
Verifying AbC Specifications
via Emulation

Rocco De Nicola1(B), Tan Duong1(B), and Omar Inverso2

1 IMT School for Advanced Studies, Lucca, Italy
rocco.denicola@imtlucca.it, tan.duong@imtlucca.it

2 Gran Sasso Science Institute, L’Aquila, Italy
omar.inverso@gssi.it

Abstract. We propose a methodology for verifying specifications writ-
ten in AbC , a process calculus for collective systems with a novel commu-
nication mechanism relying on predicates over attributes exposed by the
components. We emulate the execution of AbC actions and the operators
that compose them as programs where guarded sequential functions are
non-deterministically invoked; specifically, we translate AbC specifica-
tions into sequential C programs. This enables us to use state-of-the-art
bounded model checkers for verifying properties of AbC systems. To
vindicate our approach, we consider different case studies from different
areas and model them as AbC systems, then we translate these AbC
specifications into C and instrument the resulting program for verifica-
tion, finally we perform actual verification of properties of interest.

Keywords: Attribute-based communication · Formal analysis ·
Bounded model checking

1 Introduction

Collective adaptive systems (CAS) [1] are typically characterised by a massive
number of interacting components and by the absence of central control. Exam-
ples of these systems can often be found in many natural and artificial systems,
from biological systems to smart cities. Guaranteeing the correctness of such
systems is very difficult due to the dynamic changes in the operating environ-
ment and the delay or loss of messages that at any time may trigger unex-
pected behaviour. Due to interleaving, explicit-state analysis and testing may
not always be appropriate for studying these systems. Rigorous theories, meth-
ods, techniques, and tools are being developed to formally reason about their
chaotic behaviour and verifying their emergent properties [2].

Process calculi, traditionally seen as paradigms for studying foundational
aspects of a particular domain have also been used as specification languages
[3]. This is due to their well-specified operational semantics, which enables for-
mal verification and compact descriptions of systems under consideration. On

This work is partially funded by MIUR project PRIN 2017FTXR7S IT MATTERS
(Methods and Tools for Trustworthy Smart Systems).

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 261–279, 2020.
https://doi.org/10.1007/978-3-030-61470-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_16

262 R. De Nicola et al.

the other hand, due to minimalism in their designs, encoding complex agents
behaviour could be tedious. Our work aims at offering a tool for studying CAS
by using AbC [4], a kernel calculus centered on attribute-based communication
[5], specifically designed to model complex interactions in collective systems. AbC
takes into account the runtime status of the components while forming communi-
cation groups. Each component is equipped with a set of attributes whose values
may be affected by the communication actions. Components interact according
to their mutual interests, specified as predicates over the attributes of the poten-
tial communication partners. This way, complex interactions can be expressed
in a natural way. The AbC communication model is defined on top of broadcast
following a style similar to [6]. A distinctive feature is that only components
whose attributes satisfy the predicate of a sender can receive the communicating
message, provided that they are willing to do so and that the sender attributes
also satisfy the predicates specified by the receiving components.

In this paper, we show how AbC can be used to specify different kinds of
systems and how some of their emergent properties can be verified. Specifically,
we translate AbC specifications into C programs, instrument the latter with
properties of interest, and finally analyse the programs by means of classical
verifiers for C.

Our translation turns AbC actions into a set of emulation functions guarded
by appropriate enabling conditions that, when satisfied, make it possible for
the functions to be non-deterministically executed. Since the actions are origi-
nally composed by process-algebraic operators, our translation works out such
enabling conditions by taking into account the semantics of process operators,
and possibly specific code extracted from the actions themselves. A main function
plays the role of a scheduler that orchestrates the non-deterministic invocation of
the emulation functions. The evolution of the original system is emulated accord-
ing to the lock-step semantics of AbC , which in turn is modelled in the form of a
loop. The encoding at each emulation step allows for non-deterministic selection
of a single component such that any of its output actions is able to initiate a
multi-party synchronization.

Having obtained the C programs for a set of systems from different contexts,
we manually annotate them with appropriate assertions that encode properties of
interest in the form of expressions over the attributes of the components. We then
focus on under-approximate analysis, exploiting mature bounded model checkers,
traditionally used for bug hunting in C programs [7,8], to analyse the translated
AbC specifications. We have implemented a tool to automatically translate all
the examples in this paper. The translator, the source AbC specifications, and
the target C programs are available at http://github.com/ArBITRAL/AbC2C.

The rest of the paper is organised as follows. In Sect. 2 we briefly present
the fragment of the AbC calculus that we consider in the rest of the paper,
present our translation from AbC to C, and describe how to instrument state-
based properties of interest. In Sect. 3 we use AbC to model a number of systems
borrowed from classical papers in the literature and show how some of their key
properties can be verified by means of two bounded model checkers for C. The
final section recaps the work done, draws some conclusions, briefly describes
related works and suggests directions for future research.

http://github.com/ArBITRAL/AbC2C

Verifying AbC Specifications via Emulation 263

2 Translating AbC into C

Before going into the details of the translation, we briefly review the syntax and
semantics of AbC with the help of a running example, namely the two-phase
commit protocol [9]. The reader is referred to [4,10] for the full description of
the calculus.

2.1 AbC in a Nutshell

An AbC component (C) is either a pair Γ : P , where Γ is an attribute environ-
ment and P a process, or the parallel composition C1 ‖ C2 of two components.
The environment Γ is a mapping from a set of attribute names a ∈ A to ground
values v ∈ V; Γ (a) indicates the value of a in Γ .

Let us now consider the two-phase commit protocol (2PC), where a manager
asks a number of participants for their votes on either “commit” or “abort” a
transaction. The transaction is aborted if at least one participant votes “abort”,
and is committed in case all participants vote “commit”.

In AbC we can model the manager as a component M � Γm : Pm. The
attribute environment Γm has three attributes: role, initially set to 1 and rep-
resenting the manager role in the protocol; n, initially set to the number of
participants; c, a counter used for counting participant votes, initially set to 0.
Each participant is modelled by a component Cj � Γj : Pp and three attributes:
role, initially set to 0 representing the participant role, vote specifying the vote,
i.e., “commit” or “abort” casted by the participant, and d, used for storing the
final decision sent by the manager. A scenario consisting of n participants and
one manager is then rendered as an AbC system: M ‖ C1 ‖ . . . ‖ Cn.

In the general case, an AbC process (P) is defined by the following grammar
that involves standard constructors such as inactive process (0), action prefixing
(.), non-deterministic choice (+), interleaving (|), and invocation of a unique
process identifier K.

P ::= 0 | Q | P + P | P |P | K Q ::= 〈Π〉P | α.P | α.[ã := Ẽ]P α ::= Π(x̃) | (Ẽ)@Π

We use ·̃ to denote a finite sequence whose length is not relevant. Process P in
the construct 〈Π〉P is blocked until the awareness predicate Π is satisfied within
the local environment. In a prefixed process, an action α may be associated with
an attribute update [ã := Ẽ] that, when the action is executed, sets the values of
attributes ã to that of expressions Ẽ. Output action (Ẽ)@Π is used to send the
values of expressions Ẽ to all components whose attributes satisfy the sending
predicate Π. Input action Π(x̃) is used to receive a message (to be bound to
x̃) from any sending component whose attributes (and the message) satisfy the
receiving predicate Π.

A predicate Π can be either true, a comparison �� (e.g., <,>,=,≤, . . .) on
two expressions E, a logical conjunction of two predicates, or the negation of
a predicate. Other logical connectives may be built from these. An expression
E is either a value v, a variable x, an attribute name a or an attribute of the
current component this.a. A component must use this.a in its communication

264 R. De Nicola et al.

predicates (sending or receiving) for distinguishing its own attributes from other
different components.

Π ::= true | E �� E | Π ∧ Π | ¬Π E ::= v | x | a | this.a | . . .

Larger expressions can also be built using binary operators such as +,−, etc.
Expressions E can be evaluated under Γ {|E|}Γ . The satisfaction relation |=
defines when a predicate Π is satisfied in an environment Γ .

Γ |= true for all Γ Γ |= Π1 ∧ Π2 if Γ |= Π1 and Γ |= Π2

Γ |= E1 �� E2 if {|E1|}Γ �� {|E2‖}Γ Γ |= ¬Π if not Γ |= Π

Continuing with our example, the behaviour Pm of the manager component
is specified as: Pm � A|B, where A � (“req”)@(role = 0).0 and

B � 〈c < n〉(x = “commit”)(x).[c := c + 1]B

+ 〈c = n〉(“commit”)@(role = 0).0

+ (x = “abort”)(x).(“abort”)@(role = 0).0.

Process A sends a request to all participants using the predicate (role =
0), and terminates. Process B is a choice between different behaviours. The first
branch stores the number of “commit” votes in c using recursion. The second
branch deals with the case when all votes are of “commit”, i.e., the counter
c is equal to the number of participants n. The third branch enforces early
termination: as soon as an “abort” arrives, the manager can send an “abort”
message regardless of the other votes.

All participants have the same behaviour Pp which is specified as:

Pp � (x = “req”)(x).((vote)@(role = 1).(role = 1)(x).[d := x]0

+ (role = 1)(x).[d := x]0)

Upon receiving a vote request from the manager, a participant faces two pos-
sibilities encoded as a choice (+) in the continuation of Pp: it may reply with
its vote and continue to wait for a final decision to arrive, or it may receive
the decision before sending vote. Either possibility updates the final decision to
attribute d and terminates.

Communication. In AbC , output actions are non-blocking while input actions
must wait to synchronize on available messages. If multiple components are
willing to offer output actions at the same time, only one of them is allowed to
move. Communication among components takes place in a broadcast fashion:
when a component sends a message, all other receiving components take part in
the synchronization by checking the satisfactions of both sending and receiving
predicates for reception. Components that accept the message evolve together
with the sending component. Components who are not offering a successful input
action or reject the message stay unchanged.

As a side note, we mention that since AbC is an untyped calculus, it is the
responsibility of the modeller to specify appropriately attributes values, expres-
sions, and predicates so that their evaluations make sense.

Verifying AbC Specifications via Emulation 265

2.2 Emulating AbC Systems in C

Our translation takes as input an AbC specification, possibly composed of mul-
tiple component specifications. Each component specification is in the form
〈Γi, Piniti ,Di〉 where Γi is the attribute environment, Piniti the component’s
top-level behaviour, and Di the set of process definitions. For example, the spec-
ification of the manager component illustrated in the previous section would be
〈Γm, Pm, {Pm � A|B,A � . . . , B � . . .}〉.

The translation produces a single C program whose structure follows a pre-
designed template (Fig. 1). The encoding is parameterized in the total number
of components (N), and the maximum number of parallel processes, of process
definitions, and of input-bindings variables across all component specifications
(P MAX, D MAX, and V MAX, respectively). These constants are extracted from the
input specification and defined at the beginning of the output program. The
components’ attributes are represented as global vectors (line 4), so that each
component can access the attributes via its index. Note that, as shown in the
figure, we encode the values of the attributes as integers. For each component i,
we declare a vector of program counters pc[i] for keeping track of the executions
of the component’s actions during the emulation, a vector bound[i] for storing
inbound messages, and vector tgt to store the indexes of potential receivers
when a component sends a message (line 7).

For each (specification of) component i, we translate its behaviour, i.e.,
〈Piniti ,Di〉 into a set of emulation functions. In particular, each action α is
translated into a uniquely named function, denoted as Nameα, parameterized
(among others) with the component index (lines 10–17). The function body is
guarded by an enabling condition whereas a return value indicates whether it is
executed.

In order to emulate the executions of all functions in the set with respect to
Piniti , the translation visits all actions reachable from the process (by using Di

for looking up process code when necessary); while traversing, it calculates for
each action α an index jα, used for accessing program counter pc[i][jα] and two
execution points, namely entry point enα and exit point exα used for controlling
the action’s execution. A guard pc[i][jα] == enα, called entry condition means
that the function body may be executed, among other conditions, if the program
counter of α satisfies such condition. At the end of the function, the program
counter is set to exα, i.e., its exit condition, to enable the next set of feasible
actions. Intuitively, the entry and exit conditions of the translated functions
must behave according to the intended behavior of the corresponding process
operators (.,+, |). For example, in a prefix process α.P , the exit point of α must
be equal to the entry point of the continuation process P. In a choice process
P1 +P2, the entry points of both P1 and P2 must be the same but those of their
continuations are not. In a parallel process P1|P2, the entry conditions of the
subprocesses must be independent. For additional details on how to determine
entry and exit conditions, we refer the reader to [11].

Whether or not an action can really be executed, however, does not depend
only on the guarding mechanisms just described, but it depends also on action-

266 R. De Nicola et al.

Fig. 1. Structure of the output C program.

Verifying AbC Specifications via Emulation 267

specific aspects, such as satisfactions of awareness and receiving predicates. In
fact, the emulation function will have different input parameters and body,
depending on whether the action being encoded is an input or an output action.
More on this will be explained later.

All the emulation functions are organized in a lookup table to conveniently
invoke them using the component index. Intuitively, each entry i in the table
contains, among others, the sets of (pointers to the emulation functions of) input
and output actions of component i. The init() function (line 24) is responsible
for initializing all attribute environments by translating Γ0, Γ1, . . . and for filling
up the lookup table.

Towards the end of the output program, we provide several fixed driver func-
tions whose functionalities are as follows.

– Schedule(): non-deterministically selects a component index and returns it;
– Evolve(i): non-deterministically selects an output action of component i

and returns the result of performing the action;
– Available(): checks whether there exists an enabled output action;
– Sync(i,m): delivers message m of component i to potential receiving compo-

nents (used by output actions).

The source of non-determinism in an AbC system is due to non-deterministic
choice and to the possibility that different components or different processes
within a component perform output actions. To model such non-determinism in
the target program, we rely on the common library functions supported by C
verifiers: i) nondet int to choose a non-deterministic value from the int data
type; and ii) assume to restrict non-deterministic choices made by the program
according to a given condition. We use these primitives in Schedule(), as shown
in lines 27–31. The implementation of Evolve(i) additionally relies on lookup
to non-deterministically execute an output action of component i (lines 33–40).
Other driver functions do not consider nondeterminism; their implementation
(omitted for brevity) is straightforward by relying on lookup and taking advan-
tage of the fact that the number of components N is known.

Using the above functions, we emulate the evolution of the translated system
through a loop, as shown in lines 50–53. Since an AbC system can only evolve
when there are components willing to send, the loop iterations are guarded by
Available().

At each iteration, an index i is selected by Schedule and passed to Evolve
which in turn performs actual computation. The output action called by Evolve
relies on Sync for sending its message, allowing multi-party synchronization
in one pass. Moreover, the emulation considers only non-deterministic choices
over component index and the corresponding output action that results in valid
computations, i.e., the selected output action can actually be executed. This
is achieved by wrapping Evolve in the library function assume (line 52). Our
scheduling mechanism based on the idea of non-deterministically selecting the
emulation functions has been inspired from [12].

In the rest of the section, we describe the translation for input and output
actions in detail. Note that an action may be associated with a preceding aware-

268 R. De Nicola et al.

ness predicate and a following attribute update. For example, process B of the
component manager (Sect. 2.1) contains such an action. Thus we consider the
general form of an action α to be 〈Π〉α.[ã := Ẽ]. If no awareness construct 〈Π〉 is
present, we just consider 〈Π〉 = true. If no attribute updates occurs, [ã := Ẽ] is
regarded as an empty assignment. In the following, we write Πg,Πs,Πr to differ-
entiate between the three kinds of predicates: awareness, sending and receiving,
respectively.

An output action 〈Πg〉(Ẽ)@Πs.[ã := Ẽ], where the first Ẽ is the expression(s)
to be sent, is translated into a function depicted in Fig. 2 (left).

Fig. 2. The translation of output (left) and input (right)

The translation generates a unique identifier Nameα for the function. The two
function parameters are the index i of the component containing α, and a flag
f used to check the enabled condition of the action/function without actually
executing it. This flag is specifically used by the driver function Available()
mentioned before.

The enabling condition of an output action, besides the guard on its pro-
gram counter, includes the satisfaction of the associated awareness predicate,
if any. Note that we use two auxiliary translations �·� for translating Πg and
local expressions and �·� for translating Πs. In the function body, the set tgt of
potential receivers is calculated based on the satisfaction of Πs. Since all com-
ponents’ attributes are globally declared in the emulation program, the output
action can evaluate its sending predicate immediately.

After that, a message is prepared as a vector m that contains the values of
output expressions, and sent via driver function Sync. This function retrieves
the set of potential receivers in tgt and invokes their receiving functions. Sync
stops delivering m to a potential component when one of its receiving functions
returns success (i.e., the message is accepted), or none of them do (i.e., the
potential component rejects the message). The translation is completed by a
sequence of assignments to model attribute updates, if any.

An input action, whose general form is 〈Πg〉Πr(x̃).[ã := Ẽ], is translated into
a function depicted in Fig. 2 (right).

The function takes as input the second argument as sending component index
and the third as a communicated message. The enabling condition for executing

Verifying AbC Specifications via Emulation 269

this function includes satisfaction of awareness and receiving predicates. Here
we denote by �Πr�

x̃ the translation of Πr parameterized with input-binding
variables x̃. In order to model variable binding, we store the inbound message m
in vector bound[i][d] where d is (the index of) the process definition that contains
α. Moreover, all input-binding variables y in d are also indexed according to their
names, denoted by jy. In this way, the message is stored by assigning each of its
element k to bound[i][d][jxk], where xk is the kth variable in the sequence x̃.

In the above translation, we have used �·� for translating awareness predi-
cates and local expressions. This function is defined as follows:

�Π1 ∧ Π2� = �Π1� && �Π2� �a� = attr[i]
�¬Π� = ! �Π� �this.a� = attr[i]
�true� = true �v� = v
�E1 �� E2� = �E1� �� �E2� �x� = bound[i][d][jx]

The functions �·� and �·�x̃ are used for translating the sending and receiving
predicates, respectively. They have the same definition as above, except when
translating attributes and variables:

�a� = �a�x̃ = a[j] �this.a� = �this.a�x̃ = attr[i]

�y�x̃ =

{
m[k] if y ∈ x̃ and y = xk

bound[i][d][jy] otherwise

Thus, �·� does not differentiate between a and this.a whereas �·� and �·�x̃

do. In �y�x̃, if a variable appears in the list of input-binding variables then it
is translated into the corresponding element of the communicated message. In
all other cases, the variable is already bound and its value can be looked up in
vector bound[i][d].

2.3 Encoding Properties

The evolution of an AbC system over time can be viewed as a tree rooted at the
initial state, i.e., the union of all the components’ initial states. An edge from
a node to a child represents a lock-step evolution in which a component sends
and others receive (hence, changing the overall system state). From a node there
may be multiple edges, each corresponding to a synchronization initiated by a
non-deterministically selected sending component.

Typically, program verifiers do not allow to directly express temporal logics
for specifying properties; users must use assert statements to check that their
intentions hold. We use assertions to express state-based formulae, e.g., condi-
tions over the components’ attributes. In practice, we encode such a formula as
a boolean-valued C expression, denoted as p, and insert a statement assert(p)
within the emulation loop of the main function.

Notice that, due to the emulation mechanism explained in previous section,
the C program emulates all possible execution paths of the translated AbC sys-
tem. This means that checking the assertions at every iteration of the emulation

270 R. De Nicola et al.

loop in the C program corresponds to checking whether p holds in (every state
of) all possible execution traces of the initial AbC system. Naturally, in this way
the system is verified against a safety property denoted as S p. In this paper,
we focus on bounded analysis, i.e., limit the emulation up to a given number B
of system evolutions of the AbC system by bounding the number of iterations
of the emulation loop. Thus, in practice we only analyse safety up to the given
bound. In other words, we deal with bounded safety (S p)B .

For AbC systems one may also be interested in eventual properties, e.g.,
“good” system states that eventually emerge from the interactions of indi-
vidual components. Since we focus on bounded analysis, we must resort to a
bounded variant of liveness, and reduce liveness checking to safety checking [13]
by expressing the former via the latter. We consider three (bounded) versions of
eventuality and describe their encodings in the following.

“Possibly” - (P p)B is encoded as (S ¬p)B : we simply assert the negation of
p inside the emulation loop, and wait for the model checker to report a counter
example (of ¬p) that would be the evidence that there is at least one execution
trace that satisfies p.

“Eventually” - (E p)B . We translate this property into safety by following
the idea of [13], the intuition being that if the formula p fails, it must do so
within B steps. Thus, when the bound is reached, we need to assert whether p
has been true at least once. Our encoding is illustrated in the left of Fig. 3. A
variable step counts the number of steps performed by the system up to that
point. In each step of the emulation, the truth value of p is accumulated into a
boolean variable live via alternation. The assert statement checks the value
of live when the emulation stops, i.e., either the bound B is reached or there
are no available sending components.

Fig. 3. Encoding of (E p)B (left), and (EI p))B (right)

“Eventually then Inevitably” - (EI p)B . Compared to “Eventually”, this prop-
erty further requires that once p holds, it remains true afterward. The encoding is
shown on the right of Fig. 3 where we extend the previous code snippet to enforce
this additional requirement. Specifically, we use a variable saved to record the
first time when p holds. When this happens, live is conjuncted with p rather
than alternating. Because of this p must remain true after saved is set, otherwise
the property fails.

Verifying AbC Specifications via Emulation 271

3 Experimental Evaluation

We now illustrate the effectiveness of the proposed method by considering some
case studies and systematically verifying their properties.

3.1 Case Studies

Max-Element. This system is an attribute-based variant of the one presented
in [14]. Given N agents, each associated with an integer ∈ {1, . . . N}, we wish
to find an agent holding the maximum value. This problem can be modeled in
AbC by using one component type with two attributes, namely s, initially set
to 1, indicating that the current component is the max, and n, that stores the
component’s value. The behavior of a component is specified by the following
choice process P :

P � 〈s = 1〉(n)@(n ≤ this.n).0 + (x ≥ this.n)(x).[s := 0]0.

Thus, a component either announces its own value by sending its attribute n to
all other components with smaller numbers, or non-deterministically accepts a
greater value from another. In addition, upon receiving a greater value a com-
ponent sets its flag s to 0 since it can not possibly be the max.

For this system, we are interested in verifying whether eventually there exists
only one component whose attribute s is equal to 1, and that holds the maximum
value of n.

Or-Bit. This example and the next one are adapted from [15]. Given a number
of agents, where each agent is given an input bit, the agents must collaborate
with each other in order to compute the logical disjunction of all their bits.
We model this system with an AbC component with two attributes ib and ob,
representing the input and output bits, respectively. Initially, ob is set to 0, but
this may change during interactions. The behaviour of a component is specified
by a choice process P :

P � 〈ib = 1〉(ib)@(ib = 0).[ob := 1]0 + 〈ib = 0〉(x = 1)(x).[ob := 1]0.

The first branch of P controls the behaviour of components whose input bits
is equal to 1. These announce the bits and update their outputs to 1. In other
cases, components with 0 input bits keep waiting for any positive bit to arrive
in order to update their outputs to 1. For this example, we are interested in
checking whether each component correctly calculates (in ob) the disjunction of
all the bits.

Majority. Given a system composed of dancers and followers, we would like to
determine whether the dancers are the majority, i.e., no less than the number of
followers, without any centralized control.

This scenario is rendered in AbC by using two types of components, repre-
senting dancers and followers respectively. The approach is to design a protocol

272 R. De Nicola et al.

for matching pairs of dancers and followers. Eventually, by looking at the ones
without partners, we can conclude about the majority of one type over the other.
For both kinds of components, we introduce an attribute r for representing the
component’s role, where value 1 encodes a dancer, an attribute p indicating if a
current component is already paired up with another member of the other role.
Furthermore, for dancers that are responsible for initiating the matching, we add
an additional attribute u, used as a unique tag when sending messages.

A dancer starts by announcing a unique message (using u) and waits for a
follower to show up. The first branch in the choice process D below illustrates
this behaviour:

D � (u)@(true).(x = this.u)(x).[p := 1]0 + (r = this.r)(x).(y 	= this.u)(y).D.

The second branch of D instead models the situation in which the dancer’s turn
to announce has been preempted by some other dancer, i.e., the input action
with a receiving predicate (r = this.r) is executed. In that case, it has to listen
to (and discards silently) a reply from some follower (to the announcer) in order
to try again.

Any announcements sent by process D is broadcast but only followers answer.
A follower listens to the announcements, i.e., via the predicate (r 	= this.r), then
it either replies to the sender using the sender’s message tag or silently discards
a message from some other follower (who has replied to this sender before it).
The process F defined below captures the described intuition:

F � (r 	= this.r)(x).((x)@(true).[p := 1]0 + (y = x ∧ r = this.r)(y).F).

For this case study, we check for the majority of dancers by asserting that either
there is at least one dancer left without partner or everyone has a partner.

Two-Phase Commit. This example has already been described in Sect. 2. The
property of interest is that all participants consistently agree on either abort
or commit the concerned transaction. In the latter case, we must check that all
participants voted for commit.

Debating Philosophers. This example is taken from [16]. A number N of
philosophers hold two different opinions on a thesis, possibly against it (−) or
in favor of it (+). Each philosopher has also a physical condition, either rested
(R) or tired (T). When two philosophers with different opinions debate, a rested
philosopher convinces the tired one of his opinion; if the two philosophers are
in the same physical condition, the positive one convinces the negative one and
both get tired afterwards. On the other hand, philosophers holding the same
opinion do not debate.

Each philosopher has the following attributes: attribute u, a unique identifier
used for announcement, attribute o ∈ {0, 1} is the initial opinion with a value
1 indicating positive opinion (+), and attribute c ∈ {0, 1} represent the initial
physical condition with a value 1 denoting rested (R). We design the behaviour
for philosophers to interact with each other by a parallel process P � F | A. The
property of interest is a majority one which states that the number of positive

Verifying AbC Specifications via Emulation 273

philosophers is not less than that of negative ones. Our protocol is as follows.
Any philosopher supporting the thesis repeatedly convince the members of the
other group by using process F , specified as:

F � 〈o = 1〉(u, c)@(true).((this.u = x ∧ y �= this.c)(x, y).[o := c]F

+ (this.u = x ∧ y = this.c)(x, y).[c := 0]F)

+ 〈o = 1〉(o = this.o)(x, y).(o �= this.o)(x, y).F

Each branch of F is guarded by an awareness predicate 〈o = 1〉. In the first
branch, a positive philosopher announces its unique message u and the physi-
cal condition c. It waits for a message from a negative one by checking on the
condition (this.u = x), and additionally consider two possibilities of the oppo-
nent’s physical condition y. The following choice process implements concisely
the first two debate rules described above for this philosopher where his opinion
o or condition c is updated. In the second branch, the philosopher receives an
announcement from another positive one, i.e., (o = this.o). When this happens,
it must listen silently until the debate started by the sender finishes.

Philosophers who are against (or negative about) the thesis listen to the
opinion of the others and debate according to process A as follows:

A � 〈o = 0〉(o �= this.o)(x, y).(〈y �= c〉(x, c)@(true).[o := y]A

+ 〈y = c〉(x, c)@(true).[o := 1, c := 0]A

+ (z = x)(z, y).A).

A is guarded by an awareness predicate 〈o = 0〉 to limit such behavior to neg-
ative philosophers. When a negative philosopher receives an announcement, he
may involve into the debate with the sender by replying with the sender’s unique
value, stored in x and its current physical condition. During this action, changes
to opinion and physical conditions (in the form of attribute updates) are imple-
mented by following the first two debate rules. On the other hand, there may
happen that another negative one is already engaged into the debate with the
same sender, in such case the philosopher waits for another announcement.

Experimental Setup. We developed a translator implementing the method
described in Sect. 2 and used it on the AbC specifications of the case studies. We
manually instrumented the generated C programs with appropriate assertions
to express the properties of interest described above. While instrumenting, we
applied the scheme shown in the right of Fig. 3 (Sect. 2.3) for all case studies,
i.e., to consider the “Eventually then Inevitability” properties. Additionally, we
applied the other two schemes “Eventually” and “Possibly” for the last case
study. Hereafter for brevity we refer to the instrumented properties by using
their versions, i.e., EI, E and P respectively.

We used two mature bounded model checkers, namely CBMC v5.111 and
ESBMC v6.22 respectively SAT- and SMT-based, for the actual analysis of the

1 http://www.cprover.org/cbmc/.
2 https://github.com/esbmc/esbmc/releases/tag/v6.2.

http://www.cprover.org/cbmc/
https://github.com/esbmc/esbmc/releases/tag/v6.2

274 R. De Nicola et al.

instrumented C programs up to different bounds of the emulation loop. Note that
all the other loops in the program (namely, those within the driver functions) are
always bounded by constants, and thus are fully unrolled by the model checker
in any case.

3.2 Verification Results

The verification results of the three case studies Maximum Element (max), Or
Bit (bit) and Two-Phase Commit (2pc) are presented in Fig. 4. The subtable on
the left contains the results obtained from CBMC; the right one corresponds to
ESBMC. In the tables, we include the numbers of components (N), the unwind-
ing bound for the emulation loop (B), the property, the verification times (in
seconds), and the verification result. A [�] means that the verification succeeds,
i.e., when the property holds, otherwise [×].

For each of these case studies, we fix a number N of components and
experiment by verifying the property EI of interest while varying B. Figure 4
shows that when B is sufficiently large both verifiers confirm that all considered
instances satisfy their properties EI. This means that, within the considered
number of evolution steps, the behaviour of the system is guaranteed to preserve
the property of interest. Furthermore, we have that once the property is guaran-
teed within a bound B, it continues to hold with a larger bound. This confirms
our intuition on the encoding scheme of property EI.

Fig. 4. Experiments with Max Elem, Or Bit and Two Phase Commit

As for the Majority example, we experimented with a few input configu-
rations. A configuration is completely defined as a pair (D,F) indicating the
number of dancers and followers. For each considered pair we experiment with
varying the bound B and present the relevant results in Fig. 5. The first column
of each table represents input configurations whereas other columns have the
same meaning as before.

The results show that for configurations with at least as many dancers as
followers, the verification of majority returns success across different values of
bound B. When considering minority configurations, i.e., (3,4) and (3,5), the
verification succeeds with small values of B but fails with larger values. To see
why, we note it takes steps to match one dancer with one follower (i.e., one

Verifying AbC Specifications via Emulation 275

request and one response). Thus, for example, with B = 4 the systems can only
match two pairs, leaving one dancer un-matched; this results in a majority of
dancers. When increasing the bound to at least 6, we have that all three dancers
are paired, but the property fails because not everybody has a partner.

Fig. 5. Experiments with Majority example

We use the case study Debating Philosophers to experiment with different
property encodings. An input configuration is a pair consisting of the numbers
of positive and negative philosophers equipped with their physical conditions
(i.e., either R or T). Furthermore, in each element of the pair, we may use a −
to separate the rested philosophers from tired ones. We analyzed the properties
“Eventually then Inevitably” (EI), “Eventually” (E) and “Possibly” (P) for
several configurations, and report some interesting cases in the Fig. 6.

Fig. 6. Experiments with Philosophers example

When verifying property EI for configuration (2R,2R), we observe that the
property only holds for small values of B. Similar to Majority, in this case study
the systems need two steps in order to accomplish one debate. Thus, for example,
with B = 4, there can only happen two debates which results in majority of the
positive opinions. However, when we allow for at least three debates to happen,
the majority property will not hold any longer. A counter example returned by
one of the tools explain the following trace. First, 1R+ convinces 1R−, which
leads to 2T+. It is followed that each of 2T+ is convinced by the other 1R− to
join him. Then, the resulting configuration (1R,1R-2T) does not satisfy majority.

276 R. De Nicola et al.

When verifying the property for somewhat trivial configurations, i.e.,
(1T,5T), (1T,6T) both tools confirm that when the bound B is large enough
a single positive philosopher can convince any set of tired negative ones.

We also tried with E property, i.e., allowing the majority property to fail after
it became true. Then, the property E holds for a previously failed configuration,
in particular, configurations of the same number of positive and negative philoso-
phers (in the Fig. 6 (2R,2R) and (3R,3R)). In another configuration, eventually
a number of positive philosophers cannot convince a bigger group of negative
philosophers to get to majority of positive opinions.

Finally, we experimented with verifying property P for the configurations
of the form (1R, 2R-4T), for CBMC and (1R, 2R-3T) for ESBMC. By check-
ing P , we are interested to see whether the majority can happen by using only
one rested, positive philosopher. As shown in Fig. 6, when the bound is too
low the only 1R+ does not have enough time to convince the others; the veri-
fications succeed and no counter example is reported. However with the bound
increased enough to afford one more debate, the verifications fail. By inspecting
the returned counter examples, we observed expected traces in which the only
positive philosopher continuously convinces the others without being interfered
by (at least) 1R−.

In summary, the verifications results obtained from the two model checkers
are consistent in all considered instances of all case studies. This demonstrates
the feasibility of our approach. In addition, between the two tools CBMC seems
a bit more efficient when analyzing our programs.

4 Concluding Remarks

We have presented a translation from AbC process specifications to C programs.
The translation enables us to reduce automated checking of (some classes of)
properties of interest for the AbC system under consideration to simple reacha-
bility queries on the generated C program. To experiment with our method on
a series of naturally challenging examples, we have first encoded them as AbC
systems, then translated their specifications into C programs, and finally instru-
mented the programs to express properties of interest of the initial AbC system.
We have reported and discussed our experimental evaluation on the automated
analysis of such programs via SAT- and SMT-based bounded model checking,
under different execution bounds and parameters of the initial system. Our work
suggests that the novel communication style of the attribute-based calculus, com-
plemented with appropriate verification techniques, can be effective for studying
complex systems.

Our work is closely related to the encoding proposed in [11], which models
systems evolutions by entry and exit conditions on the individual actions. In that
work, AbC specifications are transformed into doubly-labelled transition systems
and then analyzed via the UMC explicit-state model checker [17]. That approach
does support a more expressive logic for properties than the current one, that also
requires additional effort for instrumenting properties of interest with assertions

Verifying AbC Specifications via Emulation 277

and for interpreting counter examples associated to C programs. This is less of
a burden in [11], since the target formalism has a direct correspondence with
the initial specifications. In [11], however, the target representation can grow
very quickly in size, for instance to model non-deterministic initialisation of an
attribute (e.g., the initial position of an agent on a grid), for which an explicit
transition will be added for each possible value of the attribute. In our translation
we can introduce a non-deterministic variable (by using the non-deterministic
initialisation construct) to represent this symbolically. A similar argument holds
for value passing in general. We plan to compare our approach with [11] in terms
of efficiency.

Another work closely related to ours is [12]; it uses a mechanism similar to the
one used in [11] to guard the actions of a component and to transform the initial
system into a sequential C program with a scheduling mechanism similar to
the one proposed here. However, the input language of the translation is quite
different from AbC , especially for the primitives for components interaction,
which are based on stigmergy.

The SCEL language [5] has been the main source of inspiration for AbC . In
[18], SCEL specifications are translated into Promela and analyzed by the SPIN
model checker to prove safety and liveness properties. Promela has a C-like syn-
tax and supports the dynamic creation of threads and message passing. Because
of this, the modelling in [18] is more straightforward than ours. However, in [18]
only a fragment of SCEL is considered while we consider full AbC systems; more-
over, the program produced by our encoding is sequential, and because of this
some ingenuity is required for emulating processes and for encoding properties.

The considered experiments seem to provide some evidence that the pro-
posed encoding favors the use of specific tools. As future work, we would like to
reconsider it in order to make the use of other verification back-ends possible.
It would be interesting to see whether the SAT-based parallel bounded model
checking technique proposed in [19] could be adapted to our case, given the
similarity between the programs generated from AbC by our translation and the
sequentialised programs considered in [19]. Completeness thresholds for bounded
model checking [20] would allow to adapt our technique to unbounded analysis.

We also plan to develop an interactive simulator for AbC to explore spec-
ifications through simulations. This would enable one to remove coding errors
introduced during the early steps of the design and to gain confidence about
specifications before formally verifying them against the properties of interest.

Finally, we would like to use our approach to consider more interesting case
studies, e.g., those that involve spatial reasoning, such as flocks. However, to
do this, we think that it is important to extend AbC with a notion of globally-
shared environment and global awareness, thereby facilitating reasoning about
agents locations which is considered as an important feature of CAS [21].

References

1. Anderson, S., Bredeche, N., Eiben, A., Kampis, G., van Steen, M.: Adaptive col-
lective systems: herding black sheep. In: BookSprints for ICT Research (2013)

278 R. De Nicola et al.

2. De Nicola, R., Jähnichen, S., Wirsing, M.: Rigorous engineering of collective adap-
tive systems: special section. Int. J. Softw. Tools Technol. Transf. 22(4), 389–397
(2020). https://doi.org/10.1007/s10009-020-00565-0

3. De Nicola, R., Ferrari, G.L., Pugliese, R., Tiezzi, F.: A formal approach to the
engineering of domain-specific distributed systems. J. Logic Algebraic Methods
Program. 111, 100511 (2020)

4. Abd Alrahman, Y., De Nicola, R., Loreti, M.: A calculus for collective-adaptive
systems and its behavioural theory. Inf. Comput. 268, 104457 (2019)

5. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. ACM Trans. Auton. Adapt. Syst. 9(2),
7:1–7:29 (2014)

6. Ene, C., Muntean, T.: A broadcast-based calculus for communicating systems. In:
IPDPS, p. 149. IEEE Computer Society (2001)

7. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

8. Gadelha, M.Y.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole,
D.A.: ESBMC 5.0: an industrial-strength C model checker. In: ASE, pp. 888–891.
ACM (2018)

9. Lampson, B., Sturgis, H.E.: Crash recovery in a distributed data stor-
age system (1979). https://www.microsoft.com/en-us/research/publication/crash-
recovery-in-a-distributed-data-storage-system/

10. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming interactions in collec-
tive adaptive systems by relying on attribute-based communication. Sci. Comput.
Program. 192, 102428 (2020)

11. De Nicola, R., Duong, T., Inverso, O., Mazzanti, F.: Verifying properties of sys-
tems relying on attribute-based communication. In: Katoen, J.-P., Langerak, R.,
Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500, pp. 169–190.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9 9

12. De Nicola, R., Di Stefano, L., Inverso, O.: Multi-agent systems with virtual stig-
mergy. Sci. Comput. Program. 187, 102345 (2020)

13. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. Electron.
Notes Theor. Comput. Sci. 66(2), 160–177 (2002)

14. Prasad, K.V.S.: Programming with broadcasts. In: Best, E. (ed.) CONCUR 1993.
LNCS, vol. 715, pp. 173–187. Springer, Heidelberg (1993). https://doi.org/10.1007/
3-540-57208-2 13

15. Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Garbinato,
B., Miranda, H., Rodrigues, L. (eds.) Middleware for Network Eccentric and Mobile
Applications, pp. 97–120. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-540-89707-1 5

16. Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Verification of population pro-
tocols. In: CONCUR. LIPIcs, vol. 42, pp. 470–482. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2015)

17. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76(2), 119–135 (2011)

18. De Nicola, R., et al.: Programming and verifying component ensembles. In: Ben-
salem, S., Lakhneck, Y., Legay, A. (eds.) ETAPS 2014. LNCS, vol. 8415, pp. 69–83.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54848-2 5

19. Inverso, O., Trubiani, C.: Parallel and distributed bounded model checking of
multi-threaded programs. In: PPoPP, pp. 202–216. ACM (2020)

https://doi.org/10.1007/s10009-020-00565-0
https://doi.org/10.1007/978-3-540-24730-2_15
https://www.microsoft.com/en-us/research/publication/crash-recovery-in-a-distributed-data-storage-system/
https://www.microsoft.com/en-us/research/publication/crash-recovery-in-a-distributed-data-storage-system/
https://doi.org/10.1007/978-3-319-68270-9_9
https://doi.org/10.1007/3-540-57208-2_13
https://doi.org/10.1007/3-540-57208-2_13
https://doi.org/10.1007/978-3-540-89707-1_5
https://doi.org/10.1007/978-3-540-89707-1_5
https://doi.org/10.1007/978-3-642-54848-2_5

Verifying AbC Specifications via Emulation 279

20. Kroening, D., Ouaknine, J., Strichman, O., Wahl, T., Worrell, J.: Linear com-
pleteness thresholds for bounded model checking. In: Gopalakrishnan, G., Qadeer,
S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 557–572. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22110-1 44

21. Loreti, M., Hillston, J.: Modelling and analysis of collective adaptive systems with
CARMA and its tools. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM
2016. LNCS, vol. 9700, pp. 83–119. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-34096-8 4

https://doi.org/10.1007/978-3-642-22110-1_44
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/978-3-319-34096-8_4

	Verifying AbC Specifications via Emulation
	1 Introduction
	2 Translating AbC into C
	2.1 AbC in a Nutshell
	2.2 Emulating AbC Systems in C
	2.3 Encoding Properties

	3 Experimental Evaluation
	3.1 Case Studies
	3.2 Verification Results

	4 Concluding Remarks
	References

