 1: xspells(x, b, ζ, η)
Input : x - text to explain, b - black box, ζ - encoder, η - decoder
Output: ξ - explanation

1 z ← ζ(x); // encode text into the latent space

2 Z ← neighgen(z, b, ζ, η); // generate latent neighborhood

3 Z̃ ← η(Z); // decode neighborhood

4 Y ← b(Z̃); // classify neighborhood

5 ldt ← learnTree(Z, Y ); // learn latent surrogate decision tree

6 r ← rule(z, ldt); // extract factual latent rule

7 E, C ← explCexpl(r, Z, Z̃, Y ); // select exemplars and counter-exemplars

8 W ← mostCommon(E, C); // extract most common words

9 return ξ = 〈E, C, W 〉; // return explanation

3.2 Variational Autoencoder

Local explanation methods audit the behavior of a black box in the neighbor-
hood of the instance to explain. A non-trivial issue with textual data is how
to generate meaningful synthetic sentences in the neighborhood (w.r.t. seman-
tic similarity) of the instance. We tackle this problem by adopting Variational
Autoencoders (VAEs) [22]. A VAE is trained with the aim of learning a repre-
sentation that reduces the dimensionality from the large m-dimensional space of
words to a small k-dimensional space of numbers (latent space), also capturing
non-linear relationships. An encoder ζ, and a decoder decoder η are simultane-
ously learned with the objective of minimizing the reconstruction loss. Starting
from the reduced encoding z = ζ(x), the VAE reconstructs a representation as
close as possible to its original input x̃ = η(z) � x. After training, the decoder
can be used with generative purposes to reconstruct instances never observed by
generating vectors in the latent space of dimensionality k. The difference with
standard autoencoders [19] is that VAEs are trained by considering an additional
limitation on the loss function such that the latent space is scattered and does
not contain “dead zones”. Indeed, the name variational comes from the fact that
VAEs work by approaching the posterior distribution with a variational distri-
bution. The encoder ζ emits the parameters for this variational distribution, in
terms of a multi-factorial Gaussian distribution, and the latent representation
is taken by sampling this distribution. The decoder η takes as input the latent
representation and focuses on reconstructing the original input from it. The
avoidance of dead zones ensures that the instances reconstructed from vectors
in the latent space, e.g., posts or tweets, are semantically meaningful [3].

4 Explaining Sentiment Classifiers

We propose a local model agnostic explainer for sentiment classification of short
texts, called xspells (explaining sentiment prediction generating exemplars
in the latent space). Given a black box b, a short text x, e.g., a post on a
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Fig. 1. xspells process on a sample input. xspells takes as input the short text x and
the sentiment assigned b(x). The output is a set of exemplars and counter-exemplars,
and the most common discriminative words.

social network, and the sentiment label y = b(x) assigned by the black box,
e.g., hate or neutral, the explanation provided by xspells is composed of: (i)
a set of exemplar texts; (ii) a set of counter-exemplar texts; and, (iii) the
set of most common words in exemplars and counter-exemplars. Exemplar and
counter-exemplar texts respectively illustrate instances classified with the same
and with a different label than x. Such texts are close in meaning to x, and they
offer an understanding of what makes the black box determine the sentiment of
texts in the neighborhood of x. Exemplars help in understanding reasons for the
sentiment assigned to x. Counter-exemplars help in understanding reasons that
would reverse the sentiment assigned. The most common words in the exem-
plars and counter-exemplars may allow for highlighting terms (not necessarily
appearing in x) that discriminate between the assigned sentiment and a different
sentiment. These components form the human-interpretable explanation ξ ∈ Ξ
for the classification y = b(x) returned by xspells, whose aim is to satisfy the
requirements of counter-factuability, usability, and meaningfulness [4,28,32].

Besides the black box b and the text x to explain, xspells is parametric
in: an encoder ζ and a decoder η for representing texts in a compact way in
the latent space. Algorithm 1 details xspells, and Fig. 1 shows the steps of
the explanation process on a sample input. First, x is transformed into a low-
dimensionality vector z = ζ(x) in the latent space. xspells then generates a
neighborhood Z of z, which is decoded back to a set of texts Z̃. The dataset Z
and the decisions of the black box on the decoded text Y = b(Z̃) are used to
train a surrogate decision tree (in the latent space).

Then, the explCexpl() module selects exemplars E and counter-exemplars C
from Z by exploiting the knowledge extracted (i.e., the decision tree branches),
and decodes them into texts. Finally, the most common words W = WE ∪ WC

are extracted from E and C and the overall explanation ξ is returned. Details
of each step are presented in the rest of this section.

4.1 Latent Encoding and Neighborhood Generation

The input text x is first passed to a trained VAE ζ (line 1 of Algorithm 1),
thus obtaining the latent space representation z = ζ(x). The number of latent



Explaining Sentiment Classification 363

dimensions k is kept low to avoid dimensionality problems. We capture the
sequential information in texts by adopting VAEs based on long short-term
memory layers (LSTM) [20] for both the encoder ζ and decoder η (lines 1 and
3). In particular, the decoder η is trained to predict the next characters of the
text, given the previous characters of the text. In more detail, it is trained to
convert a given text into the same text, but being offset by a time-step in the
future.

xspells generates a set Z of n instances in the latent feature space for a
given z. The neighborhood generation function neighgen (line 2) can be imple-
mented by adopting several different strategies, ranging from a purely random
approach like in lime [33], to using a given distribution and a genetic algorithm
maximizing a fitness function like in lore [14]. xspells adopts a random gener-
ation of latent synthetic instances by relying on the fact that the encoder maps
uniformly the data distribution over the latent space. xspells guarantees a min-
imum number n of distinct instances by removing duplicates. Next, xspells uses
the synthetically generated instances Z̃ for querying the black box b (line 4). This
is made possible by turning back the latent representation to text through the
decoder η [3] (line 3). We tackle the requirement of generating local instances by
randomly generating N � n latent instances, and then retaining in Z only the
n closest instances to z, i.e., |Z| = n. The distance used in the latent space is
the Euclidean distance. The neighborhood generation neighgen actually returns
a set Z = Z= ∪ Z�= with z′ ∈ Z= such that b(η(z′)) = b(η(z)), and instances
z′ ∈ Z�= such that b(η(z′)) �= b(η(z)). We further consider the problem of imbal-
anced distributions in Z, which may lead to weak decision trees. Class balancing
between the two partitions is achieved by adopting the SMOTE [5] procedure if
the proportion of the minority class is less than a predefined threshold τ .

4.2 Local Latent Rules and Explanation Extraction

Given Z and Y = b(Z̃), xspells builds a latent decision tree ldt (line 5) acting
as a local surrogate of the black box, i.e., being able to locally mime the behavior
of b. xspells adopts decision tree because decision rules can be derived from
a root-to-leaf path [14]. Indeed, the premise p of the rule r = p → y is the
conjunction of the split conditions from the root to the leaf of the tree that is
followed by features in z. This approach is a variant of lore (see Sect. 3.1) but
in a latent feature space. The consequence y of the rule is the class assigned at
that leaf1.

Given a text x, the explanations returned by xspells are of the form ξ =
〈E,C,W 〉, where: E = {ex1 , . . . , exu} is the set of exemplars (b(exi ) = b(x) ∀i ∈
[1, u]); C = {cx1 , . . . , cxv} is the set of counter-exemplars (b(cxi ) �= b(x) ∀i ∈ [1, v]);
and W = WE ∪ WC is the set of the h most frequent words in exemplars E
and of the h most frequent words in counter-exemplars C. Here, u, v, and h are

1 In theory, it might happen that y �= b(x), namely the path followed by z predicts a
sentiment different from b(x). In our experiments, this never occurred. In such cases,
xspells restarts by generating a new neighborhood and then a new decision tree.
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parameters that can be set in xspells. Exemplars are chosen starting from the
latent instances in Z which satisfy both the premise p and the consequence y
of the rule r = p → y above, namely the instances z′ ∈ Z that follow the same
path as z in the decision tree, and such that the b(η(z′)) = y. The u instances
z′ closest to z are selected, using Euclidean distance. They are decoded back to
the text space η(z′) and included in E. Counter-exemplars are chosen starting
from the latent instances z′ ∈ Z which do not satisfy the premise p and such
that b(η(z′)) �= b(x). The v instances closest to z are chosen. They are decoded
back to the text space η(z′) and included in C.

5 Experiments

In this section, we illustrate qualitative/quantitative experimental analyses of
faithfulness, usefulness, and stability properties of xspells explanations2. The
xspells system has been developed in Python, and it relies on the CART deci-
sion tree algorithm as implemented by the scikit-learn library, and on VAEe
implemented with the keras library3.

5.1 Experimental Settings

We experimented with the proposed approach on two datasets of tweets. The hate
speech dataset (hate) [8] contains tweets labeled as hate, offensive or neutral.
Here, we focus on the 1,430 tweets that belong to the hate class, and on the 4,163
tweets of the neutral class. The polarity dataset (polarity) [30] contains tweets
about movie reviews. Half of these tweets are classified as positive reviews, and
the other half as negative ones. These two datasets are remarkable examples
where a black box approach is likely to be used to remove posts or to ban users,
possibly in automated way. Such extreme actions risk to hurt the free speech
rights of people. Explanations of the black box decision are then of primary
relevance both to account for the action and to test/debug the black box.

For both datasets, we use 75% of the available data for training a black box
machine learning classifier. The remaining 25% of data is used for testing the
black box decisions. More specifically, 75% of that testing data is used for training
the autoencoder, and 25% for explaining black box decisions (explanation set).
Datasets details are reported in Table 1 (left).

We trained and explained the following black box classifiers: Random For-
est [38] (RF) as implemented by the scikit-learn library, and Deep Neural
Networks (DNN) implemented with the keras library. For the RF, we trans-
formed texts into their TF-IDF weight vectors [38], after removing stop-words,
including Twitter stop-words such as “rt”, hashtags, URLs and usernames. A
randomized cross-validation search was then performed for parameter tuning.
Parameters for RF models were set as follows: 100 decision trees, Gini split cri-
terion,

√
m random features where m is the total number of features; no limit on

2 The source code is available at: https://github.com/orestislampridis/X-SPELLS .
3 https://scikit-learn.org/stable/modules/tree.html, https://keras.io.

https://github.com/orestislampridis/X-SPELLS
https://scikit-learn.org/stable/modules/tree.html
https://keras.io
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Table 1. Datasets description, black box models accuracy, and VAE RMSE.

Dataset No.

tweets

Avg. no

words

No.

classes

Bb train

size

VAE

train size

Expl.

size

Accuracy VAE

RF DNN MRE

hate 5,593 20.82 2 4,195 1,048 350 .9257 .8485 0.26

polarity 10,660 24.87 2 7,995 1,998 666 .6702 .6302 0.59

tree depth. The DNNs adopted have the following architecture. The first layer is
a dense embedding layer. It takes as input a sparse vector representation of each
text (subject to same pre-processing steps as for the RF, without the TF-IDF
representation) obtained by using a Keras tokenizer4 to turn the text into an
array of integers and a padder so that each vector has the same length. This
way, we allow the network to learn its own dense embeddings of size 64. The
first embedding layer is followed by a dropout layer at 0.25. Afterwards, the
DNN is composed by three dense layers with sizes 64, 512 and 128. The cen-
tral layer is an LSTM [20] that captures the sequential nature of texts and has
size 100. After that, there are three dense layers with sizes 512, 64 and 32. The
dense layers adopt the ReLu activation function. Finally, the sigmoid activation
function is used for the final classification. We adopted binary cross-entropy as
loss function and the Adam optimizer. We trained the DNN for 100 epochs.
Classification performances are reported in Table 1 (center-right).

We designed the VAEs used in experiments with both the encoder ζ and
the decoder η consisting of a single LSTM layer. We fed the text into the
VAE using a one-hot vectorization that takes an input tensors with dimen-
sions 33 · 5368= 177, 144 for the hate dataset, and 48 · 5308= 254, 784 for the
polarity dataset, after stop-words removal. The numbers above represent the
maximum text length and the number of distinct words considered. In order to
provide to the VAE knowledge also about unseen words with respect to those
in its training set, we extended the vocabulary with the 1000 most common
English words5 We considered k = 500 latent features for both datasets6. Table 1
(right) reports the Mean Reconstruction Error (MRE) calculated as the aver-
age cosine similarity distance between the original and reconstructed texts when
converted to TF-IDF vectors. We set the following xspells hyper-parameters.
The neighborhood generation neighgen is run with N = 600, n = 200, τ = 40%.
For the latent decision tree we used the default parameter of the CART imple-
mentation. Finally, with regards to the explanation hyper-parameters, we set
u = v = 5 (counter-)exemplars, and h = 5 most frequent words for exemplars and
for counter-exemplars.

4 https://keras.io/preprocessing/text.
5 https://1000mostcommonwords.com.
6 Experiments (not reported due to lack of space) show that k = 500 is a good compro-

mise between MRE and the reduced dimensionality of the latent space when varying
k ∈ {100, 250, 500, 1000, 2500}.

https://keras.io/preprocessing/text
https://1000mostcommonwords.com/1000-most-common-english-words/
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In the experiments we compare xspells against lime [33]. We cannot com-
pare against shap [25] and anchor [34] because it is not immediate how to
practically employ them to explain sentiment classifiers. Other approaches such
as IntGrad [37] or LRP [1] could theoretically be used to explain sentiment clas-
sifiers. However, first, they are not agnostic but tied to DNNs, and second, they
are typically used for explaining image classifiers.

5.2 Qualitative Evaluation

In this section, we qualitatively compare xspells explanations with those
returned by lime. Tables 2 and 3 show sample explanations for both experi-
mental datasets, and considering the RF black box sentiment classifier.

The first and second tweet in Table 2 belong to the hate dataset and are
classified as hate. Looking at the exemplars returned by xspells, the hate sen-
timent emerges from the presence of the word “hate”, from sexually degrading
references, and from derogatory adjectives. On the other hand counter-exemplars
refer to women and to work with a positive perspective. The second tweet for
the hate dataset follows a similar pattern. The focus this time is on the word
“retard”, used here with negative connotations. Differently from xspells, the
explanations returned by lime in Table 3 for the same tweets show that the hate
sentiment is mainly due to the words “faggot” and “retards” but there are not
any further details, hence providing to the user a limited understanding.

The usefulness of the exemplars and counter-exemplars of xspells are even
more clear for the polarity dataset, where the RF correctly assigns the senti-
ment negative to the sample tweets in Table 2. For the first tweet, xspells recog-
nizes the negative sentiment captured by the RF and provide exemplars contain-
ing negative words such as “trash”, “imperfect”, and “extremely unfunny” as
negative synonyms of “eccentric”, “forgettable”, and “doldrums”. The counter-
exemplars show the positive connotation and context that words must have to
turn the sentiment into positive. On the contrary, lime (Table 3) is not able
to capture such complex words and it focuses on terms like “off”, “debut”, or
“enough”. For the second tweet, xspells is able to generates exemplar similar in
meaning to the tweet investigated: the tweet starts positive (or appear positive),
but reveals/hides a negative sentiment in the end. In this case the most frequent
words alone are not very useful. Indeed, (the surrogate linear classifier of) lime
mis-classifies the second tweet as positive giving importance to the word “work”
that, however, is not the focus of the negative sentiment.

Overall, since lime extracts words from the text under analysis, it can only
provide explanations using such words. On the contrary, the (counter-)exemplars
of xspells consist of texts which are close in meaning, but including different
wordings that help the user better grasp the reasons behind black box decision.

5.3 Fidelity Evaluation

We evaluate the faithfulness [11,17] of the surrogate latent decision tree adopted
by xspells by measuring how well it reproduces the behavior of the black box b
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Table 2. Explanations returned by xspells for texts classified as hate in the hate

dataset, and as negative in the polarity dataset. Three exemplars (E) and two counter-
exemplars (C) for each tweet. Relative word frequencies in parenthesis.

Tweet (Counter-

)exemplars

E/C W= W�=

Hate I dont have any problems
with zak, but you seem
like a faggot

I hate dumb

bitches

E Hate (.22) Work (.06)

I hate fat bitches

wear show

E Bitches (.17) Love (.06)

I hate fat bitches E Fat (.11) Wearing (.06)

This is why i work C Dumb (.06) Fuzzy (.06)

I really want a girl C Wear (.06) Blankets (.06)

hate California’s biggest
retards. Don’t forget
about HOLY who just
released an amazing EP

This girl is

retarded

E Retarded (.08) Im (.14)

The fucking royals

bitch work

E Hated (.08) Love (.07)

Im such a retard

sometimes

E Bitch (.08) Birds (.07)

This is why i love

birds

C Fucking (.08) Brownies (.07)

Wait did take my

brownies

C Retard (.08) Sorry (.07)

polarity Eccentric enough to stave
off doldrums, caruso’s
self-conscious debut is
also eminently forgettable

It has ever under

trash without to a

familiar

E Trash (.05) Fun (.10)

This extremely

unfunny movie in

at 80min

E Imperfect (.05) Remarkable (.07)

This movie makes

for one thing

imperfect

E Unfunny (.05) Appears (.07)

A story of musical

and character and

love

C Without (.05) Want (.04)

It is a movie fun

for fans who cant

stop

C Ever (.05) Love (.04)

polarity While some of the camera
work is interesting, the
film’s mid-to-low budget
is betrayed by the
surprisingly shoddy
makeup work

In the end i kept

this one at two

stars

E Bad (.07) New (.12)

Odd poetic road

movie spiked by

jolts of pop

E Attempt (.07) Really (.06)

In attempt to the

bad sense with

this summer

E End (.07) Safe (.03)

Does what a fine

documentary does

best

C Sense (.04) Fine (.03)

A film that plays

things so nice n

safe

C Odd (.04) Safe (.03)
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Table 3. Explanations returned by lime for tweets classified as hate in the hate

dataset, and as negative in the polarity dataset. lime word importance in parenthesis.

Tweet Top features Tweet Top features

hate I dont have any problems
with zak, but you seem
like a faggot

Faggot (−0.62) polarity Eccentric enough to
stave off doldrums,
caruso’s self-conscious
debut is also
eminently forgettable

off (−0.30)

You (−0.03) Debut (0.03)

Like (0.01) Enough (0.03)

Any (−0.01) Also (0.03)

Problems (0.01) Self (−0.01)

hate California’s biggest Retards (−0.24) polarity While some of the Work (0.11)

retards. Don’t forget Dont (−0.03) camera work is While (0.04)

about HOLY who just California (−0.01) interesting, the film’s low (−0.04)

released an amazing EP Who (−0.01) mid-to-low budget is Some (−0.04)

Holy (0.01) betrayed by the Interesting (−0.03)

surprisingly shoddy

makeup work

Table 4. Mean and standard deviation of fidelity. The higher the better.

RF DNN

lime xspells lime xspells

hate 0.62 ± 0.30 0.98 ± 0.01 0.92 ± 0.15 0.98 ± 0.01

polarity 0.89 ± 0.14 0.98 ± 0.01 0.91 ± 0.20 0.97 ± 0.01

in the neighborhood of the text x to explain – a metric known as fidelity. Let Z
be the neighborhood of x in the latent space generated at line 2 of Algorithm 1
and ldt be the surrogate decision tree computed at line 5. The fidelity metric is
|{y ∈ Z | ldt(y) = b(η(y))}|/|Z|, namely the accuracy of ldt assuming as ground
truth the black box. The fidelity values over all instances in the explanation set
are aggregated by taking their average and standard deviation.

We compare xspells against lime, which adopts as surrogate model a linear
regression over the feature space of words and generates the neighborhood using
a purely random strategy. Table 4 reports the average fidelity and its standard
deviation. On the hate dataset, xspells reaches almost perfect fidelity for both
black boxes. lime performances are markedly lower for the RF black box. On
the polarity dataset, the difference is less marked, but still in favor of xspells.
A Welch’s t-test shows that the difference of fidelity between xspells and lime
is statistically significant (p-value < 0.01) in all cases from Table 4.
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Fig. 2. Usefuless as 1-NN accuracy varying the number of (counter-)exemplars.

5.4 Usefulness Evaluation

How can we evaluate the usefulness of xspells explanations? The gold stan-
dard would require to run lab experiments involving human evaluators. Inspired
by [21], we provide here an indirect evaluation by means of a k-Nearest Neighbor
(k-NN) classifier [38]. For a text x in the explanation set, first we randomly select
n exemplars and n counter-exemplars from the output of xspells. Then, a 1-NN
classifier7 is trained over such (counter-)exemplars. Finally, we test 1-NN over
the text x and compare the prediction of 1-NN with the sentiment b(x) predicted
by the black box. In other words, the 1-NN approximates a human in assessing
the (counter-)exemplars usefulness. The accuracy computed over all x’s in the
explanation set is a proxy measure of how good/useful are (counter-)exemplars
at delimiting the decision boundary of the black box. We compare such an app-
roach with a baseline (or null) model consisting of a 1-NN trained on n texts
per sentiment, selected randomly from the training set and not including x.

The accuracy of the two approaches are reported in Fig. 2 by varying the
number n of exemplars and counter-exemplars. xspells neatly overcomes the
baseline. The difference is particularly marked for when n is small. Even though
the difference tend to decrease for large n’s, large-sized explanations are less
useful in practice due to cognitive limitations of human evaluators. Moreover,
xspells performances are quite stable w.r.t. n, i.e., even one or two exemplars
and counter-exemplars are sufficient to let the 1-NN classifier distinguish the
sentiment assigned to x in an accurate way.

7 Distance function adopted: cosine distance between the TF-IDF representations.
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Table 5. Mean and stdev of the coherence index Cx. The closer to 1 the better.

RF DNN

lime xspells lime xspells

hate 1.10 ± 0.17 1.05 ± 0.25 1.06 ± 0.08 1.12 ± 0.39

polarity 1.05 ± 0.15 1.15 ± 0.20 1.13 ± 0.18 1.09 ± 0.14

5.5 Stability Evaluation

Stability of explanations is a key requirement, which heavily impacts users’ trust
on explainability methods [35]. Several metrics of stability can be devised [18,27].
A possible choice is to use sensitivity analysis with regard to how much an expla-
nation varies on the basis of the randomness in the explanation process. Local
methods relying on random generation of neighborhoods are particularly sensi-
tive to this problem. In addition, our method suffers of the variability introduced
by the encoding-decoding of texts in the latent space. Therefore, we measure here
stability as a relative notion, that we call coherence. For a given text x in the
explanation set, we consider its closest text xc and its k-th closest text xf , again
in the explanation set. A form of Lipschitz condition [27] would require that the
distance between the explanations e(x) and e(xf ), normalized by the distance
between x and xf , should not be much different than the distance between the
explanations e(x) and e(xc), again normalized by the distance between x and xc.
Stated in words, normalized distances between explanations should be as similar
as possible. Formally, we introduce the following coherence index :

Cx =
diste(e(xf ), e(x))/dist(xf , x)
diste(e(xc), e(x))/dist(xc, x)

where we adopt as distance function dist the cosine distance between the TF-IDF
representation of the texts, and as distance function diste the Jaccard distance
between the 10 most frequent words in each explanation (namely, the W set). In
experiments, we set xf to be the k = 10-closest text w.r.t. x. For comparison, the
coherence index is computed also for lime, with Jaccard similarity calculated
between the sets of 10 words (a.k.a. features) that lime deems more relevant.

Table 5 reports the average coherence over the explanation set. xspells and
lime have comparable levels of coherence, and an even number of cases where one
overcomes the other. A Welch’s t-test shows that the difference of the coherence
indexes between xspells and lime is statistically significant (p-value < 0.01)
in only one case, namely for the polarity dataset and RF black box model.

6 Conclusion

We have presented xspells, a local model-agnostic explanation approach for
black box sentiment classifiers. The key feature of xspells is the adoption of
variational autoencoders for generating meaningful synthetic texts from a latent
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space. Such a space reveals essential also for inducing a decision tree which
helps in characterizing exemplar and counter-factual exemplar texts. The app-
roach advances over baseline explainers, such as lime, which only highlight the
contribution of words already in the text to explain. Experiments showed that
xspells also exhibits better fidelity and usefulness, and comparable stability.

The proposed approach has some clear limitations. First, performance is
strictly dependent on the VAE adopted: a better autoencoder would lead to more
realistic exemplars and counter-exemplars. The structure of the autoencoder
needs then to be further explored and evaluated beyond the specific one adopted
in this paper. This may also require trading-off quality with computational costs,
which may slow down the response time of xspells. Second, we will consider
extending the explanations returned by xspells with logic rules, which convey
information at a more abstract level than exemplars. Such rules can be extracted
from the decision tree on the latent space, but have to decoded back to rules on
texts – a challenging task. Third, xspells could be extended to account for long
texts, e.g., by adopting word2vec embeddings [13] for modeling the input/output
of the VAE. Fourth, we could rely on linguistic resources, such a thesaurus or
domain ontologies, to empower both synthetic text generation and to enrich the
expressiveness of the (counter-)exemplars. Fifth, a human evaluation of xspells
would be definitively required, e.g., through crowdsourcing experiments.
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Abstract. The key to success in machine learning is the use of effec-
tive data representations. The success of deep neural networks (DNNs) is
based on their ability to utilize multiple neural network layers, and big
data, to learn how to convert simple input representations into richer
internal representations that are effective for learning. However, these
internal representations are sub-symbolic and difficult to explain. In
many scientific problems explainable models are required, and the input
data is semantically complex and unsuitable for DNNs. This is true in the
fundamental problem of understanding the mechanism of cancer drugs,
which requires complex background knowledge about the functions of
genes/proteins, their cells, and the molecular structure of the drugs. This
background knowledge cannot be compactly expressed propositionally,
and requires at least the expressive power of Datalog. Here we demon-
strate the use of relational learning to generate new data descriptors in
such semantically complex background knowledge. These new descrip-
tors are effective: adding them to standard propositional learning meth-
ods significantly improves prediction accuracy. They are also explainable,
and add to our understanding of cancer. Our approach can readily be
expanded to include other complex forms of background knowledge, and
combines the generality of relational learning with the efficiency of stan-
dard propositional learning.

Keywords: Relational learning · Inductive logic programming · Gene
expression

1 Introduction

Effective data representations are the key to success in machine learning
(ML) [28]. Most ML is based on data representations that use tuples of
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descriptors, i.e. the data can be put into a single table, where the descriptors
(attributes) are the columns, and the examples are rows. Descriptors are proper-
ties of the examples that are believed to be important: for example if one wishes
to classify pictures of animals then image pixel values are useful descriptors. Such
tuple-based representations are essentially based on propositional logic [24]. The
effectiveness of the propositional descriptors used for learning can vary greatly,
and traditionally, most of the effort in ML went into hand-crafting effective
descriptors. This has changed with the success of deep neural-networks (DNNs),
which has been based on their capacity to utilize multiple neural network layers,
and large amounts of data, to learn how to convert raw propositional descriptors
(e.g., image pixel values) into richer internal representations that are effective
for learning. Thanks to this ability DNNs have succeeded in domains that had
previously proved recalcitrant to ML, such as face recognition and learning to
play Go. The archetypal success is face recognition, which was once considered
to be intractable, but can now be solved with super-human ability on certain
limited problems [20]. Therefore, a key lesson of the success of DNNs is: use ML
to learn better data representations for ML.

For many problems the standard propositional representation of data is prob-
lematic, as such a representation cannot efficiently express all the known rela-
tional structure (background knowledge) in the data. In some cases this structure
can be encoded for using special purpose methods. For example convolutional
neural networks encode relational information about the position of descriptors
in the structure of the net. Similarly, recurrent neural networks encode informa-
tion about temporal structure in the net, graph neural networks encode graphical
information, etc. In many cases such special purpose methods can work very well.
However, these methods must be redesigned for each new type of problem, and
the structure encoded in the learning process is not explicit. It would be more
beneficial (and elegant) if the learning biases in DNNs were explicit, and not
inherent in the structure of the network. A more general approach to encoding
known structure in data is to use logic programs [21] to represent the data – rela-
tional learning (RL) [24]. Such programs can express spatial, temporal, graphical
structure, etc. using a single formalism, and, crucially, this structure is explicit
instead of being implicit (e.g. in the connection of neurons). Logic programs
provide a unified way of representing the relations between objects. They also
promote explainable ML, as it is usually straightforward to translate logic pro-
grams into a series of easily understandable sentences that can be interpreted by
domain experts. More formally, logic programs are a subset of 1st-order predicate
logic, and therefore more general that propositional representations.

The main disadvantages of using a relational representation compared to a
standard propositional one are that RL is more computationally expensive and
difficult, as the search space of possible models is much larger, and that RL
technology is much less developed. This suggests a hybrid strategy where RL is
used to learn effective descriptors, and then standard ML is used to learn the
final model [6]. This hybrid approach is particularly suited to problems where
the data is semantically complicated, and where symbolic explainable models are
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required. In such problems RL has the potential to effectively learn new descrip-
tors that are understandable to domain experts. Many biomedical ML problems
are potentially suitable for a hybrid RL approach, such as understanding the
mechanism of cancer drugs. In this problem one needs to encode background
knowledge (problem structure) about gene/protein function, associated path-
ways, known drug targets, cancer cell type, the molecular structure of drugs,
etc. We took data on this problem from the Library of Integrated Network-
based Cellular Signatures [18] (LINCS). Specifically, we used the Phase II data,
which consists of gene expression levels for 978 landmark human genes under
perturbation conditions, making this a regression problem. The perturbation
conditions consist of a cancer drug added to a cancer cell line, and it is worth
noting here that only the response gene expression values are provided, and one
would need to independently construct the input variables from the provided
metadata.

We hypothesized that we could improve both ML model explainability, and
predictive accuracy, by including additional background knowledge in the learn-
ing process using a hybrid RL approach. A key source of this background knowl-
edge was the Stanford Biomedical Network Dataset Collection [22] (SBND).
Using RL we mined frequent patterns about each drug found in relation to addi-
tional background knowledge. These patterns are expressed in Datalog [8] and
are explainable to domain experts. They can also be used as binary descriptors in
standard ML methods. It is worth noting that ML model explainability heavily
depends on the learning algorithm, as some learning algorithms are more inter-
pretable than others. However, we argue that the descriptors generated using the
hybrid RL approach will generally be more interpretable than their propositional
counterparts.

We evaluated the predictive performance of the newly learnt RL descriptors
versus the standard descriptors, both when used by standard ML in isolation,
and in combination. We compared two approaches to combining sets of descrip-
tors: one in which the features from both representations are concatenated to
form a single dataset, and another where predictions are stacked [2]. We found
that the standard descriptors generally outperform the RL descriptors when used
in isolation. However, the RL descriptors significantly improve predictive perfor-
mance when used in combination. Moreover, these new effective RL descriptors
are understandable by domain experts. The main contributions of the paper are
as follows:

1. Demonstration of the effectiveness of hybrid RL learning on an important
real-world problem.

2. Learnt explainable patterns underlying common cancer drugs.
3. A fully integrated biomedical knowledge base in Datalog.

2 Related Work

The problem of building models to predict drug effects has been widely studied,
from potential adverse effects [33] and drug-drug interactions [32] to cancer cell
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sensitivity [23]. One such task is the learning of quantitative structure activity
relationships (QSARs), where one is interested in predicting the effect of a drug
or chemical compound from its molecular structure [25]. Molecular structure is
usually represented using molecular fingerprints, which are tuples of Boolean
descriptors [5]. However, several other approaches also exist. For example, some
authors have used the 3-dimensional structure of chemicals [35], while others
have extracted molecular vector embeddings using graph neural networks [15].
In our evaluation, we used the most widely adopted molecular fingerprint rep-
resentation as the propositional approach. The LINCS data has been used in
several studies, e.g. for the task of predicting gene expression levels using per-
turbation conditions [4]. In contrast to our evaluation, the authors do not utilise
background knowledge in the learning process.

Several techniques have been applied to interconnected knowledge bases for
various problems in biology [1,37]. RL in particular has been used in problems
such as predicting gene function [16], gene regulation [9] and QSAR-related
problems [31]. RL algorithms such as WARMR, which we use in our evaluation,
have been shown to be successful in identifying relationships in linked data [17].
However, there are other algorithms like AMIE [10] which have also been shown
to perform remarkably well. Furthermore, there exist several other approaches
for learning representations from graph or inherently relational data [3,13] with
varying levels of predictive performance and interpretability. We argue that our
decision to use WARMR in our evaluation offers a good foundation from which
all of these other methods can be explored in tackling the stated problem as part
of future work.

One can think of the Boolean molecular fingerprint and RL representations
of the drugs in the stated problem as views in multi-view learning, as both of
these representations offer different perspectives in what constitutes the known
properties of a drug. In a standard multi-view learning problem the views are
typically distinct, meaning that special consideration is made as to the learn-
ing algorithm used in building a model for a particular view. Multiple kernel
learning [29], which is essentially a form of stacking, has been proposed for such
a scenario, where a kernel that is best suited for a particular view is used and
the predictions from all views are then combined to form the final prediction.
This is in contrast to how we perform our evaluation, because though we consid-
ered multiple learning algorithms, a specific learning algorithm is not used for a
particular representation.

3 Methodology

The LINCS Phase II dataset with accession code GSE70138 provides the expres-
sion levels for 978 landmark human genes for 118,050 perturbation conditions.
In the metadata, the perturbation conditions are described by their cell line, cell
site, drug dosage, drug timepoint, and the applied drug. The Broad Institute
identifiers along with their canonical smiles are also provided for the drugs. We
were able to map 1,089 of the applied drugs to their DrugBank [36] and ChEMBL
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[11] identifiers. This is relevant because the SBND knowledge graph uses Drug-
Bank identifiers. The drugs we could map across these databases were applied
to only 57,749 of the 118,050 perturbation conditions. For all the aforemen-
tioned perturbation condition properties but the drugs, we engineered features
for the perturbation conditions using one-hot encoding, and treat them as base
features. For the propositional representation of the drugs, we converted them
into molecular fingerprints using RDKit [19], with 1024 bits, a radius of 4, and
useFeatures set to True.

For the RL representation of the drugs, we formalised the following rela-
tions from the SBND: drug-drug (ChCh-Miner), drug-gene (ChG-Miner), gene-
function (GF-Miner), disease-drug (DCh-Miner), and disease-function (DF-
Miner). Additionally, we included relationships between functions from Gene
Ontology [12], such as is a and part of. Furthermore, we included the chemi-
cal properties of each drug, such as the presence of rings. In total, this Datalog
knowledge base contains 11,175 drugs, 6,869 genes, 45,089 functions and 5,941
diseases. It is available for download at https://github.com/oghenejokpeme/
RLCBkb. The hypothesis language we used is given in Fig. 1.

drug_drug(+drug, -drug)

drug_disease(+drug, -disease)

disease_function(+disease, -function)

drug_gene(+drug, -gene)

gene_function(+gene, -function)

has_functional_group(+drug, #group)

has_ring(+drug, #ringtype)

has_group_count(+drug, #group, #count)

has_ring_count(+drug, #ringtype, #count)

has_group_ring_attachment(+drug, #group, #ringtype)

is_a(+function, #function)

part_of(+function, #function)

has_part(+function, #function)

regulates(+function, #function)

neg_regulates(+function, #function)

pos_regulates(+function, #function)

Fig. 1. Permitted relations in the body of valid clauses.

Using this knowledge base, we learned 1,024 frequent patterns using the
WARMR algorithm in the Aleph inductive logic programming engine [30] for
each drug, which we then use as binary features. WARMR is a levelwise RL
algorithm based on a breath-first search of the input knowledge base, as rela-
tions are structured as a lattice. It allows for the learning of frequent patterns
present in a knowledge base within pre-specified constraints, such as the propor-
tion of the sample space a learned pattern must cover [17]. In Aleph, we used
a minimum cover of 5%, a maximum clause length of 20, and 5000 nodes. We

https://github.com/oghenejokpeme/RLCBkb
https://github.com/oghenejokpeme/RLCBkb
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should note that there is evidence that suggests that beyond a certain point,
increasing the number of learned features leads to no performance gains [26].
With the base features, we then created three data descriptors for the perturba-
tion conditions. One with the base and RL features, another with the base and
fingerprint features, and finally, one with the base, RL and fingerprint features.
We refer to these datasets as RL, FP, and RL+FP for the remainder of this
paper, all of which at this point, have 57,749 samples.

4 Evaluation Setup

We used a train-test split in our evaluation and selected only a subset of the
samples due to computational complexity. The selection procedure entailed an
initial random split of the 57,749 samples into training and testing buckets, 70%-
30%. We then randomly selected 7,000 samples from the training bucket for the
training set and 3,000 samples from the testing bucket for the test set. This was
performed exactly once, and the dataset is available here: http://dx.doi.org/
10.17632/8mgyb6dyxv.2. One might argue that this is a paired-input problem,
as we are predicting gene expression on pairs of drug perturbation conditions
and cancer cell lines. Therefore, we should extend our evaluation to take this
into account. We expect that the naive train-test split evaluation approach we
have taken will produce more optimistic results than an evaluation procedure
for which each entity in a pair present in the test set is also not present in the
training set [27]. However, we argue that for the purposes of evaluating standard
propositional and RL data descriptors, such an evaluation setting will suffice.

As we mentioned previously, the LINCS dataset contains the gene expression
levels of 978 genes. We selected genes that are dissimilar from one another by
associated function using Gene Ontology associations at a tree depth of 1, where
0 are the base nodes. This process selected 46 genes, which we used in our exper-
iments. We did this to reduce computational complexity and to select genes that
are uncorrelated on a functional level in order to get performance estimates that
are generally representative of the complete set of genes. For learning algorithms,
we used the least absolute shrinkage and selection operator (LASSO) [34], ridge
regression (RR) [14], and random forests (RF) in our evaluation. For LASSO
and RR the regularization parameter was chosen using internal 10-fold cross-
validation, and the RF models were built with 1000 trees and default settings.
The performance metric reported is the coefficient of determination (R2), as we
are most interested in the amount of variance explained by the built models.
Apart from the standard regression experiments using all three datasets, we also
evaluated integrating the predictions made by the RL and FP representations
using simple averaging, which is a form of stacking [2]. In this case, we averaged
the predictions made using the RL and FP representations. We refer to these
results as AVG in the discussion of the evaluation results. All code used for this
experiment is available at https://github.com/oghenejokpeme/RLCBexp.

http://dx.doi.org/10.17632/8mgyb6dyxv.2
http://dx.doi.org/10.17632/8mgyb6dyxv.2
https://github.com/oghenejokpeme/RLCBexp
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5 Results

5.1 Predictive Performance

We observed that on average the RL representation consistently performs worse
than all the other representations (see Table 1). For the approaches which com-
bine the RL and FP representations, we found that RL+FP consistently outper-
forms RL and does not strictly outperform FP on any of the learners. However,
RL+FP and FP perform equally well on LASSO. Like RL+FP, AVG also consis-
tently outperforms RL, but is outperformed by FP on both LASSO and RR, but
not on RF. These results suggests that the effect the RL representations have
when used to augment FP representations depends on two things; the choice of
learning algorithm and how the representations are combined. From the mean
performance results in Table 1, one might argue that overall, the performance
of the representations is generally low. While this is true, we would argue that
this is to be expected, as we are attempting to recreate laboratory conditions
in silico, and predict the expression of 46 genes which often vary in concert and
not in isolation of each other. Furthermore, it is worth pointing out that the
representations perform reasonably well on some genes, with a maximum R2 of
0.366 when the RL and FP predictions for RF are averaged (Table 1).

Table 1. The predictive performance (R2) of the engineered datasets (RL, FP and
RL+FP) and the aggregation by mean of the predictions made by RL and FP (AVG)
on the learning algorithms. We show the mean with the minimum and maximum per-
formance for the 46 considered genes. The best performing descriptor for each learner
is in boldface.

Learner R2 RL FP RL+FP AVG

LASSO Mean 0.028 0.086 0.086 0.081

min – max −0.001–0.106 0.004–0.319 0.002–0.320 0.013–0.271

RR Mean 0.030 0.090 0.089 0.084

min – max 0.002–0.105 0.009–0.330 0.008–0.330 0.013–0.289

RF Mean 0.068 0.094 0.089 0.114

min – max −0.012–0.238 −0.047–0.364 −0.050–0.360 −0.006 – 0.366

Given the difference in performance between the different methods, we tested
for statistical significance using sign tests and paired t-tests. For LASSO, Table 2
shows that RL+FP underperforms when compared to FP, with a ratio of 18–28
of the 46 considered genes and a 0.12% average performance decrease from FP
to RL+FP. However, this difference in performance is not statistically significant
for both sign test and paired t-test. When AVG is compared to FP, we found
that FP performed better on more genes, with a ratio of 17–29. However, we
found that when compared to FP, AVG achieves a 9.6% average percentage per-
formance increase over FP, with statistical significance according to the paired
t-tests. Further investigation showed that although FP outperformed AVG on
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Table 2. Performance (R2) comparisons between the different datasets for the learning
algorithms we considered. The comparisons are structured as approach A/B. For each
compared pair, the number of genes for which one strictly outperforms the other is
given. Additionally, an asterisk (∗) and a dagger (†) are used to indicate a statistically
significant difference in performance with a significance level of 0.05 for a sign test
and a paired t-test respectively. Lastly, the average percentage performance increase
or decrease when approach A is compared to B is given. It is worth noting that this
average percentage performance is calculated by taking the mean percentage difference
in performance of genes between A and B, and not simply the percentage difference in
mean performance given in Table 1.

Comparison LASSO RR RF

FP/RL 43/3∗† (386.5%) 46/0∗† (310.9%) 33/13∗† (63.7%)

RL+FP/RL 43/3∗† (380.9%) 44/2∗† (301.5%) 30/16† (26.3%)

RL+FP/FP 18/28 (−0.12%) 13/33∗† (−1.4%) 0/46∗† (−23.4%)

AVG/RL 46/0∗† (355.3%) 46/0∗† (276.6%) 46/0∗† (191.5%)

AVG/FP 17/29† (9.6%) 14/32∗† (−0.07%) 43/3∗† (178.7%)

AVG/RL+FP 18/28† (19.7%) 14/32∗† (2.0%) 43/3∗† (117.6%)

more genes, AVG tended to do a lot better than FP on the genes it outperformed
FP on, explaining the percentage performance increase. For RR, both RL+FP
and AVG both see a statistically significant decrease in average percentage per-
formance when compared to FP. For RF, RL+FP significantly underperforms
when compared to FP, but the reverse is true for AVG, with an average per-
centage performance increase of 178.7%. These results show that for two of the
learners we considered, the RL representations can significantly improve pre-
dictive performance when used to augment the traditional RL representations.
Having established that how the RL and FP representations are combined plays
a crucial role in predictive performance, we conjecture that techniques from the
multiple kernel learning literature might further improve predictive performance.

5.2 Explainability

RL enables the introduction of additional background knowledge to the model
building process, and it can improve both understandability and predictive
performance. In our experiments we were interested in learning frequent pat-
terns present in the knowledge base for the considered drugs. We learned such
rules as:

frequent_pattern(B):-
has_functional_group(B,oxide),
has_ring_count(B,benzene_ring,2).
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and

frequent_pattern(B):-
drug_gene(B,C),
gene_function(C,D),
pos_regulates(D,’GO:0008152’).

The former rule can be interpreted as a frequent pattern is for a drug to
have an oxide group and two benzene rings. Note that the standard fingerprint
representation of molecules cannot express the simple concept of a molecule
having two benzene rings unless a special descriptor ‘two benzene rings’ is pre-
generated. Nor can it express the concept of a drug having an oxide group
and two benzene rings unless it is pre-generated. To pre-generate all possible
descriptors would produce an exponential number of descriptors.

The latter rule can be interpreted as a frequent pattern is for a drug to target
a gene that positively regulates a metabolic process. Note that is a second-order
pattern, the drug targets a gene that in turn regulates metabolism. Most drugs
inhibit their targets, and in this pattern the overall result is likely to be decrease
in a metabolic process, which is generally desirable in cancer therapy. These
examples show that rules are easily understandable by a human reader. One
can conjecture that if feature selection is performed when such rules are used as
features in a predictive problem, the why of the observed variance in the target
could be explained easier. However, it is beyond the scope of this work.

6 Discussion

The great success of DNNs is based on their ability to learn how to transform
a simple input data representation into an effective internal representation. The
limitations of the DNN approach are that it requires a large amount of data, the
internal representation is obscure, and there is not a general way to encode known
problem structure and background knowledge. In many biomedical problems,
such as understanding the effect of anti–cancer drugs, it is required to encode
a large amount of background knowledge. In this paper we have shown that a
hybrid RL approach can learn new descriptors that are effective and explainable.
The limitations of the hybrid RL approach are that it is a two stage approach
rather than end–to–end learning (it is computationally efficient to learn frequent
patterns, but they are not necessarily effective), and that the learning model is
not differentiable, which makes it more difficult to find model improvements. The
main criticism of RL in the past was that it was too inefficient to be applied.
However, now, given the vast resources used to train DNNs this no longer applies.
It is therefore interesting to consider whether there is a more general way of
learning how to improve data representations that combines the advantages of
DNNs and the hybrid RL approach, as is the case with deep relational machines
[7]. Furthermore, it is worth noting that though the RL representations might
be explainable, the interpretability of the models built using them will vary
based on the learning algorithm. For example, one might conceivably inspect
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the important variables of a random forest model, but will find this far more
challenging in a deep attention neural network.

7 Conclusion

In this paper we report the use of RL representations to enhance the predictive
accuracy of traditional propositional data representations for a relevant prob-
lem in cancer biology. Apart from improved predictive accuracy, we also learnt
explainable patterns underlying common anti–cancer drugs, and built a fully
integrated biomedical knowledge base in Datalog which is now publicly avail-
able. We intend to investigate other forms of RL as part of future work.
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9. Fröhler, S., Kramer, S.: Inductive logic programming for gene regulation prediction.
Mach. Learn. 70(2–3), 225–240 (2008)
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Abstract. In many machine learning applications, interpretable models
are necessary for the sake of trust or for further understanding the pat-
terns in the data. In particular, scientists often want models that elucidate
knowledge and therefore may lead to new discoveries. Currently, Gener-
alized Additive Models (GAM) are gaining interest in other application
domains because of their ability to fit the data well while at the same time
being intelligible. Moreover, prior domain-specific knowledge is often valu-
able to guide the learning. In this work, extensions and generalizations
of GAM are proposed to incorporate prior knowledge during the learning
phase. Specifically, the fitting method for GAM is modified so that it can
fit the data with bitonic functions. In physics for instance, the most dis-
criminative variables often present specific distributions with respect to
the target variable, especially peaking (i.e. bitonic) distributions. An algo-
rithm is also described to build automatically bitonic high-level features
to be used in the GAM terms. Experiments on three physics datasets are
used to validate these ideas in conjunction with physics scientists.

Keywords: Bitonicity · Generalized additive models · Experimental
physics

1 Introduction

A common obstacle in machine learning (ML) comes from a tradeoff between per-
formance and interpretability. Several application domains require interpretabil-
ity to be able to use ML models, for instance in healthcare [1]. In scientific
domains in particular, interpretable models are needed for validation on real
data and hopefully for knowledge discovery. Arrieta et al. [2] notably provide a
definition for interpretability as “the ability to explain or to provide the meaning
in understandable terms to a human”. This work focuses on producing models
interpretable by an expert.
c© Springer Nature Switzerland AG 2020
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Generalized Additive Models [3] (GAM) are often considered as both intelli-
gible and well performing models [4]. The predicted variable in a GAM is a sum
of smooth functions of the input variables. The final model is interpreted by
observing the inferred smoothed functions of each input variable independently.
However, GAM must meet a few requirements to remain interpretable, as they
may still be overly complex [2]. According to Arrieta et al. the variables and
smooth functions of the GAM must be constrained “within human capabilities
for understanding”. To fulfill this need, prior knowledge should be incorporated
about the problem.

For illustrative purposes, this work focuses on high-energy physics (HEP)
problems. Generally, a preprocessing step of feature engineering is performed
manually based on domain expertise. In HEP, quantities related to energy, mass
or momentum balances which are dependent on the process of interest are derived
from base variables. Although understandable and analyzable by construction,
nothing guarantees that these quantities are optimized for the analysis of the
process of interest. The field of feature construction (FC) aims at automating
the feature engineering step. In this way, interpretable FC is performed in this
work to determine the discriminative variables of interest to be used in GAM.

In addition, prior knowledge on the expected distributions of the features can
be integrated during the inference of GAM terms. A monotonicity assumption is
often made in the literature [5–7]: one or several input variables are assumed to be
monotonic with respect to the target variable. The ML model is then constrained
to respect this assumption such that the predicted value of the model should be
monotonic with respect to the input variable(s). However, we observe that in
the HEP field in particular, the most frequently used high-level variables often
present a local extremum (see Fig. 1 for instance). Other applications can also
benefit from bitonicity constraints, such as dose–response analysis [8]. Bitonicity
is introduced in this work as an extension to monotonicity and enforced in GAM
terms in the context of HEP applications.

Fig. 1. Invariant mass γγ, a high-level variable often used to recognize π0 production
events. On the left, the unnormalized distributions of the two classes with respect to
the invariant mass γγ. On the right, the averaged target (corresponding to the ratio
between numbers of signal and background instances per bin).
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The contributions of this work can be summarized as follows: firstly, a defi-
nition of bitonicity and an algorithm to verify the bitonicity of a distribution is
presented (Sect. 2); secondly, a method to constrain GAM terms to be bitonic is
described in Sect. 3, including a bitonic FC algorithm. Several experiments are
performed in Sect. 4 to validate the method. The overall interpretability of the
generated models is discussed in Sect. 5.

2 Definition and Verification of Bitonicity

A function f of one real variable is commonly said to be monotonic if and only if
f(y) ≥ f(x) (resp. f(y) ≤ f(x) for the decreasing case) for any (x, y) in R such
that y ≥ x. Canini et al. [5] define a multi-variable function to be monotonic
with respect to feature d if and only if f(y) ≥ f(x) (resp. f(y) ≤ f(x)) for any
two feature vectors x, y in R

D such that y[d] ≥ x[d] and y[m] = x[m] for m �= d
with m, d ∈ {1, 2, ...,D}.

Definition 1. f is positively (resp. negatively) bitonic w.r.t. feature d if and
only if for each set of values [xm]m �=d (setting all values of input X except feature
d), it exists at most one x∗

d in the domain of feature d such that these two
conditions are satisfied:

– f(X) ≥ f(X ′) (resp. f(X) ≤ f(X ′)) with X = (x1, ..., xd, ..., xD) and X ′ =
(x1, ..., x

′
d, ..., xD) for each xd and x′

d such that xd ≤ x′
d < x∗

d,
– f(X) ≤ f(X ′) (resp. f(X) ≥ f(X ′)) with X = (x1, ..., xd, ..., xD) and X ′ =

(x1, ..., x
′
d, ..., xD) for each xd and x′

d such that x∗
d < xd ≤ x′

d.

In contrast to the usual definition of bitonicity in the context of bitonic sorters,
the circular shifts are here not taken into account. In addition, this definition
includes fully monotonic functions, e.g.. if the value of x∗

d is beyond the range of
feature d. Quasi-convex and quasi-concave functions are also bitonic functions
(the reciprocal is false for D > 1). Unimodality is a similar term mostly used for
distributions. Figure 2 displays two examples of univariate bitonic functions, one
example of a bivariate bitonic function and one bivariate non bitonic function.

Fig. 2. First two plots: two bitonic univariate functions. Third plot: bivariate bitonic
function (i.e. bitonic w.r.t its two variables). Fourth plot: non bitonic bivariate function,
since the y variable is increasing then decreasing for low x and the opposite for high x.

The bitonicity of a function is often hard to prove with an analytical method,
except for simple functions [9]. To numerically quantify the non-bitonicity degree
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of a function, it is sampled into an ordered vector (sequence noted s), then com-
pared to a close bitonic sequence. Monotonicity can be assessed by comparing
the sequence to its cumulative maximum (for a non-decreasing sequence) or to
its cumulative minimum (non-increasing). The ith-component of the cumulative
maximum is the maximum value taken by the sequence between components
0 and i. A bitonic sequence is thus equal to its cumulative maximum in its
increasing part and to its cumulative minimum in its decreasing part. Other
techniques could be considered such as unimodal regression [10], but the previ-
ously described method using cumulatives is preferred because it is simpler to
implement and since the objective is to rank the features with respect to each
other, not to get the closest bitonic approximation. To summarize, the procedure
is as follows:

1. Find the point in the sequence leading to the best bitonic approximation
using cumulative minimum and maximum on each side of the point;

2. Compute the integral of the absolute difference between the sequence and its
bitonic approximation and normalize it by the length and amplitude of the
sequence.

The bitonicity penalty of a sequence varies consequently from 0 to 0.5, the
worst case being a sequence of alternating zeros and ones. In practice, the maxi-
mum is not reached in the experiments since a prior smoothing of the sequences is
performed. The bitonicity of a data feature is checked by looking at the variation
of the target values along this feature. However, applying directly the procedure
detailed above to evaluate bitonicity can be troublesome: first, data are often
noisy; second, the target values take a finite number of values in a classification
task. To ensure robustness, the data feature is preprocessed as follows (numbers
have been determined empirically):

1. Take the target vector r = (r1, ..., rn) sorted along the evaluated feature
f = (f1, ..., fn). Average the values of r where f takes the same values.

2. A moving average box of size n
10 is propagated through the r vector.

3. If n > 1000, a median filter of size n
100 is applied to r.

4. Then if n > 10000, a median filter of size n
1000 is applied to r.

Finally, the bitonicity is evaluated on the smoothed r sequence. Figure 6 in
Subsect. 3.5 illustrates examples of this procedure.

3 Bitonic Functions and Features for GAM

This section recalls the background on GAM and details the method to enforce
bitonicity before presenting a summary of the overall approach and describing
bitonic FC.
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3.1 Enforcing Bitonicity of Shape Functions in GAM

Generalized Additive Models (GAM) [11] are of the form: g(ŷ) = c0 +∑
i∈S fi(xi), where g is the link function and S the set of features. The shape

functions f can be modeled in different ways, for instance using splines [12] fitted
with backfitting [3] or penalized iteratively reweighted least squares [13]. Other
approaches fit tree ensembles with gradient boosting [4,14].

A method is proposed hereafter to enforce bitonicity for two types of shape
functions without loss of generality: splines and functions learnt by a neural
network. The idea in both cases is based on the exploitation of the regularization
parameter.

Splines as commonly used in GAM are written f(x) =
∑

k βkbk(x) with bk

basis functions (B-splines) and βk the parameters to fit. The fitting of f is done
by minimizing the penalized sum of squares: minβ

{∥
∥y − BT β

∥
∥2 + λβT Pβ

}

with B the vector of bk(x) and λβT Pβ a penalty term. P can for instance
penalize the differences between adjacent βk, or the second derivative of the
shape function. The larger the λ parameter, the smoother the final function.
This smoothing parameter is usually optimized (with respect to a performance
metric) by generalized cross-validation (GCV) or restricted maximum likelihood
(REML).

The following procedure permits to obtain a bitonic shape function:

1. Fit the shape function f with GCV or REML and retrieve smoothing param-
eter λ0.

2. Check the bitonicity of f by applying it to a regular test sequence s spanning
the range of x and assess bitonicity of f(s) using the procedure detailed in
Sect. 2.

3. If f(s) is bitonic, then accept function f as bitonic. Else set λ = λμ with
μ > 1, refit f with imposed λ and go back to step 2.

As long as the test sequence s is large enough to account for the complexity of
f , the proposed procedure permits to obtain a bitonic function at the cost of
multiple refits. Moreover, this procedure will always converge since an infinite
λ leads to a linear function. The choice of μ balances between speed and per-
formance: the performance tends to decrease as λ increases and moves off the
optimum found by GCV or REML.

The procedure is similar for shape functions learnt by a neural network.
The weights of the network must minimize a cost function plus a regularization
term expressed as λR(W ), with R for instance a L1 or L2 regularization of the
weights. The intuition behind λ is the same as for spline fitting: the larger the λ,
the smoother the resulting function. To enforce bitonicity of the learnt function,
the same procedure than for splines is applied but setting the first parameter λ0

as a hyperparameter (small enough).
An experimental validation of this approach is conducted in the next

subsection.
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Related Work on Unimodal Regression with Splines. Some previous
works constrain the shape of splines by adding linear constraints to the opti-
mization problem, producing functions that are increasing, decreasing, convex,
concave among others [15]. In [8], data are fitted by unimodal B-splines, namely a
function with a single local maximum. However, it requires knowing beforehand
the location of the maximum to formulate the linear constraint. One must either
try all possible locations of the maximum (because of possible noise, the global
maximum may not be the proper one for unimodal regression), or perform a
more computationally intensive Bayesian approach. Moreover, the authors do not
consider other forms of bitonicity including monotonic functions and decreasing-
increasing functions. In contrast, our approach does not require prior knowledge
on the type of bitonicity nor on the optimum location. Taking their approach
is more time-consuming because of multiple REML computations: two for each
monotonicity type, and twice the number of knots for the two other bitonicity
types (the knots correspond to the possible locations of the optimum). Our app-
roach computes REML once and then only solves consecutive penalized least
squares problems by increasing λ while the function is not bitonic. Moreover, it
can be used with any shape function that supports penalization.

3.2 Validation of the Principle to Enforce Bitonicity of Shape
Functions

The previously presented method is tested on a toy dataset of 1000 instances
displayed on Fig. 3 (data generated with the make classification function of
scikit-learn [16]). Experiments are conducted by fitting a bivariate GAM term,
either with splines or with a multilayer perceptron (MLP), while trying different
values for the regularization parameter λ. The evolution of the F1 score and the
bitonicity penalty obtained by the fitted function is plotted on Fig. 4. Figure 5
depicts the fitted terms at small, large, and optimal λ (for which the bitonicity
penalty is 0).

Fig. 3. Toy dataset
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Fig. 4. Evolution of F1 score and function bitonicity
against regularization parameter λ.

These plots show an experimental validation of the proposed method, as the
bitonicity decreases until reaching 0 definitively as λ increases. Moreover, these
plots give an interesting comparison between spline and neural network fitting
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Fig. 5. Top: spline models fitted on toy dataset. λ = 2.683 corresponds to the minimal
λ value for which the bitonicity equals 0. Bottom: MLP models fitted on toy dataset.
λ = 1 corresponds to the minimal λ value for which the bitonicity equals 0.

methods: while the spline terms never obtain a score below 0.8, the score of the
neural network fitted terms finally drops to 0 (outside the scope of the plot)
shortly after reaching bitonicity.

3.3 Building a Complete Model with Gradient Boosting

The following algorithm builds a complete GAM with bitonic shape functions.
For a binary classification task, a list of inputs X and a target vector y are
considered. A standard GAM can be modeled by a sigmoid of the sum F (x) of
the GAM terms. In the proposed method, the GAM is built iteratively, building
a feature at each step. A first prediction model predicts p0 for each x in X,
p0 being the proportion of the majority class. The objective is to minimize the
cross-entropy between the target y and the prediction p(x), noted p:

L(F (x)) = − (y log(p) + (1 − y) log(1 − p)) , p(x) =
1

1 + e−F (x)
. (1)

A gradient boosting method is applied to iteratively improve this convex loss
function. At the n-th step, a term hn(x) is added to the current GAM: it is fitted
to the current objective while enforcing its bitonicity using the set {(xi, ri,n)}.

ri,n = −∂Li(Fn−1(x))
∂Fn−1(x)

= yi − pi,n−1, Fn(x) = Fn−1(x) + αnhn(x). (2)

A gradient descent with its own learning rate β determines the learning
rate αn to minimize the averaged cross-entropy. αn is directly linked to the
importance of the new term in the global result.
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Algorithm 1: FCGAM algorithm
Input: data used to build the features, of size (m, d), y target vector of

length m
n the number of GAM terms to learn

Initialization:

p ← p0 proportion of the majority class in y, F ← log
(

p
1−p

)
, r ← y − p

for i ← 0 to n // one iteration builds one term of the GAM

do
(1) Build one single feature z using FC algorithm with r as the target for the

fitness function. Bitonicity may or may not be enforced at this step.
(2) Train a single GAM term on the built feature z with target r. Bitonicity

may or may not be enforced at this step.
h ← predict(z), g ← +∞, α ← random(0,100)
while |g| > ε do

∼
F ← F + αh,

∼
p ← 1

1+e−
∼
F

, g ← 1
D

∑
k h(

∼
p − y), α ← α − βg

F ← F + αh, p ← 1
1+e−F , r ← y − p

The remaining concern is to carefully select the involved variable x in each
term hn. In HEP, relevant variables are often high-level combinations of some
base variables, as stated in the introduction. At each step of the boosting algo-
rithm, one feature is built adapted to the ongoing regression problem with the
FC algorithm presented in next subsection. The overall process is summarized
in Algorithm 1.

3.4 Automatic Construction of Bitonic Features

This subsection proposes an adapted bitonic feature construction (BFC) algo-
rithm. The literature in automatic FC is very abundant and a survey can be
found in [17] or [18]. A constrained genetic programming algorithm is proposed
in [19] to build interpretable features for HEP applications. One of the contri-
butions is to use a grammar to enforce the respect of physical units during the
construction of a new feature.

The constrained FC method of [19] is reused to build features for GAM
terms. At a given step n, a single GAM term that fits the target rn = y − pn−1

is added to the model. The fitness function for FC is adapted to better suit
the tackled problem of this work. A shallow decision tree with maximum four
leafs is trained on the set {(zi, ri,n)}, zi being the candidate feature. Thus, the
decision tree can only perform cuts on the candidate feature and observe its
discriminating power. The fitness of the candidate feature is minus the RMS
(Root Mean Squared) error between the prediction of the shallow tree and the
target rn. To enforce bitonicity, a bitonicity penalty term is added to the fitness
of zi. This penalty term b is the result of applying the procedure of Sect. 2 on the
sequence of residuals rn, sorted along zi. In the end, the fitness of the candidate
feature zi is f = −(RMS + b), to be maximized during the evolution process.
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Table 1. Four variants of Algorithm 1. FCGAM bmax makes the shape functions
bitonic if and only if the feature is itself bitonic, i.e. if and only if the bitonicity b
of the feature is below bmax.

Name Bitonicity enforced in FC Bitonicity enforced in shape functions

FCGAM ∅ No No

FCGAM bmax No Yes if b ≤ bmax

FCGAM ∞ No Yes

BFCGAM Yes Yes

3.5 Algorithm Variants and Bitonicity Threshold

We consider four variants of Algorithm 1 regarding the bitonicity constraints
(summarized in Table 1). Bitonicity can be enforced or not during FC (label (1)
in Algorithm 1) or for shape functions (label (2)).

To activate the bitonicity constraint for shape functions, a parameter bmax

is set: if the bitonicity of a built feature is below bmax, the associated shape
function will be forced to be bitonic. Looking at various features from the three
datasets used in the experiments, a near-optimal bitonicity threshold bmax can
be set at 0.04 (see Fig. 6).

4 Experiments

4.1 Experimental Setup

Datasets. Three HEP binary classification problems are considered in this
study, with very different experimental setups and studied processes. However
the objective is the same: to isolate signal instances from one or several back-
ground sources. Our focus on HEP problems with information about the input
variables complicates experiments on a larger number of datasets. The DVCS
dataset comprises 30 raw features for 14730 instances, the Higgs dataset [20] 17
raw features for 100000 used instances, the MAGIC dataset [21] 10 raw features
for 19020 instances. Detailed descriptions of the DVCS and Higgs datasets are
provided in Sect. 5 along with an interpretability discussion.

Shape Functions Parameters. The GAM version with neural network as
shape function uses a MLP regressor with two hidden layers of size 100 each,
Adam optimizer with a constant learning rate of 0.001 and rectified linear unit
as activation function. The shape (100,100) of the network is not fine-tuned since
the objective is to have sufficient degrees of freedom to handle the dimensionality
of the problem, while letting the optimization of the regularization parameter
(through bitonicity requirement) compensate the potential overfitting. These
parameters were found by quick testing on the datasets.

As for the terms modeled with splines, penalized B-splines are used with 14
knots spaced along the quantiles of the feature.
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b � 0.04
MAGIC: fAlpha (b = 0.000157) Higgs: DER mass MMC (b = 0.000200)

b ≤ 0.04
DVCS: pT p (b = 0.0130) MAGIC: fConc1 (b = 0.0383)

b ≥ 0.04
Higgs: DER met phi centrality (b = 0.0491) Higgs: DER pt tot (b = 0.0847)

b � 0.04
MAGIC: fM3Trans (b = 0.206) DVCS: phi g1 (b = 0.284)

Fig. 6. Feature bitonicity examples on all three datasets, from smaller to higher bitonic-
ity penalties. On the graph is plotted the output probability after smoothing (i.e. the
vector used for the computation of the bitonicity penalty). In dotted black is the
cumulative minimum/maximum that is the reference to compute the difference and
get the bitonicity penalty corresponding to the area between the dotted line and the
orange feature data. The red vertical line marks the hypothesis of the algorithm for
the extremum.

Other Hyperparameters. In the FC algorithm, we set the population size to
500 and the number of generations to 70. The multiplying factor μ to increase
the regularization λ if the resulting shape function is not bitonic is arbitrarily set
to μ =

√
10. The β parameter for the gradient descent of the learning rates αn

is set to 30 and the demanded maximum ε for the gradient is set to 10−5. These
parameters have been experimentally proven to lead to convergence in almost
all cases for the experimental datasets. In the case an αn rate was not found, the
current iteration n of the FCGAM algorithm is dropped and recomputed (a new
FC and shape function fit are done). 10 independent runs for each configuration
are performed because of the stochastic nature of genetic programming in FC.
The mean and standard deviation of the F1 score are presented for each dataset
and algorithm configuration, averaged over the 10 runs and doing 5-fold cross-
validation (50 runs in total for each numerical result).
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Table 2. F1 score (mean and standard deviation over 10 runs for each fold in a 5-
fold cross-validation) of the proposed methods on three datasets, compared with a few
baselines. The best score for each dataset is in bold font, while the best variant for
splines and for MLP is underlined.

DVCS Higgs MAGIC

Baselines

(100,100) MLP 0.751 ± 0.007 0.673 ± 0.022 0.795 ± 0.012

XGBoost 0.772 ± 0.005 0.587 ± 0.002 0.797 ± 0.009

GAM with boosted DT 0.748 ± 0.004 0.539 ± 0.002 0.781 ± 0.008

FCGAM with splines

FCGAM ∅ 0.792 ± 0.012 0.626 ± 0.015 0.806 ± 0.011

FCGAM bmax 0.793 ± 0.006 0.625 ± 0.013 0.806 ± 0.011

FCGAM ∞ 0.788 ± 0.007 0.609 ± 0.025 0.804 ± 0.012

BFCGAM 0.789 ± 0.007 0.545 ± 0.031 0.792 ± 0.012

FCGAM with (100,100) MLP

FCGAM ∅ 0.792 ± 0.009 0.627 ± 0.013 0.808 ± 0.012

FCGAM bmax 0.792 ± 0.008 0.628 ± 0.013 0.807 ± 0.011

FCGAM ∞ 0.792 ± 0.006 0.625 ± 0.013 0.807 ± 0.012

BFCGAM 0.788 ± 0.005 0.529 ± 0.057 0.785 ± 0.012

4.2 Performance Comparison

Table 2 presents the results obtained while applying the four variants detailed
in Subsect. 3.5 on the three datasets using either splines or MLP as GAM shape
functions, along with three baselines. A first observation is that the FCGAM
algorithm gives better results than the baselines on DVCS and MAGIC datasets.
One could have expected the opposite, since more complex and less interpretable
algorithms such as a neural network or XGBoost are supposed to perform better
on complex problems, which is the case for the Higgs dataset.

Apart from the baselines comparison, the fourth version (BFCGAM) always
gives worse scores than the no bitonicity FCGAM ∅ version, in a significant
manner for the Higgs dataset in particular. In all cases, letting the FC free and
enforcing bitonicity only on relevant shape functions (i.e. those for which the
feature is actually bitonic) in the FCGAM bmax variant improves the score at
the level of the FCGAM ∅ version. Even if not significantly, the FCGAM bmax

version with bmax = 0.004 threshold sometimes gets better results than the
FCGAM ∅. One conclusion for this is that forcing bitonicity may be good for
interpretability (this will be discussed in Sect. 5), but can be too restrictive:
some really discriminative features are not bitonic and are indispensable to get
a good score. Next subsection discusses the bitonicity potential of the datasets
and why some datasets behave well under bitonicity constraint while others do
not.
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Fig. 7. Boxplots of features bitonicities. The box indicates the first and third quantiles
with an orange line at the median, while the whiskers extend to the farthest data point
within 1.5 IQR (interquartile range) after the box. The horizontal dotted red line
represents the bitonicity threshold bmax set to 0.04 to trigger the bitonicity constraint
on the shape function. (Color figure online)

4.3 Bitonicity Potential of the Different Datasets

Enforcing bitonicity on built features or shape functions will only be benefi-
cial if there exist a discriminative set of bitonic features for a given dataset.
Figure 7 displays the boxplots of the features bitonicities: those already present
in the dataset (raw features) and those which have been found to be discrimina-
tive through the FC process (built features) without the bitonicity constraint.
Therefore, the built features boxplots represent well the distribution of the most
discriminative features for a given dataset. These plots have been made with all
the features built in the FCGAM ∅ configuration, so around 1000 built features
and around 10 raw features for each dataset.

The bitonicity of the raw features seems not to influence the bitonicity of
the built high-level features nor the potential of a dataset to get good results
while enforcing bitonicity. Indeed, the Higgs dataset presents mainly bitonic raw
features whereas the scores are impaired under bitonicity constraints, when it is
the opposite for DVCS.

The large majority of the features built for the MAGIC dataset are bitonic,
without the need to add a bitonicity penalty term during the FC process. It
is then logical that the scores of the MAGIC dataset are not penalized when
adding this constraint which is already satisfied. However, the most discrimi-
native features found for the Higgs dataset (i.e. the built features) are often
not bitonic, hence the decrease in score when trying to force the bitonicity. Not
all the features built for the DVCS dataset are bitonic, however the bitonicity
penalty does not impair the performance on this dataset. Some redundancy may
indeed be present between the built features, hence all the required information
to perform a proper classification can be contained in the subsample of bitonic
features.
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5 Discussion on Interpretability

The goal here is to assess the interpretability of the trained models from the
point of view of experts in the field. Notably, an explicit textual explanation of
the model is not needed. Indeed, expert physicists are able to interpret high-level
built features (physical formulas) and shape functions (can be viewed as function
curves).

DVCS dataset Higgs dataset MAGIC dataset

Fig. 8. Convergence curves for all three datasets with splines (on the top) or neural
network (on the bottom) as shape function. The evolution of the F1 score is plotted
against the number of iterations in the boosting algorithm (Algorithm 1).

The global GAM consists of 20 terms, namely 20 shape functions each associ-
ated to a built feature. Figure 8 displays the evolution of the classification score
for each dataset against the number of GAM terms. Interpretability decreases
with increasing number of GAM terms hence increasing number of features. This
is a trade-off that experts must consider depending on their own criteria.

The focus now is on the DVCS and Higgs datasets only since we are not
experts in the MAGIC classification problem. An analysis of one feature and
the associated fitted shape function for each of the DVCS and Higgs datasets is
performed hereafter. Figures 9 and 10 are presented in the same way: the left plot
is the target vector binned along the built feature (so the y value on the plot is the
averaged target for a bin), the central plot is a GAM term learnt for this feature
using splines without bitonicity enforcement, the right plot is a GAM term learnt
using splines and with bitonicity enforcement. For the DVCS and Higgs datasets,
the physical problem is first explained followed by an interpretation of a frequent
GAM term.
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Fig. 9. DVCS: ∠(pγ2 , pγ1 +pγ2). Lower value means higher probability to have a signal
event.

DVCS Dataset. At Jefferson Laboratory, an electron beam scatters off protons.
The objective is to discriminate between the γDV CS-events whose final state
is composed of an electron, a proton and a photon noted γ, and the γγπ0

-
events which have a similar final state, except that two correlated γ photons are
produced. The three-dimensional momentum (i.e. mass times speed) and angles
are available for each identified particle.

Figure 9 illustrates a DVCS built feature: the angle between γ2 the lowest
energetic photon and the sum of two detected photons γ1 +γ2. A signal γDV CS-
event involves a single γ photon. But an uncorrelated photon from background
may be simultaneously detected. It then resembles the major background being
γγπ0

-events. The two γ photons of a γγπ0
-event are correlated since produced

by the decay of a same particle. Therefore, the distribution of this angle is not
random and presents a peak around 5◦. However, the oscillations in the non
bitonic term are probably learnt from the noise present in the data. The bitonic
term permits to solve this irregularity: experts can visually tell that it generalizes
better and is more consistent with their expectations.

Higgs Dataset [20]. At CERN, Higgs particles are notably produced out of
the collisions of two protons. The objective of the dataset is to detect Higgs
bosons decaying into two τ -particles. Geometrical features are available for each
detected particle.

The angle between the lepton and a hypothetical missing particle illustrated
by Fig. 10 is one of the most common feature built by a FCGAM for the Higgs
dataset. Indeed this missing momentum actually relates to undetectable parti-
cles called neutrinos. In signal events, the neutrinos are in majority emitted in
the same direction than the lepton. However, in several background processes,
only one neutrino is emitted in the opposite direction of the lepton (see Fig. 11).
Therefore, the probability to have a signal event is higher at 0◦ and at its low-
est at ±180◦. This feature is highly discriminative but not bitonic. Enforcing
bitonicity on this feature is counterproductive.
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Fig. 10. Higgs dataset: φlep − φmissingtE . Higher value means higher probability to
have a signal event.
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Fig. 11. Illustration of signal events on the left and one type of background events on
the right.

6 Conclusion

GAM are widely considered as intelligible models, suitable for applications where
transparency and expert interpretation is needed. In this work, bitonicity is intro-
duced to take into account prior knowledge about HEP applications. A method
is proposed to test the bitonicity of a feature and to enforce it when fitting shape
functions. Feature construction is also incorporated in the process since raw vari-
ables in HEP are often not the most relevant for classification purposes and since
interpretable models often lack of sufficiently complex internal representation of
data.

Experiments on three HEP datasets show that enforcing bitonicity on terms
associated with bitonic features increases the interpretability potential and gen-
eralization power of the global model, with a performance classification score
comparable to the score obtained without constraint, if not greater. However,
some datasets have shown to be more adapted to the bitonicity approach,
depending on the bitonicity degree of the most discriminative features for the
classification problem.
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In future work, we plan to deepen our studies on the reasons why bitonic-
ity is working better on some datasets than on others. In addition, we started
conducting experiments including 2D terms that involve pairwise interactions
between features to complete our existing studies on univariate GAM terms.

Acknowledgments. We would like to thank the CLAS12 collaboration for the sim-
ulation software.
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Abstract. Mobility data is a proxy of different social dynamics and
its analysis enables a wide range of user services. Unfortunately, mobil-
ity data are very sensitive because the sharing of people’s whereabouts
may arise serious privacy concerns. Existing frameworks for privacy risk
assessment provide tools to identify and measure privacy risks, but they
often (i) have high computational complexity; and (ii) are not able to
provide users with a justification of the reported risks. In this paper, we
propose expert, a new framework for the prediction and explanation of
privacy risk on mobility data. We empirically evaluate privacy risk on
real data, simulating a privacy attack with a state-of-the-art privacy risk
assessment framework. We then extract individual mobility profiles from
the data for predicting their risk. We compare the performance of several
machine learning algorithms in order to identify the best approach for
our task. Finally, we show how it is possible to explain privacy risk pre-
diction on real data, using two algorithms: Shap, a feature importance-
based method and Lore, a rule-based method. Overall, expert is able to
provide a user with the privacy risk and an explanation of the risk itself.
The experiments show excellent performance for the prediction task.

Keywords: Privacy risk assessment · Privacy risk prediction ·
Explainability

1 Introduction

There is a growing research interest in mobility data analysis, since it is a key
enabler of a new wave of knowledge-based services and applications. However, the
use of human mobility data raises concerns associated to the potential leakage
of personal sensitive information as mobility data analysis might reveal details
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of people’s private life. For example, de Montjoye et al. [17] showed that four
spatio-temporal points can be enough to uniquely identify 95% of the individuals
in a mobility dataset. The existence of these privacy issues has led researchers
to develop techniques to mitigate the privacy risks while preserving mobility
data [4,15,26]. For enabling a practical application of these techniques, Pratesi
et al. proposed PRUDEnce [21], a framework for a systematic assessment of indi-
vidual privacy risk in a mobility dataset. PRUDEnce helps data controllers being
compliant with the new EU General Data Protection Regulation (GDPR)1. How-
ever, PRUDEnce is characterized by a high computational complexity, because
it requires the computation of the maximum risk of re-identification (or privacy
risk) given an external knowledge that a malicious adversary might use for an
attack [20]. The high computational complexity becomes a non-negligible prac-
tical limitation in some online user-centric applications where it is useful to have
a continuously up-to-date indicator of privacy exposure. In user-centric applica-
tions, providing users with an explanation of the reasons of the identified privacy
risk might contribute to raise their self-awareness.

In this paper, to overcome the computational complexity drawback and to
increase users’ awareness, we propose expert, an EXplainable Privacy Expo-
suRe predicTion framework that exploits (i) machine learning (ML) models for
predicting a user’s individual privacy risk and (ii) local explainers for producing
explanations of the predicted risk. First, expert extracts from human mobility
data an individual mobility profile describing the mobility behavior of any user.
Second, for each user it exploits PRUDEnce to compute the associated privacy
risk. Third, it uses the mobility profiles of the users with their associated privacy
risks to train a ML model. For the prediction task, expert exploits tree-based
ensemble models to effectively handle the class-imbalance problem, i.e., a high
number of risky users vs a low number of non-risky ones, that is typical of the
data in this context. The aim is to have a predictor that preserves the privacy
of risky users while providing the freedom of using data-driven services to users
with low privacy risk. For a new user, along with the prediction of risk, expert
also provides an explanation of the predicted risk. expert exploits two state-of-
the-art explanation techniques, i.e., Shap [13] and Lore [11]. The two methods
produce explanations based on feature importance and logic rules, respectively.
The goal of explanations is to provide users with insights on which mobility
behavior contributes to their privacy risk. We evaluate expert on real-world
mobility data showing the effectiveness of the framework. Results show that the
proposed framework is able to classify the privacy risk level of unseen users in the
urban areas. Moreover, we observe a high recall on the high-risk users, meaning
that the probability of misclassifying a high-risk user as low-risk is negligible,
while achieving good performance in classifying low-risk users.

The paper is organized as follows. Sect. 2 discusses related work. In Sect. 3,
we briefly discuss PRUDEnce, the framework we used for the privacy risk assess-
ment. Section 4 introduces our novel expert framework. In Sect. 5, we report

1 EU GDPR can be found at the following link: http://bit.ly/1TlgbjI.

http://bit.ly/1TlgbjI
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the results of a comprehensive experimental evaluation of expert on mobility
data. Finally, Sect. 6 concludes the work and discusses future work.

2 Related Work

Our framework leverages the privacy risk assessment framework PRUDEnce [21],
which allows for the systematic calculation of the empirical privacy risk. Another
risk management framework is Linddun [8] useful for modeling privacy threats
in software-based systems, but lacks a quantitative evaluation of privacy risk.
Some works [23,25] propose to evaluate the privacy risk by a unicity measure
computed as the number of records uniquely identified. Armando et al. [2] pro-
posed a risk-aware framework for information disclosure supporting runtime risk
assessment where access-control decisions are based on the disclosure-risk asso-
ciated with a data access request and adaptive anonymization is used as a risk-
mitigation method.

In the context of mobility analysis, an overview on problems, techniques
and methodologies can be found in [28]. Human mobility analysis can reveal
personal sensitive information and habits leading to possible privacy violation.
Thus, many techniques for privacy-preserving analysis have shown that we can
design data-driven mobility services where the quality of results coexists with the
privacy protection. Some works, e.g., [4,16], are based on the differential privacy
model [9] while others, e.g., [15,26], are based on the k-anonymity model [24].

Our work can be seen as an extension of the prediction methodology proposed
by Pellungrini et al. [20], showing how it is possible to predict privacy risk in
mobility data with a feature based approach. We extend it by providing a unified
framework that provides both prediction and explanation about the individual
privacy risk. Moreover, our proposal is based on a prediction module that is able
to handle the high class imbalance of the data typical of this domain [29].

The importance of interpretability in machine learning has led to an increas-
ing research work in this field. An overview of explainable machine learning mod-
els can be found in [12]. This survey identifies two main families of approaches:
local and global explainers. The first category aims at explaining the reason for
a specific instance classification [11,13,22], while the goal of the second one is
to explain the logic of the “machine learning black-box” as a whole [5–7].

3 Background

Human mobility data contain information about the movement of individuals
during a given period of observation. They are typically collected by electronic
devices, such as mobile phones and GPS devices installed in vehicles [28]. All the
movements of a user in the period of observation are described using a sequence
of spatio-temporal data points, i.e., a trajectory. In other words, each sequence
item is a pair composed of a geographic location, often expressed in coordinates
(generally latitude and longitude), and a timestamp indicating when the user
stopped in or went through that location.
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Definition 1 (Trajectory). A human mobility trajectory is a temporally
ordered sequence of pairs, Tu = (l1, t1), (l2, t2), . . . , (lm, tm), where li = 〈xi, yi〉 is
the location identified by the latitude xi and longitude yi, while ti (i = 1, . . . , m)
denotes the corresponding timestamp such that ∀1 ≤ i ≤ m ti < ti+1.

We denote by D = T1, . . . , Tn the mobility dataset that describes the complete
history of movements of n individuals, in a specific period of observation.

3.1 Privacy Risk Assessment Framework

In this paper, we consider the framework PRUDEnce [21], which allows for a
systematic assessment of the privacy risk inherent to human mobility data. It
considers a scenario where a Service Developer (SD) requests data from a Data
Provider (DP) to develop services or perform an analysis. In order to guaran-
tee the right to privacy of individuals, the DP has to assess their privacy risk
before the data sharing. Once assessed the privacy risk, the DP can choose how
to protect the data before sharing them, selecting the most appropriate privacy-
preserving technology. Taking into account the data requirements of the SD,
the DP aggregates, selects, and filters the dataset D to meet its requirements
and on top of it performs a privacy risk assessment. This operation requires the
definition of a set of possible attacks that an adversary might conduct on the
data, and their simulation. The user’s privacy risk is related to her probabil-
ity of re-identification in a dataset with respect to a set of attacks. An attack
assumes that an adversary gets access to a dataset, then, using some previ-
ously obtained background knowledge, i.e., the knowledge of a portion of an
individual’s mobility data, the adversary tries to re-identify all the records in
the dataset regarding that individual. An attack is defined by a matching func-
tion, which represents the process with which an adversary exploits the back-
ground knowledge to find the corresponding individual in the data. As far as the
attack definition is concerned, PRUDEnce is based on the notions of background
knowledge category, configuration and instance. The first one denotes the type
of information known by the adversary about a specific set of dimensions of
an individual’s mobility data: e.g.., a subset of the locations visited by a user
(spatial dimension) or the specific times a user visited those locations (spatial
and temporal dimensions). The number of the elements known by the adver-
sary is called background knowledge configuration. An example is the adver-
sary knowledge of h = 2 locations visited by an individual. Finally, an instance
of background knowledge is defined as the specific information known by the
adversary, such as a visit in a specific location. Consider a trajectory from D:
Tu = 〈(l1, t1), (l2, t2), (l3, t3), (l4, t4)〉 of an individual u. Based on Tu the DP can
generate all the possible instances of a background knowledge configuration that
an adversary might use to re-identify the whole Tu. If the adversary knows the
ordered subsequences of locations and h = 2, we obtain the background knowl-
edge configuration: B2 = {((l1, t1), (l2, t2)), ((l1, t1), (l3, t3)), ((l1, t1), (l4, t4)),
((l2, t2), (l3, t3)), ((l2, t2), (l4, t4)), ((l3, t3), (l4, t4))}. The adversary might know
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instance b = ((l1, t1), (l4, t4)) ∈ Bh=2 and aims at detecting all the records in D
regarding u, in order to reconstruct the whole trajectory Tu.

The definition of privacy risk is based on these notions and on the following
definition of probability of re-identification.

Definition 2. Given an attack and its function matching(T, b) indicating if
a record T ∈ D matches the instance of background knowledge configuration
b ∈ Bh, and a function M(D, b) = {T∈D|matching(T, b) = True}, we define
the probability of re-identification of an individual u in dataset D as: PRD(T =
u|b) = 1

|M(D,b)| that is the probability to associate a record T ∈ D to an individual
u, given instance b ∈ Bh.

Since each instance b ∈ Bh has its own probability of re-identification, the risk
of re-identification of an individual is defined as the maximum probability of re-
identification over the set of instances of a background knowledge configuration:

Definition 3. The risk of re-identification (or privacy risk) of an individual u
given a background knowledge configuration Bh is her maximum probability of
re-identification Risk(u,D) = max PRD(T = u|b) for each b ∈ Bh.

4 Explainable Privacy Risk Prediction Framework

PRUDEnce [21] assumes a worst case scenario approach for the privacy risk
computation and therefore, it evaluates all the possible background knowledge
configurations for a potential adversary generating them with a combinatorial
approach directly from the data of a user. While the framework provides a
comprehensive methodology for worst-case privacy risk assessment, its compu-
tational complexity is high. Moreover, PRUDEnce is designed for supporting
data providers (companies) in identifying portions of data with high privacy risk
by simulations of the attacks. The computation requires the availability of the
entire dataset, like that stored in the servers of the companies. In other words,
PRUDEnce is not suited for providing personalized recommendations in terms
of risks associated to sharing personal trajectories. Indeed, for any new user
requiring risk evaluation, the system should re-compute the privacy risk against
the whole dataset. Moreover, it does not provide any explanation of the privacy
risk derived by the system. In this paper we present an explainable framework
for the individual prediction of a user’s privacy risk, in order to increase privacy
risk awareness, by also providing an explanation of the derivation of the risk
associated to sharing sensitive location information. The idea is inspired by the
explainable privacy-preserving system theorized in [3]. To this end, we propose
expert which, given a user’s trajectory, predicts the privacy risk associated
with it. The explanation provided to the users is based on their trajectory given
in input. Figure 1 depicts the architecture of expert which is composed of two
main modules: the privacy risk prediction module which takes as input the user’s
trajectory and, exploiting a trained ML model, predicts the privacy risk level of
that user, and the explanation module which produces the explanation of the
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predicted risk. The ML model is the result of several steps: (i) the empirical com-
putation of the individual privacy risk, (ii) the extraction of individual mobility
profiles from human mobility data, summarizing users’ mobility behavior, and
(iii) the training of a ML model.

Fig. 1. The general structure of the proposed framework expert.

4.1 Learning a Prediction Model for Individual Privacy Risk

The basic idea is to train a ML model to predict the privacy risk level of users
based solely on their individual mobility profile. Thus, given a human mobility
dataset of n user trajectories, we propose to derive the training dataset 〈M,Γ〉,
where M is a set of n individual mobility profiles, and Γ is the vector of their
associated privacy risk levels. Since, the privacy risk is related to a specific
attack (see Sect. 3.1), the procedure for building a training dataset depends on
the adversary attack modelling. As a consequence, given a specific attack, char-
acterized by a background knowledge configuration Bh, the procedure performs
the following two steps:

– Mobility Profile Extraction: Given a mobility dataset D, for every user tra-
jectory Tu we propose to extract a mobility profile in order to characterize
her mobility behavior. To this end, we propose to derive a set of well-known
mobility features (presented in the next section). We denote by Mu ∈ M the
mobility feature vector of a user.

– Privacy Risk Computation: For each user u a privacy risk value is computed
by simulating an attack with background knowledge configuration Bh on the
mobility dataset D. Since the goal is to predict the privacy risk level, the
privacy risk vector is discretized to get a set of risk classes2, and the vector
of n user’s privacy risk levels Γ .

After the execution of the above two steps, we get a training set 〈M,Γ 〉. The
derived training dataset 〈M,Γ〉 is used to train a predictive model which will be
used within expert to immediately estimate the privacy risk level of previously
unseen users, whose data were not used in the learning process. Clearly, in pre-
diction time, in order to predict the privacy risk of a new trajectory instance the
process requires, first the computation of the mobility profile for that user and
2 In our experiments we discretize the risk in two main classes: low risk (privacy risk

≤ 0.5) and high risk (privacy risk > 0.5).
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then, the application of the predictive model. Among the different ML methods,
we propose to employ models able to handle classification tasks with imbalanced
data. Indeed, as we show in our experiments, one of the characteristics of our
training data is that most of the users have high privacy risk. Our goal is to
get a predictor able to guarantee the privacy protection of risky users while
providing the freedom of using data-driven services to users with low privacy
risk. Thus, the optimal predictor should be characterized by a low probability
of misclassifying a high risk user as a low risk one, while maintaining also good
performance with respect to the classification of low risk users. In this paper, we
propose to apply the gcForest model [29], a decision tree ensemble approach
with performance highly competitive to deep neural networks in a broad range
of tasks. It is especially suitable to handle highly extra-imbalanced data [27].
gcForest relies on multiple layers of parallel forests of trees whose output is
then concatenated to re-represent data to subsequent layers. In our experiments
we compare gcForest against models such as decision tree, logistic regression,
and random forest.

Mobility Profile Extraction. The goal of this step is to construct the matrix
M representing the set of individual mobility profiles, expressed by a set of
mobility features that describe and summarize the mobility behavior of an indi-
vidual. In our setting, we employ measures widely used in the literature [18,20].
Some of them describe only the mobility behaviour of an individual, while oth-
ers describe an individual mobility behaviour in relation to collective mobility
characteristics. Table 1 reports all the mobility measures used in the study. First
of all, we define V as the number of visits of a user, it corresponds to the total
number of locations in the user’s trajectory. To quantify the erratic behaviour of
a user during the day we compute the average number of daily visits V , dividing
V by the total number of days in the period of observation. Locs, instead, is
the number of distinct locations visited by a user during the period of obser-
vation, while Locsratio represents the fraction of locations covered by a user.
We compute it by dividing Locs by the total number of locations available in
the territory. We also evaluated some measures about the distances travelled by
the users. We define Dmax as the maximum distance travelled by each user, i.e.
the longest trip for each user. This measure is then employed for the computa-
tion of Dtrip

max: it is the ratio between the maximum distance travelled Dmax and
the maximum distance that is possible to travel in the area of observation. We
also consider Dsum, i.e., the sum of all the distances travelled by a user. This
value is then used in the definition of Dsum, which is the average of Dsum over
the period of observation (expressed in days). We also consider the radius of
gyration [19] representing the characteristic distance travelled by a user during

the period of observation and is defined as rg =
√

1
N

∑
i∈L wi(ri − rcm)2, in

which i ∈ L is the visited location by a user, wi represents a user’s frequency
of visits at a location i, ri denotes the geographical description of the location
i and it is a bi-dimensional vector, while rcm is the center of mass of the user
under consideration. Mathematically, the latter is defined as rcm = 1

V

∑
1∈L ri.

We also measure the mobility entropy E as the predictability of a user’s
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trajectory. We employ the Shannon entropy measure [10]: E = −∑
i∈L pi log2 pi,

in which pi is the probability of the location i for the user under analysis. For
each user, we also consider three locations that characterize a user’s mobility:
the most visited location, the second most visited location and the least visited
location. Typically, the most visited location corresponds to user’s home, while
the second most visited location is users’ work place. For each one of these loca-
tions, we evaluate the frequency of visits during the period of observation wi,
where i represents the specific location under analysis. We also define wi as the
daily average of the frequency of visits at the location i for the user under anal-
ysis. Then, we denote by wpop

i the frequency of visits divided by the popularity
of the location, i.e. the total frequency of the location in the dataset. In this
way, we normalize the frequency of the user for a particular location considering
the behaviour of all the users in the dataset. For these three locations, we also
consider Ui, i.e., the number of distinct users that visited the location i in the
period of observation. Out of Ui, we also compute Uratio

i , in which the number
of distinct users that visited the location i is divided by the total number of
users in the dataset. The last measure we consider for each of the three locations
is the entropy. In this case, we compute a location entropy Ei, that represents
the predictability of a visit at the location i defined as: E = −∑

u∈Ui
pu log2 pu,

where Ui is the set of users that visited the location i and pu is the probability
that a user u visited the location i. When working with trajectories, we have
also a temporal information: each trajectory is composed by 〈li, ti〉, in which ti
is the timestamp corresponding to time of arrival of a user at a location li. We
exploit this information to compute the path time [18], i.e., the time occurring
between the first and last visit of a trajectory.

Table 1. Mobility features of the individual mobility profile.

Notation Description Notation Description

V visits V daily visits

Dmax max distance Dsum sum distances

Dtot
max

max distance over total

max distance for a user
Dsum Dsum per day

Dtrip
max Dmax over area Locs distinct locations

Locsratio Locs over area Rg radius of gyration

E mobility entropy Ei location entropy

Ui individuals per location Uratio
i Ui over individuals

wi location frequency wpop
i wi over the total frequency of location i

wi daily location frequency PTj Path time per user

Privacy risk computation. The goal of this module is to compute for each
user trajectory in D a privacy risk value by using a re-identification algorithm.
We propose to apply the PRUDEnce framework (Sect. 3.1) that enables the
definition and simulation of any desired privacy attacks over the entire dataset.
Several attacks might be defined on the basis of the type of background knowl-
edge possessed by an adversary [20,21]. In this paper we instantiate our risk
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computation using the location sequence attack, introduced in [14,15], where
the adversary knows a subset of the locations visited by the individual and the
temporal ordering of the visits. Given an individual u, we denote by L(Tu) the
sequence of locations li ∈ Tu visited by u. The background knowledge category
of a location sequence attack is defined as follows:

Definition 4. Let h be the number of locations li of an individual u known by the
adversary. The Location Sequence background knowledge is a set of configurations
based on h locations, defined as Bh = L(Tu)[h], where L(Tu)[h] denotes the set
of all the possible h-subsequences of the elements in the set L(Tu).

We indicate with a � b that a is a subsequence of b. Each instance b ∈ Bh is a
location subsequence Xu � L(Tu) of length h. Given a record T ∈ D we define
the matching function as: matching(T, b) = true if b � L(T ), false otherwise.
PRUDEnce uses this function to compute the probability of re-identification for
any instance of background knowledge (Definition 2) enabling the privacy risk
computation for each trajectory (Definition 3).

4.2 Risk Explanation Module

The last module of expert is the explainer aiming at providing the end-user
with an explanation for the predicted risk label. The objective is to increase
users’ awareness about the privacy risks. expert is modular with respect to the
explainer allowing the use of any explanation method suitable to tabular data.
Since the goal is to explain a specific decision, local methods [11,13,22] are more
suitable for this task. The main difference between them is the type of explana-
tion returned. Lime [22] and Shap [13] are mainly based on the notion of feature
importance and Lore [11] instead provides a logical rule-based explanation for
the prediction. In our experiments we considered Lore and Shap as explain-
ers. Given our ML model and an individual trajectory belonging to a user u,
transformed into the mobility profile Mu and labeled with a specific privacy risk
level ru by our model, Lore (LOcal Rule-based Explanation) builds a simple,
interpretable predictor by first generating a balanced set of neighbor instances
of the given Mu through an ad-hoc genetic algorithm, and then extracting from
such a set a decision tree classifier. A local explanation is then extracted from
the obtained decision tree. The local explanation is a pair composed by (i) a
logic rule, corresponding to the path in the tree that explains why Mu has been
labeled as ru by the predictor, and (ii) a set of counterfactual rules, explaining
which changes in Mu would invert the risk class assigned. Shap (SHapley Addi-
tive exPlanations) is a local approach for interpreting model predictions that
assigns to each feature an importance value for a particular prediction. More-
over, for each model’s prediction Shap defines an explanation model. The main
idea is that the explanation model is an interpretable approximation of the origi-
nal model and works with simplified input data. Shap exploits the collaborative
game theory to determine the importance value of a feature for the instance
prediction.



412 F. Naretto et al.

5 Experiments

We experimentally validate the different components of our framework by ana-
lyzing the performance of: i) the prediction module implemented with different
machine learning models by varying their complexity; and ii) the explanation
module by comparing two state-of-the-art approaches.

Data. We use data containing GPS tracks of private vehicles in Tuscany (Italy)
provided by Octo Telematics. We selected trajectories from an area comprising
two major urban centers, Prato and Pistoia, considering the period from 1st May
to 31st May 2011, for a total of 8651 distinct vehicles. We performed two differ-
ent transformations of the original data in order to obtain two different datasets.
In the first dataset, called istat, trajectory points are generalized according to
the geographical tessellation provided by the Italian National Statistics Bureau
(ISTAT): each point is substituted with the centroid of the geographical cell to
which it belongs. We then remove redundant points, i.e., points mapped to the
same cell at the same time, obtaining 2274 different locations with an average
length of 31.9 points per trajectory. With respect to the second dataset, called
voronoi, we first apply a data-driven Voronoi tessellation of the territory [1], tak-
ing into consideration the traffic density of an area, and then we used the cells
of this tessellation to increase the granularity of the original trajectories. The
algorithm also performs interpolation between non adjacent points3. We obtained
1473 different locations with an average length of 240.2 points per trajectory.
For both datasets we computed the mobility features M for extracting the users’
mobility profiles and the privacy risk according to the simulation of the loca-
tion sequence attack (Sect. 4.1) with four background knowledge configurations
Bh using h = 2, 3, 4, 5, getting four different risk datasets, Γh=2,3,4,5. We dis-
cretized the risk values in intervals: [0, 0.5] and (0.5, 1] named low and high risk
class, respectively. Then, we built our classification datasets merging each risk
dataset with the feature-based mobility profiles: 〈M,Γh〉, as explained in Sect.
4.1. To better handle the imbalance in the data, we learned our predictive mod-
els using stratified sampling, undersampling and 5-fold cross-validation. Tables 3
and 2 report the class balance after under-sampling the majority class. We also
performed hyper-parameter tuning by grid search in the parameter space4.

Predicting Risk. We validate the effectiveness of the prediction module of
expert by comparing four different ML models: Decision Tree (DT), Logistic
Regression (LR), Random Forest (RF)5, and gcForest (GC)6. Decision Tree
and Logistic Regression are two well-known, white-box models. Random Forest
and gcForest [29] are ensemble models proven to be effective when dealing
with imbalanced data. This task is characterized by strong imbalance of the
two risk classes, therefore being a challenging machine learning problem, where

3 Voronoi tessellation obtained by using: http://geoanalytics.net/V-Analytics/.
4 Hyper-parameter settings: https://github.com/francescanaretto/prp.
5 https://scikit-learn.org/stable/.
6 https://github.com/kingfengji/gcForest.

http://geoanalytics.net/V-Analytics/
https://github.com/francescanaretto/prp
https://scikit-learn.org/stable/
https://github.com/kingfengji/gcForest
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Table 2. Predictive models evaluation on mobility profiles derived from istat.

Bh
Class

Balance

Under-

sampling
Metric DT LR RF GC

h=2
High=77

Low=23

High=40

Low=60

F1high
0.92 (0.00) 0.92 (0.00) 0.94 (0.00) 0.94 (0.02)

Phigh 0.90 (0.01) 0.91 (0.01) 0.91 (0.00) 0.92 (0.01)

Rhigh 0.93 (0.01) 0.96 (0.00) 0.95 (0.00) 0.96 (0.00)

F1low 0.69 (0.02) 0.71 (0.01) 0.75 (0.01) 0.75 (0.01)

Plow 0.73 (0.02) 0.77 (0.01) 0.81 (0.01) 0.82 (0.01)

Rlow 0.66 (0.02) 0.42 (0.03) 0.70 (0.09) 0.70 (0.02)

h=3
High=93

Low=7

No under-

sampling

F1high
0.96 (0.00) 0.92 (0.00) 0.97 (0.00) 0.97 (0.03)

Phigh 0.95 (0.01) 0.94 (0.01) 0.96 (0.00) 0.96 (0.00)

Rhigh 0.96 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00)

F1low 0.70 (0.02) 0.71 (0.01) 0.75 (0.01) 0.79 (0.03)

Plow 0.72 (0.02) 0.77 (0.03) 0.83 (0.03) 0.84 (0.03)

Rlow 0.70 (0.06) 0.41 (0.03) 0.70 (0.04) 0.74 (0.05)

h=4
High=95

Low=5

No under-

sampling

F1high
0.96 (0.00) 0.96 (0.00) 0.97 (0.00) 0.97 (0.00)

Phigh 0.96 (0.05) 0.95 (0.00) 0.96 (0.00) 0.97 (0.00)

Rhigh 0.97 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00)

F1low 0.73 (0.02) 0.70 (0.02) 0.77 (0.02) 0.80 (0.02)

Plow 0.75 (0.02) 0.80 (0.01) 0.85 (0.02) 0.85 (0.09)

Rlow 0.70 (0.01) 0.45 (0.03) 0.74 (0.05) 0.76 (0.03)

h=5
High=96

Low=4

No under-

sampling

F1high
0.96 (0.04) 0.96 (0.00) 0.97 (0.00) 0.97 (0.00)

Phigh 0.96 (0.04) 0.95 (0.00) 0.97 (0.00) 0.97 (0.00)

Rhigh 0.96 (0.01) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00)

F1low 0.73 (0.03) 0.70 (0.03) 0.78 (0.02) 0.80 (0.02)

Plow 0.72 (0.03) 0.80 (0.05) 0.83 (0.02) 0.85 (0.02)

Rlow 0.70 (0.03) 0.46 (0.03) 0.75 (0.04) 0.76 (0.03)

the classifier performance in terms of accuracy is less significant due to the
dominance of the majority class on the metric.

Indeed, as discussed in Sect. 4.1, our desiderata is a classifier with a conser-
vative approach with respect to high risk users, to avoid their misclassification
as low risk users. On the other hand, we aim at achieving high precision and
recall for both high and low risk users. As a consequence, for the performance
evaluation of the machine learning models, we select the following indicators: i)
precision (Phigh) and recall (Rhigh) on high risk; ii) precision (Plow) and recall
(Rlow) on low risk; and iii) the two corresponding F1-Score for low (F1low) and
high (F1high

) risk. In a setting where the size of high risk class is larger than that
of the low risk one, achieving good performance for the low risk users is diffi-
cult. The results for the two datasets are shown in Tables 2 and 3. We note that
istat represents a typical situation in the privacy context, where a high number
of risky users exists. We also built voronoi to present a balanced situation and
to verify how our models behave in such a case. In general, we found that the
ensemble methods have good performance in terms of both F1-Score on high
risk and F1-Score on low risk. This means that these models are suitable for our
target. More precisely, we observe that, although GC and RF have comparable
performance, for istat, that is extra imbalanced, GC performs slightly better
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than RF on the low risk class. Moreover, ensemble methods also outperform the
white-box classifiers and again, their advantage is more evident in istat; espe-
cially, they considerably improve the classification scores for the more difficult
category of low-risk users. Indeed, we found that GC increases of 0.04–0.06 (0.09–
0.13) points the Rlow (Plow) of DT and of 0.28–0.33 (0.05–0.07) points the Rlow

(Plow) of LR. Clearly, these results contribute to have GC with the best F1low

for every value of h, while still maintaining a conservative behaviour highlighted
by the high values of recall on high risk class (Rhigh). Regarding voronoi, we
further notice that, although the data are more balanced, the ensemble meth-
ods always maintain the conservative approach for high risk users (high Rhigh)
while improving the overall classification for low risk users (F1low). Overall, these
results suggest that GC is the most suitable option for our specific predictive
task with RF as a close second one.

Table 3. Predictive models evaluation on mobility profiles derived from voronoi.

Bh
Class

Balance

Under-

sampling
Metric DT LR RF GC

h=2
High=28

Low=72

High=30

Low=70

F1high
0.71 (0.02) 0.65 (0.07) 0.75 (0.02) 0.80 (0.01)

Phigh 0.73 (0.01) 0.73 (0.02) 0.78 (0.01) 0.79 (0.01)

Rhigh 0.74 (0.04) 0.77 (0.03) 0.72 (0.02) 0.80 (0.03)

F1low 0.87 (0.00) 0.86 (0.01) 0.89 (0.01) 0.89 (0.00)

Plow 0.70 (0.01) 0.89 (0.01) 0.87 (0.01) 0.90 (0.02)

Rlow 0.85 (0.01) 0.82 (0.02) 0.91 (0.01) 0.86 (0.01)

h=3
High=55

Low=45

No under-

sampling

F1high
0.88 (0.01) 0.88 (0.01) 0.92 (0.01) 0.92 (0.01)

Phigh 0.89 (0.01) 0.88 (0.01) 0.91 (0.00) 0.91 (0.00)

Rhigh 0.86 (0.02) 0.89 (0.03) 0.92 (0.01) 0.92 (0.01)

F1low 0.84 (0.02) 0.82 (0.01) 0.87 (0.01) 0.87 (0.01)

Plow 0.80 (0.02) 0.83 (0.03) 0.88 (0.09) 0.88 (0.01)

Rlow 0.89 (0.02) 0.81 (0.02) 0.87 (0.01) 0.86 (0.01)

h=4
High=57

Low=43

High=40

Low=60

F1high
0.91 (0.00) 0.90 (0.00) 0.93 (0.00) 0.93 (0.00)

Phigh 0.91 (0.01) 0.88 (0.00) 0.92 (0.00) 0.94 (0.01)

Rhigh 0.91 (0.02) 0.92 (0.01) 0.92 (0.01) 0.91 (0.01)

F1low 0.84 (0.01) 0.80 (0.01) 0.87 (0.01) 0.87 (0.01)

Plow 0.84 (0.03) 0.84 (0.01) 0.85 (0.01) 0.85 (0.01)

Rlow 0.84 (0.02) 0.77 (0.03) 0.88 (0.01) 0.88 (0.02)

h=5
High=62

Low=38

High=50

Low=50

F1high
0.93 (0.01) 0.93 (0.01) 0.94 (0.00) 0.94 (0.01)

Phigh 0.92 (0.03) 0.90 (0.01) 0.94 (0.01) 0.95 (0.02)

Rhigh 0.93 (0.02) 0.93 (0.02) 0.94 (0.01) 0.94 (0.01)

F1low 0.83 (0.01) 0.80 (0.03) 0.86 (0.01) 0.86 (0.02)

Plow 0.83 (0.03) 0.83 (0.03) 0.86 (0.03) 0.86 (0.02)

Rlow 0.84 (0.03) 0.84 (0.03) 0.87 (0.02) 0.86 (0.03)

Explaining Risk. Regarding the explanation task in our experiments, we
employed Lore [11] and Shap [13]. We followed the experimental methodology
proposed in [11]: we selected the best models from the k-fold validation presented
in Sect. 5 and its associated train and test datasets. In particular, we used a RF
and a GC model for h = 2 on the istat dataset. For Shap we trained the Kernel
Explainer on the training dataset. For Lore, we chose a genetic generation of
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the neighborhood and the Euclidean distance as distance among the neighbors.
We performed a comparative analysis to evaluate the compactness and compre-
hensibility of returned explanations. To this end, we considered the diversity of
the explanation structure provided by the two methods: Lore outputs rules with
premises of variable lengths, while Shap, outputs the importance of each feature
in the data. Thus, we considered two different settings: i) no-zero features, where
in the Shap result we only keep features with importance values different from
zero; and, ii) top-k features, that tries to automatically identify the k features
with highest importance values. The value k depends on the record explanation
under analysis. To detect the best k for each explanation, we used an elbow-like
approach which, given the Shap result, first sorts in descending order the impor-
tance values and then, calculates the segment s bounded by the biggest and the
smallest importance values. At this point, it selects the importance value m with
the maximum distance from the segment s. Thus, only features with importance
values greater than or equal to m are kept. For analyzing the compactness of
the explanations we considered their average lengths: Lore explanations have
an average length of 2.9 ± 1.3 (RF) and 3.8 ± 1.4 (GC), against the average
lenghts of paths of the decision tree of 7.8 ± 1.5. Shap explanations have an
average length of 17.1 ± 3.1(RF) and 16.2 ± 3.2 (GC) for the no-zero features
setting, which decrease to 9.8 ± 6.3 (RF) and 8.3 ± 7.1 (GC) for the top-k fea-
tures setting. Hence, Lore provides more compact explanations with respect to
the paths of the decision tree and the Shap importance values. We also compare
the two explanation types in terms of semantic coherence. To this end, we pro-
pose to use the Jaccard similarity to highlight the degree of common features
used for the explanations and coherence measure aiming at capturing the per-
centage of features used in Lore explanations which are important also in Shap

explanations. The Jaccard similarity measure, is defined as 1
n

∑n
i=1

F lore
i ∩F shap

i

F lore
i ∪F shap

i

while the coherence is defined as 1
n

∑n
i=1

F lore
i ∩F shap

i

|F lore
i | . Here, Fi refers to the set

of features included in the explanation for the record i.
Table 4 reports the results of the coherence analysis. Regarding the no-zero

features setting, we found out that the Jaccard similarity is close to zero, high-
lighting that the intersection of the two feature sets is quite small compared to
their union. Concerning the coherence, a value equal to 1 means that all the
features of Lore are also in Shap explanations. Results highlight that Shap
explanations contain the majority of the features used by Lore. In the top-k
features setting, we observe a general decrease in the values of both measures.
This means that the majority of the features that Lore uses in its rules are
actually among the least important features of Shap. Thus, when considering
only the top-k features the discrepancy between Shap important values and
Lore increases. Our analysis highlights that the two methods consider different
important features for providing explanations. Lore explanations tend to be
more compact and easy to understand due to the logic structure of the rules.
Shap outputs a visualization and a large amount of information, which might
potentially be difficult for a user to navigate. Indeed, a large number of the
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Table 4. Shap vs Lore in the istat

dataset with h = 2.

Setting Jaccard Coherence
Top-k

Features
RF 0.133 ± 0.063 0.472 ± 0.381
GC 0.096 ± 0.101 0.393 ± 0.038

No-zero
Features

RF 0.133 ± 0.063 0.816 ± 0.250
GC 0.165 ± 0.072 0.767 ± 0.232

LORE wpop
home ≤ 0.36, Uhome ≤ 1722, E ≤

1.09, wwork ≤ 0.82 =⇒ HighRisk

LORE wpop
home ≤ 0.36, Uhome ≤

1722, E ≤ 1.09, wwork ≤ 0.82 =⇒
HighRisk

Fig. 2. Shap vs Lore: Table 4 quantifies the
similarity between the two explanations. Shap
visualization (right) and the Lore rule (left) rep-
resent the explanations for a specific record clas-
sified as high risk by gcForest.

values of the importance features are close to zero. Moreover, given a feature
used in an explanation, Lore provides a richer information that could help in
understanding more about certain mobility habits that contribute to a specific
risk value. For example, let us analyze Fig. 2, where we provide Shap (right)
and Lore (left) explanations for a high risky user according to gcForest. With
Shap a user can only understand which feature (with its specific value indicated
between parentheses) is important or not for classification, while the Lore rule
provides a user with a more detailed motivation, which includes the set of condi-
tions on features that a user satisfies. For example, for the Lore explanation a
user can understand that their risk depends on the fact that she travelled more
than 0.09 km (Dmax), their home location is visited by less than 1772 distinct
users, and their work location is not enough popular in the data. This reasoning
is not supported by the Shap result. After the local explanation evaluation, we
also performed a comparative analysis of global feature importance among all
the ML models (Table 5). An interesting result is that the number of locations
(Locs) is the most important feature for LR, DT and GC, while for RF it is in
the second position. Moreover, LR is the only one which considers the entropy
of locations (home and work) as important features.
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Table 5. Global top-5 most important features of machine learning models.

DT LR RF GC

Locs (0.45) Locs (0.35) Dsum (0.15) Locs (0.07)

Dmax (0.10) Ehome (0.14) Locs (0.13) Uwork (0.04)

Uwork (0.06) Ework (0.12) Locsratio (0.08) Locsratio (0.03)

Dsum (0.06) Wwork (0.10) Dsum (0.07) Uhome (0.03)

Uhome (0.06) Dsum (0.08) Uwork (0.07) Dtrip
max (0.02)

6 Conclusions

We have presented expert, a framework for predicting and explaining users’
privacy risk associated to the analysis of mobility data. expert exploits ML
techniques that are suitable to handle extra-imbalanced data and local explain-
ers to provide users with meaningful explanations about the predicted privacy
risk. The empirical evaluation of expert using real-world data demonstrate its
effectiveness in predicting privacy risk and in increasing users’ self-awareness
in relation to potentially risky mobility behavior. The main limitation of the
framework is that it requires domain expertise for extracting users’ profiles for
the prediction. Our future research agenda includes the substantiation of the pre-
diction module by a ML model that does not require the extraction of mobility
features. This work could also be extended to generic sequential data.
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(Grant Id 952026).
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Abstract. We focus on a class of link injection problem of spatial network, i.e.,
finding best places to construct k new roads that save as many people as possible
in a time-critical emergency situation. We quantify the network performance by
node coverage under the presence of time constraint and propose an efficient
algorithm that maximizes the marginal gain by use of lazy evaluation making
the best of time constraint. We apply our algorithm to three problem scenarios
(disaster evacuation, ambulance call, fire engine dispatch) using real-world road
network and geographical information of actual facilities and demonstrate that 1)
use of lazy evaluation can achieve nearly two orders of magnitude reduction of
computation time compared with the straightforward approach and 2) the location
of new roads is intuitively explainable and reasonable.

1 Introduction

There is pressing need for understanding the structure and functions of large complex
networks in many different fields of science such as sociology, biology, physics and
computer science [20] as we challenge to optimize complex systems be they physical
or cyber. One common approach to analyze large complex networks is investigating
their characteristics through a measure called centrality. Various kinds of centralities
are proposed and used according to our objectives. For example, if our goal is to know
the topological characteristics of a network, degree, closeness, and betweenness cen-
tralities [14] are the candidates. If it is to know the importance of nodes that constitute
a network, HITS [6] and PageRank [4] centralities are the candidates. Influence degree
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centrality [17] is yet another one to measure the importance of nodes. Traditionally cen-
trality measures have been applied to individual nodes, whereas a notion of group cen-
tralities have been proposed [12] to cope with situations such as information diffusion
from multiple source nodes over a social network and emergency escape to evacuation
facilities over a spatial network. It is natural to consider a group of nodes instead of
individual nodes in such situations.

We address the problem of injecting k new links in a spatial network under a time
critical situation setting and propose a new group centrality called time-bounded group
link-injection centrality that can be maximized to solve this problem. This is similar
to the problem of identifying critical links where the focus is to identify links that are
already there in a network [1,16,29,30,32]. A critical link in a network is such a link
that exerts a substantial effect on the network performance when the link fails to func-
tion properly. Thus, given a network structure and a performance measure, critical links
can be found by solving the corresponding optimization problem of finding a link such
that its blocking maximally degrades the network performance. Saito et al. [31] adopted
as the performance measure the marginal loss of group closeness centrality when they
are blocked under the constraint of time-bound. Our problem, on the other hand, is
link injection where the task is to find a new link (or more generally k new links) that, if
added, maximally increases the network performance. So far, link injection problem has
been also explored from various angles [10,22,25,27,28]. Among them, closest to our
work is Ohara et al. [22]. They consider the marginal gain of group closeness centrality
with actual link distance under the constraint of the length of links to be added.

Our problem here is different from [22,31] in that we impose the time bound con-
straint in link injection problem. The network performance is measured by the weighted
sum of nodes that are reachable to the target nodes (group of nodes) within the given
time-bound, i.e., we are maximizing the network coverage. As mentioned earlier we
focus on time critical situations. We assume that each node in the network represents
the population around it, the traveling time (or the real distance) is assigned to each link,
and there exists a set of target nodes. One such example of time critical situations is dis-
aster evacuation we consider in this paper, in which case, the target nodesU consists of
the evacuation facilities, and people living in the neighborhood of a node v evacuate to
the facility u ∈ U nearest to v. Most importantly there is a time limit set to each case.
Then, the measure to be maximized, that is, the marginal gain of the weighted sum of
nodes corresponds to the number of people who become able to escape to one of the
facilities within the maximum permissible time when a link is injected. This measure
is referred to as time-bounded group link-injection centrality, a new centrality proposed
in this work. We note that the gain is attained only when a node that is not reachable
to u ∈ U due to the time constraint before link injection becomes reachable after the
injection. This motivated us to devise a very efficient algorithm that prunes unnecessary
search by estimating the upper limits of reachable nodes from every single node first
and use them later (lazy evaluation). We apply our algorithm to three emergency prob-
lem scenarios (disaster evacuation, ambulance call, and fire engine dispatch) in Tokyo
area using the real road network and the geographical information of actual facilities
and demonstrate that 1) use of lazy evaluation can achieve nearly two orders of magni-
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tude reduction of computation time compared with the straightforward approach and 2)
the location of new roads is intuitively explainable and reasonable.

The paper is organized as follows. After briefly describing the related work in
Sect. 2, we mathematically formulate our link injection problem in Sect. 3. We present
the proposed method in Sect. 4, and report the experimental results in Sect. 5. We give
our conclusion in Sect. 6.

2 Related Work

The problem we pose in this paper is related to defining a new centrality measure
for complex networks. Many centrality measures have been introduced to quantify the
importance of each node or link in a network [3]. As the size of a network is increasing,
it gets more difficult to compute centrality measures that have to be derived using global
network structure (e.g., closeness centrality). Thus, several approximation approaches
have been proposed to compute such centrality measures for a huge network [2,8,9].
Unlike those studies, we focus on exactly computing our new centrality measure. Time-
bound constraint and an efficient search algorithm have made this possible. Thus, there
is no need to evaluate the approximation error.

In this paper, we especially give a new centrality measure defined for links. Grady
et al. [15] presented the notion of link salience as a link centrality measure to find
a network’s skeleton by improving link betweenness centrality, and Fang et al. [13]
examined link capacity allocation methods under limited investment costs to prevent
cascading failures for power transmission networks. Moreover, a problem of finding
critical links in a network was addressed in various scenarios [1,33], and several detec-
tion algorithms have been proposed to solve the problem [16,29,30,32]. In particular,
Saito et al. [31] defined the concept of time-bounded criticalness centrality as a link cen-
trality measure for spatial networks, and presented an effective method of identifying
the critical links. Unlike those critical link detection problems, we tackle a link injec-
tion problem in this paper. We also note that although our new centrality measure can be
regarded as a kind of vitality index [18] in centrality indices of complex networks, it is
completely different from the original one. In fact, our centrality definition requires not
only network topology but also the notions of traveling time and time bound constraint.

Link injection problem, that is, a problem of finding appropriate k new links to inject
into a network for improving network performance has also been tackled from various
angles. Aiming to minimize the average shortest path distance over all pairs of nodes in
a network, a problem of discovering optimal k new shortcut links was investigated [25,
27]. Crescenzi et al. [10] and Parotsidis et al. [28] dealt with the problem of selecting
k new links to be added into a network for maximizing the closeness centrality of a
specific node. A problem of promoting information diffusion in a social network by
creating new links was explored [7,34]. Unlike our problem, these studies neither were
intended to a spatial network with geodesic distance between nodes nor have taken
group centrality into account. Ohara et al. [22] examined the problem of creating k new
links satisfying a length constraint in order to maximize the gain of the group closeness
centrality in a spatial network with actual link distance. As described in Sect. 1, our
problem is mainly different from their problem in terms of the objective function to
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evaluate network performance. In addition, they do not consider time constraint. To the
best of our knowledge, our work is the first to address the problem of creating new links
for maximizing the time-bounded group link-injection centrality in a spatial network.

Our problem is also related to analyzing and characterizing the structure and func-
tions of large spatial networks such as urban streets. Conventional centrality measures
were often utilized [11,26] to investigate the structural properties of road networks.
Montis et al. [19], Opsahl et al. [24] and Ohara et al. [21] extended use of the con-
ventional centrality measures and explored weighted spatial networks based on road
usage frequency and real distance for urban streets. From functional points of view,
traffic usage patterns in urban streets were widely examined [5,35]. Also, using a trans-
portation simulation software, the vulnerability of a road network was investigated [23].
Unlike these existing investigations, we focus on realistic emergency situations, and aim
at improving the structure and functions of spatial road networks by newly introducing
the concept of time-bounded group link-injection centrality.

3 Problem Formulation

Let G = (V,E) be a given simple connected, undirected (or bidirectional) network
without self-loops, where V = {v,w, x, · · · } and E = {e, · · · } are sets of nodes and
undirected links, respectively. We also express each link e as a pair of nodes, i.e., e =
(v,w). For each link e = (v,w) ∈ E, we assign its traveling time t(v,w;G) between these
nodes. For each pair of nodes that does not have the direct connection, i.e., (v, x) � E,
we define its traveling time t(v, x;G) by the minimum traveling time over all possible
paths between them.

In our problem setting, we assume a fixed group of nodesU ⊂ V such as evacuation
facilities, emergency hospitals or fire stations on a road network. Here, for each node
v ∈ V, we can compute the minimum traveling time f (v;U,G) between v and some
node w ∈ U as follows:

f (v;U,G) = min
w∈U

t(v,w;G). (1)

For each node v ∈ V, we assume that v has some weight denoted by ρ(v), which is
intended to represent the number of residences or houses around node v in a road net-
work. Then, the following group closeness centrality measure for minimizing the aver-
age arrival time has been proposed and studied by Ohara et al. [22]

g̃(U;G) =
∑

v∈V
f (v;U,G)ρ(v). (2)

and they investigated the problem of injecting k new links to minimize g̃(U;G).
Now, in case of a disaster such as tsunami right after a large-scale earthquake, people

living in the flooded area must evacuate to some facility before the time of tsunami
arrival. Let τ be such a maximum permissible time, and then we propose the following
cover-based group closeness centrality measure with time-bound τ for maximizing the
weighted sum of nodes whose traveling times from/to some facility are less than a
maximum permissible time.

g(U;G, τ) =
∑

{v∈V | f (v;U,G)≤τ}
ρ(v). (3)



Maximizing Network Coverage Under the Presence of Time Constraint 425

For a given time-bound τ, we compute the ratios of uncovered nodes and weight as
1 − |{v ∈ V | f (v;U,G) ≤ τ}|/|V| and 1 − g(U;G, τ)/

∑
v∈V ρ(v), respectively.

For each graph G, let G({e}) be a graph constructed by injecting a link e = (v,w),
i.e., G({e}) = (V,E ∪ {e}). Here we assume that the traveling time for a new link t(v,w)
can be computed from their locations. Then, we can define the following marginal gain
of injecting a link e ∈ H over G, whereH = {e = (v,w) ∈ (V ×V) \ E | v � w}.

h(e;U,G, τ) = g(U;G({e}), τ) − g(U;G, τ). (4)

Note that the value h(e;U,G, τ) can be interpreted as the weighted sum of nodes, i.e.,
people, who become able to move to one of these evacuation facilities within the maxi-
mum permissible time when a link e is injected in case of evacuation scenario. Similar
interpretation is possible for other scenarios. Hereafter, the measure defined in Eq. (4)
is referred to as time-bounded link-injection centrality.

Let G(R) = (V,E ∪ R) be the network constructed by newly injecting a set of links
R ⊂ H to the original network G. The number of links to be injected is set to k, i.e.,
|R| = k. Then, we can define the following marginal gain based on our time-bounded
link-injection centrality h(e;U,G, τ) as our objective function to be maximized with
respect to R:

h(R;U,G, τ) = g(U;G(R), τ) − g(U;G, τ). (5)

Then, based on Eq. (5), our time-bounded k-links injection problem is formulated as
the problem of finding the following optimal set of new links denoted by R∗:

R∗ = argmax
R⊂H , |R|=k

h(R;U,G, τ). (6)

Here note that the time constraint effectively imposes the constraint on the length of the
roads to be injected which was considered in [22]. Hereafter, the measure defined in
Eq. (5) is referred to as time-bounded group link-injection centrality.

4 Proposed Method

For a given spatial networkG = (V,E) with a weight ρ(v) and location for each node v ∈
V and a traveling time t(v, y;G) for each link (v, y) ∈ E, together with a fixed group of
nodesU ⊂ V and a maximum permissible time τ, we describe our proposed algorithm
for efficiently computing the link ê ∈ H which maximizes the time-bounded link-
injection centrality value h(e; τ,U,G) defined in Eq. (4). Then, we can easily obtain
a reasonably good solution R for our time-bounded k-links injection problem by the
following greedy algorithm.

G1: Initialize R ← ∅ and j← 0.
G2: Compute ê = argmaxe∈H\R h(e;U,G(R), τ), and set R ← R∪{e} and j← j+1.
G3: Go to G2 if j < k; otherwise output the set of k-links R and then terminate.

Evidently, for this basic algorithm, we can improve the quality of solutions by introduc-
ing some techniques such as local improvement.
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In order to compute the best link ê which maximizes the centrality value
h(e;U,G, τ), among all links e ∈ H , we consider injecting a link denoted by e =
(u(y), y). Here, as studied by Ohara et al. [22], by selecting the parent node of y as

u(y) = argmin
v∈V

{ f (v;U,G) + t(v, y)}, (7)

we can maximize the gain with respect to the descendant nodes of y obtained by the
best-first search described below, in terms of the maximum reduction of the minimum
traveling times after injecting the link e = (u(y), y). Note that we obtain a positive
gain ρ(z) for some node z in case that f (z;U,G) > τ and f (z;U,G({(u(y), y)})) < τ.
Hereafter, we denote the centrality value with respect to each node y ∈ V \ U as

ψ(y) = h((u(y), y);U,G({(u(y), y)}), τ), (8)

In this paper, based on the best-first search strategy, we propose our algorithm consisting
of the following three steps:

S1: Compute the minimum traveling time f (v;U,G) for every node v ∈ V;
S2: Compute the upper bound value φ(y) of ψ(y) for every node y ∈ V \ U;
S3: Compute the node ŷ which maximizes the centrality value ψ(y) based on a lazy
evaluation technique, and output the best link as ê = (u(ŷ), ŷ).

Below we describe the details of these three steps.
For a subset of nodesW ⊂ V, let I(W) be a set of incident links fromW, i.e.,

I(W) = {(w, x) ∈ E | w ∈ W, x � W}. Then, as the first step S1, we compute the
minimum traveling time f (v;U,G) for every node v ∈ V as follows.

S1-1: InitializeW←U and f (w;U,G)← 0 for each w ∈ U.
S1-2: Select the best-first link (ŵ, x̂) ← argmin(w,x)∈I(W){ f (w;U,G) + t(w, x;G)},
and set μ← f (ŵ;U,G) + t(ŵ, x̂;G).
S1-3: SetW←W∪ {x̂} and f (x̂;U,G)← μ.
S1-4: Go to S1-2 ifW � V; otherwise output f (v;U,G) for every node v ∈ V and
then terminate.

Here note that after obtaining f (v;U,G) for every v ∈ V, we can easily compute our
cover-based group closeness centrality measure with time-bound τ defined in Eq. (3).

Let Z = {z ∈ V | f (z;U,G) > τ ∧ ρ(z) > 0} be the set of uncovered nodes with
positive weight. In order to obtain a positive gain by injecting a link e = (u(y), y), the
traveling time from y to z ∈ Zmust be smaller than τ. Therefore, as the second step S2,
we consider computing the upper bound value φ(y) of ψ(y) for every node y ∈ V\U as
follows.

S2-0: Initialize φ(y)← 0 for every y ∈ V \U and after iterating the following steps for
every z ∈ Z, output φ(y) for y ∈ V \ U.

S2-1: InitializeW← {z}, f (z; {z},G)← 0, and φ(z)← φ(z) + ρ(z).
S2-2: Select the best-first link (ŵ, x̂) ← argmin(w,x)∈I(W){ f (w; {z},G) + t(w, x;G)}, and

set μ← f (ŵ; {z},G) + t(ŵ, x̂;G).
S2-3: Terminate z’s iteration if μ > τ,



Maximizing Network Coverage Under the Presence of Time Constraint 427

Upper bound value of each node

Fig. 1. An example of spatial network having 4 uncovered nodes (red nodes) in the case of τ = 4
and upper bound values of each node.

S2-4: SetW←W∪ {x̂}, f (x̂; {z},G)← μ, φ(x̂)← φ(x̂) + ρ(z) and go to S2-2.

Here note that in case of general and practical problem settings, we can assume |Z| �
|V| and generally expect that this step works with small amount of computation.

Let Y = {y1, · · · , yM} be a set of indexed nodes arranged according to their upper
bound values, i.e., φ(yi) ≥ φ(yi+1) for 1 ≤ i < M, where M = |{yi}| for φ(yi) > 0.
Then, based on the idea of lazy evaluation, during our iteration from i = 1 to M, it
is guaranteed that at the i-th step, the current best node ŷ is the optimal one when
satisfying ψ(ŷ) > φ(yi). Here, for an injection candidate link e ∈ H , let J(W; e) be a
set of incident links fromW whose adjacent nodes have improved traveling times, i.e.,
J(W; e) = {(w, x) ∈ I(W) | f (x;U,G({e})) < f (x;U,G)}. Then, as the third step S3,
we compute the node ŷ which maximizes the centrality value ψ(y) as follows.

S3-0: Initialize ψ(ŷ) ← 0, iterate the following steps from i ← 1 to M while ψ(ŷ) <
φ(yi), and then output ê = (u(ŷ), ŷ).

S3-1: Initialize W ← {yi}, e = (u(yi), yi), f (yi;U,G({e})) ← f (u(yi);U,G) +
t(u(yi), yi), and ψ(yi) ← ρ(yi) if f (yi;U,G) > τ and f (yi;U,G({e})) ≤ τ; other-
wise ψ(yi)← 0.

S3-2: Terminate yi’s iteration if J(W; e) = ∅; otherwise select the best-first
link (ŵ, x̂) ← argmin(w,x)∈J(W;e){ f (w;U,G({e})) + t(w, x;G)}, and set μ ←
f (ŵ;U,G({e})) + t(ŵ, x̂;G).

S3-3: Terminate yi’s iteration if μ > τ,
S3-4: SetW←W∪{x̂}, f (x̂;U,G({e}))← μ, ψ(yi)← ψ(yi)+ ρ(x̂) if f (x̂;U,G) > τ,

ŷ← yi if ψ(yi) > ψ(ŷ), and go to S3-2.

For example, suppose the spatial network shown in Fig. 1 is given, in which the number
assigned to each link is the traveling time between its two terminal nodes and U =
{u1, u2}. We assume ρ(v) = 1 for every node v for simplicity. In this case, we can find
nodes v6, v14, v15, and v17 are not reachable from any of u1 and u2 when τ = 4. For
every node other than u1 and u2, according to S2-1 to S2-4, we can obtain the upper
bound values shown in Fig. 1. Based on these values, we first apply steps S3-1 to S3-
4 to v11 and obtain ψ(v11) = 1 by injecting a new link (u1, v11) whose traveling time
is
√
8 ≈ 2.83. As ψ(v11) < φ(v14) holds, we apply these steps to v14, which results

in ψ(v14) = 3 due to a new link (u2, v14) with traveling time of
√
5 ≈ 2.24. Since

ψ(v14) < φ(v15) does not hold, we do not have to consider the remaining nodes any
more, and can prune further steps for them. Note that node v6 will be covered if k > 1.
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As the novel characteristics, our proposed algorithm employs the lazy evaluation
technique based on the upper bounds of actual centrality values. In contrast, by straight-
forwardly adopting the method proposed by Ohara et al. [22], we can obtain a conven-
tional method without lazy evaluation as follows.

C1: Compute the minimum traveling time f (v;U,G) for every node v ∈ V by
performing the steps from S1-1 to S1-4.
C2: Compute the node ŷ which maximizes the centrality value ψ(y) by performing
the steps from S3-1 to S3-4 for every y ∈ Y, and output the best link as ê = (u(ŷ), ŷ).

Evidently, the efficiency of our proposed algorithm in comparison to the above conven-
tional method is affected by several factors including the maximum permissible time τ,
the number of nodes inU and so on. Thus, we evaluate the performance of our proposed
algorithm in our computational experiments.

5 Experiments

Using real data of road network G = (V,E) and facilities U, we evaluated the effec-
tiveness of the proposed algorithm.

5.1 Experimental Settings

In our experiments, we used the actual road network of Tokyo in Japan as G = (V,E),
and considered three different realistic scenarios, i.e., disaster evacuation, ambulance
call, and fire engine dispatch, as studied by Saito et al. [31]. Below we briefly describe
the experimental settings for the sake of readers’ convenience. The spatial road network
of Tokyo was extracted from the Open Street Map data1, i.e., the spatial network was
constructed by regarding the ends, intersections, and curve-fitting-points as nodes and
the streets between them as links. The resulting network consists of |V| = 6, 571, 077
nodes and |E| = 7, 312, 007 links. As for the facilitiesU of each scenario, geographical
information about evacuation facilities, emergency hospitals and fire stations was gath-
ered from the site of National Land Information Division of Ministry of Land, Infras-
tructure, Transport and Tourism (MLIT) of Japan2, respectively, and each of these facil-
ities was mapped to the nearest node in the spatial network. The numbers of evacuation
facilities, emergency hospitals, and fire engines are 3, 919, 55, and 318, respectively.
Further, it is assumed that a person moves at 1m per second (3.6 km/h) on foot in the
case of disaster evacuation, and that both an ambulance and a fire engine move at 10m
per second (36 km/h). Each traveling time t(v,w;G) was computed by dividing the dis-
tance dist(v,w) by the velocity corresponding to each scenario for each link (v,w) ∈ E.
Here it should be emphasized that we can arbitrary change t(v,w;G) according to the
other conditions such as road width. Weight ρ(v) setting of each node was determined
by using the 2015 census population aggregation data 3. More specifically, for a given
population number n of each small region containing a subset of nodes X ⊂ V, the
average number ρ(v) = n/|X| was assigned to each node v ∈ X as its weight.

1 https://openstreetmap.jp/.
2 http://nlftp.mlit.go.jp/ksj-e/index.html.
3 https://www.e-stat.go.jp/gis/.

https://openstreetmap.jp/
http://nlftp.mlit.go.jp/ksj-e/index.html
https://www.e-stat.go.jp/gis/


Maximizing Network Coverage Under the Presence of Time Constraint 429

10 15 20 25 30
time-bound (min.)

10-6

10-4

10-2

100
ra

tio
 o

f u
nc

ov
er

ed
 n

od
es

 / 
w

ei
gh

t

node
weight

(a) Evacuation facilities

10 15 20 25 30
time-bound (min.)

10-6

10-4

10-2

100

ra
tio

 o
f u

nc
ov

er
ed

 n
od

es
 / 

w
ei

gh
t

node
weight

(b) Emergency hospitals

10 15 20 25 30
time-bound (min.)

10-6

10-4

10-2

100

ra
tio

 o
f u

nc
ov

er
ed

 n
od

es
 / 

w
ei

gh
t

node
weight

(c) Fire stations

Fig. 2. The ratios of uncovered nodes and weight as a function of maximum permissible time.

As basic characteristics of our three scenarios, we investigated the ratios of uncov-
ered nodes and weight defined in Sect. 3, i.e., 1 − |{v ∈ V | f (v;U,G) ≤ τ}|/|V| and
1 − g(U;G, τ)/

∑
v∈V ρ(v). Figure 2 shows the experimental results, where Figs. 2(a),

2(b), and 2(c) are cases using evacuation facilities, emergency hospitals, and fire sta-
tions asU, respectively. In this investigation, we varied the maximum permissible time
τ from 10 (min.) to 30 (min.) by 5 (min.). From these results, we can observe that both
the ratios of uncovered nodes and weight monotonically decrease as the maximum per-
missible time τ becomes longer. For all the cases, we can see that the ratios of uncovered
weight are substantially smaller than those of uncovered nodes although the degree of
difference depends on the problems and settings of the maximum permissible times.
The ratios of uncovered nodes and weight for τ = 10 are more than 0.1 in Fig. 2(a).
This is because we assumed that a person moves at 1m per second (60m per minute)
on foot in the scenario of disaster evacuation, and thus, it is difficult for some people
to reach the nearest evacuation facility within 10min. This difficulty is alleviated by
setting τ to a larger value. However, even in case of τ = 30, we still have room to
improve the ratio of uncovered weight by injecting effective links. Similar tendency can
be observed in the cases of ambulance call and fire engine dispatch in Figs. 2(b) and
2(c), where we assumed that both an ambulance and a fire engine move at 10m per
second (600m per minute). But, we note that the ratios of uncovered weight for these
scenarios when τ = 10 are quite different, more than 0.1 for ambulance call as shown in
Fig. 2(b) and about 0.001 for fire engine dispatch as shown in Fig. 2(c), which comes
from the difference in the number of facilities, i.e., 55 for emergency hospitals and 318
for fire stations. Thus, the situation becomes more critical for the time limitation of
10min in case of ambulance call. Further notable difference we see is that the ratios of
uncovered weight for fire engine dispatch are much smaller than those for the other sce-
narios for larger values of the maximum permissible time τ. We will show this reason
in our later experiment.

5.2 Experimental Results

First, we evaluated the computational efficiency of our proposed algorithm with the lazy
evaluation technique, in comparison to the conventional method constructed by straight-
forwardly adopting the method proposed by Ohara et al. [22], which is described in the
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Fig. 3. Evaluation of computational efficiency as a function of maximum permissible time.

previous section. For this purpose, we focused on the processing time to compute the
optimal injection link ê ∈ V × V \ E according to the marginal gain h(e;U,G, τ)
defined in Eq. (4). Recall that ê thus chosen is the best link in terms of time-bounded
link-injection centrality. The programs to compute the best link ê were implemented
in C and run on a computer with a single thread (Xeon X5690 3.47GHz CPUs) with a
192GB main memory capacity. Figure 3 shows the resultant processing time (seconds),
where Figs. 3(a), 3(b), and 3(c) are cases using evacuation facilities, emergency hospi-
tals, and fire stations as U, respectively. In this experiment, we also varied the maxi-
mum permissible time τ from 10 (min.) to 30 (min.) by 5 (min.). From these results, we
can see that for most of our experimental settings, the proposed method works about 2
orders of magnitude faster than the conventional method. Namely, these results support
that our proposed lazy evaluation technique works practically effective.

More specifically, we can see that the processing time of the conventional method
for each scenario slightly increases as the maximum permissible time τ gets longer. It
should be noted that the computational complexity of performing the steps from S3-1
to S3-4 can be roughly approximated by O(|W̃(τ)|), where |W̃(τ)| stands for the size of
the final node setW when this iteration terminates. Thus, the above observation can be
naturally explained by the fact that the size |W̃(τ)| slightly increases as the maximum
permissible time τ gets longer. Moreover, noting that |W̃(τ)| is roughly regarded to be
the size of the descendant nodes of best-first search from some starting node, the size
|W̃(τ)| becomes smaller as the number of facilities |U| gets larger. Actually, from Fig. 3,
we can see that relatively larger computation times are required for emergency hospi-
tals, but relatively smaller ones for evacuation facilities, where recall that the numbers
of evacuation facilities, emergency hospitals, and fire engines are 3, 919, 55, and 318,
respectively. In contrast, we can see that the processing time of the proposed method for
each scenario substantially decreases as the maximum permissible time τ gets longer. It
should be noted that we can naturally suppose that these processing times decrease as
the size of uncovered nodes |Z| decreases. In fact, we can find that the uncovered ratios
shown in Fig. 2 somewhat correlate to the processing times of the proposed method
shown in Fig. 3.

Second, we investigated how much the network coverage improves by varying the
maximum permissible time τ and the number k of links to be injected. Figure 4 shows
the experimental results, in which the marginal gain h(R;U,G, τ) defined in Eq. (5)
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Fig. 4. Evaluation of time-bounded group link-injection centrality as a function of the number of
links to be injected.

with respect to the number k of links to be injected by varying from k = 1 to 10 are
depicted. Here, we plotted the case that the maximum permissible time τ is set to τ = 10,
τ = 20 or τ = 30 in each figure. Recall that this gain is also referred to as time-bounded
group link-injection centrality. From these results, we can see that the centrality values
for each scenario steadily increase as the number k of injected links gets larger. On the
other hand, the difference in the value of the objective function between the different
values of maximum permissible times τ depends on the scenario, i.e., quite small for all
the settings in the case of disaster evacuation, substantially large only between τ = 10
and τ = 20 in the case of ambulance call, and substantially large for all the settings
in the case of fire engine dispatch. Here we should note that these tendencies basically
coincide with those for the improvement ratios of uncovered weight shown in Fig. 2,
which is explained later in Table 1.

Third, we investigated how differently the injected links in each scenario are dis-
tributed. To this end, we marked them on an actual map of Tokyo as shown in Fig. 5,
namely, we plotted each node u ∈ U corresponding to the location of each facility as a
star shaped marker, and then depicted each node y ∈ V obtained as e = (u(y), y) ∈ R as a
red position marker. We show our results for each scenario of disaster evacuation, ambu-
lance call, and fire engine dispatch with the maximum permissible time set to τ = 10
in Figs. 5(a), 5(c) and 5(e), and those with the maximum permissible time set to τ = 30
in Figs. 5(b), 5(d), and 5(f), respectively, where the number of links to be injected was
set to k = 10. From these figures, we can see a tendency that the injected link positions
move from the city area (east) to the mountain region (west), especially for scenarios
of ambulance call and fire engine dispatch. Here note that the distance corresponding
to the maximum permissible time τ = 30 is 1.8 km on foot in the scenario of disaster
evacuation, and 18 km by vehicle in the scenario of ambulance call or fire engine dis-
patch, where the east-west and north-south distances of Tokyo are roughly 100km and
25km, respectively. Thus, from Fig. 5(b), we can see that the injected link positions are
located not so far from those of evacuation facilities even in case of τ = 30. In contrast,
from Figs. 5(d) and 5(f), we can see that most of the injected link positions are located
substantially far from those of evacuation facilities in case of τ = 30. Notably, they are
located in a quite far-west mountain region in the case of fire engine dispatch because
there exist only a few fire stations in the mountain region, as shown in Figs. 5(f). This
fact can explain that both the ratio of uncovered weight and the network coverage are
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(a) Evacuation facilities ( 10) (b) Evacuation facilities ( 30)

(c) Emergency hospitals ( 10) (d) Emergency hospitals ( 30)

(e) Fire stations ( 10) (f) Fire stations ( 30)

Fig. 5. Actual locations of the injected links (k = 10).

substantially improved only for the case of fire engine dispatch, as shown in Figs. 2(c)
and 4(c).

Finally, we further discuss our findings reported separately above. We showed that
the time-bounded group link-injection centrality is a new centrality that can effectively
be applied to three different problem scenarios: disaster evacuation, ambulance call, fire
engine dispatch. The improvement in the coverage differs from problem to problem as
shown in Table 1, which summarizes the ratio of uncovered weight (uncovered), the
ratio of covered weight by link injection (covered+), and the improved ratio defined
as covered+/uncovered (improved) in the cases of τ = 10, 20, 30 and k = 1, 2. To
get a rough idea we focus on the case of τ = 30 and k = 10. The population of
Tokyo is about 13, 500, 000. Under these settings the number of people uncovered is ini-
tially 91, 000, 6, 900 and 74 for disaster evacuation, ambulance call and fire engine dis-
patch, respectively. The corresponding number of people newly covered by link injec-
tion (road constructions) is 16, 400, 2, 400 and 74, respectively. These amount to the
improvement of 18%, 35% and 100%, respectively. It is understandable that the amount
of improvement is smallest for disaster evacuation because there are already many
evacuation facilities and the distance people can walk is limited. On the other hand,
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Table 1. The ratio of uncovered weight (uncovered), the ratio of covered weight by link injection
(covered+), and the improved ratio defined as covered+/uncovered (improved) in the case of
varying τ = 10, 20, 30 for each scenario in the cases of k = 1 and k = 10. (%)

τ
k = 1 k = 10

Uncovered Covered+ Improved Uncovered Covered+ Improved

Evacuation facilities 10 15.5939 0.0444 0.2850 15.5939 0.2414 1.5481

20 1.8222 0.0183 1.0063 1.8222 0.1435 7.8762

30 0.6767 0.0191 2.8228 0.6767 0.1213 17.9219

Emergency hospitals 10 12.0646 0.2322 1.9246 12.0646 1.4717 12.1982

20 0.1019 0.0114 11.1957 0.1019 0.0248 24.2979

30 0.0508 0.0048 9.4518 0.0508 0.0179 35.1508

Fire stations 10 0.1585 0.0142 8.9468 0.1585 0.0588 37.1164

20 0.0082 0.0027 32.3497 0.0082 0.0068 83.2203

30 0.0005 0.0003 48.5574 0.0005 0.0005 100.0000

the amount of improvement is largest for fire engine dispatch and 100% is covered.
This is because the number of fire stations in the mountain region is small and link
injection in these region is very effective. The improvement is in between for hospital
call. This is attributed to the fact that the number of emergency hospitals is far smaller
than the number of fire stations, especially in the mountain region. The drop of uncov-
ered weight ratio in Fig. 2(b) from τ = 15 to τ = 20 is also caused by the shortage of the
emergency hospitals. There are areas of dense population that are not reachable from
the nearest hospitals within τ = 15 but reachable within τ = 20. Overall, we confirm
that the proposed method can inject links in appropriate locations in reasonable time if
the target facilities are appropriately located. We note that the population density ρ is
sensitive in the results. The current method uses average density for local regions and
its estimate needs improvement for large local regions that have to be represented by
small number of nodes.

6 Conclusion

In this paper, we addressed the problem of injecting k new links in a spatial network so
that they can improve the network performance measured by the weighted sum of nodes
reachable to one of target nodes within the given time-bound. To solve this problem, we
proposed a new group centrality called time-bounded group link-injection centrality,
which is defined as the marginal gain of the network performance obtained by injecting
k new links, and we devised an efficient algorithm to solve the optimization problem that
can maximize the proposed group centrality, i.e., can maximize the node coverage. The
proposed algorithm fully utilizes the time-bound to prune the search space consisting
of potential links based on the lazy evaluation technique. Through the empirical evalua-
tion using a real road network and three kinds of facility locations each corresponding to
actual time-critical problem scenarios, that is, disaster evacuation, ambulance call, and
fire engine dispatch, we demonstrated that the proposed algorithm can achieve nearly
two orders of magnitude reduction of computation time compared with the straightfor-
ward algorithm and the resulting location of new links (roads) is intuitively explainable



434 K. Ohara et al.

and reasonable. The amount of improvement in the network performance, that is, the
coverage of nodes by injecting k new links depends on the problem in hand. To further
improve it and solve actual time-critical problems such as disaster evacuation by opti-
mally allocating urban resources, it would be valuable to solve not only link injection,
but also critical node identification in a cooperative way. This is one of our immediate
future work.

Acknowledgments. This material is based upon work supported by JSPS Grant-in-Aid for Sci-
entific Research (C) (No. 20K11940).
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Abstract. We consider the discovery of future research collaborations as a link
prediction problem applied on scientific knowledge graphs. Our approach inte-
grates into a single knowledge graph both structured and unstructured textual data
through a novel representation of multiple scientific documents. The Neo4j graph
database is used for the representation of the proposed scientific knowledge graph.
For the implementation of our approach,we use the Python programming language
and the scikit-learn ML library. We benchmark our approach against classical link
prediction algorithms using accuracy, recall, and precision as our performance
metrics. Our initial experimentations demonstrate a significant improvement of
the accuracy of the future collaboration prediction task. The experimentations
reported in this paper use the new COVID-19 Open Research Dataset.

Keywords: Link prediction · Research knowledge graphs · Natural language
processing · Document representation · Future research collaborations

1 Introduction

In recent years, we havewitnessed an increase in the adoption of graph-based approaches
for predicting future research collaborations (Nathani et al. 2019; Vahdati et al. 2018).
In these approaches, a collaboration between two researchers is generally denoted by
a scientific article written by them (Ponomariov and Boardman 2016). Graph-based
approaches (particularly those concerning knowledge graphs) build on concepts and
methods from graph theory (e.g. node centrality, link prediction and node similarity
measures) to discover hidden knowledge from the structural characteristics of the cor-
responding research graph (Wang et al. 2017). However, despite their broad adoption,
existing graph-based approaches aiming to discover future research collaborations uti-
lize only the structural characteristics of a research graph (Veira et al. 2019). In cases
where unstructured textual data is available (e.g. graph nodes that correspond to scien-
tific articles), existing approaches are incapable of simultaneously exploiting both the
structural and the textual information of the graph.
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To remedy the above weakness, this paper proposes the construction and utilization
of a scientific knowledge graph where structured and unstructured data co-exist (e.g.
document, author and word nodes). Building on our previous work, we represent the
documents of a scientific graph as a graph-of -docs (Giarelis et al. 2020a; Giarelis et al.
2020b). This enables us to exploit both the structural and textual characteristics of a
research graph towards building a novel link prediction algorithm for discovering future
collaborations. The proposed approach uses the Neo4j graph database (https://neo4j.
com) for the representation of the knowledge graph. For the implementation of our
experiments, we use the Python programming language and the scikit-learn ML library
(https://scikit-learn.org).

To evaluate the outcome of this paper, we benchmark our approach against different
combinations of link prediction measures, which utilize only the structural information
of a research graph. Our performancemetrics include the accuracy, the precision, and the
recall for each of the Machine Learning (ML) models considered. For our experiments,
we use the COVID-19 Open Research Dataset (CORD-19). To examine whether our
approach is affected by the size of the dataset (e.g. overfits or underfits), we extract
and consider nine different well-balanced datasets. The experimental results show a
significant improvement of the accuracy of the link prediction problem.

The remainder of the paper is organized as follows. Section 2 introduces background
concepts and related work. Our approach is thoroughly presented in Sect. 3. Section 4
reports on the experiments carried out to evaluate the proposed approach. Limitations
of our approach, future work directions and concluding remarks are outlined in Sect. 5.

2 Background Issues

For the discovery of future research collaborations, the proposed approach exploits a
set of natural language processing (NLP), graph-based text representation, graph theory
and knowledge graph techniques.

2.1 Graph Measures and Indices

Diverse graph measures and indices to capture knowledge related to the structural char-
acteristics of a graph have been proposed in the literature (Vathy-Fogarassy and Abonyi
2013). Below, we mention a small subset of them, which is used in our approach.

The Common Neighbors measure, denoted by CN(a, b), calculates the number of
nodes that are common neighbors for a pair of nodes a and b (Li et al. 2018). It is defined
as:

CN (a, b) = |Γ (a) ∩ Γ (b)| (1)

where Γ (x) denotes the set of neighbors of a node x.
The Total Neighbors measure, denoted by TN(a, b), takes into consideration all

neighbors of a pair of nodes a and b (and not only the common ones as is the case in the
previous measure). It is defined as:

TN (a, b) = |Γ (a) ∪ Γ (b)| (2)

https://neo4j.com
https://scikit-learn.org
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The Preferential Attachment measure, denoted by PA(a, b), calculates the product
of the in-degree values of a pair of nodes a and b (Albert and Barabási 2001). This
measure assumes that two highly connected nodes are far more likely to be connected
in the future, in contrast to two loosely connected ones. This measure is defined as:

PA(a, b) = |Γ (a)| ∗ |Γ (b)| (3)

The Adamic Adar measure, denoted by AA(a, b), calculates the sum of the inverse
logarithm of the degree of the set of neighbors shared by a pair of nodes a and b (Adamic
and Adar 2003). This measure assumes that nodes of a low degree are more likely to be
influential in the future. It is defined as:

AA(a, b) =
∑

cεΓ (a)∩Γ (b)

(
1

log|c|
)

(4)

Finally, the Jaccard Coefficient index, denoted by J(a, b), resembles the CNmeasure
mentioned above; however, it differs slightly in that, for a pair of nodes a and b, it
considers the amount of the intersection of their neighbor nodes over the union of them
(Jaccard 1901). It is defined as:

J (a, b) = |Γ (a) ∩ Γ (b)|
|Γ (a) ∪ Γ (b)| (5)

2.2 Graph-Based Text Representations

The graph-of-words textual representation (Rousseau et al. 2013) represents each doc-
ument of a corpus as a single graph. In particular, each graph node corresponds to
a unique word of a document and each edge denotes the co-occurrence between two
words within a sliding window of text. Rousseau et al. (2015) suggest that a window
size of four seems to be the most appropriate value, in that it does not sacrifice either
the performance or the accuracy of the ML models. Compared to the bag-of-words rep-
resentation, it enables a more sophisticated feature engineering process due to the fact
that it takes into consideration the co-occurrence between the terms. In any case, the
limitations of the graph-of-words text representation are that: (i) it is unable to assess the
importance of a word for a whole set of documents; (ii) it does not allow for representing
multiple documents in a single graph, and (iii) it is not easily expandable to support more
complicated data architectures.

To remedy the shortcomings of the graph-of-words representation, Giarelis et al.
(2020b) have proposed the graph-of-docs representation, which depicts and elaborates
multiple textual documents as a single graph. This last representation: (i) enables the
investigation of the importance of a term into a whole corpus of documents, and (ii) it
allows multiple node types to co-exist in the same graph, thus being easily expandable
and adaptable to more complex data. In this paper, we utilize the graph-of-docs model
to represent the textual data of a knowledge graph.



440 N. Giarelis et al.

2.3 Related Work

As far as the discovery of future research collaborations using link prediction techniques
is concerned, works closest to ours are those of Liben-Nowell and Kleinberg (2007),
Sun et al. (2011), Guns and Rousseau (2014), Huang et al. (2008), and Yu et al. (2014).
Specifically, Liben-Nowell and Kleinberg (2007) rely only on network topology aspects
of a co-authors network, and the proximity of a pair of nodes to calculate the probability
of future research collaborations between them. Sun et al. (2011) propose the use of
structural properties to predict future research collaborations in heterogeneous biblio-
graphic networks,wheremultiple types of nodes (e.g. venues, topics, papers, authors) and
edges (e.g. publish, mention, write, cite, contain) co-exist. They exploit the relationships
between the papers to improve the accuracy of their link prediction algorithm.

Guns and Rousseau (2014) recommend potential research collaborations using link
prediction techniques and a random forest classifier. For each pair of nodes of a co-
authorship network, they calculate a variety of topology-basedmeasures such as Adamic
Adar and Common Neighbors, and they combine them with location-based character-
istics related to the authors. Hence, they propose future collaborations based on the
location of the authors and their position on the co-authorship network. Huang et al.
(2008) construct a co-authorship network for the Computer Science field that represents
research collaborations from 1980 to 2005. They rely on classical statistical techniques
and graph theory algorithms to describe the properties of the constructed co-authorship
network. The dataset used contains 451,305 papers from 283,174 authors.

Yu et al. (2014) utilize link prediction algorithms to discover future research collab-
orations in medical co-authorship networks. For a given author, they attempt to identify
potential collaborators that complement her as far as her skillset is concerned. They
calculate common topological and structural measures for each pair of author nodes,
including Adamic Adar, Common Neighbors and Preferential Attachment. ML models
are used for the identification of possible future collaborations.

For a broader link prediction perspective, we refer to (Fire et al. 2011), (Julian and Lu
2016) and (Panagopoulos et al. 2017); these works describe approaches concerning the
task of predicting possible relationship types between nodes (e.g. friendships in social
networks).

3 Our Approach

Our approach first constructs a scientific knowledge graph that contains both structured
and unstructured textual data. The integration of the unstructured textual data into the
knowledge graph is accomplished through a graph-based text representation, namely
graph-of-docs (see Sect. 2.2). Then, it employs graph measures and graph similarity
techniques to extract features associated to both structural and textual information con-
cerning the entities of a knowledge graph. Finally, it utilizes the produced features to
build an ML model, which discovers future research collaborations by mapping the
whole problem to a link prediction task. A detailed description of the abovementioned
steps appears in (Giarelis et al. 2020a; Giarelis et al. 2020b).
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3.1 The Scientific Knowledge Graph

Our knowledge graph allows diverse types of entities and relationships to co-exist in
a the same graph data schema, including entity nodes with types such as ‘Paper’,
‘Author’, ‘Laboratory’, ‘Location’, ‘Institution’ and ‘Word’, and
relationship edges with types such as ‘is_similar’, ‘cites’, ‘writes’,
‘includes’, ‘connects’, ‘co_authors’ and ‘affiliates_with’ (see
Fig. 1).

Fig. 1. The data schema of the scientific knowledge graph.

A ‘Paper’ entity represents a scientific paper or document. An ‘Author’ entity
represents an author of a scientific paper or document. The ‘Laboratory’ entity
represents the laboratory of an author. The ‘Location’ entity represents the location
of a laboratory. The ‘Institution’ entity represents the institution of an author.
Each ‘Word’ entity corresponds to a unique word of a scientific paper or document.

An‘includes’ relationship connects a‘Word’with a‘Paper’ entity. It marks
the presence of a specific word to a certain paper. A ‘connects’ relationship is
only applicable between two ‘Word’ entities and denotes their co-occurrence within
a predefined sliding window of text. The subgraph constructed by the ‘Word’ and
‘Paper’ entities, as well as the ‘includes’, ‘connects’ and ‘is_similar’
relationships, corresponds to the graph-of-docs representation of the textual data of the
available papers (see Fig. 2).

An ‘is_similar’ relationship links either a pair of ‘Paper’ or ‘Author’
nodes. In the former case, it denotes the graph similarity of the graph-of-docs repre-
sentation of each paper. In the latter, it denotes the graph similarity between the graph-
of-docs representations associated to the two authors. The subgraph that consists of the
‘Author’ entities and the ‘is_similar’ relationships corresponds to the authors
similarity subgraph.

A ‘cites’ relationship links two ‘Paper’ nodes. A ‘writes’ relationship
links an ‘Author’ with a ‘Paper’ entity. An ‘affiliates_with’ relationship
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Fig. 2. Representing textual data of papers using the graph-of-docs model (relationships between
papers are denoted with dotted lines). The graph-of-docs representation is associated to the
‘Paper’ and ‘Word’ entities, and the ‘includes’, ‘connects’ and ‘is_similar’
relationships of the scientific knowledge graph.

connects an ‘Author’ entity with a ‘Laboratory’, ‘Location’ or ‘Insti-
tution’ entity. A ‘co_authors’ relationship denotes a research collaboration
between the connected ‘Author’ entities. The subgraph constructed of the avail-
able ‘Author’ entities and the ‘co_authors’ relationships corresponds to the
co-authors’ subgraph.

The produced knowledge graph enables the utilization of well-studied graph algo-
rithms, which in turn assists in gaining insights about various tasks, such as finding
experts nearby based on the ‘Location’ entities, recommending similar research
work, and discovering future research collaborations; this paper focuses on the last of
these tasks.

3.2 Discovery of Future Research Collaborations Using a Link Prediction
Approach

For the discovery of future research collaborations, we employ various link prediction
and ML techniques. Particularly, we reduce the problem of predicting future research
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collaborations to the common binary classification problem. By using a binary classifier,
we are able to predict the presence or the absence of a ‘co_authors’ relationship
between two ‘Author’ entities, and thus build a link prediction algorithm for the
discovery of future research collaborations. Available binary classifiers include logistic
regression, k-nearest neighbors, linear support vectormachines, decision tree, and neural
networks (Aggarwal 2018).

4 Experiments

For the implementation and evaluation of our approach, we used the Python program-
ming language and the scikit-learnML library (https://scikit-learn.org). TheNeo4j graph
database (https://neo4j.com) has been utilized for the representation of the graph-of-docs
and the corresponding knowledge graph. The full code, datasets, and evaluation results
of our experiments are freely available at https://github.com/NC0DER/CORD19_Gra
phOfDocs.

4.1 CORD-19

The COVID-19 Open Research Dataset (CORD-19) (Wang et al. 2020) contains infor-
mation about 63,000 research articles, related to COVID-19, SARS-CoV-2 and other
similar coronaviruses. It is freely distributed from the Allen Institute for AI and Seman-
tic Scholar (https://www.semanticscholar.org/cord19). The articles in CORD-19 have
been collected from popular scientific repositories and publishing houses, including
Elsevier, bioRxiv, medRxiv, World Health Organization (WHO) and PubMed Central
(PMC). Each scientific article in CORD-19 has a list of specific attributes, namely ‘cita-
tions’, ‘publish time’, ‘title’, ‘abstract’ and ‘authors’, while the majority of the articles
(51,000) also includes a ‘full text’ attribute. Undoubtfully, the CORD-19 dataset is a
valuable source of knowledge as far as the COVID-19-related research is concerned;
however, the fact that the majority of the data included is unstructured text renders a
set of limitations in its processing. As advocated in the literature, the exploitation of
a graph-based text representation in combination with a knowledge graph seems to be
a promising step towards structuring this data (Veira et al. 2019; Wang et al. 2017;
Wang et al. 2016). For the construction of our scientific knowledge graph, we utilize the
‘abstract’, ‘authors’ and ‘publish time’ attributes of each scientific article. We do not
exploit the ‘full text’ attribute due to hardware limitations; however, we assume that the
abstract of a paper consists a representative piece of its full text.

4.2 Experimental Setup

Selection of measures and metrics. To construct the authors similarity subgraph and
to populate the edges of the ‘Author’.‘is_similar’ type, we use the Jaccard
similarity index, since it deals only with the percentage of common set of words versus
all words, ignoring their document frequency.

https://scikit-learn.org
https://neo4j.com
https://github.com/NC0DER/CORD19_GraphOfDocs
https://www.semanticscholar.org/cord19
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Construction of datasets for the link prediction problem. To test whether our app-
roach performs well and does not overfit, regardless of the sample size of the dataset,
we extract nine different datasets from the original one, corresponding to different vol-
umes of papers (ranging from 1,536 to 63,023). For the creation of a sample creation,
we utilize (i) the authors similarity subgraph, and (ii) the co-authors subgraph (i.e. the
subgraph generated from the ‘co_authors’ edges; it is noted that edges also store
the year of the first collaboration between authors, as a property). The features of a
sample encapsulate either structural or textual characteristics of the whole knowledge
graph (e.g. the similarity between the papers of two authors). Furthermore, each sample
describes the relationship between two ‘Author’ nodes of the knowledge graph.

The features of a sample are analytically described in Table 1. Each of the nine
datasets consists of a different number of randomly chosen samples. All datasets are
balanced, in that the number of positive and negative samples are equal (see Table 2).
To examine whether the features taken into account each time affect the efficiency of
the MLmodels, we execute a set of experiments with different combinations of selected
features (see Table 3). Finally, it is noted that the samples for the training subset are
selected froman earlier instance in timeof the co-authors subgraph,which is created from
‘co_authors’ edges first appeared within or before the year of 2013; respectively,
the samples of the testing subset include ‘co_authors’ edges created after 2013.
This separation in time ensures that we avoid any data leakage between the training and
testing subsets (Liben-Nowell and Kleinberg 2007).

Table 1. A detailed explanation of the features of a sample. Each feature is associated to either a
structural or a textual relationship between two given ‘Author’ nodes.

Feature Description Type

adamic_adar The sum of the inverse logarithm of the degree of the set
of common neighbor ‘Author’ nodes shared by a pair
of nodes

Structural

common_neighbors The number of neighbor ‘Author’ nodes that are
common for a pair of ‘Author’ nodes

Structural

preferential_
attachment

The product of the in-degree values of a pair of
‘Author’ nodes

Structural

total_neighbors The total number of neighbor ‘Author’ nodes of a
pair of ‘Author’ nodes

Structural

similarity The textual similarity of the graph-of-docs graphs of two
‘Author’ nodes. The Jaccard index is used to
calculate the similarity

Textual

label The existence or absence of a ‘co_authors’ edge
between two ‘Author’ nodes. A positive label (1)
denotes the existence, whereas the absence is denoted by
a negative label (0)

Class
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Table 2. Number of samples (|samples|), number of positive (|positive|) and negative (|negative|)
samples of the training and testing subsets of each dataset. A positive sample denotes the existence
of a ‘co_authors’ edge between two ‘Author’ nodes, while a negative sample denotes the
absence of such an edge.

Training subset Testing subset

|samples| |positive| |negative| |samples| |positive| |negative|

Dataset 1 668 334 334 840 420 420

Dataset 2 858 429 429 1566 783 783

Dataset 3 1726 863 863 2636 1318 1318

Dataset 4 3346 1673 1673 7798 3899 3899

Dataset 5 5042 2521 2521 12976 6488 6488

Dataset 6 5296 2648 2648 16276 8138 8138

Dataset 7 6210 3105 3105 25900 12950 12950

Dataset 8 8578 4289 4289 34586 17293 17293

Dataset 9 13034 6517 6517 49236 24618 24618

Table 3. Combinations of features aiming to test how different set of features affect the
performance of an ML model.

Combination name Features included

structural characteristics (STRS) adamic_adar, common_neighbors,
preferential_attachment,
total_neighbors

structural and textual characteristics (ALL) adamic_adar, common_neighbors,
preferential_attachment,
total_neighbors, similarity

adamic adar and authors similarity (AA-SIM) adamic_adar, similarity

adamic adar (AA) adamic_adar

4.3 Evaluation

To evaluate the effectiveness of our approach, we assess how the performance of vari-
ous binary classifiers is affected by the ‘similarity’ feature. The list of the binary
classifiers considered in this paper includes: logistic regression (LR), k-nearest neigh-
bors (50NN), linear support vector machines (LSVM), decision tree (DT) and neural
networks (NN). An extensive list of experiments using various classifiers along with
different hyperparameter configurations can be found on the GitHub repository of this
paper (https://github.com/NC0DER/CORD19_GraphOfDocs). Our performance met-
rics include the accuracy, precision and recall of the binary classifiers. The Friedman

https://github.com/NC0DER/CORD19_GraphOfDocs


446 N. Giarelis et al.

Ta
bl
e
4.

M
ea
n
(A
V
G
),
m
in
im

um
(M

IN
),
m
ax
im

um
(M

A
X
)
an
d
st
an
da
rd

de
vi
at
io
n
(S
D
)
of

ac
cu
ra
cy
,p

re
ci
si
on

an
d
re
ca
ll
m
et
ri
cs

pe
r
te
xt

cl
as
si
fie
r
fo
r

ea
ch

co
m
bi
na
tio

n
of

se
le
ct
ed

fe
at
ur
es

on
th
e
ni
ne

di
ff
er
en
t
da
ta
se
ts
.B

ol
d
fo
nt

in
di
ca
te
s
th
e
be
st
m
et
ho
d
fo
r
ea
ch

M
L
m
od
el

as
fa
r
as

th
e
m
ea
n
an
d
th
e

st
an
da
rd

de
vi
at
io
n
va
lu
e
of

ea
ch

in
di
vi
du
al
m
et
ri
c
ar
e
co
nc
er
ne
d.

A
cc
ur
ac
y

Pr
ec
is
io
n

R
ec
al
l

M
et
ho
d

A
V
G

M
IN

M
A
X

SD
A
V
G

M
IN

M
A
X

SD
A
V
G

M
IN

M
A
X

SD

L
R

ST
R
S

0.
95
5

0.
93
8

0.
96

5
0.
00
7

0.
95
5

0.
90
7

0.
98
1

0.
02
2

0.
95
5

0.
93
3

0.
97
6

0.
01
3

A
L
L

0.
95
9

0.
94
2

0.
96

8
0.
00
7

0.
96
1

0.
90
9

0.
98
4

0.
02
3

0.
95
7

0.
94
0

0.
98
2

0.
01
3

A
A
-S
IM

0.
97
2

0.
96
4

0.
98

1
0.
00
5

0.
97
7

0.
96
2

0.
99
1

0.
01
1

0.
96
9

0.
95
5

0.
98
1

0.
00
7

A
A

0.
97
1

0.
96
4

0.
97

8
0.
00
5

0.
96
8

0.
94
5

0.
98
5

0.
01
4

0.
97
4

0.
96
4

0.
98
6

0.
00
8

50
N
N

ST
R
S

0.
95
6

0.
92
5

0.
97

5
0.
01
4

0.
92
8

0.
87
2

0.
96
5

0.
02
5

0.
98
8

0.
98
2

0.
99
7

0.
00
5

A
L
L

0.
95
9

0.
92
5

0.
97

6
0.
01
5

0.
93
3

0.
87
2

0.
96
6

0.
02
6

0.
98
9

0.
98
2

0.
99
6

0.
00
4

A
A
-S
IM

0.
96
7

0.
94
8

0.
97

9
0.
01
0

0.
94
4

0.
90
8

0.
96
9

0.
01
8

0.
99
3

0.
99
0

0.
99
6

0.
00
2

A
A

0.
95
7

0.
94
1

0.
96

9
0.
01
0

0.
92
7

0.
89
5

0.
94
7

0.
01
9

0.
99
2

0.
98
7

0.
99
9

0.
00
4

L
SV

M
ST

R
S

0.
95
9

0.
93
1

0.
97

1
0.
01
2

0.
94
1

0.
88
4

0.
97
2

0.
02
6

0.
97
9

0.
96
9

0.
99
3

0.
00
8

A
L
L

0.
96
3

0.
93
6

0.
97

6
0.
01
2

0.
94
6

0.
88
8

0.
97
5

0.
02
6

0.
98
3

0.
97
3

0.
99
6

0.
00
7

A
A
-S
IM

0.
97
3

0.
95
7

0.
98

1
0.
00
9

0.
95
7

0.
92
6

0.
97
7

0.
01
7

0.
98
9

0.
98
5

0.
99
4

0.
00
3

A
A

0.
96
8

0.
95
3

0.
98

0
0.
00
9

0.
95
2

0.
92
0

0.
97
5

0.
01
8

0.
98
7

0.
98
1

0.
99
4

0.
00
4

(c
on
ti
nu
ed

)



On the Utilization of Structural and Textual Information 447

Ta
bl
e
4.

(c
on
ti
nu
ed

)

A
cc
ur
ac
y

Pr
ec
is
io
n

R
ec
al
l

M
et
ho
d

A
V
G

M
IN

M
A
X

SD
A
V
G

M
IN

M
A
X

SD
A
V
G

M
IN

M
A
X

SD

D
T

ST
R
S

0.
92
2

0.
82
6

0.
97
9

0.
05
7

0.
87
8

0.
74
2

0.
96
7

0.
08
4

0.
99
4

0.
98

9
1

0.
00

4

A
L
L

0.
93
3

0.
83
7

0.
98
0

0.
04
6

0.
89
1

0.
75
5

0.
96
9

0.
07
0

0.
99
4

0.
99

1
0.
99
9

0.
00

3

A
A
-S
IM

0.
93
1

0.
83
6

0.
97
2

0.
04
5

0.
88
7

0.
75
4

0.
95
5

0.
06
8

0.
99
5

0.
99

1
0.
99
9

0.
00

2

A
A

0.
87
9

0.
66
0

0.
95
5

0.
09
4

0.
82
5

0.
59
5

0.
92
2

0.
10
8

0.
99
4

0.
98

9
1

0.
00

4

N
N

ST
R
S

0.
92
8

0.
80
1

0.
98
2

0.
06
1

0.
88
8

0.
71
5

0.
97
5

0.
08
7

0.
99
3

0.
98

8
0.
99
9

0.
00

3

A
L
L

0.
93
8

0.
80
7

0.
97
9

0.
05
4

0.
90
2

0.
72
1

0.
97
1

0.
07
8

0.
99
3

0.
98

8
0.
99
9

0.
00

3

A
A
-S
IM

0.
96
5

0.
94
3

0.
97
9

0.
01
2

0.
94
1

0.
89
8

0.
96
8

0.
02
2

0.
99
4

0.
99

2
0.
99
9

0.
00

2

A
A

0.
95
6

0.
89
9

0.
97
6

0.
02
4

0.
92
8

0.
83
4

0.
96
8

0.
04
1

0.
99
1

0.
98

5
0.
99
9

0.
00

4



448 N. Giarelis et al.

test and the post-hoc test of Nemenyi (alpha value 0.05) are also used to calculate the
significant importance between the evaluated approaches.

The obtained results indicate that the inclusion of the ‘similarity’ feature (i)
increases the average accuracy, precision and recall scores, and (ii) decreases the stan-
dard deviation of the aforementioned scores (Table 4). The decrement of the standard
deviation in the accuracy score indicates that our approach is reliable regardless of the
size of the given dataset. Furthermore, by comparing the average precision score to
the average recall score, we conclude that our approach predicts most of the future
collaborations correctly. The best average accuracy score is achieved by the LSVM
classifier, using the ‘adamic_adar’ and the ‘similarity’ features. Hence, the
combination of these two features seems to be the most appropriate one. On the con-
trary, features such as ‘common_neighbors’, ‘preferential_attachment’
and ‘total_neighbors’ add noise to the overall link prediction process.

Our approach differs from existing ones in that it considers both the textual sim-
ilarity between the abstracts of the papers for each pair of authors and the structural
characteristics of the associated ‘Author’ nodes, aiming to predict a future collabo-
ration between them. The utilization of the textual information in combination with the
structural information of a scientific knowledge graph results in better and more reliable
ML models, which are less prone to overfitting. Contrary to existing algorithms for the
discovery of future research collaborations, our approach exploits structural character-
istics and does not ignore the importance of the information related to the unstructured
text of papers written by authors. Finally, existing approaches that concentrate only on
the exploitation of unstructured textual data rely heavily on NLP techniques and textual
representations, which in turn necessitate the generation of sparse feature spaces; hence,
in such approaches, the effects of the ‘curse-of-dimensionality’ phenomenon re-emerge.

5 Conclusions

This paper considers the problem of discovering future research collaborations as a
link prediction problem applied on scientific knowledge graphs. The proposed app-
roach integrates into a single knowledge graph both structured and unstructured textual
data using the graph-of-docs text representation. For the required experimentations, we
generated nine different datasets using the CORD-19 dataset. For evaluation purposes,
we benchmarked our approach against several link prediction settings, which use vari-
ous combinations of a set of available features. The evaluation results demonstrated (i)
an improvement of the average accuracy, precision and recall of the future collabora-
tions prediction task, and (ii) a mitigation of the effects of the ‘curse-of-dimensionality’
phenomenon.

In any case, our approach has a performance issue, since the time required to build
the scientific knowledge graph increases exponentially with the number of graph nodes.
Aiming to address the above limitation, while also enhancing the performance and
advancing the applicability of our approach, our future work directions include: (i) the
utilization of in-memory graph databases in combination with Neo4j; (ii) the experimen-
tation with word, node and graph embeddings (Mikolov et al. 2013; Nikolentzos et al.
2017; Hamilton et al. 2017); (iii) the integration of other scientific research graphs such
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as OpenAIRE (Manghi et al. 2019) and Microsoft Academic Graph (Arnab et al. 2015),
and (iv) the integration and meaningful exploitation of our approach into collaborative
research environments (Kanterakis et al. 2019).
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Abstract. Traditional process mining approaches learn process models
assuming that processes are in steady-state. This does not comply with
the flexibility and adaptation often requested for information systems
and business models. In fact, these approaches should discover varia-
tions to adapt to new circumstances, which is a peculiarity that conven-
tional change analysis based on time-series, could not provide, because
the processes are complex artifacts. This problem can be handled with
change-aware structured representations, such as those typically used for
network data. In this paper, we propose a novel pattern-based change
detection (PBCD) algorithm for discovering and characterizing changes
in event logs encoded as dynamic networks. In particular, PBCDs are
unsupervised change detection methods, based on observed changes in
sets of patterns observed over time, which are able to simultaneously
detect and characterize changes in evolving data. Experimental results,
on both real and synthetic data, show the usefulness and the increased
accuracy with respect to state-of-the-art solutions.

1 Introduction

The aim of the process mining techniques is learning models (for instance, in
the form of Petri nets or heuristic maps) from collections of traces recording
observed process executions. Thus, the models can be seen as an abstract form of
the really-performed processes and can therefore be used for predictive problems,
such as the prediction of outcomes and for conformance checking, that is, the
adherence of new traces to the models.

A common assumption of many process mining algorithms is the “invariabil-
ity” of the process model, meaning that the traces are in a steady-state, that is,
they should obey the configuration dictated by the models, without any devi-
ation with respect to the reference process. This aspect has been investigated
by methods which recognize variations present in the traces and learn process
variants [2]. In many information systems this is not sufficient because the traces
might present frequent or regularly repeated changes. A change becomes neces-
sary whenever there is a need for people and institutions to adapt their ordi-
nary behavior to changing circumstances and environments. Various examples
c© Springer Nature Switzerland AG 2020
A. Appice et al. (Eds.): DS 2020, LNAI 12323, pp. 451–467, 2020.
https://doi.org/10.1007/978-3-030-61527-7_30
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can be found both in society and nature. For example, new regulations and
laws require citizens and organizations to change their processes. In a dynamic
market, flexible organizations should quickly adapt their internal and external
operating procedures to natural disasters as well as to the introduction of new
laws and regulations. Therefore, the presence of substantial changes could make
the process model inconsistent with respect to the (actual) instances. In order to
effectively deal with this, we should revise the working hypothesis and consider
the processes as non-stationary, allowing for abrupt or gradual changes exhibited
over time. Consequently, the process modeling approaches should react to such
process drifts by quickly detecting and understanding them [5].

Existing methodologies suffer from several drawbacks. In particular, they
work on an over-simplified data representation which does not account for the
traces as complex artifacts. This leads to considering only one set of numeri-
cal features [4] of the executed traces, while neglecting the temporal component
associated to the activities and interactions among the activities, actors and
resources, which are sources of information able to explain drifts between traces
of the same process model. These representational forms often limit the task of
drift detection to a mere quantification of the magnitude of the change between
different traces, without providing an explanation of the nature of the change.
Thus, any attempt to explain or characterize the changes requires the inter-
vention of the human process modeler or reference knowledge to identify the
components of a trace which determine the changes [14].

In this work, we simultaneously solve the problems of process drift detection
and characterization with Pattern-based Change Detectors (PBCDs hereafter).
PBCDs refer to a class of change detection algorithms in which i) the change
is detected on patterns discovered from the data over time, and ii) the pat-
terns responsible for a given change already constitute an off-the-shelf descriptive
model of the change. They have been exploited to study changes on dynamic
networks [11] thanks to the peculiarities to identify sub-graphs related to the
changes, associate changes to variations of the occurrences of the sub-graphs
and quantify the magnitude order of the changes with frequency-based quan-
titative measures. Thus, our intuition is that of encoding process traces (from
the event log) into a graph-based representation and detecting process drifts
through PBCDs. This perspective offers several advantages: i) the use of an
established unsupervised approach to simultaneously solve the problems of drift
detection and characterization, ii) a computational solution able to account for
the temporal order of the activities, iii) a method able to determine the most
promising set of features mirroring the changes and represent them in form of
sub-graph patterns, iv) the possibility to capture both gradual changes and sud-
den changes, which, thus, would appear as mild frequency-based variations and
strong frequency-based variations respectively.

The manuscript is organized as follows. Firstly, we introduce some related
works in process drift detection and motivate the adoption of PBCDs. Then,
we discuss some preliminary notions about processes and dynamic networks,
so as to explain how event logs can be transformed into dynamic networks.
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The adopted PBCD methodology is then discussed by emphasizing how process
drifts are detected and characterized. Then experimental results on both syn-
thetic and real-world event logs are illustrated before drawing some conclusions.

2 Related Works

The adoption of PBCDs for detecting and characterizing the process drifts in
event logs occurs at the intersection of two research directions: one concerning
pattern-based learning of process models and the other concerning process drift
detection methods.

A well-known result in process mining is that frequent sequential patterns
offer an alternative way of representing process models instead of Petri nets,
discovered by the traditional α algorithm [1], or heuristic maps learned by the
HeuristicMiner algorithm [17]. Specifically, while sequential patterns model the
contiguous sequence of executed activities, frequent sequential patterns are used
to discover statistical evident paths of executions in an event log seen as a
database of sequence. Hence, sequential pattern mining algorithms can be used
to learn process models as done in [7,8]. An aspect worth mentioning is that fre-
quent patterns effectively model stable features of the process over time. Conse-
quently, our claim is to effectively leverage such features when executing PBCDs
on event logs. Unfortunately, to the best of our knowledge, no PBCD based on
sequential patterns exists.

As for the process drift detection methods in process mining, different
methodologies have been proposed, although none of them is pattern-based.
The first is proposed in [4] and implemented in ProM1, in which the change
detection approach is able to detect drifts, via statistical significance testing, by
considering a set of four numeric global and local features. In this approach, the
event log is transformed into a multivariate time-series, and, hence, changes are
detected in such an intermediate representation in which the original control-
flow perspective is lost. The second method is the ProDrift algorithm defined
in [13] and implemented in the Apromore framework2. ProDrift also performs a
statistical significance test on a run-based encoding of the traces, obtained prior
to the detection phase. Both methods adopt the sliding window model. In par-
ticular, the statistical significance test is assessed by comparing the populations
of two sliding windows, the reference and the detection windows, that slide over
the data whenever a new trace is observed. Both the methods are parametric
change detection algorithms, working on an intermediate representation of traces
and, lastly, they do not characterize the detected changes.

3 Background

Let A be the set of activities, then an event log over A is defined as the time series
of n traces E = {Tt}n

t=1. Each trace Ti = 〈a1, . . . , ak〉 captures the sequence of
k activities ai ∈ A as executed at the time point ti in a given process instance.
1 https://svn.win.tue.nl/trac/prom/browser/Packages/ConceptDrift.
2 https://apromore.org/platform/tools/.

https://svn.win.tue.nl/trac/prom/browser/Packages/ConceptDrift
https://apromore.org/platform/tools/
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Since PBCDs leverage differences between patterns exhibited by the data
over time for detecting changes, the principal requirement for their use is the
existence of a pattern mining methodology that best suits the data representation
at hand. In their natural formulation, event logs are not immediately compatible
with traditional pattern mining methods. On the other hand, various existing
PBCDs are specifically designed for dynamic networks. Therefore, we encode
event logs in the form of dynamic networks as an intermediate representation
compatible with existing graph-based PBCDs. Let N be the set of nodes, L be
the set of edge labels and I = N ×N ×L the alphabet of all the possible labeled
edges. A dynamic network is defined as the time series of n graph snapshots
G = {Gt}n

t=1. Each snapshot Gi ⊆ I is a set of edges denoting a directed graph
observed in ti allowing self-loops and multiple edges with different labels.

3.1 From Event Logs to Dynamic Networks

Encoding the event log E = {Tt}n
t=1 as the dynamic network G = {Gt}n

t=1 is
done by transforming every trace Ti into the associated graph snapshot Gi =
g(Ti). The map g(Ti) allows us to consider the dynamic network G = {g(Tt)}n

t=1

in place of the initial event log. In particular, let T = 〈a1, . . . , ak〉 be a trace, the
graph G = g(T ) is built by considering i) the set of edge labels L = {a1, . . . , ak},
ii) the set of nodes N = {0, 1, . . . , n} and iii) I = N ×N ×L. Then, G = g(T ) =
{(i − 1, i, ai) ∈ I | ai ∈ T} ⊆ I is a labeled graph in which edge labels denote
activities, and nodes denote natural numbers. This graph-based representation
of traces keeps the temporal ordering of activities in a trace, as shown in Fig. 1,
and this is a necessary condition to preserve the process control-flow perspective
in the drift detection activity.

T : a1 a2 a3 G = g(T ) : n0 n1 n2 n3

a1 a2 a3

Fig. 1. Example of a trace T made of 3 activities (a1, a2 and a3) represented as the
graph snapshot G = g(T ). Activity names in T become edge labels in G.

3.2 Frequent and Emerging Subgraph Discovery

The representation of event logs as dynamic networks fits the one adopted in
transactional data mining, meaning that it is possible to discover interesting
sub-graphs with traditional sub-graph mining algorithms designed for dynamic
networks. In the transactional setting, a snapshot Gtid ∈ G is a transaction
uniquely identified by tid, whose items are labeled edges from I. A sub-graph
S ⊆ I, with length |S|, can be seen as a word S = 〈i1 . . . in〉 of n lexicographic
sorted items, with prefix P = 〈i1 . . . in−1〉 and suffix in.
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For this work frequent connected sub-graphs (FCSs hereafter) are deemed to
be interesting, as they denote stable features that are useful for the drift detection
step. FCSs are discovered from graph snapshots belonging to time windows. A
window W = [ti, tj ], with ti < tj , is the sequence of snapshots {Gi, . . . , Gj} ⊆ G.
Consequently, the width |W | = j − i + 1 is equal to the number of snapshots
collected in W . Let S be a sub-graph, then the tidset of S in the window W is
defined as tidset(S,W ) = {tid | ∃Gtid ∈ W ∧ S ⊆ Gtid}, while the support of S

in W is sup(S,W ) = |tidset(S,W )|
|W | . S is frequent in W if sup(S,W ) > minSUP ,

where minSUP ∈ [0, 1]. We term FW the set of all the FCSs in the window W .
Once detected a process drift needs to be characterized. While the FCSs

support the drift detection by capturing statistically evident parts of the process,
as observed in a time window, they do not characterize drifts. To this end, we
deem interesting the emerging connected sub-graphs (ESs hereafter), discovered
between two time windows by evaluating the growth-rate of sub-graphs. Let S be
a sub-graph, W and W ′ two consecutive time windows, then the growth-rate of
S between W and W ′ is gr(S,W,W ′) = max(sup(S,W ),sup(S,W ′))

min(sup(S,W ),sup(S,W ′)) . S is emerging
between W and W ′ if gr(S,W,W ′) > minGR, where minGR > 1. We term
es(W,W ′) the set of the ESs between W and W ′ according to minGR.

The ESs are the building blocks of the change characterizations. However, i)
the combinatorial explosion of the ESs worsens the readability of characteriza-
tions, and ii) ESs singularly add small contributions to the characterizations. To
tackle these problems, we only consider the maximal emerging connected sub-
graphs (MESs hereafter). Let S ∈ es(W,W ′), then S is maximal if there is not
another sub-graph Q ∈ es(W,W ′) such that S ⊂ Q. We term ms(W,W ′) the
set of all the MESs between W and W ′ according to minGR.

3.3 Problem Statement

Let E = {Tt}n
t=1 be an event log, minSUP ∈ [0, 1] be the minimum support

threshold, minMC ∈ [0, 1] the minimum change threshold, minGR > 1 be the
minimum growth-rate threshold. Then:

– the dynamic network G = {g(Tt)}n
t=1 of E is built as a pre-processing step.

– pattern-based change detection finds pairs of windows W = [tb, te] and W ′ =
[te+1, tc] from D, where tb ≤ te < te+1 ≤ tc. Each pair of windows denotes a
change which is:

• quantified by the pattern dissimilarity score d(FW , FW ′) > minMC
• explained by the maximal emerging sub-graphs ms(FW , FW ′) discov-
ered according to minGR

where FW (FW ′) denote the FCSs discovered on W (W ′) according to minSUP.
Process drifts are detected on the dynamic network encoding of the event log.

Specifically, a drift is detected every time a relevant difference between the set
of FCSs FW and FW ′ is measured. Finally, the drift is explained by the MESs,
as they describe the (appearing or disappearing) sequences of activities involved
in the change of the underlying process model.
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3.4 Computational Approach

The afore-mentioned change detection and explanation problem can be solved by
various computational solutions. Among them, we mention the class of pattern-
based change detection algorithms (PBCD). In general, a PBCD forms a two-step
approach in which: i) a pattern mining algorithm extracts the set of patterns
observed from the incoming data, and ii) the amount of change is quantified by
adopting a dissimilarity measure defined between sets of patterns. More specifi-
cally, a PBCD is an iterative algorithm that consumes data coming from a data
source, in our case a dynamic network, and produces quantitative measures of
changes. For instance, the KARMA algorithm proposed in [11] is a PBCD for
detecting and characterizing changes in network data. KARMA is based on the
exhaustive mining of FCSs, whose general workflow can be seen in Figure 2.
The algorithm iteratively consumes blocks Π of graph snapshots coming from
D (Step 2) by using two successive landmark windows W and W ′ (Step 3).
Thus, it mines the complete sets of FCSs, FW and FW ′ , which are necessary for
the detection steps (Steps 4–5). The window grows (W = W ′) with new graph
snapshots, and the associated set of FCSs is kept updated (Steps 8–9) until the
change score d(FW , FW ′) exceeds β and a change is detected. In that case, the
algorithm drops the content of the window by retaining only the last block of
transactions (W = Π, Steps 6–7). Then the analysis restarts.

init. W with
first block of G

1
new block Π

from G

2

W ′ = W ∪ Π

3
update

FW ′ and FW

4
evaluate

d(FW , FW ′ )

5

> minMC

explain with
es(W, W ′)

6
W = Π

FW = FΠ

7

≤ minMC
W = W ′

FW = FW ′

8

Fig. 2. The KARMA algorithm flowchart

However, KARMA does not naturally fit the given problem statement and is
not the optimal solution. Firstly, while KARMA relies on successive landmark
windows of increasing size, our problem statement compares two successive non-
overlapping windows of different size. Secondly, KARMA discovers FCSs on data
represented in a more general representation than the dynamic network encoding
of event logs in the form of sequences of graph chains. Consequently, no FCS,
which is not a simple chain, would be returned by the mining algorithm: chains
are only discovered when mining FCSs in sequences of chains. However, although
this solution is always able to discover FCSs that are also chains, it is also
inefficient: the mining algorithm would also generate and discard the FCSs which
are not chains. Therefore, we restrict the pattern language to frequent subtrees
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(FSs hereafter), that is, FCSs in which every node is connected to a parent node,
except for the root node. To meet these requirements, we adapt the KARMA
algorithm to the KARMATree approach depicted in Fig. 3. In this case, an
alternative time window model is used to arrange incoming blocks of transactions
(Steps 3, 7 and 8). Then sets FW and FW ′ of FSs are discovered instead of FCSs
(Step 4). Lastly, changes are characterized by discovering the maximal emerging
subtrees (Step 6) instead of the emerging ESs by KARMA.

Let G be a dynamic network over |I| = k possible edges, with n snapshots and
m = n

|Π| blocks of size |Π|. KARMA requires time proportional to O(m · |FCSs|)
in the worst case scenario [11], while KARMATree requires O(m · |FSs|) where
|FSs| << |FCSs| < ek, since the number of subtrees is lower than the number of
subgraphs in a network. However, KARMATree is an exhaustive PBCD, relying on
complete mining of FSs, which could not work well in limited memory scenarios. As
a solution, a non-exhaustive variant could be obtained by equipping KARMATree
with the heuristic mining approach shown in [10].

init. W with
first block of G

1
new block Π

from G

2

W ′ = Π

3
update

FW ′ and FW

4
evaluate

d(FW , FW ′ )

5

> minMC

explain with
ms(W, W ′)

6
W = Π

FW = FΠ

7

≤ minMC
W = W ∪ Π
FW = FW ′

8

Fig. 3. The KARMATree algorithm flowchart

4 Experiments

The experiments are organized according to different perspectives concerning
both synthetic and real-world processes. In particular, we answer the following
research questions: Q1) Is the proposed PBCD approach more accurate than
existing process drift detection approaches when detecting changes on synthetic
processes? Q2) Is the proposed PBCD approach more efficient than existing pro-
cess drift detection approaches when detecting changes on synthetic processes?
Q3) Do the characterizations describe changes in real-world process?

Assessing the accuracy of the proposed approach compared with competitor
methodologies is not an easy task. Although the process evolution is a well-
established concept in process mining, to the best of our knowledge, no proper
ground truth for process drift detection is known. The main consequence is the
difficulty of measuring the accuracy on real-world datasets. Moreover, existing
synthetic log generators are not flexible enough. For instance, the one proposed
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in [6] randomly builds and evolves single process models and simulates their
execution to synthesize event logs.

The major limitation is that the simulation is based only on a single process
model, and hence none of its evolutions is considered. This means that i) traces
in the resulting event log conform to the process model used in the simulation,
and ii) consequently no evident change is injected into the resulting log. To
overcome this limitation, we extended the process log generator3 to i) build a
chain of n process models where the first is randomly generated and the others
are subsequent random evolutions, and ii) generate the complete event log by
simulating an equal number of traces for every process model in the chain. We
synthesized 10 event logs, each built by considering a chain made of 20 evolving
process models. In particular, each model has been used to simulate a block made
of 100 traces, for a total number of 2,000 traces per each log, thus ensuring a
change between every pair of subsequent blocks.

By so doing, every generated log can be used as a ground-truth about the
presence of changes when evaluating the accuracy of the proposed PBCD app-
roach.

randomly
init M0

M0 M1 M2 M3

ET0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

evolve M0 evolve M1 evolve M2

simulate M0 simulate M1 simulate M2 simulate M3

Fig. 4. Synthetic event log E built by simulating the execution of a process model M0

which evolves 3 times. Each model evolution produces a block of 3 traces.

To answer the afore-mentioned research questions, we first discuss the results
of a comparative evaluation between our approach and existing drift detectors
for process data. Then a case study is shown to illustrate the usefulness of
KARMATree for simultaneously detecting and characterizing changes in real
world datasets. In particular we compare our proposed KARMATree PBCD
approach with two state-of-the-art process drift detection algorithms, the Pro-
Drift [13] available in the Apromore framework and the drift detector by Bose et
al. [4] available in the ProM framework, respectively. Both the competitors are
parametric change detection algorithms specifically designed for process data.
They are built so as to embed the ADWIN [3] algorithm, therefore, they dis-
cover changes in event logs by scanning them through adaptively-sized time win-
dows (we term these two algorithms ProDrift (adwin) and Bose et al. (adwin)).
The ProDrift algorithm can also be used with fixed-size windows, termed as
ProDrift (fixed). Another difference between KARMATree and both ProDrift

3 https://bitbucket.org/carbonkid/process/.

https://bitbucket.org/carbonkid/process/
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and Bose et al. is their detection method. In fact, while KARMATree is a non-
parametric drift detection approach, relying on pattern-set dissimilarities, both
ProDrift and Bose et al. seek changes by performing statistical hypothesis test-
ing, at a given p-value, between the data population in the time windows. Specif-
ically, Bose et al. employ two global features which are defined over an event log,
and two local features, which are defined at a trace level by considering a fixed-
size window, while ProDrift works only at trace level by considering an event
log as a continuous stream of traces and it is designed to adaptively identify the
right window size.

4.1 The Most Accurate Process Drift Detection Approach

In this set of experiments we executed KARMATree and the three competitor
algorithms on 10 synthetic event logs, generated according to the procedure
previously described, and collected their accuracies, false positive rates (FPRs)
and false negative rates (FNRs). We fixed the initial size of time windows to
20 in every considered approach, as for KARMATree, we fixed the minimum
support threshold to minSUP = 0.1 and the minimum growth-rate threshold
to minGR = 1.0. On the contrary, we tuned the minimum change threshold as
minMC = {0.5, 0.6, 0.7, 0.8, 0.9}. On the other hand, we fixed a critical p-value
of 0.95 for both ProDrift and Bose et al.

Table 1. Accuracy of KARMATree against ProDrift (fixed, adwin) and Bose et al.
(adwin) when tuning minMC on 10 synthetic event logs.

dataset Accuracy @ minMC

KARMATree ProDrift ProDrift Bose et al.

0.5 0.6 0.7 0.8 0.9 (fixed) (adwin) (adwin)

synth-log-01 0.989 0.989 0.989 0.959 0.918 1 0.846 0.959

synth-log-02 0.959 0.959 0.948 0.928 0.867 0.989 0.877 0.858

synth-log-03 1 1 1 0.979 0.959 1 0.816 0.909

synth-log-04 1 1 0.989 0.938 0.857 1 0.846 0.898

synth-log-05 0.959 0.969 0.959 0.948 0.918 0.959 0.857 0.929

synth-log-06 0.989 0.979 0.959 0.908 0.867 0.928 0.846 0.898

synth-log-07 0.989 0.979 0.979 0.938 0.908 1 0.816 0.929

synth-log-08 0.969 0.969 0.948 0.928 0.887 1 0.846 0.939

synth-log-09 0.979 0.969 0.928 0.908 0.857 1 0.826 0.959

synth-log-10 0.969 0.969 0.969 0.959 0.938 1 0.826 0.939
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As for the accuracy (Table 1), we report that KARMATree always outper-
forms ProDrift (adwin) for every value of minMC. The same is not true for Bose
et al. (adwin), which is outperformed by KARMATree when minMC ≤ 0.8,
and outperforms KARMATree when minMC = 0.9. On the contrary, Pro-
Drift (fixed) is a top competitor based on time windows of fixed size, differently
from KARMATree and every adwin-based competitor adopting time windows of
dynamic size. Specifically, since i) ProDrift (fixed) consumes blocks of 20 traces,
and ii) the synthetic datasets are generated so to report a change once every 100
traces, the algorithm compares two clearly distinct group of traces once every 5
windows, on which a change is detected. However, knowing in advance the tem-
poral distribution of changes (once every 100 traces) requires prior knowledge
on the observed process, which could not always be available. In this perspec-
tive, differently from the remaining adwin-based competitors, KARMATree still
outperforms ProDrift (fixed) on synth-log-03/05/06 (for minMC ≤ 0.7), and
synth-log-04 (for minMC ≤ 0.6).

This analysis is confirmed by the false positive rates (FPRs) and false nega-
tive rates (FNRs). As expected, ProDrift (fixed) exhibits both FPRs and FNRs
approximately equal to 0 on every dataset. Also, ProDrift (adwin) exhibits very
low FPRs but moderately high FNRs. On the contrary Bose et al. exhibits the
worst FPR on almost every dataset (except for synth-log-09) and remarkable
FNRs, which in turn are no worse than ProDrift (adwin). As for KARMATree,
the algorithm always outperforms the competitors with respect to their FPRs.
As for the FNRs, KARMATree outperforms every competitor for low values
of minMC. From these results, two tendencies arise: i) both FPRs and FNRs
decrease with minMC, and ii) the accuracy increases for low values of minMC
(Table 2).

4.2 The Most Efficient Process Drift Detection Approach

In this set of experiments we compared the running times (seconds) of KAR-
MATree against the ones of the three competitors on 10 synthetic event logs
(Table 3). As before, we fixed the initial size of time windows to 20 in every
considered approach. As for KARMATree we fixed the minimum support to
minSUP = 0.1 and the minimum growth-rate to minGR = 1.0. On the contrary,
we tuned the minimum change threshold as minMC = {0.5, 0.6, 0.7, 0.8, 0.9}.
We fixed a critical p-value of 0.95 for ProDrift and Bose et al. No clear tendency
emerges when looking at decreasing values of minMC for KARMATree. This is
an expected result, since minMC does not influence the running times, which are
strongly determined by the mining step in the PBCD pipeline. However, when
comparing KARMATree with respect to both ProDrift fixed and adwin-based,
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Table 2. False positive rate (FPR) and False negative rate (FNR) of KARMATree
against ProDrift (fixed, adwin) and Bose et al. (adwin) when tuning minMC on 10
synthetic event logs.

dataset False positive rate @ minMC

KARMATree ProDrift ProDrift Bose et al.

0.5 0.6 0.7 0.8 0.9 (fixed) (adwin) (adwin)

synth-log-01 0 0 0 0 0 0 0 0

synth-log-02 0 0 0 0 0 0.013 0 0.087

synth-log-03 0 0 0 0 0 0 0.013 0.062

synth-log-04 0 0 0 0 0 0 0 0.087

synth-log-05 0.013 0 0 0 0 0.051 0.013 0.0375

synth-log-06 0 0 0 0 0 0.051 0.063 0.075

synth-log-07 0 0 0 0 0 0 0 0

synth-log-08 0 0 0 0 0 0 0 0.05

synth-log-09 0.013 0 0 0 0 0 0 0

synth-log-10 0 0 0 0 0 0 0 0

dataset False negative rate @ minMC

KARMATree ProDrift ProDrift Bose et al.

0.5 0.6 0.7 0.8 0.9 (fixed) (adwin) (adwin)

synth-log-01 0.053 0.053 0.053 0.211 0.421 0 0.789 0.211

synth-log-02 0.211 0.211 0.263 0.368 0.684 0 0.632 0.368

synth-log-03 0 0 0 0.105 0.211 0 0.895 0.211

synth-log-04 0 0 0.053 0.316 0.737 0 0.789 0.158

synth-log-05 0.158 0.158 0.211 0.263 0.421 0 0.684 0.211

synth-log-06 0.053 0.105 0.211 0.474 0.684 0.158 0.526 0.211

synth-log-07 0.053 0.105 0.105 0.316 0.474 0 0.947 0.368

synth-log-08 0.158 0.158 0.263 0.368 0.579 0 0.789 0.105

synth-log-09 0.053 0.158 0.368 0.474 0.737 0 0.895 0.211

synth-log-10 0.158 0.158 0.158 0.211 0.316 0 0.895 0.316

our approach is more efficient than the two competitors (except for synth-log-03
when minMC ≤ 0.7). Moreover, KARMATree is more efficient than Bose et al.
by at most two orders of magnitude. Therefore, we conclude that KARMATree
is able to devise more accurate and more efficient drift detection on almost every
considered dataset.
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Table 3. Running times (seconds) of KARMATree against ProDrift (fixed, adwin) and
Bose et al. (adwin) when tuning minMC on 10 synthetic event logs.

dataset Running times (seconds) @ minMC

KARMATree ProDrift ProDrift Bose et al.

0.5 0.6 0.7 0.8 0.9 (Fixed) (Adwin) (Adwin)

synth-log-01 0.86 0.874 0.891 1.106 0.856 3.38 3.453 28.284

synth-log-02 1.499 1.625 1.688 1.782 1.58 3.908 3.411 47.411

synth-log-03 6.107 6.155 5.932 4.966 5.735 5.005 5.054 187.65

synth-log-04 3.188 3.257 3.392 3.203 3.705 4.932 4.753 92.523

synth-log-05 1.471 1.452 1.592 1.532 1.437 4.172 3.558 47.311

synth-log-06 0.658 0.628 0.629 0.642 0.606 2.79 2.795 18.789

synth-log-07 3.047 2.764 2.954 3.066 3.065 4.4 4.251 96.541

synth-log-08 2.489 2.496 2.717 2.584 2.562 4.777 4.449 70.165

synth-log-09 3.85 3.504 4.43 4.353 5.105 6.243 5.421 101.7

synth-log-10 1.436 1.375 1.445 1.512 1.367 3.83 3.714 42.003

4.3 Case Study

We illustrate a case study in which KARMATree is used to detect and characterize
the changes in a real process. When a change is detected between two windows,
the reference window and the target window, it is reasonable to expect some dif-
ferences between the two associated process models. Intuitively, the change can
be characterized by listing the modifications necessary to transform the process
model, learned fromtraces in the referencewindow, into the one learned fromtraces
in the target window. We recall that KARMATree characterizes changes by list-
ing the maximal emerging subtrees between the reference and the target windows.
Twoconsiderations arise: first, it is possible that a subtreewhichwas frequent in the
reference window becomes infrequent in the target window, and second, a subtree
which was infrequent in the reference window may become frequent in the target
window. Since an emerging subtree denotes an appearing (disappearing) sequence
of activities, then the associated activities will (will not) be included in the process
models. Furthermore, sinceKARMATree discoversmaximal emerging subtrees, the
change is characterized in terms of the longest sequences of activities which appear
or disappear over time.

The real process we consider is the hospital billing process collected in [15].
The event log collects events related to the billing of medical services as provided
by a regional hospital. The dataset was collected from the financial modules
of the ERP system of the hospital. Specifically, the event log contains 100.000
anonymized traces recorded over a period of three years. Our purpose is to detect
and characterize the changes in the hospital billing process. With this objective
in mind, we first encoded the dataset as a dynamic network by following the
procedure described in Sect. 3. Then we executed the KARMATree algorithm
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on the resulting dynamic network by fixing the input parameters as follows:
the minimum support threshold was fixed at minSUP = 0.1, the minimum
change threshold at minMC = 0.5 and the minimum growth-rate threshold at
minGR = 1.0. Once it had been executed, the algorithm was able to detect and
characterize 95 change points out of 1000 blocks.

We report two changes detected by KARMATree, by focusing on the associ-
ated characterizations. In particular, given a change detected between a reference
window W and a target window W ′, we match the MESs against the two heuris-
tic maps discovered by running the HeuristicMiner algorithm (available in ProM
[17]) on traces from the two windows, respectively. Thus, we show how MESs,
discovered by KARMATree, mirror the differences between the two heuristic
maps. We note that heuristic maps highlight the frequently executed parts of
the process in black, while the less executed ones appear in gray.

The first change is detected when KARMATree consumes 6000 traces. Specif-
ically, the change score amounts to 54% and is spotted between the reference
window containing the first 5900 traces (W = [1, 5900]) and the target window
containing the remaining 100 (W ′ = [5901, 6000]). The billing process in W is
depicted in Fig. 5. First, a new billing is created and the associated diagnosis
is set. Then, the fine is created and released. Consequently, the bill is closed
only when the fine is released with success. Occasionally, the diagnosis can be
changed multiple times before deleting the billing prematurely (due to errors,
for example). Errors can also affect the fine, in that case a new one is created by
returning to the create fine activity. However, the billing process looks different
when observed in W ′ (Fig. 6). The change diagnosis activity is less frequently
executed than in W , and may cause the deletion of the bill. Consequently, a
new fine is created right after the billing process starts. When comparing this
heuristic map to the previous one, it emerges that the billing process has been
shortened by avoiding the change diagnosis activity.

Fig. 5. Heuristic map for the billing process in the reference window W = [1, 5900].
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Fig. 6. Heuristic map for the billing process in the target window W ′ = [5901, 6000].

KARMATree explains the change with a single maximal emerging pattern S
which is frequent in W , with a support of 39%, and infrequent in W ′ with a
support of 7%. Therefore, S emerges with a growth-rate of 558%:

S = {(0, 1,new billing), (1, 2, change diagnosis), (2, 3, create fine),
(3, 4, release fine), (4, 5, code ok), (5, 6,billed)}

Since S is emerging and infrequent in W ′, it suggests that the billing process, as
performed in W , is not compliant with the process model observed on W ′. This is
an expected result, since the heuristic map discovered on W ′ does not depict the
billing process as S does. On the contrary, S is compliant with the heuristic map
discovered on W . Clearly, every subtree S′ ⊂ S involving the change diagnosis
activity also characterizes the change occurring between W and W ′ (for example,
S′ = {(0, 1, new billing), (1, 2, change diagnosis), (2, 3, create fine)}). Indeed,
the same change could have been represented by various emerging subtrees,
each of which adds a small contribution to the remaining ones. The usefulness of
discovering maximal emerging subtrees is precisely the characterizing of changes
in a succinct way, that is, by only considering the longest sequences of activities.

KARMATree detects a second change (54%) immediately after the arrival of
100 new traces. In this case, the reference window is W = [5901, 6000] and is
equivalent to the target window of the previous example, while the current target
window is W ′ = [6001, 6100]. Consequently, the heuristic map associated to W
is depicted in Fig. 6, and the one associated to W ′ is depicted in Fig. 7. This new
heuristic map specifies that the billing process can be alternatively completed
by either changing the diagnosis associated to the billing or not. Moreover, the
map also states that i) new billings have been immediately deleted after their
creation and ii) no fine is reopened. The change is characterized by two maximal
emerging subtrees S1 and S2 which are infrequent in W (support of 7% and 4%,
resp.) and frequent in W ′ (support of 42% and 12%, resp.).

S1 = {(0, 1,new billing), (1, 2, change diagnosis), (2, 3, create fine),
(3, 4, release fine), (4, 5, code ok), (5, 6,billed)}

S2 = {(0, 1,new), (1, 2,delete)}
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Fig. 7. Heuristic map for the billing process in the reference window W = [6001, 6100].

Since both the subtrees are frequent and emerging in W ′, they denote novel parts
of the process, as executed according to the heuristic map on W ′. In particular,
while S1 reintroduces the change diagnosis activity in the billing process, S2

states that new billings are immediately deleted right after their creation. We
note that the two subtrees are compliant with the heuristic map learned on W ′.

5 Conclusions

We have presented the KARMATree for simultaneously detecting and charac-
terizing process drifts. KARMATree detects changes in an intermediate repre-
sentation of event logs in the form of dynamic networks. Specifically, changes
are i) sought by tracking variations in the frequent subtrees observed over time
on non-overlapping time windows and ii) characterized with maximal emerging
subtrees. Experiments have shown that KARMATree is more efficient and more
accurate than existing state-of-the-art process drift detection algorithms. Fur-
thermore, a case study on real world data has shown that the characterizations
provided by KARMATree spot parts of the process involved in a given change.
As to future research directions, we plan to i) improve the efficiency through
the use of filter-and-refinement techniques, already explored on spatio-temporal
data [16], ii) work on the conciseness of the changes through condensed repre-
sentations of the patterns [9], iii) study the process drift over a longer temporal
horizon through evolution chains [12].
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Abstract. Classifier chains is a key technique in multi-label classifica-
tion, since it allows to consider label dependencies effectively. However,
the classifiers are aligned according to a static order of the labels. In the
concept of dynamic classifier chains (DCC) the label ordering is chosen
for each prediction dynamically depending on the respective instance at
hand. We combine this concept with the boosting of extreme gradient
boosted trees (XGBoost), an effective and scalable state-of-the-art tech-
nique, and incorporate DCC in a fast multi-label extension of XGBoost
which we make publicly available. As only positive labels have to be
predicted and these are usually only few, the training costs can be fur-
ther substantially reduced. Moreover, as experiments on eleven datasets
show, the length of the chain allows for more control over the usage of
previous predictions and hence over the measure one wants to optimize.

Keywords: multi-label classification · classifier chains · gradient
boosted trees

1 Introduction

Classical supervised learning tasks deal with the problem to assign a single class
label to an instance. Multi-label classification (MLC) is an extension of these
problems where each instance can be associated with multiple labels from a
given label space [18]. A straight-forward solution, referred to as binary rel-
evance decomposition (BR), learns a separate classification model for each of
the target labels. However, it neglects possible interactions between the labels.
Classifier chains (CC) similarly learn one model per label, but these take the
predictions of the previous models along a predetermined sequence of the labels
into account [13]. It was shown formally that CC is able to capture local as
well as global dependencies and that these are crucial if the goal is to predict
the correct label combinations, rather than each label for itself [2]. However, in
practice the success of applying CC highly depends on the order of the labels
along the chain. Finding a good sequence is a non-trivial task. First, the number
of possible sequences to consider grows exponentially with the number of labels.
c© Springer Nature Switzerland AG 2020
A. Appice et al. (Eds.): DS 2020, LNAI 12323, pp. 471–485, 2020.
https://doi.org/10.1007/978-3-030-61527-7_31
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Second, even though a sequence might exist which is optimal w.r.t. some global
dependencies in the data, local dependencies make it necessary to consider dif-
ferent chains for different instances. For instance, in a driving scene scenario it
is arguable easier to detect first a car and then infer its headlights during the
day, whereas it is easier to first detect the lights and from that deduce the car
during the night. Roughly speaking, each instance has its own sequence of best
inferring its true labels.

Dynamic chain approaches address the problem of finding a good sequence
for a particular instance. For instance, Kulessa and Loza Menćıa [5] propose
to build an ensemble of random decision trees (RDT) with special label tests
at the inner nodes. The approach predicts at each iteration the label for which
the RDT is most certain and re-uses that information in subsequent iterations.
Despite the appealing simplicity due to the flexibility of RDT, it comes at the
expense of predictive performance since RDT are not trained in order to optimize
a particular measure.

The Extreme Gradient Boosted Trees (XGBoost) approach [1], instead, is
a highly optimized and efficient tree induction method which has been very
successful recently in international competitions. Similarly to CC and dynamic
chain approaches, XGBoost refines its predictions in subsequent iterations by
using boosting. This served as inspiration to the proposed approach XDCC,1

which integrates Dynamic C lassifier Chains into the extreme boosting struc-
ture of gradient boosted trees. XDCC’s optimization goal in each boosting round
is to predict only a single label for which it is the most certain. This label can be
different for each training instance and depends on the given data, label depen-
dencies and previous predictions for the instance at hand. The information about
the predicted labels is carried over to subsequent rounds.

A key advantage of the proposed approach is the reduced run time in com-
parison to classifier chains. This is due to the fact that though the total number
of labels can be quite high in MLC, the number of actually relevant labels for
each instance is relatively low, usually below 10. Hence, only few rounds are
potentially enough if only the positive labels are predicted, whereas CC-based
approaches have to still make predictions for each of the existing labels.

2 Preliminaries

This section provides a short overview of the notations used. Additionally an
insight to XGBoosts basic functionality is given, i.e., to the tree boosting and
classification process as well as the way it can deal with multiple targets.

2.1 Multilabel classification

Multilabel classification (MLC) is the task of predicting for a finite set of N
unique class labels Λ = {λ1, . . . , λN} whether they are relevant/positive, i.e.,
yj = 1 if λj is relevant, or yj = 0 if λj is irrelevant/negative, for a given

1 Publicly available at https://github.com/keelm/XDCC

https://github.com/keelm/XDCC
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instance. The training set consists of training examples xi ∈ X and associated
label sets yi ∈ Y = {0, 1}N , 1 ≤ i ≤ M , which can be represented as matrices
X = (xik) ∈ AM×K and Y = (yij) ∈ {0, 1}M×N , where features xij can be
represented as continuous, categorical or binary values. An MLC classifier f :
X → Y is trained on the training set in order to learn the mapping between
input features and output label vector. The prediction of f for a test example
x is a binary vector ŷ = f(x). An extensive overview over MLC is provided by
Tsoumakas and Katakis [18].

The simplest solution to MLC is to learn a binary classifier fj for each of the
labels λj using the corresponding column in Y as target signal. The approach is
referred to as binary relevance decomposition (BR) and disregards dependencies
between the labels. For instance, BR might predict contradicting label combina-
tions (for a specific dataset) since the labels are predicted independently from
each other.

2.2 (Dynamic) Classifier Chains

The approach of classifier chains [13] overcomes the disadvantages of BR as it
neither assumes full label independence nor full dependence. As in BR, a set of N
binary classifiers is trained, but in order to being able to consider dependencies,
the classifiers are connected in a chain according to the Bayesian chain rule and
pass their predictions along a chain. Each classifier then takes the predictions of
all previous ones as additional features and builds a new model.

More specifically each fj is trained on the augmented training data X×Y•,1×
. . . × Y•,j−1 to predict the j-th column Y•,j of Y based on previous predictions
ŷ1, . . . , ŷj−1 as follows

ŷj = fj(x, ŷ1, . . . , ŷj−1) (1)

with ŷ1 = f1(x) and assuming for convenience an ascending order on the labels.
As further research revealed, CCs are able to capture global dependencies as

well as dependencies appearing only locally in the instance space [2]. However,
the ability of the CC approach to capture dependencies is determined by the
chosen ordering of the labels. A common approach is to set the order of the
labels randomly. Early experimental results already revealed that the ordering
has an obvious effect on the predictive performance [13,16]. A solution is to use
ensembles of CCs with different orderings [6,13], but creating and maintaining
an ensemble of CCs is not always feasible [4] and comes with further issues
on combining the predictions. An alternative way to handle the label ordering
problem is to determine a good chain sequence in advance. For this purpose
methods such as genetic algorithms [4], Bayesian networks [17] or double Monte
Carlo optimization technique [12] have been used.

Apart from the computational disadvantages of exploring different label
sequences, which often leads to just choosing a random ordering in practice,
another issue is the underlying assumption that there is one unique, globally
optimal ordering which fits equally to all instances. Instead, dynamic approaches
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choose the label ordering depending on the test instance at hand. For instance,
Silva et al. [16] determine the classification order on the fly by looking at the
nearest neighbors of the test instance and using the label ordering which works
well on the neighbors. However, the approach is computationally expensive since
new CC models have to be build during prediction. Nam et al. [10] use recurrent
neural networks to predict the positive labels as a sequence. Nam et al. [9] further
use reinforcement learning to determine a different, best fitting sequence over the
positive labels of each training instance. Predicting only the positive labels has
the advantage of considerably lower computational costs during prediction, since
the number of relevant labels is usually low in comparison to the total number of
available labels. The advantage comes at the expense of ignoring dependencies
to negative labels. Predicting the absence of a label is often much easier than
finding positive ones and the knowledge about the absence of a label might be
very useful to predict a positive label. Despite the induction of the positive labels
does not depend on the number of labels, the approaches of Nam et al. [9,10] can
still be computationally very demanding due to the complex neural architectures
needed, especially regarding the usage of reinforcement learning which actually
has again to explore many possible label sequences during training.

Kulessa and Loza Menćıa [5] propose to integrate dynamic classifier chains
in random decision trees (RDT) [20]. In contrast to the common induction of
decision trees or to random forests, RDTs are constructed completely at random
without following any predictive quality criterion. These special RDTs place tests
on the labels at the inner nodes, which they can turn on and off without altering
the original target of the RDT since it is only specified during prediction by
the way of combing the statistics in the leaves. Hence, it is possible to simulate
any binary base classifier of a CC in any possible chain sequence. In an iterative
process, the same RDTs is queried subsequently to determine the next most
certain (positive or negative) label. In the respective next iteration the predicted
label is added to the input features like in CC and the respective label tests are
turned on. The results of their experimental evaluation show that the dynamic
classification achieves a major improvement over static label orderings. However,
the lack of any optimization may lead to an insuperable gap to state-of-the-art
methods. In fact, the results also show that RDT are inherently not suitable for
sparse data like text.

2.3 Extreme Gradient Boosted Trees

Extreme Gradient Boosted Trees (XGBoost) [1] is a versatile implementation
of gradient boosted trees. One of the reasons for its success is the very good
scalability due to the specific usage of advanced techniques for dealing with
large scale data. XGBoost was originally designed for dealing with regression
problems, but different objectives can be defined by correspondingly adapting
the objective function and the interpretation of the numeric estimates. Each
model consists of a predefined number of decision trees. These trees are built
using gradient boosting, i.e., the model is step-wise adding trees which further
minimize the training loss. They are constructed recursively, starting at the root
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node, by adding feature tests on the inner nodes. At each inner node, all possible
feature tests are evaluated according to the gain obtained by applying the split
on the data. The test candidate returning the highest gain score is then taken
and both children are further split up until the maximum depth is reached or the
gains stay below a certain threshold. A prediction can be calculated by passing
an instance through all trees and summing up their respective leaf scores.

Boosted Optimization. We refer to [1] for a more detailed description of XGBoost.
An XGBoost model consists of a sequence of T decision trees f1, . . . , fT . Each
tree returns a numeric estimate fc(x) for a given instance x. Predictions are
generated by passing an instance through all trees and summing up their leaf
scores. The model is trained in an additive manner and each boosting round
adds a new tree that improves the model most. For the t-th tree the loss to
minimize becomes

L(t) =
M∑

i=1

l
(
yi, (ŷ(t−1)

i + ft(xi))
)

+ Ω(ft), (2)

where ŷ
(t−1)
i =

∑t−1
k=1 fk(xi) is the prediction of the tree ensemble so far, l(y, ŷ)

is the loss function for each individual prediction and Ω is an additional term
to regularize the tree. Combined with a convex differential loss function the
objective can be simplified by taking the second-order approximation which gives
us the final objective to optimize:

obj(t) =
T∑

v=1

[Gvwv +
1
2
(Hv + ε)w2

v] + γT with Gv =
∑

i∈Iv

gi,Hv =
∑

i∈Iv

hi,

where Iv is the set of indices for all data points in leaf v, Gv defines the sum
of the gradients for all instances Iv in leaf v, Hv is the corresponding sum of
the Hessians (cf. also Sect. 3.1), wv is the vector of leaf scores and ε and γ are
regularization terms derived from Ω. With the optimal weights w∗

v for leaf v the
objective becomes

obj∗ = −1
2

T∑

v=1

G2
v

Hv + ε
+ γT with w∗

v = − Gv

Hv + ε
. (3)

These weights finally lead to the gain function used to evaluate different splits.
The indices L and R for G and H refer to the proposed right and left child
candidates:

Lsplit =
1
2

[
G2

L

HL + ε
+

G2
R

HR + ε
− (GL + GR)2

HL + HR + ε

]
− γ. (4)

There are only few special adaptations of the gradient boosting approach to
MLC in the literature and they mainly deal with computational costs. Both Si
et al. [15] and Zhang and Jung [21] propose to exploit the sparse label structure
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which they try to transfer to the gradient and Hessian matrix by using L0 regu-
larization. These approaches are limited to decomposable evaluation measures,
which roughly speaking means that, opposed to the classifier chains approaches,
they are tailored towards predicting the labels separately rather than jointly.
Moreover, different technical improvements regarding parallelization and approx-
imate split finding are proposed which could also be applied to the proposed
technique in the following. Recently, Rapp et al. [11] proposed to use gradient
boosting in order to induce classification rules. Instead of predicting the labels
in sequence, the rules predict all labels at once, which allows for minimizing also
non-decomposable losses. On the other hand, previous predictions can only be
exploited indirectly.

3 Learning a Dynamic Chain of Boosted Tree Classifiers

Instead of learning a static CC that predicts labels in a predefined rigid order, we
introduce a dynamic classifier chain (DCC) where each chain-classifier predicts
only a single label which is not predetermined and can be different for each
sample. To prevent learning bad label dependencies, the base-classifiers are built
to maximize the probability of only a single label. On the one hand this allows
to exploit more complex label dependencies, and on the other side to massively
reduce the length of the chain, while still being able to predict all labels. Given
a dataset with 100 labels and a cardinality of five, a DCC of length five has
the ability to predict all labels, whereas a CC would have to train 100 models.
Because of XGBoosts highly optimized boosting-tree architecture, we decided to
use it as base-classifiers in our chain. Therefore we have to modify it and make
it capable of building multilabel-trees which can deal with an arbitrary number
of labels.

3.1 Multi-label XGBoost

Since XGBoost only supports binary classification with its trees in the original
implementation, the underlying tree structure had to be adapted in order to
support multi-label targets.

The first modification is to calculate leaf weights and gradients over all class
labels instead of only a single one. More specifically, Gj,v =

∑
i∈Iv

gj,i and
Hj,v =

∑
i∈Iv

hj,i extend to the labels 1 ≤ j ≤ N . In consequence, the objective
(3) and gain functions (4) have to be adapted to consider gradient and hessian
values from all classes. A common approach in multi-variate regression and multi-
target classification is to compute the average loss of the model over all targets

[19]. Adapted to our XGBoost trees, this corresponds to the sum of G2
j

Hj+ε over
all labels (cf. Table 1). We refer to it as the sumGain split method. We use
cross entropy as our loss, as it has demonstrated to be appropriate practically
and also theoretically for binary and especially multi-label classification tasks
[2,8]. Hence, the loss is computed as (shown here only for a single label)

lce(y, ŷ) = −y log(ŷ) + (1 − y) log(1 − ŷ). (5)
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In order to get ŷ as a probability between zero and one, a sigmoid transforma-
tions has to be applied to the summed up raw leaf predictions ỹ =

∑T
t=1 ft(x),

returned from all boosting trees, where ŷ = sigmoid(ỹ) = 1
1+e−ỹ . This is also

beneficial for calculating g and h, since the gradients of the loss function simply
become

g = gce = ∇ŷlce(y, ŷ) = ŷ − y and h = hce = ∇2
ŷlce(y, ŷ) = ŷ · (1 − ŷ). (6)

One might not expect a very different prediction from the combined formulation
than from minimizing the loss for each label separately by separate models (as
by BR). However, as Waegeman et al. [19] note fitting one model to optimize
the average label loss has a regularization effect that stabilizes the predictions,
especially for infrequent labels. In addition, only one model has to be inferred
in comparison to N , which has a major implication on the computational costs.
This is especially an advantage in the case of a large number of labels and our
proposed dynamic approach can directly benefit from it.
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Fig. 1. Dynamic Chain: training pipeline (blue arrows) & prediction pipeline (red
arrows).

3.2 Extreme Dynamic Classifier Chains

After introducing the ML-XGBoost models, which can deal with multiple labels,
the next step is to modify the tree construction to align it with our goal of
predicting a single label per instance.

Table 1 shows the proposed split functions and an example for each one to
demonstrate the gain calculations. We assume to have a single instance with four
different target labels y ∈ [0, 1]4 and their corresponding predictions ŷ. g and h
are calculated according to Eq. (6) and we get G = (−0.2,−0.8, 0.9, 0.1). We have
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Table 1. Proposed split gain calculations with a simplified example calculation for
the predicted scores ŷ = (0.8, 0.2, 0.9, 0.1) of the previous trees and given true labels
y = (1, 1, 0, 0). For convenience, we assume Hj + ε = 1.

Gain Formula Example Gain Formula Ex.

sumGain
N∑

j=1

(
G2

j

Hj + ε

)
0.22 + 0.82 + 0.92 + 0.12 maxGain max

1�j�N

(
G2

j

Hj + ε

)
0.92

sumSigned

N∑

l=1

( −Gj

Hj + ε

)
0.2 + 0.8− 0.9− 0.1 maxSigned max

1�j�N

( −Gj

Hj + ε

)
0.8

sumAbsG

N∑

l=1

(∣∣∣∣
−Gj

Hj + ε

∣∣∣∣

)
0.2 + 0.8 + 0.9 + 0.1 maxAbsG max

1�j�N

(∣∣∣∣
−Gj

Hj + ε

∣∣∣∣

)
0.9

focused on different characteristics for each function.The max versions focus on
optimizing a tree for predicting only a single label, whereas sum functions aim
for finding a harmonic split that generates predictions with high probabilities
over all labels. The signed variants focus on directly optimizing the tree outputs
and hence prefer positive labels, while the gain splits stay close to XGBoosts
original gain calculation and try to optimize positive and negative labels to the
same extend. Hereinafter we give a more detailed description and motivation for
each gain function:

Maximum default gain over all labels XDCC predicts labels one by one.
It hence does not need to find a split which increases the expected loss over
all labels (such as sumGain), but only one. Hence, maxGain is tailored to
find the label with maximal gain, which corresponds to the label for which
the previous trees produced the largest error. In the example in Table 1,
this corresponds to λ3 for which a change of 0.92 w.r.t. cross entropy was
computed if the prediction is changed to the correct one.

Sum and maximum gradients over all labels In contrast to maxGain, sum-
Signed aims at good predictions for positive labels only and hence corre-
sponds to the idea of predicting the positive labels first. Positive labels obtain
positive scores, whereas negative labels obtain negative scores. The variant
maxSigned chooses the positive label for which the greatest improvement is
possible and only goes for the best performing negative label if there are no
true positive labels in the instance set. In the example, λ2 is chosen since the
improvement is greater than for λ1, and definitely greater as for the negative
labels.

Sum and maximum absolute gradients over all labels In contrast to sum-
Gain and maxGain, the measures sumSigned and maxSigned not only favour
positive labels but also take the gradients linearly instead of quadratically into
account. This might, for instance, reduce the sensitivity to outliers. Hence, we
also include two variants sumAbsG and maxAbsG which encourage to pre-
dict the labels where the model would improve the most, regardless whether
it is positive and negative, but which similarly to sumSigned and maxSigned
use a linear scale on the gradients.
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Even though DCC’s original design is to predict a single positive label per round,
good overall predictions might be required from the beginning for instance in the
case of shorter chains. Therefore, we use the split-method as an additional hyper-
parameter to choose it individually for different XDCC variants and datasets.

Training Process A schematic view for training the dynamic chain with a
length of two is shown in Figure 1 following the blue lines. In a first preprocessing
step, the training datasets have to be adapted. For each label λj a new label-
feature p0j , initialized as unknown (?), is added to the original features resulting
in the augmented space (x,p) ∈ X × [0, 1]N . While proceeding through the
chain, these “?” values are replaced with predicted label probabilities out of
ŷr = sigmoid

(∑T
t=1 fr

t ((x,pr−1))
)

in round r. As soon as these feature columns
begin to be filled with values, following classifiers may detect dependencies and
base their predictions on them. Each round r, for 1 ≤ r ≤ N , starts with training
a new ML-XGBoost model by passing the train set combined with the additional
label-features pr−1 and the target label matrix y to it. Afterwards, the model
is used to generate predictions ŷr on the same data used to train it, shown in
the predictions tables. In the last step these predictions are then propagated to
the next chain classifier by replacing the corresponding label features with the
predicted probabilities pr. Three different cases can occur during this process:

– At least one label, that was not propagated previously, has a probability
≥ 0.5: The label with the highest probability is propagated.

– All labels, that were not propagated previously, have probabilities < 0.5: The
label with the lowest probability is propagated.

– Otherwise, no additional label is propagated.

They can be formalized where pr
i,j denotes the added label feature and ŷr

i,j the
corresponding predictions for label λj of an instance xi in training round r.

pr
i,j =

⎧
⎪⎨

⎪⎩

ŷr
i,j if pr−1

i,j =? and maxm ŷr
i,m ≥ 0.5 and ŷr

i,j = maxm ŷr
i,m

ŷr
i,j if pr−1

i,j =? and maxm ŷr
i,m < 0.5 and ŷr

i,j = minm ŷr
i,m

pr−1
i,j otherwise

(7)

In all cases where labels are propagated, later classifiers are not allowed to
change these labels from positive to negative or the other way around, based on
the assumption that later classifiers tend to have a higher error rate, since their
decisions are based on previous predictions [14].

Prediction Process The prediction process is similar to the training process.
Instead of training a model in each step, we reuse the models from the training
phase to generate predictions on the test set. After all predictions are propagated,
the propagated labels are mapped to label predictions, where probabilites pi,j <
0.5 or equal to ? are interpreted as negative labels and probabilities pi,j ≥ 0.5
as positive labels. The process is depicted in Figure 1 following the red lines.
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3.3 Refinements to the chain

In this section we shortly describe two problems we faced during development
of the DCC approach and propose two crucial methods to tackle them.

Separate and Conquer Consecutive models in the chain tend to select the
same splits and therefore predict the same labels, especially ones which are easy
to learn, i.e. if they clone existing features. We solve this problem by introducing
an approach similar to separate-and-conquer from rule learning [3]. The separat-
ing step turns all gradient and hessian values of previous predicted labels for an
instance to zero. Thereby they are no longer considered during split score cal-
culation in the conquering step and other splits become more likely since scores
for already used splits are lower.

Cumulated Predictions A second observation was that final predictions, after
traversing the chain, contain too little positive labels. Analyzing the chain models
showed that especially early models predict multiple positive labels, but are
only allowed to propagate the one with the highest probability. Therefore we
introduce cumulated predictions to preserve these otherwise forgotten positive
predictions. The idea is to save all predictions of each chain classifier and merge
them afterwards with the chain predictions of the unmodified DCC using the
following heuristic. The final cumulated prediction ci,j for label λj and instance
xi is computed as

ci,j =

{
pN

i,j if pN
i,j �= ?

max(ŷ1
i,j , ..., ŷ

N
i,j) otherwise

(8)

Table 2. Datasets, # of instances, labels, cardinality, # of distinct label combinations.

Dataset Instances Labels Cardinality Distinct Dataset Instances Labels Cardinality Distinct

emotions 593 6 1.869 27 genbase 662 27 1.252 32

scene 2407 6 1.074 15 medical 978 45 1.245 94

flags 194 7 3.392 54 enron 1702 53 3.378 753

yeast 2417 14 4.237 198 bibtex 7395 159 2.402 2856

birds 645 19 1.014 133 CAL500 502 174 26.044 502

tmc2007 28596 22 2.158 1341

4 Experiments

The experiments were evaluated for the following models, where BR, CC and
RDT serve as baselines:

– BR: Binary Relevance with default XGBoost models for binary-classification.
– CC: Classifier Chains with a random order and default XGBoost as base-

models.
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– RDT-DCC: Dynamic Classifier Chains using Random Decision Trees [5].
– ML-XGB: A single multi-label XGBoost model introduced in Section 3.1.
– XDCCstd: Our Dynamic Classifier Chain with ML-XGB models as base clas-

sifiers.
– XDCCcum: The cumulated version of DCC introduced in Section 3.2.

The evaluated datasets in Table 2 cover a wide variety of application areas for
multi-label classification. All datasets came with predefined train-tests splits
which were used for the final evaluation. Parameters were tuned in terms of
obtaining best F1 on a randomly chosen 20% of the training set.2

4.1 Evaluation Measures

From the large variety of evaluation measures that exist for MLC the most inter-
esting ones for analyzing our proposed methods are Hamming accuracy (HA)
and subset accuracy (SA). Hamming accuracy denotes the accuracy of predict-
ing individual labels averaged over all labels, whereas subset accuracy measures
the ability of a classifiers of predicting exactly the true label combination for
an instance. In the case of predicting a large amount of labels, subset accuracy
is often of limited use since it often evaluates to zero. Hence, we additionally
consider example-based F1 (F1 ) as measure especially for the parameter tuning.
It can be considered as a compromise between HA and SA and was also used by
Nam et al. [9,10] as surrogate loss for SA More formally, the comparison between
true y and predicted ŷ for a test instance x is evaluated to (with I as indicator
function)

SA = I [y = ŷ] HA =
1
N

N∑

j=1

I [yj = ŷj ] F1 =
2

∑N
j=1 yj ŷj

∑N
j=1 yj +

∑N
j=1 ŷj

As Dembczyński et al. [2] indicate, HA and SA are orthogonal to each other.
From a probabilistic perspective, to predict the true label combination requires
to find the mode of the joint label distribution, whereas it is sufficient to find
the modes of the marginal label distributions for HA. If there are dependencies
between labels, both modes do not have to coincide. In consequence, an approach
such as binary relevance is sufficient if one is interested in good HA (or there are
no dependencies). CC, especially if using the same base learner and configuration
as its BR counterpart, cannot be expected to improve over BR regarding HA.
On the other hand, the reverse behaviour can be expected for SA. Hence, the
trade-off between both measures and the relation to BR can serve us to assess
the ability of considering label dependencies.

2 The following parameters were tuned by grid-search: number of trees {100, 300,
500}, max tree depth {5, 10, 20, 30, 50}, percentage labels {0.1, 0.2, 0.3} for RDT,
max tree depth {5, 10, 20, 50, 100}, number of boosting rounds {10, 20, 50, 100},
learning rate {0.1, 0.2, 0.3} for XDCC, ML-XGB, BR, CC, split methods in Table 1
for XDCC, ML-XGB.
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Fig. 2. Comparison with respect to length of the chain on yeast w.r.t. HA and SA.

Fig. 3. Heat maps of the development of the predictions of positive and negative labels
(left and right side of the bar, respectively) from the first (top row) to last round
(bottom row) given as fraction (color level) of the total number of positive and negative
predictions on the respective dataset.

4.2 Results

As described in Section 3.2, XDCC can provide a meaningful prediction after
each round, which is a major advantage over CC in terms of computational costs.
Moreover, by subsequently refining its predictions based on previous predictions,
we expected to advance especially in terms of SA. Figure 2 shows measures HA,
SA and the time for training for different lengths of the chain on yeast. CC
and XDCC were trained with optimal parameters for CC for a fair comparison
of the computational times. Note that length 1 corresponds to ML-XGB when
the same parameter were used. The first observation is that, as expected, HA
and SA increase with increasing length for the standard XDCC variant until
a little bit further than the average cardinality of 4 of the dataset. If we add
the cumulated predictions, the performances converge much faster. Yet, there
is a clear improvement visible for SA, which indicates that XDCCcum is able
to directly benefit from the previous predictions in order to match the correct
label combinations. The cumulated predictions are also decisive to surpass CC.
Interestingly, the training costs of CC are also never reached although the same
XGBoost parameters were used.
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Table 3. Predictive performance and training times comparison. Shown are the average
ranks over the 10 datasets and the ranks over these in brackets.

Method HA SA F1 Train time

BR 2.20 (1) 3.45 (4) 3.00 (2) 3.00 (3)

CC 3.05 (3) 2.60 (1) 3.30 (3) 3.30 (4)

RDT-DCC 5.10 (6) 4.05 (5) 3.60 (5) –

ML-XGB 2.90 (2) 3.20 (3) 3.35 (4) 1.10 (1)

XDCCcum 3.15 (4) 3.05 (2) 2.45 (1) 2.60 (2)

XDCCstd 4.60 (5) 4.65 (6) 5.30 (6) 2.60 (2)

Fig. 4. Train time ratios between XDCCcum and CC in relation to their ratio with
respect to F1 for nine datasets. For instance, all points below x = 1 and y = 1 indicate
XDCCcum models which consume less training time but perform worse than CC.

The point where train times of CC are reached by XDCC are further investi-
gated in Figure 4. It shows the ratio of XDCCcum to CC for the different datasets
(connected lines) and chain lengths. CAL500 around (0.1,1.4) is not shown for
convenience and bibtex would continue to (5.3,0.84). The diagram shows that
XDCC only takes longer than CC on four datasets and only for the last rounds.
For three of these datasets XDCC does not reach CC’s F1. As already shown in
Figure 2, XDCCcum only improves in the first rounds, and sometimes there is
even a tendency to decrease. The progress of predicting the labels is also depicted
in Figure 3. It visualizes that positive labels are generally predicted in earlier
rounds, as expected from the design of the split functions. As shown previously,
this behaviour is decisive for the fast convergence and hence the possibility to
end the training and prediction processes already in early rounds.

Table 3 also includes a comparison to the RDT-DCC baseline. The first obser-
vation is the strong baseline achieved by BR regarding Hamming, as partially
expected in Section 4.1. In the same way, CC is best in terms of SA. However,
ML-XGB performs second regarding HA and XDCCcum is second regarding SA,
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which suggests that the proposed approach is able to trade-off between both
extremes. This is also confirmed by the best position in terms of F1. RDT is the
worst performing approach and is even sometimes surpassed by XDCCstd which
is only included for showing the effect of cumulative predictions.

5 Conclusions

We have proposed in this work XDCC, an adaptation of extreme gradient
boosted trees which integrate dynamic chain classifier. XDCC predicts labels
along the chain in a dynamic order which adapts to each test instance indi-
vidually. It was shown that the positive labels are predominantly predicted at
the beginning of the process, which allows XDCC to achieve its maximum per-
formance already after a few rounds. This allows XDCC to reduce the length
of the chain, which together with the multi-target formulation of XDCC leads
to substantial improvements in comparison to binary relevance and classifier
chains regarding computational costs, often even if the full chain is processed.
The length of the chain also trades-off between the two orthogonal objectives of
BR and CC, leading to in average the best results in terms of F1.

We will consider in the future to specifically adapt our approach to the set-
ting of large number of labels, e.g. by integrating some of the sparse techniques
proposed in [15,21]. Since the number of associated labels per instance is usu-
ally not affected by the increasing number of labels, it will be interesting to see
how XDCC will behave with respect to computational costs, but also regarding
the exploitation of label dependencies since the size of the (dependency) chains
should remain of the same size. In order to actually benefit computationally from
these short chains, we are planning to include a virtual label which indicates the
end of the training and prediction process, similar to the idea of the calibrating
label in pairwise learning [7].
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10. Nam, J., Loza Menćıa, E., Kim, H.J., Fürnkranz, J.: Maximizing subset accuracy
with recurrent neural networks in multi-label classification. In: Advances in Neural
Information Processing Systems 30 (NIPS-17). pp. 5419–5429 (2017)
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19. Waegeman, W., Dembczyński, K., Hüllermeier, E.: Multi-target prediction: a unify-
ing view on problems and methods. Data Mining and Knowledge Discovery 33(2),
293–324 (2019)

20. Zhang, X., Yuan, Q., Zhao, S., Fan, W., Zheng, W., Wang, Z.: Multi-label Classi-
fication without the Multi-label Cost. In: Proceedings of the Society for Industrial
and Applied Mathematics International Conference on Data Mining. pp. 778–789
(2010)

21. Zhang, Z., Jung, C.: GBDT-MO: Gradient Boosted Decision Trees for Multiple
Outputs. ArXiv preprints arXiv:1909.04373 [cs.CV] (2019)

http://arxiv.org/abs/1909.04373


Hierarchy Decomposition Pipeline: A Toolbox
for Comparison of Model Induction Algorithms

on Hierarchical Multi-label Classification
Problems

Vedrana Vidulin(B) and Sašo Džeroski

Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
vedrana.vidulin@gmail.com, saso.dzeroski@ijs.si

Abstract. Hierarchical multi-label classification (HMC) is a supervised machine
learning task, where each example can be assigned more than one label and the
possible labels are organized in a hierarchy. HMC problems emerge in domains
like functional genomics, habitat modelling, text and image categorization. They
can be addressed with global model induction algorithms, which induce a single
model that predicts the complete hierarchy, as well as with local algorithms, which
induce multiple models that predict different segments of the hierarchy. However,
there is no consensus about which of these approaches perform the best over
different domains, especially in the setting of learning ensembles.

We introduce the hierarchy decomposition pipeline, a publicly available tool-
box for comparison ofmodel induction algorithms onHMCproblems in an ensem-
ble setting. The pipeline includes five algorithms, including the algorithm that
predicts the complete hierarchy, and algorithms that perform partial and complete
hierarchy decompositions. One of these algorithms is the novel “label specializa-
tion” algorithm that constructs a local multi-label classification model for each
parent label in a hierarchy that simultaneously predicts the respective children
labels.

We apply the pipeline on ten HMC data sets from four domains, which have
both tree and directed acyclic graph label hierarchies, and confirm that there is no
single best algorithm for all HMC problems. This finding shows that there exists a
need for such a pipeline that enables a user to choose the best performing algorithm
for his/her HMC data set. Finally, we show that the choice can be narrowed to a
specific type of algorithm, based on the characteristics of the label hierarchy and
the data set label cardinality.

Keywords: Hierarchical multi-label classification · Hierarchy decomposition ·
Structured prediction

1 Introduction

Hierarchical multi-label classification (HMC) is a supervised machine learning task,
where each example can be assigned more than one label and the possible labels are
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organized in a hierarchy [1]. The hierarchy can be in the shape of a tree, where each
label has exactly one parent label, or in the form of a directed acyclic graph (DAG),
where a label can have multiple parent labels. Label assignments follow the hierarchy
constraint: When a label is assigned to an example, all labels on all possible paths from
that label to the root of the hierarchy must be assigned too.

Many real life problems are best representedwithHMCdata sets [2–10]. An example
of a HMC problem is gene function prediction, which aims to predict the biological
functions of genes. Examples of gene function are the tree shaped hierarchy of FunCat
[11] and the more comprehensive DAG shaped hierarchy of the Gene Ontology [12].
The latter is composed of three domains – molecular function, biological process and
cellular component – and a single gene can be assigned with multiple functions from
each of the three domains [13].

Model induction algorithms for HMC problems can be divided into two groups
[14, 15]. Global algorithms induce a single model that predicts complete hierarchy.
They can exploit dependencies among labels during a model induction phase to improve
model’s predictive performance. An example of the global algorithms is Clare and King
[16] adaptation of the decision tree algorithm C4.5 [17], which predicts labels on dif-
ferent levels of a hierarchy by assigning a larger cost to misclassification high up in the
hierarchy. Another example is the predictive clustering tree (PCT) algorithm, a gener-
alization of the decision tree algorithm that predicts labels from both tree [18–20] and
DAG hierarchies [1]. Local algorithms induce multiple models that predict a different
part of a hierarchy, and then combine the predictions of those models. Some examples of
a local algorithm construct an SVM model for each label and then combine predictions
so as to satisfy the hierarchy constraint [21–24].

Levatić et al. [25] compare the predictive performance of four model induction algo-
rithms over HMC problems from different domains. They compare two global and two
local algorithms, where one in each group exploits the hierarchical dependencies among
labels when constructing model(s) and the other does not. Both global algorithms con-
struct one multi-label model, while both local algorithms construct many single-label
classification models. All four approaches construct single PCT models of (random for-
est and bagging) ensembles of PCTs. When a single PCT models are constructed, the
algorithms that exploit hierarchical dependencies outperform those that do not. How-
ever, when PCT ensembles are constructed, it is less clear what is the best performing
algorithm.

We introduce the hierarchy decomposition pipeline, a publicly available toolbox for
comparison of model induction algorithms for HMC problems in the ensemble setting
(https://github.com/vedranav/hierarchy-decomposition-pipeline). The pipeline includes
five algorithms, beginning with an algorithm that predicts the complete hierarchy in
one shot, and following with four algorithms that perform partial and complete hierar-
chy decompositions. Partial decomposition algorithms construct models that predict the
presence of one or more edges of the hierarchy, while complete decomposition algo-
rithms construct model(s) that predict the presence of individual or all hierarchy nodes.
We propose a novel partial decomposition algorithm, called the “label specialization”,
that constructs a multi-label classification model for each parent label in a hierarchy,
which predicts the presence of its children labels. The algorithm is an extension of the

https://github.com/vedranav/hierarchy-decomposition-pipeline
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hierarchical single label classification algorithm [1] that constructs a single-label classi-
fication model for each parent-child pair in a hierarchy, where collection of such models
for a given parent can be viewed as a binary relevance classifier. Apart from the men-
tioned algorithms, the pipeline contains tools for performance-based comparison of the
algorithms.

We applied the pipeline on ten HMC data sets from four domains. In the text cate-
gorization domain, we use the Enron data set that categorizes e-mails from the Enron
corporation officials [4] and the Reuters data set that categorizes Reuters stories [5].
In the image categorization domain, we use two data sets from the 2007 CLEF image
retrieval campaign that categorize medical X-ray images [7]. In the habitat modelling
domain, we use the Danish farms data set that models the habitats of soil microarthro-
pods [6] and the Slovenian rivers data set that models the habitats of aquatic organisms
[2]. In the functional genomics domain, we use two data sets intended for predicting
biological functions of genes in two model organisms: the plant Arabidopsis thaliana
and the baker’s or brewer’s yeast Saccharomyces cerevisiae [3]. In addition, we use two
data sets intended for predicting functions of genes in thousands of bacterial and archaeal
organisms [8, 9]. In the first eight data sets, the labels are interconnected in tree shaped
hierarchies, while in the last two the labels form a DAG.

The results of the performance comparison confirm that there is no single best model
induction algorithm for all HMC data sets in the ensemble setting. There is no significant
difference in the predictive performance of the five algorithms over the ten data sets.
This finding shows that there exists a need for the proposed pipeline, which enables a
user to find the best performing algorithm for his/her custom HMC data set. Finally,
the results show that the search for the best performing algorithm can be narrowed to a
specific type of an algorithm based on the characteristics of the hierarchy and the data
set cardinality.

The remainder of the paper is organized as follows. In Sect. 2, we describe the
hierarchy decomposition pipeline. Section 3 describes the experimental setup, including
values of the pipeline’s parameters and theHMCdata sets. The results of the performance
analysis are presented in Sect. 4. We conclude the paper with Sect. 5.

2 Hierarchy Decomposition Pipeline

The hierarchy decomposition pipeline is a toolbox for comparing model induction algo-
rithms for HMC problems in the ensemble setting. The pipeline takes as input a HMC
data set specified by a user and applies five model induction algorithms, beginning with
the algorithm that induces amodel predicting the complete hierarchy and continuingwith
partial and complete hierarchy decomposition algorithms. The performance-based eval-
uation tool computes the areas under the average precision-recall curves and performs
a statistical test. The components of the pipeline are shown in Fig. 1.

The pipeline receives two input files: an HMC data set and a settings file (Fig. 1A).
A description of the input file formats is available on the repository.

The cross-validation module takes the data set and divides its examples into folds
(Fig. 1B). For each fold, it sends a training set to the hierarchy decomposition and the
model induction modules, and a test set to the annotation module.
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Fig. 1. The hierarchy decomposition pipeline.

The hierarchy decompositionmodule transforms an input training set intomultiple
training sets by applying two types of decomposition:

Partial decompositions construct multiple training sets representing different edges
of a hierarchy (Fig. 1C).Thefirst partial decomposition “child vs. parent label” constructs
a binary training set for each child-parent label pair in a hierarchy, composed of the
training examples originally labeled with the parent label. In a newly created training
set, the examples originally labeled with the child label are labeled as positive, while the
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rest of the examples are labeled as negative. The second partial decomposition, “label
specialization”, constructs a multi-label training set for each parent-children group of
labels in a hierarchy, where the training set contains all examples originally labeled with
the parent label, now only labeled with the applicable children labels.

Complete decompositions construct one or multiple training sets representing the
nodes of the hierarchy, and ignoring the edges (Fig. 1D). The training set(s) contain the
same examples as the input training set, but annotated with the labels that belong to the
subset of most specific annotations. For example, if an example is originally labeled
with two paths “root > 1 > 1.1” and “root > 2 > 2.1 > 2.1.1”, the example will be
newly labeled with the most specific annotations 1.1 and 2.1.1. Accordingly, the subset
of most specific annotations contains the labels that appear at least once as the most
specific annotation in the input data set. The first complete decomposition “label vs.
the rest” constructs a binary training set for each most specific annotation, where the
examples originally annotated with the label are newly labeled as positive and the rest of
the examples as negative. The second “labels without hierarchical relations” constructs
a single multi-label training set that captures label cooccurrences by labeling examples
with one or multiple labels that qualify as most specific annotations.

Themodel induction module constructs classification models from the input train-
ing set and the training sets created by the hierarchy decomposition module (Fig. 1E).
The task of constructing the baseline model from the input training set is a HMC task,
and the tasks of constructing models from the decomposed training sets are multi-label
and binary classification tasks. Consequently, we choose PCTs as a base model, since
the PCT algorithm covers all three modeling tasks in a unified framework. For each
training set, a random forest of PCTs is constructed using CLUS [1].

Annotation module classifies an input test set by using the models created by the
model induction module. It combines the predictions from multiple models and applies
the hierarchy constraint (Fig. 1F, G). For each of the five model induction algorithms
it outputs a table with predictions, where rows are test examples, columns labels and
values probabilities that the labels are assigned to the examples. The tables are obtained
in the following manner:

The baseline model is the global model that implicitly enforces the hierarchy con-
straint when annotating test examples. We use the outputted predictions as given by the
model.

The child vs. parent label model collection is composed of multiple binary clas-
sification models, one for each non-root label lj that outputs a conditional probability
P(lj |parent(lj)). To make a prediction for a test example ei and a label lj, the product rule
P(lj) = P(lj |parent(lj)) · P(parent(lj)) is applied recursively, beginning with the model
where parent(lj) is the root of a hierarchy. The procedure is illustrated with an example
in Fig. 1F. To compute the probability that l5 is assigned to ei, we first use the model
for the label l3 to predict P(l3), which is 0.8. Then, we use the model for the label l5
that predicts P(l5 |l3), which is 0.1. Finally, P(l5) is computed by applying the product
rule P(l5 |l3) · P(l3), which is 0.08. By using the product rule we enforce the hierarchy
constraint, ensuring that the probabilities decrease with increasing depth within the hier-
archy. The presented example shows the case with a single path from a label node to
root of a hierarchy. When a class is a DAG, there can be multiple paths from the label
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node to the root node. In this case, the probability is computed for each path, and the
minimal observed probability is considered (P(l6) in Fig. 1F).

The label specialization model collection is composed of multiple multi-label clas-
sification models, one for each parent node in the hierarchy, which output conditional
probabilities P(lj |parent(lj)) for children labels. When the output space is a DAG, a label
lj can have multiple parents and, consequently, multiple multi-label models can output
a conditional probability P(lj |parent(lj)). In this case, we consider as P(lj |parent(lj)) the
maximal predicted conditional probability. To predict a label lj for a test example ei, we
then use the product rule as in the case of “child vs. parent label” model.

The label vs. the rest model collection is composed of multiple binary classification
models, one for each label lj that qualifies as most specific annotation. For a test example
ei and a label lj from the subset of most specific annotations, an lj specific model outputs
the probability P(lj) that the label is assigned to the example. In the case of labels that
do not belong to the subset of most specific annotations, the probability is zero.

The labels without hierarchical relations model is a single multi-label classification
model that canoutput probabilities that labels from the subset ofmost specific annotations
are assigned to an example.

The analysis module compares the performances of the five model induction algo-
rithms, based on the predictions output by the annotation module. An algorithm’s per-
formance is measured as the area under average precision-recall curve (AUPRC) [1].
The statistical significance of AUPRC differences is assessed by using the corrected
Friedman test and the Nemenyi post-hoc test [26] (Fig. 1H).

AUPRC is a threshold independent performancemeasure, where precision and recall
points are obtained by changing the value of the threshold t from zero to one with
the step of 0.01. For each value of t, precision and recall values are micro-averaged:

precisiont =
∑p

i=1 TPi∑p
i=1 TPi+

∑p
i=1 FPi

, recallt =
∑p

i=1 TPi∑p
i=1 TPi+

∑p
i=1 FNi

, where p is the number of

labels that qualify as most specific annotations, TP are true positives, FP false positives
and FN false negatives.

The statistical test is performed on a r by k matrix, where r is the number of model
induction algorithms (five in our case), k is the number of cross-validation folds and
the values in the matrix are AUPRCs. The corrected Friedman test determines if there
is at least one algorithm with significantly different performance. For each fold, the test
ranks the algorithms in decreasing order of AUPRC. In case of a tie, an average rank
is assigned. Next, the test averages ranks over the k folds and calculates the Friedman
statistic Q, distributed according to the χ2 distribution with r − 1 degrees of freedom.
The p-value is defined as P

(
χ2
r−1 ≥ Q

)
. If, according to the p-value, the difference

is significant, the Nemenyi post-hoc test is used for pairwise comparisons among the
algorithms. The performance of two algorithms is significantly different if their average
ranks differ by more than a critical distance. The critical distance is computed from r, k
and a critical value for a given significance level (a Studentized range statistic).

3 Experimental Setup

We applied the hierarchy decomposition pipeline on ten data sets, using a unified exper-
imental setup. The unified setup means that all models are random forests of 500 PCTs.
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The size of random subspaces considered at each node is equal to the square root of
the number of attributes, and the five model induction algorithms are evaluated by
performing 10-fold cross-validation.

The ten data sets used are described below. They represent four domains: text cat-
egorization, image categorization, habitat modelling and functional genomics. Eight of
them have a tree-shaped label hierarchy and two a DAG shaped label hierarchy. Data set
statistics are presented in Table 1.

Table 1. Data set statistics. Columns: n = number of examples; ad = discrete attributes; an =
numeric attributes; hn = hierarchy nodes; hl = hierarchy leaves; c-hl = cardinality accounting
for labels that are hierarchy leaves (cardinality is an average number of labels per example); p =
labels that qualify as most specific annotations; c-pc = cardinality accounting for most specific
annotations available to the complete decomposition algorithms; c-ph = cardinality accounting
for most specific annotations available to the hierarchical algorithms; d = maximal depth of the
hierarchy; type = tree or DAG hierarchy.

Data set n ad /an hn hl c-hl p c-pc c-ph d Type

Enron 1,648 1,001/0 56 52 2.85 53 2.87 3.37 3 Tree

Reuters 6,000 0/47,236 100 79 1.19 99 1.46 3.13 4 Tree

ImCLEF07A 11,006 0/80 96 63 1.00 63 1.00 1.00 3 Tree

ImCLEF07D 11,006 0/80 46 26 1.00 26 1.00 1.00 3 Tree

Danish farms 1,893 132/5 70 35 6.27 39 6.74 7.08 3 Tree

Slo. rivers 1,060 0/16 724 492 24.56 637 33.04 50.67 4 Tree

ExprYeast 3,788 4/547 417 161 2.28 194 2.29 4.00 4 Tree

SeqAra 3,718 2/4,448 196 148 0.94 194 1.30 3.32 4 Tree

PP 15,313 2,071/0 1,260 377 0.89 947 2.59 16.67 14 DAG

MPP-I 3,531 0/4,777 826 220 1.32 620 3.30 20.49 13 DAG

Text categorization is a problem of automatic annotation of textual documents with
one or several categories. The Enron data set contains bag-of-words descriptions of
e-mails from the labeled subset of the Enron corpus [4]. Hierarchically organized cate-
gories define genre, emotional tone and topic. Reuters data set contains tf-idf descrip-
tions of stories from the “Topics” category of the Reuters Corpus Volume I (RCV1)
[5]. Hierarchically organized categories are topic-based, e.g., economics, industrial or
government.

Image categorization annotates images with categories that represent visual concepts
the images contain. ImCLEF07A and ImCLEF07D represent medical X-ray images
annotated with parts of the human anatomy and orientations of body parts [7]. The
images are described with edge histograms indicating a frequency and a directionality
of brightness changes in an image.

Habitat modelling studies relationships between environmental variables and the
presence of plants and animals in the environment. The Danish farms data set represents
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habitats of soil microarthropods on Danish experimental and organic farms [6]. The
Slovenian rivers data set represents habitats of aquatic organisms in Slovenian rivers [2].
The tree-shaped hierarchies in both data sets represent parts of the taxonomic hierarchy
that contain habitat-specific species.

Functional genomics annotates genes with their biological functions. The ExprYeast
data set represents Saccharomyces cerevisiae (baker’s yeast) microarray gene expression
levels measured under various experimental conditions, such as heat shock or nitrogen
depletion [3]. The SeqAra data set contains attributes derived from amino acid sequences
of the Arabidopsis thaliana plant genes, such as amino acid ratios, molecular weight
and sequence length [3]. The PP data set represents phyletic profiles, i.e., presence
and absence patterns of gene families (clusters of genes that share function) in 2,071
bacterial and archaeal genomes [8]. TheMPP-I data set represents metagenome phyletic
profiles, i.e., relative abundances of gene families in metagenomes obtained from the
IMG database [9]. The first two data sets are annotated with functions from the tree
shaped hierarchy of FunCat [11] and the last two with functions from the DAG of the
Gene Ontology [12].

4 Results

The analysis has three goals. First, to clarify how model induction algorithms for HMC
problems can be compared. Second, to examine whether there exists a single best per-
forming algorithm for all ten HMC problems. Third, to investigate whether specific
properties of HMC data sets can be related to a type of the best performing algorithm.

4.1 How Model Induction Algorithms for HMC Problems Can Be Compared?

The performance-based comparison of model induction algorithms should be ideally
based on annotations available to all of the algorithms. The pipeline contains two types
of algorithms. The complete decomposition algorithmsuse only themost specific annota-
tions, while the hierarchical algorithms use additional annotations obtained by enforcing
the hierarchy constraint. To compare the two types of algorithms we aggregate AUPRC
over the subset of labels common to both types, that is, over the labels that qualify as
most specific annotations. However, this step does not guarantee that the comparison is
performed on the common set of annotations.

Distributions of common labels are not necessarily the same in the training sets
created by the complete decomposition algorithms and the hierarchical algorithms. This
property is best illustrated with an example. Suppose that we have a data set annotated
with labels from the hierarchy in Fig. 2A and a derived training set composed of five
examples annotated with most specific annotations as presented in Fig. 2B. The training
set, which illustrates the annotations available to complete decomposition algorithms,
shows that six labels qualify as most specific annotations: “1”, “1.1”, “1.1.1”, “1.1.2”,
“1.2” and “2.2”. When the hierarchical algorithms apply the hierarchy constraint on
those six labels, the training set will look like the one in Fig. 2C. The difference in
distribution of common labels is considerable: the cardinality doubled.
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Fig. 2. Example illustrating differences in distribution of labels common to the complete
decomposition and hierarchical algorithms.

The difference in distribution of common labels can give an advantage to the hierar-
chical algorithms due to additional information from the hierarchy. This property affects
eight data sets with an exception of the two data sets from image categorization domain
(see columns c-pc and c-ph in Table 1) and tends to have higher impact on the data sets
with larger hierarchies.

The presented problem can be addressed by considering only those annotations that
are, at the same time, hierarchy leaves. This approach would, however, ignore many
annotations (Fig. 2D, see columns c-hl and c-pc in Table 1). For example, the cardinality
of the SeqAra and PP data sets would fall below one, although both data sets have at
least one label per example (column c-hl in Table 1).

4.2 Is There a Single Best Model Induction Algorithm Across All HMC Data
Sets?

To answer this questionwe: (1)measureAUPRCm aggregated over the labels that qualify
as most specific annotations (Table 2); (2) measure AUPRCl aggregated over the labels
that qualify as most specific annotations and are, at the same time, hierarchy leaves
(Table 2); and (3) examine whether the differences in AUPRCm and AUPRCl among the
five model inductions algorithms are statistically significant at the significance threshold
of 0.05.

As a statistical significance test, we use the corrected Friedman test on the matrix
where rows are the ten data sets, columns are the five algorithms and values are AUPRCs.
We apply the test separately for each type of AUPRC, using the two matrices in Table 2.
The p-value for AUPRCm is 0.029 and for AUPRCl 0.458. At a significance thresh-
old of 0.05, there are no significant differences in performance considering AUPRCl.
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Table 2. Area under average precision-recall curve aggregated over the labels that qualify as most
specific annotations (AUPRCm) and labels that are hierarchy leaves (AUPRCl). AUPRCs of the
best performing algorithms are shown in bold. Abbreviations: BAS = baseline, CPL = child vs.
parent label, LSP= label specialization, LHR= labels without hierarchical relations, LTR= label
vs. the rest, alg. = algorithms, d. = decomposition algorithms.

Data set AUPRCm AUPRCl

Hierarchical alg. Complete d. Hierarchical alg. Complete d.

BAS CPL LSP LHR LTR BAS CPL LSP LHR LTR

Enron 0.646 0.648 0.657 0.533 0.532 0.596 0.601 0.600 0.594 0.595

Reuters 0.798 0.816 0.797 0.446 0.462 0.668 0.692 0.661 0.632 0.692

ImCLEF07A 0.886 0.891 0.889 0.888 0.898 0.886 0.891 0.889 0.888 0.898

ImCLEF07D 0.872 0.871 0.870 0.872 0.882 0.872 0.871 0.870 0.872 0.882

Danish farms 0.824 0.815 0.825 0.816 0.827 0.828 0.819 0.828 0.830 0.828

Slo. rivers 0.658 0.642 0.657 0.456 0.432 0.504 0.495 0.510 0.509 0.486

ExprYeast 0.465 0.449 0.489 0.407 0.320 0.372 0.381 0.415 0.401 0.347

SeqAra 0.498 0.524 0.488 0.238 0.230 0.381 0.395 0.385 0.381 0.410

PP 0.341 0.349 0.345 0.095 0.097 0.127 0.130 0.129 0.157 0.151

MPP-I 0.497 0.511 0.507 0.348 0.342 0.301 0.472 0.427 0.392 0.398

For AUPRCm, we proceed to the post hoc test (Fig. 3). At the significance level of 0.05,
the post hoc test shows that none of the algorithms perform significantly better that the
rest. Given the results of the statistical test, we confirm the hypothesis that there is no
single best model induction algorithm across all HMC data sets.

child vs. parent label
label specialization

baseline
label vs. the rest
labels without hierarchical relations

critical distance = 2.0092

2 3 4 5 

Fig. 3. Average ranks diagram comparing predictive performance, measured as AUPRCm, of the
five model induction algorithms over the ten HMC data sets. The numbers on the line represent
ranks of the algorithms averaged over the data sets. Better performing algorithms are on the left-
hand side. The algorithms with average ranks that differ by less than the critical distance for a
p-value of 0.05 are connected with a line.
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4.3 CanWe Relate Properties of HMCData Sets to a Type of the Best Performing
Model Induction Algorithm?

The best performing algorithm for a data set is the one that receives the highest rank in
the statistical test (described in Sect. 2, analysis module), and is significantly better than
at least one other algorithm at the significance level of 0.05 (Fig. 4). The second criterion
is not satisfied by any of the five algorithms on the PP and MPP-I data sets (Fig. 4I, J).
Since we cannot determine the best performing algorithm on the two data sets, they are
not going to be used in the analysis.We characterize the best performing algorithm along
each of the two dimensions: single- or multi-label classification algorithm, and hierar-
chical or complete decomposition algorithm. The former dimension indicates whether
the model(s) constructed by the algorithm perform(s) single or multi-label classification.
The latter indicates whether hierarchical constraint is applied.

Data sets are characterized with two groups of properties, the first describing the
hierarchy of labels and the second describing the density of annotations. The hierarchy
is described in terms of the number of nodes and leaves, and a branching factor. Anno-
tations are described through cardinality computed both for annotations available to the
hierarchical and complete decomposition algorithms. The number of annotations avail-
able to the hierarchical, but not to the complete decomposition algorithms is measured
as a difference between the two cardinalities. Finally, we measure a share of incomplete
annotations in most specific annotations. The most specific annotation is incomplete if
it is not a leaf label and can, consequently, be further specialized.

Multi-label classification algorithms perform best on the data sets with large hierar-
chies: they perform the best on the two data sets with the largest hierarchies, ExprYeast
and Slovenian rivers (417 and 724 nodes, Table 3). An average branching factor, which
is an indicator of complexity, is, however, not related in the same way. We expected that
multi-label classification algorithms would perform best on data sets with high cardinal-
ity, but this is not the case. The ExprYeast and Enron data sets have moderate cardinality
(from 2.29 to 4), and a multi-label classification algorithm performs best on the for-
mer and a single-label classification algorithm performs best on the latter. Similarly, the
Danish farms and Slovenian rivers data sets have high cardinality (from 6.74 to 50.67),
and a single-label classification algorithm performs best on the former and a multi-label
classification algorithm on the latter. An exception are the data sets with low cardinality
(less than two) where a single-label classification algorithm always performs best.

Hierarchical algorithms perform better on data sets where they can obtain additional
annotations (by applying the hierarchy constraint), as compared to the complete decom-
position algorithms. They profit evenwhen only half of an annotation on average is added
to examples (Table 4). Interestingly, when the best performing algorithm is a hierarchical
algorithm, it performs significantly better than both complete decomposition algorithms
(Fig. 4A, B, F–H). Furthermore, the presence of incomplete annotations in a data set
is related to the emergence of a hierarchical algorithm as the best performing: When
at least 1% of the annotations in a data set are incomplete, a hierarchical algorithm is
the best choice. Hierarchical algorithms also perform the best on class hierarchies with
more than 100 nodes and an average branching factor higher than three.
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Fig. 4. Average ranks diagrams comparing predictive performance, measured as AUPRCm, of
the five model induction algorithms for each of the ten HMC data sets. The numbers on the line
represent ranks of the algorithms averaged over the ten cross-validation folds. Better performing
algorithms are on the left-hand side. The algorithms with average ranks that differ by less than the
critical distance for a p-value of 0.05 are connected with a line. CD = critical distance = 2.0092.
Abbreviations: BAS = baseline, CPL = child vs. parent label, LSP = label specialization, LHR
= labels without hierarchical relations, LTR = label vs. the rest.



498 V. Vidulin and S. Džeroski

Table 3. The relation between the size of a hierarchy and emergence of a single- or a multi-
label classification algorithm as the best performing. Columns: hn = hierarchy nodes; hl =
hierarchy leaves; b = average branching factor; c-pc = cardinality accounting for most specific
annotations available to the complete decomposition algorithms; c-ph = cardinality accounting
for most specific annotations available to the hierarchical algorithms; Alg. = algorithm (for the
abbreviations of algorithm names, we refer to Fig. 4).

Data set Hierarchy Annotations Best performing algorithm

hn hl b c-pc c-ph Alg. Multi-label? Hierarchical?

ImCLEF07D 46 26 2.19 1.00 1.00 LTR No No

Enron 56 52 11.20 2.87 3.37 CPL No Yes

Danish farms 70 35 1.94 6.74 7.08 LTR No No

ImCLEF07A 96 63 2.82 1.00 1.00 LTR No No

Reuters 100 79 4.55 1.46 3.13 CPL No Yes

SeqAra 196 148 4.00 1.30 3.32 CPL No Yes

ExprYeast 417 161 1.62 2.29 4.00 LSP Yes Yes

Slo. rivers 724 492 3.11 33.04 50.67 BAS Yes Yes

Table 4. The relation between the amount of additional annotations available to the hierarchical
algorithms and the emergence of a hierarchical or a complete decomposition algorithm as the
best performing. Columns: diff = c-ph - c-pc; ia = percentage of incomplete annotations. For a
description of the rest of the abbreviations, we refer to Table 3.

Data set Annotations Hierarchy Best performing algorithm

diff ia hn hl b Alg. Multi-label? Hierarchical?

ImCLEF07A 0 0% 96 63 2.82 LTR No No

ImCLEF07D 0 0% 46 26 2.19 LTR No No

Danish farms 0.34 0% 70 35 1.94 LTR No No

Enron 0.50 1% 56 52 11.20 CPL No Yes

Reuters 1.67 18% 100 79 4.55 CPL No Yes

ExprYeast 1.71 1% 417 161 1.62 LSP Yes Yes

SeqAra 2.02 27% 196 148 4.00 CPL No Yes

Slo. rivers 17.63 26% 724 492 3.11 BAS Yes Yes

5 Conclusions and Discussion

We introduced the hierarchy decomposition pipeline, a publicly available software tool-
box for comparison of model induction algorithms for hierarchical multi-label classifi-
cation (HMC) problems in the ensemble setting. The pipeline contains five algorithms:
the algorithm that constructs a global model, which predicts the complete hierarchy, two
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partial decomposition algorithms that construct local models, which predict different
edges of a hierarchy, and two complete decomposition algorithms that construct one
or multiple models, which predict subset(s) of hierarchy nodes. The pipeline also con-
tains tools for performance-based comparison of the algorithms, which compute the area
under the average precision-recall curve and perform a statistical test of the differences
in performance.

We applied the pipeline on ten HMC data sets and draw the following conclusions:
First, by comparing the algorithms on a set of common labels, we cannot guarantee

that they will be compared on a set of common annotations. The set of labels common
to all algorithms is composed of those labels that are assigned to at least one example as
the most specific annotation. While the complete decomposition algorithms use only the
most specific annotations, the hierarchical algorithms may assign additional annotations
for the common labels, simply by applying the hierarchy constraint. This issue can be
addressed by comparing the algorithms on a set of common labels that are, at the same
time, hierarchy leaves. However, we should have in mind that by making this choice we
may omit many annotations. The middle ground is to perform both types of comparisons
considering their advantages and disadvantages.

Second, there exists a need for the proposed pipeline, since there is no single best
algorithm for all HMC problems.

Third, the properties of a HMC data set can be related to the type of best performing
algorithm on that data set. Multi-label classification algorithms perform best on data
sets with large hierarchies. Interestingly, high cardinality is not strongly related to the
advantage of multi-label classification algorithms. Hierarchical algorithms perform best
on data sets from which they can obtain additional annotations compared to the com-
plete decomposition algorithms, simply by applying the hierarchy constraint. They also
perform best on data sets with large and complex hierarchies.

The limitation of the analysis that relates the properties of a HMC data set to the
type of best performing algorithm is the small number of data sets in the study. The
limitation can be addressed by performing a simulation that: (1) generates hundreds of
artificial HMC data sets with predefined properties; (2) applies the proposed pipeline on
the data sets to determine the best performing algorithm; and (3) uses the collected data
for meta learning to produce a classifier relating dataset properties to the type of best
performing algorithm. The simulation should consider data sets with both a tree shaped
and a DAG shaped label hierarchy. In this study, we had only two data sets with a DAG
shaped label hierarchy and none of the algorithms performed significantly better than
the rest on those two data sets. They were, consequently, left out of the analysis.

The pipeline can be improved in several directions. While it has been developed
in the ensemble setting to maximize predictive performance on complex HMC data
sets (e.g., functional genomics data sets), it can be adapted to construct single models.
Furthermore, it can be modified to construct ensembles other than random forests, e.g.,
bagging or boosting. Finally, additional research need to be performed to understand
whether it is possible to add stratified cross-validation as an option.
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Abstract. Fundamentally, many problems in Machine Learning are
understood as some form of function approximation; given a dataset D,
learn a function fX →Y . However, this overlooks the ubiquitous prob-
lem of missing data. E.g., if afterwards an unseen instance has missing
input variables, we actually need a function fX ′→Y with X ′ ⊂ X to pre-
dict its label. Strategies to deal with missing data come in three kinds:
naive, probabilistic and iterative. The naive case replaces missing val-
ues with a fixed value (e.g. the mean), then uses fX →Y as if nothing
was ever missing. The probabilistic case has a generative model M of
D and uses probabilistic inference to find the most likely value of Y ,
given values for any subset of X . The iterative approach consists of a
loop: according to some model M, fill in all the missing values based
on the given ones, retrain M on the completed data and redo your pre-
dictions, until these converge. MissForest is a well-known realization of
this idea using Random Forests. In this work, we establish the connec-
tion between MissForest and MERCS (a multi-directional generalization
of Random Forests). We go on to show that under certain (realistic) con-
ditions where the retraining step in MissForest becomes a bottleneck,
MERCS (which is trained only once) offers at-par predictive performance
at a fraction of the time cost.

Keywords: Missing value imputation · Ensemble methods ·
Multi-directional models · Decision trees

1 Introduction

Many machine learning methods assume there are no missing values in the data,
or missing values are relatively infrequent. Under this assumption, a variety of
techniques has been proposed to handle missing data. It is useful to maintain
a clear distinction between two cases: missing values at training time (relevant
during learning) and missing values at prediction time (making a prediction,
using a given model, for an instance that lacks certain information needed by
the model). First, when missing values occur at training time, the learning proce-
dure may deal with them by ignoring all instances with missing values, ignoring

Code available at github.com/eliavw/missmercs.
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attributes that have missing values, guessing the missing value (imputation)
before proceeding with the computations, or using other techniques. The second
case, missing values at prediction time, is quite a different problem: a model is
given, but the model needs information that is not available. Nevertheless, some
techniques for handling missing values during prediction resemble those for the
training phase, e.g. imputation can be used, if some model for imputation is
available.

In this paper, we focus specifically on missing values at prediction time.
There are contexts where missing values at prediction time may be much more
frequent, and possibly also more systematic, than typically assumed by many
learners. To illustrate, consider two practical examples;

– First, machine learning in industrial contexts often depends on sen-
sor data. Consider an AI-system (e.g. a predictive maintenance application)
which makes automatic decisions based upon input information coming from
sensors. When a single sensor breaks down and no longer provides informa-
tion, the AI-system needs to carry on and perform as well as possible, although
less input information is now available.

– Second, consider a common spreadsheet. Suppose a user filling in data in
a spreadsheet or a web form: ML methods exist to assist users by predicting
information to be inserted in certain cells. Ideally, these predictions use as
much as possible information filled in elsewhere, regardless of exactly which
cells are already filled in and which ones are not. So, at prediction time,
robustness with regard to missing input information is crucial.

In both cases, at prediction time we need a model M that can predict some
output variable(s) Y from input variable(s) X, so we can regard M as a func-
tion from X to Y . However, the actual input that is available for a particular
prediction often consists of values for a strict subset X ′ ⊂ X. In the first exam-
ple, this is caused by malfunctioning sensors, in the second one by empty cells
in the spreadsheet. Thus, handling missing values at prediction time boils down
to the task of deriving from M : X → Y another function M′ : X ′ → Y with
X ′ ⊂ X which still makes maximally accurate predictions.

In a nutshell, we propose to solve this problem as follows: use a tree-based
approach such as MissForest [17], but avoid its multiple training iterations.
Given some robust prediction strategies, so-called MERCS models [20] could do
just that. So, our proposal decomposes into two research questions:

Q1 Can a MERCS model be made robust to missing values at prediction time?
Q2 How does MERCS compare against MissForest, a well-established tree-based

technique to deal with missing data?

First, Sect. 2 pinpoints the current gap in knowledge, and thus provides
further context and motivation for our solution strategy (i.e. Q1 and Q2). On
one hand, we find MissForest [17]: a powerful tree-based approach for missing
data, which is iterative and thus ill-suited for missing values at prediction time.
On the other hand, we find MERCS [20]: a somewhat similar, but non-iterative,
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tree-based model, which currently lacks prediction strategies to deal with missing
data effectively.

Section 3 outlines our proposal to answer Q1 (how to extend the MERCS
framework with robust prediction strategies) which constitutes our algorithmic
contribution. Two key ideas matter here. First, attribute importance: this quan-
tifies the relevance of trees for a given prediction task. Second: chaining : inspired
by MissForest, MERCS can be made to use outputs of some trees as inputs for
others.

Lastly, Sects. 4 and 5 contain experimental evaluations of Q1 and Q2 respec-
tively. Ultimately, the answer to both Q1 and Q2 is positive: when dealing with
missing input values at prediction time, MERCS models are a viable alternative
to MissForest.

2 Related Work and Background

We focus on missing value handling at prediction time: given a model M that
represents a function M : X → Y and a query-instance xq which has only
values for a strict subset X ′ ⊂ X, how can we still use M to predict the value
of Y ?

The discussion of related work is organized into four parts, each covering a
specific approach for missing value handling. First, we consider naive approaches
for handling missing values. Second, we discuss probabilistic graphical mod-
els, which handle unobserved values so naturally that the term “missing val-
ues handling” is typically not even used in that context. Third, we discuss
iterative approaches in general, and MissForest in particular. MissForest is
a popular tree-based technique for missing value imputation at training time.
Lastly, we discuss MERCS, another tree-based framework in some ways similar to
MissForest, but which could be more suitable in the specific case of missing
values at prediction time.

2.1 Naive Methods

A generally applicable approach is what we call naive methods: guess the missing
values. Concretely, this comes down to a one-size-fits-all strategy: simply fill in
the mean, median or mode of the variable. We call this “naive”, as it just fills
in the same value for all instances.

The advantage of this technique is its low cost, both in time and memory.
The obvious disadvantage is the limited accuracy of a naive approach. In our
context, i.e. where predictive accuracy matters, naive methods can still serve as
a baseline to compare other methods to, but nothing more.

2.2 Probabilistic Methods

Probabilistic graphical models (PGMs), such as Bayesian networks or Markov
random fields [8,12,13], model the probability distribution PX over all variables.
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From this distribution, any marginal distribution PX ′ with X ′ ⊂ X can be
computed, as well as any conditional distribution PY |X ′ with X ′,Y ⊆ X. As
the joint distribution uniquely defines all marginal and conditional distributions,
the target variable Y can be predicted from any subset X ′ that is equal to the
set of all known variables.

Their versatility is the main advantage of probabilistic methods. In a sense,
the “problem of missing values” simply does not even exist in this context: the
optimal way of handling them follows naturally from the probabilistic model
itself.

The disadvantage are the computational costs involved. Explicitly deriving
the marginal/conditional probabilities in a PGM is NP-hard in the general case.
Performing probabilistic inference in the original PGM is NP-hard too. In prac-
tice, approximate inference in the original PGM is used at prediction time, but
even that can be costly. Another issue are data-types: in practice, PGMs work
best on nominal data. Numeric data or mixtures of nominal/numeric data can
be challenging for probabilistic approaches.

2.3 Iterative Approaches

Iterative approaches [5,18] gradually refine their imputations by means of a
simple loop. First, for each variable in your dataset, you learn a predictive model,
using the other variables of the dataset as inputs. Second, you use that model to
fill in any missing values of that variable. This too, is repeated for each variable in
the dataset. Third, you repeat this entire process (both training and prediction)
until you reach a stopping criterion which indicates when no more progress is
being made.

MissForest [17] is a specific implementation of the aforementioned idea. In
MissForest, the underlying predictive models are Random Forests. The stopping
criterion is dual; the loop is stopped when the resulting change from iteration
i to iteration i + 1 is less then a user-defined parameter γ or when a certain
maximum number of iterations n is exceeded.

The advantages of MissForest are twofold. First, Random Forests are non-
parametric and make relatively few assumptions about the underlying data dis-
tributions. Second, they work well on both numeric and nominal data, or on
mixtures of the two. This versatility with regard to data-types is often high-
lighted [21] as the “killer-feature” which makes MissForest such an attractive
option in real-world scenarios.

The disadvantage of MissForest (or any iterative approach for that mat-
ter) is that, essentially by definition, it is geared towards missing data at training
time: this is not the problem we set out to solve. Indeed, the training phase at
each step of the iteration involves significant costs in time (i.e. you need several
training rounds) and memory (i.e. you always need to have data to train on).
When an incomplete dataset is given, iterative approaches are perfectly equipped
to fill in the gaps introduced by the missing data. But at prediction time, when
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unseen, incomplete query-instances xq come in one by one and need a predic-
tion for Y right away, this double cost of keeping a training set in memory and
retraining your model each time a new query-instance pops up, quickly becomes
a bottleneck.

2.4 MERCS

MERCS [20] is a method for learning multi-directional ensembles of decision trees.
This as opposed to classical ensembles of decision trees, which are uni-directional :
a single function fX→Y is learned that predicts some output variable(s) Y from
input variable(s) X, and it is known at training time what X and Y are. Bagging
[3], Random Forests [4] and Gradient Boosted Trees [7] are all examples of meth-
ods that learn such uni-directional ensembles. In a multi-directional ensemble, a
single tree may have multiple target variables (so-called multi-target trees), and
different trees may have different sets of target variables. Such ensembles can
be learned using a method that is quasi identical to the learning algorithm for
Random Forests: the only difference is that for each new tree T i

X i→Y i that is
learned, a new set of target variables Y i is chosen. Learning methods for MERCS
models differ mostly in terms of how they choose Y i for each tree. For instance,
using one target variable per tree often gives slightly higher accuracy for indi-
vidual trees, but having many target variables in one tree can reduce the size
of the ensemble without reducing the number of trees available for predicting a
given variable. Cf. Van Wolputte et al. [20] for more details.

What is interesting here is that MERCS is somewhat similar to MissForest:
both are multi-directional ensembles of decision trees, where any variable of
the dataset can be predicted by at least one tree of the ensemble. But whereas
MissForest was originally conceived to do missing value imputation in a given
dataset, MERCS was not. MERCS originated as a fast, tree-based alternative to
PGMs: learn a model M from dataset D.

This begs the question: could MERCS, like MissForest, become a powerful tool
for missing value imputation? We believe it does. The advantages of MERCS
in this context are twofold. First, like probabilistic approaches, MERCS learns
a model M from training data D. Afterwards, there is no need to keep this
training data around, all the necessary knowledge is encoded in the model itself.
As a consequence, MERCS would be particularly interesting for missing value
imputation at prediction time, a regime where iterative approaches struggle.
Second, like MissForest, MERCS is a tree-based approach, which means a.o. that
MERCS can also deal with (mixtures of) nominal and numeric variables.

At this point, the main disadvantage is that it remains unclear whether
MERCS can handle missing values effectively. In order to be proficient in such a
regime, MERCS needs a prediction strategy which is robust to missing data: given
an unseen instance xq, MERCS should still able to do a high quality prediction for
the value of Y , even if xq has some missing values. How to achieve this will be
the topic of Sect. 3.
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(a) A Random Forest (Eq. 1)[4]. The in-
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(b) MERCS (Eq. 2) [20]. MERCS generalizes
Random Forests and also selects output
attributes Y i at random.

Fig. 1. Random Forests and MERCS. Attributes Aj ∈ A are depicted as lines annotated
with their respective indices j. A decision tree,T i

X i→Y i , is depicted as a box connecting
its input (X i) to its output (Y i) attributes.

3 Robust Prediction Strategies for MERCS

This section outlines our answer to research question Q1: how to make the
MERCS framework robust to missing values at prediction time. The motivation
behind this approach is explained in Sect. 2, whereas the experimental evaluation
happens in Sect. 4.

In the following, we use T i (i = 1 . . . k) to denote the different trees in the
model M. Xi refers to the set of input attributes used by tree T i, and Y i to the
set of output (or target) attributes of T i. Similarly, we use qI→O to denote a
particular prediction task or query, where I denotes the set of attributes whose
value is given (i.e. input attributes of qI→O ) and O the set of attributes to be
predicted (i.e. output attributes of qI→O ). Furthermore, A simply refers to the
set of all the attributes of a given dataset D.

Take a Random Forest (Fig. 1a),

RF (X,Y ) = {T i
X i→Y |Xi ⊂ A \ Y }, (1)

and introduce randomness in the target attributes. In this way, RF (X,Y )
generalizes to a multi-directional ensemble of decision trees, or a MERCS model
(Fig. 1b),

M(A) = {T i
X i→Y i |Xi,Y i ⊂ A, Xi ∩ Y i = ∅}. (2)

Now, to answer an arbitrary query qI→O a MERCS model needs a prediction
strategy. This has two reasons. First, note that qI→O is not known at training
time, and second, learning a dedicated decision tree for every possible qI→O is
simply not feasible. Thus, this prediction strategy decides how to optimally use
the available T i, present in the MERCS model (Eq. 2), to answer any incoming
qI→O as accurately as possible.

Rather than a single prediction strategy, we define a naive baseline and
three, increasingly complex, strategies. These subdivide into two groups. First,
single-layer strategies, where attribute importance quantifies the relevance of
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T i for a given prediction task qI→O . Second, multi-layer strategies that, like
MissForest, use chaining : take the prediction of one tree T i as the input for
another tree T j .

3.1 Attribute Importance and Single-Layer Prediction Strategies

Assume that for a given tree T i, only some of its input attributes Xi are known.
The more inputs are missing, the less accurate we expect the predictions of T i

to be. But not all attributes in Xi are equally important for the prediction. One
way to measure this is attribute importance [10]:

I(Aj , T i) ∝
∑

{a(τ)=Aj}
p(τ)Δi(τ) (3)

where τ ranges over all nodes of the tree, p(τ) is the proportion of instances sorted
into τ , a(τ) is the attribute tested at τ , and Δi(τ) is the expected reduction
of impurity achieved by that node. So, the attribute importance I(Aj , T i) is
essentially the normalized sum of the impurity decreases achieved by splitting
on attribute Aj .

Consider a query qI→O , meaning that attributes I are given. The less impor-
tant the missing input attributes (Xi \I) of T i are, the more accurate T i likely
is. Therefore, we use the sum of importances of the known attributes (I) to
quantify the relevance of T i to make predictions in this context.

We call this sum the input relevance of T i for a set of given attributes I:

IR(T i, I) =
∑

Aj∈X i∩I

I(Aj , T i). (4)

Now that we have established the notion of input relevance, we define our two
single-layer strategies. We distinguish between a naive Random Forest baseline
(RF-prediction) and MRAI-prediction which does exploit input relevance.

Random Forest (Baseline). The most basic strategy is as follows: each T i

that predicts some attributes in O, that is, Yi ∩ O �= ∅, is regarded as equally
relevant. M’s prediction of an individual target attribute is obtained by aggre-
gating the predictions of all T i in M that predict that attribute. A standard
aggregation (majority vote, mean, . . .) is used, without taking input relevance
into account (Fig. 2a).

MRAI-Prediction. A second strategy, MRAI-prediction1, does take input rel-
evance into account. T i is considered relevant if Yi ∩O �= ∅ and IR(T i, I) ≥ θ,
for some threshold θ. That is, trees that rely too strongly on attributes whose
values are missing are not included in the set of predictors (Fig. 2b).

1 MRAI stands for most relevant attribute importance.
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(a) RF-prediction. Selects all T i
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(b) MRAI-prediction. Selects only the
most relevant trees, based on their input
relevance (Eq. 4), which takes into ac-
count attribute importance (Eq. 3).

Fig. 2. RF-prediction (baseline) and MRAI-prediction build an ad hoc ensemble of
relevant trees. A naive fallback procedure (depicted as red triangle) takes care of missing
inputs if necessary. Attribute importances are indicated in gray. (Color figure online)

MRAI-prediction can be understood as a refinement of the MA-prediction
strategy introduced in Van Wolputte et al. [20]. This MA-prediction essentially is
MRAI-prediction minus attribute importance: each attribute is deemed equally
important. Preliminary experiments revealed MRAI-prediction to consistently
outperform MA-prediction. Therefore, the old MA-prediction strategy is omitted
from subsequent experiments in favor of its superior cousin: the novel MRAI-
prediction strategy.

3.2 Chaining and Multi-layer Prediction Strategies

Assume Y i ∩ O �= ∅ for some tree T i, but IR(T i, I) < θ. Now, if more input
attributes of T i had been known, IR(T i, I) might have met the threshold θ. In
fact, this can readily be achieved. After all, a MERCS model is multi-directional
and thus contains at least one predictor for each attribute. Concretely, we can
make T i meet this threshold θ by predicting some of its missing input attributes
(Xi \ I), using other trees T j with Y j ∩ (Xi \ I). Afterwards, we treat these
predictions of T j as known values. To decide which T j to use, we can use exactly
the same criterion as we did before: T j is a suitable predictor if it predicts some
of the missing input attributes of T i and if IR(T j , I) > θ. If some of T j ’s input
attributes are missing, the same procedure can be repeated.

This principle is known as chaining [14]. In our multi-layer algorithms, chain-
ing is exploited in two different manners: bottom-up and top-down. Conse-
quently, we distinguish between BU-prediction and TD-prediction respectively.

BU-Prediction. The BU-prediction strategy is a recursive application of
MRAI-prediction. It works in a bottom-up fashion: we keep a set of known
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(b) TD-prediction. Builds a chain of
relevant T i, the probability of includ-
ing a model (Eq. 6) is proportional to
IR(T i, I). Repeated application of this
idea yields an ensemble of chains to pre-
dict O.

Fig. 3. BU-prediction and TD-prediction use chaining.

attributes K, whose initial value is I. For each T i with IR(T i,K) > θ, add
the variables in Y i to K. That concludes one step. Repeat this until O ⊆ K
(Fig. 3a).

If, at a given step, the threshold θ is set too high, there may not be any trees
with a sufficiently high input relevance. This means no progress is made and the
procedure ends with O �⊆ K. In order to make progress, simply repeat that step
with a lower value for θ, and proceed.

TD-Prediction. TD-prediction exploits the MRAI-principle in a top-down
manner. Rather than extending a set of known attributes K until it covers
O (as BD-prediction does), TD-prediction starts from the output attributes O
instead.

First, we define a set of unknown attributes of interest U , whose initial value
is O. Then, take the subset of trees which predict at least one attribute in U ,

C = {T i
X i→Y i |Y i ∩ U �= ∅} (5)

and continue by defining a probability distribution,

p(i) =
IR(T i, I)∑

T i∈C IR(T i, I)
, (6)

which assigns to each T i ∈ C a probability proportional to IR(T i, I). Using p,
we can randomly choose a tree T j such that more suitable trees are more likely
to get chosen. This concludes one step.
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For the next step, first adjust U accordingly, i.e. U = Xj \ I. That means
that U now contains the missing input attributes of the tree T j selected in the
previous step. Repeat the procedure from the definition of C on (Fig. 3b).

Essentially, this procedure does a random walk through the random forest.
Starting from U = O, it randomly chooses a tree T i that predicts (part of) O;
more suitable trees are more likely to get chosen. If that tree has missing inputs,
choose a tree that predicts some of those inputs. Keep repeating this up to some
maximum depth or until there are no missing inputs left. As the TD-procedure
is randomized, it can be repeated multiple times. Each time, a different path
through the random forest is followed.

It is instructive to compare BU-prediction and TD-prediction by viewing
them as searches through a graph. Let G be a bipartite graph with nodes being
attributes and trees; trees have incoming edges from their input attributes and
outgoing edges to their output attributes. BU constructs a subgraph of G that
connects I to O using only tree nodes whose IR is above some threshold. TD is
a randomized search for paths that end in O but may begin at any point, and
tends to contain tree nodes with high IR. Neither BU nor TD entirely avoid the
use of external procedures for missing value imputation. BU only avoids them
when θ = 1 leads to a solution. TD only avoids them on paths where each tree
happens to predict all the missing inputs of the tree that comes behind it in the
path.

4 Comparison of Prediction Strategies in MERCS

This experiment is set up to answer our first research question Q1: how to
make the MERCS framework robust to missing values at prediction time? Here,
we compare all the prediction strategies for MERCS we introduced in Sect. 3,
across different degrees of missing data. This allows us to see which prediction
strategies are actually robust to missing data at prediction time. As an external
baseline, we also add a PGM.

Datasets. Our experiments use a standard benchmark suite2 of 28 real-world
datasets. Our focus on multi-directionality requires adequate datasets in the
sense that it should be possible to think of several potentially interesting pre-
diction tasks. Prior appearance in studies on structure learning [9], make this
benchmark a natural fit for our current setting. Lastly, PGMs are less flexible
with regard to data-types (cf. Sect. 2), but in this benchmark, that will not be
an issue, since all variables in these datasets are binary.

Methodology. For each dataset, we train both a MERCS model and a PGM.
For PGMs, we rely on the SMILE-engine3 for structure learning and inference.
2 Cf. github.com/UCLA-StarAI/Density-Estimation-Datasets and [1,11,19].
3 The SMILE-engine is a part of the powerful and widely used BayesFusion system, cf.
bayesfusion.com/publications.
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For structure learning, we use the greedy thick thinning algorithm. For inference,
we use the approximate EPIS-sampling algorithm. In MERCS, trees are randomly
assigned 60% of attributes as inputs, 2 output attributes and are limited to a
maximum depth of 16. We ensure each attribute occurs 4 times as an output
attribute, meaning we have 2m trees in total, m being the amount of attributes
in the dataset. The Random Forest baseline, essentially MERCS with a trivial
prediction strategy, uses the exact same trees to ensure consistency.

To see the effect of missing input attributes on performance, we consider an
extensive set of queries qI→O . For each dataset, we randomly pick 10 output
attributes. For each of those, we build a series of 10 increasingly difficult queries;
the first one has no missing input attributes, and in each consecutive query of
the series, we omit (at random) an additional 10% of its input attributes. In the
end, this amounts to 2800 distinct prediction tasks.

Evaluation Criteria. For predictive performance, we look at F1-score [6,15] on
a test set. The random selection of output attributes (O) in our queries qI→O

means we cannot exclude very unbalanced targets. For these, high predictive
accuracy is meaningless. F1-score is not susceptible to this kind of effect [16]
and therefore more suitable for our needs. For runtime, we report prediction
times, relative to the PGM-baseline.

Results. BU-prediction is the most robust prediction strategy in MERCS
(Fig. 4a). When less than half of the inputs is missing, PGMs exhibit lower pre-
dictive performance than MERCS. MRAI-prediction outperforms the naive Ran-
dom Forest baseline (RF), indicating that input relevance (Eq. 4) works, and
consequently that attribute importance (Eq. 3) is a useful heuristic. In its turn,
BU-prediction improves upon MRAI, showing that chaining indeed improves
robustness. However, TD-prediction does not, and additionally is much slower
than BU-prediction (Fig. 4b), which indicates that bottom-up chaining is rec-
ommended.

In terms of runtime, note that roughly speaking, all prediction strategies in
MERCS do offer order(s) of magnitude of speedup over PGMs (Fig. 4b) across the
board. PGMs rely on probabilistic inference. This makes them very robust to
missing values, but also comes at a significant overhead in prediction time.

5 MERCS vs. MissForest

This experiment is set up to answer the second research question Q2: how does
MERCS compare to MissForest? Concretely, we try to evaluate whether MERCS
can succeed where MissForest struggles, namely when missing values are only
introduced at prediction time. We expect MissForest to experience a bottleneck,
since it its iterative nature requires retraining for each new query-instance qk.
The question is whether MERCS, can offer similar predictive performance, without
the need to retrain.
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(a) F1-score (avg. over datasets and
queries) vs. % of missing inputs. In
MERCS, BU-prediction is most robust to
missing inputs and outperforms PGMs
up until 50% of inputs are missing.

(b) At prediction time, MERCS offers or-
der(s) of magnitude speedup over PGMs
(which rely on probabilistic inference). In
MERCS, TD-prediction is the most costly.

Fig. 4. Avg. F1-scores, and relative prediction times of all prediction strategies. When
at least half the inputs are given and prediction time matters, MERCS (and in particular,
BU-prediction) works.

Datasets. This experiment uses a curated benchmark suite of classification
problems, known as OpenML-CC18 [2]. Here, we are interested not so much in the
multi-directional aspect (as in Sect. 4), but really on our core problem: handling
missing values at prediction time. Therefore, this benchmark, with well-defined
(categorical) target variables, is ideally suited.

Methodology. Each dataset is divided into a train set and a test set. This divi-
sion is already defined in the OpenML-CC18 itself, which enhances reproducibility.
Now, since we are interested in how MERCS and MissForest handle missing val-
ues at prediction time, we use the test set to generate query-instances xq. This
happens as follows: from the test set, take an instance x. From this instance
x, omit a fixed number input variables at random (i.e. make those missing).
This defines a query-instance xq. This is repeated 100 times, yielding 100 query-
instances per dataset. The pattern of which attributes are missing can vary from
instance to instance.

Both for MERCS and MissForest the goal is, given a query-instance xq, predict
the value of its output attribute Y .

In the case of MissForest, we add the query-instance xq to the entire training
set, and run the MissForest algorithm on all these instances. Since the target
variable of the query-instance is unknown and therefore missing, it will also be
imputed. For each query-instance, this loop has to be repeated in full.

In the case of MERCS, we can clearly distinguish between a training phase and
a testing phase. First, we train a MERCS model M on the training set. Second,
given a query-instance xq, we can ask M to predict the target variable Y , from
the non-missing input variables. We can repeat this for all 100 query-instances,
without the need of retraining. We use the BU-prediction strategy, since it is the
most robust to missing values (cf. Sect. 3 and Fig. 4).
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(a) MERCS vs. MissForest, win-draw-
loss comparison. The overwhelming ma-
jority of draws shows that MERCS and
MissForest perform at par under the con-
ditions examined here.

(b) MERCS consistently offers multi-
ple orders of magnitude speedup over
MissForest. The iterative nature of
MissForest means that it needs to re-
train, whereas the MERCS model only
trains once.

Fig. 5. MERCS vs. MissForest.

Evaluation Criteria. Our primary interest here is to determine of either MERCS
or MissForest is clearly superior to its competitor, and if so, at which cost.
Since we are dealing with classification problems, a prediction for a single query-
instance is either correct or incorrect. Thus, if approach A is correct and approach
B is incorrect, that constitutes a win for approach A on that query-instance (and
vice-versa a loss for approach B). If both approaches are (in)correct, that con-
stitutes a draw. In terms of cost, we simply measure prediction times, averaged
across queries.

Results. In terms of predictive performance, it is clear from the amount of
draws (Fig. 5a) that in the overwhelming majority of queries and datasets, it
really does not matter whether you choose MERCS or MissForest. Both predict
the same value in the large majority of cases, and when they differ, each is about
equally likely to win, taken over all datasets.

In terms of runtime, although the robust BU-prediction strategy in MERCS
is slower than the naive Random Forest baseline (Fig. 4b), it still entails a sig-
nificant speedup (up to 3 orders of magnitude in some cases) over MissForest
(Fig. 5b), across all datasets.
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6 Conclusions

To conclude, let us simply answer our original two research questions, Q1 and
Q2.

6.1 Q1: How to Make MERCS Robust to Missing Values at Prediction
Time?

In Sect. 3, we extend the original MERCS framework with three new prediction
strategies: MRAI, BU and TD. All of these rely on attribute importance (Eq. 3)
to select the most relevant trees for the task at hand. Additionally, BU and
TD make use of chaining : the outputs of one decision tree can serve as inputs
for another one. In Sect. 4, these proposed prediction strategies are compared
experimentally.

The answer to Q1 (and consequently, our contribution to the original MERCS-
framework [20]) is that both attribute importance and chaining can improve
robustness, and BU-prediction is found to be the best strategy (Fig. 4a) for
MERCS. Additionally, the computational costs associated with the BU-prediction
strategy are acceptable (Fig. 4b).

6.2 Q2: How Does MERCS Compare Against MissForest?

In Sect. 2, we made the argument that MERCS would make an interesting replace-
ment for MissForest when dealing with missing values at prediction time. The
reason being that an iterative approach such as MissForest is really geared
towards dealing with the missing value problem at training time, since the iter-
ative procedure requires multiple training rounds. Of course, this first required
MERCS itself to be somewhat robust against missing values, which was dealt with
in research question Q1. What remains is to see whether MERCS can actually
improve upon MissForest.

The answer to Q2 is that, when query-instances xq come in one by one,
MERCS improves upon MissForest. In terms of predictive performance, both
approaches yield similar results (Fig. 5a). But, in terms of runtime, MERCS is
orders of magnitude faster than MissForest (Fig. 5b). The iterative nature of
MissForest makes it particularly ill-suited to tackle missing data at prediction
time: it needs to retrain for each query-instance. MERCS, which never needs to
retrain, is thus orders of magnitude faster when these query-instances come in
one by one (Fig. 5b).
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Abstract. A rule set is a type of classifier that, given attributes X, pre-
dicts a target Y . Its main advantage over other types of classifiers is its
simplicity and interpretability. A practical challenge is that the end user
of a rule set does not always know in advance which target will need to be
predicted. One way to deal with this is to learn a multi-directional rule
set, which can predict any attribute from all others. An individual rule
in such a multi-directional rule set can have multiple targets in its head,
and thus be used to predict any one of these. Compared to the naive
approach of learning one rule set for each possible target and merging
them, a multi-directional rule set containing multi-target rules is poten-
tially smaller and more interpretable. Training a multi-directional rule
set involves two key steps: generating candidate rules and selecting rules.
However, the best way to tackle these steps remains an open question. In
this paper, we investigate the effect of using Random Forests as candidate
rule generators and propose two new approaches for selecting rules with
multi-target heads: MIDS, a generalization of the recent single-target
IDS approach, and RR, a new simple algorithm focusing only on predic-
tive performance. Our experiments indicate that (1) using multi-target
rules leads to smaller rule sets with a similar predictive performance,
(2) using Forest-derived rules instead of association rules leads to rule
sets of similar quality, and (3) RR outperforms MIDS, underlining the
usefulness of simple selection objectives.

Keywords: Rule learning · Multi-directional models · Association rule
mining · Decision trees

1 Introduction

Rule sets are classifiers predicting one target Y given attributes X. Their pop-
ularity stems from their simplicity and interpretability. A problem in practice
is that a rule set’s user might not know during training which attribute needs
to be predicted. Examples of such cases are missing value imputation, where
there are gaps in the data, or anomaly detection, where a value of a suspicious
instance might be compared with a value representative of the training data. In
such cases, the user would need to learn a separate rule set for each attribute.
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Learning one rule set per attribute negatively impacts the collective inter-
pretability, as the bodies of rules predicting correlated targets cannot be shared.
If rules could predict multiple targets, the rule sets (1) might be more inter-
pretable by using fewer rules (as a single rule can predict multiple targets at
once (Sect. 3.2)), and (2) might explicate correlations between different targets.

While using multi-target rules might help, current rule set algorithms select-
ing a subset of rules Rsel out of a candidate rule set Rcand only work with
single-target rules. To work with multi-target rules, they would need to simul-
taneously optimize the predictive performance for multiple targets.

Another problem is that as the candidate rule set Rcand typically consists of
association rules, the user must set a confidence and support threshold in advance
without knowing what the size or quality of the resulting rule set will be. Too low
thresholds cause Rcand to become too large, potentially making both the rule
set generation and rule set selection intractable. Too high thresholds may result
in a small Rcand limiting the number of rules that can be selected, which might
result in an selected subset Rsel of lesser quality. As association rule mining is
often very sensitive to these thresholds, a small change in value might lead to
candidate sets of widely varying sizes.

In summary, current rule set methods based on selecting a subset of candidate
rules have the following problems: (1) they require the user to specify the target
in advance, (2) they cannot select multi-target rules, and (3) they often use
association rules, which are difficult to control in number and quality.

To address these problems, this paper investigates how to learn a multi-
directional rule set able to predict any attribute given all other attributes, thus
no longer requiring the user to specify the target in advance. We propose two
multi-target rule selection approaches: a generalization of Interpretable Decision
Sets (IDS) [11], and RR, a new algorithm focusing only on selecting a rule set
with a high predictive performance for all targets. Finally, we propose to derive
rule sets from Random Forests, as the number and size of trees in a Random
Forest is easy to control, and they are learned to do prediction. Our experiments
indicate that (1) using multi-target rules leads to smaller rule sets with a similar
predictive performance, (2) using tree rules instead of association rules leads
to rule sets of similar quality, and (3) RR outperforms MIDS, underlining the
usefulness of simple selection objectives.

The rest of this paper is structured as follows. After Sect. 2 provides refer-
ences to related work, Sects. 3 and 4 introduce the predictive settings, rule (set)
representations and rule generation approaches used in this paper. Sections 5
and 6 describe RR and MIDS. An experimental evaluation is provided in Sect. 7,
after which Sect. 8 gives a conclusion.

2 Related Work

Rule learning [5] can be divided into (1) predictive approaches for building clas-
sifiers, and (2) descriptive approaches for discover interesting patterns in data
in the form of rules. These two groups are bridged by the LeGo framework [6],
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of which associative classifiers [2,12] are a prototypical instantiation. Associa-
tive classifiers are typically learned in three stages [6]. First, a set of candidate
rules Rcand is mined from data [1]. Second, a subset of those rules Rsel ⊆ Rcand

is selected which optimizes some rule set objective. Third, the selected rules
are combined to form a classifier. Different candidate rule generation and rule
selection approaches can be combined, as they are often independent. CBA [12]
is one of the oldest and best-known associative classifiers, selecting association
rules based on their confidence. In this paper, we propose two multi-directional
associative classifiers: MIDS and RR. MIDS generalizes the recent IDS [11] to
support multi-target rules. RR is a a new algorithm. However, other multi-target
classifiers exist [15]. Predictive clustering rules [16] is a coverage-based multi-
target rule learning approach keeping a clear separation between descriptive and
target attributes. Other examples are PGMs [10], which use a graph structure
instead of logical rules, and MERCS [14] models, which use decision trees.

3 Preliminaries

In this section, we first introduce the single-target and multi-directional predic-
tion settings used in this paper. Second, we define the representation of rules
and rule sets. Third, we point out the necessity of tie-breaking strategies and
default predictions in associative classification.

3.1 Predictive Settings

In the single-target setting, a learned model predicts a designated target
attribute Y from m descriptive attributes Xj ∈ X. Here, the training data
D = {(xi, yi)}N

i=1 contains N attribute-value examples. In a multi-directional
setting, the target is not known in advance: the learned model must be able
to predict any attribute given all other attributes. Here, the training set D =
{xi}N

i=1 has m attributes Xj and no distinction is made between descriptive and
target attributes. The value of attribute Xj for datapoint x is x[Xj ].

3.2 Rule Set Representations

This paper considers rules of the form:

r = body(r) → head(r) = b1 ∧ · · · ∧ brb
→ h1 ∧ · · · ∧ hrh

where each hi and bi is of the form (Xj , operator, value). Abusing notation,
head(r) and body(r) denote both the set and conjunction of those literals, and
length(r) = |head(r)|+|body(r)| denotes the length of rule r. Using attr to denote
the attributes in a head or body, attr(head(r)) ∩ attr(body(r)) = ∅, and both
head(r) and body(r) are not empty. A rule is single-target if |head(r)| = 1 and
otherwise it is multi-target. All literals in the head use equality as the operator.

A single-target rule set consist of only single-target rules, but a multi-
directional rule set may consist of either single-target rules (with different rules
predicting different targets) or multi-target rules (where a single rule can predict
multiple targets at once).
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3.3 Tie Breaking Functions and Default Predictions

As the rules of an associative classifier might overlap, an instance might be
covered by multiple rules. As a result, a tie-breaking strategy is necessary to get
a single prediction. Different strategies exist, such as (weighted) voting, or only
using the rule with the highest F1-score. Also, as the rules might not cover the
whole instance space, a default prediction is necessary when no rule applies. A
common choice is the attribute’s mode in the training data.

4 Rule Generation

In this paper, a candidate rule set is generated with either association rule mining
or decision tree ensembles. To mine association rules, each example x ∈ D is
transformed into a transaction containing m items of the form ‘Xj = vj ’ with vj

in the domain of Xj (vj ∈ dom(Xj)), on which frequent itemset mining can be
used. As this requires categorical attributes, numerical attributes are discretized.

To derive a rule set from a tree ensemble, each tree is converted into its
corresponding rule set [13]. Each rule corresponds to a path in a decision tree
from the root to a leaf node. The rule’s body consists of the tests in the inner
nodes, while its head consists of the predictions in the leaf node.

5 RR: A Simple Multi-target Rule Selection Approach

This section proposes RR, a new algorithm that greedily selects multi-target
rules from a candidate rule set. RR is purely based on maximizing the predictive
performance of the resulting classifier.

Algorithm 1 outlines RR, which iteratively selects a rule increasing the F1-
score of one target while limiting a possible score decrease on the other targets.
Its input is a multi-target candidate rule set Rcand. It starts with an empty set
initial classifier Rsel. RR adds rules to Rsel by selecting one rule at a time from
Rcand \ Rsel. To select rules, the algorithm loops over the target attributes in a
round-robin fashion (thus the name RR), focusing on each target in turn. When
focusing on a target attribute Xj , RR must select a rule rsel that increases the
F1-score of the complete rule set Rsel for Xj . However, selecting a multi-target
rule changes the F1-scores for all targets in the head of that rule. That is, adding
a rule increasing the F1-score of the current target Xj might decrease the F1-
scores of other targets Xo �= Xj . To deal with this, RR first finds the rule rbest

that if added to Rsel results in the largest F1-score increase for the current target
Xj . Second, it finds all rules RXj ,δ that, when individually added to Rsel, result
in a F1-score that differs by at most δ from the F1-score for Rsel ∪ {rbest} when
predicting the current target Xj . Third, RR selects the rule from RXj ,δ that
decreases the F1-scores on the other targets the least. That is, δ allows trading
off selecting the better rule for the current target with the ‘damage’ done to
other targets. RR stops if no rule can be found that increases the F1-score of
Rsel on any target Xt by at least ε, to prevent overfitting. At the end, Rsel

contains the rules to be used as classifier.
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Algorithm 1. Round-Robin (RR). Note: R + r is short for R ∪ {r}.
Require:

Rcand, the candidate rule set.
ε, the minimally required increase in F1-score when adding a rule.
δ, the maximum distance a rule can be to the best rule to be considered.
scorei(R), the F1-score of rule set R for attribute Xi on the training data.

1: procedure round robin
2: Rsel ← ∅
3: while ∃ target Xt : select rule for(Xt, Rsel) �= None do
4: Xj ← the next target in a round-robin fashion.
5: rsel ← select rule for(Xj , Rsel)
6: if rsel �= None then
7: Rsel ← Rsel + rsel

8: return Rsel

9: procedure select rule for(target Xj , Rsel)
10: RXj ← {

r ∈ Rcand \ Rsel | Xj ∈ head(r)∧
scorej(Rsel + r) − scorej(Rsel) > ε

}

11: if RXj == ∅ then
12: return None
13: else
14: rbest ← argmax

r∈RXj

scorej(Rsel + r)

15: RXj ,δ ← {
r ∈ RXj | scorej(Rsel + rbest) − scorej(Rsel + r) < δ

}

16: rsel ← argmax
r∈RXj,δ

(
min

Xo∈head(r)\Xj

scoreo(Rsel + r) − scoreo(Rsel))
)

17: return rsel

6 MIDS: Multi-target IDS

As a second multi-target rule selection approach, we propose Multi-target Inter-
pretable Decision Sets (MIDS), a generalization of Interpretable Decision Sets
(IDS) [11]. We choose IDS as it is a recent single-target approach offering a high
predictive performance and interpretability with a small rule set size. Section 6.1
introduces IDS on a high level. In Sect. 6.2, we generalize the IDS objective func-
tion to support multi-target rules.

6.1 IDS: (Single-target) Interpretable Decision Sets

First, IDS specifies to‘ssociation rule set Rcand using Apriori, which we substitute
for the more efficient FP-growth [7]. Second, IDS selects a subset Rsel ⊆ Rcand

that (locally) maximizes an objective function f(R). The objective function is a
weighted sum of several heuristics fi indicating the rule set quality, such as the
predictive performance, the size and the interpretability of the rule set:

Rsel = arg max
R⊆Rcand

f(R) = arg max
R⊆Rcand

7∑

i=1

λifi(R) (1)
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Section 6.2 explains the different sub-objectives fi and how we generalize them
to support multi-target rules.

The final subset Rsel is used for classification. IDS suggests using the rule
with the highest F1-score as a tie-breaking strategy and to predict the majority
class label in the training data as default prediction. However, the user is free
to choose other tie-breaking and default prediction strategies.

Unconstrained Submodular Maximization. Finding the best subset
Rsel ⊆ Rcand that maximizes some objective function f (Eq. 1) corresponds to
a combinatorial optimization problem. By formulating f as a non-negative non-
normal unconstrained submodular maximization problem, a general algorithm
for this problem type can be used for IDS. However, as maximizing an uncon-
strained submodular function is NP-hard [4], polynomial algorithms only guar-
antee to find a local optimum. Originally, IDS [11] specified to use the Smooth
Local Search (SLS) algorithm [4]. However, as using SLS with IDS can be pro-
hibitively slow [8], we choose to use the more recent Randomized Double Greedy
Search algorithm [3], which is considerably faster and has better theoretical guar-
antees.

6.2 From IDS to MIDS: Adding Support for Multi-target Rules

To select a rule set Rsel ⊆ Rcand, IDS maximizes an objective function composed
of 7 sub-objectives (see Eq. 1). The sub-objectives can be loosely divided into
four groups, quantifying different aspects of a rule set R. The first group focuses
on rule set conciseness, the second on non-overlapping decision boundaries, the
third on explaining as many attribute-values as possible, while the fourth group
focuses on making accurate predictions. To trade off the importance of each of
these aspects, the original work suggests that the weights λi can either be set
by the user or be found using coordinate ascent.

Next, we modify the IDS sub-objectives in two ways1: we add (1) normal-
ization and (2) support for multi-target rules. First, we normalize each of the
sub-objectives to be in the interval [0, 1]. While the sub-objectives of the original
IDS are non-negative, they do not have a clear upper bound. This might result in
some sub-objectives dominating over others, but it also makes it difficult for the
user to choose weights λi. When compared to the original specification, our nor-
malization corresponds to multiplying the weight λi with a constant dependent
on the candidate rule set Rcand.

Second, we modify the IDS sub-objectives to support multi-target rules.
Our generalization collapses to the original formulation when using single-target
rules. To stay close to the original IDS specification, we do not further modify
the sub-objectives, but indicate possible improvements as footnotes.

1 Note that while IDS specifies it uses association rules, no modifications are necessary
to support rules derived from decision trees. Any rule type for which the coverage
and overlap can be calculated is supported.
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Rule Set Conciseness. The first two sub-objectives f1 and f2 directly corre-
spond to those of IDS, apart from the normalization. The first minimizes the
number of rules selected from the candidate rule set, while the second minimizes
the total number of literals in the rule set2:

f1(R) = 1 − |R|
|Rcand|

f2(R) = 1 − 1
Lmax · |Rcand|

∑

r∈R
length(r)

Lmax = max
r∈Rcand

length(r)

Non-overlapping Decision Boundaries. Two IDS sub-objectives f3 and f4
minimize the overlap of rules predicting a value for its target attribute Y . IDS
assumes that a rule set with lower overlap is easier interpret, as fewer rules make
predictions for a given example. While rule overlap in IDS is implicitly relative
to its single target, we generalize the definition of rule overlap to be relative to
a given target attribute Xj .

We define two rules r1, r2 to overlap relative to an attribute Xj if they share
a covered example and both predict a value for attribute Xj :

cover(r) = {x ∈ D | x |= body(r)}

overlapj(r1, r2) =

{
cover(r1) ∩ cover(r2) if Xj ∈ attr(head(r1)) ∩ attr(head(r2))

∅ if Xj �∈ attr(head(r1)) ∩ attr(head(r2))

The goal of f3 is to minimize the overlap of rules predicting the same value for
a given target attribute. To generalize this to the multi-target case, we average
over the m different targets, normalizing each contribution. Following the original
IDS, N · |Rcand,Xj

|2 is used as a simple upper bound for the maximal overlap
relative to an attribute Xj given a training set of N instances3:

f3(R) =
1
m

m∑

j=1

[
1 − 1

N · |Rcand,Xj
|2

∑

rk,rl∈R
k<l

(Xj=ck)∈head(rk)
(Xj=cl)∈head(rl)

ck=cl

|overlapj(rk, rl)|
]

Rcand,Xj
= {r ∈ Rcand | Xj ∈ attr(head(r))}

Sub-objective f4 minimizes the overlap of rules predicting a different value
for a given target attribute, which corresponds to substituting ck = cl by ck �= cl

when filtering the sum in the formulation of f3 above.

2 A better denominator is to use
∑

r∈Rcand
length(r) instead of Lmax · |Rcand|.

3 A stricter upper bound is N
2

· |Rcand,Xj | · (|Rcand,Xj | − 1).
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Predicting All Attribute-Values. IDS sub-objective f5 formulates the
assumption that a user wants for each value c in a target’s domain dom(Y )
at least one rule that explains it. We generalize this for multi-target rules by
averaging the normalized contributions for each different target:

f5(R) =
1
m

m∑

j=1

1
|dom(Xj)|

∑

c′∈dom(Xj )

1
[
∃r ∈ R | (Xj = c′) ∈ head(r)

]

Predictive Performance. Two sub-objectives focus on the predictive perfor-
mance of the rule set. To generalize these objectives to a multi-directional set-
ting, we first define the (in)correct coverage of a rule as the set of (in)correctly
classified examples relative to a given target attribute:

correct-coverj(r) = {x ∈ cover(r) | (Xj = cj) ∈ head(r) and x[Xj ] = cj}
incorrect-coverj(r) = {x ∈ cover(r) | (Xj = cj) ∈ head(r) and x[Xj ] �= cj}

Sub-objective f6 prefers rules predicting few examples incorrectly. Its generaliza-
tion to the multi-directional setting averages the number of mistakes each rule
makes over that rule’s target attributes:

f6(R) = 1 − 1
N · |Rcand|

∑

r∈R
avg-incorrect-cover-size(r)

avg-incorrect-cover-size(r) =
1

|attr(head(r))|
∑

Xj∈attr(head(r))

|incorrect-coverj(r)|

Sub-objective f7 focuses on each attribute-value of each instance being correctly
predicted by at least one rule:

f7(R) =
1

N · m

∑

x∈D

m∑

j=1

1
[
|{r ∈ R | x ∈ correct-coverj(r)}| ≥ 1

]

7 Experimental Evaluation

In this section, we use two questions to experimentally investigate whether our
proposed rule generation and rule selection approaches can lead to better rule
models than using single-target association rules.

First, (Q1) “do tree rules lead to better models than association rules?”
To answer this, we compare association rules with tree rules in a single-target
prediction setting using IDS as the single-target rule selection approach.

Second, (Q2) “does learning a multi-directional model from multi-target
rules have advantages over using a collection of single-target rule models?” To
answer this, we compare single-target and multi-target tree-derived rules in a
multi-directional prediction setting using three rule selection methods: IDS for
the single-target rules, RR and MIDS for the multi-target rules.

Our Python code is available on GitHub.4

4 https://github.com/joschout/Multi-Directional-Rule-Set-Learning.

https://github.com/joschout/Multi-Directional-Rule-Set-Learning
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7.1 General Methodology

We use 7 UCI datasets, provided in discretized form by the arcBench bench-
marking suite [9]: iris, diabetes, glass, segment, breast-w and vehicle. The dis-
cretization is required for association rule mining. We learn and evaluate all
models using 10-fold cross validation. When comparing two models, we use a
Wilcoxon signed-rank test with a significance level α = 0.05.

We use the same tie-breaking and default prediction strategies for all models.
As the tie-breaking strategy, we use weighted voting, where each rule gets a vote
weighted by the rule’s confidence in the training set. As a default prediction for
each target attribute, we use its majority value in the training set.

For (M)IDS, we use as optimization algorithm ‘Double Greedy Local Search’
(unlike the original IDS; see Sect. 6.1). Since the optimization uses randomization
to find a locally optimal rule set Rsel, we run each (M)IDS configuration 10 times
and pick the rule set with the highest objective function value. For both IDS
and MIDS, we use the same implementation including normalization of the sub-
objectives with all weights set to λi = 1.

Compared Metrics. We investigate the predictive performance, model induc-
tion time, model size and interpretability of the selected rule models Rsel.

The predictive performance of a rule set is measured with the micro-averaged
F1-score. In the single-target setting, we measure the rule set’s micro-averaged
F1-score on the given target. In the multi-directional setting, we separately mea-
sure the micro-averaged F1-score on each target attribute and report the average.

To compare run time, we measure both the rule generation time and the rule
selection time, the sum of which we call the total run time.

The model size of Rsel is indicated by three different metrics: (1) the number
of literals in Rsel as the sum of its rule lengths, (2) its average rule length and
(3) the number of rules in Rsel.

Although the interpretability of a rule set is related to its model size, we also
use three interpretability metrics as proposed for IDS [11]. First, we use f5(R)
to measure the fraction of values occurring in the test data that are predicted by
at least one rule (Sect. 6.2). Second, we consider the fraction of test set examples
not covered by any rule. Third, we use the fraction of bodily overlap, which
indicates how much the bodies of a rule set R overlap with respect to a test
dataset of M instances, independent of the targets predicted by the rules:

fraction-bodily-overlap(R) =
2

|R| · (|R| − 1)

∑

rk,rl∈R
k<l

|overlap(rk, rl)|
M

7.2 Single-Target Tree Rules Vs. Association Rules

Methodology. To investigate (Q1) , we generate for both rule types a candi-
date single-target rule set of the same size. For both rule sets, we then use IDS
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to select a single-target model. We call IDS using association rules AR-IDS, and
using tree rules T-IDS. After rule selection, we compare the resulting models.

The two candidate rule sets are generated in two steps to ensure they have the
same size. First, we generate the association rules using FP-growth [7] for a given
support and confidence (instead of Apriori; see Sect. 6.1). Second, we learn a Scikit-
learn Random Forest by increasing its number of trees until it corresponds to a rule
set with the same number of rules or more. If it generates more rules, we sample
without replacement as many tree rules as there are association rules. For both
approaches, we use a minimum support of 0.1 and a maximum rule length of 7. For
the tree rules, this corresponds to setting a minimum fraction of examples per leaf
node of 0.1 and a maximum tree depth of 7.

For each dataset, we use two different candidate rule set sizes. We obtain
these rule set sizes by using two different minimum confidence levels for the
association rules: 0.75 and 0.95. Using a higher confidence results in a smaller
candidate rule set (Fig. 1). Limiting the number of candidate rules is important
because the computational cost of the rule selection step increases with the
candidate rule set size. Note that other metrics than the confidence can be used
to limit the number of association rules [17].

Results.

Model size. For a given candidate set size, the rule models selected by AR-IDS
and T-IDS do not significantly differ in their number of rules or their number of
literals (Fig. 1). Which of the two approaches selects more rules or contains more
literals differs over the datasets. However, the average rule length is significantly
shorter for tree rules than for association rules. For high confidence levels, this is
to be expected, as association rules with a higher confidence are typically longer.
But the tree rules are also shorter for confidence 0.75.

Run time. The total run time seems independent of the rule type (as shown in
Fig. 1). The rule generation time is negligible compared to the rule selection time,
i.e. the time inducing an IDS model dominates over the rule generation time.
Surprisingly, the time to generate association rules is not significantly different
from the time to create tree rules. The rule selection time seems independent of
the rule type, but increases with the candidate set size: selecting rules is much
faster for confidence level 0.95 than for confidence level 0.75.

Predictive performance. While we expected tree rules to lead to more accurate
models than association rules, AR-IDS does not differ in micro-averaged F1-
score from T-IDS in a statistically significant way. Our experiments also suggest
there is no difference between both candidate set sizes.

Interpretability. First, we see that rules selected by T-IDS have a significantly
higher overlap than the rules selected by AR-IDS. Thus, tree rules require more
tie-breaking. Second, while almost all examples in a test set are covered by the
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Fig. 1. Metrics quantifying the rule sets Rsel selected by IDS from single-target asso-
ciation rules and tree rules. For each dataset and rule type, two candidate rule set sizes
were used by filtering the association rules on confidence 0.75 and 0.95.

T-IDS model, a large fraction is not covered by any rule in the AR-IDS model,
thus requiring a default prediction without an explanation. Third, we see that
T-IDS predicts more values in the target’s domain than AR-IDS.

Discussion. Answering (Q1), comparing T-IDS and AR-IDS indicates that tree
and association rules lead to rule sets that do not significantly differ in predictive
performance, model size and run time. However, they differ in interpretability.
First, the T-IDS models explain more predictions than AR-IDS models, as they
cover more instances; AR-models fall back on unexplained default predictions
more frequently. Second, the explained predictions are less clear for the T-IDS
models than for the AR-IDS models, since the larger overlap indicates more
rules have to be interpreted for a prediction. Third, the T-IDS models predict
more values than AR-IDS. A possible explanation for the difference in coverage
and overlap of the selected rule sets can be found in the similar difference in
the candidate rule sets. The candidate tree rules also have a high overlap and
coverage, as every point in the instance space is covered by as many rules as there
are trees in the corresponding ensemble. In contrast, the candidate association
rules do not have to cover the whole instance space, even though they can overlap.
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Thus, our results suggest that for interpretability, tree rules are preferred
for explaining predictions for as many instances as possible, or for having more
class values explained by at least one rule. But if it is acceptable that a rule
model cannot always make a prediction and might have to use a default value,
association rules can give clearer predictions for the instances that are covered.

7.3 Multi-target vs. Single-target Rules

To investigate (Q2), we compare single-target and multi-target rules in a multi-
directional setting. We use tree rules, as their number is easy to control and
our previous experiment indicates that tree rules and association rules lead to
models similar in size and predictive performance. For the single-target rules,
we use IDS to select one single-target IDS model per target and combine these
models in a multi-directional ensemble called eIDS. For the multi-target rules,
we use RR and MIDS as rule selectors.

Rule generation. Both rules types are derived from Scikit-learn Random Forests
using a minimum support of 0.1 and maximum rule length of 7.

For each attribute, a single-target candidate set is generated by (1) learning
a Random Forest that predicts it, and (2) converting that Forest to rules. Each
Random Forest contains 50 trees and has a maximum tree depth of 7.

One multi-target candidate set is constructed per dataset as follows. First,
all attributes are randomly partitioned in groups of 2. For each group, a Random
Forest of 10 trees is learned predicting those 2 attributes simultaneously. The
attribute partitioning and Random Forest construction is repeated 5 times. As
a result, each attribute is predicted by 5 Random Forests of 10 trees, or 50
trees in total. Then, one multi-target candidate set is generated for all target
attributes by converting the trees of all Forest to rules. To ensure the rules have
at most 7 literals, we use a maximum tree depth of 5 (as each tree predicts 2
targets).

Note that although each attribute is initially predicted by 50 trees in both the
single-target and multi-target case, the number of rules predicting an attribute
differs between the single-target and multi-target candidate rule sets. This results
from each multi-target tree predicting 2 attributes. Thus, when combining the
single-target rule sets, there are more candidate single-target rules than multi-
target rules (# init. rules in Fig. 2).

Rule selection. From each single-target candidate set, we use IDS to select a
model. These single-target models are combined in one multi-directional ensem-
ble model per dataset, called eIDS.

For each multi-target rule set, we use two rule selectors: RR and MIDS. For
both RR and MIDS, one model is learned per dataset. We use RR with the same
tie-breaking function and default predictions as used for (M)IDS, i.e. weighted
voting and the majority class label. We set ε = 0.1 and δ = 0.01. (Sect. 5)
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Fig. 2. Metrics quantifying the rule sets found using eIDS, MIDS and RR.

Results.

Run time. For all three approaches, the rule generation time is negligible com-
pared to the rule selection time. When comparing rule selection time, RR is
orders of magnitude slower than eIDS and MIDS. Learning one MIDS model
takes more time than learning the eIDS model, which can be explained by IDS
selecting from smaller candidate sets and having a simpler objective function.

Model size. RR results in a smaller model than both eIDS and MIDS (Fig. 2).
The RR models contain significantly fewer literals than eIDS and MIDS, while
the number of literals in the eIDS and MIDS models are similar.

When comparing the number of rules, the multi-target selection approaches
result in the smallest rule sets. RR selects the smallest number of rules, while
MIDS also selects significantly fewer rules than eIDS.

However, the multi-target selection approaches select significantly longer
rules than eIDS. The average rule lengths of MIDS and RR are comparable,
which can be expected, as they are built from the same candidate rule sets. The
average rule lengths are longer for RR and MIDS than for eIDS, since the former
use multi-target rules, whereas eIDS uses single-target rules.

Predictive performance. While RR outperforms both eIDS and MIDS in micro-
averaged F1-score, the micro-averaged F1-scores of eIDS and MIDS do not differ
in a statistically significant manner.

Interpretability. RR has a lower overlap than both MIDS and eIDS, while MIDS
has a lower overlap than eIDS.
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RR predicts fewer values occurring in the training data than eIDS and MIDS,
between which there is no statistically significant difference.

As all three approaches cover almost all test instances with at least one rule,
the fraction of uncovered instances is excluded from Fig. 2.

Discussion. Answering (Q2), our results for MIDS and eIDS indicate that
in a multi-directional setting, learning a single model using multi-target rules
instead of naively learning multiple single-target models can lead to fewer rules
and less overlap between rules, but a similar predictive performance. A possible
explanation is that the selected multi-target rules explicate correlations between
different targets, which cannot occur in an ensemble of single-target rule models.

Our results also indicate it is better to use RR than MIDS or eIDS in
a multi-target prediction setting. Unsurprisingly, RR outperforms (M)IDS in
micro-averaged F1-score, as this is the only focus of RR, while the composite
(M)IDS objective function also focuses on model size and interpretability. How-
ever, RR also outperforms (M)IDS on model size and interpretability. Not only
does RR select rule sets with fewer rules and literals than the (M)IDS rule sets,
RR also has the lowest rule overlap of the three approaches. The only benefits
of using eIDS or MIDS over RR is that they are faster and their resulting rule
sets provide explanations for a larger variety of values. This highlights it is often
better to use a simple rule selection objective. Although it might be possible
to find parameters λi for (M)IDS resulting in a similar model size and predic-
tive performance as the RR models, this would require a potentially expensive
hyperparameter optimization.

8 Conclusion

In this paper, we proposed how to train a multi-directional rule set based on
multi-target tree rules, as a user might not know in advance which target will
need to be predicted or which support and confidence thresholds to use with
association rule mining. We proposed two new methods able to select multi-
target rules: the greedy RR, focused on providing a high predictive performance
on all targets, and MIDS, a generalization of IDS. Our experiments indicate that
tree and association rules lead to models of similar size and predictive perfor-
mance, although with different interpretability characteristics. Tree rules lead
to models with a higher coverage, but association rules lead to clearer decision
boundaries. We also showed that, compared to naively merging a collection of
single-target rule models, using a multi-directional model built using multi-target
rules results in fewer rules with lower overlap but with a similar predictive per-
formance. Lastly, the usefulness of simple objective functions was demonstrated,
as our RR models were not only more accurate than IDS and MIDS, they were
also smaller with a lower overlap.
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Future work. While we compared single-target association and tree rules in the
context of IDS, a similar comparison using other rule selection methods would be
useful. Similarly, comparing RR and MIDS with other single-target rule selectors
can help position these methods more clearly. Also, it would be interesting to
generalize other rule selectors than IDS to handle multi-target rules.
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Abstract. While a variety of ensemble methods for multilabel classi-
fication have been proposed in the literature, the question of how to
aggregate the predictions of the individual members of the ensemble
has received little attention so far. In this paper, we introduce a for-
mal framework of ensemble multilabel classification, in which we distin-
guish two principal approaches: “predict then combine” (PTC), where
the ensemble members first make loss minimizing predictions which are
subsequently combined, and “combine then predict” (CTP), which first
aggregates information such as marginal label probabilities from the indi-
vidual ensemble members, and then derives a prediction from this aggre-
gation. While both approaches generalize voting techniques commonly
used for multilabel ensembles, they allow to explicitly take the target
performance measure into account. Therefore, concrete instantiations of
CTP and PTC can be tailored to concrete loss functions. Experimen-
tally, we show that standard voting techniques are indeed outperformed
by suitable instantiations of CTP and PTC, and provide some evidence
that CTP performs well for decomposable loss functions, whereas PTC
is the better choice for non-decomposable losses.

Keywords: Ensembles of multilabel classifiers · Predict then
combine · Combine then predict · Hamming loss · F-measure · Subset
0/1 loss

1 Introduction

The setting of multilabel classification (MLC), which generalizes standard multi-
class classification by relaxing the assumption of mutual exclusiveness of classes,
has received a lot of attention in the recent machine learning literature—we refer
to [21] and [23] for comprehensive survey articles on this topic.

Like for other types of classification problems, the idea of ensemble learning
[5] has also been applied for MLC (cf. Sect. 3). However, somewhat surprisingly,
the question of how to aggregate the predictions of the individual members of an
c© Springer Nature Switzerland AG 2020
A. Appice et al. (Eds.): DS 2020, LNAI 12323, pp. 533–547, 2020.
https://doi.org/10.1007/978-3-030-61527-7_35
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ensemble has so far received little attention in MLC. Instead, most approaches
are based on simple voting techniques, which are typically applied in a label-wise
manner: For each label, the predictions—either binary predictions of relevance
or, more generally, label probabilities—of all ensemble members are collected,
averaged, and thresholded to obtain a final prediction for this label.

An obvious disadvantage of this simple approach is that the aggregation is inde-
pendent of the underlying performance measure, i.e., the aggregation procedure is
not tailored to a specific loss function. This, however, would supposedly be impor-
tant: In contrast to standard classification, where a loss function compares a pre-
dicted class label with a ground truth, an MLC loss compares a subset of labels
predicted to be relevant with a ground-truth subset. As there are various ways in
which subsets can be compared with each other, a wide spectrum of loss functions
is commonly used in MLC, and it is well known that different losses may call for
different (Bayes-optimal) predictions [3,4]. Naturally, the idea of customizing an
MLC predictor to a specific loss function should not only be considered at the level
of individual predictors, but also at the level of the ensemble as a whole, and hence
also concern the way in which the predictions are combined.

In this paper, we study the problem of aggregation in ensembles of multi-
label classifiers (EMLC) in a systematic way. To this end, we introduce a formal
framework, in which we distinguish two principal approaches: “predict then com-
bine” (PTC), where the ensemble members first make loss minimizing predic-
tions which are then combined, and “combine then predict” (CTP), which first
aggregates information such as marginal label probabilities from the individual
ensemble members, and then derives a prediction from this aggregation. While
both approaches generalize common voting techniques as mentioned above, they
also include more general variants and, moreover, allow one to explicitly take the
target loss into account. In other words, concrete instantiations of CTP and PTC
can be tailored to concrete loss functions. In an extensive experimental study,
we demonstrate that such loss-based aggregation functions do indeed outper-
form simple voting techniques, and also investigate the question which type of
aggregation is more suitable for which loss functions.

2 Multilabel Classification

Let X denote an instance space, and let L = {λ1, . . . , λK} be a finite set of
class labels. We assume that an instance x ∈ X is (probabilistically) associated
with a subset of labels Λ = Λ(x ) ∈ 2L; this subset is often called the set of
relevant labels, while the complement L\Λ is considered as irrelevant for x . We
identify a set Λ of relevant labels with a binary vector y = (y1, . . . , yK), where
yk = �λk ∈ Λ�.1 By Y = {0, 1}K we denote the set of possible labelings.

We assume observations to be realizations of random variables generated
independently and identically according to a probability distribution p on X ×Y,
i.e., an observation y = (y1, . . . , yK) is the realization of a corresponding random
vector Y = (Y1, . . . , YK). We denote by p(Y |x ) the conditional distribution of
1 �·� is the indicator function, i.e., �A� = 1 if the predicate A is true and = 0 otherwise.
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Y given X = x , and by pk(Yk |x ) the corresponding marginal distribution
of Yk:

pk(b |x ) =
∑

y∈Y:yk=b

p(y |x ) . (1)

Moreover, we denote by pk = pk(x ) = pk(1 |x ) the probability of relevance of
the label λk.

Given training data in the form of a finite set of observations

D =
{
(xn,yn)

}N

n=1
⊂ X × Y , (2)

drawn independently from p(X,Y), the goal in MLC is to learn a predictive
model in the form of a multilabel classifier h , which is a mapping X −→ Y that
assigns a (predicted) label subset to each instance x ∈ X . Thus, the output of a
classifier h is a vector of predictions

h(x ) = (h1(x ), . . . , hK(x )) ∈ {0, 1}K , (3)

also denoted as ŷ = (ŷ1, . . . , ŷK).

2.1 MLC Loss Functions

The main goal in MLC is to induce predictions (3) that generalize well beyond
the training data (2), i.e., predictions

ŷ = argmin
ȳ

∑

y∈Y
�(y , ȳ)p(y |x ) , (4)

that minimize the expected loss with respect to a specific MLC loss function � :
Y2 −→ R. Two important loss functions, both generalizing the standard 0/1 loss
commonly used in classification, are the Hamming loss and the subset 0/1 loss:

�H(y , ŷ) ..=
1
K

K∑

k=1

�yk �= ŷk� , (5)

�S(y , ŷ) ..= �y �= ŷ� . (6)

The (instance-wise) F-measure compares a set of predicted labels to a correspond-
ing set of ground-truth labels via the harmonic mean of precision and recall:

F (y , ŷ) =
2
∑K

k=1 ŷk yk∑K
k=1 ŷk +

∑K
k=1 yk

. (7)

The goal of classification algorithms in general is to capture dependencies
between input features and the target variable. In MLC, dependencies may not
only exist between the features and each target, but also between the targets
Y1, . . . , YK themselves. The idea to improve predictive accuracy by capturing
such dependencies is a driving force in research on multilabel classification.
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Not all loss functions capture label dependencies to the same extent: A decom-
posable loss can be reduced to loss functions for the individual labels, i.e., it can
be expressed in the form

�(y , ŷ) =
K∑

k=1

�k(yk, ŷk) , (8)

with suitable binary loss functions �k : {0, 1}2 −→ R. A non-decomposable loss
does not permit such a representation. It can be shown that, for making optimal
predictions ŷ = h(x ) which minimize the expected loss, knowledge about the
marginals (1) is sufficient in the case of a decomposable loss (such as Hamming),
but not in the case of a non-decomposable loss [3]. Instead, if a loss is non-
decomposable, higher-order probabilities are needed, and in the extreme case
even the entire distribution p(Y |x ) (like in the case of the subset 0/1 loss).

On an algorithmic level, this means that MLC with a decomposable loss
can be tackled by what is commonly called binary relevance (BR) learning,
i.e., by learning one binary classifier for each individual label, whereas non-
decomposable losses call for more sophisticated learning methods that are able
to take label dependencies into account.

2.2 Risk Minimization

In the most general case, the problem of finding a risk-minimizing (Bayes-
optimal) prediction is tackled by producing a prediction p(· |x ) of the conditional
joint distribution of labelings, and explicitly solving (4) as a combinatorial opti-
mization problem. Obviously, this approach is infeasible unless the number of
class labels is very low. Fortunately, the problem can be solved more efficiently
for specific loss functions, including those considered in this paper.

In the case of the Hamming loss, the Bayes-optimal prediction can be
obtained by thresholding the marginal probabilities, regardless of whether the
labels are independent or not:

ŷk = �pk(x) > 1/2�. (9)

Thus, it is sufficient to have good estimates for the marginal probabilities, which
can be accomplished by simple techniques such as binary relevance [3].

For subset 0/1 loss, the Bayes-optimal prediction is not the marginal but the
joint mode of the distribution p(· |x ):

ŷ ∈ argmax
ȳ∈Y

p(ȳ |x ) .

Thus, label dependence needs to be taken into account for optimal performance.
The F-measure is in a sense in-between these two extremes. It can be shown

that, while the entire distribution p(· |x ) is not needed to find a Bayes-optimal
prediction for this measure, marginal probabilities (1) do not suffice either.
Instead, probabilities on pairwise label combinations are required in the general
case, whereas under the assumption of conditional label independence, marginal
probabilities again provide sufficient information [22].
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3 Ensembles of MLC

In general, an ensemble approach to multilabel classification (EMLC) learns a
set of M multilabel classifiers, each of which predicts a binary label vector ŷ j .
Given a query instance x ∈ X , these are then aggregated into a final prediction
ŷ = agg(ŷ1, . . . , ŷM ). For this aggregation, variants of label-wise majority voting
(MV) are typically used:

• Binary majority voting (BMV) assigns to each label λk ∈ L the predic-
tion given by the majority of the classifiers:

ŷk
..= argmax

yk∈{0,1}

M∑

j=1

�yk = ŷj,k� . (10)

• Graded majority voting (GMV), also known as weighted voting, adds up
confidence scores pj = (pj,1, pj,2, . . . , pj,K) for each label λk ∈ L:

ŷk
..= argmax

yk∈{0,1}

M∑

j=1

pyk

j,k(1 − pj,k)1−yk . (11)

Several ensemble-based multilabel classifiers have been tried in the literature,
which typically use the above-mentioned voting techniques for combining the
predictions of the ensemble members [6,7,10,18,19]. While we aim at optimizing
the predictions for a particular loss function, a different line of work—orthogonal
to our approach—aims at simultaneously optimizing for multiple loss functions
[16,17]. In the following, we briefly recall some commonly used EMLC methods,
which will serve as baselines in our experimental evaluation. We refer to [11] for
an extensive discussion on ensembles of MLC classifiers.

• Ensembles of Binary Relevance Classifiers (EBR) use bagging [1] to
construct K independent ensembles of binary classifiers, one for each label
λk ∈ L [20]. At prediction time, the predictions of these classifiers are com-
bined for each label using majority voting, as is commonly used in bagged
ensembles. Obviously, like all BR methods, EBR ignores any relationships
between the labels and implicitly assumes them to be independent. More-
over, EBR is computationally expensive, since K · M classifiers are required
in order to have an “actual ensemble” of cardinality M .

• Ensembles of Classifier Chains (ECC). The classifier chains (CC)
method [14] also trains K binary classifiers hk, k ∈ [K] ..= {1, . . . , K},
one for each label. Yet, to capture label dependencies, hk is trained on an
augmented input space X × {0, 1}k−1, taking the (binary) values of the
k − 1 previous labels as additional attributes. More specifically, hk predicts
ŷσ(k) ∈ {0, 1} using

(
x , ŷσ(1), ŷσ(2), . . . , ŷσ(k−1)

) ∈ X × {0, 1}k−1

as input, where σ is some permutation of [K].
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Practically, it turns out that the order of labels on the chain, defined by
σ, has an impact on predictive performance [2,15]. As finding an optimal
order appears to be difficult, [15] suggest to use an ensemble of CCs over
a (randomly chosen) set of permutations and combine their predictions. In
the original CC, the final prediction is derived in a label-wise manner using
BMV. In a probabilistic variant of CC, we allow each classifier hk, k ∈ [K], to
produce a score in [0, 1], namely an estimation of the conditional probability

p
(
yσ(k) = 1 |x , yσ(1), . . . , yσ(k−1)

)
. (12)

(12) can be seen as a dependent marginal probability, i.e., a marginal proba-
bility which to some extent takes label dependence into account.

• Ensembles of Multi-Objective Decision Trees (EMODT) are a com-
putationally efficient EMLC method [8]. Similar to conventional decision
trees (DT) [12,13], a multi-objective decision tree (MODT) partitions the
instance space X into (axis-parallel) regions R1, . . . , RL (i.e.,

⋃L
i=1 Ri = X

and Ri ∩ Rj = ∅ for i �= j), corresponding to individual leaves of the tree. In
a probabilistic setting, each leaf of the MODT is associated with a complete
marginal probability vector, where the marginal probability corresponding
to a particular label is simply estimated as the proportion of the training
instances in the leaf for which the label is relevant. The binary label vector
predicted by an EMODT can be derived with GMV on the probability vectors
provided by the individual MODTs in a label-wise manner. Due to the label-
wise voting, EMODT is also tailored to decomposable performance measures.

4 A Formal Framework

In the following, we define a formal framework for EMLC.

4.1 Intermediate Relevance Information

Most MLC methods are two-step approaches in the sense that, prior to making
a final prediction ŷ ∈ Y, intermediate results about the relevance of labels, their
interdependencies, or similar information is compiled. We refer to such results as
relevance information, which we distinguish from the final prediction. Important
examples include the following:

• Estimates of marginal probabilities (1), which provide important information
for the minimization of decomposable loss functions, or loss minimization in
the case of label independence.

• The entire joint distribution p(· |x ), which might be needed for the minimiza-
tion of non-decomposable losses in cases where the labels are not independent.

• Probability estimates of a more general kind. For example, [22] require the
probabilities p(yk = 1, sy = s) , k, s ∈ [K], for loss minimization in the case
of the F-measure.

In general, of course, the relevance information does not need to be probabilistic,
but might be of a more general nature.
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Fig. 1. Illustration of the “combine then predict” (left) and “predict then combine”
(right) approaches for the case where relevance information consists of marginal prob-
abilities.

4.2 CTP Versus PTC

In the context of ensemble learning, an important distinction between methods
can be made depending on whether the relevance information provided by the
different ensemble members is combined first, and a prediction is obtained after-
wards, or whether individual predictions are produced first and then combined
into an overall prediction (see Fig. 1 for an illustration). We refer to the former as
“combine then predict” (CTP) and the latter as “predict then combine” (PTC).

In CTP, the relevance information R = {R1, . . . , RM} provided by the indi-
vidual ensemble members is first combined into a single condensed representation

R = CTP-agg
(
R1, . . . , RM

)
. (13)

Then, a final prediction ŷ is produced on the basis of this representation, typi-
cally (though not necessarily) taking the underlying target loss � into account,
i.e., minimizing expected loss with regard to � (cf. Sect. 2.2). Denoting the pre-
diction step by Pred�, this can be written compactly as follows:

ŷ = Pred�

(
CTP-agg

(
R1, . . . , RM

))
. (14)

In PTC, each member of the ensemble first predicts a (loss minimizing) label
combination ŷ j = Pred�(Rj). Then, in a second step, these predictions ŷm,
m ∈ [M ], are combined into an overall prediction ŷ using a suitable aggregation
function:

ŷ = PTC-agg
(

Pred�(R1), . . . ,Pred�(RM )
)

.

Note that the commonly used techniques of weighted and binary voting as
described in Sect. 3 can be seen as specific instantiations of CTP and PTC:
Binary majority voting (BMV) first maps vectors of marginal label probabilities
into label predictions, which are then combined via majority voting, and is thus
an instance of PTC. Graded majority voting (GMV) first adds up the label
probabilities into a single vector of marginal label probabilities, which are then
thresholded for a final prediction, and is thus a special case of CTP. However,
both voting methods are oblivious to specific loss functions.
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4.3 Aggregation in CTP

The information that needs to be combined in both approaches, CTP and PTC,
is of different nature. Thus, one may expect different types of aggregation func-
tions to be suitable. In particular, relevance information to be combined in CTP
is often gradual and represented in numerical form — probability estimates is
again a typical example. Information of that kind is often reasonably combined
through averaging. For instance, the arithmetic mean

p̄i =
1
M

M∑

j=1

pi,j , (15)

produced by the ensemble members for the label λi, will be an improved estimate
of the true marginal probability of that label. Of course, aggregation functions
other than the arithmetic mean are also conceivable; for example, the median is
known to be more robust toward outliers.

Moreover, aggregation does not necessarily need to be label-wise as in (15).
Instead, it depends on what kind of relevance information is produced in the
first place. Imagine, for example, that each ensemble member yields an estimate
p̂j(· |x ) of the joint label distribution on Y. Aggregation should then be done
at the same level, and averaging is again an obvious way for doing so:

p̂(y |x ) =
1
M

M∑

j=1

p̂j(y |x ) ,∀y ∈ Y .

As already said, an approach of that kind might be advantageous in the case of
non-decomposable losses, although it will not be tractable in general.

4.4 Aggregation in PTC

In PTC, the problem is to combine (binary) predictions. More specifically, recall-
ing the goal to minimize a given target loss �, the problem can be stated as
follows: Given predictions ŷ1, . . . , ŷM , which are all supposed to minimize � in
expectation, what is a Bayes-optimal overall prediction ŷ? The answer to this
question is far from obvious and, to the best of our knowledge, has not been
studied systematically in the literature so far. In fact, a formal analysis of this
problem probably presupposes additional assumptions about how the predictions
(15) may differ from the true Bayes-optimal prediction (obviously, they cannot
all be Bayes-optimal at the same time, unless they all coincide).

In any case, it should be clear that averaging will be less suitable. First of all,
binary predictions ŷ are discrete entities, and by averaging them one does not
again end up with a discrete entity. This is to some extent comparable to the
difference between ensemble regression (numerical case) and ensemble classifica-
tion (categorical case): While arithmetic averaging is often used in the former,
counting or “voting” techniques are more commonly applied in the latter. Sec-
ond, even when solving this technical issue by turning an average into a discrete
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entity, for example by thresholding, undesirable effects might be produced, as
shown by a simple example, in which the (conditional) ground-truth distribution
p(· |x ) on the label space Y = {0, 1}3 are given as follows:

y (0, 0, 0) (1, 1, 1) (0, 1, 1) (1, 0, 1) (1, 1, 0)
p(y |x ) 1/4 3/16 3/16 3/16 3/16

Obviously, the Bayes-optimal prediction for the subset 0/1 loss is (0, 0, 0), and
ideally, this prediction is produced by each classifier in the ensemble. Now, since
these classifiers are not perfect, suppose that the different label combinations are
predicted in proportion to their conditional probabilities, i.e., (0, 0, 0) is predicted
with probability 1/4, (1, 1, 1) with probability 3/16, etc. One easily verifies that,
for each of the three labels, the probability of it being predicted as relevant (9/16)
exceeds the probability for irrelevant (7/16). Therefore, by taking the arithmetic
average over the ensemble members’ predictions, and then thresholding at 1/2,
one will likely end up with the suboptimal prediction (1, 1, 1).

The reader may have noticed that this example is actually less problematic for
the Hamming loss, for which the prediction (1, 1, 1) is indeed Bayes-optimal, and
would be produced by the label-wise aggregation sketched above. More generally,
it is plausible that a label-wise combination of predictions is indeed suitable for
decomposable losses like Hamming, but suboptimal for non-decomposable losses.

Based on the discussion so far, we propose two aggregation functions for
PTC, which can be seen as implementations of different types of voting, and will
be used in our experimental study below:

• Label-wise voting (PTC-lw): For each individual label λi, the num-
ber of positive (relevant) and negative (irrelevant) votes in the predictions
ŷ1, . . . , ŷM is counted, and the majority is adopted.

• Mode (PTC-mode): Counting is done at the level of the entire predictions,
i.e., we predict the label combination ŷ that occurs most frequently:

ŷ = argmax
ȳ

M∑

j=1

�
ŷ i = ȳ

�
. (16)

In case the maximum is not unique, ties are broken by choosing the maximal
prediction with the highest score

s(ŷ) =
K∑

k=1

M∑

j=1

�
ŷk = ŷk,j

�
. (17)
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Table 1. Datasets used in the experiments

# Name # Inst. # Nom. Feat. # Num. Feat. # Lab.

1 Cal500 502 0 68 174

2 Emotions 593 0 72 6

3 Scene 2407 0 294 6

4 Yeast 2417 0 103 14

5 Mediamill 43907 0 120 101

6 Flags 194 9 10 7

7 Medical 978 1449 0 45

8 Bibtex 7395 1836 0 159

5 Experimental Evaluation

We perform experiments on eight standard benchmark datasets (cf. Table 1)
from the MULAN repository2, following a 10-fold cross-validation procedure.
Our primary goal is to confirm that the loss-based aggregation methods PTC and
CTP outperform the commonly used voting techniques. Moreover, we conjecture
that CTP performs better than PTC for decomposable losses, and PTC better
than CTP for non-decomposable losses. This is because accurate marginal prob-
abilities are of utmost importance for decomposable losses — which is exactly
what CTP accomplishes through averaging label-wise predictions. Likewise,
PTC is more apt at capturing label dependencies, which is important for non-
decomposable losses, because it aggregates over several predictions tailored to
the target loss (instead of producing only a single one, as CTP).

We conducted three series of experiments using the ensemble methods
EMODT, EBR, and ECC with their cardinality set to 50. We employed logistic
regression as the base classifiers for EBR and ECC and let them produce proba-
bilistic predictions. Thus, each ensemble member provides a complete marginal
probability vector.

The detailed results are shown in Table 2. The best way for getting an insight
into the respective performances is to consider the averages of these ranks in the
final column of the table. In particular, each column shows the results of one
dataset, each line shows the results of a combination of ensemble technique,
loss function, and aggregation technique. For each combination of ensemble, loss
function, and dataset, we also report the respective ranks for the obtained losses
over the aggregation approaches. The bold value indicates the best performance
on each data set. According to the Friedman/Nemenyi test, differences are sta-
tistically significant for a critical distance between the average ranks of 1.10/1.25
for α = 0.1/0.05 for EMODT, and similarly 1.94/2.16 and 2.08/2.31 for ECC and
EBR, respectively. The Friedman test fails for all Hamming loss comparisons.

2 http://mulan.sourceforge.net/datasets.html. The source code will be available at
https://github.com/nvlml/DS2020-EMLC.

http://mulan.sourceforge.net/datasets.html
https://github.com/nvlml/DS2020-EMLC


On Aggregation in Ensembles of Multilabel Classifiers 543

Table 2. Predictive performance (in percent) and rank (small number) of aggregation
methods with respect to the Hamming loss, the subset 0/1 loss and the F1-measure.

Cal500
Emo-
tions Scene Yeast Flags

Medi-
cal Bibtex

Media-
mill

Avg.

ranks

EMODT

H
a
m
m
in
g
lo
ss

↓ GMV 13.65 1 18.72 2 9.45 3 19.57 2 23.48 1 1.55 2 1.27 3 2.67 3 2.13
BMV 13.75 2 18.52 1 9.11 2 19.38 1 25.09 3 1.59 3 1.25 1.5 2.65 1.5 1.88
CTP equivalent to GMV

PTC-lw equivalent to BMV

PTC-mode 14.41 3 19.66 3 8.14 1 19.77 3 24.58 2 1.52 1 1.25 1.5 2.65 1.5 2.00

S
u
b
se
t
0
/
1
lo
ss

↓

GMV 100 2 69.82 3 49.48 3 85.48 3 79.34 2 55.70 2 87.59 3 84.79 3 2.63
BMV 100 2 67.81 2 46.16 2 83.62 2 83.00 3 57.26 3 86.61 2 84.57 2 2.25
CTP equivalent to GMV

PTC-lw equivalent to BMV

PTC-mode 100 2 64.45 1 27.21 1 74.43 1 78.82 1 50.96 1 85.22 1 79.21 1 1.13

F
1
-m

e
a
su

re
↑ GMV 33.31 5 58.18 5 53.45 5 58.53 5 74.91 4 51.17 4 25.33 5 59.52 5 4.75

BMV 37.33 4 61.79 4 57.02 4 60.99 4 74.33 5 50.72 5 27.69 4 60.74 4 4.25
CTP 48.31 1 68.30 1 74.90 2 66.61 1 75.89 3 76.17 1 48.77 1 63.88 1 1.38
PTC-lw 46.45 2 68.29 2 71.78 3 64.87 3 76.21 2 71.81 3 37.79 3 62.71 2 2.50
PTC-mode 42.30 3 68.25 3 77.55 1 65.38 2 76.48 1 75.38 2 45.59 2 62.09 3 2.13

ECC

H
a
m
m
in
g
lo
ss

↓ GMV 14.08 2 20.28 1 8.63 1 20.24 2 23.26 2 0.89 3 1.28 1 — 1.71
BMV 14.06 1 20.31 2 8.76 2 20.11 1 23.48 3 0.88 1.5 1.29 2.5 — 1.86
CTP equivalent to GMV

PTC-lw equivalent to BMV

PTC-mode 14.24 3 20.48 3 8.77 3 20.39 3 22.52 1 0.88 1.5 1.29 2.5 — 2.43

S
u
b
se
t
0
/
1
lo
ss

↓

GMV 100 2 69.46 2 32.82 2 79.35 3 72.32 2 29.49 3 81.61 2 — 2.29
BMV 100 2 70.47 3 33.07 3 78.98 2 74.87 3 28.45 2 81.64 3 — 2.57
CTP equivalent to GMV

PTC-lw equivalent to BMV

PTC-mode 100 2 68.45 1 29.04 1 77.28 1 66.61 1 28.35 1 81.37 1 — 1.14

F
1
-m

e
a
su

re
↑ GMV 32.13 5 63.20 5 72.84 4 62.63 5 72.80 4 81.74 4 40.08 5 — 4.57

BMV 32.50 4 64.00 4 71.75 5 62.81 4 72.56 5 81.10 5 40.10 4 — 4.43
CTP 45.28 1 67.65 1 77.05 1 64.85 1 74.21 2 85.17 1 49.30 1 — 1.14
PTC-lw 42.05 2 67.58 2 75.52 3 64.69 2 74.53 1 84.85 2 48.95 2 — 2.00
PTC-mode 41.98 3 66.81 3 75.57 2 64.06 3 74.13 3 84.58 3 48.77 3 — 2.86

EBR

H
a
m
m
in
g
lo
ss

↓ GMV 13.95 1 20.15 1 9.82 2 19.89 3 24.05 2 0.92 2 1.22 1.5 — 1.79
BMV 14.02 2 20.32 3 9.83 3 19.87 1 23.62 1 0.92 2 1.22 1.5 — 1.93
CTP equivalent to GMV

PTC-lw equivalent to BMV

PTC-mode 14.10 3 20.21 2 9.76 1 19.88 2 24.49 3 0.92 2 1.23 3 — 2.29

S
u
b
se
t
0
/
1
lo
ss

↓

GMV 100 2 72.86 1 46.11 3 84.78 3 82.45 3 30.71 3 82.12 3 — 2.57
BMV 100 2 73.53 3 46.03 2 84.49 2 81.92 2 30.39 2 81.88 2 — 2.14
CTP equivalent to GMV

PTC-lw equivalent to BMV

PTC-mode 100 2 73.37 2 45.53 1 84.32 1 80.87 1 30.09 1 81.72 1 — 1.29

F
1
-m

e
a
su

re
↑ GMV 34.17 5 58.38 4 61.99 5 61.37 5 72.60 4 79.18 5 39.75 5 — 4.71

BMV 34.40 4 58.11 5 62.07 4 61.49 4 73.42 3 79.76 4 40.17 4 — 4.00
CTP 47.62 1 66.67 3 76.14 3 65.07 1 75.18 1 85.27 1 50.78 1 — 1.57
PTC-lw 47.46 2 66.96 2 76.29 1 65.01 2 74.80 2 84.63 2 49.02 3 — 2.00
PTC-mode 47.33 3 67.07 1 76.18 2 64.99 3 71.41 5 84.58 3 49.43 2 — 2.71
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• Loss-based aggregation vs. voting. Especially for F1 and subset 0/1 loss,
there are (statistically significant) large differences between the voting-based
decompositions on the one side, and PTC/CTP on the other side. This con-
firms our expectation that GMV and BMV are poorly suited for the case of
non-decomposable performance measures. Only for Hamming loss, the voting-
based techniques are in the same range, and, in fact, sometimes even better
(yet, no significant difference).
This result is also expected because Hamming loss is decomposable, so that
its performance primarily depends on accurate marginal probabilities. In fact,
in this case, label-wise PTC and CTP are equivalent to binary and graded
voting, respectively. For subset 0/1 loss, assuming label independence and
marginal probability as the relevance information, our loss-based instantia-
tions of CTP and PTC-lw are equivalent to GMV and BMV, respectively. As
can be seen from the results, however, this assumption is most likely invalid
for the investigated datasets, because PTC-mode, which addresses the prob-
lem of finding the mode of the joint label distribution, typically outperforms
the alternatives.

• PTC vs. CTP. With respect to the two different approaches, the mode-
based PTC decomposition performs significantly better for subset 0/1 loss,
whereas CTP (or, in this case, equivalently GMV) seems to perform better
for Hamming loss. These results provide clear evidence in favor of our conjec-
ture. The results for F1 are a bit more difficult to interpret but also consistent.
Given marginal probabilities, we derive the loss minimizer for F1 under the
assumption of label independence, and in this case, accurate marginal prob-
abilities are again crucial. This is probably the reason for why CTP has an
advantage over PTC.

We also conducted a series of experiments using EMODT with the number of
ensemble members varying from 1 to 100 (M ∈ {1, 5, 10, 20, 30, . . . , 100}). Here,
our interest was to study the influence of the ensemble size on the performance
of the aggregation methods. For each value of the ensemble cardinality, we have
run a 10 times 10-fold cross-validation, for which we report the average scores.

As expected, the results shown in Fig. 2 confirm that the MLC scores typi-
cally improve with an increasing size of the ensembles. This is in agreement with
the observation on the performance of ECC reported in [9]. More importantly,
we also see differences between the different aggregation methods, and that suit-
able instantiations of CTP and PTC can indeed reach better performance than
standard voting techniques. In particular, the visible gaps for the subset 0/1 loss
re-confirm the superiority of PTC-mode for non-decomposable losses. Finally, we
note that the performances change rapidly in the beginning and tend to converge
when the number of ensemble members reaches moderate values (i.e., 30 or 40),
except for the subset 0/1 loss and PTC-mode. This is again in agreement with
our expectations, because PTC-mode does voting at the level of the entire pre-
dictions, and the number of possible predictions increases exponentially with the
number of labels, so that more iterations are necessary for convergence. A simi-
lar effect can be observed for PTC-lw/BMV, whose label-wise votings converge
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Fig. 2. Predictive performance (y-axis) of aggregation methods as a function of the
cardinality of ensembles (x-axis) in terms of Hamming loss (left column), subset 0/1
loss (middle), and F1 (right column) for four datasets.
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less rapidly to accurate marginal probability estimates than CTP/GMV, but are
able to catch up with increasing number of votes. For EMODT, there seems to
be even an advantage in the end for using the vote distributions, possibly due
to less accurate probability estimates of the trees.

Results similar to those shown in Fig. 2 have been obtained for EBR and
ECC and omitted due to space limitations.

6 Conclusion

This paper studied the question of how to aggregate the predictions of individ-
ual members of an ensemble of multilabel classifiers in a systematic way. We
introduced a formal framework of ensemble multilabel classification, in which
we distinguish two principal approaches, referred to as “predict then combine”
(PTC) and “combine then predict” (CTP). Both approaches generalize voting
techniques commonly used for EMLC, while allowing one to explicitly take the
target performance measure into account. Our framework supports the analy-
sis of existing EMLC methods as well as the systematic development of new
ones. Besides, it suggests a number of interesting theoretical problems, like the
question of how to combine predictions in PTC in a provably optimal way. Exper-
imentally, we showed that standard voting techniques are indeed outperformed
by suitable instantiations of CTP and PTC. Moreover, our results suggest that
CTP performs well for decomposable loss functions, whereas PTC is the better
choice for non-decomposable losses.

Acknowledgements. This work was supported by the German Research Foundation
(DFG) under grant number 400845550.
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Abstract. Energy disaggregation refers to the separation of appliance-
level data from an aggregate energy signal originated from a single-meter,
without the use of any other device-specific sensors. Due to the fact that
deep learning caught great attention in the last decade, numerous tech-
niques using Artificial Neural Networks (ANN) have been developed to
accomplish this task. Whereas most of the current research focuses on
achieving better performance, the goal of this paper is to design a com-
putationally light deep neural network based on attention mechanism.
A thorough analysis shows how the proposed model is implemented and
compares the performance of two different attention layers in the problem
of energy disaggregation. The novel architecture achieves fast training
and inference with minor performance trade-off when compared against
other computationally expensive state-of-the-art models.

Keywords: Energy disaggregation · Non-intrusive load monitoring ·
Artificial neural networks · Attention

1 Introduction

Energy disaggregation provides the ability to estimate the electrical energy con-
sumption of an appliance, using only the total power consumption of a house.
It is also known as non-intrusive load monitoring (NILM). Further analysis can
identify inefficiencies of the various appliances, in order to reduce their energy
usage. Additionally, with the use of NILM, the electrical energy management
may be improved towards a direction of nullifying the unnecessary waste of
energy usage, one of the crucial factors of climate change and global warming.

Smart houses integrate home energy management systems (HEMS) in order
to monitor and manage electrical appliances, reducing energy cost for consumers.
In HEMS appliance load monitoring (ALM) can be achieved with either intrusive
or non-intrusive monitoring methods [15]. The main advantage of NILM against
intrusive-loading monitoring (ILM) is that it requires measurements from a single
mains meter instead of multiple meters. Load monitoring is cheaper and more
straightforward, although ILM offers higher accuracy.

This paper contributes to the research of NILM in two major points. Firstly,
with the design of a lightweight model using artificial neural networks. Thus,
c© Springer Nature Switzerland AG 2020
A. Appice et al. (Eds.): DS 2020, LNAI 12323, pp. 551–565, 2020.
https://doi.org/10.1007/978-3-030-61527-7_36
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faster training and inference times were achieved with a minor performance
decrement in comparison to a state-of-the-art architecture. Secondly, with the
introduction of Attention in the task of energy disaggregation alongside with
promising results.

The structure of this article is as described bellow. To begin with, the related
work about NILM and energy disaggregation is presented. Secondly, the method
of Attention is described. Section 3 includes a short explanation of the calcula-
tions inside the attention mechanism. In Sect. 4, there is an in depth analysis
of the novel architecture and a presentation of its purpose and benefits. Next,
the methodology of experiments is described. In Sect. 6, there is a presentation
of the most important results. Finally there are conclusions and proposals for
future work.

2 Related Work

The problem of energy disaggregation states back to mid 1980s when it was
firstly introduced by Hart. Hart in [5] proposed a combinatorial optimization
method in order to extract the optimal states of the target appliances so that
the sum of power consumption would be the same as the meter reading. This
method is applicable only on devices that have finite number of states, thus it
cannot be used on appliances with variable consumption.

NILM research interest has raised a lot with the rise of internet of things. For
a long time one of the most popular methods solving the energy disaggregation
problem was Factorial Hidden Markov Models (FHMM), an extension to Hidden
Markov Models (HMMs). In FHMM the architecture consists of multiple inde-
pendent HMMs in parallel, where the observed output is a combination of all
the hidden states. Kolter and Jaakkola used additive FHMMs, where the out-
put was the sum of all the independent HMMs outputs [10]. The rise of machine
learning and deep learning pushed researchers to use techniques from the sectors
of Natural language processing (NLP), Computer Vision and Time Series Anal-
ysis. In 2015, Kelly and Knottenbelt [7] described three novel architectures using
three different kinds of artificial neural networks (ANNs), an LSTM recurrent
neural network (RNN), a denoising autoencoder architecture and a network to
regress start/end time and power. These models outperformed Hart’s algorithm
and FHMM on experiments executed on the UK-DALE [6] data set. Mauch and
Yang [14] investigated another method using a recurrent network with LSTM
neurons on low frequency real power data. The experiments were executed on
REDD [11] dataset alongside with synthetic data. This approach showed good
performance for appliances with recurring patterns.

In 2017 Zhang et al. [22] implemented an architecture called Sequence-
to-Point using convolutional neural network (CNN) layers, outperforming the
results of Kelly and Knottenbelt [7]. A key point of difference of this model in
respect to the recurrent architectures in [7] and [14] is that a window of aggre-
gate data is considered in order to predict the appliance consumption on a single
time step, thus the name Sequence-to-Point. On the other hand, in [7] and [14]
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a single time step of the aggregate signal is used to predict the device power
consumption at a the same time step. Krystalakos et al. [12] used Gated Recur-
rent Units (GRUs) instead of LSTMs alongside with dropout layers in order to
improve the efficiency of previous RNN architectures.

Due to the lack of a benchmark method, the comparison of various methods
and models most of the time is questionable. In an effort to efficiently tackle this
challenge, Symeonidis et al. [21] proposed a set of experiments as a benchmark
basis. In addition, the Stacking method of five popular architectures is explored
resulting in promising results on 2-state devices. In a nutshell, regarding the
matters of reproducibility and comparability of NILM frameworks, it is suggested
to be a standardization of the assessment procedures [9,16].

NILM research mostly focuses on designing one model per device, resulting
that a complete NILM system should integrate as many models as the number
of devices the target environment contains. Thus, these type of architectures
are not directly applicable in real time situations, where energy measurements
provide huge quantities of data even at low sampling frequencies. The creation
of lightweight architectures is a first and important step in order to achieve suc-
cessful deployment of NILM on embedded systems. The next step is to consider
multi-label machine learning models, where one model is trained in order to
identify more than one appliances. Basu et al. [2,3] were the first to introduce
the multi-label classification in NILM tasks, with the use of known machine
learning algorithms such as decision trees and boosting. The most recent work
considering multi label classification in energy disaggregation was published by
Nalmpantis and Vrakas [18], where a novel framework called multi-NILM is pro-
posed. In multi-NILM approach, a dimensionality reduction technique called
Signal2vec [17] is combined with a lightweight disaggregation model, achieving
very promising results.

3 Attention Mechanism

One of the most common tasks in machine learning is to extract input-output
relations such as in machine translation and image captioning. In Deep Learning,
the most popular way of dealing with this format of tasks is with sequence to
sequence models (seq2seq). The original seq2seq architecture (Sutskever et al.
[20]) consists of two essential RNNs; the encoder and the decoder. The encoder’s
role is to compress the sequential input into a context vector of fixed length,
which contains a summary of the source sequence. On the other side, given the
context vector, the decoder’s purpose is to construct the target sequence.

The purpose of attention, as introduced by Bahdanau et al. [1], is to assist
the decoder to focus on the most important parts of the input. It provides
information between the entire input sequence and the decoder output at each
time step. The idea is that at every time step of the decoder an alignment
vector is computed containing the score between the input’s sequence and the
decoder’s output at the corresponding moment. As a result, the context vector
is a combination of the alignment vector and the encoder’s output. The model
successfully focuses on the relevant parts of the input sequence.
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There are different types of attention, depending on how scores and align-
ments are computed. The most common ones are the Additive [1] and the Mul-
tiplicative/Dot [13]. In addition, Cheng et al. [4] proposed a different attention
mechanism called Self-Attention which is also referred as intra-attention. The
benefit is that different positions of the same inputs are related. Self-Attention
can adopt both Bahdanau’s and Luong’s scoring functions. The neural network
that is proposed in this research incorporates Additive and Dot attention mech-
anisms.

In general an Attention layer receives three kinds of vectors; query, key and
value. Depending on the query, attention computes an output based on the key
and value. The steps to calculate the output are described below and depicted
in Fig. 1.

Fig. 1. Inside Attention mechanism.

Firstly, a score function is used to measure the similarity between a query
(q) and a key (ki) and for each query-key pair, scores (ai) are computed.

ai = score(q, ki) (1)

Secondly, these scores are normalized to add to one, using a softmax.

bi =
exp(ai)∑
j exp(aj)

(2)

The last step is to combine the values (v) and the attention weights (b) as a
weighted sum.

output =
n∑

i=1

bivi (3)

The main difference between Additive and Dot attention mechanisms is the
scoring function. Dot mechanism scores between keys and queries are computed
by calculating the dot product, whereas Additive attention computes scores as
a non-linear sum. For the purpose of using an attention layer between the CNN
and GRU layers the idea of Self-Attention was used. In Self-Attention the aim
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is to learn the dependencies between all the parts of the same input sequence.
In this set up as query, key and value inputs the Attention layer receives the
output of the CNN layer.

4 Neural Network Architecture

The goal of this paper is to design a computationally light neural network.
Being inspired by Window GRU (WGRU) [12], a lightweight architecture has
been developed. The novel model is called Self-Attentive-Energy-Disaggregation
(SAED) and is up to 7.5 times faster in training and up to 6.5 times faster in
inference, while there is trivial trade-off in performance.

WGRU [12] consists of the following layers: a convolutional layer, two Bidi-
rectional GRU layers and one Dense layer before the output. The method of
Dropout [19] between layers is used to prevent overfitting. To predict the power
consumption of a device at a single time point, WGRU utilizes a sliding win-
dow of past aggregate data points as opposed to other similar recurrent neural
network architectures [7,20] that use a single point of the aggregate time series.
Therefore, the model receives more information about the target time series and
is more capable to recognize useful patterns. The sliding window method is also
used in the proposed architecture.

Fig. 2. Architecture of the Attention model.

In the proposed architecture, the first GRU is replaced by the Attention
Layer. SAED combines the benefits of three different types of layers. Firstly a
1D convolution layer extracts new features. 1D convolution layers can recognize
local patterns in a sequence at certain positions of the sequence, which can later
be recognized at different positions. As a consequence, 1D convnets are time
invariant. Next, the attention mechanism learns to focus on the most important
features. Following a recurrent neural network is capable of extracting sequential
patterns. Lastly, the dense layer acts as a regressor, giving the final result. The
architecture is shown in Fig. 2. It is important to point out that in the proposed
model the Attention layer functions as a Self-Attention mechanism receiving
as input only the output of the CNN layer. In this paper the model comes
with either Additive or Dot attention mechanism, mentioned as SAED-add and
SAED-dot correspondingly.
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5 Methodology of Experiments

For the experiments only real data was used with sampling period 6 seconds and
batch size 1024. The devices that were chosen are dish washer, fridge, kettle,
microwave and washing machine. The optimal size of the input vector is device-
dependent [12]. The sliding windows were 50 samples for all devices except for
washing machine in which case it was 100. All the models were trained for
5 epochs following the benchmark methodology described in [21], where the
experiments are divided in four categories; Single Building NILM, Single Build-
ing learning and generalization on same dataset, Multi building learning and
generalization on same dataset and Generalization to different dataset.

The first category is about experiments where training and testing are applied
on the same house at different time periods, in order to evaluate the model in
the same environment where training took place. If a model doesn’t perform
well in this category of experiments it is probably weak [21]. The second cat-
egory of experiments refers to training and inference on different buildings of
the same data set. The purpose of these experiments is to inspect the gener-
alization potential of the model on unseen buildings. Different buildings mean
that different appliances are used, the residents have different habits, resulting in
divergent energy patterns. Within the same data set though, similarities of the
energy footprint of each building are also expected. These similarities are mainly
attributed to properties of the electricity grid, common seasonality or weather
conditions and regionality. In the third category, training data is collected from
different houses of the same data set and inference is executed on an unseen
building. In the last category of experiments training data is also collected from
different houses but the model is tested on houses of a different data set.

The experiments where the training data is composed from different houses,
evaluate the sufficiency of the model in learning from multiple/different sources.
In addition, the challenge for the model is higher in the last category, because it
has to successfully learn from high variety data and infer on unseen data from
a different data set. These two categories (especially the last) are considered as
tough tasks and if a model excels in them then it is considered very strong [21].

All the models were trained and tested using the UK-DALE [6] data for the
first three categories, while as test data for the fourth category of experiments we
used the REDD [11] data set. These data sets are considered dissimilar, because
they are originated from different countries; UK-DALE contains measurements
of house-hold devices in UK and REDD measurements of house-hold devices in
USA. The experiments are summed up in Table 1. For Kettle the fourth category
of experiments was not executed due to the lack of kettle device in the REDD
data. For categories 1 and 2 the training on house 1 from UK-DALE is during
the first 9 months of 2013 while the inference contains the last 3 months of the
same year. For categories 3 and 4 the ratio of test versus training data depends
on each device. In addition, for some devices the REDD data contains very few
measurements which resulted in bad results even for the state of the art model.

In order to evaluate and compare the models with Attention versus the state
of the art WGRU model, three metrics are used; F1 score, Relative Error in
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Table 1. Buildings used for train and test. In Categories 1–3, UK-DALE was used for
training and testing. In Category 4, UK-DALE was used for training and REDD was
used for testing

Device Category1 Category2 Category3 Category4

Train Test Train Test Train Test Train Test

Dish Washer 1 1 1 2,5 1, 2 5 1, 2 1, 2, 3, 4, 6

Fridge 1 1 1 2, 4, 5 1, 2, 4 5 1, 2, 4 1, 2, 3, 5, 6

Kettle 1 1 1 2, 3, 4, 5 1, 2, 3, 4 5 – –

Microwave 1 1 1 2, 3, 5 1, 2 5 1, 2 1, 2, 3, 5

Washing M. 1 1 1 2, 4, 5 1, 5 2 1, 5 1, 2, 3, 4, 5, 6

Total Energy (RETE) and Mean Absolute Error (MAE). The purpose of the
F1 score is to evaluate the ability of model to detect on/off energy states. MAE
(measured in Watts) and RETE (dimensionless) are used in order to measure
how capable is the model in predicting the actual electrical power consumed
by the device. Considering as E’ the predicted total energy, E the true value
of total energy, T the length of the predicted sequence, yt’ the inferred power
consumption and yt the true value of power consumption at time point t, the
metrics are calculated as:

F1 = 2
Precision ∗ Recall

Precision + Recall
(4)

RETE =
|E′ − E|

max(E′, E)
(5)

MAE =
1
T

∑
|y′

t − yt| (6)

Precision =
TP

TP + FN
(7)

Recall =
TP

TP + FP
(8)

For the investigation of the generalization capabilities of the proposed architec-
ture on a deeper level, the necessity of more metrics arose. Klemenjak et al. [8]
proposed a novel set of metrics which consider the number of seen and unseen
buildings where the experiments were conducted. The basic idea behind this
concept is to calculate the generalization loss (G-loss) of a metric between a
seen and an unseen building. Depending on whether the metric under considera-
tion evaluates the event detection or the energy estimation ability of the model,
the G-loss is given from Eq. 9 or Eq. 10 accordingly. The u indicator stands for
unseen buildings, whereas the s for seen buildings. A G-loss of 10% on F1 score
denotes that the measured F1 score on the unseen building data is 10% lower
than on the seen building, where the training was executed. On the other hand,
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10% G-loss on MAE designates that the error measured on the unseen building
is 10% higher than the error measured on the seen building data.

G-loss = 100(1 − F1u
F1s

) (9)

G-loss = 100(
MAEu

MAEs
− 1) (10)

MGL =
1
N

N∑

i

G-lossi (11)

AUH =
1
N

N∑

i

F1ui (12)

EUH =
1
N

N∑

i

MAEui (13)

The overall performance loss is represented by the mean generalization loss
(MGL), the mean value of the G-loss of all the unseen buildings. In addition,
the generalization ability of a model can be measured with accuracy on unseen
houses (AUH) and the error on unseen houses (EUH). In Eq. 11–13 the N rep-
resents the number of the unseen houses and the i points to each house.

6 Results and Comparisons

The comparison of the models is threefold; firstly on performance, where the
performance of the models in different categories of experiments is compared.
Secondly, on the generalization capability, where the generalization loss of the
metrics on unseen data is computed. Lastly, on the scalability, where the train
and inference times of the models are measured for different sizes of data.

6.1 Performance Comparison

Due to the size of the results, the most important of them are presented in
Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20, where the
best are highlighted. Also, the average duration of a training epoch, measured
in seconds, is mentioned as time(s). The complete set of results alongside with
the supplementary code are provided in the following github repository: https://
github.com/Virtsionis/SelfAttentiveEnergyDisaggregator.

As shown in Table 2, in Category 1 of Dish Washer the SAED models perform
on par with WGRU in up to 7.1 times faster training time per epoch. In Category
2, SAED-dot is the clear winner with similar metric values as the SAED-add
model, but with almost half the training time per epoch. In Category 3 of the
same device, Table 4, the SAED models show better performance. Specifically
the SAED-add performs better in respect of F1 and RETE, whereas in terms of

https://github.com/Virtsionis/SelfAttentiveEnergyDisaggregator
https://github.com/Virtsionis/SelfAttentiveEnergyDisaggregator
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Table 2. Dish Washer, Category 1,
Train and Test house 1 UK-DALE

Model F1 RETE MAE Time(s)

WGRU 0.33 0.17 13.22 550

SAED-dot 0.28 0.31 13.03 77

SAED-add 0.25 0.17 12.03 141

Table 3. Dish Washer, Category 2,
Train house 1, Test house 2 UK-DALE

Model F1 RETE MAE Time(s)

WGRU 0.26 0.77 37.47 550

SAED-dot 0.63 0.62 33.48 77

SAED-add 0.6 0.63 34.31 141

Table 4. Dish Washer, Category 3,
Train on houses 1, 2 and Test on house
5 of UK-DALE.

Model F1 RETE MAE Time(s)

WGRU 0.23 0.42 43.33 575

SAED-dot 0.25 0.46 43.3 74

SAED-add 0.52 0.37 44.48 138

Table 5. Dish Washer, Category 4,
Train on houses 1, 2 UK-DALE, Test
on house 1 REDD.

Model F1 RETE MAE Time(s)

WGRU 0.39 0.6 34.35 575

SAED-dot 0.41 0.19 27 74

SAED-add 0.18 0.13 36.16 138

MAE all the models perform the same. As presented in Table 5, in Category 4 the
SAED-dot achieves better F1 score and MAE, while SAED-add has lower METE.
The general conclusion is that SAED shows promising results on Dish Washer
in comparison to the WGRU, with faster training and better performance in
Categories 2–4.

In similar manner, Tables 6, 7, 8 and 9 present the results on the Washing
Machine for Categories 1–4 accordingly. In Category 1, SAED-dot is 7.5 times
faster than WGRU trading of maximum 10% performance regarding the metrics
F1 and MAE. As presented in Table 7, in Category 2 SAED-dot performs on
par with WGRU but with 7.5 times faster training time per epoch. Results for
Category 3 are shown in Table 8, where the SAED-add has best F1 score and
RETE. In terms of METE in this category of experiments, the SAED models
are better than the WGRU. Results of the fourth category of experiments can
be found in Table 9. In this category, the SAED models are trained 7.2 times
faster and with lower RETE and METE values than the WGRU.

It is notable that disaggregating Dish Washer and Washing Machine, the
SAED models have comparable or better performance with the WGRU while
training time per epoch was up to 7.5 times faster.

Results for the Fridge are summed in Tables 10, 11, 12 and 13. As presented
in Table 10, in Category 1 WGRU achieves greater F1 score, while SAED-add
shows promising results with the smallest RETE and MAE, reaching up to 4
times faster training times. In Category 2, WGRU is a clear winner, whereas in
Categories 3 and 4 the SAED models perform the same as the WGRU showing
good generalization capabilities.

In Categories 1 and 2 of the Kettle, shown in Tables 14 and 15, the three
models have comparable RETE and MAE values, but the WGRU achieves the
best F1 score in 7.7 slower training time. In the third category of experiments
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Table 6. Washing M., Category 1,
Train and Test on house 1 of UK-
DALE.

Model F1 RETE MAE Time(s)

WGRU 0.54 0.12 16.55 1097

SAED-dot 0.51 0.26 18.51 147

SAED-add 0.45 0.29 28.55 416

Table 7. Washing M., Category 2,
Train on house 1 and Test on house 2
of UK-DALE.

Model F1 RETE MAE Time(s)

WGRU 0.34 0.43 10.45 1097

SAED-dot 0.3 0.34 13.1 147

SAED-add 0.3 0.53 22.01 416

Table 8. Washing M., Category 3,
Train on houses 1, 5 and Test on house
2 of UK-DALE.

Model F1 RETE MAE Time(s)

WGRU 0.12 0.36 22.74 1097

SAED-dot 0.19 0.36 14.66 147

SAED-add 0.2 0.21 15.18 416

Table 9. Washing M., Category 4,
Train on houses 1, 5 UK-DALE, Test
on house 1 REDD.

Model F1 RETE MAE Time(s)

WGRU 0.26 0.66 43.65 585

SAED-dot 0.18 0.39 50.65 81

SAED-add 0.18 0.7 41.93 81

Table 10. Fridge., Category 1, Train
and Test on house 1 of UK-DALE.

Model F1 RETE MAE Time(s)

WGRU 0.63 0.27 33.29 562

SAED-dot 0.27 0.23 12.11 73

SAED-add 0.27 0.13 10.94 145

Table 11. Fridge, Category 2, Train
house 1, Test house 2 UK-DALE.

Model F1 RETE MAE Time(s)

WGRU 0.82 0.13 28.46 562

SAED-dot 0.62 0.6 35.25 73

SAED-add 0.66 0.65 32.31 145

Table 12. Fridge, Category 3, Train
houses 1,2,4, Test house 5 UK-DALE.

Model F1 RETE MAE Time(s)

WGRU 0.52 0.18 51.18 519

SAED-dot 0.52 0.29 51.35 69

SAED-add 0.52 0.22 50.52 70

Table 13. Fridge, Category 4, Train
houses 1, 2, 4 UK,Test house 1 REDD

Model F1 RETE MAE Time(s)

WGRU 0.53 0.32 52.57 519

SAED-dot 0.49 0.29 50.89 69

SAED-add 0.5 0.33 51.39 70

presented in Table 16, the WGRU is the winner in terms of F1 and RETE,
whereas in MAE all the models perform the same. The above results reveal that,
comparing to the WGRU, the SAED models show difficulties in disaggregating
devices with simple behavior, such as the Fridge and the Kettle. The Kettle is
a two-state device, while the Fridge has a finite number of states and repetitive
time series. Especially, in Categories 1–2 of the Fridge and the Kettle the SAED
has low values on F1 score, but it achieves good results in Categories 3–4 of
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Table 14. Kettle, Category 1, Train
and Test house 1 UK-DALE

Model F1 RETE MAE Time(s)

WGRU 0.65 0.09 7.35 563

SAED-dot 0.44 0.14 8.57 73

SAED-add 0.34 0.26 9.46 143

Table 15. Kettle, Category 2, Train
house 1, Test house 2 UK-DALE

Model F1 RETE MAE Time(s)

WGRU 0.9 0.31 14.04 563

SAED-dot 0.62 0.3 19.03 73

SAED-add 0.49 0.28 17.35 143

the Fridge. The low values of F1 score indicate the difficulty of the models to
identify the On/Off states of the test devices.

Table 16. Kettle, Category 3, Train houses 1, 2, 3, 4, Test house 5 UK-DALE

Model F1 RETE MAE Time(s)

WGRU 0.41 0.05 9.92 1096

SAED-dot 0.27 0.27 12.24 141

SAED-add 0.31 0.18 10.95 271

The results of the experiments on the Microwave are displayed in Tables 17,
18, 19 and 20. As presented in Tables 17 and 18, in Categories 1–2 the WGRU
performs better than the SAED models in terms of F1. In the same categories,
the SAED performs on par with the WGRU regarding the RETE and MAE
metrics. In the third category of experiments SAED models outperform the
WGRU, where in Category 4 the WGRU achieves 17% better F1 score in 10 times
slower training time. Considering that the Microwave is a multi-state device
with variable power consumption and on-state duration, the SAED models show
descent performance comparing with the WGRU.

Overall, the SAED models achieve good performance in disaggregating multi-
state devices instead of simpler devices. Furthermore, the SAED performs good
in experiments of Categories 3–4, a fact that reveals the great generalization
capability of the proposed models.

Table 17. Microwave, Category 1,
Train and Test house 1 UK-DALE

Model F1 RETE MAE Time(s)

WGRU 0.32 0.09 6.29 560

SAED-dot 0.16 0.14 7.51 74

SAED-add 0.18 0.16 7.61 144

Table 18. Microwave, Category 2,
Train house 1, Test house 2 UK-DALE

Model F1 RETE MAE Time(s)

WGRU 0.44 0.25 4.36 560

SAED-dot 0.25 0.19 5.97 74

SAED-add 0.26 0.17 5.98 144
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Table 19. Microwave, Cat.3, Train
houses 1, 2, Test house 5 UK

Model F1 RETE MAE Time(s)

WGRU 0.08 0.59 60.53 440

SAED-dot 0.21 0.58 56.93 41

SAED-add 0.22 0.51 59.36 41

Table 20. Microwave, Cat.4, Train
houses 1, 2 UK, Test house 1 REDD

Model F1 RETE MAE Time(s)

WGRU 0.41 0.19 23.53 440

SAED-dot 0.34 0.2 25.67 41

SAED-add 0.34 0.15 25.13 41

6.2 Generalization Evaluation

To explore on a deeper level the generalization ability of the SAED, in compari-
son to the WGRU, a computation of more metrics took place. Table 21 presents
the values of AUH, EUH alongside with the corresponding MGL calculations.
These metrics are calculated using the F1 scores and MAE measured in the
Category 1 of experiments. Because of the size of experiments only some of the
measurements are used. To compare the models the interest concentrates on
MGL values, where lower means better.

In terms of MGL and Classification Accuracy, the SAED models achieve
lower values than the WGRU on all the test devices. Thus, SAED shows great
generalization ability when detecting on/off events. Also, the negative values of
MGL indicate that the SAED models perform better on the unseen houses than
on the seen house. Regarding the MGL and Estimation Accuracy, mixed results
are observed with the SAED showing finer values than the WGRU on Dish
Washer, Washing Machine and Kettle. As a result, on these test devices, SAED
generalizes better than the WGRU in terms of power estimation levels. The
above results strongly highlight the generalization power of the SAED approach
in the task of NILM.

6.3 Scalability Comparison

An important and frequently neglected parameter when comparing models is
the inference time. In a large scale application a deployed disaggregation model
will be fed with batches of data from many houses. The cost of this application
is critical and depends heavily on the scalability of inference time of the model.
Since we don’t have access to data from many houses, the scalability is simulated
by increasing the time period of disaggregation from one day to 3 months. Next,
the three models under investigation are compared by measuring the inference
time for the various sizes of test data. The results are summarized in Fig. 3, where
1 day of data is equal to 14351 samples. Given 1 day of test data, inference time
of WGRU was 5.77 s, while SAED-add and SAED-dot achieve 1.56 s and 2.27 s
respectively. As a consequence, SAED-add model is 3.7 times faster than the
WGRU and almost 1.5 times faster than the SAED-dot. For 1 week of test
data, SAED models are more than 5.2 times faster than the WGRU completing
inference in almost 6.8 s instead of 35.6 s. Given 1 month of test data, the SAED-
dot is 5.7 times faster than WGRU with similar test time as the SAED-add.
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Table 21. Classification and Estimation Accuracy of the SAED in comparison to the
WGRU.

Device Seen Unseen Model Classification accuracy Estimation accuracy

F1s AUH MGL[%] MAEs EUH[W] MGL[%]

Dish Washer 1 2,5 WGRU 0.33 0.26 19.3 13.22 31.29 136.7

SAED-dot 0.28 0.48 −72.5 13.03 30.42 133.6

SAED-add 0.25 0.45 −82 12.03 31.72 163.6

Washing M. 1 2,5 WGRU 0.54 0.29 46.9 16.55 25.02 51.2

SAED-dot 0.51 0.27 48.1 18.51 23.56 27.3

SAED-add 0.45 0.26 43.4 28.55 35.1 22.9

Fridge 1 2,5 WGRU 0.63 0.69 −9.8 33.3 34.08 2.3

SAED-dot 0.27 0.59 −119 12.11 37.05 205.9

SAED-add 0.27 0.62 −129 10.93 35.17 221.7

Kettle 1 2,5 WGRU 0.66 0.59 9.9 7.35 24.44 232.5

SAED-dot 0.44 0.45 −2 8.57 23.49 174.1

SAED-add 0.33 0.37 −10.4 9.46 21.05 122.5

Microwave 1 2,5 WGRU 0.32 0.33 −1.7 6.29 12.79 103.5

SAED-dot 0.16 0.26 −68.6 7.5 18.07 140.9

SAED-add 0.18 0.28 −53.9 7.61 17.59 131.2

Finally, with test data size of 3 months, the SAED-dot is almost 6.5 times faster
than the WGRU and 1.2 times faster than the SAED-add. In this case WGRU
inference time was 468.87 s versus 72.56 s of SAED-dot and 87.89 s of SAED-add.

Fig. 3. Inference time versus inference time period for kettle.

7 Conclusions and Proposals for Future Work

In general, the proposed lightweight SAED models showed good performance
and in some cases better results in comparison to one of the best and more
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lightweight models, named WGRU. Interestingly, the SAED seems to perform
better on multi-state devices than on two-state devices or devices with simple
time signatures. In order to extract more insight on this matter, experiments on
different devices should be executed. Furthermore, achieving good performance
on the Categories 3 and 4 of experiments, points out the generalization power of
the novel architecture. In terms of speed, the SAED models was up to 7.5 and
6.5 faster than the WGRU in training and inference accordingly, resulting that
the SAED is more eligible for deployment on embedded systems. Between the
SAED-dot and SAED-add, there is not a clear winner, although the SAED-dot
has faster training. Additionally, training and testing on different devices and
data sets should be executed in order to evaluate and compare these mechanisms
in detail.

To summarize, the use of Attention mechanism granted great generalization
ability to a simple and light model, making it possible to achieve good perfor-
mance in short amount of training and inference times. Therefore, Attention may
be used in other architectures in order to improve them in the task of NILM.
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Abstract. Several application domains/sectors such as logistics, health-
care, industry and transportation, are exploiting the added value of
deployed sensors to obtain information relevant to the domain and exploit
it in different contexts (e.g. for processes optimization, for actions adap-
tation, for decision support, etc.). The same applies to the agriculture
sector, through the deployment of smart devices and sensors that pro-
vide a wealth of datasets for irrigation tuning, crops assessment, food sup-
ply chain operations monitoring, etc. Furthermore, emerging machine and
deep learning data analytics techniques are utilized as a means to obtain
insights and optimize the aforementioned processes. In this context, one
significant challenge refers to the enhancement of the food safety across
the food supply chain given that goods and products can become unsafe
for plenty of reasons, such as mislabeling allergens, contamination etc.
To address this challenge, in this paper we introduce a set of deep and
machine learning techniques employing time series forecasting to provide
insights regarding the risk associated with each product category concern-
ing potential food recalls. Additionally, we propose an approach based on
reinforcement learning which utilizes historical recall announcements for
predicting future recalls (by their type) that leads to timely recalls and
contributes to enhanced food safety across the supply chain. We also eval-
uate and demonstrate the effectiveness and added-value of the proposed
approaches through a real-world scenario that yields promising results.

Keywords: Deep learning · Time series forecasting · Reinforcement
learning · Surrogate data · Food safety

1 Introduction

Food safety has attracted considerable public concern and press attention in
recent years. Food safety and certification throughout all the supply chain pose
very strict requirements, so that global associations such as the FDA (“Food and
drug administration”) or the WHO (“World Health Organization”) are contin-
uously in activity to develop and promote more selective methods of monitoring
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and control (FAO/WHO, 2007). Furthermore, many products found in the food-
marketplace may be harmful not only for individuals but also for the general
economy and health system [5,11].

Given the advances in data analytics, it is of high interest to be able to
predict emerging trends in regards with products that have a high probability
of been recalled. For example, the most recalled products in the USA are bakery
products [5,8]. Utility across different domains, denotes that the extraction of
useful knowledge via temporal data [7] is an active research area that could also
be exploited in the food domain, with an emphasis on time series analysis, which
is motivated by the challenge of reducing future uncertainty. The methods for
time series prediction rely on historical data since they include intrinsic patterns
that convey useful information for the future description of the phenomenon
under investigation.

In this context, the paper proposes:

(a) Deep learning techniques to provide information regarding the risk associ-
ated with food products and their potential recalls.

(b) The usage of synthetically produced surrogate data as a way of enriching
the original dataset to improve performance of deep learning models.

The techniques mainly focus on time series forecasting and reinforcement learning
in order to predict the number of food incidents based on specific industry scenar-
ios. The data are real-world data that have been provided by Agroknow [1].

The remaining of the paper is structured as follows. Section 2 presents related
work in the area of study of this paper, while Sect. 3 delivers an overview of
the proposed approach, introduces the overall architecture and details regarding
the collection of the data streams and how these are utilized within the mod-
els. Section 4 presents experiments that have been conducted to demonstrate
and evaluate the operation of the implemented algorithms. The performance of
the proposed mechanisms is depicted in the results and the evaluation section.
Finally, Sect. 5 concludes with a discussion on future research and potentials for
the current study.

2 Related Work

Regarding the food industry one promising research took place at Boston Uni-
versity School of Medicine, where a BERT-based AI algorithm that can detect
unsafe food based on Amazon customer reviews was developed. The BERT-
based AI program identified thousands of recalled products with an accuracy
rate of 74% [5]. Also, in [22] drug recalls ordered by FDA were predicted using
attributes that quantify the change in query volume at state level. Their results
show that future drug recalls can indeed be identified with an AUC of 0.791
and a lift of 5% or approximately 6% when predicting a recall occurring one
day ahead. This performance degrades as prediction is made for longer periods
ahead, proposing that aggregated Internet search engine data can be used in
early warning of medicine’s faulty batches.
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To the best of the authors knowledge, there is no existing prediction based
on pure historical time series data in the pertinent bibliography considering
food recalls in time domain representation. On the other hand, there are plenty
of applications in other sectors of industry where ML models are leveraged to
forecast future events. Nevertheless, as mentioned in [13], where an inspection
of the 117 papers discovered by the systematic review of which Fig. 1 illustrates
some interesting statistical results.

Fig. 1. (a) shows the percentage of use of each prediction approach in 68 papers.
(b) portrays the frequency in which the most popular methods appeared in the 117
publications. (c) graphically summarizes the algorithms most used as baselines in 29
empirical studies involving both statistical and machine learning methods

Subsequently, a comparison between some of the prevalent algorithms showed
that SARIMA is the only statistical method able to outperform, but without a
statistical difference, the following machine learning algorithms: ANN, SVM,
and kNN-TSPI. However, such forecasting accuracy comes at the expense of a
larger number of parameters [13]. Taking into account this research we didn’t
use the SARIMA method. Instead, we used the GluonTS framework [2] as a
deep learning library that bundles components, models and tools for time series
applications such as forecasting. Moreover, it should be noted that for time series
forecasting, the task of using observed time series in the past to predict values
in a look-ahead horizon gets proportionally harder as this horizon widens [10].

Currently, multi-step ahead prediction consists of predicting the next values
of the time series. This task is achieved by two different ways. The first one, called
independent value prediction, consists of training a direct model to predict the
exact steps ahead value. The second strategy, called iterative method, consists
of repeating one-step ahead predictions to the desired horizon. The iterative
prediction only uses one model to forecast all the horizons needed; the objective
is to analyze a short sequence of data and try to predict the rest of the data
sequence until a predefined time step is reached. The main drawback of this
approach is the accumulative nature of the error.

Beyond the time series domain, a research domain of interest for the given
analysis refers to Reinforcement Learning (RL) [20], which refers to algorithms
that are “goal-oriented.” They can learn how to attain a complex objective, i.e.
a goal by maximizing along a specific dimension over a number of iterations.
These algorithms are penalized when they make wrong decisions and rewarded
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when they make the correct ones, this is how they reflect the concept of rein-
forcement. The power of RL models has been demonstrated in various field, for
example in games against world champions and human experts [18]. The field in
which RL-based models on time series data are thriving is Finance and Trading.
In [3] the authors explore deep reinforcement learning algorithms to automati-
cally generate consistently profitable, robust, uncorrelated trading signals in any
general financial market implementing a novel Markov decision process model
to capture the financial trading markets.

Presently, RL literature in time series forecasting can be broken down to
three main categories: critic-only, actor-only, actor-critic [23].

In the critic-only approach the agent tries to learn a state-action value func-
tion Q or an approximation of Q in order to create a mapping S,A → v repre-
senting the appropriateness of a particular action given the state, where S and A
are the state and action spaces accordingly. While there are many implementa-
tions falling into this category the most prominent is the deep Q-learning (DQN)
with many improvements such as fixed Q-targets, double DQN’s, dueling DQN
(DDQN) and prioritized experience replay (PER) [9]. For this approach to work
it is necessary to either have a discrete action space or discretise a continuous
one with methods such as tile-coding [19], coarse coding, function approximation
etc.

Regarding the actor-only approach the agent’s goal is to optimize the objec-
tive function, creating an approximation of an optimal policy, without taking
into consideration the value of each action in a state. This allows actor-only
methods to be generalized to continuous action spaces. In most of actor-only
literature the distribution of a policy is studied using Monte Carlo methods or
Policy Gradient Theorem where the model is updated during each episode, while
the are some methods (gradient-ascent) used in recent work [9,23] to optimize
the objective function. All these methods require lots of samples to correctly
approximate the optimal policy as some bad actions can be mistreated as good
ones due to the overall reward being positive.

The actor-critic approach comes as an improvement to actor-only approach
as it tries to solve its learning problem. Here the policy is updated in real time
by alternating between an actor model, controlling the actions of the agent given
the specific state, and a critic model assessing these actions.

The main difference of the proposed work compared to the aforementioned
ones, is that we introduce an innovative actor-only approach to map the problem
as a time series case. More specifically, the approach includes the description of
a suitable preprocessing technique for the acquired dataset, and the realization
of a RL agent that can estimate the four month ahead time-based prediction
of 30 categories. The main contribution of this paper is a framework leveraging
a custom environment for food recalls, and a customized and optimized reward
function, for food recalls forecasting.
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3 Proposed Approach

3.1 Context Formulation

In order to incorporate RL in the prediction of recalls in the food domain, the
latter needs to be defined and framed as a RL problem. To this, we define a
custom environment to express the ‘context’ which our agent can interact with,
a custom set of actions (A), which is specific to the time series at hand and a
reward Ra(s, s′) function (1). The environment consists of a set of states (S)
where each state is set to be an array of the last twelve data points of the time
series. A shallow Neural Network was employed as the mechanism to select the
appropriate action for the agent. The agent presented in this paper, is trained to
predict the next value in a products’ time series in terms of percentage change.
To facilitate this, the actions available are a discrete set of numbers (20), drawn
from statistical features of each time series (distribution, mean, median, min
and max) which the agent can predict. A uniform experience replay mechanism
is also employed to help the agent remember its past experiences and their
corresponding rewards due to the nature of time series forecasting problems.
The design of the reward function depends on the actions we want the agent to
favor. In this work, the reward Rt at time t is:

Rt = 1/log(MSE(Yt, Ŷt)) + k (1)

where Yt is the actual number of recalls for the given time step, Ŷt is the
predicted one and k is a small positive integer.

3.2 Dataset

The utilized dataset comprises of 30 time series, representing the daily number
of food recalls of 30 categories since 2000. Figure 2 depicts some indicative cat-
egories of interest such as “cereal and baked products”, “crustaceans”, “fish”,
“fruits and vegetables”, “herbs and spices”, “meat”, “nuts and seeds” and “poul-
try”. Figure 3 shows the seasonality component of the examined time series, high-
lighting that the majority of food recalls occurs on Fridays (considering days of
week as time frame).

Additionally, it is observed that during the summer months we have less
food recalls than in other months. Furthermore, the aforementioned streams of
data are represented and handled as time series data. Thus, the stationarity of
the data needs to be checked by using augmented Dickey-Fuller testing [4] to
prove whether they are stationary. This action is of major importance for any
predictive method that exploits historical data since these methods are usually
based on the assumption that the data generation mechanism does not change
over time.

To effectively predict future behavior of a time series the need arises to firstly
reject the “white-noise” null hypothesis and then, if nonlinear methods such as
machine learning, deep learning and reinforcement learning are to be used, reject
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Fig. 2. Food recalls of specific categories in time domain representation

Fig. 3. Average product recalls aggregated by month and day of the week

the null hypothesis regarding the existence of solely temporal linear correlations
in the time series.

A statistically sound framework for the aforesaid test is that of surrogate
data. It refers to time series data that reproduce various statistical properties
like the autocorrelation structure of a measured data set. The null hypothesis
is represented by the surrogate data which are compared with the original data
under a nonlinear discriminating statistic to reject or approve the null hypothesis.
In this work the usage of surrogate data was twofold; Test the nonlinearity
hypothesis and enrich existing dataset with the newly generated data. The latter
is proposed due to the nature of most deep learning models which can benefit
from the increase both in diversity and volume of training data. It is expected
that the usage of analogous data will help the generalization of some if not all
deep learning models in the case of time series forecasting.

Even though there are multiple methods to generate such data the IAFFT
method [6] was chosen as described in the next subsection. The original dataset
size after preprocessing is 30 * 147 and produced surrogate data matches its size,
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providing a combined dataset with of 30 * 294 data points. During our analysis,
we refer to the corresponding data based on their ID number as cited in Table 1.

Table 1. Categories of time series dataset

0 Food Additives and Flavorings 15 Other food products

1 Fruits and Vegetables 16 Food contact materials

2 Poultry meat and products 17 Non-alcoholic beverages

3 Prepared dishes and snacks 18 Fats and Oils

4 Dietetic foods, Food supplements, fortified foods 19 Sugars and Syrups

5 Feed materials 20 Nuts, Seeds and products

6 Honey and Royal Jelly 21 Cereals and Bakery products

7 Bivalve mollusks and products 22 Crustaceans and products

8 Meat and products 23 Eggs and products

9 Feed additives 24 Alcoholic beverages

10 Milk and Milk products 25 Cocoa, Coffee and Tea

11 Herbs and Spices 26 Gastropods

12 Confectionery 27 Cephalopods and products

13 Soups, Broths, Sauces and Condiments 28 Pet Feed

14 Fish and products 29 Ices and Desserts

3.3 Surrogate Data

The most commonly used techniques for generating surrogate data for statistical
analysis of nonlinear processes include random shuffling of the original time
series, Fourier-transformed surrogates, amplitude adjusted Fourier-transformed
(AAFT surrogates), and iterated AAFT surrogates (IAAFT) [6]. In our work
we incorporated the IAAFT method to addresses the issue of power spectrum
whitening, as the main drawback of AAFT method, by performing a series of
iterations in which the power spectrum of an AAFT surrogate is adjusted back
to that of the original data before the distribution is rescaled back to that of the
original data.

Through this proposed approach, with each iteration the change to the distri-
bution that occurs when the Fourier amplitudes are adjusted will be smaller than
in the previous iteration, and thus the alteration of the power spectrum when
the rescaling is performed will also be smaller than in the previous iteration.
In fact, Schreiber [17] showed that, for a nonlinearly transformed autoregression
process, the iteration procedure will converge towards the power spectrum of the
original data until a saturation point is reached, where the Fourier amplitude
adjustment is so small that the rescaling puts the data into the exact order it
had before the amplitude adjustment [16].

3.4 Preprocessing

Based on the real industry requirements, we have identified the main param-
eters that need to be predicted. These refer to the number of recalls and the
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rate of change for every product category. It should be noted that in terms of
predictions, the timeframes of the recalls may be 4 months, 6 months, or 12
months. Since the predictions will assist the quality assurance and food safety
professionals to ensure the continuity of their supply chain, minimize future risks
and financial losses, we chose a 4-month prediction window. Based on the latter,
three options stand out:

i) Use the dataset as is, with its daily frequency resulting in a 120-time step
window of prediction. This is not recommended as most of the time series
produced are sparse leaving no obvious pattern to be learnt from.

ii) Resample the data in weeks resulting in a 16-time step window of prediction.
While some patterns begin to emerge, the data in some cases are still very
sparse and the cumulative error from the 16-step prediction is theoretically
relatively big.

iii) Resample the data in months providing stationary time series with visible
patterns and a lower theoretical accumulated error of prediction, since the
window has been reduced to 4-time steps.

After performing evaluations on the above three scenarios, we confirmed our
initial hypothesis regarding the proposed resampling, thus the third case. The
forecasting task was addressed as a univariate and multivariate problem utilizing
all the given time series assuming that complex non-linear feature interactions
are present in our data as different categories of food recalls are concerned. Con-
sequently, taking also into consideration that 23 out of 30 in total time series
were stationary according to the Augmented Dickey–Fuller test that was con-
ducted in the first place, we used the percent- age change of the given time series
as the greatly different statistical features between products’ time series (min,
max, variance etc.) would have a negative effect on some model’s performance
while favor some others. This enables the model to generalize better (arith-
metic rate) while it also transforms non-stationary time series to stationary.
Although normalization is a common preprocessing step, we chose not to apply
it since we wanted both, our prediction and data, to be readable and under-
standable. Specifically, regarding the given data, to apply percentage change
((Xnew − Xold))/Xold, we had to deal with zero values. In most of the equiva-
lent tasks handling those cases requires domain expertise as there is no “right”
methodology. We added one recall across all time- series, which is insignificant
and does not convey real change, to avoid having a zero in the percentage change
denominator. Furthermore, the possibility of applying the logarithmic transfor-
mation of the percentage change was examined, as it both rescales and normalizes
the data.

3.5 Data Driven Models

Several models have been utilized through the GluonTS framework. These mod-
els are briefly introduced below:
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– A DeepAR Estimator, which implements an (Recurrent Neural Network)
RNN-based model, close to the one described in [15]. More specifically it
applies a methodology for producing accurate probabilistic forecasts, based
on training an autoregressive recurrent neural network model on many related
time series. Recurrent Neural Network is a feed-forward neural network that
has an internal memory. For making a decision regarding every output of
every layer, it considers the current input and the output that it has learned
from the previous input.

– A Simple Feed Forward Estimator which implements a simple Multi-layer
Perceptrons (MLP) model predicting the next target time steps given the pre-
vious ones. MLP is a supervised learning algorithm that learns a function by
training on a dataset, where n is the number of dimensions for input and o is
the number of dimensions for output. Given a set of features X = x1, x2, ..., xn
and a target y, it can learn a non-linear function of approximation for either
classification or regression. Implemented as described and depicted in [14].

– One Deep Factor Estimator, an implementation of the 2019 ICML paper
[21]. It uses a global RNN model to learn patterns across multiple related
time series and an arbitrary local model to model the time series on a per
time series basis. In the current implementation, the local model is an RNN.

– Seasonal Naive Estimator, based on data seasonality. This model pre-
dicts Y (T + k) = y(T + k − h) where T is the forecast time,
kε[0, predictionlength − 1] and h = season length. If a time series is shorter
than season length, then the mean observed value is used as prediction.

– A WaveNet Estimator based on WaveNet architecture [12] were used.
WaveNet, is a deep neural network created for generating raw audio wave-
form. The model is fully probabilistic and auto-regressive, with the predictive
distribution for each audio sample conditioned on all previous ones, yielding
state of the art results in tasks such as text-to speech conversions, source
disaggregation etc.

Besides implementing the aforementioned models, a reinforcement learning
approach was developed, including both a custom environment and agent and is
shortly presented below.

An RL agent interacts with its environment in discrete time steps. At each
time t, the agent receives an observation Ot, which typically includes the reward
Rt. It then chooses an action from the set of available actions At, which is sub-
sequently sent to the environment. The environment moves to a new state and
the reward associated with the transition (St, At, St+1) is determined. As men-
tioned above with Q-learning the agents seeks to learn a policy that maximizes
the total reward for the selected set of actions in given environment. In practice,
a Q-table is a [state, action] table where the values of each action are stored. In
this paper a DQN architecture with experience replay was implemented as seen
below:
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Algorithm 1: Deep Q-learning with experience replay
1 Initialize replay memory D to capacity N
2 Initialize action function Q with random weights θ

3 Initialize target action function Q̂ with weights θ̄
4 for episode = 1,M do
5 Initialize the environment and get the state s1
6 for t = 1, T do
7 with probability ε select a random action αt

8 otherwise select αt = argmaxaQ(st, α; θ)
9 execute action αt in the environment and observe the reward rt and

next state st+1

10 store transition (st, αt, rt, st+1) in D
11 use a random batch of transitions from D
12 if episode terminates at step j + 1 then
13 set yj = rj

14 end
15 else
16 set yj = rj + γmaxαQ(sj+1, α; θ̄)
17 end
18 perform gradient descent on (yj − Q(sj , αj ; θ))

2 with respect to
parameters θ

19 every C steps reset Q̂ = Q

20 end

21 end

Where γ is the discount factor, used to balance importance of future and
immediate reward, α (learning rate) defines the rate in which the newly calcu-
lated value of Q affects the old one. While this works for problems with small
action and state spaces, some have a prohibitive size of St, At. In these prob-
lems a Neural Network is used to approximate and compress the Q-table, where
updating the weights w corresponds to updating the Q-values. One improvement
of Deep Q-learning algorithm is using an additional NN with the same architec-
ture but with fixed weights ŵ which are updated every n iterations to break the
correlation between updated values w and Δw.

4 Evaluation Results

In the scope of evaluation, the total training data consists of a table N of dimen-
sions (30, 147), where “30” corresponds to the time series of products and “147”
to the time steps of each, corresponding to the last 147 months. In order to
obtain more reliable results, we trained every model 47 times on a rolling win-
dow of 100 time steps forming 47 tables with dimension size (30, 100) (ex.
[30, 1–100], [30, 2–101] etc.). While all models share some hyper-parameters
such as epoch size (200), the prediction and context length of four (4) and
eight (12) months accordingly, some others are specific only to some models.
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Fig. 4. Proposed one step forward validation scheme

These specific parameters were fine-tuned using grid-search techniques and intu-
ition, as a fundamental step of ML pipeline.

In common ML usage, cross-validation methods, such as the k-fold cross
validation provide an elegant way to evaluate the results. It should be mentioned
that this method requires shuffle and randomly spilt the data in k different folds.
A typical extension of k-fold cross validation is the leave one out validation, which
creates an even more extreme peeking into the future considering the shuffle and
random split. These issues reflect a pitfall in a time series forecasting framework,
as they result in a significant overlap between train and test data. Thus, the
better approach is to simulate models in a “walk-forward” sequence, periodically
re-training the model to incorporate specific chunk of data available at that point
in time. This procedure is depicted in Fig. 4. Regarding the validations scheme
followed in the case of the RL model, the Algorithm 2 has been applied.

Algorithm 2: Deep Q-learning with experience replay
1 for validationfold = 1, V alidationfolds do
2 Initialize the custom time series environment and get the state s

regarding validationfold
3 Load the pre-trained DQN agent as agent regarding validationfold
4 initialize list predictionsgets[]
5 for step in lengthofstepsahead do
6 prediction = agent.predict(s)
7 state = state[1 :].append(prediction)
8 predictions.append(prediction)
9 end

10 evaluate(ytrue, predictions)
11 end

Based on the evaluation, we observed the following results in terms of the
Mean Squared Error (MSE) with the usage of the original data, the data after
applying the preprocessing mentioned in the corresponding section and with the
enriched dataset using surrogate data in Table 2. Furthermore the relevant plots
are depicted in Fig. 5, showing the estimators on specific time series.

Table 2 is divided into three parts where the comparison of the models in
different cases is shown. The first case uses univariate data (predictions are
based solely on one time series at a time) while the second uses multivariate



Enhanced Food Safety Through Deep Learning for Food Recalls Prediction 577

Table 2. Model comparison on Uni/Multivariate analysis & RL approach

Univariate Multivariate
Deep
AR

Simple
FF

Seasonal WaveNet
Deep
AR

Simple
FF

Deep
Factor

Seasonal WaveNet
RL

0
0.922

+ 0.818
1.895
- 0.045

3.268
- 0.001

2.175
- 0.531 0.154 0.198 1.777 0.244 0.187 1.752

1
0.196
- 0.123

0.442
- 0.374

0.787
- 0.681

0.697
- 0.627 1.919 1.851 3.266 3.267 1.736 0.104

2
0.037

+ 0.181
0.081

+ 0.136
0.144

+ 0.319
0.131

+ 0.122 5.04 6.678 7.181 23.423 5.681 0.171

3
0.453

+ 0.902
1.307

+ 0.273
2.765

+ 0.021
1.178

+ 0.236 0.817 0.959 2.406 1.567 0.862 0.238

4
0.367
+3.644

0.969
+ 2.939

1.688
+ 6.353

1.432
+ 2.269 1.55 1.755 2.806 2.287 1.534 1.256

5
0.076

+ 0.991
0.207

+ 0.966
0.244

+ 0.958
0.234

+ 0.849 0.233 0.213 1.805 0.394 0.270 1.011

6
6.021
- 4.700

8.377
- 7.013

8.39
- 5.961

8.093
- 6.912 1.514 1.582 3.155 2.786 1.636 0.309

7
0.539

+ 0.480
1.841
- 0.746

3.046
- 0.825

1.511
- 0.556 0.951 1.196 2.748 1.202 1.195 0.282

8
0.228

+ 5.020
0.782

+ 4.695
1.374

+ 4.867
1.235

+ 4.018 0.318 0.380 1.943 0.557 0.314 2.52

9
0.284
+0.660

0.93
+0.031

1.811
- 0.244

0.892
- 0.116 4.530 6.278 7.375 8.786 5.777 0.055

10
0.138

+ 0.420
0.376

+ 0.027
0.557

+ 0.230
0.509
- 0.084 1.406 1.484 2.901 3.045 1.428 1.144

11
0.03

+ 0.030
0.085
- 0.003

0.106
+ 0.038

0.112
- 0.029 0.083 0.07 1.619 0.106 0.083 0.149

12
0.058

+ 1.080
0.212

+ 0.929
0.236

+ 2.527
0.215

+ 0.856 0.413 0.420 2.052 0.787 0.428 0.683

13
1.374
- 0.737

3.603
- 2.959

5.399
- 3.707

3.044
- 2.435 2.111 2.792 4.280 5.396 2.654 0.105

14
0.108
+ 0.06

0.22
- 0.021

0.394
- 0.15

0.329
- 0.146 3.950 3.893 5.377 8.041 3.619 0.648

15
2.305

+ 5.780
7.129

+ 0.996
8.789
- 0.403

6.067
+ 1.865 0.643 0.828 2.353 1.811 0.800 14.329

16
0.459

+ 0.970
0.985

+ 0.484
1.609

+ 1.436
0.953

+ 0.316 1.165 1.180 2.593 2.763 1.089 0.586

17
0.13

+ 0.550
0.531

+ 0.149
1.026

+ 0.348
0.524

+ 0.092 0.921 0.784 2.424 1.181 0.954 0.357

18
0.108

+ 0.640
0.228

+ 0.596
0.625

+ 1.186
0.317

+ 0.466 0.621 0.681 2.131 1.692 0.597 0.874

19
0.375
- 0.010

0.836
- 0.465

1.179
- 0.622

1.221
- 0.866 0.812 0.981 2.558 2.221 0.825 0.213

20
0.513
- 0.380

1.76
- 1.617

2.286
- 2.050

2.644
- 2.500 0.085 0.079 1.751 0.144 0.081 0.083

21
2.285

+ 0.290
11.554
- 8.806

23.353
- 17.957

9.327
- 6.721 0.842 0.828 2.381 1.609 0.790 3.068

22
0.086

+ 0.170
0.277
- 0.066

0.462
- 0.068

0.315
- 0.090 7.311 8.071 9.351 8.387 8.030 0.474

23
0.581

+ 5.500
1.889

+ 4.299
2.7866
+ 5.999

1.858
+ 4.023 4.916 5.493 6.682 6.241 5.167 N/A

24
1.575
- 0.600

4.22
- 3.368

8.045
- 6.436

3.744
- 3.002 0.555 0.689 2.191 1.027 0.492 0.593

25
0.348

+ 0.120
1.389
- 0.910

1.203
- 0.176

2.595
- 2.135 0.267 0.247 1.764 0.625 0.310 0.084

26
0.615
- 0.360

1.404
- 1.148

2.429
- 1.804

2.345
- 2.068 0.244 0.22 1.74 0.463 0.232 0.232

27
0.314

+ 0.490
1.087
- 0.273

2.22
- 1.039

1.036
- 0.274 0.173 0.142 1.777 0.236 0.160 0.053

28
2.129
- 0.530

5.206
- 3.471

6.244
- 3.957

4.68
- 3.126 1.139 1.316 2.657 2.429 1.315 0.622

29
0.313

+ 4.500
1.049

+ 5.337
1.568

+ 21.855
1.02

+ 4.731 0.672 0.783 2.394 1.374 0.647 9.747
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DeepAR Estimator on feed additives time
series

Deep Factor Estimator on crustaceans and
products thereof

Wavenet Estimator on fish and fish prod-
ucts

Simple Feed Forward on fish and fish prod-
ucts

Fig. 5. Indicative examples of estimator on specific time series

data using all thirty time series to predict each one. The last part of the table,
provides a comparison with the proposed RL approach.

The Deep Factor model is omitted in the univariate case as it is not applicable
due to the existence of a global RNN model as described in [21], used to learn
patterns across multiple related time series.

The results presented in Table 2, highlight that the model with the best
performance in most of the time series is the Deep AR model, while the WaveNet
as proposed by Google Deep Mind follows up due to its capability of capture long
term dependencies like LSTMs but with less training. The Simple Feed Forward
network wins in 4/30 time series in the multivariate setup.

As expected, even though the seasonal model achieves mostly low errors due
to the way of predicting values it never outperforms all deep models. Another
interesting result is that utilizing univariate model seems to be more accurate.
This, contradicts our initial hypothesis that by using multivariate data streams,
complex non-linear feature interactions will emerge, facilitating the optimization
of the models. As mentioned above the data were normalized in case of different
scales. The inferiority of the multivariate dataset arises from the fact that a wide
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but not deep set of data is exploited rendering harder to distinguish between
signal and noise as well as from the lack of correlation between time series.

We can express guarded optimism for the usage of analogous data as an
enrichment technique, which can be further explored, since results presented in
Table 2, marked in light blue, demonstrate a successful trial of the proposed
approach in some cases.

Finally, the RL model that utilized our custom environment yields promising
results. According to Table 2, it outperforms all other models in 9/30 datasets.
Taking under consideration the fact that the RL model was trained on univari-
ate time series without surrogate data we can reinforce the belief that using
univariate data is appropriate for this task.

5 Conclusion

This paper presents and defines an important and growing challenge in which
food safety can benefit greatly from modern techniques of time series forecast-
ing. We presented specific approaches in the field of time series forecasting while
addressing key challenges that include interpretation, scale, accuracy and com-
plexity (which are inherent in many cases of time series manipulation). Though
the experimentation and evaluation, we compared a variety of approaches based
on deep neural networks and statistical terms. The complementary model, which
consists of an RL (DQN) model, provides promising results in terms of food
recalls prediction. Future research work will be focused around applying contin-
uous action space RL model, and utilizing a multivariate and multi-step actions
environment. Another interesting and informative task would be to test the sta-
tistical characteristics of each time- series in order to evaluate the difference
in performance of the models and propose the corresponding adaptations and
enhancements.
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Abstract. In this paper, we propose FairNN a neural network that
performs joint feature representation and classification for fairness-aware
learning. Our approach optimizes a multi-objective loss function which
(a) learns a fair representation by suppressing protected attributes (b)
maintains the information content by minimizing the reconstruction loss
and (c) allows for solving a classification task in a fair manner by min-
imizing the classification error and respecting the equalized odds-based
fairness regularizer. Our experiments on a variety of datasets demon-
strate that such a joint approach is superior to separate treatment of
unfairness in representation learning or supervised learning. Addition-
ally, our regularizers can be adaptively weighted to balance the different
components of the loss function, thus allowing for a very general frame-
work for conjoint fair representation learning and decision making.

Keywords: Fairness · Bias · Neural networks · Auto-encoders

1 Introduction

The wide usage of AI-based systems, mostly powered nowadays by data and
machine learning algorithms, in areas of high societal impact raises a lot of con-
cerns regarding accountability, fairness, and transparency [25] of their decisions.
Such systems can become discriminatory towards groups of people or individ-
uals based on protected attributes like gender, race, religious beliefs etc., as it
has been already showcased in a variety of cases [3,5,9]. For example, [3] shows
that Google’s ad-targeting system was displaying more highly paid jobs to men
than to women, thus making discriminatory decisions based on gender. Such
incidents call for methods that explicitly target bias and discrimination in AI-
systems, while maintaining their predictive power. The ever increased interest
in this area is already reflected in the large, given the recency of the field, body
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of literature on fairness-aware learning and responsible AI, in general (see [23]
for a recent survey).

However, despite the large number of methods and approaches for fairness-
aware machine learning proposed thus far, most of these approaches refer to
supervised learning upon a given feature representation. Some approaches that
target fair representation learning also exist, e.g., [28] but they focus on learning
a fair lower dimensional representation of the data which can be used either as a
standalone result (e.g., for visualization purposes), or as an input to some other
learning task (e.g., for learning a classifier upon the reduced representation) [26].
Only a few approaches exist that jointly target fairness in both representation
learning and supervised learning, e.g., [6,19,22,24].

In this work we argue that a joint tackling of fairness in the machine learning
pipeline (data → algorithm → model) is superior to the separate treatment of
unfairness in representation- or supervised-learning. This is because bias-related
corrections in representation learning do not guarantee that a model derived from
the corrected data will be fair. Instead, the learning algorithm might still pick
up certain data peculiarities that lead to discriminatory outcomes. Therefore,
a joint goal-oriented consideration in the pipeline is much more effective, as
also demonstrated in our experimental results. To this end, we aim for a fair
representation learning that preserves as much as possible the original data while
obfuscating information on the protected attribute so decisions based on the
protected attribute in the latent space are not possible. Additionally, the learned
representation should structure itself in such a fashion, that a task-goal, such as
a classification task, can still be appropriately solved.

Our contributions can be summarized as follows:

– We propose a neural network that learns a fair representation and a fair
classifier jointly in an end-to-end manner.

– The contribution of the different components during training can be adjusted,
leading to a very flexible and competitive framework.

– Our experiments demonstrate that FairNN with a goal-oriented fair repre-
sentation is superior to a plain fair classifier without explicit representation
constraints as well as to a standard fair representation learner without an
explicit classification goal.

– The source code is available1.

The rest of the paper is organized as follows: Related work is summarized in
Sect. 2. Necessary background is provided in Sect. 3. Our joint goal-oriented app-
roach to fairness-aware learning is introduced in Sect. 4. Experimental results are
presented in Sect. 5. Finally, Sect. 6 concludes our work and identifies interesting
directions for future research.

2 Related Work

The domain of fairness-aware machine learning can be categorized into pre-
processing, in-processing and post-processing approaches to fairness depending
1 git@github.com:wtliao/FairNN.git.
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on whether they focus on mitigating discrimination at the data, algorithms or
model output, respectively.

Mitigating Fairness in Supervised Learning: Pre-processing approaches
to fairness assume that there exist encoded (e.g., societal) biases in the data
which they try to eliminate before “feeding” the data to some learning algo-
rithm. For example, [14] proposes instance re-weighting, label swapping, and
data augmentation to eliminate discrimination in the input data. Similar ideas,
but for the online scenario, were proposed by [13]. Data augmentation has also
been used in [11] in order to force the model so as to learn efficiently all the
population segments. In [10] a bagging schema is proposed to equalize the data
distributions for the different population segments. In [2] a probabilistic frame-
work for discrimination-preventing preprocessing in supervised learning is intro-
duced with the goal to preserve the utility of the data for the learning task while
controlling the correlation between the protected attributes and class and mini-
mizing instance distortion. In-processing approaches to fairness aim to explicitly
consider fairness into the learning algorithm by constraining or regularizing the
model during the training phase. It comprises the most popular category to fair-
ness mitigation, which however depends on the algorithm per se. For example,
in [29] the authors tweak the objective function of the linear SVM and Logistic
Regression models by inserting convex-concave fairness-related constraints (they
use equalized odds as fairness measure). In [15], a fairness-aware splitting crite-
rion for decision trees is proposed that evaluates not only the splitting quality
w.r.t. the class but also the discrimination effect of a potential split. The work
is extended in [30] for online learning, using Hoeffding Trees as the underlying
model. In [12] the authors aim to eliminate discrimination in sequential learning
scenarios (in particular, boosting) by dynamically adapting the data distribu-
tions over the training rounds using a cumulative version of equalized odds.
In [17] it is assumed that there exist latent fair class labels (non-observable)
which are estimated via an iterative process. Finally, post-processing approaches
to fairness work directly at the output of a model and change its outcomes until
a chosen fairness notion is satisfied. For example, [7] shifts the decision bound-
ary of AdaBoost w.r.t a protected attribute until statistical parity is achieved.
In [8] different thresholds are introduced for different population segments to
enforce equal error rates. In [16] the predictions of probabilistic classifiers and
ensemble models for instances close to the decision boundary are altered until
statistical parity is fulfilled. Our FairNN belongs to the category of in-processing
approaches as the objective function of the NN is altered to account for fairness.
In contrast to the majority of the previous approaches however, our method com-
prises a joint approach for fair-feature representation- and classifier-learning.

Fair Representation Learning Approaches: Fair representation learning
aims to learn a transformation to a lower dimensional space where the pro-
tected and non-protected groups are indistinguishable. In [28] the authors pro-
pose Fair-PCA, an extension of PCA, that forces similar reconstruction errors
between protected and non-protected groups. In [18], the Variational Fair Auto
Encoder is proposed that is able to also learn fair non-linear functions, which can
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be used after as input to other learning models. Our FairNN also derives non-
linear transformations via autoencoders, however on the contrary to [18], we dont
only focus on fair-representation learning but rather on joint representation-and
classifier-learning. In [27] an approach for learning individually fair representa-
tions is proposed using an end-to-end model with autoencoders. On the contrary,
our FairNN aims at learning representations that are fair for each group (i.e.,
protected and non-protected).

Closer to our work are the joint approaches [6,19] that aim at both fair
representation- and classifier-learning. In [6,19] instead of using some constrain-
ing to reduce the dependencies on the sensitive attribute in the latent space (e.g.,
by minimizing KL-divergence as in our FairNN), they train an adversary classifier
to discriminate between the protected and non-protected groups. In particular,
in [6] they optimize for statistical parity, whereas [19] extends the idea for more
fairness measures. It is not clear in what circumstances a constraint-based app-
roach or an adversary one should be preferred [6], but we include [19] in our
experimental analysis.

3 Basic Concepts and Definitions

Let A = {A1, ..., Ad} be a d-dimensional feature space of mixed attribute types.
We assume the existence of a protected attribute S ∈ A, e.g., S = gender.
We assume S is binary: S = {s, s̄}, with s denoting the protected group (e.g.,
s = female), and s̄ the non-protected group e.g.., s̄ = male. An instance X ∈
A1 × A2 · · · × An is a d-dimensional feature vector representing an object in the
vector space A. Each instance is assigned a label c ∈ C by some unknown target
function g : A → C. For simplicity, we assume the class attribute is also binary,
i.e., C = {+,−}. We use the notation s+ (s−), s̄+ (s̄−) to denote the protected
and non-protected group for the positive (negative, respectively) class.

The target function g() is unknown, instead a training set D = {(Xi, c)}
of i.i.d. instances drawn from the joint attribute-class space A × C is available
and can be used for approximating g(). The goal of fairness-aware supervised
learning is to approximate g() via a mapping function f() that does not only
map correctly future unseen instances of the population from A into C, but also
mitigates discriminatory outcomes. The former aspect corresponds to the typical
objective of supervised learning achieved through empirical risk minimization.
The latter aspect is evaluated in terms of some fairness measure (c.f. Sect. 2).

3.1 Formalizing Fairness

In this work, we employ Equalized Odds [8] (shortly Eq.Odds) as our fairness
measure. Eq.Odds accounts for the percentage difference among protected and
non-protected groups in the model’s outcomes. In particular, let δFPR (δFNR)
be the difference in false positive rates (false negative rates, respectively) between
the protected and non-protected groups, defined as follows:

δFPR = P (c �= ċ|s̄−) − P (c �= ċ|s−)
δFNR = P (c �= ċ|s̄+) − P (c �= ċ|s+)

(1)
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where ċ are the predicted labels. The goal of Eq.Odds is to minimize both
differences:

Eq.Odds = |δFPR| + |δFNR| (2)

where Eq.Odds ∈ [0, 2], with 0 indicating no discrimination and 2 indicating
maximum discrimination.

Eq.Odds has become quite popular among recent state-of-the-art fairness-
aware methods [8,12,17,19,29]. In contrast to the well-known statistical par-
ity [14], which uses only the positive predicted outcomes without the aid of true
labels, or equal opportunity [8], which accounts only for the false negative differ-
ence among s and s̄, Eq.Odds is able to locate discriminatory outcomes for both
classes. Furthermore, statistical parity is prone to favor groups by discriminating
on specific individuals [4].

3.2 Auto-encoders

An auto-encoder (AE) is an unsupervised neural network that learns an approx-
imation of the identity function such that the output of the network is similar to
its input. A reduced/compressed representation is learned by placing constraints
in the structure of the network, e.g. by using a bottleneck layer.

In this work, we consider mixed attribute type data of numerical and nomi-
nal attributes. Reconstructing the numerical attributes could be considered as a
regression task, so we use the Mean Square Error as the loss function for numer-
ical attributes. Since for the nominal attributes there is no order among their
values, reconstructing their values could be considered as a classification task, so
we use the Cross Entropy as the loss function for nominal attributes. We assume
there exist K numerical and N nominal features, such that K +N = d. We com-
bine the feature-type specific loss functions in the overall objective function of
the auto-encoder as follows (we compute the loss per batch of B instances):

L
(
X, X̂

)
=

1
B

B∑
b=1

⎛
⎝

K∑
k=1

(
Xb,k − X̂b,k

)2

−
N∑
j=1

Mj∑
lj=1

Xb,lj log
(
pb,lj

)
⎞
⎠ (3)

where X is the original instance, X̂ is the reconstructed instance and Xji is the
value of instance j in dimension i. The first term of the above equation refers to
the loss of numerical attributes: Xb,k, X̂b,k denotes the original and reconstructed
data of numerical attributes, respectively. The second term of the above equation
refers to the loss of nominal attributes. For each nominal attribute j, lj represents
the class label and Mj the number of values of the feature. For the j-th nominal
attribute in instance b, Xb,lj has the binary value (positive or negative) which
indicates if the class label lj is the correct classification, pb,lj represents the
predicted probability of class lj .

4 FairNN

In this section, we introduce our proposed method, namely FairNN that jointly
learns a fair representation and a fair mapping function for classification.
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Fig. 1. An overview of FairNN that jointly learns a fair representation and a fair
mapping function for classification. The auto-encoder (left part) is responsible for rep-
resentation learning; the KL-divergence constraint forces the representation to be fair.
The loss function of the classifier (right part) is tweaked towards fairness through the
Eq.Odds regularization. Both aspects are reflected in the joint objective

An overview of our approach is depicted in Fig. 1. The architecture consists
of two parts, an auto-encoder block aiming at learning a fair latent representa-
tion of the data (left) and a classification block aiming at learning a fair classifier
(right). We explicitly consider fairness in the representation learning by adding
an additional constraint to the latent space of the auto-encoder in order to obfus-
cate the information on the protected attribute (Sect. 4.1). Likewise, we explicitly
consider fairness in the classification part by adding an additional constraint to
the loss function based on the Equalized Odds fairness notion (Eq. 2) (Sect. 4.2).
We consider these aspects jointly and optimize a multi-loss objective function
that balances the importance of the different components in training (Sect. 4.3).

4.1 Fair Representation Learning via KL-Divergence Regularization

In order to learn fair feature transformations for the protected and non-protected
groups, KL divergence is added to the loss function to train the auto-encoder,
which constrains the learned features of different groups to have similar distribu-
tion properties. With this constraint, the auto-encoder is trained to mix up the
protected attribute information and meanwhile to maintain good reconstruction
ability. In practice, we use the KL divergence as an additional regularization in
the objective function. Based on the values of protected attributes, we divide the
data points into protected group s and non-protected group s̄. Without loss of
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Fig. 2. Effect of the KL-Divergence Regularizer in (fair) representation learning

generality, we assume their distribution in the latent space as d-dimensional nor-
mal distributions with means μs, μs̄ and covariance matrices Σs, Σs̄ respectively.
Then, the KL divergence between the their distributions is given as:

DKL (Ps ‖ Ps̄) =
1

2

(
log

det (Σs̄)

det (Σs)
− d + tr

(
Σ−1

s̄ Σs

)
+ (μs̄ − μs)

T Σ−1
s̄ (μs̄ − μs)

)

(4)
where, det(Σ) is the determinant of the covariance matrix Σ, and tr(·) is the
trace of the matrix, which is the sum of elements on the main diagonal of the
matrix. With the KL-Divergence Regularization, the original reconstruction loss
function of the auto-encoder (c.f., Eq. 3) is rewritten as:

Lae = (1 − α) L
(
X, X̂

)
+ αDKL (Ps ‖ Ps̄) (5)

where α ∈ [0, 1), is a coefficient for balancing the two terms.
Figure 2 demonstrates the impact of our KL-divergence regularizer, as dis-

tribution of data points in a low-dimensional feature space, in contrast to a
transformation that has been learned without KL-Divergence regularization. The
protected and non-protected groups are denoted in blue and orange respectively.
Figure 2(a) shows that the data points belonging to different groups are easy to
be separated in the latent space with direct implications to fairness. The regu-
larizer mixes-up the distributions of the two groups making it hard to predict
the protected attribute, c.f., Fig. 2(b).

4.2 Fair Classifier Learning via Equalized Odds Regularization

The classifier is an MLP with two FC layers followed by Relu activation. The
output is a scalar that is squashed by the sigmoid function between 0 and 1 for
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our binary classification task. The Binary Cross Entropy is used as loss function
to train the classifier as follows:

Lbce(c, ċ) = − 1
B

b∑
n=1

((cb log (ċb) + (1 − cb) log (1 − ċb))) (6)

where cb is the true label and ċb is the predicted probability of the data point b
having the label cb.

Our goal is to improve the fairness performance without losing the classifica-
tion performance. This motivates us to add an additional fairness measurement
as a regularization term in the objective function. As we mentioned before,
among different fairness measurements, Equalized Odds does not only consider
the predicted outcome but also compares it to the actual outcome recorded in
the dataset. It considers both the samples with actual positive labels and also
those with negative labels. Therefore, Equalized Odds (Eq.Odds) is used as the
constraint term and added to the classification loss Eq. (6):

Lcls(c, ċ) = (1 − β) · Lbce(c, ċ) + β · Eq.Odds (7)

where β ∈ [0, 1), is a balancing coefficient between the classification loss Lbce

and the Eq.Odds fairness regularization.

4.3 Fair Representation and Classifier-Learning via Joint
Optimization

By combining the two parts of our network, which are the auto-encoder (Eq. 5)
and classifier loss (Eq. 7), the acquired multi-loss function can be expressed as:

L = Lae + Lcls(c, ċ). (8)

It is known that neural networks can easily be over-parameterized and tend
to overfit, given limited training data. The additional constraints in our architec-
ture, together with the auto-encoder component enforces better generalization,
as demonstrated in our experiments (Sect. 5). We implemented FairNN in the
Python framework using PyTorch.

5 Experiments

We evaluate the predictive and fairness performance of FairNN and compare
the results with recent state-of-the-art methods. Additionally, we perform sev-
eral ablation studies to demonstrate the importance of each component in our
proposed framework. Accuracy and balanced accuracy are reported for evalu-
ating the predictive performance and Equalized Odds for fairness performance.
Since Equalized Odds reports the difference between two groups and we also
want to maintain the predictive performance for both groups, we also report the
actual TPR and TNR of both groups.
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Table 1. An overview of the datasets.

#Instances #Attributes Protected
attribute

Protected
group

Class ratio
(+:−)

Positive class

Adult census 45,175 14 Gender Female 1:3.03 >50K

Bank marketing 40,004 16 Marital
status

Married 1:7.57 Yes

5.1 Experimental Setup

5.1.1 Datasets

We evaluate our method on two real-world datasets, summarized in Table 1:

– Adult Census Income Dataset [1] is extracted from the 1994 American
Census Database. The task is to predict whether a person’s income is over
50K a year. People with label >50K belong to the positive class. S = gender
is considered as the protected attribute, s = female the protected group and
s̄ = male the non-protected group.

– Bank Marketing Dataset [21] is collected from a Portuguese bank that
focuses on selling long-term deposits over the phone. The task is to predict
whether a client will make a deposit subscription. We take S = marital sta-
tus as the protected attribute, s = married the protected group and s̄ =
single/divorced as the non-protected group.

5.1.2 Experimental Settings

The nominal attributes are encoded to one-hot vector and max-normalization is
applied to the numerical attributes to ensure the values are in [0, 1]. In the auto-
encoder block, both the encoder and decoder have three fully-connected linear
layers and each is followed by a ReLU activation. Following the evaluation setup
in [12,17,29], 50% of the data is used for training in which 20% of them are used
for validation, and the other 50% is for testing. All experiments are evaluated
using 10 random splits. We train the auto-encoder and classifier simultaneously
by minimizing the objective function Eq. 8. For training, we use the Adam
optimization method, with batch size B = 512 and a learning rate 0.002. In order
to get the best α − β combination (see Eq. (5) and 7), grid search is operated
within α ∈ [0.4, 0.5, 0.6, 0.7, 0.8, 0.9] and β ∈ [0.1, 0.2, 0.3, 0.4, 0.5]. Finally, α =
0.9, β = 0.2 for the Adult Census Income Dataset and α = 0.8, β = 0.4 for the
Bank Marketing Dataset are selected.

To further improve the performance, the well known preferential sam-
pling [14] is applied. The samples are ranked according to their classification
scores ascendingly. Centered on classification score 0.5, K samples whose scores
>0.5 are duplicated while K samples whose scores <0.5 are skipped. K is com-
puted based on the size of sensitive attributes and labels.
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(a) Comparison on Adult Census Income
Dataset.

(b) Comparison on Bank Marketing Dataset.

Fig. 3. Comparison with the state-of-the-art methods on Adult Census Income dataset
and Bank Marketing dataset. For fairness measurement Eq.Odds, lower values are bet-
ter; For others, higher are better.

5.2 Comparison with Other Methods

We compared our approach with the recently proposed state-of-the-art in-
processing approaches which mainly aim to minimize Eq.Odds.

AdaFair [12]: a boosting model which assigns fairness related weights in each
boosting round by observing the cumulative fairness behavior of the ensemble.

LAFTR [19]: a holistic approach that learns a latent fair representation using an
encoder/decoder and an adversary (where the encoder/decoder seek to minimize
the adversary’s objective), and at the same time trains a fair classifier on the
latent space.

FairPCA-SVM [28]: aims to find a low dimensional representation of the orig-
inal data while maintaining similar fidelity for two groups. We project the data
to the Fair PCA space and use SVM for binary classification.

PCA-SVM: Similar to FairPCA-SVM, we project the data to the PCA space
and use an SVM classifier. This is only a naive baseline method for comparison.

EO-Network [20]: A two-layer neural network, with Eq.Odds as a constraint in
the loss function. This can be seen as our model without the auto-encoder part.

Krasanakis et al. [17]: In this work, the authors assume the existence of a latent
fair class distribution, which they approximate through the CULEP model by
re-estimating the instance weights iteratively.

Zafar et al. [29]: In this work, the authors formulate fairness as a set of convex-
concave constrains which are embedded in the objective function of a logistic
regression model.
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(a) Adult Census Dataset. (b) Bank Marketing Dataset.

Fig. 4. Ablation Study (for Eq.Odds lower values are better - for the rest, higher values
are better.)

The experimental results from different methods on two datasets are depicted
in Fig. 3, detailed discussion on each dataset follows hereafter. The results of
[12,17,29] are taken from [12].

5.2.1 Adult Census Income

Figure 3(a) displays the baselines, state-of-the-art and our final experimental
results on the Adult Census Dataset. Our method achieves the highest accuracy
and balanced accuracy rates. The lowest Eq.Odds is achieved by Krasanakis et
al. However, its TPRs for both protected (TPR prot) and non-protected (TPR
non-prot) groups are much lower than the other methods (the lowest TPR prot
and the second-lowest TPR non-prot). Fair-PCA aims to learn a fair feature
representation in the low-dimensional space. But the learned representation may
be unsuited for the binary classification task. It achieves fairer decision-making
(lower Eq.Odds) comparing to PCA yet performs worse compared to our method.
The comparison of our method with EO-Network demonstrates an 8% decrease
in Eq.Odds and 14% improvement in TPR prot, revealing the effectiveness of
generating low-dimensional features. Similar to our approach, LAFTR also lever-
ages the joint-learning thought, but ours is more effective comparing to theirs:
balanced accuracy is 5% higher and Eq.Odds 3% lower. Our method also brings
a significant increase in TPR prot (18% higher). The superior performance from
our method indicates that our method is able to learn the fair representation. It
balances the balanced accuracy and Eq. Odds well.
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(a) colored by gender (b) colored by income

Fig. 5. Visualization of learned features colored by (a) gender and (b) income.

5.2.2 Bank

In Fig. 3(b), we report experimental results on the Bank Marketing Dataset. Due
to the class imbalance problem, both PCA-SVM and FairPCA-SVM perform
poorly on this dataset. They output all zeros for the binary classification task
which result in balanced accuracy 0.5, TPR prot and TPR non-prot are 0. In
EO-Network, the weight parameter of the Eq.Odds constraint is the same as
used in our method i.e., 0.4. LAFTR reaches the lowest Eq. Odds result but
its TPRs for both groups are also the lowest. There is a minor difference in
Eq.Odds between LAFTR and our method, yet ours achieves the much higher
balanced accuracy rate, TPR prot, and TPR non-prot. Compared to Zafar et
al. and Krasanakis et al., our method reports a higher balanced accuracy rate,
higher TPRs for both groups and also the comparable Eq.Odds. It proves that
our method maintains classification performance while achieving fairness.

5.3 Ablation Study

We perform ablation studies to evaluate how different parts influence the pre-
dictive and fairness performance of our method. In Fig. 4, α = 0 represents
the outcome without KL-Divergence regularization and β = 0 without Eq.Odds
regularization respectively. Figure 4(a) demonstrates the ablation study on the
Adult Census Income Dataset and Fig. 4(b)the Bank Marketing Dataset. We can
see that, integrating only the KL-Divergence regularization is more effective than
integrating Eq.Odds regularization only (comparing the second and third bars
in Fig. 4(a)). Applying both regularizations further improves the performance
(the fourth bars in Fig. 4(a)). Preferential sampling further improves the TPR
prot and TPR non-prot while almost not affecting Eq.Odds. The ablation study
results on the Bank Dataset (as shown in Fig. 4(b)) display a similar tendency
yet Preferential sampling does not bring much improvement on TPRs.

5.4 Feature Visualization

To better understand what kind of features are learned from the auto-encoder
part, we visualize the extracted features by randomly selecting 2 dimensions
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(a) Testing accuracy of AE-M (b) Testing accuracy of AE-N

Fig. 6. Comparison of auto-encoder with MSE+Cross-Entropy loss (left) and with
normal MSE loss function (right).

of the 10 dimensional latent space and color them according to the protected
attribute (Fig. 5(a)) and by the label (Fig. 5(b)) respectively. Figure 5(a) illus-
trates that the protected attribute information is mixed up in the latent space,
which indicates that the fair representation is learned. Figure 5(b) shows that
the label information is distinguishable. The learned representation is not only
fair but also suitable for the binary classification task which follows afterwards.

5.5 The Effect of the Multi-loss Function on the Accuracy

In this experiment we evaluate the effect of the multi-loss function on the accu-
racy and compare the auto-encoder with MSE loss + Cross Entropy loss (we
call the network AE-M), to an auto-encoder with normal MSE loss (AE-N). We
set α = 0, β = 0, which means to ignore the Eqs. 5 and 7.

By observing the testing accuracy shown in Fig. 6(a) and Fig. 6(b), we can
conclude that AE-M does not perform worse but even achieves a slightly better
predictive performance (testing accuracy is 0.76% higher than AE-N).

6 Conclusion

We proposed FairNN , a neural network approach for fairness-aware learning
that jointly learns a feature representation and classification model. The neural
network consists of two parts, an autoencoder component for fair representation
learning and a classification component for fair decision making. Our approach
optimizes a multi-objective loss function which (a) learns fair representation by
suppressing protected attributes (b) maintains the information content by mini-
mizing the reconstruction loss and (c) allows for fair classification by minimizing
the classification error and respecting the equalized odds-based fairness regu-
larizer. Our experiments demonstrate that such a joint approach is superior to
a separate treatment of unfairness in representation learning or classifier learn-
ing. Our method achieves the highest accuracy and balanced accuracy rates. All
components are important as demonstrated by the ablation study.
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Note that our architecture contains a branch of an auto-encoder which allows
unsupervised learning. Thus, our framework is suited for semi-supervised learn-
ing with sparsely labeled data. We will elaborate on this aspect in future works.
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Abstract. Anomaly detection methods exploiting autoencoders (AE)
have shown good performances. Unfortunately, deep non-linear architec-
tures are able to perform high dimensionality reduction while keeping
reconstruction error low, thus worsening outlier detecting performances
of AEs. To alleviate the above problem, recently some authors have pro-
posed to exploit Variational autoencoders (VAE), which arise as a vari-
ant of standard AEs designed for generative purposes. The key idea of
VAEs is take into account a regularization term constraining the orga-
nization of the latent space. However, VAEs share with standard AEs
the problem that they generalize so well that they can also well recon-
struct anomalies. In this work we argue that the approach of select-
ing the worst reconstructed examples as anomalies is too simplistic if
a VAE architecture is employed. We show that outliers tend to lie in
the sparsest regions of the combined latent/error space and propose a
novel unsupervised anomaly detection algorithm, called VAEOut , that
identifies outliers by performing density estimation in this augmented
feature space. The proposed approach shows sensible improvements in
terms of detection performances over the standard approach based on
the reconstruction error.

Keywords: Anomaly detection · Variational autoencoder · Nearest
neighbor density estimation

1 Introduction

Outlier detection is a fundamental and widely applicable discovery problem. Out-
liers can arise due to many reasons like mechanical faults, fraudulent behavior,
human errors, instrument error or simply through natural deviations in popula-
tions. Generally speaking, the problem of outlier detection consists in isolating
samples suspected of not being generated by the same mechanisms as the rest of
the data. Approaches to outlier detection can be classified in supervised, semi-
supervised, and unsupervised [1,13]. Supervised methods take in input data
labeled as normal and abnormal and build a classifier. The challenge there is
posed by the fact that abnormal data form a rare class. Semi-supervised methods,
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also called one-class classifiers or domain description techniques, take in input
only normal examples and use them to identify anomalies. Unsupervised meth-
ods detect outliers in an input dataset by assigning a score or anomaly degree
to each object. Several statistical, data mining and machine learning approaches
have been proposed to detect outliers, namely, statistical-based [10,14], distance-
based [6–9,23], density-based [11,20], reverse nearest neighbor-based [3–5,16,27],
isolation-based [26], angle-based [25], SVM-based [28,30], deep learning-based
[12,15], and many others [1,13].

Deep learning anomaly detection approaches exploiting autoencoders (AE)
have shown good performances [2,12,17]. Autoencoder-based anomaly detection
consists in training an autoencoder to reconstruct a set of examples and then
to detect as anomalies those inputs that show a sufficiently large reconstruction
error. This approach is justified by the observation that, since the reconstruction
process includes a dimensionality reduction step (the encoder) followed by a step
mapping back representations in the compressed space (also called the latent
space) to examples in the original space (the decoder), regularities should be
better compressed and, hopefully, better reconstructed [17].

Unfortunately, deep non-linear architectures are able to perform high dimen-
sionality reduction while keeping reconstruction error low. Ideally, an expres-
sive enough architecture could reduce arbitrarily large dimensional data to one
dimensional data while performing the reverse transformation with negligible
loss. This problem is in part due to the lack of regularity in the latent space.
Variational autoencoders (VAE) arise as a variant of standard autoencoders
designed for generative purposes [22]. The key idea of variational autoencoders is
to regularize the standard loss function consisting in the reconstruction error by
including a regularization term constraining the organization of the latent space.
Basically, variational autoencoders encode each example as a normal distribu-
tion over the latent space, instead of encoding them as single points, and regu-
larize the loss by maximizing similarity of these distributions with the standard
normal distribution. This encoding is conducive to obtain a continuous latent
space, namely a latent space for which close points will lead to close decoded
representation, thus avoiding the severe overfitting problem affecting standard
autoencoders, for which some points of the latent space will give meaningless
content once decoded.

As already pointed out, variational autoencoders were initially proposed as a
tool for generating novel realistic examples by sampling and then decoding points
of the latent space. Due to similarities to standard autoencoders some authors
also proposed their use to detect anomalies. However, it has been noticed that
variational autoencoders share with standard autoencoders the problem that
they generalize so well that they can also well reconstruct anomalies [2,12,21,29].

The main contribution of this work can be summarized as follows: we argue
that the approach of selecting the worst reconstructed examples as anomalies is
too simplistic if a variational autoencoder architecture is employed and, specifi-
cally, we show that the anomaly detection process can greatly benefit from tak-
ing into account the VAE latent space distribution together with the associated
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reconstruction error. Indeed, we show that outliers tend to lie in the sparsest regions
of the combined latent and reconstruction error space and propose a novel unsuper-
vised anomaly detection algorithm, called VAEOut, that identifies outliers by per-
forming density estimation in this augmented feature space. The proposed approach
shows sensible improvements in terms of detection performances over the standard
approach based on the reconstruction error.

The rest of the paper is organized as follows. Section 2 presents preliminary
definitions and discusses related work. Section 3 introduces the VAEOut unsu-
pervised anomaly detection algorithm. Section 4 illustrates experimental results.
Finally, Section 5 concludes the work.

2 Preliminaries and Related Work

An autoencoder (AE) is a deep neural network trained with the aim of outputting
a reconstruction x̂ of an input sample x as close as possible to x [15,18,24].
An autoencoder consists in two parts, an encoder fφ and a decoder gθ. An
enconder fφ is a mapping of a sample from the input feature space to a hidden
representation in a latent space, and is univocally determined by parameters φ.
A decoder gθ is a mapping of a hidden representation from the latent space to
a reconstruction in the input feature space, and is univocally determined by
parameters θ.

Given an autoencoder 〈fφ, gθ〉, let x be a sample and let z = fφ(x) be the
latent variable where the sample x is mapped by the encoder, the reconstruction
x̂ of x is given by x̂ = gθ(z) = gθ(fφ(x)) and the reconstruction error E(x) of
the autoencoder is a measure of dissimilarity of x with respect to x̂. A common
reconstruction error is the mean squared error (MSE), defined as

E(x) = ‖x − gθ(fφ(x))‖22.

The autoencoder tries to minimize the reconstruction error.
A variational autoencoder (VAE) is a stochastic generative model aimed at

outputting a reconstruction x̂ of a given input sample x [22]. To this aim, VAE
are composed by an encoder fφ which outputs parameters of qφ(z|x), that is the
posterior distribution of observing the latent variable z given x, and a decoder
gθ computing parameters of pθ(x|z), that is the likelihood of x given the latent
variable z. The prior distribution of the latent variable z is denoted by pθ(z).
Thus, the actual values of z are sampled from qφ(z|x). Given the latent variable
z, the reconstruction x̂ is obtained as a realization of pθ(x|z).

As for the distributions associated with the latent variable z, that are pθ(z)
and qφ(z|x), the common choice is the isotropic normal. The distribution of the
likelihood pθ(x|z) depends on the nature of the data: Bernoulli for binary data
or multivariate Gaussian for continuous data. In these cases, gθ(z) outputs the
mean of the distribution and usually the reconstruction x̂ is given by gθ(z).
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Given a variational autoencoder 〈fφ, gθ〉 and a sample x, the reconstruction
error is represented by the cross entropy of the distribution qφ(z|x) relative to
the distribution pθ(x|z):

E(x) = −Eqφ(z|x) [log pθ (x|z)] .

For example, given x and its reconstruction x̂, the corresponding contribution
e(x, x̂) to the above error is given by e(x, x̂) = − log x̂x(1− x̂)(1−x) = −x log x̂−
(1−x) log(1− x̂) for Bernoulli data and e(x, x̂) ∝ − log exp −‖x− x̂‖22 = ‖x− x̂‖22
for continuous data.

The reconstruction error can be computed through a Monte Carlo estimation.
Thus, by letting L be the number of samples z(1), z(2), . . . , z(L) from qφ(z|x),

E(x) = − 1
L

L∑

l=1

log pθ

(
x|z(l)).

The loss of the variational autoencoder is given by

Lφ,θ(x) = −Eqφ(z|x) [log pθ (x|z)] + β · DKL

(
qφ(z|x) ‖ pθ(z)

)
,

where the second term represents the KL divergence between the distribution
qφ(z|x), modelled as a multivariate normal distribution with independent compo-
nents, and the prior pθ(z), modelled as a multivariate normal standard distribu-
tion, and plays the role of a regularization term forcing the posterior distribution
to be similar to the prior distribution. The hyper-parameter β can be used to
balance the two terms of the loss [19]. In such a case, the variational autoencoder
is also called a β-VAE.

The classic use of standard AE for anomaly detection is based on the idea
that, after the training, these networks are able to better reproduce in output
the inlier data than the outlier and, hence, the loss or the reconstruction error
of the network is used as an anomaly score [17]. In [2] this idea is applied to
VAEs, by using as anomaly score the reconstruction probability, corresponding
to the negative cross entropy

score(x) = recprob(x) = Eqφ(z|x)[log pθ(x|z)] =
1
L

L∑

l=1

log pθ(x|z(l)).

The experimental results obtained in [2] show that VAE outperforms, in terms
of AUC, standard AE and PCA for a semi-supervised anomaly detection setting.

A slightly different approach is pursued in [31], where it is considered the
whole negative loss function

score(x) = −Lφ,θ(x)

as anomaly score instead of the reconstruction probability, which is only a term
of it. The authors justify this choice with the slightly better results they obtain
in their experiments compared to reconstruction probability.
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It has been observed that sometimes VAEs share with standard AE the
problem that they generalize so well that they can also reconstruct anomalies,
which leads to view some anomalies as normal data. Thus, in [21] the authors try
to overcome this problem by modifying the structure of VAEs in order to make
them able to support supervised learning and to be trained with both anomalies
and normal data. In particular it is adopted an a priori distribution in the latent
space that encourages the separation between normal and anomalous data which
leads to non-standard loss function and anomaly score.

3 Method

Let I denote the input space (usually I ⊆ R
d), let L denote the latent space

(usually L ⊆ R
k with k � d), and let E denote the reconstruction error space

(usually E ⊆ R). As above pointed out, the traditional approach pursued to
detect anomalies using (variational) autoencoders is to compare the input to its
reconstruction by means of the reconstruction error, thus it is based on exploiting
only the input and reconstruction error spaces. We argue that the approach of
selecting the worst reconstructed examples as anomalies is too simplistic if a
variational autoencoder architecture is employed. Specifically, we show that the
anomaly detection process can greatly benefit of taking into account the latent
space distribution together with the associated reconstruction error.

To illustrate this, we considered the MNIST dataset of handwritten digits and
created a training-set consisting of the 6000 digits from the class 0 (the inliers)
plus 90 randomly picked digits from the classes 1–9 (the outliers). Figure 1(a)
reports the two-dimensional latent space of a variational autoencoder trained on
the above set of examples (details on the architecture are provided in Sect. 4). In
particular, we reported the means of the distributions associated with training
examples (standard deviations are not shown for the ease of visualization): inliers
are the (blue) dots and outliers are the (red) asterisks.

First of all we note that, since regular examples (the inliers) form the majority
of the data, they will be encoded as distributions better complying with the
standard normal one. In other words, the associated latent distributions will
tend to distribute around the origin of the latent space and, more importantly,
means tend to be closer and supports will overlap more.

Nonetheless, not all the normal data complies with the above behavior and,
thus, a non-negligible fraction of inliers spreads also over more peripheral regions.
As for the abnormal examples, typically they spread over a wide portion of the
latent space, including both boundary regions and the central region of the space,
their location depending on the similarities they share with normal examples.
This means that neither the location of the distributions in the latent space nor
their degree of overlapping alone are sufficient to separate inliers from outliers.
Indeed, in Fig. 1(a) the sparsest regions of the latent space contain both normal
and abnormal examples.

Consider now Fig. 1(b) where the reconstruction error is associated with each
latent distribution. It can be seen that even in this case the reconstruction error
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Fig. 1. Comparing VAEOut and recprob anomaly scores. (Color figure online)

alone is not sufficient to guarantee a good separation between inliers and outliers.
Indeed, though some clear anomalies can be recognized by means of a very
high reconstruction error, most of the outliers have relatively low reconstruction
errors. However, Fig. 1(b) also suggests that outliers tend to lie in the sparsest
regions of the latent/reconstruction error feature space. This can be understood
since outliers have two properties: (1) they are few, and (2) their reconstruction
error, even when it is not exceptionally large, is still significantly larger than
that of their most similar inliers. All this tends to move away in the augmented
feature space the outliers from the other points.

In light of these observations, the key idea of the proposed approach, called
VAEOut , is to simultaneously exploit the two above highlighted informations,
namely the latent space distribution and the reconstruction error distribution,
by constructing the novel feature space F = L×E, consisting of the juxtaposition
of the latent space and of the reconstruction error space, and then by measuring
the degree of overlapping of the examples in this novel feature space F , namely
the density of the distribution of examples. Outliers will be the points lying in
the sparsest regions of the feature space F .
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Specifically, given a dataset S = {x1, x2, . . . , xn} our goal is to detect the
outliers contained in S. With this aim we first train a variational autoencoder
〈fφ, gθ〉 to reconstruct examples in S. Given an example xi, let zxi

denote the
point

zxi
= (zi, ê(xi, x̂i)) ∈ F

where zi ∼ qφ(z|xi) is a latent space point sampled from the posterior dis-
tribution qφ(z|xi) and ê(xi, x̂i) is a measure related to the reconstruction
error e(xi, x̂i) associated with the reconstruction x̂i of xi obtained by means
of zi. Specifically, if e(xi, x̂i) is a log-likelihood we can take the exponential
ê(xi, x̂i) = exp e(xi, x̂i) since all the other features are on a non-log scale, oth-
erwise ê(xi, x̂i) could be equal to e(xi, x̂i).

Given a dataset S = {x1, . . . , xn}, by zS we denote the transformed dataset
zS = {zx1 , . . . , zxn

} and by zS = {zx1 , . . . , zxn
} we denote the standardized

versions of zS , that is the dataset obtained by normalizing each feature according
to its mean and standard deviation. Standardization is needed here to handle
non-homogeneous features.

To measure the density of a point xi in a set of points S we use nearest
neighbor density estimation and specifically the average k-nearest neighbor dis-
tance of point xi from points in S, denoted as k-NNS(xi). However, instead of
employing the distance defined in the original feature space, we employ as dis-
tance dist(xi, xi) between xi and xj the distance separating their images zxi

and
zxj

in the transformed dataset.
Thus, the VAEOut anomaly score of xi in the dataset S consists of a k-

nearest neighbor estimate of the density of zxi
in the dataset zS . To take into

account Monte Carlo estimation, L samples z
(l)
xi (l ∈ {1, . . . , L}) can be used for

each example xi and the distance dist(xi, xj) is obtained as the average distance
between pair of samples z

(l)
xi and z

(l)
xi .

Figure 1(c) shows the latent samples and their associated anomaly score. It
can be seen that now there is a marked separation between inliers and outliers
in terms of the anomaly score. Inliers tend to have low scores, while almost
all the outliers are associated with the largest anomaly scores of the popula-
tion as a consequence of their inherent sparsity. Figure 1(d) compares the ROC
curves obtained by our method (VAEOut , the solid red line), with the ROC
curve obtained by exploiting the reconstruction error of a variational autoen-
coder (recprob [2], the dashed blue line). Note that the AUC = 0.9063 of the
standard VAE increases to the value AUC = 0.9908 if VAEOut is employed.

Algorithm 1 details the steps of the proposed technique. First of all, a vari-
ational autoencoder VAE is trained by exploiting input examples in S. This
allows the encoder fφ and the decoder gθ to output parameters of qφ and pθ.
Next, each example xi ∈ S can be mapped to the novel feature space F = L×E .
In particular, L mappings of xi to F are built. The mappings z

(l)
i of xi to L, with

l ∈ {1, . . . , L}, are obtained by sampling values from qφ(z|xi) while the mapping
of xi to E are obtained by considering the reconstruction x̂

(l)
i = gθ(z

(l)
i ) of xi
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Algorithm 1: VAEOut
Input: Dataset S, number N of outliers (expected contamination), number of k

nearest neighbors, number � of runs, parameter β of the β-VAE
Output: The top N outliers
// VAE training

1 train a β-VAE 〈fφ, gθ〉 by using examples in S;
// map examples xi to points zxi

2 foreach run l = 1, . . . , L do
3 foreach example xi ∈ S do

4 sample z
(l)
i ∼ qφ(z|xi);

5 obtain the reconstruction x̂
(l)
i = gθ(z

(l)
i );

6 build the transformed point z
(l)
xi = (z

(l)
i , ê(xi, x̂

(l)
i ));

// map points zxi to points zxi

7 foreach feature h = 1, . . . , k + 1 do

8 μh =
1

nL

n∑

i=1

L∑

l=1

z
(l)
xi,h;

9 σ2
h =

1

nL

n∑

i=1

L∑

l=1

(
z
(l)
xi,h − μh

)2
;

10 foreach run l = 1, . . . , L do
11 foreach example xi ∈ S do

12 z
(l)
xi,h =

z
(l)
xi,h − μh

σh
;

// compute anomaly scores

13 foreach example xi ∈ S do
14 foreach example xj ∈ S do

15 compute the distance dist(xi, xj) =
1

L

L∑

l=1

‖z(l)
xi

− z(l)
xj

‖2
2;

16 compute score(xi) =
1

k

k∑

t=1

d
(t)
i , where d

(t)
i denotes the t-th smallest

distance in {dist(xi, xj) | j = 1, . . . , n};

17 return the N examples xi scoring the highest values of score(xi)

provided by the decoder, and, then, by computing the measure ê(xi, x̂
(l)
i ) related

to reconstruction error.
Once the L mappings z

(l)
xi of xi to F have been generated, they are normalized

by standardizing each feature with respect to its mean and standard deviation.
Next, the distance between all pairs of examples xi and xj can be computed by
averaging the Euclidean distances between mappings of xi and xj to F . Finally,
the k nearest neighbors of xi according to the above illustrated distance are
detected and the outlier score is computed as the mean distance between xi and
such neighbors.
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4 Experimental Results

We start by describing the experimental settings. In order to generate an unsu-
pervised setup, we considered some labelled dataset and, for each class label, we
created a novel dataset having as inliers all the examples of the considered class
and as outliers some randomly picked examples from the other classes. Precisely,
we selected s examples (s ∈ {10, 100}) from each different dataset class label, so
that the total number of outliers is s × (m − 1), where m denotes the number of
classes.

In the following we consider the MNIST 1 and Fashion-MNIST 2 datasets.
Both datasets consist of 60000 grayscale 28 × 28 pixels images partitioned in
10 classes: MNIST contains handwritten digits, while Fashion-MNIST contains
Zalando’s article images. The number of outliers within each dataset is also
called its (absolute) contamination c. Since both the above datasets consist of
10 classes, their contamination corresponds to c = 9s.

If not otherwise stated, during experiments the parameter k is held fixed to
0.25c, thus k = 15 for s = 10 and k = 150 for s = 100. Later, we will study
the effect of the parameter k on the accuracy. According to the literature [19],
we employ large values for the parameter β in order to allow the variational
autoencoder to properly organize the latent space, and specifically β = 104. As
for the parameter L, we verified that for large β values it has a small impact
on the accuracy and, hence, in the following we report results for L = 1. All
the experimental results are obtained by averaging over ten runs, thus we report
both the mean and the standard deviation of performance measures.

As for the autoencoder architecture, the encoding part is composed by an
initial sequence of convolutional layers that reduce the size of the data to 14 ×
14, a flattening layer that transforms the data into a vectorial form and two
dense layers that brings the data to the latent space having dimension d. The
decoder consist in a layer that reshapes the data into a bi-dimensional form and
a sequence of convolutional layers that transform the data back into the original
28 × 28 shape.

VAEOut versus recprob. First of all, we investigated the impact of the pro-
posed strategy on the accuracy of the variational autoencoder-based outlier
detection approach, by comparing the Area Under the ROC Curve (AUC) of
VAEOut with that of recprob, that is the standard strategy based on exploiting
the VAE reconstruction error. Comparisons are conducted by considering the
influence of the latent space dimension on the quality of the detection. Figure 2
reports the AUCs of VAEOut (red circle-marked lines) and recprob (blue square-
marked lines) for the latent space dimension d ranging in the interval [2, 32] and
s = 10. Due to the lack of space, results for s = 100 are summarized in Table 1.

The results highlight that the proposed strategy is able to improve accu-
racy of VAE-based outlier detection. Indeed, in many runs VAEOut improves
over recprob, and for almost all the digits the achieved improvement is sensible.
1 http://yann.lecun.com/exdb/mnist/.
2 https://github.com/zalandoresearch/fashion-mnist.

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist


Improving Deep Anomaly Detection by Exploiting VAE Latent Space 605

2 3 8 16 32
0.7

0.75

0.8

0.85

0.9

0.95

1

Dimensionality [d]

A
U

C

Digit ’0’

VAEOut
recprob

2 3 8 16 32
0.95

0.96

0.97

0.98

0.99

1

Dimensionality [d]

A
U

C

Digit ’1’

VAEOut
recprob

2 3 8 16 32
0.7

0.75

0.8

0.85

0.9

0.95

1

Dimensionality [d]

A
U

C

Digit ’2’

VAEOut
recprob

2 3 8 16 32
0.7

0.75

0.8

0.85

0.9

0.95

1

Dimensionality [d]

A
U

C

Digit ’3’

VAEOut
recprob

2 3 8 16 32
0.8

0.85

0.9

0.95

1

Dimensionality [d]

A
U

C

Digit ’4’

VAEOut
recprob

2 3 8 16 32
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Dimensionality [d]

A
U

C

Digit ’5’

VAEOut
recprob

2 3 8 16 32
0.8

0.85

0.9

0.95

1

Dimensionality [d]

A
U

C

Digit ’6’

VAEOut
recprob

2 3 8 16 32
0.86

0.88

0.9

0.92

0.94

0.96

0.98

Dimensionality [d]

A
U

C

Digit ’7’

VAEOut
recprob

2 3 8 16 32
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Dimensionality [d]

A
U

C

Digit ’8’

VAEOut
recprob

2 3 8 16 32
0.8

0.85

0.9

0.95

1

Dimensionality [d]

A
U

C

Digit ’9’

VAEOut
recprob

Fig. 2. MNIST dataset (s = 10): AUCs of VAEOut and recprob. (Color figure online)

The experiments also show that accuracy of VAEOut is positively affected by the
latent space dimension, while this do not seem to be the case for the standard
VAE. We explain this behavior since lower dimensions constrain distributions
within the latent space to overlap more, thus worsening the separation induced
by the density associated with latent points. From these experiments, we con-
clude that a good choice for the latent space dimension d is in the order of a few
tens, namely d ∈ [16, 32].

Note that intervals of AUC values reported on the vertical axis of the plots
are not identical. As for digit 1, it must be pointed out that the variational
autoencoder is very able to reconstruct it, probably since it is the easiest digit
in the set, and this explains why the recprob AUC is very close to 1. VAEOut
shows a slightly smaller AUC for low latent dimensions, but reaches a similar
AUC for sufficiently large dimensions.
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Table 1. AUC for the MNIST datasets (s = 100).

c d = 8 d = 16 d = 32

VAEOut recprob VAEOut recprob VAEOut recprob

0 0.928 ± 0.016 0.767± 0.015 0.945 ± 0.017 0.743± 0.033 0.954±0.010 0.603± 0.044

1 0.990± 0.003 0.995 ± 0.001 0.993± 0.001 0.995 ± 0.001 0.995±0.001 0.995± 0.001

2 0.808 ± 0.037 0.690± 0.016 0.863±0.021 0.691± 0.015 0.826 ± 0.035 0.609± 0.100

3 0.866 ± 0.017 0.726± 0.012 0.898±0.024 0.708± 0.021 0.887 ± 0.024 0.663± 0.073

4 0.905 ± 0.013 0.832± 0.008 0.910 ± 0.015 0.820± 0.011 0.910±0.010 0.779± 0.023

5 0.896 ± 0.019 0.722± 0.020 0.906±0.043 0.717± 0.025 0.895 ± 0.016 0.654± 0.070

6 0.934 ± 0.018 0.830± 0.011 0.944±0.013 0.817± 0.021 0.941 ± 0.009 0.735± 0.054

7 0.926 ± 0.021 0.883± 0.007 0.934±0.014 0.878± 0.004 0.933 ± 0.006 0.863± 0.008

8 0.864 ± 0.017 0.679± 0.012 0.888 ± 0.018 0.660± 0.020 0.889±0.020 0.600± 0.086

9 0.921 ± 0.012 0.850± 0.010 0.940±0.010 0.841± 0.016 0.936 ± 0.008 0.747± 0.056

Table 2. MNIST dataset Prec@n for n set to the contamination c = 9s.

c s = 10 s = 100

VAEOut recprob VAEOut recprob

0 0.462±0.044 0.227 ± 0.026 0.654±0.033 0.295 ± 0.048

1 0.762±0.045 0.744 ± 0.028 0.904±0.005 0.898 ± 0.008

2 0.388±0.042 0.204 ± 0.039 0.429±0.050 0.239 ± 0.083

3 0.377±0.036 0.160 ± 0.036 0.519±0.037 0.272 ± 0.087

4 0.497±0.071 0.453 ± 0.041 0.598±0.019 0.516 ± 0.040

5 0.371±0.032 0.210 ± 0.044 0.524±0.027 0.281 ± 0.080

6 0.490±0.051 0.357 ± 0.046 0.632±0.024 0.393 ± 0.074

7 0.528±0.048 0.493 ± 0.042 0.647±0.026 0.624 ± 0.021

8 0.276±0.049 0.109 ± 0.045 0.494±0.051 0.230 ± 0.080

9 0.470±0.040 0.333 ± 0.048 0.628±0.022 0.390 ± 0.145

Precision. Another measure employed to evaluate outlier detection approaches
is the Precision. Specifically, since to goal is to isolate the most deviating dataset
examples, we used the Prec@n measure, representing the percentage of true
outliers among the examples associated with the top n anomaly scores. We set n
to the absolute contamination n = c. Table 2 compares the Prec@n achieved by
VAEOut and recprob on MNIST (d = 32). The results point out that VAEOut
is able to significantly increase the percentage of true anomalies among the
examples ranked in the very first positions. Moreover, in different cases the
precision is doubled.

Note that despite the case s = 10 shows slightly larger AUCs, the Prec@n
is higher for the case s = 100. We explain this behavior by noticing that while
the inliers of the two datasets are the same, the outliers for the case s = 100
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Fig. 3. MNIST dataset: AUC of VAEOut for varying k values.

have increased tenfold and this means that the probability that largest scores are
assigned to outliers is increased, although overall the outliers are ranked slightly
worse according to the AUC.

Sensitivity Analysis for the Parameter k. Experiments reported in Fig. 3
are aimed at determining the optimal value for the parameter k, by performing
a sensitivity analysis with respect to this parameter. With this aim, we took into
account log-spaced values k in the interval [2, 1024] and determined the AUC of
VAEOut on the MNIST dataset for s = 10 and s = 100. In these experiments,
the latent space dimension d is held fixed to d = 32.

To help understand the effect of k on the accuracy, on the horizontal axis we
reported the value k/c = k/(9s) of k normalized on the absolute contamination
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Table 3. MNIST (s = 10) AUC for d = 32 (k = 30).

Class AE VAE VAEOut

0 0.7053 ± 0.0525 0.8147± 0.0443 0.9825±0.0056

1 0.9913 ± 0.0031 0.9973± 0.0007 0.9978±0.0005

2 0.6407 ± 0.0534 0.7780± 0.0152 0.9504±0.0143

3 0.6844 ± 0.0354 0.7535± 0.0133 0.9415±0.0092

4 0.7743 ± 0.0278 0.8415± 0.0133 0.9477±0.0106

5 0.6776 ± 0.0323 0.7811± 0.0208 0.9523±0.0111

6 0.7651 ± 0.0282 0.8819± 0.0133 0.9758±0.0083

7 0.8635 ± 0.0120 0.8970± 0.0172 0.9645±0.0052

8 0.5993 ± 0.0328 0.7363± 0.0237 0.9277±0.0185

9 0.7781 ± 0.0449 0.8698± 0.0287 0.9649±0.0079

Table 4. Fashion-MNIST (s = 10) AUC for d = 32 (k = 30).

Class AE VAE VAEOut

T-shirt/top 0.8388± 0.0146 0.4701 ± 0.0369 0.8946±0.0117

Trouser 0.9792±0.0048 0.9520 ± 0.0102 0.9599± 0.0111

Pullover 0.8288± 0.0240 0.3472 ± 0.0278 0.8757±0.0138

Dress 0.6857 ± 0.0101 0.7867± 0.0242 0.8883±0.0132

Coat 0.8420± 0.0232 0.4805 ± 0.0452 0.8752±0.0153

Sandal 0.7740 ± 0.0210 0.8738± 0.0152 0.9094±0.0165

Shirt 0.7490± 0.0270 0.3208 ± 0.0190 0.8419±0.0153

Sneaker 0.9587± 0.0129 0.9322 ± 0.0178 0.9729±0.0125

Bag 0.6763± 0.0503 0.4269 ± 0.0308 0.8866±0.0288

Ankle boot 0.8905± 0.0189 0.6860 ± 0.0363 0.9260±0.0183

c of the dataset, also called normalized neighborhood. Each plots reports also the
AUC achieved by recprob. It can be seen that for a wide range of values of the
parameter k the AUC of VAEOut is sensibly larger than that of recprob. In most
cases the above property is valid for all the reported values of k.

This experiment witnesses that, although VAEOut requires an additional
parameter with respect to a standard VAE, the selection of the right value for this
parameter is not critical, being almost always guaranteed an improvement. More-
over, the optimal value for the normalized neighborhood appears to be located
within the interval [10−1, 100]. Thus, the normalized neighborhood provides a
tool for selecting a reasonable value for k. As a rule of thumb, we recommend
to use k ≈ N/3, where N is the user-specified expected absolute contamination
or, vice versa, to return N ∈ [3k, 5k] anomalies when k is user-specified.
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Impact on the Neural Architecture. In this experiment we compare the
detection performances of Auto-Encoder based anomaly detection (AE ), Vari-
ational Auto-Encoder based anomaly detection (VAE), and VAEOut based
anomaly detection. The aim of this experiment is not to determine the best
configuration for each approach, but instead to compare the performances of
these three autoencoder based approaches when the architecture is held fixed.
Thus, all the results are relative to the equivalent network architectures and for
the same common hyper-parameters. Specifically, the AE has the same structure
of the VAE, except for employing a deterministic latent space and for the loss
consisting only of the reconstruction error, while VAEOut builds on the same
VAE architecture described at the beginning of this section.

Tables 3 and 4 report the AUC of the three methods on the MNIST and
Fashion-MNIST datasets with s = 10, respectively, for d = 32 and k set to
30, that is to one third of the dataset contamination. While on the MNIST
dataset VAE performs better than AE, on the Fashion-MNIST dataset with
the same loss hyper-parameter β, VAE perform worse than the corresponding
deterministic architecture.

Importantly, VAEOut always shows clear improvements over the correspond-
ing VAE architecture. On MNIST, for some critical classes, see for example
digit 8 of MNIST, the performance are resolutely winning. On Fashion-MNIST,
despite the sometimes poor performances of the VAE reconstruction error, by
exploiting the latent space information VAEOut is able to achieve excellent
detecting performances, almost always filling the gap between the AE and VAE
results and going even further.

5 Conclusions

The main goal of this work is to show that, within the context of autoencoder
neural networks architectures, the outlier detection process can greatly benefit
of taking into account the latent space distribution together with the associ-
ated reconstruction error. Specifically, we observed that outliers tend to lie in
the sparsest regions of the combined latent/error space and proposed a novel
unsupervised anomaly detection algorithm, called VAEOut , that exploits this
property to identify outliers. The novel approach showed sensible improvements
in terms of detection performances over the basic autoencoder architecture to
which it is applied. As far as the future work is concerned, we are currently
enlarging the experimental campaing and investiganting other measures of den-
sity and other rules for combining latent space and reconstruction error.
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Abstract. Outlier detection in process mining refers to either infre-
quent behavior in relation to the underlying business process models or
to anomalous latencies of task execution (temporal anomalies). In this
work, we focus on the latter form of anomalies and we propose distance-
based methods. Compared to solutions relying on probability distribution
analysis and based on the experimental evaluation presented, our pro-
posal is shown to be capable of covering both trace and event outliers,
and being more efficient and effective. More specifically, running times of
our technique are lower by up to an order of magnitude, while we achieve
significantly higher precision and recall.

1 Introduction

Nowadays a lot of businesses turn to Business Process Management (BPM) in
order to improve their processes and become more efficient. BPM is the art
and science of overseeing how work is performed in an organization to ensure
consistent outcomes and to take advantage of improvement opportunities [16].
Thus the main focus of BPM is to improve the processes in a business. A business
process is represented as a set of tasks and their flows, which are orchestrated
to achieve a common business goal [14]. Since BPM execution is supported by
a breadth of software tools, automated log collection is not just feasible but
easy. These data can be processed using data mining techniques to provide more
knowledge about the business than just monitoring [1].

In this work, we focus on finding anomalies (or equivalently, outliers) in
the monitored data. An outlier is “an observation which deviates so much from
other observations as to arouse suspicions that it was generated by a different
mechanism” [9]. The outlying data often contains useful information about the
abnormal behavior, which is the reason that is used in applications such as
intrusion detection, credit card fraud, and so on [2]. In business processes, an
abnormal behavior can be related to a variety of issues, such as delay in a task
execution, or wrong sequences of tasks in a trace.

Most studies in the field focus on finding outlier patterns in the sequence of
events in a trace, e.g., [7,20] are proposals that detect such structural anomalies.
A complementary approach is to identify anomalies in the logged behavior of the
task execution in terms of non-typical runtime. These anomalies are termed here
c© Springer Nature Switzerland AG 2020
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as temporal ones, and as discussed in [18], it is important to check the behavior
of a complete interdependent set of tasks to derive more insightful conclusions,
e.g., whether it is (probably) a measurement error rather than actual abnormal
task behavior.

The contribution of this work is to propose a distance-based outlier detection
approach [2,12,13] to dealing with temporal anomalies in business processes. We
present how this can be achieved, we discuss implementation issues and we thor-
oughly evaluate the proposed solution. According to our results, we can claim that
our proposal is superior in terms of coverage, effectiveness and efficiency compared
to the proposal in [18], which is based on probability distribution analysis. The run-
ning times of our technique are lower by up to an order of magnitude for practical
settings, while we achieve significantly higher precision and recall.

The remainder of this work is structured as follows. In Sect. 2, we give the
details of the problem and our solution. We present the experimental evaluation
next. Section 4 discusses the related work and we conclude in Sect. 5.

2 A Distance-Based Temporal Outlier Detection
Approach

In this section, first we formalize event logs. Then we describe the methods for
discovering outlying traces and events. Following the terminology in [1,16], a
task is an atomic activity, and in this work, without loss of generality, when we
refer to activities, we imply atomic ones; therefore the terms tasks and activities
are used interchangeably.

2.1 Preliminaries

We follow the same terminology and event log definition as in many other works
in business process mining, e.g., [7,18]. More specifically, we assume that busi-
nesses have a mechanism to record the corresponding event logs in place in order
to analyze their processes. An event log is composed of a set of traces. Each trace
corresponds to a specific process instance execution and is identified by a unique
case identifier. The instance execution is manifested as a recorded sequence of
events. Each event records the execution of an activity in a particular trace(case).

Definition 1. Event Log: let A = {a1, a2, . . . , am} be a finite set of activities
(tasks) of size m. A log L is defined as L = (E,C, γ, δ, ts,�) where E is the finite
set of events, C is the finite set of Cases (Traces), γ : E → C is a surjective
function assigning events to Cases, δ : E → A is a surjective function assigning
events to activities, ts records the timestamp denoting the finish of task execu-
tion, and � is a strict total ordering over events, normally based on execution
timestamps.

From the definition above, it is straightforward to calculate the latency of
each task based on the difference between its timestamp and the timestamp
of its immediate predecessor; process instance start and termination events are
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included in the logs. The latency includes both the task duration and any waiting
time.1

2.2 Temporal Trace Outliers

To the best of our knowledge there is no method that finds temporal trace
outliers. Here, we propose a method that finds outlier traces based on the number
of executions and the mean time spend in every activity in a specific process
instance. We do not pose any restriction on (i) the order the activities may be
executed, (ii) whether they all appear in the same instance and (iii) on the times
they are executed in a single instance, since all these factors may differ between
process instances, e.g., [7,19].

We group L entries by trace, i.e., case identifier. In order to define the distance
between two traces, we first convert every trace to a vector of size 2m. Each
position to this vector corresponds to a distinct attribute.

Definition 2. Trace Vector: given a trace t, the Trace Vector of this trace, is a
vector [n0, ..., nm, t0, ..., tm] where m is the number of different activities in the pro-
cess to which L refers, ni, i = 1 . . . m is the number of executions of the same task
in the same trace (e.g., due to loops) and ti is the mean execution time of ai.

In the definition above, execution time should be interpreted as equivalent to
task latency. In the next step, we normalize the data, so that no attribute dom-
inates the distance calculation during the outlier detection process. We create a
tracematrix [t; t′; t′′; ...], where each row is a trace vector and there are 2m columns.
We then apply the z-score normalization Eq. (1) to every attribute, so that its mean
value becomes equal to 0 and its standard deviation is equal to 1 [2].

Z =
X − mean(X)

std(X)
, X is a column of the trace matrix (1)

Definition 3. Trace Vectors Distance: given two trace vectors t1, t2, where t1 =
[t11, . . . , t

1
2m] and t2 = [t21, . . . , t

2
2m], we define the distance between them as

dist =

√
√
√
√

2m∑

i=1

(t1i − t2i )2

2m
(2)

The Eq. (2) is similar to the traditional RMSE (Root Mean Square Error).
We take the second power of their difference, so that the distance between two
traces is dominated by the attributes for which they have the biggest difference.

1 If the logs contain the start and end finish time of each task explicitly, then our
approach to detecting latency anomalies can be applied to detecting anomalous task
durations in a straightforward manner.
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Algorithm 1 Find Outlier Traces
traceVectors ← [ ]
traces ← extract traces from L
for all trace ∈ traces do

4: traceVectors append preprocess(trace)
end for
normalizedTraces ← normalize(traceVectors)
mtree ← constructMTree(normalizedVectors)

8: outlierFactors ← [ ]
for all trace ∈ normalizedTraces do

kneighbors ← mtree.kneirestneighbors(trace,k)
outlierFactor ← 0

12: for all neighbor ∈ kneighbors do
outlierFactor ← outlierFactor + dist(trace,neighbor)

end for
outlierFactors append outlierFactor

16: end for
sort outlierFactors
return the top ζ traces

The pairwise distance between traces is used in a straightforward manner to
detect outliers. Each trace is assigned an outlier factor, which is equal to the
sum of distances from the k-nearest neighbors. As such, the traces that, when
depicted in a euclidean space, are located in areas with low density, will be
reported as outliers. Once we have calculated the outlier factor for every trace,
we can report the top ζ outliers. Formally, the temporal trace outliers are defined
as follows.

Definition 4. Temporal trace outlier: given a normalized trace matrix, a (nor-
malized) trace vector t is an outlier if the sum of the distances dist(t, t′) with
the closest k other trace vectors t′ is in the top ζ values, where k and ζ are
parameters defined by the user.

In real scenarios, there are thousands of traces, so we cannot afford to calcu-
late the distance between every pair of traces due to the quadratic complexity of
such a process. That is why we need a data structure called M-Tree to mitigate
the performance impact of range queries. M-Tree is a tree data structure that is
constructed using a metric and relies on the triangle equality for efficient range
and k-nearest neighbors queries [6]. The pseudo-code is in Algorithm 1.

In the last step of the algorithm, instead of reporting the top ζ outliers, we
can report the traces for which their outlier factor deviates more than x times
the standard deviation from the mean value. Or we can resort to the outlier
definition used in the subsequent section. However, our approach is more suitable
for a high-dimensionality space, since 2m can grow large. This is because a key
characteristic of the outlier definition above is that it does not rely on estimating
the underlying probability distribution, which is notoriously difficult in multiple
dimensions.
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2.3 Temporal Event Outliers

The previous method of outlier detection refereed to traces as a whole. Event
outliers, examine each event type separately, i.e., log entries in L are grouped
by the activity they refer to through the function δ. The aim of temporal event
outlier detection is to identify the event log entries, for which the corresponding
execution latency is highly dissimilar compared to the rest of the executions of
the same activity type.

This problem is first addressed in [18], where Rogge-Solti et al. presented a
method to find temporal anomalies, i.e. anomalies concerning the running time
of an activity in a process, using probability distribution fitting. The key point
is that, most commonly in real cases, the distribution of the task execution
latencies does not follow a normal distribution; so the proposal in [18] leverages
a more robust curve fitting method, which relies on the work in [23].

In this work we propose a method that uses the pairwise event log distances
to determine the outliers. The distance between two task entries is defined as the
absolute value of the difference between their execution latency. Then, the defi-
nition employed for trace outlier detection is transferred to events in a straight-
forward manner.

Definition 5. Temporal event outlier: given a set of task execution latencies
referring to the same activity ai ∈ A, a logged task latency is an outlier if the
sum of the distances with the closest k other task latencies is in the top ζ values,
where k and ζ are parameters defined by the user.

Alternatively, the following definition can be used, which is on the one hand
the same as in the seminal work of [12,13] but is more sensitive to the user-
defined input parameters.

Definition 6. Temporal event outlier (alternative definition): given a set of task
execution latencies referring to the same activity ai ∈ A, a logged task latency is
an outlier if it has less than k neighbors, where another task latency is neighbor
if its distance is less than or equal to R, and k and R are parameters defined by
the user.

Both definitions, for efficient implementation, require a data-structure, such
as R-tree or M-tree to perform the range queries involved.2 Another similarity is
that they do not require data normalization, e.g., through Eq. (1). Their main
difference is that Definition 5, gives a list of ζ values and implies that the end user
will post-process this list to check whether all the reported events are outliers
indeed, or more outliers exist, e.g., through examining the relative differences of
the sums. In Definition 6, there is no post-processing, but the correct setting of
the R value, which is scenario-dependent, rests with the user.

2 It is out of our scope in this work to compare R-tree vs M-tree.
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Fig. 1. Example of a measurement error from [18]. In the first row, the real execution
times of each event are shown. After a measurement error at event E2, which also
effected the execution time of E3, the second row shows the entries in the log file.

2.4 Temporal Outliers of Event Pairs

Reporting individual temporal event outliers is hard to interpret because such
temporal anomalies can be either true anomalies or measurement errors. In the
latter case, the timestamp of an event has been falsely logged, causing an event
to appear as outlier. This problem was first defined in [18], where the key obser-
vation is that measurements errors typically affect two consecutive tasks in the
trace in a negatively correlated manner. More specifically, if there is no abnor-
mal behavior in the real execution, but due to delayed (resp. early) recording, a
task instance has a long (resp. short) latency in the logs, it is expected that the
subsequent event will have a recorded short (resp. long) latency. This is (most
probably) a measurement error and has to be distinguished from real outliers
(see Fig. 1).

The approach to identifying measurement errors in [18] consists of two com-
ponents: (i) estimating the probability distribution function of the task latencies,
as mentioned in the previous section, and (ii) employing a Bayesian Network to
define the dependencies between activities; where the nodes in the Bayesian
Network are the activities and the edges represent the succeeding-preceding
relations. Here, we suggest to replace the first part with distance-based outlier
detection techniques, extending the proposal in Sect. 2.3. More specifically, we
introduce two techniques for detecting measurement errors (or better, probable
measurement errors). The first one transfers the problem of outlying detection of
event pairs to the problem of distance-based outlier detection of 2-dimensional
points, so that Definitions 5 and 6 apply with simple extensions. The second one
uses exactly the same setting as in Sect. 2.3.

Mapping Consecutive Events in a 2-Dimensional Space. First, we nor-
malize the task latencies similarly to the approach in Sect. 2.2. Second, we take
all the ordered pairs of consecutive events as they appear in the log file. For
each such ordered pair, we keep only the ordered pair of their normalized laten-
cies. Then, each ordered pair of latency values can be treated as a 2-dimensional
point. Regardless of any probability distribution of the task latencies, for every
activity, the mean latency is 0 and its standard deviation equals to 1. Overall,
the whole log set is transformed to a set of points. The size of this set is smaller
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Fig. 2. Example data point distribution after normalization. The blue data points are
true outliers. The green data point at the top-right is also a true outlier because its
coordinates have the same sign. However, the red point at the top-left part is (probably)
a measurement error. (Color figure online)

than the number of log entries in L because we produce a point for each event
in a trace apart from the start one.

Figure 2 shows an example of a set of log entries transformed to a set of points.
We notice that most of the data points are near the center (0, 0), but there are
several points that are far from it. The data points that deviate significantly
from the center, are reported as outliers using our distance-based techniques
(either definitions), because they have a few points in their neighborhood. In the
example, most of the outliers deviate only with regards to a single dimension;
these are considered as true outliers. True outliers are also the outliers in the
top-right and left-bottom part of such an illustration. However, any points in
the top-left or right-bottom part, like the red point in the figure, are reported
as (probable) measurement errors because the sum of their execution times is
normal and there is a suspicion that it is simply due to delayed or premature
recording of the finish timestamp of the preceding event.

We employ Definition 5 for outlier detection, using the euclidean distance.
Instead of a M-tree, we can also use a R-tree (see also Algorithm 2). As previ-
ously, we report the top ζ points.

We use again as an outlying factor, the sum of distance for the k-nearest
neighbors for every data point. In order to make fast knn queries we implement
a tree data structure, named R-Tree, which is suitable for range queries and knn
queries in the space. As a distance metric we are using the Euclidean distance.

The m data points with the highest outlying factor, will be reported as out-
liers. In Algorithm 2 we show the procedure of detecting outlying pairs of events.
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Algorithm 2 Temporal outliers of event pairs
Input traces
Output outliers
eventPairs ← [ ]
for all trace ∈ traces do

for all e1, e2 ∈ trace do
eventPairs append [normalized(e1.latency), normalized(e2.latency)]

5: end for
end for
rtree ← constructRTree(eventPairs)
outlierFactors ← [ ]
for all pair ∈ eventPairs do

10: kneighbors ← rtree.kneirestneighbors(pair)
outlierFactor ← 0
for all neighbor ∈ kneighbors do

outlierFactor ← outlierFactor + euclidean-distance(pair,neighbor)
end for

15: outlierFactors append outlierFactor
end for
sort outlierFactors
outliers ← top ζ pairs

The technique so far has produced the list of the consecutive logged events
that are temporal outliers. The next step is the assessment of the type of outlier-
ness. As already discussed, if these points have their coordinates with opposite
signs, i.e., one positive and another negative, there are reported as measurement
errors; otherwise they are reported as normal outliers. However, the normalized
latencies may create a problem if the absolute mean latency of one task in the
pair is much larger than the absolute mean latency of the other; in such a case,
deviating the same amount of standard deviations in both dimensions does not
counterbalance each other. Therefore, we denote as (d1, d2) the pair of the non-
normalized latencies for each result item in Algorithm 2, we adopt the following
definition and we run Algorithm 3.

Definition 7. Measurement error: given a set of pairs of outliers as reported
by Algorithm 2, the constituent outliers are reported as (probable) measurement
errors if

|(mean(d1) − d1) − (mean(d2) − d2)| ≤ τ (3)

Outlier Detection of Pairs: A More Efficient Approach. In the previous
technique, for each pair, we calculate the sum of distances from its k nearest
neighbor. Even though with the use of R-Tree, we manage to reduce the running
time, most of the computations were unnecessary, because they involve normal
latencies. Based on this, we keep the Algorithm 3 the same, where outliers dif-
ferentiate between normal outliers and measurement errors, but the input is not
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Algorithm 3 OutliersOrMeasurementErrors
Input outliers from Algorithm 2, threshold τ
Output normalOutliers, measurementErrors
normalOutliers ← o ∈ outliers and (o.x same sign as o.y)

2: measurementErrors ← [ ]
for all pair ∈ outliers-normalOutliers do

4: if pair is measurement error based on Equation (3) then
measurementErrors append pair

6: else
normalOutliers append pair

8: end if
end for

10: return normalOutliers and measurementErrors

provided by Algorithm 2. Instead, we use the techniques in Sect. 2.3 to find
isolated outliers. For each such outlier, we check whether its succeeding event is
an outlier as well, and if this is the case, the pair is considered in Algorithm 3. As
will be reported in the evaluation, avoiding to map the task pairs to a 2d space
yields performance improvements while producing exactly the same results.

3 Evaluation

We used both real-world and synthetic datasets to evaluate the performance
of the proposed methods. We start by presenting the datasets, followed by the
evaluation of the trace outlier detection method. Then we compare the two pair-
based methods that use distance and at the end we compare the best of these
methods with the one proposed in [18]. All tests were conducted in a machine
with 16 GB of RAM and 3.2 GHz CPU with 8 cores. The source code for all of
the proposed distance-based outlier detection methods is publicly available on
GitHub3.

The real-world datasets are taken from the Business Process Intelligence
(BPI) Challenges, and more specifically from the 2012 and 2017 ones. BPI124

is an event log of a loan application process. It consists of 13087 traces that
contain a total number of 262200 events. The mean amount of events per trace
is 20.03 and the minimum and maximum amount is 3 and 175, respectively.
BPI175 is an event log, which also corresponds to a loan application of an Dutch
financial institute. It includes 31509 traces, which contain over 1M (1202267)
events in total. The mean, max and min number of events per trace for this
dataset are 38.15, 10 and 180, respectively. We have also created a synthetic
dataset (details will be discussed later).

3 https://github.com/mavroudo/BPM-outlierDetection-distance-based.
4 https://data.4tu.nl/repository/uuid:3926db30-f712-4394-aebc-75976070e91f.
5 https://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b.

https://github.com/mavroudo/BPM-outlierDetection-distance-based
https://data.4tu.nl/repository/uuid:3926db30-f712-4394-aebc-75976070e91f
https://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
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Fig. 3. Sum of the distances from the k-nearest neighbor for different values of k (a)
and sum value distributions for k = 50 (b)

3.1 Evaluation of Trace Outlier Detection

Our first experiment aims at verifying the effectiveness of our approach. For
this, we use the read-world dataset BPI12. Figure 3(a) shows how the sum of
distances from k-nearest neighbors is changing with different values of k. It also
helps us identifying the most suitable value of k, which corresponds to the plot
that is initially as parallel as possible with the horizontal axis, and then, after
a sharp change, becomes parallel to the vertical one. Such a behavior allows a
clearer distinction of outliers, and in our experiment is the plot for k = 50.

In Fig. 3(b), the box-plot shows how the sums of distances of the 50 nearest
neighbors are distributed for all the traces. As shown, the mean value is very
low (actual value is 14.4) and there are only a few traces that have sum of
distances more than 400. After executing the trace outlier detection method for
k = 50 and a relatively large ζ value, we report as real outliers the traces with
outlying factor greater than the mean value of all the sums plus 4 times the
standard deviation; in this manner, we keep 52 outlying traces. Two examples
are as follows:

1. Trace2, which contains the activity “W Wijzigen contractgegevens”. This
activity was only executed in 12 out of 13082 traces.

2. Trace856 because its mean execution time of the activity “W Afhandelen
leads” is 2327510.471 s. This activity has mean execution time 586 s in the
complete log.

The previous experiments referred to the effectiveness of the approach.
Regarding the efficiency, even though that we use an M-Tree to reduce the time
for k-nearest neighbors queries, as the dimensions increase, the running time for
these queries increases in a quadratic manner, as shown in Fig. 4.
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Fig. 4. Execution time for varying number of dimensions

Fig. 5. Execution times of distance-based outlier detection with and without mapping
event pairs to a 2-dimensional space

3.2 Evaluation of Event Outlier Detection

In Sect. 2.4 we proposed two different methods that use the distance to find
anomalous pairs of events and then classifying them as true outliers or measure-
ment errors. We conduct an experiment using the BPI12 dataset to compare the
execution times between these two methods and we show the running times in
Fig. 5. From the figure, we can conclude that not mapping to a 2-dimensional
space but directly relying on individual event outlier detection is more efficient
by up to an order of magnitude for small k values. Therefore, next, we employ
solely the second method from Sect. 2.4.

Comparison Against [18]. To compare our distance-based outlier detection
against the probability distribution-based in [18], we employ both BPI12 and
BPI17 and also a synthetic data set. The synthetic dataset contains 4 activities
with different distributions, namely (i) a combination of two normal distributions
(see Fig. 6), (ii) a combination of two alpha distributions, (iii) a combination of
two exponential distributions and (iv) a power lognormal distribution. It includes
526 traces of 8K events overall, where every trace contains between 5 to 25 events.
The synthetic dataset is provided along with the source code.
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Fig. 6. Distribution of task execution latencies for the first activity in the synthetic
dataset.

Fig. 7. Running times for the BPI12 (left), BPI17 (middle) and synthetic (right)
datasets, respectively. The yellow (doted) line represents execution time based on
threshold and the blue line represents execution time based on the number of neighbors
(Color figure online)

The execution times for both methods are presented in Fig. 7. We confirm
that the time is linear dependent on k, i.e., the number of nearest neighbors
that we take into account in the distance-based method. The execution time for
the distribution fitting method does not depend on the input parameters (i.e.,
probability fitting threshold ranging from 0.001 to 0.2). For a value of k close
to 50 that we have shown that make more sense, our method runs faster by an
order of magnitude.

We test the effectiveness of each method in the synthetic dataset. Each
event is classified as outlier or normal based on whether the probability den-
sity function is below 0.01. The precision and recall results appear in Fig. 8. Our
method has significantly higher precision and recall, whereas the distribution
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Fig. 8. Precision and recall as a function of ζ for the distance-based method with k = 50
(left) and the probability fitting threshold for the technique in [18] (right).

fitting method cannot approximate correctly the underlying distributions. E.g.,
for the distribution in Fig. 6 (first activity in the synthetic dataset), it fails to
correctly report outliers with task latency between 1 and 4 time units. Overall,
Fig. 8 shows that no matter how the technique in [18] is configured, there is
better configuration of our technique in terms of precision and recall.

4 Related Work

There are several proposals about outlier detection in business processes. How-
ever, almost all of them focus on detecting outliers regarding the structure of the
underlying process model. In this direction, outliers can be used in order to pre-
dict the failure of an ongoing process. In [5,11], different approaches to predicting
the next tasks of an active trace, and based on this prediction to determine if
a trace will fail to execute properly, are presented. In addition, as a business
process log trace is typically in the form of a sequence of tasks, outliers can be
found in these sequences, e.g., [7,15]. Anomaly detection methods that take into
account both the structure of the model and the data attributes are known as
multi-perspective, have been developed, such as the ones in [3,4,17]. However,
none of these approaches deal with temporal anomalies in the way we do, and
thus are not directly comparable to our approach. Temporal outlier detection,
in the context of BPM, have been addressed in [18], and we have directly com-
pared our solution against it in the previous section. The approach in [10], even
though it calculates the distance between traces based on task duration, it only
considers those traces that contain identical tasks. Hence, it cannot find global
temporal outliers and does not deal with measurement errors.

In addition, a typical application is to clear the log dataset removing infre-
quent behavior in order to facilitate process discovery; process discovery aims
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to derive the underlying process model out of event logs. Another example of
dealing with variations in the process model structure is to allow configurable
models, as thoroughly covered in [19]. All the proposals above are orthogonal to
our work, which focuses on temporal outliers.

From the outlier detection point of view, there exist several textbooks, e.g.,
[2]. The techniques based on statistics were the first to be proposed, e.g., through
determining data values at the tails of a univariate distribution and the corre-
sponding level of statistical significance. Distance-based outlier detection, which
is leveraged in this work, is a representative of proximity-based anomaly detec-
tion. Proximity-based methods define a data point as an outlier if its neigh-
borhood is sparsely populated. In distance-based techniques, a data point is
considered as an outlier, if its distance from its k-th closest neighbor is longer
than a predefined radius. Some of the advantages of these techniques are the
linear scalability in the size of the dataset [8,12], the ability to interpret the
results and operate in a streaming and/or massively parallel environment, e.g.,
[22], and their wide applicability as reported in [21].

5 Summary

In this work, we advocate the usage of distance-based outlier detection methods
for identifying anomalous behavior in event logs in terms of the running time
of tasks. We explain the implementation details, and compared to the existing
methods that rely on probability distribution approximation, our proposal is
broader, in the sense that it applies to complete traces, more efficient, in the
sense that runs faster, and more effective, in the sense that achieves higher
precision and recall. Our implementation is provided as open-source.
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Abstract. The amount and diversity of mobile and IoT location and
trajectory data are increasing rapidly. As a consequence, there is an
emerging need for flexible and scalable tools for analyzing this data. In
this work we focus on an important building block for analyzing location
data, that is, the problem of partitioning a space into regions of inter-
est (ROIs) that are densely visited. The extraction of ROIs is of great
importance as it constitutes the first step of many types of data analysis
on mobility data, such as the extraction of trajectory patterns expressed
in terms of sequences of ROIs. However, in this paper we argue that
unconstrained ROIs are not meaningful and useful in all applications.
To address this weakness, we propose the problem of constraint-based
ROI mining, and identify two types of constraints: intra- and inter-ROI
constraints. Subsequently, we propose an integer linear programming for-
mulation of the task of discovering a fixed number of constrained ROIs
from a binary density matrix. We extend the approach to discover auto-
matically the number of ROIs by relying on the Minimum Description
Length Principle. Our experiments on real data show that the approach
is both flexible, scalable and able to retrieve constrained ROIs of higher
quality than those extracted with existing approaches, even when no
constraints are imposed.

Keywords: Data mining · Constrained optimization · Integer linear
programming · Regions of interest · Constrained clustering

1 Introduction

The number and diversity of tracking devices are constantly increasing and so does
the volume of recorded location data. Innovative applications exploiting these data
can be imagined if some form of meaningful aggregated information can be discov-
ered. An important building block for summarizing trajectory data is the extrac-
tion of regions of interest (ROIs). Informally, a ROI is a densely visited space. The
discovery of ROIs is of practical importance as it can be instrumental for other
tasks. Examples of such tasks related to trajectory mining are:
– In [8], the authors propose to discover trajectory patterns expressed in terms

of ROIs. They first rewrite the trajectories as a sequence of the extracted
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ROIs. A frequent sequence mining algorithm [1,4] can then be applied on the
sequence database to extract sequential patterns with a minimum support.

– Another possible use of ROIs is location prediction. This task consists in,
given a database of trajectories and the start of a new trajectory of a moving
object, predicting what will be the next location of the moving object [12,15].

– In the area of urban management [18], the authors proposed a system relying
on ROIs to help taxis to wait in a region likely to contain their next trip
request.

However, not all ROIs are equally useful and meaningful in all applications. For
example, in the case of tourist spot recommendation, it may be desirable that the
extracted ROIs are close to public transport access; in an application suggesting
visiting a city by bicycle it is useful to impose a constraint that extracted ROIs
are close enough to bike paths, and are within reasonable distance from each
other. No existing approaches for identifying ROIs take such constraints into
account. For this reason, in this paper we introduce the problem of constraint-
based ROI mining. We categorize these constraints into two types: intra-ROI
constraints, which impose requirements on the individual ROIs, and inter-ROI
constraints, which impose requirements on the relationships between ROIs. In
this work, we propose an Integer Linear Program, that can directly incorporate
the two types of constraints, to solve this problem.

2 Preliminary Concepts

A well-known algorithm for identifying ROIs is the PopularRegion algorithm [8]
that is both easy to implement and scalable. This algorithm extracts non-
overlapping rectangular ROIs from a 2D grid of density values G of size N × M
(N rows and M columns). This grid-based approach enables application depen-
dent density definitions. For analyzing trajectory data, the density of a cell can
be the number crossing trajectories with or without interpolation between con-
secutive points. If one is rather interested to detect geographic regions where
users stay for a significant amount of time (Stay Points) [11], one can define the
density as the relative fraction of time spent in the cell by a trajectory.

The PopularRegion algorithm works as follows. Starting from a small ROI,
it greedily expands the rectangle ROI in one of the four directions as long as the
average density of the rectangle remains above a given threshold. Using the same
notation as in [8], cij is the cell at row i and column j (1 ≤ i ≤ N , 1 ≤ j ≤ M),
θ is a user defined minimum density threshold and G∗ = {c ∈ G | density(c) ≥ θ}
is the set of all dense cells. The algorithm works as follows:
1. Take the cell in G∗ with the highest density that is not already in a ROI. If

there is none, return the set of ROIs.
2. Create a ROI with this single cell.
3. While there is a direction in which we can extend the ROI, extend it in the

direction that gives the highest average density.
4. Add the ROI to the set of ROIs and go to 1.
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The main advantage of the PopularRegion algorithm is its scalability and ease
of implementation. However, it clearly also has a number of weaknesses. First its
output is ill-defined; there is no clear characterization of an objective function
that is minimized. Furthermore, as explained in [9], it is easy to create examples
where the greedy algorithm ends up finding very large ROIs that may hinder
the creation of interesting subregions. This is illustrated in Fig. 2 and 3, which
show the initial dense cells as well as the regions discovered by PopularRegion,
for two different data sets. As can be observed, for both data sets PopularRegion
identifies regions that cover large part of the city, which is not satisfying. Finally,
PopularRegion does not allow constraining the discovered ROIs and it can only
generate rectangular ROIs.

Candidate ROIs
Generation
Algorithm

Grid with 
dense cells

Intra ROI
constraints

Integer Linear Program Final
ROIs 

Inter ROI
constraints

ROI 
Candidates

Grid
Computation

Algorithm

Geo-Data Map

(a) (b) (c)

Fig. 1. Our approach is decomposed into consecutive steps: (a) The grid G is created
from the geolocalized data; (b) A set of candidate ROIs is generated satisfying intra-
ROIs constraints; (c) The set of ROIs is selected among the candidate ROIs solving
the Integer Linear Program taking into account inter-ROI constraints.

Our contribution is the process for discovering constraint-based ROIs given
in Fig. 1:
– The grid and the dense cells are computed based on the map and the geo-

localized data. Many alternatives are possible depending on the application.
– A set of candidate ROIs are computed. The final ROIs will be selected from

this set. These ROIs must satisfy the intra-ROI constraints such as the mini-
mum distance to public transportation, the shape constraints, etc.

– An Integer Linear Program (ILP) selects the final ROIs. It consists in finding
the most parsimonious representation of all the dense cells. Two variants are
proposed: one with a fixed number K of regions and one in which this number
is chosen automatically by relying on the minimum description length (MDL)
principle [14]. The ILP can easily accommodate inter-cluster constraints such
as the minimum distance between any two selected ROIs.

This paper focuses mainly on the generation of candidate ROIs and the ROI
selection algorithm (the ILP). The grid and dense cells generation is left to the
user: it is an orthogonal task which must be adapted to the task at hand.

This approach for detecting ROIs addresses a number of weaknesses of the
PopularRegion algorithm. In particular, it can easily accommodate constraints
on ROIs and the optimization problem for discovering the ROIs is well-defined.
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We evaluate the new approach qualitatively and compare it with the Popular-
Region and OPTICS [3] algorithms on real-life data. As alternative approaches
do not support constraints, we also evaluate our approach without constraints.

An example of regions discovered by our method is illustrated in Figs. 2c
and 3c. As can be seen, our method finds more fine-grained ROIs and avoids
selecting all the isolated cells.

Related work is discussed in Sect. 3. Our optimization model is introduced in
Sect. 4. The candidate ROIs generation is discussed in Sect. 5, as it is dependent
on the optimization model, and the addition of constraints is describe in Sect. 6.
The experiments are described in Sect. 7. We conclude in Sect. 8.

Fig. 2. Visualization of the output of the different methods for the Kaggle data set.

Fig. 3. Visualization of the output of the different methods for the T-Drive data set.

3 State of the Art and Related Work

Like PopularRegions, Gorawski and Jureczek [9] proposed a grid-based approach
to identify ROIs. The algorithm is essentially PopularRegions with a limit on
the size of the rectangles during the extension process. It requires additional
parameters and does not permit constraining the ROIs.

The approach of [5] is not grid-based. Starting from geo-tagged locations on
the map, it discovers dense convex polygons around predefined points-of-interest
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(PoI). The fixed PoI setting limits the use cases of the approach and the fact
that it is not grid-based also limits the possible applications. Furthermore, shape
constraints on the ROIs are not possible.

The task of finding ROIs on a grid is similar to clustering. Starting from
a grid of dense cells, any clustering method can be used to group dense cells
close to each other. However, the problem is not exactly the same. Clusters of
dense cells are not necessarily connected regions. DBSCAN [7] is one of the most
popular density-based clustering algorithms. It does not require to specify the
number of clusters and is also able to identify outlier points. OPTICS [3] is
another well-known method to perform density-based clustering that is able to
deal with clusters of varying density. Examples of output of OPTICS are shown
in Figs. 2d and 3d. OPTICS identifies clusters of various forms since they are
not constrained by the algorithm.

In [6], the authors propose a clustering method computing connected compo-
nent sets of dense cells starting from the rectangular regions found by Popular-
Region. This method is not able to filter outlier cells like DBSCAN or OPTICS
and does not accept constraints on the ROIs.

4 An Optimization Model for ROIs

This section describes the optimization model used in step (c) of Fig. 1. The
model is in charge of selecting the final ROIs from a set of precomputed candidate
ROIs denoted S (shapes). We formalize the problem as an integer linear program
(ILP). For simplicity we first assume that S is composed of rectangles and that
the desired number of ROIs to select is fixed to K. Subsequently, we will extend
the approach to discover automatically the number of regions K, by using the
Minimum Description Length Principle [14]. We will first introduce our approach
when no constraints are given; how to deal with constraints is discussed in Sect. 6.

4.1 Selection of K ROIs

Assuming that the set of candidate rectangles is composed of all the possible
rectangles, our approach aims to find K non-overlapping rectangles that cover
the dense cells well and avoid covering the non-dense ones. For a N × M grid,
there are less than N2M2 = |G| × |G| such rectangles, that is, the total number
of possible pairs of coordinates.

The approach can be interpreted as discovering a classification model for pre-
dicting the dense-non-dense status of a cell solely based on its coordinates. The
prediction function to discover is chosen from a hypothesis space composed of the
power-set of non-overlapping shapes from S. Of course, such a prediction model
will make a number of errors: the non-dense cells contained in some selected
rectangle and the dense cells not covered by any selected rectangle. In the exam-
ple of Fig. 4, the model has selected two rectangles and makes four prediction
errors: the cells (4, 3) and (6, 7) are non-dense cells covered by a rectangle, and
the cells (6, 2) and (7, 8) are dense cells not covered by a rectangle.
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Fig. 4. Model example

The Integer Linear Program. The selection status of every candidate Ri ∈ S is
modeled with one binary variable xi ∈ {0, 1}. The set of selected shapes is noted
R = {Ri ∈ S | xi = 1}. By abuse of notation, we also use R to denote the set of
covered cells

⋃
xi=1 Ri. (Un)covered cells are captured in the model using binary

variables covc ∈ {0, 1}, where covc = 1 ⇐⇒ c ∈ R.
Given that G (G∗) is the set of (dense) cells, the dense cells not covered by

any rectangle are denoted as error+ = {c ∈ G∗ | covc = 0} and the non-dense
cells covered by some rectangles are denoted as error− = {c ∈ G \ G∗ | covc =
1}. We hence wish to discover the set of rectangles that minimizes the error:
arg minR |error+| + |error−|. The complete model is given next.

minimize
∑

c∈G∗
(1 − covc) +

∑

c∈(G\G∗)

covc (1a)

subject to
∑

Ri∈S xi ≤ K (1b)
∑

Ri∈S|c∈Ri
xi ≤ 1 ∀c ∈ G (1c)

xi ≤ covc ∀Ri ∈ S,∀c ∈ Ri (1d)
covc ≤ ∑

Ri∈S|c∈Ri
xi ∀c ∈ G (1e)

xi ∈ {0, 1} ∀Ri ∈ S (1f)
covc ∈ {0, 1} ∀c ∈ G (1g)

The constraint (1b) limits the number of selected rectangles to K. The
constraints (1c) prevent selecting overlapping rectangles. The constraints (1d)
and (1e) ensure covc = 1 ⇔ ∃xi = 1 : c ∈ Ri.

We further improve this model to get rid of the |G| × |S| constraints (1d)
and (1e), and the binary variables covc. This new model relies on the next
theorem stating that the value |error+| + |error−| can be inferred solely based
on the number of dense and non-dense cells covered by the rectangles.
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Theorem 1. By denoting di (resp. ui) the number of dense (resp. non-dense)
cells covered by the rectangle Ri, it follows that

arg min
R

|error+| + |error−| ⇔ arg min
R

∑

Ri∈R
(ui − di).

Proof. The term |error+| can be written as |G∗|−∑
Ri∈R di. The term |error−|

is
∑

Ri∈R ui. It follows that

arg min
R

|error+| + |error−| = arg min
R

|G∗| − (
∑

Ri∈R
di) + (

∑

Ri∈R
ui)

= arg min
R

∑

Ri∈R
(ui − di)


�

The linear program to solve is then the following:

minimize
∑

Ri∈S
xi · (ui − di) (2a)

subject to
∑

Ri∈S xi ≤ K (2b)
∑

Ri∈S|c∈Ri
xi ≤ 1 ∀c ∈ G (2c)

xi ∈ {0, 1} ∀Ri ∈ S (2d)

with Eq. (2b) limiting the number of regions and Eq. (2c) enforcing non-overlap
between the regions. The problem of ROI selection is thus reduced to an instance
of the Maximum Weighted Independent Set problem with an additional cardi-
nality constraint [10] that is generally solved with integer programming solvers.

ROIs of Arbitrary Shape. The integer linear model (2) does not require that
candidate regions are rectangular. Any shape that covers a set of cells can
be included in the candidate set S. In particular, a circular region Circ =
(row, col, radius) defined by its center and radius is a natural ROI candidate.
The circular region covers the cells Circ = {cij ∈ G | |i−row|+|j−col| ≤ radius}
(assuming Manhattan distance). We further discuss the generation of candidate
regions in Sect. 5.

4.2 A Parameter-Free Approach

Fixing the limit K for the maximum number of ROIs can in some cases be
an arbitrary decision. We can use the Minimum Description Length (MDL)
principle [14] to determine the size of a model in a principled manner. MDL
trades off the description length of the data given the model, and the description
length of the model itself. More precisely, let us assume that we have a set of
models (hypothesis) H. The description length of the model L(H) is the number
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of bits needed to encode the model; the description length of the data L(D | H)
is the number of bits needed to encode the data given the model H. The MDL
principle tells us to prefer the model that minimizes L(D,H) = L(H)+L(D | H).

The model described in the previous sections is composed of a choice of
multiple ROIs, indicating where the cells must be dense, along with errors of
the model, that is, coordinates of cells which are included in a selected ROI but
are non-dense, and dense cells outside the selected ROIs. Each of these can be
encoded using a different number of integers:
– 4 integers per rectangle (top-left and bottom-right corners’ coordinates)
– 3 integers per circle (center coordinate and radius)
– 2 integers per wrongly classified cells (coordinates of the cell)
A fixed number of bits are used for every integer.

The length to encode the prediction model S (selected ROIs), and the input
cells in this model is:

L(S) =
∑

Ri∈S
size(Ri) L(G | S) = 2 · (|G∗| +

∑

Ri∈S
(ui − di)),

where size(Ri) is the number of integers required to encode Ri (3 if Ri is a circle
and 4 if it is a rectangle, for example). The integer |G∗|+∑

Ri∈S(ui −di) counts
the number of errors made by the model and the factor 2 accounts for encoding
the two coordinates of each exception cell.

We can use the MDL criterion to discover the ROIs without fixing their
number in advance. To find regions that minimize the MDL criterion, we solve
the following ILP model:

minimize
∑

Ri∈S
xi · (2(ui − di) + size(Ri)) (3a)

subject to
∑

Ri∈S|c∈Ri
xi ≤ 1 ∀c ∈ G (3b)

xi ∈ {0, 1} ∀Ri ∈ S (3c)

Note that we do not exactly minimize L(G,S). Indeed we removed the con-
stant 2 · D as it does not impact the optimization. This problem is an instance
of the Maximum Weighted Independent Set problem.

5 Generation of Candidate ROIs

In this work we assume a generic generate and filter approach based on a set
of predicates for the candidate regions. The time needed to solve the ILP grows
with the number of candidate shapes as each one requires the introduction of
one binary decision variable. We show how to reduce the number of candidates
while ensuring that the solution found is still optimal.
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Table 1. Impact of the filtering on the set
of possible candidates before and after the
filtering.

Min.
density
threshold

Grid Size # candidates # remaining
candidates

2 100 25 502 500 17 218

150 128 255 625 7 703

200 404 010 000 3 330

5 100 25 502 500 2 523

150 128 255 625 1 255

200 404 010 000 448

Fig. 5. Output of our method with a
minimum distance constraint of 2 and
a maximum diameter constraint of 5.

In the worst case, without any filtering, the number of possible rectangles is
still polynomial in the size of the grid; more precisely, for a N ×M grid, there are
less than N2M2 possible rectangles (all the coordinates (x1, y1), (x2, y2)). There
is also a polynomial number of circles. Fortunately, one can avoid generating
all the candidates. Obviously, we can directly filter out all the candidates Ri

for which 2(ui − di) + size(Ri) > 0. Indeed, in that case the cost of taking
the candidate (2ui + size(Ri)) is higher than the cost of not selecting it (2di).
Moreover if a rectangle contains a set of contiguous rows (or columns) that cover
u non-dense cells, d dense cells and the inequality u > d + 2 holds, then this
rectangle is not part of the optimal solution. The intuition behind this property
is that by removing the rows (or columns) from the rectangle, we create two
rectangles that yield a smaller description length. Indeed, the gain in description
length (2u) is higher than its increase (2d + 4).

As an example of the effectiveness of the filtering, Table 1 shows, for multiple
configurations on a Kaggle data set, the total number of distinct rectangles before
and after the filtering.

6 Finding Constrained ROIs

As explained in Fig. 1 the ROIs can be constrained in two different ways: with
intra- or with inter-ROI constraints.

Intra-ROI Constraints are the ones that must be satisfied independently by
each ROI such as “a ROI contains at least one bus stop” or “is at a distance
less than 100 m from a train station”. These constraints define predicates that
must be satisfied by each region. These constraints are taken into account by
the algorithm that generates the set of candidates; in its most basic form, this
algorithm generates candidates which are filtered using the constraints.
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Inter-ROI Constraints are the ones that involve more than one ROI. For
instance, “two ROIs must be separated by a minimum distance to ensure diver-
sity in a tourist recommendation system”. Such constraints can be modeled in
the integer linear program within the non-overlapping constraint (3b) by also
including in the sum range all the candidate ROIs within a given radius distance
from the cell. The ILP model can also be extended to accommodate constraints
that concern only a subset of the regions that cover a cell; in principle, any con-
straint that can be modeled using linear equations can be added to the model.

Figure 5 shows the output of our method with a minimum distance constraint
of 2 between the ROIs and a maximum diameter of 5, and illustrates how the
introduction of constraints allows the ROIs to be more diverse.

7 Results and Comparison

Our experiments compare the PopularRegion algorithm with our new approach
on both real and synthetic data. Clustering techniques are not producing ROIs
with predefined shapes and thus explore an incomparable hypothesis space. We
nevertheless include the OPTICS clustering algorithm as an optimistic baseline
in our comparisons, assuming that the clusters discovered constitute the predic-
tion function for the density status of cells.

We did not include in this experiments the works of [2,13] since they use
application dependent semantic information. The method proposed in [6] also is
not evaluated as it finds an exact cover of all the dense cells without generalizing
with regions excluding outlier cells like OPTICS.

For the rest of this section, we denote by ILP our full model (i.e. Eqs. (3a)–
(3b) that includes rectangular and circular ROIs while ILP-rectangles denote a
restricted model containing only rectangular ROIs1. In both models we impose a
ratio constraint on the width and height of the rectangles (one can not be more
than two times the other) to avoid pathological solutions.

In this section we will address the following questions: i) How well does our
method perform compared to PopularRegion and OPTICS? ii) How efficient is
our approach and what is the computation bottleneck ? iii) Is our method robust
to noise in data?

7.1 Performances with Respect to the MDL Criterion

We first describe an experiment performed on two real-world data sets. The first
one comes from the taxi destination prediction challenge that was organized by
the 2015 ECML/PKDD conference and proposed as a Kaggle competition. This
data set contains more than 1.6 million trajectories from taxis of the city of
Porto2. The second data set is the T-Drive data set from Microsoft and contains
1 The Python code of our model is accessible here https://github.com/

AlexandreDubray/mining-ROI.
2 The data set can be downloaded at this link https://www.kaggle.com/crailtap/taxi-

trajectory/home. We filtered out incomplete trajectories and the few trajectories
that went too far away from Porto.

https://github.com/AlexandreDubray/mining-ROI
https://github.com/AlexandreDubray/mining-ROI
https://www.kaggle.com/crailtap/taxi-trajectory/home
https://www.kaggle.com/crailtap/taxi-trajectory/home
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GPS traces from taxis of Beijing [16,17]. For the Kaggle data set, the density
threshold will be expressed as a percentage of the total number of trajectories
and we used a 100 × 100 grid. For the T-Drive data set, we used a 200 × 200
grid and, since we do not have separate trajectories, the density threshold is a
percentage of the maximum density in the grid.

OPTICS requires two parameters: minPts, a threshold to be a core point,
and ξ, a distance ratio to separate the clusters. Details about the parameters can
be found in [3]. In our experiments, we set minPts = 3 since it is the threshold
at which our method considers a candidate interesting. We set ξ = 0.05, but this
parameter has almost no effect on the results in our experiments.

Figures 6b and 6d show the number of integers needed to encode the errors
made by the models (2 per cell wrongly classified), in function of the minimum
density threshold. As explained before and illustrated in Figs. 2b and 3b, for low-
density thresholds, PopularRegion tends to create large regions, which results in
a high number of errors since it covers many non-dense cells.

OPTICS selects in its clusters all the cells not considered noise; it is thus
expected that it will make few errors, at the expense of a larger model length.
Recall that OPTICS does not explore the same hypothesis space. It can thus only
be interpreted as a baseline when comparing the errors. Our method discovers
regions that generalize well the initial distribution of the dense cells, and allows
some non-dense cells in the ROIs. The number of errors is generally between
the ones of PopularRegion and OPTICS. When the minimum density threshold
increases, OPTICS and our approach perform slightly worse than PopularRegion.
The reason is that PopularRegion will overfit perfectly the isolated dense cells
by creating one region for each, which is obviously not the expected behavior of
an algorithm for detecting ROIs. As expected, the addition of circular shapes
permits decreasing slightly the number of errors over the rectangle model since
it augments the capacity of the prediction function.

Figures 6a and 6c show the number of integers needed to encode the ROIs
(i.e. the first part of the MDL criterion, excluding the values needed to encode
errors). Our method always gives a smaller value, with and without circular
regions. It can be seen that for a high density threshold, the number of ROIs
tends to zero as it is more advantageous to store the exceptions directly rather
than using ROIs (the number of dense cells decreasing). When the minimum
density threshold becomes larger, the dense cells become sparse over the map
and OPTICS considers them as noise without identifying any cluster.

Figure 6 shows that our method outperforms PopularRegion on low threshold
values by having less errors and nonetheless using fewer ROIs. For a higher value,
our methods maintain a similar number of errors as PopularRegion while using
at least four times less ROIs. Compared to OPTICS, we have a more errors
due to the inclusion of non-dense cells in the ROIs, but our ROIs require fewer
integers for their encoding. This is only valid due to the balance imposed by the
usage of MDL: in general, for a fixed number of ROIs our method will have a
smaller error than PopularRegion, and for a fixed error it will have a smaller
number of ROIs, by design.
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Fig. 6. Error percentage and length of the models in function of the minimum density
threshold on the Kaggle data set (a)–(b) and the T-Drive data set (c)–(d).

7.2 Execution Times

Table 2 shows the run time of the methods for two minimum density thresholds
and three grid sizes for the Kaggle data set. We limit the size of the grid to
200 × 200, which corresponds a cell size of 50 × 50 m. Working beyond this limit
seems unreasonable given the accuracy of GPS data. For the ILP model, we
show the time needed to solve the optimization problem defined in Eqs. (3a)–
(3b). The table also shows the total number of dense cells in the grid as well as
the number of candidate shapes.

Table 2. Run time of the methods for different grid sizes and minimum density thresh-
olds for the Kaggle data set.

Minimum density threshold 2% 5%

Grid side size 100 150 200 100 150 200

Number of dense cells (|G∗|) 571 597 537 230 178 137

Number of ILP candidates 23 814 7 779 3 399 2 880 1 232 434

ILP optimization time (s) 4.328 0.464 0.109 0.113 0.044 0.029

PopularRegion run time (s) 0.003 0.005 0.006 0.002 0.003 0.004

OPTICS run time (s) 0.209 0.222 0.200 0.084 0.065 0.051
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With its greedy behavior, PopularRegions obtains the best run time for all
configurations. The run time of our method is mostly determined by the number
of candidate shapes as these correspond to the number of variables in the model.
We see that when the number of candidates becomes low enough our method
has a run time that is similar to OPTICS. In a more constrained application, the
set of candidates is expected to be smaller and the constraints stronger, which
makes our method practical for identifying constrained regions of interest.

7.3 Robustness to Noise

To evaluate the robustness of the approaches to noise, we start from the Kaggle
dataset, which consists of trajectories (i.e. series of points in space and time),
and generate the grid by dividing the space in 100×100 cells of uniform size. The
dense cells are chosen as being the ones with a minimum density threshold of 0.05
(i.e. at least 5% of the trajectories visit these cells). By running the methods,
we obtain for each of them a set of selected ROIs R. We then introduce noise
by modifying the trajectory data points: for a level of noise p, each element of
a trajectory has a probability p to be moved; if it is moved, its new position
is chosen randomly in the square of 10 × 10 cells around the initial point. By
running the methods again, we obtain new sets of selected ROIs under noise R′.

We compute the recall |R ∩ R′|/|R|, the precision |R ∩ R′|/|R′| and the F1-
measure (2 · precision · recall)/(precision + recall). Figure 7 shows how these
metrics evolve with the level of noise.

Fig. 7. Recall, precision an F1-measure w.r.t the original data in function of the per-
centage of noise, on the Kaggle data set.

Both PopularRegions and our method obtain almost always a precision of
1.0. This means that these methods do not cover areas that were not covered
before. However, their recalls decrease, meaning that the found regions will tend
to shrink as the amount of noise increases.

While for PopularRegions, the recall decreases smoothly with the level of
noise, it decreases stepwise for our method. The reason is that our method uses
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a threshold to define the binary density status of the cells. It thus requires enough
noise in order to flip the status of a cell. For OPTICS it can be seen that its
precision and recall are lower than for the other two methods, for most of the
noise levels. In the beginning, as for the ILP-based method, it still produces the
same solution since it only considers the state of the cells. But unlike our method,
it is not able to generalize well as it can only cover dense cells. As a consequence,
its recall drops faster. For the same reason, it will never return a non-dense cell
that was initially dense, thus causing a drop in recall. However, it will return
dense cells that were non-dense (and thus not in the initial solution), decreasing
its precision. At the light of the F1-Measure, these combined effects are in favor
of our method. On any of the metrics, the ILP provides better results as long as
the noise remains reasonable. When the noise level becomes significant ( 40%),
the dense cells become very sparse and the results are much less relevant to
interpret.

8 Conclusion and Future Work

Mining approaches for discovering regions of interest (ROIs) are an important
building block for any application wishing to extract knowledge from location
data. In order to be useful, the extracted ROIs generally need to satisfy appli-
cation dependent constraints. This last requirement was missing in existing
approaches. Inspired by the approach introduced in [8], we introduced an alter-
native approach for discovering constrained ROIs. It relies on an efficient Integer
Linear Program (ILP) to extract the ROIs from a set of predefined ROIs candi-
dates. The model can be used in a setting where the number of ROIs is fixed, or
it can work in a parameter free setting by relying on the minimum description
length principle. Our approach is flexible as it can discover ROIs satisfying vari-
ous types of constraints that can be enforced either at the step of the candidate
ROI generation, or directly in the integer linear programming model. We have
reported various experiments showing the flexibility of the proposed approach
on both real and synthetic data sets. The results have shown that it was able to
retrieve constrained ROIs of higher quality than those extracted with existing
approaches such as the PopularRegion algorithm [8] and clustering techniques.
Despite the larger computation time, we showed that the approach is able to
scale on real-world data sets using fine-grained grids.

As future work one could solve the candidate generation problem using a
custom constraint-based search algorithm rather than with a generate and filter
one. Although less generic, this could be more efficient if many regions need to
be filtered out. The ILP does not require the shapes to be defined on the grid.
As future work, it could be interesting to extend our work with ROIs defined
in the continuous space. Finally, it would be interesting to extend the approach
to work with continuous density values rather than binary ones that require a
threshold parameter.
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Abstract. Route mining from trajectory databases, or trajectory data
mining, has become an important and valuable task since the popular-
ization of GPS devices. Sequential pattern mining based approaches are
well applied to trajectory data mining, while they often suffer the prob-
lem of high redundancy and low comprehensibility. In this paper, we
solve this problem by proposing a novel approach of disjoint sequential
pattern pair mining, which takes on a new perspective to this problem
by focusing on extracting extra valuable information, i.e., hyper pat-
terns from the “redundant” patterns instead of just removing them. We
conduct experiments on a real tourist trajectory database as well as an
artificial one. We show the practical applicability of our approach and
the effectiveness and efficiency of our mining algorithm by analyzing the
mining results.

Keywords: Route mining · Trajectory data mining · Sequential
pattern mining · Disjoint sequential pattern pair mining

1 Introduction

Trajectory databases, the databases keeping records of the moving trajectories of
vehicles and/or pedestrians, have recently become more available and cost effec-
tive due to the popularization of GPS technology. Thus, extracting information
or knowledge from such databases, i.e., route mining, has become a valuable and
challenging task. One of the most preferred approaches for route mining is to
convert each trajectory into a sequence and then apply sequential pattern mining
(SPM) [1,6] for mining the frequent segments of these trajectories [3,5,8,12]. In
Fig. 1, we give an example for the basic procedure of SPM based route mining.

These SPM based approaches are relatively easy to implement, but may
suffer the problem of producing an output with much redundancy [2,3], and
therefore in the previously proposed SPM based route mining systems, var-
ious techniques have been implemented to improve the quality of the out-
puts [3,4,9,11,12,14,15]. In this research, we propose a new approach to solve
this problem from another perspective. The goal of this approach is to mine
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Fig. 1. An example for SPM based route mining. In the example, three trajectories are
shown on the map provided by Google Earth. The map is divided into several mesh
grids and all grids are marked with chessboard coordinates so that we can represent
each trajectory with a sequence of grids. For instance, the red trajectory successively
passes through grid c2, c3, c4, b4, so it can also be represented with sequence c2 → c3 →
c4 → b4. After conversion, the trajectory database turns into a sequential database so
we can use SPM to mine frequent patterns, i.e., frequent segments of trajectories.
(Color figure online)

hyper-patterns called disjoint sequential pattern pairs, i.e., associated pattern
pairs with a disjoint relationship. These hyper-patterns are proved to provide
more concise and valuable information compared with the original sequential
patterns. That is, by applying disjoint sequential pattern pair mining, we can
get more concise outputs with little redundancy and much valuable knowledge
which is difficult to be extracted with original SPM based methods.

In the latter part of this paper, we first summarize the background knowledge
of SPM based route mining and previously proposed approaches for output opti-
mization. Then, we introduce our newly proposed approach of disjoint sequen-
tial pattern pair mining. The introduction includes our definitions of frequent,
closed and maximal disjoint sequential patterns and our algorithms for mining
them. Next, we describe our procedures for processing a real tourist trajectory
database and generating an artificial database. At last, we conduct comparative
experiments on the two databases and discuss the results.

2 Preliminary Knowledge

2.1 Sequential Pattern Mining (SPM) and Route Mining

Sequential Pattern Mining (SPM) is the task of extracting ordered patterns
from a sequential database [1,6]. The task has lots of variations for appli-
cations in different fields, while in this paper, we only introduce the vari-
ation mainly applied in route mining [3,8,12]: Given a sequential database
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DB =
{
S(1), S(2), . . . , S(‖DB‖)} consisting of sequences, the goal of the task

is to list all short sequences with a support value larger than a threshold. Here,
a sequence A = A1 → A2 → · · · → Am is an ordered list of items. The support
value of a short sequence S is defined as below:

Definition 1. The support value of a sequential pattern S in database DB,
denoted by suppDB(S), is defined as the number of sequences in the database
which support S. Here, we say sequence P supports sequence Q (denoted as
P � Q or Q � P ) if Q is a subsequence of P , i.e., ∃{x1, x2, . . . , x‖Q‖} such that
1 ≤ x1 ≤ x2 ≤ . . . ≤ x‖Q‖ ≤ ‖P‖ and 1 ≤ ∀i ≤ ‖Q‖ Qi = Pxi

. Here ‖P‖ means
the length of sequence P .

The task of route mining can be reduced to SPM with techniques converting
the trajectories into a sequence of road segments [3,12] or zones [5,8], as is
previously introduced in Fig. 1. However, such basic form of SPM based route
mining may generate large quantities of redundant patterns [3,14,15]. To get a
practical output, researchers have proposed methods and techniques for reducing
the size and increasing the quality of the mined patterns.

3 Related Work on Improving the Output Quality

A common solution for reducing the redundancy of the output is to limit the
output size by adding constraints to the patterns to be mined. These methods are
categorized as constraint-based sequential pattern mining. To the furthest of our
preliminary survey, the most preferred constraint for SPM based route mining
is the contiguous constraint [3,14,15], i.e., the constraint that only patterns
matching with contiguous road sections are to be mined. These methods are
effective in reducing the redundancy, but they rely on foreknown features of the
database to choose the proper type of constraint to be applied. For example,
the well-preferred contiguous constraint is only applicable to vehicle trajectory
data mining because other types of trajectories (like bicycles) may not match
perfectly with contiguous road sections [5]. That is, for databases with unknown
features, a more general method for reducing the redundancy is needed.

Another common solution is to extend the mined sequential patterns to more
informative and valuable forms with the help of external data sources so that
the extended outputs will contain less redundancy. For example, the POI-Visit
pattern mining module [4] utilizes the internal traffic time database to extend the
sequential patterns into POI-Visit patterns which is proved to have much value
and little redundancy. These methods can work on any trajectory databases, but
become unavailable when we have no access to additional data sources.

Inspired by these ideas, we propose our new solution of disjoint sequential
pattern pair mining. As is being proved in the following sections, by applying
the solution, we can not only reduce the sizes of the outputs, but also extend the
patterns in the outputs into associated pattern pairs from which we can extract
more valuable knowledge without access to external databases.
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4 Disjoint Sequential Pattern Pair Mining

We first give the basic definition of disjoint sequential pattern pairs as follows.
Note that in this paper, a right arrow is used for denoting not only the order of
items but also the concatenation of sequences and elements (e.g. a → F,B → C),
where sequences are denoted with uppercase letters and items are denoted with
lowercase letters like p or uppercase letters with subscripts like P1.

Definition 2. Sequential pattern P = P1 → P2 → · · · → P‖P‖ and Q = Q1 →
Q2 → · · · → Q‖Q‖ form a disjoint sequential pattern pair (DSPP) if all condi-
tions below are satisfied.

– P1 = Q1 and P‖P‖ = Q‖Q‖.
– {P2, P3, ..., P‖P‖−1} ∩ {Q2, Q3, ..., Q‖Q‖−1} = ∅.
– For any integer pair (i, j) satisfying 1 < i < ‖P‖ and 1 < j < ‖Q‖, there

must be Pi �∈ {P1, P‖P‖} and Qj �∈ {Q1, Q‖Q‖} and suppDB(P0 → Pi →
Qj → P‖P‖) = 0 and suppDB(Q0 → Qj → Pi → Q‖Q‖) = 0.

From the definition, we know that the disjoint sequential pattern pair is a
hyper-pattern representing the disjoint relation of two routes from the starting
place to the destination place. Here “disjoint” means a tourist moving from the
starting place to the destination place may only choose either one of the route,
and once they choose the route, he or she should never switch to another route
before he or she arrives at the destination. These disjoint route pairs widely exist
in our real life. For example, say we have six spots located in zone a, b, c, d, e, f
and we find that pattern a → c → e → f with a → b → d → f associates
a disjoint pattern pair. Figure 2 depicts two possible cases where the disjoint
relationship may exist. In the first case, a lake is located between walking path
a → b → d → f and a → c → e → f , suggesting that the direct access from b
or d to c or e is impossible. In the second case, zone b and d are located on a
different bus route with zone c and e. Since tourists are unlikely to switch from
a bus route to another one, it is also unlikely for a tourist to visit c or e directly
after visiting b or d. Such information of disjoint routes can be quite important
for tourists to make their plan of where to visit and where not to visit, while the
information could be difficult to extract by human inspection from a large SPM
output. Therefore, it is beneficial for us to develop a method for mining disjoint
sequential pattern pairs.

Now that we have defined disjoint sequential pattern pairs, we still need an
indicator measuring the quality or the importance of a pattern pair. In SPM, we
have a support threshold functioning as the indicator of importance. Following
this idea, we define the support value of disjoint sequential pattern pairs and the
task of disjoint sequential pattern pair mining (DSPPM) as follows:

Definition 3. Given a sequential database DB and a support threshold
min sup, the task of DSPPM is to find all frequent disjoint sequential pat-
tern pairs (FDSPP), i.e., all disjoint sequential pattern pairs (P,Q) satisfying
suppDB(P ) ≥ min sup and suppDB(Q) ≥ min sup.
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Fig. 2. Two examples for real-life disjoint route pairs. Note that while we only mark
out 6 zones, every point on the map should be assigned into a zone.

The most important feature of the support value is the property of anti-
monotonicity, as is presented in Lemma 1. Note that here P � Q means Q � P
and ‖Q‖ < ‖P‖.

Lemma 1. Suppose (s → P → t, s → Q → t) to be a frequent disjoint sequential
pattern pair, then for all P ′ � P and Q′ � Q, (s → P ′ → t, s → Q′ → t) is also
a frequent disjoint sequential pattern pair.

Proof. We use {P} for denoting the set {P1, P2, . . . , P‖P‖}. Then, it is sure that
for all P ′ � P , there must be {P ′} ⊆ {P}. Thus, for any p′ ∈ {P ′} and q′ ∈ {Q′},
we have p′ ∈ {P} and q′ ∈ {Q}. Since s → P → t and s → Q → t are disjoint,
we have suppDB(s → p′ → q′ → t) = suppDB(s → q′ → p′ → t) = 0, which
leads to the conclusion that s → P ′ → t and s → Q′ → t are disjoint. Hence, for
any S ∈ DB such that s → P → t � S, there must be s → P ′ → t � S. This
suggests that suppDB(s → P → t) ≤ suppDB(s → P ′ → t). Similarly, we get
suppDB(s → Q → t) ≤ suppDB(s → Q′ → t). In summary, (s → P ′ → t, s →
Q′ → t) is a frequent disjoint sequential pattern pair.

The lemma could be useful for enumerating FDSPPs, while it also indicates
that the set of FDSPPs may contain some redundancy. Thus, we propose the def-
inition of closed-disjoint sequential pattern pairs and maximal-disjoint sequential
pattern pairs following the idea of closed sequential pattern mining [6,13] and
maximal sequential pattern mining [6,10].

Definition 4. Sequential pattern s → P → t and s → Q → t form a
closed-disjoint sequential pattern pair (CDSPP) with respect to support threshold
min sup if all following conditions are satisfied.

– (s → P → t, s → Q → t) is a frequent disjoint sequential pattern pair.
– For all P ′ � P , if s → P ′ → t and s → Q → t are disjoint, there must be

suppDB(s → P ′ → t) < suppDB(s → P → t).
– For all Q′ � Q, if s → Q′ → t and s → P → t are disjoint, there must be

suppDB(s → Q′ → t) < suppDB(s → Q → t).
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Definition 5. Sequential pattern s → P → t and s → Q → t form a
maximal-disjoint sequential pattern pair (MDSPP) with respect to support thresh-
old min sup if all following conditions are satisfied.

– (s → P → t, s → Q → t) is a frequent disjoint sequential pattern pair.
– For all P ′ � P , if s → P ′ → t and s → Q → t are disjoint, there must be

suppDB(s → P ′ → t) < min sup.
– For all Q′ � Q, if s → Q′ → t and s → P → t are disjoint, there must be

suppDB(s → Q′ → t) < min sup.

It is clear that all CDSPPs are FDSPPs, and all MDSPPs are CDSPPs. The
conclusion could be useful for developing an enumerate-and-check algorithm for
listing CDSPPs and MDSPPs.

5 Algorithms

We first propose an algorithm for basic DSPPM. Although we address it as a
generate-and-test algorithm, it never means that we are to generate all frequent
sequential pattern pairs and check them one by one because it is very inefficient
hence impossible. See the following case for example:

Example 1. Consider the following database DB = {a → b → c, a → d →
c, a → b → d → c} with our min sup set to 2. If we use the strategy that lists
all frequent sequential patterns and check the disjoint relation of every frequent
pattern pair with the information from the output, we will not even get a correct
result. The reason is that both a → b → c and a → d → c will be included in the
set of frequent sequential patterns, while a → b → d → c will not, which means
that we will fail to recognize that a → b → c and a → d → c are actually not
disjoint unless we access back into the database.

In all, a well-designed algorithm is required. In this research, we discover that
most candidate pattern pairs can be pruned out during the generating period
exploiting the features of a projected database [7]. The term is firstly proposed
in PrefixSpan algorithm [7], while in this research, we present a modified and
generalized version of projected databases as follows:

Definition 6. Given a sequence P and two short sequences S and T . Let n be
the smallest integer satisfying S � P1 → P2 → · · · → Pn and m be the largest
integer satisfying T � Pm → Pm+1 → · · · → P‖P‖. The projected sequence of P
with prefix S and suffix T , denoted with P |TS , is defined to be Pn+1 → Pn+2 →
· · · → Pm−1.

Definition 7. Given a database DB =
{
S(1), S(2), . . . , S(‖DB‖)}, the projected

database of DB under prefix P and suffix Q, denoted with DB|QP , is defined to

be
{
S(i)|QP ‖S(i)|QP ‖ > 0

}
. Hence, the ID set of the projected database DB|QP ,

denoted with IDset(DB|QP ), is defined as
{
i ‖S(i)|QP ‖ > 0

}
.
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From this definition, we can derive the following theorem allowing us to
enumerate all FDSPPs in a divide-and-conquer order, which is also quite similar
to the basic principle of the PrefixSpan algorithm [7].

Theorem 1. For any sequential pattern P → a → Q, suppDB(P → a → Q) =
suppDB|QP (a).

Proof. For any sequence S ∈ DB satisfying P → a → Q � S, there must
be S|QP ∈ DB|QP for that ‖S|QP ‖ > 0. Now we support that a �� S|QP and let
S|QP = Sn+1 → Sn+2 · · · → Sm−1. Because a �� S|QP , we should have either
a � S1 → S2 → · · · → Sn or a � Sm → Sm+1 · · · → S‖S‖. However, because
P → a → Q � S, if we have a = Si, we must have P � S1 → S2 → · · · → Si−1

if i ≤ n or Q � Si+1 → Si+2 → · · · → S‖S‖ if i ≥ m, which breaks the rule
of projected sequence. Therefore, suppDB(P → a → Q) ≤ suppDB|QP (a). Hence,

for any sequence T ∈ DB|QP such that a � T , there must be T ′ ∈ DB such that
T ′|QP = T . According to the definition of projected sequence, we are sure to have
P → a → Q � T ′, which suggests suppDB(P → a → Q) ≥ suppDB|QP (a). In all,
suppDB(P → a → Q) = suppDB|QP (a).

Also, we can carry out another important property of DSPPs:

Theorem 2. For any sequential pattern P = s → P ′ → t and Q = s → Q′ → t
with s, t /∈ {P ′}∪{Q′} and {P ′}∩{Q′} = ∅, P and Q can form a disjoint sequen-
tial pattern pair if and only if 1 ≤ ∀i ≤ ‖P‖ 1 ≤ ∀j ≤ ‖Q‖ IDset(DB|ts→Pi

) ∩
IDset(DB|ts→Qj

) = ∅.

Proof. We first give the proof of necessity. Let DB =
{
D(1),D(2), . . . , D(‖DB‖)}

and R = D(r). Suppose that r ∈ IDset(DB|ts→Pi
) ∩ IDset(DB|ts→Qj

). Then,
according to Definition 7, we have ‖R|ts→Pi

‖ > 0 and ‖R|ts→Qj
‖ > 0. Because

Pi �= Qj , we must have either s → Pi → Qj → t � R or s → Qj → Pi → t � R,
which suggests that P and Q cannot form a disjoint sequential pattern pair. To
give the proof of the adequacy, suppose that P and Q are not disjoint, then
there must be 1 ≤ ∃i ≤ ‖P‖ 1 ≤ ∃j ≤ ‖Q‖ suppDB(s → Pi → Qj → t) > 0
or suppDB(s → Qj → Pi → t) > 0. Because Pi �= Qj , there must exist pattern
R′ = D(r′) such that Qj � R′|ts→Pi

or Pi � R′|ts→Qj
. This suggests that r ∈

IDset(DB|ts→Pi
)∩ IDset(DB|ts→Qj

), which contradicts with the condition that
IDset(DB|ts→Pi

) ∩ IDset(DB|ts→Qj
) = ∅.

With Theorem 2, we can develop the basic flow of the algorithm for DSPPM
as follows: First we enumerate item pair (s, t) satisfying ‖DB|ts‖ ≥ min sup.
Then, for each pair (s, t), we generate item pair (p, q) satisfying IDset(DB|ts→p)∩
IDset(DB|ts→q) = ∅ and add all these pairs into the set DisjointPairs. Hence,
for each pair (p, q) ∈ DisjointPairs we also add p and q into another set
CandidateItems. Next, we are to generate all frequent sequential patterns
s → P → t with only the items in the set of CandidateItems for that accord-
ing to Theorem 2, it is impossible for a pattern containing items not belonging
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to this set to form a disjoint sequential pattern pair. After that we get the set
of candidate frequent sequential patterns FreqPatterns. Finally, we enumer-
ate all pattern pairs (P,Q) ∈ FreqPatterns, and check the disjoint relation
between them individually with DisjointPairs referring to Theorem 2, and we
will get the set of FDSPPs. The whole procedure is described with pseudocode in
Algorithm 1.

Algorithm 1. Basic Flow for DSPPM
for each item pair (s, t) such that ‖DB|ts‖ > min sup do

DisjointPairs ← ∅, CandidateItems ← ∅.
for each item pair (p, q) do

if p �= q �= s �= t and IDset(DB|ts→p) ∩ IDset(DB|ts→q) = ∅ then
Add (p, q) into DisjointPairs
Add p and q into CandidateItems

end if
end for
FreqPatterns ← all frequent sequential patterns s → P → t such that ∀p ∈

{P} p ∈ CandidateItems.
for each pair (s → P → t, s → Q → t) ∈ FreqPatterns do

if ∀p ∈ {P} ∀q ∈ {Q} (p, q) ∈ DisjointPairs then
Output pair (s → P → t, s → Q → t)

end if
end for

end for

Now, the only unsolved problem is how to list all frequent sequential patterns
s → P → t with items from the set of CandidateItems. Here we choose to
apply the PrefixSpan algorithm. The pseudocode is listed in Algorithm 2. With
Theorem 1, we can confirm that this algorithm will produce a correct result.
A more detailed proof of correctness and completeness of PrefixSpan algorithm
can be found in [7].

Algorithm 2. Listing all s → P → t with PrefixSpan
function Search(CurDB,CurPrefix)

for each p ∈ CandidateItems do
if ‖CurDB|p‖ ≥ min sup then

Add CurPrefix → p → t into FreqPatterns.
Search(CurDB|p, CurPrefix → p)

end if
end for

end function
Search(DB|ts, s)
Output FreqPatterns.
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Now that we have listed all FDSPPs, it would not be a hard job to list all
CDSPPs and MDSPPs because we only need to traverse the set of FDSPPs and
check if each pattern satisfies the conditions of a CDSPP or an MDSPP. The
pseudocode is presented in Algorithm 3. Although this idea seems to be simple
and direct, in the next section, we will show that the algorithm will not result
in a low efficiency when we conduct experiments on a real trajectory database.

Algorithm 3. Listing closed-disjoint and maximal-disjoint sequential pattern
pairs

for each disjoint sequential pattern pair (s → P → t, s → Q → t) do
checkClosed ← True
checkMaximal ← True
for each item p ∈ CandidateItems do

for 1 ≤ i ≤ |P | + 1 do
Insert p between Pi−1 and Pi and get P ′.
if (s → P ′ → t, s → Q → t) is in the output of DSPPM then

checkMaximal ← False
end if
if suppDB(s → P ′ → t) = suppDB(s → P → t) then

checkClosed ← False
end if

end for
for 1 ≤ i ≤ |Q| + 1 do

Insert p between Qi−1 and Qi and get Q′.
if (s → P → t, s → Q′ → t) is in the output of DSPPM then

checkMaximal ← False
end if
if suppDB(s → Q′ → t) = suppDB(s → Q → t) then

checkClosed ← False
end if

end for
end for
if checkClosed then

Output (s → P → t, s → Q → t) as a closed-disjoint sequential pattern pair.
end if
if checkMaximal then

Output (s → P → t, s → Q → t) as a maximal-disjoint sequential pattern
pair.

end if
end for

At last, we are to analyze the complexity of the algorithms. We denote
|FreqPatterns|, the number of all items, the number of all mined FDSPPs with
F , I, R respectively, and regard other factors as constants. For Algorithm 1, the
complexity of enumerating all frequent pattern pairs and (p, q) pairs is O(F 2)
and O(I2). For Algorithm 2, the complexity should be O(IF ) because each time
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we call the Search function we enumerate all items and output at most one
pattern into FreqPattern. For Algorithm 3, the complexity should be O(IR).
From these theoretical derivations, we know that generally, the overall complex-
ity of the algorithms is linear related with the size of the final output. That is,
the fewer FDSPPs are there in the output, the shorter time our algorithms will
spend in mining them.

6 Experiment

All experiments in this research are conducted on an Intel Core i7 CPU with
20 GB of RAM. The databases we use include a real trajectory database provided
by North Grid Co., Ltd. and an artificial database generated with respect to
the features of the real database. The real trajectory database contains 1,412
tourist trajectories formed with 605,772 tracking points. To convert it into a
sequential database, we replace each tracking point in the database with its
Japanese standard address (see Fig. 3 for an example). We use this strategy
instead of the uniform mesh introduced in Fig. 1 mainly because sequences of
addresses are more comprehensible than sequences of grid numbers, so it allows
us to inspect and analyze the mined patterns in an easier way.

Fig. 3. The structure of Japanese standard addresses. As is shown in the figure, the
addressing system has a hierarchy structure, which is equivalent to a multi-level non-
uniform mesh. In this research, we finally use the addresses exacted to Level 3 for we
have not found reliable data of higher-level addresses.

After the pre-processing, the database is converted into a sequential database
with 17,344 different items i.e., addresses. The processed data can be accessed
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at GitHub1. Note that in the public data, each address is encrypted with an
integer ranged from 0 to 17,343.

Now that we get the sequential database DBR, we are to create an artificial
database DBA. It contains the same number of sequences as DBR, where each
sequence is generated with the following steps.

1. Calculate the length distribution of sequences with:

PL(X = i) =
| {L |L| = i} |

‖DBR‖
2. Calculate the generative probability of each item by regarding them as inde-

pendent variables with:

PG(X = xi) =

∑
P (i)∈DBR

∑
1≤j≤‖P (i)‖ 1Pi=xi∑

P (i)∈DBR
‖P (i)‖

where 1cond is the indicative function which takes the value of 1 if cond is
true and 0 if it is false.

3. When generating a sequence in DBA, we first generate a random length L
from the length distribution PL, and then generate L items as a sequence from
the generative probability distribution PG. Repeat generating sequences until
‖DBA‖ = ‖DBR‖.

The artificial database can also be accessed in the same repository2. From the
description above, we know that database DBA copies the superficial features of
DBR but discards the mutual relationships of items in DBR. Here, the mutual
relationship refers to the probability of a tourist to move from one place (address)
to another. It is clear that the probability also has a strong connection with the
formation of disjoint sequential pattern pairs. Thus, by conducting experiments
on these two databases, we can study how these mutual relationships of a real
database will influence the output size.

We apply our algorithm with several different parameter settings on both
DBR and DBA. The experiments can be reproduced with the Python scripts
available in the repository mentioned before3. The running time of our algorithm
on the real database is plotted in Fig. 4 (a). Here, the whole procedure of our
algorithm is divided into 3 different stages, where Stage 1 is for candidate gen-
eration (presented in Algorithm 1); Stage 2 is for disjoint checking (presented in
Algorithm 2); and Stage 3 is for maximal-disjoint and closed-disjoint checking
(presented in Algorithm 3). The running time of each stage is plotted in separate
polylines. From the figure, we discover that generally, our estimated complexity
for the three stages are correct. That is, as we tune min sup to a lower value, the
1 https://github.com/DSPPM/Disjoint-Sequential-Pattern-Pair-Mining/blob/

master/all trans lv3.csv.
2 https://github.com/DSPPM/Disjoint-Sequential-Pattern-Pair-Mining/blob/

master/dummy trans lv3.csv.
3 https://github.com/DSPPM/Disjoint-Sequential-Pattern-Pair-Mining.

https://github.com/DSPPM/Disjoint-Sequential-Pattern-Pair-Mining/blob/master/all_trans_lv3.csv
https://github.com/DSPPM/Disjoint-Sequential-Pattern-Pair-Mining/blob/master/all_trans_lv3.csv
https://github.com/DSPPM/Disjoint-Sequential-Pattern-Pair-Mining/blob/master/dummy_trans_lv3.csv
https://github.com/DSPPM/Disjoint-Sequential-Pattern-Pair-Mining/blob/master/dummy_trans_lv3.csv
https://github.com/DSPPM/Disjoint-Sequential-Pattern-Pair-Mining
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running time as well as the output size increases in the similar rate. However,
there is an exception that the running time of Stage 3 is increasing at a higher
rate than Stage 1 despite the fact that they should have the similar complexity.
This is probably because that we are using a hash table for indexing a pattern
in the set of FDSPPs. The operation is O(1), but its constant increases as the
hash table, i.e., the output size becomes larger. The increasing of the constant
finally causes Stage 3 to be the slowest stage when min sup is set to a low value.

Fig. 4. The results on the real database.

Fig. 5. The results on the real database.

Also, we find from Fig. 5 (a) that the running time of our algorithm on
the artificial database is a lot slower than that of the real database. Hence,
from Fig. 5 (b) we find that the output size is also a lot larger than that of
the real database. It is probably the mutual relationship between items that
makes this to happen. As is analyzed before, in the real world, the most possible
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reason for the absence of pattern a → b in the database is the inaccessibility of
the two locations. The fewer inaccessible location pairs are, the fewer disjoint
sequential pattern pairs there will be. Intuitively, there should not be many
inaccessible locations for that the transportation system today is well-developed.
Hence the number of disjoint route pairs should also remain at a reasonable
level. This perfectly matches with our experimental results. Also, the results give
another empirical proof of the conclusion that the complexity of our algorithm
is approximately linear related with the output size.

Now that we have confirmed our algorithms can produce an output with
a reasonable size, we are to describe the practical values of the output with a
real mined example. As is shown in Fig. 6, by conducting SPM, we can find
many popular travel routes starting from Nishi-shinjuku, Tokyo and ending at
Jingu-mae, Tokyo. Some of the routes take a detour around the famous Mount.
Fuji, while some other routes pass through central Tokyo where many famous
sightseeing spots are located. However, by applying DSPPM, we discover that
the route via Mount. Fuji is disjoint with any other popular route which passes
through the sightseeing spots in Tokyo. The most possible reason for the case
is that none of the bus tour from Nishi-shinjuku to Jingu-mae via Mount. Fuji
include sightseeing spots in Tokyo into the tour plan, and thus, we should never
plan to visit these spots when we decide to take these tours. In all, DSPPM is
effective in extracting such valuable information which is unavailable when using
vanilla SPM. Therefore, we say DSPPM is capable of producing an output with
a reasonable size and high values.

Fig. 6. An example showing the values of FDSPPs, which demonstrate that the pre-
ferred travel route from Nishi-shinjuku to Jingumae detouring around Mount. Fuji is
disjoint with any other routes via metropolitan Tokyo.

7 Conclusion

In this paper, we propose the task of disjoint sequential pattern pair mining
aiming at finding a reasonable volume of hyper-patterns, i.e., disjoint sequen-
tial pattern pairs, which can also provide valuable information for tourists. We
developed algorithms for mining frequent disjoint, maximal-disjoint and closed-
disjoint sequential pattern pairs. We conduct experiments on a real trajectory
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database and an artificial database, and the results indicate that the volume of
pattern pairs mined from the real database is reasonable and the practical values
of the mined pattern are high.

However, it also needs to be noted that our algorithm still has the deficit
that the candidate generation is unavoidable. If we could propose an algorithm
without candidate generation, i.e., enumerate the disjoint sequential pattern
pairs only, we may reduce the overall complexity of the algorithm to O(R). Also,
we plan to study more hyper patterns other than disjoint sequential pattern pairs
so that more valuable information can be extracted from the database.
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Abstract. Some mHealth apps record user activity continuously and
unobtrusively, while other apps rely by nature on user engagement and
self-discipline: users are asked to enter data that cannot be assessed oth-
erwise, e.g., on how they feel and what non-measurable symptoms they
have. Over time, this leads to substantial differences in the length of the
time series of recordings for the different users. In this study, we pro-
pose two algorithms for wellbeing-prediction from such time series, and
we compare their performance on the users of a pilot study on diabetic
patients - with time series length varying between 8 and 87 recordings.

Our first approach learns a model from the few users, on which many
recordings are available, and applies this model to predict the 2nd, 3rd,
and so forth recording of users newly joining the mHealth platform. Our
second approach rather exploits the similarity among the first few record-
ings of newly arriving users. Our results for the first approach indicate
that the target variable for users who use the app for long are not pre-
dictive for users who use the app only for a short time. Our results for
the second approach indicate that few initial recordings suffice to inform
the predictive model and improve performance considerably.

1 Introduction

Recent trends in consumer electronics towards affordable and relatively power-
ful devices capable of sensing health-related attributes have been matched by
an increase in research interest in exploiting this data to assist the healthcare
c© The Author(s) 2020
A. Appice et al. (Eds.): DS 2020, LNAI 12323, pp. 659–673, 2020.
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practitioner. Not only do these devices help in diagnostics, by recording values of
attributes related to health and subjective well-being; they also allow that the
disease may be monitored with only asynchronous involvement of the practi-
tioner. Self-monitoring of the disease contributes thus to patient empowerment,
and also delivers precious data that can be used for personalization, i.e. for
treatments tailored to the individual needs and characteristics. This potential
requires adequate data to build upon.

A major challenge of mobile health platforms that collect user inputs is that
the amount of data users contribute can vary substantially. As we reported in
[15] when analysing user recordings on the mobile health platform “TrackY-
ourTinnitus” [9], a minority of users interact intensively with the system and
contribute a disproportionately large amount of data, while the majority of users
contribute very few inputs. In this study, we investigate whether predictions can
be made for this majority of users by learning a model on the few users who
provide many data to the system. Also, differently from our work in [15], we
focus here on a one-step-ahead forecast instead of classification.

We propose an approach that learns from users who contribute long sequences
of inputs to predict the subjective perception of wellbeing for users who con-
tribute only short sequences of input data, including users that have very recently
joined the platform. Each user in the system is required to fill in a “End of Day
Questionnaire”, where he reports among other things the overall “feeling in con-
trol”, the variable of prediction interest. These user-level timestamped observa-
tions therefore constitute one user-centric time series, the length of which varies
depending on how long the user has been in the system, and how the doctor’s
recommendation of filling in the questionnaire at the end of every day has been
followed. We denote the set of users with long sequences of recordings as Ulong

and the users with few recordings as Ushort. Our approach deals with the fol-
lowing three questions:

– RQ1: How well can we predict the behaviour of users in Ushort given the data
from the users in Ulong?

– RQ2: Can we predict the entire sequence of observations of a user in Ushort

with a model trained only on data from users in Ulong? (i.e, does a model
learned on data from users with long sequences transfer to those with short
ones?)

– RQ3: How can we incorporate early recordings of users in Ushort incrementally
into the model to improve predictive performance?

The paper is organised as follows: Sect. 2 introduces related literature, fol-
lowed by Sect. 3, which introduces the m-Health application on which the this
work is based. Section 4 discusses our proposed solution, followed by a discussion
in Sect. 5, and closing remarks in Sect. 6.

2 Related Work

In our work, we concentrate on time series in applications of health and wellbe-
ing. The early study [5] by Madan et al. reported on the potential of mobile
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technologies to capture epidemiological behaviour change, including physio-
logical symptoms like running nose, and mental health conditions like stress.
For example, they found that total communication of the affected persons
decreased for the response “sad-lonely-depressed” (cf. [5] for the definition of
this response). While a change in communication intensity can be captured by
Bluetooth connection activity or absence thereof, the information on how a per-
son feels demands user inputs. Ecological Momentary Assessments (EMA) are a
widespread tool for this purpose [3,14].

EMA is an instrument for assessing “behavioral and cognitive processes
in their natural settings” [14]. From the technical perspective, EMA record-
ing is feasible and well-supported. For example, in their survey on sleep self-
management apps [2], Choi et al. list the recording of user-entered data as an
important functionality, and stress that all investigated apps do support this
functionality. However, next to the technical modalities, EMA relies also on self-
discipline and adherence.

As Mohr et al. stress in [6], “although a number of small studies have demon-
strated the technical feasibility of sensing mood, these findings do not appear to
generalize”. In the meanwhile, there are large studies involving EMA recordings
of more participants for longer time periods. However, the emphasis seems still
to be on users who interact intensively with the mobile health application. In
their insightful comparison of the results of EMA recordings with the TrackY-
ourTinnitus mHealth app versus retrospective ratings of the users, only users
with at least 10 days of interaction were considered [11]. For findings with the
TrackYourStress platform that records EMA geolocation, only users with at least
10 recordings per day were considered [10].

This provokes the question of whether users with few recordings belong to the
same population as users with many recordings. In [8], Probst et al. considered
both users with few days of recordings and users with many days of recordings for
their Multi-Level Analysis (median number of days: 11, with range from 1 to 415
days), but demanded at least 3 EMA per day, each of them containing answers
for the three EMA items under study [8]. In this work, we do not attempt to win
insights that pertain to a specific group of users, but rather to assess whether
the EMA of users with few recordings can be predicted by models learned on
users with many recordings.

The EMA of mobile health app users constitute multivariate time series. The
challenge posed by short time series is discussed by Palivonaite and Ragulskis in
their work on short-term forecasting [7], where they associate the length of the
time series to the reliability of longer-term forecasts.

Dynamic Time Warping (DTW) or one of its numerous enhancements can
be used to compare time series of different lengths and exploit their similarity
for learning. DTW is a very old method, cf. [16], for an early citation to DTW
by authors Yfantis and Elison who proposed a faster alternative. Such methods
can be used to enhance algorithms like [1,15], which do predictions by building
a model for each time series, but can also exploit information from similar time
series. Despite this potential, the amount of data per user in some mHealth
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applications is very small, so that we opt for similarity-based methods that
capitalize more on the similarity of values than on the ordering of the values –
albeit both are taken into account.

3 EMA with the TrackYourDiabetes Mobile Health App

As part of two pilot studies on empowerment of diabetes patients, a mobile
crowdsensing framework was adjusted to implement the TrackYourDiabetes
mHealth platform [4,9]. Figure 1 summarizes the entire procedure of the app
from the patient’s point of view. The pilot studies were conducted in regions
of Spain and Bulgaria, and involved patient recruitment and exposition to two
variants of the app, while under remote supervision by a practitioner.

TrackYourDiabetes Crowdsensing Data Collec�on Procedure

Registra�on Procedure Con�nuous Mobile Crowdsensing Procedure

Provide Manual 
and Automa�c

Feedback

Sensor Data

No�fica�on 
Se�ngsSensor Se�ngs

Fill Out 
Assessment 

Ques�onnaires

Fill Out 
Registra�on 

Ques�onnaires

Visualize Results
On A Website

Use Chatbot
Visualize 

Feedback On A 
Website

Retrospec�ve Repor�ng
(Only Once A�er Registra�on)

In total, 3 different se�ngs had to be 
specified by the pa�ent (for random, 
food, and end-of-day ques�onnaires)

3 Prospec�ve Assessment Ques�onaires:
1: daily; randomly at 3 �mes; using 1 ques�onnaire
2: daily: once, a�er lunch, , using 1 ques�onnaire
3: daily: once, end-of day, using 1 ques�onnaire

3 4

Register With 
TYD

Registra�on Procedure
1

Via Website or Mobile 
Applica�ons

Three Ques�onnaires
(Demography, Self-

Management, Distress)

2

Dynamic EMA Data
All daily assessments are triggered by 
no�fica�ons or pa�ents can decide to 

fill each of the ques�onnaires out 
without ge�ng a no�fica�on

Technical Crowdsensing Pla�orm: Data Collec�on Points

Fig. 1. Mobile crowdsensing collection procedure of TrackYourDiabetes

The platform comprises two mobile applications (i.e., native Android and
iOS apps), a relational database, a RESTful API [12], and a web application.
The mobile applications are only used by the patients, while the web application
was used by the patients as well as their related healthcare professionals. The
latter were enabled by the web application to monitor the data of the patients
as well as to provide individual feedback if wanted or required.

Before starting interaction with the app, study participants registered with
the platform by using the mobile apps or a web application 1©. After that,
they have to fill out three registration questionnaires once 2©: one registration
questionnaire collects demographic data, one collects information on the self-
management of the patients with his/her diabetes, and one captures the extend
to which diabetes causes distress to the patient.

There were EMA recordings more than once a day, concerning physical activ-
ity and food intake, and EMA recordings at the end of each day, using the End-
of-Day questionnaire items depicted in Table 1. Furthermore, individualised mes-
sages based on given answers of daily assessments were provided with the goal
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Table 1. Variables in the dataset: questions in the end-of-day questionnaire

# Question Set of answers/Data type

01 How often do you have measured your sugar
level today?

Numeric

02 For how many minutes have you performed
physical activity or sports today?

Numeric

03 How many bread units have you eaten
today?

Numeric

04 Did you have signs of hyper- or
hypoglycemia today?

“Don’t know”, “No”, “Both”,
“Hypoglycemia”, or “Hyperglycemia”

05 Did you feel to be in control of your diabetes
today?

Numeric, [0–100]

to better motivate the patients in using the platform. The healthcare profes-
sional(s) responsible for the participants could also provide individualised feed-
back. Finally, a chatbot was integrated, which could be used by the patients to
discuss questions on their diabetes. For the analysis of the proposed approach,
we concentrated on the Bulgarian pilot study and investigated solely the user
inputs to the End-of-Day questionnaire; no further features were considered.

4 Our Method

We investigate a prediction problem on timestamped data, transferring a predic-
tor learned on the data of one set of users, Ulong, to another set of users Ushort.
In all cases, our goal is to predict many observations of a user, not just the next
one, as is typical in many time series prediction problems.

4.1 Core Concepts and Core Elements

This section offers a brief overview of the terms used in this work and their
exact definitions, which is followed by a broader description of our workflow in
Sect. 4.2.

User Sequences: Each user p who uses the mHealth app generates a time-ordered
sequence of observations xp,t, where p is the user, and t denotes time.

We distinguish between users with short sequences of observations, consti-
tuting a set Ushort, and users with long sequences of observations, constituting
a set Ulong. For the partitioning of users into these two strata, we consider a
threshold τlength.

In our experiments, we set τlength on the basis of the user-observations distri-
bution, which has shown a gap. In distributions that follow a power law, τlength
serves to separate between the short head and the long tail. More generally, we
may decide to place into Ushort those users who have very recently started their
interaction with the app and thus have contributed only few initial observations.
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Observations: An observation is a multi-dimensional vector of values from a fea-
ture space F . In our application scenario, an observation is an EMA recording
comprised of answers to questions from a questionnaire. Accordingly, an obser-
vation is a mix of numerical and categorical variables.

Handling Categorical Data: A term Frequency-Inverse Document Frequency
(TF-IDF) Inspired Approach: Before training the models, it is important to
consider the exact way in which categorical attributes in the input data are
used. Of the various questions in the questionnaire answered by the users, the
questions that generate categorical data (chosen from a drop-down list) need to
be treated to accommodate for the fact that not all answers are equally likely.
Compared to simply using a standard method like one-hot encoding, this step
brings the answer closer to the user’s history, for e.g., by more accurately cap-
turing the information that a user who commonly answers a question with “no”
has said “yes”, even if “yes” frequently appears in the dataset.

We treat the answers to this categorical data as ‘words’, and each session
where the questionnaire is answered as a ‘document’. During preprocessing, given
the exact answer chosen by a user during a particular day, we replace the binary
flag marking the presence of that word with a new value that is adjusted to
reflect the amount of “surprise” in seeing that data point given the user through
the use of the TF-IDF (see [13]) inspired formula: preprocessed value = fterm ·
−log nterm

N , where fterm can only be binary, since the categorical answer only
picks one term from a list of several. The inverse document frequency component
measures how often the term has appeared in the user history.

Core Learning Method: Given data Pp for all users p ∈ Ulong for time points
1 . . . t, we have Pp = {xp,1 . . . xp,t}. Using this data, we create a linear regression
model that for each possible i ∈ 1 . . . t − 1, learns to predict the target vari-
able for time point i + 1. Naturally, since there is no known label for the last
time point t, each user p with a sequence length of t only provides t − 1 time
points of training data. This model is only used for predicting the labels for the
observations {xp,1 . . . xp,t−1} for all users p ∈ Ushort.

Augmented Method: We augment the above method by creating predictions spe-
cific to the users Ushort: In addition to the above model which only learns on the
users of Ulong, we add an additional K-NN Regression model that is trained only
on the user’s own history of observations. This means that given an observation
xp,t, we can generate predictions for xp,t+1 from two models, the model trained
on all users in Ulong, and additionally the K-NN Regression model that has only
been trained on the observations of the user p seen so far, i.e. x1 . . . xt−2 (Note:
The training data for p ∈ Ushort ends at t − 2, because xt−1 is used as the label
for the training point xt−2, and the true label for xt−1 has not been observed
yet).
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4.2 Prediction Workflows

Proof-of-Concept Step: The basic workflow we propose has a preliminary
step and two components. The preliminary step is designed to check that the
task is indeed learnable, and success at this stage can ensure that the further
steps in the workflow are applicable. For this, instead of training a model on
only data from users in Ulong, a model is trained on 75% of all data, and the
performance is analysed to confirm that the model can learn given the data. By
framing the problem as a regressor and not as a time series forecast, we avoid
the problem of having insufficient data to train a time series forecasting model.
This model can unfortunately not be used as a baseline to compare against since
it does not learn on the same amount of data as the model learning only on
Ulong, and also because the number of data points available for testing over
users in Ushort is very small (often only a couple of observations). However, the
performance of this model can still be considered a benchmark for the upper
limit of performance for the transfer learning model.

Basic Workflow: In this workflow, we find a subset of the dataset D comprising
of only the data xp,t, where p ∈ Ulong. This creates a model trained only on the
data from users with long sequences, the performance of which is tested on users
of Ushort. It is important to remember that the model has the challenging task
of making predictions for users that have never been seen by the system, and
predictions for them are made based only on what has been learned over the
user. This is arguably more challenging than predicting unseen observations for
users who have already contributed observations to the training set. Additionally,
since these users have not adhered to instructions of the physician to use the
application for the prescribed period of 2 months, it is possible that these users
differ somehow in the expression or the perception of the disease in some way.
However, it is still possible that a model learned on those data points from long
users bring a modest predictability to the disease development of users in Ushort.
Similarly to the model introduced above, we learn to predict the numeric value
of the target variable for the next observation given the questionnaire answers
of the current observation (including the current value of the target variable). A
graphical overview of the workflow is shown under ‘Basic Workflow’ of Fig. 2.

K-Nearest Neighbour (K-NN) Augmented Workflow: If the users in
Ushort are indeed different from the users in Ulong, then using a model that
transfers the parameters learned on Ulong is not expected to bring reliable pre-
dictions to the users in Ushort. However, since the users in Ushort do not bring
enough data to train complex models, only simple techniques can be used to try
and incrementally improve predictive performance over users in Ushort by cap-
turing the idiosyncratic patterns in the user’s disease development/answering
style. This design aims to balance the tradeoff between keeping as much data
as we can use to learn about how the disease develops, while also staying close
to the idiosyncratic ways in which the user may answer questions. In this work,
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Fig. 2. Prediction workflows

we propose the use of a K-Nearest Neighbours regressor trained over the user’s
own history, the predictions of which are used to augment the predictions from
the Ulong model weighted on their past errors (similarly to [1]). Restricting the
K-NN regressor to the user’s own sequence also has the unintended consequence
of out-of-the-box support for data-privacy, something that is especially relevant
in the medical domain.

During use, the K-NN regressor is incrementally trained on the user sequence
as more of it becomes available, and the errors are recorded for comparison to the
standard Ulong model. Figure 2 shows an overview of the model training process
with the K-NN augmentation component.

5 Results

We describe the dataset of our evaluation in Subsect. 5.1, and then explain
in Subsect. 5.2 how the number of users with short and long sequences affect
the prediction tasks and the settings of K-NN in the augmented workflow. We
evaluate using Mean Absolute Error (MAE). The results of the proof-of-concept
experiment are in Subsect. 5.3, while the results for the basic workflow and the
KNN-augmented workflows are in Subsect. 5.4.

5.1 The Dataset

For our evaluation, we used the dataset of the Bulgarian pilot study. This dataset
contains observations from 11 study participants. While the inclusion of the users
from the pilot study in Spain is desirable, a model that learns on the combined



Transfer Learning from Long- to Short- Sequence Users in mHealth 667

data of the two pilots is not done for two reasons: (a) The two countries are dif-
ferent in the dominant diabetes type that the users have, and (b) Many users in
the Spain pilot use continuous blood sugar measuring devices, strongly influenc-
ing the accuracy of the “self-assessed” blood sugar estimations, and therefore,
the “feeling in control”. We set τlength = 30 days, whereupon 6 of the users
belong to Ulong (30+ days) and 5 users are in Ushort (8–13 days) after eliminat-
ing users with 5 users with less than 3 days of data. We denote this dataset as
L6+S5 dataset hereafter, to stress the number of users per length-stratum.

Figure 3 depicts the number of days of interaction for all users. It can be
observed that there is a clear separation between users in Ulong compared to the
rest of the users.

Fig. 3. Number of days with EOD observations per user; user #1 is the user with the
largest number of EOD observations, user #11 has the smallest number

Of the 5 variables of the EOD questionnaire filled by the pilot study partic-
ipants (cf. Sect. 3), the target variable is the 5th one on Table 1, i.e. each user’s
self-reported ‘feeling in control’, on a scale of 0 to 100. We denote this variable
as ‘EOD feel’ hereafter.

5.2 Prediction Tasks and Imposed Restrictions on Training

For the proof-of-concept step in Subsect. 4.2, we train a predictor on the first
75% of the observations of the users in U long of L6+S5 dataset and predict
the subsequent 25% observations. As can be seen on Fig. 3, the 6 users in Ulong

contribute unequally to learning: user #1 contributes more than 60 (out of ca.
85) observations to the training dataset, while user #6 contributes less than
30 (ie half as many). Similarly, we predict the EOD feel value of more than 20
observations of user #1 and ca. 10 of user #6.

For the basic workflow of Subsect. 4.2, the prediction task is to predict all
observations of the 5 users in Ushort of the L6+S5 dataset, without having seen
any observations on them during training. This amounts to 47 predictions.
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For the K-NN augmented workflow, some observations of each user in Ushort

of the L6+S5 dataset are disclosed and used for augmentation of the model
learned on all of the Ulong observations in the L6+S5 dataset. User #7 has less
than 15 observations, user #11 has 8 (cf. Fig. 3). This imposes an upper limit
to K: if we set K = 8, we cannot do any predictions on user #11. On the other
hand, K-NN based regression needs at least 2 observations per user to learn.

Larger values of K allow for a more robust regression model and make the
prediction task easier, since less EOD feel values are predicted. To investigate
whether the very few first observations on a user can inform a model learned on
Ulong, we have set K = 2. This amounts to 37 predictions.

5.3 Learning a Predictor on Ulong : Proof-of-Concept Experiment

Fig. 4. MAE in Ulong ∪ Ushort

(All), in Ulong (S) and in Ushort (S)

The Goal of this experiment is to check
whether the prediction problem is indeed
learnable, in the sense that we can derive a
useful prediction model. Figure 4 shows the
performance of the proof-of-concept regres-
sion model for the first prediction task of Sub-
sect. 5.2 on L6+S5 dataset, learning on the
first 75% of all user observations (All), and
accordingly on the first 75% of the observa-
tions in Ulong (L), resp. Ushort (S).

For “All” (leftmost part), MAE remains
around 17%, decreasing slightly within “L”
(Ulong) and increasing slightly within Ushort.
However, MAE within “S” ( Ushort) is rather

unreliable, since there are less than two observations per user in the testset (more
precisely: 1.4). Hence, these MAE values serve only as lower limit for the errors
of the transferred models.

5.4 Learning on Users in Ulong to Make Predictions for Users in
Ushort : Transfer Learning Experiments

Since we have a baseline (albeit weak, since errors for Ushort are not reliable) for
the performance of a model on the data from all users, we can now investigate the
transfer learning case where the model is only learned on the users of Ulong. As
already described above, there are two workflows that use such a model, a more
basic workflow that uses a model learned over Ulong only, and another model
that augments the basic workflow with a user-specific K-Nearest observations
regressor. The models are all evaluated against the absolute errors they make
in their predictions. The ‘mean’ in the Mean Absolute Error may either be
computed over all predictions that a model has made, or may be restricted to
the predictions for particular users. Given the rather short sequence lengths of
the users in Ushort, it is necessary to not rely on point-estimates like means, but
consider the ‘spread’ in the errors as well. We therefore present box plots over all
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the prediction errors for the basic and K-NN Augmented workflow. The entire
test set contains 47 observations for which predictions are required.

Basic Workflow. In this workflow, instead of learning a model over data from
all users, as described in Sect. 5.3, we will learn a model only on those users who
have contributed more than 30 days of data, the necessary criterion for their
addition to the set Ulong. Figure 5 shows a box plot of the absolute prediction
errors for the transferred model. Compared to the basic model in Sect. 4.2, the
MAE over all predictions for all users has increased from 17.5 to 24.76 (indicated
by the green triangle). However, since not all users in Ushort have the same
sequence lengths, the MAE is biased towards the users with longer sequences.
The blue dots inside the box plot shows the MAE for each user separately, and
we can see that the users who are best predicted have errors as low as 21, with
the worst-predicted users showing MAE in excess of 35. The mean being closer
to 21 indicates that the well-predicted users are indeed the ones with longer
sequences. This indicates that they are more similar to the users in Ulong than
other shorter members of Ushort.

Fig. 5. Basic workflow: box plot of errors for predicted next-observation EOD feel,
along with mean (Green Triangle), median (Yellow Line), and user-level MAEs (blue
dots) for all users in Ushort. (Color figure online)

K-NN Augmented Workflow: This section discusses the results for the more
advanced “K-NN Augmented Workflow” detailed in Sect. 4, where a user-level
model learned on data from Ushort augments the predictions of the model dis-
cussed above. Figure 6 shows a box plot of the absolute prediction errors for the
K-NN Regressor, along with comparisons against the Ulong model’s errors. The
box plot on the far right shows the errors in the case where the predictions of
each method are combined as a weighted average on their cumulative errors for
the user to form a final prediction. Since the users in Ushort can have as few as
8 observations, our choice of K is quite strongly limited to very low numbers, as
the K-NN Regressor cannot create predictions until it sees at least K observa-
tions. In these cases, the K-NN is assumed to make the same prediction as the
Linear Regression model over Ulong, since it is necessary to compare the errors
of the two models for the same number of predictions.
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Fig. 6. K-NN Augmented workflow: bloxplots of absolute errors for KNN model, basic
workflow, and the combined workflow. Means are denoted by the green triangle and
medians by the yellow horizontal line (Color figure online)

It can be seen in Fig. 6, the K-NN model does indeed show lower mean
and median errors, indicated by the green triangle and the line in the box plot.
However, it can also be seen that the worst-case performance of the K-NN model
is worse than that of the Linear Regression model. The roughly similarly sized
gaps between the mean and the median errors in the K-NN and the Linear
Regression models indicate that both models sometimes make large errors, albeit
in different directions. Combining the predictions from both models does seem to
mitigate these worst-case errors, since the mean and the median absolute errors
are observed to be very close, at around 20.

In addition to the boxplots of the error itself, Fig. 7 shows how the error
develops over time for users in Ushort as they stay longer in the system. The X-
Axis shows the observation number, with the MAE on the Y-axis. The MAE at
each time point is averaged over the individual prediction errors over all users at
that time point. Until the Kth observation, the K-NN predictor does not gener-
ate predictions, but we have used the linear regression model prediction errors in
order to not unfairly favour any algorithm. From the 3rd observation, however,
we see that the user-level K-NN predictor almost always outperforms the linear
regression model (and therefore the weighted average model). It is also notewor-
thy that until the 7th time point, the error-weighted combination of both models
is very close to the K-NN model. This shows that augmenting the predictions
of the basic workflow with the K-NN regressor does improve performance. The
results beyond the 8th observation get progressively less reliable since all users
in Ulong have at least 8 observations, but the number of users contributing to
the averages after time point 8 get unreliable, though it is possible that users in
Ushort are more and more predictable given the history of their own observations
with time.
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Fig. 7. K-NN augmented workflow: development in error with time

6 Conclusions and Closing Remarks

In this work, we studied if the data from users of a diabetes self-management
app with more than 30 days of data (Ulong) can be used to infer something
about the future of less intensive users with less data. Since neither the number
of patients (N = 11) nor the number of observations for the longest-sequence
user (87) is very long, we investigate simpler models like linear regression. The
model is trained to predict the next observation for user-reported “feeling in
control”, the last question of the End Of Day questionnaire, given the answers
to all questions of End Of Day questionnaire for the current observation. The
categorical information in the dataset is handled using a method inspired by
TF-IDF to capture the ‘surprise element’ in an answer given a user. i.e., when a
user answers a question like (s)he usually does, that answer gets a smaller weight
than if the answer is unexpected.

Further, we investigate whether transfer learning can be used to learn a model
on the users of Ulong in order to make predictions for the observations of users
in Ushort. We saw that the transferred model predictably shows a higher error,
which can be mitigated by combining the predictions of the Ulong model with
a K-Nearest Neighbours Regressor over the patient’s own past data. The short
sequences necessitate that the K is limited to quite low values, but the predictor
that combines the predictions of both models does eliminate some extreme errors,
bringing the mean and the median errors closer.

The primary threat to validity of this work is the size of the dataset from
which the conclusions have been drawn. The large disparity between the lengths
in Ulong and Ushort make further analysis of the K-NN Augmented predictor
less reliable, making the findings more qualitative than quantitative. Although
two pilots exist from which data can be analysed, this study focused the inves-
tigation only on data from Bulgaria because the users for the two studies are
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drawn from different populations (the proportion of Type 2 diabetics is very
different, and the Spanish pilot users had continuous glucose monitoring devices
implanted). Additionally, the mHealth application collects more data from the
users, of which the EOD questionnaire is only one. A system with either more
users or longer observation sequences may enable the study of how other dimen-
sions not measured by the EOD questionnaire may affect the subjective “Feeling
in control”, or allow for the use of more sophisticated models than simple linear
regression. It is also highly likely that xt might not be best predicted by the
value of xt−1, but rather by some larger or even user-dependent lag, depending
on external factors like weekends, or user-specific factors like exercise routine.
The testing of this parameter is challenging at the moment because it further
decreases the amount of data available for testing the predictions over users in
Ushort, or adds more features and complexity in the context of already scarce
data. If such a large disparity did not exist between the lengths of users in Ulong

and Ushort, it would also be possible to investigate the aspects that characterise
users who transition from Ushort to Ulong.
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Abstract. Tensor-based models emerged only recently in modeling and analy-
sis of the spatiotemporal road traffic data. They outperform other data models
regarding the property of simultaneously capturing both spatial and temporal
components of the observed traffic dataset. In this paper, the nonnegative ten-
sor decomposition method is used to extract traffic patterns in the form of Speed
Transition Matrix (STM). The STM is presented as the approach for modeling
the large sparse Floating Car Data (FCD). The anomaly of the traffic pattern is
estimated using Kullback–Leibler divergence between the observed traffic pat-
tern and the average traffic pattern. Experiments were conducted on the large
sparse FCD dataset for the most relevant road segments in the City of Zagreb,
which is the capital and largest city in Croatia. Results show that the method was
able to detect the most anomalous traffic road segments, and with analysis of the
extracted spatial and temporal components, conclusions could be drawn about
the causes of the anomalies. Results are validated by using the domain knowl-
edge from the Highway Capacity Manual and achieved a precision score value
of more than 90%. Therefore, such valuable traffic information can be used in
routing applications and urban traffic planning.

Keywords: Road traffic anomaly detection · Tensor decomposition methods ·
Speed probability distribution · Intelligent transport systems · Traffic state
estimation

1 Introduction

Anomaly detection on the urban road network is one of the most attractive research top-
ics for the researches in the field of Intelligent Transportation Systems (ITS). Anomaly
detection, in general, can be defined as a process of finding unexpected behavior of
some instances in the set of data that is observed. The importance of anomaly detec-
tion and analysis lies in the potentially useful, actionable information for the domain
of the ITS. The traffic patterns that indicate anomaly on the urban road networks could
identify the severe traffic accident, traffic congestion, or a violation of the regulations.

Regarding the type of traffic anomaly, there are two most common types: (i) non-
recurrent and (ii) recurrent traffic anomalies. Non-recurrent traffic anomalies are usu-
ally caused by some unexpected events such as traffic accidents or special social events,
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and recurrent traffic anomalies are occurring daily, mostly caused by commuters. Chow
et al. [5] report that 85% of all congestions occurring on the urban road network are of
recurrent type. The recent review that covers methods for the urban road traffic anomaly
detection [6], states that this research topic is in early stages and challenges like new
detection algorithms, optimizations, and high-performance computing need to be fur-
ther addressed.

This paper presents a tensor decomposition-based method for the recurrent anomaly
detection on the urban road network, modeled using FCD. The proposed framework
consists of the three main steps: (i) data preprocessing, (ii) STMs generation, and (iii)
anomaly detection using CANDECOMP/PARAFAC (CP) method. The validation is
conducted by using the domain knowledge from the Highway Capacity Manual (HCM),
which reports the relations between traffic speed values and the level of service on the
road segments. The method achieved the precision score of 91.68% in the detection of
the extreme traffic conditions (recurrent traffic anomalies).

Contributions of this paper are as follows: (i) framework for the anomaly detec-
tion using Nonnegative Tensor Decomposition (NTD) method and Kullback–Leibler
Divergence (KLD) values, (ii) the usage of the tensor composed of STMs to model the
traffic patterns, and (iii) results of the anomaly detection are analyzed on the urban road
network segments in the City of Zagreb, Croatia.

The rest of the paper is organized as follows. In Sect. 3, related work on recent
developments on tensor-based models for traffic data modeling is presented. Section 4
presents the methodology used in this paper. Section 5 presents the conducted exper-
iment, including data processing, validation, and the analysis of the anomalous spa-
tiotemporal patterns. The conclusion and future work suggestions are given in Sect. 6.

2 Related Work

One of the essential topics related to the ITS domain is detecting the spatiotemporal
traffic anomalies that influence traffic flow on the urban road networks. A significant
number of studies were carried out investigating traffic dynamics focused on extracting
and describing the spatiotemporal traffic patterns [12,18].

The conventional way of representing the traffic data is using time series represented
with vectors [7]. The vectors mostly represent a change of the typical traffic parameter
through a defined time intervals. Largest limitation of the techniques based on the data
represented by vectors is that it can not take into the account spatial component, such
as the spatial correlation between road traffic segments. In contrast, matrix models can
model more complex behavior of the traffic data [12,13]. Commonly, matrix dimen-
sions arem× n wherem represents the number of links and n number of the observed
time intervals. Matrix models can be used for the extraction of spatial and temporal
dependencies between the observed traffic parameters, but only if a matrix can repre-
sent spatial and temporal components. In the case of common traffic data represented
with origin-destination matrices, to extract the temporal component, one more dimen-
sion must be added. One of the most used matrix decomposition methods is Principal
Component Analysis (PCA). PCA can interpret the data in terms of a smaller num-
ber of components, which can be used to detect some anomalous behavior in the data.
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Wang et al. [25] report that PCA is not applicable in the traffic analysis because traffic
data consists of many outliers. In [8], authors also claim that PCA can not capture spa-
tiotemporal patterns from the traffic data because it relaxes three-dimensional data into
a bidimensional form.

Tensor models emerged as a technique that does not suffer from the limitations
mentioned in the previous approaches. Tensor decomposition presents as a powerful
tool for the spatiotemporal data analysis. It is used in a wide range of research areas
such as signal processing [17], pattern recognition [26], recommendation systems [27],
etc. In the traffic-related application, tensor decomposition methods are used for miss-
ing data imputation [4], traffic prediction [14,19], spatiotemporal correlation analysis
[20], travel time estimation [21], anomaly detection [24], and modeling spatiotemporal
structure of time-evolving traffic networks [23].

When using large sparse Global Navigation Satellite System (GNSS) datasets, vec-
tors that are representing speed profiles could have large deviations because a large
amount of speed data is aggregated into a single value that represents the speed on the
observed road segment in a single time interval. If a large sparse dataset is used, data
represented with origin-destination matrices could have a lot of missing values in some
time intervals. Also, if datasets consist of delivery vehicles, origin-destination matrices
could present wrong spatiotemporal patterns due to the predefined delivery locations.

In this paper, the problem of the large sparse GNSS data analysis by using NTD is
addressed in order to detect the traffic anomalies. Tensor is constructed using novel data
representation called STM. It can be used regardless of the delivery vehicles and does
not suffer from the large deviations as data is not aggregated in such way. The method is
proposed to overcome the mentioned limitations regarding the analysis of sparse GNSS
datasets.

3 Background

Tensors are multidimensional arrays, or more formally, products of N vector spaces.
A first-order tensor is a vector, second-order represents a matrix, and three or more
order tensors are called higher-order tensors [10]. For spatiotemporal traffic analysis,
authors mostly use a third-order tensor composed using origin × destination × time
and profile × roadsegments × time where profile represents the speed or volume
time series on the observed road network segment.

The well-known tensor decomposition method, CP in its nonnegative form, is used
to extract the spatiotemporal traffic patterns. The CP decomposition factorizes a tensor
into a sum of component rank-one tensors. For tensor T CP is the following:

T ≈
R∑

r=1

ar ◦ br ◦ cr (1)

where R is a positive integer that represents the decomposition rank. Then, rank one
components can be expressed as factor matrices A ∈ ( a(1) a(2) ... a(R)) , B ∈
(b(1) b(2) ... b(R)) , and C ∈ ( c(1) c(2) ... c(R)) .
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In the majority of papers, there is an assumption that tensor rank can be determined
in advance with specific knowledge of the phenomena that are under observation [23].
In this paper, Core Consistency Diagnostic (CORCONDIA) [2] method for the tensor
rank estimation is applied to determine the best match for the experiment.

4 Methodology

Given a set of FCD data, the goal is to obtain a method for the spatiotemporal conges-
tions pattern extraction on the urban road network to detect recurrent traffic flow anoma-
lies. Figure 1 illustrates the proposed framework, and this section briefly describes:
(i) data preprocessing, (ii) STMs generation, and (iii) anomaly detection using CAN-
DECOMP/PARAFAC (CP) method and KLD values. After preprocessing the GNSS
dataset, the STMs were generated using the large, real-life FCD data. The next step
was the anomaly detection based on the nonnegative CP tensor decomposition method.
As input to the decomposition method, the spatiotemporal tensor is proposed, which is
composed of flattened STMs, transitions (spatial component), and time intervals (tem-
poral component). The validation is conducted by using the domain knowledge from the
Highway Capacity Manual (HCM), which reports the relations between traffic speed
values and the level of service on the road segments. The method achieved the pre-
cision score of 91.68% in detection of the extreme traffic conditions (recurrent traffic
anomalies). Notations and abbreviations are adopted from Kolda and Bader [10].

4.1 Speed Transition Matrix

Most of the authors represent traffic data as a time series vector v ∈ R
1×n [7] or a two-

dimensional matrix M ∈ R
m×n [11]. Dimensions m and n refer to the numbers of the

road network segments (the spatial component) and the number of time intervals (the
temporal component) of the observed road network. Values in the cells of the vector or
matrix are the values of the traffic parameter under observation, most commonly speed,
volume, or density. For this research, the STM as form to represent traffic data is used.

Fig. 1. Proposed methodology for the anomaly detection
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The concept is proposed based on Markov chain theory, where the transition matrix
shows the probability of transition from one state to another. The STM is used to rep-
resent the probability of changing the speed value when a vehicle travels between two
consecutive network segments. In this paper, road network is represented as a directed
graphG = (V,E) where V is a set of vertices representing the intersections, and E is a
set of edges representing road segments which connect two adjacent intersections. The
transition is defined as a spatial change in vehicle trajectory when traveling from edge
ei to edge ej in time interval t. As a traffic parameter under observation, the average
speed is used. Average speed is calculated on ei and labeled as the origin speed so and
average speed on the ej segment is labeled as destination speed sd. Two examples of
the transition are visually represented in Fig. 2 (a) with red and blue colors. The tran-
sition describes the vehicle that is traveling between edge bounded with vertices 7 and
4. Origin speed so is an average speed on the edge h and destination speed sd is an
average speed on edge f . Then, the STM matrix X is constructed as follows. First, all
the changes from so to sd between ei and ej are discretized and then counted for the
particular time interval t. Each obtained value will represent the count of transitions
between so and sd. Figure 2 (b) and (c) show two examples of the transition counts: the
anomalous traffic flow that needs to be detected and normal traffic flow, respectfully.

The speed counts are further transformed into the speed transition probability dis-
tribution to get the probabilities for every transition. Values are put into the matrix X,
and its dimensions depend on the chosen resolutions (sensitivity) of the speed change
and the maximal speed that can be captured. In this paper, 5 km/h is chosen as the
discretization period and 100 km/h for the maximal possible speed, which resulted in
matrix dimensions 20× 20. The specific maximal speed value is chosen because exper-
iments are conducted on the road segments with a speed limit between 50 and 80 km/h.
Equation (2) presents the STM where every value pij represents the probability that
vehicle had origin speed so and destination speed sd in the observed transition at time
interval t.

Fig. 2. Examples for: (a) transition, (b) STM containing anomaly, and (c) STM representing nor-
mal traffic
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X =

⎛

⎜⎜⎜⎜⎝

p11 p12 . . . p1n

p21
. . .

...
...

. . .
...

pm1 . . . . . . pmn

⎞

⎟⎟⎟⎟⎠
(2)

4.2 Tensor Construction

In this paper, as a method for modeling the traffic data, a spatiotemporal tensor is pro-
posed. The tensor is composed of flattened STMs, transitions (spatial component), and
time intervals (temporal component) presented in Fig. 3. Tensor T ∈ R

m×n×t is con-
structed, where m represents the flattened size of the STM, n represents the number of
observed transitions in road network (pairs of the adjacent road segments), and t rep-
resents number of the time intervals. Frontal slices of tensor T can be represented with
matrix T::t ∈ R

m×n, where every STM matrix X is flattened into a vector x ∈ R
m×1

and placed into the matrix T::t as column. Dimension m had the value of 400 as STM
size is 20 × 20. Instead of using one tensor with all the data, data is divided into sev-
eral smaller tensors T(1),T(2), ...,T(N) where T(i) ∈ R

400×100×8. Regarding smaller
spatial dimension, this approach allows to capture the anomalies from many different
parts of the road traffic network, and more diverse traffic patterns can be captured in the
anomaly detection process.

Tensor Rank Estimation. In this paper, CORCONDIA is applied to as the tensor rank
estimation method. It is essential to mention that tensor rank estimation methods are
used to get recommendations more than the exact actual value of the rank. Algorithm
AutoTen is applied that extends CORCONDIA adaptation to KLD [15]. The algo-
rithm was run five times on randomly chosen tensor T(i) and the average estimated
rank resulted with a value of R = 10, which is the rank used for the experiments.

Factor Matrix Discussion. The result of the tensor decomposition can be represented
with the three factor matrices A ∈ R

400×10, B ∈ R
100×10, and C ∈ R

8×10 as presented

Fig. 3. Constructed tensor with corresponding factor matrices
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in Fig. 3. Factor matrix A consists of extracted characteristic traffic patterns on the road
network that is under observation. If the columns a:j ∈ R

400×1 of the factor matrix
A are reshaped into the matrix 20 × 20 it represent the characteristic STM (traffic pat-
terns). The goal of anomaly detection is to find the anomalous traffic patterns and link
them to the corresponding values in spatial and temporal factor matrices. The matrix B
represents the spatial factor matrix, and the values in the rows bi: represent how well
each of the characteristic STM represent the traffic flow on the corresponding transition
on index i. The values in the columns b:j show how well each characteristic matrix
describes each of the transitions (spatial components) in the observed road network.
The matrix C represents the temporal factor matrix. The values in the rows ci: represent
how well each of the characteristic STM represents the corresponding time interval on
index i, and the values in the columns c:j show how well each characteristic matrix
describes each of the time interval (temporal components). The larger values in the fac-
tor matrices B, and C suggest the grater impact of the spatial or temporal components
on the corresponding factor [16].

4.3 Anomaly Detection

Anomaly detection is divided into five steps, as shown in Fig. 4. The first step is defining
the input tensor size. For input tensors T(i) ∈ R

400×100×8 number of transitions is lim-
ited to 100. Using the smaller spatial dimension resulted in more diverse spatiotemporal
traffic patterns identified because smaller parts of the network are being analyzed. Then,
in the second step, nonnegative CP decomposition is applied on every input tensor T(i).
Decomposition resulted in three matrices Ai, Bi, and Ci that represent characteristic
STM, spatial, and temporal components, respectively. The third step is calculating the
difference between the characteristic and the average STM labeled as M. Every col-
umn of the factor matrix a:j is reshaped to matrix 20× 20 to represent calculated STM

Fig. 4.Methodology for the anomaly detection using tensor CP method and KLD
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characteristic matrix Xir where r is a rank number. KLD is calculated to measure the
difference between Xir and M:

dKL(Xir,M) =
∑

xi∈X

Xir(xi) log
(
Xir(xi)
M(xi)

)
(3)

As shown in Sect. 4.1, the STM represents the speed transition probability distribu-
tion, which is the reason why KLD is used as a difference measure as it calculates the
difference between two probability distributions. The standard anomaly classification
method for the KLD values is used. The characteristic matrix that had dKL value larger
than upper bound calculated asQ3+ 1.5 · IQR, and labeled as dupper, out of all calcu-
lated KLD values, is declared as an anomaly, which concludes step four. The last step
is related to detecting the anomalies for every characteristic STM matrix Xir. For each
input tensor T(i), for every calculated Xir, if dKL is larger or equal than dupper, then
Xir was declared as characteristic STM representing the anomaly.

5 Experiments

This section presents the data and the results of a conducted experiment on detecting the
traffic flow anomalies using NTD and KLD values. For the data preprocessing, Python
NumPy package was used [22], and the NTD and anomaly detection was carried out on
MATLAB using Tensor Toolbox [1].

5.1 Data

The FCD used for the experiments is based on the raw GNSS data acquired from the
vehicles equipped with the tracking devices. The data summary is given in Table 1. Each
record contains a time-stamp, geographical longitude and latitude, speed, and heading.
Due to the storage limitation, most of the data is sampled in the following way: sam-
pling rate of 100m for vehicles in driving mode and every 5min for turned off vehicles.
Raw data is map matched to the road segments in a digital map. GNSS data for the road
network of Croatia were recorded for five years between August 2009 and October
2014 by approximately 4200 by tracked vehicles. The tracked vehicle fleet is versatile
and mostly consists of delivery vehicles (vans and caddies) and taxi cars. The historical
tracked data, which consists of 6, 55 billion records, were provided by the company
Mireo Inc. as a part of the SORDITO project [3,7]. Data is analyzed and anomalies
are detected using the proposed method for large road segments in the City of Zagreb,
which is the capital and largest city in Croatia. In the European Union context, Zagreb
represents a medium-size city with approximately 800000 citizens. The seasonality of
the traffic flow is considered to lower the deviation. Summer months, July and August,
are not considered in the experiment. They significantly influence the results due to the
different, and lower traffic flows caused by vacations [28]. Data is further divided into
two groups: working days and weekend days. Working days data, Monday to Friday, are
different from the weekend data for Saturday and Sunday, mostly due to the daily com-
muters. This filtering is used to extract only the most relevant and extreme congestion
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Table 1. Data summary

Number of GNSS traces 6,55 billion

Sampling rate 100m/5 min

Time-span August 2008–October 2014

Number of vehicles 4200

Number of road segments (Croatia) 2000000

Number of road segments (Zagreb) 86900

conditions on the urban road network. Therefore, the dataset used for the experiments
includes only working days. For the construction of input tensors, eight time intervals
are defined based on [3]. Intervals are defined as follows: (i) 05 : 30− 06 : 45 as morn-
ing interval with very small traffic volume, (ii) 06 : 45 − 07 : 25 as interval before the
morning rush hour, (iii) 07 : 25−08 : 20 as morning rush hour, (iv) 08 : 20−15 : 30 as
interval between morning and evening rush hour, (v) 15 : 30 − 17 : 05 as evening rush
hour, (vi) 17 : 05 − 19 : 00 as interval after evening rush hour, (vii) 19 : 00 − 22 : 00
as late evening interval, and (viii) 22 : 00 − 05 : 30 as night interval.

5.2 Validation

The Highway Capacity Manual (HCM) contains the guidelines, concepts, and the pro-
cedures for computing the road traffic parameters for calculating the capacity and qual-
ity of service for different road infrastructure facilities [9]. It reports the six level of
service defined for the urban road segments depending on the traffic flow speed relative
to the free flow speed. The speed limit on the road or the night speed are mostly used
values for estimating the free flow speed. Levels of service are labeled with letters from
A to F, where A represents the best traffic conditions with vehicle speeds larger than
80% of the free flow speed, and F represents the most extreme congestion where vehicle
speeds are less than 30% of the free flow speed. To evaluate the process of the anomaly
detection, cross-validation was adopted. The 2000 STMs were labeled by using the
HCM data for the level of service. STMs are labeled as anomalous only if the traffic
conditions can be classified by the HCM as extreme traffic conditions (level of service
values E and F). In other cases, STMs are labeled as not anomalous. Firstly, 500 anoma-
lous, and 500 STMs without the anomaly were selected randomly from the labeled data
as a training dataset. Then the results of our approach were compared to the HCM clas-
sification as the ground truth. We report the precision calculated as TP/(TP + FP ),
recall TP/(TP + FN), and F − 1 score in Table 2.

Table 2. Validation results of the proposed method by using the domain knowledge data

Anomalous STMs Normal STMs Precision Recall F-1

500 500 91.68% 84.30% 87.64%
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5.3 Spatiotemporal Traffic Patterns

The experiment includes all road traffic segments in the City of Zagreb that have a
speed limit between 50 and 80 km/h. This type of filtering is chosen because the aim
of the research is anomaly detection on the large urban road network segments. The
conducted experiment resulted in 140 extracted traffic patterns in the form of the char-
acteristic STMs. After the anomaly detection method is applied, 34 anomalous charac-
teristic matrices were extracted with different temporal characteristics. For convenience,
the top five anomalous characteristic matrices and five unusual patterns are described
and explained. The STM is labeled as unusual if temporal characteristic showed that
anomaly is not occurring in the rush hours, where most anomalies occur. In Table 3
and 4 five characteristic STMs are shown with its corresponding temporal component
extracted from columns c:j of the temporal factor matrix. The rush hour intervals are
highlighted with the vertical red dashed lines. All corresponding spatial components
are located and shown on the map (Fig. 6). Column values ID of the tables correspond
to the ID values on the map. In contrast to anomalous characteristic STM, Fig. 5 (a)
shows the examples of the characteristic STMs that represent the normal traffic flow.
Normal traffic flow is characterized by speeds that do not have a strong deviation when
compared to free-flow speed [9]. As shown in Fig. 5 (b), higher values of the temporal
characteristics suggest that normal characteristic matrices are best for describing traffic
conditions on road segments primarily before and after, and to some extent in between
rush hours.

Fig. 5. Examples of spatiotemporal patterns representing the normal traffic flow (a) with corre-
sponding temporal components (b)
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Table 3. Ranking of most anomalous characteristic matrices

ID Characteristic STM Temporal component KLD

1 16.92

2 16.49

3 15.98

4 15.66

5 15.49

Locations in Fig. 6 are extracted using spatial component matrix B. Where the col-
umn values b(:,j) represent spatial coefficients. The highest value of the spatial coeffi-
cient indicates the transition that the anomalous characteristic matrix represents had the
most impact. Every anomaly location is labeled with the index from 1 to 10 that matches
the ID values from Tables 3 and 4. Indexes 1 and 2 point to Zagreb’s business district,
where the most traffic congestion occurs due to daily commuters. Index 4 points to the
most congested large roundabout in the City of Zagreb and index 3 to one of the roads
leading to the roundabout. This part of the city is vital because the bridge represents
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Table 4. Unusual anomalous characteristic matrices

ID Characteristic matrix Temporal component KLD

6 12.48

7 11.67

8 11.61

9 14.02

10 12.20

the connection between the northern and the southern part of the city. With this fact, a
bridge can be identified as most congested among all the bridges that connect these two
parts of the city. This information could be valuable to authorities because it can indicate
the need for the building of another bridge that connects the northern and the southern
part of the city. Index 5 points to street which is the entry point to the downtown area in
the city center and incorporates many traffic modes, including car, tram, bicyclists, and
pedestrians.
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Fig. 6.Map with top five most anomalous transitions (red) and five unusual anomalous transitions
(green) (Color figure online)

Table 4 presents five anomalous characteristic matrices that describe anomaly in
the traffic flow in the intervals that are not the rush hour intervals and are labeled as
unusual. Matrices with id 6 − 8 represent the anomalies in the morning time intervals
before the morning rush hour. When located on the map (Fig. 6), it can be seen that
these road segments are located at the edges of the city. This information indicates that
anomalous behavior occurs due to commuters that are traveling to work from more
distant locations. Matrices with id 9 and 10 indicate that most anomalous behavior
can be detected in the interval between rush hours and evening time intervals. Traffic
demand is increased because road segments are located in the city center that attracts a
lot off traffic during the evening due to city attractions and nightlife. The detection of the
unusual anomalies is a valuable traffic insight because most of the recurrent anomalies
are expected to occur in the rush hours. Results point out the road segments that showed
different behavior of traffic flow patterns and needed to be further investigated by the
traffic experts.

6 Conclusions

In this paper, a method for anomaly detection on the urban road network is presented.
The conducted experiment indicates that our method can be used to detect spatiotempo-
ral anomalies and to detect the most anomalous road traffic segments. Also, the unusual
recurrent anomalies can be detected and analyzed by its spatial or temporal components.

There are some drawbacks that need to be addressed in the future work: (i) flat-
tening of STM could cause some loss of information and sensitivity analysis must be
performed, (ii) other types of f-divergence should be explored to confirm the edge cases
that could be affected by selection of the distance measure, and (iii) calculation of the
STM can be time consuming process, and the running time requirements of the tech-
nique must be addressed.

The result presents the valuable traffic insights that are useful for the routing appli-
cation especially in non-rush hour periods, responsible urban planners, or to the road
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infrastructure maintenance authorities. It can be used as valuable traffic information
about the need for infrastructure expansion, additional improvement strategies, or to
analyze the traffic influence of the new road infrastructure. Future work should include
training the neural network to detect the anomalies, based on the characteristic STMs
that will be used to label the extracted spatiotemporal traffic patterns.
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3. Carić, T., Fosin, J.: Using congestion zones for solving the time dependent vehicle routing

problem. Promet-Traffic Transp. 32(1), 25–38 (2020). https://doi.org/10.7307/ptt.v32i1.3296
4. Chen, X., He, Z., Chen, Y., Lu, Y., Wang, J.: Missing traffic data imputation and pattern dis-

covery with a Bayesian augmented tensor factorization model. Transp. Res. Part C: Emerg.
Technol. 104(2018), 66–77 (2019). https://doi.org/10.1016/j.trc.2019.03.003

5. Chow, A.H., Santacreu, A., Tsapakis, I., Tanasaranond, G., Cheng, T.: Empirical assessment
of urban traffic congestion. J. Adv. Transp. 48(8), 1000–1016 (2014). https://doi.org/10.1002/
atr.1241

6. Djenouri, Y., Belhadi, A., Lin, J.C., Djenouri, D., Cano, A.: A survey on urban traffic
anomalies detection algorithms. IEEE Access 7, 12192–12205 (2019). https://doi.org/10.
1109/ACCESS.2019.2893124
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Abstract. With the recent explosive developments in sensoring capabili-
ties and ubiquitous computing in road cycling, large quantities of detailed
data about performance are becoming available. In this paper, we will
demonstrate that this rich data in cycling offers several non-trivial data
science challenges. The primary task that we focus on is a regression task:
given a collection of results in previous races of a specific rider, predict
the performance in a future race solely based on the characteristics of said
rider and the stage profile. To make these predictions, we have developed
a predictive pipeline that consists of three consecutive rider-specific mod-
els. First, we transform the distance-altitude profile into a time profile,
by using a climb-descent model that describes the relationship between
the speed of the cyclist and the slope of the terrain. Second, we introduce
an effective profile that includes the rider-specific physiological capabili-
ties. Third, we predict the performance based on the characteristics of the
effective profile, by using a model constructed from the historical records
of our cyclist. To demonstrate the relevance of this work, we show that
for a professional cycling team, important information for making tacti-
cal decisions can be obtained from our modeling approach.

Keywords: Temporal data mining · Time series regression ·
Predictive modeling

1 Introduction

Road cycling is a complex sport where the final result in competition is affected by
many aspects [1,7,8], such as the physiological capacities of a rider [14], weather
conditions and course details. In this sport, the differences between success and
failure are small and therefore even slight improvements in one of the many perfor-
mance indicators might have large consequences. Since most professional cyclists
nowadays use so-called cycling computers to frequently monitor important char-
acteristics during their rides, e.g., heart rate and produced power, and data sci-
ence flourishes in the presence of this abundance of data, the application of these

c© Springer Nature Switzerland AG 2020
A. Appice et al. (Eds.): DS 2020, LNAI 12323, pp. 689–703, 2020.
https://doi.org/10.1007/978-3-030-61527-7_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61527-7_45&domain=pdf
https://doi.org/10.1007/978-3-030-61527-7_45


690 A.-W. de Leeuw et al.

novel techniques in the context of road cycling has the potential to reveal valuable
insights for improving the performance of professional cyclists.

In this article, we consider the following data science challenge in road cycling:
given a future stage profile and a database of historical races of a rider, can we
predict the loss or gain of time for this rider, relative to his competitors? Notice
that the particular task we are focusing on here is one of personalization, that is,
we are using rider-specific data in order to learn his specific strengths and weak-
nesses compared to the competition. This regression problem, more specifically
a time series regression problem, can be seen as the regression-counterpart of
the time series classification problem [2]. Thus, instead of attaching a label to
future time series, we want to predict a numeric value for an unseen time series.
To the best of our knowledge, we are the first to tackle this type of problem.
Although it is tempting to think that the task at hand is an instance of one
of the various temporal prediction settings, such as forecasting or time series
classification, we stress here that this is not the case.

To address the aforementioned challenge, we have developed a three-stage
pipeline. First, we construct a climb-descent model to transform a given dis-
tance profile into a time profile. This is necessary for including the physiological
response of a rider as this is measured on a time scale, whereas the stage profile
is provided on a distance scale. In the second step, we incorporate the rider-
specific physiology by transforming the time profile into an effective profile. We
calculate the effective profile by performing a convolution of the time series with
an exponential kernel. This form of the kernel is inspired by the response to
exercise of the human body. In the third step of the pipeline, we apply feature
extraction to the effective profiles and use two types of regression modeling for
constructing the final model.

The work described here is the result of a collaboration with one of the
world-leading cycling teams, Team Jumbo-Visma. The team has kindly made
available several years of detailed rider data, which was enriched with public
data about race results and competitors. Based on this data, rider-specific models
were developed and subsequently applied to stage profiles of one of three then
upcoming Grand Tours1 in 2019, which we report upon.

2 Related Work

In this article, we are dealing with time series analysis. A large branch of research
in this field deals with the specific task of forecasting, where extrapolation is
used to make predictions for future values of the time series. There are several
methods for making these predictions, such as ARIMA models [4]. In this work,
we do not consider forecasting. Instead, we will focus on determining a target
value for a yet to be predicted time series based on a collection of historical
time series and target values, i.e., a time series regression challenge. Where in
forecasting, one is interested in predicting the next value in a sequence, in time
series regression we are primarily interested in learning how to aggregate a time
series into a single number (in our case win or loss of time).
1 The most important stage races: Tour de France, Giro d’Italia and Vuelta a España.
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Fig. 1. Schematic overview of the different parts of the pipeline for predicting the per-
formance of our general classification rider. The historical races are used for construct-
ing a climb-descent model, obtaining the rider-specific characteristics and determining
a prediction model. By using these three components, the distance profile of a stage
can be translated into a prediction for the time difference with the ten best riders in
the general classification at the end of the stage race.

There are many possibilities for approaching this regression problem, but
for a number of application-specific reasons, we here opt for a feature extrac-
tion approach. There are several approaches for feature construction with time
series data [5,17,18,21,22], where most recent developments focus on deep learn-
ing methods [3,19,23]. However, traditional approaches are still commonly used
as they can compete or even outperform these methods in accuracy [15] and
have the advantage that the results are interpretable. To avoid a dependence on
domain knowledge to find the appropriate features, a method has been developed
that applies automated feature selection [9].

Usually, the behavior of the time series prior to a certain time is implicitly
taken into account in the feature construction process. Contrary to this, we have
a pre-processing step, where we explicitly focus on how the previous values in
the time series should be taken into account to optimize the performance of the
regression model. Besides improving the accuracy of the results, the advantage
of this approach is that it makes explicit which timescales are important and
with what weight the previous values should be taken into account. In many
practical cases, and also here, this is useful information for the domain experts.

3 Modeling Approach

We consider the following time series regression challenge in road cycling.

Given: A collection of time series data with corresponding race results of a spe-
cific cyclist and a distance-altitude profile for a stage in a future multiple-day
race that is of the form {(d0, h0), . . . , (df , hf )}, where f indicates the integer of
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the final element of the series, dj is the covered distance and hj is the corre-
sponding altitude at a specific point in the race.

Goal: Predict the performance of the rider in the stage solely based on the
characteristics of the said rider and the stage profile.

To tackle this problem, we have developed a three-stage pipeline, i.e, see
Fig. 1. Below, we will discuss the different parts of this pipeline separately, start-
ing with the last step, and working to the front along the pipeline.

3.1 Time Series Regression

The most important (and last) part of our pipeline is the step in which we apply
regression. In a general time series regression setting, we have a collection of
N ∈ N different pairs v. Each pair is of the form (dv, yv), with dv a time series
and yv the target value that belongs to this time series. Hence,

v = (dv, yv) = ({(tv0, x
v
0), . . . , (t

v
fv , xv

fv )}, yv), (1)

where tvi is the temporal component of the data, xv
i the corresponding variable

that is monitored as a function of time and fv ∈ N denotes the last element of
the time series. Note that the superscript v in the latter denotes that the length
of the time series can be different for each v. In the remainder of this section,
we will omit the superscript v for convenience. The main regression task is as
follows

Problem 1: Given a collection of time series data with corresponding numerical
target as defined in (1), find the relationship between the time series and target
variable.

This problem is challenging for several reasons. First of all, there are no
constraints on the length of the time series, and different examples will have dif-
ferent lengths. Next, the predictive information necessary for making the actual
regression may be contained in the entire time series, but it may also just depend
on segments of the data, say only the last 15 min of the race. Additionally, what
aspects of the time series are of specific relevance to the prediction may differ
from task to task. For example, in our case the target may depend on continuous,
aggregated features such as the total amount of climb meters, but it might also
require more discrete information like the number of climbs.

There are several options for addressing this problem. In principle, most
methods that are developed for time-series classification problems, including
distance-based, shapelets, and feature-extraction approaches [2], can also be
applied to our time-series regression setting. For our application, we have used
an aggregation-based feature construction approach. Moreover, we used LASSO
regression [20] to select the most relevant features and to reduce overfitting. We
opted for this method to provide useful feedback to the cycling team. Addition-
ally, to demonstrate the versatility and advantages of our approach, we will also
apply a non-linear method that focuses on finding local patterns, i.e., Subgroup
Discovery [10].
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3.2 Effective Time Series

In the second step of our pipeline, we explicitly incorporate the integration over
time introduced by the physiology of the human body, by transforming the data
into an effective time series. More specifically, for a time series as defined in (1),
the effective time series is defined as {(t0, z0), . . . , (tf , zf )}, where for a given
integer m ∈ [0, f ], zm is defined as

zm =
m∑

i=0

h(ti) · xm−i, (2)

Note that this procedure is similar to taking the convolution of the time series
with a yet to be mentioned kernel h(t). Therefore, we also have the following
optimization task.

Problem 2: Given a collection of time series data with corresponding numerical
target as defined in (1), transform the learning time series data into an effective
time series as in (2) and find the function h(t) that maximizes the accuracy of
the regression model.

To address this problem, we consider a class of continuous functions hτ (t) on
the interval [a, b] for a, b ∈ R that satisfy

lim
τ→a

hτ (tk) = δk,0, (3)

and

lim
τ→b

hτ (tk) = 1/(f + 1). (4)

Here, δk,0 is a Kronecker delta that is defined as

δk,0 =

{
1 if k = 0,

0 otherwise,
(5)

and recall that f + 1 denotes the length of the time series.
For these functions hτ (t), zm only contains the current values of the time

series xm if τ tends to a. On the other hand, in the limit τ → b, all previous
elements of the time series are included in a sum with equal weights for each
element. Because the kernel is continuous in τ between the two above-mentioned
extreme cases, we can capture the most important distinct kind of temporal
effects by only changing the value of a single parameter τ between a and b. In
our application for professional road cycling, we set

hτ (t) = (δt,0 + Θ(t) · e−t/τ )/(1 + τ), (6)

where δt,0 is the Kronecker delta as defined in (5) and the Heaviside step function
Θ(t) is given by

Θ(t) =

{
1 if t > 0,

0 otherwise.
(7)
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This kernel consists of two different parts. The first term is included to make
sure that

zm = lim
τ→0

m∑

i=0

hτ (ti)xm−i =
∞∑

i=0

δi,0xm−i = xm. (8)

The second term in (6) is incorporated to model the recovery abilities of the
cyclist, where τ specifies how fast an athlete recovers from previous efforts within
a race. Note that this procedure introduces a parameter τ that needs to be
optimized.

3.3 Climb-Descent Model

For our application, we start with a distance profile that specifies the altitude of
the terrain and the covered distance since the start of the race. To include the
rider-specific recovery abilities, we need to transform the distance profile into a
time profile as the recovery abilities depend on the time rather than the distance
between subsequent efforts. Note that this first step in the pipeline is specific
for the application in road cycling, while the aforementioned two steps are also
relevant in other time series regression settings.

To achieve this transformation, we use the historical races of our rider to
construct a climb-descent model that relates the speed of the cyclist to the slope
of the terrain. For constructing this model, we collect the speed and correspond-
ing slope of the terrain in all historical races, including both mass-start stages
and time trials, which could amount to millions of data points per rider. Subse-
quently, we apply the method that is introduced in [13] to find the relationship
between slope and speed. In this method, we consider polynomial regression and
use cross-validation to select the degree of the polynomial that gives the most
accurate model.

4 Materials

4.1 Data

We used data of a single rider of one of the world-leading professional road
cycling teams. During a period of several years, a large variety of important
characteristics, such as physical measurements, temperature, altitude and speed,
were collected once every second during all his rides by using a cycling computer.
For this work, the relevant information is the speed, distance and altitude in
competition. Moreover, we have used an online cycling results database to obtain
the results of the races in which the rider competed [11].

For our application, there are two complications that need to be addressed.
First, the stages can be divided into two different categories. On the one hand,
there are stages with a mass start. On the other hand, there are time trials in
which each cyclist rides alone or only with his teammates. In our data collection,
there are only few time trials and most stages start with a mass start. Therefore,
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Fig. 2. The results for the parameter optimization with Subgroup Discovery. For every
τ , we display the value of the quality measure explained variance for the best subgroup
at search depth 1. The subgroups with the highest quality is obtained for τ ∈ [65, 345].

from now on we will focus on the mass start stages. The second complication
is the purpose of the race within the training-competition regime. Depending
on the importance of a race, the aim can be optimal performance, or race-
specific training for a more important race to come. Since we want to predict
the performance, we need to make sure to only include the former. Therefore, we
consulted the coach of the team to select the stages where the rider was aiming
for an optimal performance. This resulted in a selection of 122 mass-start stages
that are used for further analyzes. In addition, we have a validation set comprised
of the 21 stages of one of the Grand Tours in 2019 where the rider participated,
with great success.

4.2 Target

The first task in our analyzes is defining a target variable, i.e., a measure that
characterizes the performance of the cyclist in competition. For a proper defi-
nition, we need to consider some contextual information. First, our cyclist is a
general classification rider. This implies that during stage races, i.e., races that
last for multiple days, in every stage the goal is to gain time or at least limit
time losses compared to the competitors. Thus, a good performance is not neces-
sarily a high classification in individual stages, but rather, faster finishing times
compared to the other general classification riders. Therefore, for every stage,
we compare the finish time of our cyclist with the average finish time of the ten
best riders in the general classification at the end of the multi-day race as in
the cycling community this is considered a benchmark for a good performance2.
Moreover, we consider the general classification at the end of the multi-day race
2 This specific information is only available at the end of the race, which makes our

analysis a post-hoc one.
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Fig. 3. The results for the parameter optimization with LASSO regression. For every
value of the parameter τ that models the recovery abilities of our cyclist, we choose
the value of the LASSO regularization parameter α that gives the smallest error. The
error is relative to the baseline model, which is the linear model that only includes
the intercept and for which all other coefficients are equal to zero. The best model is
obtained for τ = 1124 and α = 0.27.

as it is quite common that throughout the race there are riders on high positions
in the general standings that are not aiming for a good position in the final
general classification.

4.3 Feature Engineering

Our data collection contains distance profiles that specify the altitude of the
terrain at different points in the race. First, we transform these distance profiles
into new profiles that characterize the change in altitude from the start of the
race as this is a more appropriate measure for the heaviness. Hereafter, we cal-
culate the time profiles by using the climb-descent model. Subsequently, for each
τ , we consider the kernel as defined in (6) and we determine the effective profile.
Finally, the calculated effective profile is used to determine features. Each fea-
ture is an aggregate of either the effective altitudes or the changes in effective
altitudes in a specific window.

In cycling, the last part of the stage is the part where most time differences
between the general classification riders occur. Therefore, to predict the perfor-
mance of our cyclist, besides considering the distribution of the entire stage, we
also consider the last 30 min, the last 20 min, the last 10 min, the last 30 to
10 min, the last 30 to 20 min and the 20 to 10 min, separately. For each win-
dow, we determine the mean, standard deviation, interquartile range, skewness,
kurtosis and difference between maximum and minimum. Moreover, we consider
the nth-percentiles for n equal to 0, 25, 50, 75, 80, 85, 90, 95 or 100. Note that
we focused on the high percentiles, as we expect that the largest values of the
effective altitude and changes herein are most decisive.
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Fig. 4. Speed as a function of the slope at the cycling stage course. The solid line is the
polynomial model of degree 43. The shaded area denotes a confidence interval that we
calculate by binning the slope into bins of a percent, where subsequent bins overlap for
50%. The upper (lower) part is the average speed plus (minus) one standard deviation.

In total, we consider the effective altitude and changes in effective altitude,
take into account seven different windows and use fifteen different aggregates.
Hence, for every stage we construct 210 features.

5 Results

5.1 Climb-Descent Model

In the climb-descent model, we determine the relationship between the speed of
our cyclist and the slope of the terrain. The speed of the cyclist is defined as the
average speed at a time t and one second later. To determine the corresponding
slope S(t), we need the covered distance D and the change in elevation. The
covered distance D is calculated by using the average speed. To determine the
difference in elevation, we first bidirectionally filtered the altitude data using an
exponential weighted moving average with smoothing factor 1/2 to introduce a
smoothed altitude H(t). Now, the slope S(t) is defined as

S(t) = 100 · H(t) − H(t − 1)√
D2 − (H(t) − H(t − 1))2

. (9)

Due to failures of the GPS tracking, there is a small percentage of the data
collection for which we obtain extreme and unreliable results. Since 38% is the
steepest slope on earth, we remove the data points with larger slopes. In the
end, we are left with almost 2 million instances.

To find the climb-descent model, we apply the method that is introduced in
[13]. We performed the polynomial regression one hundred times, of which an
optimal degree of 43 was found in 98 instances. The final model can be seen in
Fig. 4. As expected, starting from large ascents, the speed of our cyclist increases
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Table 1. Overview of the features that are included in the final model to predict
the performance in road cycling based on the stage profile. To compare the values
of coefficients of the different features, we multiplied the coefficients by the standard
deviation of the feature that is present in the entire data collection.

Feature Coefficient

Intercept −8.56

Total effective altitude change minimum −7.43

Effective altitude change Kurtosis last 10–20 min −4.40

Effective altitude change difference −4.11
maximum and minimum last 10–20 min

Effective altitude change skewness last 0–20 min −1.30

Total effective altitude change skewness −1.11

Effective altitude change Kurtosis last 10–30 min −1.01

Effective altitude change Kurtosis last 20–30 min −0.96

Effective altitude change minimum last 10–20 min 1.17

Effective altitude change minimum last 0–20 min 4.36

Effective altitude change skewness last 0–10 min 5.02

Effective altitude interquartile range last 0–10 min 6.92

Effective altitude change skewness last 20–30 min 8.40

if the slope decreases. Indeed, the steeper a climb becomes, the slower the speed
is, but to begin with, this progression is already nonlinear. The interesting part
is when you descend. Initially, at moderate slopes, the speed is correlated with
the slope angle. However, at greater angles, the speed drops to almost the level
of an ascent, mostly since the road will involve more hairpins, and the riders will
have to frequently break to get down safely. Note that we derive a climb-descent
model from the data that, again, is rider-specific. Although we expect that the
overall behavior is similar for most cyclists, there can be some differences. For
example, the fact that some riders are known to be better descenders than others
will influence the behavior of the climb-descent model at negative slopes.

To investigate the quality of the regression, we determine the explained vari-
ance R2, defined as

R2 = 1 − SSres

SStot
, (10)

where SSres is the sum of squares of the residuals and SStot denotes the total
sum of squares. For the climb-descent model, we obtain an explained variance
of 0.657.

For interpreting this value, we determine the statistical significance by using
an F-test. The F-statistic F ∗ for testing the null hypothesis that all coefficients
of the model are zero, i.e., there is no relationship between slope and speed, is
equal to
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F ∗ =
R2

1 − R2

n − k − 1
k

, (11)

where n is the number of data points and k the number of parameters in the
model. In this case k = 44, n = 1934056 and R2 = 0.657. This gives a p-
value that is very close to zero and therefore we can reject the null hypothesis
at a significance level of 0.05. Hence, our climb-descent model is statistically
significant.

5.2 Regression

First, we have applied the exploratory data analysis technique Subgroup Discov-
ery to address the regression challenge. Specifically, we use the Cortana tool [16],
to find the subgroup at search depth 1, i.e., subgroups that are characterized by
a condition on a single feature. In our experiments, we have used a beam search
and the explained variance R2 as the quality measure [12]. Moreover, to obtain
subgroups of substantial size, we restricted our search to subgroups between 5%
and 95% of the entire data collection. As displayed in Fig. 2, the best subgroups
are obtained for τ ∈ [65, 345]. Note that there is not a unique value for τ , as
the effective profiles only slightly change as a function of τ . The subgroup with
the largest value for the quality measure is characterized by a condition on the
minimum value of the change in effective altitude in the last 30 min of the stage.
If this minimum value is above a certain positive-valued threshold, where the
precise value for this threshold depends on the value for parameter τ ∈ [65, 345]
that is considered, our rider had some bad performances. The value for the qual-
ity measure for the best subgroup is equal to 0.335. To interpret this value, we
use the distribution of false discoveries [6]. In this case, the threshold for finding
statistically significant results at confidence level 0.95 is equal to 0.187. Hence,
our results are statistically significant.

Second, we have applied LASSO regression. Again, we first need to find the
optimal values for the kernel parameter τ and the regularization parameter α.
From Fig. 3, we observe that for LASSO regression the best model is obtained for
τ = 1124 and α = 0.27. As for Subgroup Discovery, we find an optimal value for
τ that is different from 0. This implies that including the physiological properties
of our cyclist by introducing an effective profile is a crucial step in our pipeline.
Moreover, note that this value for τ is different from the one that we obtained
in the previous experiments. This is a consequence of the different nature of the
two experiments. In LASSO regression, we only consider linear effects and we
are optimizing a global model. On the other hand, Subgroup Discovery focuses
on finding the interesting local parts of the data and is a non-linear technique.

From our LASSO regression procedure, we find a model that includes twelve
parameters and an intercept. In Table 1, we display the features in our model and
the corresponding values of the coefficients. A negative value for the coefficient
implies that the cyclist improves his performance if the value of this feature is
increased. On the other hand, a positive value for the coefficient indicates that
the performance of our rider is reduced if the value of this feature is increased.
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We obtained a model with R2 = 0.255. To interpret this value for the
explained variance, we test the null hypothesis that all coefficients in the model
are zero. By using (11), we find F ∗ = 2.84 and obtain a p-value of 0.002. There-
fore, we find that the model is statistically significant at confidence level 0.95.

5.3 Validation

After we developed the model in the beginning of 2019, the model was applied
to the stage profiles of one of the Grand Tours in 2019, and the predictions were
communicated to the team in the weeks prior to the race. Before we discuss the
lessons that are learned from the implementation of our approach, we need to
mention that the opportunity for validation provided by a single Grand Tour is
rather limited for several reasons, but we specifically emphasize two here. First,
there are only few data points available, as of the 21 stages, not all can be
considered. Namely, each Grand Tour contains (team) time trials and stages can
be altered or even be neutralized due to extreme weather conditions. In our case,
only 17 stages could be considered. Second, the models are based on historic data
while the subject might have improved and be in exceptionally good shape at
the validation event.

Despite these limitations, we still evaluated the usefulness of our approach in
this event. The stage duration predictions produced by the climb-descent model
are quite accurate. The predictions had a R2 = 0.79, with a RMSE of 1 298 s,
or less than 8% of the average stage duration. On the whole, the predictions of
stage performance were more disappointing. In this Grand Tour, there were six
mass-start stages where the race dynamics required an optimal performance. For
these stages, we predicted on average a loss of 22.5 s. All six predictions were
losses, whereas in reality, three of the stage proved a gain. However, as mentioned
earlier, this might be a consequence of the rider being in exceptionally good shape
at the validation event. Indeed, our rider performed above expectation and fared
quite well overall. This is reflected in the six stages, where an average gain of
−4.9 s was made, compared to the predicted 22.5 s loss.

It is good to remember that the aim of our work was not to provide accurate
predictions of time differences, but rather assess to what extent the various stages
provided an opportunity for time gain (or loss) to the rider. As pointed out
earlier, whether that opportunity blossomed out depends on the race dynamics.
This effect is clearly present in this case. Specifically, the difference between an
opportunity and actual gain is apparent in 11 of the 17 stages available. In these
stages, we predicted gains/losses ranging from −13.2 to 32.3 s but none panned
out, since the stage ended in a bunch sprint or breakaway (both resulting in
the majority of the peloton achieving zero gain). In other words, there was an
intrinsic (dis)advantage predicted for our rider, but no gain or loss was obtained.

6 Implications for Road Cycling

In this section, we will put some emphasis on the implications of the results from
the point of view of professional road cycling.
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6.1 Climb-Descent Model

The climb-descent model can successfully be used to predict the duration of the
entire stage and also estimate the time at which the rider arrives at a specific
point in the race. This information can be used for composing an optimal nutri-
tion scheme. For example, sport directors can advice the rider on the nutrition
intake during the race, as the model estimates the time that is still needed to
finish the race at every point in the race.

6.2 Effective Profile

The effective profile describes the heaviness that is experienced by the rider. This
is essential information for deciding upon the team strategy during the stage. At
the toughest points in the race, a team wants to give maximal support to the
general classification rider. Therefore, the team directors can instruct the team
such that at these points the rider is well-surrounded by fellow team members.
This can for example be achieved by sending teammates forward in an earlier
part of the race.

6.3 Prediction Model

With the prediction model, we can distill the characteristics of stage profiles that
have most influences on the performance of our rider. In this case, we observe
that the performance is mainly influenced by changes in the effective altitude,
and the effective altitude itself is less relevant. Moreover, the rider performs
well in stages where the effective altitude in the entire stage increases or if the
decrease is minimized.

The performance predictions can be used to finalize the tactics during a stage.
For example, road cycling is a team sport and therefore the teammates can put
more emphasis on protecting the team leader if the cyclist is expecting to lose
time on his opponents. On the other hand, the team could apply a more offensive
strategy in stages where the general classification rider is expected to gain time
on his rivals. Second, by applying our method to all general classification riders
in the same team and comparing the predictions for these riders in the different
Grand Tours, for each Grand Tour the team can select the general classification
rider that has the highest chance of being successful.

6.4 Future Work

Although the small size of the validation set prevents us from properly evalu-
ating our approach, several lessons are learned that can be addressed in future
work. As the predictions for the stage duration were quite accurate, most of the
improvements can be made in the performance prediction part. The complexity
of road cycling results in an interaction of several components that all have their
influence on performance of a rider. Therefore, most importantly, it would be
worthwhile to take a multi-dimensional approach. Thus, instead of the approach
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that is discussed here, where predictions are based on one particular factor, i.e.,
the altitude-distance profile, it would be interesting to include also other factors,
such as the present physiological shape.

7 Conclusions

In this paper, we have considered time series regression challenges in profes-
sional road cycling. We have introduced a three-stage pipeline to determine
rider-specific predictions based on the characteristics of the race route, with the
final two steps of the developed pipeline also being applicable to any other time
series regression problem. By applying LASSO regression and Subgroup Discov-
ery, we have demonstrated that explicitly taking into account temporal effects
increases the accuracy of the results.

For our road cycling example, we have shown that several interesting results
can be gleaned from our approach. First, from our climb-descent model, we have
demonstrated that the relationship between the slope of the terrain and speed
of the cyclist is nontrivial and highly nonlinear. Above a certain threshold, the
instances with negative slopes are dominated by hairpin corners in which the
riders can only ride slowly. Second, we have calculated an effective profile that
specifies the actual exertion that is experienced by the rider throughout the stage.
Third, we have used a feature-aggregation based approach to construct a model
for predicting the performance by calculating the time that is gained or lost
with respect to the direct rivals of the rider. Therefore, this model can be used to
identify stages with opportunities to gain time or potential hindrances. Moreover,
our model describes the most important performance indicators, which in this
case are several descriptions of changes in the effective profile in the last part of
the race. Finally, we discussed the lessons that are learned from the deployment
of the models in one of the Grand Tours in 2019 and we explained how the
results of our approach can be relevant for a professional cycling team.
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