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Abstract. Developing robotics applications is a demanding software
engineering challenge. Such a software has to perform multiple cooperat-
ing tasks in a well-coordinated manner in order to avoid unsatisfactory
behavior. In this paper, we define an approach for developing robot soft-
ware based on the integration of the programming language X-Klaim
and the popular robotics framework ROS. X-Klaim is a programming
language specifically devised to design distributed applications consisting
of software components interacting through multiple distributed tuple
spaces. Advantages of using X-Klaim in the robotics domain derive
from its high abstraction level, that allows developers to focus on robots’
behavior, and from its computation and communication model, which
is especially suitable for dealing with the distributed nature of robots’
architecture. We show the feasibility and the effectiveness of the pro-
posed approach by implementing a scenario involving a robot looking for
potential victims in a disaster area.
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1 Introduction

Autonomous robots are versatile machines increasingly used in many fields
in today’s society, while their capabilities are becoming ever more complex and
heterogeneous. They are software-intensive systems, whose software components
are typically deployed on a distributed and heterogeneous computing infras-
tructure, possibly with limited resources. Such software components interact in
real-time with a highly dynamic and uncertain environment through sensors and
actuators.

Developing robotics applications is currently among the most demanding
software engineering challenges [12,14,18,23]. Indeed, such a software has to
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perform the multiple cooperating tasks in a well-coordinated manner in order to
avoid unsatisfactory behavior that can even cause economic losses and threaten
safety. Moreover, since low-level details must be considered in the early phases,
robotic experts need very good programming skills or the help of programming
experts. In general, expertise from multiple domains needs to be integrated con-
ceptually and technically. Finally, robotic software is difficult to adapt to hard-
ware changes.

In the last few years, a variety of software libraries and middlewares have
been specifically developed by different research laboratories and universities
to assist and simplify the rapid prototyping of robotic applications. They offer
mechanisms for, e.g., real-time control, synchronous and asynchronous commu-
nication, abstract access to sensors and actuators. Many researchers have also
proposed using higher-level abstractions to drive the software development pro-
cess and then resorting to some tools for automatic generation of executable
code and system configuration files. This permits hiding the lower-level pro-
gramming details to robotic experts and helping them to focus on their own field
of expertise rather than on implementation. The use of a suitably abstract level
also supports better maintainability and reusability of software components, and
reduces the effort in understanding and modifying the software. Many proposals
in the literature are surveyed in [23]. We mention the domain-specific language
RobotML [14], enabling to describe robotics concerns with concepts and nota-
tions closer to the respective problem domain and to automate code generation.
We also mention the prototype framework CommonLang [26], exploiting model-
driven software engineering techniques to abstract away from underlying tech-
nologies and create executable code for different robotics platforms using code
generation.

Along this direction, in this paper we propose an approach for developing
robotics applications based on the integration of the programming language
X-Klaim, and its effective Eclipse-based IDE, with the ROS middleware.

X-Klaim1 (eXtended Klaim, originally introduced in [6] and reimplemented
from scratch in [8]) is based on the coordination language Klaim [13] specifically
devised to design distributed applications consisting of (possibly mobile) software
components interacting through multiple distributed tuple spaces. X-Klaim
code is compiled into Java code and executed on a standard JVM. Because of its
specific features, we envisage possible exploitation of the renewed X-Klaim as a
coordination language for developing modern ICT systems, in such domains as
robotics, IoT, Smart Cities, e-Health, etc. As a language, X-Klaim provides a
high level of abstraction, allowing developers to focus on robots’ behavior while
abstracting from technical details (e.g., the low-level commands sent to robots’
actuators and the management of events and data coming from robots’ sensors).
Moreover, as argued below, X-Klaim features many advantages for different
kinds of software architectures used in robotics systems [20]. Its computation and
communication model, inherited from Klaim, is particularly suitable for deal-
ing with the distributed nature of robots architecture, where the components

1 https://github.com/LorenzoBettini/xklaim.

https://github.com/LorenzoBettini/xklaim
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(e.g. actuators and sensors) execute concurrently. Indeed, the X-Klaim com-
putation model permits to distribute an application across multiple threads of
execution or even multiple hardware platforms. Each application component
may have its own tuple space, that is a repository for storing anonymous data
and associatively retrieving them by means of a pattern-matching mechanism.
Application components communicate by means of their distributed tuple spaces,
where all data are stored and accessed by the components that are responsi-
ble for performing specific tasks. This model features ease of implementation
and low computational overhead. It ensures that components can operate inde-
pendently, and gather asynchronously the required data by accessing it from a
tuple space, without having to communicate directly with each other. If neces-
sary, the same data can be read by multiple components, without the need to
replicate them. Appropriate synchronizations among the application components
can be implemented still through the tuple spaces. By exchanging request and
response messages through the tuple spaces, a component can also act as a service
that replies with a response message once another component sends a request
message.

ROS2 (Robot Operating System [24]) is a well-known set of software libraries
and tools to build robotics applications. Since X-Klaim code is compiled
into Java and can interact with any existing Java library, we make use of
java_rosbridge3 to connect the code generated from an X-Klaim program with
the ROS server that enacts the publish/subscribe interactions of ROS compo-
nents. This allows us to use X-Klaim only for writing the code that controls the
robot’s behavior in a compact and readable way. We also abstract the typical
robot behaviors, described at ROS level by large pieces of code. Our framework
can be thought of as a proof-of-concept implementation for experimenting with
the applicability of the tuple space-based paradigm to robotics applications. For
illustrating the proposed approach, we consider a simple disaster scenario. To
show the execution of the generated code we use Gazebo4, an open-source sim-
ulator of robot behaviors in complex environments that is based on a robust
physics engine and provides a high-quality 3D visualization of simulations.

The rest of the paper is organized as follows. In Sect. 2, we provide some
background notions concerning the languages and the technologies at the basis
of our approach, while in Sect. 3 we present our approach. In Sect. 4 we (par-
tially) illustrate the implementation of a simple robotics scenario according to
the proposed approach. In Sect. 5 we discuss more strictly related work, while
in Sect. 6 we conclude and touch upon directions for future work.

2 https://www.ros.org/.
3 https://github.com/h2r/java_rosbridge.
4 http://gazebosim.org/.

https://www.ros.org/
https://github.com/h2r/java_rosbridge
http://gazebosim.org/
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2 Background Notions

In this section, we briefly summarize some background notions concerning the
languages and the technologies at the basis of our approach. We refer the inter-
ested reader to the referred sources for a full account of each of them.

2.1 Klaim

Klaim (Kernel Language for Agents Interaction and Mobility, [13]) is a for-
mal language specially devised to design distributed applications consisting of
(possibly mobile) software components deployed over the nodes of a network
infrastructure. Although Klaim is based on process algebras [22], it builds on
the notion of generative communication introduced by the coordination lan-
guage Linda [19] and generalizes it to multiple distributed tuple spaces. A tuple
space is a shared data repository consisting of a multiset of tuples. Tuples are
anonymous sequences of data items that are associatively retrieved from tuple
spaces by means of a pattern-matching mechanism. Interprocess communication
occurs through asynchronous exchange of tuples via tuple spaces: processes can
indeed insert, read and withdraw tuples into/from tuple spaces. Communicating
processes are thus decoupled both in space and time as there is no need for pro-
ducers (i.e., senders) and consumers (i.e., receivers) of a tuple to synchronize.
Tuple spaces are identified by means of localities, that are symbolic addresses
of network nodes where processes and tuples can be allocated. Localities can
be exchanged through interprocess communication. They provide the naming
mechanism to represent the notion of administrative domain: computations at a
given locality are under the control of a specific authority.

A computational node of a Klaim network is characterized by its locality
and a collection of running processes.5 Processes, i.e., the active computational
units of Klaim, can be executed concurrently, either at the same locality or at
different localities. They are built up by composing basic actions acting on net-
work nodes, process variables and process calls, either sequentially or in parallel.
Process variables support higher-order communication, namely the capability to
exchange (the code of) a process and possibly execute it. Recursive behaviors
are modeled via calls to process definitions.

Figure 1 depicts a generic Klaim node and the basic actions which pro-
cesses are made of. In these actions, processes can use the distinguished local-
ity self to refer to their current hosting node. Action out(tuple)@nodeLocality
adds the tuple resulting from the evaluation of the argument tuple to the tuple
space of the target node identified by the (possibly remote) locality nodeLocal-
ity. A tuple is a sequence of actual fields, i.e., expressions, localities, or pro-

5 For the sake of presentation, we omit from the description of Klaim nodes the
distinction between physical and logical localities and, hence, the so called allocation
environment. The latter is a component of a node that acts as a name solver binding
logical localities, occurring in the processes hosted in the node, to specific physical
localities.
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Fig. 1. A Klaim node.

cesses. In general, any of these fields can contain variables. Instead, an eval-
uated tuple must not contain variables. Thus, tuple evaluation only succeeds
when a tuple does not contain variables and amounts to computing the val-
ues of the expressions occurring in the tuple. Action in(template)@nodeLocality
(resp. read(template)@nodeLocality) withdraws (resp. reads) tuples from the
tuple space hosted at the (possibly remote) locality nodeLocality. If matching
tuples are found, one is non-deterministically chosen, otherwise, the process is
blocked. These retrieval actions exploit templates as patterns to select tuples
in a tuple space. Templates are sequences of actual and formal fields, where
the latter are used to bind variables to values, localities, or processes. Tem-
plates must be evaluated before they can be used for retrieving tuples. Their
evaluation is like that of tuples, where formal fields are left unchanged by the
evaluation. Intuitively, an evaluated template matches against an evaluated tuple
if both have the same number of fields and corresponding fields do match; two
values/localities match only if they are identical, while formal fields match any
value of the same type. A successful matching returns a substitution function
mapping the variables contained in the formal fields of the template to the values
contained in the corresponding actual fields of the accessed tuple. Such a substi-
tution is then applied to the process syntactically following the action. Action
eval(Process)@nodeLocality sends Process for execution to the (possibly remote)
node identified by nodeLocality. Finally, Klaim also provides an action for cre-
ating new network nodes, but we do not present it here as it is not exploited in
the paper.

2.2 Klava and X-Klaim

The implementation of Klaim basically consists of two main components:

– the Java package Klava (Klaim in Java, originally introduced in [4]);
– the programming language X-Klaim.

Klava provides the implementation of the Klaim tuple space operations
and concepts (such as nodes, nets, processes, etc.) in terms of classes and meth-
ods, relying on the IMC framework [3] for the communication infrastructure.
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Any Java object can be stored into and retrieved from a Klava tuple and the
implemented pattern matching mechanism keeps Java subtyping into consider-
ation. Klava allows Java programmers to fully exploit Java mechanisms and
the libraries of its huge ecosystem, while using the Klaim programming model.
However, programmers have to deal with the verbosity of Java, which also makes
it hard to directly use Klaim primitives. Klava strives for making Java pro-
grammers’ life easier, but it has to obey the rules of Java. For this reason, we
also developed X-Klaim, a domain-specific language that is closer to Klaim
while providing typical high-level programming constructs. The X-Klaim com-
piler translates X-Klaim programs into Java code that uses the Java package
Klava. The produced Java code can be then compiled and executed using the
standard Java toolchain.

The versions of X-Klaim and Klava used in this paper are available as an
open source project. Sources and links to Eclipse update site and to complete
Eclipse distributions are available from: https://github.com/LorenzoBettini/
xklaim.

For the new implementation of X-Klaim we relied on Xtext [5], an Eclipse
framework for the development of programming languages and DSLs. Xtext
also provides a complete IDE support based on Eclipse: editor with syntax high-
lighting, code completion, error reporting and incremental building, just to men-
tion a few. Furthermore, we made use of another mechanism provided by Xtext,
that is, Xbase [17], an extensible and reusable expression language. By using
Xbase in X-Klaim, besides a rich Java-like syntax, we also inherit its inter-
operability with Java and its type system. In fact, an X-Klaim program can
seamlessly access any Java type and Java library available in the classpath of
the project. The interoperability with Java allowed us to seamlessly integrate
X-Klaim with java_rosbridge.

The syntax of Xbase is similar to Java, thus it should be easily understood
by Java programmers, but it removes much “syntactic noise” from Java. For
example, terminating semicolons are optional, as well as other syntax elements
like parenthesis when invoking a method without arguments. Moreover, Xbase
comes with a powerful type inference mechanism, compliant with the Java type
system: the programmer can avoid specifying types in declarations when they can
be inferred from the context. The X-Klaim compiler is completely integrated
into Eclipse: typical IDE mechanisms like content assist and code navigation
are available in the X-Klaim editor. The same holds for the automatic build-
ing mechanisms of Eclipse: saving an X-Klaim file automatically triggers the
Java code generation, which in turns triggers the generation of Java byte-code.
Notably, the X-Klaim integration in Eclipse, allows the programmer to debug
an X-Klaim program.

In the rest of this section we briefly describe the main features of X-Klaim
that are relevant for this paper. Thus, for example, we will not describe code
mobility features, as they are not used in this paper (the interested reader is
referred to [8] for more details).

https://github.com/LorenzoBettini/xklaim
https://github.com/LorenzoBettini/xklaim
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An X-Klaim program can contain process, node and net definitions. All these
components can also be defined in separate files and can be referred through a
Java-like import mechanism.6

A process definition consists of a name, a list of parameters (using the Java
syntax for declaring parameters) and a body:

proc aProcess(... parameters ...) { ... body ... }

The body consists of Xbase expressions, whose syntax has been extended with
Klaim operations (that we will show in Sect. 4). Typical programming structures
such as if, while and OOP Java-like mechanisms, such as object creation and
method invocation, are already part of Xbase.

An X-Klaim network definition consists of net and node definitions as shown
in the following example:

net ANet {
node Node1 { ... start code ... }
node Node2 { ... start code ... }
...

}

In particular, the name of a node also represents its locality within the network.
Each node can specify some initialization code for creating and running a few
processes, as we will see in the example of Sect. 4. This is the simplest way of
specifying a flat network. X-Klaim also implements the hierarchical version of
the Klaim model as presented in [7], but we will not use it in this paper.

Fig. 2. ROS publish/subscribe mecha-
nism.

Fig. 3. Interaction with ROS robot.

2.3 ROS

Robotic Operating System (ROS)7 is one of the most sophisticated and popular
frameworks for writing robot software. It provides tools and libraries for simpli-
fying the development of complex and robust robot controllers while abstracting
from the underlying hardware. ROS works with more than a hundred robots,

6 Code completion is provided in the X-Klaim Eclipse editor for imports as well as
standard “Organize imports” mechanisms.

7 https://www.ros.org/.

https://www.ros.org/
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ranging from autonomous cars to drones and humanoid robots, and integrates a
multitude of sensors.

The core element of the ROS framework is the message-passing middleware,
which enables hardware abstraction for a wide variety of robotic platforms. The
processes of a robotics application can exchange data, being agnostic with respect
to the source of the data. The communicated data can be sensor readings or
actuator commands, formatted in a standardized way, produced by or directed
to robot’s devices.

Although ROS supports different communication mechanisms, in this paper
we only use the most common one: the anonymous and asynchronous publish/-
subscribe mechanism. For sending a message, a process has to publish it in a
topic, which is a named and typed bus. A process that is interested in such
message has to subscribe to the topic. Whenever a new message is published in
the topic, the subscriber will be notified. This decouples the production of data
from its consumption. Multiple publishers and subscribers for the same topic
are allowed. The diagram in Fig. 2 illustrates this concept, while the one in
Fig. 3 shows how a robot controller interacts with the devices of a mobile robot
in a black-box, hardware-independent fashion. In the latter diagram, the con-
troller acts as both publisher and subscriber: it sends a message directed to the
wheels actuator and receives back a message containing the position the robot
has moved to. The topic /cmd_vel stands for command velocity. The topic /odom
stands for odometry, the technique used to estimate the change in position over
time from robot sensors data.

3 Our Approach and Framework

In this section we illustrate our approach, and the resulting software framework,
for programming robotics applications using X-Klaim and ROS.

The architecture of autonomous robots has a distributed nature, as it typi-
cally consists of different components, in particular sensors and actuators, that
cooperate with each other making use of a communication infrastructure. Their
software architecture reflects such a distribution and partitions the robot’s soft-
ware into parts, with specific relationships among them, working together as a
coherent whole. Robot components are thus managed by specialized processes
that may need to work on local data and can demand dedicated machines for
their execution.

This distributed architecture of the robot’s software is naturally rendered in
X-Klaim as a network where the different parts are deployed. As depicted in
Fig. 4, we typically have a controller node and several sensor and actuator nodes.
The latter nodes are not fixed once and for all. Rather, they can be dynamically
added or removed, and even equipped with different processes, in order to rep-
resent different robot types and configurations. To concretely program with the
X-Klaim language the behaviors of robots, we have integrated it with the ROS
middleware. The communication infrastructure of the integrated framework is
graphically depicted in Fig. 5.
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Fig. 4. Software architecture of robots in X-Klaim.

Specifically, X-Klaim applications are indirectly connected with the ROS
framework by means of the Java library java_rosbridge. It provides Java
objects supporting publishing and subscribing over ROS topics. In its own turn,
java_rosbridge communicates with the ROS Bridge server, via the WebSocket
protocol, by means of the Jetty web server.8 The ROS Bridge server, indeed,
provides via WebSocket a JSON API to ROS functionality for external pro-
grams. This way, ROS receives and executes commands on the physical robot,
and gives feedback and sensor data. In addition, ROS can optionally interact
with the Gazebo simulator,9 via the ROS commutation mechanism (e.g., by
launching the simulator as a ROS node). The use of the simulator is not manda-
tory when ROS is deployed in a real robot; however, even in such a case, the

Fig. 5. The integrated framework.

8 Jetty 9: https://www.eclipse.org/jetty/.
9 This interaction is denoted in Fig. 5 by a white arrow, to stress its optionality.

https://www.eclipse.org/jetty/
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Fig. 6. Example of a JSON message for the /cmd_vel topic.

design activity of the robot’s controller may benefit from the use of a simulator,
to save time and reduce the development cost.

A crucial role in the framework described above is played by JSON mes-
sages. Indeed, the use of JSON enables the interoperability of ROS with most
programming languages, including Java. As an example, we report in Fig. 6 a
Twist message in the JSON format published on the ROS topic /cmd_vel, pro-
viding information for moving the robot. This message expresses the velocity in
terms of its linear and angular parts, each of which defined as a vector.

4 X-Klaim at Work on a Robotics Scenario

For illustrating the proposed approach, in this section we show and briefly com-
ment a few interesting parts of the implementation of a simple robotics sce-
nario. The full source code can be found at https://github.com/LorenzoBettini/
xklaim-ros-example. It consists of an Eclipse/Maven project with X-Klaim code
(and its generated Java code), using java_rosbridge.10

The scenario that we consider involves a robot looking for potential victims in
a disaster area. By following a random walk, the robot explores an unknown, flat
environment where a number of obstacles are present while avoiding collisions
with them. As soon as the robot has localized a potential victim, it stops near
the victim and signals its position. The robot has a limited battery lifetime
and the battery’s state of charge is monitored during the course of the robot’s
activities. If the state of charge drops under a given threshold value, then the
robot stops searching for a victim and rather moves towards a charging station
whose position is known to it.

In Fig. 7 we show the whole network for our implementation of the scenario.
As discussed in Section 3, each part of the robot is rendered as an X-Klaim node,
whose name represents its locality (see Sect. 2.2). For each node we have one or
several processes that deal with the robot’s sensors (e.g., PositionSensor) or
with the robot’s moving parts (e.g., WheelsActuator). Each node creates pro-
cesses locally and executes them concurrently by means of the Klaim operation
eval. We have made a few processes parametric with respect to the localities,
so that they can be easily relocated to any node. This way, we could experiment
with different network configurations (see also Sect. 6). The most interesting

10 We ‘consume’ java_rosbridge and X-Klaim runtime libraries as Maven artifacts.

https://github.com/LorenzoBettini/xklaim-ros-example
https://github.com/LorenzoBettini/xklaim-ros-example
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Fig. 7. The X-Klaim net of our example.

process under that respect is RobotController, which has to deal with several
robot’s components and so it takes such components’ localities as parameters.

The source code of the process RobotController is shown in Fig. 8. The
code should be easily readable by a Java programmer. Such types as Double,
Locality and Random (note the import statement) are actually Java types,
since, as mentioned above, X-Klaim programs can refer directly to Java types.
Note also that nextFloat is actually the Java method of the Java class Random.
Java static methods, like String.format, can be used as well; println is a
shortcut for the standard System.out.println. Variable declarations in Xbase
start with val or var, for final and non-final variables, respectively. The types of
variables can be omitted if they can be inferred from the initialization expression.
Note how Xbase removes much syntactic noise of Java. It also treats safely
operators such as ==, which, for objects like String, actually translates to a
call equals in the generated Java code. Here we also see the typical Klaim
operations, read, in and out, acting on possibly distributed tuple spaces. Formal
fields in a tuple are specified as variable declarations, since formal fields implicitly
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Fig. 8. The X-Klaim RobotController process.

declare variables that are available in the code after in and read operations (just
like in Klaim).11

Besides that, the code of Fig. 8 basically relies on the Klaim tuple space
based communication. The controller first reads a local tuple containing the
“type” of step to perform and acts accordingly. The ‘normal’ behavior consists of
random walking in the working area. The controller creates the tuple indicating
the velocity broken in its linear and angular part, and inserts it in the obstacle
avoidance’s tuple space. If the level of the robot’s battery is too low, the robot
goes to a charging station. The controller retrieves the charge station position,
moves the robot to the charge station and waits for the completion of the charge.
Then, it replaces the low battery control step with the random walking one. If
a victim is found, the controller stops the movement by sending velocity 0 to
the wheels actuator. It then sends the current position to the rescuers (here it
simply prints out a message in the console with the position of the victim) and the
process terminates. During these actions the controller communicates with other

11 Non-blocking versions of in and read are also available: in_nb and read_nb, respec-
tively.
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Fig. 9. The X-Klaim WheelsActuator process.

parts of the robot (i.e., with the corresponding X-Klaim processes) by means of
tuples inserted into or retrieved from specific tuple spaces, whose localities are
received as parameters. The localities wheels and positions correspond to the
next two processes we are going to describe.

The code of the process WheelsActuator is shown in Fig. 9. Here we can see
that X-Klaim code can also interact with Java libraries, like java_rosbridge.
In fact, we establish a bridge with the ROS Bridge WebSocket. In this case, we
create a ROS publisher (see Sect. 2.3) and we publish Twist messages (as the
one in Fig. 6). We do that after consuming a tuple containing the velocity data.

The code of the process PositionSensor is shown in Figure 10.
As before, we use the Java API provided by java_rosbridge. This time we

subscribe for a specific topic (we refer to java_rosbridge documentation for the
used API). The last argument is an Xbase lambda. Xbase lambda expressions
have the shape: [ param1, param2, ... | body ]. The types of the parame-
ters can be omitted if they can be inferred from the context. The lambda will be
executed when an event for the subscribed topic is received. In particular, the
lambda reads some data from the event (in JSON format) concerning “position”
and “orientation”, performs some computation (again, by using the standard Java
library) and uses the computed information to update the tuple space. The JSON
message format is dictated by ROS. On the contrary, for the tuples inserted in
the tuple space, we could have also defined a Java class, e.g., RobotPosition,
as a datatype for “position” tuples. Indeed, as explained in Section 2.2, any Java
object can be inserted in a tuple.

As already discussed in Sect. 3, the execution of an X-Klaim robotics appli-
cation requires the ROS Bridge server to run, providing a WebSocket connection
at a given URI. In the code of our example application, we consider the ROS
Bridge server running on the local machine (0.0.0.0) at the port 9090. Similarly,
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Fig. 10. The X-Klaim PositionSensor process (imports are omitted).

Fig. 11. Execution of an X-Klaim robotics application.
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to execute the code in a simulated environment and obtain a 3D visualization of
the execution, the Gazebo simulator has to be launched with the corresponding
robot description. At this point, our application can be executed by running
the Java class Main, which has been generated by the X-Klaim compiler. The
screenshot in Fig. 11 shows our X-Klaim robotics application in execution. Of
course, since the robot explores the disaster area randomly, executions are dif-
ferent from each other.

5 Related Work

More strictly related works are a couple of proposals using high-level languages
for producing ROS applications. In [1], an approach is proposed that aims at
creating nodes of ROS applications using a DSL based on the Python language.
This DSL can be used interactively, through the Python command line interface,
to create brand new ROS nodes and to reshape existing ROS nodes by wrapping
their communication interfaces. In [21], the tool ROSGen is described, which,
given as an input a specification of a ROS system architecture, generates a ROS
node model. This is a glue code written in a DSL, which specifies the ROS nodes
that compose the system and the topics that the nodes subscribe to and publish
on. This paper also proposes a demonstration that the code generation process
is amenable to formal verification, using the theorem prover Coq.

Other less specific works regard applications of Model-Driven Engineering
(MDE) and development of DSL for robotics applications. MDE [28] is consid-
ered by many robotics researchers to be a promising approach for simplifying
design, implementation and execution of software for robotics systems. MDE
advocates the use of domain-specific modeling languages (DSMLs) for expressing
robotics models through concepts that abstract away from the underlying tech-
nology and are closer to the problem domain. Many proposals in the literature
instantiate this approach, like e.g. the domain-specific language RobotML [14],
the model-based framework SafeRobots [25] and the prototype framework Com-
monLang [26]. In [15], a family of domain-specific languages for specifying mis-
sions of multi-robot systems is introduced. The proposed languages are organized
in different layers comprising languages conceived for the end-user describing
missions and the environmental context, an intermediate language describing
the detailed behavior of each robot (hidden to the user), and the robot language
containing the hardware and low-level specification of each type of robot within
the team. The authors claim that the layer managing the robot controller is
implemented using Java and ROS, which interact via java_rosbridge as in our
work. In [16], a domain-specific language for developing robot arm applications
is defined. Special attention is paid to the automatic generation of robot control
logic and to the validation and certification of software components. In [27], the
relationships between MDE and the service-oriented component-based develop-
ment approach in the robotics domain are discussed, and a software engineering
approach, called SmartSoft, resulting from their combination is illustrated. All
required and provided services of a SmartSoft component are built on top of a
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small set of communication patterns, which connect the externally visible ser-
vices with the internally visible set of access methods for these services. This pro-
vides a completely middleware-independent view on the component ports and on
the communication interfaces visible to the user. From the modeling perspective,
the approach is supported by a UML-based notation, called SmartMARS, rep-
resenting the SmartSoft concepts independently of any implementation technol-
ogy. In [2], a model-driven toolchain for robotics software development, based on
the 3-View Component Meta-Model V3CMM, is introduced. It provides design-
ers with an expressive, yet simple, platform-independent modeling language for
component-based application design. The MDE approach permits generating
the code for specific platforms via model transformations, which allow program-
mers to progressively include application-dependent details. In [10], the BRICS
model-based development paradigm is proposed. This paradigm aims at pro-
viding robotics developers with a set of guidelines, meta-models and tools for
structuring the development of robotics software systems, without introducing
any framework or application-specific details. In [9], several MDE-based solu-
tions for software development in robotics are illustrated. This paper focuses
specifically on the architectural model as the central artifact of almost all soft-
ware development activities. In [23], the state of the art in DSMLs in robotics is
surveyed. This paper also provides an overview of subdomains relevant for pro-
gramming and simulation of robotics applications that are already supported
through the MDE approach. Finally, [29] shows that by relying on a suitably
designed transformation and verification architecture it is possible, also in such
critical environments like robotics systems, to mitigate the additional risk result-
ing from the automatic transformation from DSLs to code through the use of
so-called language workbenches.

We leave for future work a systematic comparison with the related literature,
also aimed at identifying the requirements of robotic applications and showing
the benefits of our approach. Anyhow, we want to point out that our work dif-
fers from the ones discussed above for the use of a high-level language with a
tuple-based communication mechanism. X-Klaim computation and communi-
cation model is particularly suitable for programming robot’s behavior. Indeed,
X-Klaim natively supports concurrent programming, which is required by the
distributed nature of robots’ software. In addition, communicating processes are
decoupled both in space and time and X-Klaim tuples permit to model both
raw data produced by sensors and aggregated information obtained from such
data. This allows programmers to specify the robot’s behavior at different levels
of granularity.

6 Concluding Remarks and Future Work

In this paper we have introduced an approach for developing robotics appli-
cations based on the programming language X-Klaim and the ROS middle-
ware. We consider this as a first exploratory attempt. We think that X-Klaim
has proved expressive enough to implement this first scenario. In particular,
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X-Klaim integration with Java allowed us to seamlessly use the java_rosbridge
API directly in the X-Klaim code.

Further experimentation will be needed with application scenarios typical
of the robotics domain to allow us to assess whether the linguistic primitives
of X-Klaim are already sufficiently expressive or whether we need to equip
the language with further abstractions which better fit the problem domain. In
addition, a usability evaluation of the X-Klaim language will be also needed to
assess the benefits of using it in place of the traditional solutions for ROS-based
robotics applications (i.e., C++ and Python). Our long-term goal is the design of
a domain specific language for the robotics domain which, besides being used for
generating executable code, is integrated with automated reasoning tools that
can support application verification and analysis.

We also plan to extend our approach from single robot scenarios to collec-
tive ones. In this respect, we believe that the form of communication offered by
tuple spaces, supported by X-Klaim, which permits decoupling communicating
processes both in space and time, brings benefits for the scalability of collective
robotics systems in terms of the number of components and robots that can be
dynamically added. This would also permit to meet the open-endedness require-
ment (i.e., robots can dynamically enter or leave the system), which is crucial
in collective systems. The tuple space-based paradigm supported by X-Klaim
relies on Klava, which abstracts from the actual implementation of the tuple
space. Klava itself provides a default implementation where all tuples are stored
in a list, which has to be scanned sequentially when looking for a matching tuple.
Other optimized and ad-hoc implementations of tuple spaces can be injected into
Klava. We plan to experiment with such optimizations along the lines of [11].

In the extension from single to multi robots systems, we can take advantage
of the hierarchical version of the network model presented in [7], which is already
implemented in X-Klaim, as mentioned in Sect. 2.2. For example, this feature
will allow us to organize the components of a single robot in a flat network (as
in the current implementation of the example), and to structure the collective
system as a network of networks. Note that, as we stressed in Sect. 4, even in the
current shape, our processes are already independent from the actual physical
positions of the nodes, since they are parametric with respect to tuple space
localities.

Since runtime adaptation is another important capability of collective sys-
tems, we also plan to investigate to what extent we can benefit from X-Klaim
code mobility mechanisms to achieve adaptive behaviors in robotics applications.
For example, an X-Klaim process (a controller or an actuator) could dynami-
cally receive code from other possibly distributed processes containing the logic
to continue the execution.

Finally, in this work we have used the version 1 of ROS as a reference mid-
dleware for the proposed approach, because currently this seems to be most
adopted in practice. We plan anyway to extend our approach to the version 2
of ROS, which features a more sophisticated publish/subscribe system based on
the OMG DDS standard.
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