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Abstract. Service self-composition is a well-understood research area
focusing on service-based applications providing new services by auto-
matically combining pre-existing ones. In this paper we focus on tuple-
based coordination, and propose a solution leveraging logic tuples and
tuple spaces to support semantic self-composition for services. A full-
stack description of the solution is provided, ranging from a theoretical
formalisation to a technologically valuable design and implementation.
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1 Introduction

Nowadays an ever increasing number of I'T scenarios leverages a services-based
architecture. These sorts of systems are modelled as a collection of heterogeneous
and loosely-coupled fine-grained processes, namely services, that communicate
among them. Arguably, the pervasive adoption of services-based architectures
will lead to an explosion in the number of services populating the Internet. In
other words, scalability issues are going to arise soon.

On the other hand, novel business opportunities are likely to become available
as the amount of services increases. In fact, the public availability of disparate
services is commonly a key enabler for the creation of secondary services built
on top of the pre-existing ones. To this end, effective techniques — such as service
composition — are required at the technical level, in order to reuse the available
functionalities. However, service composition sets many challenges from a sys-
tem administration perspective. The experience of developers, as well as their
careful work, is a necessary prerequisite for composition of services to be effec-
tive. Unfortunately, the effectiveness of human experts in tackling an increasing
number of services does not scale up linearly with the total amount of services.

© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 205-223, 2020.
https://doi.org/10.1007/978-3-030-61470-6_13


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_13&domain=pdf
http://orcid.org/0000-0001-8492-0354
http://orcid.org/0000-0002-1841-8996
http://orcid.org/0000-0001-5048-5251
http://orcid.org/0000-0002-6655-3869
https://doi.org/10.1007/978-3-030-61470-6_13

206 A. Caselli et al.

To deal with these issues, a viable solution may be represented by automati-
cally handling the composition. To this end, approaches focused on the composi-
tion of the existing services have been proposed. The mechanism that combines
two or more basic services into a more complex one is known as service compo-
sition [17]. Tt aims at creating higher-level functionalities within the system by
leveraging the available resources.

The static nature of traditional approaches has been challenged by dynamic
service composition approaches [7], which range over syntax-based composition
to semantic-based composition and AI planning techniques. The adoption of
such approaches paved the way to the design of systems with innate autonomous
computational properties, such as self-adaptation and self-composition.

Many research works focus on coping with “challenging problem of compos-
ing services dynamically” [2]. Nevertheless, most of them solve it only partially:
to the best of our knowledge, most of the existing solutions to the dynamic ser-
vice composition challenge present limitations—e.g., syntax-based composition.
Other approaches, although well-designed and sound at a conceptual level, are
either discontinued or based on obsolete technologies [5].

This paper aims at providing a comprehensive tuple-based technology for
semantic self-composition of services. A self-composition model that promotes
and supports spontaneous service composition based on LINDA [15] is proposed.
The solution supports semantic reasoning leveraging on logic tuples and LINDA
tuple spaces. Moreover, a Java-based implementation of such model is also pro-
posed, relying on the recent TUSOW [6] technology for tuple-based coordination.

The remainder of this paper is organised as follows. Section 2 provides an
overview of the current approaches for service composition. Section 3 shows a
formal definition of the designed system in terms of its syntax and operational
semantics. The Java-based software architecture that implements the proposed
technology is shown in Sect. 4. Section 5 presents a case study in a formal way.
Finally, Sect. 6 concludes the paper by summarising the proposed solution.

2 State of the Art

2.1 Service Composition

Service composition is broadly known as the mechanism that combines two or
more basic services into a more complex one that provides higher-level function-
alities [17]. It deals with the needs of users to search for appropriate compositions
of services that meet the required processes [27].

Service composition approaches may be categorised in terms of many orthog-
onal properties. A possible grouping considers the composition policy: () syntax-
based: the matching among services is computed as mere equality operation on
the input/output parameters of the services; (ii) semantic-based: it requires a
taxonomy of concepts on which the composition process relies on to compute the
matches; and (i) through Al-planning solutions: it concerns the task of finding
a course of action to reach a goal. From a different point of view, a composition
process may be defined as the outcome of two minor phases — i.e., selection and
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binding —, hence a different grouping may be provided. A service composition
approach may then be defined as (i) static, when the binding occurs at design-
time; or (71) dynamic, when the binding occurs either at deployment- or run-time.
Using a static approach, the compositions are built during the design of the sys-
tem (design-time), by the system designer that creates them once for all. This
approach leads to correct compositions but lacks of scalability and adaptability.
On the other hand, a dynamic approach ensures scalability and adaptability by
adding computational overhead to the system. Dynamic approaches differ in the
stage the binding phase occurs, which may be at (i) deployment-time, where the
service binding phase occurs each time a service shows up in the system; or at
(#i) run-time, where the binding occurs when a request is published.

Among these categories, we can mention the following works. From the
semantic web domain, Talib et al. [25] provide a semi-automatic method to
generate static web service composition in BPEL4AWS language. Talantikite et
al. [24] present a model for automatic Web services discovery and composition
that exploits semantically annotated web services through an upper ontology
(i.e. OWL-S [20]). In the field of ambient intelligence, Vallee et al. [26] propose
an approach that combines multi-agent techniques with semantic web services
to enable dynamic, context-aware service composition. In the field of multi-
agent systems (MAS) approaches to self-composition usually involve planifica-
tion, where agents reason on their respective services and the user’s needs [14]. In
this area, works on self-composition of method fragments bring a more dynamic
solution based on cooperative agents, each representing a fragment and partici-
pating to the design of the fragments composition [3]. Using similar cooperative
principles, Degas [9] proposes a syntax-based composition approach with col-
laborative agents for dynamic composition of aerial plane trajectories. Other
approaches specifically involving chemical reactions for self-composition, possi-
bly include the followings. Frei et al. [13] propose the use of chemical reactions, in
the field of industrial robotics, to build self-organising assembly systems that par-
ticipate in their own design by spontaneously organising themselves. Di Napoli
et al. [11] show how a specified workflow can be instantiated using chemical
reactions. In the context of tuple spaces, Viroli [27] proposes a syntax-based
approach inspired by chemical reactions combined with the notion of compe-
tition among services. De Angelis [7] proposes a chemical-inspired model that
promotes syntax-based self-composition of services at run-time. To alleviate the
lack of semantics in the composition in [7], Ben Mahfoudh et al. [1] extend the
original tuple space model with learning-based capabilities, thus providing per-
tinent and reliable services to the user.

2.2 Linda and TuSoW

LinDA [15] is the archetypal tuple-based coordination model [22], inspiring and
influencing a huge number of coordination models and technologies throughout
the years [5]. The main elements of LINDA are tuples, templates, tuple spaces,
and communication primitives. A tuple is a piece of information represented
according to a well-defined tuple language, specifying the structure of admissible
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tuples. A template is a concise way of representing a set of tuples: it consists of
a pattern, represented according to a particular template language, which may
be matched by several tuples. A tuple space is a repository where tuples may
be inserted, observed, or withdrawn by an arbitrary number of agents willing to
synchronise while being uncoupled in reference, space, and time. On purpose,
a communication primitive is an operation provided to interacting agents to
synchronise themselves upon tuples’ insertion, observation, and consumption.

LiNDA is characterised by a few peculiar features: (i) generative communi-
cation, that is, tuples existing independently of the agents who produced them;
(it) associative access, namely, agents can access (i.e., observe or withdraw) the
tuples stored in a tuple space by simply specifying a template, without the need
of knowing the tuple “address” neither its “name”; and (i) suspensive seman-
tics, that is, agents’ attempts of accessing a tuple matching a particular template
are suspended until a tuple of such a sort actually exists.

LINDA provides three communication primitives: out to insert a tuple in a
tuple space, in to withdraw one, rd to read one. Despite their simplicity, such
primitives are expressive enough to cope with several common interaction pat-
terns [15]. Suspensive semantics, in particular, is the cornerstone of the coordina-
tion mechanism proposed by LINDA, since it deals with synchronisation: whereas
the out primitive always puts a tuple in the tuple space, in and rd attempt to
get one based on a provided tuple template. If a tuple matching the template is
found, it is returned to the caller agent that can continue execution; otherwise,
the caller agent is suspended until a matching tuple becomes available.

Several variants of LINDA have been proposed throughout the years, either
extending the set of communication primitives, adding features such as mobil-
ity or access control [8,21], enabling distribution of multiple tuple spaces on a
network of interconnected computers [12,19], and much more [23]. Nevertheless,
only a few have been developed as a technology [5]—and, among these, some
have already been exploited for service composition, as already discussed in the
related works section above.

TuSoW [6] is tuple-based technology for coordination for distributed agents
via LINDA tuple spaces. It aims at providing a lightweight, modular, flexible, and
highly interoperable implementation of LINDA. It is designed as a multi-platform
technology, making it suitable to be used by a wide community of developers in a
wide range of application domains. In particular, TUSOW coordination facilities
are provided to agents as-a-Service, via the HTTP protocol. For this reason we
chose it as reference technology in the remainder of this paper.

3 Formal Model

The proposed model formalises a system composed by a number of active entities
— namely, agents — acting as either service requesters (a.k.a. clients, or users),
or service providers (a.k.a. servers). Users and servers do not interact directly
but rather they interact by means of a LINDA-like shared memory — that is, the
blackboard —, acting as a coordination medium.
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The interaction among users and servers is based on a simple protocol. On
the one side, servers advertise their service descriptors by publishing them on the
blackboard, upon startup. After that, they keep listening for incoming requests
issued by users. As soon as a request is issued by some user, if a server exists
which is capable of serving that request, then it is triggered. The invoked server
must then execute its service, producing a result which is eventually output on
the blackboard as well. On the other side, users are simple agents which may,
from time to time, issue requests towards a particular service descriptor. When
this happens, the user must then wait for a result to eventually appear on the
blackboard, and finally consumes it before terminating.

Automatic semantic composition of services is provided by the blackboard
using a dynamic deployment time approach [18]. In other words, whenever a
novel service descriptor is published on the blackboard, the blackboard reacts
by generating and automatically inserting a (possibly null) amount of compos-
ite service descriptors on it-self. In particular, the set of service descriptors to
be generated is computed by combining the just-inserted one with all the ser-
vice descriptors it may combine with, among the many already present on the
blackboard.

Of course neither users nor clients are aware of the service composition per-
formed by the blackboard. In other words, the service composition is transparent
to both users and servers. To make this possible, the blackboard is in charge of
splitting users’ requests directed towards composite service descriptors into ele-
mentary request, which may then be served by servers. For the same reason,
the blackboard is also in charge of handling the intermediary results possibly
produced by servers when a composite service request is being served.

In the next sections we formalise such insights by means of process algebra.
In particular, we first structurally define the most relevant notions of our model
by means of an EBNF grammar, and then provide its semantics by means of a
Labeled Transition System [16].

3.1 Syntax
Here we provide a syntax for the main concepts composing our model. To do so,

we exploit EBNF grammars.

System. We define a system (Sys) as a parallel composition of one or more
agents and a blackboard (B). In turn, each agent may be either a user agent (U)
or service agent (S), according to their role in the system. Formally:

Sys::=Sg || Us | B main system
Sg:=S1|(S| Ss) list of services
Us:=U| (U | Us) list of users

where || is the parallel composition operator—commutative and associative.



210 A. Caselli et al.

Blackboard. A blackboard is modelled as the space where the interaction
among agents takes place. It is exploited as coordination medium by the agents,
which may perform basic read/write operations on it. We define a blackboard
(B) as a multiset that may either be empty or contain four sorts of data: (i)
service descriptors, (ii) user requests, (ii) internal messages, or (iv) results.
Formally:

B:=(|SD | Req | serve(SD,C) | serve_comp(SD,C) | Res | BUB

where U is the union operator for multisets — associative and commutative —,
whereas () denotes the empty multiset.

Service. A service represents a service agent. It is capable of two operations
embodied by publish and accept, which are grammar syntactic sugar. Intuitively,
publish denotes the operation used by a service to advertise itself on the black-
board; accept says that the service is listening for incoming requests. Formally:

S ::=publish(SD) | accept(service(Q)) | S-S

where - is the sequence operator—associative and not commutative.

User. A user represents a user agent. Similarly to a service agent, it is capable
of two operations, represented through the Req and Res terms. They embody a
request and a response message, respectively. At last, the halt term is used to
represent the eventual termination event. Formally:

U:= Req- Res-U | halt

where - operator is equivalent to the one defined above. By construction, well-
formed users must wait for a response event after each request event.

Service Descriptor. A service descriptor (SD) provides the representation of
a service. Thus, a service descriptor may either represent: (i) an atomic service
— through its formal arguments: the (possibly empty) set of the named input
types (I) it is able to accept and the output type (O) it produces as result —, or
(ii) a composed service, as the concatenation of two services in such a way that
the output of the first one is provided as input to the second one. Formally:

SD ::= service(Q) | SD argof SD service descriptor
Q:=1, 0 query
I:=¢|N:T|I,I input
O:=¢|T output
N:i=ni|ns|ns|... name
Ti=t|ta|ts]-.. type
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Request/Response. Agents may append request (Req) and response (Res)
messages to the blackboard. A request message is defined as either (i) query
(Q), or (ii) call (C). A query expresses an exploratory request, aimed at checking
whether the system is capable of serving a particular signature or not, given the
currently published services and their compositions. Conversely, a call represents
an actual invocation of some service, which may involve the execution of one or
more agents to serve the request. Requests are represented through their actual
input arguments (A) — which are named as well — and the expected output type
(O) they ask for. On the other side, response messages may instead contain a (%)
Const term, which is a boolean value, or a (ii) value (V'), that allows any kind
of terminal value to be represented. Formally:

Req ::= query(Q) | call(C) request
C:=A 0O call
Au=€e|N:T(V)| A A arguments
Vi=wv,v,...,0, terminal values

Res::=res(Const) | res(V) response

Const =T | L boolean value

3.2 Operational Semantics

A Labelled Transition System (LTS) is exploited to provide the operational
semantics of our model. The transition relations model the effect of executing
an action on the blackboard.

Labels. Labels are used in the LTS to formally capture events of interest for
the operational semantics of our model. In order to ease their comprehension,
all label names are suffixed by the name of the transition rules they are involved
into. Only one exception is made for 7, denoting the silent transition.

E::= publish_sd | publish_query | publish_call | consume_call |
consume_comp_call | serve_call | comp_call | serve_comp_call |

last_comp_call | prove | compose | T

Operators. A definition of functions and operators exploited within the tran-
sition rules is following. For the sake of brevity we only provide an intuition
of each. An exhaustive formal definition of their semantics can be found in [4].
Notice that, in what follows, we often leverage the notation L£(X), where X
is some non-terminal symbol among the many defined in the EBNF produc-
tion rules above. There, we write £(X) meaning “the set of all possible strings
produced by all possible production rules for X”.
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— The function typeof : L(C) — L(SD) retrieves the data type of a call request
and encodes it under the form of a service descriptor.

— The match operator ~ C L(SD) x L(SD) evaluates the matching degree
among two service descriptors through semantic reasoning.

The function execute : L(S) x L(Req) — L(V) triggers the service execution
in order to fulfill the provided request and it subsequently provides the result.

— The function prove : L(Req) x L(SD) — L(Const) performs the evaluation
of a query request.

— The function fringe : L(SD) — L(I) is in charge of retrieving a set containing
the inputs of a compound service descriptor, namely its fringe.

— The function compose : L(SD)x L(SD) — L(SD) designs the binding among
services, creating one or more new service descriptors which represent the
composed service.

— Finally, the function compositions : L(B) x L(SD) — L(SD) aims to identify
all the compositions in which a given service descriptor is involved.

Transition Rules. Transition rules define the admissible actions for a system
compliant with our model. In a nutshell, admissible actions include: (i) publish-
ing a service descriptor on the blackboard, (i) composing two or more services,
(i4i) publishing a request message (call or query) on the blackboard, (iv) prov-
ing a query request, (v) serving a call request, and (vi) the decay of a service
descriptor. The formal definition of the corresponding transition rules follows.

Service Descriptor Publication. The service descriptor publication is gov-
erned by the [PUBLISH-SD] transition rule. The rule may occur any-
time during the system life-cycle. Its execution changes the blackboard
state, enriching it with the published service descriptor. Formally:

publish_sd
S

publish(SD)-S | Ss || Us || B S| Ss||Us || BUSD [PUBLISH-SD]

Composition. The composition is governed by the [COMPOSE] transition rule.
It triggers each time a service is published and evaluates if there exists
a service that matches with the published one. If it is the case, a com-
posed service descriptor is generated and published on the blackboard.

SD = service(l,0) A3 (N : O) € fringe(SD') A SD" = compose(SD, SD’)
S || Us | BUSD U SD £M%%%, g4 || Ug || BU SD U SD’ U SD"

[COMPOSE]

Request Publication. The request publication is governed by the [PUBLISH-
QUERY] and [PUBLISH-CALL] transition rules. Their execution publishes a query
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or call message, respectively, on the blackboard. They both may occur anytime
during the system life-cycle.

publish_query
pubtish-query

query(Q) - U || Ss | Us || B Ull Ss | Us || BUquery(Q)  [PUBLISH-QUERY]

publish_call
e =

call(C)-U || Ss || Us || B Ul Ss || Us || BUcall(C) [PUBLISH-CALL]

Proving. The result of a query request is generated by either the [POS-PROVE]
or the [NEG-PROVE] transition rules. The former (resp. latter) is triggered when
(i) there exists at least one service descriptor (either single or composed) on the
blackboard that is able (resp. unable) to fulfill the current query, (ii) there exists
a user waiting to consume the positive (resp. negative) result. Once triggered,
each transition allows the waiting user to go on with its computation.

service(Q) ~ SD A Const = prove(Q, SD)

prove [POS-PROVE]
Ss || res(T) U || Us || BUSD Uquery(Q) —— Ss || U || Us || BUSD

A SD € B : service(Q) ~ SD

prove

Ss || res(L) - U || Us || BUquery(Q) —— Ss | U || Us || B

[NEG-PROVE]

Serving. The management of a call request is governed by [CONSUME-CALL],
[SERVE-CALL], [COMP-CALL], [CONSUME-COMP-CALL], [SERVE-COMP-CALL], and
[LAST-COMP-CALL] transition rules.

The [CONSUME-CALL] rule is atomic: it is triggered each time a call request
can be fulfilled by some simple service. The rule is triggered only if a simple
service SD is listening for incoming requests. Once triggered, the rule consumes
the call request and adds an internal call message serve to the blackboard.

SD = service(I,0) A typeof (call(C)) ~ SD
accept(SD) - S || Ss || Us || BUSD U call(C) “2ume=eall, o ccept(SD) - S || Ss || Us || BU SD U serve(SD, call(C'))

[CONSUME-CALL]

The [SERVE-CALL] transition governs the serving of a call request. The rule
is triggered only if (i) a simple service SD is listening for incoming requests, (i)
a user is waiting for a result, and (777) an internal message serve generated from
a call published by the same user is present on the blackboard. The transition
allows both the waiting user and the service to go on with their computations,
while the pending internal message serve is removed from the blackboard.

SD = service(I,0) A typeof(call(C)) ~ SD AV = execute(accept(SD), call(C))

— [SERVE-CALL]
accept(SD) - S || Ss || res(V)-U || Us || BUSD Userve(SD, call(C)) “““% S || Ss || U || Us || BUSD

The [COMP-CALL] rule governs the serving of a call request by a composed
service. The rule is triggered only if a composed service SD able to fulfil the
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published call request is present on the blackboard. During its execution,
the blackboard state is modified and enriched with an internal call message
serve_comp that contains the service descriptor SD of the composed service that
is capable of serving the request, in addition to the original call request call(C).

N
SD = SD' argof SD" Atypeof(call(C)) ~ SD

I, [COMP-CALL]
Ss || Us || BUSD U call(C) comp-call, Ss || Us || BUSD U serve_comp(SD, call(C))

The [CONSUME-COMP-CALL] rule is in charge of initiating the chain of ser-
vices executions that leads to the fulfilment of a call request with a com-
posed service. The rule is triggered whenever a message serve_comp is pub-
lished on the blackboard. Once triggered, this transition modifies the black-
board state, adding an internal message serve containing (i) the first ser-
vice descriptor SD of the composition, and (i) the portion of the call request
that is fulfillable by the service described via the service descriptor SD.

N
SD = SD' argof SD" Atypeof(call(C’)) ~ SD’

consume_compcall [CONSUME-COMP-CALL]
Ss || Us || BUSD U serve_comp(SD, call(C')) oMt Ss || Us || BUSD U serve(SD’, call(C"))

The [SERVE-COMP-CALL] rule is in charge of carrying on the execu-
tion of fulfilment of a call request using a composed service. It requires
an internal message serve to be present. Once triggered, it generates a
new internal message serve that contains (i) the service descriptor of the
following service to be executed in the composition, and (i) a new call
with the result of the previous execution added as input parameter.

N
SD = SD' argot SD" A typeof (call(C")) ~ SD' AV = execute(accept(SD'), call(C"))

serve_compcall [SERVE-COMP-CALL]
accept(SD’) - S || Ss || Us || BU SD’ U serve(SD’, call(C")) —OMP, S || Ss || Us || BU SD' Userve(SD”, call(N : T(V),C"))

The [LAST-COMP-CALL] rule concludes the computational chain. It handles
the last service execution providing the final result. Therefore, the user that
published the call may consume the result and go on with its computation.

N
SD = SD" argof SD" A typeof(call(C”)) ~ SD” AV = execute(accept(SD"), call(C"))

last_comp_call

accept(SD") - S || Ss || res(V) - U || Us | BU SD” U serve(SD”, call(C")) “=2m2=ll, g 17 || Sg || Us || BU SD”

[LAST-COMP-CALL]

Decay. The [DECAY] rule is defined with the purpose of keeping the blackboard
(B) clean over the time.

B’ = B — compositions(B, SD)

T [DECAY]
Ss || Us || BUSD — Ss || Us || B

This rule grants the system the capability of cleaning out the blackboard from
obsolete services. The operation also requires to clean out the composed services
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in which the service targeted to be removed is involved. Label 7 is used here to
denote a time-related recurrent operation. No specific frequency or rate is defined
by our formal specification. Yet, we assume [DECAY] executes frequently enough
to clean up stale service descriptors, but not so much frequently to hinder the
activity of services.

4 Architecture

This section discusses how a rigorously engineered solution for semantic self-
composition of services based on our model can be attained. In particular,
because of space limitations, our discussion is articulated in two parts, describ-
ing the design and implementation phases of our solution, respectively. More
precisely, in the first part we show how a software architecture for our model
can be constructed by leveraging the LINDA coordination model; whereas in the
second part we show how such a software architecture can be reified into some
actual JVM technology via the TUSOW framework.

4.1 Linda-Based Architecture

A LINDA system is composed by a number of agents interacting via tuple spaces.
Our formal model as well can be briefly described in terms of agents interacting
via blackboard, enacting a particular protocol. Thus, drawing a software archi-
tecture based on LINDA for our framework essentially requires (i) the blackboard
behaviour to be mimicked via some tuple space, and (ii) users and service agents
to be designed as agents performing LINDA operations on that tuple space.

We stick to a logic-based interpretation of LINDA, where both tuples and
templates are first-order logic terms, and tuples are matched against templates
via logic unification. Furthermore, we assume a wide spectrum of LINDA primi-
tives are available for agents, including (i) LINDA’s classic primitives — namely,
out, in, rd —, with their ordinary generative and suspensive semantics; (i) bulk
primitives — such as out_all, in_all, rd_all — letting agents insert, consume, or
read multiple tuples at once; and (i) predicative primitives — such as inp, rdp
—, which differ from their classic counterparts because they are not suspensive.

Of course, given that the blackboard abstraction in our model is not a simple
container of information — as it is in charge of automatically composing services
as soon as they are deployed —, it cannot be simply reduced to a tuple space.
To tackle this issue, at the architectural level, we introduce the notion of helper
agent. An helper agent is a reactive entity which is in charge of implementing
some transition rule from the model semantics described in Sect. 3.2. In other
words, we translate each transition rule from Sect. 3.2 into an helper agent
implementing it on the blackboard via LINDA operations. Thus, there exists a
fixed number of helper agents, whose names and functions are described below.
For the sake of readability, helper agents are named using the pattern

To{ EventName}{MessageName} Agent
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Fig.1. An overview of the most salient interactions among the system components
during the publication, composition, and request serving phases
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where {EventName} denotes the invocation of some LINDA operation on the
blackboard tuple spaces — commonly, an out operation —, whereas { MessageNa-
me} is the tuple or template characterising that LINDA operation.

Accordingly, in the following we present a semi-formal definition of the
LiNDA-based architecture of our model via UML sequence diagrams. User agents
publish the requests on the tuple space by means of the out primitive. Subse-
quently, they perform an in operation, waiting for a tuple to consume. Service
agents, likewise, follow the same pattern of interactions. They publish their ser-
vice descriptor and they consequently wait for tuples to be consumed.

Service Descriptor Publication and Service Composition. The transi-
tion rule [COMPOSE] has been implemented within the ToQutServiceAgent com-
ponent. It reacts to the service publication action ([PUBLISH-SD]), evaluating
all its viable compositions. If any, the composed service is generated and pub-
lished on the TupleSpace. Figure 1la shows the full chain of interactions starting
from the single service descriptor publication action to the subsequent composi-
tion evaluation and potential publication. Note that after a service descriptor is
published, a list of unhandled call requests stored in a secondary tuple space is
published on the primary tuple space. A more detailed description is provided
in the following paragraphs.

Prove a Query Request. Operations [POS-PROVE] and [NEG-PROVE] are
implemented by the ToOutQueryAgent component. It reacts to the publication
action ([PUBLISH-QUERY]) of a query message, evaluating if there is an existing
service configuration able to fulfil it: a positive result is returned iff any exists.

Serve a Call Request. Operations [CONSUME-CALL] and [SERVE-CALL] are
implemented by the ToOutCallAgent. It reacts to the publication of a call request
and evaluates if the current system configuration is capable of serving it—i.e.
if there exists some service descriptor for the request at hand. Figure 1b shows
the actions performed when a published call request cannot be fulfilled by any
available service. Briefly, the matching among the call request and the avail-
able service is computed. If there exists no service that successfully matches the
call, it is moved to another (secondary) tuple space, which is explicitly aimed at
storing pending call requests which cannot be currently served. These calls are
eventually moved back to the (primary) TupleSpace as soon as a service publica-
tion occurs—as the new service may make it possible to serve some of them. The
involvement of two tuple spaces is an optimisation aimed at avoiding the waste of
computational resources due to the processing of (currently) unsatisfiable calls.

Conversely, when the current system configuration allows the fulfillment
of the call request, the request message is taken and processed. Figure lc
shows the serving of a call request in case it exists a single service that may
wholly fulfil it. The opposite case is presented in Fig. 1d. In this case the
rule [COMP-CALL], implemented by ToOutCallAgent, occurs; while operations
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[CONSUME-COMP-CALL], [SERVE-COMP-CALL] and [LAST-COMP-CALL] are per-
formed within the ToOutServeComposedAgent control flow.

4.2 Implementation Details

The aforementioned LINDA-based architecture is implemented upon TUSOW.
Briefly, the elements composing the system are (i) the LINDA-like tuple space,
i.e. blackboard, () a number of agents, and (%) a fixed number of helper agents.

TuSOW defines the LINDA-like tuple space as the so-called LogicSpace
architectural entity, representing an abstract version of an actual tuple space that
can be provided in several versions—e.g.. local, remote, inspectable. TUSOW
agents are implemented as simple control flows—i.e. threads. We implement the
user and service agent entities as threads that communicate among them through
the shared LogicSpace. Helper agents, in turn, are implemented as threads aug-
mented with a tuProlog engine [10]. In particular, they hold reasoning capabili-
ties exploited within the system to evaluate (i) the viable service compositions,
and (7i) the match degree between a request message and a service descriptor.

Adopting TUSOW makes handling the non-determinism of LINDA read and
consume operations challenging. In order to cope with it, the inspectable version
of the LogicSpace comes to our aid, since it presents an inspectable interface,
allowing tuple space state to be observed. To clarify how the feature is exploited
within our implementation, an example is provided. An helper agent constantly
consumes tuples matching a tuple template. For instance, the ToOutService Agent
consumes tuples unifying with a tuple template that resembles a service descrip-
tor, in order to react to a service descriptor publication. However, when many
service descriptors coexist in the tuple space, such operation consumes one of
them in a non-deterministic manner. Therefore it might return any service that is
currently published. To cope with it, the inspectable feature of the tuple space
is exploited by filtering out the tuples that do not belong to the tuple space
internal writing event. In other words, a routine is bound to the internal writing
event of the tuple space, filtering out the tuples resulting from the writing event
that do not comply with the provided tuple template.

5 Case Study

A real-world scenario is here provided. Due to space reasons, we only show its
formal representation. The corresponding implementation leveraging a TUSOW-
based system architecture is publicly available!.

Let us assume that there exists a system holding a knowledge base composed
of the taxonomy of concepts depicted in Fig. 2. Let us now consider the system as
including two services willing to advertise themselves by publishing their service
descriptors, respectively SD and SD’, on the blackboard (B). We assume the
formal parameters (input and output) of those services are defined using concepts

! https://gitlab.com/ashleycaselli/tusow-semantic-composition.
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that belong to the knowledge base of the system. In particular, we define SD
as the service that given a city name is able to provide its GPS coordinates.
In turn, we define SD’ as the service that provides the current temperature (in
Kelvin degrees) at the location described by some GPS coordinates.

Formally, service descriptors are described as follows:

SD = service(name : City, GPS)
SD'" = service(loc: GPS, Kelvin)

(for the sake of simplicity, we define GPS coordinates as a single value uniquely
identifying a city), whereas the service initial configurations are as follows:

So = publish(SD) - accept(service(Q)) - So
Sy = publish(SD’) - accept(service(Q’)) - S|,

We also assume the blackboard is initially empty (Bg = @), and that the system
includes a user willing to perform a service invocation:

Uy = Req - res(v) - halt

where Req = call(name : City(Geneva), Temperature) denotes an invocation
to a service computing the current temperature for a city (namely, Geneva), and
returning a temperature through any possible measurement unit. Under these
hypotheses, the initial state of the system is Sysg = So || S{ || Uo || Bo-

The publication of the service descriptors (operation [PUBLISH-SD]) changes
the state of the system as follows:

51 B
—
Sys; = accept(service(Q)) - So || accept(service(Q’)) S, || Uo || SD U SD’

S1

Eventually, their publication triggers the component that computes the
semantic matching among the two service descriptors, computing all the possi-
ble compositions (operation [COMPOSE]). In particular, in this case the compose
operation detects that the services represented by SD and SD’ are composable

—~ loc
w.r.t the parameter named loc. We call SD = SD argof SD’ the composed

Temperature

N

| Celsius Farhenheit | | Kelvin | GPS | | City |

Fig. 2. An illustration of a taxonomy of concepts used in the presented case study
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service attained by composing SD and SD’. The composed service SD is then
published on the blackboard, which can now be described as follows:

— SDUSD'USD

The presence of SD on the blackboard is what makes the user’s invocation
satisfiable. Suppose now that the user publishes (operation [PUBLISH-CALL])
its call request (Req). This would lead to a system state like the following:

Syss = S1 || S} || Uo || SDUSD' U SD U Reg

Bs

According to the current system configuration (Syss) there is no simple service
capable of serving the request. However, the request may be fulfilled using the
composed service SD. Tn more details, SD and Req are compatible because (i) the
input (Igp) of the composed service SD and the input of the request (IReq) hold

the evact match degree, and (74) the output (Og5) of the composed service SD
and the output of the request (Opeq) hold the subsume match degree according
to the provided taxonomy. Formally:

I§5 = IReq AO§‘5 C OReq

The call request publication triggers the helper agent that is in charge of handling
the request message. Such component, leveraging a Prolog engine for reasoning
purposes, computes the semantic matching among the request and the available
services. In this case, the reasoning process leads to the solution proposed above,
inferring that the request may only be served by the composed service SD. In
order to manage the execution of all the services involved in the composition,
another helper agent is triggered (operation [COMP-CALL] is executed). Formally:

By = 8D U SD' U 8D U serve_comp(SD, call(...))

The helping agent is also in charge of collecting the intermediary responses that
each service provides, and of providing the final response. Each time a service is
triggered to serve the call, it computes the result and publishes it as Res message
on the blackboard (operation [SERVE-COMP-CALL]). For the sake of brevity we
only show one round of the “service execution-response publication” loop:

—SDUSD'USDU serve(SD,, call,(...))

where SD, and call, represent respectively the service descriptor of the z-th
service of the composition and the call request that is served by such service.

Finally, operation [LAST-COMP-CALL] is executed and the user agent gets the
result.

Bg = SDUSD' USD
Ug = halt
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6 Conclusion

This paper proposes a solution for the semantic self-composition of services,
exploiting tuple-based coordination. We provide an end-to-end description of
the engineering challenges hidden in the production of such sorts of systems, and
sketch the formalisation of a middleware supporting (i) the self-composition of
services, at deploy time, and (%) the transparent invocation of the composed
services from the client-side. In particular, we rely on a central blackboard used
by service providers to advertise their own service descriptors, and in charge of
orchestrating the execution of composed services. In this way, clients may invoke
both composed and simple service through a uniform API.

Accordingly, the design of our solution is deliberately minimal as our focus is
on the engineering of an actual implementation. In particular, the actual design
of our middleware leverages (i) LINDA-like tuple spaces exploiting logic terms as
both clauses and templates, and (%) logic programming to provide the system
components with semantic reasoning. Finally, a prototype implementation is
described exploiting the TUSOW coordination technology, and the tuProlog logic
reasoner.

We consider this work as a starting point for a number of research directions.
In fact, in the future, we plan to assess different strategies for implementing our
model, from both the theoretical and technological perspectives. For instance,
we are planning the exploitation of different matching mechanisms — possibly
modelling semantic matching as a similarity function rather than a binary rela-
tion —, as well as different interaction protocols for the helper agents used in our
prototype—possibly focusing on the scalability of service composition.
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