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Abstract. We introduce and discuss a formal model of evolutionary
processes that summarizes various kinds of evolutionary algorithms and
other optimization techniques. Based on that framework, we present
assumptions called “random agnosticism” and “based optimism” that
allow for new kinds of proofs about evolution. We apply them by pro-
viding all a proof design that the recently introduced notion of final
productive fitness is the ideal target fitness function for any evolutionary
process, opening up a new perspective on the fitness in evolution.
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1 Introduction

Evolution in its broadest sense describes a process that finds solutions to complex
problems via the application of comparatively simple local operators. Mostly,
this process can be described as a search that starts quite uninformed and uses
the knowledge gained through trial and error to guide the further search pro-
cess. Note that usually this happens without central control and mostly without
even any central viewpoint that would allow to overlook all parts of the evolu-
tion. However, evolution is often implemented deliberately (using evolutionary
algorithms in software, e.g.) in order to search or optimize for a specific result
according to an externally given target.

While this target is often provided directly to the evolutionary process so
that intermediate results may be evaluated, many studies empirically show bet-
ter results when using slightly different goal than going directly for the exter-
nal target metric. Our recent study [8] has brought up empirical evidence that
one such “indirect” metric (called final productive fitness) might be theoreti-
cally optimal (even when or perhaps because it is extremely costly to compute).
However, little formal framework exists to reason about evolutionary processes
(specifically goals in evolutionary processes) at such a broad level in order to
formally prove a claim of optimality.

The aim of this paper is to show what kind of formal framework would be
sufficient to produce a formal proof of final productive’s fitness optimality. To
this end, we first introduce two bold but crucial assumptions hat allow us to strip
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away much of the complexity of reasoning about evolution. Then we construct
the desired proof from them to show how they work. We hope that the novel
tools (i.e., mainly Assumptions 1 and 2) designed here can be used for other
high-level arguments about evolution.

All necessary definitions involving evolutionary processes are given in a con-
sistent way in Sect. 2. Section 3 then discusses the issue of the ideal fitness func-
tion and introduces the tools to reason about it. We give a short glance at related
work in Sect. 4 and conclude with Sect. 5.

2 Definitions

We follow the formal framework sketched in [8] to a vast extent but substantially
expand it in generality. We provide an example in Sect. 2.3.

2.1 Evolutionary Processes

For all definitions, we aim to give them in such a basic form that they can span
over various disciplines, from biology to formal methods. We use 8 to denote
the power set.

Definition 1 (Evolution). Let X' be an arbitrary set called search space. Let
g € N be called the generation count. Let X; C X for any i € N;0 < i < g be
a subset of X called population. Let E : B(X) — P(P(X)) be a function called
evolutionary function.

A tuple ((Xi)o<i<g, E) is called an evolution over X iff X; € E(X;_1) for
alli e N1 <1< g.

Any element of the search space z € X is called solution candidate (or
sometimes just solution for short). Members of a given population z € X are
obviously always solution candidates, but are often also called individuals. Every
i within the generation count 1 < i < g is called a generation number with X;
being the respective generation’s population. If no confusion is possible, both %
and X; will also be called a generation. Xy is called the initial population.

Note that an evolution can be generated given a configuration consisting of a
search space X', an initial population Xy and an evolution function E. However,
many possible evolutions can follow from the same configuration. Often, the
initial population X is not given as a set but instead generated (semi-)randomly.
We write that as an initialization function I : 8 — PB(X) where R stands for
random inputs.’ Notation-wise, we omit random inputs and write Xo ~ I() (or
simply X = I() if no confusion is possible) for the initial population generated
by such a function.

Definition 2 (Target). Let X be a search space. A function t : X — [0;1] that
assigns all elements in the search space a scalar value is called a target function.

! In computers, these are often provided by a seed value and a hash function.
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A target function assigns a value to each point in the search space, i.e., to any
given solution candidate.? We assume that target values are bounded, so w.l.o.g.
we can assume the target value space to be restricted to [0;1] in Definition 2.
Again this can be generalized but is rarely useful in praxis. Also note that target
functions themselves are unconstrained: They can always be applied to the whole
search space. Hard constraints must be implemented by altering the search space
or “softening” them by representing them with different target values.

Furthermore, w.l.0.g. we assign every goal function a minimization semantic:
For two solution candidates x1,x2 € X we say that x; fulfills a goal ¢ better iff
t(z1) < t(z2). Any solution candidate x € X so that t(z) < ¢(a’) Va’' € X is
called a global optimum. An algorithm searching for increasingly better solutions
candidates is called an optimization algorithm. A configuration, a target function
and an evolution form an evolutionary process:

Definition 3 (Evolutionary Process). Let X be a search space. Let E : B(X) —
P(P(X)) be an evolutionary function. Let t : X — [0;1] be a target function.
Let X; be a population for any i € N,0 <i < g.

A tuple & = (X, E,t,(X;)i<q) is an evolutionary process iff ((X;)i<q, E) is
an evolution.

Effectively, an evolutionary process consists of a history of past populations
(X;) and the means to generate new population (E). We often implement the
evolutionary function by giving an evolutionary step function e : P(X) x R —
P(X) and write X; 11 ~ e(X;) (or simply X; 41 = e(X;) if no confusion is possi-
ble) for any population X;;; that evolved from X; by applying the evolutionary
step function alongside with some (omitted) random input.

An evolutionary process also carries a target function ¢t. An evolutionary pro-
cess € is optimizing iff minge x, t(x) > ming ¢ x, t(2'). For many mechanisms in
stochastic search as well as for more natural phenomena like biological evolution
or human software development processes, optimization is a rather strong prop-
erty. However, if we have sufficient space within a population and access to the
target function, we can turn all evolutionary processes into optimizing ones by
just saving the currently best individual alongside the evolution, i.e., ensuring
that argmin, ¢ v, t(z) € Xij1.

Definition 4 (Elitism). An evolutionary process € = (X, E,t,(X;)i<q) is called
elitist iff for all i € N,1 <i < g, it holds that mingecx, , t(x) > ming cx, t(z').

All elitist processes are optimizing. If not noted differently, we from now on
assume every evolutionary process to be elitist by default.

2 Note that by giving a function only parametrized on the individual itself, we assume
that the target function is static. Dynamic optimization is an entire field of research
that we heavily use in this paper. However, we leave dynamic target functions in our
formalism to future work.
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2.2 Evolutionary Algorithms

An evolutionary algorithm is special case of evolutionary process that uses an
evolutionary function made up of a number of standard components called evo-
lutionary operators. We now introduce standard definitions for these components
that most instances of evolutionary algorithms can be mapped to. However, the
field of evolutionary algorithms is vast and there are variants that alter many
smaller details of how they work. It is interesting to note how robust the general
concept of evolution is to such variations.

Nearly all evolutionary algorithms that use set-based populations introduce
a fixed population size n € N for all generations. This allows to keep memory
resources easily manageable as the overall memory consumption will not increase
over time. We also use this opportunity to introduce the concept of fitness func-
tions. Note that € is the space of all evolutionary processes.

Definition 5 (Fitness). Let X' be a search space. A function f: X x & x R —
[0; 1] 4s called a fitness function. This function takes an individual, its evolution-
ary process up until now, and random input and returns a scalar value.

The fitness function can be regarded as generalization of the concept of a
target function (cf. Definition 2). It represents the goal definition that the evo-
lutionary process can call upon and actively follows, which may or may not
coincide with the target function. In addition to the solution candidate itself, it
is able to process additional information about the context. Various approaches
may allow nearly arbitrary information here. For a rather general approach, we
just pass on a snapshot of the evolutionary process that generated the individual
until now. This includes:

— The current population that the evaluated individual is a part of allows to
define the fitness of an individual relative to its peers.

— The history of all populations until now allows to observe relative changes
over time as well as trace the ancestry of individuals throughout evolution.

— The number of the current generation allows the fitness function to change
over time and implement, e.g., a cool-down schedule.

Note that the random input that is also passed along allows fitness functions
to also vary fitness values stochastically. However, most fitness functions will not
make use of all this information. In these cases we allow to trim down the fitness
function’s signature and simply write f(z) for an individual € X if all other
parameters are ignored.

In many practical instances, developers will choose the target function as a
fitness function, i.e., f(z) = t(z) for all x € X, and for most target functions,
evolution will end up achieving passable target values this way. It is the main
point of this paper, however, to prove that the optimal choice in general is a
different function derived from the target function.

Alongside the fitness function f an evolutionary algorithm also uses vari-
ous selection functions. In general, a selection function returns a subset of the
population for a specific purpose.
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Definition 6 (Selection). A function s : P(X) x € x R — P(X) is called a
selection function iff s(X,E,r) C X for all X,E,r. This function takes a pop-
ulation, its evolutionary process, and random input and returns a subset of the
given population.

Again note that we allow for a multitude of information that will rarely be
used directly in any selection function and that will be omitted if not necessary.
Most importantly, however, any selection function is able to call any fitness
function since all its inputs can be provided.

As seemingly limitless variations of selection functions exist we use this
opportunity to provide a few examples and at the same time define all fami-
lies of selection functions that we use for the remainder of this paper. (Note that
the current population X is always provided with an evolutionary process £.)

Random Selection. This function o™ (X,E,r) = {x ~ X} U o™ HX,&,r)
selects m individuals of the population at random. Note that x ~ X is one
element # € X sampled uniformly at random. We define ¢°(X,&,r) = (.

Cutoff Selection. This function ¢™(X,&,r) = {argmin,cy f(z,&,7)} U
o™ (X, E,r) selects the m best individuals according to the fitness func-
tion f. We define 0°(X,&,7) = 0.

We can now move on to define the evolution function E. For all variants
of evolutionary algorithms there exist certain building blocks, called evolution-
ary operators, that most evolutionary functions have in common. They take as
arguments some individuals and return some (possibly new) individuals. During
the execution of an evolutionary operator its input individuals are referred to as
parents and its output individuals are referred to as children.

Mutation. This operator mut : X x B — X generates a randomly slightly
altered individual from a parent.

Recombination. This operator rec: X x X x R — X takes two individuals to
combine them into a new individual.

Migration. This operator mig : 'R — X’ generates a random new individual.

Again, countless variants and implementations exist, most importantly
among them there is non-random mutation and recombination with various
amounts of parents and children. For brevity, we omit everything we do not
use in this paper’s study. Please note that all of these operators return entirely
new individuals and leave their parents unchanged. In practical applications, it
is equally common to apply (some of) these operators in-place, which means
that the generated children replace their parents immediately. We, however, opt
to just add the children to the population (and possibly eliminate the parents
later) so that parents and their children can exist side by side within the same
generation. Our main aim in doing this is that it makes elitism much easier to
achieve.

As these operators work on single individuals, we define a shortcut to apply
them to sets of individuals:
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Definition 7 (Application of Operators). Let X C X be a set of individuals in
search space X. Let s be a selection function. We write X | s = {mut(x) | x €
s(X)} and X |ree s = {rec(z1,x2) | z1 € s(X), 29 ~ X} for the sets of children
when applying the respective operators. For consistency, we also write X |4
s = {mig() | z € s(X)} to create |s(X)| many new random individuals, even
though their values do not depend on the individuals in X .

We are now ready to define a scheme for the evolution function F in evo-
lutionary algorithms. We do so by providing an evolutionary step function e as
discussed above with parameters Ay, As, A3 € N:

e(X) = oM X U (X Lree o) U (X Linut 0*2) U (X Lmig 0*)) (1)

Note again that in this evolutionary step we place all generated children
alongside their parents into one population and then cutoff-select the best from
this population.® As it is common, we use random selection to select mutation
parents. The selection function for the recombination parents is also called parent
selection. We use cutoff selection on one parent with a randomly selected partner
here. This gives some selective pressure (i.e., better individuals have a better
chance of becoming recombination parents) without overcentralizing too much.
Although many approaches to parent selection exist, we choose this one as it
is both effective in practical implementations and mathematically very clean to
define. The final selection function that is called upon the combined population
of potential parents and new children is called survivor selection. We simply use
cutoff selection here for ease of reasoning. Many evolutionary algorithms use
more advanced survivor selection functions like roulette wheel selection where
better individuals merely have a higher chance of being picked. We choose a
hard cutoff for this kind of selection, mainly because it is simpler to define and
understand, and its transparent to elitism. Since the cutoff point varies with the
population’s fitness structure that is subjected to random effects, the practical
difference between both approaches for our examples is negligible. Note that
we can emulate a lot of different selection schemes by choosing an appropriate
fitness function: As the fitness function can vary at random, we can for example
make the cutoff more fuzzy by simply adding noise to each fitness evaluation
instead of changing the selection function. Also note that adding all the children
non-destructively and using cutoff-selection makes the algorithm elitist if f = t.

We parametrize the evolutionary step function with the amount of recombi-
nation children A;, amount of mutation children As and amount of migration
children As. These are also often given as rates relative to the population size.

Definition 8 (Evolutionary Algorithm). An evolutionary algorithm is an evo-
lutionary process E = (X, E,t,(X;)i<q) where the evolutionary function is given
via an evolutionary step function of the form described in Eq. 1, where a fitness
function f is used for all selection functions and evolutionary operators and the

target function t is only accessible insofar it is part of f.

3 In the field of evolutionary computing, this is called a p + A selection scheme.
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Note that for the ease of use in later notation, we will often denote two
evolutionary processes that differ solely in their fitness function (¢ vs. ¥, e.g.)
by denoting that fitness function as a subscript (€4 vs. &). Independently of
that we denote the best individual of the final generation of &£ according to
some fitness or target function ¢ with

|Eg|y = argmin () (2)

TEX,

and the best of all generations with

€6l = argmin (). (3)

zeX;

It is clear that if £, is elitist with respect to ¢, then |Eg|y = ||€4 |- Note that
when we use a fitness function f # ¢ then we usually obtain the overall result
of the evolutionary algorithm by computing ||€f||¢ or |E¢|; if we are confident
about the elitism at least to the extent that we do not worry about substantial
results getting lost along the way. In most cases we will assume that if f is close
enough to ¢ at least in the final generations, elitism with respect to f grants us
quasi-elitism with respect ¢, i.e., if f ~ ¢ and £y is elitist with respect to f, we
assume that ||E¢||: = ||Ef|| 5.

2.3 Example

We provide a running example accompanying these definitions.* For a target
function, we choose two common benchmark functions from literature as they
are implemented in the DEAP framework [2,12]. The first problem is based on
the two-dimensional Schwefel function although we adjusted the target value
space to fit comfortably within [0; 1] (cf. Fig. 1a). We chose only two dimensions
for ease of visualization. Higher-dimensional Schwefel is also covered in [8]. The
Schwefel function is characterized by many valleys and hills of varying depth.
The global optimum is at X = Y ~ 420. By contrast, our second example is
the H1 function [14] that features one very distinct global optimum at X =
8.6998,Y = 6.7665. However, it feature very many little (hard to see) local
optima throughout the whole surface. We took the classical H1 function, which
is defined as a maximization problem and turned it upside down to produce a
minimization problem (cf. Fig. 1b). For both target functions t € {¢schwefer, tr1}
we construct the same evolutionary algorithm.

The search space is given as Xschwefer = [—500;500] C R? and Xy, =
[—100; 100] C R? respectively. We initialize the search by generating X from 25
random samples within the search space in both cases. The size of this popula-
tion remains constant with application of the evolutionary step function e, which
is constructed according to Eq. 1 with A; = 0.3-|X]|, A2 = 0.1-|X|, A3 = 0.1-]X|.

4 The code for all examples can be found at github.com/thomasgabor /isola-evolib.
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(a) Normalized two-dimensional Schwefel (b) Inverse normalized H1

Fig. 1. Benchmark target functions used for the running example.

Let w be the range of a single dimensional value in the search space (i.e.,
Wschwefel = 1000, wgy = 200), then the mutation operator returns

mut((X,Y)) e {(X®46,Y), (X, Y @) | d € [-0.1w; 0.1w]} (4)

chosen random uniform where @ only adds or subtracts as much of its second
argument so that the resulting value remains within the search space. We further
define the recombination operator so that its result is at random uniform picked
from

rec((X,Y), (X", Y") € {(X,Y),(X,Y"), (X",)Y), (X", Y")}. (5)

Note that both operators include random cases where the operator does not
do anything at, which does not harm the overall search and can be further
counter-acted by increasing the respective amount of selected individuals for
that operator. The migration operator just samples random uniform from the
search space, returning mig() € X.

To illustrate the behavior of evolution, we ran independently initialized evo-
lutionary processes for each problem 500 times each for 50 generations. Figure 2
shows all solution candidates found within a specific generation among all evo-
lutionary processes. We can clearly trace how the search start random uniform
and then focuses towards the global optima, sometimes getting stuck in local
optima in the target value landscape (compare Fig. 1).

3 Approach

We apply the framework to give the definition of productive fitness. To present
the full proof design we introduce and discuss Assumptions 1 and 2. We continue
our example in Sect. 3.3.

3.1 The Ideal Fitness

So far, we discussed some example definitions using the target function as fitness,
f = t, and noted that it works (but not optimally). Obviously, having f correlate
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(b) H1, generation 1

(a) Schwefel, generation 1
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(¢) Schwefel, generation 10 (d) H1, generation 10
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(f) H1, generation 50

(e) Schwefel, generation 50

Fig. 2. Individuals from 500 independent runs of the evolutionary processes.

to some extend with ¢ is a good thing if in the end we value our results with
respect to t. However, it has long been known that augmenting the fitness with
additional (meta-)information can greatly aid the optimization process in some
cases. This fact is extensively discussed in literature [1,15] including previous
works by the authors [7,8]. We sum the results up in the following observation:
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Observation 1. There ezist evolutionary processes £, = (X, Ey,t, (Xi)i<g)
and & = (X, Ey,t, (X])i<g) whose configurations only differ in the fitness func-
tion and there exist fitness functions ¢ # t so that ||E4ll¢ < ||E¢]l¢-

Observation 1 states that an evolutionary process can yield better results
with respect to t by not using t directly but a somewhat approximate version
of ¢t given via ¢, which includes additional information but likewise “waters
down” the pure information of our original target. It is somewhat surprising
that a deviation from the original target can yield an improvement. Commonly
this phenomenon is explained by the exploration/exploitation trade-off: In an
unknown solution landscape made up by ¢, we gain knowledge through evaluating
solution candidates. When we have evaluated all solution candidates x € X,
we simply need to compute argmin,y t(z), which of course is infeasible for
most practical search spaces. Giving limited time resources, we need to decide
if we put additional effort into exploring more and new parts of the search
space in hope of finding valuable solution candidates there or if we exploit the
knowledge we have already gathered to further improve the solution candidates
we already evaluated. This can be seen of a trade-off between large-scale search
for exploration and small-scale search for exploitation.

Dealing with the exploration/exploitation trade-off certainly is one of the
central tasks when implementing metaheuristic search and has been covered
extensively in literature. Many of these approaches have been discovered bottom-
up, often by analogy to biological or physical processes. Even though many
similarities between approaches have been discovered, there does not exist a
general framework for how to construct the right fitness function for a specific
target function and evolutionary process.

Problem 1. Given a target function t, what is the theoretically best fitness func-
tion ¢* for an evolutionary process Ey« to optimize for t, i.e., optimize ||Ep+||¢?

We gave an answer to that question for the special case of standard evo-
lutionary algorithms in [8]: We defined a measurement called final productive
fitness and have sketched a proof that it represents the ideal fitness function
for evolutionary algorithms. However, it is important to note that computing it
a priori is infeasible. We approximated final productive fitness for an evolution
a posteriori and provided empirical evidence that evolutionary algorithms are
working better the better their fitness approximates final productive fitness.

In this paper, we formally introduce the necessary tools to provide the full
proof of the ideal fitness for evolutionary algorithms. First, we need to re-iterate
a few definitions of [8] in order to formally define final productive fitness.

Definition 9 (Descendants [8]). Given an individual z in the population of gen-
eration i, x € X;, of an evolutionary process €. All individuals ' € X; 11 so that
a2’ resulted from x via a mutation operator, i.e., *' = mut(x,r) for some r € R,
or a recombination operator with any other parent, i.e., there exists y € X; so
that ' = rec(xz,y,r) for some r € R, are called direct descendants of x. Further
gwen a series of populations (X;)o<i<g we define the set of all descendants D,
as the transitive hull on all direct descendants of x.
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The main idea behind productive fitness is to measure an individual’s effect
on the optimization process. If the optimization process is stopping right now,
i.e., if we are in the final generation g, then we can equate any individual’s
effect with its target function value. However, for any previous generations an
individual’s effect on the optimization corresponds to the best target function
values that its descendants have achieved within the evolution.

Definition 10 (Productive Fitness [8]). Given an individual 2 in the population
of generation i, x € X;, of an evolutionary process £. Let D, C X be the set of
all descendants from x. The productive fitness after n generations or optimistic
n-productive fitness ¢ is the average achieved target value of x’s descendants
n generations later, written

(6)

a‘vgz/GDIﬁXi+n t(x/) Zf DKE N X’L+TL # @
n (*T’) = .
1 otherwise.
Note that in case the individual x has no descendants in n generations, we
set its productive fitness ¢;' (x) to a worst case value of 1.
From [8] we repeat two major arguments against this definition:

— The use of avg as an aggregator over target values might be a bit pessimistic.
By doing so, we penalize an individual’s fitness if that individual bloats up
the optimization with many low-value individuals. However, if it thereby also
delivers at least one superior descendant, we should actually be fine with
that when we only care about the end result. If such effects actually occur
in practical scenarios is up to future work to discover. Empirical evidence
discovered in [8] strongly argues in favor of using the average, which is why
we repeat it in this definition. In the proof we will later derive a min-version
from one of our assumptions.

— Assigning the value 1 in case the given individual has no further descendants
in generation ¢ + n is a design choice. We might leave the productive fitness
in this case undefined or at least assign a value outside the common range of
target function values. We suggest that even without living descendants there
might still be inherent value to having explored certain solution candidates
(and having them clearly discarded for the ongoing process). Still, determining
this incentive is up to future research.

Of course, productive fitness ¢;" only measures the effect locally after a fixed
amount of generations. For the effect for the whole evolution we can now easily
define the notion of final productive fitness.

Definition 11 (Final Productive Fitness). Given an individual x in the popu-
lation of generation i, x € X;, of an evolutionary process £ with g generations
in total. The final productive fitness of = is the fitness of its descendants in the
final generation, i.e.,

' (x) = ¢5_;(2). (7)
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Described shortly, the final productive fitness of an individual = can be seen
as an answer to the question: “How much did x contribute to the fitness of the
individuals of the final population?” We claim that optimizing for that measure-
ment results in the optimal evolutionary process (as considered in Problem 1).

Practically, of course, optimizing for that measurement is rather difficult
(which in fact may be the entire reason it is the optimal fitness function): To
make the completely right decision in generation ¢ = 1, we would have to eval-
uate all possible future generations for each single individual being involved in
any selection or altered in any way by evolutionary operators. Within a sin-
gle generation, these are exponentially many possibilities, which of course grow
exponentially with each generation. Still, in [8] we designed some approxima-
tion of final productive fitness that can at least be computed a posteriori for an
already run evolution, giving some insight into the algorithm’s workings. In this
paper, we now provide the full design for a proof of final productive fitness’s
optimality, although there are still many risky new tools involved.

3.2 Proof Design

We hope that the notion of final productive fitness is intuitive enough so that it
seems plausible how ¢ might be the ideal fitness function ¢* for any evolutionary
algorithm. However, evolutionary processes are highly stochastic entities and
little framework exists to reason about their performance. We now first provide
such a framework, although we resort to making some strong assumptions along
the way.

Assumption 1 (Random Agnosticism). Random effects residing in selection
functions and evolutionary operators exert the same general effects on the evo-
lutionary function E regardless of the used fitness function.

The main intention behind Assumption 1 is, of course, to exclude any concept
of randomness from the proof design. We effectively assume that the distribu-
tion of outcomes (i.e., selected individuals or generated children) depending on
random inputs does not depend on the fitness function. At first, this is a cer-
tainly outlandish and strong assumption, especially as it allows us to deduce
quite strong properties. We just give a few reasons why it might be viable:

— Wherever random effects are used, they are usually designed to break clear
fitness borders (for example when using a fuzzy cutoff vs. a discrete cutoff).
In these cases, random effects overpower the effect of the fitness function so
that (in the extreme case, consider random selection) the used fitness function
has little impact on the outcome. If we flip the perspective around, different
fitness functions then also have little difference for the outcome.

— Within the evolutionary function FE, typically lots of random effects come
together. Even if some of their distributions are altered by using a different
fitness function, as long as they are not altered towards a specific result,
the effect may still cancel out on the larger scale. Basically, we expect the
outcome distribution of the whole evolutionary function F to approach the
normal distribution irregardless of (un-systematic) mix-ups.
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— From practical perspective, the shape of outcome distributions is rarely con-
sidered directly when constructing an evolutionary algorithm. That should
usually indicate that not much effect can be observed there in most cases.

Eventually, all these reasons are flawed, of course. Otherwise, we would not
have kept Assumption 1. Still, we feel that proofs built on Assumption 1 might
have practical relevance for the time being.

It would be natural to follow up the effective elimination of randomness
(coming from Assumption 1) by replacing all possibly random outcomes with
the expected value of the distribution and treating all function as non-stochastic.
However, the expected value is still computed from the distribution, so this would
not make things much easier. Instead, we opt of the ideal outcome, which can be
derived much easier, but might shift effects drastically: A recombination operator
that performs so bad on average that it brings down the whole evolutionary
process might now look like it gives rise to a very effective evolutionary process
just because it has a very small chance of getting a really good result.

Assumption 2 (Based Optimism). For an evolutionary function E with a lim-
ited amount of possible outcomes, the best possible outcome is representative for
its expected average result.

We recognize that “limited” is not fully defined here. We suggest that future
work looks into enumerability or local boundedness. For practical purposes, how-
ever, it is clear which of the classic operators are affected: Random initialization
and migration can generate individuals across the whole search space. If we
minimize over their possible outcomes, the whole algorithm reaches the global
optimum in a single step. Mutation and recombination (with any kind of selec-
tion) on the other side are limited operators: Given certain individuals as input
parameters, they will only navigate a limited range of options related to those
individuals. Again the main argument for the plausibility of Assumption 2 is
that the results usually approach normal distribution anyway and there is no
real reason why they should act any differently given exactly the two fitness
functions we are about to compare. However, given that we completely alter the
rules of evolutionary algorithms with this one, it is definitely a bold assumption.
Further note how we interpret the qualification “best” in Assumption 2: For
a given evolutionary function F, its notion of “best” corresponds to its fitness
function. So if we choose the best of two evolutionary processes with different
fitness functions, we might actually choose two different points in the outcome
distribution (depending on the fitness), which again is an immensely powerful
tool based on a big assumption.

What Assumption 2 then provides is means to simplify Definition 10: Pro-
ductive fitness is defined as the average fitness of all descendants. We can now
use the best fitness of the descendants to compute the fitness measurement which
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we will call optimistic productive fitness.” Note that implementing these assump-
tions has a great effect on the behavior of the evolutionary process. However, we
do not claim that they leave the evolutionary process intact, we just claim that
a clearly better fitness function remains the better fitness function even in the
altered setting.

The tools provided by Assumptions 1 and 2 are rather novel and very pow-
erful, so we are aware that any results based on them should be taken with a
great amount of caution. However, in order to present these tools at work, we
can use them to provide a proof that final productive fitness ¢! is one answer
for Problem 1.

Proof 1 (Problem 1). Let £ = (X, ET ¢, (X;[)i<g> be an evolutionary process
using optimistic final productive fitness ¢'. Let £* = (X, E* t, (X[ )icqg) e an
evolutionary process using a different (possibly more ideal) fitness ¢*. According
to the transformation discussed in Sect. 2.1, let both ET and E* be elitist. Let
X} = Xg. We assume that t(||E1]],) > t(||E*|]1), i-e., because of elitism

in ¢(x) > min ¢(z). 8
min («) > min t(z) (8)

From Eq. 8 it follows that there exists an individual v € X so that = ¢ Xg
and t(z) < min, 1 t(y). The better individual z could not have been introduced

into the population of £* by migration (or random initialization for that matter)
as we could use Assumption 1 to just introduce x into E' then.

Then x needs to stem from an individual ' that is an ancestor of z, i.e.,
x € Dy, so that &' was selected for survival in £ and not in EY, which implies
that ¢t (x') > ¢*(x'). However, since x is a possible descendant for x', the com-
putation of ¢'(z') should have taken t(z) into account,® meaning that x' should
have survived in ET because of elitism after all, which contradicts the previous
assumption (Eq.8). O

3.3 Example

We now illustrate the notion of productive fitness for our running example.
For each of the individuals generated in Sect.2.3 we computed an a posteriori
approximation for final productive fitness: Basically, we took the descendants
that have in fact been generated during evolution as a representative subset of

5 Note that the best possible choice for the average fitness of descendants is the mini-
mum of the possible descendants’ fitness values. When we are allowed to adjust the
random choice for the best possible outcomes, worse-than-optimal children will not
be born. This changes the game: Our ideal choice from the vast space of random
possibilities now yields at most one (i.e. the best possible) descendant per individual
per generation.

5 Note that t(z) cannot be compensated by other descendants of 2’ with possibly
bad objective fitness since we assumed optimistic final productive fitness following
Assumption 2.
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the descendants that could have been gemerated. This allows us to compute a
value for ¢! for an already finished evolution.”

Note that the notion of final productive fitness is most powerful in the begin-
ning of the evolutionary process, when it carries information about the whole
evolution to come. Figures 3a and 3b provide a clear situation how final produc-
tive fitness is a better fitness function than the target function:

— The final productive fitness landscape has fewer valleys as its local optima
correspond to individuals that remained in the final generation of some evo-
lutionary process. This makes the landscape less deceptive and individuals
are more clearly guided towards at least somewhat good results.

— The basins around the optima are wider, again making the local optimization
towards the final result more clear.

— The differences between the global optimum and other local optima are more
pronounced, giving an edge to the global optimum.

As discussed, if we could use final productive fitness during evolution, it
would allow for better results. However, approximations of various quality may
exist for specific problems or problem instances [8].

In Figs.3c and 3d we can see how the final productive fitness landscapes
deteriorates with the progressing evolution. As we can see from the red dots,
evolution has focused on certain areas of the solution landscape, leaving wide
areas without a meaningful final productive fitness to be computed. This effect is
even more prominent in Figs. 3e and 3f, where individuals that are still randomly
generated in certain areas die out rather quickly, leaving them with a productive
fitness of 1. Note that productive fitness cannot meaningfully be computed for
the last generation so we deliberately choose to show generation 49 last here.

Note how Fig. 3 also illustrates the usage of different evolutionary operators:
For the Schwefel function, many individuals have a good final productive fitness
when the evolution starts. That means they have direct descendants who manage
to achieve nearly optimal target values. By contrast, Hl shows no individuals
with good productive fitness in the beginning, meaning that the final results
were mostly discovered via the migration operator mig as that is not traced by
productive fitness.®

4 Related Work

We first introduced the gist of the formal framework for evolutionary processes
as well as the notion of productive fitness in [8]. In this paper, we provide and
discuss the full, substantially extended framework and introduce the assumptions
and tools a proof design for productive fitness’s validity can be built with.
Theoretical work on evolutionary algorithms has been traditionally focused
on the complexity of the search process (on rather simple search problems) or

" For details on how this is done, please refer to [8].
8 Migrants are generated randomly and are thus not ascribed to be any individual’s
descendant. How to include migrants in productive fitness is left for future work.
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Fig. 3. Individuals from 500 independent runs of the evolutionary processes plotted
with their a posteriori approximated final productive fitness. The surface represents
the same data set as the scatter points, where each tile has the Z value equal to the
average Z value of all the points within it.
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the performance of various types and variants of algorithms in general. We point
to [4-6] for a few selective examples without any attempt at giving a full overview
over this old and comprehensive field of research. By contrast, we fully work out
the difference between a target function that is given from the outside world and
a fitness function that (potentially) emerges implicitly throughout the process
of evolution. As this concept in itself is rather novel, the constructs supporting
it have been freshly developed as well (and are still in their infancy).

It should be pointed out that there probably exists a connection from the
assumptions and approximations we make to a complexity-based analysis of
evolution, as these tools allow us to rule out exponentially many options and
thus bring the respective computation to a feasible level.”

Various meta-measurements of fitness in evolutionary algorithms have been
designed. We would like to point out effective fitness [13], which describes the
fitness threshold under which individuals can manage to increase their dominance
in the population. This usually is a harsher border than reproductive fitness [11],
which is the probability of an individual to successfully produce offspring. Both
follow a similar line of thought of measuring what fitness an individual needs to
have for certain effects to occur, but none suggest using the meta-measurement
as a fitness value itself.

5 Conclusion

We have introduced and discussed a formal description of evolutionary processes
that summarizes various kinds of evolutionary algorithms and other optimization
techniques. Based on that framework, we defined the notion of productive fitness
as it is defined in [8], where an argument was sketched why it might be the ideal
fitness function. In this paper, we introduced the tools necessary to implement
the proof, discussed their validity and thus gave the full proof design. We argue
that while the approach is somewhat bold, the assumptions made could be useful
for similar arguments about evolutionary processes and hope the perspective
on fitness functions given here will open up new ways to reason about highly
dynamic and uncertain processes, especially evolution.

We pointed out future work where we encountered open questions. We con-
sider the connection suggested to traditional runtime analysis of evolutionary
algorithms and subsequently to the No Free Lunch theorem [10] and how it
related to the cases of having and using as well as finding and approximating
the ideal fitness function to be especially promising. In addition, we suggest that
it might be of particular relevance to also expand the scope of the framework
beyond evolutionary algorithms; even the proof design might be adapted to not
only work for fitness used by evolutionary operators but for example to deliver
the ideal reward function for reinforcement learning [3,9].

9 As no computational limit on biological evolution, e.g., has been recognized it could
be an interesting endeavor to use the framework presented in this paper to translate
arguments from runtime analysis of evolutionary algorithms back to a more general
concept of evolution.
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