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Towards the Evolution of Synthetic oo
Population in Continuous Time

Johan Barthélemy ®, Morgane Dumont, and Timoteo Carletti

Abstract Synthetic populations are tools widely spread in the agent-based commu-
nity for representing a baseline population of interest whose dynamics and evolution
will be simulated and studied. The dynamic evolution of the synthetic population
has been typically performed using a discrete and fixed time step. A continuous
approach based on the Gillespie algorithm is proposed in this research. Prelimi-
nary experiments illustrate the potential of the new method before future work are
discussed.
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Introduction

Synthetic populations are tools widely spread in the agent-based community for
representing a baseline population of interest whose dynamics and evolution will
be simulated and studied using microsimulations. Using synthetic populations typi-
cally consists of two steps. The first one is the generation of the synthetic population
statistically as similar as the population of interest. This problem has been exten-
sively studied since the seminal work of [1]. As such, many different methods are
available in the literature. Selecting the right one depends on the data available for
the generation process [2—5]. We refer the reader to [5, 6] and [7] for a review of
existing approaches.

The dynamic evolution of the synthetic population to forecast the future popula-
tion is the second step. This is done by feeding the microsimulation with the baseline
synthetic population generated in the previous step and apply a set of models and
rules to its agents in order to simulate the dynamics of the population. Recent large
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Fig. 19.1 Conventional approach to evolve synthetic population in TransMob. Each simulated year
t; the following sequence of models is applied to obtain the synthetic population in #;: ageing,
dying, divorcing, wedding, births

microsimulation based on this approach include ILUTE [8], MOBLOC [9], Virtual-
Belgium [10] and its extension VirtualBelgium in Health [11] and TransMob [12].

Usually, the simulation of population’s evolution is driven by a large number
of models defining the interactions of the agents between them and/or their envi-
ronments. Even though each model can have its own time-scale, the conventional
approach to simulate the evolution of a population is to use a global time step, e.g.
one year, to evaluate all the model in a given predefined sequence. This situation is
depicted in Fig. 19.1.

Despite having produced satisfactory results in many different applications, this
approach is not ideal. Indeed, the generated population is sensitive to the ordering
of models used in the evolution, i.e. different sequences of models will result in
significantly different populations. To mitigate this issue, a calendar-based approach
has been recently proposed [13], but still relies on a fixed time step. In addition, it
is usually impossible to simulate processes evolving on short time scales due to the
typically large time step used.

The goal of this research is to propose a framework to evolve a synthetic popula-
tion solving both aforementioned issues, i.e. without a fixed order for the models and
with a dynamic time step. The proposed evolution scheme relies on Gillespie algo-
rithm (Gillespie 1977) originally made to stochastically simulate coupled chemical
reactions and is briefly detailed hereunder.

Continuous Evolution Scheme

Let us denote by P = {d, ..., € dg} the synthetic population of size K, and M =
{mi, ..., m} the set of [ models used to evolve P until a given time horizon 7 is
reached. The main steps of the proposed algorithm are:

1. Initialization: initialize the baseline population P at time ¢t = fy.
2. Monte-Carlo step: determine the most probable m; € M as well as t, the most
probable time step at which m; will occur.
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Fig. 19.2 Schematic representation of a continuous time evolution. At each iteration, the most
probable time step and model are selected. In this example, the following sequence of models is
applied: ageing and death, ageing and birth, ageing and death

3. Update: m; is applied to P and ¢ <— ¢ + 7. The transition probabilities of every
m; € M are also updated.
4. Iterate: go back to 2 while r < 7.

This evolution scheme is illustrated in Fig. 19.2.

The first step to assess the potential of this new methodology is to compare it
against validated ones. We thus simulate the evolution of a small synthetic population
of 15,000 individuals using a limited set of models (ageing, birth, death) using the
recent calendar-based approach as well as a conventional one relying on a fixed
(discrete) time step.

Initial results indicate that the approaches produce comparable results. For
instance, Fig. 19.3 shows that the evolution of the average population size and the
average age of the individuals over time are similar.

The proposed approach also allows the use in the models of non-constant proba-
bilities over time to take into account seasonality effects. For instance, let us assume
that the natality rate can follows one of the two the probability distributions repre-
sented in Fig. 19.4, i.e., either uniform or non-constant. The outcomes of those two
distributions on the number of births over time in the population are illustrated in
Fig. 19.5, where the seasonality induced by the non-uniform can be clearly seen.

From those early experiments, it can be seen that the proposed approach has
potential to simulate realistic synthetic population evolution as it does not assume
any a priori sequence of models to apply, nor a fixed time step.

Nonetheless, this method is computationally intensive and not well suited to large
population. Indeed, as the simulated population grows, t decreases and can become
very small, thus increasing the number of steps to reach ;. Consequently, improving
the scalability of this approach will be investigated.

Finally, and more importantly, future development will also focus on adapting
this approach to synthetic populations made of individuals gathered in households.
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Fig. 19.3 Evolution of the average year of the individuals per gender (left panel) and population
size per gender (right panel) for different evolution algorithms. It can be seen that the algorithms
produce similar evolution curves

Fig. 19.4 Birth probability % ‘;.‘iea sonal probabilities of births (illustration for p=0.2)
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Fig. 19.5 Number of births per month assuming a constant uniform probability distribution over
the year (left panel) and a non-uniform probability distribution (right panel)
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