
Refactoring and Active Object Languages

Volker Stolz1(B), Violet Ka I Pun1(B), and Rohit Gheyi2

1 Western Norway University of Applied Sciences, Bergen, Norway
{vsto,vpu}@hvl.no

2 Federal University of Campina Grande, Campina Grande, Brazil
rohit@dsc.ufcg.edu.br

Abstract. Refactorings are important for object-oriented (OO) pro-
grams. Actor- and active object programs place an emphasis on concur-
rency. In this article, we show how well-known OO refactorings such as
Hide Delegate, Move Method, and Extract Class interact with a concur-
rency model that distinguishes between local and remote objects. Refac-
torings that are straightforward in Java suddenly force the developers
to reflect on the underlying assumptions of their actor system. We show
that this reflection is primarily necessary for refactorings that add or
remove method calls, as well as constructor invocations. We present a
general notion of correctness of refactorings in a concurrent setting, and
indicate which refactorings are correct under this notion. Finally, we dis-
cuss how development tools can assist the developer with refactorings in
languages with rich semantics.

1 Introduction

During its life cycle, software may change due to the introduction of new features
and enhancements that improve its internal structure, or make its processing
more efficient. Systems continue to evolve over time and become more complex
as they grow. Developers can take some actions to avoid that, such as code refac-
toring, a kind of perfective maintenance [1]. The term Refactoring was originally
coined by Opdyke [2], and popularized in practice by Fowler [3], as the process
of changing the internal structure of a program to improve its internal quality
while preserving its external behavior.

Over the years refactoring has become a central part of the software develop-
ment processes, such as eXtreme Programming [4]. Refactorings can be man-
ually applied, which may be time consuming and error prone, or automati-
cally by using implementations of refactoring engines available in IDEs, such as
Eclipse, NetBeans, IntelliJ, and JastAdd Refactoring Tools (JRRT) [5]. Refac-
toring engines may contain a number of refactoring implementations, such as
Rename Class, Pull Up Method, and Encapsulate Field. For correctly applying
a refactoring, and thus ensuring behavior preservation, the refactoring imple-
mentations usually need to consider preconditions, such as checking for naming

Partially supported by DIKU/CAPES project “Modern Refactoring” and CNPq.

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 138–158, 2020.
https://doi.org/10.1007/978-3-030-61470-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_9

Refactoring and Active Object Languages 139

conflicts. However, defining and implementing refactorings is a nontrivial task
since it is difficult to define all preconditions to guarantee that the transforma-
tion preserves the program behavior. In fact, proving refactoring correctness for
entire languages, such as Java and C, constitutes a challenge [5]. For instance,
previous approaches found bugs in refactoring implementations for sequential
Java [6,7].

Fowler advocates that the correctness of refactorings is specified through the
unit tests of the software being refactored. This elegantly avoids the discussion
of the correctness in all situations of a particular refactoring, which is not given
especially in object-oriented programs anyway: even though the required precon-
ditions can be captured statically (see, e.g., [5]), checking them at refactoring-
time may yield “don’t-know” due to over-approximation and hence limit their
applicability [8], or a required notion of equivalence between original and refac-
tored program is impossible to formulate in general due to the different structure
of states in both runs [9].

Active object languages [10] for concurrent programs go beyond traditional
object oriented method calls. Developers have to actively choose between syn-
chronous and asynchronous method calls. In asynchronous calls, an explicit addi-
tional instruction is required to synchronize again with the result. This makes it
very obvious to the developers that they are in charge of proper synchronization,
and semantic consistency (i.e., to make sure that concurrency within the same
object is handled correctly).

The ABS language [11] goes even beyond that distinction: in its component
model, objects within the same component, called concurrent object group (cog),
share the same processor and hence cannot run concurrently. Within the same
component, primarily asynchronous calls are affected: the caller has to relinquish
control to give the component the opportunity to eventually process a pending
asynchronous call. In the case of synchronous calls between components, the
calling object does not release control, which hence introduces the potential for
deadlocks if the callee directly or indirectly requires a callback into the caller.
As the distinction between remote or local is purely semantical, and not visible
in the source code, any method call requires careful consideration. This has
been addressed, e.g., in [12] through an inference and annotation mechanism,
which helps the developer in tracking which objects may be local or remote,
and through whole-program static analyses in [13,14]. In general however, as
other static analyses for object-oriented programs, this inference has to default
to “don’t know” in case the location of an object cannot statically be determined.

This has direct effects on well-known refactorings in object-oriented pro-
grams. Fowler’s refactorings [3] often either remove or introduce additional
method calls. His refactorings are exclusively on sequential code and in gen-
eral preserve the behaviour of the application. After our discussion above on the
behaviour of actor languages, we can now easily see that these refactorings can
have adverse effects when ported to active object languages.

In this article, we are going to investigate those effects in detail for some of
Fowler’s refactorings. We derive a notion of correctness of a refactoring and show

140 V. Stolz et al.

Fig. 1. Before/after Hide Delegate

Fig. 2. Sequence diagrams for both scenarios (before/after Hide Delegate)

that the refactorings are not correct in general, and identify which refactorings
are correct under this notion.

A Motivating Example

Consider Fowler’s Hide Delegate refactoring and its inverse Remove Middle Man.
Figure 1 illustrates a common application of a Java refactoring: assuming that
a Client has a reference to a Person, in a good OO design the developer may
change person.getDept().getManager() (above broken up into two statements)
into a call to a new proxy person.getManager(). While both solutions are consid-
ered equivalent in, e.g., Java, the refactoring may introduce a deadlock in the
actor setting!

The sequence diagram in Fig. 2 illustrates the difference between the two
scenarios: in the before-scenario, the client is first communicating with Person,
then with Dept. This will never be a problem regardless of how many components
are actually involved. In the after -scenario however, due to the delegation from
the client to Person, the behaviour now depends on the component that provides

Table 1. Allocation of objects to com-
ponents A,B,C

Effect
:Client :Person :Dept Before After

A A A ok ok
A A B ok ok
A B A ok deadlock!
A B B ok ok
A B C ok ok

Dept. If Dept is either in a separate
component or shares a component with
Person, the programs are equivalent. But
in one particular case we have just intro-
duced a new deadlock into the program: if
the caller and Dept are in the same com-
ponent, yet Person is not, then the call-
back from Person to Dept will deadlock,

Refactoring and Active Object Languages 141

since the component hosting the caller and Dept cannot process any request
before the synchronous call to Person returns.

Table 1 shows the different possible allocations of objects to components. This
information is derived from the ABS operational semantics for (synchronous)
method calls. In the remainder of this paper, we investigate this and similar
effects in more detail.

The remainder of the paper is structured as follows: Sect. 2 gives a brief
introduction to the ABS language and its component model. Afterwards, we
discuss in detail the implications of some prominent Fowler’s refactorings on the
behaviour of synchronous and asynchronous calls, and outline proofs to show
correctness or derive correctness conditions for particular scenarios in Sect. 3.
We then survey Fowler’s refactorings as to whether they suggest changes that
would result in equivalent Java code, but may change the behaviour in ABS.
Finally, in Sect. 4 we put our work into the context of existing research, and
conclude with recommendations for refactoring tool developers.

2 The ABS Language

In this section, we will briefly introduce the ABS language, with active objects
and Java-like syntax. We will first discuss the concurrency model of the language,
then present the runtime syntax and finally we show the part of the semantics
that we used to illustrate the effect of selected refactorings. The complete details
of the language can be found in [11].

The concurrency model. ABS is a modeling language for designing, veri-
fying, and executing concurrent software. The language has a Java-like syn-
tax, features with actor-based concurrency model [15], which uses cooperative
scheduling of method activations to explicitly control the internal interleav-
ing of activities inside a concurrent object group (cog). A cog can be con-
ceptually considered as a processor, which can contain a set of objects. An
object may have a set of processes, triggered by method invocations, to be
executed. Inside a cog, at most one process is active while the others are
suspended in the process pool of the corresponding objects. Process schedul-
ing is non-deterministic, but is explicitly controlled by the processor release
points in the language. Such a cooperative scheduling ensures data-race free-
dom inside a cog. In addition, objects are hidden behind interfaces. As any fields

class C(MutexI m) {...
{ ...
await m!enter();
/∗ critical section ∗/
await m!leave();
...} }

class Mutex implements MutexI {
Bool avail = True;
Unit enter() {await avail; avail = False;}
Unit leave() {avail = True;} }

are private, any non-local read or write to
fields must be performed explicitly through
method invocations. Different cogs can only
communicate through asynchronous method
calls.

To provide an intuition, we discuss about
the concurrency model with the simple ABS
code to the right, which shows the implemen-
tation of a class C that acquires exclusive access to a critical section by using a
block-structured binary lock that is modelled by the class Mutex implementing

142 V. Stolz et al.

Fig. 3. Runtime syntax of ABS [11]; o, f, c are identifiers of object, future, and cog

the straightforward interface MutexI (not shown). The execution of statement
await m!enter() invokes enter asynchronously on object m by putting the method
in the process pool of m. The await statement suspends the calling method
and releases the control of the caller object, which can then proceed with the
execution of other methods in the process pool. If the statement await m!enter()
is replaced by a synchronous call m.enter(), the caller object will be blocked (does
not release control) until the method returns. The enter method on the callee
object m will return when the boolean variable avail becomes true. Similar to
awaiting an asynchronous method, awaiting a boolean condition will put the
currently executing method in the process pool and suspend until the condition
becomes true.

Runtime syntax. The runtime syntax is given in Fig. 3. A configuration cn can
be empty ε or consists of futures, objects, invocation messages and concurrent
object groups. The associative and commutative union operator on configura-
tions is denoted by whitespace. A future fut(f , v) has an identifier f and a value v
(which is ⊥ when the associated method call has not returned). An object is a
term ob(o, a, p, q), where o is the object’s identifier, a a substitution represent-
ing the object’s fields, p an active process, and q a pool of suspended processes.
A substitution is a mapping from variable names to values. A process p is idle
or consists of a substitution l of local variable bindings and a list s of state-
ments, denoted as {l|s}. Most of the statements are standard. The statement
suspend unconditionally releases the processor, suspending the active process.
The statement await g releases the processor depending on the guard g, which
is either Boolean conditions b or return tests x?, which evaluates to true if x
is a future variable and its value can be retrieved; otherwise false. The state-
ment cont(f) controls scheduling when local synchronous calls complete their
execution, returning control to the caller.

Right-hand side expressions rhs for assignments include object creation
within the same cog, denoted as new C(e), and in a fresh cog, denoted as
new cog C(e), asynchronous and synchronous method calls, and (pure) expres-
sions e.1 An invocation message invoc(o, f ,m, v) consists of the callee o, the
1 We refer to the semantics in [11], although the ABS surface language has evolved

and among other small changes now uses new local and new instead of new/new
cog.

Refactoring and Active Object Languages 143

Fig. 4. Part of Semantics of Core ABS [11]

future f to which the call returns its result, the method name m, and the actual
parameter values v of the call. Values are object and future identifiers, Boolean
values, and ground terms from the functional subset of the language. For sim-
plicity, classes are not represented explicitly in the semantics, as they may be
seen as static tables.

Semantics. Here, we discuss some of the transition rules, given in Fig. 4, of the
ABS semantics that we used in evaluation of the refactored ABS programs. Full
semantics can be found in [11]. Assignment of an object’s fields and a process’
local variables is standard and therefore is not shown here. The await statements
are handled as follows: if the guard g evaluates to true in the object’s current
state, Await-True consumes the statement; otherwise, Await-False appends a
suspend statement to the process. Rule Suspend puts the active process to the
process pool, leaving the processor idle, and if a cog’s active object is idle, rule
Release-Cog releases the cog from the object. When a cog is idle, rule Activate

selects a process p from the process pool of an object residing in the cog for
execution. Note that the function select(q, a, cn) selects a ready process from q;
if q is empty or no process is ready, the function returns an idle process [16]. A
process is ready if it will not directly be resuspended or block the processor.

144 V. Stolz et al.

Rule Async-Call controls the asynchronous communications between objects
by sending an invocation message to the callee o′ with a new, unique future f
(guaranteed by fresh(f)), the method name m and actual parameters v. The
value of f is initialised to ⊥. Rule Bind-Mtd puts the process corresponding to
a method invocation in the process pool of the callee. A reserved variable destiny
local in the method is used to store the identity of the future associated with the
call. Rule Return puts the return value of the call into the associated future.
Rule Read-Fut retrieves the value from the future f if v �= ⊥; otherwise, the
reduction on this object is blocked.

The remaining rules in Fig. 4 handle synchronous communication among
objects. Rules Cog-Sync-Call and Cog-Sync-Return-Sched are responsible
for synchronous calls between two objects residing in the same cog, in which
case the possession of the cog is directly transferred between the caller and
callee by appending a special cont statement at the end of the invoked method.
Synchronous self-calls are implemented similarly by rules Self-Sync-Call and
Self-Sync-Return-Sched. Rule Rem-Sync-Call handles synchronous calls to
an object in a different cog, which is in fact syntactic sugar for an asynchronous
call immediately followed by a blocking get operation.

3 Refactorings and Their Effects on Concurrency

In this section, we discuss different cases of refactorings that can affect program
behaviour in a concurrent setting. First, we define a notion of equivalence of con-
figurations that is suitable for our purpose, as we deal with concurrent systems,
and some refactorings may affect the allocation of objects to components (cogs).

Definition 1 (Equivalence of configurations). Two configurations cn1 and
cn2 are equivalent, denoted as cn1 ≡R cn2, if and only if for any object o such
that ob(o, a1 , {l1 |s1}, q1) ∈ cn1 and ob(o, a2 , {l2 |s2}, q2) ∈ cn2,

1. ∀x ∈ dom(a1) ∩ dom(a2) · (x �= this ∧ x �= cog) ⇒ a1(x) = a2(x); and
2. ∀x ∈ dom(l1) ∩ dom(l2) · l1(x) = l2(x)

Note that this definition specifically mandates that all attributes, local variables
and activation state coincide, and the assignment of objects to cogs can be
different in the refactored program.

Definition 2 (Notion of refactoring correctness). Given two equivalent
configurations cno and cnr where cno = cn1 ob(o, a1 , {l1 |s1 ; s ′

1}, q1), cnr =
cn2 ob(o, a2 , {l2 |s2 ; s ′

2}, q2) and a refactoring Rf such that s2 = Rf (s1).
We say Rf is correct if and only if for all cnr →∗ cn ′

r where cn ′
r =

cn ′
2 ob(o, a ′

2 , {l ′2 |s ′
2}, q ′

2), there exists cn ′
o →∗ cn ′

o such that cn ′
o ≡R cn ′

r and
cn ′

o = cn ′
1 ob(o, a ′

1 , {l ′1 |s ′
1}, q ′

1).

We will see that usually we will not achieve unconditional correctness for all
refactorings. Most crucially, changes to method calls can result in addition or
removal of deadlocks which hence do not result in equivalent configurations. We
will capture these side-conditions accordingly.

Refactoring and Active Object Languages 145

3.1 Hide Delegate

In the following, we revisit the source code before and after applying the Hide
Delegate refactoring from Fig. 1, in which we elide the obvious, necessary ABS
interface declarations PersonI and DeptI. We then discuss the different possible
executions (modulo interleaving in the environment) of the original program in
Fig. 1(a), and show that while all non-deterministic executions of the refactored
program in Fig. 1(b) are contained in the original, there exists a situation that
will deadlock after refactoring for a given object-to-component mapping.

Let us first consider the two synchronous method calls in Fig. 1(a). For
illustration, we assume object p lives in a cog different from the calling object o,
while object d lives in the same cog. The first call on Line 5 is handled by one of
the three rules for synchronous calls, determined by the component-relationship
between the calling object and p. If both are in the same component (or even
the same object), we first use Cog-Sync-Call (or Self-Sync-Call). In the case
where they are in different cogs, we thus proceed with Rem-Sync-Call.

The execution is illustrated in Fig. 5. The rule creates an intermediate asyn-
chronous call immediately followed by a get, which begins execution through a
Async-Call and the Assignment for the intermediate future. Now the current
object cannot proceed, and must wait for the environment to Bind-Mtd and
Activate the called object, which then immediately Returns, giving the sched-
uler the opportunity to complete the Read-Fut and Assign to variable d in the
caller o. Note that we elided any possible interleavings with cogs in the environ-
ment; as the current cog is never released, its state cannot change in between.
Next, we continue with the second synchronous method call on Line 6. Since
object d resides in the same cog as the caller o, we continue with Cog-Sync-

Call, which introduces an intermediate future and immediately passes control
to d, which after the trivial Return statement in turn Cog-Sync-Return-Scheds
and then resumes execution in the caller o with Read-Fut, Assign.

Recall that our correctness criterion is that a refactored execution should
exist within the original executions. We now study the corresponding scenario
after the refactoring, and illustrate in detail how the refactoring introduces
a deadlock. Figure 6 presents the transition steps of the refactored code in
Fig. 1(b). Object o executes the single refactored synchronous call on Line 16
to getManager into the cog hosting object p using Rem-Sync-Call, with the
corresponding follow-up through Async-Call, Assign, Bind-Mtd, Activate as
before. Now, in object p, we see the difference in execution: the proxy getManager
now has to make its own Rem-Sync-Call since we assume that d lives in the
same cog as o but different from o. However, after the necessary intermediate
Async-Call, Assign, Bind-Mtd, it is now not possible to execute Activate to
continue execution: since object o is blocked on the synchronous call to object p,
it does not release control of the cog it is residing, and consequently object d
will never be scheduled. Thus, the three objects in the two cogs are now locked
forever in a deadly embrace, as shown in the last configuration in Fig. 6.

Analysing all possible execution scenarios in detail will give us Table 1.
We can see that the dynamic behaviour of the source code has to be carefully

146 V. Stolz et al.

Fig. 5. Execution of the code before Hide Delegate (Fig. 1(a)). We abbreviate getDept
to gD, and getManager to gM. We let o be the object executing Lines 5–6, op executing
getDept and od executing getManager, and assume a(cog)=ad(cog), a(cog) �=ap(cog).

analysed. Many refactorings are bi-directional; here the application from right
to left is Fowler’s Remove Middle Man refactoring. This example here also illus-
trates how this refactoring could accidentally remove an existing deadlock from
a program, and hence cannot immediately fulfil our notion of correctness either.

Refactoring and Active Object Languages 147

Fig. 6. Execution of the code after Hide Delegate (Fig. 1(b)). We abbreviate getMan-
ager to gM. We let o be the object executing Line 16, op executing Line 24 and od
executing getManager, and assume a(cog)=ad(cog), a(cog) �=ap(cog).

3.2 Async-to-Sync Refactoring

In some situations it may be useful to reduce the amount of concurrency in a
program. Figure 7(a) shows a common idiom in ABS, where we release control
while waiting for the asynchronous call to return. This permits this object to
process other calls in the meantime, though of course this may affect the state
of the object. An obvious attempt to reduce such ensuing (mental) complexity
would be to use a synchronous call instead. However, whether this is actually
safe or not, depends very much on the body of m. Again, a callback into the
current component across component boundaries will result in a deadlock. This
is compounded by the fact the O o’ is only typed by an interface, and additional
effort will be required to statically identify the underlying object and then its cog.

We first show the general correctness of this refactoring if both caller and
callee are in the same cog, and then discuss a similar scenario as in Hide Delegate,
which leads to a deadlock in the refactored version that does not exist in the
original. However, we will see that the latter is not unconditional as in Hide
Delegate, but rather (also) depends on the body of m.

We consider the two code fragments in Fig. 7, where Fig. 7(b) is the refactored
version of Fig. 7(a), and let o be the calling object and o′ be the called object.
Let us investigate whether this refactoring is correct wrt. Definition 2, i.e., given

148 V. Stolz et al.

Fig. 7. Asynchronous to synchronous

Fig. 8. Execution of the synchronous call after refactoring (Fig. 7(b)). We let o be the
object executing Line 13, o′ executing m, and assume o �= o′, a(cog)=a′(cog)

equivalent configurations cn1 and cn2 before executing Lines 4–6 respectively
Line 13, there exists at least one execution in the original program such that the
configurations cn ′

1 and cn ′
2 after executing Line 6 respectively Line 13 are also

equivalent.
For the sake of brevity, as there are many different cases to consider, we

look at only one particular case in detail and derive the condition under which
the refactoring results in an equivalent program. We essentially distinguish the
initial set of different cases by whether we have to invoke Self-Sync-Call (if
o = o′), Cog-Sync-Call (if o �= o′ but live in the same cog) or Rem-Sync-Call

(if o and o′ live in different cogs). We only present Cog-Sync-Call in detail, and
provide an additional observation on the Rem-Sync-Call case afterwards.

We first consider the refactored program in Fig. 7(b) and assume that o �=o′

but live in the same cog. Figure 8 shows the detailed execution of this scenario.
We start the execution with a Cog-Sync-Call, which introduces an intermediate
future and yields control to o′. At this point, although there can be interleavings
with the environment, wlog. we ignore those, as they cannot interfere with the
current cog, except by posting additional tasks into queues. Furthermore, any
such interleaving can be simulated in the original program as well. The current
cog will proceed evaluating method m through some rule applications r0, . . . , rm

Refactoring and Active Object Languages 149

Fig. 9. Execution of the asynchronous call before refactoring (Fig. 7(a)). We let o be
the object executing Lines 4–6, o′ executing m, and assume o �= o′, a(cog)=a′(cog)

and may eventually Return. Note that the refactoring will preserve any potential
deadlocks resulting from method m in the original program. We continue the case
to completion in the non-deadlocked scenario: the final configuration is easily
derived (only) through rules Cog-Sync-Return-Sched, Read-Fut, Assign. Note
that in the calling object, the computed value vm is uniquely determined by the
sequence r0, . . . , rm above, as there are no changes in other objects.

We now turn our attention over to the original program in Fig. 7(a) and show
in Fig. 9 that we can derive an equivalent state which only differs in the presence
of an explicit, now unused future. Executing Lines 4–6 in the original program
can replicate the behaviour of the refactored program in the following way:
after the Async-Call and storing the associated future via Assign, execution
Suspends until completion of the call. Wlog., we can Release-Cog control and
immediately Bind-Mtd and Activate the pending call in o. At this point, we are
now entering the execution of m which can proceed exactly with rule sequence

150 V. Stolz et al.

r0, . . . , rm as above, which eventually terminates with a Return. The cog hence
becomes available through Release-Cog. As the scheduler is not guaranteed to
provide any particular behaviour, there exists the behaviour where we Activate

the calling object, which now completes with Await-True, Read-Fut, Assign.
Although this is of course not a detailed proof-case, it is easy to see that

the resulting configurations are equivalent: the computation of the value of x
coincide, and any other state changes can only come from the r-sequence which
is identical in both cases. Nonetheless, we would like to motivate the underlying
reason for the deadlock in the Hide Delegate refactoring, which is only indirectly
visible here: assume a program where o and o′ are in distinct cogs (which means
proceeding with Rem-Sync-Call in the refactored case). Assume further that
within r0, . . . , rm there exists a synchronous callback back into the cog of o.
In the original program, since o suspends and releases the cog it resides in, by
Await-False, this callback can be processed. This execution in the refactored
program will however deadlock as the object o blocks on the get statement. To
summarize, there is again an underlying dynamic condition on the remainder of
the code that needs to be checked to ensure correctness.

Since the scheduling is non-deterministic, our conversion to a synchronous call
removes behaviour from the application. There is now only a single scheduling
which directly continues into the body of the method.

As for the directionality of this refactoring, while a right-to-left application
seemingly enables some degree of concurrency, it is only concurrency on the
objects of class C, which as explained initially opens up the caller for possible
state changes that may or may not violate assumed invariants by the developer.

3.3 Inline Method

The Inline Method refactoring is straightforward: within a class, we replace a
method call with its body. In the ABS setting, we have two points to consider:
as Fowler already points out, this can only be done when the code is not poly-
morphic. This applies doubly so in ABS, where any variables are only typed by
interfaces in the first place. However, it also becomes quickly clear that we only
need to consider calls to methods within the same class anyway: a method gen-
erally makes use of attributes, and these are private in ABS; so a method from
another class cannot easily be inlined but needs to be moved into the current
class first (see Move Method in Sect. 3.5 below). Consequently, here we only
consider calls for inlining the target this.

In the case of a synchronous call, inlining is straightforward and does not
affect the behaviour. In fact, from looking at rule Self-Call, it is immediately
clear that inlining is the semantics of a synchronous self-call.

3.4 Move Field

The Move Field refactoring is not as easily applicable in ABS as it is in Java.
Declaring the field in a new class is straightforward, however, since all fields are
private, as a follow-up we either require the introduction of a getter, relocation

Refactoring and Active Object Languages 151

Fig. 10. Move Field

of affected methods, or both. We decompose this refactoring into an application
of Self Encapsulate Field, which first introduces a (synchronous) getter in the
current class.

As per the ABS semantics, this introduction results in an equivalent config-
uration. After that, we can proceed with moving the attribute, introducing a
getter, and turning the previous getter into proxy to the getter in the new class.
This requires identifying how to reference the target object from the source.

Here, again the ABS language specification makes this easy: as the field was
private, the code locations that set this value are immediately identified and
we assume for simplicity that we only have to deal with a single setter. After
identifying a target, setter and getter now become proxies.

As we have seen before, we now have new (synchronous) calls to objects
that may or may not be in the same component as the current object. If the
target object is referenced through an attribute in the current class, this is
always unproblematic. If the target is derived through a chain of calls, e.g.,
getTgt().getX() (assuming we move attribute x), we may have accidentally intro-
duced a deadlock: if getTgt() either directly or indirectly calls back (either syn-
chronously or asynchronously) into our object, we will produce a deadlock that
did not exist in the original program. Note that if the original program already
contained expression getTgt(), it already contains the same deadlock, albeit in
a different method. The general situation is illustrated in Fig. 10.

3.5 Move Method

This refactoring moves a method into a different class, leaving behind a proxy if
necessary. Fowler proposes as first step an analysis whether any other features
of the class should also be moved. Of the several strategies to handle references
to original features, we here focus on passing the source object as a parameter.
We illustrate a relatively simple case, and will focus our attention on constructor
invocations this time, not just method calls.

Figure 11 shows the initial situation and the refactoring which also leaves
behind the proxy. Assuming that the target has been suitably identified as object

152 V. Stolz et al.

Fig. 11. Move Method

O o, e.g., if o is a parameter of moveMe, without going through the detailed
evaluation by semantic rules, we immediately spot two problematic issues: any
reference back to the source object in the refactored code through parameter
that has the potential to be a cross-component callback with the associated risk
of deadlock, e.g., through the setter, as discussed earlier.

The second issue, which is the novel observation that we can make here is
about constructor invocations: in the original in Fig. 11(a), the new object of
class S is created in the same cog as the calling object as we use new, not
new cog (the former creates an object in the same cog while the latter in a
new cog). In the refactored code, however, it is now created in a potentially
different cog. Note that this is always uncritical when the code uses new cog.
A similar effect has been observed in Java, where moving a method annotated
with @Synchronized can change its synchronization context [17].

As one of the last steps in this refactoring, Fowler suggests to consider remov-
ing the remaining proxy and updating call-sites to refer to the new location. This
again would have either no effect on deadlocks, or even remove an existing dead-
lock, as it removes an intermediate call into a potentially different component,
but does not otherwise change the sequence of interactions.

3.6 Extract Class

The Extract Class refactoring is a well-known refactoring simplifying complex-
ity in a class by dividing it into two. Attributes and methods are partitioned
between the original program and the new class. It is easy to see that this refac-
toring primarily relies on Move Field and Move Method, and hence inherits
their properties. Fowler [3] here explicitly suggests that this refactoring in par-
ticular “[improves] the liveness of a concurrent program because it allows you
to have separate locks on the two resulting classes” and points out the poten-
tial concurrency issues. In ABS, this issue is made explicit: the split-off class
needs to be instantiated through a constructor invocation, at which point the
developer has to decide allocating the new object either in a new component,
which may increase concurrency in the future through the introduction of fur-
ther asynchronous calls, or in the current component. However, as we have now
seen, calls across components can lead to deadlocks, if we end up calling back

Refactoring and Active Object Languages 153

into the current component. Hence the allocation within the same component is
always safe, whereas a new component can only be used when the split-off class
does not have any dependency back into the source class.

3.7 Discussion

We have seen in the above refactorings that the root cause of differences in
behaviour in the refactored program are method calls that now cross component
boundaries. This may happen either because an invocation is changed (call on a
different object, or new call), or because we have moved a constructor invocation
into a different class, and hence possibly into a different cog. There is no syn-
tactic criterion to judge changes safe. Even though moving a (local) constructor
invocation into a different class through, e.g., the Move Method refactoring may
be more visible, there is little difference between this and a moved call.

Our Async-to-Sync refactoring is an ABS-specific refactoring. From left to
right, it may reduce (mental) complexity, at the cost of understanding the safety
of the refactored code, first. Applied from right to left, it can be an easy starting
point to introduce additional concurrency in the long run. It does not necessarily
add concurrency, but enables it by making the code yield, e.g., before a long-
running transaction. Also here the effect of yielding needs some up-front analysis
and understanding whether any subsequent code after the call may be affected by
side-effects while being suspended here. As we have seen in the detailed examples
above, there are two main concerns for concurrency: changing method calls can
introduce or remove deadlocks, as can moving constructor invocations into a
different cog.

In Table 2, we survey a range of refactorings from Fowler [3] for their effect on
concurrency. The columns indicate whether a refactoring effects any particular
change that we now know to have implications on behaviour. The first six we
have studied above, the remainder we classify informally. “Yes/No” indicate
whether this change occurs as part of the refactoring, and hence whether careful
consideration of effects is required. “Safe” indicates that the change is present in
the refactoring, yet will always result in a call to the same object, or in the case
of Replace Method with Method Object can be kept safe with a local constructor
invocation.

While plenty of these refactorings have either no effect or are safe (as calls
will still be on the same object), almost any of the major refactorings is affected
in some way. Most of the refactoring are innocuous in the Java-world, yet can
have surprising effects in ABS, indicating that ABS developers could most likely
benefit from dedicated refactoring support.

Suggestions to Tool Developers. It is clear from our discussion that an IDE
or tooling for a language like ABS with its rich semantics should assist developers
better. Mere syntactical transformations checking structural properties, e.g., on
the level of interfaces and classes are of course still essential to guarantee syntac-
tically correct code, but cannot give strong guarantees as to dynamic behaviour.
We think that it is important that any further correctness properties also come

154 V. Stolz et al.

Table 2. Classification of common refactorings whether they affect concurrency

Refactoring Change
Target
of Call?

New
Method
Call?

Removed
Method
Call?

New/Moved
Constructor?

Inline Method No No Safe No

Move Method Yes No No Yes

Move Field Yes No No Safe

Hide Delegate Yes Yes Yes Yes

Remove Middle Man Yes Yes Yes Yes

Extract Class Yes Yes Yes Yes

Extract Method No Safe No No

Inline Temp No No No No

Replace Temp with Query No Safe No No

Introduce Explaining Variable No No No No

Split Temporary Variable No No No No

Replace Method. . . No Safe No Safe

Inline Class Yes No Yes Yes

(Self) Encapsulate Field No Safe No No

with a reasonable cost, but do not put undue burden on developers. For exam-
ple, we feel that any further analysis and checking should be automated, and
even though it might be costly in terms of computational power, should avoid
requiring any additional input from the developer, e.g., in the form of partial
proofs, though light-weight annotations may be acceptable.

We have only focused on program-independent correctness properties here,
that we have been able to discharge by showing that mostly identical sequences of
evaluation rules can be applied, possibly interleaved with small distinct segments
using other semantic rules, that nonetheless do not affect the state that we cap-
ture in our notion of correctness. As one would expect for a language with a focus
on concurrency, many of the refactorings can introduce potential deadlocks, that
fortunately can in principle be tackled through inference of object-to-component
allocation. Such inference exists either stand-alone [12], or as part of static dead-
lock checkers like DF4ABS and DECO [13,14], and could ideally be re-used to only
partially analyse changed code. Currently, the developers’ best hope is applying
those tools at intermediate stages, though due to their high complexity this may
hardly be feasible frequently.

4 Related Work and Conclusion

Related Work. Our work focusses on a dynamic language-feature (object-to-
component mapping) that does not exist as such in plain object-oriented lan-
guages. The closest related work we are aware of is a precise analysis of the effect

Refactoring and Active Object Languages 155

of refactorings on concurrent Java code [17], where most notably moving mem-
bers between classes will change their synchronization context. Agha and Palm-
skog [18] infer annotations from execution traces that can be used to transform
programs from threads to actors, eliding explicit concurrency primitives. How
refactorings affect object lifetime in Rust programs is analysed by Ringdal [19].

Garrido and Meseguer reason about the correctness of refactorings for Java by
capturing an executable Java formal semantics in the Maude rewriting logic [20].
As they are concerned with structural refactorings and focus on Pull Up/Push
Down and the Rename refactoring, they avoid some of the complexities as to
comparing states where refactorings change the bound variables, or produce
intermediate states. Schäfer et al. [21] aim for control and data flow preservation,
and focus on the Extract Method refactoring and decompose it into smaller so-
called micro-refactorings, for which it is easier to derive or prove properties.

Steinhöfel and Hähnle [22,23] propose Abstract Execution, which generalises
Symbolic Execution to partially unspecified programs. They have formalised sev-
eral of Fowler’s refactorings in the KeY framework to prove preservation of a
form of behavioural equivalence of Java programs. Careful derivation of precon-
ditions for refactorings is required to prove suitable equivalence of refactored
code.

Gheyi et al. [9] use a user-defined equivalence notion between states con-
forming to different meta-models, e.g., after a refactoring changed the structure
of a class. They require an explicit alphabet and a mapping function between
added/removed attributes in Alloy models and then check mutual refinement.
We conjecture that this could augment our approach, and both alphabet and
mapping could be derived from a refactoring and the code that it is applied on.

Eilertsen et al. [8] use assertions to provide runtime warnings in the refac-
tored code in cases where a combination of Extract and Move Method results
in unexpected changes to the object graph. We could easily introduce a similar
check on component assignment to provide some protection in those cases where
a static safety analysis would have to give up due to imprecision.

Soares et al. [7] propose a technique to automatically identify behavioral
changes in a number of refactoring implementations of Eclipse, NetBeans, and
JRRT. It uses an automatic program generator (called JDolly [24]) and a
tool to automatically detect behavioral changes (called SafeRefactor [25])
to identify a number of bugs in these tools for sequential Java programs. We
believe that we may find more behavioral changes when considering concurrent
programs, e.g. by following an approach by Pradel et al. [26]. They combine
(incomplete) test case generation with (complete) exploration of interleavings
through JPF to discover output-diverging substitutes (replacing super-classes
with sub-classes). Corresponding necessary generation of test cases for actor
systems has been studied e.g. by Li et al. [27].

Rachatasumrit and Kim [28] conduct an empirical study and found that a
number of test suites do not test the entities impacted by a refactoring. Test
suites do not have a good change coverage. For instance, only 22% of refactored
methods and fields are tested by existing regression tests. Mongiovi et al. [29]

156 V. Stolz et al.

implement a change impact analyzer tool called Safira, and included it in
SafeRefactor. It automatically generates test cases for the entities impacted
by the transformation. The tool could find some behavioral changes that could
not be found without Safira. Alves et al. [30] concluded that combining change
impact analysis with branch coverage could be highly effective in detecting faults
introduced by refactoring edits. A change impact analyzer may be also use-
ful when refactoring concurrent programs. As future work, we intend to evolve
Safira to consider transformations applied to concurrent programs.

Conclusion. In this article, we have given an overview of how well-known refac-
torings from object-oriented programming languages like Java have non-obvious
behaviour in actor languages. Here, we have focused on some selected refactor-
ings from Fowler’s book [3]. On the example of the ABS active object language,
we illustrate the concurrency effects that have to be taken into account.

As the ABS language has a formal semantics [11], we can use it to derive
proofs for a suitable notion equivalence of the refactored program. Here, we spec-
ify correctness as the refactored behaviour being contained within the original
behaviour, in the form of a limited comparison of objects and their attributes/lo-
cal variables. In the absence of a formal correctness specification of the program
being refactored, we find that this gives reasonable expectations as to the effect of
the refactoring. Furthermore, from our formal derivations we obtain side condi-
tions that can be checked effectively with existing tools, e.g., related to deadlocks,
and can be used to produce counter examples.

Future Work. We have not surveyed refactoring support for other languages
such as the Akka library for Scala yet. As a general strategy for identifying high-
value targets for closer investigation, it would be useful to first categorize existing
static analyses and runtime checks that codify the correctness (usually program-
independent properties such as “no crash”, “no deadlock”), and then check –as
we have done here– to what degree refactorings can affect this. The biggest
rewards could be achieved in cases where an expensive analysis or runtime check
could be replaced with a modular analysis reasoning only about the performed
change in the context of analysis information from the original program.

ABS currently has no refactoring support at all and is in the process of
moving towards an Xtext-based compiler infrastructure. This enables deriving a
Language Server2 which should allow us to prototype some of the refactorings
with a convenient interface to the outside. This will give us the opportunity to
try and integrate some of the inferences as pre-condition checks. A possible fea-
sible approach could be to first transfer the results from the Abstract Execution
framework to an active-object language, and then extending it with concurrency.

Another interesting venue of research would be looking into the built-in sup-
port for specifying software product lines in ABS through so-called Deltas, which
have also already been studied as a subject of refactorings [31]. Deltas specify
among other things replacement of methods, but are primarily concerned with
evolution, and not refactoring. They could be a convenient vehicle to express

2 https://microsoft.github.io/language-server-protocol/.

https://microsoft.github.io/language-server-protocol/

Refactoring and Active Object Languages 157

and implement refactorings in: an inference and check of the correctness condi-
tions could also be applied to the change specified via a Delta, and hence not
only benefit refactorings, but another branch of the ABS language altogether.
Developers could then receive warnings if the behaviour of one product diverges
from another one, although of course that could be intentional, and is most likely
more useful with a proper specification of the program.

References

1. Swanson, E.B.: The dimensions of maintenance. In: Proceedings of the Interna-
tional Conference on Software Engineering, ICSE. IEEE (1976)

2. Opdyke, W.: Refactoring object-oriented frameworks. Ph.D. thesis, University of
Illinois at Urbana-Champaign (1992)

3. Fowler, M.: Refactoring - Improving the Design of Existing Code. Addison Wesley
Object Technology Series. Addison-Wesley, Boston (1999)

4. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Longman Publishing Company, Inc. (2000)

5. Schäfer, M., de Moor, O.: Specifying and implementing refactorings. In: Object-
Oriented Programming, Systems, Languages, and Applications (2010)

6. Daniel, B., Dig, D., Garcia, K., Marinov, D.: Automated testing of refactoring
engines. In: Proceedings of the Foundations of Software Engineering. ACM (2007)

7. Soares, G., Gheyi, R., Massoni, T.: Automated behavioral testing of refactoring
engines. IEEE Trans. Softw. Eng. 39(2), 147–162 (2013)

8. Eilertsen, A.M., Bagge, A.H., Stolz, V.: Safer refactorings. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 517–531. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 36

9. Gheyi, R., Massoni, T., Borba, P.: An abstract equivalence notion for object mod-
els. Electron. Notes Theor. Comput. Sci. 130, 3–21 (2005)

10. Boer, F.D., et al.: A survey of active object languages. ACM Comput. Surv. 50(5),
76:1–76:39 (2017)

11. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

12. Welsch, Y., Schäfer, J., Poetzsch-Heffter, A.: Location types for safe programming
with near and far references. In: Clarke, D., Noble, J., Wrigstad, T. (eds.) Aliasing
in Object-Oriented Programming. Types, Analysis and Verification. LNCS, vol.
7850, pp. 471–500. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36946-9 16

13. Giachino, E., Laneve, C., Lienhardt, M.: A framework for deadlock detection in
core ABS. Softw. Syst. Model. 15(4), 1013–1048 (2016)

14. Flores-Montoya, A.E., Albert, E., Genaim, S.: May-happen-in-parallel based dead-
lock analysis for concurrent objects. In: Beyer, D., Boreale, M. (eds.) FMOODS/-
FORTE -2013. LNCS, vol. 7892, pp. 273–288. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38592-6 19

15. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for arti-
ficial intelligence. In: Proceedings of the International Joint Conference on Artificial
Intelligence. Morgan Kaufmann Publishers Inc. (1973)

https://doi.org/10.1007/978-3-319-47166-2_36
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-642-36946-9_16
https://doi.org/10.1007/978-3-642-36946-9_16
https://doi.org/10.1007/978-3-642-38592-6_19
https://doi.org/10.1007/978-3-642-38592-6_19

158 V. Stolz et al.

16. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. In: Software Engineering and Formal Methods. IEEE Computer
Society (2004)

17. Schäfer, M., Dolby, J., Sridharan, M., Torlak, E., Tip, F.: Correct refactoring of
concurrent Java code. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp.
225–249. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14107-
2 11

18. Agha, G., Palmskog, K.: Transforming threads into actors: learning concurrency
structure from execution traces. In: Lohstroh, M., Derler, P., Sirjani, M. (eds.) Prin-
ciples of Modeling. LNCS, vol. 10760, pp. 16–37. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-95246-8 2

19. Ringdal, P.O.: Automated refactorings of Rust programs. Master’s thesis, Institute
for Informatics, University of Oslo, Norway, June 2020

20. Garrido, A., Meseguer, J.: Formal specification and verification of Java refactorings.
In: International Workshop on Source Code Analysis and Manipulation. IEEE
(2006)

21. Schäfer, M., Verbaere, M., Ekman, T., de Moor, O.: Stepping stones over the
refactoring Rubicon. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
369–393. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03013-
0 17

22. Steinhöfel, D., Hähnle, R.: Abstract execution. In: ter Beek, M.H., McIver, A.,
Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 319–336. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30942-8 20

23. Steinhöfel, D.: Abstract execution: automatically proving infinitely many pro-
grams. Ph.D. thesis, TU Darmstadt, Department of Computer Science, May 2020

24. Mongiovi, M., Mendes, G., Gheyi, R., Soares, G., Ribeiro, M.: Scaling testing of
refactoring engines. In: Software Maintenance and Evolution. ICSME (2014)

25. Soares, G., Gheyi, R., Serey, D., Massoni, T.: Making program refactoring safer.
IEEE Softw. 27(4), 52–57 (2010)

26. Pradel, M., Gross, T.R.: Automatic testing of sequential and concurrent sub-
stitutability. In: International Conference on Software Engineering, ICSE. IEEE
(2013)

27. Li, S., Hariri, F., Agha, G.: Targeted test generation for actor systems. In: Pro-
ceedings European Conference on Object-Oriented Programming, LIPIcs, vol. 109.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

28. Rachatasumrit, N., Kim, M.: An empirical investigation into the impact of refac-
toring on regression testing. In: International Conference on Software Maintenance.
ICSM (2012)

29. Mongiovi, M., Gheyi, R., Soares, G., Teixeira, L., Borba, P.: Making refactoring
safer through impact analysis. Sci. Comput. Program. 93, 39–64 (2014)

30. Alves, E.L.G., Massoni, T., de Lima Machado, P.D.: Test coverage of impacted code
elements for detecting refactoring faults: an exploratory study. J. Syst. Softw. 123,
223–238 (2017)

31. Schulze, S., Richers, O., Schaefer, I.: Refactoring delta-oriented software product
lines. In: Aspect-Oriented Software Development. ACM (2013)

https://doi.org/10.1007/978-3-642-14107-2_11
https://doi.org/10.1007/978-3-642-14107-2_11
https://doi.org/10.1007/978-3-319-95246-8_2
https://doi.org/10.1007/978-3-319-95246-8_2
https://doi.org/10.1007/978-3-642-03013-0_17
https://doi.org/10.1007/978-3-642-03013-0_17
https://doi.org/10.1007/978-3-030-30942-8_20

	Refactoring and Active Object Languages
	1 Introduction
	2 The ABS Language
	3 Refactorings and Their Effects on Concurrency
	3.1 Hide Delegate
	3.2 Async-to-Sync Refactoring
	3.3 Inline Method
	3.4 Move Field
	3.5 Move Method
	3.6 Extract Class
	3.7 Discussion

	4 Related Work and Conclusion
	References

