
Tiziana Margaria · Bernhard Steffen (Eds.)
LN

CS
 1

24
77

9th International Symposium
on Leveraging Applications of Formal Methods, ISoLA 2020
Rhodes, Greece, October 20–30, 2020, Proceedings, Part II

Leveraging Applications
of Formal Methods,
Verification and Validation
Engineering Principles

Lecture Notes in Computer Science 12477

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Tiziana Margaria • Bernhard Steffen (Eds.)

Leveraging Applications
of Formal Methods,
Verification and Validation
Engineering Principles

9th International Symposium
on Leveraging Applications of Formal Methods, ISoLA 2020
Rhodes, Greece, October 20–30, 2020
Proceedings, Part II

123

Editors
Tiziana Margaria
University of Limerick and Lero
Limerick, Ireland

Bernhard Steffen
TU Dortmund
Dortmund, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-61469-0 ISBN 978-3-030-61470-6 (eBook)
https://doi.org/10.1007/978-3-030-61470-6

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5547-9739
https://orcid.org/0000-0001-9619-1558
https://doi.org/10.1007/978-3-030-61470-6

Introduction

It is our responsibility, as general and program chairs, to welcome the participants to
the 9th International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA), planned to take place in Rhodes, Greece, during
October 20–30, 2020, endorsed by the European Association of Software Science and
Technology (EASST).

This year’s event follows the tradition of its symposia forerunners held in Paphos,
Cyprus (2004 and 2006), Chalkidiki, Greece (2008), Crete, Greece (2010 and 2012),
Corfu, Greece (2014 and 2016), and most recently in Limassol, Cyprus (2018), and the
series of ISoLA workshops in Greenbelt, USA (2005), Poitiers, France (2007),
Potsdam, Germany (2009), Vienna, Austria (2011), and Palo Alto, USA (2013).

Considering that this year’s situation is unique and unlike any previous one due to
the ongoing COVID-19 pandemic, and that ISoLA’s symposium touch and feel is much
unlike most conventional, paper-based conferences, after much soul searching we are
faced with a true dilemma. “Virtualizing” the event, as many conferences have done,
violates the true spirit of the symposium, which is rooted in the gathering of com-
munities and the discussions within and across the various communities materialized in
the special tracks and satellite events. Keeping with the physical meeting and holding it
in a reduced form (as many may not be able to or feel comfortable with travel) under
strict social distancing rules may also end up not being feasible. At the time of writing
there is a resurgence of cases in several countries, many nations are compiling “green
lists” of countries with which they entertain free travel relations, and these lists are
updated – most frequently shortened – at short notice, with severe consequence for the
travelers. Many governments and universities are again strengthening the travel
restrictions for their employees, and many of us would anyway apply caution due to
our own specific individual situation.

To be able to react as flexibly as possible to this situation, we decided to split ISoLA
2020 into two parts, one this year and one in October 2021, with the track organizers
deciding when their track will take place. So far both dates have promoters, but it may
still happen that, in the end, the entire event needs to move. All accepted papers are
published in time, but some tracks will present their papers at the 2021 event.

As in the previous editions, ISoLA 2020 provides a forum for developers, users, and
researchers to discuss issues related to the adoption and use of rigorous tools and
methods for the specification, analysis, verification, certification, construction, test, and
maintenance of systems from the point of view of their different application domains.
Thus, since 2004, the ISoLA series of events serves the purpose of bridging the gap
between designers and developers of rigorous tools on one side, and users in engi-
neering and in other disciplines on the other side. It fosters and exploits synergetic
relationships among scientists, engineers, software developers, decision makers, and
other critical thinkers in companies and organizations. By providing a specific,
dialogue-oriented venue for the discussion of common problems, requirements,

algorithms, methodologies, and practices, ISoLA aims in particular at supporting
researchers in their quest to improve the usefulness, reliability, flexibility, and effi-
ciency of tools for building systems, and users in their search for adequate solutions to
their problems.

The program of the symposium consists of a collection of special tracks devoted to
the following hot and emerging topics:

• Reliable Smart Contracts: State-of-the-art, Applications, Challenges and Future
Directions
(Organizers: Gordon Pace, César Sànchez, Gerardo Schneider)

• Engineering of Digital Twins for Cyber-Physical Systems
(Organizers: John Fitzgerald, Pieter Gorm Larsen, Tiziana Margaria, Jim
Woodcock)

• Verification and Validation of Concurrent and Distributed Systems
(Organizers: Cristina Seceleanu, Marieke Huisman)

• Modularity and (De-)composition in Verification
(Organizers: Reiner Hähnle, Eduard Kamburjan, Dilian Gurov)

• Software Verification Tools
(Organizers: Markus Schordan, Dirk Beyer, Irena Boyanova)

• X-by-Construction: Correctness meets Probability
(Organizers: Maurice H. ter Beek, Loek Cleophas, Axel Legay, Ina Schaefer,
Bruce W. Watson)

• Rigorous Engineering of Collective Adaptive Systems
(Organizers: Rocco De Nicola, Stefan Jähnichen, Martin Wirsing)

• Automated Verification of Embedded Control Software
(Organizers: Dilian Gurov, Paula Herber, Ina Schaefer)

• Automating Software Re-Engineering
(Organizers: Serge Demeyer, Reiner Hähnle, Heiko Mantel)

• 30 years of Statistical Model Checking!
(Organizers: Kim G. Larsen, Axel Legay)

• From Verification to Explanation
(Organizers: Holger Herrmanns, Christel Baier)

• Formal methods for DIStributed COmputing in future RAILway systems (DisCo-
Rail 2020)
(Organizers: Alessandro Fantechi, Stefania Gnesi, Anne Haxthausen)

• Programming: What is Next?
(Organizers: Klaus Havelund, Bernhard Steffen)

With the embedded events:

• RERS: Challenge on Rigorous Examination of Reactive Systems (Falk Howar,
Markus Schordan, Bernhard Steffen)

• Doctoral Symposium and Poster Session (A. L. Lamprecht)
• Industrial Day (Falk Howar, Johannes Neubauer, Andreas Rausch)

vi Introduction

Colocated with the ISoLA symposium is:

• STRESS 2020 – 5th International School on Tool-based Rigorous Engineering of
Software Systems (J. Hatcliff, T. Margaria, Robby, B. Steffen)

Altogether the ISoLA 2020 proceedings comprises four volumes, Part 1: Verifica-
tion Principles, Part 2: Engineering Principles, Part 3: Applications, and Part 4: Tools,
Trends, and Tutorials, which also covers the associated events.

We thank the track organizers, the members of the Program Committee and their
referees for their effort in selecting the papers to be presented, the local organization
chair, Petros Stratis, and the EasyConferences team for their continuous and precious
support during the entire two-year period preceding the events, and Springer for being,
as usual, a very reliable partner for the proceedings production. Finally, we are grateful
to Kyriakos Georgiades for his continuous support for the website and the program,
and to Markus Frohme and Julia Rehder for their help with the editorial system
Equinocs.

Special thanks are due to the following organization for their endorsement: EASST
(European Association of Software Science and Technology) and Lero – The Irish
Software Research Centre, and our own institutions – TU Dortmund University and the
University of Limerick.

We wish you, as an ISoLA participant, a wonderful experience at this edition, and
for you, reading the proceedings at a later occasion, valuable new insights that hope-
fully contribute to your research and its uptake.

August 2020 Tiziana Margaria
Bernhard Steffen

Introduction vii

Organization

Symposium Chair

Tiziana Margaria University of Limerick and Lero, Ireland

PC Chair

Bernhard Steffen TU Dortmund University, Germany

PC Members

Christel Baier Technische Universität Dresden, Germany
Maurice ter Beek ISTI-CNR, Italy
Dirk Beyer LMU Munich, Germany
Irena Bojanova NIST, USA
Loek Cleophas Eindhoven University of Technology, The Netherlands
Rocco De Nicola IMT Lucca, Italy
Serge Demeyer Universiteit Antwerpen, Belgium
Alessandro Fantechi University of Florence, Italy
John Fitzgerald Newcastle University, UK
Stefania Gnesi CNR, Italy
Kim Guldstrand Larsen Aalborg University, Denmark
Dilian Gurov KTH Royal Institute of Technology, Sweden
John Hatcliff Kansas State University, USA
Klaus Havelund Jet Propulsion Laboratory, USA
Anne E. Haxthausen Technical University of Denmark, Denmark
Paula Herber University of Münster, Germany
Holger Hermanns Saarland University, Germany
Falk Howar Dortmund University of Technology and

Fraunhofer ISST, Germany
Marieke Huisman University of Twente, The Netherlands
Reiner Hähnle Technische Universität Darmstadt, Germany
Stefan Jähnichen TU Berlin, Germany
Eduard Kamburjan Technische Universität Darmstadt, Germany
Anna-Lena Lamprecht Utrecht University, The Netherlands
Peter Gorm Larsen Aarhus University, Denmark
Axel Legay Université Catholique de Louvain, Belgium
Heiko Mantel Technische Universität Darmstadt, Germany
Tiziana Margaria University of Limerick and Lero, Ireland
Johannes Neubauer Materna, Germany
Gordon Pace University of Malta, Malta
Cesar Sanchez IMDEA Software Institute, Madrid, Spain

Ina Schaefer TU Braunschweig, Germany
Gerardo Schneider University of Gothenburg, Sweden
Markus Schordan Lawrence Livermore National Laboratory, USA
Cristina Seceleanu Mälardalen University, Sweden
Bernhard Steffen TU Dortmund University, Germany
Bruce Watson Stellenbosch University, South Africa
Martin Wirsing Ludwig-Maximilians-Universität München, Germany
James Woodcock University of York, UK

Reviewers

Aho, Pekka
Aichernig, Bernhard
Backeman, Peter
Baranov, Eduard
Basile, Davide
Beckert, Bernhard
Bensalem, Saddek
Bettini, Lorenzo
Beyer, Dirk
Bourr, Khalid
Bubel, Richard
Bures, Tomas
Casadei, Roberto
Castiglioni, Valentina
Ciatto, Giovanni
Cimatti, Alessandro
Damiani, Ferruccio
Di Marzo Serugendo, Giovanna
Duong, Tan
Filliâtre, Jean-Christophe
Fränzle, Martin
Gabor, Thomas
Gadducci, Fabio
Galletta, Letterio
Geisler, Signe
Gerostathopoulos, Ilias
Guanciale, Roberto
Heinrich, Robert
Hillston, Jane
Hnetynka, Petr
Hoffmann, Alwin

Hungar, Hardi
Inverso, Omar
Iosti, Simon
Jacobs, Bart
Jaeger, Manfred
Jensen, Peter
Johnsen, Einar Broch
Jongmans, Sung-Shik
Jähnichen, Stefan
Kanav, Sudeep
Konnov, Igor
Kosak, Oliver
Kosmatov, Nikolai
Kretinsky, Jan
Könighofer, Bettina
Lanese, Ivan
Lecomte, Thierry
Lluch Lafuente, Alberto
Loreti, Michele
Maggi, Alessandro
Mariani, Stefano
Mazzanti, Franco
Morichetta, Andrea
Nyberg, Mattias
Omicini, Andrea
Orlov, Dmitry
Pacovsky, Jan
Parsai, Ali
Peled, Doron
Piho, Paul
Pugliese, Rosario

x Organization

Pun, Violet Ka I
Reisig, Wolfgang
Schlingloff, Holger
Seifermann, Stephan
Soulat, Romain
Steinhöfel, Dominic
Stolz, Volker
Sürmeli, Jan
Tiezzi, Francesco
Tini, Simone
Tognazzi, Stefano
Tribastone, Mirco

Trubiani, Catia
Tuosto, Emilio
Ulbrich, Mattias
Vandin, Andrea
Vercammen, Sten
Viroli, Mirko
Wadler, Philip
Wanninger, Constantin
Weidenbach, Christoph
Wirsing, Martin
Zambonelli, Franco

Organization xi

Contents – Part II

Automating Software Re-Engineering

Automating Software Re-engineering: Introduction to the ISoLA
2020 Track. 3

Serge Demeyer, Reiner Hähnle, and Heiko Mantel

Formal Verification of Developer Tests: A Research Agenda Inspired
by Mutation Testing . 9

Serge Demeyer, Ali Parsai, Sten Vercammen, Brent van Bladel,
and Mehrdad Abdi

Modular Regression Verification for Reactive Systems 25
Alexander Weigl, Mattias Ulbrich, and Daniel Lentzsch

Finding Idioms in Source Code Using Subtree Counting Techniques 44
Dmitry Orlov

Parametric Timed Bisimulation . 55
Malte Lochau, Lars Luthmann, Hendrik Göttmann, and Isabelle Bacher

A Unifying Framework for Dynamic Monitoring and a Taxonomy
of Optimizations . 72

Marie-Christine Jakobs and Heiko Mantel

Thirty-Seven Years of Relational Hoare Logic: Remarks on Its Principles
and History . 93

David A. Naumann

Safer Parallelization. 117
Reiner Hähnle, Asmae Heydari Tabar, Arya Mazaheri,
Mohammad Norouzi, Dominic Steinhöfel, and Felix Wolf

Refactoring and Active Object Languages . 138
Volker Stolz, Violet Ka I Pun, and Rohit Gheyi

Rigorous Engineering of Collective Adaptive Systems

Rigorous Engineering of Collective Adaptive Systems Introduction
to the 3rd Track Edition. 161

Martin Wirsing, Rocco De Nicola, and Stefan Jähnichen

Composition of Component Models - A Key to Construct Big Systems 171
Wolfgang Reisig

Degrees of Autonomy in Coordinating Collectives
of Self-Driving Vehicles . 189

Stefano Mariani and Franco Zambonelli

Engineering Semantic Self-composition of Services Through Tuple-Based
Coordination. 205

Ashley Caselli, Giovanni Ciatto, Giovanna Di Marzo Serugendo,
and Andrea Omicini

A Dynamic Logic for Systems with Predicate-Based Communication 224
Rolf Hennicker and Martin Wirsing

Abstractions for Collective Adaptive Systems . 243
Omar Inverso, Catia Trubiani, and Emilio Tuosto

Verifying AbC Specifications via Emulation. 261
Rocco De Nicola, Tan Duong, and Omar Inverso

Adaptive Security Policies . 280
Flemming Nielson, René Rydhof Hansen, and Hanne Riis Nielson

Capturing Dynamicity and Uncertainty in Security and Trust
via Situational Patterns . 295

Tomas Bures, Petr Hnetynka, Robert Heinrich, Stephan Seifermann,
and Maximilian Walter

Guaranteeing Type Consistency in Collective Adaptive Systems 311
Jonas Schürmann, Tim Tegeler, and Bernhard Steffen

Epistemic Logic in Ensemble Specification. 329
Jan Sürmeli

FSCAFI : A Core Calculus for Collective Adaptive Systems Programming . . . 344
Roberto Casadei, Mirko Viroli, Giorgio Audrito, and Ferruccio Damiani

Writing Robotics Applications with X-KLAIM . 361
Lorenzo Bettini, Khalid Bourr, Rosario Pugliese, and Francesco Tiezzi

Measuring Adaptability and Reliability of Large Scale Systems 380
Valentina Castiglioni, Michele Loreti, and Simone Tini

Centrality-Preserving Exact Reductions of Multi-Layer Networks 397
Tatjana Petrov and Stefano Tognazzi

Towards Dynamic Dependable Systems Through Evidence-Based
Continuous Certification . 416

Rasha Faqeh, Christof Fetzer, Holger Hermanns, Jörg Hoffmann,
Michaela Klauck, Maximilian A. Köhl, Marcel Steinmetz,
and Christoph Weidenbach

xiv Contents – Part II

Forming Ensembles at Runtime: A Machine Learning Approach 440
Tomáš Bureš, Ilias Gerostathopoulos, Petr Hnětynka, and Jan Pacovský

Synthesizing Control for a System with Black Box Environment, Based
on Deep Learning . 457

Simon Iosti, Doron Peled, Khen Aharon, Saddek Bensalem,
and Yoav Goldberg

A Formal Model for Reasoning About the Ideal Fitness in Evolutionary
Processes . 473

Thomas Gabor and Claudia Linnhoff-Popien

A Case Study of Policy Synthesis for Swarm Robotics 491
Paul Piho and Jane Hillston

Maple-Swarm: Programming Collective Behavior for Ensembles
by Extending HTN-Planning. 507

Oliver Kosak, Lukas Huhn, Felix Bohn, Constantin Wanninger,
Alwin Hoffmann, and Wolfgang Reif

Swarm and Collective Capabilities for Multipotent Robot Ensembles. 525
Oliver Kosak, Felix Bohn, Lennart Eing, Dennis Rall,
Constantin Wanninger, Alwin Hoffmann, and Wolfgang Reif

Author Index . 541

Contents – Part II xv

Automating Software Re-Engineering

Automating Software Re-engineering

Introduction to the ISoLA 2020 Track

Serge Demeyer1(B), Reiner Hähnle2(B), and Heiko Mantel2(B)

1 University of Antwerp, Antwerp, Belgium
serge.demeyer@uantwerpen.be

2 Technical University Darmstadt, Darmstadt, Germany
{reiner.haehnle,eduard.kamburjan}@tu-darmstadt.de

Abstract. Software Engineering as a discipline and, in particular, as a
research field within Computer Science, is still mainly focused on meth-
ods, techniques, processes, and tools to develop software from scratch. In
reality, however, greenfield scenarios are not the most common ones. It is
important to realize that dynamic evolution of software became a much
more common and relevant issue in recent times, and its importance
keeps growing. Software refactoring, parallelization, adaptation, there-
fore, become central activities in the value chain: automating them can
realize huge gains. Formal approaches to software modeling and analysis
are poised to make a substantial contribution to software re-engineering,
because they are fundamentally concerned with automation and correct-
ness. This potential, however, is far from being realized. Formal methods
tend to aim at software development ab ovo or look at some piece of
given software as a static object. This state of affairs motivated a track
on Automating Software Re-Engineering, where we invited a group of
leading researchers with an active interest in the automation of software
re-engineering to discuss the state of the art.

1 Introduction

Software Engineering as a discipline and, in particular, as a research field within
Computer Science, is still mainly focused on methods, techniques, processes, and
tools to develop software from scratch. In reality, however, greenfield scenarios
are not the most common ones [7]. This has not only to do with the usual
reasons: protection of possibly huge investments made, as well as preservation
of the knowledge embodied in existing software. It is important to realize that
dynamic evolution of software became a much more common and relevant issue
in recent times, and its importance keeps growing, because of these technological
key drivers:

– the advent of massively parallel hardware and the desire to optimally exploit
it by software,

– the need to diversify and customize, particularly, in Internet-of-Things and
Industry 4.0, and

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 3–8, 2020.
https://doi.org/10.1007/978-3-030-61470-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_1

4 S. Demeyer et al.

– novel application scenarios for existing software, fueled by digitalization of
everything.

Software refactoring [4], parallelization [1], adaptation [2], therefore, become
central activities in the value chain: automating them can realize huge gains.

Formal approaches to software modeling and analysis are poised to make a
substantial contribution to software re-engineering, because they are fundamen-
tally concerned with automation and correctness. This potential, however, is far
from being realized. The reason is that there is something inherently wrong with
the current focus of formal approaches to software analysis and development.
They tend to aim at software development ab ovo or look at some piece of given
software as a static object [6]. In other words, automated software re-engineering
is usually not on the radar.

2 Track Organization

The situation sketched above was the motivation to submit a track on Automat-
ing Software Re-Engineering to the 9th edition of the International Symposium
On Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA 2020). We invited a group of leading researchers with an active interest
in the automation of software re-engineering. People working on formal founda-
tions, on tools, as well as practitioners of re-engineering, for example, from the
High-Performance Computing or the Industry 4.0 domains. We also broadcasted
an open invitation on several channels with the intent of reaching out to a wider
audience of interested researchers.

In our call for papers, we solicited either research, survey, experience or tool
papers. We did not necessarily seek for new contributions, but also allowed indi-
viduals to shed new insights on results that have been published earlier. The
corona pandemic caused a few organisational issues. But in the end we decided
to proceed with the submission and review process, hoping that we will be able
to have an actual physical meeting.

We received eight submissions. Each paper was reviewed by at least two
experts in the field. We encouraged the reviewers to be inclusive and write con-
structive reviews and we explicitly aimed for non-competitive reviewing. In the
end, we accepted eight submissions that can be classified into research, system-
atization, and tool paper as follows (where some papers fall into more than one
category), see Table 1.

3 Track Contributions

We classified the eight accepted papers into three thematic sessions: the first
group, Verification for Program Analysis encompasses contributions suggesting
verification approaches that, ultimately, will be used to analyse different versions
of a program. The second group is about formal foundations with the eponymous
label. The third group focuses on correct refactoring of concurrent programs.

Automating Software Re-engineering 5

Table 1. Overview and classification of the papers in the ISoLA ASRE track

Authors Title Classification

Serge Demeyer, Ali Parsai,
Sten Vercammen,
Brent van Bladel,
Merdhad Abdi

Formal Verification of Developer
Tests: A Research Agenda
Inspired by Mutation Testing

Systematization

Malte Lochau, Lars Luthmann,
Hendrik Göttmann,
Isabelle Bacher

Parametric Timed Bisimulation Research

Dmitry Orlov Finding Idioms in Source Code
using Subtree Counting
Techniques

Research + Tool

Reiner Hähnle,
Asmae Heydari Tabar,
Arya Mazaheri,
Mohammad Norouzi,
Dominic Steinhöfel, Felix Wolf

Safer Parallelization Research + Tool

Alexander Weigl,
Mattias Ulbrich,
Daniel Lentzsch

Modular Regression Verification
for Reactive Systems

Research + Tool

Marie-Christine Jacobs,
Heiko Mantel

A Unifying Framework for
Dynamic Monitoring and a
Taxonomy of Optimizations

Systematization
+ Research

David Naumann 37 years of Relational Hoare
Logic: Remarks on its
Principles and History

Systematization
+ Research

Violet Ka I Pun, Volker Stolz,
Rohit Gheyi

ReAct: Refactoring and Active
Object Languages

Research

It is worth observing that many of the papers indeed are motivated by the “key
drivers” of software re-engineering identified in Sect. 1, for example, [5,9] are
concerned with parallel programs, [10,12] have an Industrie 4.0 context, etc.

Below we provide a short summary of each paper. We refer interested readers
to the actual paper later in this volume for more information.

3.1 Verification for Program Analysis

In the paper Formal Verification of Developer Tests: a Research Agenda Inspired
by Mutation Testing [3], five authors from the University of Antwerp present
a research agenda on how formal verification may contribute to verifying test
code. The paper briefly describes five problems from the perspective of mutation
testing, which is a technique to evaluate the fault detection capability of a test
suite, and discusses, for each of these five problems, how formal verification can
be helpful to alleviate the issue.

6 S. Demeyer et al.

In the paper Modular Regression Verification for Reactive Systems [12], three
authors from the Karlsruhe Institute of Technology present an extension on
regression verification proofs specifically geared towards Programmable Logic
Controllers. The approach is incorporated into a tool which chains a series of
conformance checkers (from lightweight to heavyweight) to model check the sub-
goals.

In the paper Finding Idioms in Source Code using Subtree Counting Tech-
niques [11], a single author from National Research University in Moscow pro-
poses an algorithm to find idioms in source code. The algorithm first builds an
abstract syntax tree and then enumerates all subtrees above a certain size. If
the same subtree is found, it is replaced so after the algorithm processed the
whole abstract syntax tree, it results in a large trie structure where common
subtrees are all on the same nodes. The algorithm is implemented in Python 3
and validated on three small open source systems also written in Python.

3.2 Formal Foundations

The paper Parametric Timed Bisimulation [10] by one author from the Uni-
versity of Siegen and three from Technical University of Darmstadt consider
parametric timed automata: a variant of timed automata supporting paramet-
ric time constraints. They lift the definition of timed bisimulation from timed
automata to parametric timed automata. The authors propose an approximation
of this bisimulation that treats parameters as symbols, and they show that this
is a sufficient approximation of the parametric bisimulation. They also propose
a necessary condition that substitutes parameters by values at the end of the
time spectrum.

The paper A Unifying Framework for Dynamic Monitoring and a Taxonomy
of Optimizations [8] by two researchers from Technical University of Darmstadt
provides a framework for runtime monitoring that makes it possible to give
fully formal definitions of soundness for optimizations. In particular, the authors
identify various preconditions to preservation theorems that can be used as suf-
ficient conditions on soundness. The paper closes with a suggested taxonomy
of run time monitoring optimizations that partly is derived from the formal
framework. Several representative optimization approaches from the literature
are classified with respect to the taxonomy.

In the paper Thirty-seven years of relational Hoare logic: remarks on its
principles and history one author from Stevens Institute of Technology revisits
several decades of Relational Hoare Logic, and reminds the community about
highly relevant work that has not received due attention so far. The author revis-
its product constructions for programs that enable one to use traditional Hoare
Logic for relational reasoning, and he points out differences between variants of
such product constructions. The author systematizes proof rules for Relational
Hoare Logic and augments them by a novel rule. Finally, the paper clarifies bet-
ter on how Relational Hoare Logic relates to the use of product programs in
combination with traditional Hoare Logic.

Automating Software Re-engineering 7

3.3 Formal Verification for Concurrency

In the paper Safer Parallelization [5], six authors from Technical University of
Darmstadt describe a semi-automatic approach to formally prove a suite of pro-
gram transformations that prepare a sequential program for subsequent paral-
lelisation. The approach is supported by a tool (REFINITY) which supports the
Java programming language and is implemented as a front-end to the program
prover KeY.

In the paper ReAct: Refactoring and Active Object Languages [9], two authors
from the Western Norway University of Applied Sciences and one from the
Federal University of Campina Grande, Brazil investigate the impact of well-
known refactorings for sequential OO languages in the context of concurrency.
It focuses on the cooperative scheduling paradigm, because of its formal and
well-understood semantics. This allows to give a formal definition of equivalence
and to argue about correctness of refactorings at least semi-formally. The paper
contains valuable insights about what can (and what can’t) happen when refac-
toring Active Object programs. It is an important step towards providing better
assistance to developers for refactoring concurrent programs. The authors also
argue convincingly that such assistance is necessary.

4 Conclusion

While we were highly satisfied with the breadth, depth, and quality of the con-
tributions, we do realize that this track can only be a (first) snapshot of what
promises to be an exciting, dynamic, and, most of all, practically relevant, new
direction of research: Automating Software Re-Engineering will certainly shape
our research agenda for years to come. We express the hope that it gets due
attention also in the Software Engineering research community at large.

References

1. Atre, R., Jannesari, A., Wolf, F.: Brief announcement: meeting the challenges of
parallelizing sequential programs. In: Scheideler, C., Hajiaghayi, M.T. (eds.) Pro-
ceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architec-
tures, SPAA, Washington DC, USA, pp. 363–365. ACM (2017)

2. Barbier, F., Cariou, E., Goaer, O.L., Pierre, S.: Software adaptation: classification
and a case study with state chart XML. IEEE Softw. 32(5), 68–76 (2015)

3. Demeyer, S., Parsai, A., Vercammen, S., van Bladel, B., Abdi, M.: Formal ver-
ification of developer tests: a research agenda inspired by mutation testing. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 9–24. Springer,
Cham (2020)

4. Fowler, M.: Refactoring: Improving the Design of Existing Code. Object Technol-
ogy Series. Addison-Wesley, Boston (1999)

5. Hähnle, R., Heydari Tabar, A., Mazaheri, A., Norouzi, M., Steinhöfel, D., Wolf,
F.: Safer parallelization. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS,
vol. 12477, pp. 117–137. Springer, Cham (2020)

8 S. Demeyer et al.

6. Hähnle, R., Huisman, M.: Deductive software verification: from pen-and-paper
proofs to industrial tools. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science. LNCS, vol. 10000, pp. 345–373. Springer, Cham (2019). https://
doi.org/10.1007/978-3-319-91908-9 18

7. Hopkins, R., Jenkins, K.: Eating the IT Elephant: Moving from Greenfield Devel-
opment to Brownfield. IBM Press, Upper Saddle River (2011)

8. Jacobs, M.-C., Mantel, H.: A unifying framework for dynamic monitoring and a
taxonomy of optimizations. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS,
vol. 12477, pp. 72–92. Springer, Cham (2020)

9. Ka I Pun, V., Stolz, V., Gheyi R.: ReAct: refactoring and active object languages.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 138–158.
Springer, Cham (2020)

10. Lochau, M., Luthmann, L., Göttmann, H., Bacher, I.: Parametric timed bisimula-
tion. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 55–71.
Springer, Cham (2020)

11. Orlov, D.: Finding idioms in source code using subtree counting techniques. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 44–54. Springer,
Cham (2020)

12. Weigl, A., Ulbrich, M., Lentzsch, D.: Modular regression verification for reactive
systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp.
25–43. Springer, Cham (2020)

https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18

Formal Verification of Developer Tests:
A Research Agenda Inspired by Mutation

Testing

Serge Demeyer1,2(B) , Ali Parsai1(B) , Sten Vercammen1(B),
Brent van Bladel1, and Mehrdad Abdi1

1 Universiteit Antwerpen, Antwerp, Belgium
{serge.demeyer,ali.parsai,sten.vercammen}@uantwerpen.be

2 Flanders Make vzw, Kortrijk, Belgium

Abstract. With the current emphasis on DevOps, automated software
tests become a necessary ingredient for continuously evolving, high-
quality software systems. This implies that the test code takes a sig-
nificant portion of the complete code base—test to code ratios ranging
from 3:1 to 2:1 are quite common.

We argue that “testware” provides interesting opportunities for for-
mal verification, especially because the system under test may serve as
an oracle to focus the analysis. As an example we describe five com-
mon problems (mainly from the subfield of mutation testing) and how
formal verification may contribute. We deduce a research agenda as an
open invitation for fellow researchers to investigate the peculiarities of
formally verifying testware.

Keywords: Testware · Formal verification · Mutation testing

1 Introduction

DevOps is defined by Bass et al. as “a set of practices intended to reduce the
time between committing a change to a system and the change being placed into
normal production, while ensuring high quality” [6]. The combination of these
practices enables a continuous flow, where the development and operations of
software systems are combined in one seamless (automated) process. This allows
for frequent releases to rapidly respond to customer needs. Tesla, for example,
uploads new software in its cars once every month [30]. Amazon pushes new
updates to production on average every 11.6 s [22].

The key to the DevOps approach is a series of increasingly powerful auto-
mated tests that scrutinise the commits. As a consequence, test code takes a
significant portion of the complete codebase. Several researchers reported that
test code is sometimes larger than the production code under test [13,43,48].
More recently, during a large scale attempt to assess the quality of test code,
Athanasiou et al. reported six systems where test code takes more than 50% of
the complete codebase [5]. Moreover, Stackoverflow posts mention that test to
code ratios between 3:1 and 2:1 are quite common [3].
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 9–24, 2020.
https://doi.org/10.1007/978-3-030-61470-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_2&domain=pdf
http://orcid.org/0000-0002-4463-2945
http://orcid.org/0000-0001-8525-8198
https://doi.org/10.1007/978-3-030-61470-6_2

10 S. Demeyer et al.

Knowing about the popularity of automated tests and the sheer size of result-
ing test suites, software engineers need tools and techniques to identify lurking
faults in the test code. The “testware”, as it is called, should be treated as a
regular software system involving requirements, architecture, design, implemen-
tation, quality assurance, and—last but not least—maintenance [15]. Indeed,
we have witnessed first-hand that not all software projects uphold graceful co-
evolution between production code and test code [48]. This effectively means that
the software is vulnerable for extended periods of time whenever the production
code evolves but the test code does not follow (immediately).

Test code (unit-test code in particular) is written in standard programming
languages, thus amenable to formal verification. It is therefore possible to aug-
ment test code with annotations (invariants, pre-conditions) and verify that cer-
tain properties hold: loop termination, post-conditions, . . . [17,21]. Moreover,
most test code follows a quite consistent structure: the setup-stimulate-verify-
teardown (S-S-V-T) cycle [45]. The purpose of statements within the test code
is therefore rather easy to deduce, making it possible to focus the verification
process on the relevant test slices.

The Reach–Infect–Propagate–Reveal criterion (a.k.a. the RIPR model) pro-
vides a fine-grained framework to assess effective tests, or, conversely, weaknesses
in a test suite [27]. It states that an effective test should first of all Reach the fault,
then Infect the program state, after which it should Propagate as an observable
difference, and eventually Reveal the presence of a fault (probably via an assert
statement).

In this position paper we argue that “testware” provides interesting opportu-
nities for formal verification, especially because the system under test may serve
as an oracle to focus the analysis. As an example we describe five common prob-
lems (mainly from the subfield of mutation testing) and how formal verification
may contribute. We deduce a research agenda as an open invitation for fellow
researchers to investigate the peculiarities of formally verifying testware.

The remainder of this paper is organised as follows. Section 2, provides the
necessary background information on formal verification and mutation testing.
Section 3 goes over the five items in the research agenda explaining the prob-
lem and how formal verification of the test code could alleviate the problem.
Section 4 list a few papers which investigated how formal verification could help
in analysing test programs. We conclude with an open invitation to the commu-
nity in Sect. 5.

Formal Verification of Developer Tests: A Research Agenda 11

2 Background

2.1 Formal Specification and Verification

Formal verification and formal specification are two complementary steps, used
when adopting formal methods in software engineering [18]. During formal spec-
ification one rigorously specifies what a software system ought to do, and after-
wards, during formal verification, one uses mathematical proofs to show that the
system indeed does so. It should come as no surprise that the two steps go hand
in hand, as illustrated by the discovery of a bug in the JDK linked list [20]. In
this paper we restrict ourselves to a particular kind of formal verification—the
ones based on a tool tightly integrated with a normal programming language—
exemplified by KeY [17] and VeriFast [21]. These tools insert special program
statements (pragmas, annotations) into the code to express properties by means
of invariants, pre-conditions, and post-conditions. A series of mathematical the-
orem provers are then used to show that these properties indeed hold.

2.2 Mutation Testing

Mutation testing (also called mutation analysis—within this text the terms are
used interchangeably) is the state-of-the-art technique for evaluating the fault-
detection capability of a test suite [23]. The technique deliberately injects faults
into the code and counts how many of them are caught by the test suite. Within
academic circles, mutation testing is acknowledged as the most effective tech-
nique for a fully automated assessment of the strength of a test suite. The most
recent systematic literature survey by Papadakis et al. revealed more than 400
scientific articles between 2007 and 2016 investigating mutation testing from var-
ious angles [35]. Despite this impressive body of academic work, the technique
is seldom adopted in an industrial setting because it comes with a tremendous
performance overhead: each mutant must be compiled and tested separately [37].
During one of our experiments with an industrial codebase, we witnessed 48 h of
mutation testing time on a test suite comprising 272 unit tests and 5,258 lines of
test code for a system under test comprising 48,873 lines of production code [46].

Example. Throughout this paper, we will use the C++ code in Fig. 1 as a
running example. It scans a vector from back to front, looking for an element.
Upon finding the element, it returns its index (base zero) and −1 if the element
is not found.

Now consider the test suite in Fig. 2. The first test (emptyVector, lines
1–3) checks for the exceptional case of an empty vector. The second test
(doubleOccurrence, lines 5–7), verifies the happy-day scenario: we look for an
element in the vector and it should be found on position 3. This is a very rel-
evant test because it actually looks for an element which appears two times in
the vector and it correctly asserts that it should return the position of the last
occurrence. The third test (noOccurrence, lines 9–11), checks what happens
when we look for an element that is not in the vector, in which case it should

12 S. Demeyer et al.

Fig. 1. C++ code searching for an element in a vector starting at the end

return −1. Executing the test suite shows that all 3 tests pass. When calculating
the code coverage, we even obtain a 100% statement, line and branch coverage.

Fig. 2. Test suite for the findLast in Fig. 1

Terminology. As with every field of active research, the terminology is exten-
sive. Below we list the most important terms readers should be familiar with.

Mutation Operators. Mutation testing mutates the program under test by arti-
ficially injecting a fault based on one of the known mutation operators. A muta-
tion operator is a source code transformation which introduces a change into
the program under test. Typical examples are replacing a conditional opera-
tor (>= into <) or an arithmetic operator (+ into −). The first set of mutation
operators were reported in King et al. [24]. Afterwards, special purpose mutation
operators have been proposed to exercise novel language constructs, such as Java
null-type errors [36] or C++11/14 lambda expressions and move semantics [38].

Killed and Survived (Live) Mutants. After generating the defective version of
the software, the mutant is passed onto the test suite. If a test fails, the mutant
is marked as killed (Killed Mutant). If all tests pass, the mutant is marked as
survived or live (Survived Mutant).

Formal Verification of Developer Tests: A Research Agenda 13

Consider the mutated example in Fig. 3, where we apply a mutation operator
named “Relational Operator Replacement” (ROR). On line 3, >= is replaced by <
and the complete test suite is executed. One test fails so the mutant is considered
killed; the test suite was strong enough to detect this mutant.

Fig. 3. Killed mutant in findLast from Fig. 1

We again apply a “Relational Operator Replacement” (ROR), this time
replacing >= by > and arriving at the situation in Fig. 4. If we execute the com-
plete test suite, all tests pass so the test suite needs to be strengthened to detect
this mutant.

Examining, why this mutant is not detected shows that the test suite fails
to check for an important boundary condition: looking for an element which
appears on the first position in the vector. If we add an extra test (see Fig. 5)
the test suite now detects the mutant (1 test fails, occurrenceOnBoundary).
Now it is now capable of killing the mutant.

Mutation Coverage. The whole mutation analysis ultimately results in a score
known as the mutation coverage: the number of mutants killed divided by the
total number of non-equivalent mutants injected. A test suite is said to achieve
full mutation test adequacy whenever it can kill all mutants, thus reaching a
mutation coverage of 100%. Such test suite is called a mutation-adequate test
suite.

Reach–Infect–Propagate–Reveal (RIPR). The Reach–Infect–Propagate–Reveal
criterion (a.k.a. the RIPR model) provides a fine-grained framework to assess
weaknesses in a test suite which are conveniently revealed by mutation test-
ing [27]. It states that an effective test should first of all Reach the fault, then
Infect the program state, after which it should Propagate as an observable dif-
ference, and eventually Reveal the presence of a fault (probably via an assert
statement but this depends on the test infrastructure).

14 S. Demeyer et al.

Fig. 4. Survived mutant in findLast in Fig. 1

Fig. 5. Strengtened test suite for findLast

Consider the test suite in Fig. 2 and Fig. 5 together with the mutant that
exposed the weakness in the test suite in Fig. 4. The first test (emptyVector,
lines 1–3) does not even reach the fault injected on line 2. The second test
(doubleOccurrence, lines 5–7), reaches the fault because it executes the faulty
i > 0 condition, but does not infect the program state; so it cannot propagate
nor reveal. The third test (noOccurrence, lines 9–11), infects the program state
because it actually creates a state where the loop counter should have become
0, yet this is never propagated hence not revealed. It is only the fourth test
(occurrenceOnBoundary, lines 13–15) which effectively infects the program state
(i does not become 0), propagates to the output (returns −1) where it is revealed
by the assert statement (expected 0).

Invalid Mutants. Mutation operators introduce syntactic changes, hence may
cause compilation errors in the process. A typical example is the arithmetic
mutation operator which changes a ‘+’ into a ‘−’. This works for numbers but
does not make sense when applied to the C++ string concatenation operator.
If the compiler cannot compile the mutant for any reason, the mutant is consid-
ered invalid and is not incorporated into the mutation coverage.

Formal Verification of Developer Tests: A Research Agenda 15

Redundant (“Subsumed”) Mutants. Sometimes there is an overlap in which tests
kill which mutants, hence some mutants may be considered redundant. Redun-
dant mutants are undesirable, since they waste resources and add no value to
the process. In addition, they inflate the mutation score because often it is easy
to kill many redundant mutants just by adding a single test case. To express this
redundancy more precisely, the mutation testing community defined the concept
of subsuming mutants.

Take for instance the mutant in Fig. 6, which replaces x[i] == y with x[i]
!= y on line 4. It is an easy to kill mutant as it is killed by three tests (doubleOc-
currence, noOccurrence and occurrenceOnBoundary). The mutant in Fig. 6 is
therefore said to be subsumed by the mutant in Fig. 3. Any test in our test suite
which kills the latter mutant (difficult) one will also kill the former (easy) one.

Fig. 6. Redundant mutant for findLast

Equivalent Mutants. Some mutants do not change the semantics of the program,
i.e. the output of the mutant is the same as the original program for any possible
input. Therefore, no test case can differentiate between a so-called “equivalent
mutant” and the original program. Equivalent mutants are not incorporated
into the mutation coverage. Unfortunately, the detection of equivalent mutants
is undecidable due to the halting problem. Therefore, it is left to the software
engineer to manually weed out equivalent mutants.

Consider again the running example, now in Fig. 7. This time we apply
the Relational Operator Replacement (ROR) on line 2, replacing the == 0 with
<= 0. Executing the test suite shows that all test pass so at first glance we have
a live mutant. However, a deeper analysis shows that since the size of a vector
is always positive, the value of == 0 will always be the same as <= 0. So there

16 S. Demeyer et al.

is no input we can provide to the program under test to kill this mutant. Thus,
this is an equivalent mutant.

Fig. 7. Equivalent mutant of findLast from Fig. 1

3 Research Agenda

3.1 Equivalent Mutants

Equivalent mutants have been heavily studied in the literature as they may
induce heavy overhead on test engineers aiming for 100% mutation coverage [31].
The most pragmatic approach so far has been to compare the generated (byte)
code of the mutated program against the original [34]. Due to compiler opti-
mizations the syntactic differences between the original and mutated program
may disappear and then they are considered trivially equivalent. This allows to
identify the easy cases, however, for the difficult ones, further analysis is required.

A paper by Offutt et al. illustrates how program analysis can help to identify
equivalent mutants by demonstrating that they belong to an infeasible path [33].
The authors argue that a mutant is equivalent if the injected mutant lies on
an infeasible path, thus (according to the RIPR model) the injected mutant can
never propagate to the assert statements that reveals it.

Research Agenda. We would even go one step further and use program verifica-
tion to prove that a mutant is equivalent to the original. And if not, the counter
example should provide us with an extra test that illustrate where they may
differ, hence would strengthen the test suite even further.

Formal Verification of Developer Tests: A Research Agenda 17

Fig. 8. Inserting post-conditions to prove equivalence of mutant of findLast in Fig. 1

To formally verify that a mutant is indeed equivalent we create a copy of
the mutated function. Lines 1–3 and lines 9–10 in Fig. 8 show two version of
findLast that can thus be tested by the same test suite. Then we rely on code
coverage (which is easy to obtain) or program slicing to identify the assert state-
ment in the unit tests that are affected. Inserting a post-condition on the assert
expressions would allow to show that the mutant can never be revealed, thus is
equivalent. Line 15 in Fig. 8 added such a post-condition to an adapted version
of the emptyVector test. It compares the result of the original method under
test (findLast) with the mutated one (findLastEquivalent). If the program
verifier shows that this post-condition actually holds, then we have shown that
this is indeed an equivalent mutant. If not, the program verifier should give us
a counter example which corresponds to a different execution path enforced by
the mutant. This then provides a concrete execution path to create an additional
test that highlights the difference.

3.2 Infinite Loops

Some mutants induce an infinite loop into the program under test. Therefore,
most mutation tools abort the program under test when it runs an order of
magnitude longer than expected and mark the corresponding mutant as “killed”.
Note that this assumption is not always correct, as in rare occasions the mutant
can take much longer to be analysed due to other circumstances. In such cases,
the mutant should be counted as “survived”, but automatic detection of these
scenarios is undecidable due to the halting problem.

18 S. Demeyer et al.

Research Agenda. To formally verify that a mutant is indeed causing an infinite
loop, we would first do the mutation analysis as normal, thus aborting the pro-
gram when it runs an order of magnitude longer than expected. However, we
do not yet mark the mutant as “killed” but instead put it in a special category
“further analysis required”. Next we would insert a trivial post-condition right
after the injected mutant and use program verification to show that the loop
before never terminates.

3.3 Flaky Tests

Mutation testing assumes tests to be completely deterministic: every test run
should produce the exact same output. However, there is the phenomenon of
flaky tests: tests whose outcome can non-deterministically differ even when run
on the same code under test [29]. When a test suite contains flaky tests, the
mutation analysis is unpredictable, as some mutants might be killed when in
fact the tests are failing due to flakiness and not the injected fault itself.

Shi et al. reported the first technique to tackle flaky tests during a mutation
analysis [41]. When running each mutant-test pair, they keep track of whether
the mutant is covered or not. When a mutant is not covered by a test, they mark
the status as “unknown” and perform further analysis. Essentially they rerun
the test suite multiple times to see whether the test coverage indeed changes.

Research Agenda. To formally verify that a mutant is suffering from flaky tests,
we would extend the process described by Shi et al. with an extra step [41]. Once
a potentially flaky test is identified, we would insert a trivial post-condition at
the end of the test case and use program verification to show that the post-
condition is not necessarily satisfied. Ideally, the verification would also provide
a counter example, highlighting the program statements that cause the flaky
behaviour.

3.4 Test Clones

When two fragments of code are either exactly the same or similar to each other,
we call them a code clone. A code clone is also synonymous with a software clone
or duplicated code, and these terms can be used interchangeably. Code clones
can be differentiated based on their degree of similarity. First, code clones can
be divided into syntactic clones and semantic clones. Syntactic clones are code
clones that are syntactically similar, and are further divided in three types:
Type I, Type II, and Type III clones. Type I clones are exactly the same, only
allowing differences in comments, whitespaces, and indentation. Type II clones

Formal Verification of Developer Tests: A Research Agenda 19

are a little less strict than Type I clones as they also allow differences in variable
names and literal values. Finally, Type III clones are even less strict than Type II
clones. They also allow for lines of code to be added or removed in the clone
fragment. Note that it is not required for these types of clones to be functionally
similar. Semantic clones on the other hand are code clones that are semantically
similar without necessarily being syntactically similar. They are often called
Type IV clones and are the most challenging clones to detect.

A lot of research has already been performed on software clones. In 2007,
Koschke performed a survey of the literature on software clones [26]. This was fol-
lowed in 2009 by him and his colleagues (Roy et al.) with an extensive compari-
son and evaluation of all code clone detection techniques and tools [40]. Svajlenko
et al. manually curated a data set containing six million inter-project clones (Type
I, II, III, and IV), including various strengths of Type III similarity (strong, mod-
erate, weak) [42]. Over the years, a lot of research has been performed to further
investigate the prevalence, characteristics, impact, and detection methods of soft-
ware clones. However, most of this research focuses on production code; test code
is rarely ever considered separately [26,39,40].

In 2018, Hasanain et al. performed an industrial case study to better under-
stand code clones (i.e. duplicated code) in test code. They used NiCad to detect
clones on a large test suite provided by Ericsson and discovered that 49% (in
terms of LOC) of the entire test code are clones [19]. In a follow-up study our
lab confirmed the prevalence of clones in test code [8]. We observed between
23% and 29% test code duplication in three well-tested open source systems,
which is significantly more than the average amount of clones found in produc-
tion code (between 10% and 15%). Worse, we discovered that most of the clone
detection tools suffer from false negatives (NiCad [10] = 83%, CPD–PMD [1]
= 84%, iClones [16] = 21%, TCORE [7] = 65%), which leaves ample room for
improvement.

Research Agenda. Mutation analysis can give an indication on duplicated test
logic. By carefully analysing subsumption relationships between mutants, we
can infer which tests are likely to target the same program logic, thus being
so-called semantic clones, also known as Type IV clones. We would consider
them candidate clones, likely to be part of the aforementioned false negatives. By
inserting invariants at relevant locations, formal verification may give indications
on why certain test clones go undetected.

3.5 Test Amplification

Test amplification is the act of automatically transforming a manually written
unit-test to exercise boundary conditions [11]. In that sense, test amplification
is a special kind of test generation: it relies on test cases previously written by
developers which it tries to improve.

20 S. Demeyer et al.

DSpot is an example of a test amplification tool for Java projects [12] which
has been replicated for Pharo/Smalltalk within our lab under the name of
SmallAmp [2]. These tools combine two techniques: (i) evolutionary test case
generation or Input Amplification [44], and (ii) regression oracle generation or
Assert Amplification [47]. They iteratively create extra test cases by changing
the setup and the assertions, resulting in a new and larger set of test cases. The
tools rely on genetic algorithms to select tests which increase the mutation cov-
erage, discarding others. This process is performed for a fixed number of steps
which eventually results in a new test suite, with a better mutation coverage
than the initial one, thus covering more corner cases. In that sense, test amplifi-
cation is a brute force approach which relies on machine learning techniques to
select an optimal solution.

Research Agenda. Formal verification may be able to complement brute force test
amplification. In a recent proof-of-concept we demonstrated that it is possible to
amplify test cases with extra asserts for the easy-to-kill mutants [28]. The idea is
inspired by dynamic program analysis and the RIPR model. We build a complete
program trace of both the normal test execution and the mutated one. We then
associate easy-to-kill mutants with test cases that reach, infect, propagate, yet
do not reveal the fault. These are cases of missing assert statements and the
tool prototype is capable of suggesting an assert statement to be added, even
providing concrete values for the assert expressions. The difficult-to-kill mutants
however require an in-depth investigation to understand why the fault does not
infect the program state or why it does not propagate to the output. That
is where formal verification may help. By adding a post-condition right after
the infected statement the formal verification tool should be able to tell us
whether the program state gets infected and whether the fault gets propagated.
Inspecting the counter-examples generated by the theorem prover, we should be
able to come up with extra statements in the test which would stimulate the
unit under test to infect and propagate the fault.

4 Related Work

The relationship between mutation testing and formal verification has been
explored before. Aichernig et al. [4] argue that tests can be generated from
formally verified requirements, using mutation testing to supervise where to
generate additional test cases. To avoid difficult to maintain test suites (such as
cloned test code discussed in Sect. 3.4), they introduce the concept of abstract
test cases which are refined into concrete ones and regenerated when appropri-
ate. In a similar vein, Brillout et al. [9] generate test cases from Simulink models
achieving a high mutation coverage. Nevertheless, all these approaches take the

Formal Verification of Developer Tests: A Research Agenda 21

perspective of the system under test specified using some kind of formal model
of its behaviour and using mutation testing to create a strong test suite.

We argue that the opposite angle is equally relevant: that one should apply
formal verification on the test code itself. This angle remains largely unexplored,
except for the problem of equivalent mutants (see Sect. 3.1). There, several
authors already confirmed that formal verification indeed may help to detect
equivalent mutants. Kintis et al. [25] exploited patterns of data flow to identify
mutants that are equivalent to the original program for a specific subset of
paths. Devroey et al. [14] assert that for finite behavioural models, the equivalent
mutant problem can be transformed to the language equivalence problem of non-
deterministic finite automata. Marcozzi et al. [32] attempt to prove the validity
of logical assertions in the code under test. The technique is implemented in a
tool that relies on weakest-precondition calculus and SMT solving for proving
the assertions.

5 Conclusion

In this position paper we argue that “testware” provides interesting opportuni-
ties for formal verification, especially because the system-under-test may serve
as an oracle to focus the analysis and reduce the search space. We described
five common problems: (1) Equivalent Mutants; (2) Infinite Loops; (3) Flaky
tests; (4) Test Clones; (5) Test Amplification; and explained how formal verifi-
cation of the test-code could partially alleviate them. This results in a research
agenda which serves as on open invitation for fellow researchers to investigate
the peculiarities of formally analysing testware.

References

1. Finding duplicated code with CPD (2020). https://pmd.github.io/latest/pmd
userdocs cpd.html. Accessed July 2020

2. Abdi, M., Rocha, H., Demeyer, S.: Test amplification in the pharo smalltalk ecosys-
tem. In: Proceedings IWST 2019 International Workshop on Smalltalk Technolo-
gies. ESUG (2019)

3. Agibalov, A.: What is a normal “functional lines of code” to “test lines of code”
ratio? (2015). https://softwareengineering.stackexchange.com/questions/156883/.
Accessed Aug 2020

4. Aichernig, B.K., Lorber, F., Tiran, S.: Formal test-driven development with verified
test cases. In: Proceedings MODELSWARD 2014 2nd International Conference on
Model-Driven Engineering and Software Development, pp. 626–635 (2014)

5. Athanasiou, D., Nugroho, A., Visser, J., Zaidman, A.: Test code quality and its
relation to issue handling performance. IEEE Trans. Softw. Eng. 40(11), 1100–1125
(2014). https://doi.org/10.1109/TSE.2014.2342227

6. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Longman Publishing Co. Inc., Boston (2015)

7. van Bladel, B., Demeyer, S.: A novel approach for detecting Type-IV clones in test
code. In: Proceedings IWSC 2019 IEEE 13th International Workshop on Software
Clones, pp. 102–118. IEEE (2019). https://doi.org/10.1109/IWSC.2019.8665855

https://pmd.github.io/latest/pmd_userdocs_cpd.html
https://pmd.github.io/latest/pmd_userdocs_cpd.html
https://softwareengineering.stackexchange.com/questions/156883/
https://doi.org/10.1109/TSE.2014.2342227
https://doi.org/10.1109/IWSC.2019.8665855

22 S. Demeyer et al.

8. van Bladel, B., Demeyer, S.: Clone detection in test code: an empirical evaluation.
In: Proceedings SANER 2020 International Conference on Software Analysis, Evo-
lution and Reengineering (SANER), pp. 492–500. IEEE (2020). https://doi.org/
10.1109/SANER48275.2020.9054798

9. Brillout, A., et al.: Mutation-based test case generation for simulink models. In:
de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009.
LNCS, vol. 6286, pp. 208–227. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17071-3 11

10. Cordy, J.R., Roy, C.K.: The NiCad clone detector. In: 2011 IEEE 19th International
Conference on Program Comprehension, pp. 219–220. IEEE (2011)

11. Danglot, B., Vera-Perez, O., Yu, Z., Zaidman, A., Monperrus, M., Baudry, B.:
A snowballing literature study on test amplification. J. Syst. Softw. 157, 110398
(2019)

12. Danglot, B., Vera-Pérez, O.L., Baudry, B., Monperrus, M.: Automatic test
improvement with dspot: a study with ten mature open-source projects. Empirical
Softw. Eng. 24, 2603–2635 (2019)

13. Daniel, B., Jagannath, V., Dig, D., Marinov, D.: Reassert: Suggesting repairs for
broken unit tests. In: Proceedings ASE 2009 International Conference on Auto-
mated Software Engineering, pp. 433–444. IEEE CS (2009). https://doi.org/10.
1109/ASE.2009.17

14. Devroey, X., Perrouin, G., Papadakis, M., Legay, A., Schobbens, P.Y., Heymans, P.:
Model-based mutant equivalence detection using automata language equivalence
and simulations. J. Syst. Softw. 141, 1–15 (2018). https://doi.org/10.1016/j.jss.
2018.03.010

15. Fewster, M., Graham, D.: Software Test Automation: Effective Use of Test Execu-
tion Tools. ACM Press Series. Addison-Wesley (1999)

16. Göde, N., Koschke, R.: Incremental clone detection. In: 2009 13th European Con-
ference on Software Maintenance and Reengineering, pp. 219–228. IEEE (2009)

17. Hähnle, R.: Quo vadis formal verification? In: Ahrendt, W., Beckert, B., Bubel, R.,
Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.) Deductive Software Verification - The
KeY Book: From Theory to Practice, pp. 1–19. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49812-6 1

18. Hall, A.: Seven myths of formal methods. IEEE Softw. 7(5), 11–19 (1990). https://
doi.org/10.1109/52.57887

19. Hasanain, W., Labiche, Y., Eldh, S.: An analysis of complex industrial test code
using clone analysis. In: Proceedings QRS 2018 IEEE International Conference on
Software Quality, Reliability and Security, pp. 482–489. IEEE (2018). https://doi.
org/10.1109/QRS.2018.00061

20. Hiep, H.D.A., Maathuis, O., Bian, J., de Boer, F.S., van Eekelen, M., de Gouw, S.:
Verifying openjdk’s linkedlist using key. In: Biere, A., Parker, D. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems, pp. 217–234. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45237-7 13

21. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 4

22. Jenkins, J.: Velocity culture. In: Keynote Address at the Velocity 2011 Conference
(2011)

https://doi.org/10.1109/SANER48275.2020.9054798
https://doi.org/10.1109/SANER48275.2020.9054798
https://doi.org/10.1007/978-3-642-17071-3_11
https://doi.org/10.1007/978-3-642-17071-3_11
https://doi.org/10.1109/ASE.2009.17
https://doi.org/10.1109/ASE.2009.17
https://doi.org/10.1016/j.jss.2018.03.010
https://doi.org/10.1016/j.jss.2018.03.010
https://doi.org/10.1007/978-3-319-49812-6_1
https://doi.org/10.1007/978-3-319-49812-6_1
https://doi.org/10.1109/52.57887
https://doi.org/10.1109/52.57887
https://doi.org/10.1109/QRS.2018.00061
https://doi.org/10.1109/QRS.2018.00061
https://doi.org/10.1007/978-3-030-45237-7_13
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4

Formal Verification of Developer Tests: A Research Agenda 23

23. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011). https://doi.org/10.1109/
TSE.2010.62

24. King, K.N., Offutt, A.J.: A fortran language system for mutation-based software
testing. Softw. Pract. Exp. 21(7), 685–718 (1991). https://doi.org/10.1002/spe.
4380210704

25. Kintis, M., Malevris, N.: MEDIC: a static analysis framework for equivalent mutant
identification. Inf. Softw. Technol. 68, 1–17 (2015). https://doi.org/10.1016/j.
infsof.2015.07.009

26. Koschke, R.: Survey of research on software clones. In: Dagstuhl Seminar Proceed-
ings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2007)

27. Li, N., Offutt, J.: Test oracle strategies for model-based testing. IEEE Trans. Softw.
Eng. 43(4), 372–395 (2016). https://doi.org/10.1109/TSE.2016.2597136

28. Lu, Z.X., Vercammen, S., Demeyer, S.: Semi-automatic test case expansion for
mutation testing. In: Proceedings VST 2020 IEEE Workshop on Validation, Anal-
ysis and Evolution of Software Tests, pp. 1–7 (2020). https://doi.org/10.1109/
VST50071.2020.9051637

29. Luo, Q., Hariri, F., Eloussi, L., Marinov, D.: An empirical analysis of flaky tests. In:
Proceedings FSE 2014 22nd ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, pp. 643–453. Association for Computing Machinery,
New York (2014). https://doi.org/10.1145/2635868.2635920

30. Rob, M.: Everything you need to know about tesla software updates (2014).
https://www.teslarati.com/everything-need-to-know-tesla-software-updates/.
Accessed May 2020

31. Madeyski, L., Orzeszyna, W., Torkar, R., Jozala, M.: Overcoming the equivalent
mutant problem: a systematic literature review and a comparative experiment of
second order mutation. IEEE Trans. Softw. Eng. 40(1), 23–42 (2014). https://doi.
org/10.1109/TSE.2013.44

32. Marcozzi, M., Bardin, S., Kosmatov, N., Papadakis, M., Prevosto, V., Correnson,
L.: Time to clean your test objectives. In: Proceedings ICSE 2018 40th Interna-
tional Conference on Software Engineering, pp. 456–467. Association for Comput-
ing Machinery, New York (2018). https://doi.org/10.1145/3180155.3180191

33. Offutt, A.J., Pan, J.: Automatically detecting equivalent mutants and infeasible
paths. Softw. Test. Verification Reliab. 7(3), 165–192 (1997). https://doi.org/10.
1002/(SICI)1099-1689(199709)7:3〈165::AID-STVR143〉3.0.CO;2-U

34. Papadakis, M., Jia, Y., Harman, M., Le Traon, Y.: Trivial compiler equivalence: a
large scale empirical study of a simple, fast and effective equivalent mutant detec-
tion technique. In: Proceedings of the 37th International Conference on Software
Engineering, Piscataway, NJ, USA, vol. 1, pp. 936–946. IEEE Press (2015). https://
doi.org/10.1109/ICSE.2015.103

35. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y.L., Harman, M.: Muta-
tion testing advances: an analysis and survey. Adv. Comput. 112, 275–378 (2019).
https://doi.org/10.1016/bs.adcom.2018.03.015

36. Parsai, A., Demeyer, S.: Do null-type mutation operators help prevent null-type
faults? In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOFSEM
2019. LNCS, vol. 11376, pp. 419–434. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-10801-4 33

37. Parsai, A., Demeyer, S.: Comparing mutation coverage against branch coverage
in an industrial setting. Int. J. Softw. Tools Technol. Transfer (2020). https://doi.
org/10.1007/s10009-020-00567-y

https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1002/spe.4380210704
https://doi.org/10.1002/spe.4380210704
https://doi.org/10.1016/j.infsof.2015.07.009
https://doi.org/10.1016/j.infsof.2015.07.009
https://doi.org/10.1109/TSE.2016.2597136
https://doi.org/10.1109/VST50071.2020.9051637
https://doi.org/10.1109/VST50071.2020.9051637
https://doi.org/10.1145/2635868.2635920
https://www.teslarati.com/everything-need-to-know-tesla-software-updates/
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1145/3180155.3180191
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1007/978-3-030-10801-4_33
https://doi.org/10.1007/978-3-030-10801-4_33
https://doi.org/10.1007/s10009-020-00567-y
https://doi.org/10.1007/s10009-020-00567-y

24 S. Demeyer et al.

38. Parsai, A., Demeyer, S., De Busser, S.: C++11/14 mutation operators based on
common fault patterns. In: Medina-Bulo, I., Merayo, M.G., Hierons, R. (eds.)
ICTSS 2018. LNCS, vol. 11146, pp. 102–118. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99927-2 9

39. Roy, C.K., Cordy, J.R.: Benchmarks for software clone detection: a ten-year ret-
rospective. In: 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (JSS), pp. 26–37. IEEE (2018)

40. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of code clone
detection techniques and tools: a qualitative approach. Sci. Comput. Program.
74(7), 470–495 (2009)

41. Shi, A., Bell, J., Marinov, D.: Mitigating the effects of flaky tests on mutation
testing. In: Proceedings ISSTA 2019 the 28th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, pp. 112–122. Association for Computing
Machinery, New York (2019). https://doi.org/10.1145/3293882.3330568

42. Svajlenko, J., Islam, J.F., Keivanloo, I., Roy, C.K., Mia, M.M.: Towards a big
data curated benchmark of inter-project code clones. In: 2014 IEEE International
Conference on Software Maintenance and Evolution, pp. 476–480 (2014)

43. Tillmann, N., Schulte, W.: Unit tests reloaded: parameterized unit testing with
symbolic execution. IEEE Softw. 23(4) (2006). https://doi.org/10.1109/MS.2006.
117

44. Tonella, P.: Evolutionary testing of classes. In: Proceedings ISSTA 2004 ACM
SIGSOFT International Symposium on Software Testing and Analysis, pp. 119–
128. Association for Computing Machinery, New York (2004). https://doi.org/10.
1145/1007512.1007528

45. Van Rompaey, B., Du Bois, B., Demeyer, S., Rieger, M.: On the detection of test
smells: a metrics-based approach for general fixture and eager test. IEEE Trans.
Softw. Eng. 33(12), 800–817 (2007). https://doi.org/10.1109/TSE.2007.70745

46. Vercammen, S., Demeyer, S., Borg, M., Eldh, S.: Speeding up mutation testing via
the cloud: lessons learned for further optimisations. In: Proceedings ESEM 2018
12th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, pp. 26:1–26:9. ACM, New York (2018). https://doi.org/10.1145/
3239235.3240506

47. Xie, T.: Augmenting automatically generated unit-test suites with regression ora-
cle checking. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 380–403.
Springer, Heidelberg (2006). https://doi.org/10.1007/11785477 23

48. Zaidman, A., Rompaey, B.V., van Deursen, A., Demeyer, S.: Studying the co-
evolution of production and test code in open source and industrial developer test
processes through repository mining. Int. J. Empirical Softw. Eng. 16(3), 325–364
(2011). https://doi.org/10.1007/s10664-010-9143-7

https://doi.org/10.1007/978-3-319-99927-2_9
https://doi.org/10.1007/978-3-319-99927-2_9
https://doi.org/10.1145/3293882.3330568
https://doi.org/10.1109/MS.2006.117
https://doi.org/10.1109/MS.2006.117
https://doi.org/10.1145/1007512.1007528
https://doi.org/10.1145/1007512.1007528
https://doi.org/10.1109/TSE.2007.70745
https://doi.org/10.1145/3239235.3240506
https://doi.org/10.1145/3239235.3240506
https://doi.org/10.1007/11785477_23
https://doi.org/10.1007/s10664-010-9143-7

Modular Regression Verification
for Reactive Systems

Alexander Weigl(B), Mattias Ulbrich, and Daniel Lentzsch

Karlsruhe Institute of Technology, Karlsruhe, Germany
weigl@kit.edu

Abstract. Reactive software is often deployed in long-running systems
with high dependability requirements. Despite their safety- and mission-
critical use, their functionalities must occasionally be adapted, for exam-
ple to support new features or regulations. But software evolution bears
the risk of introducing new malfunctions. Regression verification helps
preventing the introduction of unintended, faulty behaviour.

In this paper we present a novel approach for modular regression
verification proofs for reactive systems based on the idea of relational
regression verification contracts. The approach allows the decomposi-
tion of a larger regression verification proof into smaller proofs on its
subcomponents. We embedded the decomposition rule in a new algo-
rithm for regression verification, which orchestrates several light- and
heavyweight techniques. We implemented our approach for software used
by Programmable Logic Controllers (PLC) written in Structured Text
(IEC611131-3) and show the potential of the approach with selected sce-
narios of a Pick-and-Place-Unit case study.

1 Introduction

Reactive software driving technical systems is often in operation for long periods
of time, sometimes for many years or even decades. Guarantees regarding its
correctness must be ensured over the entire system lifetime, and the software
must go along and maintain quality through all hardware and software evolution
steps. To avert malfunctions which may cause harm to humans or substantial
financial losses, such reactive software is typically very thoroughly tested before
deployment. In long-living systems, the confidence that the system’s control
software behaves correctly increases also with its successful operation time, as
experience of its behaviour are gathered in various configurations and situations.

When software changes during an evolution step, thorough testing helps to
identify software flaws and to increase confidence in the correctness of the system.
While this is the standard in the industry, it has drawbacks: A test suite can
never cover all possible scenarios, and confidence gained by experience with an
old software revision cannot be transferred to a new revision.

Research supported by the DFG in Priority Programme SPP1593: Design for Future –
Managed Software Evolution (BE 2334/7-2, and UL 433/1-2).

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 25–43, 2020.
https://doi.org/10.1007/978-3-030-61470-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_3

26 A. Weigl et al.

A solution to this problem is regression verification: Instead of using two
separate specifications for two revisions, the two revisions are compared directly
to each other, where the old revision serves as a functional specification for the
new one. The goal is then to prove equivalence, or a different specified relation,
between both revisions. To this end, both software revisions are transformed into
a logical representation, and then the combination is passed to a model checker
for verification [1]. In previous work, we have shown that the resulting proof
obligations can be discharged in some cases, but that the size of the system may
make the verification approach suffer from the potential problem of state space
explosion. Even for a simple case study with less complexity than real-world
scenarios, proving equivalence with the approach described above took up to a
day of computing time.

As a response to this challenge, this paper presents a technique to modularise
regression verification by decomposing the verification condition into smaller
subgoals which can be regression-verified individually. The novelty in comparison
to existing model checking modularisation approaches is not that individual
programs are decomposed into manageable fragments, but that the programs
are split into pairwise blocks combined to be verified relationally.

The modular verification approach is embedded into a new regression veri-
fication algorithm which combines different lightweight (syntactical) and more
heavyweight regression verification analyses.

Modularising the verification has multiple gains: Firstly, it reduces the state
space of proof obligations, allowing them to be more feasible for model checking.
Moreover, it introduces a locality principle: Parts of a program not touched at
all by a refactoring can be factored out and equivalence be proven by simpler,
syntactical techniques. For modules that occur more often, the verification effort
can also be reduced since they only need to be analysed once.

A characteristic of reactive systems is that their code is executed periodically
to react to changes in their application environment. Software for reactive sys-
tems is usually limited in the used (or allowed) programmatic constructs because
they have to ensure real-time guarantees with deterministic runtimes. In many
cases this means that there are no unbounded loops (or unconstrained recur-
sion) in reactive systems software which allows us to unroll the code fully (thus
eliminating the need for loop invariants or bounded analyses).

Contribution. In this paper, we present a sound modularisation technique for
the regression verification of reactive system software; it requires that relational
specifications of subroutines are given (by the user). Moreover, we present a new
algorithm for regression verification which orchestrates a collection of diverse
heavy- and lightweight verification techniques making the new modular analysis
more powerful in practice. We implemented the algorithm for PLC software,
and demonstrate the feasibility of our approach on the Pick-and-Place-Unit
(PPU) [12] – a community demonstrator for showing the evolution of manu-
facturing systems.

Modular Regression Verification for Reactive Systems 27

Outline. In Sect. 2 we present the foundations of regression verification for reac-
tive systems which is the basis for the modularisation approach. The approach
itself is presented in Sect. 3 along with a formal definition on a basic program
structure and specification. The approach is embedded into a new verification
algorithm which we present in Sect. 4. The evaluation on the PPU and its results
are discussed in Sect. 5.

2 Foundations

2.1 Regression Verification

Throughout their lifetime, systems have to adapt to new situations (bug fixes,
hardware replacements, new function requirements, etc.) and many system
changes will also incorporate changes in the software. Each software modification
potentially introduces incorrect behaviour as a side-effect. To avoid the effect,
regression tests are widely used in the industry as they yield good results and
can easily be extended to new functionality of the software. However, software
testing cannot guarantee correct behaviour since there will always be scenarios
which are not covered by the test suite. Functional verification can help over-
coming this problem: A formal specification describes the expected behaviour of
the software and a verification system analyses whether the specification holds
in all possible scenarios. But, the specification must be user-provided and is, in
most cases, not trivial to find, especially when developers are less experienced
with formal specification. For the verification in an evolutionary environment,
two specifications are required: one for the existing software revision, and one
for the new revision.

In regression verification, instead of using two specifications for two revisions,
both revisions are compared directly to each other, and the old software revision
serves as a functional specification for the new one. However, the old revision can
only partially specify the new one since only those scenarios (input sequences)
where the behaviour should not change can be checked for equivalence. The
input sequences, for which the behaviour has been intentionally changed, need
to be verified separately using functional verification or testing. Regression veri-
fication does not necessarily imply the software behaves correctly for all inputs,
it rather says that the software has the same behaviour as the previous revision
– including all potentially undiscovered errors. The confidence and trust gained
by experience in the earlier revision is thus transferred to the new revision, as
has been elaborated in [4].

2.2 Programmable Logic Controllers

The techniques in this paper are applicable to all kinds of reactive software
systems. However, we put a special focus on Programmable Logic Controllers
(PLC) as an example application area for the approach.

PLCs are computing units which are used to drive and control automated
production systems. They are thus reactive real-time systems, and are usually in

28 A. Weigl et al.

operation for a long time. In a PLC, the code is repeatedly executed once every
few milliseconds. The constant time between two runs is called the cycle time.1

A family of programming languages for PLCs has been defined in the stan-
dard IEC 61131-3 [8]. While the languages are Turing-complete, PLC programs
hardly ever contain general while-loops. If they contain loops, they have a known
fixed upper bound on the number of iterations since PLC code has to meet strict
real-time conditions. Dynamic memory allocation is not possible in the program-
ming languages which makes them more predictable. This makes the state space
for the software bounded, and the correctness problem theoretically decidable.

IEC 61131-3 has a concept of modules for structuring programs, similar to
those used in common imperative programming languages. They allow one to
encapsulate functionality into so-called function blocks. A function block con-
sists of a variable signature (input, state and output variables) and an operation
defined on this signature. It can be instantiated multiple times in other func-
tion blocks, and the invocation of an operation evaluates against the state of a
particular instance.

In each execution cycle, the PLC obtains the current sensor values, executes
the program, and emits newly computed actuator commands. Thus a PLC pro-
gram is in continuous interaction with its environment. Besides the sensor and
actuator values, PLC programs maintain an internal state. To work with deter-
ministic and causal PLC programs formally, we hence model a PLC software as
a function P : I × Σ → O × Σ which takes sensor readings (a value in I) and
its current state from Σ and produces actuator values (in O) and the modified
state. We lift P to P : I∗ → O∗ with P (i0, . . . , in) = (o0, . . . , on), which takes a
sequence of input values and returns the sequence of output values. P captures
the iterated sequential execution of the effects of P . Formally, P is defined by
the execution of P (ik, σk) = (ok, σk+1) for 0 ≤ k ≤ n, and a sequence of memory
states (σ0, . . . , σn) ∈ Σ∗ with a fixed initial memory state σ0.

2.3 Formal Equivalence Relations

We briefly repeat the regression verification notions from [1], as these notion
form the base of the modularisation our approach.

When we consider regression verification formally, we need to set two pro-
gram behaviours into relation. The first notion that comes to mind is perfect
equivalence, which requires that the behaviours of two PLCs programs P and
Q are identical, i.e., that they produce the same output when presented with
the same input trace. Formally, this means that they – interpreted as the two
functions P and Q – are equal:

for all i, i′ ∈ I∗ : i = i′ =⇒ P (i) = Q(i′) . (1)

However, they may very well differ on the chain of memory states reached in their
traces, i.e., P and Q need not be identical. Perfect equivalence is a very strict
1 There are also different execution modes for PLCs (event-driven, continuous, . . .)

that we do not consider here.

Modular Regression Verification for Reactive Systems 29

notion for evolution scenarios, as it does not allow any behavioural difference
between the old and new revision. Still it is useful to prove that a software
refactoring maintains the system behaviour.

In many evolution cases, behavioural differences must be taken into consider-
ation to capture intended changes, like bug fixes or performance optimisations.
The differences can be handled with the more flexible notions of conditional and
relational equivalence. They extend perfect equivalence in two ways: Firstly, con-
ditional equivalence allows us to filter scenarios that should not be included in
the equivalence analysis using a predicate τ on the input values. Secondly, in
relational equivalence one can replace the equalities in (1) by different relations
that express the equivalence between input (≈in) and output (≈out) values:

for all i, i′ ∈ I∗ : τ(i, i′) ∧ i ≈in i′ =⇒ P (i) ≈out Q(i′) . (2)

The triple C = (τ,≈in,≈out) that parameterises (2) is called a semanti-
cal regression verification contract for P and Q. Perfect equivalence EQ is a
special case of a regression verification contract with EQ = (true,=,=). This
generalises the ideas of design-by-contract [10] for single program properties to
multi-program analyses. The condition (2), which we denote as RV (C,P,Q),
defines when the contract C is satisfied by the programs P and Q.

3 Modularisation

Modularisation is a technique to split up the program code into individual sep-
arate modules with defined interfaces. The effects of a module are limited to a
specific scope, allowing a separate analysis. Wherever one module calls another
module, the effects of the call can be abstracted rather than to include the full
module implementation. Thus the complexity introduced by the control flow and
internal state of the submodule are invisible in the caller module.

We present a decomposition rule which allows us to exploit the modu-
larisation of reactive software to break down the regression proof obligation
RV (C,P,Q) into simpler proof obligations.

3.1 Motivational Example

Consider the plant in Fig. 1a representing an assembly line with a conveyor belt
B and two processing stations s1 and s2 (e.g., a drill and a stamp). A detector
d at the beginning of the conveyor belt recognises the arrival of a work piece W .
Once a work piece has arrived, the automatic process starts, and W is moved
from left to right, passing both processing stations, and eventually falling into
the basket at the end of the belt.

In the original software revision, every work piece is unconditionally processed
by both processing stations. While a piece is being processed, the conveyor belt
halts for a defined amount of time. Let us assume that experience has shown
that the process at s1 may occasionally fail. The software has hereupon been

30 A. Weigl et al.

B

W

d

s1 s2

(a) Schematic of the plant consisting of
a conveyor belt B with two processing
stations s1 and s2.

Timer

Processing
Station s1

Processing
Station s2

f
g

f ′

g′

Timer

Processing
Station s1

error?

Processing
Station s2

(b) Sketch of the program flow: the orig-
inal revision on the left and the adapted
revision on the right.

Fig. 1. Motivating example

adapted, and, after the revision, the plant can recognise work pieces for which s1

has failed. If a faulty work piece leaves s1, the second processing station should
be skipped and the piece should be sent to the output basket directly.

Software Structure. Figure 1b shows a sketch of the program flow of the main
program for both revisions. The difference is that a branching statement has
been introduced after s1. The modules “Timer” and the code for the processing
stations remain unchanged.

Regression Verification and Modularisation. Obviously, both software revisions
behave differently when a faulty work piece occurs. To apply regression verifica-
tion, a regression verification contract is required that specifies when both revi-
sions should behave equally. In this example, the two revisions behave equally
if no faulty work piece occurs. The contract for this example would therefore
encode in the filter predicate that no faulty work piece is ever detected.

The non-modular approach for regression verification in [1] does not exploit
the fact that the subroutines for controlling the hardware components remain
unchanged. The full code of both programs is encoded for the translation against
the regression contract with a model checker. The evaluation [1] (revisited in
Sect. 5) shows that some evolution scenarios cannot be solved in a reasonable
amount of time.

With the approach that we introduce here, we are able to replace the imple-
mentation of the modules in the encoding by their contracts, and can hence lower
the verification effort by this abstraction which can thus become an enabler for
the regression verification for larger programs.

This abstraction does not come for free. For a successful abstraction, suf-
ficiently strong contracts that imply the necessary properties must be found.
Finding them automatically may be as difficult as the whole program analysis
itself. In the presented approach the user has to come up with suitable contracts.

Modular Regression Verification for Reactive Systems 31

3.2 Formalisation

The goal of this section is to look at composed programs and to introduce an
inference rule that allows one to modularise regression verification proofs for such
programs. Let therefore the two programs P,Q be implemented as a composition
of two subprograms, say P = f ; g and Q = f ′; g′. We have introduced programs
as functions and the semicolon operator is the forward composition of functions
(i.e. (f ; g)(x) = g(f(x))).

For the modular analysis, it must be possible to identify the similar subpro-
grams in P and Q that then become the corresponding parts between the two
revisions. In the example from Sect. 3.1, for instance, the two programs can be
split into two subprograms along the dotted line.

If one pair of corresponding subprograms can be verified in isolation (in this
example g and g′) for a contract Cg, this result can be used for the verification
of the relation of the remainder programs where g and g′ can be abstracted by
(uninterpreted) placeholder function symbols x and x′ which stand in for the
programs g and g′. As a precondition in this proof obligation, we may assume
the regression verification contract Cg for x, x′ without knowing the exact func-
tionality of g and g′.

The inference rule for the verification of RV (C, f ; g, f ′; g′) for a regression
verification contract C has two premises which encode (1) that Cg is a valid
regression verification contract for g and g′ and (2) that the two programs satisfy
contract C under the modular assumption that g and g′ satisfy Cg.

RV (Cg, g, g′) ∀x, x′. RV (Cg, x, x′) → RV (C, f ;x, f ′;x′)
RV (C, f ; g, f ′; g′)

(3)

3.3 Modularisation for Conditional and Relational Equivalence

In this section we present how the modularisation rule (3), formulated over
functions, can be concretely used for the regression verification of programs.
We start with the definition of a very general concept of a reactive programming
language with frame structures, then introduce the decomposition rule, and close
this section with remarks on properties of the rule.

Programs. We consider simple loop-free programs, containing assignment- and
if-statements. Additionally, we introduce a frame-construct for marking program
parts which should be modularised. Programs are constructed by the grammar

〈Prg〉 → 〈name〉 := 〈expr〉 | 〈Prg〉 ; 〈Prg〉
| if (〈expr〉) { 〈Prg〉 } | frame(〈name〉) { 〈Prg〉 } (4)

in which the 〈name〉 denotes identifiers and 〈expr〉 side-effect-free expressions.
The set for programs produced by Prg is rather abstract and limited. How-

ever, it is expressive enough to encode reactive programs without (unbounded)
loops. Programs in the low-level language (4) can, e.g., be constructed from
more complex program languages like Structured Text or C by unwinding
(bounded) loops and arrays, unfolding record data types and inlining procedure
calls.

32 A. Weigl et al.

Frames and the Scope of Variables. Frames structure the otherwise unstructured
programs into modules. During the translation from input programs into the low-
level language (4), structuring elements from the source language, like function-
blocks or method invocations, are translated into frames. Frames can also be
manually added by a user – to be able to handle complex code refactorings
which took place across the boundaries of the structural elements in the source
code, e.g., when a computation from inside a method is pulled out to the method
caller.

For a sound abstraction and modularisation, the scopes of variables must be
restricted, and the frame constructs mark these scopes. With every frame iden-
tifier N we associate three disjoint sets of variables: input (inN), state (stateN)
and output (outN) variables. Every variable v occurring inside a frame named
N must belong to one of them. The variables in these categories are constrained
as follows: Input variables are only read within the frame, but may be written
from outside the frame. For state variables read and written access inside the
frame is allowed, but any access outside the frame is forbidden. Output variables
are write-only within the frame, and read-only outside the frame. Global vari-
ables do not fit into this scheme, but can be encoded into it by an automatic
program transformation.2 Therefore, such a variable categorisation can always
be established.

In a modularisation step, frames will be replaced by an abstraction using
their contracts. The variables play an important role then: They manifest the
interface at which the frame is abstracted for modular treatment. The input
variables must adhere to a precondition on entry of the frame, the state variables
can be removed from the program when the frame is abstracted, and the output
variables assume values which adhere to a postcondition for the frame.

It is important to note that frame identifiers can occur on several frames
within the same program. This models the case that multiple operations are
invoked on the same module within a program. This happens, e.g., if the same
function-block is invoked twice in an IEC-61131 context, or if a (stateful) proce-
dure is called multiple times from the original program.

Frames that modify the same variables must have the same identifier, and all
frames with the same identifier must have the same code and the same variable
signature. This is not a restriction: If different functionalities access the same
variables (e.g., different methods of an object in an object-oriented setting),
programs can be refactored such that all frames contain the same integrated
code that implements all functionalities. An additional parameter together with
a case distinction is used to decide the concrete functionality in each frame.

Specification and Verification. For both modular functional and modular regres-
sion verification, one needs contracts for the abstraction. In Sect. 2.3 we have
2 The program transformation introduces a new input and output variable for each

global variable, which occurs in the frame. The global variable is assigned to the
input variable at the beginning of the frame. The effect of the frame on a global
variable is captured in the output variable, which is assigned to global variable after
the frame.

Modular Regression Verification for Reactive Systems 33

already encountered the concept of regression verification contracts on the seman-
tic level. We will refine this notion now to program entities. Let two loop-free
programs P and Q be given. A regression verification contract is a triple (φ, α, ω)
of three formulas: the functional precondition φ, the relational precondition α
and the relational postcondition ω. The semantics of these regression verifica-
tion contracts are semantical contracts (Sect. 2.3). The formula φ evaluates to
the filter predicate τ , and the interpretation of α and ω are the input and output
equivalence relations.

The programs P and Q operate on disjoint sets of variables such that their
statements programs cannot interfere with each other’s state spaces, and are
only connected in formulas within contracts. We can therefore use the sequential
composition P ; Q to obtain the effects of their independent executions. The proof
obligation which needs to be verified reads – written as a Hoare triple [7] –

{φ ∧ α} P ; Q {ω} . (5)

In Sect. 4 we will describe efficient techniques to encode such proof obligations
for decision procedures.

Modularisation Rule. Let in the scenario introduced above, f and g be frame
identifiers such that a frame for f occurs in P and a frame for g occurs in Q. For
modular treatment, we need to look at the programs that abstract from the code
of inner frames within their enclosing programs (as a parallel to the replacement
of x for g in (2)):

Definition 1 (Factor program). Let P be a program according to (4) and f
be an identifier. The frames for f in P all have a unique occurrence number i.

The factor program
P�f is then derived from P by replacing each frame i for

identifier f with the following sequence of statements:

1. ini := in for every input variable in
2. countf := countf + 1
3. out := outi for every output variable out

The freshly introduced variable countf for the factored frame f is used to
keep book about the number of invocations of f during a run of the program,
and is needed to make the upcoming modularisation rule sound.

In non-regression program verification, modularised subprograms are often
replaced by an obligation to show the precondition of the block and an assump-
tion of the postcondition afterwards. Since in regression verification, we deal with
two programs at a time, all we can do in the local context is to remember the
values of all invocations for a global, program-spanning argument to take them
into account. The following inference rule does precisely that. Instead of proving
(5), one can show the two formulas that together imply it: (a) f and g together
satisfy a regression verification contract (φfg, αfg, ωfg), and (b) the factored
programs satisfy the original regression contract. The intermediate variables ini

34 A. Weigl et al.

and outi introduced by the factor program allow us to specialise a formula and
set it into the context of one concrete call-site of the frame identifier. For a for-
mula γ over the variables of P and Q, the instantiated formula

[
γ
]
i,j

denotes
the formula in which all occurring variables from P have been replaced by the
counterpart of the i-th invocation and all variables in Q with the variables of
the j-th invocation. For perfect equivalence ε = (inf = ing → outf = outg), the
instantiated formula

[
ε
]
1,2

would read inf
1 = ing

2 → outf1 = outg2.

Definition 2 (Modular regression verification). For two programs P and
Q (with disjoint variables) and frame identifiers f and g, let πf and πg

denote the programs which are inside the corresponding frames f and g and
let n (m) be the number of occurrences of f (g) in P (Q). For a regres-
sion verification contract (φfg, αfg, ωfg) for πf and πg the inference rule

{φfg ∧ αfg} πf ;πg {ωfg} {φ ∧ α ∧ κ ∧ Γ} P�f ;Q�g {ω ∧ κ}
{φ ∧ α} P ;Q {ω}

with Γ =
∧n

i=1

∧m
j=1

[
φfg ∧ κ ∧ αfg → ωfg

]
i,j

and κ = (countf = countg) is
called the modularity rule.

The assumption Γ of the second premise couples the variables modelling the
invocations of f and g. Whenever the input values for invocation occurrences i
and j satisfy the precondition

[
φfg∧αfg

]
i,j

of the regression verification contract,
the relational postcondition

[
ωfg

]
i,j

is known to hold on the output values.
This rule is quite similar to the differential assertion checking approach using

mutual function summaries by Lahiri et al. [9], but is applied here to frames
with potentially more than one invocation and in the context of reactive sys-
tems in which the programs are called repeatedly. To allow for that, additional
checks (encoded using the counting variables countf and countg in κ) have to
be included that ensure that the number of invocations of the two abstracted
frames is the same in both programs.

Properties. This modularisation rule is sound. Although we do not elaborate on
this here, an induction proof on the number of coupled invocations (captured
in the program variables countf and countg introduced for this reason) can be
conducted. The approach is not complete since we require that both systems
invoke their frames equally often. There are systems which fulfil a regression
contract, but do not have this property. Then this approach can currently not
be applied. The rule is compositional, in the sense that it can applied recursively
on the resulting proof obligations.

4 An Algorithm for Modular Regression Verification

In this section we construct a new regression verification algorithm for reactive
software that combines a number of different modular and non-modular verifica-
tion techniques. The algorithm takes two programs and a regression verification

Modular Regression Verification for Reactive Systems 35

function Reve(f, f ′):
Input: Two frames f, f ′

Data: A regression verification contract (φ, α, ω) for f and f ′.
Output: true iff f and f ′ together satisfy the contract
if check cache for (f, f ′, φ, α, ω) then

// earlier results are cached

return cached result;

end
if (φ, α, ω) = (true, =, =) then

// only applicable for perfect equivalence

return if true EqualSource(f, f ′);
return if true EqualSE(f, f ′);

end
return if true EqualSmt(f, f ′, φ, α, ω);
return if true EqualAbstraction(f, f ′, φ, α, ω);
return EqualityMC (f, f ′, φ, α, ω);

Algorithm 1: Algorithm to check the equivalence of two frames

contract as input and checks if the programs satisfy the relational specification.
We assume both programs have a top-level frame with the identifier main that
contains all program statements. The algorithm works recursively – comparing
first the outermost frames, trying to establish equality from going top to bot-
tom in the program structures, recursively verifying the equality of enclosed
subframes.

The algorithm orchestrates several different checkers and runs them in
sequence returning on the first positive result. In the orchestration, we call the
more syntactical, faster, but imprecise checkers first before falling back to more
powerful, and more precise, but slower checkers. All checkers are sound: If they
report that frames conform to their contract, then this is the case. They are not
necessarily complete, and some checkers are only applicable on a restricted set
of cases, for example perfect equivalence. The full algorithm – shown in Algo-
rithm 1 – is complete as the last checker EqualityMC uses heavyweight model
checking without abstractions and is complete.

The following sections briefly introduce the involved checkers.

4.1 Conformance by Syntactical Congruence

In case a contract specifies perfect equivalence, the checker EqualSource checks
equivalence via a comparison of the syntax trees of the two source code artefacts.
Prior to the comparison, we normalise the code (remove comments, unify capital-
isation, . . .). Identical normalised source code implies equal software behaviour.
Despite its severe restrictions, this method is a fast and useful checker, especially
for frames resulting from often reused standard library procedures.

36 A. Weigl et al.

4.2 Conformance by Symbolic Execution

Checking equality by comparing the source code is very restricted, and fails, e.g.,
if two independent lines are swapped, or an irrelevant new variable is introduced.
The next checker in the orchestration is EqualSE , which can handle such cases.
It is still a syntactical checker; hence, it is also only able to handle perfect equiv-
alence. This checker is based on symbolic execution to compute the symbolic
results of a frame.

The result of the symbolic execution of a frame f is a function
F : Var → Expr which maps every state and output variable to an expression
which is the aggregation of all assignments to the variable in f . The term F (v)
computes to the value of v at the end of the frame and may depend on the input
and state variables of f .

One possibility to show perfect equivalence between two frames f and f ′ is
to establish syntactical equality between the symbolic execution results for all
output variables. The equality must also be checked for those state variables
which occur in the aggregated expressions of output variables to guarantee that
the following cycles will produce equal output.

Thus far, we described the case where all input, output and state variables
have the same name in both frames. To make this analysis more flexible, we
allow arbitrary one-to-one mappings of variables between frames where the cor-
respondence of input and output variables is given by a conjunction of equalities
between variables in α and ω in the regression verification contract. For state vari-
ables, the mapping can be inferred. Furthermore, the mapping can be lifted from
equalities over variables to equalities over expressions. The equality between out-
put expressions given in the relational post-condition ω can be checked modulo
the equalities in the relational precondition α.

The checker EqualSE is able to show the equality of o = 2 ∗ i + s and
o′ = 2∗ i ′ + t ′, where s, t′ are state and i, i′ are input variable. A matching needs
to include the equality s = t′, and i = i′. Moreover, the equality of i = i′ (input
variables) must be justified by the given regression contract (α |= i = i′).

Due to its syntactical nature, this checker is incomplete, e.g., the equality
between o = 1 + 1 vs. o′ = 2, cannot be handled.

4.3 Conformance by Reduction to SMT

If these last syntactical checkers fail or are not applicable, the first semantical
checker is triggered. This checker is backed up by a reduction to a Satisfiabil-
ity Modulo Theories (SMT) problem using the previously computed symbolic
execution results F (v) and F ′(v′) of the given frames. This checker is not lim-
ited to perfect equivalence, but can be used for arbitrary regression verification
contracts.

The checker EqualSMT verifies an inductive relational invariant χ over the
state variables of the two frames. In the simplest form we show that any state
variables s and s′ in f and f ′ evolve identically (i.e. s = s′). The formula to be
checked for satisfiability is then

Modular Regression Verification for Reactive Systems 37

(
∧

v∈V

v+ = F (v)

)

∧
(

∧

v∈V ′
v+ = F ′(v)

)

∧ φ ∧ α ∧ χ ∧ ¬(
ω+ ∧ χ+

)
(6)

where the sets of variables V and V ′ contain all output and state variables of
f and f ′. Variable v+ holds the result of the symbolic execution for v (via the
function F or F ′). It differs from v to distinguish variables before the execution
from after it. A predicate χ+ results from χ by replacing v with v+. If this
formula is not satisfiable, χ is an invariant for the frames and, additionally, they
conform to the regression verification contract (φ, α, ω).

As an example, consider the following contract (true, i = i′, o = o′) for o =
2 ∗ i + s and o′ = t ′ + 2 ∗ i ′. The instantiated SMT formula (6) for this example
is

(o+ = 2 ∗ i + s ∧ s = s+)
︸ ︷︷ ︸

v+=F (v)

∧ (o′+ = t ′ + 2 ∗ i ′ ∧ t′ = t′+)
︸ ︷︷ ︸

v′+=F ′(v)

∧ i = i′︸ ︷︷ ︸
α

∧ s = t′︸ ︷︷ ︸
φ

∧ o = o′
︸ ︷︷ ︸

ω

∧¬(o+ = o′+
︸ ︷︷ ︸

ω+

∧ s = t′︸ ︷︷ ︸
χ+

) ,

where o and o′ are the output variables, s and t′ state variables, and i and i′ input
variables, respectively. The relational invariant χ has been chosen as s = t′ in
the example. It is a parameter of the checker, and in general non-trivial to infer.
In our implementation we use the equality of equally named state variables for
χ. In a further SMT verification condition (not shown here), it has to be shown
that the initial memory states (cf. Section 2.2) of f and f ′ initially satisfy the
coupling invariant χ.

4.4 Conformance by Modular Abstraction

The checker EqualAbstraction is the checker that exploits the modularisation
rule introduced in Definition 2. Therefore, given two frames f, f ′, this checker
starts with abstracting the top-level frames inside f and f ′, and uses Algorithm 1
for checking contract conformance of inner subframe pairs.

We assume that the subframes in f and f ′ are collected in pairs and that
each frame pair is specified with a regression verification contract. Let g be a
subframe in f , and g′ in f ′, respectively. After the body of all subframes have
been abstracted, we obtain the two factor programs f/g and f ′/g′ of both orig-
inal frames together with a regression verification contract that has additional
assumptions and postconditions. The regression verification algorithm is called
recursively for Reve(g, g′) of each subframe pair and for Reve(f/g, f ′/g′).

The modularisation rule may be applicable to several different subframes. In
our implementation we eagerly apply it to all possible subframe combinations.
The recursive procedure is applied recursively and exhaustively, but will eventu-
ally terminate since the frames are always finitely nested in a program.

If the modular abstraction step fails, it produces a counterexample (a finite
trace, see Sect. 4.5) which may describe a genuine flaw in the system or it may

38 A. Weigl et al.

be spurious if a regression verification contract does not hold or is not strong
enough to serve as a suitable abstraction in the proof.

4.5 Conformance by Model Checking

The final checker is the most precise and most powerful one and encodes the
verification condition into a model checking problem. This checker makes use of
the non-modular regression verification approach by Beckert et al. [1] and veri-
fies a regression verification contract specification between two complete frames
f, f ′ without using abstraction. More precisely, the target is a problem in which
an invariant (derived from the regression verification contract) for the system
consisting of the two compared frames must be verified. Experience has shown
that invariant-inferring techniques like the IC3 [2] approach (in particular the
implementation within the model checker nuXmv [3]) work quite well for this
type of regression verification problems.

Since the state space is finite, this checker is theoretically complete, i.e.,
returns within finite time for any input. However, experience shows that it can
take hours or even days until the model checker comes back with a result. The
modularisation technique and the combination with simpler techniques in Reve
have been devised to reduce the time needed for regression verification challenges.

The model checker returns either that the inductive invariant has been proved
(implying correctness of the contract), or it produces a counterexample, which
is a concrete trace, i.e., finite sequence of assignments of input, state and output
variables for both frames exemplifying the violation of the contract. We currently
do not provide tool support, but these values can be used as inputs for a simu-
lation of the reactive system like it is present in many modern IDEs for reactive
software.

5 Evaluation

In this section, we show the applicability of our new regression verification algo-
rithm on selected scenarios of the Pick-and-Place Unit (PPU) community demon-
strator [1,12]. The PPU is a down-scaled model of a manufacturing plant employ-
ing industry-level hardware components that has been designed for researching

Fig. 2. Community demonstrator: the Pick-and-Place Unit

Modular Regression Verification for Reactive Systems 39

the management of the evolution (hardware and software) of automated manufac-
turing systems. Therefore, there are multiple evolution scenarios – with software
and/or hardware changes – of this plant. We selected representative evolution
scenarios to cover different situations.

Figure 2 gives an impression of the PPU in a medium expansion stage, as
hardware configuration depends on the scenarios. Briefly described, the PPU
consists of a magazine for providing new work pieces, a stamp for imprinting, a
conveyor belt for sorting, and a crane for transportation of work pieces. All of
these components and their actuators are controlled by the software in a PLC
written in Structured Text (ST) and Sequential Function Chart (SFC), which
we translated into ST code automatically (cf. [8]).

5.1 Selected Evolution Scenarios

We briefly explain the three selected evolution scenarios. The software revisions
correspond to the different scenarios of the PPU in [12, Fig. 48].

Revision 1 vs. Revision 2. A new sensor is introduced for detecting metallic work
pieces as a preparation for the next evolution. The software mainly changes the
Crane module, but changes on the top-level module are needed to route the
sensors to this submodule. An influence to the system behaviour is not expected:
Both revisions are perfectly equivalent.

Revision 3 vs. Revision 5. Revision 5 introduces an optimisation which allows
using the waiting time during stamping to transport work pieces which do
not need to be stamped to the conveyor belt. The optimisation is only trig-
gered if work pieces of different types are present (metallic and non-metallic). If
only metallic work pieces are present, the two revisions behave perfectly equiva-
lently. The work piece type can be determined by the program using the input
variable CapacitiveSensor . We obtain a regression contract (CapacitiveSensor =
true,=,=) which intuitively formalises that the old and new revisions behave
equivalently (equal inputs give equal outputs) under the condition that the sen-
sor variable CapacitiveSensor is true in every cycle.

Revision 12 vs. Revision 13 In the old revision, the position of the crane is mea-
sured with three switches (with Boolean sensor values OnConveyor, OnMagazin
and OnStamp). These are replaced by a single angular sensor. We need to define
a relation R between the three boolean sensor values and the angle position

(16160 < AnalogPosition ∧ AnalogPosition < 16260) = OnConveyor ∧
(24290 < AnalogPosition ∧ AnalogPosition < 24390) = OnMagazin ∧

(8160 < AnalogPosition ∧ AnalogPosition < 8260) = OnStamp

which serves the relational precondition in the regression verification contract
(true, R,=).

40 A. Weigl et al.

Table 1. Results

Runtime Code size

Rev./Module Non-Mod Modular Checkers [ms]

Total [s] Total [s] Src SE SMT Modul Classic LoC #Vars

1 vs. 2 8.96 1.51 744 136

Main 0 48 65 545 – 744 136

– Main/* 0 10 0 – – 174 203

Crane 0 21 35 441 – 415 51

– Crane/* 0 19 28 – 386 403 207

Magazine 0 13 – – – 234 38

3 vs. 5 750.0 7.05 1,605 256

Main – – 90 5,213 – 1,605 256

– Main/* – – 43 – 2,846 294 364

Crane – – 101 2,130 – 810 74

– Crane/* – – 101 – 1,987 768 376

Stamp 0 – – – – 402 56

Magazine 0 – – – – 240 44

12 vs. 13 −SE t/o 34.76 4,808 520

Main 0 – 512 24,544 – 4,808 520

– Main/* 0 – 79 – 6,727 453 1,250

Conveyor 0 – – – – 468 50

Crane 0 – 227 14,408 – 1,326 77

– Crane/* 0 – 238 – 14,168 1,284 631

Pusher 3 – – – – 2,144 154

Stamp 0 – 78 4,801 – 403 57

Stamp/* 0 – – – 4,680 375 639

Magazine 0 – 61 – 2,795 241 45

12 vs. 13 +SE t/o 34.76 4,808 520

Main 0 440 – - – 4,808 520

5.2 Results

Table 1 summarises the performance of the verification. The runtimes are shown
for each checker on a frame. The first column describes the compared revisions
and modules, where Main or Crane denotes the regression verification between
the corresponding frames of both revisions. Main/* denotes the frame with all
subframes factored out. For convenience, Table 1 only shows the first and second
level of nested frames. In particular, the frequently used timer module is hidden.

“Non-Modular Total” is the comparison reference value of applying the non-
modular approach as in [1] with our pipeline. In comparison, “Modular Total”
gives the overall runtime of the modular pipeline. Both total columns state the

Modular Regression Verification for Reactive Systems 41

runtime measured from the command line. Hence they include the work needed
to prepare the programs (parsing, symbolic execution, etc.). In contrast, the
checker runtimes are given in milliseconds and are measured internally. A checker
is skipped (marked with a dash (–) in the table) if either it was not capable of
proving the regression contract, or a checker invoked earlier was able to solve
this case. Note, for the comparison of Rev 12. vs. Rev 13 (“12 vs.13 −SE”), we
have disabled EqualSE to evaluate the modularisation rule, because we want to
demonstrate the capabilities of the decomposition rule. EqualSE can solve this
comparison directly in half a second (cf. “12 vs.13 +SE” in Table 1). The lines
of code do not include empty lines or comments and cover both code modules.
Also the number of variables (#Vars) give the sum of input, state and output
variables of both frames.

The runtimes (wall clock) are the median of three samples, computed on an
Intel Core i7-8565U, 16 GB RAM, using the model checker nuXmv 1.1.1 [3] with
IC3 for invariant checking, and z3 4.8.8 for solving the SMT instances. The time-
out was set to 1 hour. Our algorithm implementation is single-threaded. All of
the verification artefacts and a link to the source code are available online3.

5.3 Discussion

The evaluation shows a huge speed-up against the previous non-modular app-
roach from [1]. It shows the potential of modularisation to enable the handling
of large reactive systems. For fair comparison, we repeated the experiments of
[1], but we use the default bit-width for integers on PLC languages, and also
we did not reduce the blocking time of the used timers. Rev. 12 against Rev. 13
ran into a time-out, [1] gives a clue that the verification can take more than
22 hours. Most of the performance should result from abstracting these timer,
which are used to wait a particular amount of time. During this time span, the
system stutters partially, resulting in long phases of forward searches in IC3.

6 Related Work

Beckert et al. [1] applies regression verification to PLC software and is the first
base for this work. Subroutines in PLC software is handled by inlining the sub-
routines in its caller context. We reuse their notion of regression verification
(Sect. 2.3). Also we use their pipeline to simplify PLC programs and prepare
them for model checker.

Modularisation for regression verification is covered in [5] which serves as a
second basis to our work. Godlin and Strichman [5], who also coined the term
“regression verification” exploit both regression verification and decomposition to
prove equivalence between similar programs. They are able to handle programs
with recursive function calls and unbounded loops, both are paradigms are not
common in software for reactive systems. Nevertheless, their work does not cover

3 http://formal.iti.kit.edu/isola20.

http://formal.iti.kit.edu/isola20

42 A. Weigl et al.

our topic completely: They only consider functions that do not have an internal
state and require them to be perfectly equivalent. Moreover, the decomposition
in [5] works bottom-up if possible. Our approach work from top to bottom.

The work on differential assertion checking [9] modularises relational proofs in
a similar fashion to the one presented in this paper. They employ mutual function
summaries to abstract two related functions blocks, which is essentially the same
concept as our regression verification contracts. They do not target reactive
systems but individual single function invocations, and use the intermediate
verification language Boogie to encode their conditions rather than a model
checking verification backend.

The goal of Guthmann et al. [6] is similar to ours: Modularising the equiva-
lence proof. For matched procedures two partial sets are computed. One contains
input states where the procedures behave equivalent and one where they differ.
Both sets are approximated. The approximation are made stronger the longer
the algorithm runs. They extended their approach work with demand-based
refinement of the approximated sets in [11].

7 Conclusion

In this paper, we have motivated and presented a new verification rule for the
modular decomposition of regression verification proof obligations for reactive
system software. Moreover, we have integrated the rule into a novel regression
verification algorithm which orchestrates five different regression verification
approaches into one proof technique. Thanks to the modularisation, simpler
equality checkers allow one to show properties more easily on subproblems.

The evaluation indicates a tremendous performance improvement: Modulari-
sation can allow regression verification proofs to run orders of magnitudes faster.

Future Work. A drawback of the decomposition technique is the need for (user-
specified) regression contracts. In most cases, these specification seem to be
automatically inferable, e.g., by using heuristics, symbolic execution or Horn
solvers. In our implementation, we have not used any sophisticated strategy to
decide whether a frame should rather be kept inlined or be abstracted. The
implementation tries to abstract all allowed frames at once, which seems to be
a good strategy. A more restrictive selection could bring further advantage.

References

1. Beckert, B., Ulbrich, M., Vogel-Heuser, B., Weigl, A.: Regression verification for
programmable logic controller software. In: Butler, M., Conchon, S., Zäıdi, F. (eds.)
ICFEM 2015. LNCS, vol. 9407, pp. 234–251. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-25423-4 15

2. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt,
D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-18275-4 7

https://doi.org/10.1007/978-3-319-25423-4_15
https://doi.org/10.1007/978-3-319-25423-4_15
https://doi.org/10.1007/978-3-642-18275-4_7

Modular Regression Verification for Reactive Systems 43

3. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

4. Cha, S., Ulbrich, M., Weigl, A., Beckert, B., Land, K., Vogel-Heuser, B.: On the
preservation of the trust by regression verification of PLC software for cyber-
physical systems of systems. In: INDIN 2019, pp. 413–418. IEEE (2019). https://
doi.org/10.1109/INDIN41052.2019.8972210

5. Godlin, B., Strichman, O.: Regression verification: proving the equivalence of sim-
ilar programs. Softw. Test. Verification Reliab. 23(3), 241–258 (2013)

6. Guthmann, O., Strichman, O., Trostanetski, A.: Minimal unsatisfiable core extrac-
tion for SMT. In: Piskac, R., Talupur, M. (eds.) FMCAD 2016, pp. 57–64. IEEE
(2016). https://doi.org/10.1109/FMCAD.2016.7886661

7. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

8. International Electrotechnical Commission: IEC 61131: Programmable controllers
- Part 3: Programming languages, February 2002

9. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion
checking. In: ESEC/FSE 2013, pp. 345–355. ACM (2013). https://doi.org/10.1145/
2491411.2491452

10. Meyer, B.: Applying “design by contract”. IEEE Comput. 25(10), 40–51 (1992)
11. Trostanetski, A., Grumberg, O., Kroening, D.: Modular demand-driven analysis of

semantic difference for program versions. In: Ranzato, F. (ed.) SAS 2017. LNCS,
vol. 10422, pp. 405–427. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66706-5 20

12. Vogel-Heuser, B., Legat, C., Folmer, J., Feldmann, S.: Researching evolution in
industrial plant automation: scenarios and documentation of the pick and place
unit. Tech. rep. Institute of Automation and Information Systems, Technische Uni-
versität München (2014). https://mediatum.ub.tum.de/node?id=1208973

https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1109/INDIN41052.2019.8972210
https://doi.org/10.1109/INDIN41052.2019.8972210
https://doi.org/10.1109/FMCAD.2016.7886661
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/2491411.2491452
https://doi.org/10.1145/2491411.2491452
https://doi.org/10.1007/978-3-319-66706-5_20
https://doi.org/10.1007/978-3-319-66706-5_20
https://mediatum.ub.tum.de/node?id=1208973

Finding Idioms in Source Code Using Subtree
Counting Techniques

Dmitry Orlov(&)

National Research University “MPEI”,
14, Krasnokazarmennaya str., 11250 Moscow, Russia

orlovdmal@mpei.ru

Abstract. This paper is dedicated to extracting idioms from source code
written in Python language. Programming language idiom is the fragment of
code which often occur in different programs. In this research and idiom is
represented as the part of program abstract syntax tree (AST). For idiom
extracting the subtree computing techniques are used. Idiom extracting process
is similar to numeric function optimization: starting with root node, on each step
we add one node to the subtree and compute subtree efficiency metric. When
metric stops to grow, we consider subtree obtained the idiom. As subtree effi-
ciency metric different functions can be used. These functions can have subtree
length or subtree frequency as an arguments.

Keywords: Source code analysis � Static analysis � Programming language
idioms � Frequent subtree counting � Python � Data mining

1 Introduction

Learning programming languages doesn’t finish with learning syntax and semantics.
Practice for typical tasks solving is also needed. Programming idioms are code frag-
ments which occur in different software projects, and which solve one typical task. So
the term “idiomatic code” is the code that is written in a manner that other experienced
developers find natural [1]. Programming idioms can give us knowledge about the best
practices used in programming language being studied. Nevertheless, there isn’t formal
definition of programming idiom. The informal definition “small fragment of code
which common and informative” need to be clarified.

In this paper we propose an idiom extraction algorithm, based on subtree counting
and information metrics. Though the algorithm proposed is language-independent, we
apply it to the source code written in Python3 language, since Python3 has large
codebase, widely used idiomatic code style (so called “pythonic” code [2]), and con-
venient AST tools.

© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 44–54, 2020.
https://doi.org/10.1007/978-3-030-61470-6_4

http://orcid.org/0000-0002-5673-3508
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_4

2 Idiom Formalization

Consider idiom as a subtree of program abstract syntax tree (AST). In that case all
idiom occurrences in code do not have to be exact code clones. In clone analysis, four
clone types are considered [3]:

• type-1: syntactically identical code snippets;
• type-2: syntactically identical code snippets, except for differences in identifier

names, literal values, etc.;
• type-3: syntactically similar code snippets, which have statements added, modified

and/or removed with respect to each other;
• type-4: syntactically dissimilar code snippets, which implement the same

functionality.

There is difference between code clone and programming idiom. To become a
clone, a snippet of code should appear in the program (in sense of clone types described
above) at least twice. The idiom, on the other hand, should appear more frequently and
in different projects. Therefore, to distinct between code clone and programming idiom
one should build idiom value metric.

Considering an idiom as a part of AST frequently occurring in code, we cover type-
1, type-2, and, partially, type-3 clones. Type-4 clones analysis is out of the scope of the
current research. Also in the current research the quality of code snippet is not con-
sidered. Therefore, during analysis, patterns and anti-patterns will be found.

The idiom extraction should use different technique than frequent tree counting
used for clone analysis [4]. As mentioned in [1, 5], frequent subtree extraction can be
used for idiom extraction, but results will have poor quality, because short subtrees will
occur more frequently. So, on one hand, short subtrees don’t give us additional
information, on the other hand, long but rare subtrees are useless, as well. Therefore,
we need metric to estimate subtree value.

Let’s use information theory to build such metric. Consider the following: if an
idiom in AST of the program source code is replaced by special node, then the source
code compresses. Denote T – the subtree, N(T) – number of T occurrences in the source
code, I(T) – quantity of information in T. Therefore, N(T)I(T) – effective length of all
idiom occurrences. Let’s estimate I(T). Let T1 is T extended with one node. Then:

I T1ð Þ ¼ I Tð Þ � log N T1ð Þ=N Tð Þð Þ ð1Þ

Consider R is the root node of T. Define I1(T) = I(T) − I(R). If we replace all occurrences
of T with special tree node V, we reduce information containing in AST at least by:

E Tð Þ ¼ N Tð Þ I Tð Þ � I Vð Þð Þ ¼ N Tð Þ I Rð Þþ I1 Tð Þ � I Vð Þð Þ

Assume I(R) = I(V), because number of root nodes of the idiom is the same as number
of new nodes, i.e. I(V). Then:

E Tð Þ ¼ N Tð Þ I1 Tð Þ ð2Þ

Finding Idioms in Source Code Using Subtree Counting Techniques 45

Let’s call E(T) subtree efficiency. Then T is an idiom, if and only if E(T) � E(T1) and
E(T2) � E(T), where T1 is a subtree of T, and T is a subtree of T2. Thus, the idiom is
the subtree with maximal efficiency. We omit logarithm base here, since changing it
leads only to E(T) scaling, and keeps subtree for which E(T) maximal.

Thus we need to find all subtrees with maximal efficiency against their preceders
and successors. Enumerating all subtrees has an exponential complexity, so it is
important to reduce number of subtrees inspected. Let’s build subtree iteratively, at
each step adding one node, which leads to maximal increase of E(T). We stop the
process when E(T) stops to grow, therefore, steepest descent method will be used. Thus
we obtain local maximum of E(T).

3 Data Structures for Subtree Representation

The data structure for representation of the tree is straightforward. Let

TreeNode ¼ name; childrenf g;

where name is the node name (corresponds to non-terminal symbol in programming
language grammar), and children is an array of either TreeNode or TreeLeaf. The
TreeLeaf structure is used for terminal symbols representation. It contains only terminal
symbol name.

The data structure for tree database representation should be able to provide
N(T) quickly, and keep large amount of trees which can have common parts. The most
convenient structure for that case is trie [6]. The trie in consideration is an oriented
acyclic graph, consisting of two types of nodes: “or”-nodes and “and”-nodes. The root
of the trie is the “or”-node. “Or”-nodes are used to group different subtrees. The other
type of node is “and”-node. Such nodes are used to represent subtrees having common
operation. On Fig. 1 the example of trie is represented. “Or”-nodes are denoted with
circles, while “and”-nodes are denoted with rectangles. The example trie stores syntax
trees built for the following expression set:

b � d; aþ bþ cð Þ; aþ d; bþ bþ cð Þf g

AST of each expression has its own id. Expressions are enumerated from 0. Outputs of
“or”-nodes are marked with sets of numbers, which correspond to ids of trees having
the certain child node. At Fig. 1(a)–(d) the trees for the expressions are shown. At
Fig. 1(e) the trie built is represented.

46 D. Orlov

When working with dataset containing lots of equal trees, it is convenient to store
number of occurrences for each distinct tree added to the trie. This technique reduces
sets of tree ids stored for each “or”-node. Therefore tree database can be defined as

B ¼ root; freqf g;

where root is the root of the trie and freq is an array which stores N(T) for each tree id.
Tree T receives id when it is inserted in B. Tree id grows serially with number of unique
trees inserted in B.

“Or”-node of the trie is represented with

OrNode ¼ nodes; nameToIdsf g;

where nodes maps node id to the next “and”-node, and nameToIds maps node name to
the set of unique tree ids contains the node with certain name. The “and”-node structure
is similar one of treeNode, but its children are “or”-nodes of the trie:

expr
[0,1,2,3]

rightle� op

var
[0,1,2,3]

opcode
[0,1,2,3]

var
[0,2]

expr

[1,3]

name namecode rightle� op

[1,3]
b
[0,3]

a
[1,2]

*
[0]

+
[1,2,3]

d
[0,2]

var opcode
[1,3] [1,3]

var
code

+
[1,3]

name

b
[1,3]

c
[1,3]

name

expr

rightle� op

expr

rightle� op

expr

rightle� op

expr

rightle� op

var opcode
name code

var opcode
code

var opcode
name code

var opcode
name code

* +

+ +

b

b

a

a

var
name

var
namename

d

d

expr
rightle� op

var opcode var

expr
rightle� op

var opcode var

+b c
name code name

+b c
name code name

(a) tree 0 (b) tree 1

(d) tree 3(c) tree 2

(e) trie built for trees 0-3

Fig. 1. The example trie.

Finding Idioms in Source Code Using Subtree Counting Techniques 47

AndNode ¼ name; childrenf g;

Also there is special structure for terminal symbol variants representation:

TrieLeaf ¼ valToIds; idToValf g;

where valToIds maps the terminal symbol value (e.g., variable name or number) to the
set of unique tree ids contains the value, idToVal, in its turn, maps tree id to value
occurs in leaf of the tree with certain id.

Let’s describe the following algorithms:

• finding if the tree database contains the tree T (Contains);
• number of trees having T as a subtree, in case T contains tree root (TreeCount);
• adding tree T in tree database B (Insert).

The algorithms developed are represented at Fig. 2, Fig. 3 and Fig. 4. At these
figures the set of all tree ids in database is denoted as U.

Algorithm Contains(T, B):
begin

return FindIDs(T.root, B.root, U)≠ ∅
end

Algorithm FindIDs (treeNode, dbNode, foundIDs):
begin

if isinstance(treeNode, TreeNode) and
isinstance(dbNode, OrNode):

begin
ids = dbNode.nameToIds[treeNode.name]
foundIDs = foundIDs ∩ ids
if foundIDs == ∅

return ∅
nextdbNode=dbNode.nodes[treeNode.name]
for i:=1 to len(treeNode.children):

foundIDs=FindIDs(
treeNode.children[i],
nextdbNode.children[i],
foundIDs)

return foundIDs
end
if isinstance(treeNode, TreeLeaf) and

isinstance(dbNode, TrieLeaf):
begin

ids = dbNode.valToIds[treeNode.name]
foundIDs = foundIDs ∩ ids
if foundIDs == ∅

return ∅
return foundIDs

end
return ∅

end

Fig. 2. Algorithm Contains.

48 D. Orlov

To obtain number of subtrees (containing tree root), one should sum B.freq[id], for
all ids returned by FindIDs.

Algorithm TreeCount(T, B):
begin

count:=0
for id in FindIDs(T.root, B.root, U):

count+=B.freq[id]
return count

end

Fig. 3. Algorithm TreeCount.

Algorithm Insert(T, B):
begin

ids= FindIDs(T.root, B.root, U)
if ids≠∅:
begin

++B.freq[inf(ids)]
return

end
newId=|B.freq|
B.freq[newId]=1
InsertRecursive(T.root, B.root, newId)

end

Algorithm InsertRecursive(treeNode, dbNode, id):
Begin

if isinstance(treeNode, TreeNode):
begin

if dbNode.nameToIds[treeNode.name] == ∅
dbNode.addNode(treeNode)

dbNode.nameToIds[treeNode.name] =
dbNode.nameToIds [treeNode.name] ∪ {id}

nextdbNode=dbNode.node[treeNode.name]
for i:=1 to len(treeNode.children):

InsertRecursive(
treeNode.children[i],
nextdbNode.children[i],
id)

end
else:

dbNode.add(id, treeNode.nodeName)
end

Fig. 4. Algorithm Insert.

Finding Idioms in Source Code Using Subtree Counting Techniques 49

4 Function Optimization on Subtree Space

As mentioned earlier, for finding subtree efficiency maximum, steepest descent method
will be used. At each step, the node which provides maximal increase to the subtree
efficiency is chosen.

For the subtree being optimized (denote is as T), we store edgeNodes – the list of
“or”-nodes and trie leaves stored in B. Each node in edgeNodes can be expanded.
When it is expanded: one node is added at the end of the subtree, and the “or”-node in
consideration is replaced by its children. At each step, one needs to probe expansion of
each node in edgeNodes and choose the node which provides maximal efficiency.

Let T1 is the subtree obtained from T by expanding one of the edge nodes. Then
N(T) can be obtained as TreeCount(T, B), and N(T1) = TreeCount(T′, B), respectively.
So, we have enough data to compute E(T).

To get all possible idioms, we try to perform optimization process for each tree in
B. Thus we obtain straightforward idiom finding algorithm (Fig. 5).

Algorithm FindIdioms(B):
begin

for i in B.freq:
begin

edgeNodes={B.root}
efficiency=0
information=0
T={}
while true:
begin

expandNode={}
potentialEfficiency=efficiency
for node in edgeNodes:
begin

T'=T or node
newInformation=information-log2(N(T')/N(T))
newEfficiency=newInformation*N(T')
if newEfficiency>=potentialEfficiency:
begin

newEfficiency =potentialEfficiency
expandNode=node

end
if expandNode=={}

produceIdiom()
else
begin

edgeNodes.remove(expandNode)
edgeNodes.add(expandNode.children(i))
efficiency=potentialEfficiency
T'=T or expandNode
information-log2(N(T')/N(T))
T=T'

end
end

end
end

end

Fig. 5. Idiom finding algorithm

50 D. Orlov

The algorithm represented is slow, because each idiom will be computed several
times, since it is found in different trees. Reusing optimization results can speed up this
algorithm. There are two ideas. First, if optimization process for tree T with id stopped
at some subtree S, which occurs in trees having different ids, we can continue opti-
mization for each tree in ids, because optimizing it from scratch will lead us to the same
point. Second, if optimization process for each tree in ids is finished, we can return one
step back and optimize data for ids, excluded at previous step. To do this, we need to
save the search state (edge nodes, current values of information and efficiency and
current ids) every time we add a new node to the subtree. Thus, search states are saved
in search state stack. When at some step optimization process for all ids is finished, we
need to pop search state from the search state stack and continue optimization process.

5 Using Developed Algorithm for Source Code Analysis

For the experiment, Python3 programming language is chosen. The language is chosen
because Python is developing rapidly, has large codebase, widely used idiomatic code
style, and Python has convenient built-in tools for building abstract syntax trees for
Python programs.

Python uses built-in module ast to parse source code into AST, modify AST and
execute it. The grammar for Python3 and Python AST data structure are represented in
[7]. The structure almost ready for analysis, expect the fact that some of the nodes have
variable number of children. All nodes which represent language fragments containing
operator body (class, function definitions, loops, conditions, exception handling etc.)
represent it with list. The same is true for nodes representing lists, tuples, sets and
dictionaries. And last, but not least, compare operators (since Python supports
expressions like a < b < c < d). However, the algorithm described before, requires all
tree nodes with the same names have the same number of children. Therefore, lists in
Python AST should be transformed into subtrees. Moreover, for Dict and Compare
nodes information is stored in two different lists.

Let’s introduce special kind of node (denote it as LIST), which has two children.
Left child represents the first element in list, and the right child represents the rest of the
list. Thus, list of nodes can be easily converted to subtrees. AST conversion for
a � b < c < d expression is shown at Fig. 6. On that figure, the upper tree is AST
produced by Python ast module, the lower tree is the result of tree transform procedure.

After this transformation, we obtain AST for the entire module loaded. Since
algorithm proposed is able to find only subtrees containing root, we need to generate
subtrees of AST and add them to the database. To get all meaningful idioms and
achieve good performance, we need to carefully choose subtrees. Let’s restrict idioms
type we are looking for.

Finding Idioms in Source Code Using Subtree Counting Techniques 51

Restrictions of idiom type considered are used often. E.g., in [8] the authors con-
sider only loop idioms. Let the idiom can be represented with one operator (i.e., class
definition, function definition, loop, condition, try/except block or expression). We are
not interested in expression parts, since this subtrees are very small and non-
informative. Also we do not consider sequences of operators. This restriction seriously
speeds up the loading process, because in this case we don’t need to load subtrees of
LIST sequences. This restriction eliminates idioms consisting of operator sequence, but
they can be found as part of parent operator body. Another useful restriction is to limit
minimal subtree length. This prevents us from adding small but non-informative
subtrees.

6 Idiom Extraction Experiment

The proposed algorithm is implemented in Python3 language. The properties of
datasets used – size and number of lines of code (LOC) are shown in Table 1. Html5lib
is codebase of html5lib-python project1, the html parser, django is codebase of django
project2, top8 is codebase of top 8 projects hosted on github and tagged with “python”
tag3. To remove small idioms from output, we introduce minimal idiom length. For the
experiment value 7 is used. Minimal tree length for the experiment is also 7. Experi-
ment results are also represented in Table 1.

compare

a
le�

≤,<,<
ops

b,c,d
comparators

compare

a LIST

pair

b≤

LIST

pair

c<

pair

d<

Fig. 6. Example of Python AST transformation.

1 html5lib-python, https://github.com/html5lib/html5lib-python.
2 django, https://github.com/django/django.
3 https://github.com/topics/python?o=desc&s=stars.

52 D. Orlov

https://github.com/html5lib/html5lib-python
https://github.com/django/django
https://github.com/topics/python?o=desc&s=stars

Unfortunately, the significant part of results consists of trivial idioms. It means that
metric should be improved. But on datasets consists of one project, the algorithm
produces idioms specific for the project considered.

Consider idioms for html5lib test set at Fig. 7. Terms beginning with “$” denote
content of not expanded tree nodes. The name after “$” is the name of child node, as
described in [7].

7 Conclusion

In this paper, the algorithm of source code idiom extraction is proposed. The algorithm
implemented in Python3 language. The algorithm test shown that efficiency metric
proposed should be improved for extracting idioms from datasets consists of different

Table 1. Results of the experiment.

Test set LOC Size, KB Processing time, s

html5lib 11822 436 7
django 111028 3910 51
top8 185674 6481 122

def $name($args,$defaults):

return $value

$decorator_list

def $name($args,$vararg,$kwarg,$defaults):

if $test:

$body

else:

$orelse

self.$attr[$value]+=$value

$value[(- 1)][$n]+=$value

while $value.name $op $expr:

$body

Fig. 7. Examples of found idioms.

Finding Idioms in Source Code Using Subtree Counting Techniques 53

projects. But the efficiency metric can be used for extracting idioms for datasets
consisting of one project.

References

1. Allamanis, M., Sutton, C.: Mining idioms from source code. In: FSE 2014 Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering,
Hong Kong, China, 16–21 November 2014, pp. 472–483 (2014)

2. Merchante, J., Robles, G.: From Python to Pythonic: Searching for Python idioms in GitHub
(2017)

3. Svajlenko, J., Roy, C.K.: A Survey on the Evaluation of Clone Detection Performance and
Benchmarking (2020)

4. Jiménez, A., Berzal, F., Cubero, J.-C.: Frequent tree pattern mining: a survey. Intell. Data
Anal. 14(6), 603–622 (2010)

5. A Language-Parametric Modular Framework for Mining Idiomatic Code Patterns
6. Ésik, Z. (ed.): FCT 1993. LNCS, vol. 710. Springer, Heidelberg (1993). https://doi.org/10.

1007/3-540-57163-9
7. Abstract Syntax Trees. https://docs.python.org/3/library/ast.html. Accessed 30 May 2020
8. Allamanis, M., Barr, E., Bird, C., Devanbu, P., Marron, M., Sutton, C.: Mining semantic loop

idioms. IEEE Trans. Softw. Eng., 651–668 (2018). https://doi.org/10.1109/tse.2018.2832048

54 D. Orlov

https://doi.org/10.1007/3-540-57163-9
https://doi.org/10.1007/3-540-57163-9
https://docs.python.org/3/library/ast.html
https://doi.org/10.1109/tse.2018.2832048

Parametric Timed Bisimulation

Malte Lochau1(B) , Lars Luthmann2(B) , Hendrik Göttmann2(B) ,
and Isabelle Bacher2(B)

1 Model-Based Engineering Group, University of Siegen, Siegen, Germany
malte.lochau@uni-siegen.de

2 Real-Time Systems Lab, Technical University of Darmstadt, Darmstadt, Germany
{lars.luthmann,hendrik.goettmann}@es.tu-darmstadt.de,

isabelle.bacher@es.tu-darmstadt.de

Abstract. Timed automata (TA) constitute a mature formalism for
discrete-state/continuous-time behavior of time-critical cyber-physical
systems. Concerning the fundamental analysis problem of comparing a
candidate implementation against a specification both given as TA, it
has been shown that timed trace equivalence is undecidable, whereas
timed bisimulation is decidable. However, the limited expressiveness of
TA is a serious obstacle in practice such that many TA extensions have
been proposed. For instance, parametric timed automata (PTA) incor-
porate parametric clock constraints with freely-adjustable time intervals
thus generalizing the constant time bounds of TA. In this way, PTA
constitute a promising theoretical foundation for re-engineering static
real-time specifications, originally given as TA, in a generic and cus-
tomizable way. In this paper, we provide, to the best of our knowledge,
the first proposal for lifting the notion of timed bisimulation from TA
to PTA. Unfortunately, as PTA are Turing-complete, most interesting
semantic properties being decidable for TA (including timed bisimula-
tion), become undecidable for PTA. To tackle this issue, we propose an
over-approximation of PTA semantics in terms of plain TA semantics
and investigate decidability properties of a promising sub-class of PTA,
called L/U-PTA.

Keywords: Software re-engineering · Timed automata ·
Bisimulation · Parametric timed automata

1 Introduction

Background. In the context of the ever-progressing digitization of nearly every
application domain as, for instance, propagated by the Industry 4.0 initiative
for the automation-engineering domain, so-called cyber-physical systems become

L. Luthmann—This work was funded by the Hessian LOEWE initiative within the
Software-Factory 4.0 project.
H. Göttmann—This work has been funded by the German Research Foundation (DFG)
as part of project A4 within the Collaborative Research Center (CRC) 1053 MAKI.

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 55–71, 2020.
https://doi.org/10.1007/978-3-030-61470-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_5&domain=pdf
http://orcid.org/0000-0002-8404-753X
http://orcid.org/0000-0002-9868-365X
http://orcid.org/0000-0002-2753-7719
http://orcid.org/0000-0003-4197-4170
https://doi.org/10.1007/978-3-030-61470-6_5

56 M. Lochau et al.

more and more ubiquitous in recent days. Timed automata (TA) [1,6] consti-
tute a theoretically-founded, yet practically applicable modeling formalism for
specifying and automatically analyzing discrete-state/continuous-time behavior
of time-critical reactive software systems which lie at the core of modern cyber-
physical systems. Timed automata, therefore, extend labeled state-transition
graphs of classical automata models by a set of clocks constituting constantly
and synchronously increasing, yet independently resettable numerical read-only
variables. The current values of clocks, quantifying the time elapsed since its last
reset, can be referenced within clock constraints in order to specify boundaries
for time intervals to be satisfied for safe occurrences of actions in valid timed
runs of the system.

A fundamental analysis problem arises from the comparison of a candidate
implementation against a specification both specified as TA (e.g., using reverse-
engineering techniques for model extraction from existing code [15]). It has been
shown that timed trace inclusion is undecidable, whereas timed (bi-)simulation is
decidable thus making timed bisimilarity a particularly useful equivalence notion
for verifying time-critical behaviors [8,19].

Problem Statement. Nevertheless, the limited expressive power of TA in their
most basic form constitutes a serious obstacle in practice. One of the most prob-
lematic restrictions in TA models is the need to specify static real-time con-
straints requiring precise constant (i.e., a-priori bounded) minimum/maximum
values for timing intervals for action occurrences. To overcome this limitation,
parametric timed automata (PTA) have been proposed as a promising general-
ization of TA [2]. To this end, PTA generalize the clock-constraint language of
TA to parametric clock constraints permitting dynamically and freely adjustable
boundaries of timing intervals. In this way, a PTA model virtually comprises a
(potentially infinite) number of structurally similar, yet behaviorally adaptable
TA models. Thus, PTA constitute a promising theoretical foundation for re-
engineering static real-time specifications, originally given as TA, in generic and
customizable way (e.g., enabling parameter-fine-tuning to fit to platform-specific
requirements). Unfortunately, the increased expressiveness make PTA Turing-
complete such that most interesting semantic properties, being decidable for TA
(including timed bisimulation), are undecidable for PTA [3,5]. More specifically,
even a conclusive adaptation of the definition of timed bisimilarity from TA to
PTA models is an open issue. This limitation of automated analysis capabilities
may obstruct the applicability of PTA as a practical (re-)engineering tool.

Contributions. In this paper, we propose, to the best of our knowledge, the
first characterization of parametric timed bisimulation for PTA models by lifting
the notion of timed bisimilarity from TA to PTA. Intuitively, a PTA simulates
another PTA if the behavior of any possible parametrization of the second PTA
is timed simulated by a parametrization of the first PTA.

However, iterating over a generally infinite set of TA models derivable from
a PTA model for parametric bisimilarity-checking is not a reasonable approach
in practice. Hence, we provide an alternative, yet slightly weaker and inherently

Parametric Timed Bisimulation 57

incomplete characterization of parametric timed bisimulation. This characteri-
zation is based on a single (yet still generally infinite) representation of PTA
semantics, called parametric timed labeled transition system (PTLTS), which
(semi-)symbolically comprises the semantics of all TA models derivable from a
PTA model.

Finally, we consider an over-approximation of PTA semantics in terms of
plain TA semantics in order to apply bisimilarity-checking for TA models also
for parametric bisimilarity-checking of PTA models. To conclude, we investigate
decidability properties of this technique for a restricted sub-class of PTA called
lower-bound/upper-bound PTA (L/U-PTA) [14].

2 Preliminaries

In this section, we first recall basic notions of timed automata, timed bisimulation
as well as the generalization of timed automata to parametric timed automata.

2.1 Timed Automata

Syntax. A timed automaton (TA) can be represented as a finite state-transition
graph. States of a TA are called locations (including a distinguished initial
location) and edges of a TA, denoting transitions between locations, are called
switches [1]. Each switch is labeled by a name from a finite alphabet Σ of visible
actions. Alternatively, a switch performing a silent move is labeled by a distin-
guished symbol τ �∈ Σ comprising all kinds of internal action. We will range over
Σ by σ and over Στ = Σ ∪ {τ} by μ.

A TA further consists of a finite set C of clocks defined over a numerical
clock domain TC. For instance, TC = N0 may be used to model discrete-time
behavior, whereas TC = R+ represents dense-time behavior. Clocks can be seen
as constantly and synchronously increasing, yet independently resettable vari-
ables over TC. In this way, clocks allow for measuring and restricting time inter-
vals for the durations—or delays between occurrences—of actions within runs
(i.e., sequences of locations and switches) of a TA model. Those restrictions are
expressed by clock constraints ϕ, by denoting guards of switches and invariants
of locations. In particular, guards specify those time intervals in which the cor-
responding switch is enabled in a run, whereas invariants restrict time intervals
in which runs are permitted to reside in a particular location. In addition, each
switch is labeled with a subset of clocks R ⊆ C denoting those clocks which will
be reset whenever that switch is taken in a run.

Definition 1 (Timed Automaton). A TA is a tuple (L, �0, Σ,C, I, E), where

– L is a finite set of locations with initial location �0 ∈ L,
– Σ is a finite set of actions such that τ �∈ Σ,
– C is a finite set of clocks such that C ∩ Στ = ∅,
– I : L → B(C) is a function assigning invariants to locations, and
– E ⊆ L × B(C) × Στ × 2C × L is a relation defining switches.

58 M. Lochau et al.

The set B(C) of clock constraints ϕ over C is inductively defined as

ϕ := true | c ∼ n | c − c′ ∼ n | ϕ ∧ ϕ, where ∼ ∈ {<,≤,≥, >}, c, c′ ∈ C, n ∈ TC.

We range over TA by A where we may omit an explicit mentioning of the sets
C and/or Σ if not relevant. Furthermore, we denote switches (�, g, μ,R, �′) ∈ E

by �
g, μ, R

�′ for convenience. Please note that clock constraints ϕ as defined
above neither contain operators for equality nor disjunction as both are express-
ible by the given grammar (e.g., x = 2 may be expressed by x ≤ 2 ∧ x ≥ 2,
and x < 2 ∨ x > 2 may be expressed by two different switches labeled x < 2
and x > 2). We further consider diagonal-free TA in which clock constraints ϕ
only consist of atomic constraints of the form c ∼ n. This is, in fact, only a
syntactic restriction as for every TA, an equivalent diagonal-free TA can be con-
structed [7]. However, we will (implicitly) permit difference constraints c−c′ ∼ n
in B(C) only for the sake of a concise representation of our subsequent construc-
tions, but not as part of the visible syntax. Similarly, we may assume all location
invariants being unequal to true to be downward-closed (i.e., only having clauses
of the form c ≤ n or c < n), as upward-closed invariants clock constraints can
be moved to the guards of all incoming switches of that location.

However, as two actual restrictions, we limit our considerations to (1) clock
constraints over rational constants n ∈ Q0 as clock constraints with real-valued
bounds would obstruct fundamental decidability properties of TA, as well as
to (2) so-called timed safety automata. Concerning (2), our definition of TA
does not include distinguished acceptance locations used for employing Büchi
acceptance semantics for infinite TA runs [1,13].

Semantics. The operational semantics of TA defining its valid runs may be
defined in terms of Timed Labeled Transition Systems (TLTS) [12]. States of
TLTS are pairs 〈�, u〉 consisting of the currently active location � ∈ L and clock
valuation u ∈ C → TC. The clock valuation assigns to each clock c ∈ C the
amount of time u(c) elapsed since its last reset. Thereupon, two kinds of transi-
tions can be distinguished in TLTS: (1) passage of time of duration d ∈ TC while
(inactively) residing in location �, leading to an updated clock valuation u′, and

(2) instantaneous execution of switches �
g, μ, R,

�′, triggered by an occurrence
of action μ ∈ Στ and leading from source location � to target location �′.

Given a clock valuation u, we denote by u + d, with d ∈ TC , the updated
clock valuation mapping each clock c ∈ C to the new value u(c) + d resulting
from the passage of a duration d. By [R �→ 0]u, with R ⊆ C, we further denote
the updated clock valuation mapping each clock c ∈ R to value 0 (due to a
clock reset) while preserving the values u(c′) of all other clocks c′ ∈ C \ R not
being reset. By u ∈ ϕ, we denote that clock valuation u satisfies clock constraint
ϕ ∈ B(C). Finally, in case of τ -labeled transitions, we distinguish between strong
and weak TLTS transitions, where internal transitions are visible in the former,
but omitted in the latter.

Definition 2 (Timed Labeled Transition System). The TLTS of TA A
over Σ is a tuple (S, s0, Σ̂,�), where

Parametric Timed Bisimulation 59

– S = L× (C → TC) is a set of states with initial state s0 = 〈�0, [C �→ 0]〉 ∈ S,
– Σ̂ = Σ ∪ Δ is a set of transition labels, where Δ → TC is bijective such that

(Σ ∪ {τ}) ∩ Δ = ∅, and
– � ⊆ S × (Σ̂ ∪ {τ}) × S is a set of strong transitions being the least relation

satisfying the rules:
• 〈�, u〉 d 〈�, u + d〉 if (u + d) ∈ I(�) for d ∈ TC, and

• 〈�, u〉 μ 〈�′, u′〉 if �
g, μ, R

�′, u ∈ g, u′ = [R �→ 0]u, u′ ∈ I(�′) and
μ ∈ (Σ ∪ {τ}).

By ⊆ S × Σ̂ × S, we denote a set of weak transitions being the least relation
satisfying the rules:

– s
σ

s′ if s τn

s1
σ s2

τm

s′ with n,m ∈ N0,
– s

d
s′ if s d s′,

– s
0

s′ if s τn

s′ with n ∈ N0, and

– s
d+d′

s′ if s
d

s′′ and s′′ d′
s′.

We refer to the TLTS semantics of TA A as SA or simply as S if clear from
the context. We only consider strongly convergent TA A (i.e., with SA having no
infinite τ -sequences). In addition, if not further stated, we apply strong TLTS
semantics, where the weak version can by obtained by replacing � by in
all definitions. Obviously, a TLTS representation of TA semantics is, in general,
not finite and therefore only of theoretical interest. In practical tools, a finite
representation of TA semantics (e.g., zone graphs [13]) is used instead, where
it has been proven that such a finite representation exists for every TA model
according to Definition 1.

Example 1. Figure 1 shows sample TA specifying two different variants of the
real-time behavior of (simplified) coffee machines. Extracts from the corre-
sponding TLTS semantics are shown in Figs. 1c and 1d. In both cases, in state
〈Warm Up, x = 0〉, we can only let further time pass whereas in 〈Warm Up, x =
1〉, we have to choose coffee due to the invariant. In contrast, as neither location
Idle nor Fill Cup has an invariant, we may wait for an unlimited amount of time
thus resulting in infinitely many consecutive TLTS states (which we indicate by
the delay transitions at the bottom of the TLTS). Further note that the TLTS in
Fig. 1d contains a τ -transition thus leading to different strong TLTS semantics
than the TLTS in Fig. 1c. In contrast, the additional clock reset performed by
the coffee-switch of the TA in Fig. 1b in combination with the differing switch
guard y ≥ 1 (as compared to x ≥ 2 in Fig. 1a) lead to exactly the same (weak)
TLTS semantics for both TA.

As illustrated by the previous example, semantic equivalence of two given TA
variants is not obvious. We next recall the notion of timed bisimulation, providing
a well-founded notion of behavioral equivalence for TA models.

60 M. Lochau et al.

Fig. 1. TA of Two Similar Coffee Machines (Figs. 1a, 1b) and TLTS (Figs. 1c, 1d)

2.2 Timed Bisimulation

A timed (bi-)simulation relation may be defined by adapting the classical notion
of (bi-)simulation from LTS to TLTS. A state s′ of TLTS S ′ timed simulates
state s of TLTS S if every transition enabled in s, either labeled with action
μ ∈ Στ or with delay d ∈ Δ, is also enabled in s′ and the target state in S’,
again, simulates the target state in S. Hence, TA A′ timed simulates A if initial
state s′

0 simulates initial state s0. In addition, A′ and A are bisimilar if the
simulation relation is symmetric.

Definition 3 (Timed Bisimulation [20]). Let A, A′ be TA over Σ with C ∩
C ′ = ∅ and R ⊆ S × S′ such that for all (s1, s

′
1) ∈ R it holds that

– if s1
μ

s2 with μ ∈ Στ , then s′
1

μ
s′
2 and (s2, s

′
2) ∈ R and

– if s1
d s2 with d ∈ Δ, then s′

1
d s′

2 with (s2, s
′
2) ∈ R.

A′ (strongly) timed simulates A, denoted A � A′, iff (s0, s
′
0) ∈ R. In addition,

A′ and A are (strongly) timed bisimilar, denoted A � A′, iff R is symmetric.

Weak timed (bi-)simulation (ignoring τ -steps) can be obtained by replacing
� with in definitions (which we will omit whenever not relevant).

Lemma 1. If A′ strongly timed simulates A, then A′ weakly timed simulates A.

Proof. We prove Lemma 1 by contradiction. Assume TA A and A′ with A′

strongly timed simulating A and A′ not weakly timed simulating A. In this
case, we require TLTS states 〈�1, u1〉 ∈ S and 〈�′

1, u
′
1〉 ∈ S′ being reachable by

a τ -step such that for each 〈�1, u1〉 η 〈�2, u2〉 ∈ � with η ∈ Σ̂ there exists a
〈�′

1, u
′
1〉 η 〈�′

2, u
′
2〉 ∈ �′. Due to the definition of weak transitions (cf. Defini-

tion 2), we also require a transition 〈�′
1, u

′
1〉 η 〈�′

2, u
′
2〉 ∈ �′ not being enabled

in 〈�1, u1〉 to prove that A′ strongly timed simulates A and A′ weakly timed

Parametric Timed Bisimulation 61

Fig. 2. Examples for Timed Bisimilarity Checking

simulates A. However, as these two assumptions are contradicting, it holds that
A′ weakly timed simulates A if A′ strongly timed simulates A. ��

Example 2. Consider TA A and A′ in Figs. 1a and 1b. In this case, strong timed
(bi-)simulation does not hold due to the τ -step in A′. In contrast, for the weak
case, we have A � A′ as every action and delay of A is also permitted by A′ (cf.
TLTS in Figs. 1c and 1d in Example 1). Similarly, A′ � A also holds such that
A and A′ are weakly timed bisimilar.

Figure 2 provides further examples to demonstrate particularly tricky cases
of timed bisimilarity. In A1, we may wait for at most 5 time units in location �1
before performing action b only if we have performed action a before with delay
0. In contrast, in A′

1, the delay of at most 5 time units before performing b in
location �1 is independent of the previous delay of action a due to the reset of
clock z. Hence, A1 � A′

1 does not hold. Finally, we have A2 � A′
2 as both TA

permit action a to be performed within time interval [0, 3].

The notion of (strong) timed bisimulation goes back to Moller and Tofts [17]
as well as Yi [21], both initially defined on real-time extensions of the pro-
cess algebra CCS. Again, the characterization of timed bisimulation using
the (infinite) TLTS representation of real-time behavior is only of theoreti-
cal interest. The pioneering work of Čerāns [8] includes the first decidability
proof of timed bisimulation on TA, by providing a finite characterization of
bisimilarity-checking utilizing a region-graph representation of real-time pro-
cesses. Amongst others, the improved (i.e., less space-consuming) approach of
Weise and Lenzkes [20] employs a variation of zone graphs, called FBS graphs.

In the next section, we consider a generalization of TA, called parametric
timed automata (PTA), incorporating parametric clock constraints with freely-
adjustable time intervals instead of constant time bounds as enforced in TA.

3 Parametric Timed Automata

In this section, we consider a generalized definition of TA, called Parametric
Timed Automata (PTA) [2]. PTA improve expressiveness of TA by incorpo-
rating dynamically and freely adjustable time intervals within clock constraints
instead of statically fixed time bounds as required in TA. In this way, PTA facil-
itate re-engineering of existing real-time specifications into more generic models

62 M. Lochau et al.

Fig. 3. Parametric Timed Automata of Two Re-egineered Coffee Machines

being flexibly customizable to a-priori unknown and/or dynamically changing
environmental requirements (e.g., enabling fine-tuning of parameter values to
optimize performance for a specific hardware platform). We further consider an
interesting sub-class of PTA called L/U-PTA.

3.1 Illustrating Examples

Parametric Timed Automata (PTA) generalize TA such that lower and upper
bounds of clock constraints occurring as switch guards and location invariants
may, instead of predefined constants, be represented as parameters denoting
a-priori unknown constants of dynamically adjustable time intervals [2].

Example 3. For instance, assume that the two coffee machines specified by the
TA models in Fig. 1 shall be used to (re-)engineer further machines having sim-
ilar control software. The real-time behavior of these new machines may, how-
ever, slightly differ from the original ones, depending on the hardware used. For
instance, the duration of warm-up may differ depending on the performance of
the heating device used. Hence, the maximum value of the timing interval of
the invariant of the locations Warm Up and Warm Up′ respectively which has
been originally fixed to constant value 1 should become a dynamically adjustable
parameter after (re-)engineering.

Figure 3 shows the resulting PTA models of the (re-)engineered coffee
machines. As before, the PTA in Fig. 3a waits in initial location Idle until a
button is pressed, then resets clock x and switches to location Warm up. From
here, the guard of the outgoing switch and the location invariant enforces the
PTA to proceed by choosing coffee within a time interval between 1 to p time
units. Then, sugar is poured until x elapsed at least to the value of parameter p′.

The PTA in Fig. 3b, again, defines very similar, yet slightly differing behavior:
Clock y is additionally reset after choosing coffee and a silent τ -step follows the
choice of coffee. In addition, in contrast to the first PTA, this PTA employs only
one parameter q for restricting both time intervals. Hence, the TLTS extracts
initially shown in Figs. 1c and 1d result from the parameter valuations p = q = 1
and p′ = 2, respectively.

We now proceed by providing a formal definition of the syntax and semantics of
PTA as well as a sub-class of PTA, called L/U-PTA.

Parametric Timed Bisimulation 63

3.2 Defining Parametric Timed Automata

Given a finite set P of parameters over parameter domain TP, PTA extend
the definition of clock constraints to parametric clock constraints for guards
and invariants by comparing clock values with parametric linear terms (plt)
(
∑

1≤i≤|P | αipi) + n, where αi ∈ Z, pi ∈ P and n ∈ TC . Here, the sum is a
shorthand notation for α1p1 + . . . + αmpm + n, where we use αi = 0 to denote
that parameter pi is not part of a given parametric linear term.

Definition 4 (Parametric Timed Automaton). A PTA is a tuple (L, �0, Σ,
C, P, I, E), where

– L is a finite set of locations with initial location �0 ∈ L,
– Σ is a finite set of actions such that τ �∈ Σ,
– C is a finite set of clocks such that C ∩ Στ = ∅,
– P is a finite set of parameters such that P ∩ (C ∪ Στ) = ∅,
– I : L → B(C,P) assigns parametric invariants to locations, and
– E ⊆ L × B(C,P) × Στ × 2C × L is a relation defining switches.

The set B(C,P) of parametric clock constraints φ over C and P is defined as

φ := true | c ∼ plt | c − c′ ∼ plt | φ ∧ φ, where plt := (
∑

1≤i≤|P | αipi) + n

and ∼ ∈ {<,≤,≥, >}, c, c′ ∈ C, αi ∈ Z, pi ∈ P and n ∈ TC .

Again, we include difference constraints in B(C,P) for technical reasons. We
range over PTA by P and use the same notational conventions as for TA.

Semantics. The operational semantics of a PTA is defined in terms of the seman-
tics of the set of TA resulting from all possible parameter valuations. Hence, given
a PTA P defined over parameter set P and a parameter valuation ν : P → TP

(i.e., replacing all parameters by constants from TP), by ν(P) we denote the TA
resulting from replacing all occurrences of all parameters p ∈ P within invariants
and guards by the constant value ν(p). For the resulting TA ν(P), the corre-
sponding (strong and weak) TLTS semantics Sν(P) can be derived as described
above.

Example 4. The TA models in Figs. 1a and 1b result from applying the param-
eter valuations ν = {p �→ 1, p′ �→ 2} and ν′ = {q �→ 1} to the PTA models in
Figs. 3a and 3b, respectively.

As PTA are Turing-complete, almost all non-trivial properties, being decidable
for TA (including timed bisimulation), become undecidable in case of PTA [5].
Hence, we conclude this section by considering an interesting sub-class of PTA,
called lower-bound/upper-bound PTA (L/U-PTA) [14].

64 M. Lochau et al.

3.3 L/U-PTA

A PTA model is a L/U-PTA model if each parameter is exclusively used either as
lower bound or upper bound throughout all parametric clock constraints in which
the parameter occurs. This restriction limits the influence of those parameters on
the reachability of locations. As a result, L/U-PTA are more expressive than TA
while some essential semantic properties (e.g., reachability), being undecidable
for PTA, remain decidable [5].

More formally, parameter pi ∈ P is lower-bounded in a parametric clock
constraint φ if it occurs in at least one clause c ≥ plt or c > plt with αi �= 0, and
it is upper-bounded if it occurs in at least one clause c < plt or c ≤ plt with αi �= 0
(where αi is the factor for multiplication with parameter pi, see Definition 4). By
PL ⊆ P , we denote the subset of all lower-bounded parameters, and by PU ⊆ P
the subset of all upper-bounded parameters of a given PTA model P.

Definition 5 (L/U-PTA). PTA P is a L/U-PTA if PL ∩ PU = ∅ holds.

Example 5. The PTA in Fig. 3a is a L/U-PTA as parameter p only occurs upper-
bounded and parameter p′ only occurs lower-bounded. In contrast, the PTA in
Fig. 3b is not a L/U-PTA as parameter q occurs both upper-bounded and lower-
bounded.

In the next section, we elaborate on the notion of timed bisimulation for PTA
models.

4 Parametric Timed Bisimulation

In this section, we discuss how to lift the notion of timed bisimulation from
TA models to define parametric timed bisimulation on PTA models. To gain
an intuitive understanding of parametric timed bisimulation, we first provide a
collection of illustrating examples.

4.1 Illustrating Examples

Intuitively, one may define that PTA P ′ parametric-timed-simulates PTA P,
denoted P � P ′, if for each parameter valuation ν of P there exists a cor-
responding valuation ν′ of P ′ such that ν(P) � ν′(P ′) holds (i.e., every TA
derivable from P can be simulated by a TA derivable from P ′).

Figure 4 shows a collection of six sample PTA, P0,P1, . . . ,P5, over Σ =
{a, b}, where the pairs P0 – P1, P2 – P3 as well as P4 – P5 are each structurally
similar and mostly slightly differ in the usage of parameters.

– Both P1 � P0 and P0 � P1 hold. In particular, P1 � P0 holds as for every
derivable TA ν1(P1) an identical TA ν0(P0) exists with p = p′ = q. Conversely,
it is not possible to find an identical TA ν1(P1) for every derivable TA of
P0 as P0 allows for two independent parameters p and p′ in the guards.
However, by setting q in ν1 to the maximum value of p and p′ in ν0, it is

Parametric Timed Bisimulation 65

Fig. 4. Sample PTA models

in fact possible to derive ν1(P1) simulating ν0(P0). For instance, consider
the parameter valuations ν0 = {p �→ 1, p′ �→ 2} and ν1 = {q �→ 2} where
ν0(P0) � ν1(P1) holds.

– P2 � P3 and P3 � P2 do not hold. Both P2 and P3 must perform the
switches labeled with action a exactly after either p or q time units, respec-
tively. Afterwards, the clock reset permits P2 to wait for at most 1 time unit
before performing the switch labeled with action b. However, in order for the
switch labeled with action a to become enabled in the next round, exactly
p time units must elapse after the last clock reset. In contrast, in P3, each
parameter valuation with q′ < q would cause the resulting TA to get stuck
after performing the switch labeled with action a. In case of q′ ≥ q, however,
the next round is only possible if no further time elapses due to the absence
of any clock reset (thus enforcing zeno behavior).

– P4 � P5 and P5 � P4 hold such that both models are parametric timed
bisimilar as the semantic difference between the parametric switch guard and
the parametric location invariant is not observable.

Furthermore, note that, for instance, P3, is not a L/U-PTA as parameter q occurs
lower-bounded as well as upper-bounded (as x == p is actually a shorthand for
x ≥ p and x ≤ p). As a result, the parameter valuation may influence reachability
of locations in non-obvious ways as described above.

4.2 Defining Parametric Timed Bisimulation

Timed (bi-)simulation may be lifted to PTA by simply considering pairs of
parameter valuations independently one-by-one. However, as illustrated above,
this definition would result in a mutual simulation relation between P0 and P1.
This would be a rather unintuitive result as P0 contains an additional degree
of parametric freedom due to the two independent parameters p and p′ as com-
pared to the one single parameter q in P1. Furthermore, this definition would
yield an inconsistent notion of timed bisimilarity. For instance, it is possible to
derive a TA ν0(P0) with ν0 = {p �→ 1, p′ �→ 2} for which in fact no bisimilar TA
ν1(P1) exists.

In order to obtain a feasible notion of parametric timed bisimulation, we
propose to incorporate in our definition an explicit relation R on parameter
valuations. Given a relation R ⊆ A × B, Π1(R) ⊆ A denotes the projection of
elements from A related under R to elements in B.

66 M. Lochau et al.

Definition 6 (Parametric Timed Bisimulation). Let P, P ′ be PTA over
Σ, where C ∩ C ′ = ∅, P ∩ P ′ = ∅ and R ⊆ (P → TP) × (P ′ → TP ′) such that
(ν, ν′) ∈ R ⇔ ν(P) � ν′(P ′) holds. We may consider the following cases:

– P ′ ∃-simulates P iff Π1(R) �= ∅,
– P ′ ∀-simulates P iff Π1(R) = (P → TP),
– P ′ and P are bisimilar iff R is symmetric and � is replaced by �.

By P � P ′, we denote that P ′ simulates P, where we again may omit further
details if not relevant. Relation ∀-simulates is a preorder, whereas relation ∃-
simulates is not. Please note, that we mention ∃-similarity only for the sake of
completeness, but we will limit our considerations to ∀-(bi-)similarity.

In order to characterize parametric timed (bi-)similarity for PTA in a more
concise way, we next present a (partially) symbolic PTA semantics compris-
ing all parameter valuations in one parametric timed labeled transition system
(PTLTS). A PTLTS consists of parametric states 〈�, u, ξ〉 containing parameter
constraints ξ denoting sets of parameter valuations ν ∈ ξ for which the state is
reachable. Thus, we decompose parametric clock constraints φ = φc ∧ φp into
a non-parametric (constant) part φc and a parametric part φp. Hence, φc con-
juncts all those parametric linear terms in φ with αi = 0, 1 ≤ i ≤ |P |, whereas
φp conjuncts all remaining terms with at least one parameter occurrence. We
refer to the non-parametric and parametric parts of invariants and guards of a
PTA by Ic, Ip, gc and gp, respectively. By [C/u]ϕ we denote that every occur-
rence of any clock c ∈ C in clock constraint ϕ is replaced by clock value u(c)
thus resulting in a parameter constraint.

We define PTLTS semantics by (1) constructing TLTS semantics from the
non-parametric parts of clock constraints as usual, and by (2) aggregating para-
metric parts of clock constraints in parameter constraints ξ of states 〈�, u, ξ〉 by
replacing clocks c within constraints by their current values u(c).

Definition 7 (Parametric TLTS). The PTLTS of PTA P over Σ is a tuple
(S, s0, Σ̂,�), where

– S = L × (C → TC) × B(P) is a set of parametric states with initial state
s0 = 〈�0, [C �→ 0], true〉 ∈ S,

– Σ̂ = Σ ∪ Δ is a set of transition labels, where Δ → TC is bijective such that
(Σ ∪ {τ}) ∩ Δ = ∅,

– � ⊆ S × (Σ̂ ∪ {τ}) × S is a set of strong parametric transitions being the
least relation satisfying the rules:

• 〈�, u, ξ〉 d 〈�, u+d, ξ∧[C/(u+d)]Ip(�)〉 for each d ∈ TC with (u+d) ∈ Ic(�),
and

• 〈�, u, ξ〉 μ 〈�′, [R �→ 0]u, ξ∧[C/u]gp∧[C/[R �→ 0]u]Ip(�′)〉 for each �
g, μ, R

�′ with u ∈ gc ∧ [R �→ 0]u ∈ Ic(�′).

The set B(P) of parameter constraints ξ over P is inductively defined as

ξ := true | n ∼ plt | ξ ∧ ξ, where ∼ ∈ {<,≤,≥, >} and n ∈ TP .

Parametric Timed Bisimulation 67

Fig. 5. Example for PTA Bisimulation of P0 and P1 (cf. Figs. 4a and 4b)

PTLTS enable an alternative definition of parametric timed (bi-)simulation.
Intuitively, P ′ parametric-timed-simulates P if any occurrence of parameters
p′ ∈ P ′ in parametric clock constraints of P ′ can be substituted by either some
parameter p ∈ P from P or by a constant d ∈ TP such that the resulting PTLTS
of P ′ timed-simulates the PTLTS of P. By [Ψ]ξ ∈ B(P) we denote the parameter
constraint resulting from applying parameter substitution Ψ : P ′ → P ∪ TP to
parameter constraint ξ ∈ B(P ′).

Definition 8 (PTLTS Bisimulation). Let P, P ′ be PTA over Σ, where
C ∩ C ′ = ∅ and P ∩ P ′ = ∅, R ⊆ S × S

′
, and Ψ : P ′ → P ∪ TP such that for all

(s1, s
′
1) ∈ R

– if s1
μ

s2 with μ ∈ Στ , then s′
1

μ
s′
2 and (s2, s

′
2) ∈ R and ξ2 ⇒ [Ψ]ξ′

2, and
– if s1

d s2 with d ∈ Δ, then s′
1

d′
s′
2 with d′ ∈ Δ and (s2, s

′
2) ∈ R and

ξ2 ⇒ [Ψ]ξ′
2.

P ′ (strongly) timed-simulates P iff (s0, s
′
0) ∈ R. P and P ′ are (strongly) timed

bisimilar if there further exists Ψ ′ : P → P ′ ∪ TP such that R is symmetric.

By P �Ψ P ′ we denote that the PTLTS of P ′ parametric-timed-simulates the
PTLTS of P. Hence, Definition 8 requires a correspondence Ψ between parame-
ters of P and P ′ rather than a correspondence R between parameter valuations
as in Definition 6.

Example 6. Figures 5a and 5b show PLTS extracts of the PTA shown in Figs. 4a
and 4b. Action a in P0 leads to a state with parameter constraint p > 0 due
to the parametric clock constraint x < p and clock valuation x = 0. Hence,
P1 �Ψ P0 holds for Ψ(q) = p or Ψ(q) = p′.

Theorem 1. Let P,P ′ be PTA over Σ. If P �Ψ P ′, then P � P ′.

Proof. We prove Theorem 1 by using Ψ to derive R. Here, Ψ provides a corre-
spondence between parameters in P and P ′ such that if there exists such a Ψ ,
this Ψ directly provides a canonical correspondence between equivalent param-
eter valuations ν, ν′. Hence, it holds that P �Ψ P ′ ⇒ P � P ′.

In contrast, P � P ′ ⇒ P �Ψ P ′ does not hold. Consider as a counter-
example two PTA P and P ′ with L = {�0, �1} and L = {�′

0, �
′
1}, respectively,

68 M. Lochau et al.

having switches �0
x > p ∧ x > 42, a, ∅

�1 and �′
0

x > q, a, ∅
�′
1. P � P ′ holds by

defining R such that the constant value 42 is assigned to q if p ≤ 42 and by
assigning the value of p, else. However, P ��Ψ P ′ as we have to decide whether
we substitute q by 42 or by p in Ψ . ��

Similar to TLTS, PTLTS are, in general, infinite-state and infinitely-
branching state-transition graphs thus not providing a practical basis for effec-
tively checking parametric-timed bisimilarity.

As a future work, we plan to employ a fully symbolic semantics of PTA,
called parametric zone graphs, to facilitate an effective (yet still incomplete)
parametric-timed bisimilarity checking [5].

Concluding this section, we investigate an over-approximation of PTA seman-
tics by means of plain TA semantics which allows us to apply imprecise, yet
decidable TA bisimilarity-checking to PTA models.

4.3 Parameter-Abstracted Timed Bisimulation

We consider parameter-abstracted PTA (PA-PTA), an over-approximation of
PTA semantics by means of TA semantics. In PA-PTA, every occurrence of a
lower-bounded parameter within a parametric clock constraint is replaced by
the smallest possible value (i.e., constant 0). Correspondingly, every occurrence
of upper-bounded parameter within a parametric clock constraint is replaced
by the greatest possible values which is, however, not representable as a proper
numeric constant. Instead, we replace the entire clause in which the upper-
bounded parameter occurs by constant true. The resulting model is a proper TA
model which comprises the union of all behavior of every TA model derivable
from the respective PTA.

Definition 9 (PA-PTA). The PA-PTA of a PTA P, denoted [P], is derived
from P by

– replacing each occurrence of lower-bounded parameters pi by constant 0, and
– replacing each clause with upper-bounded parameter pi by constant true.

Obviously, PA-PTA [P] of PTA P is a TA according to Definition 1. Hence, given
two PTA models, P and P ′, we can apply a (decidable) timed-bisimilarity check
to the corresponding PA-PTA models, [P] and [P ′]. Unfortunately, [P] � [P ′]
does not imply that P � P ′ holds. For instance, considering Figs. 4a and 4f, we
have [P0] � [P5], but P0 � P5 does not hold.

However, considering the sub-class of L/U-PTA models (cf. Definition 5),
timed (bi-)similarity of the corresponding PA-PTA models at least constitutes
a necessary precondition for parametric (bi-)similarity of the respective PTA
models.

Parametric Timed Bisimulation 69

Theorem 2. Let P, P ′ be L/U-PTA over Σ. If [P] �� [P ′], then P �� P ′.

Proof. Let P, P ′ be L/U-PTA over Σ. We prove Theorem 2 by contradiction.
In particular, [P] and [P ′] constitutes the most permissive parameter valuation
by means of the union of all behavior of all other valuations. Hence, we need an
example with [P] �� [P ′] such that when stepping back from PA-PTA to PTA,
re-introduced parameters constraints of P are more restrictive than those of P ′

thus resulting in P � P ′. This would require combinations of parametric clock
constraints making states, being reachable in [P], unreachable in P. However,
in case of L/U-PTA, additional parametric clock constraints can never affect
reachability [14]. ��
Hence, the restrictions of PTA as imposed by the sub-class of L/U-PTA mod-
els enables us to practically falsify parametric timed bisimularity. On the other
hand, it remains an open questions whether also verifying parametric timed
bisimilarity becomes decidable for L/U-PTA. In addition, to gain a deeper under-
standing of the practical relevance of the restricted usage parametric clock con-
straints as imposed in L/U-PTA requires further real-world case studies in a
future work.

5 Related Work

The notion of timed bisimulation goes back to Moller and Tofts [17] as well as
Yi [21], both defined on real-time extensions of the process algebra CCS. Sim-
ilarly, Nicollin and Sifakis [18] define timed bisimulation on ATP (Algebra of
Timed Processes). However, none of these works initially incorporated a tech-
nique for effectively checking bisimilarity. The pioneering work of Čerāns [8]
includes the first decidability proof of timed bisimulation on TA, by providing a
finite characterization of bisimilarity-checking on region graphs. The improved
(i.e., less space-consuming) approach of Weise and Lenzkes [20] employs a vari-
ation of zone graphs, called FBS graphs, which also builds the basis for our
zone-history graphs. Guha et al. [10,11] also follow a zone-based approach for
bisimilarity-checking on TA as well as the weaker notion of timed prebisimilar-
ity, by employing so-called zone valuation graphs and the notion of spans as also
used in our approach.

Nevertheless, concerning PTA, almost all analysis problems investigated so
far are concerned with properties of one PTA, whereas no equivalence notions
such as timed bisimulation have been proposed so far [4,5].

In the context of software product line engineering, dynamically configurable
extensions of timed automata have been proposed. For instance, featured timed
automata (FTA) incorporate a finite set of Boolean feature parameters to define
presence conditions to (de-)activate clock constraints as well as entire switches
depending on the feature selection [9]. The resulting formalism is used to facil-
itate symbolic model-checking of all derivable TA models in a single run which
is called family-based analysis. However, FTA only comprise a finite set of
derivable TA models thus being strictly less expressive than PTA. In contrast,

70 M. Lochau et al.

Luthmann et al. propose configurable parametric timed automata combining
PTA und FTA into one model [16] and describe a family-based, yet incom-
plete approach for generating test suites achieving location coverage on every
derivable TA model. To summarize, neither for FTA nor for CoPTA models, a
corresponding notion of timed bisimilarity has been proposed as done in this
paper.

6 Conclusion

In this paper, we elaborated on the notion of parametric timed (bi-)simulation
for semantically comparing PTA models which is inherently undecidable due
to the Turing-completeness of PTA. We provided different characterizations of
parametric timed bisimulation and investigated a sub-class of PTA called L/U-
PTA with respect to decidability properties. As a future work, we explore further
decidability properties of interesting sub-classes of PTA similar to L/U-PTA and
to evaluate the practical impact of the respective modeling restrictions imposed
by those sub-classes as compared to fully-fledged PTA models. In addition, we
plan to characterize parametric timed bisimulation on a fully symbolic PTA
semantics called parametric zone graphs which are based on zone-graph seman-
tics of TA. This allows us to develop an effective, yet still incomplete, tool for
parametric-timed-bisimilarity checking utilizing an SMT-solver for evaluating
parameter constraints. Finally, we are also interested in compositionality prop-
erties of (parametric) timed bisimulation in order to further tackle scalability in
the formal analysis of real-time critical systems.

References

1. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990).
https://doi.org/10.1007/BFb0032042

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC
1993, pp. 592–601. ACM (1993). https://doi.org/10.1145/167088.167242

3. Alur, R., Madhusudan, P.: Decision problems for timed automata: a survey. In:
Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 1

4. André, É.: What’s decidable about parametric timed automata? In: Artho, C.,
Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 52–68. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-29510-7 3

5. André, É.: What’s decidable about parametric timed automata? Int. J. Softw.
Tools Technol. Transf. 21(2), 203–219 (2017). https://doi.org/10.1007/s10009-017-
0467-0

6. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

7. Bérard, B., Petit, A., Diekert, V., Gastin, P.: Characterization of the expressive
power of silent transitions in timed automata. Fundamenta Informaticae 36(2,3),
145–182 (1998). https://doi.org/10.3233/FI-1998-36233

https://doi.org/10.1007/BFb0032042
https://doi.org/10.1145/167088.167242
https://doi.org/10.1007/978-3-540-30080-9_1
https://doi.org/10.1007/978-3-319-29510-7_3
https://doi.org/10.1007/s10009-017-0467-0
https://doi.org/10.1007/s10009-017-0467-0
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.3233/FI-1998-36233

Parametric Timed Bisimulation 71

8. Čerāns, K.: Decidability of bisimulation equivalences for parallel timer processes.
In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56496-9 24

9. Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A.: Behavioural modelling and
verification of real-time software product lines. In: Proceedings of the 16th Inter-
national Software Product Line Conference, vol. 1, pp. 66–75. ACM (2012)

10. Guha, S., Krishna, S.N., Narayan, C., Arun-Kumar, S.: A unifying approach to
decide relations for timed automata and their game characterization. In: EXPRESS/
SOS’13. EPTCS, vol. 120 (2013). https://doi.org/10.4204/EPTCS.120.5

11. Guha, S., Narayan, C., Arun-Kumar, S.: On decidability of prebisimulation for
timed automata. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 444–461. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31424-7 33

12. Henzinger, T.A., Manna, Z., Pnueli, A.: Timed transition systems. In: de Bakker,
J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS,
vol. 600, pp. 226–251. Springer, Heidelberg (1992). https://doi.org/10.1007/
BFb0031995

13. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Inf. Comput. 111(2), 193–244 (1994). https://doi.org/10.1006/
inco.1994.1045

14. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model
checking of timed automata. J. Logic Algebraic Program. 52–53, 183–220 (2002).
https://doi.org/10.1016/S1567-8326(02)00037-1

15. Liva, G., Khan, M.T., Pinzger, M.: Extracting timed automata from java methods.
In: 2017 IEEE 17th International Working Conference on Source Code Analysis
and Manipulation (SCAM), pp. 91–100. IEEE (2017)

16. Luthmann, L., Stephan, A., Bürdek, J., Lochau, M.: Modeling and testing prod-
uct lines with unbounded parametric real-time constraints. In: Proceedings of
the 21st International Systems and Software Product Line Conference - Volume
A, SPLC 2017, pp. 104–103. ACM, New York (2017). https://doi.org/10.1145/
3106195.3106204

17. Moller, F., Tofts, C.: A temporal calculus of communicating systems. In: Baeten,
J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 401–415. Springer,
Heidelberg (1990). https://doi.org/10.1007/BFb0039073

18. Nicollin, X., Sifakis, J.: The algebra of timed processes, ATP: theory and appli-
cation. Inf. Comput. 114(1), 131–178 (1994). https://doi.org/10.1006/inco.1994.
1083

19. Waez, M.T.B., Dingel, J., Rudie, K.: A survey of timed automata for the develop-
ment of real-time systems. Comput. Sci. Rev. 9, 1–26 (2013). https://doi.org/10.
1016/j.cosrev.2013.05.001

20. Weise, C., Lenzkes, D.: Efficient scaling-invariant checking of timed bisimulation.
In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 177–188.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023458

21. Wang, Y.: Real-time behaviour of asynchronous agents. In: Baeten, J.C.M., Klop,
J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 502–520. Springer, Heidelberg
(1990). https://doi.org/10.1007/BFb0039080

https://doi.org/10.1007/3-540-56496-9_24
https://doi.org/10.4204/EPTCS.120.5
https://doi.org/10.1007/978-3-642-31424-7_33
https://doi.org/10.1007/978-3-642-31424-7_33
https://doi.org/10.1007/BFb0031995
https://doi.org/10.1007/BFb0031995
https://doi.org/10.1006/inco.1994.1045
https://doi.org/10.1006/inco.1994.1045
https://doi.org/10.1016/S1567-8326(02)00037-1
https://doi.org/10.1145/3106195.3106204
https://doi.org/10.1145/3106195.3106204
https://doi.org/10.1007/BFb0039073
https://doi.org/10.1006/inco.1994.1083
https://doi.org/10.1006/inco.1994.1083
https://doi.org/10.1016/j.cosrev.2013.05.001
https://doi.org/10.1016/j.cosrev.2013.05.001
https://doi.org/10.1007/BFb0023458
https://doi.org/10.1007/BFb0039080

A Unifying Framework for Dynamic
Monitoring and a Taxonomy

of Optimizations

Marie-Christine Jakobs(B) and Heiko Mantel(B)

Department of Computer Science, TU Darmstadt, Darmstadt, Germany
{jakobs,mantel}@cs.tu-darmstadt.de

Abstract. Reducing the performance overhead of run-time monitoring
is crucial for making it affordable to enforce more complex requirements
than simple security or safety properties. Optimizations for reducing
the overhead are becoming increasingly sophisticated themselves, which
makes it mandatory to verify that they preserve what shall be enforced.
In this article, we propose a taxonomy for such optimizations and use it
to develop a classification of existing optimization techniques. Moreover,
we propose a semantic framework for modeling run-time monitors that
provides a suitable basis both, for verifying that optimizations preserve
reliable enforcement and for analytically assessing the performance gain.

1 Introduction

Run-time verification is a popular technique for ensuring that a program satisfies
given requirements. Conceptually, a monitor observes runs of a target program
and interferes, when a violation of some requirement is about to occur. In con-
trast to static analysis and formal verification, run-time verification does not
analyze all possible runs of the target program, but only the ones that actually
occur. This simplifies the analysis. In addition, a dynamic analysis has knowledge
of actual values in a run and can thereby achieve better precision.

The down-side of run-time monitoring (short: RTM) is that the monitor
induces a performance overhead each time the target program is run.This overhead
can becomeunacceptably high, and it is a common reason for abstaining fromusing
run-time monitoring in practice [7]. When complex requirements are enforced by
RTM and complex target programs are monitored, then the performance overhead
becomes an even bigger problem. This is, for instance, relevant when using RTM
in software reengineering for adding properties to existing software.

The goal of optimizing RTM is to reduce this performance overhead. To
achieve acceptable performance, complex optimizations for RTM [34, 18] are sug-
gested. However, they are lacking full formal correctness proofs. When applying
such optimizations, one currently gives up formal guarantees of RTM [33, 29].
Thus, we need better foundations to prove complex optimizations for RTM.

As a first step, we provide the foundations to prove RTM optimizations from
two simple classes of optimizations. Along the way, we developed a semantic frame-
work for characterizing the behavior of run-time monitors. Our framework allows
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 72–92, 2020.
https://doi.org/10.1007/978-3-030-61470-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_6

A Unifying Framework for Dynamic Monitoring and a Taxonomy 73

us to carry the distinction of observable and controllable events [8] over to opti-
mizations. Moreover, we distinguish the affirmative treatment of requirements
from a preventive treatment, which both occur in prior work. We clarify where
they differ technically and how they can be used interchangeably. We aim at using
our semantic framework in the future to verify further classes of optimizations.

Several heterogeneous optimizations for RTM are proposed in the litera-
ture [11, 10, 34, 30, 18, 5, 35, 22, 3]. Since we aim at using run-time monitoring
to enforce specifications, we focus on optimizations that aim for soundness, i.e.,
to not miss any requirement violations. To identify (interesting) classes of opti-
mizations proposed in the literature, we compare the existing approaches on
a conceptual level. Previously proposed taxonomies for RTM [14, 27, 32, 20]
do not cover optimizations. We introduce a 3-dimensional taxonomy for RTM
optimizations, which considers how requirements are specified, how the neces-
sary information for the optimization is obtained, and how the optimization is
performed. We use our taxonomy to classify prior work on optimization of RTM.

In summary, we conduct first steps in a larger research effort to formally
prove optimizations for RTM. We show how to formally prove optimizations
for RTM and what needs to be done. As an unexpected bonus, our semantic
framework helped us to come up with new, more sophisticated optimizations.

2 Preliminaries

Basic Notions and Notation. We use 〈〉 to denote the empty sequence, 〈a〉 to
denote the sequence consisting of a single symbol a, and a.w to denote the
sequence starting with the symbol a, followed by the sequence w.

We define the concatenation of two sequences w1 and w2 (denoted by w1 ·w2)
recursively by 〈〉·w2 = w2 and (a.w1)·w2 = a.(w1 · w2). Overloading notation, we
use w.a as an abbreviation for w · 〈a〉. A sequence w1 is a prefix (w2 is a suffix) of
a sequence w if there exists a sequence w2 (a sequence w1) such that w = w1 ·w2

holds. A set of sequences L is prefix-closed (is suffix-closed) if w ∈ L implies
that w1 ∈ L holds for each prefix (for each suffix) w1 of w. The suffix-closure of
L (denoted SUF(L)) is the smallest suffix-closed super-set of L.

We define the projection of a sequence w to a set A (denoted by w|A) recur-
sively by 〈〉|A = 〈〉, (a.w)|A = w|A if a �∈ A, and (a.w)|A = a.(w|A) if a ∈ A.

We lift concatenation and projection from sequences to sets of sequences by
L1 · L2 =

⋃
w1∈L1,w2∈L2

{w1 · w2} and by L|A =
⋃

w∈L{w|A}. We define the
∗-operator as the smallest fixed-point of L∗ = {〈〉} ∪ {a.w | a ∈ L ∧ w ∈ L∗}.

Projection preserves the ∈- and the ⊆-relationship, i.e., w ∈ L implies w|A ∈
L|A, and L1 ⊆ L2 implies L1|A ⊆ L|A2 . By contraposition, w|A /∈ L|A implies
w �∈ L, and L1|A �⊆ L2|A implies L1 �⊆ L2. We will exploit these facts in proofs.

We denote the space of total functions and the space of partial functions from
A to B by A → B and A ↪→ B, respectively. For f : A ↪→ B, we write f(a)↓ if
f is defined at a ∈ A, i.e. ∃b ∈ B. f(a) = b, and f(a)↑ if f is undefined at a.

74 M.-C. Jakobs and H. Mantel

2.1 Labeled Transition Systems and Properties

We use labeled transition systems to formally characterize the behavior of pro-
grams in a uniform fashion. Given a program in some programming, byte-code or
machine language, it is straightforward to construct from the language’s small-
step operational semantics a corresponding labeled transition system where
events correspond to executing individual instructions. Our use of labeled tran-
sition systems is also compatible with coarser-grained or finer-grained events.

Definition 1. A labeled transition system (brief: LTS) is a tuple (S, S0, E, Δ),
where S is a set of states, S0 ⊆ S is a set of initial states, E is a set of events,
and Δ ⊆ (S×E×S) is a transition relation.

The relation Δ∗ ⊆ (S×E∗×S) is defined inductively by (s, 〈〉, s) ∈ Δ∗ and
by (s, a.w, s′′) ∈ Δ∗ if ∃s′ ∈ S. ((s, a, s′) ∈ Δ ∧ (s′, w, s′′) ∈ Δ∗).

As usual, we use traces to model program runs. The set of traces induced by an
LTS lts = (S, S0, E,Δ) starting in s ∈ S is the smallest set Traces(lts, s) ⊆ E∗

such that Traces(lts, s) = {w ∈ E∗ | ∃s′ ∈ S. (s, w, s′) ∈ Δ∗}. The set of
traces induced by lts is Traces(lts) =

⋃
s0∈S0

Traces(lts, s0). Note that both sets,
Traces(lts) and Traces(lts, s) are prefix-closed.

We focus on properties in the sense of Alpern and Schneider [4].

Definition 2. A property over a set E is a function prop : E∗ → Bool.
A labeled transition system lts = (S, S0, E,Δ) satisfies a property prop :

E∗ → Bool iff ∀tr ∈Traces(lts). prop(tr) = � holds.

2.2 Finite Automata and Formal Languages

We use automata to formally characterize the behavior of run-time monitors.

Definition 3. A finite automaton (brief: FA) is a tuple (S, S0, SF , A, δ), where
S and A are finite sets, S0 ⊆ S and SF ⊆ S are nonempty, and δ : (S ×A) ↪→ S.

The function δ∗ : (S ×A∗) ↪→ S is defined inductively by δ∗(s, 〈〉) = s and by
δ∗(s, a.w) = s′′ if ∃s′ ∈ S. (δ(s, a) = s′ ∧ δ∗(s′, w) = s′′).

Given a finite automaton fa = (S, S0, SF , A, δ), S is the set of states, S0 is
the set of initial states, SF is the set of final states, A is the alphabet , and δ is
the transition function of fa. An FA fa = (S, S0, SF , A, δ), is total in a ∈ A iff
∀s∈S.∃s′ ∈S. δ(s, a) = s′, and fa is total in A′ ⊆A iff fa is total in each a∈A′.

A word over an alphabet A is a finite sequence over A. A language over an
alphabet A is a set of words over A. We call a language L over A simple iff
L = {}, L = {〈〉}, or L = {〈a〉} holds for some a ∈ A. A language L is regular
iff L can be composed from simple languages using the operators ∪, ·, and ∗.

Definition 4. A word w ∈ A∗ is accepted in s ∈ S by a finite automaton
fa = (S, S0, SF , A, δ) iff δ∗(s, w) ∈ SF . The language accepted by fa in s ∈ S is
the set of all such words, i.e., Lang(fa, s) = {w ∈ A∗ | δ∗(s, w) ∈ SF }.

A word w ∈ A∗ is accepted by fa iff fa accepts w in some initial state s0 ∈ S0.
The language accepted by fa is Lang(fa) =

⋃
s0∈S0

Lang(fa, s0).
A word w ∈ A∗ is rejected by fa iff w is not accepted by fa.

A Unifying Framework for Dynamic Monitoring and a Taxonomy 75

The expressiveness of finite automata is given by Kleene’s theorem [26]. The
language Lang(fa) is regular for each finite automaton fa, and, for each regular
language L, there exists a finite automaton fa with Lang(fa) = L.

Finite automata where every state is final, have a prominent role in this
article. The languages accepted by this class of finite automata coincide with
the languages that are regular and prefix closed [25].

We introduce three operations for adapting transition functions: The lifting
of a transition function δ : (S× A) ↪→S to an alphabet B augments the domain
of δ by adding stuttering steps for all pairs in (S×(B\A)). The restriction of δ
to B restricts the domain of δ to events in (A ∩ B). The completion of δ to B
adds a stuttering step for each b∈B and s∈S, wherever δ(s, b) is undefined.

Definition 5. Let δ : (S×A) ↪→ S be a transition function and B be an alphabet.
The lifting of δ to B is δ↑B: (S × (A∪B)) ↪→ S, the restriction of δ to B is
δ|B : (S×(A∩B)) ↪→ S, and the completion of δ to B is δ �B : (S×A) ↪→ S with

δ↑B(s, a) = δ(s, a) if a∈A δ↑B(s, a) = s if a∈(B \ A)
δ|B(s, a) = δ(s, a) if a∈(A ∩ B)

δ

�B(s, a) = δ(s, a) if δ(s, a)↓ δ

�B(s, a) = s if a∈(A ∩ B) ∧ δ(s, a)↑
Definition 6. The lifting of a finite automaton fa = (S, S0, SF , A, δ) to an
alphabet B is the finite automaton fa↑B = (S, S0, SF , (A∪B), δ↑B).

3 A Framework for Monitoring and Enforcement

A run-time monitor checks whether actions of a target program are permissible
before they occur. If the monitor classifies an action as affirmative, then the action
may occur, and, otherwise, the monitor takes appropriate countermeasures.

Historically, the field of run-time monitoring has close ties to automata the-
ory. This connection is beneficial since constructions and insights from automata
theory can be exploited in the development and analysis of RTM solutions.

The use of automata for run-time monitoring, however, is not uniform. For
using finite automata, e.g., one can observe two approaches:

1. Each word accepted by an FA corresponds to an affirmative behavior.
2. Each word accepted by an FA corresponds to a preventive behavior.

At the level of formal languages, the approaches are duals of each other, and
switching from the one to the other is straightforward: Given a regular language
L specifying the affirmative behaviors, one can use an FA that recognizes L for
monitoring (following the first approach). Alternatively, one can use an FA that
recognizes the complement of L (following the second approach to monitoring).

Due to this duality at the level of formal languages, the two approaches are
sometimes treated as if they were fully interchangeable. However, when imple-
menting run-time monitoring, one needs to commit to one of these approaches.
This choice might impact performance overhead, and this is not merely an
implementation-level issue, as we will clarify in Sect. 4.

In the development of our semantic framework, we carefully distinguish

– between finite automata and the requirements that shall be enforced and
– between two approaches of using finite automata for RTM.

76 M.-C. Jakobs and H. Mantel

As usual, we use formal languages to specify the requirements to be enforced.
However, to clearly distinguish between the two approaches to run-time moni-
toring, we refer to such languages as policies, if they specify affirmative runs, and
as anti-policies, if they specify preventive runs. We deliberately do not identify
policies/anti-policies with accepting automata, because this would limit the use
of our framework for verifying soundness of optimizations.

We formally introduce a notion of monitors on top of finite automata. This
allows us to explicitly distinguish between events of the target that can be fully
controlled from events that can be observed but not controlled. This distinction
is relevant for the enforceability of properties [8], as well as for the performance
overhead (see Sect. 4). We use the term monitor when following the first approach
to RTM and the term watch-dog when following the second approach.

The interplay between target programs, monitors/watch-dogs, properties,
and policies/anti-policies is visualized on the left-hand side of Fig. 1.

3.1 Policies and Anti-policies

We use policies and anti-policies to specify restrictions that shall be enforced
when a target program is running. A policy specifies which behaviors are
affirmed, while an anti-policy specifies which behaviors are prevented.

Definition 7. A policy is a pair pol = (A,Tr), where A is an alphabet, and
Tr ⊆A∗ is a non-empty and prefix-closed language over A, the affirmative traces.

An anti-policy is a pair apol = (A′,Tr ′), where A′ is an alphabet and Tr ′ ⊆
A′∗ is a language over A′ with 〈〉 /∈ Tr ′, the preventive traces.

We define the meaning of policies/anti-policies for labeled transition systems:

Definition 8. The properties specified by pol = (A,Tr) and apol = (A′,Tr ′),
respectively, for a set E are propE

pol , prop
E
apol : E∗ → Bool defined by:

propE
pol(w) =

{� if w|A ∈ Tr
⊥ otherwise.

propE
apol(w) =

{⊥ if ∃w1, w2 ∈ E∗. (w = w1 · w2 ∧ w1|A′ ∈ Tr ′)
� otherwise.

Intuitively, policies and anti-policies are dual concepts. The following theorem
substantiates this conceptual duality more precisely based on our definitions.

Theorem 1. Let pol = (A,Tr) be a policy and apol = (A,Tr ′) be an anti-policy.
If Tr ′ = A∗\Tr then propE

pol(w) = propE
apol(w) holds for all w ∈ E∗.

monitored
program

target
program

monitor

[watch-dog]

property
satisfies

finite
automaton

policy

[anti-policy]

enforces

[prevents]

specifies

MON (lts,mon)
[WDO(lts,wdo)]

lts

mon
[wdo]

propE
pol

[propE
apol]

satisfies

famon

[fawdo]

pol

[apol]

enforces

[prevents]

specifies

Fig. 1. Run-time monitoring and enforcement conceptually (lhs) and formally (rhs)

A Unifying Framework for Dynamic Monitoring and a Taxonomy 77

Theorem 1 can be used to construct from a policy an anti-policy that specifies
the same property. This construction is universal in the set of events. In the
other direction, constructing a policy from an anti-policy apol =(A,Tr ′) is only
possible if Tr ′ is suffix-closed, as, otherwise, (A, (A∗\Tr ′)) is not a policy.

3.2 Monitors and Enforcement of Policies

For monitors, we use transition functions as follows to specify which actions are
affirmed in which states: If the transition function is defined for a given state
and action, then this action is affirmed in this state and, otherwise, not. This
reflects, e.g., the behavior of security automata [33] or truncation automata [29].

A monitor might only supervise a subset of a target program’s actions.
Among those actions, we distinguish between actions whose occurrences the
monitor can prevent and actions whose occurrences the monitor cannot prevent.
This allows us to faithfully capture actions whose occurrences simply cannot be
prevented (e.g., the progress of time). This distinction will also be relevant for
our performance model (see Sect. 4) and optimizations (see Sect. 5).

The distinction of observable and controllable events has been exploited before
in other contexts. For instance, Basin et al. [8] use it to analyze enforceability.

As a notational convention, we use Γo to denote the set of events whose
occurrences a monitor can observe but not control, and we use Γc to denote the
set of events whose occurrences a monitor can observe and also control.

Definition 9. A monitor is a tuple mon = (MS ,ms0, Γo , Γc , δ), where

– MS is a finite set of monitor states with initial state ms0 ∈MS,
– Γo is a finite set of observed events,
– Γc is a finite set of controlled events with Γo ∩ Γc = ∅, and
– δ : (MS ×(Γo ∪Γc)) ↪→ MS) is a transition function that is total in (MS×Γo).

For the rest of this subsection, let mon = (MS ,ms0, Γo , Γc , δ) be a monitor, let
Γ = Γo ∪ Γc , and let lts = (S, S0, E,Δ) be a labeled transition system.

We model the effects of supervising a target program by a monitor.

Definition 10. Monitoring the labeled transition system lts with monitor mon
results in the labeled transition system MON (lts,mon) = (S′, S′

0, E,Δ′), where

S′ = S × MS ,
S′

0 = S0 × {ms0} , and

((s,ms), e, (s′,ms ′))∈Δ′ iff

⎛

⎝
(s, e, s′) ∈ Δ
∧ (e ∈ Γ ⇒ ms ′ = δ(ms, e))
∧ (e �∈ Γ ⇒ ms ′ = ms) .

⎞

⎠ .

Definition 10 captures the intended operational behavior of monitors: A monitor
updates its state whenever events occur that the monitor can observe (i.e., events
in Γo∪Γc). When non-observable events occur, the monitor does not modify its
state. Moreover, a monitored program can perform an event in Γc only if the
target program and the monitor can make a transition for this event. If the event
is in E\Γc , then it suffices that the target can make a transition for this event.1

1 Recall from Definition 9 that a monitor is total in Γo .

78 M.-C. Jakobs and H. Mantel

Before characterizing the effects of monitoring denotationally, let us make
the conceptual similarity between monitors and finite automata precise.

Definition 11. famon = (MS , {ms0},MS , Γ, δ) is the FA induced by mon.

Note that all monitor states are final states of the finite automaton famon . This
reflects that the acceptance of an event by a monitor solely depends on whether
the transition relation is defined for the current monitor state and this event.

Recall from Sect. 2 that the expressiveness of finite automata where all states
are final is the class of regular languages that are prefix-closed [25].

The denotational effects of monitoring a target by a monitor now can be
captured concisely by using the lifting of famon to the events of the target:

Theorem 2. Traces(MON (lts,mon)) = Traces(lts) ∩ Lang(fa↑E
mon) holds.

Given pol = (A,Tr), one can construct a monitor that soundly enforces this
policy via the construction of an FA that accepts a sub-language of Tr .

Theorem 3. Let fa = (MS , {ms0},MS , Γ, δ) and mon = (MS ,ms0, ∅, Γ, δ).
Then, for every policy pol = (A,Tr), the following implication holds:

Lang(fa) ⊆ Tr implies that MON (lts,mon) satisfies propE
pol .

Therefore, we say that fa enforces pol if Lang(fa) ⊆ Tr holds. In the theorem,
the set Γo of the monitor is empty. We will clarify in Sect. 4 what the benefits
are of moving events from Γc to Γo and in Sect. 5 when it is safe to do so.

The right-hand side of Fig. 1 visualizes the interplay between the formal
representations of target programs, monitors, properties, and policies.

3.3 Watch-Dogs and Prevention of Anti-policies

As explained, we use the terms watch-dog and anti-policy instead of monitor
and policy, respectively, when the specification focuses on preventive behavior.
We observed that in this case, finite automata are usually used in a slightly dif-
ferent way than described in Sect. 3.2, including prior work on optimizations of
run-time monitoring. As such technical details matter when verifying optimiza-
tions, we extend our semantic framework to watch-dogs and clarify the technical
differences to monitors. We also present a construction suitable for moving from
watch-dogs to monitors while preserving the behavior of a monitored target.

If a watch-dog reaches a final state, then a preventive behavior has occurred.
Therefore, a watch-dog must take countermeasures before it reaches a final state.

The main differences to the definition of monitors (see Definition 9) are the
existence of a set of final states and that the transition function is total.

Definition 12. A watch-dog is a tuple wdo = (WS ,ws0,WSF ,Γo ,Γc , δ) where

– WS is a finite set of watch-dog states with initial state ws0 ∈WS,
– WSF ⊆WS is a set of final watch-dog states with ws0 /∈WSF ,
– Γo is a finite set of observed events,
– Γc is a finite set of controlled events with Γo ∩ Γc = ∅, and
– δ : (WS × (Γo ∪ Γc)) → WS) is a transition function that is total and

for which δ(ws, γ) ∈ (WS \ WSF) holds for all γ∈ Γo and ws ∈ WS.

A Unifying Framework for Dynamic Monitoring and a Taxonomy 79

For the rest of this subsection, let wdo = (WS ,ws0,WSF ,Γo ,Γc , δ) be a
watch-dog, let Γ = Γo ∪ Γc , and let lts = (S, S0, E,Δ) be an LTS.

We model the effects of supervising a target program by a watch-dog.

Definition 13. Monitoring lts with the watch-dog wdo results in the labeled
transition system WDO(lts,wdo) = (S′, S′

0, E,Δ′), where

S′ = S × WS ,
S′

0 = S0 × {ws0} , and

((s,ws), e, (s′,ws ′))∈Δ′ iff

⎛

⎝
(s, e, s′) ∈ Δ
∧ (e∈Γ ⇒ (ws ′ =δ(ws, e) ∧ ws ′ /∈WSF))
∧ (e �∈Γ ⇒ ws ′ =ws)}

⎞

⎠ .

Note that Definition 13 faithfully captures the intended operational behavior of
watch-dogs: A monitored target can perform an event in Γc only if the non-
monitored target is able to make a transition for this event and if the occurrence
of this event would not result in a final watch-dog state. If the event is in E\Γc ,
then it suffices that the target is able to make a transition for this event.2

We identify which finite automaton corresponds to a given watch-dog:

Definition 14. fawdo = (WS , {ws0},WSF ,Γ , δ) is the FA induced by wdo.

Analogously to Sect. 3.2, we capture the denotational effects of monitoring a
target by a watch-dog using the liftings of fawdo to the events of the target:

Theorem 4. Traces(WDO(lts,wdo))=Traces(lts) \ SUF(Lang(fa↑E
wdo)) holds.

Note that, in Theorem 4, the suffix closure of the automaton’s language
occurs on the right-hand side of the equation. This is a difference to the analogous
theorem for monitors (i.e., Theorem 2). Operationally, this is due to the fact that
an action of a target program is prevented by a watch-dog if the action would
result in the watch-dog reaching a final state. That is, a watch-dog not only
prevents all words that it accepts but also all suffixes of such words.

Remark 1. Note that for the finite automaton corresponding to a monitor, every
state is final and the transition function may be partial. In contrast, for a finite
automaton corresponding to a watch-dog, at least the initial state must not be
final, and the transition function must be total. Despite these differences in the
underlying classes of automata, one can construct a monitor from a watch-dog
while preserving the behavior of all monitored target systems. To this end, one
changes the transition function of fawdo to be undefined for all arguments that
would lead to a final state, afterwards one removes all final states from the set
of states, and finally, one applies the usual complement constructions on finite
automata by making all final states non-final and vice versa.

4 A Performance Model for Monitors

Run-time monitoring and enforcement inherently comes at the cost of some
performance overhead. A monitor needs to learn about the action that the target
2 Recall that a watch-dog cannot reach a final state when events in Γo occur.

80 M.-C. Jakobs and H. Mantel

program is about to perform. The monitor then needs to decide whether to affirm
or prevent an action. If an action is affirmed, the target needs to be enabled to
perform the action and, otherwise, countermeasures must be taken.

Usually the individual actions of a monitor are rather fast, but such delays
accumulate during a run. This is why it has become good practice to accom-
pany the development of tools for run-time monitoring and enforcement with
experimental performance evaluations, e.g., at a benchmark like DaCapo [9].

The overhead caused by monitoring depends on how the monitor itself is
implemented and also on how the combination with the target program is tech-
nically realized. The inlining-technique [19] is a popular technique that incor-
porates the monitor code sequentially into the target’s code. Outlining places
the monitor into a separate process [27] that runs in parallel to the target. The
crosslining technique [23] combines the two by sequentially inlining parts of the
monitor code while outlining other parts to run in parallel.

While experimental performance evaluations of tools for run-time monitoring
and enforcement have become common practice, there is little work on analytical
performance evaluations. A notable exception is an article by Drábik et al. [15].
They propose a framework for analyzing the costs of enforcement.

In this section, we propose a novel performance model for run-time monitor-
ing and enforcement. Our model is similar in spirit to the one in [15], but we
take a broader set of events and context-dependence of costs into account.

We introduce performance vectors to model the time needed by a monitor
to observe an action, to check whether it is permissible, to permit an action to
happen, and to terminate a run. In addition, a performance vector models any
base overhead that is induced by the mere existence of a monitor.

Definition 15. A performance vector for a set of events E is a tuple μ =
(μo, μc, μp, μt, μ∅), where μo, μc, μp, μt, μ∅ : ((E × E∗) → Time).
A performance vector μ = (μo, μc, μp, μt, μ∅) is context independent iff
μα(e, w)=μα(e, w′) holds for all α∈{o, c, p, t, ∅}, e∈E, and w,w′ ∈E∗.

Intuitively, μo(e, tr) models the time a monitor needs to learn that the target
is about to perform the event e∈E. The second parameter, i.e. tr , models the
context in which e occurs by the trace of events that have happened before.

Similarly, μc(e, tr) models the time needed to check whether e is permissible
in context tr . The functions μp and μt model the time needed for enabling the
target to perform e and for preventing e by terminating the run, respectively. The
values of μp and μt shall include time needed to update the monitor’s internal
state. The function μ∅ models the base overhead of monitoring for events that
the monitor can neither observe nor control.

We parametrized the functions in a performance vector by both, an event
and a context. This design choice allows one to specify the performance overhead
very precisely. If determining such a precise performance vector, in practice, is
infeasible or too expensive, one can coarsen the model, e.g., by defining a context-
independent performance vector that approximates the actual performance costs.

We are now ready to introduce a novel performance model for monitors.

A Unifying Framework for Dynamic Monitoring and a Taxonomy 81

Definition 16. The overhead caused by a monitor mon = (MS ,ms0, Γo , Γc , δ)
under a performance vector μ = (μo, μc, μp, μt, μ∅) for e ∈ E and tr ∈ E∗ is

μmon(e, tr) =

⎧
⎪⎪⎨

⎪⎪⎩

μ∅(e, tr) , if e∈(E\(Γo∪Γc))
μo(e, tr) , if e∈Γo

μo(e, tr) + μc(e, tr) + μp(e, tr) , if e∈Γc and δ(mstr , e)↓
μo(e, tr) + μc(e, tr) + μt(e, tr) , if e∈Γc and δ(mstr , e)↑

where mstr = δ∗(ms0, tr |Γo∪Γc
). The overhead of mon for a trace is defined

recursively by μ∗
mon(〈〉) = 0 and μ∗

mon(tr .e) = μ∗
mon(tr) + μmon(e, tr).

In Sect. 5, we use this model to characterize the performance gain by selected
optimizations, while using the terms in Definition 16 purely symbolically.

Remark 2. The definition of an analogous performance model for watch-dogs
is straightforward based on our semantic framework. When instantiating the
resulting performance models, however, be aware that differences between mon-
itors and watch-dogs should be taken into account when defining performance
vectors. In particular, supervising events in Γc might have higher performance
costs for watch-dogs than for monitors: While a watch-dog needs to compute
the resulting watch-dog state and check that it is not final before allowing the
target to continue, a monitor only needs to check whether a transition for the
event exists and may update its state in parallel to the target’s execution.

5 Towards a More Formal Treatment of Optimizations

Optimizations are crucial for lowering the performance overhead of run-time
monitoring and enforcement. However, such optimizations need to be applied
with care, because optimizing a monitor could endanger its effectiveness.

In our study of prior work on optimizing run-time monitoring and enforce-
ment, we observed that the arguments for the preservation of properties mostly
remain at an informal level. Given the growing importance of optimizations
and their increasing level of sophistication, we think the time is ready for more
scrutiny. After all, what is the value of formal verifications of run-time monitors,
if afterward optimizations are applied that have only been informally analyzed?

The advantages of a more formal treatment of optimizations are twofold:

– precise, formal definitions of preconditions clarify better what one needs to
check for before applying a given optimization and

– formally verified preservation results provide reliable guarantees for the
preservation of properties under an optimization if the preconditions are met.

One possibility for decreasing performance overhead, is to limit the events
tracked in run-time monitoring and enforcement. This optimization technique is
popular, and it also appeared as an integral part of more complex optimizations
(see Sect. 6). This is the optimization on which we focus in this section.

Based on our semantic framework, we clarify which preconditions guaran-
tee the preservation of which properties under this optimization. Formally, the

82 M.-C. Jakobs and H. Mantel

optimization corresponds to removing events from the alphabet of the automa-
ton underlying a monitor or watch-dog while restricting the transition function
accordingly. However, our framework provides a more fine-grained distinction,
namely between events under the control of a monitor/watch-dog (i.e., Γc) and
events whose occurrences the monitor/watch-dog can observe but not control
(i.e., Γo). This allows us to split the optimization into two more primitive ones:

– removal of events from the control while keeping track of them and
– removal of events from the set of events that are tracked.

In our formal model, reduction of control (brief: ROC) corresponds to moving
events from Γc to Γo , and reduction of tracking (brief: ROT) corresponds to
removing events from Γo . Each of these transformations reduces the performance
overhead already if applied in isolation. If applied in combination, ROC and
ROT result in the removal of events from the supervision (brief: ROS). Our
split is increasing the application spectrum of such optimizations as there are
cases, where ROC may be applied, while applying ROS would be problematic.

Like in the previous section, we limit our technical exposition to monitors.
For the rest of this section, let mon =(MS ,ms0, Γo , Γc , δ) be a monitor.

5.1 Formal Definitions of Optimizations and Performance Gain

We define reduction of control, reduction of tracking, and reduction of super-
vision as operators that transform monitors. Each of these operators takes an
event as second argument. This is the event whose supervision is altered.

Definition 17. Let γc ∈Γc, γo ∈Γo, and γ∈Γo ∪ Γc.

ROC(mon, γc) = (MS ,ms0, (Γo∪{γc}), (Γc\{γc}), δ �{γc})
ROT(mon, γo) = (MS ,ms0, (Γo\{γo}), Γc , δ|(Γo∪Γc)\{γo})
ROS(mon, γ) = ROT(ROC(mon, γ), γ)

Note that, if mon = (MS ,ms0, Γo , Γc , δ) is a monitor then δ �{γc} is total in
(Γo ∪ {γc}) and δ|(Γo∪Γc)\{γo} is total in (Γo \ {γo}). Therefore, if mon is a
monitor then ROC(mon, γc) and ROT(mon, γo), indeed, are monitors.

In the definition of ROC, δ �{γc} is a transition function that is total in {γc}.
The addition of stuttering steps to δ by this completion makes a monitor more
affirmative. The removal of Γo from the alphabet of a monitor in the definition
of ROT also makes monitoring more affirmative (cf. Definition 10).

We characterize the effects of the transformations on the monitoring over-
head based on our performance model. For simplicity, we assume the monitoring
overhead for any given action of the target to depend only on this action.

Theorem 5. Let μ = (μo, μc, μp, μt, μ∅) be a context-independent performance
vector, and let E be a set of events. The following conditions hold for all tr ∈E∗,
γc ∈Γc, roc = ROC(mon, γc), γo ∈Γo, and rot = ROT(mon, γo):

μo(γc) ≤ μc(γc) =⇒ μ∗
roc(tr) ≤ μ∗

mon(tr)
μ∅(γo) ≤ μo(γo) =⇒ μ∗

rot(tr) ≤ μ∗
mon(tr)

A Unifying Framework for Dynamic Monitoring and a Taxonomy 83

On the implementation level, moving γc from Γc to Γo corresponds to reducing
the monitor code that runs at each program point where γc might occur. The
monitor still needs to be informed about such occurrences, but no run-time check
is needed, as it is clear a priori that the decision will be positive. Applying ROT
corresponds to reducing the number of program points at which monitor code
runs. That is, μo(γc) ≤ μc(γc) and μ∅(γo) ≤ μo(γo) should hold for most monitor
implementations, and, hence, ROC and ROT, indeed, are optimizations.

5.2 Application Scenarios for the Optimizations

We point out and informally discuss multiple possibilities for applying the opti-
mizations ROC, ROT, and ROS. The informal presentation in this subsection,
will be substantiated by formalizations of conditions and theorems in Sect. 5.3.

Assume a policy pol = (A,Tr) that specifies the requirements to be enforced,
and a monitor constructed by firstly, determining a sublanguage of Tr that is reg-
ular and prefix-closed, then synthesizing fa = (MS , {ms0},MS , Γ, δ) that accepts
this sublanguage, and defining the monitor to be mon = (MS ,ms0, ∅, Γ, δ).
According to Theorem 3, the monitor mon soundly enforces the property induced
by pol (i.e., propE

pol) for every labeled transition system lts = (S, S0, E,Δ).
At the level of program code, one could check whether the policy’s alphabet

contains events that cannot be generated by the target program. This check can
be realized, e.g., by a syntactic search in the program code for patterns that
correspond to these events, or, more sophisticated, by a reachability analysis.

At the level of labeled transition systems, the syntactic check corresponds
to checking whether the set A\E is non-empty, and the reachability analysis
corresponds to checking, based on Δ, whether any events in A are never enabled.
Intuitively, monitoring such events is unnecessary. Hence, one could exempt them
from the monitor’s supervision by applying ROS for all such events. [A]

A reachability analysis using the monitor’s transition function could be used
to detect events that are always permitted. For such events the monitor’s check
is unnecessary, and, hence, one can optimize the monitor by ROC.3 [B1]

A more sophisticated variant is to detect events the monitor permits in all
states that the monitor reaches by observing possible traces of the target. [B2]

Note that optimizations might make other optimizations applicable. For
instance, removing an event from a monitor’s control by ROS [A] might make, for
some other event, all monitor states unreachable in which this event is prevented
by the monitor and, hence, ROC could become applicable due to [B1] or [B2].

5.3 Preservation Theorems

The following theorem justifies our uses of ROC in Sect. 5.2. The three precon-
ditions in the theorem, respectively, correspond to [A], [B1], and [B2].

3 In such a situation, one might be tempted to instead apply the more powerful opti-
mization ROS, but this, in general, does not guarantee the preservation of propE

pol .

84 M.-C. Jakobs and H. Mantel

Theorem 6. Let γc ∈Γc, Γ =Γo ∪ Γc, and roc=ROC(mon, γc). The equation

Traces(lts) ∩ Lang(fa↑E
roc) = Traces(lts) ∩ Lang(fa↑E

mon)
holds if at least one of the following conditions is satisfied:

1. Δ ∩ (S×{γc}×S) = ∅ ,
2. ∀w∈Γ ∗. (δ∗(ms0, w))↓ =⇒ (δ∗(ms0, w.γc))↓ , or
3. ∀(tr .γc)∈Traces(lts). (δ∗(ms0, tr |Γ))↓ =⇒ (δ∗(ms0, (tr |Γ).γc))↓ .

The following theorem justifies our uses of ROT in Sect. 5.2. The precondition
in the theorem corresponds to [A].

Theorem 7. Let γo ∈Γo, Γ =Γo ∪ Γc, and rot =ROT(mon, γo). The equation

Traces(lts) ∩ Lang(fa↑E
rot) = Traces(lts) ∩ Lang(fa↑E

mon)
holds if Δ ∩ (S×{γo}×S) = ∅.
If the respective preconditions are fulfilled, Theorems 6 and 7 guarantee that
ROC and ROT do not alter the intersection of the sets of traces of the non-
monitored target with the language of the lifted automaton. In combination
with Theorem 2, this guarantees the set of traces of a monitored target to remain
unchanged. Thus, all properties are preserved if the preconditions are met.

Remark 3. The application spectrum of optimizations could be broadened by
taking the policy into account to relax the preconditions of optimizations. Here,
we see substantial room for improving optimizations, as it suffices to preserve
one property, namely propE

pol . This could be a valuable direction for future work.

6 Optimizations for Run-Time Monitoring

We focus on optimizations [11, 10, 34, 30, 18, 5, 35, 22, 3] that aim at sound
enforcement. For such optimizations, we develop a taxonomy for RTM optimiza-
tions and then classify the existing approaches in our taxonomy.

Most publications on optimizations for run-time monitoring use a more tech-
nical and a less formal description than Sects. 3 and 5. Although we encountered
ambiguities in descriptions of optimizations or monitors and the different rep-
resentations made it difficult to identify similarities, we follow the optimizing
approaches and describe our taxonomy on an informal level, too.

Optimization approaches for RTM get as input a program and a specification.
We use the general term specification for the technical input(s) that describe
the objective of RTM, e.g., which execution traces are allowed and how to deal
with forbidden traces. The shape of the specification differs among the RTM
approaches. For example, one can use a finite state automaton to describe the
forbidden execution traces and specify that forbidden traces are truncated.

The first step of all optimization approaches for RTM is to gather information
about the program with respect to the specification. This information is then
used for optimization, which tackles the program’s structure, its instrumentation,
or the specification. Although the general workflow is the same, approaches for
optimizing RTM differ a lot, as we have seen for ROC and ROT.

A Unifying Framework for Dynamic Monitoring and a Taxonomy 85

Fig. 2. A taxonomy for optimizing run-time monitoring

6.1 A Taxonomy of Optimizations for RTM

Figure 2 shows the taxonomy we propose to classify optimizations for RTM. Ele-
ments shown in blue do not occur in any of the reviewed optimizations, but we
think they are natural extensions. Our taxonomy uses three main dimensions
to characterize optimizations: the specification, information gathering, and opti-
mizing transformations. The latter two specify the two steps in the workflow.
A specification in run-time monitoring defines which enforcement is applied to
which execution trace. Next, we discuss the dimensions in more detail.

Specification. The requirement type and formalism describe the requirement.
The requirement type determines whether the requirement specifies the allowed
behavior (affirmative) or the forbidden behavior (preventive). This corresponds
to the two approaches distinguished in Sect. 3. The formalism fixes the require-
ment language. We distinguish between declarative and operational formalisms.
Commonly, RTM uses both [33, 29]: a declarative requirement to describe the
intended behavior and an operational requirement to implement the monitoring.
Optimizations rarely consider both, but focus on operational requirements.

Formal languages [7], temporal logic [28] or dedicated policy languages like
policy and anti-policy are possible declarative formalisms for requirements. Pro-
cess algebras [37] and automata [33] are options for operational formalisms. All
optimizations we know optimize RTM approaches that (1) are preventive and
(2) express requirements in automata formalisms, which range from simple finite
state automaton to more advanced automata in DATE [13] and ppDATE [3].
This motivated us to include watch-dogs into our semantic framework. The
third element of a specification is the enforcement mechanism. Some optimiza-
tions [35, 22] specify that they optimize an RTM approach that uses truncation4.
4 Recall that we also focused on truncation in Sects. 3–5.

86 M.-C. Jakobs and H. Mantel

However, for most of the approaches it remains unclear what enforcement mech-
anism is used by the underling RTM approach. Countermeasures suggested by
StaRVOOS [3] and Clara [11] are for example error reporting and error recovery.
Further enforcement mechanisms [7] used in RTM are rollback and suppression
or insertion of events. Since the information gathering phase of all reviewed opti-
mizations does not consider enforcement, it is likely that enforcement beyond
truncation is not fully compatible with those optimizations.

Information Gathering. All approaches we reviewed statically inspect the pro-
gram to gather information. StaRVOOS [3] uses deductive verification. Often,
reachability analyses like model checking [35, 22] or more efficient dataflow ana-
lyses [10] are applied. Also, syntactic, flow-insensitive analyses are run [11].

Optimizing Transformations. Reviewing approaches that optimize RTM, we
identified three basic concepts for optimizations: transformations of the oper-
ational requirement description, the program, or the instrumentation of the
program. Since some optimizing approaches apply more than one concept, we
describe an optimizing transformation by a triple of the three concepts and
use the identity transformation for concepts that are not applied. Thus, unop-
timized RTM is identical to only using identity transformations. The three
transformations presented in Sect. 5.1 reduce the operational requirement, i.e.,
they (re)move events. Requirement reduction can remove transitions and con-
ditions, too. In addition, operational requirements can be extended, e.g., by
adding transitions and events. Both, reduction and extension, occur stand-
alone [11, 3, 5] like in Sect. 5 or in combination with the removal of instrumen-
tation points [6], a transformation of the instrumentation code. The program
transformation unfolding is typically combined with the removal of instrumen-
tation points [35, 30]. However, the removal of instrumentation points can also
be used stand-alone [10, 22]. In contrast, delayed instrumentation [18] is cur-
rently only used in combination with requirement extension because it replaces
sets of instrumentation points by a later instrumentation that aggregates their
effect. We are not aware of any approach that optimizes the instrumentation
code, e.g., specializes the instrumentation code at instrumentation points using
partial evaluation [24], which we think is an interesting direction.

Our taxonomy excludes optimizations for multiple policies [31], online opti-
mizations [17, 36], and unsound optimizations [12, 21, 16] that may miss
violations.

6.2 Classifying Optimizations into Optimizing Transformations

In the following, we present six classes for the taxonomy dimension optimizing
transformation. All classes occur in the literature and are future candidates for
formalizing and proving optimizations for RTM. We start with three classes that
only take one of the optimization concepts into account. Thereafter, we discuss
three classes that combine different optimizing transformations.

A Unifying Framework for Dynamic Monitoring and a Taxonomy 87

program

requirement

information
gathering instrumentation

instrumented

program

requirement’

required instrumen-

tation points

Fig. 3. Workflow of removal of instrumentation points

program

requirement

information
gathering

requirement
reduction

instrumentation

instrumented

program

requirement
reduction

instrumentation

requirement’

program’s

events

requirement’

Fig. 4. Workflow of stand-alone requirement reduction

Stand-alone Removal of Instrumentation Points. This class of optimizations
keeps the requirement and program as they are and decreases the number of
instrumentation points. The left-hand side of Fig. 3 shows the workflow. It first
determines the required instrumentation points. The instrumentation includes
the optimization and leaves out instrumentation points that are not required.

Nop-shadow analysis [10] and its optimization [34] employ forward and back-
ward, flow-sensitive analyses to detect the instrumentation points (called shad-
ows) that are irrelevant. JAM [22] uses model checking and counterexample-
guided abstraction refinement with a limited number of refinement steps. The
model checker outputs all traces that violate the requirement and are either real
or could not be ruled out. The instrumentation step adds monitoring code for
the reported traces and stops the program just before a violation would occur.

Stand-alone Requirement Reduction. Stand-alone requirement reduction
describes optimizations that neither change the program nor the instrumen-
tation procedure, which is unaware of the optimization and uses the reduced
requirement. Based on the gathered information, these optimizations (re)move
elements from automata (the operational requirement formalism).

The most inexpensive reduction (see right-hand side of Fig. 4) in the literature
applies the ROS transformation in scenario A (Sect. 5.2). It is used in Clara’s
QuickCheck [11] to reduce finite state automata and in absent event pruning [5]
to reduce requirements written in DATE. Additionally, QuickCheck removes
transitions that cannot reach one of the automaton’s final states.

Clara’s orphan-shadow analysis [11[and object-specific absent event prun-
ing [5] extend this reduction idea with object sensitivity. Since type state require-
ments track the automaton state per object of interest, used events are detected
per object and a requirement reduction (an ROS transformation) is performed
for each object. Afterward, the reduced requirements are combined again.

88 M.-C. Jakobs and H. Mantel

program

specification

model
checking

program transformation
and truncation

instrumented program

with inlined

specification

abstract

reachability

graph
program

requirement

static
analysis

loop splitting
and instrumentation

instrumented

program
requirement

stutter

distances

Fig. 5. Zero overhead RTM (lhs) and stutter-equivalent loop optimization (rhs)

Unusable transition pruning [5] integrates flow-sensitive information to the
reduction. It takes the control-flow into account and removes automaton transi-
tions that are not activated by any (syntactic) trace of the program.

In its first optimization step, StarVOORS [2] deletes all pre- and postcondi-
tion pairs from its ppDATE requirement that are proven by the verifier KeY [1].

Stand-alone Requirement Extension. Stand-alone requirement extension is simi-
lar to stand-alone requirement reduction. The only difference is that the gathered
information is used to adapt the automaton (operational requirement) by gener-
alizing existing or adding new elements. The only approach in this class we are
aware of is the second step of the StaRVOORS [3, 2] approach. To reduce the
overhead caused by checking the pre- and postconditions in the ppDATE require-
ment, StaRVOORS tries to discharge the pre- and postcondition pairs with the
deductive verifier KeY [1]. While complete proofs are used for reduction, open
proof goals are used to split the precondition into a proven and non-proven part
and the pre-/postcondition pair is replaced by a refined pair consisting of the
non-proven precondition and the unmodified postcondition.

Combining Unfolding with Removal of Instrumentation Points. Optimizations
in this class do not modify the requirement, but unfold the program to enable
the removal of instrumentation points.

Zero overhead run-time monitoring [35], shown on the left-hand side of Fig. 5,
starts to model check the program with respect to the requirement. The model
checking algorithm parallely executes the requirement and a predicate abstrac-
tion (with a limited number of refinements). The result of model checking is an
abstract reachability graph (ARG) that represents the explored abstract state
space. Due to the combination of the requirement and predicate abstraction,
the ARG unfolds the program such that all paths leading to a final state of the
requirement automaton are syntactic error traces. For optimization, the ARG
is translated back into a program and statements leading to a final state in
the ARG, i.e., causing a requirement violation, are replaced by HALT state-
ments. The result is a transformed program with inlined enforcement, in which
all instrumentation code except for the enforcement itself is delete.

Stutter-equivalent loop optimization [30], shown on the right-hand side of
Fig. 5, splits loops into two loops. The first loop runs as long as RTM may
change the requirement state. The second loop is not instrumented and executes
the remaining loop iterations, for which the requirement state remains stable. A

A Unifying Framework for Dynamic Monitoring and a Taxonomy 89

program

requirement

static
analysis

requirement
extension

instrumentation

instrumented

program
requirement’

safe regions

requirement’

Fig. 6. Workflow of safe regions approach

static analysis is used to determine for each loop the maximal number of loop
iterations, the stutter distance, required to reach a stable requirement state. The
stutter distance is used to restrict the execution of the first loop.

Delayed Instrumentation with Requirement Extension. In this class, optimiza-
tions do not transform the program, but extend the operational requirement
and replace groups of instrumentation points by a summary instrumentation
point. The only approach in this category we are aware of is the safe regions
approach [18]. Its workflow is shown in Fig. 6. The safe regions approach starts
with a static analysis to detect safe regions, i.e., code blocks that cannot reach a
requirement violation and all paths through the code block that start in the same
requirement state end in the same requirement state. Instrumentation does not
insert instrumentation code into safe regions, but adds instrumentation code
after a safe region, which triggers a special region event. The requirement is
extended with transitions for the region events, which summarize the regions’
behavior with respect to the requirement.

Combining Requirement Reduction with the Removal of Instrumentation Points.
Optimization approaches in this class reduce the operational requirement and
remove unnecessary instrumentation points, but do not change the program.
Clara [11], which combines QuickCheck, the orphan and nop-shadows analysis,
and CLARVA [6], which combines the DATE requirement reductions [5] with
the removal of instrumentation points, fall into this category.

On Correctness of Optimizations. Full correctness of an optimization is rarely
shown. Exceptions are zero overhead RTM [35] and the DATE reductions [5]. For
Clara’s nop shadow [10, 11], the stutter-equivalent loop optimization [30], and
the safe regions approach [18] only the underlying idea for the optimization is
proven. The correctness of Clara’s QuickCheck and orphan-shadow analysis [11]
is discussed rather informally. The StarVOORS approach [2] provides the foun-
dations and proves the soundness of the ppDate translation, but lacks to prove
the correctness of the ppDate optimization. At worst, for the JAM approach [22]
and the improvement of the nop shadow approach [34] correctness of the opti-
mization is hardly discussed at all.

90 M.-C. Jakobs and H. Mantel

7 Conclusion

We presented a semantic framework for formalizing different approaches to RTM
in a uniform fashion and a novel performance model. Their intended application
domain is the analysis of optimizations of RTM. We showed at selected opti-
mizations that both are suitable for this purpose. In fact, the formalization of
optimizations alone already inspired ideas for broadening the application spec-
trum of known optimizations and for the development of novel optimizations.

Our taxonomy and classification provide a broader conceptual clarification
about previously proposed optimizations. Since the taxonomy also covers possi-
bilities not yet explored, it could serve as a road map for future directions.

Naturally, this article can only be one step towards making a more rigorous
treatment of optimizations common practice in the field of RTM. Broadening
the application spectrum of optimizations, improving their effects, and clarifying
which optimizations can be safely applied under which conditions is an exciting
research area that deserves and will require substantial future research.

Acknowledgments. We thank Barbara Sprick for helpful discussions. This work was
funded by the Hessian LOEWE initiative within the Software-Factory 4.0 project and
by the German Federal Ministry of Education and Research and the Hessen State
Ministry for Higher Education, Research and the Arts within their joint support of the
National Research Center for Applied Cybersecurity ATHENE.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice. LNCS,
vol. 10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

2. Ahrendt, W., Chimento, J.M., Pace, G.J., Schneider, G.: Verifying data- and
control-oriented properties combining static and runtime verification: theory and
tools. Formal Methods Syst. Des. 51(1), 200–265 (2017)

3. Ahrendt, W., Pace, G.J., Schneider, G.: A unified approach for static and runtime
verification: framework and applications. In: Margaria, T., Steffen, B. (eds.) ISoLA
2012. LNCS, vol. 7609, pp. 312–326. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34026-0 24

4. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21, 181–185
(1985)

5. Azzopardi, S., Colombo, C., Pace, G.J.: Control-flow residual analysis for symbolic
automata. In: Pre- and Post-Deployment Verification Techniques. EPTCS, vol.
254, pp. 29–43 (2017)

6. Azzopardi, S., Colombo, C., Pace, G.J.: CLARVA: model-based residual verifica-
tion of Java programs. In: Model-Driven Engineering and Software Development,
pp. 352–359 (2020)

7. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification Introductory
and Advanced Topics. LNCS, vol. 10457. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-75632-5

8. Basin, D.A., Jugé, V., Klaedtke, F., Zalinescu, E.: Enforceable security policies
revisited. Trans. Inf. Syst. Secur. 16(1), 3:1–3:26 (2013)

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-642-34026-0_24
https://doi.org/10.1007/978-3-642-34026-0_24
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-319-75632-5

A Unifying Framework for Dynamic Monitoring and a Taxonomy 91

9. Blackburn, S.M., Garner, R., Hoffmann, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.L.,
Jump, M., Lee, H.B., Moss, J.E.B., Phansalkar, A., Stefanovic, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking
development and analysis. In: Object-Oriented Programming, Systems, Languages,
and Applications, pp. 169–190 (2006)

10. Bodden, E.: Efficient hybrid typestate analysis by determining continuation-
equivalent states. In: International Conference on Software Engineering, pp. 5–14
(2010)

11. Bodden, E., Hendren, L.J.: The Clara framework for hybrid typestate analysis. J.
Softw. Tools Technol. Transf. 14(3), 307–326 (2012)

12. Bodden, E., Hendren, L., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative runtime
verification with tracematches. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS,
vol. 4839, pp. 22–37. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-77395-5 3

13. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring
of real-time and contextual properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03240-0 13

14. Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of runtime software-
fault monitoring tools. Trans. Softw. Eng. 30(12), 859–872 (2004)

15. Drábik, P., Martinelli, F., Morisset, C.: Cost-aware runtime enforcement of security
policies. In: Jøsang, A., Samarati, P., Petrocchi, M. (eds.) STM 2012. LNCS, vol.
7783, pp. 1–16. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38004-4 1

16. Dwyer, M.B., Diep, M., Elbaum, S.G.: Reducing the cost of path property moni-
toring through sampling. In: Automated Software Engineering, pp. 228–237 (2008)

17. Dwyer, M.B., Kinneer, A., Elbaum, S.G.: Adaptive online program analysis. In:
International Conference on Software Engineering, pp. 220–229 (2007)

18. Dwyer, M.B., Purandare, R.: Residual dynamic typestate analysis exploiting static
analysis: results to reformulate and reduce the cost of dynamic analysis. In: Auto-
mated Software Engineering, pp. 124–133 (2007)

19. Erlingsson, U., Schneider, F.B.: SASI enforcement of security policies: a retrospec-
tive. In: New Security Paradigms, pp. 87–95 (1999)

20. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying run-
time verification tools. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol.
11237, pp. 241–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03769-7 14

21. Fei, L., Midkiff, S.P.: Artemis: practical runtime monitoring of applications for
execution anomalies. In: Programming Language Design and Implementation, pp.
84–95 (2006)

22. Fredrikson, M., et al.: Efficient runtime policy enforcement using counterexample-
guided abstraction refinement. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012.
LNCS, vol. 7358, pp. 548–563. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31424-7 39

23. Gay, R., Hu, J., Mantel, H.: CliSeAu: securing distributed Java programs by coop-
erative dynamic enforcement. In: Prakash, A., Shyamasundar, R. (eds.) ICISS 2014.
LNCS, vol. 8880, pp. 378–398. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-13841-1 21

24. Jones, N.D.: An introduction to partial evaluation. ACM Comput. Surv. 28(3),
480–503 (1996)

https://doi.org/10.1007/978-3-540-77395-5_3
https://doi.org/10.1007/978-3-540-77395-5_3
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-38004-4_1
https://doi.org/10.1007/978-3-642-38004-4_1
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/978-3-642-31424-7_39
https://doi.org/10.1007/978-3-642-31424-7_39
https://doi.org/10.1007/978-3-319-13841-1_21
https://doi.org/10.1007/978-3-319-13841-1_21

92 M.-C. Jakobs and H. Mantel

25. Kao, J., Rampersad, N., Shallit, J.O.: On NFAs where all states are final, initial,
or both. Theoret. Comput. Sci. 410(47–49), 5010–5021 (2009)

26. Kleene, S.C.: Representation of events in nerve nets and finite automata. In:
Automata Studies, pp. 3–41 (1956)

27. Leucker, M.: Teaching runtime verification. In: Khurshid, S., Sen, K. (eds.) RV
2011. LNCS, vol. 7186, pp. 34–48. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29860-8 4

28. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009)

29. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. J. Inf. Secur. 4(1–2), 2–16 (2005)

30. Purandare, R., Dwyer, M.B., Elbaum, S.G.: Monitor optimization via stutter-
equivalent loop transformation. In: Object-Oriented Programming, Systems, Lan-
guages, and Applications, pp. 270–285 (2010)

31. Purandare, R., Dwyer, M.B., Elbaum, S.G.: Optimizing monitoring of finite state
properties through monitor compaction. In: Software Testing and Analysis, pp.
280–290 (2013)

32. Rabiser, R., Guinea, S., Vierhauser, M., Baresi, L., Grünbacher, P.: A comparison
framework for runtime monitoring approaches. J. Syst. Softw. 125, 309–321 (2017)

33. Schneider, F.B.: Enforceable security policies. Trans. Inf. Syst. Secur. 3(1), 30–50
(2000)

34. Wang, C., Chen, Z., Mao, X.: Optimizing nop-shadows typestate analysis by filter-
ing interferential configurations. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS,
vol. 8174, pp. 269–284. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40787-1 16

35. Wonisch, D., Schremmer, A., Wehrheim, H.: Zero overhead runtime monitoring. In:
Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp.
244–258. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40561-
7 17

36. Wu, C.W.W., Kumar, D., Bonakdarpour, B., Fischmeister, S.: Reducing monitor-
ing overhead by integrating event- and time-triggered techniques. In: Legay, A.,
Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 304–321. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40787-1 18

37. Yamagata, Y., et al.: Runtime monitoring for concurrent systems. In: Falcone,
Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 386–403. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46982-9 24

https://doi.org/10.1007/978-3-642-29860-8_4
https://doi.org/10.1007/978-3-642-29860-8_4
https://doi.org/10.1007/978-3-642-40787-1_16
https://doi.org/10.1007/978-3-642-40787-1_16
https://doi.org/10.1007/978-3-642-40561-7_17
https://doi.org/10.1007/978-3-642-40561-7_17
https://doi.org/10.1007/978-3-642-40787-1_18
https://doi.org/10.1007/978-3-319-46982-9_24

Thirty-Seven Years of Relational Hoare
Logic: Remarks on Its Principles

and History

David A. Naumann(B)

Stevens Institute of Technology, Hoboken, USA
naumann@cs.stevens.edu

Abstract. Relational Hoare logics extend the applicability of modular,
deductive verification to encompass important 2-run properties including
dependency requirements such as confidentiality and program relations
such as equivalence or similarity between program versions. A consider-
able number of recent works introduce different relational Hoare logics
without yet converging on a core set of proof rules. This paper looks
backwards to little known early work. This brings to light some princi-
ples that clarify and organize the rules as well as suggesting a new rule
and a new notion of completeness.

1 Introduction

Even in the archivally published part of the scientific literature, there are some
gems known to few but deserving the attention of many. Such a gem is a paper by
Nissim Francez published in 1983, around the time of Apt’s two-part paper “Ten
Years of Hoare Logic” [2,3]. Relational Hoare Logic (RHL) formalizes reasoning
about two programs. The term, and a version of the logic, are introduced in a
well known gem by Nick Benton published in 2004 [19]. Relating two programs is
far from new, and is important: it encompasses equivalence (as in compilation),
refinement and conditional similarity (as in software development, evolution, and
re-engineering), and properties of a single program (like determinacy of output)
for which one must consider two executions. Reasoning about two executions
inevitably leads to reasoning about two different programs—that is one of the
principles already articulated in the paper by Francez titled “Product Properties
and Their Direct Verification” [31] which introduces many rules of RHL.

The fundamental safety property is partial correctness: for each of the pro-
gram’s runs, if the initial state satisfies the designated precondition, and the
run terminates, then the final state satisfies the designated postcondition. The
fundamental liveness property is termination: for each of the program’s runs, if
the initial state satisfies the precondition then the run is finite. Many interesting
or desirable behavioral properties of a program are such trace properties, that is,
a condition on runs is required to hold for all runs. Relations between programs
involve two runs at a time, for example one notion of equivalence is that from

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 93–116, 2020.
https://doi.org/10.1007/978-3-030-61470-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_7

94 D. A. Naumann

the same initial state, runs of the two programs reach the same final state. One
cannot expect this property if the programs are nondeterministic. What then
is determinacy? It is the property of a program that from any initial state, its
runs all diverge or all terminate in the same state. This can be defined more
parsimoniously: from any initial state, any two runs either both diverge or both
terminate in the same state. Behavioral program properties involving multiple
runs have been dubbed hyperproperties and an important subclass are the k-
safety properties which, for some fixed k ≥ 1 can be defined by requiring all
k-tuples of runs satisfy a condition on k-tuples [23,62]. Francez uses the term
power property for what is now called k-safety, and product property for relations
between programs.

The k-safety properties are an attractive object of study because they are
amenable to reasoning techniques that are natural generalizations of those for
safety properties. As is likely to occur to anyone familiar with programming
or automata theory, to prove a 2-safety property one may construct a product
program whose runs represent pairs of runs of the original. Francez points out
that product programs can be expressed as ordinary programs, so that Hoare
logic (HL) can be used to prove 2-safety: If C is a sequential program acting on
variables, we can choose fresh names and obtain a renamed copy C ′, and then
C;C ′ serves as a product. This particular product construction is often called
self-composition, a term from Barthe et al. [14,15] who rediscover the idea (and
also consider other forms of product) for proving information flow security.

By now, scientific interest together with practical importance has led to excit-
ing achievements. Related challenges are under active study by a number of
research groups, often making use of some form of RHL. Quite a few papers
have appeared with RHLs, some emphasizing frameworks meant to provide uni-
fying principles [1,13,19,44], but there is considerable variety in the proof rules
included or omitted. By contrast, the core rules of HL for imperative programs
appear in many places with relatively little variation. There is a scientific expla-
nation for this situation: the recipe for boiling a logic down to its essentials is to
state and prove a completeness theorem that says true properties are provable.
But, through product programs, relational reasoning is reduced to HL—so com-
pleteness in this sense is a trivial consequence of completeness for unary (i.e.,
1-safety) properties, as Francez observes. His paper concludes with a problem
that is still open: “It would be interesting to obtain a formal characterization of
the situation in which the proposed method achieves actual proof simplification
over the indirect proofs using Hoare’s (unary) logic.”

In this paper I describe, in as plain terms as I can, various reasoning prin-
ciples and their embodiment in proof rules. One contribution is to systematize
knowledge and in particular to emphasize the importance of program equiva-
lences to reduce the number of core rules. I also introduce a new rule to fill a
gap that becomes evident when one considers one of the key motivations for rela-
tional reasoning. Finally, I introduce a new notion: alignment completeness. It
appears naturally when one recapitulates, as Francez does and I do with slightly
more generality, the development from Floyd to Hoare.

Thirty-Seven Years of Relational Hoare Logic 95

Scientists thrive on getting credit and good scientists take care in giving
credit. But it is not always easy to determine the origin of ideas, in part because
good ideas may be independently rediscovered several times before becoming
firmly ensconced in the edifice of the known. My primary aim in this paper is to
explain some principles as I have understood them, not to give a survey of prior
work. I do point out ideas found in the paper by Francez, and cite some other
work in passing. Other early works that may have been overlooked can be found
in the first paragraph of Sect. 5.

Outline. Following background on the inductive assertion method and HL
(Sect. 2), the method is extended to aligned pairs of runs in Sect. 3, as background
for RHL which comprises Sect. 4. Sect. 5 discusses related work and Sect. 6 con-
cludes. An extended version of the paper is at http://arxiv.org/abs/1910.14560.

2 Preliminaries

2.1 The Inductive Assertion Method

We focus on the simple imperative or “while” language with assignments and
possibly other primitive commands like nondeterministic assignment. The reader
is expected to be familiar with transition semantics, in which the program acts
on stores, where a store is a total mapping from variables to values. The following
abstraction of a program’s semantics is convenient.

An automaton is a tuple (Ctrl, Sto, init,fin, �→) where Sto is a set (the
data stores), Ctrl is a finite set that contains distinct elements init and fin,
and �→ ⊆ (Ctrl × Sto) × (Ctrl × Sto) is the transition relation. We require
(c, s) �→ (d, t) to imply c �= fin and c �= d and call these the finality and non-
stuttering conditions respectively. A pair (c, s) is called a state . Let β and γ
range over states. A trace of an automaton is a non-empty sequence τ of states,
consecutive under the transition relation, with ctrl(τ0) = init. It is terminated
provided τ is finite and ctrl(τ−1) = fin, where τ−1 denotes the last state of τ .

In structural operational semantics, transitions act on configurations of the
form (c, s) where c is a command, and skip by itself indicates termination. This
fits our model: take init to be the program of interest, Ctrl to be all commands,
and fin to be skip. Another instantiation treats Ctrl as the points in the pro-
gram’s control flow graph (CFG).

A partial correctness property is given by a pair of store predicates, P,Q,
for which we write P � Q. In a formal logic, P and Q range over formulas
in some assertion language, usually first order logic for a designated signature
that includes types and operations used in the program. We write s |= P to
say s satisfies predicate P , and define (c, s) |= P iff s |= P . As a means to
specify requirements, the notation is inadequate. The postcondition y = x + 1
can be achieved by changing x or by changing y. This problem is best solved by
including a frame condition which for simple imperative programs is just a
list x of variables permitted to change, which we write as P � Q [x]. Its meaning
can be reduced to the simpler form provided we distinguish between program

http://arxiv.org/abs/1910.14560

96 D. A. Naumann

variables and spec-only variables not allowed to occur in programs. That being
so, we focus on the form P � Q and use for it the succinct term spec.

Let us spell out two semantics for specs in terms of an automaton A. The
basic semantics is as follows. For a finite trace τ to satisfy P � Q means that
τ0 |= P and ctrl(τ−1) = fin imply τ−1 |= Q, in which case we write τ |= P � Q.
Then A satisfies P � Q just if all its finite traces do. The non-stuck semantics
adds a second condition for τ to satisfy the spec: ctrl(τ−1) �= fin implies τ−1 �→ −,
where τ−1 �→ − means there is at least one successor state. Stuck states are often
used to model runtime faults.

The inductive assertion method (IAM) of Floyd [30], is a way to establish that
command C satisfies spec P � Q. The first idea is to generalize the problem: in
addition to establishing that Q must hold in a final state, we establish additional
conditions at intermediate steps, with the aim to reason by induction on steps of
execution. The second idea is to designate which intermediate steps in terms of
C’s CFG. An assertion is thus a formula R associated with a particular point
in the CFG, designating the claim that in any run, R holds whenever control is at
that point. This beautiful idea, called annotation , has a simple representation
in syntax which has become commonplace: the assert statement. The third idea
ensures that the claim is strong enough to be inductive hypothesis to prove the
spec: (i) The entry point is annotated as P and the exit point is annotated
as Q. (ii) Every cycle in the CFG is annotated with at least one assertion. The
annotated points are said to form a cutpoint set . Such an annotation determines
a finite set of acyclic paths through the CFG, each starting and ending with an
annotation and having no intervening one—we call these segments.

Floyd shows, by induction on execution steps, that C satisfies P � Q pro-
vided that the verification conditions (VCs) all hold [30]. Each segment deter-
mines the following VC: for any state that satisfies the initial assertion, and any
execution along the segment, such that the branch conditions hold, the final
assertion holds in the last state. In effect, the VCs are cases of the induction
step in a proof that the assertions hold in any run from a state satisfying P .

Given a program and cutpoint set for its CFG, there is an automaton with
Ctrl the cutpoint set; the transitions (c, s) �→ (d, t) are given by the semantics of
the segment from c to d. An annotation assigns a store predicate anno(c) to each
cutpoint c. Define the state set S ⊆ (Ctrl × Sto) by (c, s) ∈ S iff s |= anno(c).
Then the VCs amount to the condition that S is closed under �→.

The IAM requires us to reason about the semantics of straight-line program
fragments, which is amenable to automation in a number of different ways,
including the direct use of operational semantics [45]. What makes program
verification difficult is finding inductive intermediate assertions.

2.2 Hoare Logic

Hoare showed that the IAM can be presented as a deductive system, in which
inference rules capture the semantics of the constructs of the programming lan-
guage and verification conditions are, to some degree, compositional in terms of

Thirty-Seven Years of Relational Hoare Logic 97

x := e : P x
e � P

C : P � R D : R � Q

C;D : P � Q

C : P ∧ e � Q D : P ∧ ¬e � Q

if e then C else D : P � Q

C : P � Q D : P � R

C +D : P � Q ∨ R

C : P ∧ b � P

while b do C od : P � P ∧ ¬b

Fig. 1. Syntax-directed rules of HL for simple imperative programs.

P ⇒ R C : R � S S ⇒ Q

C : P � Q
(Conseq)

C : P � Q C : P � R

C : P � Q ∧ R
(Conj)

C : P � R C : Q � R

C : P ∨ Q � R
(Disj)

C : P � Q FV (R) ∩ V ars(C) = ∅
C : P ∧ R � Q ∧ R

(Frame)

Fig. 2. Rules to manipulate specs in HL.

program syntax. The system derives what are known variously as partial cor-
rectness assertions, Hoare triples, etc., and which ascribe a spec to a program.
Hoare wrote P{C}Q but it has become standard to write {P}C{Q}. We write
C : P � Q and call it a correctness judgment .

There are many Hoare logics, because a deductive system is defined for a
particular language, i.e., set of program constructs. The textbook by Apt et al. [5]
has logics encompassing procedures, concurrency, etc. In this paper we focus on
sequential programs but the principles apply broadly.

Rules for some program constructs can be found in Fig. 1. The axiom for
assignment involves capture-avoiding substitution of an expression for a variable,
written P x

e , wherein we see that the system treats program expressions and vari-
ables as mathematical ones, a slightly delicate topic that does not obtrude in the
sequel. These rules transparently embody the reasoning that underlies the IAM.
The sequence rule adds an intermediate assertion, changing one verification con-
dition into two (typically simpler) ones. The rule for conditional alternatives
has two premises, corresponding to the two paths through the CFG. Nondeter-
ministic choice (notation +) again gives rise to two paths. The rules in Fig. 1
provide for deductive proof following the program structure but are incomplete;
e.g., they give no way to prove the judgment x := x + 1 : (x = y) � (x > y).
Such gaps are bridged by rules like those in Fig. 2. For HL to be a self-contained
deductive system it needs to include means to infer valid formulas, such as the
first and third premises of rule Conseq.

98 D. A. Naumann

For while programs, the syntax-directed rules together with Conseq are com-
plete in the sense that any true judgment can be proved. The other rules embody
useful reasoning principles. Disj provides proof by cases, which is useful when
a program’s behavior has two quite different cases. In terms of IAM, one might
apply the method twice, to prove C : P � R and C : Q � R with entirely dif-
ferent annotations, and then conclude C : P ∨ Q � R by some argument about
the meaning of specs. This principle is expressed directly in Hoare logic, as is
the oft-used principle of establishing conjuncts of a postcondition separately.

Modular Reasoning. HL easily admits procedure-modular reasoning, sometimes
formalized by judgments of the form H 	 C : P � Q where hypothesis H
comprises procedure signatures and their specs [8,54]. With the addition of pro-
cedures, Conseq is not sufficient for completeness. Other rules are needed to
manipulate specs, such as substitution rules to adapt procedure specs to their
calling contexts [5,36,55]. We use the name Frame for a rule Hoare called Invari-
ance [36], with a nod towards a similar rule in separation logic [53] where dis-
jointness of heap locations is expressed by using the separating conjunction in
place of ∧. With explicit frame conditions the rule can be phrased like this: From
C : P � Q [x] and FV (R)∩x = ∅ infer C : P ∧R � Q∧R [x]. The principle here
is to reason “locally” with assertions P,Q pertinent to the effect of C, and then
infer a spec P ∧R � Q∧R needed to reason about a larger program of which C
is a part. Locality is important for effective reasoning about programs involving
the heap. (Explicit frame conditions for the heap can be found, for example in
the Dafny language [43] and in the variation of HL dubbed region logic [8].) The
notion of adaptation completeness characterizes the extent to which a HL has
sufficient rules for reasoning about specs [6,39,50,55].

Refinement. Validity of assertions is a separate concern from program correct-
ness and Conseq brings the two together in a simple way—but it has noth-
ing to do with a specific command. It connects two specs, in a way that can
be made precise by defining the intrinsic refinement order (
, “refined
by”) on specs. Fixing a class of programs, we define P � Q
 R � S iff
C : R � S implies C : P � Q for all C. This relation can itself be given a deduc-
tive system, with rules including that P � Q
 R � S can be inferred from
P ⇒ R and S ⇒ Q. The program correctness rule infers C : spec1 from C : spec0

and spec1
 spec0. Using frame conditions, the Frame rule can also be phrased
as a spec refinement: P ∧ R � Q ∧ R [x]
 P � Q [x] provided FV (R) ∩ x = ∅.

Disentangling spec reasoning from reasoning about the correctness judgment
helps clarify that adaptation completeness is about spec refinement [50]. But
it does come at a cost: To account for the Conj and Disj rules one needs not
only the relation
 on specs but also meet/join operators. Explicit formalization
of spec refinement could be useful for relational specs, owing to the additional
manipulations that exist owing to the additional dimension. But I do not develop
the topic further in this paper.

Thirty-Seven Years of Relational Hoare Logic 99

Program Transformation. Verification tools employ semantics-preserving trans-
formations as part of the process of generating VCs. Less commonly, transfor-
mations are an ingredient in a Hoare logic. An instance of this is the logic for
distributed programs of Apt et al. [4,5], where the main rule for a distributed
program has as premise the correctness of a derived sequential program. Another
instance is rules to justify the use of auxiliary or ghost state in reasoning [56].
One such rule uses variable blocks var x in C. The variables x are called auxil-
iary in C provided their only occurrences are in assignments to variables in x.
Writing C \ x for the command obtained by replacing all such assignments with
skip, the rule is

x /∈ FV (P,Q) x auxiliary in C var x in C : P � Q

C \ x : P � Q
(AuxVar)

It is sound because the auxiliary variables cannot influence values or branch
conditions, and thus have no effect on the variables in P or Q, nor on termination.
As relational correctness judgments can express both dependency and program
equivalences, we should be able to bring both the condition “auxiliary in” and
the transformation C \ x into the logic, making the above rule admissible.

3 Relational Properties, Alignment, and Program
Products

Here are some example relational properties of a single program.

(determinacy) For all terminated traces τ, υ from the same initial state, the
final states are the same: τ0 = υ0 implies τ−1 = υ−1.

(monotonicity) For all terminated traces τ, υ, if τ0(x) ≤ υ0(x) then τ−1(z) ≤
υ−1(z). Here x, z are integer variables.

(dependence, non-interference) (“z depends on nothing except possibly x”)
For all terminated traces τ, υ, if τ0(x) = υ0(x) then τ−1(z) = υ−1(z).

Here are some example relations between programs C and D.

(equivalence) For all terminated traces τ of C and υ of D, if τ0 = υ0 then
τ−1 = υ−1. Determinacy is self-equivalence in this sense.

(majorization) For all terminated traces τ of C and υ of D, if τ0(x) = υ0(x)
then τ−1(z) > υ−1(z)

(refinement) For all terminated traces τ of C, there is a terminated trace υ of
D with τ0 = υ0 and τ−1 = υ−1.

(relative termination) (For a given relation R.) For all initial states β, γ that
satisfy R, if C has a terminated trace from β then D has a terminated trace
from γ [35].

(mutual termination) For all initial β, γ that satisfy R, C can diverge from
β iff D can diverge from γ [33].

100 D. A. Naumann

P0: (∗ z := x! ∗) y:= x; z:= 1; while y �= 0 do z:= z∗y; y:= y−1 od

P1: (∗ z := 2x ∗) y:= x; z:= 1; while y �= 0 do z:= z∗2; y:= y−1 od

P2: (∗ z := x!, half as fast ∗)
y:= x; z:= 1; w:= 0;
while y �= 0 do if w mod 2 = 0 then z:= z∗y; y:= y−1 fi; w:= w+1 od

P3: (∗ z := 2x , a third as fast ∗)
y:= x; z:= 1; w:= 0;
while y �= 0 do if w mod 3 = 0 then z:= z∗2; y:= y−1 fi; w:= w+1 od

Fig. 3. Example programs. P0 and P1 are from [31].

Refinement and relative termination involve existential quantification over
traces, as do generalizations of refinement such as simulation and also depen-
dence for nondeterministic programs (if τ is terminated and τ0(x) = γ(x) then
there is terminated υ with υ0 = γ and υ−1(z) = τ−1(z)). We refer to these as
∀∃ properties, by contrast with the preceding items which universally quantify
traces (denoted ∀∀). The ∀∀ properties above are also termination-insensitive
in the sense that they only constrain terminating traces. In this paper we focus on
termination-insensitive ∀∀ properties while discussing some ∀∃ properties (which
are hyperliveness [23], not 2-safety) in passing. Mutual termination also involves
existentials, unless programs are deterministic as they are in Benton [19] where
mutual termination is used.

Let A′ = (Ctrl′, Sto′, init′,fin ′, �→′) be an automaton. A relational spec R ≈>

S is comprised of relations R and S from Sto to Sto′. We write (c, s), (c′, s′) |= R
to mean s, s′ |= R. Finite traces τ of A and τ ′ of A′ satisfy R ≈> S, written
τ, τ ′ |= R ≈> S, just if τ0, τ

′
0 |= R, ctrl(τ−1) = fin, and ctrl(τ ′

−1) = fin imply
τ−1, τ

′
−1 |= S. The non-stuck semantics of relational specs requires, in addition,

that ctrl(τ−1) �= fin implies τ−1 �→ − and ctrl(τ ′
−1) �= fin′ implies τ ′

−1 �→′ −.
Finally, the pair A,A′ satisfies R ≈> S just if all pairs of finite traces do, and we
write A|A′ : R ≈> S for satisfaction. (Where I write A|A′, as in [9,47], Francez
writes A × A′, and Benton’s A ∼ A′ is popular.)

A key idea (in [31] and elsewhere) is to form a single automaton, runs of
which encode pairs of runs of the considered programs, and to which IAM can be
applied. For a single program there is not much flexibility in how it is represented
as an automaton or CFG but there are many product automata for a given pair
of programs—these represent different ways of aligning the steps of the two
programs. This flexibility is crucial for the effectiveness of the IAM, specifically
on the simplicity of annotations and thus the ease of finding them and proving
the VCs. To discuss this we consider the four examples in Fig. 3.

Thirty-Seven Years of Relational Hoare Logic 101

Consider proving monotonicity of P0. To express relations we use dashed (′)
identifiers for the second run, so the spec can be written x ≤ x′

≈> z ≤ z′.
One can prove the functional property that P0 computes factorial (x!) and then
prove monotonicity for the recursive definition of !. But, as pointed out in [31],
one can also consider two runs from initial values x, x′ with x ≤ x′, aligning
their iterations in lockstep with invariant y ≤ y′ ∧ z ≤ z′ and no use of !.

Consider proving that P2 is equivalent to P0, which we again specify just
using the relevant variables: P0|P2 : x = x′

≈> z = z′. Lockstep alignment of
their iterations is not helpful; we would like to align each iteration of P0 with
two iterations of P2 in order to use simple annotations like y = y′ ∧ z = z′.

3.1 Product Automata Represent Alignments

Let ⊗ denote the cartesian product of relations, so �→ ⊗ �→′ is a relation on
(Ctrl ×Sto)× (Ctrl′ ×Sto′), i.e., on state pairs. Let idA be the identity relation
on states of A. A pre-product of A and A′ is an automaton PA,A′ of the form
((Ctrl×Ctrl′), (Sto×Sto′), (init, init′), (fin,fin ′), �⇒) such that we have �⇒ ⊆ (�→
⊗ �→′) ∪ (�→ ⊗idA′) ∪ (idA⊗ �→′). The union is disjoint, owing to non-stuttering
of A and A′. Each transition of PA,A′ corresponds to one of both A and A′,
or else one of A or A′ leaving the other side unchanged. Such �⇒ satisfies the
requirements of finality and non-stuttering.

Let T be a trace of a pre-product of A,A′. Mapping the first projection
(fst) over T does not necessarily yield a trace of A, as it may include stuttering
steps (related by idA). So we define left(T) to be destutter(map(fst, T)) where
destutter removes stuttering transitions. Observe that left(T) is a trace of A,
and we obtain mutatis mutandis a trace, right(T), of A′. A pre-product is
adequate if it covers all finite traces: For all finite traces τ of A and τ ′ of A′

there is a trace T of PA,A′ with τ left(T) and τ ′right(T), where means prefix.
It is weakly adequate if it covers all finite prefixes τ, τ ′ of terminated traces.
(To see that equality τ = left(T) and τ ′ = right(T) would be too restrictive,
consider lockstep alignment with τ strictly shorter or longer than τ ′.)

Owing to the definition of states of a pre-product, a relational spec R ≈> S
for A,A′ can be seen as a unary spec R � S for PA,A′ . For a trace T of PA,A′

we have T |= R � S iff left(T), right(T) |= R ≈> S by definitions. We obtain
the following by definition of adequacy.

Theorem 1. For the basic semantics of specs, if PA,A′ is a weakly adequate pre-
product of A,A′ then PA,A′ satisfies R � S iff the pair A,A′ satisfies R ≈> S.
For the non-stuck semantics, if PA,A′ is an adequate pre-product and satisfies
R � S then A,A′ satisfies R ≈> S.

This confirms that a relational spec can be proved using the IAM with a product,
i.e., a suitably adequate pre-product. The challenge is to construct one that
admits a simple annotation.

For the non-stuck semantics an adequate pre-product may have stuck states
that do not correspond to stuck states of A or A′; it is this possibility that makes
it possible for a pre-product to be helpful by rendering unreachable states such

102 D. A. Naumann

as those where the guards of a conditional are not in agreement. The number of
cutpoints needed for a product may be on the order of the product of the number
for the underlying automata, but a good alignment makes many unreachable;
those can be annotated as false so the corresponding VCs are vacuous.

Here are some pre-products defined for arbitrary A,A′.

only-lockstep. (γ, γ′) �⇒olck (β, β′) iff γ �→ β and γ′ �→′ β′.
eager-lockstep. (γ, γ′) �⇒elck (β, β′) iff (γ, γ′) �⇒olck (β, β′), or ctrl(γ) = fin

and γ′ �→′ β′ and γ = β, or ctrl(γ′) = fin ′ and γ �→ β and γ′ = β′.
interleaved. (γ, γ′) �⇒int (β, β′) iff γ �→ β and γ′ = β′ or γ′ �→′ β′ and γ = β.
maximal. The union �⇒olck ∪ �⇒int.
sequenced. (γ, γ′) �⇒seq (β, β′) iff γ �→ β and ctrl(γ′) = init′ and γ′ = β′ or

ctrl(γ) = fin and γ = β and γ′ �→′ β′.
simple-condition. Given “alignment condition” ac ⊆ (Ctrl×Sto) ×

(Ctrl′×Sto′), define �⇒scnd by (γ, γ′) �⇒scnd (β, β′) iff either (γ, γ′) ∈ ac
and (γ, γ′) �⇒olck (β, β′) or (γ, γ′) /∈ ac and (γ, γ′) �⇒int (β, β′).

As Francez observes, interleaved has a relatively large reachable state space,
making it more difficult to find inductive invariants.

The only-lockstep form is not adequate, in general, because a terminated
state or stuck state can be reached on one side before it is on the other. The eager-
lockstep, interleaved, and maximal pre-products are all adequate. The sequenced
form is not adequate in general: a stuck or divergent state on the left prevents
coverage on the right. Sequenced is weakly adequate if A,A′ have no stuck states.

The simple-condition product can also fail to be adequate: if ac holds, both
sides are required to take a step, which may be impossible if one side is stuck
or terminated. It is also insufficiently general: as we show later, it may be most
convenient to designate that steps should be taken on one side or the other. This
suggests the following, which subsumes the preceding constructions.

3-condition. Given state conditions l, r, b, define (γ, γ′) �⇒3cnd (β, β′) iff either
(γ, γ′) ∈ l and γ �→ β and γ′ = β′, or (γ, γ′) ∈ b and (γ, γ′) �⇒olck (β, β′), or
(γ, γ′) ∈ r and γ′ �→′ β′ and γ = β.

3.2 Examples

Consider proving that P0 majorizes P1, for inputs x > 3, that is, P0|P1 : x =
x′ ∧ x > 3 ≈> z > z′. Francez observes that using sequenced product would
require reasoning about z = x! and z′ = 2x

′
, and suggests aligning the iterations

in lockstep and using this relational invariant: y = y′ ∧ (z = z′ = 1 ∨ z > z′).
This condition is not preserved by the loop bodies under guard condition y > 0,
for example in the state y = 2, z = 6, z′ = 4 reached when x = x′ = 3, but
here we are concerned with the case x > 3. If we add x > 3 as a conjunct we
get a condition that is indeed invariant for lockstep executions, but it is not
inductive— that is, the verification condition for the loop body is not valid. But
there is a simple invariant with which the relation can be proved:

y = y′ ∧ ((y > 4 ∧ z = z′ = 1) ∨ (y > 0 ∧ z > 2 ∗ z′) ∨ (y = 0 ∧ z > z′)) (1)

Thirty-Seven Years of Relational Hoare Logic 103

This is not established by the initialization, in case x = 4. Instead we use this
invariant to prove correctness under precondition x > 4 and separately prove
correctness under the very specific precondition x = 4 which can be proved, for
example, by unrolling the loops. In short, we do case analysis, as in rule Disj.

Program P2 is equivalent to P0, and P3 to P1, but neither fact is eas-
ily proved using lockstep alignment. For the simplest invariants in proving P0
equivalent to P2 we should let P2 take two iterations for each one of P0. The
question is how to formulate that nicely.

As another example, P2 majorizes P3, for x > 4, but again this is not easily
proved by reasoning about lockstep alignment of the loops. Both programs have
gratuitous iterations in which y and z are not changed. We would like to align
the computations so that when w = w′ = 0 we can assert (1). Indeed, when
w �= 0 (respectively w′ �= 0), an iteration on the left (resp. right) has no effect on
the other variables and thus maintains (1). For this proof we may try a simple-
condition product so joint steps are taken when (w mod 2) = 0 = (w ′ mod 3).
But this is insufficient: it allows one side to run ahead in states where the con-
dition does not require both sides to step together, precluding a simple invari-
ant. What we need is a 3-condition product. The left may advance indepen-
dently when w mod 2 �= 0 and w/2=w ′/3; the right when w ′ mod 3 �= 0 and
w/2=w ′/3. Then (1) is invariant.

The examples only scratch the surface. Compilation, refactoring, and pro-
gram revision need less obvious alignments, but often do admit alignments for
which simple and even inferrable invariants suffice.

In examples like equivalence of P0 and P2 there is a fixed correspondence
between loops of one versus the other program, a pattern that arises in some
loop transformations used in compilers (e.g., to introduce vector operations).
For majorization of P3 by P2 our alignment is more data-dependent, although
it is not surprising that it can be described succinctly since the iterations have
a regular pattern. Here is a less regular example (from [9]): the program uses a
loop to sum the integers in a list, where list elements have a boolean flag that
indicates an element should be ignored. The property is that two runs yield the
same sum, provided the two lists have the same non-deleted elements in the same
order. This can be handled nicely using a 3-condition product.

One can imagine more elaborate product automata using ghost state to track
alignment conditions, but it seems that in any case what is needed is to designate
when to advance on one side, the other side, or both.

4 Rules of Relational Program Logic

As has been rediscovered and noted several times, it is not difficult to use pro-
gram syntax to make a program that behaves as a product of programs. A simple
case, mentioned earlier, is the sequence C;C ′ where C ′ has no variables in com-
mon with C, and which corresponds to the sequenced product automaton. But
it is also natural to interleave code from such disjoint programs, so as to align
intermediate points in control flow. For a deductive system one also needs to

104 D. A. Naumann

account for the connection between such a product and the original program
(or programs), the primary objects of interest. It is also desirable to disentan-
gle reasoning principles, such as various alignments, from details of encoding.
Furthermore, although disjoint variables suffice to reduce relational reasoning
to standard HL for simple imperative programs, this is no longer the case for
languages with more elaborate notions of state. For example, many languages
feature a single heap and it is not trivial to use it to encode two disjoint heaps
(see [20,51]). Another example is assembly language for a conventional archi-
tecture with a fixed set of registers. In such situations it may be preferable
to work more directly with the relational correctness judgment, suitably inter-
preted, rather than depending entirely on products encoded as single programs.

We have reached the main topic of this paper, deductive systems for the
relational judgment C|C ′ : R ≈> S, in which various principles of reasoning are
manifest in proof rules. With HL in mind we may expect syntax-directed rules
that embody program semantics, rules for manipulation of specs, and rules for
program transformation. In addition, relational reasoning benefits from judicious
alignment of program fragments. For lockstep automata, the corresponding rules
are dubbed “diagonal” [31] and relate programs with the same control structure.
The sequenced and interleaved automata involve one-sided steps, corresponding
to proof rules syntax-directed on one side. The 3-condition product is manifest
in a three-premise rule for relating two loops. There are also rules that involve
both relational and unary judgments.

Good alignment not only enables use of simple assertions, it is also essential
to enable the use of relational specs for procedure calls. For lack of space we do
not delve into this topic.

We refrain from formalizing relational formulas but we do assume they are
closed under the propositional connectives with classical semantics. Usual for-
mulations of HL rely on the use of program variables and expressions both as
part of programs and as terms in formulas; in relational formulas we need to
designate whether they refer to the left or right execution. As an alternative to
the dashed/undashed convention used in Sect. 3, we use the notation 〈[e〈] (resp.
[〉e]〉) for the value of expression e on the left (resp. right) side. As naming con-
vention we tend to use dashed names for commands on the right side, but this
does not imply renaming of variables or anything of the sort. In the logic, the
programs are considered to act on distinct states which may or may not have
the same variables. For example, we can write 〈[x〈] ≤ [〉x]〉 rather than x ≤ x′.

4.1 Diagonal and One-Side Rules

The rules in Fig. 4 relate programs with the same control structure. Such rules
are found in [19,31,64] and many other papers. In the assignment rule, the nota-
tion Rx|x′

e|e′ is meant to be the formula R in which left-side occurrences of x are

replaced by e and right-side occurrences of x′ by e′. For example, (〈[x〈] = [〉x]〉)x|x
x+1|y

is 〈[x+1〈] = [〉y]〉. The first rule for if/else is general, covering the possible control

Thirty-Seven Years of Relational Hoare Logic 105

x := e | x′ := e′ : Rx|x′
e|e′ ≈> R C|C′ : R ≈> Q D|D′ : Q ≈> S

C;D | C′;D′ : R ≈> S

C|C′ : R ∧ 〈[e〈] ∧ [〉e′]〉 ≈> S D|D′ : R ∧ 〈[¬e〈] ∧ [〉¬e′]〉 ≈> S
C|D′ : R ∧ 〈[e〈] ∧ [〉¬e′]〉 ≈> S D|C′ : R ∧ 〈[¬e〈] ∧ [〉e′]〉 ≈> S

if e then C else D | if e′ then C′ else D′ : R ≈> S

R ⇒ 〈[e〈] = [〉e′]〉
C|C′ : R ∧ 〈[e〈] ∧ [〉e′]〉 ≈> S D|D′ : R ∧ 〈[¬e〈] ∧ [〉¬e′]〉 ≈> S

if e then C else D | if e′ then C′ else D′ : R ≈> S (AltAgree)

Q ⇒ 〈[e〈] = [〉e′]〉 C | C′ : Q ∧ 〈[e〈] ∧ [〉e′]〉 ≈> Q
while e do C od | while e′ do C′ od : Q ≈> Q ∧ 〈[¬e〈] ∧ [〉¬e]〉

(IterAgree)

Q ⇒ 〈[e〈] = [〉e′]〉 ∨ L ∨ R
C | C′ : Q ∧ 〈[e〈] ∧ [〉e′]〉 ≈> Q C | skip : L ∧ 〈[e〈] ≈> Q skip | C′ : R ∧ [〉e]〉 ≈> Q

while e do C od | while e′ do C′ od : Q ≈> Q ∧ 〈[¬e〈] ∧ [〉¬e]〉

Fig. 4. Diagonal syntax-directed rules.

flows, whereas AltAgree is applicable when the guard conditions are in agree-
ment (and can be understood in terms of simple-condition pre-product with a
condition to ensure adequacy). AltAgree can be derived from the first rule,
using that C|C ′ : false ≈> S and RelConseq (Fig. 6).

The IterAgree rule (e.g., [19,64]) is applicable when the loop conditions
remain in agreement under lockstep alignment; it uses a single invariant relation Q
much like the unary loop rule. The rule can be use to prove example P0 majorizes
P1, for x > 4, using (1) as invariant. Francez gives a loop rule that corresponds
to the eager-lockstep product: with a single invariant like in IterAgree but with
additional premises C |skip : Q∧〈[e〈]∧[〉¬e′]〉 ≈> Q and skip|C ′ : Q∧〈[¬e〈]∧[〉e′]〉 ≈> Q
to handle the situation that one loop continues while the other has terminated; it
is seldom helpful. Our second loop rule, from Beringer [20], corresponds to the
3-condition product: It augments the invariant Q with two other relations: L is
precondition for an iteration on the left while the right side remains stationary;
mutatis mutandis for R. The side condition Q ⇒ ((〈[b〈] = [〉b′]〉) ∨ L ∨ R) ensures
adequacy, i.e., covering all pairs of unary traces.

To relate differing programs, a natural idea is one-side rules, some of which we
give in Fig. 5. The assignment rule is from Francez, where several one-side rules
are given with skip on the other side, corresponding to interleaved product. The
alternation rule is given in the more general form found in Barthe et al [11,13]
and in Beringer [20] which also gives LeftSeq. If we identify D′ with skip;D′ (see
Sect. 4.5), rule LeftSeq can be derived from sequence rule in Fig. 4 by replacing
C;D | D′ with C;D | skip;D′. Right-side rules can be derived using rule Swap

(Sect. 4.4).

106 D. A. Naumann

x := e|skip : Rx|
e| ≈> R

C | skip : R ≈> Q D | D′ : Q ≈> S
C;D | D′ : R ≈> S (LeftSeq)

B | C : R ∧ 〈[e〈] ≈> S D | C : R ∧ 〈[¬e〈] ≈> S
if e then B else D | C : R ≈> S

while e ∧ b do B od | C : P ≈> Q
while e do B od | D : Q ≈> R Q ∧ 〈[¬e〈] ⇒ R

while e do B od | C;D : P ≈> R (WhSeq)

Fig. 5. Some left side and mixed structure rules.

In addition to one-side rules that relate a structured program with an arbitary
one, Francez considers rules for relating different program structures, for example
WhSeq. The rule is unusual in that the premises are not judgments for subpro-
grams of the one in the conclusion. The rule is derivable provided there are rules
to rewrite programs to equivalent ones (see Sect. 4.5). Since while e do B od is
unconditionally equivalent to the sequence (while e ∧ b do B od);while e do B od,
rewriting the conclusion results in a relation between two sequences.

4.2 From Unary Correctness to Relational

If the variables of C ′ are disjoint from those of C then the semantics of com-
mand C;C ′ amounts to the sequenced product of the corresponding automata,
suggesting:

C and C ′ have disjoint variables C;C ′ : R � S
C|C ′ : R ≈> S (SeqProd)

For programs that cannot get stuck, it is sound in basic semantics according
to Theorem 1 and the weak adequacy of sequenced product. Stuckness can be
addressed using additional unary premises.

SeqProd is useful as means to obtain relational judgments for small sub-
programs such as assignments and basic blocks where a functional spec is not
difficult to prove. An alternative way to get relational correctness from unary is
by this rule, essentially introduced by Yang [64].

C : P � Q D : R � S

C|D : 〈[P 〈] ∧ [〉R]〉 ≈> 〈[Q〈] ∧ [〉S]〉 (Embed)

It is sound in both basic and non-stuck semantics.
Typically, the relational assertion language does not express equality of entire

states, but rather of specific variables and sometimes of partial heaps [9,64].
Equivalence of two programs can be specified as C|C ′ : E ≈> F where E (resp.
F) expresses agreement on whatever parts of the state are read (resp. written)

Thirty-Seven Years of Relational Hoare Logic 107

by C or C ′. In a unary logic with frame conditions, suitable E ,F can be derived
from the frame condition [52] but I leave this informal in the following rule which
yields a relational judgment from a unary one.

C : P � Q

C|C : E ∧ BP ≈> F (Erefl)

Here BP abbreviates 〈[P 〈] ∧ [〉P]〉. One can add postcondition BQ by means of
Embed and RelConseq. Further agreements can be added using RelFrame

(Fig. 6).

4.3 From Relational Correctness to Unary

Preservation of unary correctness by equivalence transformation can be
expressed as follows, where E ,F are suitable agreements as in Erefl.

C : P � Q C|D : E ∧ BP ≈> F
D : P � Q

(Ecorr)

whereas using unary judgments to infer relational ones allows for a deductive
system in which the unary judgment stands on its own, this rule makes a depen-
dency in reverse. We now take a further step which entangles assertion reasoning
with correctness judgments.

Francez [31] motivates interest in the property of monotonicity by considering
that it could be a requirement on a procedure passed to a routine for numeric
integration. Similarly, a sorting routine requires that the comparator passed to
it computes a transitive relation, and collections libraries require that the equals
method compute a symmetric relation (at least) [61]. Evidently the functional
correctness of such routines relies on these k-safety properties, but the cited
papers do not even sketch such reasoning. Let us do so, glossing over details
about parameter passing.

Consider a sorting routine that uses comparator comp with inputs x, y and
output z. Suppose in the proof of sort(a, comp) : true � sorted(a) we rely
on symmetry. That is, some use of Conseq is for an entailment that is valid
owing to symmetry of comparison. Symmetry can be expressed as the relational
judgment comp|comp : x = y′ ∧ y = x′

≈> z = z′. But we need to connect this
with reasoning about unary assertions, within the confines of a logic of relational
and unary correctness judgments.

Such a connection is made in tools and theories that allow “pure methods”
to be used in assertions while avoiding illogical nonsense using arbitrary pro-
gram functions as mathematical ones [10,25]. Let C be some command meant
to compute a function of input variables x as output z. Let f be an unin-
terpreted (and fresh) name which we will use to represent that function. We
have already seen how to express that z depends only on x, deterministically:
C|C : x = x′

≈> z = z′. A property such as symmetry or monotonicity has the
form C|C : R(x, x′) ≈> S(z, z′). To express that f is the function computed in z

108 D. A. Naumann

we use a unary spec, thus C : true � z = f(x). Finally, we express the relational
property of f as a first order (unary) formula: ∀x, x′. R(x, x′) ⇒ S(f(x), f(x′)).
With these ingredients we can state a rule.

C|C : x = x′
≈> z = z′ C|C : R(x, x′) ≈> S(z, z′) f fresh

C : true � z = f(x) ; (∀x, x′. R(x, x′) ⇒ S(f(x), f(x′))) � D : P � Q

“link D with C” : P � Q
(CmdFun)

P ⇒ R C|D : R ≈> S S ⇒ Q
C|D : P ≈> Q (RelConseq)

C|C′ : P ≈> Q FV (R) disjoint from V ars(C,C′)
C|C′ : P ∧ R ≈> Q ∧ R (RelFrame)

C|C′ : P ≈> Q
C′|C : P∼

≈> Q∼ (Swap)
C0|C1 : P ≈> Q C1|C2 : R ≈> S

C0|C2 : P;R ≈> Q;S (Comp)

Fig. 6. Some rules that manipulate specs.

We are glossing over procedures and parameter passing, and termination of
C. The last premise, for D, is meant to indicate reasoning under a hypothesis.
The hypothesis includes a unary judgment, as in formalizations of HL with
procedures. It also includes the axiom about f for reasoning about assertions.
The rule does not require C to be entirely deterministic and have no effects on
other variables besides z, but we should disallow writes to x, so z = f(x) means
what we want.

From C : true � z = f(x) one can derive C|C : x = x′
≈> z = z′ by Embed

and RelConseq. But CmdFun does not require proof of C : true � z = f(x).
Instead, that spec is used to define f in terms of C, in reasoning about D.

4.4 Reasoning About Specs

The reasoning embodied by Conseq and other spec rules in HL is also needed in
RHL, e.g., in Sect. 3.2 we suggested an appeal to the relational disjunction rule.
Some of these rules are in Fig. 6. In addition to logical connectives, it is natural
to consider formulas with converse and relational composition, for which I write
R∼ and R;S respectively. Rule Swap is sound in basic and non-stuck semantics
(but not for relative termination). Rule Comp is not sound in basic or non-stuck
semantics, owing to possible divergences of C1; these are precluded under relative
termination and mutual termination semantics. Soundness of Comp can also be
achieved using an additional premise for termination.

Let us abbreviate the agreement 〈[x〈] = [〉x]〉 by Ax. We have focused on local
agreements like Ax, but one may wish to include a global identity relation, for
which we write I. As Benton shows, partial equivalences (symmetric and transi-
tive relations, per for short) are particularly important, and relation operations

Thirty-Seven Years of Relational Hoare Logic 109

let us express such properties as valid implications: R∼ ⇒ R (symmetry) and
R;R ⇒ R (transitivity). Several works use relational specs to express partial
declassification of secrets (e.g., [49]). To declassify the value of expression e, a
typical precondition has the form Ae∧BP which is a per but not reflexive. Apro-
pos rule Comp instantiated in the form C0|C2 : R;R ≈> S;S, if S is transitive
we obtain C0|C2 : R;R ≈> S using RelConseq. Then if R is reflexive (I ⇒ R)
we obtain C0|C2 : R ≈> S, as I;R is equivalent to R.

By analogy with rule Ecorr we would like to reason about preservation
of a relational property by equivalence transformation. Consider the relation
C|C ′ : R ≈> S together with equivalences D|C : E ≈> F and C ′|D′ : E ≈> F
where E ,F are suitable agreements. By Comp we get D|D′ : E ;R; E ≈> F ;S;F .
If E is a conjunction of agreements including variables of R, then R is equivalent
to E ;R; E and likewise for S so by RelConseq we obtain D|D′ : R ≈> S.
Besides enabling derivation of right-side rules from left-side rules, rule Swap

facilitates instantiating the preceding reasoning in case C = C ′ and D = D′, to
show a security property of C is preserved by the equivalence. (Take R,S to be
agreement on non-secret variables.)

Benton [19] makes the beautiful observation that just as the relational spec
Ax ≈> Az characterizes a dependency property of a single program, it also
captures that two programs are equivalent with respect to their effect on z, e.g.
z := x; y := z | z := x : Ax ≈> Az captures a dead-code elimination transform,
for a context where the subsequent code does not use y and therefore requires
no agreement on it.

With this in mind, consider programs in which atomic actions happen in
different orders, for example z := x + 1;w := y versus w := y; z := w + 1,
the equivalence of which can be expressed by the spec Ax ∧ Ay ≈> Az ∧ Aw. A
general rule for commuting assignments can be formulated requiring disjointness
of the variables read in the assignments. Moreover, one can express such a rule
for assignments involving heap locations, given means to express agreements
thereof.

Heap agreements are often needed up to bijective renaming of pointers [7,
20], which can be encoded in ghost state. Such specs can be localized to the
locations read and written by a given command, since preservation of additional
agreements can be derived by RelFrame. Yang’s logic [64] features a frame rule
taking advantage of separating conjunction of relations. It is also possible to
formulate a frame rule based on relational specs with frame conditions, as in the
work of Banerjee et al [52] which features local equivalence specs derived from
frame conditions.

4.5 Transformations

The diagonal and one-side rules enable reasoning in terms of convenient align-
ments but apply only to specific control structure patterns. Programs that do not
exactly match the patterns can be rewritten by equivalences such as skip;C ∼= C,
C; skip ∼= C, and the following:

110 D. A. Naumann

while e do C od ∼= while e do C; while e ∧ e0 do C od od
while e do C od ∼= if e do C fi; while e do C od

Commands C,C ′ are unconditionally equivalent , written C ∼= C ′, if they
have exactly the same store traces. The relation can be formalized using laws like
these together with congruence rules. Such equivalences can be used to desugar
fancy control structures, as done in some verification tools; the justification is
that C : P � Q and C ∼= D implies D : P � Q (cf. rule Ecorr in Sect. 4.4). The
relational logic of Banerjee et al. [9] features a rule like this: from C|C ′ : R ≈> S,
D ∼= C, and C ′ ∼= D′, infer D|D′ : R ≈> S. The rule is applied in proving a loop
tiling transformation, using the above rewrites to enable application of diagonal
rules. Transformations are used similarly in [16,38]. To enable use of sequenced
product one may use the equivalence var x in C ∼= var x′ in Cx

x′ for fresh x′.
It seems unparsimonious to rely on an additional program relation (∼=) for

which axioms and rules must be provided and proved sound, in a setting where
we already consider a form of program relation. On the other hand, we have seen
in Sect. 4.4 that there are limitations on the use of equivalence judgments for
reasons of termination. Having a separate judgment of unconditional equivalence
is one way to address termination in connection with the basic or non-stuck
semantics of relational judgments.

4.6 Alignment Completeness

The usual notion of completeness is that true judgments are provable. Suppose
the relational judgment C|C ′ : R ≈> S is true. In a setting where R,S can be
expressed as, or considered to be, unary formulas, one can prove it by application
of SeqProd. In turn, the sequence can be reduced to true judgments C : R � Q
and C ′ : Q � S. What matters is not that an explicit product C;C ′ can be
formed but rather that store relations can be expressed as store predicates [14,
20,21,31]. If so, the judgment is provable provided the unary HL is complete.
Then a single rule for relational judgments (SeqProd or Embed) is complete on
its own! A different notion is needed.

Suppose C : P � Q can be proved using IAM with a particular annotation.
Then there is a HL proof using that annotation, in the sense that at least the
loop rule is instantiated according to the annotation (assuming that loops are
cut at loop headers). Why? Because the VCs will be provable, by completeness
of HL, and the syntax-directed rules suffice to compose the VCs. In this sense,
HL is complete with respect to IAM for unary correctness.

A natural measure of completeness for RHL is whether any proof of C|C ′ :
R ≈> S using IAM with a product automaton can be represented by an RHL
proof using the same annotation and alignment. Turning this into a precise defi-
nition requires, first, a convincing general definition of product automaton; our 3-
condition form is relatively general but does not encompass the use of ghost state
for alignment conditions or store relations. Second, the correspondence between
proof rules and aligned products, discussed informally throughout Sects. 4.1–4.5,

Thirty-Seven Years of Relational Hoare Logic 111

needs to be made precise. To this end it may help to limit attention to annota-
tions in which all branch points are cutpoints. We leave this to future work but
note that formal proof outlines [5] may be a convenient intermediary.

It is straightforward to add ghost state to our notions of pre-product and
adequacy, to express store relations and alignments. But some program trans-
formations used in optimizing compilers reorder an unbounded number of atomic
actions. These do not have an obvious representation by pre-product and they
have not been formalized using RHL rules [48].

5 Selected Additional Related Work

The idea of relating C to C ′ by unary reasoning about a program that repre-
sents their product goes back at least to the 1970s. In Reynolds’ book [58] we
find stepwise refinement from an algorithm C using local variables of abstract
mathematical types to C ′ acting on concrete data structures, expressed by aug-
menting C with parts of C ′ interwoven in such a way that assertions can express
the coupling relation between abstract and concrete data. DeRoever and Engel-
hardt call this Reynolds’ method and devote a chapter to it, citing work by Susan
Geary as precursor [59]. Morgan [46] formalizes the idea in terms of auxiliary
variables, cf. rule AuxVar. The idea of encoding two runs as a sequence of dis-
joint copies, and specifying determinacy as a Hoare triple, appears (in passing)
in a 1986 paper by Csirmaz and Hart [27].

The influential papers by Benton [19] and Barthe et al. [14] have been followed
by many works. The rest of this section gives selected highlights.

Barthe, Crespo and Kunz [13] give several ways of formulating deductive
reasoning about relational properties, including deductive systems for product
programs in conjunction with unary HL. They formalize a judgment that con-
nects two commands with a command that represents their product. Products
include assertions which must be verified to ensure what we call adequacy.

Beringer [20] considers partial correctness specs in “VDM style” i.e., as rela-
tions from pre- to post-state, so partial correctness means the relational seman-
tics of the program is a subset of the spec. He defines relational decompositions,
essentially the relations that hold at the semicolon of a product C;C ′ (as in rule
SeqProd), and observes that given such an “interpolant” one can derive VCs for
C and C ′ as quotients in the sense of relational calculus (also known as weakest
prespecification [37]). This is used to derive a collection of RHL rules includ-
ing diagonal and one-side rules as well as relational Disj/Conj, for imperative
commands including the heap.

Beckert and Ulbrich [18] survey some of the main ideas in relational verifi-
cation and describe a range of applications and works on verification. Maillard
et al. [44] introduce a general framework for relational logics, applicable to a
range of computational effects such as exceptions. Aguirre et al. [1] develop
a logic based on relational refinement types, for terminating higher order func-
tional programs, and provide an extensive discussion of work on relational logics.
Recent proceedings of CAV include quite a few papers on relational verification,

112 D. A. Naumann

and further perspectives can be found in the report from a recent Dagstuhl
Seminar on program equivalence [42].

Numerous works develop variations and extensions of the ideas in this paper.
Terauchi and Aiken [62] observe that sequenced product necessitates use of strong
intermediate assertions, and use a dependency type system to guide the construc-
tion of more effective products. They also coin the term 2-safety. Several works
focus on modular reasoning and product constructions that enable use of rela-
tional specs for procedures [9,29,33,35,40,41,63,65]. Sousa and Dillig [61] formu-
late a logic for k-safety, with notation that stands for “any product” and may
be understood as providing for lazy product construction. Eilers et al. [29] give
a k-product encoding that lessens code duplication. Whereas many works handle
only lockstep alignment of loops, some cover the 3-condition automata [16,20];
Shemer et al. [60] provide for more general alignment and infer state-dependent
alignment conditions. Other works on inferring or expressing effective alignments
include [22,32,57]. Product constructions for ∀∃ properties appear in [12,24].

Richer formalisms like Dynamic Logic [17,28] and embedding in higher order
logic [1,34,44] have their advantages and can address reasoning like rule Cmd-

Fun and the linking of procedures to their implementations which is often left
semi-formal. But such embeddings, in particular, are far from providing the level
of automation (and teachability!) that more direct implementations of HL/RHL
can provide. Completeness results show how HL/RHL suffice for proving cor-
rectness judgments.

6 Conclusion

I spelled out a number of patterns of reasoning for program relations and rela-
tional properties of programs, in terms of product automata that model pairs
of executions, and also as rules of relational program logic. Almost all the rules
can be found in at least one prior publication but some “obvious” and useful
rules are missing in several papers. Spelling out the inductive assertion method
for relational properties, as Francez [31] does, makes explicit the alignment prin-
ciples that should be embodied in deductive rules, guiding the design of such
rules. On this basis I introduced the notion of alignment completeness, leaving
its formalization to future work; it should be done for a more general form of
product than the one I chose for expository purposes.

To streamline notation I focused on 2-run properties but there is strong
motivation for some 3-run (e.g., transitivity). I am not aware of fundamentally
different techniques or principles for k-run that are not at hand for 2-run.

Although several papers have described the need for k-safety properties in
order to reason about unary correctness, to my knowledge this pattern of rea-
soning has not been provided by relational logics (aside from those embedded
in expressive higher order logics). I present a new rule for this (CmdFun) that
stays within the limited resources of RHL, i.e., assertions, unary correctness, and
relational correctness judgments.

A couple of years ago I moved to a smaller office. While winnowing paper
files I came across the paper by Francez, which I had acquired but not fully

Thirty-Seven Years of Relational Hoare Logic 113

appreciated when working full time at IBM as a programmer in the ’80s. The
dearth of citations shows I am not alone in not finding it when I searched online
for relevant work. My copy is a publisher’s reprint, affixed with stickers that
indicate IBM paid a fee. Such stickers became obsolete but the flow of scientific
knowledge is still too tangled with commerce.

Acknowledgments. The paper was improved thanks to comments from Krzysztof
Apt, Anindya Banerjee, Gilles Barthe, Ramana Nagasamudram, and anonymous
reviewers. The research was partially supported by NSF CNS 1718713 and ONR
N00014-17-1-2787.

References

1. Aguirre, A., Barthe, G., Gaboardi, M., Garg, D., Strub, P.: A relational logic
for higher-order programs. J. Funct. Program. 29, e16 (2019). https://doi.org/10.
1017/S0956796819000145

2. Apt, K.: Ten years of Hoare’s logic, a survey, part I. ACM Trans. Program. Lang.
Syst. 3(4), 431–483 (1981)

3. Apt, K.: Ten years of Hoare’s logic, a survey, part II: nondeterminism. Theor.
Comput. Sci. 28, 83–109 (1984)

4. Apt, K.R.: Correctness proofs of distributed termination algorithms. ACM Trans.
Program. Lang. Syst. 8, 388–405 (1986)

5. Apt, K.R., de Boer, F.S., Olderog, E.R.: Verification of Sequential and Concurrent
Programs, 3rd edn. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-
84882-745-5

6. Apt, K.R., Olderog, E.: Fifty years of Hoare’s logic. Formal Asp. Comput. 31(6),
751–807 (2019)

7. Banerjee, A., Naumann, D.A.: Ownership confinement ensures representation inde-
pendence for object-oriented programs. J. ACM 52(6), 894–960 (2005)

8. Banerjee, A., Naumann, D.A.: Local reasoning for global invariants, part II:
dynamic boundaries. J. ACM 60(3), 19:1–19:73 (2013)

9. Banerjee, A., Naumann, D.A., Nikouei, M.: Relational logic with framing and
hypotheses. In: Foundations of Software Technology and Theoretical Computer Sci-
ence, pp. 11:1–11:16 (2016). Technical report at http://arxiv.org/abs/1611.08992

10. Banerjee, A., Naumann, D.A., Nikouei, M.: A logical analysis of framing for specifi-
cations with pure method calls. ACM Trans. Program. Lang. Syst. 40(2), 6:1–6:90
(2018)

11. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 17

12. Barthe, G., Crespo, J.M., Kunz, C.: Beyond 2-safety: asymmetric product pro-
grams for relational program verification. In: Artemov, S., Nerode, A. (eds.) LFCS
2013. LNCS, vol. 7734, pp. 29–43. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35722-0 3

13. Barthe, G., Crespo, J.M., Kunz, C.: Product programs and relational program
logics. J. Logical Algebraic Methods Program. 85(5), 847–859 (2016)

14. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: IEEE CSFW, pp. 100–114 (2004). See extended version [15]

https://doi.org/10.1017/S0956796819000145
https://doi.org/10.1017/S0956796819000145
https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/978-1-84882-745-5
http://arxiv.org/abs/1611.08992
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-642-35722-0_3
https://doi.org/10.1007/978-3-642-35722-0_3

114 D. A. Naumann

15. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Math. Struct. Comput. Sci. 21(6), 1207–1252 (2011)

16. Barthe, G., Grégoire, B., Hsu, J., Strub, P.: Coupling proofs are probabilistic prod-
uct programs. In: POPL, pp. 161–174 (2017)

17. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-69061-0

18. Beckert, B., Ulbrich, M.: Trends in relational program verification. In: Müller, P.,
Schaefer, I. (eds.) Principled Software Development, pp. 41–58. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98047-8 3

19. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: POPL, pp. 14–25 (2004)

20. Beringer, L.: Relational decomposition. In: van Eekelen, M., Geuvers, H., Schmaltz,
J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 39–54. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22863-6 6

21. Beringer, L., Hofmann, M.: Secure information flow and program logics. In: IEEE
CSF, pp. 233–248 (2007)

22. Churchill, B.R., Padon, O., Sharma, R., Aiken, A.: Semantic program alignment
for equivalence checking. In: PLDI, pp. 1027–1040 (2019)

23. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

24. Clochard, M., Marché, C., Paskevich, A.: Deductive verification with ghost moni-
tors. Proc. ACM Program. Lang. 4(POPL), 2:1–2:26 (2020)

25. Cok, D.R.: Reasoning with specifications containing method calls and model fields.
J. Object Technol. 4(8), 77–103 (2005)

26. Csirmaz, L.: Program correctness on finite fields. Periodica Mathematica Hungarica
33(1), 23–33 (1996)

27. Csirmaz, L., Hart, B.: Program correctness on finite fields. In: IEEE Symposium
on Logic in Computer Science (LICS), pp. 4–10 (1986). See also [26]

28. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of
secure information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS,
vol. 3450, pp. 193–209. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-32004-3 20

29. Eilers, M., Müller, P., Hitz, S.: Modular product programs. ACM Trans. Program.
Lang. Syst. 42(1), 3:1–3:37 (2020)

30. Floyd, R.: Assigning meaning to programs. In: Symposium on Applied Mathe-
matics, Mathematical Aspects of Computer Science, vol. 19, pp. 19–32. American
Mathematical Society (1967)

31. Francez, N.: Product properties and their direct verification. Acta Inf. 20, 329–344
(1983)

32. Girka, T., Mentré, D., Régis-Gianas, Y.: Verifiable semantic difference languages.
In: Principles and Practice of Declarative Programming (PPDP) (2017)

33. Godlin, B., Strichman, O.: Inference rules for proving the equivalence of recursive
procedures. Acta Inf. 45(6), 403–439 (2008)

34. Grimm, N., et al.: A monadic framework for relational verification: applied to
information security, program equivalence, and optimizations. In: CPP (2018)

35. Hawblitzel, C., Kawaguchi, M., Lahiri, S.K., Rebêlo, H.: Towards modularly com-
paring programs using automated theorem provers. In: Bonacina, M.P. (ed.) CADE
2013. LNCS (LNAI), vol. 7898, pp. 282–299. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38574-2 20

https://doi.org/10.1007/978-3-540-69061-0
https://doi.org/10.1007/978-3-319-98047-8_3
https://doi.org/10.1007/978-3-642-22863-6_6
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1007/978-3-642-38574-2_20
https://doi.org/10.1007/978-3-642-38574-2_20

Thirty-Seven Years of Relational Hoare Logic 115

36. Hoare, C.A.R.: Procedures and parameters: an axiomatic approach. In: Engeler,
E. (ed.) Symposium on Semantics of Algorithmic Languages. LNM, vol. 188, pp.
102–116. Springer, Heidelberg (1971). https://doi.org/10.1007/BFb0059696

37. Hoare, C.A.R., He, J.: The weakest prespecification. Inf. Process. Lett. 24(2), 127–
132 (1987)

38. Kiefer, M., Klebanov, V., Ulbrich, M.: Relational program reasoning using compiler
IR: combining static verification and dynamic analysis. J. Autom. Reason. 60, 337–
363 (2018)

39. Kleymann, T.: Hoare logic and auxiliary variables. Formal Aspects Comput. 11,
541–566 (1999)

40. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: a language-
agnostic semantic diff tool for imperative programs. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 712–717. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7 54

41. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion
checking. In: Joint Meeting of the European Software Engineering Conference and
the ACM Symposium on the Foundations of Software Engineering (2013)

42. Lahiri, S.K., Murawski, A.S., Strichman, O., Ulbrich, M.: Program equivalence
(Dagstuhl Seminar 18151). Dagstuhl Rep. 8(4), 1–19 (2018)

43. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

44. Maillard, K., Hritçu, C., Rivas, E., Muylder, A.V.: The next 700 relational program
logics. Proc. ACM Program. Lang. 4(POPL), 4:1–4:33 (2020)

45. Moore, J.S.: Inductive assertions and operational semantics. Int. J. Softw. Tools
Technol. Transf. 8(4–5), 359–371 (2006)

46. Morgan, C.: Auxiliary variables in data refinement. Inf. Process. Lett. 29(6), 293–
296 (1988)

47. Müller, C., Kovács, M., Seidl, H.: An analysis of universal information flow based
on self-composition. In: IEEE CSF (2015)

48. Namjoshi, K.S., Singhania, N.: Loopy: programmable and formally verified loop
transformations. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 383–402.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7 19

49. Nanevski, A., Banerjee, A., Garg, D.: Verification of information flow and access
control policies with dependent types. In: IEEE Symposium on Security and Pri-
vacy (2011)

50. Naumann, D.A.: Calculating sharp adaptation rules. Inf. Process. Lett. 77, 201–
208 (2001)

51. Naumann, D.A.: From coupling relations to mated invariants for secure information
flow. In: ESORICS. LNCS, vol. 4189, pp. 279–296 (2006)

52. Nikouei, M., Banerjee, A., Naumann, D.A.: Data abstraction and relational pro-
gram logic. CoRR abs/1910.14560 (2019). http://arxiv.org/abs/1910.14560

53. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 1

54. O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. ACM
Trans. Program. Lang. Syst. 31(3), 1–50 (2009)

55. Olderog, E.R.: On the notion of expressiveness and the rule of adaptation. Theor.
Comput. Sci. 30, 337–347 (1983)

https://doi.org/10.1007/BFb0059696
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-662-53413-7_19
http://arxiv.org/abs/1910.14560
https://doi.org/10.1007/3-540-44802-0_1

116 D. A. Naumann

56. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Inf. 6, 319–340 (1976)

57. Pick, L., Fedyukovich, G., Gupta, A.: Exploiting synchrony and symmetry in rela-
tional verification. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS,
vol. 10981, pp. 164–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96145-3 9

58. Reynolds, J.C.: The Craft of Programming. Prentice-Hall, Upper Saddle River
(1981)

59. de Roever, W.P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods
and their Comparison. Cambridge University Press, Cambridge (1998)

60. Shemer, R., Gurfinkel, A., Shoham, S., Vizel, Y.: Property directed self composi-
tion. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 161–179.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 9

61. Sousa, M., Dillig, I.: Cartesian Hoare Logic for verifying k-safety properties. In:
PLDI, pp. 57–69 (2016)

62. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005). https://doi.org/10.1007/11547662 24

63. Wood, T., Drossopolou, S., Lahiri, S.K., Eisenbach, S.: Modular verification of
procedure equivalence in the presence of memory allocation. In: Yang, H. (ed.)
ESOP 2017. LNCS, vol. 10201, pp. 937–963. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54434-1 35

64. Yang, H.: Relational separation logic. Theor. Comput. Sci. 375, 308–334 (2007)
65. Zaks, A., Pnueli, A.: CoVaC: compiler validation by program analysis of the cross-

product. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014,
pp. 35–51. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68237-
0 5

https://doi.org/10.1007/978-3-319-96145-3_9
https://doi.org/10.1007/978-3-319-96145-3_9
https://doi.org/10.1007/978-3-030-25540-4_9
https://doi.org/10.1007/11547662_24
https://doi.org/10.1007/978-3-662-54434-1_35
https://doi.org/10.1007/978-3-662-54434-1_35
https://doi.org/10.1007/978-3-540-68237-0_5
https://doi.org/10.1007/978-3-540-68237-0_5

Safer Parallelization

Reiner Hähnle(B) , Asmae Heydari Tabar(B), Arya Mazaheri(B),
Mohammad Norouzi(B), Dominic Steinhöfel(B) , and Felix Wolf(B)

Department of Computer Science, TU Darmstadt, Darmstadt, Germany
{haehnle,heydaritabar,mazaheri,norouzi,
steinhoefel,wolf}@cs.tu-darmstadt.de

Abstract. Adapting sequential legacy software to parallel environments
can not only save time and money, but additionally avoids the loss of
valuable domain knowledge hidden in existing code. A common paral-
lelization approach is the use of standardized parallel design patterns,
which allow making best use of parallel programming interfaces such as
OpenMP. When such patterns cannot be implemented directly, it can
be necessary to apply code transformations beforehand to suitably re-
shape the input program. In this paper, we describe how we used Abstract
Execution, a semi-automatic program proving technique for second-order
program properties, to formally prove the conditional correctness of the
restructuring techniques CU Repositioning, Loop Splitting and Geomet-
ric Decomposition—for all input programs. The latter two techniques
require an advanced modeling technique based on families of abstract
location sets.

1 Introduction
Using design patterns to parallelize programs [18,30] is a powerful method: first,
since it starts from sequential programs that already serve their intended pur-
pose, one avoids the loss of domain knowledge, documentation, or the invest-
ments into existing software. Second, patterns embody best practices and correct
and efficient usage of parallelization interfaces—knowledge that many program-
mers lack. Therefore, such a pattern-based approach to parallelization consti-
tutes a safe, efficient and even semi-automatic [34] migration path from sequen-
tial to parallel code.

Unfortunately, pattern-based parallelization suffers from a severe practical
limitation: sequential legacy code often does not quite have the form that would
allow the immediate application of a pattern. Assume, for example, the for-loop
in Listing 1, where stmt2 depends on the result of stmt1 and stmt1 depends
on the result of stmt3. At first sight, the code might seem not parallelizable
because of a forward-dependency among loop iterations. However, an astute
programmer might find a case where it is possible to successfully parallelize the
code by just reordering the statements, placing stmt3 before stmt1, as depicted
in Listing 2. Such a transformation preserves the semantics of the original code

This work was funded by the Hessian LOEWE initiative within the Software-Factory
4.0 project.
c© Springer Nature Switzerland AG 2020

T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 117–137, 2020.
https://doi.org/10.1007/978-3-030-61470-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_8&domain=pdf
http://orcid.org/0000-0001-8000-7613
http://orcid.org/0000-0003-4439-7129
http://orcid.org/0000-0001-6595-3599
https://doi.org/10.1007/978-3-030-61470-6_8

118 R. Hähnle et al.

and makes it parallelizable using the pipeline pattern. The execution of different
loop iterations can now overlap as long as stmt3 is completed in iteration i before
stmt1 and stmt2 start in iteration i + 1. This was not possible before because
stmt3 came last.

Fig. 1. A rudimentary sample code parallelizable using the pipeline pattern

We observed that a certain amount of code restructuring is unavoidable in
most cases before pattern-based parallelization is applicable. With in the frame-
work of DiscoPoP [34], we developed a small number of code transformation
schemata that are in many cases sufficient to bring sequential code into the form
required for pattern-based parallelization to succeed. We stress that, while these
restructuring schemata prepare code for parallelization, they still work on sequen-
tial code. Finally, we call the combined application of a sequential transformation
schema and, subsequently, a parallel design pattern schema-based parallelization.

The main problem when restructuring code is that it is easy to inadvertently
change its behavior or to introduce errors. Therefore, it is essential to ensure the
correctness of restructuring schemata with suitable applicability conditions and
to prove that under these conditions they preserve the behavior of the restruc-
tured code. In the present paper, we identify syntactic conditions and prove that
they suffice to guarantee the preservation of behavior for three representative
restructuring schemata.

The (relative) correctness of a program transformation is a second-order,
relational property: for any instance of a schematic program, one needs to show
that the code before and after the transformation behaves in the same manner—
provided the preconditions are met. Recently, the technique of abstract execu-
tion (AE) has been shown to be suitable for this problem class [35,37]. Our
main contribution is to demonstrate that AE can be extended to formalize and
prove the correctness of typical restructuring schemata needed for schema-based
parallelization. This is possible, even though AE so far is limited to sequential
programs, because the restructuring schemata work on sequential code.

The paper is organized as follows: In Sect. 2, we provide background about
schema-based parallelization and present three typical restructuring schemata.
In Sect. 3, we rehash the essentials of AE from [37]. Restructuring schemata
that benefit parallelization need to be able to specify programs with loops. To
show their correctness, so-called abstract strongest loop invariants [35] are used
and explained in Sect. 4. The core of the paper is Sect. 5, where we extract

Safer Parallelization 119

sufficient preconditions for restructuring schemata and mechanically prove their
correctness with the deductive verification system KeY [2]. To achieve this we
had to extend the existing AE framework. We close the paper with Sect. 6 on
related work and Sect. 7 containing future work and concluding remarks.

2 Restructuring for Parallelization
Design patterns [13] are a well-known technique that help designers and program-
mers to create reusable and maintainable (sequential) programs. Specifically,
design patterns for parallel programs [30] support the development of software
for parallel computers. Parallel design patterns help to avoid concurrency-related
errors in the code such as deadlocks and data races. These are, when present, dif-
ficult to locate [18]. Mattson et al. [31] provide a catalogue of well-known parallel
design patterns, organized on different abstraction levels—from decomposing a
problem into parallel tasks down to a specific parallel implementation.

Jahr et al. [20] suggest using parallel design patterns to convert an existing
sequential program to a parallel one. They aim at parallel software that can
be mapped onto different many-core target architectures, providing high per-
formance with low development effort. The central idea is to admit parallelism
only as a result of applying parallel design patterns from a catalog. In the first
phase, one exposes the maximum degree of parallelism expressible with a pat-
tern through the activity and pattern diagram. In the second phase, this degree
of parallelism is reduced to the level that provides the best performance and
the optimal mapping of the program onto different cores of the target platform.
The activity and pattern diagram is an extension of UML activity diagrams.
Here, activity nodes can encapsulate not merely single, but multiple functional-
ities modeled as separate diagrams. The fork and join bars used in sequential
activity diagrams to model creation and join of threads is forbidden [20]. This
approach is unsuitable for automatic parallelization because deciding on the
applicability of a parallel design pattern to a given sequential program requires
intimate familiarity with the target code as well as comprehensive knowledge of
parallel constructs and patterns [18].

To decide automatically whether a given parallel design pattern can be
applied, Huda et al. [18] suggest template matching. This idea is derived from
a matching technique that identifies suitable sequential design patterns [11]. It
works by mapping the UML diagram of the design pattern to the UML diagram
of the target program. When template matching is used to infer parallel design
patterns, data dependence graphs replace the role of UML diagrams. Nodes in a
dependence graph represent pieces of code, and its edges represent data depen-
dences. The latter determine whether two nodes can be executed concurrently.

The dependence graph is generated approximately and automatically based
on the output of the dependence profiler DiscoPoP [28]. The tool treats a pro-
gram as a collection of Computational Unit (CUs) connected via data depen-
dences. A CU is a piece of code with little to no internal parallelism that fol-
lows the read-compute-write pattern. A data dependence graph over CUs is a
CU graph. Template and target program are represented as vectors and their

120 R. Hähnle et al.

cross-correlation determines their similarity, which indicates whether a successful
template match is likely.

Often a match is not possible, even though the given sequential program has
the potential for parallelization. In this case, the program has to be restructured
before it becomes eligible for a parallel design pattern. Depending on the target
pattern, there are different restructuring schemata. In the following, we discuss
three representative schemata, previously developed within the DiscoPoP frame-
work [34].
CU Repositioning. This is the restructuring schema before applying the
pipeline pattern. A pipeline achieves functional parallelism, similar to an assem-
bly line. The pipeline consists of stages, which process data concurrently as it
passes through the pipeline. A pipeline can also be used to parallelize the body of
a loop if the loop cannot be parallelized in the conventional way by dividing the
iteration space using the do-all pattern. The pipeline pattern assigns each CU to
a unit of execution and provides a mechanism whereby each CU of the pipeline
can send data elements to the next CU [31]. Then it runs the CUs in parallel. In
the pipeline pattern, each CU can depend on a CU running in the loop iteration
or pipeline stage prior to it, but not on the CU after. Therefore, no CU depends
on the result of the final CU. If this final CU also does not depend on other CUs,
then it can be merged with the first CU. Moving the final CU from its assigned
execution unit and merging it into the first CU, is called a CU Repositioning
restructuring step. We refer to our explanations in the introduction (Fig. 1) for
an example of CU Repositioning.
Loop Splitting. This is the restructuring step before applying the Do-All pat-
tern. Do-all divides the iteration space into disjoint subsets and assigns each
of them to an execution unit, then runs them in parallel. A loop is paralleliz-
able with the do-all pattern when there are no data dependences among differ-
ent loop iterations [18]. Such cross-iteration dependences are called loop-carried
dependences. But, even when an initial or final segment of loop iterations has
external dependences, these iterations can be outsourced to a separate loop and
the remaining iterations still can be parallelized. Then, before (or after) the new
loop runs, the do-all pattern is applied to the remaining loop. This is called a
Loop Splitting restructuring step.

For example, in Fig. 2, Listing 3, assume body of the loop has external depen-
dences (dependences to locations outside of the loop) at the first D iterations, but
from iteration D+1 onward there is no dependence among different iterations.
By splitting up the first D iterations in a separate Loop, like in Listing 4, the
second loop now matches the do-all pattern.
Geometric Decomposition. This is a parallel design pattern that already
includes the restructuring step. For programs that are understood as a sequence
of operations on a main data structure, often the best way of parallelization is to
decompose this data structure. For example, arrays and other linear data struc-
tures can be decomposed into substructures in a similar manner as dividing

Safer Parallelization 121

Fig. 2. Loop Splitting

Fig. 3. Geometric Decomposition

a geometric region into sub-regions—hence the name Geometric Decomposi-
tion [31]. The resulting substructures can be processed in parallel.

For example, in Fig. 3 the while loop in Listing 5 is decomposed into N loops
of the size t / N and gathered in the outer loop of size N in Listing 6. The N
iterations of the outer loop can run in parallel.

3 Abstract Execution and Dynamic Frames
Abstract Execution (AE) [35,37] extends Symbolic Execution (SE) [9,23] by
permitting abstract statements to occur in executed programs. Thus, AE reasons
about an infinite sets of concrete programs. An abstract program contains at
least one Abstract Statement (AS). The semantics of an AS is given by the
set of concrete programs it represents, its set of legal instances. To keep the
presentation succinct, here we only consider normally completing Java code as
instances: an instance may not throw an exception, break from a loop, etc.

Each AS has an identifier and a specification consisting of its frame and
its footprint. Semantically, AS instances with identifier P may write at most to
memory locations specified in P’s frame and may only read the values of locations

122 R. Hähnle et al.

in its footprint. All occurrences of an AS with the same identifier symbol have
the same legal instances (possibly modulo renaming of variables if variable names
in frame and footprint specifications differ). For example, by writing P(x, y :≈
y, z), we declare an AS with identifier “P”. The left-hand side of “:≈” is the frame,
the right-hand side the footprint; P can thus be instantiated by programs writing
at most to variables x and y, while only depending on variables y and z. The
program “x=y; y=17;” is a legal instantiation of this AS, but not “x=y; y=w;”,
which accesses the value of variable w not contained in the footprint.

Abstract programs allow the expression of second order properties like “all
programs assigning at most x, y while reading at most y, z leave the value of i
unchanged”. As a Hoare triple [17] (where i0 is a fresh constant relative to P):

{i .= i0} P(x, y :≈ y, z) {i .= i0}
It is desirable to express such properties more generally without referring to the
concrete variable names occurring in P: “all programs not assigning i leave the
value of i unchanged”. To achieve this, we allow abstract location sets in frame
and footprint specifications, inspired by the theory of dynamic frames [21]. We
can generalize the above example to

{i .= i0 ∧ i /∈ frame} P(frame :≈ footprint) {i .= i0} (∗)

where frame and footprint are set-valued variables representing arbitrary loca-
tions. We use standard set notation (i /∈ frame, etc.) to express constraints on
these sets. We define the abstract syntax and semantics of abstract programs.

Definition 1 (Abstract Program). An abstract program is a tuple P =
(locSymbs, predSymbs, constr , abstrStmts, pabstr) of a set of location set symbols
locSymbs, a set of abstract predicate symbols predSymbs, constraints constr on
location set and predicate symbols, ASs abstrStmts �= ∅ and a program fragment
pabstr such that abstrStmts contains exactly the ASs in pabstr , and locSymbs
contains exactly the location symbols used in the specification of those ASs.

Definition 2 (Legal Instance). A concrete program p is a legal instance of P
if it arises from substituting in pabstr concrete location sets, boolean expressions,
and statements for locSymbs, predSymbs, and abstrStmts, respectively, where (i)
instances of location set and predicate symbols satisfy the constraints constr, (ii)
all ASs are instantiated legally, i.e., by statements respecting the constraints on
frames and footprints, and (iii) all ASs with the same identifier are instantiated
with the same concrete program (modulo renaming in the presence of differently
named frame and footprint locations). The semantics �P� of P consists of all its
legal instances.

The abstract program consisting of AS P in (∗) above is formally defined as:
({fr , fp} , ∅, {i /∈ fr} , {P(fr :≈ fp)} , P(fr :≈ fp);

)

The program “P0 ≡ x=y; y=2*i;” is a legal instance: it obviously respects
the constraints on the frame (i is not assigned).

Safer Parallelization 123

4 Correctness of Transformation Schemata with Loops
The problem of proving the correctness of program transformations can be
understood as a relational verification problem of abstract programs. The term
“relational verification” [4,5] describes a problem class where a program, and
not a more abstract, declarative description, serves as specification for another
program. For example, to prove that the restructuring schema CU Reposition-
ing (Sect. 2) is safely applicable, one can prove that the abstract programs
“P; Q;” and “Q; P;” behave equivalently, i.e., have identical effects on the state.
Obviously, this equivalence is only valid under suitable assumptions. Therefore,
we prove conditional correctness, or in other words, equivalence of constrained
abstract programs.

To symbolically execute programs with loops, deductive verification normally
uses loop invariants to obtain a finite abstraction of unbounded loop behav-
ior [16]. Loop invariants embody an inductive argument: If the invariant holds
before entering loop and at each loop exit point, we can continue proving the pro-
gram after the loop assuming the invariant. If a loop invariant is strong enough
to imply the weakest precondition of the remaining program (or directly the
postcondition if there is no remaining program), it is called inductive.

In functional verification, there is usually a choice between several inductive
loop invariants, ranging from abstract descriptions that are merely sufficient to
prove the postcondition to precise ones capturing the whole semantics of a loop.
To prove equivalence of two programs using loop invariants in relational verifica-
tion, it turns out that there is no choice: One has to come up with the strongest
inductive loop invariant (up to logical equivalence) [5], which is generally hard to
find. For this reason, state-of-art relational verification tools for concrete programs
use different concepts, such as coupling invariants [5], to decrease specification
effort and increase automation. The advantage of traditional loop invariants, on
the other hand, is the “black box” encapsulation achieved by abstraction from loop
behavior. Moreover, coupling is non-trivial for structurally different programs, as
in the loop transformation schemata in Figs. 2 and 3.

Fortunately, while strongest loop invariants for relational verification of con-
crete programs are hard to find, this is not the case in the abstract setting:
Instead of having to come up with a concrete invariant, one uses an abstract
predicate and adds as a constraint the requirement that its instances are
strongest invariants.1 We formalize this intuition.

Definition 3 (Strongest Loop Invariant). Let Pre be a precondition and
L ≡ “ while (guard) body” a loop, where l1, . . . , ln are the locations assigned
in L. A formula ϕ is a strongest loop invariant for L if it is a loop invariant
for L and there is exactly one assignment of the li satisfying Pre, ¬guard and
ϕ, i.e., ∃l′

1; · · · ∃l′
n; ∀l1; · · · ∀ln; (Pre ∧ ¬guard ∧ ϕ → (l′

1
.= l1 · · · l′

n
.= ln)) .

1 Note that a strongest loop invariant is not necessarily inductive. Indeed, if there are
runs of the analyzed programs not satisfying the postcondition, there is no inductive
invariant, although there is always a strongest one.

124 R. Hähnle et al.

The concept of an abstract strongest loop invariant [35] adds an abstract pred-
icate Inv to the set predSymbs of an abstract program, and to constr a constraint
restricting instances of Inv to formulas satisfied by exactly one assignment. One
then designates Inv as the loop invariant of the specified loop, as demonstrated
by the following example.

Example 1 (Abstract Strongest Loop Invariant). We aim to equip the program
“i=0; while(i<t) { P(frame :≈ footprint); i++; }” with an abstract strongest
invariant for the contained loop, assuming i, t /∈ frame. To that end, we create a
new abstract predicate Inv(i, frame) and use it to specify the loop as in Listing
7. The highlighted parts in Lines 2 and 4 of the listing restrict instances of Inv to
expressions that are valid when entering the loop the first time, and are satisfied
by further iterations. We specified the bounds of the loop counter i separately:
Since instantiations of P must not assign i, they cannot establish that part of
the invariant. Let p be the whole abstract program fragment in Listing 7. We
define the abstract program P as

P := ({frame, footprint}, {Inv}, {i /∈ frame, t /∈ frame, invConstr},

{P(frame :≈ footprint)}, p), where
invConstr := ∃i′; ∃frame′; ∀i; ∀frame;

(
Inv(0, frame)∧

0 ≤ i ∧ i ≤ t ∧ Inv(i, frame) ∧ i ≥ t → (i′ .= i ∧ frame′ .= frame)
)

Observe that the partial invariant i ≤ t, together with the negated guard
i ≥ t, determines i .= t as the final value of i after loop termination.

Consider an instantiation of AS P to “x += i;” for an integer variable x with
initial value 0. Hence, the resulting concrete program fragment p0 computes in
x the sum of the numbers between 0 and t. Clearly, p0 respects the constraints
on frame, since it assigns neither i nor t. The formula “true” is a loop invariant
for p0. However, it is not an admissible instantiation for Inv, since invConstr is
not satisfied: There are multiple assignments of i and x (the latter being the
concrete instance of frame) satisfying this weak invariant. The other extreme,
“false”, does also not satisfy invConstr : it has no satisfying assignments, although
one is required, and violates the specification in the code p (it is neither initially
valid nor preserved by loop iterations). Another insufficient invariant is “i ≤ x”,
which is a non-trivial, but not the strongest invariant. Finally, the expression
“x .=

∑j<i
j≥0 j” is the strongest (modulo logical equivalence) instance of Inv for

p0: It allows to deduce, together with i .= t, the final value of x after loop
termination, which is

∑j<t
j≥0 j. ♦

5 Preconditions for Safe Transformation Schemata
We modeled the transformation schemata from Sect. 2 in [35,37], a
workbench for proving relational properties of abstract Java programs, imple-
mented as a frontend of the program prover KeY [2]. Figure 4 shows a screenshot

Safer Parallelization 125

Fig. 4. The window

of the GUI. Starting from simple initial abstract program models, we
specialize the intended legal instances by adding constraints until conditional
correctness of the transformation is provable. Feedback needed for this stepwise
refinement loop is drawn from interpreting failed proof attempts in KeY; we refer
to the AE literature [35,37] for a detailed description.

In the following, we describe the abstract program models we created,
which yield preconditions for safe application of the considered transformation
schemata. The section is concluded by considerations of the practical applicabil-
ity of our findings and concise descriptions of the discovered preconditions. All

models, proofs, and the tool itself can be downloaded at the compan-
ion webpage https://www.key-project.org/papers/safer-parallelization/.
5.1 CU Repositioning
CU Repositioning prepares a program for parallelization based on the pipeline
pattern by swapping CUs. Usually, statements occurring after a loop or method

https://www.key-project.org/papers/safer-parallelization/

126 R. Hähnle et al.

Fig. 5. Abstract program model for CU Repositioning

call are moved in front of the loop or call. This transformation is an instance
of the more general Slide Statements refactoring technique [12], where the first
statement in the sequence “A; B;” to be swapped is required to be a loop or
method call. Consequently, the preconditions for a safe application of the CU
Repositioning transformation are the same as reported in [35] for Slide State-
ments. The abstract program model is shown in Fig. 5. The included constraints
specify that ASs A and B have to be independent, i.e., their frames and footprints
have to be disjoint. Specifically, this means that neither statement depends on
the output of the other one, and cannot overwrite state changes of the other.

The fully automatic proof for this simple transformation technique consists
of ca. 1,000 nodes and takes less than 7 s.
5.2 Loop Splitting
Loop Splitting or “fission” [1] is an optimization splitting one into several loops
to prepare a subsequent parallelization step. We assume a loop from 0 to (exclu-
sively) a strictly positive threshold t, from which we aim to pull the first D + 1
iterations, i.e., we split the loop after index “D”. The abstract program model
for Loop Splitting is in Fig. 8, global constraints in Fig. 10.

We define disjoint (Eq. (2) in Fig. 10) abstract location sets loopFrameS and
loopFrame which the input and split loop may write to. The split loop portion
works on loopFrameS , the remaining iterations on loopFrame. Further, we assign
to each iteration its own part of the memory using an indexed family of abstract
location sets subFrame(i), such that the first D+1 elements cover loopFrameS and
the remaining elements loopFrame (Eqs. (3) and (5)). The location sets from D+1
onwards must be disjoint from each other (Eq. (4)). This final requirement is
not necessary for the correctness of the transformation itself, but for running
the iterations of the second loop in parallel. Figure 6 visualizes these constraints
(the concrete memory layout may be different, as we use abstract location sets).

Remark 1 (Location Set Families). The concept of indexed families of abstract
location sets is an original contribution of this paper. It looks straightforward
at the first glance, but it required several generalizations of the abstract store

Safer Parallelization 127

Fig. 6. Visualization of memory constraints for Loop Splitting

simplification rules implemented in KeY’s AE framework. Without the exten-
sion, transformations such as Loop Splitting can be modeled [35], but assigning
separate memory areas to different iterations of a loop is impossible. It turns out
that constraints quantifying over indices of location set families are detrimental
to automation, a problem whose full solution we defer to future work. ♦

The memory constraints alone are insufficient to prove the equivalence of the
input and output model. For this, we need the abstract strongest loop invariants
of Sect. 4. They allow to infer the exact final value of loopFrameS and loopFrame,
thus show conditional equivalence of the input and output model. The abstract
invariants are defined as abstract predicates invSplit(i, loopFrameS), represent-
ing the invariant for the iterations until index D, and inv(i, loopFrame), repre-
senting the invariant for the remaining iterations. During the first D+1 iterations,
instances of the loop body AS Body have to ensure invSplit. Afterward, they have
to ensure inv. Equation (6) is the constraint restricting instances of the abstract
predicates to strongest loop invariants. To facilitate running the iterations of the
second loop part in parallel, we specify in Listings 12 and 13 “partial” invariants
pInv(i, subFrame(i)) on the disjoint subframes. Equivalence of those with the
invariant inv on loopFrame is ensured by the constraints in Lines 37 to 42.

The proof of Loop Splitting has 15,600 nodes. It requires 7 simple and 16 non-
trivial interactive rule applications (8 quantifier instantiations, 8 cuts). KeY
needed ca. 5 min for the automatic part of the proof search. Cuts were used
to assert lemmas about set inclusion such as subFrame(i) ⊆ loopFrame, where
i > D, which are needed to simplify abstract stores, but cannot be inferred
automatically. Quantifier instantiations were necessary to prove the quantified
parts of the loop invariants as well as to suitably instantiate the strongest loop
invariant constraint. The remaining, trivial interactive applications consisted in
hiding assumptions distracting the prover, which lead to superfluous case dis-
tinctions and instantiations. In total, 99.9% of all rule applications are performed
automatically, while less than 0.1% are non-trivial user interactions.

Despite the necessity of human interactions with the proofs and the compar-
atively long time required for proof search, our results are practically applicable
to real projects: We proved equivalence for all instances of our models at once.
When using the correctness result of, e.g., Loop Splitting, to transform a real
program, one only needs to show that this program is represented by the model.
The proof of the transformation itself does not have to be redone. Even if formal

128 R. Hähnle et al.

instance checking is not considered for the moment, the insights obtained from
our models can help tool designers to construct sound transformation systems.
5.3 Geometric Decomposition
Geometric Decomposition can be seen as a generalization of Loop Splitting:
Instead of dividing a loop into two parts, it is split into N > 1 parts which
are executed inside a newly introduced outer loop. Afterward, the do-all pattern
can be applied to the outer loop, such that all N parts are run in parallel. We
assume a loop from 0 to (exclusively) a threshold t which is strictly greater
than N. The latter restriction excludes parts consisting of only one iteration of
the original loop, which would contradict the intention of the pattern. Further-
more, t should be divisible by N. The abstract program model for Geometric
Decomposition is shown in Fig. 9, global constraints in Fig. 11.

The abstract memory setup is similar as in our model of Loop Splitting:
The loop works on an abstract set of memory locations loopFrame; each of the
N portions resulting from the split is assigned its own subset subFrame(i) of
loopFrame which is disjoint from the frame of all other loop portions (Eq. (9)).

Again, we use “partial” loop invariants pInv(k, subFrame(l)). Assuming,
e.g., a loop with t = 12 which we split into N = 3 portions, the first
loop portion ensures the partial invariants from pInv(0, subFrame(0)) to pInv
(3, subFrame(0)), the second from pInv(4, subFrame(1)) to pInv(7, subFrame(1)),
etc. The final constraint in Fig. 9 ensures that all partial invariants from
pInv(0, subFrame(0)) to pInv(t−1, subFrame(N)) together imply a loop invariant
inv(k, loopFrame) on the whole loop frame. Instances of this abstract predicate
are, similar to Loop Splitting, constrained to be strongest invariants (Eq. (11)).

The proof of Geometric Decomposition consists of ca. 84,000 rule applica-
tions of which 215 are manual (0.26%—conversely, more than 99.7% are auto-
matic), including 23 cuts, 26 quantifier instantiations, 29 case distinctions and
one inductive side proof. There are three main reasons for the relative difficulty
of this proof. (1) It involves assertions on relations between different abstract
location sets (as in Sect. 5.2, but more complex). (2) The proof requires deep
insight into the model. E.g., to prove the invariant of the outer loop in Listing
15, the partial invariants defined on subFrame(j) are retrieved by instantiating
the invariant for the inner loop, while for prior iterations, the induction hypoth-
esis, i.e., the invariant of the outer loop for the previous iterations, has to be
used. This argument depends on the subframes being disjoint. (3) The model
uses integer division, which is difficult for first-order solvers in general, and KeY
in particular. Most cuts (and the inductive sub proof) are due to nonlinear arith-
metic problems.

We briefly discuss one particular arithmetic problem linked to the example
mentioned in item (2). To prove the outer invariant, we proceed via case distinc-
tion based on the value of j. Among the resulting proof cases, there is an “impos-
sible” one assuming j �= k/(t/N), but also k ≥ j ∗ (t/N) and k < (j+ 1) ∗ (t/N).
To rule this case out, we prove the following lemma, for natural numbers a, b, c:

∀a; ∀b; ∀c; (c > 0 ∧ a ≥ b ∗ c ∧ a < (b + 1) ∗ c → a/c = b)

Safer Parallelization 129

KeY could prove this fact automatically (using a strategy called “Model
Search”), needing 18,800 steps and over two mins. However, it turns out that the
prover was “distracted” by the large number of irrelevant assumptions collected
at this point in the proof. Starting from a proof goal without any additional
assumptions, KeY produced a short proof of 291 nodes in less than a second. It
is interesting to observe that attempts to prove the lemma with the SMT solver
Z3 [32] and the first-order prover Vampire [24] (in “portfolio” mode) failed with
time outs.
5.4 Practical Application of Abstract Program Models
A thorough understanding of code transformations is always helpful to apply
them safely. Ideally, the constraints embodied in our abstract program mod-
els should then automatically be checked by (semi-)automatic code paralleliza-
tion approaches [27] to ensure correctness of transformations and parallelization
directives such as OpenMP “pragmas”.

Applying an abstract program model involves three steps: (1) Instantiation
of the abstract input model (i.e., abstract program, location sets and predicates)
for a given transformation schema and a given program; (2) transformation of the
program instance in conforming to the abstract output model; (3) verification of
the conformance of instances of abstract location sets, predicates, ASs with the
requirements of Definition 2.

This process requires addressing two difficult problems:

(1) Checking validity of first-order constraints is undecidable in general, and the
corresponding proofs can be time consuming.

(2) For loop transformations, instantiating the input model requires finding
strongest loop invariants, which is in general impossible to automate.

Fortunately, a problem that is in general undecidable does not exclude the
existence of practically occurring instances which are relatively easy, or even
trivial, to solve. The main constraints in our abstract models concern memory
access. Consider, for example, the program in Listing 10, which replaces each
element in an integer array by its square. It can be transformed using Geometric
Decomposition to the program in Listing 11. The location written and read in
each loop iteration is arr[i]. It is easy to prove that the program satisfies
an even stronger requirement than imposed by the constraints of Geometric
Decomposition in Fig. 11, which require that the locations for each block of size
N, not necessarily for all iterations, are disjoint.

What about item (2)—the invariants? The strongest loop invariant for the
example in Listing 10 is

∀k; k ≥ 0 ∧ k < arr.length →
(

(k < i → arr[k] .= arr′[k] ∗ arr′[k]) ∧ (k ≥ i → arr[k] .= arr′[k])
)
.

where arr′ is the initial value of the array. Finding this invariant, for such a
simple problem, is already difficult. Yet, inspecting the constraints for Geo-
metric Decomposition in Fig. 11 and Listing 14 lets us observe that the only

130 R. Hähnle et al.

Fig. 7. Simple instantiation of Geometric Decomposition

constraint on the abstract predicate inv(k, loopFrame) is the requirement that
it represents the strongest loop invariant. Moreover, the partial invariants
(“arr[i] .= (arr′[i])2” in the example) only need to imply the strongest loop
invariant (Fig. 9, lines 38–43).

The proof depends on the existence of strongest invariants to deduce the exact
symbolic memory state after loop termination. Due to the absence of additional
constraints on these invariants, and since any loop has some strongest loop
invariant, it is not necessary to actually supply a concrete strongest invariant
during instantiation. The only “real” restriction results from the parameters
supplied to the predicates, which represent the locations from which invariant
expressions may be built. The parameters, in turn, conform to the memory con-
straints. Consequently, it is already sufficient to check whether an instantiation
candidate satisfies all memory restrictions. The relevant constraints encoded in
our abstract transformation models can thus be rephrased as follows:

CU Repositioning: The frames and footprints of the swapped statements have
to be disjoint.

Loop Splitting: D + 1 is strictly smaller than the loop threshold t. All loop
iterations from index D + 1 have to operate on memory regions disjoint from
each other as well as disjoint from those of the iterations until index D.

Geometric Decomposition: N is strictly positive and strictly smaller than t;
t is divisible by N. When dividing all iterations in blocks of size t/N, each
such block has to operate on a memory region that is disjoint from all others.

6 Related Work
We formally specify and prove conditional correctness of program transformation
schemata for sequential code, aiming to prepare input programs for subsequent
parallelization. Such transformations, especially Loop Splitting, are also discussed
in the classic compiler literature (e.g., [1]), where Program-Dependence Graphs
(PDGs) are used to expose splitting opportunities. Formal, let alone mechanized,
proofs of the transformations are absent. The same holds for work on design
patterns for parallel programming [31].

Safer Parallelization 131

Fig. 8. Abstract program model for Loop Splitting

132 R. Hähnle et al.

Fig. 9. Abstract program model for Geometric Decomposition

Safer Parallelization 133

Fig. 10. Global constraints for Loop Splitting

Fig. 11. Global constraints for Geometric Decomposition

134 R. Hähnle et al.

The work of Khatchadourian et al. [22] considers safe, automated refactoring
of sequential to parallel Java 8 streams. They define preconditions determining
when it is safe and (possibly) advantageous to execute streams in parallel. Com-
pared to our work, this approach is limited to a very specific problem (parallel
streams), but verifies equivalence of the sequential input and parallel output
programs, which is not within the scope of this paper.

There is a range of general-purpose deductive software verification [16] tools
for sequential programs, including Why [8], Dafny [26], KIV [3], and KeY [2].
KeY is the only one of those supporting properties with universal quantification
over programs (thanks to the AE framework). Interactive proof assistants such
as Isabelle [33] or Coq [6] also support more or less expressive abstract program
fragments, but lack automation. A few tools for proving functional correctness
of parallel programs in industrial programming languages exist; prominent rep-
resentatives are VerCors [7] and VeriFast [19]. Unlike KeY/AE, they natively
support the verification concurrent programs, but can only prove the correctness
of transformations of concrete programs and not of a transformation schema.

There are dedicated approaches involving schematic programs for proving
the correctness of transformations in specific contexts, like regression verifi-
cation [15], compilation [25,29,36] or derived symbolic execution rules [10].
Abstract Execution [35,37] comes closest to a general-purpose framework
for the deductive verification of transformation rules with a high degree of
automation.

The most prominent prior application of AE (also discussed in [35,
37]) focuses on the conditional correctness of refactoring techniques. Code
refactoring [12] aims to improve the readability and, more generally, the main-
tainability of code, while preserving its behavior. There is a close relation
between refactoring and the transformation techniques discussed here, even
though the intentions differ fundamentally. We noted before that CU Reposi-
tioning can be seen as a special case of the refactoring Slide Statements (the
first of the statements to be swapped is usually a method call or loop). Loop
Splitting is a special case of the Split Loop refactoring, where all iterations of
the second loop portion have to be independent. Geometric Decomposition, on
the other hand, is a generalization of Split Loop, splitting a loop into N > 1
independent parts. For the mechanized proofs of Loop Splitting and Geomet-
ric Decomposition, we extended the existing AE framework to support indexed
families of abstract location sets.

There is only one other work statically proving the semantic correctness of
refactorings [14], where the correctness of two techniques (Push Down Method,
Pull Up Field) is proved using a program semantics encoded in Maude. The
proof is, however, not fully mechanized and complemented by pen-and-paper
arguments. Statement-level transformations as discussed here are not considered.

7 Conclusion and Future Work
We presented formal models of three program transformation schemata, includ-
ing two with loops, which are used by code parallelization tools to exploit par-
allelization opportunities in sequential programs. We defined sufficiently strong

Safer Parallelization 135

preconditions to prove the conditional correctness of the transformations for any
input program satisfying the preconditions. To specify and verify our models, we
used Abstract Execution (AE), a framework allowing for a very high degree of
proof automation. We extended the existing AE framework with the possibility
to specify and reason about families of abstract location sets. This extension
allows for versatile specifications, but is a challenge for the prover. Still, we
reached a degree of automation of 99.7% even for the most complicated loop
transformation; the loop-free problem was proven fully automatically.

Our models not only cover criteria necessary for proving the correctness of
(sequential) program transformations, but additionally stronger constraints for
the subsequent addition of parallelization directives. Crucial preconditions on
memory access should be automatically checkable by parallelization tools, or
can at least be closely approximated. By precisely stating these requirements
explicitly, we hope that we cleared the way to safer parallelization.

One obvious future work direction connecting to these results is the general-
ization of AE to parallel programs. This would allow us to go one step further:
To mechanically prove that the constraints in our models are sufficiently strong
to ensure the preservation of the sequential program semantics after paralleliza-
tion. Furthermore, we aim to improve the performance of the KeY prover in the
presence of abstract location set families to get even closer to 100% automation.

References
1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.

Addison-Wesley, Boston (1986)
2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):

Deductive Software Verification - The KeY Book. LNCS, vol. 10001. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

3. Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal system devel-
opment with KIV. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp. 363–366.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46428-X_25

4. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0_17

5. Beckert, B., Ulbrich, M.: Trends in relational program verification. In: Müller, P.,
Schaefer, T. (eds.) Principled Software Development, pp. 41–58. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98047-8_3

6. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development
- Coq’Art: The Calculus of Inductive Constructions. TTCS. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-662-07964-5

7. Blom, S., Huisman, M.: The VerCors tool for verification of concurrent programs.
In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 127–
131. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9_9

8. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, pp. 53–64 (2011)

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/3-540-46428-X_25
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-319-98047-8_3
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-06410-9_9

136 R. Hähnle et al.

9. Boyer, R.S., Elspas, B., Levitt, K.N.: SELECT–a formal system for testing and
debugging programs by symbolic execution. ACM SIGPLAN Not. 10(6), 234–245
(1975)

10. Bubel, R., Roth, A., Rümmer, P.: Ensuring the correctness of lightweight tactics for
JavaCard dynamic logic. Electr. Notes Theor. Comput. Sci. 199, 107–128 (2008).
https://doi.org/10.1016/j.entcs.2007.11.015

11. Dong, J., Sun, Y., Zhao, Y.: Design pattern detection by template matching. In:
Wainwright, R.L., Haddad, H. (eds.) Proceedings of the 2008 ACM Symposium on
Applied Computing (SAC), pp. 765–769. ACM (2008)

12. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Signature Series, 2nd edn. Addison-Wesley Professional, Boston (2018)

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston (1995)

14. Garrido, A., Meseguer, J.: Formal specification and verification of Java refactor-
ings. In: Proceedings of the 6th IEEE International Workshop on Source Code
Analysis and Manipulation, SCAM 2006, pp. 165–174. IEEE Computer Society,
Washington, D.C. (2006). https://doi.org/10.1109/SCAM.2006.16

15. Godlin, B., Strichman, O.: Regression verification: proving the equivalence of sim-
ilar programs. Softw. Test. Verif. Reliab. 23(3), 241–258 (2013). https://doi.org/
10.1002/stvr.1472

16. Hähnle, R., Huisman, M.: Deductive software verification: from pen-and-paper
proofs to industrial tools. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science. LNCS, vol. 10000, pp. 345–373. Springer, Cham (2019). https://
doi.org/10.1007/978-3-319-91908-9_18

17. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

18. Huda, Z.U., Jannesari, A., Wolf, F.: Using template matching to infer parallel
design patterns. TACO 11(4), 64:1–64:21 (2015). https://doi.org/10.1145/2688905

19. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5_4

20. Jahr, R., Gerdes, M., Ungerer, T.: A pattern-supported parallelization approach.
In: Balaji, P., Guo, M., Huang, Z. (eds.) Proceedings of the 2013 PPOPP Inter-
national Workshop on Programming Models and Applications for Multicores and
Manycores (PMAM), pp. 53–62. ACM (2013). https://doi.org/10.1145/2442992.
2442998

21. Kassios, I.T.: The Dynamic Frames Theory. Formal Asp. Comput. 23(3), 267–288
(2011). https://doi.org/10.1007/s00165-010-0152-5

22. Khatchadourian, R., Tang, Y., Bagherzadeh, M., Ahmed, S.: Safe automated refac-
toring for intelligent parallelization of Java 8 streams. In: Atlee, J.M., Bultan, T.,
Whittle, J. (eds.) Proceedings of the 41st International Conference on Software
Engineering (ICSE), pp. 619–630. IEEE/ACM (2019). https://doi.org/10.1109/
ICSE.2019.00072

23. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

24. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8_1

https://doi.org/10.1016/j.entcs.2007.11.015
https://doi.org/10.1109/SCAM.2006.16
https://doi.org/10.1002/stvr.1472
https://doi.org/10.1002/stvr.1472
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1145/2688905
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/2442992.2442998
https://doi.org/10.1145/2442992.2442998
https://doi.org/10.1007/s00165-010-0152-5
https://doi.org/10.1109/ICSE.2019.00072
https://doi.org/10.1109/ICSE.2019.00072
https://doi.org/10.1007/978-3-642-39799-8_1

Safer Parallelization 137

25. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-
ized program equivalence. In: Proceedings of the PLDI 2009, pp. 327–337 (2009)

26. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

27. Li, Z., Jannesari, A., Wolf, F.: Discovery of potential parallelism in sequential
programs. In: 42nd International Conference on Parallel Processing, ICPP, pp.
1004–1013. IEEE Computer Society (2013)

28. Li, Z., Jannesari, A., Wolf, F.: An efficient data-dependence profiler for sequential
and parallel programs. In: Proceedings of the 29th IEEE International Parallel
and Distributed Processing Symposium (IPDPS), Hyderabad, India, pp. 484–493.
IEEE Computer Society, May 2015. https://doi.org/10.1109/IPDPS.2015.41

29. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Practical verification of
peephole optimizations with alive. Commun. ACM 61(2), 84–91 (2018)

30. Massingill, B.L., Mattson, T.G., Sanders, B.A.: Parallel programming with a pat-
tern language. Int. J. Softw. Tools Technol. Transf. 3(2), 217–234 (2001). https://
doi.org/10.1007/s100090100045

31. Mattson, T.G., Sanders, B., Massingill, B.: Patterns for Parallel Programming.
Pearson Education, London (2004)

32. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

33. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

34. Norouzi, M., Wolf, F., Jannesari, A.: Automatic construct selection and vari-
able classification in OpenMP. In: Proceedings of the International Conference on
Supercomputing (ICS), Phoenix, AZ, USA, pp. 330–341. ACM, Jun 2019. https://
doi.org/10.1145/3330345.3330375

35. Steinhöfel, D.: Abstract Execution: automatically proving infinitely many pro-
grams. Ph.D. thesis, Technical University of Darmstadt, Department of Computer
Science, Darmstadt, Germany (2020). https://doi.org/10.25534/tuprints-00008540

36. Steinhöfel, D., Hähnle, R.: Modular, correct compilation with automatic soundness
proofs. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 424–
447. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03418-4_25

37. Steinhöfel, D., Hähnle, R.: Abstract Execution. In: Proceedings of the Third World
Congress on Formal Methods - The Next 30 Years (FM), pp. 319–336 (2019).
https://doi.org/10.1007/978-3-030-30942-8_20

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1109/IPDPS.2015.41
https://doi.org/10.1007/s100090100045
https://doi.org/10.1007/s100090100045
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1145/3330345.3330375
https://doi.org/10.1145/3330345.3330375
https://doi.org/10.25534/tuprints-00008540
https://doi.org/10.1007/978-3-030-03418-4_25
https://doi.org/10.1007/978-3-030-30942-8_20

Refactoring and Active Object Languages

Volker Stolz1(B), Violet Ka I Pun1(B), and Rohit Gheyi2

1 Western Norway University of Applied Sciences, Bergen, Norway
{vsto,vpu}@hvl.no

2 Federal University of Campina Grande, Campina Grande, Brazil
rohit@dsc.ufcg.edu.br

Abstract. Refactorings are important for object-oriented (OO) pro-
grams. Actor- and active object programs place an emphasis on concur-
rency. In this article, we show how well-known OO refactorings such as
Hide Delegate, Move Method, and Extract Class interact with a concur-
rency model that distinguishes between local and remote objects. Refac-
torings that are straightforward in Java suddenly force the developers
to reflect on the underlying assumptions of their actor system. We show
that this reflection is primarily necessary for refactorings that add or
remove method calls, as well as constructor invocations. We present a
general notion of correctness of refactorings in a concurrent setting, and
indicate which refactorings are correct under this notion. Finally, we dis-
cuss how development tools can assist the developer with refactorings in
languages with rich semantics.

1 Introduction

During its life cycle, software may change due to the introduction of new features
and enhancements that improve its internal structure, or make its processing
more efficient. Systems continue to evolve over time and become more complex
as they grow. Developers can take some actions to avoid that, such as code refac-
toring, a kind of perfective maintenance [1]. The term Refactoring was originally
coined by Opdyke [2], and popularized in practice by Fowler [3], as the process
of changing the internal structure of a program to improve its internal quality
while preserving its external behavior.

Over the years refactoring has become a central part of the software develop-
ment processes, such as eXtreme Programming [4]. Refactorings can be man-
ually applied, which may be time consuming and error prone, or automati-
cally by using implementations of refactoring engines available in IDEs, such as
Eclipse, NetBeans, IntelliJ, and JastAdd Refactoring Tools (JRRT) [5]. Refac-
toring engines may contain a number of refactoring implementations, such as
Rename Class, Pull Up Method, and Encapsulate Field. For correctly applying
a refactoring, and thus ensuring behavior preservation, the refactoring imple-
mentations usually need to consider preconditions, such as checking for naming

Partially supported by DIKU/CAPES project “Modern Refactoring” and CNPq.

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 138–158, 2020.
https://doi.org/10.1007/978-3-030-61470-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_9

Refactoring and Active Object Languages 139

conflicts. However, defining and implementing refactorings is a nontrivial task
since it is difficult to define all preconditions to guarantee that the transforma-
tion preserves the program behavior. In fact, proving refactoring correctness for
entire languages, such as Java and C, constitutes a challenge [5]. For instance,
previous approaches found bugs in refactoring implementations for sequential
Java [6,7].

Fowler advocates that the correctness of refactorings is specified through the
unit tests of the software being refactored. This elegantly avoids the discussion
of the correctness in all situations of a particular refactoring, which is not given
especially in object-oriented programs anyway: even though the required precon-
ditions can be captured statically (see, e.g., [5]), checking them at refactoring-
time may yield “don’t-know” due to over-approximation and hence limit their
applicability [8], or a required notion of equivalence between original and refac-
tored program is impossible to formulate in general due to the different structure
of states in both runs [9].

Active object languages [10] for concurrent programs go beyond traditional
object oriented method calls. Developers have to actively choose between syn-
chronous and asynchronous method calls. In asynchronous calls, an explicit addi-
tional instruction is required to synchronize again with the result. This makes it
very obvious to the developers that they are in charge of proper synchronization,
and semantic consistency (i.e., to make sure that concurrency within the same
object is handled correctly).

The ABS language [11] goes even beyond that distinction: in its component
model, objects within the same component, called concurrent object group (cog),
share the same processor and hence cannot run concurrently. Within the same
component, primarily asynchronous calls are affected: the caller has to relinquish
control to give the component the opportunity to eventually process a pending
asynchronous call. In the case of synchronous calls between components, the
calling object does not release control, which hence introduces the potential for
deadlocks if the callee directly or indirectly requires a callback into the caller.
As the distinction between remote or local is purely semantical, and not visible
in the source code, any method call requires careful consideration. This has
been addressed, e.g., in [12] through an inference and annotation mechanism,
which helps the developer in tracking which objects may be local or remote,
and through whole-program static analyses in [13,14]. In general however, as
other static analyses for object-oriented programs, this inference has to default
to “don’t know” in case the location of an object cannot statically be determined.

This has direct effects on well-known refactorings in object-oriented pro-
grams. Fowler’s refactorings [3] often either remove or introduce additional
method calls. His refactorings are exclusively on sequential code and in gen-
eral preserve the behaviour of the application. After our discussion above on the
behaviour of actor languages, we can now easily see that these refactorings can
have adverse effects when ported to active object languages.

In this article, we are going to investigate those effects in detail for some of
Fowler’s refactorings. We derive a notion of correctness of a refactoring and show

140 V. Stolz et al.

Fig. 1. Before/after Hide Delegate

Fig. 2. Sequence diagrams for both scenarios (before/after Hide Delegate)

that the refactorings are not correct in general, and identify which refactorings
are correct under this notion.

A Motivating Example

Consider Fowler’s Hide Delegate refactoring and its inverse Remove Middle Man.
Figure 1 illustrates a common application of a Java refactoring: assuming that
a Client has a reference to a Person, in a good OO design the developer may
change person.getDept().getManager() (above broken up into two statements)
into a call to a new proxy person.getManager(). While both solutions are consid-
ered equivalent in, e.g., Java, the refactoring may introduce a deadlock in the
actor setting!

The sequence diagram in Fig. 2 illustrates the difference between the two
scenarios: in the before-scenario, the client is first communicating with Person,
then with Dept. This will never be a problem regardless of how many components
are actually involved. In the after -scenario however, due to the delegation from
the client to Person, the behaviour now depends on the component that provides

Table 1. Allocation of objects to com-
ponents A,B,C

Effect
:Client :Person :Dept Before After

A A A ok ok
A A B ok ok
A B A ok deadlock!
A B B ok ok
A B C ok ok

Dept. If Dept is either in a separate
component or shares a component with
Person, the programs are equivalent. But
in one particular case we have just intro-
duced a new deadlock into the program: if
the caller and Dept are in the same com-
ponent, yet Person is not, then the call-
back from Person to Dept will deadlock,

Refactoring and Active Object Languages 141

since the component hosting the caller and Dept cannot process any request
before the synchronous call to Person returns.

Table 1 shows the different possible allocations of objects to components. This
information is derived from the ABS operational semantics for (synchronous)
method calls. In the remainder of this paper, we investigate this and similar
effects in more detail.

The remainder of the paper is structured as follows: Sect. 2 gives a brief
introduction to the ABS language and its component model. Afterwards, we
discuss in detail the implications of some prominent Fowler’s refactorings on the
behaviour of synchronous and asynchronous calls, and outline proofs to show
correctness or derive correctness conditions for particular scenarios in Sect. 3.
We then survey Fowler’s refactorings as to whether they suggest changes that
would result in equivalent Java code, but may change the behaviour in ABS.
Finally, in Sect. 4 we put our work into the context of existing research, and
conclude with recommendations for refactoring tool developers.

2 The ABS Language

In this section, we will briefly introduce the ABS language, with active objects
and Java-like syntax. We will first discuss the concurrency model of the language,
then present the runtime syntax and finally we show the part of the semantics
that we used to illustrate the effect of selected refactorings. The complete details
of the language can be found in [11].

The concurrency model. ABS is a modeling language for designing, veri-
fying, and executing concurrent software. The language has a Java-like syn-
tax, features with actor-based concurrency model [15], which uses cooperative
scheduling of method activations to explicitly control the internal interleav-
ing of activities inside a concurrent object group (cog). A cog can be con-
ceptually considered as a processor, which can contain a set of objects. An
object may have a set of processes, triggered by method invocations, to be
executed. Inside a cog, at most one process is active while the others are
suspended in the process pool of the corresponding objects. Process schedul-
ing is non-deterministic, but is explicitly controlled by the processor release
points in the language. Such a cooperative scheduling ensures data-race free-
dom inside a cog. In addition, objects are hidden behind interfaces. As any fields

class C(MutexI m) {...
{ ...
await m!enter();
/∗ critical section ∗/
await m!leave();
...} }

class Mutex implements MutexI {
Bool avail = True;
Unit enter() {await avail; avail = False;}
Unit leave() {avail = True;} }

are private, any non-local read or write to
fields must be performed explicitly through
method invocations. Different cogs can only
communicate through asynchronous method
calls.

To provide an intuition, we discuss about
the concurrency model with the simple ABS
code to the right, which shows the implemen-
tation of a class C that acquires exclusive access to a critical section by using a
block-structured binary lock that is modelled by the class Mutex implementing

142 V. Stolz et al.

Fig. 3. Runtime syntax of ABS [11]; o, f, c are identifiers of object, future, and cog

the straightforward interface MutexI (not shown). The execution of statement
await m!enter() invokes enter asynchronously on object m by putting the method
in the process pool of m. The await statement suspends the calling method
and releases the control of the caller object, which can then proceed with the
execution of other methods in the process pool. If the statement await m!enter()
is replaced by a synchronous call m.enter(), the caller object will be blocked (does
not release control) until the method returns. The enter method on the callee
object m will return when the boolean variable avail becomes true. Similar to
awaiting an asynchronous method, awaiting a boolean condition will put the
currently executing method in the process pool and suspend until the condition
becomes true.

Runtime syntax. The runtime syntax is given in Fig. 3. A configuration cn can
be empty ε or consists of futures, objects, invocation messages and concurrent
object groups. The associative and commutative union operator on configura-
tions is denoted by whitespace. A future fut(f , v) has an identifier f and a value v
(which is ⊥ when the associated method call has not returned). An object is a
term ob(o, a, p, q), where o is the object’s identifier, a a substitution represent-
ing the object’s fields, p an active process, and q a pool of suspended processes.
A substitution is a mapping from variable names to values. A process p is idle
or consists of a substitution l of local variable bindings and a list s of state-
ments, denoted as {l|s}. Most of the statements are standard. The statement
suspend unconditionally releases the processor, suspending the active process.
The statement await g releases the processor depending on the guard g, which
is either Boolean conditions b or return tests x?, which evaluates to true if x
is a future variable and its value can be retrieved; otherwise false. The state-
ment cont(f) controls scheduling when local synchronous calls complete their
execution, returning control to the caller.

Right-hand side expressions rhs for assignments include object creation
within the same cog, denoted as new C(e), and in a fresh cog, denoted as
new cog C(e), asynchronous and synchronous method calls, and (pure) expres-
sions e.1 An invocation message invoc(o, f ,m, v) consists of the callee o, the
1 We refer to the semantics in [11], although the ABS surface language has evolved

and among other small changes now uses new local and new instead of new/new
cog.

Refactoring and Active Object Languages 143

Fig. 4. Part of Semantics of Core ABS [11]

future f to which the call returns its result, the method name m, and the actual
parameter values v of the call. Values are object and future identifiers, Boolean
values, and ground terms from the functional subset of the language. For sim-
plicity, classes are not represented explicitly in the semantics, as they may be
seen as static tables.

Semantics. Here, we discuss some of the transition rules, given in Fig. 4, of the
ABS semantics that we used in evaluation of the refactored ABS programs. Full
semantics can be found in [11]. Assignment of an object’s fields and a process’
local variables is standard and therefore is not shown here. The await statements
are handled as follows: if the guard g evaluates to true in the object’s current
state, Await-True consumes the statement; otherwise, Await-False appends a
suspend statement to the process. Rule Suspend puts the active process to the
process pool, leaving the processor idle, and if a cog’s active object is idle, rule
Release-Cog releases the cog from the object. When a cog is idle, rule Activate

selects a process p from the process pool of an object residing in the cog for
execution. Note that the function select(q, a, cn) selects a ready process from q;
if q is empty or no process is ready, the function returns an idle process [16]. A
process is ready if it will not directly be resuspended or block the processor.

144 V. Stolz et al.

Rule Async-Call controls the asynchronous communications between objects
by sending an invocation message to the callee o′ with a new, unique future f
(guaranteed by fresh(f)), the method name m and actual parameters v. The
value of f is initialised to ⊥. Rule Bind-Mtd puts the process corresponding to
a method invocation in the process pool of the callee. A reserved variable destiny
local in the method is used to store the identity of the future associated with the
call. Rule Return puts the return value of the call into the associated future.
Rule Read-Fut retrieves the value from the future f if v �= ⊥; otherwise, the
reduction on this object is blocked.

The remaining rules in Fig. 4 handle synchronous communication among
objects. Rules Cog-Sync-Call and Cog-Sync-Return-Sched are responsible
for synchronous calls between two objects residing in the same cog, in which
case the possession of the cog is directly transferred between the caller and
callee by appending a special cont statement at the end of the invoked method.
Synchronous self-calls are implemented similarly by rules Self-Sync-Call and
Self-Sync-Return-Sched. Rule Rem-Sync-Call handles synchronous calls to
an object in a different cog, which is in fact syntactic sugar for an asynchronous
call immediately followed by a blocking get operation.

3 Refactorings and Their Effects on Concurrency

In this section, we discuss different cases of refactorings that can affect program
behaviour in a concurrent setting. First, we define a notion of equivalence of con-
figurations that is suitable for our purpose, as we deal with concurrent systems,
and some refactorings may affect the allocation of objects to components (cogs).

Definition 1 (Equivalence of configurations). Two configurations cn1 and
cn2 are equivalent, denoted as cn1 ≡R cn2, if and only if for any object o such
that ob(o, a1 , {l1 |s1}, q1) ∈ cn1 and ob(o, a2 , {l2 |s2}, q2) ∈ cn2,

1. ∀x ∈ dom(a1) ∩ dom(a2) · (x �= this ∧ x �= cog) ⇒ a1(x) = a2(x); and
2. ∀x ∈ dom(l1) ∩ dom(l2) · l1(x) = l2(x)

Note that this definition specifically mandates that all attributes, local variables
and activation state coincide, and the assignment of objects to cogs can be
different in the refactored program.

Definition 2 (Notion of refactoring correctness). Given two equivalent
configurations cno and cnr where cno = cn1 ob(o, a1 , {l1 |s1 ; s ′

1}, q1), cnr =
cn2 ob(o, a2 , {l2 |s2 ; s ′

2}, q2) and a refactoring Rf such that s2 = Rf (s1).
We say Rf is correct if and only if for all cnr →∗ cn ′

r where cn ′
r =

cn ′
2 ob(o, a ′

2 , {l ′2 |s ′
2}, q ′

2), there exists cn ′
o →∗ cn ′

o such that cn ′
o ≡R cn ′

r and
cn ′

o = cn ′
1 ob(o, a ′

1 , {l ′1 |s ′
1}, q ′

1).

We will see that usually we will not achieve unconditional correctness for all
refactorings. Most crucially, changes to method calls can result in addition or
removal of deadlocks which hence do not result in equivalent configurations. We
will capture these side-conditions accordingly.

Refactoring and Active Object Languages 145

3.1 Hide Delegate

In the following, we revisit the source code before and after applying the Hide
Delegate refactoring from Fig. 1, in which we elide the obvious, necessary ABS
interface declarations PersonI and DeptI. We then discuss the different possible
executions (modulo interleaving in the environment) of the original program in
Fig. 1(a), and show that while all non-deterministic executions of the refactored
program in Fig. 1(b) are contained in the original, there exists a situation that
will deadlock after refactoring for a given object-to-component mapping.

Let us first consider the two synchronous method calls in Fig. 1(a). For
illustration, we assume object p lives in a cog different from the calling object o,
while object d lives in the same cog. The first call on Line 5 is handled by one of
the three rules for synchronous calls, determined by the component-relationship
between the calling object and p. If both are in the same component (or even
the same object), we first use Cog-Sync-Call (or Self-Sync-Call). In the case
where they are in different cogs, we thus proceed with Rem-Sync-Call.

The execution is illustrated in Fig. 5. The rule creates an intermediate asyn-
chronous call immediately followed by a get, which begins execution through a
Async-Call and the Assignment for the intermediate future. Now the current
object cannot proceed, and must wait for the environment to Bind-Mtd and
Activate the called object, which then immediately Returns, giving the sched-
uler the opportunity to complete the Read-Fut and Assign to variable d in the
caller o. Note that we elided any possible interleavings with cogs in the environ-
ment; as the current cog is never released, its state cannot change in between.
Next, we continue with the second synchronous method call on Line 6. Since
object d resides in the same cog as the caller o, we continue with Cog-Sync-

Call, which introduces an intermediate future and immediately passes control
to d, which after the trivial Return statement in turn Cog-Sync-Return-Scheds
and then resumes execution in the caller o with Read-Fut, Assign.

Recall that our correctness criterion is that a refactored execution should
exist within the original executions. We now study the corresponding scenario
after the refactoring, and illustrate in detail how the refactoring introduces
a deadlock. Figure 6 presents the transition steps of the refactored code in
Fig. 1(b). Object o executes the single refactored synchronous call on Line 16
to getManager into the cog hosting object p using Rem-Sync-Call, with the
corresponding follow-up through Async-Call, Assign, Bind-Mtd, Activate as
before. Now, in object p, we see the difference in execution: the proxy getManager
now has to make its own Rem-Sync-Call since we assume that d lives in the
same cog as o but different from o. However, after the necessary intermediate
Async-Call, Assign, Bind-Mtd, it is now not possible to execute Activate to
continue execution: since object o is blocked on the synchronous call to object p,
it does not release control of the cog it is residing, and consequently object d
will never be scheduled. Thus, the three objects in the two cogs are now locked
forever in a deadly embrace, as shown in the last configuration in Fig. 6.

Analysing all possible execution scenarios in detail will give us Table 1.
We can see that the dynamic behaviour of the source code has to be carefully

146 V. Stolz et al.

Fig. 5. Execution of the code before Hide Delegate (Fig. 1(a)). We abbreviate getDept
to gD, and getManager to gM. We let o be the object executing Lines 5–6, op executing
getDept and od executing getManager, and assume a(cog)=ad(cog), a(cog) �=ap(cog).

analysed. Many refactorings are bi-directional; here the application from right
to left is Fowler’s Remove Middle Man refactoring. This example here also illus-
trates how this refactoring could accidentally remove an existing deadlock from
a program, and hence cannot immediately fulfil our notion of correctness either.

Refactoring and Active Object Languages 147

Fig. 6. Execution of the code after Hide Delegate (Fig. 1(b)). We abbreviate getMan-
ager to gM. We let o be the object executing Line 16, op executing Line 24 and od
executing getManager, and assume a(cog)=ad(cog), a(cog) �=ap(cog).

3.2 Async-to-Sync Refactoring

In some situations it may be useful to reduce the amount of concurrency in a
program. Figure 7(a) shows a common idiom in ABS, where we release control
while waiting for the asynchronous call to return. This permits this object to
process other calls in the meantime, though of course this may affect the state
of the object. An obvious attempt to reduce such ensuing (mental) complexity
would be to use a synchronous call instead. However, whether this is actually
safe or not, depends very much on the body of m. Again, a callback into the
current component across component boundaries will result in a deadlock. This
is compounded by the fact the O o’ is only typed by an interface, and additional
effort will be required to statically identify the underlying object and then its cog.

We first show the general correctness of this refactoring if both caller and
callee are in the same cog, and then discuss a similar scenario as in Hide Delegate,
which leads to a deadlock in the refactored version that does not exist in the
original. However, we will see that the latter is not unconditional as in Hide
Delegate, but rather (also) depends on the body of m.

We consider the two code fragments in Fig. 7, where Fig. 7(b) is the refactored
version of Fig. 7(a), and let o be the calling object and o′ be the called object.
Let us investigate whether this refactoring is correct wrt. Definition 2, i.e., given

148 V. Stolz et al.

Fig. 7. Asynchronous to synchronous

Fig. 8. Execution of the synchronous call after refactoring (Fig. 7(b)). We let o be the
object executing Line 13, o′ executing m, and assume o �= o′, a(cog)=a′(cog)

equivalent configurations cn1 and cn2 before executing Lines 4–6 respectively
Line 13, there exists at least one execution in the original program such that the
configurations cn ′

1 and cn ′
2 after executing Line 6 respectively Line 13 are also

equivalent.
For the sake of brevity, as there are many different cases to consider, we

look at only one particular case in detail and derive the condition under which
the refactoring results in an equivalent program. We essentially distinguish the
initial set of different cases by whether we have to invoke Self-Sync-Call (if
o = o′), Cog-Sync-Call (if o �= o′ but live in the same cog) or Rem-Sync-Call

(if o and o′ live in different cogs). We only present Cog-Sync-Call in detail, and
provide an additional observation on the Rem-Sync-Call case afterwards.

We first consider the refactored program in Fig. 7(b) and assume that o �=o′

but live in the same cog. Figure 8 shows the detailed execution of this scenario.
We start the execution with a Cog-Sync-Call, which introduces an intermediate
future and yields control to o′. At this point, although there can be interleavings
with the environment, wlog. we ignore those, as they cannot interfere with the
current cog, except by posting additional tasks into queues. Furthermore, any
such interleaving can be simulated in the original program as well. The current
cog will proceed evaluating method m through some rule applications r0, . . . , rm

Refactoring and Active Object Languages 149

Fig. 9. Execution of the asynchronous call before refactoring (Fig. 7(a)). We let o be
the object executing Lines 4–6, o′ executing m, and assume o �= o′, a(cog)=a′(cog)

and may eventually Return. Note that the refactoring will preserve any potential
deadlocks resulting from method m in the original program. We continue the case
to completion in the non-deadlocked scenario: the final configuration is easily
derived (only) through rules Cog-Sync-Return-Sched, Read-Fut, Assign. Note
that in the calling object, the computed value vm is uniquely determined by the
sequence r0, . . . , rm above, as there are no changes in other objects.

We now turn our attention over to the original program in Fig. 7(a) and show
in Fig. 9 that we can derive an equivalent state which only differs in the presence
of an explicit, now unused future. Executing Lines 4–6 in the original program
can replicate the behaviour of the refactored program in the following way:
after the Async-Call and storing the associated future via Assign, execution
Suspends until completion of the call. Wlog., we can Release-Cog control and
immediately Bind-Mtd and Activate the pending call in o. At this point, we are
now entering the execution of m which can proceed exactly with rule sequence

150 V. Stolz et al.

r0, . . . , rm as above, which eventually terminates with a Return. The cog hence
becomes available through Release-Cog. As the scheduler is not guaranteed to
provide any particular behaviour, there exists the behaviour where we Activate

the calling object, which now completes with Await-True, Read-Fut, Assign.
Although this is of course not a detailed proof-case, it is easy to see that

the resulting configurations are equivalent: the computation of the value of x
coincide, and any other state changes can only come from the r-sequence which
is identical in both cases. Nonetheless, we would like to motivate the underlying
reason for the deadlock in the Hide Delegate refactoring, which is only indirectly
visible here: assume a program where o and o′ are in distinct cogs (which means
proceeding with Rem-Sync-Call in the refactored case). Assume further that
within r0, . . . , rm there exists a synchronous callback back into the cog of o.
In the original program, since o suspends and releases the cog it resides in, by
Await-False, this callback can be processed. This execution in the refactored
program will however deadlock as the object o blocks on the get statement. To
summarize, there is again an underlying dynamic condition on the remainder of
the code that needs to be checked to ensure correctness.

Since the scheduling is non-deterministic, our conversion to a synchronous call
removes behaviour from the application. There is now only a single scheduling
which directly continues into the body of the method.

As for the directionality of this refactoring, while a right-to-left application
seemingly enables some degree of concurrency, it is only concurrency on the
objects of class C, which as explained initially opens up the caller for possible
state changes that may or may not violate assumed invariants by the developer.

3.3 Inline Method

The Inline Method refactoring is straightforward: within a class, we replace a
method call with its body. In the ABS setting, we have two points to consider:
as Fowler already points out, this can only be done when the code is not poly-
morphic. This applies doubly so in ABS, where any variables are only typed by
interfaces in the first place. However, it also becomes quickly clear that we only
need to consider calls to methods within the same class anyway: a method gen-
erally makes use of attributes, and these are private in ABS; so a method from
another class cannot easily be inlined but needs to be moved into the current
class first (see Move Method in Sect. 3.5 below). Consequently, here we only
consider calls for inlining the target this.

In the case of a synchronous call, inlining is straightforward and does not
affect the behaviour. In fact, from looking at rule Self-Call, it is immediately
clear that inlining is the semantics of a synchronous self-call.

3.4 Move Field

The Move Field refactoring is not as easily applicable in ABS as it is in Java.
Declaring the field in a new class is straightforward, however, since all fields are
private, as a follow-up we either require the introduction of a getter, relocation

Refactoring and Active Object Languages 151

Fig. 10. Move Field

of affected methods, or both. We decompose this refactoring into an application
of Self Encapsulate Field, which first introduces a (synchronous) getter in the
current class.

As per the ABS semantics, this introduction results in an equivalent config-
uration. After that, we can proceed with moving the attribute, introducing a
getter, and turning the previous getter into proxy to the getter in the new class.
This requires identifying how to reference the target object from the source.

Here, again the ABS language specification makes this easy: as the field was
private, the code locations that set this value are immediately identified and
we assume for simplicity that we only have to deal with a single setter. After
identifying a target, setter and getter now become proxies.

As we have seen before, we now have new (synchronous) calls to objects
that may or may not be in the same component as the current object. If the
target object is referenced through an attribute in the current class, this is
always unproblematic. If the target is derived through a chain of calls, e.g.,
getTgt().getX() (assuming we move attribute x), we may have accidentally intro-
duced a deadlock: if getTgt() either directly or indirectly calls back (either syn-
chronously or asynchronously) into our object, we will produce a deadlock that
did not exist in the original program. Note that if the original program already
contained expression getTgt(), it already contains the same deadlock, albeit in
a different method. The general situation is illustrated in Fig. 10.

3.5 Move Method

This refactoring moves a method into a different class, leaving behind a proxy if
necessary. Fowler proposes as first step an analysis whether any other features
of the class should also be moved. Of the several strategies to handle references
to original features, we here focus on passing the source object as a parameter.
We illustrate a relatively simple case, and will focus our attention on constructor
invocations this time, not just method calls.

Figure 11 shows the initial situation and the refactoring which also leaves
behind the proxy. Assuming that the target has been suitably identified as object

152 V. Stolz et al.

Fig. 11. Move Method

O o, e.g., if o is a parameter of moveMe, without going through the detailed
evaluation by semantic rules, we immediately spot two problematic issues: any
reference back to the source object in the refactored code through parameter
that has the potential to be a cross-component callback with the associated risk
of deadlock, e.g., through the setter, as discussed earlier.

The second issue, which is the novel observation that we can make here is
about constructor invocations: in the original in Fig. 11(a), the new object of
class S is created in the same cog as the calling object as we use new, not
new cog (the former creates an object in the same cog while the latter in a
new cog). In the refactored code, however, it is now created in a potentially
different cog. Note that this is always uncritical when the code uses new cog.
A similar effect has been observed in Java, where moving a method annotated
with @Synchronized can change its synchronization context [17].

As one of the last steps in this refactoring, Fowler suggests to consider remov-
ing the remaining proxy and updating call-sites to refer to the new location. This
again would have either no effect on deadlocks, or even remove an existing dead-
lock, as it removes an intermediate call into a potentially different component,
but does not otherwise change the sequence of interactions.

3.6 Extract Class

The Extract Class refactoring is a well-known refactoring simplifying complex-
ity in a class by dividing it into two. Attributes and methods are partitioned
between the original program and the new class. It is easy to see that this refac-
toring primarily relies on Move Field and Move Method, and hence inherits
their properties. Fowler [3] here explicitly suggests that this refactoring in par-
ticular “[improves] the liveness of a concurrent program because it allows you
to have separate locks on the two resulting classes” and points out the poten-
tial concurrency issues. In ABS, this issue is made explicit: the split-off class
needs to be instantiated through a constructor invocation, at which point the
developer has to decide allocating the new object either in a new component,
which may increase concurrency in the future through the introduction of fur-
ther asynchronous calls, or in the current component. However, as we have now
seen, calls across components can lead to deadlocks, if we end up calling back

Refactoring and Active Object Languages 153

into the current component. Hence the allocation within the same component is
always safe, whereas a new component can only be used when the split-off class
does not have any dependency back into the source class.

3.7 Discussion

We have seen in the above refactorings that the root cause of differences in
behaviour in the refactored program are method calls that now cross component
boundaries. This may happen either because an invocation is changed (call on a
different object, or new call), or because we have moved a constructor invocation
into a different class, and hence possibly into a different cog. There is no syn-
tactic criterion to judge changes safe. Even though moving a (local) constructor
invocation into a different class through, e.g., the Move Method refactoring may
be more visible, there is little difference between this and a moved call.

Our Async-to-Sync refactoring is an ABS-specific refactoring. From left to
right, it may reduce (mental) complexity, at the cost of understanding the safety
of the refactored code, first. Applied from right to left, it can be an easy starting
point to introduce additional concurrency in the long run. It does not necessarily
add concurrency, but enables it by making the code yield, e.g., before a long-
running transaction. Also here the effect of yielding needs some up-front analysis
and understanding whether any subsequent code after the call may be affected by
side-effects while being suspended here. As we have seen in the detailed examples
above, there are two main concerns for concurrency: changing method calls can
introduce or remove deadlocks, as can moving constructor invocations into a
different cog.

In Table 2, we survey a range of refactorings from Fowler [3] for their effect on
concurrency. The columns indicate whether a refactoring effects any particular
change that we now know to have implications on behaviour. The first six we
have studied above, the remainder we classify informally. “Yes/No” indicate
whether this change occurs as part of the refactoring, and hence whether careful
consideration of effects is required. “Safe” indicates that the change is present in
the refactoring, yet will always result in a call to the same object, or in the case
of Replace Method with Method Object can be kept safe with a local constructor
invocation.

While plenty of these refactorings have either no effect or are safe (as calls
will still be on the same object), almost any of the major refactorings is affected
in some way. Most of the refactoring are innocuous in the Java-world, yet can
have surprising effects in ABS, indicating that ABS developers could most likely
benefit from dedicated refactoring support.

Suggestions to Tool Developers. It is clear from our discussion that an IDE
or tooling for a language like ABS with its rich semantics should assist developers
better. Mere syntactical transformations checking structural properties, e.g., on
the level of interfaces and classes are of course still essential to guarantee syntac-
tically correct code, but cannot give strong guarantees as to dynamic behaviour.
We think that it is important that any further correctness properties also come

154 V. Stolz et al.

Table 2. Classification of common refactorings whether they affect concurrency

Refactoring Change
Target
of Call?

New
Method
Call?

Removed
Method
Call?

New/Moved
Constructor?

Inline Method No No Safe No

Move Method Yes No No Yes

Move Field Yes No No Safe

Hide Delegate Yes Yes Yes Yes

Remove Middle Man Yes Yes Yes Yes

Extract Class Yes Yes Yes Yes

Extract Method No Safe No No

Inline Temp No No No No

Replace Temp with Query No Safe No No

Introduce Explaining Variable No No No No

Split Temporary Variable No No No No

Replace Method. . . No Safe No Safe

Inline Class Yes No Yes Yes

(Self) Encapsulate Field No Safe No No

with a reasonable cost, but do not put undue burden on developers. For exam-
ple, we feel that any further analysis and checking should be automated, and
even though it might be costly in terms of computational power, should avoid
requiring any additional input from the developer, e.g., in the form of partial
proofs, though light-weight annotations may be acceptable.

We have only focused on program-independent correctness properties here,
that we have been able to discharge by showing that mostly identical sequences of
evaluation rules can be applied, possibly interleaved with small distinct segments
using other semantic rules, that nonetheless do not affect the state that we cap-
ture in our notion of correctness. As one would expect for a language with a focus
on concurrency, many of the refactorings can introduce potential deadlocks, that
fortunately can in principle be tackled through inference of object-to-component
allocation. Such inference exists either stand-alone [12], or as part of static dead-
lock checkers like DF4ABS and DECO [13,14], and could ideally be re-used to only
partially analyse changed code. Currently, the developers’ best hope is applying
those tools at intermediate stages, though due to their high complexity this may
hardly be feasible frequently.

4 Related Work and Conclusion

Related Work. Our work focusses on a dynamic language-feature (object-to-
component mapping) that does not exist as such in plain object-oriented lan-
guages. The closest related work we are aware of is a precise analysis of the effect

Refactoring and Active Object Languages 155

of refactorings on concurrent Java code [17], where most notably moving mem-
bers between classes will change their synchronization context. Agha and Palm-
skog [18] infer annotations from execution traces that can be used to transform
programs from threads to actors, eliding explicit concurrency primitives. How
refactorings affect object lifetime in Rust programs is analysed by Ringdal [19].

Garrido and Meseguer reason about the correctness of refactorings for Java by
capturing an executable Java formal semantics in the Maude rewriting logic [20].
As they are concerned with structural refactorings and focus on Pull Up/Push
Down and the Rename refactoring, they avoid some of the complexities as to
comparing states where refactorings change the bound variables, or produce
intermediate states. Schäfer et al. [21] aim for control and data flow preservation,
and focus on the Extract Method refactoring and decompose it into smaller so-
called micro-refactorings, for which it is easier to derive or prove properties.

Steinhöfel and Hähnle [22,23] propose Abstract Execution, which generalises
Symbolic Execution to partially unspecified programs. They have formalised sev-
eral of Fowler’s refactorings in the KeY framework to prove preservation of a
form of behavioural equivalence of Java programs. Careful derivation of precon-
ditions for refactorings is required to prove suitable equivalence of refactored
code.

Gheyi et al. [9] use a user-defined equivalence notion between states con-
forming to different meta-models, e.g., after a refactoring changed the structure
of a class. They require an explicit alphabet and a mapping function between
added/removed attributes in Alloy models and then check mutual refinement.
We conjecture that this could augment our approach, and both alphabet and
mapping could be derived from a refactoring and the code that it is applied on.

Eilertsen et al. [8] use assertions to provide runtime warnings in the refac-
tored code in cases where a combination of Extract and Move Method results
in unexpected changes to the object graph. We could easily introduce a similar
check on component assignment to provide some protection in those cases where
a static safety analysis would have to give up due to imprecision.

Soares et al. [7] propose a technique to automatically identify behavioral
changes in a number of refactoring implementations of Eclipse, NetBeans, and
JRRT. It uses an automatic program generator (called JDolly [24]) and a
tool to automatically detect behavioral changes (called SafeRefactor [25])
to identify a number of bugs in these tools for sequential Java programs. We
believe that we may find more behavioral changes when considering concurrent
programs, e.g. by following an approach by Pradel et al. [26]. They combine
(incomplete) test case generation with (complete) exploration of interleavings
through JPF to discover output-diverging substitutes (replacing super-classes
with sub-classes). Corresponding necessary generation of test cases for actor
systems has been studied e.g. by Li et al. [27].

Rachatasumrit and Kim [28] conduct an empirical study and found that a
number of test suites do not test the entities impacted by a refactoring. Test
suites do not have a good change coverage. For instance, only 22% of refactored
methods and fields are tested by existing regression tests. Mongiovi et al. [29]

156 V. Stolz et al.

implement a change impact analyzer tool called Safira, and included it in
SafeRefactor. It automatically generates test cases for the entities impacted
by the transformation. The tool could find some behavioral changes that could
not be found without Safira. Alves et al. [30] concluded that combining change
impact analysis with branch coverage could be highly effective in detecting faults
introduced by refactoring edits. A change impact analyzer may be also use-
ful when refactoring concurrent programs. As future work, we intend to evolve
Safira to consider transformations applied to concurrent programs.

Conclusion. In this article, we have given an overview of how well-known refac-
torings from object-oriented programming languages like Java have non-obvious
behaviour in actor languages. Here, we have focused on some selected refactor-
ings from Fowler’s book [3]. On the example of the ABS active object language,
we illustrate the concurrency effects that have to be taken into account.

As the ABS language has a formal semantics [11], we can use it to derive
proofs for a suitable notion equivalence of the refactored program. Here, we spec-
ify correctness as the refactored behaviour being contained within the original
behaviour, in the form of a limited comparison of objects and their attributes/lo-
cal variables. In the absence of a formal correctness specification of the program
being refactored, we find that this gives reasonable expectations as to the effect of
the refactoring. Furthermore, from our formal derivations we obtain side condi-
tions that can be checked effectively with existing tools, e.g., related to deadlocks,
and can be used to produce counter examples.

Future Work. We have not surveyed refactoring support for other languages
such as the Akka library for Scala yet. As a general strategy for identifying high-
value targets for closer investigation, it would be useful to first categorize existing
static analyses and runtime checks that codify the correctness (usually program-
independent properties such as “no crash”, “no deadlock”), and then check –as
we have done here– to what degree refactorings can affect this. The biggest
rewards could be achieved in cases where an expensive analysis or runtime check
could be replaced with a modular analysis reasoning only about the performed
change in the context of analysis information from the original program.

ABS currently has no refactoring support at all and is in the process of
moving towards an Xtext-based compiler infrastructure. This enables deriving a
Language Server2 which should allow us to prototype some of the refactorings
with a convenient interface to the outside. This will give us the opportunity to
try and integrate some of the inferences as pre-condition checks. A possible fea-
sible approach could be to first transfer the results from the Abstract Execution
framework to an active-object language, and then extending it with concurrency.

Another interesting venue of research would be looking into the built-in sup-
port for specifying software product lines in ABS through so-called Deltas, which
have also already been studied as a subject of refactorings [31]. Deltas specify
among other things replacement of methods, but are primarily concerned with
evolution, and not refactoring. They could be a convenient vehicle to express

2 https://microsoft.github.io/language-server-protocol/.

https://microsoft.github.io/language-server-protocol/

Refactoring and Active Object Languages 157

and implement refactorings in: an inference and check of the correctness condi-
tions could also be applied to the change specified via a Delta, and hence not
only benefit refactorings, but another branch of the ABS language altogether.
Developers could then receive warnings if the behaviour of one product diverges
from another one, although of course that could be intentional, and is most likely
more useful with a proper specification of the program.

References

1. Swanson, E.B.: The dimensions of maintenance. In: Proceedings of the Interna-
tional Conference on Software Engineering, ICSE. IEEE (1976)

2. Opdyke, W.: Refactoring object-oriented frameworks. Ph.D. thesis, University of
Illinois at Urbana-Champaign (1992)

3. Fowler, M.: Refactoring - Improving the Design of Existing Code. Addison Wesley
Object Technology Series. Addison-Wesley, Boston (1999)

4. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Longman Publishing Company, Inc. (2000)

5. Schäfer, M., de Moor, O.: Specifying and implementing refactorings. In: Object-
Oriented Programming, Systems, Languages, and Applications (2010)

6. Daniel, B., Dig, D., Garcia, K., Marinov, D.: Automated testing of refactoring
engines. In: Proceedings of the Foundations of Software Engineering. ACM (2007)

7. Soares, G., Gheyi, R., Massoni, T.: Automated behavioral testing of refactoring
engines. IEEE Trans. Softw. Eng. 39(2), 147–162 (2013)

8. Eilertsen, A.M., Bagge, A.H., Stolz, V.: Safer refactorings. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 517–531. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 36

9. Gheyi, R., Massoni, T., Borba, P.: An abstract equivalence notion for object mod-
els. Electron. Notes Theor. Comput. Sci. 130, 3–21 (2005)

10. Boer, F.D., et al.: A survey of active object languages. ACM Comput. Surv. 50(5),
76:1–76:39 (2017)

11. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

12. Welsch, Y., Schäfer, J., Poetzsch-Heffter, A.: Location types for safe programming
with near and far references. In: Clarke, D., Noble, J., Wrigstad, T. (eds.) Aliasing
in Object-Oriented Programming. Types, Analysis and Verification. LNCS, vol.
7850, pp. 471–500. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36946-9 16

13. Giachino, E., Laneve, C., Lienhardt, M.: A framework for deadlock detection in
core ABS. Softw. Syst. Model. 15(4), 1013–1048 (2016)

14. Flores-Montoya, A.E., Albert, E., Genaim, S.: May-happen-in-parallel based dead-
lock analysis for concurrent objects. In: Beyer, D., Boreale, M. (eds.) FMOODS/-
FORTE -2013. LNCS, vol. 7892, pp. 273–288. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38592-6 19

15. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for arti-
ficial intelligence. In: Proceedings of the International Joint Conference on Artificial
Intelligence. Morgan Kaufmann Publishers Inc. (1973)

https://doi.org/10.1007/978-3-319-47166-2_36
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-642-36946-9_16
https://doi.org/10.1007/978-3-642-36946-9_16
https://doi.org/10.1007/978-3-642-38592-6_19
https://doi.org/10.1007/978-3-642-38592-6_19

158 V. Stolz et al.

16. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. In: Software Engineering and Formal Methods. IEEE Computer
Society (2004)

17. Schäfer, M., Dolby, J., Sridharan, M., Torlak, E., Tip, F.: Correct refactoring of
concurrent Java code. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp.
225–249. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14107-
2 11

18. Agha, G., Palmskog, K.: Transforming threads into actors: learning concurrency
structure from execution traces. In: Lohstroh, M., Derler, P., Sirjani, M. (eds.) Prin-
ciples of Modeling. LNCS, vol. 10760, pp. 16–37. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-95246-8 2

19. Ringdal, P.O.: Automated refactorings of Rust programs. Master’s thesis, Institute
for Informatics, University of Oslo, Norway, June 2020

20. Garrido, A., Meseguer, J.: Formal specification and verification of Java refactorings.
In: International Workshop on Source Code Analysis and Manipulation. IEEE
(2006)

21. Schäfer, M., Verbaere, M., Ekman, T., de Moor, O.: Stepping stones over the
refactoring Rubicon. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
369–393. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03013-
0 17

22. Steinhöfel, D., Hähnle, R.: Abstract execution. In: ter Beek, M.H., McIver, A.,
Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 319–336. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30942-8 20

23. Steinhöfel, D.: Abstract execution: automatically proving infinitely many pro-
grams. Ph.D. thesis, TU Darmstadt, Department of Computer Science, May 2020

24. Mongiovi, M., Mendes, G., Gheyi, R., Soares, G., Ribeiro, M.: Scaling testing of
refactoring engines. In: Software Maintenance and Evolution. ICSME (2014)

25. Soares, G., Gheyi, R., Serey, D., Massoni, T.: Making program refactoring safer.
IEEE Softw. 27(4), 52–57 (2010)

26. Pradel, M., Gross, T.R.: Automatic testing of sequential and concurrent sub-
stitutability. In: International Conference on Software Engineering, ICSE. IEEE
(2013)

27. Li, S., Hariri, F., Agha, G.: Targeted test generation for actor systems. In: Pro-
ceedings European Conference on Object-Oriented Programming, LIPIcs, vol. 109.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

28. Rachatasumrit, N., Kim, M.: An empirical investigation into the impact of refac-
toring on regression testing. In: International Conference on Software Maintenance.
ICSM (2012)

29. Mongiovi, M., Gheyi, R., Soares, G., Teixeira, L., Borba, P.: Making refactoring
safer through impact analysis. Sci. Comput. Program. 93, 39–64 (2014)

30. Alves, E.L.G., Massoni, T., de Lima Machado, P.D.: Test coverage of impacted code
elements for detecting refactoring faults: an exploratory study. J. Syst. Softw. 123,
223–238 (2017)

31. Schulze, S., Richers, O., Schaefer, I.: Refactoring delta-oriented software product
lines. In: Aspect-Oriented Software Development. ACM (2013)

https://doi.org/10.1007/978-3-642-14107-2_11
https://doi.org/10.1007/978-3-642-14107-2_11
https://doi.org/10.1007/978-3-319-95246-8_2
https://doi.org/10.1007/978-3-319-95246-8_2
https://doi.org/10.1007/978-3-642-03013-0_17
https://doi.org/10.1007/978-3-642-03013-0_17
https://doi.org/10.1007/978-3-030-30942-8_20

Rigorous Engineering of Collective
Adaptive Systems

Rigorous Engineering of Collective
Adaptive Systems Introduction to the 3rd

Track Edition

Martin Wirsing1(B), Rocco De Nicola2, and Stefan Jähnichen3

1 Ludwig-Maximilians-Universität München, Munich, Germany
wirsing@lmu.de

2 IMT School for Advanced Studies Lucca, Lucca, Italy
rocco.denicola@imtlucca.it

3 TU Berlin and FZI Forschungszentrum Informatik Berlin, Berlin, Germany
stefan.jaehnichen@tu-berlin.de

Abstract. A collective adaptive system consists of collaborating enti-
ties that are able to adapt at runtime to dynamically changing, open-
ended environments and to evolving requirements. Rigorous engineering
requires appropriate methods and tools that help guarantee that a collec-
tive adaptive system lives up to its intended purpose. This note gives an
introduction to the track “Rigorous Engineering of Collective Adaptive
Systems” and its 21 scientific contributions.

Keywords: Adaptive system · Collective system · Ensemble ·
Software engineering · Formal method · Rigorous method

Modern IT systems are increasingly distributed and consist of collaborating
entities that are able to adapt at runtime to dynamically changing, open-ended
environments and to new requirements. Such systems are called collective adap-
tive system or also ensembles [29,33]. Examples are cyber-physical systems, the
internet of things, socio-technical systems as well as smart systems and robot
swarms.

Rigorous engineering of collective adaptive systems requires devising appro-
priate methods and tools to guarantee that such systems behave as expected. To
achieve this goal, we need to develop theories for modelling and analysing collec-
tive adaptive systems, techniques for programming and running such systems,
and specific methods for adaptation, validation and verification while ensuring
security, trust and performance.

The track “Rigorous Engineering of Collective Adaptive Systems” is a follow-
up of three other successful tracks [16,32,53] at ISOLA 2014 [38], ISOLA
2016 [39], and ISOLA 2018 [40]. The first track [53] was entitled “Rigorous
Engineering of Autonomic Ensembles” and was organised within the activities
of the EU-funded research project ASCENS [54]. The latter two tracks [16,32]
addressed the same theme as this year’s edition and included research results
from several research approaches and projects. Recently, also a Special Section of
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 161–170, 2020.
https://doi.org/10.1007/978-3-030-61470-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_10

162 M. Wirsing et al.

the International Journal on Software Tools for Technology Transfer was devoted
to the rigorous engineering of collective adaptive systems [15].

The present edition of the track comprises 21 research papers; each of which
has gone through a rigorous check by three reviewers. In the following, these
papers are briefly introduced in the order of their presentations and grouped
according to seven thematic sessions, namely: Coordination and Composition,
Attribute-based Coordination, Security and Trust, Specifying Ensembles and
Computing with them, Validating and Analysing Collective Adaptive Systems,
Machine Learning and Evolutionary Computing for Collective Adaptive Sys-
tems, and Programming and Analysing Swarm Robotics.

Coordination and Composition. For building high quality collective adaptive
systems, it is important to choose the right mechanisms for coordinating the
autonomous entities of the ensemble and to seek for engineering methods sup-
porting the compositional analysis and construction of collective adaptive sys-
tems. In this session coordination and composition techniques are discussed.

In the paper “Composition of Component Models - a Key to Construct Big
Systems” [46], Wolfgang Reisig discusses the importance of the associative law
for component systems and points out that for well-known modelling formalisms
such as Petri nets, BPMN, and UML, the “naive” choice of gluing composition
does not satisfy this law. As an alternative, he proposes an abstract graph-based
notion of component together with a composition operator which can be shown
to be associative.

The second paper “Degrees of Autonomy in Coordinating Collectives of Self-
Driving Vehicles” [56] by Franco Zambonelli and Stefano Mariani addresses the
problem of coordinating self-driving vehicles. The authors propose four differ-
ent coordination approaches - called centralised, negotiation-based, agreement-
based, and emergent - which provide the autonomous entities with different
degrees of freedom in their decision making.

The final paper of this session “Engineering Semantic Self-composition of
Services through Tuple-based Coordination” [13] by Ashley Caselli, Giovanni
Ciatto, Giovanna Di Marzo Serugendo and Andrea Omicini defines a model
for spontaneous service composition based on tuple spaces à la Linda [23] that
supports semantic reasoning leveraging logic-tuples and unification. Usability
of the proposed technology is vindicated by introducing a Java-based software
architecture that implements it.

Attribute-Based Coordination. In contrast to message passing, attribute-based
coordination abstracts from the names of senders and receivers and provides a
kind of selective broadcast communication. Senders and receivers are determined
by properties such as role, status, and position that can be modified at run-
time. Several recent languages including SCEL [17], CARMA [8] and AbC [1,2]
use attribute-based communication for modelling interactions in collective adap-
tive systems. The three papers of this session study logics, verification, and
behavioural abstractions for collective systems interacting by means of attribute-
based communication.

Rigorous Engineering of Collective Adaptive Systems – Track Introduction 163

Typically, languages with attribute-based coordination mechanisms model
systems as parallel compositions of components, each component being equipped
with a local process description. In the paper “A Dynamic Logic for Systems
with Predicate-based Communication” [26], Rolf Hennicker and Martin Wirsing
complement such local descriptions with a global requirements specification for-
mat that is well-suited to specify abstract properties, like safety and liveness,
as well as allowed and forbidden interaction scenarios. Specifications are writ-
ten in a dynamic logic [25] according to a style similar to the approach in [27].
Atomic interactions are expressed by predicates involving one sender and a set
of receivers. An appropriate notion of correctness is defined relating such global
specifications with local systems specifications written in a variant of the AbC
calculus.

Also the paper “Abstractions for Collective Adaptive Systems” [30] by Omar
Inverso, Catia Trubiani and Emilio Tuosto provides a global view on attribute-
based coordination. The so-called “AbC-inspired behavioural types” are based
on atomic interactions similar to those in [26] but feature separate predicates for
senders and receivers and explicit matching requirements. Like [26], this app-
roach abstracts away from asynchrony and from the number of the autonomous
entities and their local behaviour.

The paper “Verifying AbC Calculus via Emulation” [19] by Rocco De Nicola,
Tan Duong and Omar Inverso addresses the issue of verifying AbC programs.
The proposed approach consists in translating AbC into the C language and to
annotate C programs with assertions encoding temporal logic state formulas.
State-of-the-art bounded model checkers can then be used to verifying proper-
ties of AbC systems. A number of interesting case studies are considered and
properties of interest are checked.

Security and Type Safety. The three papers of this session address methods
for controlling non-interference, for dealing with situations unanticipated by the
access control policies, and for ensuring type safety.

In the paper “Adaptive Security Policies” [42] Flemming Nielson, René Ryd-
hof Hansen, and Hanne Riis Nielson propose an approach aiming at guaranteeing
that the local security policies of agents are respected while avoiding to imposing
a global security policy on all agents. Individual agents can define their own secu-
rity policy and the framework ensures that agents cannot observe any violation
of such policy in an environment where the other agents do change. It is shown
that security is preserved under evaluation by taking advantage of operational
semantics and type systems.

The paper “Capturing Dynamicity and Uncertainty in Security and Trust
via Situational Patterns” [11] by Tomáš Bureš, Petr Hnětynka, Robert Hein-
rich, Stephan Seifermann, and Maximilian Walter studies solutions for access-
control in modern smart systems when unanticipated situations are encountered
and extends previous work on security ensembles [3]. Some typical examples for
uncertainty of access control are considered and a classification of uncertainty of
access control in Industry 4.0 systems, inspired by [43] is proposed. It is suggested

164 M. Wirsing et al.

that such classification can be used as a guide to dynamically adapt the security
access rules by providing situational patterns for each type of uncertainty.

Many of today’s socio-technical systems are realised over distributed web-
based architectures. Communication relies on plain text HTTP-protocol data
transfer which is untyped and therefore prone to errors. The recent data query
and manipulation language GraphQL [20] for mobile web applications addresses
this problem by strongly typing expressions at the server side, but at the client
side data remain untyped. In the paper “Guaranteeing Type Consistency in
Collective Adaptive Systems” [48] Jonas Schürmann, Tim Tegeler and Bernhard
Steffen propose an approach to automatically generate type-safe communication
interfaces for both, clients and servers. The main achievement is a novel type-safe,
functional domain specific language called “Type-safe Functional GraphQL”
(TFG). This language ensures type safety in three ways: at generation time
by verifying queries against the GraphQL schema, at compile time by leveraging
the type system of TypeScript [41], and at runtime by using decoders to validate
payloads. A collaborative development scenario based on the GraphQL API of
Github illustrates the approach.

Specifying Ensembles and Computing with Them. With epistemic logic, aggre-
gate computing, and distributed tuple space coordination, this session addresses
applications of different foundational approaches for specifying and computing
in collective adaptive systems.

Epistemic logic [52] is a classical formal tool for studying the notion of
knowledge. It has been used for reasoning about knowledge and belief in many
application areas including strategic games and distributed computing. In the
paper “Epistemic Logic in Ensemble Specification” [49] Jan Sürmeli focusses on
the knowledge of the members of an ensemble and on the inherent information
asymmetry between them. He introduces a new knowledge operator for ensemble
knowledge and formalises ensemble-specific axioms for peer relationship, collab-
oration, and the ensemble life cycle.

The key idea of aggregate computing is to program a large ensemble of inter-
acting devices as a whole. Coordination and composition are hidden to pro-
grammers [5]. A modern aggregate programming language is ScaFi which inte-
grates declarative aggregate programming techniques into Scala. In the paper
“FSCAFI: a Core Calculus for Collective Adaptive Systems Programming” [12]
Roberto Casadei, Mirko Viroli, Giorgio Audrito and Ferruccio Damiani present
a minimal core calculus, called FScaFi, that models the aggregate computing
aspects of ScaFi. In particular, FScaFi provides the novel notion of “compu-
tation against a neighbour” where expressions are evaluated against the values
computed by neighbour devices.

The third paper of this session “Writing Robotics Applications with X-
Klaim” [6] by Lorenzo Bettini, Khalid Bourr, Rosario Pugliese and Francesco
Tiezzi presents a framework for programming distributed robotics applications.
X-KLAIM [7] is a programming language specifically devised to design dis-
tributed applications consisting of software components interacting through mul-
tiple distributed tuple spaces. The framework integrates X-KLAIM with the

Rigorous Engineering of Collective Adaptive Systems – Track Introduction 165

popular framework ROS [45] for writing robot software, and with a simulator
providing a 3D visualization of scenarios and robot movements. Feasibility and
effectiveness of the proposed approach is vindicated by implementing a scenario
with robots looking for victims in a disaster area.

Validating and Analysing Collective Adaptive Systems. In this session new meth-
ods are presented for analysing collective adaptive systems and for certifying
their quality.

Metric approaches have a long tradition in semantics for analysing relation-
ships between programs as well as between processes, see e.g. [4,18,55]. The
paper “Measuring Adaptability and Reliability of Large Scaled Systems” [14] by
Valentina Castiglioni, Michele Loreti and Simone Tini proposes a metric app-
roach for analysing large self-organising collective systems. A main contribution
is the so-called population metric for comparing the behaviour of self-organising
systems. Based on this metric, the notions of adaptability and reliability are used
to determine whether a system is able to adjust its behaviour to perturbations
in the initial conditions. A randomised algorithm for computing the distance
between two systems is defined and used for verifying systems’ adaptability and
reliability. It is also shown that the proposed approach scales to large systems
by resorting to mean-field approximation.

Network centrality is a key notion in network analysis and helps to identify
the most important nodes of a network by assigning an importance measure to
each node (see e.g. [51]). The paper “Centrality-preserving Exact Reductions
of Multi-Layer Networks” [50] by Stefano Tognazzi and Tatjana Petrov studies
centrality of multi-layer networks. A novel technique for exact model reduction
of multiplex multi-layer networks is defined and implemented. It is not only
shown that the technique preserves eigenvector centrality but also that for many
real-world networks it achieves considerable reductions of the network size and
speed-ups in the computation of the centrality measure.

In the third paper of this session “Towards Dynamic Dependable Systems
through Evidence-Based Continuous Certification” [21] Rasha Faqeh, Christof
Fetzer, Holger Hermanns, Jörg Hoffmann, Michaela Klauck, Maximilian A. Köhl,
Marcel Steinmetz and Christoph Weidenbach address the quality control of fre-
quently updated/changing cyber-physical systems and outline their vision of
“evidence-based continuous supervision and certification of software variants”.
They imagine to run both old and new variants of component software inside the
same system, together with a supervising instance for monitoring the behaviour
of the components. Certification of updated components is based on evidence
from automated component analysis and micro-experiments. To show feasibility
of the approach, a first formalisation including a logic for efficient certification
is presented.

Machine Learning and Evolutionary Computing for Collective Adaptive Systems.
This session addresses sub-symbolic AI techniques in two complementary ways:
AI techniques are used for supporting decisions in collective adaptation applica-
tions and formal methods are used for reasoning about AI techniques.

166 M. Wirsing et al.

In many smart systems, the set of members of an ensemble may change
dynamically. Membership is determined by a set of soft and hard constraints but
- as constraint solvers may require exponential time - it may be problematic to
use them at runtime. In the paper “Forming Ensembles at Runtime: A Machine
Learning Approach” [9] Tomáš Bureš, Ilias Gerastathopoulos, Petr Hnětynka and
Jan Pacovský extend their work on autonomous ensembles [10] and study a new
approach to runtime ensembles formation in which they consider the association
of autonomic entities to ensembles as a classification problem and use machine
learning methods, namely decision trees and neural networks, to solve it. These
methods need a considerable amount of data and runs for training but have a
linear behaviour at runtime. The experiments show that in comparison with a
state-of-the-art constraint solver, well-trained decision trees and neural networks
have a similar performance and in some cases achieve marginally better solutions
than the constraint solver.

The automated construction of controllers is another excellent application
for AI methods. The paper “Synthesizing Control for a System with Black
Box Environment, based on Deep Learning” [31] by Simon Iosti, Doron Peled,
Khen Aharon, Saddek Bensalem and Yoav Goldberg proposes a methodology to
use recurrent neural networks to synthesise controllers. A key to the success of
the controller is that the training uses a set of small, well designed examples,
which is exposed to various potential challenges. The proposed method works
for unknown “blackbox” environments and various types of systems. It is adap-
tive in the sense that in case of changes in the environment, the training can be
resumed after the system has been deployed.

In the third paper “A Formal Model For Reasoning About The Ideal Fitness
In Evolutionary Processes” [22] Thomas Gabor and Claudia Linnhoff-Popien
consider evolutionary computing as a process that looks for solutions to complex
problems via the application of comparatively simple local operators and uses the
knowledge gained through trial and error to guide systems towards reaching an
externally given target. They provide a formal abstract account of evolutionary
computing and discuss different fitness functions such as effective, reproductive,
and productive fitness. As a main result they show that the notion of productive
fitness represents the ideal fitness function for evolutionary processes.

Programming and Analysing Ensembles of Robots. Multi-robot systems and
swarm robotics are active research areas with many promising applications; the
reader is referred to [47] for an overview of current applications in research, edu-
cation, and industry. The last session of the track presents new approaches for
programming and analysing ensembles of robots.

The language CARMA-C [44] is an extension of CARMA [8] for modelling the
nondeterministic stochastic behaviour of collective adaptive systems in terms of
Continuous Time Markov Decision Processes [24]. In the paper “A Case-Study of
Policy Synthesis for Swarm Robotics” [28] Jane Hillston and Paul Piho show how
CARMA-C can be used to specify and resolve a policy synthesis problem from
swarm robotics by taking advantage of the processes algebraic constructions in
CARMA which lend themselves well to stochastic policy or parameter synthesis
problems.

Rigorous Engineering of Collective Adaptive Systems – Track Introduction 167

The last two papers of the track address so-called multipotent robot sys-
tems [37] where both hardware and software capabilities of robots can be recon-
figured at runtime.

In the paper “Swarm and Collective Capabilities for Multipotent Robot
Ensembles” [34] Oliver Kosak, Felix Bohn, Lennart Eing, Dennis Rall, Con-
stantin Wanninger, Alwin Hoffmann and Wolfgang Reif propose a new pat-
tern for expressing collective swarm behaviour. The so-called “Movement-Vector
Based Swarm Capability” pattern extracts the common behaviour of several
swarm algorithms such as particle swarm optimization, flocking, and triangle
formation. The pattern is integrated into the reference architecture [37] for mul-
tipotent robot systems and an interface to the aggregate programming language
Protelis is provided.

The paper “Maple-Swarm: Programming Collective Behavior for Ensem-
bles by Extending HTN-Planning” [35] by Oliver Kosak, Lukas Huhn, Felix
Bohn, Constantin Wanninger, Alwin Hofmann and Wolfgang Reif extends the
Maple approach [36] (Multi-Agent script Programming Language for multipo-
tent Ensembles) to deal with collective swarm behaviour. In particular, the con-
cepts of agent groups and virtual swarm capabilities are introduced and it is
shown how hierarchical task networks can be used to allocate tasks for agent
groups. As proof of concepts they consider a real-life scenario where robots have
to coordinate to fight fires.

Acknowledgements. As organisers of the track, we would like to thank all authors for
their valuable contributions, all reviewers for their careful evaluations and constructive
comments. We are also grateful to the ISOLA chairs Tiziana Margaria and Bernhard
Steffen for giving us the opportunity to organise this track and to them and Springer–
Verlag for providing us with the very helpful Equinocs conference system.

References

1. Abd Alrahman, Y., De Nicola, R., Loreti, M.: A calculus for collective-adaptive
systems and its behavioural theory. Inf. Comput. 268, 104457 (2019)

2. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming interactions in collec-
tive adaptive systems by relying on attribute-based communication. Sci. Comput.
Program. 192, 102428 (2020)

3. Al Ali, R., Bures, T., Hnetynka, P., Matejek, J., Plasil, F., Vinarek, J.: Toward
autonomically composable and context-dependent access control specification
through ensembles. Int. J. Softw. Tools Technol. Transf. 22(4), 511–522 (2020).
https://doi.org/10.1007/s10009-020-00556-1

4. Arnold, A., Nivat, M.: Metric interpretations of infinite trees and semantics of non
deterministic recursive programs. Theor. Comput. Sci. 11, 181–205 (1980)

5. Beal, J., Viroli, M.: Aggregate programming: from foundations to applications. In:
Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol. 9700, pp.
233–260. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34096-8 8

6. Bettini, L., Bourr, K., Pugliese, R., Tiezzi, F.: Writing robotics applications with
X-KLAIM. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp.
361–379. Springer, Cham (2020)

https://doi.org/10.1007/s10009-020-00556-1
https://doi.org/10.1007/978-3-319-34096-8_8

168 M. Wirsing et al.

7. Bettini, L., Merelli, E., Tiezzi, F.: X-KLAIM is back. In: Boreale, M., Corradini,
F., Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent
and Distributed Programming. LNCS, vol. 11665, pp. 115–135. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-21485-2 8

8. Bortolussi, L., et al.: CARMA: collective adaptive resource-sharing Markovian
agents. In: QAPL 2015, EPTCS, vol. 194, pp. 16–31 (2015)

9. Bureš, T., Gerastathopoulos, I., Hnětynka, P., Pacovský, J.: Forming ensembles at
runtime: a machine learning approach. In: Margaria, T., Steffen, B. (eds.) ISoLA
2020. LNCS, vol. 12477, pp. 440–456. Springer, Cham (2020)

10. Bureš, T., et al.: A language and framework for dynamic component ensembles in
smart systems. Int. J. Softw. Tools Technol. Transf. 22(4), 497–509 (2020). https://
doi.org/10.1007/s10009-020-00558-z

11. Bureš, T., Hnětynka, P., Heinrich, R., Seifermann, S., Walter, M.: Capturing
dynamicity and uncertainty in security and trust via situational patterns. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 295–310. Springer,
Cham (2020

12. Casadei, R., Viroli, M., Audrito, G., Damiani, F.: FSCAFI: a core calculus for
collective adaptive systems programming. In: Margaria, T., Steffen, B. (eds.) ISoLA
2020. LNCS, vol. 12477, pp. 344–360. Springer, Cham (2020)

13. Caselli, A., Ciatto, G., Di Marzo Serugendo, G., Omicini, A. Engineering semantic
self-composition of services through tuple-based coordination. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 205–223. Springer, Cham
(2020)

14. Castiglioni, V., Loreti, M., Tini, S.: Measuring adaptability and reliability of large
scaled systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477,
pp. 380–396. Springer, Cham (2020)

15. De Nicola, R., Jähnichen, S., Wirsing, M.: Rigorous engineering of collective adap-
tive systems: special section. Int. J. Softw. Tools Technol. Transf. 22(4), 389–397
(2020). https://doi.org/10.1007/s10009-020-00565-0

16. De Nicola, R., Jähnichen, S., Wirsing, M.: Rigorous engineering of collective adap-
tive systems introduction to the 2nd track edition. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2018. LNCS, vol. 11246, pp. 3–12. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03424-5 1

17. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. ACM Trans. Auton. Adapt. 9(2), 7:1–
7:29 (2014)

18. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled
Markov processes. Theor. Comput. Sci. 318(3), 323–354 (2004)

19. De Nicola, R., Duong, T., Inverso, O.: Verifying AbC specifications via emulation.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 261–279.
Springer, Cham (2020)

20. Facebook, Inc.: GraphQL specification, June 2018 Edition (2018). http://spec.
graphql.org/June2018/. Accessed 12 Aug 2020

21. Faqeh, R., et al.: Towards dynamic dependable systems through evidence-based
continuous certification. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS,
vol. 12477, pp. 261–279. Springer, Cham (2020)

22. Gabor, T., Linnhoff-Popien, C.: A formal model for reasoning about the ideal
fitness in evolutionary processes. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020.
LNCS, vol. 12477, pp. 473–490. Springer, Cham (2020)

23. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

https://doi.org/10.1007/978-3-030-21485-2_8
https://doi.org/10.1007/s10009-020-00558-z
https://doi.org/10.1007/s10009-020-00558-z
https://doi.org/10.1007/s10009-020-00565-0
https://doi.org/10.1007/978-3-030-03424-5_1
https://doi.org/10.1007/978-3-030-03424-5_1
http://spec.graphql.org/June2018/
http://spec.graphql.org/June2018/

Rigorous Engineering of Collective Adaptive Systems – Track Introduction 169

24. Guo, X., Hernández-Lerma, O.: Continuous-Time Markov Decision Processes: The-
ory and Applications. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02547-1

25. Harel, D., Kozen, D., Tiuryn, J. (eds.): Dynamic Logic. MIT Press, Cambridge
(2000)

26. Hennicker, R., Wirsing, M.: A dynamic logic for systems with predicate-based
communication. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477,
pp. 473–490. Springer, Cham (2020)

27. Hennicker, R., Wirsing, M.: Dynamic logic for ensembles. In: [40], pp. 32–47 (2018)
28. Hillston, J., Piho, P.: A case study of policy synthesis for swarm robotics. In: Mar-

garia, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 491–501. Springer,
Cham (2020)

29. Hölzl, M., Rauschmayer, A., Wirsing, M.: Engineering of software-intensive sys-
tems: state of the art and research challenges. In: Wirsing, M., Banâtre, J.-P.,
Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems and New Comput-
ing Paradigms. LNCS, vol. 5380, pp. 1–44. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-89437-7 1

30. Inverso, O., Trubiani, C., Tuosto. ,E.: Abstractions for collective adaptive systems.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 243–260.
Springer, Cham (2020)

31. Iosti, S., Peled, D., Aharon, K., Bensalem, S., Goldberg, Y.: Synthesizing control
for a system with black box environment, based on deep learning. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 457–472. Springer, Cham
(2020)

32. Jähnichen, S., Wirsing, M.: Rigorous engineering of collective adaptive systems
track introduction. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol.
9952, pp. 535–538. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47166-2 37

33. Kernbach, S., Schmickl, T., Timmis, J.: Collective adaptive systems: challenges
beyond evolvability. CoRR abs/1108.5643 (2011)

34. Kosak, O., et al.: Swarm and collective capabilities for multipotent robot ensembles.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 525–540.
Springer, Cham (2020)

35. Kosak, O., Huhn, L., Bohn, F., Wanninger, C., Hofmann, A., Reif, W.: Maple-
Swarm: programming collective behavior for ensembles by extending HTN-
planning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp.
507–524. Springer, Cham (2020)

36. Kosak, O., Wanninger, C., Angerer, A., Hoffmann, A., Schiendorfer, A., Seebach,
H.: Towards self-organizing swarms of reconfigurable self-aware robots. In: Elnikety,
S., Lewis, P.R., Müller-Schloer, C. (eds.) 2016 IEEE 1st International Workshops
on Foundations and Applications of Self* Systems (FAS*W), Augsburg, Germany,
12–16 September 2016, pp. 204–209. IEEE (2016)

37. Kosak, O., Wanninger, C., Hoffmann, A., Ponsar, H., Reif, W.: Multipotent sys-
tems: combining planning, self-organization, and reconfiguration in modular robot
ensembles. Sensors 19(1), 17 (2019)

38. Margaria, T., Steffen, B. (eds.): ISoLA 2014. LNCS, vol. 8802. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45234-9

39. Margaria, T., Steffen, B. (eds.): ISoLA 2016. LNCS, vol. 9952. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2

40. Margaria, T., Steffen, B. (eds.): ISoLA 2018. LNCS, vol. 11246. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03424-5

https://doi.org/10.1007/978-3-642-02547-1
https://doi.org/10.1007/978-3-642-02547-1
https://doi.org/10.1007/978-3-540-89437-7_1
https://doi.org/10.1007/978-3-540-89437-7_1
https://doi.org/10.1007/978-3-319-47166-2_37
https://doi.org/10.1007/978-3-319-47166-2_37
https://doi.org/10.1007/978-3-662-45234-9
https://doi.org/10.1007/978-3-319-47166-2
https://doi.org/10.1007/978-3-030-03424-5

170 M. Wirsing et al.

41. Microsoft Corporation: TypeScript: Typed JavaScript at any scale (2020). https://
www.typescriptlang.org/. Accessed 8 Aug 2020

42. Nielson, F., Hansen, R.R., Nielson, H.R.: Adaptive security policies. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 507–524. Springer, Cham
(2020)

43. Pérez-Palaćın, D., Mirandola, R.: Dealing with uncertainties in the performance
modelling of software systems. In: Seinturier, L., Bureš, T., McGregor, J.D. (eds.)
Proceedings of the 10th International ACM SIGSOFT Conference on Quality of
Software Architectures (part of CompArch 2014), QoSA 2014, Marcq-en-Baroeul,
Lille, France, 30 June–04 July 2014, pp. 33–42. ACM (2014)

44. Piho, P., Hillston, J.: Policy synthesis for collective dynamics. In: McIver, A., Hor-
vath, A. (eds.) QEST 2018. LNCS, vol. 11024, pp. 356–372. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99154-2 22

45. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Work-
shop on Open Source Software (2009)

46. Reisig, W.: Composition of component models - a key to construct big systems.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 507–524.
Springer, Cham (2020)

47. Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behaviors
and current applications. Front. Rob. AI 7, 36 (2020)

48. Schürmann, J., Tegeler, T., Steffen, B.: Guaranteeing type consistency in collective
adaptive systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol.
12477, pp. 311–328. Springer, Cham (2020)

49. Sürmeli, J.: Epistemic logic in ensemble specification. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2020. LNCS, vol. 12477, pp. 329–343. Springer, Cham (2020)

50. Tognazzi, S., Petrov, T.: Centrality-preserving exact reductions of Multi-Layer
Networks. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp.
397–415. Springer, Cham (2020)

51. Tognazzi, S., Tribastone, M., Tschaikowski, M., Vandin, A.: Differential equivalence
yields network centrality. In: [40], pp. 186–201 (2018)

52. van Ditmarsch, H., Halpern, J.Y., van der Hoek, W., Kooi, B.P.: Handbook of
Epistemic Logic. College Publications, London (2015)

53. Wirsing, M., De Nicola, R., Hölzl, M.: Introduction to “rigorous engineering of
autonomic ensembles”– track introduction. In: [38], pp. 96–98 (2014)

54. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-16310-9

55. Ying, M., Wirsing, M.: Approximate bisimilarity. In: Rus, T. (ed.) AMAST 2000.
LNCS, vol. 1816, pp. 309–322. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45499-3 23

56. Zambonelli, F., Mariani, S.: Degrees of autonomy in coordinating collectives of
self-driving vehicles. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol.
12477, pp. 189–204. Springer, Cham (2020)

https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://doi.org/10.1007/978-3-319-99154-2_22
https://doi.org/10.1007/978-3-319-16310-9
https://doi.org/10.1007/978-3-319-16310-9
https://doi.org/10.1007/3-540-45499-3_23
https://doi.org/10.1007/3-540-45499-3_23

Composition of Component Models - A
Key to Construct Big Systems

Wolfgang Reisig(B)

Humboldt-Universität zu Berlin, 10099 Berlin, Germany
reisig@informatik.hu-berlin.de

Abstract. Modern informatics based systems are mostly composed
from self-contained components. To be useful for really big systems,
composed of many components, proper abstraction mechanisms for com-
ponents are necessary. Furthermore, when composing many components,
composition must be associative, i.e. for components A, B, C must hold:
(A • B) • C = A • (B • C). This paper suggests a general framework
for such components and their composition. With examples of systems
represented in different formalisms such as Petri nets, BPMN, and UML,
we show the high degree of independence of the formal framework from
concrete modeling techniques.

Keywords: Modeling techniques · Components · Composition

Introduction

Modern informatics based systems are frequently large. Examples include embed-
ded systems; business information systems; information infrastructures; the
internet of people, things and services; as well as cyber-physical systems; digital
eco-systems; health and mobility supporting systems; industry 4.0; etc. There is
a rich body of literature on such systems, including e.g. [2,5]. To understand,
build, and use such systems, we need specific concepts, methods, and paradigms.
In particular, modeling techniques are required to represent and to analyze such
systems, before parts of them will be implemented.

It is understood that large systems exhibit some kind of a structure. There
are two main systematic structuring principles: refinement and composition of
components. Refinement is supported by a number of universal principles. In
particular, one starts out with an abstract specification and refines it systemat-
ically, i.e. one adds more and more details, but in such a way that the refined
description implies the more abstract specification. Refinement is supported by
encapsulation techniques, class hierarchies, refinement calculi such as [7], etc.

When it comes to the composition of components, matters are quite different:
Many modeling techniques come with their own, specific composition operators.
A general framework of principles, supporting the composition of any kind of
components, based on a minimum of assumptions about components, is merely
missing. This observation is the starting point of this contribution: We con-
tribute a framework of such principles, to be applicable to merely any kind of
components.

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 171–188, 2020.
https://doi.org/10.1007/978-3-030-61470-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_11

172 W. Reisig

Fig. 1. Three components: producer, broker, and client

The core idea of this framework is a generally applicable, intuitively and
technically simple concept of composition, combined with the idea of adapters.
Instead of composing two components A and B by help of specific interfaces
and a specific composition operator, we suggest to design a 3rd component, an
adapter C; and to compose A with C, and C with B. This way, the interfaces of
A and B still may remain large, but can be kept structurally simple. And among
other advantages, it may be much easier to compose adapters, than to re-design
interfaces.

This approach may help reduce the increasing complexity of many architec-
ture description languages (ADLs), without reducing their expressive power. In
particular, specific interface connection architectures, as implemented by most
ADLs, become obsolete. As a restriction, the framework sticks to models that
are graph based, such as Petri nets, BPMN, some versions of UML diagrams,
and others. Networks of components are assumed to be static.

In Sect. 1 we start with a number of motivating examples, with components
formulated in different modeling techniques, including Petri nets, BPMN, and
UML. In Sect. 2, we discuss a general problem of the idea to compose com-
ponents by gluing interface elements. The rest of the paper is dedicated to a
framework that overcomes this problem and provides a number of concepts for
the systematic modeling of big systems by means of composing systems.

1 Motivating Examples

1.1 Example: a producer, a broker, and a client

Figure 1 models the behavior of three components: a producer, a broker, and a
client. The behavior of each component is represented as a Petri net inside a

Composition of Component Models - A Key to Construct Big Systems 173

Fig. 2. Composed component producer • broker • client

box; some elements are drawn on the box surface, thus serving as an interface to
other components. The three components can be composed; the graphical layout
intuitively suggests the result of composing all three components, as in Fig. 2 the
broker has a left interface towards the producer, and a right interface towards
the client. In Fig. 2, each element of the producer’s interface is “glued” with the
likewise labeled element of the broker’s left interface. And each element of the
client’s interface is “glued” with the likewise labeled element of the broker’s right
interface. The “d” labeled elements of the producer has no counterpart in the
left interface of the broker; so it is glued with the “d” labelled element of the
clients interface. An interface element may be a transition (such as “negotiate”
in Fig. 1) as well as a place (such as all other interface elements in Fig. 1). The
forthcoming formal framework will allow to write Fig. 2 just as producer •
broker • client.

Fig. 3. Components A, . . . ,F of the business process of a car insurer

174 W. Reisig

Fig. 4. The business process A • . . . • F of a car insurer

Fig. 5. BPMN model [12] Fig. 6. Four components, with Buyer •
Reseller • Payment Org • Manufactorer,
yielding Fig. 5

1.2 Example: The Business Process of a Car Insurer

Figure 3 shows six components of the business process of a car insurer, again as
Petri nets. We can write their composition, shown in Fig. 4, as A•B•C•D•E•F,
but also as A • B • C • E • D • F, and in two more ways.

1.3 Example: A BPMN Model

This example shows that the forthcoming composition operator is applicable
not only to Petri net models, but is applicable to any modelling technique with
interface elements. Figure 5 shows a BPMN model of a business process as of
[12], consisting of four pools and five message flows. Each message flow connects

Composition of Component Models - A Key to Construct Big Systems 175

Fig. 7. UML diagram [11]

Fig. 8. Components of the UML diagram of Fig. 7

elements of two different pools. In the forthcoming framework one would cap-
ture each pool as a component. A message flow, connecting an element a in a
component A with an element b in a component B would be represented by
additional elements a′ of A and b′ of B on the surface of A and B, respectively,
and connecting a with a′ and b with b′. Figure 6 shows this (with the new ele-
ments labeled a and b). In fact, Fig. 6 represents uniquely the BPMN model
of Fig. 5., i.e., Fig. 5 can be re-gained from Fig. 6. We deliberately chose equal
labels for different interface elements (pairwise different labels for each interface
were of course also viable, and might even be more intuitive). The connections
of the components of Fig. 6 are specified by the labels of the interface elements,
together with the forthcoming composition operator.

1.4 UML Diagram

As a final example, Fig. 7 shows an UML diagram (taken from [11]), consisting of
five components and 16 arcs of three types of arcs. Figure 8 shows the detached
components, with labeled interface elements to describe Fig. 7 as the composition
of the five components. Figure 7 includes arcs starting at a component’s surface,
and ending at an element inside another component. This is represented by arcs
starting at an isolated node on the surface of components.

176 W. Reisig

Fig. 9. Composition: gluing equally labelled gates

2 A Fundamental Problem

Though the above examples employ diverse modeling techniques, they share sim-
ilar features: each model consist of components, and each component includes a
surface, consisting of labelled elements (we will denote them as gates). Compo-
sition A • B of two components A and B is gained by “gluing” pairs of equally
labeled gates of A and of B. Glued gates then turn into inner elements of A •B.
Figure 9 outlines this conception. Numerous modeling techniques suggest this
most intuitive kind of composition operator.

However, this kind of composition is fundamentally flawed: Upon composing
three (or more) components, the order of composition matters, i.e. (A • B) • C
may differ from A • (B • C), as exemplified in Fig. 9(c). In technical terms:
This kind of composition is not associative! But associativity is a most wanted
property whenever more than two components are composed. And really large
systems are composed of many components!

This brings us to the fundamental problem addressed in this paper: We search
for a general framework of components and their composition, where each com-
ponent

– has some kind of an inner structure, and
– has a surface, consisting of labeled elements (gates).

Composition of components then

– results again in a component,
– means technically to glue equally labeled gates,
– is associative.

As the above showed, this is not a simple enterprise.

3 Components

3.1 The Notion of Component

As a technicality, we start with notions and notations of labeled and ordered
sets:

Composition of Component Models - A Key to Construct Big Systems 177

Definition 1. (i) Assuming a set Σ of labels, a labeling of a set A assigns each
element of A a label, i.e. an element of Σ.
(ii) A set A is (totally, strictly) ordered by a relation “<” iff < is transitive,
irreflexive and total.

To capture the most general case of components, we abstract a component
as a graph:

Definition 2. Let V be a set and let E ⊆ V × V . Then G = (V,E) is a graph.

V and E are the vertices and the edges of G, written VG and EG, resp.
A component consists of an inner structure and a surface. As the examples in

Sect. 1 show, a component’s surface can in many cases intuitively be partitioned
into two groups of elements, such as suppliers and customers, providers and
requesters, producers and consumers, buy side and sell side, predecessors and
successors, inputs and outputs, assumptions and guarantees, etc. This motivates
the following definition:

Definition 3. Let G = (V,E) be a graph and let ∗G,G∗ ⊆ V be two finite,
labeled and ordered sets of nodes. Then G together with ∗G and G∗ is a compo-
nent.

Notations. (i)∗G and G∗ are the left and right interface of G, respectively.
(ii) V \(∗G ∪ G∗) is the inner of G, written innerG.

Graphically, a component G is represented as usual for graphs: each vertex
and each edge is depicted as a node and an arrow, respectively. Undirected
vertices are as usual represented as arcs without arrow heads. Nodes and arcs
are placed inside a rectangle, with the elements of ∗G and G∗ on its left and
right margin, respectively. We are frequently not interested in the individuality
of nodes. In this case, an inner node is represented as a dot, and an interface node
by its label. With the convention of representing the order of the interfaces ∗G
and G∗ increasingly top-down, Figs. 1 to 4, 13 to 17 and 20 are typical graphical
representations of components.

3.2 Elementary Components and Abstractions

A component is elementary if its inner consists of just one node (usually labeled
with the component’s name):

Definition 4. A component A = (V,E) is elementary iff V = ∗A ∪ A∗ ∪ {“A”}
and E = (∗A × {“A”}) ∪ ({“A”} × A∗).

Notations. An elementary component A is usually written (∗A, “A”, A∗).

Figure 10 shows an example. Elementary components can be used to abstract
given components: each component A can be assigned its unique abstraction
ab(A):

178 W. Reisig

Fig. 10. An elementary component, A Fig. 11. The abstractions of producer, P,
broker, B, and client, C, of Fig. 1

Definition 5. Let A be a component. Then ab(A) =def (∗A, “A”, A∗) is the
abstract version of A.

Figure 11 show abstract versions of the components of Fig. 1.
The following Lemma is obvious:

Lemma 1. Let A be a component. Then ab(ab(A)) = ab(A).

4 Composition of Components

4.1 The Composition Operator

The composition A • B of two components A and B is a component again.
Composition is governed by the “matching” elements of A∗ and ∗B. An element
a of A∗ matches with an element b of ∗B iff a and b are equally labelled, and
their position in the order of A and of B corresponds.

The inner of A•B consists of the inner of A, the inner of B, and the elements
(a, b) that are “glued” from an element a ∈ A∗ that matches with an element
b ∈ ∗B. Each edge adjacent to a to-be-glued element turns into an edge of
the glued element, as obvious. Finally, ∗A goes to ∗(A • B), and B∗ goes to
(A • B)∗. An element of A∗ without a matching element in ∗B goes to (A • B)∗.
In forthcoming Fig. 13, the “d” labeled element of A∗ has this property. Likewise,
an element of ∗B without a matching element in A∗ goes to ∗(A • B). In the
forthcoming Fig. 13, the “c” labeled element of ∗B has this property.

The definition of composing components is based on operations on interfaces,
i.e. on labeled and ordered sets of nodes:

Definition 6. Let A be a finite, labelled and ordered set, let l be a label, let a ∈ A
be l-labeled and assume there are n l-labeled elements of A that are smaller than
a. Then n is the index of a in A.

Figure 12(a) shows a technical example.

Observation 1. Let A be a finite, labelled and ordered set, and let B ⊆ A.

(i) The labeling and the order of A canonically yield a labeling and an order
on B.

Composition of Component Models - A Key to Construct Big Systems 179

Fig. 12. Examples for operations on labeled and ordered sets

(ii) For b ∈ B, the index of b in A is equal or larger than the index of b in B.

Figure 12(b) shows a technical example.

Definition 7. Let A and B be disjoint, finite, labelled and ordered sets. With
a ∈ A and b ∈ B, the pair (a, b) is a matching pair of A and B iff a and b are
labeled alike, and the index of a in A is equal to the index of b in B.

Figure 12(c) shows a technical example.

Definition 8. Let A and B be disjoint, finite, labeled and ordered sets. Then
the extension of A by B, written AˆB, is the labeled and ordered set A ∪ B;
with its labeling inherited by the labeling of A and of B, and its order extending
the orders of A and of B, such that additionally, in AˆB, each element of A is
smaller than each element of B.

Figure 12(d) shows a technical example.

Observation 2. Let A and B be disjoint, finite, labeled and ordered sets, let
a ∈ A and b ∈ B. The index of a in AˆB equals the index of a in A; the index
of b in AˆB is equal or larger than the index of b in B.

We are now prepared to define the composition of components:

180 W. Reisig

Fig. 13. Technical example for the composition of components

Fig. 14. Composed component producer • broker

Definition 9. Let A and B be components. Let W be the set of matching pairs
of A∗ and ∗B; let A+ ⊆ A∗ contain the elements a of A∗ that don’t belong to a
matching pair (a, b) of W and let +B ⊆ ∗B contain the elements b of ∗B that
don’t belong to a matching pair (a, b) in W .

Then A • B is a component, defined as follows:

(i) VA•B =def VA ∪ VB ∪ W ;
(ii) (x, y) ∈ EA•B iff

– x, y ∈ VA ∪ VB and (x, y) ∈ EA ∪ EB, or
– y = (a, b) ∈ W , and (x, a) ∈ EA or (x, b) ∈ EB, or
– x = (a, b) ∈ W , and (a, y) ∈ EA or (b, y) ∈ EB.

(iii) ∗(A • B) =def (∗A)ˆ(+B), and (A • B)∗ =def (B∗)ˆ(A+).

Figure 13 shows a technical example. Figure 14 shows the composition of
two components of Fig. 1. All Figures in this paper, except Fig. 9, in fact show
examples of this version of composition. It is most important and not at all
trivial that composition is associative:

Theorem 1. Let A and B be components. Then (A • B) • C = A • (B • C).

This Theorem has been proven in [10].
This Theorem justifies writing producer•broker•client in Fig. 2, skipping

any brackets.

Composition of Component Models - A Key to Construct Big Systems 181

Fig. 15. Composition may yield interfaces with multiple labels

Fig. 16. The abstractions of producer, P, broker, B, and client, C, of Fig. 1, as well as
their composition

4.2 Some Aspects of Composition

A special case is perfect match of A∗ and ∗B:

Lemma 2. Let A and B be components.

(i) If each element of A∗ matches with an element of ∗B, then (A • B)∗ = B∗.
(ii) If each element of ∗B matches with an element of A∗, then ∗(A • B) = ∗A.

To keep matters simple, one may be tempted to just “forbid” equally labeled
elements in the interfaces ∗A and A∗ of components A. This, however, would
disallow many components to be composed, as Fig. 15 shows.

A system A1 • . . . • An consisting of n components Ai can be abstracted to
ab(A1)• . . .•ab(An), with the abstraction operation ab as defined in Sect. 3.2 As
an example, Fig. 16 shows the abstractions of the components of Fig. 1, as well
as their composition. Notice that the abstraction ab(A1 • . . .•An) of a composed
system A1 • . . .•An is elementary, whereas the composition ab(A1)• . . .•ab(An)
of the abstractions ab(Ai) of the components Ai shows the structure of the
composition and is not elementary.

Composition and abstraction are related as follows:

Lemma 3. Let A and B be components. Then ab(A • B) = ab(ab(A) • ab(B)).

In Sect. 6 we will discuss further properties like this in greater detail.

182 W. Reisig

Fig. 17. Adapting measurement standards
between US American and European car
industries

Fig. 18. Behavior adaptation

5 Adapters

Many formal modeling techniques come with specific composition operators,
defining composition with additional composability criteria or some kind of inter-
operability. Composition is sometimes intended to be nondeterministic, i.e. com-
position of two components may result in a set of alternative outcomes. So, it
may sound surprising that we suggest one and only one composition operator,
claiming to fit all purposes and to possess the potential to express an kind of
composition. To tackle this issue, we suggest adapters: any particular assump-
tion or property π of the composition A • B of two components A and B should
not be gathered into the definition of a composition operator. Instead, π should
be formulated by means of an additional component, C. Composition A • C • B
then would express the property π of the composed system, while the compo-
nents A, C, and B are composed by means of the standard operator, •. This
has a number of advantages. Firstly, the interfaces of the components A and B
are not affected at all. Secondly, two properties π and π′ can be composed by
composing corresponding adaptors [π] and [π′] as in A • [π] • [π′] • B, whereas
combining π and π′ into a composition operator would be much less simple.
Thirdly, a software tool would implement composition just once.

As an example for a data adapter, Fig. 17 shows the problem of adapting
data standards between US American and European measurement differences of
the motor car industry. Figure 18 shows examples of behavior adaption in terms
of Petri nets. In Fig. 1, the broker may be conceived as a behavior adapter for
the producer and the consumer.

6 An Algebraic Calculus

The above definitions give rise to an algebraic calculus of components and their
composition, in analogy to - and as a generalization of - functions and their

Composition of Component Models - A Key to Construct Big Systems 183

composition. We start with the observation that a given set Σ of labels defines
the class

KΣ

of all components with labels in Σ. Fundamental, and non-trivial is the

Theorem 2. Composition •: KΣ × KΣ → KΣ is total and associative on KΣ.

As mentioned above already, this property has been proven in [10]. Further-
more, composition with the empty graph leaves components untouched:

Lemma 4. Let N be the graph with VE = ∅. Then for each A ∈ KΣ holds:
A • N = N • A = A.

Corollary 1. (KΣ , •, N) is a monoid.
This monoid has a number of important submonoids, including

– Petri nets with places and transitions in their interfaces (with each symbol in
the alphabet serving to label either places or transitions),

– BPMN diagrams, with interfaces including nodes as in Fig. 6,
– Particular UML diagrams such as in Fig. 8,
– The set [A → A] of functions over a set A (with 1-elementary interfaces, all

labelled alike).

7 Derived Components

A component gives rise to derive abstractions, mirrored, and half closed versions.

7.1 The Mirror of a Component

The mirror of a component A swaps the right and left interface of A:

Definition 10. Let A = (V,E) be a component. As usual, let ∗A and A∗ be
the left and the right interface of A. Then the component A = (V,E) with left
interface A∗ and right interface ∗A is the mirror of A.

The following observations are obvious:

Lemma 5. Let A and B be components.

(i) A • B = B • A,
(ii) A = A,
(iii) ∗(A • A) = (A • A)∗ = ∗A,
(iv) ∗(A • A) = (A • A)∗ = A∗,
(v) N = N .

184 W. Reisig

Fig. 19. Abstraction of philosophers

7.2 Semi Closed Components

Sometimes, in particular in the context of verification, it is useful to cut off one
of the interfaces:

Definition 11. Let A = (V,E) be a component with left and right interfaces ∗A
and A∗, as usual. Then

(i) [A is the component (V,E) with ∗[A = ∅ and [A∗ = A∗, called the left
closure of A.

(ii) A] is the component (V,E) with ∗A] = ∗A and A]∗ = ∅, called the right
closure of A.

Lemma 6. Let A and B be components. Then

(i) ([A)] = [(A]) = E,
(ii) [A = A],
(iii) A] = [A,
(iv) [A • [B = [(A • B),
(v) A] • B] = (A • B)].

8 The Closure Operator

In addition to the binary composition operator •, a unary “closure” operator,
(cl), is useful. For example, Fig. 19(a) shows the abstract version of the behavior
of a “philosopher” according to Dijkstra’s well known paradigm, with its left and
right fork in its left and right interface. Figure 19(b) shows five philosophers in
a row; however, what we want is the left fork of the leftmost philosopher to
be “glued” with the right fork of the rightmost philosopher. A solution were
distinguished leftmost and rightmost philosophers Pleft and Pright, with both
forks in its right and in its left interface, respectively, as in Fig. 19(c) and 19(d).
This corresponds e.g. to indexing the forks of the ith philosopher by i − 1 and
i, and identifying the forks f0 and f5. More elegant, however, is the closure
operator (cl), which, for a component A, glues elements of A∗ with likewise
labelled elements of ∗A. As an example, Fig. 19(e) shows a perfect cycle of five
philosophers.

Composition of Component Models - A Key to Construct Big Systems 185

Fig. 20. Technical example
for the closure Acl of a com-
ponent A.

Fig. 21. Closure of Fig. 4: The busi-
ness process (A . . . F)cl of a car insurer,
clients’ view

Definition 12. Let A be a component. Let W be the set of matching pairs of
A∗ and ∗A; let A+ ⊆ A∗ contain the elements a of A∗ that don’t belong to a
matching pair (a, b) of W and let +A ⊆ ∗A contain the elements b of ∗A that
don’t belong to a matching pair (a, b) in W .

Then Acl is a component (V,E), defined as follows:

(i) V =def VA ∪ W ;
(ii) (x, y) ∈ E iff

– (x, y) ∈ EA, or
– y = (a, b) ∈ W , and (x, a) ∈ EA or (x, b) ∈ EA, or
– x = (a, b) ∈ W , and (a, y) ∈ EA or (b, y) ∈ EA.

(iii) ∗(Acl) =def
+A, and

(Acl)∗ =def A+.

Figure 20 shows a technical example.
Observations:

Lemma 7. Let A be a component.

(i) The labels occurring in ∗Acl and in Acl∗ are disjoint.
(ii) (Acl)cl = Acl

(iii) A = Acl iff the labels of ∗A and A∗ are disjoint.

A typical application of the closure operator is a variant of Fig. 4, as shown in
Fig. 21: From the client’s perspective, insurance documents belong to the inner
of the insurer.

9 Related Work

The quest for general principles of composition of components has frequently
been addressed, usually in the light of implementability. Our approach is more
abstract, as it describes composition on the modeling level.

186 W. Reisig

Our approach differs from many architectural languages in two aspects:
firstly, we suggest to describe different semantical aspects of coordination of
components not by means of many different variants of connectors, but instead
by means of additional components, called adapters. This includes aspects such
as basic synchronization, mutual exclusion and hiding (as considered, e.g. in [3]),
but also much more involved coordination aspects. In particular, “glue code”,
i.e. code that serves to connect separate parts of a program for compatibility or
interoperability, is an obvious candidate for an adapter. This in turn leads to the
second aspect of our approach: composition of components can be defined, once
and for all, in a very simple way that fits all kind of special requirements. To
remain independent of concrete implementations, we define this kind of compo-
sition on a symbolic, schematic, level, whereas approaches such as [3], but also
languages such as REO [4], describe coordination on the level of software.

Formulated differently, while we agree with [6] that “computing has grown
into informatics and Turing’s logical computing machines are matched by a
logic of interaction”, we suggest to formulate the “logic of interaction” by just
one fundamental composition operator, and to represent all required variants in
terms of conventional components. Both, the composition operator as well as
the required semantical variants of interaction, may then be formulated in any
language as preferred by the respective programmer.

The symbolic, schematic level of composition assumes components that essen-
tially are structured as node labelled graphs. Such graphs may be concrete pro-
grams, Petri nets, BPM diagrams, etc. but also abstractly represent classes of
systems in the style of algebraic specifications [13], including well known con-
cepts such as parametrization and refinement, but also the new composition
operator as introduced here.

So far, we don’t cover dynamic reconfigurabiliy, as discussed e.g. in [8].

Conclusion

The notion of components and their composition, as introduced above, is not
intended as yet another formalism to cope with components. We rather claim
to provide fundamentals and universal principles of a comprehensive theory for
components with interfaces and their composition, as they typically occur in
many computer integrated systems.

Those principles are in particular liberal w.r.t. internal behavior, but strict
w.r.t. interfaces and composition. This implies a number of advantages. Most
important is the possibility to manage composition of components, while
abstracting from their internal details. This is in particular useful in case of
legacy software, components based on business secrets, not yet fully specified
components, etc. In a more technical framework, the most important aspect
is associativity of the composition operator. As mentioned above, this non-
trivial property has been proven, once and for all, in [10]. This decisive property,
together with technical simplicity of the composition operator is based on two
ideas: to distinguish a left and a right interface, and to express more involved

Composition of Component Models - A Key to Construct Big Systems 187

properties and aspects of specific composition operators in terms of adapters.
Further aspects are presented in [9].

Components with interfaces strictly generalize functions over the word over
an alphabet. We relate this observation to the conventional framework of the
basics of theoretical informatics: there, for a given alphabet Σ, we canonically
derive the set Σ∗ of all words over Σ, the set [Σ∗ → Σ∗] of all functions over Σ∗,
and finally the composition operator • that is total and associative on [Σ∗ → Σ∗].
This, in turn, leads to the theory of computable functions, and is often considered
the starting point of theoretical informatics.

We suggest to start with an alphabet Σ as well, canonically deriving the
set KΣ of all components with interface elements labelled over Σ, with the
composition operator • that is total and associative on KΣ . Functions over
Σ are a very special case then. This framework should provide the starting
point of a theory of component based systems. Such systems emerge as the
new computing paradigm for informatics based systems. The need for a general
theory of components and their composition has been stressed for decades; as
an early contribution on this subject we refer to [1].

References

1. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.
Softw. Eng. Methodol. 6(3), 213–249 (1997). https://doi.org/10.1145/258077.
258078

2. Bennaceur, A., et al.: Modelling and analysing resilient cyber-physical systems.
In: Litoiu, M., Clarke, S., Tei, K. (eds.) Proceedings of the 14th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS@ICSE 2019, Montreal, QC, Canada, 25–31 May 2019, pp. 70–76. ACM
(2019). https://doi.org/10.1109/SEAMS.2019.00018

3. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor.
Comput. Sci. 366(1–2), 98–120 (2006). https://doi.org/10.1016/j.tcs.2006.07.005

4. Dokter, K., Jongmans, S., Arbab, F., Bliudze, S.: Combine and conquer: relating
BIP and Reo. J. Log. Algebraic Methods Program. 86(1), 134–156 (2017). https://
doi.org/10.1016/j.jlamp.2016.09.008

5. Dustdar, S., Nastic, S., Scekic, O.: Smart Cities - The Internet of Things People
and Systems. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60030-7

6. Milner, R.: Turing, computing and communication. In: Goldin, D., Smolka, S.A.,
Wegner, P. (eds.) Interactive Computation, pp. 1–8. Springer, Heidelberg (2006).
https://doi.org/10.1007/3-540-34874-3 1

7. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall International
series in computer science. Prentice Hall, Upper Saddle River (1994)

8. Nicola, R.D., Maggi, A., Sifakis, J.: The dream framework for dynamic reconfig-
urable architecture modelling: theory and applications. Int. J. Softw. Tools Technol.
Transf. 22(4), 437–455 (2020). https://doi.org/10.1007/s10009-020-00555-2

9. Reisig, W.: Composition: a fresh look at an old topic. In: Margaria, T., Graf, S.,
Larsen, K.G. (eds.) Models, Mindsets, Meta: The What, the How, and the Why
Not? - Essays Dedicated to Bernhard Steffen on the Occasion of His 60th Birthday.
LNCS, vol. 11200, pp. 372–389. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-22348-9 22

https://doi.org/10.1145/258077.258078
https://doi.org/10.1145/258077.258078
https://doi.org/10.1109/SEAMS.2019.00018
https://doi.org/10.1016/j.tcs.2006.07.005
https://doi.org/10.1016/j.jlamp.2016.09.008
https://doi.org/10.1016/j.jlamp.2016.09.008
https://doi.org/10.1007/978-3-319-60030-7
https://doi.org/10.1007/3-540-34874-3_1
https://doi.org/10.1007/s10009-020-00555-2
https://doi.org/10.1007/978-3-030-22348-9_22
https://doi.org/10.1007/978-3-030-22348-9_22

188 W. Reisig

10. Reisig, W.: Associative composition of components with double-sided interfaces.
Acta Inf. 56(3), 229–253 (2019). https://doi.org/10.1007/s00236-018-0328-7

11. SAP: Standardized technical architecture modeling: conceptual and design level
(2007)

12. Weske, M.: Business Process Management - Concepts, Languages, Architectures,
2nd edn. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28616-2

13. Wirsing, M.: Algebraic specification: Semantics, parameterization and refinement.
In: Formal Description of Programming Concepts, pp. 259–318 (1989)

https://doi.org/10.1007/s00236-018-0328-7
https://doi.org/10.1007/978-3-642-28616-2

Degrees of Autonomy in Coordinating
Collectives of Self-Driving Vehicles

Stefano Mariani and Franco Zambonelli(B)

Department of Sciences and Methods of Engineering,
University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy

{stefano.mariani,franco.zambonelli}@unimore.it

Abstract. Our streets will be soon populated by multitudes of self-
driving vehicles, calling for appropriate solutions to coordinate their col-
lective movements in order to ensure safety and efficiency. In this paper,
after introducing the general issues associated to coordination of self-
driving vehicles, we show that a key engineering issue is identifying the
most suitable degree of autonomy in decision making that should be left
to vehicles during the coordination process. This issue also includes the
possibility, depending on factors such as traffic conditions or the need
to enact specific mobility policies, to dynamically adjust such degree of
autonomy and thus the adopted coordination scheme. This introduces
many theoretical and practical challenges in modelling self-driving vehi-
cles coordination schemes and in their rigorous engineering, as in the
case of intersection crossing, analysed in the paper.

Keywords: Self-driving vehicles · Coordination · Autonomy ·
Intersection crossing

1 Introduction

Autonomous self-driving vehicles will soon populate our streets [8]. Besides the
advantage of relieving us from the duty of driving and paying attention, thus
making it possible to exploit travel time in other activities, self-driving vehi-
cles will bring further important benefits. They will reduce crashes, now mostly
due to bad human behaviours and human errors, most likely saving millions
of injuries and lives. They will notably reduce the number of circulating vehi-
cles and, also thanks to route optimisation, will definitely reduce traffic and
pollution [22]. Moreover, they will pave the way for a number of innovative solu-
tions in the provisioning of mobility services [30], to serve our needs with much
greater levels of quality and efficiency than today: car sharing, where fleets of
autonomous vehicles (whether provided by public actors or by private compa-
nies) will be available to serve our urban mobility needs; personalised public
transport and ride sharing, where autonomous vehicles and buses can dynami-
cally gather people based on their actual required routes; smart and more effec-
tive parking approaches, in that autonomous vehicles can search for parking
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 189–204, 2020.
https://doi.org/10.1007/978-3-030-61470-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_12

190 S. Mariani and F. Zambonelli

slots based on criteria different from the “very soon and very close” one that
we human usually adopt, and exploiting additional information that they might
have.

The current focus of industrial and applied research in the area is on the
methods and tools to enable individual vehicles to hit the road safely, there
including rigorous engineering approaches based on formal specification and
verification languages and models [34]. However, to get full advantage of self-
driving vehicles, a number of situations will compulsory require coordinating the
relative activities and movements of vehicles [1,31]. Examples of very diverse
situations that require a proper and careful coordination amongst collectives of
vehicles include: crossing intersections, entering a motorway, platooning, organ-
ising urban deployment and rides for fleets of ride/car-sharing vehicles, trying
to improve parking occupancies and reduce parking times. Effectively support-
ing such coordination implies devising effective mechanisms and strategies to
support coordination activities.

In this paper, we overview the key issues associated to the coordination of
autonomous self-driving vehicles, and the possible approaches to attack the prob-
lem, with a specific focus on the problem of intersection crossing. We show that
the different approaches to the problem are characterised by different degree of
autonomy in decision making that is left to individual vehicles during the coor-
dination process (not to be confused with the “level of autonomy” in driving
as defined in [14]). Following, we argue that a single approach can hardly suit
all possible situations. On this base, we also introduce the concept of adjustable
autonomy in coordination, and discuss the many issues associated with the rig-
orous engineering of the behaviour of self-driving collectives based on adjustable
autonomy. Finally, we also discuss additional general research challenges in the
engineering of collectives of self-driving vehicles.

The paper is organised as follows. Section 2 characterises the problem of coor-
dinating collectives of self-driving vehicles according to a taxonomy of coordina-
tion problems and analyses the spectrum of possible solutions; Sect. 3 focusses
on the specific case of intersection crossing; Sect. 4 introduces and analyses the
concept of adjustable autonomy in coordination; Sect. 5 introduces additional
research challenges and Sect. 6 concludes the paper.

2 Coordinating Collectives of Self-Driving Vehicles

The problem of coordinating a collective of self-driving vehicles can be modelled
as a decision making process, involving vehicles themselves and possibly some
infrastructural entities, aimed at orchestrating vehicles’ actions so as to achieve
a goal which cannot be achieved, or not optimally, by each vehicle in isolation.

Depending on the specific nature of the coordination problem, the goal may
be: (i) shared among a collective of vehicles, such as allocating parking slots to
the vehicles of a company fleet, making the coordination problem collaborative, or
(ii) individual, and possibly contrasting with the ones of the other vehicles of the

Degrees of Autonomy in Coordinating Collectives of Self-Driving Vehicles 191

collective, such as finding a parking slot in the presence of multiple private cars
looking for a slot in the same zone, making the coordination problem competitive.

Independently of the specific problem, the issues to be faced by vehicles in
coordinating are associated to the fact that in order to achieve the coordination
goal, whether individual or shared, vehicles may have to: (i) acquire access to a
shared limited resource, such as a shared intersection, calling for the coordination
process to safely regulate such access according to specific strategies and rules;
(ii) completing a specific task, such as bring a group of persons home, calling
for the coordination process to properly allocate to vehicles the responsibilities
and actions required to achieve such task.

The above characterisation of the problem of coordinating collectives of self-
driving vehicles fits well the general characterisation of coordination problems in
the areas of distributed systems [10] and multiagent systems [25]. Likewise, coor-
dination has to satisfy the following general properties, often subject to formal
verification: safety, expressing that “something bad never happens” during the
coordination process, such as that two cars never crash while crossing an inter-
section; liveness, expressing that “something good eventually happens”, such as
that all cars will eventually manage to cross an intersection; quality, that is it
should solve the coordination problem in a way to optimise some specific quality
measure, such as the average or cumulative delay at which cars manage to cross
an intersection.

2.1 Overview of Coordination Problems

Intersection crossing is the most representative coordination problem in urban
areas, definitely the most studied in the literature, and the one we adopt as
case study in this article. Intersection crossing concerns the need of coordinating
vehicles while concurrently crossing intersections [29]. As such, it is a compet-
itive problem in which vehicles are self-interested agents willing to obtain the
right-of-way as soon as possible across the shared resource represented by the
intersection. A proper solution to intersection crossing should enable vehicles to
safely cross an intersection by avoiding collisions, eventually giving each vehicle
the right-of-way (liveness), while possibly minimising the average delay experi-
enced by vehicles in waiting the right-of-way (quality measure).

Smart parking is the problem of coordinating vehicles to have access to park-
ing resources [27]. It assumes a competitive form in the case of private vehicles
and a collaborative form in the case of “fleets” of vehicles made available by
private companies or municipalities. A solution to this problem requires safely
avoiding overbooking and starvation, whereas quality concerns the timeliness
and the distance at which parking is found.

Ride sharing is the problem of coordinating vehicles to collectively satisfy
“mobility tasks”, such as carrying people around [4]. As in the case of parking,
it has a competitive form for privately owned vehicles and a collaborative one
for fleets of vehicles belonging to the same owner. Here, safety concerns assign-
ing mobility requests only once whereas liveness amounts to guaranteeing that
no user is excluded. Quality may concern maximizing car usage and monetary

192 S. Mariani and F. Zambonelli

gains, or minimise waiting time and limit the walking distance, depending on
the perspective (users or owners).

Ramp merging deals with the task of entering and leaving highway ramps [29],
and requires a cooperative solution, as if the vehicles on the main lane are selfish,
those in the merging lane will starve (hence the system as a whole would fail
to achieve its goal), and if the selfish vehicles are those on the merging lane,
they could cause crashes for those on the main lane, or congestion by making
them slow down or change lane abruptly. Avoiding collisions and starvation
while minimising the time required to perform the task are the non-functional
properties to care about. Lane changing is an equivalent problem.

Platooning deals with the task of coordinating manoeuvres of vehicles so
that they travel altogether as a single entity, for instance by keeping the same
speed and relative positions [15]. As in ramp merging, vehicles in the platoon
have incentives to cooperate with each other. Safety again concerns avoiding
collisions, whereas liveness and quality mostly deal with preserving the platoon
while optimising measures such as fuel consumption or speed.

Traffic flow optimisation is the large-scale coordination problem subsuming
all the other ones, as it is meant to achieve a balanced exploitation of road
resources so as to limit traffic congestion [33]. The problem requires cooperative
solutions, as the routing plans that vehicles elaborate together can facilitate all
individual goals. Safety amounts to avoiding congestion and traffic jams, while
liveness amounts at routing vehicles so as to avoid loops and never-ending trips.
A quality metric could instead be the degree of balance in the exploitation of
the road network (measured by a density map) and the overall fluidity of the
traffic flow (measured by the throughput of selected roads).

2.2 Coordination Solutions and Decision Making Autonomy

Independently of the specific coordination problem addressed, approaches to
tackle it can be classified in terms of the degree of autonomy in decision making
left to vehicles during the coordination process.

By “degree of autonomy in decision making” we refer to the extent to which
vehicles can decide their own course of actions by themselves while coordinating.
Such decision of course can be based on information acquired by vehicles about
the current state of the affairs, information that can be obtained by the vehicles’
own sensors, by road-side infrastructural elements, or from the other vehicles
participating in the coordination process.

By definition, in any coordination process, the entities to be coordinated
cannot act completely freely, and must undertake actions that account for the
actions of the other entities involved in the process [10]. Thus, there is never
full autonomy and freedom. However, different approaches to coordination may
leave to entities different degrees of freedom in their decision making, i.e., in
selecting the actions to perform during the process. Hence, the degree of auton-
omy may range from fully externally imposed actions (lowest autonomy) to fully
self-determined action (highest autonomy), with a direct impact on the difficulty

Degrees of Autonomy in Coordinating Collectives of Self-Driving Vehicles 193

Fig. 1. Coordination approaches and level of autonomy in decision making.

of applying rigorous engineering techniques such as formal specification and ver-
ification. In particular, as depicted in Fig. 1, we can identify four main classes
of coordination approaches centred around the concept of degree of autonomy:
centralised, negotiation-based, agreement-based, and emergent.

In Centralised approaches the burden of coordination, that is, the decision
making determining the outcome of the coordination process, is entirely charged
upon an individual computational entity, i.e., a coordinator, whose decisions on
how everyone should act are undebatable, and to whom vehicles must abide by
design without any autonomous decision making left to them. A traditional traf-
fic light exemplifies the role of such centralised coordinator. We emphasise that
the term “centralised” here refers to the decision making process, not to the
actual computing infrastructure supporting it, which can include for instance
distributed processing of information by multiple sensors/cameras and/or ser-
vices to perform reasoning in the Cloud.

In Negotiation-based approaches the burden of coordination is distributed
amongst the ensemble of coordinating vehicles, who participate in a specific
negotiation protocol, typically inspired by economic mechanisms. In a negotia-
tion protocol, the vehicles involved can “propose” solutions and actions, each
according to its own internal strategy and its own situation and goals, amongst
a set of admissible moves dictated by the protocol at each step. If properly
designed, the protocol will eventually guarantee the convergence towards an
equilibrium solution, determining who (i.e., which vehicle) should do what, and
when, to solve the coordination problem. Most representative negotiation proto-
cols are: Contract Net, for collaborative problems, and auctions, for competitive
ones [18].

In Agreement-based approaches vehicles participate in a dynamic protocol
defined by themselves in a collective way, in a sort of dynamic meta-coordination
process whose outcome is both the set of admissible moves, now jointly defined,
and possibly even a re-determination of the goals to be achieved during the
coordination process. The distinguishing feature here is the ability of agents
to collectively define the protocol itself, that is, the goal to pursue and their
strategy to make moves. Examples of these dynamic protocols include those
based on argumentation [28], where involved entities discuss and argue together
to reach a common perspective on situations, goals, and solutions, and distributed

194 S. Mariani and F. Zambonelli

constraint optimisation [19], where agents try to collectively find a solution to
an optimisation problem.

In Emergent approaches vehicles do not explicitly engage in any coordina-
tion protocol, thus do not even share the goal of reaching a common agreement.
Rather, every vehicle behaves in a selfish way according to its goals and to
maximise utility of actions w.r.t. the goals, and according to the perceptions it
collects about other participants to the coordination process. It is worth empha-
sising that this does not contrast with the achievement of a systemic, shared
goal: for instance, in ant colonies, individual ants pursue their own goal of trav-
elling between the nest and the food source as quickly as possible, but depositing
pheromone while doing so (an innate behaviour, not a coordination act) deliv-
ers the systemic goal of finding the shortest path despite disruption (e.g. due
to adverse weather). Examples include: game theoretic approaches [24], where
explicit communication is lacking, each vehicle merely assumes rationality of
others, and computes its own course of actions based on informed guesses about
others’ expected behaviour; and self-organising algorithms [20], typically nature-
inspired, where vehicles act in a purely reactive way, based on the implicitly
perceived presence and state of other vehicles, typically expressed via “traces”
in the environment, such as virtual pheromones or virtual computational fields.

3 The Case of Intersection Crossing

Today, intersection crossing is managed either by a central controller, the traffic
light, or by imposing to vehicles (i.e., to their drivers) pre-defined coordination
rules to be obeyed, such as stop at sign or give right-of-way to vehicles coming
from the right.

In the future, thanks to self-driving vehicles, it will be possible to conceive
a variety of innovative solutions, safer and more efficient, eventually making
traffic lights and stop signs obsolete. Based on the classification of coordination
solutions along the level of autonomy in decision making, let us now overview
the variety of such solutions.

3.1 Centralised

Centralised approaches to intersection crossing assume the existence of a compu-
tational central authority, the intersection manager, bearing alone the burden of
decision making. It is typically in charge of: (i) receiving information from vehi-
cles approaching the intersection (i.e., origin, destination, speed); (ii) elaborating
a set of collision free trajectories enabling vehicles to safely cross the intersection,
which may require some vehicles to slow down or change lane; and (iii) instruct-
ing, or directly commanding, the vehicles about what to do, or informing them
about what constraints they must abide to while crossing the intersection. Cen-
tralised approaches are usually the easiest to rigorously engineer, as the whole
coordination algorithm is executed by a single component amenable of formal
verification, without vehicles autonomy to hinder the process.

Degrees of Autonomy in Coordinating Collectives of Self-Driving Vehicles 195

Examples of centralised proposals to intersection crossing include [40], which
attack the problem in terms of a traditional mutual exclusion approach, and [16],
in which the authors propose a control algorithm implementing a nonlinear con-
strained optimisation in charge of computing the best moves for every vehicle
and then directly manipulating vehicles’ driving parameters. A similar stance is
taken in [41], where cooperative adaptive cruise control is exploited for intersec-
tion crossing by assuming that a smart controller device placed in the intersection
can communicate with incoming vehicles to instruct them about the actions to
perform.

Other approaches are a little more permissive and let the inbound vehicles
decide how to fulfil a set of constraints set by the intersection manager, which
may regard the time slot assigned for crossing, as in the work by Dresner and
Stone [7]: the authors propose a reservation-based approach in which incoming
vehicles request assignment of a time slot for crossing to the intersection man-
ager, who computes decisions based on a local control policy.

In general terms, all the above approaches ensure safety and avoid starvation
by giving every vehicles the possibility to cross the intersection. Most impor-
tantly, simulations show that such approaches dramatically reduce the waiting
time for vehicles with respect to traditional approaches based on stop signs or
traffic lights [7], because: (i) the occupancy of the intersection is maximised and
(ii) vehicles from different directions can cross the intersection without waiting,
provided they are not in direct collision—i.e., they occupy different portions of
the intersection, or occupy the same portion at different times.

A problem of centralised approaches is requiring the presence of a dedicated
infrastructural element (the intersection manager) and the capability of vehicles
to interact with it at all times. Thus, they can hardly be applicable in the wild.
Also, such a central authority is an obvious bottleneck for both performance and
tolerance to failures. A recent proposal [36] suggests the possibility for vehicles
to be engaged in a leader election algorithm, to elect a transient leader vehicle
in charge to act as intersection manager for a predefined amount of time.

3.2 Negotiation-Based

In negotiation-based approaches, vehicles are required to actively participate in
a protocol aimed at establishing in which order vehicles will gain access to the
intersection. Such protocol, given the competitive nature of the problem, can take
the form of an auction. In approaching the intersection, vehicles may contact
an intersection manager or a broker temporarily elected amongst themselves,
by placing a “bid”, that is, by making an offer to “buy” the portions of the
intersection they require for crossing, for the time required to cross. The value
of the bid expresses the urgency of the vehicle in crossing, it is autonomously
set by each individual vehicle according to its own strategy, and can correspond
to some real-world currency or some sort of “road credits” assigned to vehicles.
The broker collects the bids, gives the right-of-way to the set of vehicles that are
in a collision free trajectory and, amongst those that are in collision, to the ones
having placed the highest bid.

196 S. Mariani and F. Zambonelli

Examples of auction-based protocols for intersection crossing are described
in [38], [6], and [5]. There, different policies to resolve the auction are analysed,
based on different strategies put in place by the bidding vehicles, as well as differ-
ent strategies by the broker in establishing the winners. Such strategies can also
attempt at incentivising fair bidding while discouraging malicious behaviours.

Auction-based mechanisms, with slight variations depending on the adopted
strategies, generally exhibit performances comparable and at times superior to
that of centralised ones: the waiting time of vehicles is dramatically lower than
that of traditional traffic lights. Safety is ensured provided that vehicles respect
the “rules of the game”, and accept waiting when losing the auction. A problem
intrinsic to any auction mechanism concerns liveness, that is, the property of
having every vehicle achieve its goal without starvation, in that the strategy of
bidding vehicles can sometimes make others to experience indefinitely long wait-
ing times. Also, if implemented through a dedicated intersection manager acting
as broker, they inherit the “bottleneck” drawbacks of centralised approaches.

3.3 Agreement-Based

Intersection crossing with agreement techniques essentially amounts to give vehi-
cles approaching an intersection the possibility to interact so as to affect each
others’ original goals (e.g., directions) and priorities.

An example proposal, specifically conceived in the context of bimodal traffic
(vehicular plus public transport), is discussed in [3]. There, agreement between
vehicles happens through a repeated communication protocol running between
approaching vehicles and buses, with the assistance of an heterogeneous pool
of agents representing conflicting goals, such as the need to minimise private
vehicles travel time while prioritising public transportation. Depending on both
macro and micro scale criteria, in fact, the agents participating in the protocol
may decide to prioritise, hence, ultimately, giving right-of-way to, either private
traffic or public transportation, as a result of a conflict resolution protocol.

Another interesting approach models intersection crossing as a Distributed
Constrained Optimisation Problem (DCOP) [39], that is, interpreting vehicles as
a multi-agent system in which agents have to find an agreement about the best
solution possible to a dynamic set of shared constraints. This kind of modelling
lends itself to a distributed implementation, where each vehicle interacts in a
peer-to-peer way with the neighbouring ones to solve a local problem, that is,
DCOP limited to those vehicles actually approaching the intersection. For doing
so, the involved agents actually resort to a messaging protocol to exchange their
current solutions as they try to adjust their individual values to converge to a
feasible (hopefully, optimal) solution.

Finally, let us mention the approach we envisioned in [17], which proposes to
adopt argumentation technologies. In particular, we suggest vehicles can engage
in open dialogues while approaching the intersection, discussing their beliefs
about the best way to approach the intersection, and in case of conflicting
needs, arguing with each other about possible ways to avoid that conflict. During

Degrees of Autonomy in Coordinating Collectives of Self-Driving Vehicles 197

the dialogue, vehicles can change the argumentation strategy, and may evaluate
assertions differently based on the dynamic contingencies arising in the mean-
time. For instance, a vehicle A approaching the intersection in the north-to-south
direction can express arguments about its urgency to cross, and can argue that
another vehicle B in the east-to-west direction (and thus conflicting with A)
could/should decide to cross right, as that move would make B reach destina-
tion anyways, but would avoid the conflict with A. Persuaded by solidity of A’s
argument, B could eventually decide to turn right. Although still at the con-
ceptual level, an argumentation-based approach to intersection crossing shows
potential for greater flexibility and adaptivity in facing unforeseen situations.
In addition, the power of argumentation approaches in the area of autonomous
driving is advocated also by other conceptual proposals as a way to solve conflicts
and increase trustworthiness and safety of decisions [9].

3.4 Emergent

Handling intersection crossing with coordination by emergence implies giving
absolute freedom to vehicles in choosing how to cross intersections, with the only
constraints of acting in a safe way and avoiding starvation. To this end, one can
let vehicles either: (a) play a selfish game where each agent attempts to maximise
its expected utility in crossing despite other agents’ needs and goals [24]; or (b) be
engaged in an implicit, self-organising coordination scheme, where each vehicle
responds in a reactive way to the actions of the other agents, according to some
sort of “natural laws” enforced in the intersection “ecosystem” [26]. In both
cases, coordination does not consider an explicit agreement about what to do.

In [21], the authors interpret the intersection crossing problem using game
theory, that is, modelling each vehicle as the player of a game involving other
approaching vehicles, each playing its own game, thus each having different pay-
offs and utility models—that is, essentially, each player is unaware of the formali-
sation of the game others are playing. The proposed approach investigates how to
build decision matrices in such a way that minimal information can be assumed
by agents while still being able to find a solution for their own game—that is,
a safe way to cross the intersection in the lowest possible time. Alternatively, it
is possible to model the collective behaviour of vehicles at intersections in terms
of a self-organised collective movement, similar to that of flocking birds [35].

Actually deploying autonomous vehicles that cross intersections by relying
on such approaches seems hardly feasible, as delivering guarantees about safety
and liveness may be prohibitively difficult or impractical in the general case of
emergent approaches to coordination, because these approaches often exploit
stochastic decision making and partial, local information. Possibly, however, in
mixed scenarios with the presence (as discussed in Subsect. 5.3) of non connected
human-driven vehicles, emergent approaches can be the only solutions for indi-
vidual vehicles to coordinate with each other.

198 S. Mariani and F. Zambonelli

4 Adjustable Autonomy

In previous section, for the specific coordination problem of intersection crossing,
we have presented different approaches based on a different degree of autonomy
left to vehicles. The selection of the best strategy, though, may depend on the
specific current traffic situation at an intersection, and a single solution can
hardly handle all possible situations optimally. For instance, in the case of inter-
section crossing:

– A solution based on distributed negotiation or argumentation between vehi-
cles can be very effective in rather low traffic situations, when the number of
vehicles involved in such negotiations is quite low, thus a collective outcome
can be reached quickly because the number of messages to exchange even in
the case of completely connected topology would remain low.

– In the case of congested traffic situations, with a large number of vehicles
involved, reaching a shared agreement can be harder and induce notable over-
head and delay in communications. Also, in the case of auctions, it can induce
inflationary effects on the bids. In these situations, thus, on the one hand it
could be more appealing to rely on centralised solutions so as to reduce the
complexity of communications (e.g. bandwidth consumption), on the other
hand emergent ones may further help avoiding the bottleneck of having a
single point of failure while still keeping communication costs low.

– Emergent approaches can possibly work both in very low-traffic situations
and in highly congested ones, as mentioned above, for their capacity to scale
seemingly with the scale of the problem (e.g. as regards communication costs
and computational complexity of the protocol), but further experiments are
needed to confirm this opportunity.

– Likely, as discussed in [13], it can be necessary for different intersections to
adopt different coordination schemes at different times in order to support
traffic flow optimisation.

Similar issues can apply also to other classes of coordination problems. For exam-
ple, consider the need to coordinate vehicles in order to optimise the usage of
parking slots. In general, a centralised parking scheme that works well to let
the city governance control the distribution of parked vehicles, may fall short in
the presence of a high number of vehicles by inducing notable delays in parking.
In this case it is better to switch to an approach that lets individual vehicles
negotiate for parking slots according to their own preferences.

All the above considerations suggest the possibility, for coordinating vehicles
to properly enforce safety, liveness, and to maximise quality in coordination,
to dynamically switch from one coordination scheme to another upon changing
conditions. Indeed, many municipalities already often adopt a similar dynamic
adaptation of the scheme to regulate intersection crossing: the traffic lights that
regulate access to an intersection during the day (i.e., in situations of expected
intense traffic) are switched off at night (expected low traffic) to let vehicles
directly coordinate with each other.

Degrees of Autonomy in Coordinating Collectives of Self-Driving Vehicles 199

In the area of robotics and multiagent systems the theme of “coordination
with adjustable autonomy” [23] (sometimes referred to as “flexible autonomy”,
also [11]) has been extensively discussed, either referring to the fact that, at
times, a human actor may wish to reclaim autonomy in decisions from agents
or robots [32], or to the fact that (as in our scenario) specific conditions may
require to dynamically switch the coordination scheme [37].

In the real world, and in the context of safety-critical situations such as
those involving the coordination of autonomous vehicles, though, designing and
realising such dynamic switch in a rigorous and reliable way can be conceptually
and technically very hard, and requires facing several challenges. In particular:

– For evaluating the switch to a different coordination scheme, there is the need
of well-defined metrics and background knowledge to evaluate which situation
fits which coordination scheme. This requires extensive simulations and real-
world experiences to compare the effectiveness of different schemes in different
situations. For instance, based on the description of the different autonomy
classes and their representative protocols, it is likely that factors to consider
while deciding which scheme to adopt include (i) raw performance aspects,
such as the number of messages exchanged and the number of iterations the
protocol needs to converge (both tend to increase with decentralisation), as
well as (ii) accounting for the amount of information needed for the protocol
to work, such as whether it needs global information (for which a centralised
approach may be the only reliable option) or not, and finally (iii) liability
issues, to establish individual responsibilities in case something bad happens
(the more autonomy vehicles have, the less an individual responsible is likely
to be found). Whether for performance we might already have the right tools
to rigorously measure it, the same does not hold for the information and
liability aspects, which remain open issues.

– Identifying the situation for a switch requires continuous detailed monitoring
of the traffic situation and of the effectiveness of the coordination process.
Also, predictive monitoring techniques should be adopted, to let the switch
take place before a degradation of quality in coordination occurs. This obvi-
ously implies having means to precisely measure coordination effectiveness,
which as far as we know are not widely established, yet.

– Deciding the actual process by which the switch should be decided and
enacted. In other words, the vehicles and/or the centralised manager involved
in coordination should agree on the switch and on the actions by which to
actually perform it. That is, there must be a meta-coordination protocol
taking place for the switch to a different coordination scheme. This could
again rely on a centralised controller to decide and enact it, or on vehicles
negotiating/agreeing with each other on how and when to switch, as it may
be required in the absence of infrastructures supporting the existence of a
centralised controller. Hence, the same considerations we made for the coor-
dination protocols regarding performance and autonomy trade-offs, will apply
to this meta-coordination layer, too, further complicating the open challenge
of deciding when to switch.

200 S. Mariani and F. Zambonelli

All of the above, should lead to solutions with provable properties of stability
and with provable convergence times. We do not have solutions ready to use to
propose here, but certainly the vast amount of literature on adjustable autonomy
can suggest useful research directions.

5 Additional Research Challenges

Let us now introduce a few additional general challenges, i.e., issues con-
cerning vehicles coordination beside the specific case of intersection crossing.
Autonomous vehicles can hardly be deployed in the real-world and start coordi-
nating without also identifying rigorous solutions to these challenges.

5.1 Systemic Coordination

So far, we discussed the issue of coordination mostly at the level of individual,
isolated systems, such as a single intersection. However, thinking at a more
systemic level, such as at urban scale, coordination actions in one part of the
system may indeed impact other parts of the system. For example, queues at
an intersection can induce queues at nearby intersections, or a slow down in
a motorway due to an intense flux of traffic in an entering lane can quickly
propagate backwards to impact previous entering lanes.

The inter-related effects of individual coordination acts along with the need to
respect global level policies imply that the solutions and the policies adopted to
solve an individual coordination problem cannot be designed without accounting
for the systemic impact of such solutions and policies. In other words, the level of
individual coordination must be coupled with a co-coordination one, in which an
agreement at the global level is reached on how to act, that is, according to which
policies and constraints, at the local level. In the area of autonomous vehicles, a
few works exist that handle such systemic problems. For instance, [38] analyses
how global coordination of intersections can be achieved by trying to affect, at
the local level, the choices of individual vehicles. A similar analysis is presented
in [13]. In different fields such as logistics, energy management, robotics, and
multi-agent systems, a variety of mechanisms have been proposed for coordina-
tion in large-scale systems of systems: hierarchical mechanisms, market-based,
self-organising [25]. Such mechanisms can be a source of inspiration for the field
of autonomous vehicles as well, but would also call for tools to enable accurate
simulation and prediction of the global impacts of coordination solutions.

5.2 Intersection Markets

Today, while driving, we are already used to pay for the usage of infrastruc-
tures such as parking slots, bridges, motorways. However, these payments are
based on static pricing schemes and offer a neutral service. If, as in negotiation-
based solutions, vehicles can dynamically request access to intersections, or to

Degrees of Autonomy in Coordinating Collectives of Self-Driving Vehicles 201

other road infrastructures such as parkings and motorways, and pay them auto-
matically, it may become possible for the manager of such infrastructures to
impose dynamic pricing mechanisms, based on the current demand. Doing so
implies that a vehicle, while starting its ride, may have no a priori idea about
how much it will eventually cost. Also, this opens up the way for imposing fees
on intersection crossing, imposing payments for crossing busy intersections with
fees varying depending on traffic and time-to-wait.

The mechanisms of dynamic payments could also enable a model in which
passengers can decide to pay more to get better services, e.g., crossing an inter-
section quickly, breaking the current neutrality of road infrastructures. In the
future, such mechanisms could become based on a real auction with real money,
with the consequence that vehicles whose owners/drivers/passengers have higher
budget will always bid higher and buy priority in crossing the intersection, while
vehicles whose owners/drivers/passengers have lower budget will risk starva-
tion. The above issues, other than calling for proper algorithmic solutions to
avoid unfairness or inflationary effects, also call for the definition of suitable reg-
ulations to avoid mobility becoming a privilege, and suitable means to integrate
such regulation into a coordination scheme.

5.3 Mixed Scenarios

This article assumes that all the cars are fully autonomous, or at least that they
act and interact autonomously with each other during the coordination act. This
can match a not-so-near future when we can expect that human-driven cars will
no longer exist or when, for safety and efficiency reasons, it will be forbidden
for humans to drive but in specific controlled situations: the same as today, for
instance, it is forbidden to ride a horse in motorways and high-speed roads.
However, there will be a rather long transition phase in which our streets will
be populated by a mixture of fully autonomous cars, partially autonomous ones,
and traditional human-driven cars, other than bicycles and motorbikes. Such a
scenario clearly challenges the possibility of relying on the surveyed coordination
schemes, unless one devises dependable means to involve human-driven cars (that
is, their human drivers) in the process of coordination, and suitable means to
formalise and ensure properties in such mixed scenarios.

These scenarios have several characteristics in common with the issue of coor-
dinating the movements of mixed teams of robots and humans, which has been
extensively analysed in the context of robotics and autonomous systems [12],
but assumes the existence of means for robots and humans to communicate with
each other. Also, designing a coordination scheme according to the solutions
discussed in this article would require accounting for the possible inaccuracy of
actions by human-driven cars, and possibly for the presence of non-connected
vehicles (e.g. bicycles) whose behaviour cannot be rigorously predicted. For this
latter case, emergent approaches to coordination could provide solutions, though
possibly much less effective.

202 S. Mariani and F. Zambonelli

6 Conclusions

For future autonomous vehicles to populate our streets, it will be necessary to
identify rigorous solutions for coordinating their relative movements in order to
let them circulate safely and without conflicts and crashes. In this article, we
focussed on the problem of crossing intersections, and showed how a variety of
solutions can be conceived, each characterised by a different level of autonomy
in decision making left to vehicles during coordination.

Selection of the appropriate solution to handle intersection crossing will
require proper modelling of the problem and of the domain, other than rig-
orous approaches to analyse and compare the different solutions, in order to
select the most appropriate one depending on the context. Furthermore, it will
require addressing a number of additional challenges that represent promising
directions for future research.

Finally, but this problem would require a full analysis on its own, the safety-
critical nature of autonomous vehicles will possibly require them to solve ethical
dilemmas while coordinating with each other, e.g., multi-vehicle instantiations of
the trolley problem [2], which raises the additional issue of somewhat engineering
a sort of moral dimension for vehicles.

References

1. Abeywickrama, D.B., Mamei, M., Zambonelli, F.: Engineering collectives of self-
driving vehicles: the SOTA approach. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11246, pp. 79–93. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03424-5 6

2. Awad, E., et al.: The moral machine experiment. Nature 563(7729), 59 (2018)
3. Balbo, F., Bhouri, N., Pinson, S.: Bimodal traffic regulation system: a multi-

agent approach. Web Intell. 14(2), 139–151 (2016). https://doi.org/10.3233/WEB-
160336

4. Bicocchi, N., Mamei, M., Sassi, A., Zambonelli, F.: On recommending opportunistic
rides. IEEE Trans. Intell. Transp. Syst. 18(12), 3328–3338 (2017). https://doi.org/
10.1109/TITS.2017.2684625

5. Cabri, G., Gherardini, L., Montangero, M.: Auction-based crossings management.
In: Proceedings of the 5th EAI International Conference on Smart Objects and
Technologies for Social Good, GoodTechs 2019, pp. 183–188. ACM, New York
(2019). https://doi.org/10.1145/3342428.3342689

6. Carlino, D., Boyles, S.D., Stone, P.: Auction-based autonomous intersection man-
agement. In: 2013 16th International IEEE Conference on Intelligent Transporta-
tion Systems-(ITSC), pp. 529–534. IEEE (2013)

7. Dresner, K., Stone, P.: A multiagent approach to autonomous intersection man-
agement. J. Artif. Intell. Res. 31, 591–656 (2008)

8. Fagnant, D.J., Kockelman, K.: Preparing a nation for autonomous vehicles: oppor-
tunities, barriers and policy recommendations. Transp. Res. Part A Policy Pract.
77, 167–181 (2015)

9. Fridman, L., Ding, L., Jenik, B., Reimer, B.: Arguing machines: human supervision
of black box AI systems that make life-critical decisions (2017)

https://doi.org/10.1007/978-3-030-03424-5_6
https://doi.org/10.1007/978-3-030-03424-5_6
https://doi.org/10.3233/WEB-160336
https://doi.org/10.3233/WEB-160336
https://doi.org/10.1109/TITS.2017.2684625
https://doi.org/10.1109/TITS.2017.2684625
https://doi.org/10.1145/3342428.3342689

Degrees of Autonomy in Coordinating Collectives of Self-Driving Vehicles 203

10. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM 35(2), 96–107 (1992). https://doi.org/10.1145/129630.376083

11. Gerber, C., Siekmann, J., Vierke, G.: Flexible autonomy in holonic agent systems.
In: Proceedings of the 1999 AAAI Spring Symposium on Agents with Adjustable
Autonomy. AAAI (1999)

12. Goodrich, M.A., Schultz, A.C., et al.: Human-robot interaction: a survey. Found.
Trends Hum. Comput. Interact. 1(3), 203–275 (2008)

13. Hausknecht, M., Au, T.C., Stone, P.: Autonomous intersection management: multi-
intersection optimization. In: 2011 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pp. 4581–4586. IEEE (2011)

14. International, S.: Taxonomy and definitions for terms related to driving automation
systems for on-road motor vehicles, June 2018

15. Jia, D., Lu, K., Wang, J., Zhang, X., Shen, X.: A survey on platoon-based vehicular
cyber-physical systems. IEEE Commun. Surv. Tutorials 18(1), 263–284 (2016).
(Firstquarter). https://doi.org/10.1109/COMST.2015.2410831

16. Lee, J., Park, B.: Development and evaluation of a cooperative vehicle intersection
control algorithm under the connected vehicles environment. IEEE Trans. Intell.
Transp. Syst. 13(1), 81–90 (2012). https://doi.org/10.1109/TITS.2011.2178836

17. Lippi, M., Mamei, M., Mariani, S., Zambonelli, F.: An argumentation-based per-
spective over the social iot. IEEE Internet Things J. 5(4), 2537–2547 (2018).
https://doi.org/10.1109/JIOT.2017.2775047

18. Lopes, F., Wooldridge, M., Novais, A.Q.: Negotiation among autonomous compu-
tational agents: principles, analysis and challenges. Artif. Intell. Rev. 29(1), 1–44
(2008)

19. Maheswaran, R.T., Tambe, M., Bowring, E., Pearce, J.P., Varakantham, P.: Tak-
ing DCOP to the real world: efficient complete solutions for distributed multi-
event scheduling. In: Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems-Volume 1, pp. 310–317. IEEE Com-
puter Society (2004)

20. Mamei, M., Menezes, R., Tolksdorf, R., Zambonelli, F.: Case studies for self-
organization in computer science. J. Syst. Architect. 52(8–9), 443–460 (2006)

21. Mandiau, R., Champion, A., Auberlet, J.M., Espié, S., Kolski, C.: Behaviour based
on decision matrices for a coordination between agents in a urban traffic simulation.
Appl. Intell. 28(2), 121–138 (2008). https://doi.org/10.1007/s10489-007-0045-3

22. Menon, N., Barbour, N., Zhang, Y., Pinjari, A.R., Mannering, F.: Shared
autonomous vehicles and their potential impacts on household vehicle ownership:
an exploratory empirical assessment. Int. J. Sustain. Transp. 13, 1–12 (2018)

23. Mostafa, S.A., Ahmad, M.S., Mustapha, A.: Adjustable autonomy: a systematic lit-
erature review. Artif. Intell. Rev. 51(2), 149–186 (2017). https://doi.org/10.1007/
s10462-017-9560-8

24. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory.
Cambridge University Press, Cambridge (2007)

25. Omicini, A., Zambonelli, F.: Challenges of decentralized coordination in large-scale
ubicomp systems. In: Proceedings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, UbiComp Adjunct 2016, Heidelberg, Ger-
many, 12–16 September, 2016, pp. 1315–1320. ACM Press (2016)

26. Parunak, H.V.D., Brueckner, S., Sauter, J.: Digital pheromone mechanisms for
coordination of unmanned vehicles. In: Castelfranchi, C., Johnson, W.L. (eds.) 1st
International Joint Conference on Autonomous Agents and Multiagent systems,
vol. 1, pp. 449–450. ACM, New York, 15–19 July 2002 (2012)

https://doi.org/10.1145/129630.376083
https://doi.org/10.1109/COMST.2015.2410831
https://doi.org/10.1109/TITS.2011.2178836
https://doi.org/10.1109/JIOT.2017.2775047
https://doi.org/10.1007/s10489-007-0045-3
https://doi.org/10.1007/s10462-017-9560-8
https://doi.org/10.1007/s10462-017-9560-8

204 S. Mariani and F. Zambonelli

27. Polycarpou, E., Lambrinos, L., Protopapadakis, E.: Smart parking solutions for
urban areas. In: 2013 IEEE 14th International Symposium on “A World of Wire-
less, Mobile and Multimedia Networks” (WoWMoM). IEEE (2013). https://doi.
org/10.1109/WoWMoM.2013.6583499

28. Rahwan, I., Ramchurn, S.D., Jennings, N.R., Mcburney, P., Parsons, S., Sonenberg,
L.: Argumentation-based negotiation. Knowl. Eng. Rev. 18(4), 343–375 (2003)

29. Rios-Torres, J., Malikopoulos, A.: A survey on the coordination of connected and
automated vehicles at intersections and merging at highway on-ramps. IEEE Trans.
Intell. Transp. Syst. 18(5), 1066–1077 (2017). https://doi.org/10.1109/TITS.2016.
2600504

30. Röth, T., Pielen, M., Wolff, K., Lüdiger, T.: Urban vehicle concepts for the shared
mobility. ATZ Worldwide 120(1), 18–23 (2018). https://doi.org/10.1007/s38311-
017-0163-4

31. Sassi, A., Zambonelli, F.: Coordination infrastructures for future smart social
mobility services. IEEE Intell. Syst. 29(5), 78–82 (2014). https://doi.org/10.1109/
MIS.2014.81

32. Scerri, P., Pynadath, D., Tambe, M.: Adjustable autonomy in real-world multi-
agent environments. In: Proceedings of the Fifth International Conference on
Autonomous Agents, pp. 300–307. ACM Press (2001)

33. Seredynski, M., Bouvry, P.: A survey of vehicular-based cooperative traffic infor-
mation systems. In: 2011 14th International IEEE Conference on Intelligent Trans-
portation Systems (ITSC), pp. 163–168. IEEE, October 2011. https://doi.org/10.
1109/ITSC.2011.6083055

34. Seshia, S.A., Sadigh, D., Sastry, S.S.: Formal methods for semi-autonomous driving.
In: 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–5
(2015)

35. Toner, J., Tu, Y.: Flocks, herds, and schools: a quantitative theory of flocking.
Phys. Rev. E 58(4), 4828 (1998)

36. Tonguz, O.K.: Red light, green light–no light: Tomorrow’s communicative cars
could take turns at intersections. IEEE Spectr. 55(10), 24–29 (2018). https://doi.
org/10.1109/MSPEC.2018.8482420

37. van der Vecht, B., Dignum, F., Meyer, J.-J.C., Neef, M.: A dynamic coordination
mechanism using adjustable autonomy. In: Sichman, J.S., Padget, J., Ossowski,
S., Noriega, P. (eds.) COIN -2007. LNCS (LNAI), vol. 4870, pp. 83–96. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79003-7 7

38. Vasirani, M., Ossowski, S.: A market-inspired approach for intersection manage-
ment in urban road traffic networks. J. Artif. Int. Res. 43(1), 621–659 (2012)

39. Vu, H., Aknine, S., Ramchurn, S.D.: A decentralised approach to intersection traffic
management. In: IJCAI, pp. 527–533. AAAI Press (2018)

40. Wu, W., Zhang, J., Luo, A., Cao, J.: Distributed mutual exclusion algorithms for
intersection traffic control. IEEE Trans. Parallel Distrib. Syst. 26(1), 65–74 (2015).
https://doi.org/10.1109/TPDS.2013.2297097

41. Zohdy, I.H., Kamalanathsharma, R.K., Rakha, H.: Intersection management for
autonomous vehicles using iCACC. In: 2012 15th International IEEE Conference
on Intelligent Transportation Systems, pp. 1109–1114. IEEE, September 2012.
https://doi.org/10.1109/ITSC.2012.6338827

https://doi.org/10.1109/WoWMoM.2013.6583499
https://doi.org/10.1109/WoWMoM.2013.6583499
https://doi.org/10.1109/TITS.2016.2600504
https://doi.org/10.1109/TITS.2016.2600504
https://doi.org/10.1007/s38311-017-0163-4
https://doi.org/10.1007/s38311-017-0163-4
https://doi.org/10.1109/MIS.2014.81
https://doi.org/10.1109/MIS.2014.81
https://doi.org/10.1109/ITSC.2011.6083055
https://doi.org/10.1109/ITSC.2011.6083055
https://doi.org/10.1109/MSPEC.2018.8482420
https://doi.org/10.1109/MSPEC.2018.8482420
https://doi.org/10.1007/978-3-540-79003-7_7
https://doi.org/10.1109/TPDS.2013.2297097
https://doi.org/10.1109/ITSC.2012.6338827

Engineering Semantic Self-composition
of Services Through Tuple-Based

Coordination

Ashley Caselli1(B) , Giovanni Ciatto2(B) ,
Giovanna Di Marzo Serugendo1(B) , and Andrea Omicini2(B)

1 Centre Universitaire d’Informatique (CUI),
University of Geneva, Geneva, Switzerland

{ashley.caselli,giovanna.dimarzo}@unige.ch
2 Department of Computer Science and Engineering (DISI),
Alma Mater Studiorum—Università di Bologna, Cesena, Italy

{giovanni.ciatto,andrea.omicini}@unibo.it

Abstract. Service self-composition is a well-understood research area
focusing on service-based applications providing new services by auto-
matically combining pre-existing ones. In this paper we focus on tuple-
based coordination, and propose a solution leveraging logic tuples and
tuple spaces to support semantic self-composition for services. A full-
stack description of the solution is provided, ranging from a theoretical
formalisation to a technologically valuable design and implementation.

Keywords: Service self-composition · Semantic reasoning ·
Tuple-based coordination

1 Introduction

Nowadays an ever increasing number of IT scenarios leverages a services-based
architecture. These sorts of systems are modelled as a collection of heterogeneous
and loosely-coupled fine-grained processes, namely services, that communicate
among them. Arguably, the pervasive adoption of services-based architectures
will lead to an explosion in the number of services populating the Internet. In
other words, scalability issues are going to arise soon.

On the other hand, novel business opportunities are likely to become available
as the amount of services increases. In fact, the public availability of disparate
services is commonly a key enabler for the creation of secondary services built
on top of the pre-existing ones. To this end, effective techniques – such as service
composition – are required at the technical level, in order to reuse the available
functionalities. However, service composition sets many challenges from a sys-
tem administration perspective. The experience of developers, as well as their
careful work, is a necessary prerequisite for composition of services to be effec-
tive. Unfortunately, the effectiveness of human experts in tackling an increasing
number of services does not scale up linearly with the total amount of services.
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 205–223, 2020.
https://doi.org/10.1007/978-3-030-61470-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_13&domain=pdf
http://orcid.org/0000-0001-8492-0354
http://orcid.org/0000-0002-1841-8996
http://orcid.org/0000-0001-5048-5251
http://orcid.org/0000-0002-6655-3869
https://doi.org/10.1007/978-3-030-61470-6_13

206 A. Caselli et al.

To deal with these issues, a viable solution may be represented by automati-
cally handling the composition. To this end, approaches focused on the composi-
tion of the existing services have been proposed. The mechanism that combines
two or more basic services into a more complex one is known as service compo-
sition [17]. It aims at creating higher-level functionalities within the system by
leveraging the available resources.

The static nature of traditional approaches has been challenged by dynamic
service composition approaches [7], which range over syntax-based composition
to semantic-based composition and AI planning techniques. The adoption of
such approaches paved the way to the design of systems with innate autonomous
computational properties, such as self-adaptation and self-composition.

Many research works focus on coping with “challenging problem of compos-
ing services dynamically” [2]. Nevertheless, most of them solve it only partially:
to the best of our knowledge, most of the existing solutions to the dynamic ser-
vice composition challenge present limitations—e.g., syntax-based composition.
Other approaches, although well-designed and sound at a conceptual level, are
either discontinued or based on obsolete technologies [5].

This paper aims at providing a comprehensive tuple-based technology for
semantic self-composition of services. A self-composition model that promotes
and supports spontaneous service composition based on Linda [15] is proposed.
The solution supports semantic reasoning leveraging on logic tuples and Linda
tuple spaces. Moreover, a Java-based implementation of such model is also pro-
posed, relying on the recent TuSoW [6] technology for tuple-based coordination.

The remainder of this paper is organised as follows. Section 2 provides an
overview of the current approaches for service composition. Section 3 shows a
formal definition of the designed system in terms of its syntax and operational
semantics. The Java-based software architecture that implements the proposed
technology is shown in Sect. 4. Section 5 presents a case study in a formal way.
Finally, Sect. 6 concludes the paper by summarising the proposed solution.

2 State of the Art

2.1 Service Composition

Service composition is broadly known as the mechanism that combines two or
more basic services into a more complex one that provides higher-level function-
alities [17]. It deals with the needs of users to search for appropriate compositions
of services that meet the required processes [27].

Service composition approaches may be categorised in terms of many orthog-
onal properties. A possible grouping considers the composition policy: (i) syntax-
based: the matching among services is computed as mere equality operation on
the input/output parameters of the services; (ii) semantic-based: it requires a
taxonomy of concepts on which the composition process relies on to compute the
matches; and (iii) through AI-planning solutions: it concerns the task of finding
a course of action to reach a goal. From a different point of view, a composition
process may be defined as the outcome of two minor phases – i.e., selection and

Engineering Service Self-composition Through Coordination 207

binding –, hence a different grouping may be provided. A service composition
approach may then be defined as (i) static, when the binding occurs at design-
time; or (ii) dynamic, when the binding occurs either at deployment- or run-time.
Using a static approach, the compositions are built during the design of the sys-
tem (design-time), by the system designer that creates them once for all. This
approach leads to correct compositions but lacks of scalability and adaptability.
On the other hand, a dynamic approach ensures scalability and adaptability by
adding computational overhead to the system. Dynamic approaches differ in the
stage the binding phase occurs, which may be at (i) deployment-time, where the
service binding phase occurs each time a service shows up in the system; or at
(ii) run-time, where the binding occurs when a request is published.

Among these categories, we can mention the following works. From the
semantic web domain, Talib et al. [25] provide a semi-automatic method to
generate static web service composition in BPEL4WS language. Talantikite et
al. [24] present a model for automatic Web services discovery and composition
that exploits semantically annotated web services through an upper ontology
(i.e. OWL-S [20]). In the field of ambient intelligence, Vallee et al. [26] propose
an approach that combines multi-agent techniques with semantic web services
to enable dynamic, context-aware service composition. In the field of multi-
agent systems (MAS) approaches to self-composition usually involve planifica-
tion, where agents reason on their respective services and the user’s needs [14]. In
this area, works on self-composition of method fragments bring a more dynamic
solution based on cooperative agents, each representing a fragment and partici-
pating to the design of the fragments composition [3]. Using similar cooperative
principles, Degas [9] proposes a syntax-based composition approach with col-
laborative agents for dynamic composition of aerial plane trajectories. Other
approaches specifically involving chemical reactions for self-composition, possi-
bly include the followings. Frei et al. [13] propose the use of chemical reactions, in
the field of industrial robotics, to build self-organising assembly systems that par-
ticipate in their own design by spontaneously organising themselves. Di Napoli
et al. [11] show how a specified workflow can be instantiated using chemical
reactions. In the context of tuple spaces, Viroli [27] proposes a syntax-based
approach inspired by chemical reactions combined with the notion of compe-
tition among services. De Angelis [7] proposes a chemical-inspired model that
promotes syntax-based self-composition of services at run-time. To alleviate the
lack of semantics in the composition in [7], Ben Mahfoudh et al. [1] extend the
original tuple space model with learning-based capabilities, thus providing per-
tinent and reliable services to the user.

2.2 Linda and TuSoW

Linda [15] is the archetypal tuple-based coordination model [22], inspiring and
influencing a huge number of coordination models and technologies throughout
the years [5]. The main elements of Linda are tuples, templates, tuple spaces,
and communication primitives. A tuple is a piece of information represented
according to a well-defined tuple language, specifying the structure of admissible

208 A. Caselli et al.

tuples. A template is a concise way of representing a set of tuples: it consists of
a pattern, represented according to a particular template language, which may
be matched by several tuples. A tuple space is a repository where tuples may
be inserted, observed, or withdrawn by an arbitrary number of agents willing to
synchronise while being uncoupled in reference, space, and time. On purpose,
a communication primitive is an operation provided to interacting agents to
synchronise themselves upon tuples’ insertion, observation, and consumption.

Linda is characterised by a few peculiar features: (i) generative communi-
cation, that is, tuples existing independently of the agents who produced them;
(ii) associative access, namely, agents can access (i.e., observe or withdraw) the
tuples stored in a tuple space by simply specifying a template, without the need
of knowing the tuple “address” neither its “name”; and (iii) suspensive seman-
tics, that is, agents’ attempts of accessing a tuple matching a particular template
are suspended until a tuple of such a sort actually exists.

Linda provides three communication primitives: out to insert a tuple in a
tuple space, in to withdraw one, rd to read one. Despite their simplicity, such
primitives are expressive enough to cope with several common interaction pat-
terns [15]. Suspensive semantics, in particular, is the cornerstone of the coordina-
tion mechanism proposed by Linda, since it deals with synchronisation: whereas
the out primitive always puts a tuple in the tuple space, in and rd attempt to
get one based on a provided tuple template. If a tuple matching the template is
found, it is returned to the caller agent that can continue execution; otherwise,
the caller agent is suspended until a matching tuple becomes available.

Several variants of Linda have been proposed throughout the years, either
extending the set of communication primitives, adding features such as mobil-
ity or access control [8,21], enabling distribution of multiple tuple spaces on a
network of interconnected computers [12,19], and much more [23]. Nevertheless,
only a few have been developed as a technology [5]—and, among these, some
have already been exploited for service composition, as already discussed in the
related works section above.

TuSoW [6] is tuple-based technology for coordination for distributed agents
via Linda tuple spaces. It aims at providing a lightweight, modular, flexible, and
highly interoperable implementation of Linda. It is designed as a multi-platform
technology, making it suitable to be used by a wide community of developers in a
wide range of application domains. In particular, TuSoW coordination facilities
are provided to agents as-a-Service, via the HTTP protocol. For this reason we
chose it as reference technology in the remainder of this paper.

3 Formal Model

The proposed model formalises a system composed by a number of active entities
– namely, agents – acting as either service requesters (a.k.a. clients, or users),
or service providers (a.k.a. servers). Users and servers do not interact directly
but rather they interact by means of a Linda-like shared memory – that is, the
blackboard –, acting as a coordination medium.

Engineering Service Self-composition Through Coordination 209

The interaction among users and servers is based on a simple protocol. On
the one side, servers advertise their service descriptors by publishing them on the
blackboard, upon startup. After that, they keep listening for incoming requests
issued by users. As soon as a request is issued by some user, if a server exists
which is capable of serving that request, then it is triggered. The invoked server
must then execute its service, producing a result which is eventually output on
the blackboard as well. On the other side, users are simple agents which may,
from time to time, issue requests towards a particular service descriptor. When
this happens, the user must then wait for a result to eventually appear on the
blackboard, and finally consumes it before terminating.

Automatic semantic composition of services is provided by the blackboard
using a dynamic deployment time approach [18]. In other words, whenever a
novel service descriptor is published on the blackboard, the blackboard reacts
by generating and automatically inserting a (possibly null) amount of compos-
ite service descriptors on it-self. In particular, the set of service descriptors to
be generated is computed by combining the just-inserted one with all the ser-
vice descriptors it may combine with, among the many already present on the
blackboard.

Of course neither users nor clients are aware of the service composition per-
formed by the blackboard. In other words, the service composition is transparent
to both users and servers. To make this possible, the blackboard is in charge of
splitting users’ requests directed towards composite service descriptors into ele-
mentary request, which may then be served by servers. For the same reason,
the blackboard is also in charge of handling the intermediary results possibly
produced by servers when a composite service request is being served.

In the next sections we formalise such insights by means of process algebra.
In particular, we first structurally define the most relevant notions of our model
by means of an EBNF grammar, and then provide its semantics by means of a
Labeled Transition System [16].

3.1 Syntax

Here we provide a syntax for the main concepts composing our model. To do so,
we exploit EBNF grammars.

System. We define a system (Sys) as a parallel composition of one or more
agents and a blackboard (B). In turn, each agent may be either a user agent (U)
or service agent (S), according to their role in the system. Formally:

Sys ::= SS ‖ US ‖ B main system
SS ::= S | (S ‖ SS) list of services
US ::= U | (U ‖ US) list of users

where ‖ is the parallel composition operator—commutative and associative.

210 A. Caselli et al.

Blackboard. A blackboard is modelled as the space where the interaction
among agents takes place. It is exploited as coordination medium by the agents,
which may perform basic read/write operations on it. We define a blackboard
(B) as a multiset that may either be empty or contain four sorts of data: (i)
service descriptors, (ii) user requests, (iii) internal messages, or (iv) results.
Formally:

B ::= ∅ | SD | Req | serve(SD , C) | serve comp(SD , C) | Res | B ∪ B

where ∪ is the union operator for multisets – associative and commutative –,
whereas ∅ denotes the empty multiset.

Service. A service represents a service agent. It is capable of two operations
embodied by publish and accept, which are grammar syntactic sugar. Intuitively,
publish denotes the operation used by a service to advertise itself on the black-
board; accept says that the service is listening for incoming requests. Formally:

S ::= publish(SD) | accept(service(Q)) | S · S

where · is the sequence operator—associative and not commutative.

User. A user represents a user agent. Similarly to a service agent, it is capable
of two operations, represented through the Req and Res terms. They embody a
request and a response message, respectively. At last, the halt term is used to
represent the eventual termination event. Formally:

U ::= Req · Res · U | halt
where · operator is equivalent to the one defined above. By construction, well-
formed users must wait for a response event after each request event.

Service Descriptor. A service descriptor (SD) provides the representation of
a service. Thus, a service descriptor may either represent: (i) an atomic service
– through its formal arguments: the (possibly empty) set of the named input
types (I) it is able to accept and the output type (O) it produces as result –, or
(ii) a composed service, as the concatenation of two services in such a way that
the output of the first one is provided as input to the second one. Formally:

SD ::= service(Q) | SD
N

argof SD service descriptor
Q ::= I, O query
I ::= ε | N : T | I, I input
O ::= ε | T output
N ::= n1 | n2 | n3 | . . . name
T ::= t1 | t2 | t3 | . . . type

Engineering Service Self-composition Through Coordination 211

Request/Response. Agents may append request (Req) and response (Res)
messages to the blackboard. A request message is defined as either (i) query
(Q), or (ii) call (C). A query expresses an exploratory request, aimed at checking
whether the system is capable of serving a particular signature or not, given the
currently published services and their compositions. Conversely, a call represents
an actual invocation of some service, which may involve the execution of one or
more agents to serve the request. Requests are represented through their actual
input arguments (A) – which are named as well – and the expected output type
(O) they ask for. On the other side, response messages may instead contain a (i)
Const term, which is a boolean value, or a (ii) value (V), that allows any kind
of terminal value to be represented. Formally:

Req ::= query(Q) | call(C) request
C ::= A, O call
A ::= ε | N : T (V) | A,A arguments
V ::= v1, v2, . . . , vn terminal values

Res ::= res(Const) | res(V) response
Const ::= � | ⊥ boolean value

3.2 Operational Semantics

A Labelled Transition System (LTS) is exploited to provide the operational
semantics of our model. The transition relations model the effect of executing
an action on the blackboard.

Labels. Labels are used in the LTS to formally capture events of interest for
the operational semantics of our model. In order to ease their comprehension,
all label names are suffixed by the name of the transition rules they are involved
into. Only one exception is made for τ , denoting the silent transition.

E ::= publish sd | publish query | publish call | consume call |
consume comp call | serve call | comp call | serve comp call |
last comp call | prove | compose | τ

Operators. A definition of functions and operators exploited within the tran-
sition rules is following. For the sake of brevity we only provide an intuition
of each. An exhaustive formal definition of their semantics can be found in [4].
Notice that, in what follows, we often leverage the notation L(X), where X
is some non-terminal symbol among the many defined in the EBNF produc-
tion rules above. There, we write L(X) meaning “the set of all possible strings
produced by all possible production rules for X”.

212 A. Caselli et al.

– The function typeof : L(C) → L(SD) retrieves the data type of a call request
and encodes it under the form of a service descriptor.

– The match operator ∼ ⊆ L(SD) × L(SD) evaluates the matching degree
among two service descriptors through semantic reasoning.

The function execute : L(S) × L(Req) → L(V) triggers the service execution
in order to fulfill the provided request and it subsequently provides the result.

– The function prove : L(Req) × L(SD) → L(Const) performs the evaluation
of a query request.

– The function fringe : L(SD) → L(I) is in charge of retrieving a set containing
the inputs of a compound service descriptor, namely its fringe.

– The function compose : L(SD)×L(SD) → L(SD) designs the binding among
services, creating one or more new service descriptors which represent the
composed service.

– Finally, the function compositions : L(B)×L(SD) → L(SD) aims to identify
all the compositions in which a given service descriptor is involved.

Transition Rules. Transition rules define the admissible actions for a system
compliant with our model. In a nutshell, admissible actions include: (i) publish-
ing a service descriptor on the blackboard, (ii) composing two or more services,
(iii) publishing a request message (call or query) on the blackboard, (iv) prov-
ing a query request, (v) serving a call request, and (vi) the decay of a service
descriptor. The formal definition of the corresponding transition rules follows.

Service Descriptor Publication. The service descriptor publication is gov-
erned by the [PUBLISH-SD] transition rule. The rule may occur any-
time during the system life-cycle. Its execution changes the blackboard
state, enriching it with the published service descriptor. Formally:

publish(SD) · S ‖ SS ‖ US ‖ B
publish sd−−−−−−→ S ‖ SS ‖ US ‖ B ∪ SD [PUBLISH-SD]

Composition. The composition is governed by the [COMPOSE] transition rule.
It triggers each time a service is published and evaluates if there exists
a service that matches with the published one. If it is the case, a com-
posed service descriptor is generated and published on the blackboard.

SD = service(I,O) ∧ ∃ (N : O) ∈ fringe(SD ′) ∧ SD ′′ = compose(SD , SD ′)

SS ‖ US ‖ B ∪ SD ∪ SD ′ compose−−−−−→ SS ‖ US ‖ B ∪ SD ∪ SD ′ ∪ SD ′′
[COMPOSE]

Request Publication. The request publication is governed by the [PUBLISH-
QUERY] and [PUBLISH-CALL] transition rules. Their execution publishes a query

Engineering Service Self-composition Through Coordination 213

or call message, respectively, on the blackboard. They both may occur anytime
during the system life-cycle.

query(Q) · U ‖ SS ‖ US ‖ B
publish query−−−−−−−−−−→ U ‖ SS ‖ US ‖ B ∪ query(Q) [PUBLISH-QUERY]

call(C) · U ‖ SS ‖ US ‖ B
publish call−−−−−−−−−→ U ‖ SS ‖ US ‖ B ∪ call(C) [PUBLISH-CALL]

Proving. The result of a query request is generated by either the [POS-PROVE]
or the [NEG-PROVE] transition rules. The former (resp. latter) is triggered when
(i) there exists at least one service descriptor (either single or composed) on the
blackboard that is able (resp. unable) to fulfill the current query, (ii) there exists
a user waiting to consume the positive (resp. negative) result. Once triggered,
each transition allows the waiting user to go on with its computation.

service(Q) ∼ SD ∧ Const = prove(Q,SD)

SS ‖ res() · U ‖ US ‖ B ∪ SD ∪ query(Q)
prove−−−−→ SS ‖ U ‖ US ‖ B ∪ SD

[POS-PROVE]

 ∃ SD ∈ B : service(Q) ∼ SD

SS ‖ res(⊥) · U ‖ US ‖ B ∪ query(Q)
prove−−−→ SS ‖ U ‖ US ‖ B

[NEG-PROVE]

Serving. The management of a call request is governed by [CONSUME-CALL],
[SERVE-CALL], [COMP-CALL], [CONSUME-COMP-CALL], [SERVE-COMP-CALL], and
[LAST-COMP-CALL] transition rules.

The [CONSUME-CALL] rule is atomic: it is triggered each time a call request
can be fulfilled by some simple service. The rule is triggered only if a simple
service SD is listening for incoming requests. Once triggered, the rule consumes
the call request and adds an internal call message serve to the blackboard.

SD = service(I,O) ∧ typeof (call(C)) ∼ SD

accept(SD) · S ‖ SS ‖ US ‖ B ∪ SD ∪ call(C) consume call−−−−−−−−→ accept(SD) · S ‖ SS ‖ US ‖ B ∪ SD ∪ serve(SD , call(C))
[CONSUME-CALL]

The [SERVE-CALL] transition governs the serving of a call request. The rule
is triggered only if (i) a simple service SD is listening for incoming requests, (ii)
a user is waiting for a result, and (iii) an internal message serve generated from
a call published by the same user is present on the blackboard. The transition
allows both the waiting user and the service to go on with their computations,
while the pending internal message serve is removed from the blackboard.

SD = service(I,O) ∧ typeof(call(C)) ∼ SD ∧ V = execute(accept(SD), call(C))

accept(SD) · S ‖ SS ‖ res(V) · U ‖ US ‖ B ∪ SD ∪ serve(SD , call(C)) serve call−−−−−−→ S ‖ SS ‖ U ‖ US ‖ B ∪ SD
[SERVE-CALL]

The [COMP-CALL] rule governs the serving of a call request by a composed
service. The rule is triggered only if a composed service SD able to fulfil the

214 A. Caselli et al.

published call request is present on the blackboard. During its execution,
the blackboard state is modified and enriched with an internal call message
serve comp that contains the service descriptor SD of the composed service that
is capable of serving the request, in addition to the original call request call(C).

SD = SD′ N
argof SD′′ ∧ typeof(call(C)) ∼ SD

SS ‖ US ‖ B ∪ SD ∪ call(C)
comp call−−−−−−→ SS ‖ US ‖ B ∪ SD ∪ serve comp(SD, call(C))

[COMP-CALL]

The [CONSUME-COMP-CALL] rule is in charge of initiating the chain of ser-
vices executions that leads to the fulfilment of a call request with a com-
posed service. The rule is triggered whenever a message serve comp is pub-
lished on the blackboard. Once triggered, this transition modifies the black-
board state, adding an internal message serve containing (i) the first ser-
vice descriptor SD of the composition, and (ii) the portion of the call request
that is fulfillable by the service described via the service descriptor SD .

SD = SD ′ N
argof SD ′′ ∧ typeof(call(C ′)) ∼ SD ′

SS ‖ US ‖ B ∪ SD ∪ serve comp(SD , call(C))
consume comp call−−−−−−−−−−−−→ SS ‖ US ‖ B ∪ SD ∪ serve(SD ′, call(C ′))

[CONSUME-COMP-CALL]

The [SERVE-COMP-CALL] rule is in charge of carrying on the execu-
tion of fulfilment of a call request using a composed service. It requires
an internal message serve to be present. Once triggered, it generates a
new internal message serve that contains (i) the service descriptor of the
following service to be executed in the composition, and (ii) a new call
with the result of the previous execution added as input parameter.

SD = SD ′ N
argof SD ′′ ∧ typeof (call(C ′)) ∼ SD ′ ∧ V = execute(accept(SD ′), call(C ′))

accept(SD ′) · S ‖ SS ‖ US ‖ B ∪ SD ′ ∪ serve(SD ′, call(C ′))
serve comp call−−−−−−−−−−→ S ‖ SS ‖ US ‖ B ∪ SD′ ∪ serve(SD ′′, call(N : T (V), C ′))

[SERVE-COMP-CALL]

The [LAST-COMP-CALL] rule concludes the computational chain. It handles
the last service execution providing the final result. Therefore, the user that
published the call may consume the result and go on with its computation.

SD = SD ′ N
argof SD ′′ ∧ typeof(call(C ′′)) ∼ SD ′′ ∧ V = execute(accept(SD ′′), call(C ′′))

accept(SD ′′) · S ‖ SS ‖ res(V) · U ‖ US ‖ B ∪ SD ′′ ∪ serve(SD ′′, call(C ′′))
last comp call−−−−−−−−−→ S ‖ U ‖ SS ‖ US ‖ B ∪ SD ′′

[LAST-COMP-CALL]

Decay. The [DECAY] rule is defined with the purpose of keeping the blackboard
(B) clean over the time.

B′ = B − compositions(B,SD)

SS ‖ US ‖ B ∪ SD τ−→ SS ‖ US ‖ B′ [DECAY]

This rule grants the system the capability of cleaning out the blackboard from
obsolete services. The operation also requires to clean out the composed services

Engineering Service Self-composition Through Coordination 215

in which the service targeted to be removed is involved. Label τ is used here to
denote a time-related recurrent operation. No specific frequency or rate is defined
by our formal specification. Yet, we assume [DECAY] executes frequently enough
to clean up stale service descriptors, but not so much frequently to hinder the
activity of services.

4 Architecture

This section discusses how a rigorously engineered solution for semantic self-
composition of services based on our model can be attained. In particular,
because of space limitations, our discussion is articulated in two parts, describ-
ing the design and implementation phases of our solution, respectively. More
precisely, in the first part we show how a software architecture for our model
can be constructed by leveraging the Linda coordination model; whereas in the
second part we show how such a software architecture can be reified into some
actual JVM technology via the TuSoW framework.

4.1 Linda-Based Architecture

A Linda system is composed by a number of agents interacting via tuple spaces.
Our formal model as well can be briefly described in terms of agents interacting
via blackboard, enacting a particular protocol. Thus, drawing a software archi-
tecture based on Linda for our framework essentially requires (i) the blackboard
behaviour to be mimicked via some tuple space, and (ii) users and service agents
to be designed as agents performing Linda operations on that tuple space.

We stick to a logic-based interpretation of Linda, where both tuples and
templates are first-order logic terms, and tuples are matched against templates
via logic unification. Furthermore, we assume a wide spectrum of Linda primi-
tives are available for agents, including (i) Linda’s classic primitives – namely,
out, in, rd –, with their ordinary generative and suspensive semantics; (ii) bulk
primitives – such as out all, in all, rd all –, letting agents insert, consume, or
read multiple tuples at once; and (iii) predicative primitives – such as inp, rdp
–, which differ from their classic counterparts because they are not suspensive.

Of course, given that the blackboard abstraction in our model is not a simple
container of information – as it is in charge of automatically composing services
as soon as they are deployed –, it cannot be simply reduced to a tuple space.
To tackle this issue, at the architectural level, we introduce the notion of helper
agent. An helper agent is a reactive entity which is in charge of implementing
some transition rule from the model semantics described in Sect. 3.2. In other
words, we translate each transition rule from Sect. 3.2 into an helper agent
implementing it on the blackboard via Linda operations. Thus, there exists a
fixed number of helper agents, whose names and functions are described below.
For the sake of readability, helper agents are named using the pattern

To{EventName}{MessageName}Agent

216 A. Caselli et al.

(a) Reaction to service publication in the
tuple space

(b) Handling a call request that cannot be
served

(c) Serving a call request with a single
service

(d) Serving a call request with a composed
service

Fig. 1. An overview of the most salient interactions among the system components
during the publication, composition, and request serving phases

Engineering Service Self-composition Through Coordination 217

where {EventName} denotes the invocation of some Linda operation on the
blackboard tuple spaces – commonly, an out operation –, whereas {MessageNa-
me} is the tuple or template characterising that Linda operation.

Accordingly, in the following we present a semi-formal definition of the
Linda-based architecture of our model via UML sequence diagrams. User agents
publish the requests on the tuple space by means of the out primitive. Subse-
quently, they perform an in operation, waiting for a tuple to consume. Service
agents, likewise, follow the same pattern of interactions. They publish their ser-
vice descriptor and they consequently wait for tuples to be consumed.

Service Descriptor Publication and Service Composition. The transi-
tion rule [COMPOSE] has been implemented within the ToOutServiceAgent com-
ponent. It reacts to the service publication action ([PUBLISH-SD]), evaluating
all its viable compositions. If any, the composed service is generated and pub-
lished on the TupleSpace. Figure 1a shows the full chain of interactions starting
from the single service descriptor publication action to the subsequent composi-
tion evaluation and potential publication. Note that after a service descriptor is
published, a list of unhandled call requests stored in a secondary tuple space is
published on the primary tuple space. A more detailed description is provided
in the following paragraphs.

Prove a Query Request. Operations [POS-PROVE] and [NEG-PROVE] are
implemented by the ToOutQueryAgent component. It reacts to the publication
action ([PUBLISH-QUERY]) of a query message, evaluating if there is an existing
service configuration able to fulfil it: a positive result is returned iff any exists.

Serve a Call Request. Operations [CONSUME-CALL] and [SERVE-CALL] are
implemented by the ToOutCallAgent. It reacts to the publication of a call request
and evaluates if the current system configuration is capable of serving it—i.e.
if there exists some service descriptor for the request at hand. Figure 1b shows
the actions performed when a published call request cannot be fulfilled by any
available service. Briefly, the matching among the call request and the avail-
able service is computed. If there exists no service that successfully matches the
call, it is moved to another (secondary) tuple space, which is explicitly aimed at
storing pending call requests which cannot be currently served. These calls are
eventually moved back to the (primary) TupleSpace as soon as a service publica-
tion occurs—as the new service may make it possible to serve some of them. The
involvement of two tuple spaces is an optimisation aimed at avoiding the waste of
computational resources due to the processing of (currently) unsatisfiable calls.

Conversely, when the current system configuration allows the fulfillment
of the call request, the request message is taken and processed. Figure 1c
shows the serving of a call request in case it exists a single service that may
wholly fulfil it. The opposite case is presented in Fig. 1d. In this case the
rule [COMP-CALL], implemented by ToOutCallAgent, occurs; while operations

218 A. Caselli et al.

[CONSUME-COMP-CALL], [SERVE-COMP-CALL] and [LAST-COMP-CALL] are per-
formed within the ToOutServeComposedAgent control flow.

4.2 Implementation Details

The aforementioned Linda-based architecture is implemented upon TuSoW.
Briefly, the elements composing the system are (i) the Linda-like tuple space,
i.e. blackboard, (ii) a number of agents, and (iii) a fixed number of helper agents.

TuSoW defines the Linda-like tuple space as the so-called LogicSpace
architectural entity, representing an abstract version of an actual tuple space that
can be provided in several versions—e.g.. local, remote, inspectable. TuSoW
agents are implemented as simple control flows—i.e. threads. We implement the
user and service agent entities as threads that communicate among them through
the shared LogicSpace. Helper agents, in turn, are implemented as threads aug-
mented with a tuProlog engine [10]. In particular, they hold reasoning capabili-
ties exploited within the system to evaluate (i) the viable service compositions,
and (ii) the match degree between a request message and a service descriptor.

Adopting TuSoW makes handling the non-determinism of Linda read and
consume operations challenging. In order to cope with it, the inspectable version
of the LogicSpace comes to our aid, since it presents an inspectable interface,
allowing tuple space state to be observed. To clarify how the feature is exploited
within our implementation, an example is provided. An helper agent constantly
consumes tuples matching a tuple template. For instance, the ToOutServiceAgent
consumes tuples unifying with a tuple template that resembles a service descrip-
tor, in order to react to a service descriptor publication. However, when many
service descriptors coexist in the tuple space, such operation consumes one of
them in a non-deterministic manner. Therefore it might return any service that is
currently published. To cope with it, the inspectable feature of the tuple space
is exploited by filtering out the tuples that do not belong to the tuple space
internal writing event. In other words, a routine is bound to the internal writing
event of the tuple space, filtering out the tuples resulting from the writing event
that do not comply with the provided tuple template.

5 Case Study

A real-world scenario is here provided. Due to space reasons, we only show its
formal representation. The corresponding implementation leveraging a TuSoW-
based system architecture is publicly available1.

Let us assume that there exists a system holding a knowledge base composed
of the taxonomy of concepts depicted in Fig. 2. Let us now consider the system as
including two services willing to advertise themselves by publishing their service
descriptors, respectively SD and SD′, on the blackboard (B). We assume the
formal parameters (input and output) of those services are defined using concepts

1 https://gitlab.com/ashleycaselli/tusow-semantic-composition.

https://gitlab.com/ashleycaselli/tusow-semantic-composition

Engineering Service Self-composition Through Coordination 219

that belong to the knowledge base of the system. In particular, we define SD
as the service that given a city name is able to provide its GPS coordinates.
In turn, we define SD′ as the service that provides the current temperature (in
Kelvin degrees) at the location described by some GPS coordinates.

Formally, service descriptors are described as follows:

SD = service(name : City , GPS)
SD ′ = service(loc : GPS , Kelvin)

(for the sake of simplicity, we define GPS coordinates as a single value uniquely
identifying a city), whereas the service initial configurations are as follows:

S0 = publish(SD) · accept(service(Q)) · S0

S′
0 = publish(SD ′) · accept(service(Q′)) · S′

0

We also assume the blackboard is initially empty (B0 = ∅), and that the system
includes a user willing to perform a service invocation:

U0 = Req · res(v) · halt

where Req = call(name : City(Geneva), Temperature) denotes an invocation
to a service computing the current temperature for a city (namely, Geneva), and
returning a temperature through any possible measurement unit. Under these
hypotheses, the initial state of the system is Sys0 = S0 ‖ S′

0 ‖ U0 ‖ B0.
The publication of the service descriptors (operation [PUBLISH-SD]) changes

the state of the system as follows:

Sys1 = accept(service(Q)) · S0
︸ ︷︷ ︸

S1

‖
S′
1

︷ ︸︸ ︷

accept(service(Q′)) · S′
0 ‖ U0 ‖

B1
︷ ︸︸ ︷

SD ∪ SD ′

Eventually, their publication triggers the component that computes the
semantic matching among the two service descriptors, computing all the possi-
ble compositions (operation [COMPOSE]). In particular, in this case the compose
operation detects that the services represented by SD and SD ′ are composable

w.r.t the parameter named loc. We call ̂SD = SD
loc

argof SD ′ the composed

Fig. 2. An illustration of a taxonomy of concepts used in the presented case study

220 A. Caselli et al.

service attained by composing SD and SD ′. The composed service ̂SD is then
published on the blackboard, which can now be described as follows:

B2 = SD ∪ SD ′ ∪ ̂SD

The presence of ̂SD on the blackboard is what makes the user’s invocation
satisfiable. Suppose now that the user publishes (operation [PUBLISH-CALL])
its call request (Req). This would lead to a system state like the following:

Sys3 = S1 ‖ S′
1 ‖ U0 ‖ SD ∪ SD ′ ∪ ̂SD ∪ Req

︸ ︷︷ ︸

B3

According to the current system configuration (Sys3) there is no simple service
capable of serving the request. However, the request may be fulfilled using the
composed service ̂SD . In more details, ̂SD and Req are compatible because (i) the
input (I

̂SD
) of the composed service ̂SD and the input of the request (IReq) hold

the exact match degree, and (ii) the output (O
̂SD

) of the composed service ̂SD
and the output of the request (OReq) hold the subsume match degree according
to the provided taxonomy. Formally:

I
̂SD

≡ IReq ∧ O
̂SD

� OReq

The call request publication triggers the helper agent that is in charge of handling
the request message. Such component, leveraging a Prolog engine for reasoning
purposes, computes the semantic matching among the request and the available
services. In this case, the reasoning process leads to the solution proposed above,
inferring that the request may only be served by the composed service ̂SD. In
order to manage the execution of all the services involved in the composition,
another helper agent is triggered (operation [COMP-CALL] is executed). Formally:

B4 = SD ∪ SD ′ ∪ ̂SD ∪ serve comp(̂SD , call(...))

The helping agent is also in charge of collecting the intermediary responses that
each service provides, and of providing the final response. Each time a service is
triggered to serve the call, it computes the result and publishes it as Res message
on the blackboard (operation [SERVE-COMP-CALL]). For the sake of brevity we
only show one round of the “service execution-response publication” loop:

B5 = SD ∪ SD ′ ∪ ̂SD ∪ serve(SDx , callx(...))

where SDx and callx represent respectively the service descriptor of the x-th
service of the composition and the call request that is served by such service.

Finally, operation [LAST-COMP-CALL] is executed and the user agent gets the
result.

B6 = SD ∪ SD ′ ∪ ̂SD
U6 = halt

Engineering Service Self-composition Through Coordination 221

6 Conclusion

This paper proposes a solution for the semantic self-composition of services,
exploiting tuple-based coordination. We provide an end-to-end description of
the engineering challenges hidden in the production of such sorts of systems, and
sketch the formalisation of a middleware supporting (i) the self-composition of
services, at deploy time, and (ii) the transparent invocation of the composed
services from the client-side. In particular, we rely on a central blackboard used
by service providers to advertise their own service descriptors, and in charge of
orchestrating the execution of composed services. In this way, clients may invoke
both composed and simple service through a uniform API.

Accordingly, the design of our solution is deliberately minimal as our focus is
on the engineering of an actual implementation. In particular, the actual design
of our middleware leverages (i) Linda-like tuple spaces exploiting logic terms as
both clauses and templates, and (ii) logic programming to provide the system
components with semantic reasoning. Finally, a prototype implementation is
described exploiting the TuSoW coordination technology, and the tuProlog logic
reasoner.

We consider this work as a starting point for a number of research directions.
In fact, in the future, we plan to assess different strategies for implementing our
model, from both the theoretical and technological perspectives. For instance,
we are planning the exploitation of different matching mechanisms – possibly
modelling semantic matching as a similarity function rather than a binary rela-
tion –, as well as different interaction protocols for the helper agents used in our
prototype—possibly focusing on the scalability of service composition.

Acknowledgements. The authors would like to thanks the anonymous reviewers for
their valuable remarks.

This work has been partially supported by the H2020 Project “AI4EU” (G.A.
825619).

References

1. Ben Mahfoudh, H., Di Marzo Serugendo, G., Naja, N., Abdennadher, N.: Learning-
based coordination model for spontaneous self-composition of reliable services in a
distributed system. Int. J. Softw. Tools Technol. Transfer 22(4), 417–436 (2020).
https://doi.org/10.1007/s10009-020-00557-0

2. Benatallah, B., Dumas, M., Fauvet, M.C., Rabhi, F.A.: Towards patterns of web
services composition. In: Rabhi, F.A., Gorlatch, S. (eds.) Patterns and Skeletons
for Parallel and Distributed Computing, pp. 265–296. Springer, London (2003).
https://doi.org/10.1007/978-1-4471-0097-3 10

3. Bonjean, N., Gleizes, M.P., Maurel, C., Migeon, F.: SCoRe: a self-organizing multi-
agent system for decision making in dynamic software development processes. In:
International Conference on Agents and Artificial Intelligence (ICAART) (2013).
(short paper)

4. Caselli, A.: Logic-based coordination: a semantic approach to self-composition of
services. Master’s thesis, Alma Mater Studiorum-Università di Bologna, School of
Engineering (2019). http://amslaurea.unibo.it/17984

https://doi.org/10.1007/s10009-020-00557-0
https://doi.org/10.1007/978-1-4471-0097-3_10
http://amslaurea.unibo.it/17984

222 A. Caselli et al.

5. Ciatto, G., Di Marzo Serugendo, G., Louvel, M., Mariani, S., Omicini, A., Zam-
bonelli, F.: Twenty years of coordination technologies: COORDINATION contri-
bution to the state of art. J. Log. Algebraic Methods Program. 113, 1–25 (2020).
https://doi.org/10.1016/j.jlamp.2020.100531

6. Ciatto, G., Rizzato, L., Omicini, A., Mariani, S.: TuSoW: tuple spaces for edge com-
puting. In: The 28th International Conference on Computer Communications and
Networks (ICCCN 2019), Valencia, Spain, 29 July–1 August 2019. IEEE (2019).
https://doi.org/10.1109/ICCCN.2019.8846916

7. De Angelis, F.L.: A logic-based coordination middleware for self-organising sys-
tems: distributed reasoning based on many-valued logics. Ph.D. thesis, University
of Geneva, School of Social Sciences - Information Systems (2017)

8. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents
interaction and mobility. IEEE Trans. Softw. Eng. 24(5), 315–330 (1998). https://
doi.org/10.1109/32.685256

9. Degas, A.: Auto-structuration de trafic temps-réel multi-objectif et multi-critère
dans un monde virtuel. Ph.D. thesis, Université de Toulouse III - Paul Sabatier,
IRIT - UMR 5505, Toulouse, France (2020)

10. Denti, E., Omicini, A., Ricci, A.: tuProlog: a light-weight prolog for internet appli-
cations and infrastructures. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol.
1990, pp. 184–198. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45241-9 13

11. Di Napoli, C., Giordano, M., Németh, Z., Tonellotto, N.: Using chemical reactions
to model service composition. In: 2nd International Workshop on Self-organizing
Architectures (SOAR 2010), pp. 43–50. ACM, New York (2010). https://doi.org/
10.1145/1809036.1809047

12. Freeman, E., Arnold, K., Hupfer, S.: JavaSpaces Principles, Patterns, and Practice.
Addison-Wesley Longman Ltd., Essex (1999)

13. Frei, R., Şerbănuţă, T.F., Di Marzo Serugendo, G.: Self-organising assembly sys-
tems formally specified in Maude. J. Ambient Intell. Humaniz. Comput. 5(4),
491–510 (2012). https://doi.org/10.1007/s12652-012-0159-2

14. Gabillon, Y., Calvary, G., Fiorino, H.: Composing interactive systems by planning.
In: 4th French-Speaking Conference on Mobility and Ubiquity Computing (Ubi-
Mob 2008), pp. 37–40. ACM, New York (2007). https://doi.org/10.1145/1376971.
1376979

15. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985). https://doi.org/10.1145/2363.2433

16. Gorrieri, R.: Labeled transition systems. Process Algebras for Petri Nets. MTC-
SAES, pp. 15–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
55559-1 2

17. Kalasapur, S., Kumar, M., Shirazi, B.A.: Dynamic service composition in pervasive
computing. IEEE Trans. Parallel Distrib. Syst. 18(7), 907–918 (2007). https://doi.
org/10.1109/TPDS.2007.1039

18. Lemos, A.L., Daniel, F., Benatallah, B.: Web service composition: a survey of
techniques and tools. ACM Comput. Surv. 48(3), 1–41 (2015). https://doi.org/10.
1145/2831270

19. Louvel, M., Pacull, F.: LINC: a compact yet powerful coordination environment.
In: Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp.
83–98. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43376-8 6

20. Martin, D., et al.: OWL-S: Semantic markup for web services. W3C Member Sub-
mission 22 (2004)

https://doi.org/10.1016/j.jlamp.2020.100531
https://doi.org/10.1109/ICCCN.2019.8846916
https://doi.org/10.1109/32.685256
https://doi.org/10.1109/32.685256
https://doi.org/10.1007/3-540-45241-9_13
https://doi.org/10.1007/3-540-45241-9_13
https://doi.org/10.1145/1809036.1809047
https://doi.org/10.1145/1809036.1809047
https://doi.org/10.1007/s12652-012-0159-2
https://doi.org/10.1145/1376971.1376979
https://doi.org/10.1145/1376971.1376979
https://doi.org/10.1145/2363.2433
https://doi.org/10.1007/978-3-319-55559-1_2
https://doi.org/10.1007/978-3-319-55559-1_2
https://doi.org/10.1109/TPDS.2007.1039
https://doi.org/10.1109/TPDS.2007.1039
https://doi.org/10.1145/2831270
https://doi.org/10.1145/2831270
https://doi.org/10.1007/978-3-662-43376-8_6

Engineering Service Self-composition Through Coordination 223

21. Murphy, A.L., Picco, G.P., Roman, G.C.: LIME: a coordination model and middle-
ware supporting mobility of hosts and agents. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 15(3), 279–328 (2006). https://doi.org/10.1145/1151695.1151698

22. Omicini, A.: On the semantics of tuple-based coordination models. In: 1999 ACM
Symposium on Applied Computing (SAC 1999), 28 February–2 March 1999, pp.
175–182. ACM, New York (1999). https://doi.org/10.1145/298151.298229

23. Omicini, A., Zambonelli, F.: Coordination for Internet application development.
Auton. Agent. Multi-Agent Syst. 2(3), 251–269 (1999). https://doi.org/10.1023/
A:1010060322135

24. Talantikite, H.N., Aissani, D., Boudjlida, N.: Semantic annotations for web services
discovery and composition. Comput. Stand. Interfaces 31(6), 1108–1117 (2009).
https://doi.org/10.1016/j.csi.2008.09.041

25. Talib, M.A., Yang, Z.: Semi-automatic code generation of static web services com-
position. In: Student Conference on Engineering, Sciences and Technology, pp.
132–137. IEEE, January 2005. https://doi.org/10.1109/SCONES.2004.1564784

26. Vallée, M., Ramparany, F., Vercouter, L.: A multi-agent system for dynamic service
composition in ambient intelligence environments. In: PERVASIVE 2005, Advances
in Pervasive Computing, vol. 191, pp. 175–182. Austrian Comp. Soc. (OCG) (2005)

27. Viroli, M.: On competitive self-composition in pervasive services. Sci. Comput.
Program. 78(5), 556–568 (2013). https://doi.org/10.1016/j.scico.2012.10.002

https://doi.org/10.1145/1151695.1151698
https://doi.org/10.1145/298151.298229
https://doi.org/10.1023/A:1010060322135
https://doi.org/10.1023/A:1010060322135
https://doi.org/10.1016/j.csi.2008.09.041
https://doi.org/10.1109/SCONES.2004.1564784
https://doi.org/10.1016/j.scico.2012.10.002

A Dynamic Logic for Systems with
Predicate-Based Communication

Rolf Hennicker(B) and Martin Wirsing(B)

Ludwig-Maximilians-Universität München, München, Germany
hennicke@pst.ifi.lmu.de, wirsing@ifi.lmu.de

Abstract. Attribute-based broadcast communication is a novel para-
digm for modelling interactions in collective systems. Used by several
new languages (such as SCEL, CARMA, and AbC), it enables senders
and groups of receivers to interact by considering predicates over their
current attribute values. In these languages systems are modelled by
the parallel composition of components, each component being equipped
with a local process description. In this paper we complement this local
view by a global requirements specification format that allows us to spec-
ify abstract properties, like safety and liveness, as well as allowed and
forbidden interaction scenarios. We propose a first-order dynamic logic
whose atomic actions are tailored to the needs of systems of collabo-
rating components with multi-cast communication. As implementation
language we consider (a variant of) the AbC calculus and show how our
global ensemble specifications can be realised with local process declara-
tions. Our correctness notion relates the semantics of global specifications
to the labelled transition system semantics of AbC systems.

Keywords: Ensemble · Collective adaptive system · Component ·
Dynamic logic · Multi-cast communication · Global behaviour
specification · Ensemble realisation · Ensemble transition system

1 Introduction

Collective systems - such as ensembles [22], organic computing systems [25], and
collective adaptive systems [16] - consist of many dynamically interacting auto-
nomic entities. For coordinating collective systems, the classical “single-entity-
to-single-entity” communication of message-based and channel-based calculi is
not adequate. Interaction has also to consider the environment of the system and
more general properties of the system than explicit communication channels and
the identities of system members.

Predicate-based communication is a novel paradigm which abstracts from the
communication channels and the identities of the members of the collective sys-
tem. It provides synchronous “one-to-many” multi-cast communication between
a single sender and a group of receivers; communication partners are not deter-
mined at design time but are dynamically connected at run-time by considering

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 224–242, 2020.
https://doi.org/10.1007/978-3-030-61470-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_14

A Dynamic Logic for Systems with Predicate-Based Communication 225

properties of the system and its environment. Properties are expressed by pred-
icates and depend on the current attribute values of the members of the system
and possibly on other parameters such as space and time. Therefore the term
“attribute-based” communication is often used as well.

Several new languages use attribute-based communication for modelling
interactions. The Service Component Ensemble Language (SCEL) [6,19] is a lan-
guage for programming ensembles of autonomic computing components. Attri-
bute-based communication is used by components to dynamically organise them-
selves into ensembles. SCEL was the first language to use this communication
style. The CARMA [4] language aims at the specification and analysis of collec-
tive adaptive systems. It provides predicate-based broadcast communication as
well as point-to-point unicast communication. The AbC [1,2] calculus focusses
on a minimal set of primitives for defining attribute-based communication.

In all these languages, systems are modelled by the parallel composition of
components, each component being equipped with a local process description.
Often it is difficult to extract and understand the global effects of a collective
system knowing only the local behaviours of their components. Therefore we
are interested to complement these local views by a global view on collective
systems based on the paradigm of predicate-based communication, i.e. we want
to (1) deal with (synchronous) one-to-many broadcast communication and (2)
formulate requirements for sender and receivers through logical predicates.

In this paper, we propose a novel logical framework for developing collective
systems from a global perspective following the paradigm of predicate-based
communication. The framework consists of ensemble specifications written in a
dynamic logic [9] style, of ensemble realisations written in a variant of the AbC
calculus, and of a notion of correctness relating an ensemble realisation with an
ensemble specification.

A collective system or ensemble is given by a finite set of typed components.
Specifications describe collaborations which are typical for the ensemble. They
are expressed in a new instance of first-order dynamic logic suitable to spec-
ify global, predicate-based interaction behaviours. Two kinds of atomic actions
- operation invocations and communication actions - are specifically tailored
to the domain of collaborative systems. An operation invocation consists of an
invocation predicate and an operation call; the latter can only be executed if
all operation arguments fulfill the invocation predicate. A communication action
expresses (synchronous) multi-cast message passing and by relying on the eval-
uation of predicates the establishment of communications is more flexible than
direct binding of sender and receivers. Specifically, a communication action con-
sists of a communication predicate and a message type binding a sender, a set
of receivers and some arguments; communication can only happen if sender,
receivers and parameters satisfy the predicate.

An ensemble specification consists of an ensemble signature and a set of first-
order dynamic logic axioms. The semantics of an ensemble specification is defined
over ensemble transition systems (ETS); it is given by the class of its models, i.e.
by all ETS which satisfy the axioms of the specification. This allows us to define
a refinement relation between ensemble specifications by model class inclusion.

226 R. Hennicker and M. Wirsing

Finally, we study ensemble realisations and a formal correctness notion. An
ensemble realisation is written in a variant of the AbC calculus. For each single
component type, we define the local behaviour of its components by an AbC
expression. All instances of the type must respect the prescribed behaviour. The
realisation is correct, if the ensemble transition system generated by the AbC
implementation satisfies the (logical) sentences of the requirements specification.

This work can be seen as further step towards a semantic-based devel-
opment methodology for ensemble-based systems. An early approach is the
mathematically-based methodology of the ASCENS project [23,24] where
requirements for autonomic ensembles are specified in two dedicated languages
SOTA [3] and ARE [21] for autonomic systems. The Helena development app-
roach [12] for ensembles uses linear temporal logic formulas for expressing goal-
oriented requirements [13,17]. The framework of multiparty session types [15]
and the recently proposed Klaimographies [5] use process calculi to describe
global and local behaviours. They are not aimed at a logic to specify require-
ments of collective systems which is our main concern.

Similarly to [11,14], we study a logic for ensemble specifications and a cor-
rectness notion. There the focus was on dynamically changing ensembles which
interact through point-to-point message exchange. Here we consider synchronous
multi-cast predicate-based communication where, for simplicity, the carriers of
the ensembles do not change.

The paper is organised as follows: In Sect. 2 component systems are intro-
duced as our underlying notion of ensemble. In Sects. 3 and 4 we define syn-
tax and semantics of ensemble specifications. Then, in Sect. 5 we study correct
ensemble realisations written in a variant of AbC. We conclude in Sect. 6.

2 Component Systems

In our approach a collective system consists of a finite set of typed interacting
components. In this section we introduce the notions of type, signature, and state
of a component system. Each state is formalised as a first-order structure with
partial functions; its properties are specified by first-order logic formulas [7].

Component types. To classify components we use component types. A component
type with name ct is a triple (ct , attrs, opns) declaring a finite set of attributes
attrs (for storing data) and a finite set of operations opns callable by the com-
ponent instances of type ct . We write attrs[ct] for attrs and opns[ct] for opns.

An attribute is just a name a. An operation is of the form op : n where n ≥ 0
is the arity of op determining the number of arguments for which the operation
can be called. For simplicity, we do not use specific types here, neither for the
values of attributes nor for the arguments of operations.

Example 1. As a running example we consider a robot rescue ensemble. The
ideas of the example stem from a case study [20] performed in the ASCENS-
project [23,24]. In a robot rescue ensemble components of type Victim are sup-
posed to be rescued by components of type Rescuer. The information where a

A Dynamic Logic for Systems with Predicate-Based Communication 227

victim can be found is transmitted by components of type Landmark. Each type
of component has an attribute pos storing the current component position. Com-
ponents of type Victim and Landmark have also an attribute bdist determining
their broadcast distance. Components of type Landmark can walk around by their
operation walk (with arity 0) while components of type Rescuer can perform a
directed walk towards a given position by their operation move with arity 1. The
three component types are graphically represented in Fig. 1.

Fig. 1. Component types for the robot rescue ensemble

Component system signature. Let CT be a finite set of component types. A
component system signature over CT is a first-order signature CΣ(CT), simply
denoted by CΣ if CT is clear from the context, such that

1. the set of predicate symbols preds[CΣ] contains
– a unary predicate symbol ct for each ct ∈ CT ,
– two (predefined) unary predicate symbols cmp and cmps, and
– a set of standard predicate symbols, for instance binary predicate symbols

for expressing equality “ = ” and membership “ ∈ ”;
2. the set of functions symbols functs[CΣ] contains

– constant function symbols ct .allInst for each ct ∈ CT ,
– a set of standard function symbols, in particular for denoting functions

on sets like union “ ∪ ”, intersection “ ∩ ”, etc., and
– a unary function symbol a for each attribute a ∈ ⋃

ct∈CT

attrs[ct].

The predicate symbol cmp will be used to represent the (finite) set of all
component instances of any component type while the predicate symbol cmps

will be used to represent the powerset of sets of component instances (of any
type). For an attribute a and term t we write t.a for the term a(t).

Component system states. For modelling (global) states of component systems
we use first-order structures which give values to attributes. Let CΣ(CT) be a
component system signature. A component system state is a first-order CΣ(CT)-
structure cσ which satisfies the following constraints:

1. The carrier set |cσ| contains, for each ct ∈ CT , a finite set cinstsct of compo-
nent instance identifiers (simply called component instances) of type ct such
that the sets cinstsct are pairwise disjoint. Moreover, we assume that |cσ|
contains all subsets of

⋃

ct∈CT

cinstsct as elements.

228 R. Hennicker and M. Wirsing

2. Predicate symbols in preds[CΣ] are interpreted in cσ as follows:
– For each predicate symbol ct with ct ∈ CT , ctcσ = cinstsct .
– cmpcσ =

⋃

ct∈CT

cinstsct is the disjoint union of all sets of component

instances.
– cmpscσ = P(cmpcσ is the powerset of cmpcσ.
– The equality symbol is interpreted as the identity of elements, the mem-

bership predicate as the usual membership test for elements v ∈ cmpcσ

and vs ∈ cmpscσ, and similarly all other standard predicate symbols.
3. Function symbols in functs[CΣ] are interpreted in cσ as follows:

– For each ct ∈ CT , ct .allInstcσ = cinstsct .
– Standard function symbols are interpreted as expected. They are unde-

fined if the arguments do not fit.
– For each attribute a, acσ : |cσ| → |cσ| is a partial function such that

acσ(v) is defined if and only if there is a component type ct ∈ CT such
that a ∈ attrs[ct] and v ∈ cinstsct .

The set of component system states over CΣ is denoted by States(CΣ).

CΣ-formulas and satisfaction relation. Properties of states are specified in first-
order predicate logic. In contrast to the classical calculus we use partial functions
for the interpretation of function symbols and for variable environments.

Let X be a countable set of variables. For each CΣ-structure cσ, we denote
the set of terms over CΣ and X by T (CΣ,X) and the set of first-order CΣ-
formulas over X by Fm(CΣ,X). A variable environment is a partial function
ρ : X → |cσ| and the set of such environments is denoted by Env(X, cσ). We
denote by ρ⊥ the environment which is undefined for each x ∈ X. Updating a set
of variables {xi | i ∈ I} with values vi for each xi is denoted by ρ[xi �→ vi | i ∈ I]
and by ρ[x �→ v] if there is only one variable x to be updated. The interpretation
of a term e in cσ ∈ States(CΣ) w.r.t. ρ ∈ Env(X, cσ) is denoted by Iσ

ρ (e).
We write cσ, ρ |= CΣπ if a formula π ∈ Fm(CΣ,X) is satisfied by

a component system state cσ ∈ States(CΣ) w.r.t. a variable environment
ρ ∈ Env(X, cσ), i.e. ρ : X → |cσ|.
Example 2. Let CΣRescue be the component system signature built over the
component types in Example 1. Let v be a variable whose current value in an
environment ρ is a component instance of type Victim. We assume that there is a
binary function symbol dist for computing the distance between two positions.
Let receivers be a variable and πhelp the following CΣRescue-formula:

∀x.(x ∈ receivers ⇐⇒
(Landmark(x) ∨ Rescuer(x)) ∧ dist(v.pos,x.pos) ≤ v.bdist)

The formula is satisfied in a component system state cσ ∈ States(CΣRescue)
if the value of variable receivers is the set of all landmarks and rescuers which
are within the victim’s broadcast distance. ��

A Dynamic Logic for Systems with Predicate-Based Communication 229

3 Ensemble Specifications

The dynamics of ensemble-based systems relies on the execution of component
operations and on the interaction between components via message exchange.
We consider synchronous one-to-many communication where a single sender
broad-casts messages that are simultaneously received by several (possibly none)
receivers. From the global perspective the relevant point is to specify which
messages are exchanged between which senders and receivers. Transferring the
ideas of attribute-based communication of process calculi (SCEL [6], AbC [1,2],
CARMA [4]) to the global system level our idea is to introduce a logic which
allows us to describe admissible interactions by selecting sender and receivers
through the evaluation of predicates. Such predicates will be first-order formulas
over component system signatures; messages are classified by message types.

Ensemble Signature. A message type is of the form mt : n where mt is a message
type name and n ≥ 0 is an arity determining the number of parameters that can
be transmitted by a message of this type. In contrast to Helena (see e.g. [12]),
we do not restrict here the types of components that are allowed to exchange
certain messages. So, in principle, any kind of message can be exchanged between
any kind of component. An ensemble signature EΣ = (mts,CΣ(CT)) consists
of a finite set mts of message types and a component system signature CΣ over
a finite set CT of component types.

Example 3. In a robot rescue ensemble we use two message types help:1 and
rescue:0. Messages of type help have one parameter passing the position where
a victim is located. Once a rescuer is arrived at a victim’s position the vic-
tim is notified with a rescue message. The ensemble signature is then given
by EΣ Rescue = (mtsRescue,CΣRescue) where mtsRescue = {help:1, rescue:0} and
CΣRescue is the component system signature in Example 2. ��

An ensemble specification describes, by means of a logical framework, prop-
erties of ensemble-based collective systems. It takes a global view focusing on
the desired (and not desired) interactions between ensemble participants. To
specify properties of such systems we use formulas in the style of first-order
dynamic logic [9]. Such formulas allow us to specify abstract safety and liveness
requirements as well as concrete scenarios. Like in first-order dynamic logic we
use assignments as atomic programs but additionally we use two kinds of atomic
actions expressing operation invocation and communication. In contrast to our
previous approaches [11,14] communication actions express (synchronous) multi-
cast message passing and the establishment of communications relies on the
evaluation of predicates instead of explicit binding between sender and receiver.

In the following we assume that EΣ = (mts,CΣ(CT)) is an ensemble signa-
ture and that X is a countable set of variables. We refer with opns(CΣ) to the
set

⋃

ct∈CT

opns[ct] of all operations occurring in component types of CT .

230 R. Hennicker and M. Wirsing

Actions. Three kinds of atomic actions are distinguished:
(a) A communication action has the form

π : (a1 → a2).mt(a3, . . . , an)

where π ∈ Fm(CΣ,X) is a first-order formula, called communication predi-
cate, mt ∈ mts is a message type of arity n-2, and a1, . . . , an are arguments.
An argument is either a term e ∈ T (CΣ,X) or it has the form updx where
x ∈ X is a variable to be equipped with a new value. The idea is that a1 rep-
resents a component instance, the sender of the message, and a2 represents a
(possibly empty) set of component instances, the receivers of the message, while
a3, . . . , an represent actual parameters. As described in the semantics later on
(rule (comm) in Fig. 3), the communication can only happen if sender, receivers
and parameters fulfill the communication predicate π. If an argument is a term
then it must be evaluated in the current component system state and environ-
ment; if it is an update expression updx then a value must be assigned to x
such that the predicate π is satisfied. Since, in general, different values for x may
be chosen to satisfy π the use of update expressions as arguments can express
non-deterministic choice. In particular, a communication action of the form

true : (updx1 → updx2).mt(updx3, . . . ,updxn)

stands for any message of type mt with arbitrary sender, receivers, and parameter
values. They are stored in the variables x1, . . . , xn. This action can be abbrevi-
ated just by mt (assuming the variable names are irrelevant).

(b) An operation invocation action has the form

π : a1.op(a2, . . . , an)

where π ∈ Fm(CΣ,X) is a first-order formula, called operation invocation pred-
icate, op ∈ opns(CΣ) is an operation of arity n-1, and a1, . . . , an are argu-
ments. The idea is that a1 represents a component instance for which the oper-
ation is invoked and a2, . . . , an represent actual parameters. As described in
the semantics later on (rule (op invoke) in Fig. 3), the operation invocation
can only be executed if all arguments fulfill the invocation predicate π. Sim-
ilarly as above, the use of update expressions in operation invocation actions
allows to express non-deterministic choice. In particular, an action of the form
true : updx1.op(updx2, . . . ,updxn) can be abbreviated just by op (assuming
the variable names are irrelevant).

(c) A variable assignment has the form updx := e where x ∈ X is a vari-
able and e ∈ T (CΣ,X) is a term. As described in the semantics later on (rule
(assignment) in Fig. 3), an assignment has the usual effect.

The set Act(EΣ) of (structured) actions over EΣ is defined by the grammar

α ::= a |π? |α;α |α + α |α∗

where a is an atomic action and π? is a test with π ∈ Fm(CΣ,X). Structured
actions are composed by sequential composition “ ; ”, union “ + ” and iteration

A Dynamic Logic for Systems with Predicate-Based Communication 231

“ ∗ ” as in dynamic logic. Following dynamic logic we can express while-programs
and conditional statements by

while π do α od = (π?;α)∗;¬π? if π then α else β fi = (π?;α) + ¬π?;β

Shorthand notations. Let mts ∪ opns(CΣ) be the set of all communication and
operation invocation actions in the sense of the abbreviations explained in part
(a) and (b) above. Note that this set is finite by assumption. We write allAct

for the composed action obtained by combining with “+” all elements of mts ∪
opns(CΣ). This captures the choice of all actions that are semantically possible
in an ensemble transition system; see below. We write −a for the composed
action obtained by combining with “+” all elements of (mts ∪ opns(CΣ))\{a}.

Ensemble formulas. Ensemble formulas are built like in first-order dynamic logic.
They extend first-order formulas by the modal diamond operator (expressing
possibility) and thus also by the derived box operator (expressing necessity).
Test actions π? are built on first-order formulas π ∈ Fm(CΣ,X) (i.e. we do not
use the “rich test” variant of dynamic logic [9]). The set Fm(EΣ ,X) of ensemble
formulas over EΣ with variables in X is defined by the grammar

ϕ ::= true | p(t1, . . . , tn) | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | 〈α〉ϕ

where p is a predicate symbol of arity n, t1, . . . , tn ∈ T (CΣ,X) are terms,
x ∈ X, and α ∈ Act(EΣ) is a (structured) action. Formulas of the form
true or p(t1, . . . , tn) are atomic formulas. We use the usual abbreviations like
false, ϕ ∧ ϕ′,∀x.ϕ and the modal box operator [α]ϕ which stands for ¬〈α〉¬ϕ.

Using the shorthand notations for actions we can specify safety proper-
ties with [allAct∗]ϕ; deadlock freeness is expressed by [allAct∗]〈allAct〉true.
Liveness properties, like “whenever an action a has happened, an action b can
eventually occur”, can be expressed by [allAct∗; a]〈allAct∗; b〉true. We can also
express that an action b must never occur when an action a has happened before:
[allAct∗; a; allAct∗; b]false.

Definition 1 (Ensemble specification). An ensemble specification ESpec =
(EΣ , Φ) consists of an ensemble signature EΣ and a set Φ ⊆ Fm(EΣ ,X) of
ensemble formulas, called axioms of ESpec.

Example 4. We provide a requirements specification ESpec0 = (EΣ Rescue, Φ0)
for robot rescue ensembles. The specification relies on the ensemble signature
EΣ Rescue of Example 3. Φ0 consists of the formula in Fig. 2 which uses the pred-
icate πhelp explained in Example 2. The specification requires for all victims v:
“Whenever v issues the first time a help message transmitting the victim’s posi-
tion to a set of receivers such that the predicate πhelp holds (i.e. the receivers
are landmarks or rescuers within the broadcast distance of v), then it is eventu-
ally possible that a rescuer arrives at v’s position notifying v about its rescue.”
(Semantically component instances will be assigned to variables receivers and
rescuer such that the predicates πhelp and πrescue are satisfied.)

232 R. Hennicker and M. Wirsing

Fig. 2. Requirements specification for robot rescue ensembles

It would be undesired if the first help message would be sent by a landmark
(and hence not by a victim). To forbid such behaviours can be expressed by:

[(-help)∗ ; Landmark(s) : (upd s → upd rs).help(upd p)] false

4 Semantics of Ensemble Specifications

For the semantic interpretation of ensemble specifications we use ensemble tran-
sition systems. Let EΣ = (mts,CΣ(CT)) be an ensemble signature.

Ensemble states. An EΣ -ensemble state is a pair

eσ = (ctrl , cσ)

where ctrl is a global control state recording the current execution state of an
ensemble and cσ is a component system state over CΣ. The set of ensemble
states over EΣ is denoted by States(EΣ). In the following we implicitly assume
that the control part of an ensemble state eσ is ctrl and its component system
state is cσ, and likewise for ensemble states eσ′, etc.

Labels. In an ensemble transition system two kinds of labels are used on tran-
sitions which provide semantic interpretations of the atomic (syntactic) actions
(a) and (b) defined in Sect. 3. They use semantic values, in particular component
instances and sets of component instances, instead of variables.

(a) A communication label (v1 → v2).mt(v3, . . . , vn) expresses a synchronous
multi-cast communication where v1 is a sending component instance transmit-
ting a message of type mt : n-2 with parameter values v3, . . . , vn simultaneously
to each member of a set v2 of receiving component instances.

(b) An operation invocation label v1.op(v2, . . . , vn) expresses that operation
op with arity n-1 is invoked for component instance v1 with actual parameter
values v2, . . . , vn.

The set of (semantic) labels over EΣ is denoted by Lab(EΣ).

Ensemble transition systems provide the semantic domain for ensemble-based
systems and thus for the interpretation of (logical) ensemble specifications. Their
transitions are labelled by communication and operation invocation labels. The
former model the coordination between ensemble participants by multi-cast mes-
sage exchange. They do not modify component system states (but usually the
control state of the ensemble). Component system states can be changed by
executing component operations.

A Dynamic Logic for Systems with Predicate-Based Communication 233

Definition 2 (Ensemble transition system). Let EΣ = (mts,CΣ(CT)) be
an ensemble signature. An EΣ -ensemble transition system (ETS) is a tuple

T = (ES , eσ0,Lab(EΣ),−→) such that

– ES ⊆ States(EΣ) is a set of ensemble states such that, for all eσ, eσ′ ∈ ES ,
|cσ| = |cσ′|1;

– eσ0 ∈ ES is the initial ensemble state;
– −→ ⊆ ES ×Lab(EΣ)×ES is a transition relation such that, for all eσ

l−→ eσ′,
(a) if l is of the form (v1 → v2).mt(v3, . . . , vn) then

(pre) v1 ∈ cmpcσ, v2 ∈ cmpscσ\{v1}, v3, . . . , vn ∈ |cσ| and there exists a
message type mt ∈ mts with arity n-2,

(post) cσ′ = cσ;
(b) if l is of the form v1.op(v2, . . . , vn) then there exists ct ∈ CT such that

op : n-1 ∈ opns[ct], v1 ∈ cstatect , and v2 , . . . , vn ∈ |cσ|.
The class of all ensemble transition systems for EΣ is denoted by Trans(EΣ).

Let us now define the satisfaction relation between ETS and ensemble formu-
las. For this purpose we have to consider environments providing values for the
variables in formulas. Assume given an EΣ -ETS T = (ES , eσ0,Lab(EΣ),−→)
with initial ensemble state eσ0 = (ctrl0, cσ0). By definition, for each ensem-
ble state eσ = (ctrl , cσ) ∈ ES , the carrier set |cσ| must coincide with |cσ0|.
Hence, variable environments are elements of Env(X, |cσ0|), i.e. partial func-
tions ρ : X → |cσ0|. To define the satisfaction relation for ensemble formulas we
derive from the semantic transition relation of T a syntactic transition relation

→→ ⊆ (ES × Env(X, |cσ0|)) × Act(EΣ) × (ES × Env(X, |cσ0|))
inductively constructed according to the rules in Fig. 3. The first two rules have
transitions of T , denoted by −→ and labelled with communication and operation
invocation labels, in their premises. The third rule treats assignments in the
usual way but taking care of undefined term interpretations. The remaining
rules reflect the construction of relations for structured actions in dynamic logic.

The transition relation →→ is used to define satisfaction of modal formulas
〈α〉ϕ. For any EΣ -ensemble transition system T = (ES , eσ0,Lab(EΣ),−→) with
initial state eσ0 = (ctrl0, cσ0), for any ensemble state eσ = (ctrl , cσ) ∈ ES and
environment ρ ∈ Env(X, |cσ0|) the satisfaction of ensemble formulas by T is
inductively defined as follows:

– T, eσ, ρ |= true;
– T, eσ, ρ |= p(t1, . . . , tn) if cσ, ρ |= CΣp(t1, . . . , tn), cf. Sect. 2;
– T, eσ, ρ |= ¬ϕ if not T, eσ, ρ |= ϕ;
– T, eσ, ρ |= ϕ ∨ ψ if T, eσ, ρ |= ϕ or T, eσ, ρ |= ψ;

1 We do not allow here that the set of existing component instances can change during
a state transition. This could, however, be incorporated along the lines of [11,14].
The other parts of a component system state are anyway considered as fixed data
types.

234 R. Hennicker and M. Wirsing

– T, eσ, ρ |= ∃x.ϕ if there exists v ∈ |cσ0| such that T, eσ, ρ[x �→ v] |= ϕ;
– T, eσ, ρ |= 〈α〉ϕ if there exists (eσ′, ρ′) ∈ ES × Env(X, |cσ0|)

such that (eσ, ρ) α−→→ (eσ′, ρ′) and T, eσ′, ρ′ |= ϕ.

T satisfies an ensemble formula ϕ ∈ Fm(EΣ ,X), denoted by T |= ϕ,
if T, eσ0, ρ⊥ |= ϕ.

(comm)

(op invoke)

(assignment)

(test)

(seq. composition)

(union)

(iteration refl.)

(iteration trans.)

Fig. 3. Generation of syntactic transitions with environments from an ETS

A Dynamic Logic for Systems with Predicate-Based Communication 235

Definition 3 (Semantics of ensemble specifications and refinement).
Let ESpec = (EΣ , Φ) be an ensemble specification. A model of ESpec is an ETS
which satisfies Φ. The semantics of ESpec is given by its model class

Mod(ESpec) = {T ∈ Trans(EΣ) | T |= ϕ for all ϕ ∈ Φ}.

An ensemble specification ESpec′ = (EΣ , Φ′) is a refinement of ESpec
if Mod(ESpec′) ⊆ Mod(ESpec).

Example 5. We are going to develop a more concrete specification for global
behaviours of robot rescue ensembles. For this purpose we construct a refinement
ESpec1 of the requirements specification ESpec0 in Example 4. The specification
ESpec1 = (EΣ Rescue, Φ1) contains an axiom Φ1 shown in Fig. 4. This axiom
describes a possible scenario how victims can be rescued by spreading help

messages from victims to landmarks, from landmarks to landmarks, and finally to
rescuers. In the best case a victim’s message has immediately reached a rescuer.
Each sender can only reach receivers within its broadcast distance. It is assumed
that landmarks are walking around until they receive a help message. Then
they start sending help messages further. Once a rescuer has received such a
message, it moves to the victim’s position and notifies the victim about its
rescue. Our scenario description uses a while-loop; see Sect. 3. The program is
highly non-deterministic and relies on the concurrent execution of the distributed
components. The scenario requires that it is eventually possible to inform a
rescuer. It starts whenever a victim has issued the first time a help message
with its position. It is easy to see that ESpec1 is a refinement of ESpec0 since
the scenario specialises the loosely specified actions in the diamond modality in
Fig. 2.

Fig. 4. Refined specification for robot rescue ensembles

236 R. Hennicker and M. Wirsing

5 Ensemble Realisations

Ensemble specifications describe properties of collaborating ensemble partici-
pants from a global perspective. In this section we consider ensemble realisa-
tions which define, for each component type ct of an ensemble signature, a local
behaviour to be respected by all instances of ct . Behaviours are described by
process expressions. Given an ensemble signature EΣ = (mts,CΣ(CT)) process
expressions and (local) actions are defined by the following grammar similar to
the AbC calculus [1,2]. We omit parallel composition of local processes, which
anyway will run concurrently per instance when a system is built, and model
the awareness construct by guards for operation invocations. We extend AbC
actions by local operation calls which can perform attribute updates as in AbC
as a special case. Differently from AbC, our predicates π range over first-order
formulas and we use message (type) names for making interactions more explicit.

P ::=nil | a.P | P1 + P2 | K
a ::=mt(e1, . . . , en)@π | (π)mt(x1, . . . , xn) | π : op(e1 , . . . , en)

In the grammar K is a process name, π ∈ Fm(CΣ,X) a first-order formula,
mt ∈ mts a message type of arity n, xi ∈ X are variables, ei ∈ T (CΣ,X) terms,
and op ∈ opns(CΣ) is an operation of arity n. The set of process expressions
over EΣ is denoted by PExp(EΣ). nil denotes the null process, a.P action
prefix, P1 + P2 non-deterministic choice and K a possibly recursive call to a
process with name K. In contrast to global communication actions in Act(EΣ),
there are distinguished receive and send actions seen from the perspective of a
single component instance. A send action mt(e1, . . . , en)@π expresses that the
current instance, say c, is enabled to send a message, transmitting the values of
e1 , . . . , en , to all component instances which satisfy π under the current local
variable environment of c. In π the special variable this can be used to refer to
c and target to refer to any component instance satisfying π. A receive action
(π)mt(x1, . . . , xn) expresses that the current instance c is enabled to receive
a message of type mt if the sender satisfies π. Again this refers to c and a
special variable source is used to refer to the sending component instance. The
transmitted parameters are stored in the local variables x1, . . . , xn of c.

An action π : op(e1 , . . . , en) represents the invocation of an operation with
actual parameters e1, . . . , en by the current component instance c. It is only
executed in the ensemble if the guard π is satisfied in the current component
system state under the local variable environment of c; again this can be used
in π to refer to c. In contrast to processes we do not provide a special syntax
for operation implementations but describe their effect semantically. Given an
operation op : n ∈ opns(CΣ) an operation realisation of op is a set of relations

OpRv.op(v1,...,vn) ⊆ States(CΣ) × States(CΣ),

such that for all (cσ, cσ′) ∈ OpRv.op(v1,...,vn) it holds v, v1, . . . , vn ∈ |cσ| and
|cσ| = |cσ′|.

An ensemble realisation provides an implementation for each component type
in terms of a process description. It also provides an operation realisation for

A Dynamic Logic for Systems with Predicate-Based Communication 237

each operation and an initial component system state which determines the
component instances running in parallel during ensemble execution.

Definition 4 (Ensemble realisation). An ensemble realisation is a tuple

EReal = (EΣ ,CReals ,OpReals, cσ0) such that

– EΣ = (mts,CΣ(CT)) is an ensemble signature,
– CReals is a set of process declarations K = P with P ∈ PExp(EΣ) containing,

for each ct ∈ CT , a unique process declaration ct = Pct ,
– OpReals is a set of operation realisations, one for each op : n ∈ opns(CΣ),
– cσ0 ∈ States(CΣ) is an initial component system state.

The semantics of an ensemble realisation is given in terms of an ensemble
transition system. In this case the global control state ctrl of an ensemble state
eσ = (ctrl , cσ) has a particular form: it is a function ctrl : cmpcσ → LStates(EΣ)
assigning to each component instance c ∈ cmpcσ a local state. A local state is a
pair l = (ρ, P) where ρ : X → |cσ| is an environment of the local variables of c
and P ∈ PExp(EΣ) is a process expression recording the current computation
state of c. We write env[l] for ρ and proc[l] for P . The set of all local states over
EΣ is denoted by LStates(EΣ).

In contrast to the loose semantics of ensemble specifications, an ensemble
realisation EReal = (EΣ ,CReals ,OpReals, cσ0) determines a unique ensemble
transition system. Its initial ensemble state is eσ0 = (ctrl0, cσ0) where the con-
trol state ctrl0 is given by the function ctrl0 : cmpcσ → LStates(EΣ) such that
for all ct ∈ CT and c ∈ ctcσ, ctrl0(c) = (ρ⊥[this �→ c], Pct) if ct = Pct ∈ Reals .

Structural operational semantics (SOS) rules generate the ensemble transi-
tions. We pursue an incremental approach, similar to the Fork Calculus [10]
and other calculi like SCEL [6], Helena [13], and AbC [1,2], by splitting the
semantics into two different layers. The first layer describes how processes evolve
according to the given constructs for process expressions. Figure 5 provides the
corresponding SOS rules. We use the symbol ↪−→ for transitions on process level.

On the second level we consider ensemble states and their transitions denoted
by −→ in Fig. 6. Rule (com) describes that a (global) communication, exchanging
message mt(v1, . . . , vn), happens if the local process state of a sender is enabled
to send the message and the set of receivers is a maximal set of component
instances whose local processes are enabled to receive the message such that,
in the current component system state, each receiver satisfies the predicate of
the sender and the sender satisfies the predicate of each receiver. Additionally,
the values of the actual parameters must be taken into account when evaluating
receiver predicates. Rule (op) says that an operation invocation c.op(v1, . . . , vn)
happens on ensemble level if the local process of component instance c is enabled
to invoke op and if the guard π is (currently) satisfied by the sender. The execu-
tion of the operation is then performed in accordance with the given operation
realisation.

238 R. Hennicker and M. Wirsing

(action prefix)

(choice-left)

(choice-right)

(process invocation)

Fig. 5. SOS rules for process expressions

(comm)

(op)

Fig. 6. SOS rules for deriving an ETS from an ensemble realisation

A Dynamic Logic for Systems with Predicate-Based Communication 239

Definition 5 (Semantics of an ensemble realisation). The semantics of
an ensemble realisation EReal = (EΣ ,CReals ,OpReals, cσ0) is the ensemble
transition system

[[EReal]] = (ES , eσ0,Lab(EΣ),−→)

where eσ0 is the initial ensemble state (derived from EReal as explained above)
and ES ,−→ are inductively generated from eσ0 by applying the rules in Fig. 5 and
Fig. 6.

Note that the rules in Fig. 6 guarantee the constraints for an ensemble transi-
tion system formulated in Definition 2. Our semantic concepts lead to an obvious
correctness notion for ensemble specifications and their realisations:

Definition 6 (Correct ensemble realisation). Let ESpec be an ensemble
specification and EReal be an ensemble realisation over the same signature.
EReal is a correct realisation of ESpec if [[EReal]] ∈ Mod(ESpec).

Example 6. We provide a realisation for robot rescue ensembles. Figure 7 shows
the process declarations for each component type. We assume that our ensemble
is started in an initial component system state cσ0 with one victim, one res-
cuer and n > 0 landmarks. Moreover, we assume given operation realisations
for walk and move such that the latter moves a rescuer to a given target posi-
tion. A victim process sends recursively help messages transmitting its position
to components within its broadcast distance. This behaviour is stopped once
the victim receives a rescue message from a component arrived at the victim’s
position. Any landmark is continuously walking until it receives a help message.
From that point on it forwards recursively the message (and the received value)
to components within its broadcast distance. A rescuer becomes active when it
receives a help message with parameter vp. Then it executes the move operation
towards position vp and sends rescue to the components at that position.

Fig. 7. Realisation of the robot rescue ensemble

To discuss the correctness of our realisation w.r.t. the specification ESpec1
of Example 5 we must check that our ensemble, starting with the n + 2 com-
ponent instances in cσ0, can, after the victim has asked for help, eventually

240 R. Hennicker and M. Wirsing

reach a state where a rescuer arrives at the victim’s position to rescue it. For
this we must assume that, depending on the size of the exploration area, there
are sufficiently many landmarks around whose walk operation is implemented in
such a way that an appropriate distribution of the landmarks is reachable where
the broadcast distance of each sender is sufficient to transfer the messages. Then
the interactions that are possible due to our ensemble implementation guarantee
that there is a possibility to execute the specified global interaction scenario. ��

6 Conclusion

We have proposed a logical framework and methodology for developing collective
systems starting from abstract requirements specifications of global interactions
down to constructive ensemble realisations in terms of local processes. In con-
trast to our previous work, communication partners are not explicitly linked but
specified by predicates in a multi-cast fashion. Several extensions of our app-
roach are interesting, e.g., creating new component instances on demand [6,14],
asynchronous communication as in Helena [17], integrating statistical meth-
ods [8,18], proof techniques and tools [13], as well as larger case studies.

References

1. Abd Alrahman, Y., De Nicola, R., Loreti, M.: A calculus for collective-adaptive
systems and its behavioural theory. Inf. Comput. 268, 104457 (2019)

2. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming interactions in collec-
tive adaptive systems by relying on attribute-based communication. Sci. Comput.
Program. 192, 102428 (2020)

3. Abeywickrama, D., Bicocchi, N., Mamei, M., Zambonelli, F.: The SOTA approach
to engineering collective adaptive systems. Int. J. Softw. Tools Technol. Transfer
22, 399–415 (2020). https://doi.org/10.1007/s10009-020-00554-3

4. Bortolussi, L., et al.: CARMA: collective adaptive resource-sharing Markovian
agents. In: Bertrand, N., Tribastone, M. (eds.) Proceedings Thirteenth Workshop
on Quantitative Aspects of Programming Languages and Systems, QAPL 2015,
EPTCS, vol. 194, pp. 16–31 (2015)

5. Bruni, R., Corradini, A., Gadducci, F., Melgratti, H., Montanari, U., Tuosto, E.:
Data-driven choreographies à la Klaim. In: Boreale, M., Corradini, F., Loreti, M.,
Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent and Distributed
Programming. LNCS, vol. 11665, pp. 170–190. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-21485-2_11

6. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to auto-
nomic systems programming: the SCEL language. ACM Trans. Auton. Adapt.
Syst. (TAAS) 9(2), 1–29 (2014)

7. Ebbinghaus, H.-D.: Über eine Prädikatenlogik mit partiell definierten Prädikaten
und Funktionen. Arch. Math. Logik Grundlagenforschung 12, 39–53 (1969)

8. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21455-4_3

https://doi.org/10.1007/s10009-020-00554-3
https://doi.org/10.1007/978-3-030-21485-2_11
https://doi.org/10.1007/978-3-030-21485-2_11
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3

A Dynamic Logic for Systems with Predicate-Based Communication 241

9. Harel, D., Kozen, D., Tiuryn, J. (eds.): Dynamic Logic. MIT Press, Cambridge
(2000)

10. Havelund, K., Larsen, K.G.: The fork calculus. In: Lingas, A., Karlsson, R., Carls-
son, S. (eds.) ICALP 1993. LNCS, vol. 700, pp. 544–557. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-56939-1_101

11. Hennicker, R.: Role-based development of dynamically evolving esembles. In:
Fiadeiro, J.L., Tutu, I. (eds.) Recent Trends in Algebraic Development Techniques -
24th IFIP WG 1.3 International Workshop, WADT 2018, Revised Selected Papers.
LNCS, vol. 11563, pp. 3–24. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-23220-7_1

12. Hennicker, R., Klarl, A.: Foundations for ensemble modeling – the Helena app-
roach. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Soft-
ware. LNCS, vol. 8373, pp. 359–381. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54624-2_18

13. Hennicker, R., Klarl, A., Wirsing, M.: Model-checking Helena ensembles
with spin. In: Martí-Oliet, N., Ölveczky, P.C., Talcott, C. (eds.) Logic, Rewriting,
and Concurrency. LNCS, vol. 9200, pp. 331–360. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23165-5_16

14. Hennicker, R., Wirsing, M.: Dynamic logic for ensembles. In: Margaria, T., Stef-
fen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 32–47. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03424-5_3

15. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL 2008), pp. 273–284. ACM (2008)

16. Kernbach, S., Schmickl, T., Timmis, J.: Collective adaptive systems: challenges
beyond evolvability. CoRR abs/1108.5643 (2011)

17. Klarl, A.: HELENA: Handling massively distributed systems with ELaborate
ENsemble Architectures. Ph.D. thesis, LMU Munich, Germany (2016)

18. Latella, D., Loreti, M., Massink, M., Senni, V.: Stochastically timed predicate-
based communication primitives for autonomic computing. In: Bertrand, N., Bor-
tolussi, L. (eds.) QAPL 2014. EPTCS, vol. 154, pp. 1–16 (2014)

19. Nicola, R., et al.: The SCEL language: design, implementation, verification. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-16310-9_1

20. Pinciroli, C., Bonani, M., Mondada, F., Dorigo, M.: Adaptation and awareness in
robot ensembles: scenarios and algorithms. In: Wirsing, M., Hölzl, M., Koch, N.,
Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS,
vol. 8998, pp. 471–494. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
16310-9_15

21. Vassev, E., Hinchey, M.: Engineering requirements for autonomy features. In: Wirs-
ing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collec-
tive Autonomic Systems. LNCS, vol. 8998, pp. 379–403. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-16310-9_11

22. Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.): Software-Intensive
Systems and New Computing Paradigms. LNCS, vol. 5380. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-89437-7

23. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-16310-9

https://doi.org/10.1007/3-540-56939-1_101
https://doi.org/10.1007/978-3-030-23220-7_1
https://doi.org/10.1007/978-3-030-23220-7_1
https://doi.org/10.1007/978-3-642-54624-2_18
https://doi.org/10.1007/978-3-642-54624-2_18
https://doi.org/10.1007/978-3-319-23165-5_16
https://doi.org/10.1007/978-3-319-23165-5_16
https://doi.org/10.1007/978-3-030-03424-5_3
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.1007/978-3-319-16310-9_15
https://doi.org/10.1007/978-3-319-16310-9_15
https://doi.org/10.1007/978-3-319-16310-9_11
https://doi.org/10.1007/978-3-540-89437-7
https://doi.org/10.1007/978-3-319-16310-9
https://doi.org/10.1007/978-3-319-16310-9

242 R. Hennicker and M. Wirsing

24. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: engineering auto-
nomic service-component ensembles. In: Beckert, B., Damiani, F., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-35887-6_1

25. Würtz, R.P.: Organic Computing. UCS. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-77657-4

https://doi.org/10.1007/978-3-642-35887-6_1
https://doi.org/10.1007/978-3-540-77657-4
https://doi.org/10.1007/978-3-540-77657-4

Abstractions for Collective Adaptive
Systems

Omar Inverso1(B), Catia Trubiani1(B), and Emilio Tuosto1,2(B)

1 Gran Sasso Science Institute, L’aquila, Italy
{omar.inverso,catia.trubiani,emilio.tuosto}@gssi.it

2 University of Leicester, Leicester, England

Abstract. This paper advocates behavioural abstractions for the coor-
dination of collective adaptive systems (CAS). In order to ground the
discussion in a concrete framework, we sketch mechanisms based on
behavioural types for some recently proposed calculi that formalise
CAS. We analyse new typing mechanisms and show that such mecha-
nisms enable formal specifications of CAS that cannot be easily attained
through existing behavioural types. We illustrate how a quantitative
analysis can be instrumented through our behavioural specifications by
means of a case study in a scenario involving autonomous robots. Our
analysis is auxiliary to our long term aim which is three-fold: (i) study
suitable typing mechanisms for CAS, (ii) identify basic properties of CAS
that may be enforced by typing, and (iii) consider quantitative properties
of CAS.

1 Introduction

Collective adaptive systems (CAS) consist of computational agents that collab-
orate and take decisions to achieve some goals [17]. Typically, agents of CAS
are autonomous units that coordinate distributively. Namely, there is no cen-
tral unit and the overall state of the computation is fragmented in the local
state of agents. Also, these agents execute in a cyber-physical context and are
supposed to adapt to changes of these open-ended environments. Hence, at a
given moment, agents have a partial knowledge about the overall state of the
computation. For each agent, such knowledge is made of information possibly
acquired autonomously (e.g., by sensing and elaborating information about the
surrounding environment) or communicated by other agents. Decisions are local :
agents use their knowledge to establish the next course of action.

We will use a simple scenario to illustrate some key features of CAS. The sce-
nario is centred around the stable marriage problem [20] (SM), that finds applica-
tions inmanydomains to determinematching of resources.Given two equally-sized
sets of elements, each having individual preferences (in form of an ordered list) on

Research partly supported by the EU H2020 RISE programme under the Marie
Sk�lodowska-Curie grant agreement No 778233. Work partly funded by MIUR projects
PRIN 2017FTXR7S IT MATTERS and PRIN 2017TWRCNB SEDUCE. .

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 243–260, 2020.
https://doi.org/10.1007/978-3-030-61470-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_15

244 O. Inverso et al.

the elements of the other group, Stable Marriage (SM) amounts to finding a stable
matching between the elements of the two groups. The original formulation was
described in terms of groups of women and men, whence the word marriage origi-
nates; in the following, we retain the original terminology.

The SM protocol can be solved by pairing men to women so that no man
and woman would rather prefer each other to their current partner. In the clas-
sical solution of [20] each man proposes himself to his most favourite woman,
according to his preferences. When a man’s offer is rejected or a woman drops
her current partner due to a better pretender, the man tries with his next pre-
ferred woman. A woman accepts any proposal when single or, depending on her
preferences, she chooses the best man between her current partner and the one
making advances, abandoning her current partner in the second case. The SM
protocol guarantees the existence of a unique stable matching.

The following python-like pseudocode describes the use of the algorithm
of [20] for the classical SM protocol where agents use preference lists to take
their decisions.

def B(prefs, myID):
... # code to handle prefs
for charger in prefs:

send("p", myID) at charger
recv(res)

def C(aID, aPID):
while true:

recv("p", idNew)
if choose(aPID, idNew):

send("no") to aPID
else: send("no") to idNew

Assume that the parameter
*ID is used to identify agents;
for instance, B communicates
its identifier myID to C and the
latter may use it in further
communications.

In a CAS scenario, we can imagine a number of agents executing either (or
both) the snippets above in order to “pair up”: for instance, an autonomous
agent roaming in a smart city in need to recharge its battery may execute B
to search for a charger agent executing C. Now suppose that chargers are not
available in the immediate proximity of an agent needing a recharge.

In such a scenario, a key element for correctness1 is therefore how informa-
tion spreads among agents. For instance, the message sent by B should reach a
charger. Simple communication mechanisms such as point-to-point (p2p) com-
munications present some limitations in this application domain. The main draw-
back of these mechanisms is that they impose the design of ad-hoc communica-
tion protocols to (1) identify partners, (2) disseminate information, (3) update
local knowledge of agents. In the snippet above, partners include identifiers and
it is assumed that the communication infrastructure delivers messages properly.
This requires to configure agents appropriately: the identifiers used must exist,
be unique, and immutable. For instance, malfunctions can arise when renaming
chargers or assigning the same name to different chargers. Moreover, the deploy-
ment of new chargers would go “unnoticed” to existing agents unless updating
their preference list. Besides p2p communications have an overhead since multi-
party interactions are commonplace in CAS.

As reviewed in Sect. 7, a number of proposals have indeed been made to
provide suitable communication mechanism. Those approaches aim to provide
suitable linguistic abstractions to specify CAS. For instance, the calculus of

1 We will come back to correctness soon.

Behavioural Abstractions for CAS 245

attribute-based communication (AbC) [1] allows one to specify the scenario above
by addressing agents according to their attributes so that, e.g., B can send a
request to any charger within a given distance and with a given amperage and
cost. However, those mechanisms are complex and often hard to enforce in com-
munication infrastructures. Also, it is difficult to understand how those mecha-
nisms can be used to guarantee interesting properties of CAS (cf. Sect. 7). This
point can be explained with an analogy. Synchronous communications allow the
designer to assume that after an interaction the receiving agent has acquired
the information. Said differently, this type of interaction allows the sender to
make safe assumptions on the state of the receiver. This has important conse-
quences on the way one can reason about the system. So, fixed a sophisticated
communication mechanism, natural questions to ask are:

1. “What can be safely assumed about the distributed state of the system after
an interaction among agents?”

2. “What (behavioural) properties a given communication mechanism
enforces?”

3. “How can one statically validate such properties?”
4. “Can behavioural abstractions support or improve run-time execution?”
5. “Can behavioural specifications foster quantitative analysis of CAS?”

This paper discusses the characteristics of behavioural abstractions for CAS.
We argue that existing frameworks are not suitable for the specification or the
static analysis of CAS. For the sake of the argument we will use AbC as an
illustrative language and sketch behavioural abstractions tailored on the lin-
guistic mechanisms of AbC. Giving a full fledged typing discipline is out of the
scope of this paper. Our main goal is to discuss what are the main features that
behavioural types for CAS should provide and how such features can be used to
support quantitative analysis of CAS.

Outline. Section 2 surveys AbC using the SM protocol. Section 3 sketches a
behavioural type for CAS. For the sake of the presentation, we will refrain from
technical definitions and give only informal descriptions to motivate our pro-
posal in Sect. 4. Section 5 uses the simple examples in Sect. 3 and a case study
from the robotic domain for examing the questions above. Section 6 shows how
the behavioural types discussed here could be helpful for quantitative analysis of
CAS. Related and future work are discussed in Sect. 7 together with concluding
remarks.

2 A Bird-Eye View of AbC

The calculus of attribute-based communication [1] (AbC), was initially conceived
as a simplified version of SCEL [16]. Intuitively, AbC can be seen as a gener-
alisation of traditional message-passing. In message-passing, communication is
typically restricted to either one-to-one (point-to-point) or one-to-all (broad-
cast). AbC relaxes this restriction by allowing one-to-many communication via

246 O. Inverso et al.

attribute-based send and receive constructs. Interestingly, communication across
dynamically-formed many-to-many groups can take place. This allows to model
effortlessly several different classes of distributed systems, which would be harder
to do under more traditional formalisms, such as Actors [3], channels [27], or
broadcast [29], that rely on the identity of the communicating peers.

Informally, an AbC system consists of multiple communicating components.
Depending on the domain and the interaction patterns of interest, each compo-
nent exposes some attributes. A send operation can thus target all the compo-
nents satisfying a given predicate on such attributes. Every component satisfying
the sending predicate is thus selected as a potential receiver. At the other end,
similarly, each potential receiver performing a receive operation eventually gets
messages depending on its receiving predicate. Any other message is discarded.
For instance, cooperating robots in a swarm may be modelled as separate compo-
nents that expose their battery level and location. A robot can ask cooperation
to robots within a certain distance and with a minimum battery level. However,
a robot which is already busy may want to discard this invitation.

More concretely, the core syntax of (our variant of) AbC is as follows

C ::= Γ : P
∣
∣ C1 ‖ C2 Components

P ::= 0
∣
∣ α.P

∣
∣ [a := E]P

∣
∣ 〈Π〉P ∣

∣ P1 + P2

∣
∣ P1 | P2

∣
∣ K Processes

E ::= v
∣
∣ x

∣
∣ a

∣
∣ this.a

∣
∣ x

∣
∣ (E) Expressions

α ::= E@Π
∣
∣ Π(E) Actions

Π ::= true
∣
∣ false

∣
∣ E1 �� E2

∣
∣ Π1 ∧ Π2

∣
∣ ¬Π

∣
∣ {Π} Predicates

An AbC system consists of multiple components. A component is either the
parallel composition of two components, or a pair Γ : P , where Γ denotes
the attribute environment of the component, and P a process describing its
behaviour. Processes exchange expressions E which may be a constant value v,
a variable x, an attribute name a, a reference this.a to an attribute a of the
local environment, or a placeholder x used by the pattern matching mechanism.
Values include basic data types (e.g., atoms ’v’, numeric or boolean values),
arithmetic expressions, and tuples �E1, . . . , En� including the empty tuple ��.

The attribute environment Γ is a mapping from attribute names to values.
As mentioned, attributes expresses specific features of the components that are
relevant for communication, for example the position of an agent on a grid, the
battery level of a robot, the role of the component or its identity, etc. The set of
attributes exposed by each component is statically fixed upfront.

A process P can be the inactive process 0 (hereafter omitted where possible),
an action prefixing process α.P , an update process [a := E]P , an awareness
process 〈Π〉P . Processes can be composed using the usual non-deterministic
choice P1 + P2 and parallel composition constructs P1|P2, and invocation K.

The prefixing process executes action α and continues as P . The update
process sets attribute a to the value of expression E. The awareness process

Behavioural Abstractions for CAS 247

blocks the execution of process P until predicate Π holds. Non-deterministic
choice and parallel composition work as usual. Note that the awareness construct
may be combined with non-deterministic choice to express branching.

An attribute-based send action E@Π sends the evaluation of expression E
to those components whose attributes satisfy predicate Π. An attribute-based
receive action Π(E) uses expressions E to pattern match expressions in send
actions. More precisely, the occurrences of a placeholder x are bound in E
and the continuation of the receive prefix; upon communication, x is assigned
the corresponding values in the message received from any component whose
attributes (and possibly values communicated in the body of the message) satisfy
predicate Π. Send operations are asynchronous while receive are blocking.

An update operation is performed atomically with the action following it, if
the component under the updated environment can perform that action. It is
possible to model an update operation in isolation [a := E] via an empty send
action ��@false to obtain [a := E]��@false.

A predicate Π can be either true, a comparison between two expressions
E1 �� E2 (e.g., x + y ≤ 2z), a logical conjunction of two predicates Π1 ∧ Π2 or
a negation of a predicate ¬Π.

Back to our example, the behaviour of the robot looking for help can be
partially sketched by the following fragment:

�‘help’, this.pos�@{distance(this.pos, pos) < k ∧ battery > 0.5}
where the robot sends an ‘help’ message along with its position to all robots

within distance k and with at least 50% battery charge left. For simplicity, we
use distance as a shorthand for a more complex expression that computes the
distance between any two given positions. Note that the robot uses this.pos to
indicate the local attribute which refers to its own position. A possible reaction
of a robot at the other end could be:

〈¬this.busy〉(message = ‘help’)(message). · · · +
〈this.busy〉(message = ‘help’)(message)

To further illustrate the effectiveness of AbC in describing non-trivial inter-
action patterns, we consider the stable marriage protocol (cf. Sect. 1) and its
attribute-based implementation [13,14].

In AbC, we can model men and women as components whose attributes are
the identifier id, the preference list prefs, and the current partner. A man updates
his attribute partner to the first element of prefs, and then sends a propose
message to components whose id attribute coincide with the partner attribute;
he then waits for a no message to reset the partner, and so on:

M =[this.partner := head(this.prefs), this.prefs := tail(this.prefs)]

(propose, this.id)@(id = this.partner).Wait

Wait =[this.partner := null](no)(m).M

248 O. Inverso et al.

Women wait for incoming proposals (Handle process), and either prefer the
proposer to her current partner (process A), or otherwise (process R). Note
that immediately after receiving a proposal, women can handle other proposals.
Notice that both R and A use a reversed form of preference lists to compare
identifier of the current partner with one of a new proposer:

Handle =(propose)(Handle | (propose, id).(A(id) + R(id)))

A(id) =〈this.prefs[this.partner] < this.prefs[id]〉
[ex := this.partner, this.partner := id](no)@(id = ex)

R(id) =〈this.prefs[this.partner] > this.prefs[id]〉(no)@(id = id)

3 AbC-inspired Behavioural Types

We scribble a few abstractions for CAS that we dub AbC-inspired behavioural
types (ABeT for short). Basically, ABeT mix together ideas from session types [23]
in order to support the specification, verification, and analysis of CAS. In partic-
ular, ABeT blend global choreographies [22,31], and klaimographies [8]. Instead of
appealing to formal syntax and semantics, we opt for an intuitive visual descrip-
tion. To this purpose, we use diagrams (see Fig. 1) depicting the communication
pattern of the SM protocol. We now survey the core features of ABeT.

Fig. 1. A behavioural abstraction of the SM protocol

The diagram in Fig. 1 represents a distributed workflow of interactions, which
are the atomic elements of ABeT; the general form of an interaction for CAS is
inspired by AbC and takes the form

A�ρ
e e′
−−−→ B�ρ′

(1)

The intuitive meaning of the interaction in (1) is as follows:

any agent, say A, satisfying ρ generates an expression e for any agents
satisfying ρ′, dubbed B, provided that expression e′ matches e.

Behavioural Abstractions for CAS 249

We anticipate that A and B here are used just for convenience and may be

omitted for instance writing ρ
e e′
−−−→ B�ρ′

or ρ
e e′
−−−→ ρ′

. Also, we abbreviate A�ρ

with @ when ρ is a tautology. This allows us to be more succinct. For instance,
the top-most interaction in Fig. 1 specifies that

– all “man” agents propose to the “woman” who is top in their preference list
by generating a tuple made of the constant value p and their identifier M.id

– any “woman” agent (denoted as W in the rest of the diagram) whose identifier
equals the head hd(M.prefs) of her preference list pattern matches the tuple
sent by M and records in the variable x the identity of the proposer.

Interactions such as (1) introduce already some abstractions:

– Similarly to global choreographies, (1) abstracts away from asynchrony; inter-
actions are supposed to be atomic

– As in klaimographies, (1) abstracts away from the number of agents in exe-
cution

– As behavioural types, (1) abstracts away from the local behaviour of the
agents; for instance, it does not tell if/how the local state of agents are changed
(if at all) by the interaction

Interactions are the basic elements of an algebra of protocols [31] that allows
us to iterate them or compose them in non-deterministic choices or in parallel.
In Fig. 1, the � -gates mark the entry and exit points of the loop of the SM
protocol. Likewise, the + -gates mark the branching and merging points of a
non-deterministic choice. The “body” of the loop in Fig. 1 yields the choice
specified by the SM protocol. We will also use | -gates to mark forking and
joining points of parallel protocols.

These abstractions are “compatible” with the pseudocode in Sect. 1. In fact,
one could assign2 B the communication pattern of M in Fig. 1 and to C the com-
munication pattern of W. Besides, other “implementations” of the SM protocol
could be given those types. For instance, M can also be the type of an agent
that puts back in its list of preferences the identifier of a charger which denies
the service (so to try again later).

4 Speculating on ABeT

We advocate new behavioural types for CAS. In the following we argue why
“standard” behavioural types fall short of the requirements imposed by CAS.

Communication, roles & instances. As discussed in Sec. 1, point-to-point com-
munications are not ideal for CAS. In particular, features such as attribute-based
communications would be unfeasible with point-to-point interactions. Since the
communication mechanism adopted in ABeT is inspired by AbC, it seems natural
2 A suitable typing discipline, out of the scope of this paper, could do the assignment.

250 O. Inverso et al.

to get inspiration from klaimographies which, as far as we know, are the only
behavioural abstractions that are not based on point-to-point communication.
Klaimographies indeed are based on generative communication [9]. We envisage
attribute-based communication as a further abstraction of generative commu-
nication. In fact, it would be interesting to look at ABeT as a mechanism to
support the realisation of CAS by realising AbC specifications with distributed
tuple spaces. We will return to this point in Sect. 7.

A basic abstraction borrowed from klaimographies is the notion of role. For
instance, Fig. 1 describes the communication pattern of the “male” and “female”
roles of SM protocol. Such roles are then enacted by instances of agents. The
distinction between roles and instances is instrumental to abstract away from
the number of agents, which is a paramount aspect of CAS. This is also a reason
why we believe that standard behavioural type systems are not suitable to cap-
ture the complexity of CAS. For instance, parameterised session types [12] use
indexed roles that can be rendered with a given number of instances. However,
parameterised session types can only handle point-to-point communications.

Fig. 2. Pre- and post-conditions in ABeT

Another peculiarity of CAS is that agents may play more than one role in
the protocol. This will be indeed the case for the scenario considered in Sect. 5.
We are not aware of any existing behavioural type framework allowing this.

Correctness. The agent R described at the end of Sect. 3 has a drastically differ-
ent behaviour than agent B in Sect. 1. In fact, provided that preferences satisfy
some properties, the latter has been shown in [20] to “stabilises” in a state where
agents B are deadlocked waiting for a message from a charger C that is never
sent and that each male agent pairs up with a female one and vice versa. The
former CAS can instead diverge if e.g., the identifier of an agent B is not in the
preference list of any charger agent.

The previous example suggests that ABeT do not guarantee progress. This is a
distinctive difference from standard behavioural types, where the usual theorem
is that well-typed programs are (dead)lock-free. Notice though, that progress
(at least the strong variant usually taken in behavioural type theories) is not
necessarily desirable in CAS. For instance, agents B must deadlock in order

Behavioural Abstractions for CAS 251

to successfully run the protocol. These observations immediately impose the
following questions

– what notion of correctness suits CAS?
– what behavioural property do typed CAS enjoy?
– what features should ABeT have to capture such properties?

We argue that, to address these questions, it is not enough to capture the
control-flow of CAS in behavioural abstractions. Basically, to some extent ABeT
should also allow one to model the local behaviour of agents, at least to some
extent. To illustrate this we use the variant of SM protocol in Fig. 2 where the
top-most interaction is now decorated with some pre- and post-conditions. The
idea is that these conditions constraint the local behaviour of agents. Intuitively,

– the pre-condition in Fig. 2 requires that, before sending a proposal, all the
identifiers in the preference list of an agent M are assigned to some agent

– the post-condition in Fig. 2 states that, after being used for a proposal, the
identifier is removed from the preference list of M.

Likewise, the post-conditions on the interactions of each branch state that the
partner of W is set to the agent to whom the message no is not sent. Using pre-
and post-conditions we can assign the decorated ABeT of Fig. 2 to agent B but
not to agent R.

Asserted interactions have been proposed in [7] in order to specify relations
among data exchanged by participants. We advocate the use of assertions also to
specify local behaviour of CAS agents. For instance, the post-conditions on the
branches in Fig. 2 is a mere assertion on the state of W and it does not involve
any communication.

Progress & well-formedness. Related to correctness is the problem of identifying
suitable notions of progress for CAS. The classical SM protocol is designed so
that agents are actually suppose to deadlock. This is inconceivable in all the
behavioural type systems but klaimographies, which brings us to a fundamental
peculiarity of ABeT.

The typical result of behavioural type theories is the definition of well-
formedness conditions that guarantee some form of progress. The idea is that
well-formedness constraints are conditions on the choreography sufficient to
ensure that the protocol deadlocks only if all participants terminates. For
instance, all the known well-formed conditions of behavioural types would reject
the SM protocol as ill-typed. In fact, the choice in the SM protocol is not prop-
agated well according to the canons of behavioural types. This is due to the
following reason. Behavioural types require that branches of a distributed choice
to be “alternative”, namely only one of them should be enacted by all the
involved agents. Well-formedness conditions are usually imposed to guarantee
that all the agents involved in a distributed choice unequivocally agree on which
branch to follow. The rationale is to avoid mismatches in the communications
when some participants follow a branch while other execute another branch of

252 O. Inverso et al.

the choice. This is exactly what happens in the SM protocol. The choice involves
the agent W, M, and W.partner. However, W communicates her decision only to
one between M and W.partner.

Run-time support. An advantage of behavioural abstraction is that they allow
us to project specifications to lower down levels of abstraction. For instance, one
can obtain specification of each role by projecting the ABeT of Fig. 1 similarly
to what done for klaimographies in [8]. Most behavioural types are amenable
of being projected on executable code [21] as well as monitors to enforce some
run-time properties [6,18,28]. These projections are “simple” since the commu-
nication model in the behavioural types is very close to existing ones (such as
those of message-oriented middlewares or programming languages such as Erlang
or GoLang). Attaining such projection operations for ABeT would not be that
straightforward. Attribute-based communication requires some ingenuity to be
effectively realised on the common communication infrastructures available for
distributed systems.

We think that ABeT can support the run-time execution of CAS systems. The
idea is to generate ghost components that decide how to spread the information
among agents. The ghost of an agent can be statically derived by projection a
global type in order to regulate the spread of the information across CAS. For
instance, a static analysis could determine that some roles are not interested
receiving some data, hence the ghosts of agents willing to synchronise on those
patterns would spread the relevant information among themselves before sending
it to any other agents. Similarly, the ghost of an agent that has to spread some
information to other agents can prioritise the ones that are more likely to need
that information in the near future than those that will not access it soon.

5 Autonomous Robots

To highlight other features of ABeT, in this section we consider a more complex
scenario. Initially, we assume that agents can play two roles for simplicity but
one can easily imagine that more roles could be involved.

5.1 A Coordination Protocol

Consider a decentralised system where robots roam a physical environment to
delivery some goods. When a robot is in operational state, its battery depletes
according to some factors (such as its load, speed, etc.). Therefore, robots col-
laborate to optimise the use of energy by offering and requiring energy. More
precisely, a robot can offer other robots a recharging service when e.g., its energy
is above a given threshold or seek for a recharge of its battery from other robots
when its battery consumption becomes high. This way, energy is exchanged
among robots, and it is less likely that robots cannot terminate their delivery
tasks due to battery drain. This means that all the robots simultaneously assume

Behavioural Abstractions for CAS 253

the role of being consumers and suppliers of energy. The collective behaviour of
robots is a strategy to accomplish their goal.

We now design a protocol that robots may use to administer their batteries.
Let us assume that Sue and Rick are two robots of our delivery system enacting
a specific role for our scenario. Namely, Sue behaves as energy supplier while
Rick looks for a recharge, respectively. The robots repeatedly behave as follows.

Initially, Sue advertises her offer by sending to every potential consumer
the available charge of the battery, and her contact details. She then waits for
incoming answers from any interested robot. When Rick receives an offer of
energy, he decides whether to make a request. For instance, this decision depends
on the quantity of energy offered and the quantity of energy needed. If Rick is
interested to acquire a certain amount of energy from Sue, it makes a request
to Sue and sends his contact details. Rick then waits for Sue to confirm or to
cancel the offer of energy; this is necessary because in the meantime Sue may
have committed to supply some energy to other robots or she may have switched
to a consumer modality depending on the level of her battery. Therefore, upon
Rick’s request, Sue decides whether the offer is still valid. If that is the case,
Sue notifies Rick with the amount of energy she is willing to supply. Otherwise,
Sue tells Rick that the offer is no longer available. For simplicity, we will assume
that robots have identifiers that encompass all their contact details.

Fig. 3. ABeT specification of robots

5.2 A Specification in ABeT

The protocol in Fig. 3 captures the scenario in Sect. 5.1. The protocol is a loop
in which robots manage energy through two parallel threads. In the left-most
thread, energy offers are advertised by robots whose local state is such that
they can offer a recharge (charge > 0) and have a battery level above a fixed
threshold (bl ≥ eT). This advert is addressed to any robot requiring energy

254 O. Inverso et al.

(reqEn > 0). Those robots may not consider the offer if they deem it inconvenient;
this is modelled by the conditional post-condition c(e) =⇒ s ∈ supp where the
proposition c() establishes whether the energy e offered is “convenient”; only if
this is the case the robot updates its local state adding the supplier’s identifier
in its list of potential suppliers. Notice that the condition id
= s avoids adding
the consumer’s identity in supp; this avoids dealing with self-offers.

Once advertisements are out, a robot in need of energy can contact one of the
suppliers chosen from those stored in its supp attribute (sel(supp)). At this point
the contacted supplier decides whether to confirm the offer (left-most branch of
the choice) or cancel it. The former case requires that the amount of requested
energy is lower than the supplier’s energy level (pre-condition e < qt). In our
specification the actual amount of offered energy is a function of the required
energy and the available quantity (a(e, qt)); in the simplest case this may just
equal e, but one could think of a lower amount if the local state of the supplier
had changed between the advertisement and the current request of energy. Upon
confirmation of the offer, the consumer updates its local state accordingly; this
is modelled with the post-condition φconfirm that reads as

S.charge = S.qt − o ∧ C.bl = C.bl + o ∧ C.reqEn = C.reqEn − o

namely, the supplier is supposed to subtract the offered energy from its quan-
tity while the consumer has to add the same amount to its battery level and
updates its reqEn attribute accordingly. This scenario offers the possibility of a
few remarks, besides the general ones in Sect. 4.

The protocol describes the behaviour of robots in need of energy and, at
the same time, their behaviour when offering energy. In other words, the same
agent can play both roles and behave according to a “supplier-” or “consumer-
modality”. Crucially, the specification in Fig. 3 does not constraint a-priori when
or how these modalities can be played. For instance, the following would be all
valid implementations:

– some robots act purely as suppliers (e.g., to model charging stations) while
others act purely as consumers (e.g., mobile robots);

– robots can behave according to either of the modalities at a time;
– robots can offer or require energy at the same time.

This variability is not possible in most existing settings based on behavioural
types where single-threadness is necessary. Notice that the behaviours mentioned
above may determine different roles, e.g., a recharging station pursues a different
goal than robots and it follows different communication patterns.

Another observation is that the protocol can be configured to obtain different
emerging behaviours by tuning up some parameters such as the thresholds, the
function a used when confirming the offers, or the proposition c used when
accepting offers. For instance, one could set the battery level so that a robot
acting just as charging station continuously makes offers (e.g., bl = 0). Likewise,
the protocol is permissive on local computations. For example, the criteria used
by a robot to select the supplier to contact are abstracted away by the function

Behavioural Abstractions for CAS 255

sel() which can be implemented in a myriad of different ways. To mention but
a few options, consider solutions where

– the attribute supp just contains the latest received offer and sel() is just the
identity function;

– sel() treats the attribute supp as a priority list;
– the robot may store information about the amount of energy offered by sup-

pliers or its physical position and select the one closest to its needs.

In principle, one could be more specific on those aspects by tuning up pre- and
post-conditions of interactions.

6 Quantitative Analysis

We now discuss how to derive a quantitative analysis for CAS using the ABeT
specification of the robots case study of Sect. 5. Starting from the specification
of the interaction protocol, we build a quantitative abstraction that provides
some analysis of the system under study. To this end, in this paper we propose
to adopt Queuing Network (QN) models [25] which are widely applied in the
software performance engineering community [5,24,30].

A QN model is a collection of service centres each regulated by a rate. Intu-
itively, service centres represent resources shared by a set of jobs, also called
customers [25]. Incoming workload can be modelled as: (i) a closed class (i.e., a
constant number of customers in each class and a think time regulating the delay
of performing a system request), or (ii) an open class (i.e., the customer arrival
rate). The former workload class is modelled through delay centres, whereas
the latter required the specification of source and sink nodes for indicating the
start and the completion, respectively, of requests. Delay centres, unlike ser-
vice centres, do not have a queue. They are intended to model delays occurring
when specifying closed workloads (i.e., requests re-iterate in the network in a
loop-based fashion) or communication networks.

Fig. 4. QN model for the Exchange of resources among robots.

Service and delay centres are connected through links that form the network
topology; a service centre consists of a server and a (possibly unbound) queue.

256 O. Inverso et al.

Servers process jobs scheduled from their queues according to a specific policy
(e.g., FIFO). Each processed request is then routed to another service centre
through links. More precisely, each server picks the next job (if any) from its
queue, processes it, and sends the result on its outgoing link; a link may go
through a router node which forwards it to the queue of another service centre
according to a given probability.

In order to capture parallelism, QN models feature fork and join nodes.
The former nodes are used to split the jobs into several tasks to be executed in
parallel while a join node represents the point where these tasks are synchronized.
Summarizing, a QN model can be interpreted as a directed graph whose nodes
are service centres and their connections are the graph edges. Jobs go through
edges set on the basis of the behaviour of customers’ requests.

Figure 4 depicts the QN model obtained from the ABeT specification given
in Sect. 5.2. More precisely, the topology of the model tightly correspond to the
structure of specification given in Fig. 3 as follows:

– each interaction becomes a service centre;
– each parallel and join gate of the type in Fig. 3 respectively becomes a fork

and a join node of the QN model;
– the non-deterministic choice becomes a router node;
– the delay centre can be used to model network delays in the communication

among agents, however we decided to skip such modelling and to insert one
delay centre only that is representative of the system closed workload (i.e.,
number of robots and their thinking time, if any).

The delay node namely robots represents the incoming requests, and for our case
study we have three classes of jobs: suppliers, consumers, supp&cons, i.e., robots
simultaneously acting as suppliers and consumers. In parallel, as showed by the
fork node, robots can (i) put their offers, as modelled by the advertisement
queuing centre, or (ii) verify if an offer matches their request, as modelled by
the interest queuing centre. A router node, namely availability regulates the
probability with which robots send an offer or a cancel message. In case of a
confirmed offer, it is necessary to update the attributes, as modelled by the offer
queueing centre. In case of cancel, it is also possible to specify a service time
denoting the check of the corresponding message. All the requests outcoming
from offer, cancel, and advertisement are routed to the join node modelling the
completion of the iteration so that robots can re-iterate their behaviour.

To run a model-based performance analysis, we set the values for the param-
eters of the QN model. Table 1 shows an example of parameters’ setting; the
analysis is later performed by varying the parameter robots. The delay centre is
associated with the specification of the closed workload. In particular, we set a
workload population (wp) equal to 30 robots for the three classes of jobs (i.e.,
suppliers, consumers, supp&cons), thus considering 10 robots for each of the
classes. The service centres are associated with parameters drawn from expo-
nential distributions with average λ. For example, if the advertisement node is
assigned λ = 10, the inter-arrival time drawn from the distribution averages
one request every 0.1 time units (i.e., milliseconds in this case). Here we give

Behavioural Abstractions for CAS 257

Parameter Value

robots wp=30

advertisement λ = 10

interest λ = 10

offer λ = 10

cancel λ = 10

availability π = 0.5

Table 1. Setting of parameters

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

30 45 63 81 99

sy
st
em

re
sp

on
se

tim
e
(s
ec

on
ds

)

number of robots

Fig. 5. QN model results

a flavour of the type of analysis that can be performed in such scenarios. Note
that the router node is associated with a π value denoting the probability associ-
ated to the branching points set with equal probabilities. Of course other values
can be set to evaluate the behaviour under different assumptions. The obtained
QN model has been analysed with the Java Modeling Tool (JMT) [11]. Figure
5 presents simulation results for the timing analysis, varying the population of
robots, on the x-axis, up to 99, i.e., denoting up to 33 robots of each type.

As expected, the system response time (reported on the y-axis) increases
as the number of robots increases going from 0.21 to 0.67 s. For example, a
population of 45 robots (i.e., 15 robots for each type), results in a mean response
time of 0.299 seconds and maximal and minimal values estimated to be 0.308
and 0.291 s, respectively.

7 Conclusions, Related and Future Work

We outlined some ideas for behavioural abstractions of CAS in the context of
the AbC calculus. By means of some examples we argued for a new class of
behavioural specifications tailored on CAS. In the following, we review the state-
of-the-art by focusing on behavioural and quantitative abstractions for CAS.

Behavioural Abstractions. In the past thirty years behavioural types [23] have
been widely adopted to reason about and support the development of commu-
nicating systems. Extensive research yielded important results for distributed
systems where channel-based communications are adopted. To the best of our
knowledge, klaimographies [8] are the only attempt to develop behavioural
types for generative communication [9], recently applied to event-notification
systems [19]. This recent results inspired the ideas described in this paper. In
fact, CAS coordination mechanisms are often reduced to some sorts of event-
notification mechanisms. In fact, we believe that event-notification is probably
the most suitable approach to implement languages used to specify CAS.

Linguistic mechanisms. A recent work on modelling the interactions of CAS
is [2] where a language-based approach is introduced for building groups of com-
municating partners by considering their attributes. The same attribute-based

258 O. Inverso et al.

communication (AbC) paradigm has been also used in our previous work [13,15]
in which different forwarding strategies for message passing together with Erlang
are exploited for dealing with scalability issues. The precursor of AbC is repre-
sented by SCEL [16] aimed to model the dynamic formation of ensembles of
interacting autonomic components, and to verify some system properties (e.g.,
reachability). Programming actor-based CAS is discussed in [10] where global-
level system specifications are translated into Scala/Akka actors with the goal
of carrying coordination tasks that involve large sets of devices.

Quantitative Abstractions. The idea of proposing a quantitative evaluation of
CAS finds its root in [32] where ordinary differential equations (ODEs) are
adopted as trade-off between expressiveness and efficiency of the analysis. The
modelling and quantitative verification of CAS is also proposed in [26] where
a language (i.e., CARMA) aims to capture the timing and the probabilistic
behaviour of agents. In [4] the focus is on verifying the robustness of CAS,
against various classes of attacks, by embedding trust models of communication,
i.e., reputation and trust relationships among the agents’ exchanged informa-
tion. Engineering resilient CAS is tackled in [33] with the goal of providing
reusable blocks of distributed behaviour that can be substituted by function-
ally equivalent ones, possibly more efficient in terms of performance or show-
ing desirable dynamics, i.e., without affecting the overall system behaviour and
resilience. These works mostly focus on specific aspects, such as efficiency [32,33]
dependability [26], and reputation [4]. As opposite to these approaches, we aim
to narrowing the behavioural and quantitative abstractions within CAS, thus
to quantify the impact of design choices acting on the communication among
agents with their non-functional properties.

Future work. The obvious next step is the precise formalisation of behavioural
type systems that capture the ideas sketched in the previous sections. A natural
starting point is the elaboration of klaimographies. We plan to refine the types
described here and identify relevant properties for CAS that could be statically
checked. For instance, a system that allows us to check that AbC implementations
type check against type specifications such as those seen for the scenario of
Sect. 5. This would require the identification of suitable local types as well as the
definition of suitable projection operations. We are also interested in translating
the results of the behavioural type systems into insights for their quantitative
analysis. As long term goal, we aim to bridge behavioural abstractions with their
quantitative counterpart, thus to provide a deeper analysis of CAS.

References

1. Abd Alrahman, Y., De Nicola, R., Loreti, M.: A calculus for collective-adaptive
systems and its behavioural theory. Inf. Comput. 268, 104457 (2019)

2. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming interactions in collec-
tive adaptive systems by relying on attribute-based communication. Sci. Comput.
Program. 192, 102428 (2020)

Behavioural Abstractions for CAS 259

3. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

4. Aldini, A.: Design and verification of trusted collective adaptive systems. ACM
Trans. Model. Comput. Simul. 28(2), 1–27 (2018)

5. Balsamo, S., Marzolla, M.: Performance evaluation of UML software architectures
with multiclass queueing network models. In: Workshop on Software and Perfor-
mance (2005)

6. Bocchi, L., Chen, T.-C., Demangeon, R., Honda, K., Yoshida, N.: Monitoring net-
works through multiparty session types. In: Beyer, D., Boreale, M. (eds.) FMOOD-
S/FORTE -2013. LNCS, vol. 7892, pp. 50–65. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38592-6 5

7. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for
distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15375-4 12

8. Bruni, R., Corradini, A., Gadducci, F., Melgratti, H.C., Montanari, U., Tuosto, E.:
Data-driven choreographies à la Klaim. In: Boreale, M., Corradini, F., Loreti, M.,
Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent and Distributed
Programming. LNCS, vol. 11665, pp. 170–190. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-21485-2 11

9. Carriero, N., Gelernter, D.: Linda in context. CACM 32(4), 444–458 (1989)
10. Casadei, R., Viroli, M.: Programming actor-based collective adaptive systems. In:

Ricci, A., Haller, P. (eds.) Programming with Actors. LNCS, vol. 10789, pp. 94–
122. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00302-9 4

11. Casale, G., Serazzi, G.: Quantitative system evaluation with Java modeling tools.
In: International Conference on Performance Engineering (2011)

12. Castro, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in go: statically-typed endpoint APIs
for dynamically-instantiated communication structures. PACMPL 3(POPL), 1–30
(2019)

13. De Nicola, R., Duong, T., Inverso, O., Trubiani, C.: AErlang at work. In: Steffen,
B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOF-
SEM 2017. LNCS, vol. 10139, pp. 485–497. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-51963-0 38

14. De Nicola, R., Duong, T., Inverso, O., Trubiani, C.: AErlang: empowering erlang
with attribute-based communication. In: Jacquet, J.-M., Massink, M. (eds.)
COORDINATION 2017. LNCS, vol. 10319, pp. 21–39. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-59746-1 2

15. De Nicola, R., Duong, T., Inverso, O., Trubiani, C.: AErlang: empowering erlang
with attribute-based communication. Sci. Comput. Program. 168, 71–93 (2018)

16. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. ACM Trans. Auton. Adapt. Syst. 9(2),
1–29 (2014)

17. Ferscha, A.: Collective adaptive systems. In: International Joint Conference on
Pervasive and Ubiquitous Computing and Symposium on Wearable Computers
(2015)

18. Francalanza, A., Mezzina, C.A., Tuosto, E.: Reversible choreographies via moni-
toring in Erlang. In: Bonomi, S., Rivière, E. (eds.) DAIS 2018. LNCS, vol. 10853,
pp. 75–92. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93767-0 6

https://doi.org/10.1007/978-3-642-38592-6_5
https://doi.org/10.1007/978-3-642-38592-6_5
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-030-21485-2_11
https://doi.org/10.1007/978-3-030-21485-2_11
https://doi.org/10.1007/978-3-030-00302-9_4
https://doi.org/10.1007/978-3-319-51963-0_38
https://doi.org/10.1007/978-3-319-51963-0_38
https://doi.org/10.1007/978-3-319-59746-1_2
https://doi.org/10.1007/978-3-319-93767-0_6

260 O. Inverso et al.

19. Frittelli, L., Maldonado, F., Melgratti, C., Tuosto, E.: A choreography-driven app-
roach to APIs: the OpenDXL case study. In: Bliudze, S., Bocchi, L. (eds.) COOR-
DINATION 2020. LNCS, vol. 12134, pp. 107–124. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-50029-0 7

20. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Monthly 68(1), 9–15 (1962)

21. Gay, S., Ravara, A. (eds.): Behavioural Types: From Theory to Tools. Automation,
Control and Robotics. River, Gistrup (2009)

22. Guanciale, R., Tuosto, E.: An abstract semantics of the global view of choreogra-
phies. In: Interaction and Concurrency Experience (2016)

23. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 1–36 (2016)

24. Kleinrock, L.: Theory, Volume 1, Queueing Systems. Wiley-Interscience, Hoboken
(1975)

25. Lazowska, E.D., Zahorjan, J., Scott Graham, G., Sevcik, K.C.: Computer System
Analysis Using Queueing Network Models. Prentice-Hall Inc., Englewood Cliffs
(1984)

26. Loreti, M., Hillston, J.: Modelling and analysis of collective adaptive systems with
CARMA and its tools. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM
2016. LNCS, vol. 9700, pp. 83–119. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-34096-8 4

27. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, I and II. Inf.
Comput. 100(1), 1–40 (1992)

28. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. Formal Aspects Comput. 29(5), 877–910 (2017). https://doi.org/
10.1007/s00165-017-0420-8

29. Prasad, K.V.S.: A calculus of broadcasting systems. Sci. Comput. Program. 25(2–
3), 285–327 (1995)

30. Smith, C.U., Williams, L.G.: Performance and scalability of distributed software
architectures: an SPE approach. Scalable Comput. Pract. Exp. 3(4), 74106–0700
(2000)

31. Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. J. Logical
Algebraic Methods Program. 95, 17–40 (2018)

32. Vandin, A., Tribastone, M.: Quantitative abstractions for collective adaptive sys-
tems. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol.
9700, pp. 202–232. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
34096-8 7

33. Viroli, M., Audrito, G., Beal, J., Damiani, F., Pianini, D.: Engineering resilient col-
lective adaptive systems by self-stabilisation. ACM Trans. Model. Comput. Simul.
28(2), 1–28 (2018)

https://doi.org/10.1007/978-3-030-50029-0_7
https://doi.org/10.1007/978-3-030-50029-0_7
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1007/978-3-319-34096-8_7
https://doi.org/10.1007/978-3-319-34096-8_7

Verifying AbC Specifications
via Emulation

Rocco De Nicola1(B), Tan Duong1(B), and Omar Inverso2

1 IMT School for Advanced Studies, Lucca, Italy
rocco.denicola@imtlucca.it, tan.duong@imtlucca.it

2 Gran Sasso Science Institute, L’Aquila, Italy
omar.inverso@gssi.it

Abstract. We propose a methodology for verifying specifications writ-
ten in AbC , a process calculus for collective systems with a novel commu-
nication mechanism relying on predicates over attributes exposed by the
components. We emulate the execution of AbC actions and the operators
that compose them as programs where guarded sequential functions are
non-deterministically invoked; specifically, we translate AbC specifica-
tions into sequential C programs. This enables us to use state-of-the-art
bounded model checkers for verifying properties of AbC systems. To
vindicate our approach, we consider different case studies from different
areas and model them as AbC systems, then we translate these AbC
specifications into C and instrument the resulting program for verifica-
tion, finally we perform actual verification of properties of interest.

Keywords: Attribute-based communication · Formal analysis ·
Bounded model checking

1 Introduction

Collective adaptive systems (CAS) [1] are typically characterised by a massive
number of interacting components and by the absence of central control. Exam-
ples of these systems can often be found in many natural and artificial systems,
from biological systems to smart cities. Guaranteeing the correctness of such
systems is very difficult due to the dynamic changes in the operating environ-
ment and the delay or loss of messages that at any time may trigger unex-
pected behaviour. Due to interleaving, explicit-state analysis and testing may
not always be appropriate for studying these systems. Rigorous theories, meth-
ods, techniques, and tools are being developed to formally reason about their
chaotic behaviour and verifying their emergent properties [2].

Process calculi, traditionally seen as paradigms for studying foundational
aspects of a particular domain have also been used as specification languages
[3]. This is due to their well-specified operational semantics, which enables for-
mal verification and compact descriptions of systems under consideration. On

This work is partially funded by MIUR project PRIN 2017FTXR7S IT MATTERS
(Methods and Tools for Trustworthy Smart Systems).

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 261–279, 2020.
https://doi.org/10.1007/978-3-030-61470-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_16

262 R. De Nicola et al.

the other hand, due to minimalism in their designs, encoding complex agents
behaviour could be tedious. Our work aims at offering a tool for studying CAS
by using AbC [4], a kernel calculus centered on attribute-based communication
[5], specifically designed to model complex interactions in collective systems. AbC
takes into account the runtime status of the components while forming communi-
cation groups. Each component is equipped with a set of attributes whose values
may be affected by the communication actions. Components interact according
to their mutual interests, specified as predicates over the attributes of the poten-
tial communication partners. This way, complex interactions can be expressed
in a natural way. The AbC communication model is defined on top of broadcast
following a style similar to [6]. A distinctive feature is that only components
whose attributes satisfy the predicate of a sender can receive the communicating
message, provided that they are willing to do so and that the sender attributes
also satisfy the predicates specified by the receiving components.

In this paper, we show how AbC can be used to specify different kinds of
systems and how some of their emergent properties can be verified. Specifically,
we translate AbC specifications into C programs, instrument the latter with
properties of interest, and finally analyse the programs by means of classical
verifiers for C.

Our translation turns AbC actions into a set of emulation functions guarded
by appropriate enabling conditions that, when satisfied, make it possible for
the functions to be non-deterministically executed. Since the actions are origi-
nally composed by process-algebraic operators, our translation works out such
enabling conditions by taking into account the semantics of process operators,
and possibly specific code extracted from the actions themselves. A main function
plays the role of a scheduler that orchestrates the non-deterministic invocation of
the emulation functions. The evolution of the original system is emulated accord-
ing to the lock-step semantics of AbC , which in turn is modelled in the form of a
loop. The encoding at each emulation step allows for non-deterministic selection
of a single component such that any of its output actions is able to initiate a
multi-party synchronization.

Having obtained the C programs for a set of systems from different contexts,
we manually annotate them with appropriate assertions that encode properties of
interest in the form of expressions over the attributes of the components. We then
focus on under-approximate analysis, exploiting mature bounded model checkers,
traditionally used for bug hunting in C programs [7,8], to analyse the translated
AbC specifications. We have implemented a tool to automatically translate all
the examples in this paper. The translator, the source AbC specifications, and
the target C programs are available at http://github.com/ArBITRAL/AbC2C.

The rest of the paper is organised as follows. In Sect. 2 we briefly present
the fragment of the AbC calculus that we consider in the rest of the paper,
present our translation from AbC to C, and describe how to instrument state-
based properties of interest. In Sect. 3 we use AbC to model a number of systems
borrowed from classical papers in the literature and show how some of their key
properties can be verified by means of two bounded model checkers for C. The
final section recaps the work done, draws some conclusions, briefly describes
related works and suggests directions for future research.

http://github.com/ArBITRAL/AbC2C

Verifying AbC Specifications via Emulation 263

2 Translating AbC into C

Before going into the details of the translation, we briefly review the syntax and
semantics of AbC with the help of a running example, namely the two-phase
commit protocol [9]. The reader is referred to [4,10] for the full description of
the calculus.

2.1 AbC in a Nutshell

An AbC component (C) is either a pair Γ : P , where Γ is an attribute environ-
ment and P a process, or the parallel composition C1 ‖ C2 of two components.
The environment Γ is a mapping from a set of attribute names a ∈ A to ground
values v ∈ V; Γ (a) indicates the value of a in Γ .

Let us now consider the two-phase commit protocol (2PC), where a manager
asks a number of participants for their votes on either “commit” or “abort” a
transaction. The transaction is aborted if at least one participant votes “abort”,
and is committed in case all participants vote “commit”.

In AbC we can model the manager as a component M � Γm : Pm. The
attribute environment Γm has three attributes: role, initially set to 1 and rep-
resenting the manager role in the protocol; n, initially set to the number of
participants; c, a counter used for counting participant votes, initially set to 0.
Each participant is modelled by a component Cj � Γj : Pp and three attributes:
role, initially set to 0 representing the participant role, vote specifying the vote,
i.e., “commit” or “abort” casted by the participant, and d, used for storing the
final decision sent by the manager. A scenario consisting of n participants and
one manager is then rendered as an AbC system: M ‖ C1 ‖ . . . ‖ Cn.

In the general case, an AbC process (P) is defined by the following grammar
that involves standard constructors such as inactive process (0), action prefixing
(.), non-deterministic choice (+), interleaving (|), and invocation of a unique
process identifier K.

P ::= 0 | Q | P + P | P |P | K Q ::= 〈Π〉P | α.P | α.[ã := Ẽ]P α ::= Π(x̃) | (Ẽ)@Π

We use ·̃ to denote a finite sequence whose length is not relevant. Process P in
the construct 〈Π〉P is blocked until the awareness predicate Π is satisfied within
the local environment. In a prefixed process, an action α may be associated with
an attribute update [ã := Ẽ] that, when the action is executed, sets the values of
attributes ã to that of expressions Ẽ. Output action (Ẽ)@Π is used to send the
values of expressions Ẽ to all components whose attributes satisfy the sending
predicate Π. Input action Π(x̃) is used to receive a message (to be bound to
x̃) from any sending component whose attributes (and the message) satisfy the
receiving predicate Π.

A predicate Π can be either true, a comparison �� (e.g., <,>,=,≤, . . .) on
two expressions E, a logical conjunction of two predicates, or the negation of
a predicate. Other logical connectives may be built from these. An expression
E is either a value v, a variable x, an attribute name a or an attribute of the
current component this.a. A component must use this.a in its communication

264 R. De Nicola et al.

predicates (sending or receiving) for distinguishing its own attributes from other
different components.

Π ::= true | E �� E | Π ∧ Π | ¬Π E ::= v | x | a | this.a | . . .

Larger expressions can also be built using binary operators such as +,−, etc.
Expressions E can be evaluated under Γ {|E|}Γ . The satisfaction relation |=
defines when a predicate Π is satisfied in an environment Γ .

Γ |= true for all Γ Γ |= Π1 ∧ Π2 if Γ |= Π1 and Γ |= Π2

Γ |= E1 �� E2 if {|E1|}Γ �� {|E2‖}Γ Γ |= ¬Π if not Γ |= Π

Continuing with our example, the behaviour Pm of the manager component
is specified as: Pm � A|B, where A � (“req”)@(role = 0).0 and

B � 〈c < n〉(x = “commit”)(x).[c := c + 1]B

+ 〈c = n〉(“commit”)@(role = 0).0

+ (x = “abort”)(x).(“abort”)@(role = 0).0.

Process A sends a request to all participants using the predicate (role =
0), and terminates. Process B is a choice between different behaviours. The first
branch stores the number of “commit” votes in c using recursion. The second
branch deals with the case when all votes are of “commit”, i.e., the counter
c is equal to the number of participants n. The third branch enforces early
termination: as soon as an “abort” arrives, the manager can send an “abort”
message regardless of the other votes.

All participants have the same behaviour Pp which is specified as:

Pp � (x = “req”)(x).((vote)@(role = 1).(role = 1)(x).[d := x]0

+ (role = 1)(x).[d := x]0)

Upon receiving a vote request from the manager, a participant faces two pos-
sibilities encoded as a choice (+) in the continuation of Pp: it may reply with
its vote and continue to wait for a final decision to arrive, or it may receive
the decision before sending vote. Either possibility updates the final decision to
attribute d and terminates.

Communication. In AbC , output actions are non-blocking while input actions
must wait to synchronize on available messages. If multiple components are
willing to offer output actions at the same time, only one of them is allowed to
move. Communication among components takes place in a broadcast fashion:
when a component sends a message, all other receiving components take part in
the synchronization by checking the satisfactions of both sending and receiving
predicates for reception. Components that accept the message evolve together
with the sending component. Components who are not offering a successful input
action or reject the message stay unchanged.

As a side note, we mention that since AbC is an untyped calculus, it is the
responsibility of the modeller to specify appropriately attributes values, expres-
sions, and predicates so that their evaluations make sense.

Verifying AbC Specifications via Emulation 265

2.2 Emulating AbC Systems in C

Our translation takes as input an AbC specification, possibly composed of mul-
tiple component specifications. Each component specification is in the form
〈Γi, Piniti ,Di〉 where Γi is the attribute environment, Piniti the component’s
top-level behaviour, and Di the set of process definitions. For example, the spec-
ification of the manager component illustrated in the previous section would be
〈Γm, Pm, {Pm � A|B,A � . . . , B � . . .}〉.

The translation produces a single C program whose structure follows a pre-
designed template (Fig. 1). The encoding is parameterized in the total number
of components (N), and the maximum number of parallel processes, of process
definitions, and of input-bindings variables across all component specifications
(P MAX, D MAX, and V MAX, respectively). These constants are extracted from the
input specification and defined at the beginning of the output program. The
components’ attributes are represented as global vectors (line 4), so that each
component can access the attributes via its index. Note that, as shown in the
figure, we encode the values of the attributes as integers. For each component i,
we declare a vector of program counters pc[i] for keeping track of the executions
of the component’s actions during the emulation, a vector bound[i] for storing
inbound messages, and vector tgt to store the indexes of potential receivers
when a component sends a message (line 7).

For each (specification of) component i, we translate its behaviour, i.e.,
〈Piniti ,Di〉 into a set of emulation functions. In particular, each action α is
translated into a uniquely named function, denoted as Nameα, parameterized
(among others) with the component index (lines 10–17). The function body is
guarded by an enabling condition whereas a return value indicates whether it is
executed.

In order to emulate the executions of all functions in the set with respect to
Piniti , the translation visits all actions reachable from the process (by using Di

for looking up process code when necessary); while traversing, it calculates for
each action α an index jα, used for accessing program counter pc[i][jα] and two
execution points, namely entry point enα and exit point exα used for controlling
the action’s execution. A guard pc[i][jα] == enα, called entry condition means
that the function body may be executed, among other conditions, if the program
counter of α satisfies such condition. At the end of the function, the program
counter is set to exα, i.e., its exit condition, to enable the next set of feasible
actions. Intuitively, the entry and exit conditions of the translated functions
must behave according to the intended behavior of the corresponding process
operators (.,+, |). For example, in a prefix process α.P , the exit point of α must
be equal to the entry point of the continuation process P. In a choice process
P1 +P2, the entry points of both P1 and P2 must be the same but those of their
continuations are not. In a parallel process P1|P2, the entry conditions of the
subprocesses must be independent. For additional details on how to determine
entry and exit conditions, we refer the reader to [11].

Whether or not an action can really be executed, however, does not depend
only on the guarding mechanisms just described, but it depends also on action-

266 R. De Nicola et al.

Fig. 1. Structure of the output C program.

Verifying AbC Specifications via Emulation 267

specific aspects, such as satisfactions of awareness and receiving predicates. In
fact, the emulation function will have different input parameters and body,
depending on whether the action being encoded is an input or an output action.
More on this will be explained later.

All the emulation functions are organized in a lookup table to conveniently
invoke them using the component index. Intuitively, each entry i in the table
contains, among others, the sets of (pointers to the emulation functions of) input
and output actions of component i. The init() function (line 24) is responsible
for initializing all attribute environments by translating Γ0, Γ1, . . . and for filling
up the lookup table.

Towards the end of the output program, we provide several fixed driver func-
tions whose functionalities are as follows.

– Schedule(): non-deterministically selects a component index and returns it;
– Evolve(i): non-deterministically selects an output action of component i

and returns the result of performing the action;
– Available(): checks whether there exists an enabled output action;
– Sync(i,m): delivers message m of component i to potential receiving compo-

nents (used by output actions).

The source of non-determinism in an AbC system is due to non-deterministic
choice and to the possibility that different components or different processes
within a component perform output actions. To model such non-determinism in
the target program, we rely on the common library functions supported by C
verifiers: i) nondet int to choose a non-deterministic value from the int data
type; and ii) assume to restrict non-deterministic choices made by the program
according to a given condition. We use these primitives in Schedule(), as shown
in lines 27–31. The implementation of Evolve(i) additionally relies on lookup
to non-deterministically execute an output action of component i (lines 33–40).
Other driver functions do not consider nondeterminism; their implementation
(omitted for brevity) is straightforward by relying on lookup and taking advan-
tage of the fact that the number of components N is known.

Using the above functions, we emulate the evolution of the translated system
through a loop, as shown in lines 50–53. Since an AbC system can only evolve
when there are components willing to send, the loop iterations are guarded by
Available().

At each iteration, an index i is selected by Schedule and passed to Evolve
which in turn performs actual computation. The output action called by Evolve
relies on Sync for sending its message, allowing multi-party synchronization
in one pass. Moreover, the emulation considers only non-deterministic choices
over component index and the corresponding output action that results in valid
computations, i.e., the selected output action can actually be executed. This
is achieved by wrapping Evolve in the library function assume (line 52). Our
scheduling mechanism based on the idea of non-deterministically selecting the
emulation functions has been inspired from [12].

In the rest of the section, we describe the translation for input and output
actions in detail. Note that an action may be associated with a preceding aware-

268 R. De Nicola et al.

ness predicate and a following attribute update. For example, process B of the
component manager (Sect. 2.1) contains such an action. Thus we consider the
general form of an action α to be 〈Π〉α.[ã := Ẽ]. If no awareness construct 〈Π〉 is
present, we just consider 〈Π〉 = true. If no attribute updates occurs, [ã := Ẽ] is
regarded as an empty assignment. In the following, we write Πg,Πs,Πr to differ-
entiate between the three kinds of predicates: awareness, sending and receiving,
respectively.

An output action 〈Πg〉(Ẽ)@Πs.[ã := Ẽ], where the first Ẽ is the expression(s)
to be sent, is translated into a function depicted in Fig. 2 (left).

Fig. 2. The translation of output (left) and input (right)

The translation generates a unique identifier Nameα for the function. The two
function parameters are the index i of the component containing α, and a flag
f used to check the enabled condition of the action/function without actually
executing it. This flag is specifically used by the driver function Available()
mentioned before.

The enabling condition of an output action, besides the guard on its pro-
gram counter, includes the satisfaction of the associated awareness predicate,
if any. Note that we use two auxiliary translations �·� for translating Πg and
local expressions and �·� for translating Πs. In the function body, the set tgt of
potential receivers is calculated based on the satisfaction of Πs. Since all com-
ponents’ attributes are globally declared in the emulation program, the output
action can evaluate its sending predicate immediately.

After that, a message is prepared as a vector m that contains the values of
output expressions, and sent via driver function Sync. This function retrieves
the set of potential receivers in tgt and invokes their receiving functions. Sync
stops delivering m to a potential component when one of its receiving functions
returns success (i.e., the message is accepted), or none of them do (i.e., the
potential component rejects the message). The translation is completed by a
sequence of assignments to model attribute updates, if any.

An input action, whose general form is 〈Πg〉Πr(x̃).[ã := Ẽ], is translated into
a function depicted in Fig. 2 (right).

The function takes as input the second argument as sending component index
and the third as a communicated message. The enabling condition for executing

Verifying AbC Specifications via Emulation 269

this function includes satisfaction of awareness and receiving predicates. Here
we denote by �Πr�

x̃ the translation of Πr parameterized with input-binding
variables x̃. In order to model variable binding, we store the inbound message m
in vector bound[i][d] where d is (the index of) the process definition that contains
α. Moreover, all input-binding variables y in d are also indexed according to their
names, denoted by jy. In this way, the message is stored by assigning each of its
element k to bound[i][d][jxk], where xk is the kth variable in the sequence x̃.

In the above translation, we have used �·� for translating awareness predi-
cates and local expressions. This function is defined as follows:

�Π1 ∧ Π2� = �Π1� && �Π2� �a� = attr[i]
�¬Π� = ! �Π� �this.a� = attr[i]
�true� = true �v� = v
�E1 �� E2� = �E1� �� �E2� �x� = bound[i][d][jx]

The functions �·� and �·�x̃ are used for translating the sending and receiving
predicates, respectively. They have the same definition as above, except when
translating attributes and variables:

�a� = �a�x̃ = a[j] �this.a� = �this.a�x̃ = attr[i]

�y�x̃ =

{
m[k] if y ∈ x̃ and y = xk

bound[i][d][jy] otherwise

Thus, �·� does not differentiate between a and this.a whereas �·� and �·�x̃

do. In �y�x̃, if a variable appears in the list of input-binding variables then it
is translated into the corresponding element of the communicated message. In
all other cases, the variable is already bound and its value can be looked up in
vector bound[i][d].

2.3 Encoding Properties

The evolution of an AbC system over time can be viewed as a tree rooted at the
initial state, i.e., the union of all the components’ initial states. An edge from
a node to a child represents a lock-step evolution in which a component sends
and others receive (hence, changing the overall system state). From a node there
may be multiple edges, each corresponding to a synchronization initiated by a
non-deterministically selected sending component.

Typically, program verifiers do not allow to directly express temporal logics
for specifying properties; users must use assert statements to check that their
intentions hold. We use assertions to express state-based formulae, e.g., condi-
tions over the components’ attributes. In practice, we encode such a formula as
a boolean-valued C expression, denoted as p, and insert a statement assert(p)
within the emulation loop of the main function.

Notice that, due to the emulation mechanism explained in previous section,
the C program emulates all possible execution paths of the translated AbC sys-
tem. This means that checking the assertions at every iteration of the emulation

270 R. De Nicola et al.

loop in the C program corresponds to checking whether p holds in (every state
of) all possible execution traces of the initial AbC system. Naturally, in this way
the system is verified against a safety property denoted as S p. In this paper,
we focus on bounded analysis, i.e., limit the emulation up to a given number B
of system evolutions of the AbC system by bounding the number of iterations
of the emulation loop. Thus, in practice we only analyse safety up to the given
bound. In other words, we deal with bounded safety (S p)B .

For AbC systems one may also be interested in eventual properties, e.g.,
“good” system states that eventually emerge from the interactions of indi-
vidual components. Since we focus on bounded analysis, we must resort to a
bounded variant of liveness, and reduce liveness checking to safety checking [13]
by expressing the former via the latter. We consider three (bounded) versions of
eventuality and describe their encodings in the following.

“Possibly” - (P p)B is encoded as (S ¬p)B : we simply assert the negation of
p inside the emulation loop, and wait for the model checker to report a counter
example (of ¬p) that would be the evidence that there is at least one execution
trace that satisfies p.

“Eventually” - (E p)B . We translate this property into safety by following
the idea of [13], the intuition being that if the formula p fails, it must do so
within B steps. Thus, when the bound is reached, we need to assert whether p
has been true at least once. Our encoding is illustrated in the left of Fig. 3. A
variable step counts the number of steps performed by the system up to that
point. In each step of the emulation, the truth value of p is accumulated into a
boolean variable live via alternation. The assert statement checks the value
of live when the emulation stops, i.e., either the bound B is reached or there
are no available sending components.

Fig. 3. Encoding of (E p)B (left), and (EI p))B (right)

“Eventually then Inevitably” - (EI p)B . Compared to “Eventually”, this prop-
erty further requires that once p holds, it remains true afterward. The encoding is
shown on the right of Fig. 3 where we extend the previous code snippet to enforce
this additional requirement. Specifically, we use a variable saved to record the
first time when p holds. When this happens, live is conjuncted with p rather
than alternating. Because of this p must remain true after saved is set, otherwise
the property fails.

Verifying AbC Specifications via Emulation 271

3 Experimental Evaluation

We now illustrate the effectiveness of the proposed method by considering some
case studies and systematically verifying their properties.

3.1 Case Studies

Max-Element. This system is an attribute-based variant of the one presented
in [14]. Given N agents, each associated with an integer ∈ {1, . . . N}, we wish
to find an agent holding the maximum value. This problem can be modeled in
AbC by using one component type with two attributes, namely s, initially set
to 1, indicating that the current component is the max, and n, that stores the
component’s value. The behavior of a component is specified by the following
choice process P :

P � 〈s = 1〉(n)@(n ≤ this.n).0 + (x ≥ this.n)(x).[s := 0]0.

Thus, a component either announces its own value by sending its attribute n to
all other components with smaller numbers, or non-deterministically accepts a
greater value from another. In addition, upon receiving a greater value a com-
ponent sets its flag s to 0 since it can not possibly be the max.

For this system, we are interested in verifying whether eventually there exists
only one component whose attribute s is equal to 1, and that holds the maximum
value of n.

Or-Bit. This example and the next one are adapted from [15]. Given a number
of agents, where each agent is given an input bit, the agents must collaborate
with each other in order to compute the logical disjunction of all their bits.
We model this system with an AbC component with two attributes ib and ob,
representing the input and output bits, respectively. Initially, ob is set to 0, but
this may change during interactions. The behaviour of a component is specified
by a choice process P :

P � 〈ib = 1〉(ib)@(ib = 0).[ob := 1]0 + 〈ib = 0〉(x = 1)(x).[ob := 1]0.

The first branch of P controls the behaviour of components whose input bits
is equal to 1. These announce the bits and update their outputs to 1. In other
cases, components with 0 input bits keep waiting for any positive bit to arrive
in order to update their outputs to 1. For this example, we are interested in
checking whether each component correctly calculates (in ob) the disjunction of
all the bits.

Majority. Given a system composed of dancers and followers, we would like to
determine whether the dancers are the majority, i.e., no less than the number of
followers, without any centralized control.

This scenario is rendered in AbC by using two types of components, repre-
senting dancers and followers respectively. The approach is to design a protocol

272 R. De Nicola et al.

for matching pairs of dancers and followers. Eventually, by looking at the ones
without partners, we can conclude about the majority of one type over the other.
For both kinds of components, we introduce an attribute r for representing the
component’s role, where value 1 encodes a dancer, an attribute p indicating if a
current component is already paired up with another member of the other role.
Furthermore, for dancers that are responsible for initiating the matching, we add
an additional attribute u, used as a unique tag when sending messages.

A dancer starts by announcing a unique message (using u) and waits for a
follower to show up. The first branch in the choice process D below illustrates
this behaviour:

D � (u)@(true).(x = this.u)(x).[p := 1]0 + (r = this.r)(x).(y 	= this.u)(y).D.

The second branch of D instead models the situation in which the dancer’s turn
to announce has been preempted by some other dancer, i.e., the input action
with a receiving predicate (r = this.r) is executed. In that case, it has to listen
to (and discards silently) a reply from some follower (to the announcer) in order
to try again.

Any announcements sent by process D is broadcast but only followers answer.
A follower listens to the announcements, i.e., via the predicate (r 	= this.r), then
it either replies to the sender using the sender’s message tag or silently discards
a message from some other follower (who has replied to this sender before it).
The process F defined below captures the described intuition:

F � (r 	= this.r)(x).((x)@(true).[p := 1]0 + (y = x ∧ r = this.r)(y).F).

For this case study, we check for the majority of dancers by asserting that either
there is at least one dancer left without partner or everyone has a partner.

Two-Phase Commit. This example has already been described in Sect. 2. The
property of interest is that all participants consistently agree on either abort
or commit the concerned transaction. In the latter case, we must check that all
participants voted for commit.

Debating Philosophers. This example is taken from [16]. A number N of
philosophers hold two different opinions on a thesis, possibly against it (−) or
in favor of it (+). Each philosopher has also a physical condition, either rested
(R) or tired (T). When two philosophers with different opinions debate, a rested
philosopher convinces the tired one of his opinion; if the two philosophers are
in the same physical condition, the positive one convinces the negative one and
both get tired afterwards. On the other hand, philosophers holding the same
opinion do not debate.

Each philosopher has the following attributes: attribute u, a unique identifier
used for announcement, attribute o ∈ {0, 1} is the initial opinion with a value
1 indicating positive opinion (+), and attribute c ∈ {0, 1} represent the initial
physical condition with a value 1 denoting rested (R). We design the behaviour
for philosophers to interact with each other by a parallel process P � F | A. The
property of interest is a majority one which states that the number of positive

Verifying AbC Specifications via Emulation 273

philosophers is not less than that of negative ones. Our protocol is as follows.
Any philosopher supporting the thesis repeatedly convince the members of the
other group by using process F , specified as:

F � 〈o = 1〉(u, c)@(true).((this.u = x ∧ y �= this.c)(x, y).[o := c]F

+ (this.u = x ∧ y = this.c)(x, y).[c := 0]F)

+ 〈o = 1〉(o = this.o)(x, y).(o �= this.o)(x, y).F

Each branch of F is guarded by an awareness predicate 〈o = 1〉. In the first
branch, a positive philosopher announces its unique message u and the physi-
cal condition c. It waits for a message from a negative one by checking on the
condition (this.u = x), and additionally consider two possibilities of the oppo-
nent’s physical condition y. The following choice process implements concisely
the first two debate rules described above for this philosopher where his opinion
o or condition c is updated. In the second branch, the philosopher receives an
announcement from another positive one, i.e., (o = this.o). When this happens,
it must listen silently until the debate started by the sender finishes.

Philosophers who are against (or negative about) the thesis listen to the
opinion of the others and debate according to process A as follows:

A � 〈o = 0〉(o �= this.o)(x, y).(〈y �= c〉(x, c)@(true).[o := y]A

+ 〈y = c〉(x, c)@(true).[o := 1, c := 0]A

+ (z = x)(z, y).A).

A is guarded by an awareness predicate 〈o = 0〉 to limit such behavior to neg-
ative philosophers. When a negative philosopher receives an announcement, he
may involve into the debate with the sender by replying with the sender’s unique
value, stored in x and its current physical condition. During this action, changes
to opinion and physical conditions (in the form of attribute updates) are imple-
mented by following the first two debate rules. On the other hand, there may
happen that another negative one is already engaged into the debate with the
same sender, in such case the philosopher waits for another announcement.

Experimental Setup. We developed a translator implementing the method
described in Sect. 2 and used it on the AbC specifications of the case studies. We
manually instrumented the generated C programs with appropriate assertions
to express the properties of interest described above. While instrumenting, we
applied the scheme shown in the right of Fig. 3 (Sect. 2.3) for all case studies,
i.e., to consider the “Eventually then Inevitability” properties. Additionally, we
applied the other two schemes “Eventually” and “Possibly” for the last case
study. Hereafter for brevity we refer to the instrumented properties by using
their versions, i.e., EI, E and P respectively.

We used two mature bounded model checkers, namely CBMC v5.111 and
ESBMC v6.22 respectively SAT- and SMT-based, for the actual analysis of the

1 http://www.cprover.org/cbmc/.
2 https://github.com/esbmc/esbmc/releases/tag/v6.2.

http://www.cprover.org/cbmc/
https://github.com/esbmc/esbmc/releases/tag/v6.2

274 R. De Nicola et al.

instrumented C programs up to different bounds of the emulation loop. Note that
all the other loops in the program (namely, those within the driver functions) are
always bounded by constants, and thus are fully unrolled by the model checker
in any case.

3.2 Verification Results

The verification results of the three case studies Maximum Element (max), Or
Bit (bit) and Two-Phase Commit (2pc) are presented in Fig. 4. The subtable on
the left contains the results obtained from CBMC; the right one corresponds to
ESBMC. In the tables, we include the numbers of components (N), the unwind-
ing bound for the emulation loop (B), the property, the verification times (in
seconds), and the verification result. A [�] means that the verification succeeds,
i.e., when the property holds, otherwise [×].

For each of these case studies, we fix a number N of components and
experiment by verifying the property EI of interest while varying B. Figure 4
shows that when B is sufficiently large both verifiers confirm that all considered
instances satisfy their properties EI. This means that, within the considered
number of evolution steps, the behaviour of the system is guaranteed to preserve
the property of interest. Furthermore, we have that once the property is guaran-
teed within a bound B, it continues to hold with a larger bound. This confirms
our intuition on the encoding scheme of property EI.

Fig. 4. Experiments with Max Elem, Or Bit and Two Phase Commit

As for the Majority example, we experimented with a few input configu-
rations. A configuration is completely defined as a pair (D,F) indicating the
number of dancers and followers. For each considered pair we experiment with
varying the bound B and present the relevant results in Fig. 5. The first column
of each table represents input configurations whereas other columns have the
same meaning as before.

The results show that for configurations with at least as many dancers as
followers, the verification of majority returns success across different values of
bound B. When considering minority configurations, i.e., (3,4) and (3,5), the
verification succeeds with small values of B but fails with larger values. To see
why, we note it takes steps to match one dancer with one follower (i.e., one

Verifying AbC Specifications via Emulation 275

request and one response). Thus, for example, with B = 4 the systems can only
match two pairs, leaving one dancer un-matched; this results in a majority of
dancers. When increasing the bound to at least 6, we have that all three dancers
are paired, but the property fails because not everybody has a partner.

Fig. 5. Experiments with Majority example

We use the case study Debating Philosophers to experiment with different
property encodings. An input configuration is a pair consisting of the numbers
of positive and negative philosophers equipped with their physical conditions
(i.e., either R or T). Furthermore, in each element of the pair, we may use a −
to separate the rested philosophers from tired ones. We analyzed the properties
“Eventually then Inevitably” (EI), “Eventually” (E) and “Possibly” (P) for
several configurations, and report some interesting cases in the Fig. 6.

Fig. 6. Experiments with Philosophers example

When verifying property EI for configuration (2R,2R), we observe that the
property only holds for small values of B. Similar to Majority, in this case study
the systems need two steps in order to accomplish one debate. Thus, for example,
with B = 4, there can only happen two debates which results in majority of the
positive opinions. However, when we allow for at least three debates to happen,
the majority property will not hold any longer. A counter example returned by
one of the tools explain the following trace. First, 1R+ convinces 1R−, which
leads to 2T+. It is followed that each of 2T+ is convinced by the other 1R− to
join him. Then, the resulting configuration (1R,1R-2T) does not satisfy majority.

276 R. De Nicola et al.

When verifying the property for somewhat trivial configurations, i.e.,
(1T,5T), (1T,6T) both tools confirm that when the bound B is large enough
a single positive philosopher can convince any set of tired negative ones.

We also tried with E property, i.e., allowing the majority property to fail after
it became true. Then, the property E holds for a previously failed configuration,
in particular, configurations of the same number of positive and negative philoso-
phers (in the Fig. 6 (2R,2R) and (3R,3R)). In another configuration, eventually
a number of positive philosophers cannot convince a bigger group of negative
philosophers to get to majority of positive opinions.

Finally, we experimented with verifying property P for the configurations
of the form (1R, 2R-4T), for CBMC and (1R, 2R-3T) for ESBMC. By check-
ing P , we are interested to see whether the majority can happen by using only
one rested, positive philosopher. As shown in Fig. 6, when the bound is too
low the only 1R+ does not have enough time to convince the others; the veri-
fications succeed and no counter example is reported. However with the bound
increased enough to afford one more debate, the verifications fail. By inspecting
the returned counter examples, we observed expected traces in which the only
positive philosopher continuously convinces the others without being interfered
by (at least) 1R−.

In summary, the verifications results obtained from the two model checkers
are consistent in all considered instances of all case studies. This demonstrates
the feasibility of our approach. In addition, between the two tools CBMC seems
a bit more efficient when analyzing our programs.

4 Concluding Remarks

We have presented a translation from AbC process specifications to C programs.
The translation enables us to reduce automated checking of (some classes of)
properties of interest for the AbC system under consideration to simple reacha-
bility queries on the generated C program. To experiment with our method on
a series of naturally challenging examples, we have first encoded them as AbC
systems, then translated their specifications into C programs, and finally instru-
mented the programs to express properties of interest of the initial AbC system.
We have reported and discussed our experimental evaluation on the automated
analysis of such programs via SAT- and SMT-based bounded model checking,
under different execution bounds and parameters of the initial system. Our work
suggests that the novel communication style of the attribute-based calculus, com-
plemented with appropriate verification techniques, can be effective for studying
complex systems.

Our work is closely related to the encoding proposed in [11], which models
systems evolutions by entry and exit conditions on the individual actions. In that
work, AbC specifications are transformed into doubly-labelled transition systems
and then analyzed via the UMC explicit-state model checker [17]. That approach
does support a more expressive logic for properties than the current one, that also
requires additional effort for instrumenting properties of interest with assertions

Verifying AbC Specifications via Emulation 277

and for interpreting counter examples associated to C programs. This is less of
a burden in [11], since the target formalism has a direct correspondence with
the initial specifications. In [11], however, the target representation can grow
very quickly in size, for instance to model non-deterministic initialisation of an
attribute (e.g., the initial position of an agent on a grid), for which an explicit
transition will be added for each possible value of the attribute. In our translation
we can introduce a non-deterministic variable (by using the non-deterministic
initialisation construct) to represent this symbolically. A similar argument holds
for value passing in general. We plan to compare our approach with [11] in terms
of efficiency.

Another work closely related to ours is [12]; it uses a mechanism similar to the
one used in [11] to guard the actions of a component and to transform the initial
system into a sequential C program with a scheduling mechanism similar to
the one proposed here. However, the input language of the translation is quite
different from AbC , especially for the primitives for components interaction,
which are based on stigmergy.

The SCEL language [5] has been the main source of inspiration for AbC . In
[18], SCEL specifications are translated into Promela and analyzed by the SPIN
model checker to prove safety and liveness properties. Promela has a C-like syn-
tax and supports the dynamic creation of threads and message passing. Because
of this, the modelling in [18] is more straightforward than ours. However, in [18]
only a fragment of SCEL is considered while we consider full AbC systems; more-
over, the program produced by our encoding is sequential, and because of this
some ingenuity is required for emulating processes and for encoding properties.

The considered experiments seem to provide some evidence that the pro-
posed encoding favors the use of specific tools. As future work, we would like to
reconsider it in order to make the use of other verification back-ends possible.
It would be interesting to see whether the SAT-based parallel bounded model
checking technique proposed in [19] could be adapted to our case, given the
similarity between the programs generated from AbC by our translation and the
sequentialised programs considered in [19]. Completeness thresholds for bounded
model checking [20] would allow to adapt our technique to unbounded analysis.

We also plan to develop an interactive simulator for AbC to explore spec-
ifications through simulations. This would enable one to remove coding errors
introduced during the early steps of the design and to gain confidence about
specifications before formally verifying them against the properties of interest.

Finally, we would like to use our approach to consider more interesting case
studies, e.g., those that involve spatial reasoning, such as flocks. However, to
do this, we think that it is important to extend AbC with a notion of globally-
shared environment and global awareness, thereby facilitating reasoning about
agents locations which is considered as an important feature of CAS [21].

References

1. Anderson, S., Bredeche, N., Eiben, A., Kampis, G., van Steen, M.: Adaptive col-
lective systems: herding black sheep. In: BookSprints for ICT Research (2013)

278 R. De Nicola et al.

2. De Nicola, R., Jähnichen, S., Wirsing, M.: Rigorous engineering of collective adap-
tive systems: special section. Int. J. Softw. Tools Technol. Transf. 22(4), 389–397
(2020). https://doi.org/10.1007/s10009-020-00565-0

3. De Nicola, R., Ferrari, G.L., Pugliese, R., Tiezzi, F.: A formal approach to the
engineering of domain-specific distributed systems. J. Logic Algebraic Methods
Program. 111, 100511 (2020)

4. Abd Alrahman, Y., De Nicola, R., Loreti, M.: A calculus for collective-adaptive
systems and its behavioural theory. Inf. Comput. 268, 104457 (2019)

5. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. ACM Trans. Auton. Adapt. Syst. 9(2),
7:1–7:29 (2014)

6. Ene, C., Muntean, T.: A broadcast-based calculus for communicating systems. In:
IPDPS, p. 149. IEEE Computer Society (2001)

7. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

8. Gadelha, M.Y.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole,
D.A.: ESBMC 5.0: an industrial-strength C model checker. In: ASE, pp. 888–891.
ACM (2018)

9. Lampson, B., Sturgis, H.E.: Crash recovery in a distributed data stor-
age system (1979). https://www.microsoft.com/en-us/research/publication/crash-
recovery-in-a-distributed-data-storage-system/

10. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming interactions in collec-
tive adaptive systems by relying on attribute-based communication. Sci. Comput.
Program. 192, 102428 (2020)

11. De Nicola, R., Duong, T., Inverso, O., Mazzanti, F.: Verifying properties of sys-
tems relying on attribute-based communication. In: Katoen, J.-P., Langerak, R.,
Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500, pp. 169–190.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9 9

12. De Nicola, R., Di Stefano, L., Inverso, O.: Multi-agent systems with virtual stig-
mergy. Sci. Comput. Program. 187, 102345 (2020)

13. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. Electron.
Notes Theor. Comput. Sci. 66(2), 160–177 (2002)

14. Prasad, K.V.S.: Programming with broadcasts. In: Best, E. (ed.) CONCUR 1993.
LNCS, vol. 715, pp. 173–187. Springer, Heidelberg (1993). https://doi.org/10.1007/
3-540-57208-2 13

15. Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Garbinato,
B., Miranda, H., Rodrigues, L. (eds.) Middleware for Network Eccentric and Mobile
Applications, pp. 97–120. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-540-89707-1 5

16. Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Verification of population pro-
tocols. In: CONCUR. LIPIcs, vol. 42, pp. 470–482. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2015)

17. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76(2), 119–135 (2011)

18. De Nicola, R., et al.: Programming and verifying component ensembles. In: Ben-
salem, S., Lakhneck, Y., Legay, A. (eds.) ETAPS 2014. LNCS, vol. 8415, pp. 69–83.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54848-2 5

19. Inverso, O., Trubiani, C.: Parallel and distributed bounded model checking of
multi-threaded programs. In: PPoPP, pp. 202–216. ACM (2020)

https://doi.org/10.1007/s10009-020-00565-0
https://doi.org/10.1007/978-3-540-24730-2_15
https://www.microsoft.com/en-us/research/publication/crash-recovery-in-a-distributed-data-storage-system/
https://www.microsoft.com/en-us/research/publication/crash-recovery-in-a-distributed-data-storage-system/
https://doi.org/10.1007/978-3-319-68270-9_9
https://doi.org/10.1007/3-540-57208-2_13
https://doi.org/10.1007/3-540-57208-2_13
https://doi.org/10.1007/978-3-540-89707-1_5
https://doi.org/10.1007/978-3-540-89707-1_5
https://doi.org/10.1007/978-3-642-54848-2_5

Verifying AbC Specifications via Emulation 279

20. Kroening, D., Ouaknine, J., Strichman, O., Wahl, T., Worrell, J.: Linear com-
pleteness thresholds for bounded model checking. In: Gopalakrishnan, G., Qadeer,
S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 557–572. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22110-1 44

21. Loreti, M., Hillston, J.: Modelling and analysis of collective adaptive systems with
CARMA and its tools. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM
2016. LNCS, vol. 9700, pp. 83–119. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-34096-8 4

https://doi.org/10.1007/978-3-642-22110-1_44
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/978-3-319-34096-8_4

Adaptive Security Policies

Flemming Nielson1(B), René Rydhof Hansen2, and Hanne Riis Nielson1

1 Department of Mathematics and Computer Science,
Technical University of Denmark, Kgs. Lyngby, Denmark

{fnie,hrni}@dtu.dk
2 Department of Computer Science, Aalborg University, Aalborg, Denmark

rrh@cs.aau.dk

Abstract. We develop an approach to security of adaptive agents that
is based on respecting the local security policies of agents rather than
imposing a global security policy on all agents. In short, an agent can
be assured, that it will not be able to observe any violation of its
own security policy due to the changing presence of other agents in its
environment. The development is performed for a version of Dijkstra’s
Guarded Commands with relocation primitives, channel based communi-
cation, and explicit non-determinism. At the technical level a type system
enforces local security policies whereas a reference monitor ensures that
relocation is permissible with local security of all agents.

1 Introduction

In a traditional IT system, security is usually taken care of by a central security
policy enforced on all components of the IT system. Security policies may range
from simple discretionary access control policies over mandatory access control
policies to decentralised control policies. In keeping with this approach, designs
like the ones based on XACML [14] presuppose the existence of a central access
control server for mandating whether or not access operations can be permitted
throughout the possibly distributed IT system.

To fully support collective adaptive systems it seems overly demanding to
enforce that they all adhere to the same security policy. Rather a framework
needs to be found, where individual agents can define their own security policy
and get some assurance that their own security policy is not compromised due to
the changing presence of other agents in its environment. Examples might include
visitors with mobile phones entering the premises of a corporation, customers
changing their service providers, or a robot entering from one legislative domain
to another.

This paper proposes a framework ensuring that agents will never be able to
observe that information flows throughout the system in a manner that violates
their own security policies. The basic idea being that an agent must accept its
environment as long as it cannot observe any violation of its own security policy.
We consider this to be a realistic proposal, because in real systems one would
never have any guarantees against the internal behaviour of other agents on the
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 280–294, 2020.
https://doi.org/10.1007/978-3-030-61470-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_17

Adaptive Security Policies 281

system, including providers of social media channels and national intelligence
services. As an example, if another agent receives confidential information and
decides to make it public on a medium that can also be accessed from the agent
in question, then this would constitute a violation of our framework. We consider
it acceptable that we cannot detect if information is collected by other agents in
a closed group, such as a company like Google or a national intelligence service.

The approach is highly motivated by considerations of non-interference; here
it is ensured that there is no information flow from data at a higher security level
to data at a lower security level. This is usually formulated for a deterministic
system as the condition that two executions whose start states agree above a
certain ‘secret’ security level also produce resulting states that agree above that
‘secret’ security level. (For non-deterministic systems the sets of possible out-
comes need to be the same; for probabilistic systems the probability distributions
on possible outcomes need to be the same.) This is a global condition focusing
on terminating computations, so we will need to rephrase it as a local condition
on what can be observed during a possibly non-terminating computation. We
therefore aim at a situation where no agent in the collective adaptive system will
be able to observe an information flow from data at a higher security level in its
own security lattice to data at a lower security level in its own security lattice.

Motivated by [4] this paper develops the syntax and semantics of a language
supporting this development. We then clarify our notion of security at the agent
level and at the system level and finally we consider how to make this practical
by precomputing the security checks. We conclude with directions for further
work and a comparison with the literature.

2 Syntax

We extend Dijkstra’s Guarded Commands language [6] with parallelism, com-
munication and security domains and allow agents to dynamically modify their
location in the environment. This could be change of physical location or merely
change of logical location by changing its contact point in the environment (for
example the internet provider); our syntax will be more suggestive of the latter.

The main syntactic category of Adaptive Guarded Commands is that of sys-
tems (denoted S). A system

par L1 D1 C1 [] · · · []Ln Dn Cn rap

consists of a number of parallel agents, each with their own security lattice (Li)
for expressing their local security policy, their own declarations (Di) of local
variables and channels to the environment, and their own command (Ci) for
controlling its behaviour. The fundamental idea is that the partial order (�i

or just �) of the security lattice indicates the direction in which the security
level of data may freely change; in approaches based on the Decentralised Label
Model [11] this is called ‘restriction’. The syntax is summarised in Fig. 1 and
explained below; for simplicity of presentation we shall assume that any two
security lattices (Li and Lj) are either disjoint or equal (Li∩Lj = ∅ or Li = Lj)
so that we can use the union of lattices rather than the disjoint union of lattices.

282 F. Nielson et al.

Fig. 1. Syntax of Adaptive Guarded Commands.

Each agent will have a number of declarations. It may be a variable (x) of
some type (t) and security level (�). It may be a channel (c) used for input
accepting data of some type and security level. It may be a channel (c) used to
output data of some type and security level.

The commands include those of Dijkstra’s Guarded Commands so we have
the basic command of assignment (x := e) in addition to sequencing (C1 ; C2)
and constructs for conditionals (if e1 → C1 [] ... [] en → Cn fi) and iteration
(do e1 → C1 [] ... [] en → Cn od). On top of this we follow [13] and introduce
basic commands for output (c ! e) and input (c ? x) over a channel (c) and a
command performing an ‘external’ non-deterministic choice among commands
(sum C1 [] ... []Cn mus); although it will typically be the case that each Ci in
sum C1 [] ... []Cn mus takes the form c ! e ; C or c ? x ; C we shall not formally
impose this. Finally, we have a relocation construct (relocate(l)) for allowing
an agent to dynamically relocate to another contact point (l) in its environment.

The details of the expressions (e) are of little interest to us but they are
likely to include variables (x), a special token indicating the current location
(loc), numbers (n), arithmetic operations (e.g. e1 + e2), truth values (e.g. true),
relational operations (e.g. e1 = e2), and logical operations (e.g. e1 ∧ e2).

We do not need to go deeply into the structure of datatypes (t) but assume
that they contain integers (int) and booleans (bool) and a more interesting
type of data (data). We shall leave the syntax of security levels (�), channels
(c), and locations (l) to the concrete examples.

3 Semantics

Expressions. Expressions are evaluated with respect to a memory σ that assigns
values to all variables of interest and following [13] the semantic judgement takes
the form

σ � e � v

Adaptive Security Policies 283

Fig. 2. Semantics of expressions.

Fig. 3. Semantics of commands.

and the details are provided by the axiom schemes and rules of Fig. 2 and are
mostly straightforward and uninteresting; note that the token loc is treated as
a variable.

Commands. Commands are interpreted relative to a local memory σ for each
agent in question and may update it as needed. The semantic judgement takes
the form

(C, σ) →ϕ (C ′, σ′)

where the superscript (ϕ) indicates whether the action is silent (τ), an input
(c ? v), an output (c ! v) or a relocation (go l).

The details are provided in Fig. 3 and we use C and C ′ to range both over
the commands of Fig. 1 and the special symbol

√
indicating a terminated con-

figuration. Communication will be taken care of at system level by means of
synchronous communication so the rules for output and input merely indicate

284 F. Nielson et al.

Fig. 4. Semantics of systems (with an incomplete rule for relocation).

the action taking place (as a superscript on the arrow). The same approach is
taken for the relocation construct. The remaining constructs are in line with [13]
and are generally straightforward.

Systems. The agents of a system have disjoint local memories so they can only
exchange values by communicating over the channels. More precisely this means
that for each process we will have a local memory assigning values to the variables
of interest and we shall be based on synchronous communication. The judgement
takes the form

(par L1 D1 C1 [] · · · []Ln Dn Cn rap, σ1 · · · σn)
→ (par L1 D1 C ′

1 [] · · · []Ln Dn C ′
n rap, σ′

1 · · · σ′
n)

where once more we allow C and C ′ to range both over commands and the
special symbol

√
indicating a terminated configuration.

The details are provided in Fig. 4. The first rule takes care of a constituent
agent performing a silent step and we use ‘σi covers Di’ as a shorthand for the
condition that the domain of σi contains all variables declared in Di as well as
the token loc.

The second rule takes care of synchronous communication between two dis-
tinct agents. We require that i 	= j and the rule should not be read to suggest
that i+1 = j. On top of ensuring that channels are locally declared in a manner
consistent with their use for output and input we also ensure that both agents
are located at the same point in their environment. In case a declaration contains
multiple declarations of the form c? : t � we use ‘c? : t � in Di’ as a shorthand
for the condition that the rightmost occurrence of any declaration of c? : t′ �′ is

Adaptive Security Policies 285

c? : t �; similar considerations apply to c! : t � (and x : t � below). The decision
not to allow the reception of data at security level ⊥ will be explained below.

The third rule takes care of relocation. Since the semantics of systems needs
to ensure that our overall notion of security is maintained we cannot provide
the full details of the rule before having developed our notion of security in the
subsequent sections. However, already now we can record that the location infor-
mation of the agent relocating is being updated. Also, that the agent relocating
is only allowed to retain its data at the lowest security level; at higher security
levels some constant element 0t of type t will replace any previous value.

Example 1. The condition in the rule for communication that data cannot be
received at the lowest security level, and the condition in the rule for relocation
that only data at the lowest security level can be retained, jointly prevent certain
information flows due to relocation that are not captured by our security checks
developed in the next sections.

To illustrate this point let us suppose we have locations LOC1 and LOC2 and
a parallel system composed of processes procA (initially located at LOC1 with
security lattice L1 : U �1 C �1 S), procB (initially located at LOC1 with security
lattice L2 : L �1 H) and procC (initially located at LOC2 with security lattice
L3 : N �1 P) defined as follows:

procA = L1 (c1! : data S; c3? : data C; tmpS : data S; tmpC : data C)
c1 ! tmpS; c3 ? tmpC

procB = L2 (c1? : data H; c2! : data H; tmpH : data H)
c1 ? tmpH; relocate(LOC2); c2 ! tmpH

procC = L3 (c2? : data P; c3! : data P; tmpP : data P)
c2 ? tmpP; relocate(LOC1); c3 ! tmpP

The system can then be defined as:

par procA [] procB [] procC rap

Here there would be an information flow from the security level S to the security
level C if we would allow this program to execute without the two conditions in
the rules for communication and relocation. �

In all cases, note that if one of the processes terminates then the correspond-
ing component in the configuration will contain

√
and it will not be able to

evolve further.

4 Agent-Level Security

We begin by developing an information flow type system for ensuring that each
agent can be assured that it adheres to its own security policy. The development
borrows from that of [13] and is inspired by traditional approaches such as those
of [15,16] but are extended to deal with parallelism and non-determinism.

286 F. Nielson et al.

Fig. 5. Types and security levels for expressions.

Well-typed Expressions. For expressions the judgement takes the form

ρ � e : t �

where � is intended to indicate the ‘highest’ security level of a variable used in
the expression (but we need to be a bit more precise for security lattices that
are not totally ordered).

The details are provided by the axiom schemes and rules of Fig. 5 and will be
explained below. The judgement makes use of a type environment ρ that assigns
types and security levels to all variables; if the expression e occurs in some agent
then it will become clear shortly that ρ is constructed from the declarations local
to that agent and that the only security levels considered are the local ones. The
overall idea is that ρ � e : t � should ensure that the type of the expression e is t
and that the security level is � =

⊔
i ρ(xi)2 where xi ranges over all free variables

of e and ρ(x)2 = � whenever ρ(x) = (t, �). This is in line with the development
in [15,16].

Well-typed Commands. For commands the typing judgement takes the form

ρ � C : L

where L = [�1, �2] is intended to be a pair of security levels: �1 is the ‘lowest’
security level of a variable assigned in the command and �2 is the ‘highest’
security level a variable assigned in the command (but we need to be a bit more
precise for security lattices that are not totally ordered). This tells us all we will
need about the set of security levels for variables assigned in the command, as it
will allow us to demand that the set contains exactly one element by imposing
�1 = �2, and that it contains at most one element by imposing �1 � �2; we shall
do the latter to prevent information flows due to non-determinism.

The typing judgement is defined by the axiom schemes and rules of Fig. 6 to
be explained shortly. We shall allow to write � � [�1, �2] for � � �1 and define

[�1, �2] � [�′
1, �

′
2] = [�1 � �′

1, �2
 �′
2]

(which is the greatest lower bound operation with respect to a partial order �′

defined by [�1, �2] �′ [�′
1, �

′
2] whenever �1 � �′

1 and �2 � �′
2). We shall write

uniq([�1, �2]) for the condition that �1 � �2 and we shall write Lnull = [�,⊥].
The intuition is, that if L is the set of security levels of variables modified in

Adaptive Security Policies 287

Fig. 6. Types and pairs of security levels for commands.

C then L = [
� L,

⊔ L]; it follows that uniq(L) holds whenever L contains at
most one element, and L = Lnull whenever L is empty (as would be the case for
any skip statement we might add to the language). The first component of a
security label L = [�1, �2] is in line with the development in [15,16] whereas the
second component is responsible for dealing with non-determinism [13].

The rule for assignment records the security level of the variable modified and
checks that the explicit information flow is admissible. The rule for sequencing
is straightforward given our explanation of ρ � C : L and the operation L1 � L2.
The rule for output and the axiom scheme for input are somewhat similar to
the one for assignment, essentially treating output c ! e as an assignment c := e,
and input c ? x as an assignment x := c. One might consider to adopt a more
permissive type system by using Lnull for output (rather than [�′, �′]) but this
would open for some mild information flow due to communication.

The rule for ‘external’ non-deterministic choice takes care of correlation flows
[12,13]. It makes use of uniq(Li) to ensure that all modified variables (if any)
have the same security level. The rules for conditional and iteration are essen-
tially identical and make use of guards of the form e1 → C1 [] · · · [] en → Cn.
They take care of implicit flows by checking that �i � Li whenever

∧
i ρ � ei :

bool �i and
∧

i ρ � Ci : Li. They take care of bypassing flows [12,13] whenever
some ei ∧ ej is satisfiable for i 	= j. This is expressed using the set cosat that
contains those distinct pairs (i, j) of indices such that ei ∧ ej is satisfiable; it
may be computed using a Satisfaction Modulo Theories (SMT) solver such as
Z3 [5] or it may be approximated using the DAG-based heuristics described in

288 F. Nielson et al.

Fig. 7. Well-formedness of agents and systems.

[12]. Whenever this is the case, the condition �j � Li checks that the bypassing
flows are admissible, and the condition uniq(Li) checks the correlation flows are
admissible.

In the rule for relocation one might consider to adopt a more permissive type
system by using Lnull for relocation (rather than [⊥,⊥]) but this would open for
some mild information flow due to relocation.

Well-typed Agents. To finish the considerations of security at the agent-level we
may consider a judgement that takes the form

� LD C : �
and that is defined by the topmost rule in Fig. 7. In addition to ensuring that
the command is well-typed, it ensures that the variables, channels and security
level occurring in a command are only the local ones, in line with the seman-
tics not admitting any variables shared between agents, and it ensures that no
information is received at the lowest security level as discussed previously.

5 System-Level Security

For systems we might extend the judgement � · · · : � from agents to systems
as suggested in the bottommost rule in Fig. 7. In addition to ensuring that each
agent is well-formed, it ensures that all information about a channel agree with
respect to the type given to it. Clearly, there is no similar condition on the
security levels because they are likely to come from different security domains.
We shall only allow to use the semantics on well-typed systems S (i.e. satisfying
� S : �) which means that a few of the conditions in Fig. 4 about the security
levels of channels become superfluous.

Our current setup creates the risk that the communications between an agent
and its environment (i.e. the other agents) give rise to information flow that
would not be admitted within the agent itself. Hence there is the risk that
communication leads to local information flow not captured by the type system
of the previous section.

Adaptive Security Policies 289

Fig. 8. System-Level Information Flow.

Fig. 9. Semantics of relocation (dynamic version).

We shall be interested in recording when the declaration of channels in the
system may give rise to an information flow from some �′ ∈ Li′ to some �′′ ∈ Li′′ .
We shall write this as

Σ � (i′, �′) �→ (i′′, �′′)

where Σ ⊆ {1, · · · , n} records the agents at the location of interest including
i′, i′′ ∈ Σ. The definition is given in Fig. 8 where we write �i for the partial
order of Li.

The definition specialises to the case where �′ ∈ Li and �′′ ∈ Li for i ∈ Σ
and motivates defining

Σ �i �′ �→ �′′ iff Σ � (i, �′) �→ (i, �′′) ∧ �′ ∈ Li ∧ �′′ ∈ Li

and we say that there is a global information flow from �′ ∈ Li to �′′ ∈ Li via
Σ. We are now ready to define our notion of when a system S is secure but shall
do so in two steps.

Definition 1. A system par L1 D1 C1 [] · · · []Ln Dn Cn rap is secure with
respect to Σ whenever every global information flow from �′ ∈ Li to �′′ ∈ Li

via Σ is consistent with Li: ∀i ∈ Σ : ∀�′, �′′ ∈ Li : (Σ �i �′ �→ �′′) ⇒ �′ �i �′′.

To incorporate our notion of a system being secure into the well-formedness
rules for systems would require us to fix the set Σ and hence limit the possibility
of the system to adapt as agents are allowed to roam throughout the system.

Instead, we shall incorporate our notion of a system being secure into the
semantics by allowing an agent to relocate only if security is not jeopardised.
This gives rise to the completion of the semantics (of Fig. 4) that is shown in
Fig. 9. Here the placement information Σ is computed from the local memories
and we require security for all agents at the location to which the agent relocates
(including the agent itself).

290 F. Nielson et al.

This motivates the following definition and proposition stating that the
semantics of Fig. 9 preserves security.

Definition 2. A configuration (par L1 D1 C1 [] · · · []Ln Dn Cn rap, σ1 · · · σn)
is secure whenever par L1 D1 C1 [] · · · []Ln Dn Cn rap is secure with respect
to Σl = {j | σj(loc) = l} for all locations l.

Example 2. The system in Example 1 in an initial state located as stated in
Example 1, yields a configuration that is secure. However, the dynamic semantics
guards against any information flow from S to C due to relocation. �
Proposition 1. Security is preserved under evaluation by the semantics of
Figs. 4 and 9.

Proof. Suppose that (par L1 D1 C1 [] · · · []Ln Dn Cn rap, σ1 · · · σn) is secure
and that

(par L1 D1 C1 [] · · · []Ln Dn Cn rap, σ1 · · · σn)
→ (par L1 D1 C ′

1 [] · · · []Ln Dn C ′
n rap, σ′

1 · · · σ′
n)

The resulting configuration (par L1 D1 C ′
1 [] · · · []Ln Dn C ′

n rap, σ′
1 · · · σ′

n) is
trivially secure if one of the first two rules in Fig. 4 was used for the transition. In
the case where the rule of Fig. 9 is used for the transition we note that removing
the i’th agent from the location σi(loc) does not jeopardise security, and adding
the i’th agent to the location l does not jeopardise security either, because of
the tests present in Fig. 9.

Although our approach is motivated by the development of [4] (as mentioned
in the Introduction) there are a substantial number of differences. In [4] programs
are only allowed to be straight-line programs, so that there are no implicit flows
into constructs that exchange data between different security domains, and the
permissible flows are constrained to be determined by partial functions; we allow
implicit, bypassing and correlation flows, we support the dynamic relocation of
processes, and we do not require the permissible flows to be constrained by
partial functions. With respect to security policies the approach of [4] applies
the framework of Lagois connections [9] which forces them to impose additional
technical1 constraints on top of those needed in our development.

6 Precomputing Security Checks

It is possible to check for security in cubic time with respect to the size of the
system S. To see this, first note that the number of security levels and channels
considered is linear in the size of the system S. Next note that using Fig. 8 to

1 In the terminology of [4] we impose constraints similar to their SC1(=LC1) and
SC2(=LC2) but do not require any of their PC1, PC2, LC3, LC4, CC1, CC2 which are
purely needed to stay within the framework of [9].

Adaptive Security Policies 291

compute Σ � (i, �) �→ (i′, �′) amounts to computing the transitive closure of
binary relations and that this can be done in cubic time.

Hence the application of the transition in Fig. 9 can also be done in cubic
time. We might expect to do better because we only perform the check for one
location but it seems unfeasible to state a better worst-case complexity bound.
This might make the approach unfeasible in practice in case n is very large.

To circumvent these problems we shall assume that while there might be
many agents they will fall in a smaller number of groups sharing security lattices
and channels. This seems a very realistic assumption for large collective adaptive
systems. Define two agents indexed by i and j to be equivalent, written i ∼ j,
whenever

Li = Lj

c! : t � in Di ⇔ c! : t � in Dj

c? : t � in Di ⇔ c? : t � in Dj

(for all choices of c, t, and �). This requires the two agents to agree on the
security lattice and their channels but not necessarily on their local variables.

This gives rise to equivalence classes E1, · · · , EN covering {1, · · · , n}. For
each equivalence class Ej we further choose a representative member ej ∈ Ej

(say the least element of Ej). For an agent i ∈ {1, · · · , n} we next define [i] ∈
{1, · · · , N} to be the index of the equivalence class containing i, i.e. i ∈ E[i].

Lemma 1. A system is secure with respect to Σ if and only if the system is
secure with respect to {e[i] | i ∈ Σ}.
Proof. This follows from observing that we have i ∼ e[i] and i ∼ j ⇔ [i] = [j]
for all i, j.

While this result can be used to make the semantics more feasible (in case N
is considerably smaller than n) we can go even further in obtaining a practical
semantics. To do so we shall make use of a mapping

Δ : Loc × {1, · · · , N} → N

that for each location and (index of an) equivalence class gives the number of
agents of that equivalence class that are currently at that location. We further
define

Δ • l = {ek | Δ(l, k) > 0}
to be the set of representative members of agents present at the location l.

Restricting our attention from {1, · · · , n} to the representative members
{e1, · · · , eN}, and letting Σ range over subsets of the latter rather than the
former, it makes sense to precompute the collection of Σ’s, where the global
information flow is consistent with the security lattices:

S = {Σ ⊆ {e1, · · · , eN} | ∀j ∈ Σ : (Σ �j �′ �→ �′′) ⇒ �′ �j �′′}
For small N it makes sense to represent this set as a list of bit-vectors of length
N as there will be at most 2N of these; if N is not small, symbolic datastructures
can be used for checking Σ ∈ S efficiently.

292 F. Nielson et al.

Fig. 10. Semantics of systems (with precomputed security checks).

This then motivates the semantics of Fig. 10 that differs from our previous
semantics in using the precomputed set S to check the permissibility of relocation
more efficiently than before. The main idea is to extend a configuration with the
mapping Δ and to devise a constant time operation for updating Δ in the case of
relocation. This provides an essentially constant time semantics that is equivalent
to the dynamic one.

Proposition 2. The semantics of Fig. 10 is equivalent to that of Figs. 4 and 9:

– if (Δ,S,σ) → (Δ′, S′,σ′) then (S,σ) → (S′,σ′)
– if (S,σ) → (S′,σ′) then (ΔS

σ , S,σ) → (ΔS′
σ ′ , S′,σ′)

where ΔS
σ (l, k) is the number of elements in {i | σi(loc) = l ∧ [i] = k}.

7 Conclusion

We have adapted elements of non-interference to the setting of collective adaptive
systems. The basic idea being that an agent must accept its environment as
long as it cannot observe any violation of its own security policy. We consider
this to be a realistic proposal, because in real systems one would never have
any guarantees against the internal behaviour of other agents on the system,

Adaptive Security Policies 293

including providers of social media channels and national intelligence services.
We have made an attempt at capturing the flows observable to an agent but do
not fully guarantee against the exclusion from certain services; while exclusion
from services is clearly observable, the reasons seldom are, and we do therefore
not consider this a major drawback of our proposal.

Our notion of relocation requires agents to be sanitised before they relocate,
i.e. our insistence that they can only retain information at the lowest security
level. It would be interesting to consider a more flexible notion of migration
where such sanitisation is not imposed. We believe this to be feasible by cre-
ating equivalence classes of the locations amongst which migration (as opposed
to relocation) might take place; however, it is not clear that the precomputa-
tion semantics can be adapted to be semantically equivalent rather than just
an approximation (where only the first condition in Proposition 2 would be
ensured).

Enforcing security in a distributed system with data sharing and mobile code
is a notoriously hard problem. In [7] the myKlaim calculus is proposed as a way
to model and reason about open systems in which external, third-party code
may be allowed inside a system to then be executed in a ‘sandbox’ environment
to maintain security. If the mobile code can be proven to comply with the local
security policy, through static analysis or certification, the code is also allowed to
execute outside the sandbox. The security policies considered are access control
policies rather than policies for secure information flow.

The Fabric framework, described in [1,8], is an ambitious effort to develop a
language and underlying system for designing and implementing distributed sys-
tems in a safe and secure manner. The system supports computational models
based on both mobile code and data replication with strong security guaran-
tees. Here the security policies are based on an extended version of the decen-
tralised label model [10,11]. This allows principals, essentially programs, to spec-
ify degrees of trust in other (remote) programs and thereby bound the potential
security impact if that node should be compromised.

The main problems, insights, and solutions concerning the relationship
between secure information flow and trust are distilled and further explored in
the Flow-Limited Authorization Model [2] and the Flow-Limited Authorization
Calculus [3] for reasoning about dynamic authorisation decisions.

Acknowledgement. The first author was supported in part by the EU H2020-SU-
ICT-03-2018 Project No. 830929 CyberSec4Europe (cybersec4europe.eu). The third
author is currently on leave from the Department of Mathematics and Computer Sci-
ence, Technical University of Denmark, Kgs. Lyngby, Denmark.

References

1. Arden, O., George, M.D., Liu, J., Vikram, K., Askarov, A., Myers, A.C.: Sharing
mobile code securely with information flow control. In: Proceedings of the Sympo-
sium on Security and Privacy (SP 2012), pp. 191–205 (2012)

294 F. Nielson et al.

2. Arden, O., Liu, J., Myers, A.C.: Flow-limited authorization. In: Proceedings of the
28th Computer Security Foundations Symposium (CSF 2015), pp. 569–583 (2015)

3. Arden, O., Myers, A.C.: A calculus for flow-limited authorization. In: Proceedings
of the 29th Computer Security Foundations Symposium (CSF 2016), pp. 135–149
(2016)

4. Bhardwaj, C., Prasad, S.: Only connect, securely. In: Pérez, J.A., Yoshida, N. (eds.)
FORTE 2019. LNCS, vol. 11535, pp. 75–92. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-21759-4 5

5. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

6. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

7. Hansen, R.R., Probst, C.W., Nielson, F.: Sandboxing in myKlaim. In: Proceedings
of the International Conference on Availability, Reliability and Security (ARES
2006), pp. 174–181 (2006)

8. Liu, J., Arden, O., George, M.D., Myers, A.C.: Fabric: building open distributed
systems securely by construction. J. Comput. Secur. 25(4–5), 367–426 (2017)

9. Melton, A., Schröder, B.S.W., Strecker, G.E.: Lagois connections - a counterpart
to galois connections. Theor. Comput. Sci. 136(1), 79–107 (1994)

10. Myers, A.C., Liskov, B.: A decentralized model for information flow control. In:
Proceedings of the 16th ACM Symposium on Operating Systems Principles (SOSP
1997) (1997)

11. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model.
ACM Trans. Softw. Eng. Methodol. 9(4), 410–442 (2000)

12. Nielson, F., Nielson, H.R.: Lightweight information flow. In: Boreale, M., Corradini,
F., Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent
and Distributed Programming. LNCS, vol. 11665, pp. 455–470. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-21485-2 25

13. Nielson, F., Nielson, H.R.: Secure guarded commands. In: Di Pierro, A., Malacaria,
P., Nagarajan, R. (eds.) From Lambda Calculus to Cybersecurity Through Pro-
gram Analysis. LNCS, vol. 12065, pp. 201–215. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-41103-9 7

14. Ramli, C.D.P.K., Nielson, H.R., Nielson, F.: The logic of XACML. Sci. Comput.
Program. 83, 80–105 (2014)

15. Volpano, D.M., Irvine, C.E.: Secure flow typing. Comput. Secur. 16(2), 137–144
(1997)

16. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow anal-
ysis. J. Comput. Secur. 4(2/3), 167–188 (1996)

https://doi.org/10.1007/978-3-030-21759-4_5
https://doi.org/10.1007/978-3-030-21759-4_5
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-21485-2_25
https://doi.org/10.1007/978-3-030-41103-9_7
https://doi.org/10.1007/978-3-030-41103-9_7

Capturing Dynamicity and Uncertainty
in Security and Trust via Situational

Patterns

Tomas Bures1(B), Petr Hnetynka1(B), Robert Heinrich2, Stephan Seifermann2,
and Maximilian Walter2

1 Charles University, Prague, Czech Republic
{bures,hnetynka}@d3s.mff.cuni.cz

2 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{robert.heinrich,stephan.seifermann,maximilian.walter}@kit.edu

Abstract. Modern smart systems are highly dynamic and allow for
dynamic and ad-hoc collaboration not only among devices, but also among
humans and organizations. Such a collaboration can introduce uncertainty
to a system, as behavior of humans cannot be directly controlled and the
system has to deal with unforeseen changes. Security and trust play a cru-
cial role in these systems, especially in domains like Industry 4.0 and sim-
ilar. In this paper we aim at providing situational patterns for tackling
uncertainty in trust – in particular in access control. To do so, we pro-
vide a classification of uncertainty of access control in Industry 4.0 sys-
tems and illustrate this on a series of representative examples. Based on
this classification and examples, we derive situational patterns per type of
uncertainty. These situational patterns will serve as adaptation strategies
in cases when, due to uncertainty, an unanticipated situation is encoun-
tered in the system. We base the approach on our previous work of auto-
nomic component ensembles and security ensembles.

Keywords: Dynamic systems · Security · Access control · Uncertainty

1 Introduction

Smart systems (such as smart manufacturing in Industry 4.0, smart traffic, smart
buildings, etc.) are becoming more and more ubiquitous. With this advent and
their direct influence on human lives, also the problem of their security and trust
in them is becoming highly relevant.

As the smart systems strive towards being more intelligent and being able
to cope with various situations, they are becoming highly dynamic and rely on
dynamic and ad-hoc collaboration not only among devices constituting a single
system, but also among systems, humans and organizations. Such a collabo-
ration typically introduces uncertainty in the system, due to faults in system
components, unexpected behavior of humans, and not fully understood behav-
ior of other systems and the environment. This all means that a smart system
increasingly needs to deal with unforeseen situations and changes.
c© Springer Nature Switzerland AG 2020

T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 295–310, 2020.
https://doi.org/10.1007/978-3-030-61470-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_18

296 T. Bures et al.

This uncertainty has a significant impact on the security and overall trust.
While the security and trust are normally modeled in rather a strict (and often
static) manner, the introduction of uncertainty demands loosening the strict
boundaries of security and requires a system to inventively self-adapt to meet
new and not fully foreseen situations.

In this paper, we take a first step towards such self-adaptation of security to
not fully foreseen situations. We scope our work to access control in Industry 4.0
settings (as here we can derive experience from our completed project Trust4.0
and our ongoing project FluidTrust). To create a frame for such self-adaptation,
we provide a classification of uncertainty of access control in Industry 4.0 sys-
tems and illustrate this on a series of representative examples. Based on this
classification and examples, we derive situational patterns per type of uncer-
tainty. These situational patterns will serve as adaptation strategies in cases
when, due to uncertainty, an unanticipated situation is encountered in the sys-
tem. We base the approach on our previous work of autonomic ensembles and
security ensembles [4].

The structure of the paper is as follows. Section 2 analyzes state of the art
and related work and then presents a classification of uncertainty. In Sect. 3, we
discuss and analyze the representative examples of uncertainty and then, based
on the classification and analysis of the examples, Sect. 4 defines the adaptation
patterns. Section 5 overviews the adaptation framework where the patterns are
employed and Sect. 6 concludes the paper.

2 Classification of Uncertainty in Security and Trust

In this section, we first discuss existing related approaches and then, based on
them, we build a classification of uncertainty regarding access control. The clas-
sification will serve as a foundation of run-time analyses.

2.1 State of the Art in Access Control and Uncertainty

As confirmed in [33], security is a critical attribute in dynamic and adaptive
systems (among whose Industry 4.0 systems belong). The need for dynamicity
and self-adaption in these systems stems from the constantly changing context
in which the system operates. The survey in [29] discusses context-based mid-
dlewares targeting systems like Internet of Things (which are a special type
of dynamic and adaptive systems). Security and privacy is dealt only by three
middlewares out of eleven. As access control is one of most important aspects of
security and confidentiality, RBAC and similar approaches are discussed below.

Access Control is one of established means to enable security and trust.
The classical access control systems are DAC [40] and MAC [17] but they are
applicable to the simplest solutions only. More advance is Role-based access
control (RBAC) [1], which employs groups to gather access rights for similar
users. Through this abstraction, the rules are more comprehensible. However,
the strict static relationship from groups to rules does not fit dynamic situations
and there is no horizontal composition supported between multiple organization.

Capturing Dynamicity and Uncertainty in Security and Trust 297

Thus, the Organisational Based Access Control (OrBAC) has been intro-
duced and recently enhanced by support of horizontal composition [9]. However,
it does not support the inclusion of confidentiality analysis and uncertainty.
Another well-known access control system is Attribute Based Access Control
(ABAC) [25], where access is managed over attributes, which need to be satis-
fied for accessing data. In [7], an approach based on ABAC is described, which
targets also dynamic situations, nevertheless only unexpected and uncommon
user behavior (that might represent an attack) is considered. In [39], an app-
roach targeting access policies generation for dynamically established coalitions
is described, nevertheless, the coalitions are meant only as groups of people with
the same goal but by themselves are not dynamically described. In [42], an app-
roach for security and access control in health care IoT systems is described,
but from the point of dealing with uncertainty, it supports only emergency like
situations, for which it offers a “break-glass key” approach, i.e., there is a pre-
defined set of persons that know the particular “break-glass key” and in the
case of unexpected emergency situation, they have to be contacted. In [36], an
adaptive access control approach based on answer set programming targeting
context-based systems is shown, but uses predefined access control policies with
predefined exceptions.

In summary, there are approaches targeting dynamic access control but only
for anticipated changes (i.e., no uncertainty) and with rigid and predefined access
rules. However, the increase in dynamicity leads to not anticipated changes,
which results in uncertainty. Thus, it is important to take a look to at the
uncertainty research area and try to combine it with access control approaches.

An important step to quantify the uncertainty is to realize its source. Depend-
ing on the classifications presented on [31], the uncertainty exists on different lev-
els of the system, which are in modeling phase, adaptation functions, goal, envi-
ronmental and resource uncertainty. Regarding the uncertainty in adaption, the
authors in [19] define an uncertainty taxonomy, classify the uncertainty types and
match them to MAPE-K stages. These requires to investigate the source of uncer-
tainty and involve the uncertainty handling in the current techniques for per-
forming self-adaptation [27], which are based on using parameters that change
the behavior, changing the structure (i.e., reconfiguration), or changing the con-
text. For instance, some frameworks [8,37] investigate the context that introduces
uncertainty in behavior. In [30], the authors present a context taxonomy in addi-
tion to a 3-layer framework to design context-aware systems. The authors in [32]
aim at reducing the impact of uncertainty in quality evaluation. This is done by
defining uncertainty taxonomy and study their sources. The study shows that mul-
tiple uncertainties could impact model-based quality evaluation. In [34], the study
aims at defining taxonomy of uncertainty types, template for their sources, occur-
rence, and their effect on requirement, design and runtime levels.

Regarding uncertainty in requirements engineering, the classical RELAX [41]
approach captures weakening requirements according to environmental condi-
tions (i.e., uncertainty) in runtime. Even though combing RELAX with SysM-
LKaos [2] allows the developer to consider non-functional requirements, it does

298 T. Bures et al.

not consider the development of the system nor provides mechanisms to fulfill
the conditional requirements.

In self-adaptive systems, many works are handling different kinds of uncer-
tainty using probabilities and learning. For instance, the Stitch language [14] is
used in Rainbow framework [16] that employs MAPE-K model. It introduces
tactics and strategies as basic concepts for supporting dynamicity. It allows the
developer to describe the likelihood of evaluating the condition of strategy selec-
tion to true. Using formal approach, [38] presents stochastic multi-mode systems
(SMMS) that approximate the action of a moving vehicle, so it satisfies almost-
sure reachability, which is the movement within a certain safety corridor. As for
uncontrollable entities, [6] introduced a proactive adaptation to capture possible
dangerous situations using prediction over historical data (i.e., fire prediction).
For unforeseen situations, NiFti project [26] uses human-robot cooperation to
achieve the goal in rescue missions. More specifically, the robots can alter a pre-
defined plan to utilize the resources, and depending on robot updates on a 3D
map the rescue can change the path for robots to avoid obstacles. Even though
the previous work considered controllable/uncontrollable entities, they do not
consider evaluating the risk/loss tradeoff.

Systems of the Industry 4.0 domain can be seen as a special case of Smart
Cyber-Physical Systems (sCPS) [11], which also exhibit a high level of uncer-
tainty. This has been already partially studied, e.g., in the scopes of the ASCENS
and Quanticol projects [28,35]. Also, we partially addressed statistical modeling
of human behavior in sCPS [10] and adaptation via meta-adaptation strate-
gies [21] however a complete approach for sCPS is yet missing.

In summary, there are classifications and approaches for uncertainty. How-
ever, so far to our knowledge no combination of access control approaches and
uncertainty exists.

2.2 Classification of Uncertainty in Access Control

We applied, adopted, and condensed the classification of uncertainty from Perez-
Palacin et al. [32] to better fit the needs of uncertainty in access control in
Industry 4.0 systems. The adapted classification consists of three dimensions:
Levels of uncertainty, Nature, and Source. The first two dimensions are taken
from [32]. The last one is added to better categorize software architecture.

Levels of uncertainty categorize uncertainty by the degree of awareness. There
are four levels. We removed the fifth from the original classification because it
is—in our eyes—not practically applicable. The first level is that no uncertainty
exists. In our case, this means that the system can decide without guessing what
the correct access rules are. The second level introduces uncertainty but the
system is aware of it and has appropriate measures to handle it. One solution
to handle this is fuzzy logic for access control like used in [13]. The third level
adds situations where the system is unaware of the existence of uncertainty. In
the field of security, a component of an access control system can fail and deny
access for everyone. In that case, the uncertainty is about the operability of the
access control system. One solution for this might be a continuous monitoring

Capturing Dynamicity and Uncertainty in Security and Trust 299

approach similar to [23], which will trigger an adaptation process. This moves the
uncertainty to level two because the system becomes aware of the uncertainty.
The fourth and last level is that there exists no process to find out that the
system has uncertainties. In general, this should be avoided [32].

Nature distinguishes between epistemic and aleatory. We reuse this category
from [32] unchanged. Epistemic means that uncertainty exists because there is
not enough data available. In policy mining approaches such as the one in [15],
uncertainty might exist if the log data does not consist of every necessary case.
Aleatory describes a situation, which is too random to consider. For instance,
this might be the break-down of a security sensor because of vandalism.

Source describes where uncertainty for access control can be found in the
modeled system. We distinguish between system structure, system behavior, and
system environment. We used this three subcategories, since systems consist of
at least a structure, a behavior and an environment and in everyone of these
uncertainty can exist. However, this is not an exclusive categorization, because
scenarios could fall into multiple of these categories. System structure is compa-
rable to the model structure from [32]. The system structure describes the design
of the system. It consists of for example components, hardware resources, the
wiring of components via required and provided interfaces. The system behavior
describes the uncertainty in the actual behavior of the system. This can be for
example the uncertainty about the intended usage. In access control the behav-
ior is often regulated by access control rules. These rules might introduce uncer-
tainty, if they are incorrect. However, they might also help to handle uncertainty.
Therefore, we would count access control rules to the system behavior. The last
subcategory is the system environment. The system environment describes the
context in which a system is executed. This includes also the input data for
the system. For instance this might be that due to bad sensor data, which is
the input data the system cannot produce an accurate result for the location of
an user and therefore decides s/he is not in compound and marks her/him as
unauthorized.

3 Representative Examples/Use-Cases

As a basis of representative examples, we are using a use-case [5] from our
previous project Trust4.01, which focused on dynamic security. The use-case
is simple however fully realistic as it has been developed together with and is
based on interviews with industrial experts in the project. Within the project
we created an approach for managing access control suitable for highly dynamic
environment of Industry 4.0. The approach is based on application of dynamic
security rules. Nevertheless, during the project we encountered several important
situations, where uncertainty prevented formulating or even foreseeing strict
access control rules. This requires a foundational change in the approach how
the access control rules can be designed, verified and enforced, such that the
uncertainty can be explicitly represented, tackled and reasoned about.
1 http://trust40.ipd.kit.edu/home/.

http://trust40.ipd.kit.edu/home/

300 T. Bures et al.

In the light of the classification shown in Sect. 2.2, we compare these cat-
egories against experiences of these situations we gathered together with our
industry partners. We examined how the different types of uncertainty in the
scenarios can be located within the given categories. We are focusing on the
second and third level of uncertainty (the first level represents no uncertainty
whereas in the fourth, uncertainty cannot be managed). As for nature, we han-
dle both epistemic and aleatory uncertainty – this is necessary because if in a
decentralized system an unexpected situation occurs, it is imperative to make
a reaction regardless whether the situation is completely random or just not
fully known. Importantly, we also assume that as the reaction typically has to
be immediate there is no scope to obtain unknown data which would normally
be one way to handle epistemic uncertainty. Similarly, we address the different
subcategories in the source section. We describe the application of the source
categorization with each example.

The use-case [5] assumes a factory with multiple working places where groups
of workers work in shifts. The workers have access only to the workplace to which
they have been assigned. Also, before the shift, they have to collect protective
gear from a dispenser, without which they are not allowed to enter the workplace.
The workplace is equipped with machines that can monitor their state and also
can be reconfigured. The actual detailed log of what the machine did and what
its internal settings are is confidential as it constitutes the intellectual property
of the factory. To support the production in the factory, there is a constant in-
flow of trucks bringing in material and taking out finished products. The truck is
allowed to enter the factory only when it is designated so in the schedule and to
enter the factory it must use a designated gate within a designated time interval.

Primarily, the access-control permissions are of two kinds: allow and deny
(in a case of inconsistencies, evaluation order is allow–deny).

The identified examples of situations, in which the system encounters a state
that was not anticipated and the access-control rules do not count with it, are
as follows:

Example 1. A dispenser breaks and stops distributing the protective gear which
is required to enter a shift. The system has to allow a foreman to open the
dispenser so as to distribute the protective gear manually. Applying our source
categorization, this falls into system structure and behavior, since the failing
dispenser would be a structure problem and the opening and the distribution of
gear by the foreman would be a different system behavior.

Example 2. An access gate is disconnected from the central authorization service
and thus prohibits anyone to pass through because the access cannot be verified
(this is actually quite a commons situation of gates letting the trucks inside the
factory). The system has to allow the security personnel on the gate to manually
define who can pass through. This would also fall into the system structure since
the access gate would be a missing component and the system behavior category
since the default behavior is changed.

Example 3. A machine is broken and repair requires that a third-party repair-
man has access to internal machine logs. In order to do the job, the repairman

Capturing Dynamicity and Uncertainty in Security and Trust 301

requires access data summaries which are anonymized over several shifts. As the
repairman arrives at the place, it turns out that access to the data cannot be
given because the data cannot be properly anonymized because the last opera-
tion was not long enough to collect the required data points that are needed to
ensure proper anonymization. The source categorization would categorize this
example into system structure since the broken machine introduces uncertainty,
and system environment since the input data adds uncertainty whether machine
can be repaired by the technician or not.

Example 4. An unexpected and unauthorized person appears at a workplace.
By the system design this cannot happen because the person would have to pass
a security gate. In this case, the system should dynamically enable the fore-
man or some other trusted person in the vicinity to access information allowing
them to determine the person identity and reason to be there before the secu-
rity personnel is called. As for our source categorization this would be in the
category environment, since the context (here attendance of person) introduces
uncertainty to the system.

In all the examples above, the system needs to autonomously take a decision
which is beyond its pre-designed access control rules. In doing so, it has to
evaluate how the access-control rules should be adapted in order to minimize the
potential risk and loss (i.e., what is risked if the access-control rules are weakened
and what can be lost, if the rules are strictly followed and not weakened).

3.1 Examples Analysis
Here, we analyze the presented situations from multiple different views in order
to build the situational patterns in the next section.

In Example 1, the system gives rights to someone, who is already trustworthy.
Particularly, the foreman is responsible for the whole shift and has rights to
access personal information about all the workers in his/her shift and has overall
responsibility of the shift. Thus, assigning him/her the rights for the dispenser
does not represent a significant security issue. On the other hand, not to assign
the rights means that the shift cannot be executed without the protective gear
and there might be a significant loss for the company.

In Example 2, the situation is similar from the risk/loss view. Again, the
access right (for the gate now) is assigned to someone, who is trustworthy and
in fact already has a superior access right (the security personnel is responsible
for all the entries to the factory area anyway).

Nevertheless, there is an important difference between Example 1 and Exam-
ple 2 which is characterized by the question which component in the security
chains is broken. In the Example 1, the dispenser is a terminal component in
the chain. Thus, the foreman needs to be assigned with a additional access
right (open the dispenser), however no one (foreman, workers) has it currently
assigned. In Example 2, the gate is disconnected and cannot verify access rights.
The broken part here is an intermediate component in the security chain which
assigns the access rights. The security personnel thus replaces a component (the
gate) in the chain and the scenario is as before.

302 T. Bures et al.

The Example 3 is a different one. Here, the security risk is that the repairman
can see unanonymized data and the loss is that the shift cannot proceed (which
can lead to loss of profit for the company). However, the repairman typically
has signed a kind of NDA (non-disclosure agreement) as even only via his/her
presence in the company, he/she is eligible see proprietary information. Thus,
relaxing on having the access right for seeing unanonymized data does not repre-
sent a significant issue (the anonymized data are a second level of protection—the
first one is NDA).

Example 4 is quite close to Example 1. Here, the system has to give additional
rights to someone, who is already trustworthy (the foreman is responsible for the
whole shift and all workers in the shift).

3.2 Summary
Based on the analysis from the previous section, we can identify two dimensions
defining a space, in which new rules are created: (i) whether something is allowed
or denied (ii) what is done with access rights.

For the first dimension, the options are obvious, either the new rule works
with: (1) the allow permission, or with (2) the deny permission.

For the second dimension, the options are: (A) a permission is given to a com-
ponent, (B) decision about a permission assignment is delegated to a component,
(C) a permission is removed.

Table 1 maps the examples to the space of above defined dimensions. The
cases not covered by the examples above, can be exemplified as follows (in the
table marked as Post-hoc examples): For the 1xC case (removing the allow per-
mission, Post-hoc C example)—if the foreman tries to read information not
accessible to him/her, it is evaluated as a potential security attack and all his/her
access rights are removed. For the 2xA case (adding the deny permission to a
component, Post-hoc A example)—if the repairman starts to read data unrelated
to the machine/shift, new rule with the deny permission for him/her is created.
For the 2xB case (delegating the deny permission to a component, Post-hoc B
example)—as in the previous one, if the repairman starts to read data unrelated
to the machine/shift, new rule delegating the deny permission to the foremen is
created.

Table 1. 1st vs 2nd dimension

A B C
1 Example 1, 4 Example 2 Post-hoc C
2 Post-hoc A Post-hoc B Example 3

Also, from the analysis, we can observe that the typical reasons that someone
obtains new permissions is
(a) he/she already has a role that implies governance over part of a system for

which the new permission is to be granted – thus the new permission does
not extend the scope of governance of the subject, it only completes it,

Capturing Dynamicity and Uncertainty in Security and Trust 303

(b) he/she has an equivalent role to someone who already has the permission,
(c) a risk connected with obtaining the new permission is low compared to the

loss connected with not obtaining the permission.

Similarly, we can observe that the typical reasons that someone is loosing per-
missions is that he/she is trying to perform a suspicious operation and thus, as
a preventive measure, he/she looses access.

Note that item (c) subsumes (a) and (b). However, we still list (a) and (b)
separately because these conditions are easier to establish. Whereas the com-
parison of risk vs. loss is typically difficult to do. In situations when this ratio
cannot be reliably done, it is necessary to assume that the risk is too high.

4 Situational Patterns for Uncertainty

With the analysis performed, we can define the situational patterns, which serve
as a strategy for dynamic adaptation of security access rules.

For describing the patterns, we use a format inspired by the classical books
on patterns [12,18], however we have updated the format to our needs (which is a
common and recommended practice [20], i.e., to update the format to own needs
as the content is more important than the form). Our format is: (i) Name of the
pattern, (ii) Solution (description of the pattern), (iii) Context (determination of
components and their behavior where the pattern is applied), (iv) Consequences
(in our cases, mainly the risk discussion), and (v) Example.

There are three identified patterns following the second dimension from
Sect. 3. Plus, there are sub-variants following the first dimension in those case
where the division is necessary.

4.1 Pattern 1a – Adding an allow Rule
Solution A new situation cannot be handled with currently assigned

permissions—a new allow permission needs to be assigned, i.e., a new security
access rule assigning the allow to a component is added to the system.

Context The allow permission, i.e., a rule with the allow permission, is assigned
to a component, which either has: (a) such a role in the system that the new
rule does not fall outside the component’s area of competence, or (b) a similar
role in the system as a component that already has the same rule.

Consequences By adding the allow permission, the affected component can
have higher access within the system than originally intended and it might
lead to a potentially dangerous situations. Thus the trade-off has to be greater
for adding the allow permission than for not adding it (and therefore leaving
the system in a non-functional state).

Example The Examples 1 and 4 are direct representatives of this pattern.

4.2 Pattern 1b – Adding a deny Rule
Solution A potentially dangerous situation occurs in the system. The deny per-

mission is assigned to the component (i.e., a new security access rule assigning
the deny to a component is added to the system).

304 T. Bures et al.

Context A component has started to misbehave—accessing more than is usual
and/or necessary for it. As a security measure, the deny rule is assigned to
the component.

Consequences The situation here is reversed to the Pattern 1a, i.e., the trade-
off has to be greater for limiting access right for the affected component.

Example The Post-hoc A example is direct representative of this pattern.

4.3 Pattern 2a – Removing an allow Rule
Solution A potentially dangerous situation occurs in the system. The allow

permission is removed from the component (i.e., an existing security access
rule assigning the allow to a component is removed from the system).

Context A component has started to misbehave and or is broken. As a security
measure, the allow rule is removed from the component. The pattern is very
similar to the Pattern 1b—the difference is that the Pattern 1 is used when
there is no rule to be removed.

Consequences The situation here is the same as for the Pattern 1b
Example The Post-hoc C example is direct representative of this pattern.

4.4 Pattern 2b – Removing a deny Rule
Solution The system runs in a situation that is blocked by a rule with the deny

permission. The deny permission is removed from the component (i.e., an
existing security access rule assigning the deny to a component is removed
from the system).

Context The system can continue in the common operations only if a compo-
nent can access an entity (e.g., another component) but there is a rule denying
the access. The rule is removed.

Consequences The rule can be removed only in the case the rule represents
redundancy in the security chain.

Example The Example 3 is direct representative of this pattern.

4.5 Pattern 3 – A New Access Rule Validator
Summary The system runs in a situation that is blocked by a component

that validates access for other components (e.g., the component is broken).
Another component is chosen as a replacement and serves as a new validator.

Context The selected component has to already have a supervisor-like role in
the system.

Consequences As the selected component has to already have a supervisor-like
role, the risk of assigning additional permissions to it is minimized.

Example The Example 2 is direct representative of this pattern for the allow
permission and the Post-hoc B for the deny permission.

5 Applying Patterns in an Adaptation Framework

As we described in [3], we model dynamic security rules as ensembles. This
allows us to target dynamic security in collective adaptive systems. Ensembles

Capturing Dynamicity and Uncertainty in Security and Trust 305

are instantiated dynamically to reflect ever changing situations and collabora-
tions in a system.

An ensemble definition is static in terms which permission it assigns and
the predicate identifying components it applies to (i.e., subjects and objects
of the permissions). The dynamicity comes from the fact that an ensemble is
instantiated at runtime for each group of components that match the roles and
constraints in the ensemble. The components are identified by their state. As this
state changes throughout the lifetime of the system, the selection is dynamic.

From the architecture perspective, we model the system as an adaptive sys-
tem, where security ensembles generate access control rules that are understood
by legacy systems. This is the first-level of adaptation as shown in Fig. 1 –
controlled by an Adaptation Manager. In this paper, we see the adaptation as
decentralized. As such, we assume multiple Adaptation Managers, each of which
instantiates ensembles in its domain of control and determines access control
rules pertaining to particular subjects and objects.

To account uncertainty that is addressed by the situational patterns as pre-
sented in this paper, we build on our approach to architectural homeostasis [22]
and incorporate the patterns described in this paper as a meta-adaptation layer
(i.e., a layer that adapts the ensembles themselves) as visualized in Fig. 1.

Fig. 1. Meta-adaptation framework

The idea is that each pattern is reflected as one strategy of the meta-
adaptation layer. The strategy modifies existing ensembles that implement the
dynamic security of the collective adaptive system. This extra layer extends
the adaptation space of the system and helps tackling situations that were not
fully anticipated and lie beyond the scope of the system states addressed by the
security ensembles (i.e., the middle layer in Fig. 1).

Each pattern is represented as a MAPE-K adaptation loop that monitors
the system for unanticipated situations targeted by the particular pattern. The
pattern also determines the dynamic security rules that have to be introduced
to tackle the unanticipated situation.

Listing 1 shows a brief excerpt of the security specification via ensembles for
our factory use-case. The specification is written in our DSL, which is created
as an internal DSL in the Scala language.

306 T. Bures et al.

Below, we overview the parts of the specification important to this paper.
Details about the syntax and semantics of DSL for security ensemble specifica-
tions are available at [24].

Capturing Dynamicity and Uncertainty in Security and Trust 307

Components are used to represent entities in the system that (a) can be
assigned access control, (b) are subject of access control, or (c) can determine
the access control by controlling formation of security ensembles (i.e., acting as
the Adaptation Manager in the middle layer).

The components are listed in lines 2–4. These represent components for the
Gate, Factory, Workplace, Central−Access−System (CAS), etc. but also components
that cannot be directly controlled by the system, but still are relevant to access
control—like Workman, Repairman, etc.

Then, the ensembles representing security specifications are defined. The
ensembles are hierarchical, which allows for more simple definition thanks to
decomposition. The FactorySystem ensemble (line 5) represent the whole system.
The GateAccess (line 6) ensemble controls access through the gate to the fac-
tory. This ensemble is initiated (i.e., its instantiation is controlled by) the CAS
component and it has a single further subensemble TransportAccessThroughGate
(line 9), which is instantiated for each transport coming to the factory. Here,
if the transport satisfies the condition defined in the situation (line 10), it is
allowed to enter through the gate via the allow rule (line 15). Similarly to the
GateAccess ensemble, the ShiftTeam ensemble (line 20) controls access of workers
(and other persons) to and within the factory. It is also decomposed to several
subensmbles controlling access to individual elements of the factory, i.e., the
AccessToFactory ensemble controlling access to the factory, the AccessToDispenser
controlling access to the dispenser for headgear, and so on.

In addition to the allow rules, the specification also lists deny rules. The
semantics is allow-deny, meaning that a deny rule overrides any allow rules. The
deny rules are used in the specification to express cross-cutting policies—e.g.,
that no external repairman should get access to sensitive data. We assume that
all the security to be primarily specified via the allow rules. The deny rules thus
act more as assertions to detect inconsistencies in the specification.

As mentioned above, the H-adaptation manager monitors the system for
unanticipated situations and introduces new ensembles and rules to the security
specification of the system. Particularly for our use-case, if the H-adaptation
manager detects a situation corresponding to the Example 1 (the broken dis-
penser, i.e., the Pattern 1a), it updates the AccessToDispenser ensemble with
the additional allow rule and thus, the ensemble rules will look as follows:

Similarly, if the H-manager detects a situation corresponding to the
Example 3 (the broken machine, i.e., the Pattern 2b), it removes the deny rule
at line 45 (in Listing 1) disallowing the repairman to read sensitive data.

If the H-manager detects a situation corresponding to the Example 2 (the
disconnected gate, i.e., the Pattern 3), it updates the GateAccess ensemble so

308 T. Bures et al.

it is initiated not by the CAS component but by the security personnel, i.e., it
starts as follows:

6 Conclusion

In this paper, we have presented access-control related situational patterns,
which serve as meta-adaptation strategies in cases when an unanticipated sit-
uation is encountered in the system. The patterns primarily target the domain
of Industry 4.0, however they are applicable to other similar domains of mod-
ern smart cyber-physical system. They are based on our experience gained from
participating in industrial projects. The patterns represent a first step for self-
adaptation of security management.

Currently, we are continuing with the implementation of the adaptation
framework and incorporating the patterns there. As an ongoing work, we investi-
gate further industrial-based examples and update the patterns correspondingly.

Acknowledgment. This work has been funded by the DFG (German Research Foun-
dation) – project number 432576552, HE8596/1-1 (FluidTrust), supported by the Czech
Science Foundation project 20-24814J, and also partially supported by Charles Uni-
versity institutional funding SVV 260451.

References

1. Abreu, V., Santin, A.O., Viegas, E.K., Stihler, M.: A multi-domain role activation
model. In: Proceedings of ICC 2017, Paris, France, pp. 1–6. IEEE (2017)

2. Ahmad, M., Gnaho, C., Bruel, J.-M., Laleau, R.: Towards a requirements engineer-
ing approach for capturing uncertainty in cyber-physical systems environment. In:
Abdelwahed, E.H., et al. (eds.) MEDI 2018. CCIS, vol. 929, pp. 115–129. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-02852-7_11

3. Al Ali, R., Bures, T., Hnetynka, P., Krijt, F., Plasil, F., Vinarek, J.: Dynamic
security specification through autonomic component ensembles. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 172–185. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03424-5_12

4. Al Ali, R., Bures, T., Hnetynka, P., Matejek, J., Plasil, F., Vinarek, J.: Toward
autonomically composable and context-dependent access control specification
through ensembles. Int. J. Softw. Tools Technol. Transfer 22(4), 511–522 (2020).
https://doi.org/10.1007/s10009-020-00556-1

5. Al-Ali, R., et al.: Dynamic security rules for legacy systems. In: Proceedings of
ECSA 2019 - Volume 2, Paris, France, pp. 277–284. ACM (2019)

6. Anaya, I.D.P., Simko, V., Bourcier, J., Plouzeau, N., Jézéquel, J.M.: A prediction-
driven adaptation approach for self-adaptive sensor networks. In: Proceedings of
SEAMS 2014, Hyderabad, India, pp. 145–154 (2014)

https://doi.org/10.1007/978-3-030-02852-7_11
https://doi.org/10.1007/978-3-030-03424-5_12
https://doi.org/10.1007/s10009-020-00556-1

Capturing Dynamicity and Uncertainty in Security and Trust 309

7. Argento, L., Margheri, A., Paci, F., Sassone, V., Zannone, N.: Towards adap-
tive access control. In: Kerschbaum, F., Paraboschi, S. (eds.) DBSec 2018. LNCS,
vol. 10980, pp. 99–109. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
95729-6_7

8. Baudry, G., Macharis, C., Vallée, T.: Range-based multi-actor multi-criteria anal-
ysis: a combined method of multi-actor multi-criteria analysis and Monte Carlo
simulation to support participatory decision making under uncertainty. Eur. J.
Oper. Res. 264(1), 257–269 (2018)

9. Ben Abdelkrim, I., Baina, A., Feltus, C., Aubert, J., Bellafkih, M., Khadraoui, D.:
Coalition-OrBAC: an agent-based access control model for dynamic coalitions. In:
Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’18 2018. AISC,
vol. 745, pp. 1060–1070. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-77703-0_103

10. Bures, T., Plasil, F., Kit, M., Tuma, P., Hoch, N.: Software abstractions for com-
ponent interaction in the Internet of Things. Computer 49(12), 50–59 (2016)

11. Bures, T., Weyns, D., Schmer, B., Fitzgerald, J.: Software engineering for smart
cyber-physical systems: models, system-environment boundary, and social aspects.
ACM SIGSOFT Softw. Eng. Not. 43(4), 42–44 (2019)

12. Buschmann, F. (ed.): Pattern-Oriented Software Architecture: A System of Pat-
terns. Wiley, Hoboken (1996)

13. Cheng, P.C., Rohatgi, P., Keser, C., Karger, P.A., Wagner, G.M., Reninger, A.S.:
Fuzzy multi-level security: an experiment on quantified risk-adaptive access control.
In: Proceedings of SP 2007, Berkeley, USA, pp. 222–227 (2007)

14. Cheng, S.W., Garlan, D.: Stitch: a language for architecture-based self-adaptation.
J. Syst. Softw. 85(12), 2860–2875 (2012)

15. Cotrini, C., Weghorn, T., Basin, D.: Mining ABAC rules from sparse logs. In:
Proceedings of EURO S&P 2018, London, UK, pp. 31–46 (2018)

16. Cámara, J., Garlan, D., Kang, W.G., Peng, W., Schmerl, B.R.: Uncertainty in self-
adaptive systems categories, management, and perspectives. Report CMU-ISR-17-
110, Institute for Software Research School of Computer Science Carnegie Mellon
University, Pittsburgh, PA 15213 (2017)

17. De Capitani di Vimercati, S., Samarati, P.: Mandatory access control policy
(MAC). In: van Tilborg, H.C.A., Jajodia, S. (eds.) Encyclopedia of Cryptogra-
phy and Security, p. 758. Springer, Boston (2011). https://doi.org/10.1007/978-1-
4419-5906-5_822

18. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley Professional, Boston (1994)

19. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. In: de
Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-
Adaptive Systems II. LNCS, vol. 7475, pp. 214–238. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35813-5_9

20. Fowler, M.: Writing Software Patterns (2006). https://www.martinfowler.com/
articles/writingPatterns.html

21. Gerostathopoulos, I., Bures, T., Hnetynka, P., Hujecek, A., Plasil, F., Skoda, D.:
Strengthening adaptation in cyber-physical systems via meta-adaptation strate-
gies. ACM Trans. Cyber-Phys. Syst. 1(3), 1–25 (2017)

22. Gerostathopoulos, I., Škoda, D., Plášil, F., Bureš, T., Knauss, A.: Tuning self-
adaptation in cyber-physical systems through architectural homeostasis. J. Syst.
Softw. 148, 37–55 (2019)

23. Heinrich, R.: Architectural runtime models for integrating runtime observations
and component-based models. J. Syst. Softw. 169, 110722 (2020)

https://doi.org/10.1007/978-3-319-95729-6_7
https://doi.org/10.1007/978-3-319-95729-6_7
https://doi.org/10.1007/978-3-319-77703-0_103
https://doi.org/10.1007/978-3-319-77703-0_103
https://doi.org/10.1007/978-1-4419-5906-5_822
https://doi.org/10.1007/978-1-4419-5906-5_822
https://doi.org/10.1007/978-3-642-35813-5_9
https://www.martinfowler.com/articles/writingPatterns.html
https://www.martinfowler.com/articles/writingPatterns.html

310 T. Bures et al.

24. Hnetynka, P., Bures, T., Gerostathopoulos, I., Pacovsky, J.: Using component
ensembles for modeling autonomic component collaboration in smart farming. In:
Proceedings of SEAMS 2020, Seoul, Republic of Korea (2020)

25. Hu, V.C., Kuhn, D.R., Ferraiolo, D.F.: Attribute-based access control. Computer
48(2), 85–88 (2015)

26. Kruijff, G., et al.: Designing, developing, and deploying systems to support human-
robot teams in disaster response. Adv. Robot. 28(23), 1547–1570 (2014)

27. Krupitzer, C., Roth, F.M., VanSyckel, S., Schiele, G., Becker, C.: A survey on
engineering approaches for self-adaptive systems. Pervasive Mob. Comput. 17, 184–
206 (2015)

28. Latella, D., Loreti, M., Massink, M., Senni, V.: Stochastically timed predicate-
based communication primitives for autonomic computing. In: Electronic Proceed-
ings in Theoretical Computer Science, vol. 154, pp. 1–16 (2014)

29. Li, X., Eckert, M., Martinez, J.F., Rubio, G.: Context aware middleware architec-
tures: survey and challenges. Sensors 15(8), 20570–20607 (2015)

30. Lu, Y.: Industry 4.0: a survey on technologies, applications and open research
issues. J. Ind. Inf. Integration 6, 1–10 (2017)

31. Mahdavi-Hezavehi, S., Avgeriou, P., Weyns, D.: A classification framework of
uncertainty in architecture-based self-adaptive systems with multiple quality
requirements. In: Managing Trade-Offs in Adaptable Software Architectures, pp.
45–77. Elsevier (2017)

32. Perez-Palacin, D., Mirandola, R.: Uncertainties in the modeling of self-adaptive
systems: a taxonomy and an example of availability evaluation. In: Proceedings of
ICPE 2014, Dublin, Ireland, pp. 3–14 (2014)

33. Peruma, A., Krutz, D.E.: Security: a critical quality attribute in self-adaptive sys-
tems. In: Proceedings of SEAMS 2018, Gothenburg, Sweden, pp. 188–189 (2018)

34. Ramirez, A.J., Jensen, A.C., Cheng, B.H.C.: A taxonomy of uncertainty for dynam-
ically adaptive systems. In: Proceedings of SEAMS 2012, Zurich, Switzerland, pp.
99–108 (2012)

35. Reijsbergen, D.: Probabilistic modelling of station locations in bicycle-sharing sys-
tems. In: Milazzo, P., Varró, D., Wimmer, M. (eds.) STAF 2016. LNCS, vol. 9946,
pp. 83–97. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50230-4_7

36. Sartoli, S., Namin, A.S.: Modeling adaptive access control policies using answer
set programming. J. Inf. Secur. Appl. 44, 49–63 (2019)

37. Sharif, M., Alesheikh, A.A.: Context-aware movement analytics: implications, tax-
onomy, and design framework: context-aware movement analytics. Wiley Interdis-
cip. Rev. Data Min. Knowl. Discov. 8(1), e1233 (2018)

38. Somenzi, F., Touri, B., Trivedi, A.: Almost-sure reachability in stochastic multi-
mode system. arXiv:1610.05412 (2016)

39. Verma, D., et al.: Generative policy model for autonomic management. In: Pro-
ceedings of IEEE SmartWorld 2017, San Francisco, USA, pp. 1–6 (2017)

40. Vimercati, S.D.C.: Discretionary access control policies (DAC). In: van Tilborg,
H.C.A., Jajodia, S. (eds.) Encyclopedia of Cryptography and Security, pp. 356–
358. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-5906-5_817

41. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H., Bruel, J.M.: RELAX: incorpo-
rating uncertainty into the specification of self-adaptive systems. In: Proceedings
of RE 2009, Atlanta, USA, pp. 79–88 (2009)

42. Yang, Y., Zheng, X., Guo, W., Liu, X., Chang, V.: Privacy-preserving smart IoT-
based healthcare big data storage and self-adaptive access control system. Inf. Sci.
479, 567–592 (2019)

https://doi.org/10.1007/978-3-319-50230-4_7
http://arxiv.org/abs/1610.05412
https://doi.org/10.1007/978-1-4419-5906-5_817

Guaranteeing Type Consistency
in Collective Adaptive Systems

Jonas Schürmann, Tim Tegeler(B), and Bernhard Steffen

Chair for Programming Systems, TU Dortmund University, Dortmund, Germany
{jonas2.schuermann,tim.tegeler,bernhard.steffen}@tu-dortmund.de

Abstract. Collective adaptive systems whose entities are loosely cou-
pled by their exchange of complex data structures became a very com-
mon architecture for distributed web-based systems. As HTTP-based
APIs transfer data as plain text, this exchange is very error prone:
API changes and malicious data modifications may remain unnoticed.
GraphQL addresses this concern at the server side with strong typing
but leaves the clients untouched. In this paper we present an approach
to align the type schemas provided by GraphQL and type definitions at
the client side on three levels during the systems’ life cycles: At gener-
ation time by verifying queries against the GraphQL schema, at com-
pile time by leveraging TypeScript’s type system, and at run time by
using decoders to validate payloads. Key to our solution are a func-
tional, type-safe domain-specific language for the definition of GraphQL
queries and a corresponding generator implementation providing the
GraphQL queries and TypeScript artefacts. Together they ensure that
clients become aware of and are able to react to changes of the (evolving)
GraphQL schema, a precondition for maintaining the consistency of the
overall collective adaptive system. We will illustrate our approach along
a popular GitHub-based, collaborative development scenario.

Keywords: Domain-Specific Language · GraphQL · Type Safety ·
TypeScript · Web Service

1 Introduction

Modern information exchange on the internet increasingly relies upon decentral-
ized web services. The ubiquity of mobile devices and the continuing growth of
the Internet of Things (IoT) have contributed to the trend [8,17] of using web-
based Application Programming Interfaces (APIs). Almost every major platform
(e.g., GitHub1) either provides a separate web service to their users or design
their architecture completely by an API first strategy. Web services are treated
as first-class citizens and become the pivotal part of modern web-based sys-
tems. This trend is influenced by the era of agile software development and
DevOps [1,10], where the time to market has a major impact on the success
of a product and, automation, reliability and validation is key. Although the
1 https://docs.github.com.

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 311–328, 2020.
https://doi.org/10.1007/978-3-030-61470-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_19&domain=pdf
https://docs.github.com
https://doi.org/10.1007/978-3-030-61470-6_19

312 J. Schürmann et al.

GitHub
GraphQL API

WebClient

CI/CD
Server

IoT
Devices

WebClient
Clients

External
ServicesExternal

ServicesExternal
Services

Fig. 1. Example of a web-based collective adaptive system

adoption of data types can contribute to satisfying these requirements, a large
part of collective adaptive systems (CAS) on the web are built upon weakly
typed scripting languages (e.g., JavaScript). Historically, JavaScript is very pop-
ular for developing browser-based Graphical User Interfaces (GUI) [9], but the
introduction of the Node.js run time made it also available for server-side appli-
cations [24]. Different approaches exist to bring compile time type checking to the
JavaScript ecosystem. Languages like TypeScript2 [15] extend JavaScript with
static typing and libraries like Flow [9,15] perform static type checking. Even
with those approaches or strongly typed languages like Java for server-side appli-
cations, the communication on the web stays untyped. The widely used form of
web-based communication is based on the Hypertext Transfer Protocol (HTTP)
as the application protocol and the JavaScript Object Notation (JSON) as the
data interchange format. Malformed data, like JSON objects/arrays, may pro-
duce unpredictable behaviors [11,13] in the consuming application. In contrast to
JSON, where at least (de)serialization is natively supported by most languages,
queries in modern APIs (i.e., GraphQL) are completely formulated in plain text
and are often composed by string concatenation at run time. Developers won’t
receive any feedback about the correctness of the queries until running them
against a matching GraphQL server.

A prominent class of collective adaptive systems is characterized by inter-
action solely by exchanging data via a common data space in a client-server
fashion. In fact, this system structure dominates the design of modern dis-
tributed web-based systems, where the vulnerability typically lies in the com-
plex, deeply nested data structures that are collaboratively manipulated in a

2 https://www.typescriptlang.org.

https://www.typescriptlang.org

Guaranteeing Type Consistency in Collective Adaptive Systems 313

Fig. 2. Type consistency on three levels. c.f., (A) → Sect. 4, (B) → Subsect. 6.1, (C)
→ Subsect. 6.2

service-oriented [21] fashion by entities in an uncontrolled and unsecure envi-
ronment: new entities may be added at any time, others evolve, and the com-
munication via the internet is hard to control and open to various forms of
attacks. In particular, HTTP-based communication, where structured data is
simply encoded as text and then decoded at the receivers side gives a lot of
room for data structures to get out of sync, be it because of a (run time) update
of an API or malicious modifications.

In this paper we present an approach3 that brings together GraphQL queries
and GraphQL schemas to align the communication between the entities of the
above described data-centric collective systems by guaranteeing type consistency
at three levels: (c.f., Fig. 2).

3 https://gitlab.com/scce/typesafe-functional-graphql.

https://gitlab.com/scce/typesafe-functional-graphql

314 J. Schürmann et al.

– At generation time by a custom Domain-Specific Language (DSL) [14] for
GraphQL queries. The included generator utilizes the typed GraphQL schema
to validate query definitions and generate (plain text) GraphQL queries,
TypeScript interfaces and decoders.

– At compile time by compiling the generated TypeScript interfaces and
decoders to JavaScript. It utilizes the TypeScript compiler to perform static
type checking and to make sure generated interfaces and decoders match.

– At run time by using the generated GraphQL queries and the compiled
decoders. The prior validation against the GraphQL schema guarantees the
type-correctness of the requests. JSON objects/arrays from server responses
will be validated by the decoders to anonymous but valid (i.e., correctly typed)
JavaScript objects/arrays.

We will illustrate our approach along the example scenario shown in Fig. 1 which
incorporates the popular GitHub services. GitHub is a platform for collabora-
tive software development, including features like version control, issue tracking
and continuous practices. It is quite common for smaller software companies to
collaboratively use GitHub for the entire software development lifecycle (e.g., for
IoT-Devices), including continuous integration and deployment (CI/CD). Cen-
terpiece of the example is the GraphQL API of GitHub, which abstracts from the
internal, distributed structure of GitHub.4 We choose this example of a collec-
tive adaptive system, because GitHub is very popular5, a single point of failure
for dependent systems, and can itself be used as a platform to develop other
collective adaptive system.

In Sect. 2 we introduce the key technologies, the basic concept and an
overview of the single components. Section 3, 4, 5 and 6 illustrate the com-
ponents in detail. Related work is addressed in Sect. 7, before we conclude the
paper in Sect. 8.

2 Overview

GraphQL is a query and mutation language that allows clients to exchange
data with a web service [16,26]. It is an alternative to other forms of client-
server communication, like the popular approach of Representational State
Transfer (REST). Its key innovation compared to previous resource-centric
approaches [26] to this problem is the ability of the client to shape the data
that is requested; making GraphQL data-centric [26]. In most other systems,
as it is in RESTful web services, the form of the data returned from one end-
point is fixed (i.e., usually one endpoint only returns one entity or a flat list of
entities), leading to under- and over-fetching issues [26]. In consequence, clients
will have to run multiple parallel or sequential queries to assemble associated
data, each with a fixed constant overhead. GraphQL gives the client the free-
dom to choose which fields of an entity and which associated objects are to be

4 https://github.blog/2009-10-20-how-we-made-github-fast.
5 https://octoverse.github.com/.

https://github.blog/2009-10-20-how-we-made-github-fast
https://octoverse.github.com/

Guaranteeing Type Consistency in Collective Adaptive Systems 315

query repositoryListing($organization: String!, $length: Int!) {

organization(login: $organization) {

repositories(

first: $length,
orderBy: {field: PUSHED_AT, direction: DESC}

) {

nodes {

name

languages(

first: 100,

orderBy: {field: SIZE, direction: DESC}

) {

edges {

size

node {

name

}

}

}

}

}

}

}

Fig. 3. Example query against the GitHub GraphQL server

included in the response. This makes it possible to request complex data struc-
tures efficiently and minimize overall traffic, which is important especially in slow
mobile networks. As the name implies, GraphQL uses a graph model to repre-
sent the server-side database and employs a query DSL to select entity fields and
navigate between associated graph nodes. Figure 3 shows a query against the
GitHub GraphQL API that selects the repositories of an organization. The data
returned from the server (as shown in Fig. 4) is encoded in JSON and matches
the requested form.

In addition, a GraphQL server includes a self-describing schema of the data
store. It describes all interfaces that can be queried and the types of their prop-
erties. Figure 5 shows an excerpt from the schema of the GitHub GraphQL
API. On its own, it’s a good documentation of the web service and can be used
by the server to validate incoming queries. Unfortunately these type definitions
are unavailable during the development of web clients, where the queries are
formulated. Developers have to manually analyze and understand these type
definitions as a whole, before being able to transfer the knowledge to queries on
the client side. Especially in collective adaptive systems where requirements of
the participants and the specification of the communication frequently change,
this is an error-prone process. If changes in the server specification are not cor-
rectly transferred to the clients, miscommunication and system errors are the

316 J. Schürmann et al.

{

"organization": {

"repositories": {

"nodes": [

{

"name": "grammars-v4",

"languages": {

"edges": [

{"node": {"name": "ANTLR"}, "size": 3802132},

{"node": {"name": "Assembly"}, "size": 398661},

...

]

}

},

{

"name": "antlr4",

"languages": {

"edges": [

{"node": {"name": "Java"}, "size": 2948093},

{"node": {"name": "Python"}, "size": 1421237},

...

]

}

},

...

]

}

}

}

Fig. 4. JSON response to the GraphQL query

consequence. The GraphQL schema alone does not provide any validation of
client-server interactions.

To close this gap we present a language with accompanying typechecker and
generators. As Fig. 6 shows, this makes it possible to bring the type informa-
tion provided by the GraphQL schema into the type system of the client-side
programming language. First, we introduce a new DSL called Type-Safe Func-
tional GraphQL (TFG) that will be used to formulate queries against GraphQL
servers. This language is built on top of GraphQL to achieve compositional-
ity and type safety during development. The typechecker TFG/Typed validates
queries written in TFG by consolidating a GraphQL schema file and produces
an intermediate representation (IR) enriched with type information. From there,
two generators build the artifacts of the compilation process. The GraphQL gen-
erator TFG/GraphQL reduces TFG queries back to GraphQL so that they can
be sent to GraphQL servers. TFG/TypeScript generates TypeScript source code.
It includes interfaces for request and response data to enable static type check-
ing and decoders for server responses to assure run time type safety. This paper

Guaranteeing Type Consistency in Collective Adaptive Systems 317

type Query {

organization(

login: String!

): Organization

...

}

type Organization {

repositories(

first: Int,

orderBy: RepositoryOrder,

...

): RepositoryConnection!

...

}

type RepositoryConnection {

nodes: [Repository]

...

}

type Repository {

name: String!

languages(

first: Int,

orderBy: LanguageOrder,

...

): LanguageConnection

}

type LanguageConnection {

edges: [LanguageEdge]

...

}

type LanguageEdge {

size: Int!

node: Language!

}

type Language {

name: String!

...

}

Fig. 5. Relevant excerpts from the GitHub GraphQL schema

illustrates our approach with TypeScript as target language. The adaptation to
other suitable, typed programming languages like Elm, Reason and PureScript
is straightforward.

3 The TFG Language

The TFG language is, just like GraphQL, an external DSL to define queries
and mutations against a GraphQL server. It borrows much of the syntax from
GraphQL, but introduces a new concept for the construction of queries for nested
data structures. In GraphQL, all subqueries for nested objects are included
within a single nested query. The only way6 to split up queries and reuse parts
of it is given by a native feature called fragments. Figure 7 shows how the frag-
ment language is spliced into the repositoryListing query to reassemble the
previously introduced GraphQL query. In contrast, TFG queries describe selec-
tions of flat data objects that can be functionally composed by application using
TFG’s arrow operator <-. When a property is not of a basic type but references

6 Other approaches to reuse based on auxiliary technologies like templating at run
time, won’t be discussed in this paper. Due to their missing type safety and error-
proneness, we don’t consider them resilient solutions.

318 J. Schürmann et al.

Fig. 6. Workflow of TFG components; from source files to generated artifacts. c.f., (A)
→ Fig. 8, (B) → Fig. 5, (C) → Fig. 3, (D) → Fig. 11, (E) → Fig. 12

another collection in the graph model, a subquery is applied to determine fur-
ther selections on that collection. Figure 8 shows a translation of the previous
GraphQL query (c.f., Fig. 3) to TFG, using the arrow operator to compose four
queries.

With query composition, every subtree of a complex data object has a proper
readable name. This is valuable later in the TFG/TypeScript generator when
typed interfaces of the server responses are generated. If query definitions are
nested like it is the case in GraphQL, there would only be one big nested Type-
Script interface that describes the whole response. The interface would be so
specialized to the related response that it makes reuse impossible. But when flat
queries are composed, it also becomes possible to generate flat interfaces that
reference each other to build up nested types. And when responses are taken
apart in the frontend application, there is a well-named typed interface read-
ily available to describe every possible subtree. This form of composition works

Guaranteeing Type Consistency in Collective Adaptive Systems 319

query repositoryListing {

organization {

repositories {

nodes {

name

...languages

}

}

}

}

fragment languages on Repository {

languages {

edges {

size

node {

name

}

}

}

}

Fig. 7. Fragments in GraphQL

well in the TFG language and in the type system of client applications. And
with it come the usual benefits of composition like reuse, maintainability, and
the elimination of redundancy; when writing queries, but also in the generated
client source code.

The example query against the GitHub API (c.f., Fig. 3) demonstrates that
responses can become quite nested as a result of the graph model design. The
response object in this case is seven layers deep. A good part of the nesting is
unnecessary for this particular query. A data model that represents a language
could be modelled by a flat object with just two properties, name and size, but in
the query response it is an object that is nested three layers deep. Because TFG
only allows flat queries, this would require seven separate queries that are to be
composed. And the data object would still be needlessly complex. To remedy
this situation, TFG introduces deep queries. When selecting properties, a query
is allowed to reach down into the graph model and pull up properties using the
dot operator. Using the dot operator, the repositoryForListing query can
eliminate the extra layer of the edge property and in the languageWithSize
query can eliminate the extra layer of the node property. This results in a perfect
representation of languages as a flat data object that just holds the name and the
size. In addition, an alias can be specified before a colon to rename the property
in the response data object. Despite the fact that the response returned by the
GraphQL server is seven layers deep, only four separate TFG queries are needed
and the response data object for the frontend application is greatly simplified.

GraphQL queries can declare input variables and whenever a query is sent
to the server, an object of input values is sent along to parameterize the
query. Within the GraphQL query these variables can be applied to the prop-
erties that are selected, e.g. to provide the ID of the entity that should be
fetched. TFG additionally allows variables to be applied to subqueries with
the arrow operator to pass along values during composition. This can be seen
in the repositoryListing query, which applies the $length variable to the
organizationForListing query.

320 J. Schürmann et al.

query repositoryListing($organization: String!, $length: Int!) {

organization(login: $organization) <-

organizationForListing(length: $length)
}

query organizationForListing($length: Int!) {

repositories(

first: $length, orderBy: {field: PUSHED_AT, direction: DESC}

).nodes <- repositoryForListing

}

query repositoryForListing {

name

languages(first: 100, orderBy: {field: SIZE, direction: DESC}).edges <-

languageWithSize

}

query languageWithSize {

size

node.{

name

}

}

Fig. 8. TFG query for a repository listing (c.f., generated interfaces in Fig. 11, gener-
ated decoders in Fig. 12)

We used ANTLR7 for the implementation of the TFG language. The corre-
sponding grammar definition8 alone is enough for ANTLR to provide a parser
that can turn TFG text files into complete parse trees [23].

4 Type-Checking TFG

After a TFG file was parsed TFG/Typed type-checks the abstract syntax tree
(AST) against a GraphQL schema. This validates the TFG query, making sure
that the formulated queries are correctly typed and match the schema of the
GraphQL server, already at generation time (c.f., Fig. 2). If the type-checking
fails, TFG/Typed provides a list of all reachable type errors. Possible type errors
include references to undefined properties, argument applications of the wrong
type or the application of subqueries that target the wrong interface.

Besides validation, the type-checker also produces an intermediate represen-
tation that enriches the AST with type information from the GraphQL schema.
It records the type of every property selected by a query as defined by the
7 https://www.antlr.org/.
8 https://gitlab.com/scce/typesafe-functional-graphql/-/blob/d63df0ed1146eabd664

32c4115a86534c6b03772/src/main/antlr/GraphQLSelection.g4.

https://www.antlr.org/
https://gitlab.com/scce/typesafe-functional-graphql/-/blob/d63df0ed1146eabd66432c4115a86534c6b03772/src/main/antlr/GraphQLSelection.g4
https://gitlab.com/scce/typesafe-functional-graphql/-/blob/d63df0ed1146eabd66432c4115a86534c6b03772/src/main/antlr/GraphQLSelection.g4

Guaranteeing Type Consistency in Collective Adaptive Systems 321

∀i ∈ [n]. target : σ, {vj : ρj}j∈[m] � si : selection xi τi on σ

� query q (vj : ρj) j∈[m] on σ { si }i∈[n] : query (ρj)j∈[m] → { xi : τi }i∈[n] on σ
(QI)

Γ, target : σ � a : anchor x T on σ � q : query (ρi)i∈[n] → τ on T
∀i ∈ [n]. Γ, target : σ � ei : ρi

Γ, target : σ � a ← q(ei)i∈[n] : selection x τ on σ
(QE)

Γ, target : σ � a : anchor x τ on σ basic type(τ)
Γ, target : σ � a : selection x τ on σ

(BE)

� Schema[σ] : { p : (ρi)i∈[n] → τ, . . . }
� p : property (ρi)i∈[n] → τ on σ

(PI)

� p : property (ρi)i∈[n] → τ on σ ∀i ∈ [n]. Γ � ei : ρi

Γ � p(ei)i∈[n] : anchor p τ on σ
(PE)

Fig. 9. Excerpt from the type inference rules of TFG (The full set of infer-
ence rules is available at https://gitlab.com/scce/typesafe-functional-graphql/-/raw/
d63df0ed1146eabd66432c4115a86534c6b03772/documentation/type-system.pdf)

GraphQL schema. It also includes if a property returns a list of values and
whether values returned from a property can be null. The subsequent TypeScript
generator relies on this information to generate typed interfaces and decoders,
providing type safety and validation at run time.

The type system of TFG follows the type system that is used for GraphQL
schema files, but extends it with typing rules for query applications and deep
selections. Every query is an abstraction that defines variables which are then,
together with literal values, applied to properties and subqueries. The GraphQL
specification only describes the syntax of the language formally and leaves the
type system to informal specification. In contrast, the type system of TFG is
formally specified (c.f., Fig. 9).

– Query Introduction (QI) takes a query definition and brings the target collec-
tion σ and all query arguments into the context. It requires all listed selections
to type-check under these conditions.

– Query Elimination (QE) applies a subquery to an anchor in the body of a
query to determine the selection of complex associated objects. The targets
of the anchor and the subquery have to match and all arguments passed to
the subquery must be of the correct type.

– Basic Type Elimination (BE) is used in the case that an anchor points to a
field of a basic type. In that case no further query specifications are needed.

– Property Introduction (PI) provides property definitions by consulting the
GraphQL schema for the required signature.

– Property Elimination (PE) applies the required values to a property to pro-
vide an anchor that points to a field in the current interface. The argument
types must match the signature acquired from the GraphQL schema.

https://gitlab.com/scce/typesafe-functional-graphql/-/raw/d63df0ed1146eabd66432c4115a86534c6b03772/documentation/type-system.pdf
https://gitlab.com/scce/typesafe-functional-graphql/-/raw/d63df0ed1146eabd66432c4115a86534c6b03772/documentation/type-system.pdf

322 J. Schürmann et al.

TFG

query rootQuery on Query {

property <- subquery(aj)j∈[m]

}

query subquery(vj)j∈[m] on T {

subproperty(ei)i∈[n]

}

→
�→

GraphQL

query rootQuery {

property {

subproperty(

ei[vj := aj]j∈[m]

)i∈[n]

}

}

Fig. 10. Composition synthesis by insertion and syntactic substitution

5 GraphQL Generator

The first generator, TFG/GraphQL, reduces TFG queries back to plain
GraphQL. This step is always required, no matter which client programming
language is targeted. GraphQL queries can be treated as simple strings and are
meant to be sent in the body of a HTTP request to a GraphQL server. Because
the TFG language is quite similar to GraphQL, this transformation is relatively
easy.

The hardest part is the elimination of composition by subquery application,
a feature that is not supported in GraphQL. But GraphQL supports nested
queries, so query application will be realized by nesting all the referenced sub-
queries into one big GraphQL query. Figure 10 shows the process. On the left are
two TFG queries, rootQuery and subquery and the second query is applied to a
property of the first one, a structure that cannot directly be expressed GraphQL
(c.f. Sect. 3). Rather, the selections of the second query need to be inserted at
the point where they were referenced, melting the two queries together into one
nested GraphQL query. In Fig. 10, subquery defined the variables (vj)j∈[m] that
have been instatiated with the values (aj)j∈[m] s in the rootQuery. These
variables can’t exist anymore in GraphQL, so every variable vj of subquery has
to be syntactically substituted by the assigned value aj wherever it was used
in an expression ei. If the whole query is several layers deep, this step has to
be repeated recursively. This is how TFG query definitions are reduced back to
GraphQL, ready to be sent to a GraphQL server.

6 TypeScript Generator

The second generator, TFG/TypeScript, creates a client application library from
the typed intermediate representation. The generated TypeScript code provides
static type definitions for request and response data of TFG queries and decoders
that validate responses received from the server. This generator implementation
takes the example of TypeScript, but it can be simply replaced by any other
code generator targeting a different statically typed language.

Guaranteeing Type Consistency in Collective Adaptive Systems 323

6.1 Static Type-Checking in the Generated Client

interface RepositoryListing {

organization: OrganizationForListing | null

}

interface OrganizationForListing {

repositories: [RepositoryForListing | null] | null

}

interface RepositoryForListing {

name: string

languages: [LanguageWithSize | null] | null

}

interface LanguageWithSize {

size: number

name: string | null

}

Fig. 11. Generated TypeScript interfaces (c.f., TFG source code in Fig. 8)

When a GraphQL query is performed the client includes an object of input
arguments and the server responds with a data object that matches the query.
TFG/TypeScript generates TypeScript interfaces for both, the input argument
objects and the response data objects. All the type information comes from the
typed intermediate representation of the AST that has been produced by the
type-checker (c.f., Fig. 6). This way all interactions with the GraphQL server
are statically checked for type correctness.

Instead of generating deeply nested interfaces for the response data objects,
TFG/TypeScript takes advantage of the compositionality of TFG. It generates
one flat interface for every TFG query definition, as described in Sect. 3. And
when queries are composed by query application, the interfaces are composed
by referencing the respective other query to reflect the whole query response.
Figure 11 illustrates this: The interface RepositoryListing describes the whole
server response for the query and it references other interfaces with each layer
of the data structure. This helps when individual parts of a large response are
passed around in the client application. Having a properly named interface for
each layer (following the principle of readable code [2]) makes it easy to specify
types for these interactions and aids possible debugging of the code as a side
effect.

324 J. Schürmann et al.

function repositoryForListingDecoder(): Decoder<RepositoryForListing> {

return object({

languages: field(

"languages",

field(

"edges",

nullable(array(nullable(languageWithSizeDecoder()))),

),

),

})

}

function languageWithSizeDecoder(): Decoder<LanguageWithSize> {

return object({

size: number(),

name: field("node", field("name", nullable(string())),

})

}

Fig. 12. Two type-safe decoders for server responses (c.f., TFG source code in Fig. 8)

6.2 Assuring Type Safety at Run Time

The previous section assumed correct response data from the server to assure
type safety. But there are several reasons why the server might answer with
malformed data. E.g., the client and server might have become out of sync
or the server uses a different GraphQL schema from the one that the client
assumes. The server might also just behave faulty because of a software error
or an attacker, tries to foist altered data to the client by a man in the middle
attack [7]. Without any further guards, these broken responses would possibly
make it deep into the application and cause errors at unexpected places. Thus
server responses should be validated as early as possible at the edge of the API
(i.e., fail-fast [4]) so that the static types always match the actual data.

This is why the TFG generator additionally creates a decoder for each Type-
Script interface. The decoder accepts the deserialized, but untyped JSON object
received from the server and returns a result object. The result object is a sum
that either contains a correctly typed object or an error message describing
what is wrong with the server response. When these decoders are used, errors
are handled early and properly.

Figure 12 shows the generated decoders matching the previous interfaces.
The decoders compose just like the interfaces, referencing each other by name
for nested objects. The decoders are interpreted by the json-bouncer TypeScript
library9. That is where the primitives like object, array and string come
from. json-bouncer brings another guarantee to improve program correctness:

9 https://gitlab.com/MazeChaZer/json-bouncer.

https://gitlab.com/MazeChaZer/json-bouncer

Guaranteeing Type Consistency in Collective Adaptive Systems 325

By leveraging the type system of TypeScript during compile time (c.f., Fig. 2), it
makes sure that only valid decoders can be constructed and that every decoder
really provides a result that matches the annotated Decoder-type. This is an
additional layer of safety to assure that the generation of interfaces and decoders
is in sync.

7 Related Work

Most CAS languages like SCEL [12], DEECo [5] and TCOEL [6] focus either
on the general architecture of collective adaptive systems or on the collective
behaviour of ensembles based on the autonomous behaviour of their entities.
In contrast, TFG assumes a fixed client server architecture and focusses on the
consistent and efficient exchange of complex data between the clients and the
server. Type checking ensures that the data models of all involved entities remain
in sync and deep querying the efficiency of the data transfer even in response of
complex nested queries.

Although GraphQL is a relatively new technology (released as open source
in 2015) there are several mature projects that are related to the approach
presented in this paper. The Apollo CLI 10 is a toolset for development and pro-
duction workflows and part of the popular Apollo Data Graph Platform. Besides
Apollo-specific tasks, it provides the ability to generate client-side static types
derived from a GraphQL schema. The GraphQL Code Generator11 is a plugin-
driven generator for front- and backend code. It is built on top of pre-defined
and user-defined templates for different target languages. The TypeGraphQL12

project leverages decorators (e.g., in combination of DTO classes) as an internal
DSL to generate native GraphQL files, focused on TypeScript. It uses TypeScript
as the carrier language [14] of the DSL and the target language.

To our knowledge, TFG is unique in not only providing compile time type
safety (c.f., Fig. 2) by generating static types (c.f., Subsect. 6.1), but also run time
type safety by generating decoders (c.f., Subsect. 6.2). In addition, our approach
has the following unique structural advantages that aim at simplicity [19,20,22]:

1. Instead of just reutilizing GraphQL schema and operations files, TFG con-
ceptual introduces a higher level external DSL (c.f. Sect. 3). This enables us
to enhance GraphQL by introducing new concepts (e.g., query composition)
and syntactic sugar (e.g., deep selections), resulting in a more convenient
programming experience.

2. An intermediate representation enables the substitution of whole generators
(instead of just templates) for different target languages (c.f. Sect. 6) which
simplifies the adoption of adopt new target languages.

3. Convention over configuration further reduces the effort for the setup. Native
Type- or JavaScript packages that are delivered by the Node Package Man-
ager (NPM), often depend on multiple libraries due to dependency chains [18].

10 https://github.com/apollographql/apollo-tooling.
11 https://github.com/dotansimha/graphql-code-generator.
12 https://github.com/MichalLytek/type-graphql.

https://github.com/apollographql/apollo-tooling
https://github.com/dotansimha/graphql-code-generator
https://github.com/MichalLytek/type-graphql

326 J. Schürmann et al.

They require the dedicated installation of those dependencies before execu-
tion. In contrast, TFG is distributed with all dependencies in a single binary,
which makes it easy to install (and uninstall) in your system’s PATH.

4. Despite the fact that generated code can be seen as a disposable artefact,
TFG focuses on generating readable code (c.f. Fig. 11). It follows aspects like
“simplify naming [. . .] and formatting” as well as “reduce complexity and
confusion” [2].

8 Conclusion

We have presented an approach to synthesize type-safe communication interfaces
for loosely coupled collective adaptive systems, which are solely synchronised
by exchanging complex untyped data structures. This form of communication
between collaborative entities is common for distributed systems on the web. One
popular technology for realizing corresponding APIs is GraphQL. Centerpiece of
our approach is TFG, a type-safe, functional DSL for the definition of GraphQL
queries. The simplicity of the DSL eases the tailored access to deeply nested
content, and supports reuse in a compositional fashion. TFG overcomes certain
shortcomings of GraphQL, enabling us to leverage GraphQL schema definitions
to support the type-safe development of client side applications and contributing
to the robustness of entire distributed systems. It helps, e.g., to catch version
issues or corrupted data transfer that may be due to erroneous components or
even third party attacks.

Building on the GraphQL schema definition, TFG offers three layers of type
safety. First, programs written in the TFG language are statically type-checked
before they get instantiated by the generators. Second, the generated client
library is using a type-safe language and exposes a type-safe public interface
to other parts of the application. Third, the generated client library decodes all
data the application receives from the server, ensuring type safety at run time.

These properties are particularly valuable for the development of collective
adaptive systems, as they help to maintain the consistency of the common data
space along the system’s life cycles: TFG allows one to automate the propagation
of specification changes across participants and type-checks the participant’s
implementation against the specification of the data exchange.

In combination with modern collaborative software development and sys-
tem operating (like the popular DevOps practices [1]), TFG can have an even
greater impact on robustness, reliability and security. One of the central aspects
of DevOps is known as shift left, where issues (e.g., incompatibilities and vulner-
abilities) are identified earlier [3] in the development life-cycle. The generator-
based technology of TFG supports this aspect by introducing another level of
validation preceding traditional build and test processes. In the future, we want
to make TFG compatible with Continuous Practices [25] to execute code gener-
ation as a stage in automated continuous deployment pipelines. The meta-level
technology of the TFG language allow us to generate entire custom-tailored test-
suites which validate the correctness of opposing GraphQL servers. They cannot

Guaranteeing Type Consistency in Collective Adaptive Systems 327

only be manually used during development, but also automatically in the entire
development life-cycle by integrating them in continuous integration pipelines.
Those artifacts would speed up the entire development life-cycle of collective
adaptive systems and decrease the failure rate.

References

1. Bass, L., Weber, I.M., Zhu, L.: DevOps: A Software Architect’s Perspective. The
SEI Series in Software Engineering. Addison-Wesley, Boston (2015)

2. Boswell, D., Foucher, T.: The Art of Readable Code. O’Reilly Series. O’Reilly
Media Incorporated, Sebastopol (2011)

3. Brown, A., Forsgren, N., Humble, J., Kersten, N., Kim, G.: 2016 state of DevOps
report. Technical report (2016). https://services.google.com/fh/files/misc/state-
of-devops-2016.pdf

4. Bugayenko, Y.: Elegant Objects. No. v. 2 in Elegant Objects, CreateSpace Inde-
pendent Publishing Platform, Scotts Valley (2017)

5. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.:
DEECO: an ensemble-based component system. In: Proceedings of the 16th Inter-
national ACM Sigsoft Symposium on Component-Based Software Engineering,
CBSE 2013, pp. 81–90. Association for Computing Machinery, New York (2013)

6. Bures, T., et al.: A language and framework for dynamic component ensembles in
smart systems. Int. J. Softw. Tools Technol. Transf. 22(4), 497–509 (2020). https://
doi.org/10.1007/s10009-020-00558-z

7. Callegati, F., Cerroni, W., Ramilli, M.: Man-in-the-middle attack to the HTTPS
protocol. IEEE Secur. Priv. 7(1), 78–81 (2009)

8. Campinhos, J., Seco, J.C., Cunha, J.: Type-safe evolution of web services. In:
2017 IEEE/ACM 2nd International Workshop on Variability and Complexity in
Software Design (VACE), pp. 20–26 (2017)

9. Chaudhuri, A., Vekris, P., Goldman, S., Roch, M., Levi, G.: Fast and precise type
checking for JavaScript. Proc. ACM Program. Lang. 1(OOPSLA) (2017)

10. Cohn, M.: Succeeding with Agile: Software Development Using Scrum, 1st edn.
Addison-Wesley Professional, Boston (2009)

11. Costantini, G., Ferrara, P., Cortesi, A.: A suite of abstract domains for static
analysis of string values. Softw. Pract. Exper. 45(2), 245–287 (2015)

12. De Nicola, R., et al.: The SCEL language: design, implementation, verification.
In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for
Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-16310-9 1

13. Dhar, A., Purandare, R., Dhawan, M., Rangaswamy, S.: CLOTHO: saving pro-
grams from malformed strings and incorrect string-handling. In: Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, pp. 555–566. Association for Computing Machinery (2015)

14. Fowler, M.: Domain-Specific Languages. Addison-Wesley Signature Series (Fowler).
Pearson Education, Boston (2010)

15. Gao, Z., Bird, C., Barr, E.T.: To type or not to type: quantifying detectable bugs
in JavaScript. In: 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), pp. 758–769 (2017)

16. Hartig, O., Perez, J.: Semantics and complexity of GraphQL. In: Proceedings of
the 2018 World Wide Web Conference, WWW 2018, International World Wide
Web Conferences Steering Committee, pp. 1155–1164 (2018)

https://services.google.com/fh/files/misc/state-of-devops-2016.pdf
https://services.google.com/fh/files/misc/state-of-devops-2016.pdf
https://doi.org/10.1007/s10009-020-00558-z
https://doi.org/10.1007/s10009-020-00558-z
https://doi.org/10.1007/978-3-319-16310-9_1

328 J. Schürmann et al.

17. Kizza, J.M.: Internet of Things (IoT): growth, challenges, and security. Guide to
Computer Network Security. TCS, pp. 517–531. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-38141-7 24

18. Kula, R.G., Ouni, A., German, D.M., Inoue, K.: On the impact of micro-packages:
an empirical study of the NPM JavaScript ecosystem. CoRR abs/1709.04638 (2017)

19. Margaria, T., Hinchey, M.: Simplicity in it: the power of less. Computer 46(11),
23–25 (2013)

20. Margaria, T., Steffen, B.: Simplicity as a driver for agile innovation. Computer
43(6), 90–92 (2010)

21. Margaria, T., Steffen, B., Reitenspieß, M.: Service-oriented design: the roots. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
450–464. Springer, Heidelberg (2005). https://doi.org/10.1007/11596141 34

22. Merten, M., Steffen, B.: Simplicity driven application development. J. Integr. Des.
Process Sci. 17, 9–23 (2013)

23. Parr, T.: The definitive ANTLR 4 reference. In: Pragmatic Bookshelf (2013)
24. Schiavio, F., Sun, H., Bonetta, D., Rosa, A., Binder, W.: NodeMOP: runtime

verification for Node.js applications. In: Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, SAC 2019, pp. 1794–1801. Association for
Computing Machinery (2019)

25. Stahl, D., Martensson, T., Bosch, J.: Continuous practices and DevOps: beyond
the buzz, what does it all mean? In: 2017 43rd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pp. 440–448 (2017)

26. Taskula, T.: Advanced data fetching with GraphQL: case bakery service. Master’s
thesis, Aalto University, 11 March 2019

https://doi.org/10.1007/978-3-030-38141-7_24
https://doi.org/10.1007/978-3-030-38141-7_24
https://doi.org/10.1007/11596141_34

Epistemic Logic in Ensemble Specification

Jan Sürmeli(B)

FZI Forschungszentrum Informatik, Karlsruhe, Germany
suermeli@fzi.de

Abstract. Different logics are used to specify the structure, life cycle
and interaction of dynamically forming ensembles. Specified aspects
include the construction and finalization of an ensemble, joining and leav-
ing of collaborators, acceptable and forbidden behaviors of the ensem-
ble, local and global goals and boundaries, and the permission to access
resources. As ensembles are dynamically formed from heterogeneous
agents, it is reasonable to assume an evolving information asymmetry
between its collaborators. Epistemic logic explicitly considers the con-
cepts of knowledge, as held and developed by the different agents in a
scope. In this paper, we explore the idea of applying epistemic logic in
the specification of different aspects of an ensemble.

Keywords: Epistemic logic · Formal methods · Distributed systems

1 Introduction

An ensemble [14] is a distributed system – a dynamically formed collaboration
of heterogeneous agents that interact with one another to reach a goal. They
operate in challenging environments, interacting with humans or other software
systems, adapting to new challenges as they arise, without interruption of system
functionality (cf. [13], §1.1). In order to ensure its functionality at runtime, the
principles of software engineering encourage to specify and model a system before
its deployment, and ensembles are no exception to this rule. While an ensem-
ble can be specified in different ways, a few commonalities persist between the
approaches. Central aspects comprise the ensemble’s membership relations, that
is, characterizations of the possible collaborators of an ensemble, and its behav-
ior, that is, the internal actions, its interaction between the collaborators and
its reaction to the environment. Those aspects can be specified locally based on
properties of each collaborating agent, or globally by requiring a certain interplay
of the collaborators. Existing approaches focus on the interfaces and capabilities
of the agents, and their exposed behavior, such as the SCEL-Language [5], or
logical representations [9].

In this paper, we focus on the knowledge of agents and the inherent informa-
tion asymmetry between them. While an agent can presumably observe its full
internal state, it can only make assumptions about other agents’ internal state
or the environment, based on interactions and observations. Hence, there is a
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 329–343, 2020.
https://doi.org/10.1007/978-3-030-61470-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_20&domain=pdf
http://orcid.org/0000-0001-6617-3674
https://doi.org/10.1007/978-3-030-61470-6_20

330 J. Sürmeli

wanted or unwanted information asymmetry between agents. In epistemic (and
doxastic) logic, this is expressed by concepts of knowledge (and belief) held by
an agent or groups of agents. A few examples:

– An agent knows that a certain internal variable has a specific value.
– An agent knows that under the assumption of adherence to a certain protocol,

all ensemble members will eventually gain knowledge of this value.
– An agent believes that another agent knows about the belief of a third agent.
– A group of agents believes that at least one of their members has knowledge

over some proposition.
– A certain proposition is (or becomes) common knowledge inside a group of

agents, that is, every agent knows it, knows that all of the agents in the group
know it, knows that they all know that, etc.

As the agents and their environment evolve, new observations are made, and
knowledge may become outdated or updated, and beliefs may be revised.

We note that while the concepts of knowledge and belief – particularly the
latter – are originally associated with human agents, the aforementioned infor-
mation asymmetry also applies to technical components. For instance, it is not
feasible for a technical system to have access to the internal states of all other
systems in its environment, and the issues of observing the actions or transitions
of other systems is a well-known problem in the area of distributed systems. Sim-
ilarly, while executing an image recognition algorithm on camera recordings may
yield a single result, it is usually associated with non-total confidence. As such,
the concepts of knowledge and belief can be extended to technical components.

Our approach is to apply the core concepts of epistemic knowledge to ensem-
ble specifications. Our goal is not to invent a new specification paradigm or
language, but to find aspects of epistemic logic that could enrich existing meth-
ods. In the following, we briefly present a few promising cases for the application
of epistemic logic:

Requiring initial knowledge. It could be that an ensemble only accepts such
agents that have a certain initial knowledge. Depending on the actual gate-
keeping mechanism, this could mean that the agent needs to convince some
group of agents of their knowledge, that is, makes the group revise their belief
regarding the knowledge of the candidate.

Dissemination. An ensemble could wish that certain propositions become com-
mon knowledge or belief between its collaborators. This is particularly inter-
esting if new agents can join the ensemble after its initial foundation.

Preservation. Common knowledge is not always necessary or desirable. Assume
that a collaborator α1 of an ensemble has certain knowledge, important for
the ensemble. When α1 leaves the ensemble, it could be that the knowledge
leaves with them – depending on whether α1 shared the knowledge with
other collaborators. If so, it might be crucial for the other collaborators to
notice this. Example: Assume that α1 has acted as a gatekeeper to a safe
data storage, knowing how to access it. Whenever other collaborators require
access to the data storage, they post a request to α1, and α1 fulfills the

Epistemic Logic in Ensemble Specification 331

request but never shares the knowledge on how to access the data storage. If
α1 leaves, the remainder of the ensemble loses access to the data storage.

Knowledge and belief as a trigger. Once a collaborator α1 gains knowledge
about a certain fact, or revises their belief towards it, α1 might be triggered to
act upon it: perform an internal action, or interact with another collaborator
or the environment. Knowledge or belief revision can also lead to structural
changes in the ensembles: α1 could leave the ensemble as a consequence.
Similarly, knowledge or belief can lead to some collaborators forcing others
out of the ensemble, e.g. if the majority of an ensemble believes that a certain
set of collaborators shows harmful behavior.

As classic propositional logic, epistemic formulas are built from atomic proposi-
tions (which can be valuated true or false), and Boolean operators. To capture
the aspects of agents and their knowledge, epistemic logic comprises further
operators. The goal of this paper is to present ideas how epistemic logic can be
applied ensemble specification. Instead of creating a new specification method,
first concepts are developed aiming to be applicable in a minimally invasive man-
ner. To this end, after a short primer on our main concepts and epistemic logic
(Sect. 2), we present a collection of atomic propositions and related epistemic
axioms tailored for use in ensemble specifications in Sect. 3. Then, we discuss
the topic of ensembles with changing sets of collaborators in Sect. 4 before con-
cluding in Sect. 5.

2 Preliminaries

2.1 Ensembles, Worlds, Information Asymmetry

In this section, we informally introduce the basic assumptions for this paper.

Agents. Agents are entities that interact with one another. They have their own
views of the world, goals and requirements. They can collaborate in an ensem-
ble. Examples for agents are persons, sensors, vehicles, software systems. In
this paper, agents are treated as atomic entities.

Ensembles. An ensemble encompasses a dynamic set of collaborating agents.
Here, dynamic means two things: First, the set of agents is not fixed before
the ensemble is created, and second, agents may join or leave over the lifecycle
of an ensemble.

Worlds. A world is a global state that effectively valuates every proposition
with either true or false. A world itself is free of contradictions. In general,
every agent has only a limited understanding of a given world. That is, given
one agent α and a world w, there generally exists another world w′, so that
α cannot distinguish between w and w′.

Knowledge. Given a proposition φ, its truth value is established by a given
world. An agent knows the truth value of φ in a given world w, if and only if,
the truth value of φ in w is the same in all worlds w′ that α cannot distinguish
from w.

332 J. Sürmeli

Information Asymmetry. This assumption means that, given two different
agents α, α′ and a world w, there exists at least one proposition φ such that
α knows the truth value of φ in w, but α′ does not.

Confluent Knowledge. We note that, for the scope of this paper, agents cannot
“err”. If α knows φ to be true in a world w, then φ is true in w. Every other
agent then either also knows that φ is true in w, or simply has no knowledge
of the truth value of φ in w. That is, if two agents know the truth value of φ
in a world, then they have the same truth value in mind.

2.2 A Short Primer to Epistemic Logics

We recall the notions of epistemic logic most relevant to this paper. For a more
sophisticated introduction and definition of syntax and semantics, we kindly
point the reader to literature, e.g. [4,6]. We provide more detailed formal defi-
nitions in Sect. 6.

The basis for epistemic logic is propositional logic over a universe P of atomic
propositions, and a finite universe A of agents. In addition to negation (¬φ),
conjunction (φ ∧ ψ) and disjunction (φ ∨ ψ), the language L of epistemic logic
adds a knowledge operator Kα for each agent α, as well as a group knowledge
operator KA and a common knowledge operator CKA for each set A of agents:

L ::= p | L ∨ L | ¬L | Kα L | KA L | CKA L (p ∈ P, α ∈ A, A ⊆ A)

The semantics of L is defined based on Kripke Structures (e.g. [10], cf. 6.1):
Each state is a world w, providing a valuation of all atomic propositions. The
transitions are labeled with agents; an α-labeled transition from w to w′ means
that α cannot distinguish between w and w′. Every formula φ ∈ L is then
evaluated in a pair (W, w) of a Kripke structure W and a world w of W. The
propositional operators follow the classic semantics. A formula Kα φ holds in a
world w iff φ holds in all worlds indistinguishable from w for agent α. For a
more detailed description, we point the reader to Sect. 6.2. We note that the
knowledge operator can be arbitrarily nested, e.g. Kα Kα′ φ means that α knows
that α′ knows φ. The concept that α knows the truth value of φ can be written
as Kα φ ∨ Kα ¬φ, abbreviated by K?α φ to increase readability.

Group Knowledge and Common Knowledge. Let A ⊆ A be a set of agents. The
group knowledge operator KA φ abbreviates

∧
α∈A Kα φ. Group knowledge of a

fact φ does not imply that every agent in the group is aware that φ is known in
the group. This motivates the introduction of the common knowledge operator
CKA φ: Intuitively, a fact φ is common knowledge to A iff each agent α ∈ A
knows φ, and each of the agent knows that each agent knows, and so on. Hence,
CKA φ abbreviates KA φ∧KA KA φ∧ Due to the finite length of formulas, the
common knowledge operator cannot be characterized by the other operators.

Relationship with Belief Logics. While an agent not necessarily knows about
every fact, they cannot “falsely know” something: We always have Kα φ ⇒ φ.

Epistemic Logic in Ensemble Specification 333

This is where belief logic comes into play, which introduce an unary operator
Bα, where Bα φ means that α ∈ A believes φ to be a fact, and φ could be false.
Combining the two kinds of logics, while tempting, bears problems of its own,
depending on the underlying axiomizations, and we leave the treatment of belief
logic for future work.

Knowledge Update. Assuming an evolving system described by epistemic logic,
it is feasible that the knowledge of an agent, or the truth value of an atomic
proposition change, through the occurrence of events. Different mechanisms exist
to capture this, such as public or secret announcements.

3 Ensemble-Specific Atomic Propositions and Axioms

Using epistemic logic in ensemble specifications means to instantiate the general
framework of epistemic logic for the scenario to be specified. Looking at the
definition of L, this ensues the definition of a set of atomic propositions as
building blocks of formulae. However, atomic propositions alone do not carry
any semantics. For instance, one could require that two formulas φ and ψ should
not be true at the same time. Generally, there are two possible approaches:

1. One assumes that all worlds (as described by the Kripke structure) need
to adhere to the proposition. Then, every agent implicitly knows about the
proposition – missing knowledge always requires two indistinguishable worlds
with contradicting valuations.

2. One assumes that the Kripke structure also contains worlds that do not adhere
to the proposition, but add the proposition as an axiom to the specification.
Then, some agents might lack the knowledge about the proposition.

In this paper, we specify such propositions by axioms to describe the seman-
tics of newly introduced atomic propositions, and the relationships between one
another. Thereby, our goal is to propose a set of atomic propositions and axioms
that are so general that they are applicable in many ensemble specifications.
Before presenting such atomic propositions and axioms, we briefly discuss our
approach.

The examples presented here follow the pattern to encode n-ary relations
over fixed finite domains as atomic propositions. Thereby, fixed means that even
if the relation may change over the lifecycle of an ensemble, the domains stay
constant. Let R be a symbol and S1, . . . , Sn be finite sets of symbols. Then,
we can introduce atomic propositions R(s1, . . . , sn) for all (s1, . . . , sn) ∈ S1 ×
· · · × Sn. Every world w then interprets the symbol R as the relation Rw ⊆
S1 × · · · × Sn, where (s1, . . . , sn) ∈ Rw iff w valuates R(s1, . . . , sn) to true. We
note that this does not add to the expressivity of L: From the viewpoint of
L, an atomic proposition R(s1, . . . , sn) is no different from any other atomic
proposition, that is, the structure of the proposition is disregarded. Similarly,
this way of encoding relations does not encompass any further semantics of
the relation. For instance, if there are two relations that should be mutually

334 J. Sürmeli

exclusive, then the above encoding does not prevent a world from violating
this condition by valuating the atomic propositions accordingly. This can be
approached by adding further axioms to the specification. For instance, if two
unary relations R and R′ over the same set S should be mutually exclusive in
every world, one could add an axiom of the form:

X1
∧

s∈S ¬(R(s) ∧ R′(s)).

We stress that as we assume relations over finite domains, we can encode uni-
versal and existential quantification over the domains by using

∧
s∈S or

∨
s∈S ,

respectively.
We note that an axiom φ does not directly imply agents knowing about it,

but it is possible to introduce another axiom Kα φ for some or every agent α (or
even add common knowledge, if desired). For example, we can add the following
axiom for an agent α:

X2 Kα

∧
s∈S ¬(R(s) ∧ R′(s)).

We draft how axioms can help reasoning about the specification. Assume that
the question is whether α knows whether some s ∈ S is in the unary relation
R′ ⊆ S if α knows that s is in the unary relation R. Put differently: Can we
(dis-)prove Kα ¬R′(s) from Kα R(s)?

– If we have the axiom X1 (but not axiom X2), we can prove ¬R′(s): From
Kα R(s), we know R(s), and together with X1 this implies ¬R′(s). However,
we cannot prove Kα ¬R′(s) – intuitively, there could be another world with
R′(s), indistiguishable for α.

– Enriching our specification with X2 allows proving Kα ¬R′(s) by applying the
following epistemic tautology Kα(ψ1 ∧ ψ2) ⇔ Kα ψ1 ∧ Kα ψ2.

In the remainder of this section, we instantiate the framework, by introducing
atomic propositions for the peer relationship (Sect. 3.1), the membership rela-
tionship (Sect. 3.2), and ensemble lifecycle (Sect. 3.3).

3.1 Peer Relationship

In a loosely coupled network of agents, generally not every agent is aware of
the existence of every other agent. Similarly, there could be pairs of agents
without a communication channel between them. This motivates the notion of
a peer : Two agents are peers, if they are aware of one another, and share some
communication channel. We suggest to add an atomic proposition Peers(α, α′)
for any pair α, α′ ∈ A. Then, α and α′ are peers in a world w iff w valuates
Peers(α, α′) to true.

As the peer relationship is reflexive and symmetric, we suggest the following
(non-epistemic) axioms:

P0
∧

α∈A Peers(α, α).
P1

∧
α,α′∈A Peers(α, α′) ⇔ Peers(α′, α).

Epistemic Logic in Ensemble Specification 335

As P0 and P1 describe two very basic structural properties of the peer relation-
ship, we suggest to add the following epistemic axiom:

P2 CKA P0 ∧ P1

We note that P2 makes everyone aware of the general rules of the peers rela-
tionship, but P2 does not imply that agents are aware of being each others
peers. Given that peers should be aware of one another, we suggest the following
epistemic axiom:

P3
∧

α,α′∈A K?α Peers(α, α′).

The peers atomic proposition can also be used to specify further properties of
the network topology. For instance, the following axiom can be used to express
that all agents are peers of one another:

P4
∧

α,α′∈A Peers(α, α′).

Discussion. The above definitions to do not take the exact topology of a net-
work into account. Often, it is difficult to make any further assumptions. How-
ever, depending on the use case, further axioms could be useful, e.g. to model
hierarchies between agents, or to reason about the distance between them. An
example for a more refined notion of a relationship between agents are sensors
inside a vehicle: Each sensor is an agent that communicates with other agents
inside the vehicle, and the vehicle in turn could communicate with other vehicles.
Another example are mutually trusted instances, such as financial institutes or
administrative services. These are connected with other agents following a star
pattern.

3.2 Collaboration and Membership

We now model the concept of an ensemble by means of membership propositions.
For every ensemble e ∈ E in a finite universe E , and every agent α, we assume an
atomic proposition membere(α), stating that α is a collaborator of e. Epistemic
logic allows us to add axioms that consider the mutual awareness of collaborators
in an ensemble.

As a starting point, it is reasonable to state that an agent is aware of its own
membership in an ensemble: For each ensemble e add:

M0
∧

α∈A,e∈E K?α membere(α), that is, every agent α knows whether α is a
member of e or not.

Given that ensembles can be a collaboration of a large number of heterogenous
agents, even the members of one ensemble are not necessarily aware of each
others membership. If desired, however, such awareness of between collaborators
can be specified like this:

M1
∧

α,α′∈A,e∈E membere(α) ⇒ K?α membere(α′), that is, every collaborator of
e knows who the collaborators of e are.

336 J. Sürmeli

If the use case requires, this can be further liberalized by allowing by making
membership “public knowledge”. This could be feasible if the ensemble is to
follow certain rules of transparency:

M2
∧

α,α′∈A,e∈E K?α membere(α′), that is, every agent knows who the collabo-
rators of every ensemble are.

The axioms M1 and M2 do not take into account whether two agents are peers.
If awareness of other agents is bound to the peer-relationship, it might be rea-
sonable to require that agents only have knowledge about their own peers. If so,
the following axioms can be used instead of M1 and M2:

M1P
∧

α,α′∈A,e∈E Peers(α, α′)∧membere(α) ⇒ K?α membere(α′), that is, every
collaborator α of e knows which α’s peers are collaborators of e.

M2P
∧

α,α′∈A,e∈E Peers(α, α′) ⇒ K?α membere(α′), that is, every agent knows
in which ensembles their peers collaborate.

We note that given P4, M1 and M2 collapse with M1P and M2P, respectively.
We stress that the above axioms are mere implications of the form “If non-

epistemic proposition φ is a fact then some agent knows that proposition ψ is a
fact.” Such implications do not prevent that ψ holds, that is, an agent α know
that ψ holds without φ being fulfilled. If such additional knowledge is to be
excluded, the converse has to be stated as well. As an example, the following
axiom is the converse of M2P:

M2PC
∧

α,α′∈A,e∈E K?α membere(α′) ⇒ Peers(α, α′).

Similar axioms can be created to further restrict knowledge. However, we note
that generally, our approach to add axioms is that of an open world assumption.
Unless an axiom excludes certain knowledge for an agent, the agent could have
it (or not).

Discussion. The simple membership proposition may not be sufficient to describe
the structure of an ensemble. For instance, some collaborators inside an ensemble
could have specific roles or responsibilities. This is also discussed in Sect. 4.2. In
general, as the network of agents can have a certain topology, this holds true for
ensembles as well.

3.3 Ensemble Lifecycle and State Mapping

So far, the suggested atomic propositions and axioms have focused on the role
of agents. Now, we put the ensemble itself into the spotlight, and discuss its
lifecycle, that is, the states that an ensemble could be in, as well as the transitions
between them.

In a first step, we define the respective state spaces for ensembles. We assume
that the state space (for the sake of the specification) is finite. In some appli-
cations that could require that an infinite state space is reduced or abstracted

Epistemic Logic in Ensemble Specification 337

to a finite set of states, which could be achieved by methods such as predi-
cate abstraction, abstract interpretation, refinement, or similar formal methods.
Assuming a finite set of ensembles, we define the following propositions based
on a finite universe S of states.

For every ensemble e and state s ∈ S, we add an atomic proposition statee(s),
encoding that s is in the state space of e in the current world.

Based thereon, we can define that every ensemble is in exactly one state at
the same time. To this end, we add an atomic proposition currente(s) for each
state s ∈ S and ensemble e, encoding that e is currently in state s. Then, we
add the following axioms:

C0
∧

s∈S,e∈E currente(s) ⇒ statee(s).
C1

∧
e∈E

∨
s∈S currente(s).

C2
∧

s �=s′∈S,e∈E ¬(currente(s) ∧ currente(s′)).

Based thereon, we can now add axioms describing the knowledge of agents. If
every member of an ensemble knows about the current state of an ensemble, one
could add the following axiom:

S0
∧

α∈A,e∈E,s∈S membere(α) ⇒ K?α currente(s).

Similar to reasoning about the current state, it is also possible to reason about
future states. Arguably the simplest notion regarding future states is reachability.
We can encode reachability of one state s′ from a source state s into an atomic
proposition reachablee(s, s′) for every pair s, s′ of states and ensemble e. Usually,
reachability is reflexive and transitive, motivating the following axioms:

R0
∧

e∈E,s∈S reachablee(s, s) (Reflexivity).
R1

∧
e∈E,s,s′,s′′∈S reachablee(s, s′)∧reachablee(s′, s′′) ⇒ reachablee(s, s′′) (Tran-

sitivity).
R2 Only states of an ensemble are reachable:

∧
e∈E,s,s′∈S reachablee(s, s′) ⇒

statee(s) ∧ statee(s′).

To constitute these axioms as “ground rules” can be achieved by making the
axioms Ri (i = 0, . . . , 2) universally known to agents, yielding axiom RiK:

RiK
∧

α∈A Kα Ri (i = 1, 2, 3).

We can also introduce an atomic proposition currentlyReachablee(s) to state
that s is reachable from the current state of the ensemble e:

RC
∧

e∈E,s∈S currentlyReachablee(s) ⇔ ∨
s′∈S currente(s′) ∧ reachablee(s′, s).

RCK
∧

α∈A Kα RC.

Now, we could state that members of an ensemble e have sufficient knowledge
to reason about reachability of states in e:

RM
∧

α∈A,e∈e,s,s′∈S membere(α) ⇒ K?α reachablee(s, s′).

338 J. Sürmeli

Based thereon, we can prove that every member of an ensemble knows which
states are reachable from the current state, that is, the following proposition is
a fact: ∧

α∈A,s∈S,e∈E
membere(α) ⇒ K?α currentlyReachablee(s)

Intuitively, if α is a member of e, then by S0, α knows the current state of e,
by RM knows which states are reachable from the current state, and by RCK
knows that states reachable from the current state are those currently reachable.

Discussion. The above introduced concepts assume a global state of an ensemble.
In reality, global state is usually composed from various local states, particularly
given the heterogeneity of agents. It could thus be required to refine the above
concepts accordingly. Thereby, one could e.g. follow the Petri net [11] approach.
Global states could still be applied for the more general “life phases” of an
ensemble, e.g. “formed”, “running”, “terminated”, and so on. Even then, the
problem remains that agents do not necessarily observe such transitions between
life phases synchronously. In addition, some specification approaches do not start
from a finite state system but instead describe the behavior by means of temporal
logics (cf. e.g. [1]). One existing knowledge-based approach to temporal logic
is [2]. There, the main idea is to define which actions a set of agents can take
given that they have common knowledge of a specific fact.

4 Epistemic Logic and Dynamic Ensembles

We first introduce a new epistemic operator to specify group and common knowl-
edge for ensembles (Sect. 4.1), and then explore a role/instance approach in
Sect. 4.2. Finally, we briefly discuss the issue of evolving knowledge and factual
change in Sect. 4.3.

4.1 A New Knowledge Operator: Ensemble Knowledge

It may be desirable to express group knowledge and common knowledge in terms
of an ensemble instead of a fixed set of agents. If an ensemble has a fixed set of
members, this does not require any further operators. However, if membership
is valuated differently in different worlds, a new solution is required. To this
end, we introduce an ensemble knowledge operator Ke and an ensemble common
knowledge operator CKe, yielding a new language Le ⊃ L:

Le ::= p | Le ∨ Le | ¬Le | Kα Le | KA Le | CKA Le | Ke Le | CKe Le

(p ∈ P, α ∈ A, A ⊆ A)

We can define the semantics for Le by extending the semantics of L by the
following tautologies (cf. 6.3):

EK0 Ke φ ⇔ (
∧

α∈A membere(α) ⇒ Kα φ).

Epistemic Logic in Ensemble Specification 339

EK1 CKe φ ⇔ Ke φ ∧ Ke Ke φ ∧

We study the special case where the membership relation is static in a Kripke
structure W. For every α ∈ A, let membere(α) have the same truth value in
every world of W. In particular, let A ⊆ A be the set of agents α, such that
membere(α) is true in every world of W. Then, L and Le coincide on W in the
following sense: For every φ ∈ Le, there exists φA ∈ L with

1. φA can be obtained from φ by replacing each occurrence of Ke and CKe by
KA and CKA, respectively, and

2. Every world of W satisfies φ ⇔ φA.

Studying further properties of Ke and CKe is subject for future work.

4.2 Instantiation of Roles

So far, our framework captured the particular knowledge on the level of collab-
orators. However, some ensembles form dynamically for a situation at run time,
effectively drawing their collaborators from a pool of available agents. As such, at
the time of specifying an ensemble, the actual collaborators are often unknown.
Instead, a more abstract approach is followed, where collaborators are specified
by constraints, e.g. on their interfaces, behavior or capabilities. Likewise, the
specific number of collaborators is not necessarily known beforehand, as collab-
orators can fulfill several tasks at once, or the number of required collaborators
depends on the real time situation.

This can be captured by a role/instantiation model: The specification encom-
passes roles which capture the requirements for collaborators. At runtime, these
roles are instantiated by actual collaborators. We can apply this to our epistemic
logic approach as well: Instead of reasoning about knowledge of specific collab-
orators, we instead knowledge of roles. It is quite natural to then reason about
the relationship of knowledge on role level and knowledge on collaborator level.
Here, we face the challenge that the role-instance-relationship is generally not
one-to-one but many-to-many. In particular, we can observe the following:

One-to-Many. There can be multiple collaborators fulfilling the same role. For
instance, a set of collaborators could be required to carry an object, and their
exact number could depend on the individual agents and the properties of the
object.

Many-to-One. The same collaborator could fulfill different roles at once. For
instance, a collaborator that offers multiple functionalities could both partic-
ipate in the carrying process and fulfill a navigator role.

One-to-None. Some roles could be optional to be instantiated in specific sit-
uations. For instance, a specific class of objects could require an additional
supervisor, which is not required in other cases.

In the remainder of this section, we reason about the relationship between
knowledge of roles and knowledge of collaborators. In particular, we look for a

340 J. Sürmeli

model that encompasses both the role-level and the collaborator-level, and allows
expressing their relationships. While it might be tempting to approach this with
first-order logic, this paper stays inside the scope of propositional logic. To this
end, we make the following assumption: We draw the roles from the universe of
agents. That is, for every role, we make use of a “paragon agent” that represents
the role, but is never a member of the instantiated ensemble. We formalize this
by an atomic proposition inst(e′, e) encoding that e′ is an instance of e. We add
the following axioms:

RI0
∧

α∈A,e,e′∈E inst(e, e′) ⇒ ¬(membere(α) ∧ membere′(α)).
RI1

∧
α,α′∈A,e,e′∈E membere(α) ∧ membere′(α′) ∧ inst(e, e′) ⇒ ¬Peers(α, α′).

We can now add the role/instance concept: For each e, e′ ∈ E , α, α′ ∈ A, we
introduce the atomic proposition instanceOf e,e′(α, α′) encoding that α′ from e′

instantiates α from e.

RI2
∧

α,α′∈A,e,e′∈E instanceOf e,e′(α, α′) ⇒ inst(e, e′) ∧ membere(α) ∧
membere′(α′).

Using this framework, we can express statements of the form “all instances of
role r in any instance of ensemble e know proposition φ” as follows:

∧

α′∈A,e′∈E
instanceOf e,e′(α, α′) ⇒ Kα′ φ.

Similarly, one can express that in each instance of e, at least one instance of role
α knows φ:

∧

e′∈E
inst(e, e′) ⇒

∨

α′∈A
instanceOf e,e′(α, α′) ∧ Kα′ φ.

4.3 Evolution of Ensembles and Their Environments

Given a formula φ ∈ L and a world w in a Kripke structure W, the truth value
of φ is immutable. While useful for reasoning about a certain “snapshot” in time,
it is not as suitable to specify the evolution of an ensemble or its environment
over time. For instance, a collaborator joins/leaves an ensemble, a fact becomes
known to a collaborator, or some environmental value changes.

From the point of view of epistemic logic, there are two kinds of changes:

1. The world changes. This embodies factual change: An atomic proposition
changes its truth value in a transition from a source world w to a target
world w′. The step from w to w′ not only changes the valuation of atomic
propositions but might also blur or clarify the knowledge of agents.

2. An agent changes their “world view”. Usually by gaining information, an
agent evolves to be able to distinguish between more worlds.

Epistemic Logic in Ensemble Specification 341

When specifying ensembles, both types of change must be considered: By their
very definition, ensembles exist in volatile environments (that are subject to
change), and agents may gain information by exchanging messages between one
another or with the environment.

Looking at the Kripke structure semantics, evolution means to transition
from one world w in a Kripke structure W to another world w′ in a Kripke
structure W′, There are different approaches to address these transitions in
literature, summarized under the notion of dynamic epistemic logic [5]. Their
applicability in the specification of ensembles needs to be further studied. We
generally suggest that the exact evolution method should be chosen based on
the way the evolution of the ensemble and its environment is specified.

5 Conclusion and Future Work

In this paper, we presented first ideas for using epistemic logic in the speci-
fication of ensembles. We can envision the following next steps. To deepen the
understanding of the application of epistemic logics in ensemble specification, the
properties of the logics itself could be studied. A discussion on existing theorems
on classical properties, such as decidability or completeness, could enable the
discovery of refined, setting-specific properties. If one uses epistemic knowledge
inside existing specification approaches, it could be valuable to explore properties
that link different approaches together, such as equivalences or coincidence theo-
rems. This could then serve as a foundation for proving properties of the method
resulting from adding epistemic logics to an existing specification method. As a
first evaluation, one could enrich existing ensemble specifications by the concepts
presented in this paper. This could then lead to a more thorough connection of
epistemic logic with existing approaches, such as the SCEL-Language, where it
would be particularly interesting to relate the respective concepts of knowledge.
This also includes an evaluation of different approaches of dynamic epistemic
logic with respect to the chosen ensemble specification method. As ensembles
consist of many heterogenous agents and exist in volatile environments, trust
in received information cannot be guaranteed. Thus, Doxastic logic and belief
revision (complementing certain knowledge and the acquisition thereof) should
be studied. One particular direction could be the logic of lying [3] in the field
of ensemble specification in order to specify malevolent collaborators or envi-
ronments. Current approaches in the implementation of distributed systems,
such as distributed ledger technologies, also touch the field of zero-knowledge
proofs [7,8,12], which could yield an interesting link from the here developed
approach into practice.

6 Appendix

6.1 Kripke Structures

An epistemic Kripke structure W = (W,Sat , (≡α)α∈A) over atomic propositions
P and agents A is a vertex- and edge-labeled, directed graph, where

342 J. Sürmeli

– each vertex w ∈ W is called a world,
– Sat : P → 2W is the valuation function, mapping atomic proposition p ∈ P

to the set Sat(p) of worlds in which p is true, and
– each ≡α ⊆ W × W is a reflexive, symmetric relations specifying that if in

world w, α also considers w′ as the current world iff w ≡α w′.

For an agent α and a world w ∈ W , we define the set IndW(w,α) := {w′ |
w′ ∈ W,w ≡α w′} of worlds indistinguishable from w by α in W, observing
w ∈ IndW(w,α).

6.2 Semantics of L

The semantics of a formula are defined by the set of worlds in which the formula
holds, formalized as the function Worlds (W, ·) : L → 2W where for each φ, ψ ∈
L:

1. Worlds (W, p) = Sat(p) for all p ∈ P.
2. Worlds (W,¬φ) = W \ Worlds (W, φ).
3. Worlds (W, φ ∨ ψ) = Worlds (W, φ) ∪ Worlds (W, ψ).
4. Worlds (W,Kα φ) = {w ∈ W | IndW(w,α) ⊆ Worlds (W, φ)}.
5. Worlds (W,KA φ) =

⋂
α∈A Worlds (W,Kα φ).

6. Worlds (W,CKA φ) =
Worlds (W, φ) ∩ Worlds (W,KA φ) ∩ Worlds (W,KA KA φ)

From w ∈ IndW(w,α), we get Worlds (W,Kα φ) ⊆ Worlds (W, φ). Hence,
Kα φ ⇒ φ is a tautology: α knows that the formula φ is a fact, that is, φ is
true, and α knows that φ is true.

6.3 Semantics of Le

The semantics of a formula φ ∈ Le are defined by the set of worlds in which the
formula holds, formalized as the function Worldse(W, ·) : Le → 2W where for
each φ, ψ ∈ L:

1. Worldse(W, p) = Sat(p) for all p ∈ P.
2. Worldse(W,¬φ) = W \ Worldse(W, φ).
3. Worldse(W, φ ∨ ψ) = Worldse(W, φ) ∪ Worldse(W, ψ).
4. Worldse(W,Kα φ) = {w ∈ W | IndW(w,α) ⊆ Worldse(W, φ)}.
5. Worldse(W,KA φ) =

⋂
α∈A Worldse(W,Kα φ).

6. Worldse(W,CKA φ) =
Worldse(W, φ) ∩ Worldse(W,KA φ) ∩ Worldse(W,KA KA φ)

7. Worldse(W,Ke φ) =
⋂

α∈A Worldse(W, φα) where φα = membere(α) ⇒
Kα φ.

8. Worldse(W,CKA φ) =
Worldse(W, φ) ∩ Worldse(W,Ke φ) ∩ Worldse(W,Ke Ke φ)

Epistemic Logic in Ensemble Specification 343

References

1. Bieber, P.: A logic of communication in hostile environment. In: [1990] Proceedings,
The Computer Security Foundations Workshop III, pp. 14–22 (1990)

2. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

3. van Ditmarsch, H., van Eijck, J., Sietsma, F., Wang, Y.: On the logic of lying. In:
van Eijck, J., Verbrugge, R. (eds.) Games, Actions and Social Software. LNCS,
vol. 7010, pp. 41–72. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29326-9 4

4. van Ditmarsch, H., Halpern, J.Y., van der Hoek, W., Kooi, B.P.: An introduction
to logics of knowledge and belief. CoRR abs/1503.00806 (2015). http://arxiv.org/
abs/1503.00806

5. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. SYLI,
vol. 337, 1st edn. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-
5839-4

6. Fagin, R., Moses, Y., Halpern, J.Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (2003)

7. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989). https://doi.org/10.1137/
0218012

8. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

9. Hennicker, R., Wirsing, M.: Dynamic logic for ensembles. In: Margaria, T., Stef-
fen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 32–47. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03424-5 3

10. Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge,
London (1996)

11. Reisig, W.: Understanding Petri Nets. Modeling Techniques, Analysis Methods,
Case Studies. Translated from the German by the author (07 2013). https://doi.
org/10.1007/978-3-642-33278-4

12. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In:
2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014)

13. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: engineering auto-
nomic service-component ensembles. In: Beckert, B., Damiani, F., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-35887-6 1

14. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-16310-9

https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-642-29326-9_4
https://doi.org/10.1007/978-3-642-29326-9_4
http://arxiv.org/abs/1503.00806
http://arxiv.org/abs/1503.00806
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-030-03424-5_3
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-35887-6_1
https://doi.org/10.1007/978-3-319-16310-9
https://doi.org/10.1007/978-3-319-16310-9

FScaFi: A Core Calculus for Collective
Adaptive Systems Programming

Roberto Casadei1 , Mirko Viroli1(B) , Giorgio Audrito2 ,
and Ferruccio Damiani2

1 Alma Mater Studiorum–Università di Bologna, Cesena, Italy
{roby.casadei,mirko.viroli}@unibo.it

2 Università di Torino, Turin, Italy
{giorgio.audrito,ferruccio.damiani}@unito.it

Abstract. A recently proposed approach to the rigorous engineering of
collective adaptive systems is the aggregate computing paradigm, which
operationalises the idea of expressing collective adaptive behaviour by
a global perspective as a functional composition of dynamic computa-
tional fields (i.e., structures mapping a collection of individual devices
of a collective to computational values over time). In this paper, we
present FScaFi, a core language that captures the essence of exploit-
ing field computations in mainstream functional languages, and which is
based on a semantic model for field computations leveraging the novel
notion of “computation against a neighbour”. Such a construct mod-
els expressions whose evaluation depends on the same evaluation that
occurred on a neighbour, thus abstracting communication actions and,
crucially, enabling deep and straightforward integration in the Scala pro-
gramming language, by the ScaFi incarnation. We cover syntax and
informal semantics of FScaFi, provide examples of collective adaptive
behaviour development in ScaFi, and delineate future work.

1 Introduction

The Internet of Things (IoT), Cyber-Physical Systems (CPS), and related ini-
tiatives point out a trend in informatics where computation and interaction are
increasingly pervasive and ubiquitous, and carried on by a potentially huge and
dynamic set of heterogeneous devices deployed in physical space. To address
the intrinsic complexity of these settings, a new viewpoint is emerging: a large-
scale network of devices, situated in some environment (e.g., the urban area of
a smart city), can be seen as a computational overlay of the physical world, to
be programmed as a “collective” exhibiting robustness and resiliency by inher-
ent adaptation processes. These kinds of systems are sometimes referred to as
Collective Adaptive Systems (CAS) [1], to emphasise that computational activi-
ties are collective (i.e., they involve multiple coordinated individuals), and that
a main expected advantage is inherent adaptivity of behaviours to unforeseen
changes (e.g., as induced by changes/faults in the computational environment
or interactions with humans or other systems).
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 344–360, 2020.
https://doi.org/10.1007/978-3-030-61470-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_21&domain=pdf
http://orcid.org/0000-0001-9149-949X
http://orcid.org/0000-0003-2702-5702
http://orcid.org/0000-0002-2319-0375
http://orcid.org/0000-0001-8109-1706
https://doi.org/10.1007/978-3-030-61470-6_21

FScaFi: A Core Calculus for Collective Adaptive Systems Programming 345

Aggregate Computing [2] is an approach to CAS engineering that takes a
global stance to design and programming and where coordinated adaptation
is a key feature. Hence, it targets problems and application domains such as
crowd engineering, complex situated coordination, robot/UAV swarms, smart
ecosystems and the like [3]. Its key idea is to program a large system as a whole,
that is, to directly consider an ensemble of devices as the target machine to be
programmed, and provide under-the-hood, automatic global-to-local mapping:
once the desired system-level behaviour is expressed by a global program, then
individual computational entities of an aggregate are bound to play a derived,
contextualised local behaviour of that program. Prominently, the distinguish-
ing characteristic of Aggregate Computing as a “macro-approach” [4] lies in the
ability to formally represent the adaptive behaviour of an ensemble in a compo-
sitional and declarative way, namely, by combination of functional coordination
operators and high-level building blocks expressing the outcome of a collective
task.

One fundamental enabling abstraction for specifying the dynamics of situated
collectives is that of a computational field (or simply, field) [5–7]: a distributed
data structure that maps devices to computational objects across time. Accord-
ingly, Aggregate Programming is about describing (dynamic) field computations,
namely, how input fields (data coming from sensors) turn into output fields
(actions feeding actuators)—computations that can be conveniently expressed
using the functional paradigm.

A modern implementation of the aggregate programming paradigm is ScaFi1

(Scala Fields) [8]. It is a toolkit, tightly integrated with the Scala programming
language, that comprises a Domain-Specific Language (DSL), a library, and plat-
form tools for specifying and running (distributed) systems by leveraging com-
putational fields. ScaFi provides a number of key advantages with respect to
previous implementation attempts which were standalone DSLs (Protelis [9]
and Proto [6]), such as: (i) familiar programming environment, by coherently
supporting field constructs within the ecosystem as well as the syntactic and
semantic model of a mainstream language like Scala; (ii) lightweight type safety,
by leveraging Scala’s powerful type system and type inference; and (iii) seam-
less reuse of functionality, by providing unrestricted access to both Scala features
(e.g., lightweight components, implicits) and existing libraries on the JVM.

Technically, such a smooth integration with Scala has been achieved thanks
to a semantic variation of previous formalisation attempts, which were based
on the field calculus [5]: the notion of “neighbouring value” (a map from neigh-
bours to data values), used in field calculus to locally express outcome of message
reception from neighbours, is replaced with that of “computation against a neigh-
bour”, namely, by expressions whose evaluation depends on the same evaluation
occurring on a neighbour. This change leads to a new computational model that
we reify by a calculus called Featherweight ScaFi (FScaFi) and present in
this paper.

1 https://scafi.github.io.

https://scafi.github.io

346 R. Casadei et al.

The content is structured as follows. Section 2 provides motivation for ScaFi
and covers related work. Section 3 describes syntax and informal semantics of
FScaFi. Section 4 provides examples, showing how FScaFi can be used to
develop collective adaptive behaviour. Section 5 ends up the paper with a wrap-
up and discussion of future work.

2 Background

Scenarios like the IoT, CPS, smart cities, and the like, foster a vision of rich
computational ecosystems providing services by leveraging strict cooperation of
large collectives of smart devices, which mostly operate in a contextual way.
Engineering complex behaviour in these settings calls for approaches providing
some abstraction through the notion of ensemble, neglecting as much as possible
the more traditional view of focussing on the single device and the messages it
exchanges with peers.

2.1 Aggregate Computing

Aggregate computing is the main theme of this paper. A recent survey of its
historical development and state-of-the-art is provided in [3]. The essence of
the approach is captured by the field calculus [5], a core language grounding
semantics and formal analysis of field computations [10,11].

Programming languages to work with computational fields have been intro-
duced in the past, with Proto [6] as common ancestor (Lisp-based), and Pro-

telis [9] as its Java-oriented, standalone DSL version. These approaches however
have the drawback of not smoothly integrating field computations in the syn-
tactic, semantic, and typing structures of a modern, conventional language—to
fully remedy this problem, in this paper we shall present some key semantic
changes to the field calculus.

To address this problem, a prominent, modern approach is to devise an
“internal” or “embedded” DSL [12] that provides mechanisms to support the
new features on top of an adequate host programming language. Of course,
with embedded DSLs, both the syntax and the semantics are limited by the
constraints exerted by the host language. However, the model can sometimes
be slightly adjusted in order to favour the embedding, considering the common
syntactic, typing, and semantic features of the candidate set of host languages.

When conceiving this DSL, we took into account the following requirements
and desiderata for the host language: pragmatism (supporting easy reuse of exist-
ing programming mechanisms); reliability (intercepting errors early—cf., type
checking); expressivity (offering an eloquent syntax); and functional paradigm
support (all the significant features of functional programming must be cleanly
available). All the above considerations led us towards the Scala programming
language as the host. Then, to well design the key constructs and provide a
framework for rigorous analysis of programs and properties, we came up with

FScaFi: A Core Calculus for Collective Adaptive Systems Programming 347

FScaFi model of field computations. Its peculiarity is to handle standard val-
ues has been the local representative of a computational field, which provides
a simplified setting for DSL embedding. To achieve this, we introduced a local
notion of “computation against a neighbour”, namely, a computation whose out-
come depends on the most recent, local view of the result of computation in that
neighbour (unlike in the standard field calculus, this allows smooth application
of host typing mechanisms to any field expression)—as detailed in Sect. 3.

Such a model, and related tooling, is implemented in the ScaFi aggregate
computing DSL and platform [8,13]. ScaFi achieves the goal of providing an
environment to streamline and support effective development of systems based
on the Aggregate Computing paradigm, leveraging the solid basis provided by
a mainstream programming language such as Scala and its ecosystem. In fact,
Scala: runs on the JVM and thus enables straightforward interaction with the
Java ecosystem; offers a powerful type system, with type inference, that helps
to build type-safe libraries with minimal overhead; has a flexible syntax (con-
venient for creation of elegant APIs/DSLs). Moreover, Scala has great popular-
ity in the distributed computing arena: it is the implementation language for
several distributed computing toolkits, such as Apache Kafka2 and the Akka
actor framework3. Hence, our choice of Scala also fosters the construction of a
platform-level support on top of ScaFi, in the form of a middleware for running
distributed and situated systems [13,14].

2.2 Related Work

Aggregate programming languages. Prior aggregate programming lan-
guages are standalone (also called external) DSLs and include Proto [6], the
Lisp-like progenitor, and its evolution Protelis [9]. Protelis is based on an
untyped, standalone DSL able to interoperate with existing Java code. This
approach has some limitations: aligning the syntax and semantics, as well as
providing training and documenting for a distinct language w.r.t. the one used
to develop the execution platform can be burdensome; extra development and
maintenance effort is needed to adequately support editing tools (e.g., plugins
are required for common IDE features like syntax highlighting and refactoring);
activities that span both the DSL and the target language (e.g., static analysis
and debugging) may be hard to implement; and finally, the ability to smoothly
reuse the features and libraries of the target language can be limited. Though
language tools greatly improved recently (cf. the Xtext language workbench [15]
and its Xbase extension [16], to name a popular one), practically, with an exter-
nal DSL it may be difficult to come up with a cohesive design of the resulting
software system (cf. Generation gap pattern [17]), since parts written in the DSL
need to bidirectionally refer and interact with other parts of the system [18].

Ensemble approaches. In Helena [19] components can dynamically participate
in multiple ensembles and adapt according to different roles whose behaviour
2 https://kafka.apache.org.
3 https://akka.io.

https://kafka.apache.org
https://akka.io

348 R. Casadei et al.

is given by a process expression. DEECo [20] is another CAS model where
components can only communicate by dynamically binding together through
ensembles; DEECo ensemble is formed according to a membership condition
and consists of one coordinator and multiple members interacting by implicit
knowledge exchange; DEECo has a Java implementation called jDEECo which
enables the definition of components and ensembles through Java annotations.
The GCM/ProActive [21] framework supports the development of large-scale
ensembles of adaptable autonomous devices through a hierarchical component
model where components have a non-functional membrane and “collective inter-
faces”, and a programming model based on active objects. SCEL [22] is a kernel
language to specify the behaviour of autonomic components, the logic of ensem-
ble formation, as well interaction through attribute-based communication (which
enables implicit selection of a group of recipients). Attribute-based communica-
tion [23] is an approach to CAS coordination that leverages implicit multicasts
towards recipients matched by predicates over attributes. The approach has been
formalised by the AbC calculus [23] and implemented as an Erlang DSL in the
so-called AErlang library [24]. Generally speaking, it is worth noting that the
field calculus fits useful device abstractions (such as neighbourhood, message
exchange, attribute-based filtering) into a purely functional approach, which can
then smoothly interoperate with more traditional programming frameworks and
languages. More specifically, attribute-based communication can be achieved in
the field calculus (and hence in FScaFi) both at the receiver and the sender
side, via construct branch (see Sect. 4), by which one can define subcomputa-
tions carried on by a subset of nodes—those that execute the same branch and
hence remain actually “observable” by operator nbr. In a more programmati-
cally expressible way, a notion of ensemble can be captured as a field computa-
tion on a dynamic domain of devices, denoted by the concept of an aggregate
process [25].

Spatial computing and macro-programming. An extensive survey on spa-
tial computing can be found in [4]. Indeed, multiple classes of approaches address
(at least in part) the problem of organising a collective of computational enti-
ties. These include topological and geometrical languages like GPL [26] (exploit-
ing the botanical metaphor of “growing points”) and OSL [27] (focussing on
programming “computational surfaces” through folding operations); languages
abstracting communication and networks, like TOTA [7] and Linda-στ [28] (sup-
porting diffusion and aggregation of tuples on a network of agents), Logical
Neighbourhoods [29] (supporting virtual connectivity), and SpatialViews [30]
(abstracting a network into spatial views that can be iterated on to visit nodes
and request services); and macro-programming languages, like SpaceTime Ori-
ented Programming (STOP) [31] (providing abstractions to support collection
and processing of past or future network data in arbitrary spatio-temporal res-
olutions) and Regiment [32] (modelling network state and regions as spatially
distributed, time-varying signals). Aggregate Computing belongs to the class of
so-called general-purpose spatial computing languages, all addressing the prob-
lem of engineering distributed (or parallel) computing by providing mechanisms

FScaFi: A Core Calculus for Collective Adaptive Systems Programming 349

to manipulate data structures diffused in space and evolving in time. Other
notable examples include the SDEF programming system inspired by systolic
computing [33], and topological computing with MGS [34]. They typically pro-
vide specific abstractions that significantly differ from that of computational
fields: for instance, MGS defines computations over manifolds, the goal of which
is to alter the manifold itself as a way to represent input-output transformation.

3 Featherweight ScaFi: A Core Calculus for ScaFi

In this section, we present Featherweight ScaFi (FScaFi), a minimal core
calculus that models the aggregate computing aspects of ScaFi—much as FJ [35]
models the object-oriented aspects of Java.

In the aggregate computing model, devices undergo computation in rounds.
When a round starts, the device gathers information about messages received
from neighbours (only the last message from each neighbour is actually consid-
ered), performs an evaluation of the program, and finally emits a message to all
neighbours with information about the outcome of computation. The scheduling
policy of such rounds is abstracted in this formalisation, though it is typically
considered fair and non-synchronous.

FScaFi is a core subset of ScaFi, strictly retaining its syntax (with the
exception of typing annotations, which are not here presented). The syntax of
FScaFi is given in Fig. 1. Following [35], the overbar notation denotes metavari-
ables over sequences and the empty sequence is denoted by •; e.g., for expres-
sions, we let e range over sequences of expressions, written e1, e2, . . . en (n ≥ 0).
FScaFi focusses on aggregate programming constructs. In particular:

– it neglects the many orthogonal Scala features that one can use (object-
oriented constructs, and the like), and

– it is parametric in the built-in data constructors and functions.

Note that – apart from specific Scala syntax – the examples of ScaFi code given
in Sect. 4 are actually examples of FScaFi code. In particular, in order to turn
ScaFi functions (such as foldhoodPlus, gradient and branch—covered
in Sect. 4) into FScaFi functions, it is enough to drop type annotations and
default parameters.

A program P consists of a sequence F of function declarations and a main
expression e. A function declaration F defines a (possibly recursive) function; it
consists of a name d, n ≥ 0 variable names x representing the formal parameters,
and an expression e representing the body of the function.

Expressions e are the main entities of the calculus, modelling a whole field
computation. An expression can be: a variable x, used as function formal param-
eter; a value v; an anonymous function (x)

τ
=> @@{e} (where x are the formal

parameters, e is the body, and τ is a tag); a function call e(e); a rep-expression
rep(e){e}, modelling time evolution; an nbr-expression nbr{e}, modelling neigh-
bourhood interaction; or a foldhood-expression foldhood(e)(e){e} which com-
bines values obtained from neighbours.

350 R. Casadei et al.

Fig. 1. Syntax of FScaFi.

Tags τ of anonymous functions (x)
τ
=> @@{e} do not occur in source programs:

when the evaluation starts each anonymous function expression (x) => @@{e}
occurring in the program is given a distinguished tag τ—for instance, two occur-
rences of the same anonymous function expression get different tags. In the fol-
lowing we will use the phrase name of a function to refer both to the tag of an
anonymous function, or to the name of a built-in or declared function. As we
will see below, names are used to define function equality.

The set of the free variables of an expression e, denoted by FV(e), is defined
as usual (the only binding construct is (x)

τ
=> @@{e}). An expression e is closed

if FV(e) = •. The main expression of any program must be closed.
A value can be either a data value c(v) or a functional value f. A data value

consists of a data constructor c of some arity m ≥ 0 applied to a sequence of m
data values v = v1, ..., vm. A data value c(v1, ..., vm) is written c when m = 0.
Examples of data values are: the Booleans True and False, numbers, pairs (like
Pair(True, Pair(5, 7))) and lists (like Cons(3, Cons(4, Null))).

Functional values f comprise:

– declared function names d;
– closed anonymous function expressions (x)

τ
=> @@{e} (i.e., such that FV(e) ⊆

{x});
– built-in functions b, which can in turn be:

• pure operators o, such as functions for building and decomposing pairs
(pair, fst, snd) and lists (cons, head, tail), the equality function
(=), mathematical and logical functions (+, &&, ...), and so on;

• sensors s, which depend on the current environmental conditions of the
computing device δ, such as a temperature sensor—modelling con-
struct sense in ScaFi;

• relational sensors r, modelling construct nbrvar in ScaFi, which in
addition depend also on a specific neighbour device δ′ (e.g., nbrRange,
which measures the distance with a neighbour device).

In case e is a binary built-in function b, we shall write e1 b e2 for the function
call b(e1, e2) whenever convenient for readability of the whole expression in
which it is contained.

The key constructs of the calculus are:

FScaFi: A Core Calculus for Collective Adaptive Systems Programming 351

– Function call: e(e1, . . . , en) is the main construct of the language. The func-
tion call evaluates to the result of applying the function value f produced by
the evaluation of e to the value of the parameters e1, . . . , en relatively to the
aligned neighbours, that is, relatively to the neighbours that in their last exe-
cution round have evaluated e to a function value with the same name of f.
For instance, suppose to have defined a function def plus(a, b) = @@{a + b};
then, function call plus(5, 2) yields a field that is 7 in every point of space
and time (i.e., the expression evaluates to 7 in each round of every device).

– Time evolution: rep(e1){e2} is a construct for dynamically changing fields
through the “repeated” application of the functional expression e2. At
the first computation round (or, more precisely, when no previous state is
available—e.g., initially or at re-entrance after state was cleared out due to
branching), e2 is applied to e1, then at each other step it is applied to the value
obtained at the previous step. For instance, rep(0){(x) => @@{x + 1}} counts
how many rounds each device has computed (from the beginning, or more gen-
erally, since that piece of state was missing). Another example is an expression
snd(rep(Pair(x, False)){(xR) => @@{Pair(x, x == fst(xR))}}) that eval-
uates to True when some value x changes w.r.t. the previous round; it is
common to use tuples when dealing with multiple pieces of state/result.

– Neighbourhood interaction: foldhood(e1)(e2){e3} and nbr{e} model device-
to-device interaction. The foldhood construct evaluates expression e3 against
every aligned neighbour4 (including the device itself), then aggregates the val-
ues collected through e2 together with the initial value e1. The nbr construct
tags expressions e signalling that (when evaluated against a neighbour) the
value of e has to be gathered from neighbours (and not directly evaluated).
Such behaviour is implemented via a conceptual broadcast of the values eval-
uated for e. Subexpressions of e3 not containing nbr are not gathered from
neighbours instead.
As an example, consider the expression

foldhood(2)(+){min(nbr{temperature()},temperature())}

evaluated in device δ1 (in which temperature() = 10) with neighbours δ2

and δ3 (in which temperature() gave 15 and 5 in their last evaluation round,
orderly). The result of the expression is then computed adding 2, min(10, 10),
min(15, 10) and min(5, 10) for a final value of 27.

Note that, according to the explanation given above, calling a declared
or anonymous function acts as a branch, with each function in the range
applied only on the subspace of devices holding a function with the same tag.
In fact, a branching construct branch(e1){e2}{e3} (which computes e2 or e3

depending on the value of e1) can be defined through function application as
mux(e1, () => @@{e2}, () => @@{e3})(), where mux is a built-in function selecting
among its second and third argument depending on the value of the first.

4 This is where FScaFi differs from classical field calculus, where instead neighbouring
fields are explicitly manipulated.

352 R. Casadei et al.

Notice that the semantics of this language is compositional and message
exchanges are performed under the hood by nbr constructs within a foldhood;
with an automatic matching of each message from a neighbour to a specific nbr
construct, determined through a process called alignment [36]. Basically, each
nbr construct produces an “export” (i.e., a data value to be sent to neighbours)
tagged with the coordinates of the node in the evaluation tree (i.e., the structure
arising from the dynamic unfolding of the main expression evaluation) up to that
construct. All exports are gathered together into a message which is broadcast
to neighbours, and which can be modelled as a value tree: an ordered tree of
values obtained during evaluation of each sub-expression of the program. The
alignment mechanism then ensures that each nbr is matched with corresponding
nbr reached by neighbours with an identical path in the evaluation tree.

4 Showcasing FScaFi: Programming Examples

In this section, we provide examples of FScaFi programs, showing how to repre-
sent and manipulate fields to implement collective adaptive functionality, using
the ScaFi syntax.

4.1 Scala Syntax

In ScaFi, the FScaFi constructs introduced in Sect. 3 are represented as object-
oriented methods through the following Scala trait (interface):

trait Constructs {
def rep[A](init: => A)(fun: (A) => A): A
def foldhood[A](init: => A)(aggr: (A, A) => A)(expr: => A): A
def nbr[A](expr: => A): A
def @@[A](b: => A): A

}

This is mostly a straightforward Scala encoding of the syntax of Fig. 1. The
main different is given by the presence of typing information and, in particular,
the use of by-name parameters, of type =>T , which provide syntactic sugar for
0-ary functions: these enable to capture expressions at the call site, pass them
unevaluated to the method, and evaluate them lazily every time the parameter
is used. This turns out very useful to implement the FScaFi semantics while
providing a very lightweight syntax for the DSL. Moreover, note that method
signatures do not include field-like type constructors: in fact, in FScaFi, fields
are not reified explicitly but only exist at the semantic level.

4.2 Programming Examples

When thinking at field programs, one can adopt two useful viewpoints: the local
viewpoint, typically useful when reasoning about low-level aspects of field com-
putations, which considers a field expression as the computation carried on by a

FScaFi: A Core Calculus for Collective Adaptive Systems Programming 353

specific individual device; and the global viewpoint, typically more useful when
focussing on higher-level composition of field computations, which regards a spec-
ification at the aggregate level, as a whole spatio-temporal computation evolving
a field. So, an expression (e.g., 1+3 of type Int) can represent the outcome of
execution of a computation locally (4), or globally as the program producing
a field (a field of 4s). Note, however, that the global field is not accessed com-
putationally: a local computation will only access a neighbouring field (which is
actually a view, given by the messages received from neighbours, of the actual,
asynchronously evolving field).

In the following, we incrementally describe the constructs introduced in
Sect. 3 and the design of higher-level building blocks of collective adaptive
behaviour through examples. In ScaFi, a usual literal such as, for instance,
tuple

("hello", 7.7, true)

is to be seen as a constant (i.e., not changing over time) and uniform (i.e., not
changing across space) field holding the corresponding local value at any point
of the space-time domain. By analogy, an expression such as

1 + 2

denotes a global expression where a field of 1s and a field of 2s are summed
together through the field operator +, which works like a point-wise application
of its local counterpart. Indeed, literal + can also be thought of as representing
a constant, uniform field of (binary) functions, and function application can be
viewed as a global operation that applies a function field to its argument fields.

A constant field does not need to be uniform. For instance, given a static
network of devices, then

mid()

denotes the field of device identifiers, which does not change across time but
does vary in space. On the other hand, expression

sense[Double]("temperature") // type can be omitted if can be inferred

is used to represent a field of temperatures (as obtained by collectively querying
the local temperature sensors over space and time), which is in general non-
constant and non-uniform.

Fields changing over time can also be programmatically defined by the rep
operator; for instance, expression

// Initially 0; state is incremented at each round
rep(0){ x => x + 1 } // Equally expressed in Scala as: rep(0)(_ + 1)

counts how many rounds each device has executed: it is still a non-uniform field
since the update phase and frequency of the devices may vary both between
devices and across time for a given device.

354 R. Casadei et al.

Folding can be used to trigger the important concept of neighbour-dependent
expression. As a simple initial example, expression

foldhood(0)(_ + _){ 1 }

counts the number of neighbours at each device (possibly changing over time if
the network topology is dynamic). Note that folding collects the result of the
evaluation of 1 against all neighbours, which simply yields 1, so the effect is
merely the addition of 1 for each existing neighbour.

The key way to define truly neighbour-dependent expressions is by the nbr
construct, which enables to “look around” just one step beyond a given locality.
Expression

foldhood(0)(_+_){nbr{sense[Double]("temperature")}} / foldhood(0)(_+_){1}

evaluates to the field of average temperature that each device can perceive in
its neighbourhood. The numerator sums temperatures sensed by neighbours (or,
analogously, it sums the neighbour evaluation of the temperature sensor query
expression), while the denominator counts neighbours as described above. As
another example, the following expression denotes a Boolean field of warnings:

val warningTh: Double = 42.0 // temperature threshold for warning
foldhood(false)(_ || _){ nbr { sense[Double]("temperature") } > warningTh }

This is locally true if any neighbour perceives a temperature higher than some
topical threshold. Notice that by moving the comparison into the nbr block,

foldhood(false)(_ || _){ nbr { sense[Double]("temperature") > warningTh } }

then the decision about the threshold (i.e., the responsibility of determining
when a temperature is dangerous) is transferred to the neighbours, and hence
warnings get blindly extended by 1-hop. Of course, provided warningTh is
uniform, the result would be the same in this case.

Functions can be defined to capture and give a name to common field compu-
tation idioms, patterns, and domain-specific operations. For instance, by assum-
ing a mux function that implements a strictly-evaluated version of if:

def mux[A, B<:A, C<:A](cond: Boolean)(th: B)(el: C): A = if(cond) th else el

A variation of foldhood, called foldhoodPlus5, which does not take
“self” (the current device) into account, can be implemented as follows:

def foldhoodPlus[A](init: => A)(aggr: (A, A) => A)(expr: => A): A =
foldhood(init)(aggr)(mux(mid==nbr{mid}){ init }{ expr })

Notice that the identity init is used when considering a neighbour device whose
identifier (nbr{mid}) is the same as that of the current device (mid). As another
example, one can give a label to particular sensor queries, such as:
5 The “Plus” suffix is to mimic the mathematical syntax R+ of the transitive closure

of a (neighbouring) relation R.

FScaFi: A Core Calculus for Collective Adaptive Systems Programming 355

def temperature = sense[Double]("temperature")
def nbrRange = nbrvar[Double]("nbr-range")

The second case uses construct nbrvar, which is a neighbouring sensor query
operator providing, for each device, a sensor value for each corresponding neigh-
bour: e.g., for nbrRange, the output value is a floating-point number express-
ing the estimation of the distance from the currently executing device to that
neighbour—so, it is usually adopted as a metric for “spatial algorithms”. Based
on the above basic expressions, one can define a rather versatile and reusable
building block of Aggregate Programming, called gradient [37–39]. A gradient
(see Figure 2) is a numerical field expressing the minimum distance (according
to a certain metric) from any device to source devices; it is also interpretable
as a surface whose “slope” is directed towards a given source. In ScaFi, it can
be programmed as follows:

def gradient(source: Boolean, metric: () => Double = nbrRange): Double =
rep(Double.PositiveInfinity){ distance =>

mux(source) { 0.0 }{
foldhoodPlus(Double.PositiveInfinity)

(Math.min(_,_)) { nbr{distance} + metric }
} }

The rep construct allows one to keep track of the distances across rounds of
computations: source devices are at a null distance from themselves, and the
other devices take the minimum value among those of neighbours increased
by the corresponding estimated distances as given by metric—defaulting to
nbrRange. Notice that foldhoodPlus (i.e., a version of foldhood that does
not consider the device itself) must be used to prevent devices from getting stuck
to low values because of self-messages (as it would happen when a source node
gets deactivated): with it, gradients dynamically adapt to changes in network
topology or position/number of sources, i.e., it is self-stabilising [11].

Another key operation on fields is splitting computation into completely sep-
arate parts or sub-computations executed in isolated space-time regions. An
example is computing a gradient in a space that includes obstacle nodes so
that gradient slopes circumvent the obstacles. The solution to the problem needs
to leverage aggregate functions, and their ability of acting as units of alignment.
That is, we can use a different aggregate function for normal and obstacle nodes:

(mux(isObstacle){ () => @@{ Double.PositiveInfinity } }
{ () => @@{ gradient(isSource) } }

)()

Calling such functions effectively restricts the domain to the set of devices exe-
cuting them, thanks to the space-time branching enacted by construct @@ wrap-
ping the bodies of the corresponding literal functions; by calling them exclusively
in any device, the system gets partitioned into two sub-systems, each one exe-

356 R. Casadei et al.

Fig. 2. Snapshot of a gradient field from a simulation in ScaFi. The red nodes are the
sources of the gradient. The nodes at the top-left have parted from the network and
their values increase unboundly. The gray lines represent device connectivity according
to a proximity-based neighbouring relationship.

cuting a different sub-computation. For convenience, ScaFi provides as built-in
function, called branch, defined as:

def branch[A](cond: => Boolean)(th: => A)(el: => A): A =
mux(cond)(() => @@{ th })(() => @@{ el })()

With it, a gradient overcoming an obstacle is properly written as

branch(isObstacle){ Double.PositiveInfinity }{ gradient(isSource) } // correct

which is cleaner and hides some complexity while better communicating the
intent: branching computation. Generally, notation @@ has to be used for bod-
ies of literal functions that include aggregate behaviour, i.e., functions which
(directly or indirectly) call methods of the Constructs trait—other uses have
no effects on the result of computation. We remark that the above field calcu-
lus expression (gradient avoiding obstacles) effectively creates a distributed data
structure that is rigorously self-adaptive [11]: independently of the shape and
dynamics of obstacle area(s), source area(s), metric and network structure, it will
continuously bring about formation of the correct gradient, until eventually sta-
bilising to it. For instance, it could be used in a wireless sensor network scenario
to let devices equipped with sensors transmit local perception on a hop-by-hop
basis until all information reaches the gradient source. Generally, gradients can
be used as building block for more complex behaviour, to which the self-adaption
properties will be transferred, by simple functional composition.

An example of more complex behaviour is the self-healing channel [40], i.e.,
the field of Booleans that self-stabilises to a true value in the devices belonging
to the minimal path connecting source with target devices. This functionality
can be implemented as follows:

FScaFi: A Core Calculus for Collective Adaptive Systems Programming 357

def channel(source: Boolean, target: Boolean, width: Double): Boolean =
gradient(source) + gradient(target) <=
distanceBetween(source, target) + width

i.e., by applying the triangle inequality property (with some tolerance as cap-
tured by parameter width), and exploiting a block distanceBetween that
calculates the distance between source and target (e.g., using a gradient)
and broadcasts that value to the whole network (e.g., by gossiping or along
another gradient).

5 Conclusion and Future Work

Aggregate Computing is a recent paradigm for “holistically” engineering CASs
and smart situated ecosystems, which aims to exploit, both functionally and
operationally, the increasing computational capabilities of our environments—
as fostered by driver scenarios like IoT, CPS, and smart cities. It formally builds
on computational fields and corresponding calculi to functionally compose macro
behavioural specifications that capture, in a declarative way, the adaptive logic
for turning local activity into global, resilient behaviour. In this paper, we have
introduced FScaFi, a core calculus that captures the essential features of ScaFi,
a recently developed Scala-internal aggregate programming DSL. In particular,
it leverages a novel notion of “computation against a neighbour” which enabled
seamless integration in the Scala language and type system.

In future work, we will formalise the FScaFi semantics (informally sketched
in this paper), its properties, and relation with the field calculus—mainly aimed
at proving analogous properties such as those in [10,11,41,42]. Additionally,
work on ScaFi is part of the research agenda for Aggregate Computing as com-
prehensively covered in [3], which includes the study of dynamic field computa-
tions, or aggregate processes [25] as well as the design and implementation of
aggregate computing runtime platforms [13,14]. Together, they could lead to the
emergence of a new platform for large-scale distributed systems deployment over
phyisical environments (such as the IoT), whereby distributed computations can
be dynamically injected, executed in a distributed way, and cooperate and com-
pete with each other to realise an ecosystem of adaptive services—developing on
the the vision of, e.g., [43].

References

1. Anderson, S., Bredeche, N., Eiben, A., Kampis, G., van Steen, M.: Adaptive col-
lective systems: herding black sheep (2013)

2. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the Internet of Things.
IEEE Comput. 48(9), 22–30 (2015)

3. Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini, D.: From
distributed coordination to field calculus and aggregate computing. J. Logical
Algebraic Methods Program. 109, 100486 (2019). https://doi.org/10.1016/j.jlamp.
2019.100486

https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.jlamp.2019.100486

358 R. Casadei et al.

4. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate:
languages for spatial computing. In: Mernik, M. (ed.) Formal and Practical Aspects
of Domain-Specific Languages: Recent Developments, chap. 16, pp. 436–501. IGI
Global (2013). https://doi.org/10.4018/978-1-4666-2092-6.ch016

5. Audrito, G., Viroli, M., Damiani, F., Pianini, D., Beal, J.: A higher-order calculus of
computational fields. ACM Trans. Comput. Logic 20(1), 5:1–5:55 (2019). https://
doi.org/10.1145/3285956

6. Beal, J., Bachrach, J.: Infrastructure for engineered emergence in sensor/actuator
networks. IEEE Intell. Syst. 21, 10–19 (2006)

7. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: the TOTA approach. ACM Trans. Softw. Eng. Methodol. 18(4), 1–56
(2009). https://doi.org/10.1145/1538942.1538945

8. Casadei, R., Pianini, D., Viroli, M.: Simulating large-scale aggregate MASs with
alchemist and scala. In: 2016 Federated Conference on Computer Science and Infor-
mation Systems (FedCSIS), pp. 1495–1504. IEEE (2016)

9. Pianini, D., Viroli, M., Beal, J.: Protelis: practical aggregate programming. In:
2015 ACM Symposium on Applied Computing, pp. 1846–1853 (2015)

10. Beal, J., Viroli, M., Pianini, D., Damiani, F.: Self-adaptation to device distribution
in the Internet of Things. ACM Trans. Auton. Adapt. Syst. 12(3), 12:1–12:29
(2017). https://doi.org/10.1145/3105758

11. Viroli, M., Audrito, G., Beal, J., Damiani, F., Pianini, D.: Engineering resilient col-
lective adaptive systems by self-stabilisation. ACM Trans. Model. Comput. Simul.
28(2), 16:1–16:28 (2018). https://doi.org/10.1145/3177774

12. Voelter, M.: DSL Engineering: Designing, Implementing and Using Domain-
Specific Languages. CreateSpace Independent Publishing Platform, Scotts Valley
(2013)

13. Viroli, M., Casadei, R., Pianini, D.: On execution platforms for large-scale aggre-
gate computing. In: Proceedings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing: Adjunct, pp. 1321–1326. ACM (2016)

14. Casadei, R., Viroli, M.: Programming actor-based collective adaptive systems. In:
Ricci, A., Haller, P. (eds.) Programming with Actors. LNCS, vol. 10789, pp. 94–
122. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00302-9 4

15. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend.
Packt, Birmingham (2016)

16. Efftinge, S., et al.: Xbase: implementing domain-specific languages for Java. In:
ACM SIGPLAN Notices, vol. 48, pp. 112–121. ACM (2012)

17. Vlissides, J.M.: Pattern Hatching: Design Patterns Applied. Addison-Wesley, Read-
ing (1998)

18. Ghosh, D.: DSL for the uninitiated. Commun. ACM 54(7), 44–50 (2011). https://
doi.org/10.1145/1965724.1965740

19. Hennicker, R., Klarl, A.: Foundations for ensemble modeling – the Helena app-
roach. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Soft-
ware. LNCS, vol. 8373, pp. 359–381. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54624-2 18

20. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.:
DEECO: an ensemble-based component system. In: Proceedings of the 16th Inter-
national ACM Sigsoft symposium on Component-Based software engineering, pp.
81–90. ACM (2013). https://doi.org/10.1145/2465449.2465462

21. Baude, F., Henrio, L., Ruz, C.: Programming distributed and adaptable
autonomous components-the GCM/ProActive framework. Softw.: Pract. Exp.
45(9), 1189–1227 (2015). https://doi.org/10.1002/spe.2270

https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.1145/3285956
https://doi.org/10.1145/3285956
https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1145/3105758
https://doi.org/10.1145/3177774
https://doi.org/10.1007/978-3-030-00302-9_4
https://doi.org/10.1145/1965724.1965740
https://doi.org/10.1145/1965724.1965740
https://doi.org/10.1007/978-3-642-54624-2_18
https://doi.org/10.1007/978-3-642-54624-2_18
https://doi.org/10.1145/2465449.2465462
https://doi.org/10.1002/spe.2270

FScaFi: A Core Calculus for Collective Adaptive Systems Programming 359

22. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to auto-
nomic systems programming: the SCEL language. ACM Trans. Auton. Adapt.
Syst. (TAAS) 9(2), 7:1–7:29 (2014). https://doi.org/10.1145/2619998

23. Alrahman, Y.A., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for
attribute-based communication. In: Proceedings of the 30th Annual ACM Sympo-
sium on Applied Computing, pp. 1840–1845 (2015)

24. De Nicola, R., Duong, T., Inverso, O., Trubiani, C.: AErlang: empowering erlang
with attribute-based communication. Sci. Comput. Program. 168, 71–93 (2018)

25. Casadei, R., Viroli, M., Audrito, G., Pianini, D., Damiani, F.: Aggregate processes
in field calculus. In: Riis Nielson, H., Tuosto, E. (eds.) COORDINATION 2019.
LNCS, vol. 11533, pp. 200–217. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-22397-7 12

26. Coore, D.: Botanical computing: a developmental approach to generating intercon-
nect topologies on an amorphous computer. Ph.D. thesis, MIT (1999)

27. Nagpal, R.: Programmable pattern-formation and scale-independence. In: Minai,
A.A., Bar-Yam, Y. (eds.) Unifying Themes in Complex Systems IV, pp. 275–282.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-73849-7 31

28. Viroli, M., Pianini, D., Beal, J.: Linda in space-time: an adaptive coordination
model for mobile ad-hoc environments. In: Sirjani, M. (ed.) COORDINATION
2012. LNCS, vol. 7274, pp. 212–229. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-30829-1 15

29. Mottola, L., Picco, G.P.: Logical neighborhoods: a programming abstraction for
wireless sensor networks. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R.
(eds.) DCOSS 2006. LNCS, vol. 4026, pp. 150–168. Springer, Heidelberg (2006).
https://doi.org/10.1007/11776178 10

30. Ni, Y., Kremer, U., Stere, A., Iftode, L.: Programming ad-hoc networks of mobile
and resource-constrained devices. ACM SIGPLAN Not. 40(6), 249–260 (2005)

31. Wada, H., Boonma, P., Suzuki, J.: A spacetime oriented macroprogramming
paradigm for push-pull hybrid sensor networking. In: 2007 16th International Con-
ference on Computer Communications and Networks, pp. 868–875. IEEE (2007)

32. Newton, R., Welsh, M.: Region streams: functional macroprogramming for sensor
networks. In: Workshop on Data Management for Sensor Networks, pp. 78–87
(2004)

33. Engstrom, B.R., Cappello, P.R.: The SDEF programming system. J. Parallel Dis-
trib. Comput. 7(2), 201–231 (1989)

34. Giavitto, J.-L., Michel, O., Cohen, J., Spicher, A.: Computations in space and space
in computations. In: Banâtre, J.-P., Fradet, P., Giavitto, J.-L., Michel, O. (eds.)
UPP 2004. LNCS, vol. 3566, pp. 137–152. Springer, Heidelberg (2005). https://
doi.org/10.1007/11527800 11

35. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001)

36. Audrito, G., Damiani, F., Viroli, M., Casadei, R.: Run-time management of compu-
tation domains in field calculus. In: IEEE International Workshops on Foundations
and Applications of Self* Systems, pp. 192–197. IEEE (2016). https://doi.org/10.
1109/FAS-W.2016.50

37. Lin, F.C.H., Keller, R.M.: The gradient model load balancing method. IEEE Trans.
Softw. Eng. 13(1), 32–38 (1987). https://doi.org/10.1109/TSE.1987.232563

38. Beal, J., Bachrach, J., Vickery, D., Tobenkin, M.: Fast self-healing gradients. In:
2008 Proceedings of ACM SAC, pp. 1969–1975. ACM (2008)

https://doi.org/10.1145/2619998
https://doi.org/10.1007/978-3-030-22397-7_12
https://doi.org/10.1007/978-3-030-22397-7_12
https://doi.org/10.1007/978-3-540-73849-7_31
https://doi.org/10.1007/978-3-642-30829-1_15
https://doi.org/10.1007/978-3-642-30829-1_15
https://doi.org/10.1007/11776178_10
https://doi.org/10.1007/11527800_11
https://doi.org/10.1007/11527800_11
https://doi.org/10.1109/FAS-W.2016.50
https://doi.org/10.1109/FAS-W.2016.50
https://doi.org/10.1109/TSE.1987.232563

360 R. Casadei et al.

39. Audrito, G., Casadei, R., Damiani, F., Viroli, M.: Compositional blocks for optimal
self-healing gradients. In: 11th IEEE International Conference on Self-Adaptive
and Self-Organizing Systems, SASO, pp. 91–100. IEEE Computer Society (2017).
https://doi.org/10.1109/SASO.2017.18

40. Viroli, M., Beal, J., Damiani, F., Pianini, D.: Efficient engineering of complex self-
organising systems by self-stabilising fields. In: 2015 IEEE 9th International Con-
ference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 81–90. IEEE,
September 2015. https://doi.org/10.1109/SASO.2015.16

41. Damiani, F., Viroli, M.: Type-based self-stabilisation for computational fields.
Logical Methods Comput. Sci. 11(4) (2015). https://doi.org/10.2168/LMCS-11(4:
21)2015

42. Audrito, G., Beal, J., Damiani, F., Viroli, M.: Space-time universality of field
calculus. In: Di Marzo Serugendo, G., Loreti, M. (eds.) COORDINATION 2018.
LNCS, vol. 10852, pp. 1–20. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-92408-3 1

43. Montagna, S., Viroli, M., Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Zam-
bonelli, F.: Injecting self-organisation into pervasive service ecosystems. Mobile
Netw. Appl. 18(3), 398–412 (2013). https://doi.org/10.1007/s11036-012-0411-1

https://doi.org/10.1109/SASO.2017.18
https://doi.org/10.1109/SASO.2015.16
https://doi.org/10.2168/LMCS-11(4:21)2015
https://doi.org/10.2168/LMCS-11(4:21)2015
https://doi.org/10.1007/978-3-319-92408-3_1
https://doi.org/10.1007/978-3-319-92408-3_1
https://doi.org/10.1007/s11036-012-0411-1

Writing Robotics Applications
with X-Klaim

Lorenzo Bettini1(B) , Khalid Bourr2(B), Rosario Pugliese1(B) ,
and Francesco Tiezzi2(B)

1 Dipartimento di Statistica, Informatica, Applicazioni,
Università degli Studi di Firenze, Florence, Italy
{lorenzo.bettini,rosario.pugliese}@unifi.it

2 School of Science and Technology, Computer Science Division,
Università di Camerino, Camerino, Italy

{khalid.bourr,francesco.tiezzi}@unicam.it

Abstract. Developing robotics applications is a demanding software
engineering challenge. Such a software has to perform multiple cooperat-
ing tasks in a well-coordinated manner in order to avoid unsatisfactory
behavior. In this paper, we define an approach for developing robot soft-
ware based on the integration of the programming language X-Klaim
and the popular robotics framework ROS. X-Klaim is a programming
language specifically devised to design distributed applications consisting
of software components interacting through multiple distributed tuple
spaces. Advantages of using X-Klaim in the robotics domain derive
from its high abstraction level, that allows developers to focus on robots’
behavior, and from its computation and communication model, which
is especially suitable for dealing with the distributed nature of robots’
architecture. We show the feasibility and the effectiveness of the pro-
posed approach by implementing a scenario involving a robot looking for
potential victims in a disaster area.

Keywords: Robotics applications · X-Klaim · Tuple spaces · ROS

1 Introduction

Autonomous robots are versatile machines increasingly used in many fields
in today’s society, while their capabilities are becoming ever more complex and
heterogeneous. They are software-intensive systems, whose software components
are typically deployed on a distributed and heterogeneous computing infras-
tructure, possibly with limited resources. Such software components interact in
real-time with a highly dynamic and uncertain environment through sensors and
actuators.

Developing robotics applications is currently among the most demanding
software engineering challenges [12,14,18,23]. Indeed, such a software has to

The work was supported by the PRIN project “SEDUCE” n. 2017TWRCNB.
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 361–379, 2020.
https://doi.org/10.1007/978-3-030-61470-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_22&domain=pdf
http://orcid.org/0000-0002-4481-8096
http://orcid.org/0000-0002-1419-1405
http://orcid.org/0000-0003-4740-7521
https://doi.org/10.1007/978-3-030-61470-6_22

362 L. Bettini et al.

perform the multiple cooperating tasks in a well-coordinated manner in order to
avoid unsatisfactory behavior that can even cause economic losses and threaten
safety. Moreover, since low-level details must be considered in the early phases,
robotic experts need very good programming skills or the help of programming
experts. In general, expertise from multiple domains needs to be integrated con-
ceptually and technically. Finally, robotic software is difficult to adapt to hard-
ware changes.

In the last few years, a variety of software libraries and middlewares have
been specifically developed by different research laboratories and universities
to assist and simplify the rapid prototyping of robotic applications. They offer
mechanisms for, e.g., real-time control, synchronous and asynchronous commu-
nication, abstract access to sensors and actuators. Many researchers have also
proposed using higher-level abstractions to drive the software development pro-
cess and then resorting to some tools for automatic generation of executable
code and system configuration files. This permits hiding the lower-level pro-
gramming details to robotic experts and helping them to focus on their own field
of expertise rather than on implementation. The use of a suitably abstract level
also supports better maintainability and reusability of software components, and
reduces the effort in understanding and modifying the software. Many proposals
in the literature are surveyed in [23]. We mention the domain-specific language
RobotML [14], enabling to describe robotics concerns with concepts and nota-
tions closer to the respective problem domain and to automate code generation.
We also mention the prototype framework CommonLang [26], exploiting model-
driven software engineering techniques to abstract away from underlying tech-
nologies and create executable code for different robotics platforms using code
generation.

Along this direction, in this paper we propose an approach for developing
robotics applications based on the integration of the programming language
X-Klaim, and its effective Eclipse-based IDE, with the ROS middleware.

X-Klaim1 (eXtended Klaim, originally introduced in [6] and reimplemented
from scratch in [8]) is based on the coordination language Klaim [13] specifically
devised to design distributed applications consisting of (possibly mobile) software
components interacting through multiple distributed tuple spaces. X-Klaim
code is compiled into Java code and executed on a standard JVM. Because of its
specific features, we envisage possible exploitation of the renewed X-Klaim as a
coordination language for developing modern ICT systems, in such domains as
robotics, IoT, Smart Cities, e-Health, etc. As a language, X-Klaim provides a
high level of abstraction, allowing developers to focus on robots’ behavior while
abstracting from technical details (e.g., the low-level commands sent to robots’
actuators and the management of events and data coming from robots’ sensors).
Moreover, as argued below, X-Klaim features many advantages for different
kinds of software architectures used in robotics systems [20]. Its computation and
communication model, inherited from Klaim, is particularly suitable for deal-
ing with the distributed nature of robots architecture, where the components

1 https://github.com/LorenzoBettini/xklaim.

https://github.com/LorenzoBettini/xklaim

Writing Robotics Applications with X-Klaim 363

(e.g. actuators and sensors) execute concurrently. Indeed, the X-Klaim com-
putation model permits to distribute an application across multiple threads of
execution or even multiple hardware platforms. Each application component
may have its own tuple space, that is a repository for storing anonymous data
and associatively retrieving them by means of a pattern-matching mechanism.
Application components communicate by means of their distributed tuple spaces,
where all data are stored and accessed by the components that are responsi-
ble for performing specific tasks. This model features ease of implementation
and low computational overhead. It ensures that components can operate inde-
pendently, and gather asynchronously the required data by accessing it from a
tuple space, without having to communicate directly with each other. If neces-
sary, the same data can be read by multiple components, without the need to
replicate them. Appropriate synchronizations among the application components
can be implemented still through the tuple spaces. By exchanging request and
response messages through the tuple spaces, a component can also act as a service
that replies with a response message once another component sends a request
message.

ROS2 (Robot Operating System [24]) is a well-known set of software libraries
and tools to build robotics applications. Since X-Klaim code is compiled
into Java and can interact with any existing Java library, we make use of
java_rosbridge3 to connect the code generated from an X-Klaim program with
the ROS server that enacts the publish/subscribe interactions of ROS compo-
nents. This allows us to use X-Klaim only for writing the code that controls the
robot’s behavior in a compact and readable way. We also abstract the typical
robot behaviors, described at ROS level by large pieces of code. Our framework
can be thought of as a proof-of-concept implementation for experimenting with
the applicability of the tuple space-based paradigm to robotics applications. For
illustrating the proposed approach, we consider a simple disaster scenario. To
show the execution of the generated code we use Gazebo4, an open-source sim-
ulator of robot behaviors in complex environments that is based on a robust
physics engine and provides a high-quality 3D visualization of simulations.

The rest of the paper is organized as follows. In Sect. 2, we provide some
background notions concerning the languages and the technologies at the basis
of our approach, while in Sect. 3 we present our approach. In Sect. 4 we (par-
tially) illustrate the implementation of a simple robotics scenario according to
the proposed approach. In Sect. 5 we discuss more strictly related work, while
in Sect. 6 we conclude and touch upon directions for future work.

2 https://www.ros.org/.
3 https://github.com/h2r/java_rosbridge.
4 http://gazebosim.org/.

https://www.ros.org/
https://github.com/h2r/java_rosbridge
http://gazebosim.org/

364 L. Bettini et al.

2 Background Notions

In this section, we briefly summarize some background notions concerning the
languages and the technologies at the basis of our approach. We refer the inter-
ested reader to the referred sources for a full account of each of them.

2.1 Klaim

Klaim (Kernel Language for Agents Interaction and Mobility, [13]) is a for-
mal language specially devised to design distributed applications consisting of
(possibly mobile) software components deployed over the nodes of a network
infrastructure. Although Klaim is based on process algebras [22], it builds on
the notion of generative communication introduced by the coordination lan-
guage Linda [19] and generalizes it to multiple distributed tuple spaces. A tuple
space is a shared data repository consisting of a multiset of tuples. Tuples are
anonymous sequences of data items that are associatively retrieved from tuple
spaces by means of a pattern-matching mechanism. Interprocess communication
occurs through asynchronous exchange of tuples via tuple spaces: processes can
indeed insert, read and withdraw tuples into/from tuple spaces. Communicating
processes are thus decoupled both in space and time as there is no need for pro-
ducers (i.e., senders) and consumers (i.e., receivers) of a tuple to synchronize.
Tuple spaces are identified by means of localities, that are symbolic addresses
of network nodes where processes and tuples can be allocated. Localities can
be exchanged through interprocess communication. They provide the naming
mechanism to represent the notion of administrative domain: computations at a
given locality are under the control of a specific authority.

A computational node of a Klaim network is characterized by its locality
and a collection of running processes.5 Processes, i.e., the active computational
units of Klaim, can be executed concurrently, either at the same locality or at
different localities. They are built up by composing basic actions acting on net-
work nodes, process variables and process calls, either sequentially or in parallel.
Process variables support higher-order communication, namely the capability to
exchange (the code of) a process and possibly execute it. Recursive behaviors
are modeled via calls to process definitions.

Figure 1 depicts a generic Klaim node and the basic actions which pro-
cesses are made of. In these actions, processes can use the distinguished local-
ity self to refer to their current hosting node. Action out(tuple)@nodeLocality
adds the tuple resulting from the evaluation of the argument tuple to the tuple
space of the target node identified by the (possibly remote) locality nodeLocal-
ity. A tuple is a sequence of actual fields, i.e., expressions, localities, or pro-

5 For the sake of presentation, we omit from the description of Klaim nodes the
distinction between physical and logical localities and, hence, the so called allocation
environment. The latter is a component of a node that acts as a name solver binding
logical localities, occurring in the processes hosted in the node, to specific physical
localities.

Writing Robotics Applications with X-Klaim 365

Fig. 1. A Klaim node.

cesses. In general, any of these fields can contain variables. Instead, an eval-
uated tuple must not contain variables. Thus, tuple evaluation only succeeds
when a tuple does not contain variables and amounts to computing the val-
ues of the expressions occurring in the tuple. Action in(template)@nodeLocality
(resp. read(template)@nodeLocality) withdraws (resp. reads) tuples from the
tuple space hosted at the (possibly remote) locality nodeLocality. If matching
tuples are found, one is non-deterministically chosen, otherwise, the process is
blocked. These retrieval actions exploit templates as patterns to select tuples
in a tuple space. Templates are sequences of actual and formal fields, where
the latter are used to bind variables to values, localities, or processes. Tem-
plates must be evaluated before they can be used for retrieving tuples. Their
evaluation is like that of tuples, where formal fields are left unchanged by the
evaluation. Intuitively, an evaluated template matches against an evaluated tuple
if both have the same number of fields and corresponding fields do match; two
values/localities match only if they are identical, while formal fields match any
value of the same type. A successful matching returns a substitution function
mapping the variables contained in the formal fields of the template to the values
contained in the corresponding actual fields of the accessed tuple. Such a substi-
tution is then applied to the process syntactically following the action. Action
eval(Process)@nodeLocality sends Process for execution to the (possibly remote)
node identified by nodeLocality. Finally, Klaim also provides an action for cre-
ating new network nodes, but we do not present it here as it is not exploited in
the paper.

2.2 Klava and X-Klaim

The implementation of Klaim basically consists of two main components:

– the Java package Klava (Klaim in Java, originally introduced in [4]);
– the programming language X-Klaim.

Klava provides the implementation of the Klaim tuple space operations
and concepts (such as nodes, nets, processes, etc.) in terms of classes and meth-
ods, relying on the IMC framework [3] for the communication infrastructure.

366 L. Bettini et al.

Any Java object can be stored into and retrieved from a Klava tuple and the
implemented pattern matching mechanism keeps Java subtyping into consider-
ation. Klava allows Java programmers to fully exploit Java mechanisms and
the libraries of its huge ecosystem, while using the Klaim programming model.
However, programmers have to deal with the verbosity of Java, which also makes
it hard to directly use Klaim primitives. Klava strives for making Java pro-
grammers’ life easier, but it has to obey the rules of Java. For this reason, we
also developed X-Klaim, a domain-specific language that is closer to Klaim
while providing typical high-level programming constructs. The X-Klaim com-
piler translates X-Klaim programs into Java code that uses the Java package
Klava. The produced Java code can be then compiled and executed using the
standard Java toolchain.

The versions of X-Klaim and Klava used in this paper are available as an
open source project. Sources and links to Eclipse update site and to complete
Eclipse distributions are available from: https://github.com/LorenzoBettini/
xklaim.

For the new implementation of X-Klaim we relied on Xtext [5], an Eclipse
framework for the development of programming languages and DSLs. Xtext
also provides a complete IDE support based on Eclipse: editor with syntax high-
lighting, code completion, error reporting and incremental building, just to men-
tion a few. Furthermore, we made use of another mechanism provided by Xtext,
that is, Xbase [17], an extensible and reusable expression language. By using
Xbase in X-Klaim, besides a rich Java-like syntax, we also inherit its inter-
operability with Java and its type system. In fact, an X-Klaim program can
seamlessly access any Java type and Java library available in the classpath of
the project. The interoperability with Java allowed us to seamlessly integrate
X-Klaim with java_rosbridge.

The syntax of Xbase is similar to Java, thus it should be easily understood
by Java programmers, but it removes much “syntactic noise” from Java. For
example, terminating semicolons are optional, as well as other syntax elements
like parenthesis when invoking a method without arguments. Moreover, Xbase
comes with a powerful type inference mechanism, compliant with the Java type
system: the programmer can avoid specifying types in declarations when they can
be inferred from the context. The X-Klaim compiler is completely integrated
into Eclipse: typical IDE mechanisms like content assist and code navigation
are available in the X-Klaim editor. The same holds for the automatic build-
ing mechanisms of Eclipse: saving an X-Klaim file automatically triggers the
Java code generation, which in turns triggers the generation of Java byte-code.
Notably, the X-Klaim integration in Eclipse, allows the programmer to debug
an X-Klaim program.

In the rest of this section we briefly describe the main features of X-Klaim
that are relevant for this paper. Thus, for example, we will not describe code
mobility features, as they are not used in this paper (the interested reader is
referred to [8] for more details).

https://github.com/LorenzoBettini/xklaim
https://github.com/LorenzoBettini/xklaim

Writing Robotics Applications with X-Klaim 367

An X-Klaim program can contain process, node and net definitions. All these
components can also be defined in separate files and can be referred through a
Java-like import mechanism.6

A process definition consists of a name, a list of parameters (using the Java
syntax for declaring parameters) and a body:

proc aProcess(... parameters ...) { ... body ... }

The body consists of Xbase expressions, whose syntax has been extended with
Klaim operations (that we will show in Sect. 4). Typical programming structures
such as if, while and OOP Java-like mechanisms, such as object creation and
method invocation, are already part of Xbase.

An X-Klaim network definition consists of net and node definitions as shown
in the following example:

net ANet {
node Node1 { ... start code ... }
node Node2 { ... start code ... }
...

}

In particular, the name of a node also represents its locality within the network.
Each node can specify some initialization code for creating and running a few
processes, as we will see in the example of Sect. 4. This is the simplest way of
specifying a flat network. X-Klaim also implements the hierarchical version of
the Klaim model as presented in [7], but we will not use it in this paper.

Fig. 2. ROS publish/subscribe mecha-
nism.

Fig. 3. Interaction with ROS robot.

2.3 ROS

Robotic Operating System (ROS)7 is one of the most sophisticated and popular
frameworks for writing robot software. It provides tools and libraries for simpli-
fying the development of complex and robust robot controllers while abstracting
from the underlying hardware. ROS works with more than a hundred robots,

6 Code completion is provided in the X-Klaim Eclipse editor for imports as well as
standard “Organize imports” mechanisms.

7 https://www.ros.org/.

https://www.ros.org/

368 L. Bettini et al.

ranging from autonomous cars to drones and humanoid robots, and integrates a
multitude of sensors.

The core element of the ROS framework is the message-passing middleware,
which enables hardware abstraction for a wide variety of robotic platforms. The
processes of a robotics application can exchange data, being agnostic with respect
to the source of the data. The communicated data can be sensor readings or
actuator commands, formatted in a standardized way, produced by or directed
to robot’s devices.

Although ROS supports different communication mechanisms, in this paper
we only use the most common one: the anonymous and asynchronous publish/-
subscribe mechanism. For sending a message, a process has to publish it in a
topic, which is a named and typed bus. A process that is interested in such
message has to subscribe to the topic. Whenever a new message is published in
the topic, the subscriber will be notified. This decouples the production of data
from its consumption. Multiple publishers and subscribers for the same topic
are allowed. The diagram in Fig. 2 illustrates this concept, while the one in
Fig. 3 shows how a robot controller interacts with the devices of a mobile robot
in a black-box, hardware-independent fashion. In the latter diagram, the con-
troller acts as both publisher and subscriber: it sends a message directed to the
wheels actuator and receives back a message containing the position the robot
has moved to. The topic /cmd_vel stands for command velocity. The topic /odom
stands for odometry, the technique used to estimate the change in position over
time from robot sensors data.

3 Our Approach and Framework

In this section we illustrate our approach, and the resulting software framework,
for programming robotics applications using X-Klaim and ROS.

The architecture of autonomous robots has a distributed nature, as it typi-
cally consists of different components, in particular sensors and actuators, that
cooperate with each other making use of a communication infrastructure. Their
software architecture reflects such a distribution and partitions the robot’s soft-
ware into parts, with specific relationships among them, working together as a
coherent whole. Robot components are thus managed by specialized processes
that may need to work on local data and can demand dedicated machines for
their execution.

This distributed architecture of the robot’s software is naturally rendered in
X-Klaim as a network where the different parts are deployed. As depicted in
Fig. 4, we typically have a controller node and several sensor and actuator nodes.
The latter nodes are not fixed once and for all. Rather, they can be dynamically
added or removed, and even equipped with different processes, in order to rep-
resent different robot types and configurations. To concretely program with the
X-Klaim language the behaviors of robots, we have integrated it with the ROS
middleware. The communication infrastructure of the integrated framework is
graphically depicted in Fig. 5.

Writing Robotics Applications with X-Klaim 369

Fig. 4. Software architecture of robots in X-Klaim.

Specifically, X-Klaim applications are indirectly connected with the ROS
framework by means of the Java library java_rosbridge. It provides Java
objects supporting publishing and subscribing over ROS topics. In its own turn,
java_rosbridge communicates with the ROS Bridge server, via the WebSocket
protocol, by means of the Jetty web server.8 The ROS Bridge server, indeed,
provides via WebSocket a JSON API to ROS functionality for external pro-
grams. This way, ROS receives and executes commands on the physical robot,
and gives feedback and sensor data. In addition, ROS can optionally interact
with the Gazebo simulator,9 via the ROS commutation mechanism (e.g., by
launching the simulator as a ROS node). The use of the simulator is not manda-
tory when ROS is deployed in a real robot; however, even in such a case, the

Fig. 5. The integrated framework.

8 Jetty 9: https://www.eclipse.org/jetty/.
9 This interaction is denoted in Fig. 5 by a white arrow, to stress its optionality.

https://www.eclipse.org/jetty/

370 L. Bettini et al.

Fig. 6. Example of a JSON message for the /cmd_vel topic.

design activity of the robot’s controller may benefit from the use of a simulator,
to save time and reduce the development cost.

A crucial role in the framework described above is played by JSON mes-
sages. Indeed, the use of JSON enables the interoperability of ROS with most
programming languages, including Java. As an example, we report in Fig. 6 a
Twist message in the JSON format published on the ROS topic /cmd_vel, pro-
viding information for moving the robot. This message expresses the velocity in
terms of its linear and angular parts, each of which defined as a vector.

4 X-Klaim at Work on a Robotics Scenario

For illustrating the proposed approach, in this section we show and briefly com-
ment a few interesting parts of the implementation of a simple robotics sce-
nario. The full source code can be found at https://github.com/LorenzoBettini/
xklaim-ros-example. It consists of an Eclipse/Maven project with X-Klaim code
(and its generated Java code), using java_rosbridge.10

The scenario that we consider involves a robot looking for potential victims in
a disaster area. By following a random walk, the robot explores an unknown, flat
environment where a number of obstacles are present while avoiding collisions
with them. As soon as the robot has localized a potential victim, it stops near
the victim and signals its position. The robot has a limited battery lifetime
and the battery’s state of charge is monitored during the course of the robot’s
activities. If the state of charge drops under a given threshold value, then the
robot stops searching for a victim and rather moves towards a charging station
whose position is known to it.

In Fig. 7 we show the whole network for our implementation of the scenario.
As discussed in Section 3, each part of the robot is rendered as an X-Klaim node,
whose name represents its locality (see Sect. 2.2). For each node we have one or
several processes that deal with the robot’s sensors (e.g., PositionSensor) or
with the robot’s moving parts (e.g., WheelsActuator). Each node creates pro-
cesses locally and executes them concurrently by means of the Klaim operation
eval. We have made a few processes parametric with respect to the localities,
so that they can be easily relocated to any node. This way, we could experiment
with different network configurations (see also Sect. 6). The most interesting

10 We ‘consume’ java_rosbridge and X-Klaim runtime libraries as Maven artifacts.

https://github.com/LorenzoBettini/xklaim-ros-example
https://github.com/LorenzoBettini/xklaim-ros-example

Writing Robotics Applications with X-Klaim 371

Fig. 7. The X-Klaim net of our example.

process under that respect is RobotController, which has to deal with several
robot’s components and so it takes such components’ localities as parameters.

The source code of the process RobotController is shown in Fig. 8. The
code should be easily readable by a Java programmer. Such types as Double,
Locality and Random (note the import statement) are actually Java types,
since, as mentioned above, X-Klaim programs can refer directly to Java types.
Note also that nextFloat is actually the Java method of the Java class Random.
Java static methods, like String.format, can be used as well; println is a
shortcut for the standard System.out.println. Variable declarations in Xbase
start with val or var, for final and non-final variables, respectively. The types of
variables can be omitted if they can be inferred from the initialization expression.
Note how Xbase removes much syntactic noise of Java. It also treats safely
operators such as ==, which, for objects like String, actually translates to a
call equals in the generated Java code. Here we also see the typical Klaim
operations, read, in and out, acting on possibly distributed tuple spaces. Formal
fields in a tuple are specified as variable declarations, since formal fields implicitly

372 L. Bettini et al.

Fig. 8. The X-Klaim RobotController process.

declare variables that are available in the code after in and read operations (just
like in Klaim).11

Besides that, the code of Fig. 8 basically relies on the Klaim tuple space
based communication. The controller first reads a local tuple containing the
“type” of step to perform and acts accordingly. The ‘normal’ behavior consists of
random walking in the working area. The controller creates the tuple indicating
the velocity broken in its linear and angular part, and inserts it in the obstacle
avoidance’s tuple space. If the level of the robot’s battery is too low, the robot
goes to a charging station. The controller retrieves the charge station position,
moves the robot to the charge station and waits for the completion of the charge.
Then, it replaces the low battery control step with the random walking one. If
a victim is found, the controller stops the movement by sending velocity 0 to
the wheels actuator. It then sends the current position to the rescuers (here it
simply prints out a message in the console with the position of the victim) and the
process terminates. During these actions the controller communicates with other

11 Non-blocking versions of in and read are also available: in_nb and read_nb, respec-
tively.

Writing Robotics Applications with X-Klaim 373

Fig. 9. The X-Klaim WheelsActuator process.

parts of the robot (i.e., with the corresponding X-Klaim processes) by means of
tuples inserted into or retrieved from specific tuple spaces, whose localities are
received as parameters. The localities wheels and positions correspond to the
next two processes we are going to describe.

The code of the process WheelsActuator is shown in Fig. 9. Here we can see
that X-Klaim code can also interact with Java libraries, like java_rosbridge.
In fact, we establish a bridge with the ROS Bridge WebSocket. In this case, we
create a ROS publisher (see Sect. 2.3) and we publish Twist messages (as the
one in Fig. 6). We do that after consuming a tuple containing the velocity data.

The code of the process PositionSensor is shown in Figure 10.
As before, we use the Java API provided by java_rosbridge. This time we

subscribe for a specific topic (we refer to java_rosbridge documentation for the
used API). The last argument is an Xbase lambda. Xbase lambda expressions
have the shape: [param1, param2, ... | body]. The types of the parame-
ters can be omitted if they can be inferred from the context. The lambda will be
executed when an event for the subscribed topic is received. In particular, the
lambda reads some data from the event (in JSON format) concerning “position”
and “orientation”, performs some computation (again, by using the standard Java
library) and uses the computed information to update the tuple space. The JSON
message format is dictated by ROS. On the contrary, for the tuples inserted in
the tuple space, we could have also defined a Java class, e.g., RobotPosition,
as a datatype for “position” tuples. Indeed, as explained in Section 2.2, any Java
object can be inserted in a tuple.

As already discussed in Sect. 3, the execution of an X-Klaim robotics appli-
cation requires the ROS Bridge server to run, providing a WebSocket connection
at a given URI. In the code of our example application, we consider the ROS
Bridge server running on the local machine (0.0.0.0) at the port 9090. Similarly,

374 L. Bettini et al.

Fig. 10. The X-Klaim PositionSensor process (imports are omitted).

Fig. 11. Execution of an X-Klaim robotics application.

Writing Robotics Applications with X-Klaim 375

to execute the code in a simulated environment and obtain a 3D visualization of
the execution, the Gazebo simulator has to be launched with the corresponding
robot description. At this point, our application can be executed by running
the Java class Main, which has been generated by the X-Klaim compiler. The
screenshot in Fig. 11 shows our X-Klaim robotics application in execution. Of
course, since the robot explores the disaster area randomly, executions are dif-
ferent from each other.

5 Related Work

More strictly related works are a couple of proposals using high-level languages
for producing ROS applications. In [1], an approach is proposed that aims at
creating nodes of ROS applications using a DSL based on the Python language.
This DSL can be used interactively, through the Python command line interface,
to create brand new ROS nodes and to reshape existing ROS nodes by wrapping
their communication interfaces. In [21], the tool ROSGen is described, which,
given as an input a specification of a ROS system architecture, generates a ROS
node model. This is a glue code written in a DSL, which specifies the ROS nodes
that compose the system and the topics that the nodes subscribe to and publish
on. This paper also proposes a demonstration that the code generation process
is amenable to formal verification, using the theorem prover Coq.

Other less specific works regard applications of Model-Driven Engineering
(MDE) and development of DSL for robotics applications. MDE [28] is consid-
ered by many robotics researchers to be a promising approach for simplifying
design, implementation and execution of software for robotics systems. MDE
advocates the use of domain-specific modeling languages (DSMLs) for expressing
robotics models through concepts that abstract away from the underlying tech-
nology and are closer to the problem domain. Many proposals in the literature
instantiate this approach, like e.g. the domain-specific language RobotML [14],
the model-based framework SafeRobots [25] and the prototype framework Com-
monLang [26]. In [15], a family of domain-specific languages for specifying mis-
sions of multi-robot systems is introduced. The proposed languages are organized
in different layers comprising languages conceived for the end-user describing
missions and the environmental context, an intermediate language describing
the detailed behavior of each robot (hidden to the user), and the robot language
containing the hardware and low-level specification of each type of robot within
the team. The authors claim that the layer managing the robot controller is
implemented using Java and ROS, which interact via java_rosbridge as in our
work. In [16], a domain-specific language for developing robot arm applications
is defined. Special attention is paid to the automatic generation of robot control
logic and to the validation and certification of software components. In [27], the
relationships between MDE and the service-oriented component-based develop-
ment approach in the robotics domain are discussed, and a software engineering
approach, called SmartSoft, resulting from their combination is illustrated. All
required and provided services of a SmartSoft component are built on top of a

376 L. Bettini et al.

small set of communication patterns, which connect the externally visible ser-
vices with the internally visible set of access methods for these services. This pro-
vides a completely middleware-independent view on the component ports and on
the communication interfaces visible to the user. From the modeling perspective,
the approach is supported by a UML-based notation, called SmartMARS, rep-
resenting the SmartSoft concepts independently of any implementation technol-
ogy. In [2], a model-driven toolchain for robotics software development, based on
the 3-View Component Meta-Model V3CMM, is introduced. It provides design-
ers with an expressive, yet simple, platform-independent modeling language for
component-based application design. The MDE approach permits generating
the code for specific platforms via model transformations, which allow program-
mers to progressively include application-dependent details. In [10], the BRICS
model-based development paradigm is proposed. This paradigm aims at pro-
viding robotics developers with a set of guidelines, meta-models and tools for
structuring the development of robotics software systems, without introducing
any framework or application-specific details. In [9], several MDE-based solu-
tions for software development in robotics are illustrated. This paper focuses
specifically on the architectural model as the central artifact of almost all soft-
ware development activities. In [23], the state of the art in DSMLs in robotics is
surveyed. This paper also provides an overview of subdomains relevant for pro-
gramming and simulation of robotics applications that are already supported
through the MDE approach. Finally, [29] shows that by relying on a suitably
designed transformation and verification architecture it is possible, also in such
critical environments like robotics systems, to mitigate the additional risk result-
ing from the automatic transformation from DSLs to code through the use of
so-called language workbenches.

We leave for future work a systematic comparison with the related literature,
also aimed at identifying the requirements of robotic applications and showing
the benefits of our approach. Anyhow, we want to point out that our work dif-
fers from the ones discussed above for the use of a high-level language with a
tuple-based communication mechanism. X-Klaim computation and communi-
cation model is particularly suitable for programming robot’s behavior. Indeed,
X-Klaim natively supports concurrent programming, which is required by the
distributed nature of robots’ software. In addition, communicating processes are
decoupled both in space and time and X-Klaim tuples permit to model both
raw data produced by sensors and aggregated information obtained from such
data. This allows programmers to specify the robot’s behavior at different levels
of granularity.

6 Concluding Remarks and Future Work

In this paper we have introduced an approach for developing robotics appli-
cations based on the programming language X-Klaim and the ROS middle-
ware. We consider this as a first exploratory attempt. We think that X-Klaim
has proved expressive enough to implement this first scenario. In particular,

Writing Robotics Applications with X-Klaim 377

X-Klaim integration with Java allowed us to seamlessly use the java_rosbridge
API directly in the X-Klaim code.

Further experimentation will be needed with application scenarios typical
of the robotics domain to allow us to assess whether the linguistic primitives
of X-Klaim are already sufficiently expressive or whether we need to equip
the language with further abstractions which better fit the problem domain. In
addition, a usability evaluation of the X-Klaim language will be also needed to
assess the benefits of using it in place of the traditional solutions for ROS-based
robotics applications (i.e., C++ and Python). Our long-term goal is the design of
a domain specific language for the robotics domain which, besides being used for
generating executable code, is integrated with automated reasoning tools that
can support application verification and analysis.

We also plan to extend our approach from single robot scenarios to collec-
tive ones. In this respect, we believe that the form of communication offered by
tuple spaces, supported by X-Klaim, which permits decoupling communicating
processes both in space and time, brings benefits for the scalability of collective
robotics systems in terms of the number of components and robots that can be
dynamically added. This would also permit to meet the open-endedness require-
ment (i.e., robots can dynamically enter or leave the system), which is crucial
in collective systems. The tuple space-based paradigm supported by X-Klaim
relies on Klava, which abstracts from the actual implementation of the tuple
space. Klava itself provides a default implementation where all tuples are stored
in a list, which has to be scanned sequentially when looking for a matching tuple.
Other optimized and ad-hoc implementations of tuple spaces can be injected into
Klava. We plan to experiment with such optimizations along the lines of [11].

In the extension from single to multi robots systems, we can take advantage
of the hierarchical version of the network model presented in [7], which is already
implemented in X-Klaim, as mentioned in Sect. 2.2. For example, this feature
will allow us to organize the components of a single robot in a flat network (as
in the current implementation of the example), and to structure the collective
system as a network of networks. Note that, as we stressed in Sect. 4, even in the
current shape, our processes are already independent from the actual physical
positions of the nodes, since they are parametric with respect to tuple space
localities.

Since runtime adaptation is another important capability of collective sys-
tems, we also plan to investigate to what extent we can benefit from X-Klaim
code mobility mechanisms to achieve adaptive behaviors in robotics applications.
For example, an X-Klaim process (a controller or an actuator) could dynami-
cally receive code from other possibly distributed processes containing the logic
to continue the execution.

Finally, in this work we have used the version 1 of ROS as a reference mid-
dleware for the proposed approach, because currently this seems to be most
adopted in practice. We plan anyway to extend our approach to the version 2
of ROS, which features a more sophisticated publish/subscribe system based on
the OMG DDS standard.

378 L. Bettini et al.

References

1. Adam, S., Schultz, U.P.: Towards interactive, incremental programming of ROS
nodes. In: Workshop on Domain-Specific Languages and Models for Robotic Sys-
tems (2014)

2. Alonso, D., Vicente-Chicote, C., Ortiz, F., Pastor, J., Álvarez, B.: V3CMM: a 3-
view component meta-model for model-driven robotic software development. J.
Softw. Eng. Rob. 1, 3–17 (2010)

3. Bettini, L., De Nicola, R., Falassi, D., Lacoste, M., Loreti, M.: A flexible and mod-
ular framework for implementing infrastructures for global computing. In: Kutvo-
nen, L., Alonistioti, N. (eds.) DAIS 2005. LNCS, vol. 3543, pp. 181–193. Springer,
Heidelberg (2005). https://doi.org/10.1007/11498094_17

4. Bettini, L., De Nicola, R., Pugliese, R.: KLAVA: a Java package for distributed
and mobile applications. Softw. Pract. Experience 32(14), 1365–1394 (2002)

5. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend, 2nd
edn. Packt Publishing, Birmingham (2016)

6. Bettini, L., De Nicola, R., Pugliese, R., Ferrari, G.L.: Interactive mobile agents in
X-Klaim. In: WETICE, pp. 110–117. IEEE Computer Society (1998)

7. Bettini, L., Loreti, M., Pugliese, R.: An infrastructure language for open nets. In:
SAC, pp. 373–377. ACM (2002)

8. Bettini, L., Merelli, E., Tiezzi, F.: X-Klaim is back. In: Boreale, M., Corradini, F.,
Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent and
Distributed Programming. LNCS, vol. 11665, pp. 115–135. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-21485-2_8

9. Brugali, D.: Model-driven software engineering in robotics: Models are designed to
use the relevant things, thereby reducing the complexity and cost in the field of
robotics. IEEE Robot. Autom. Mag. 22(3), 155–166 (2015)

10. Bruyninckx, H., Klotzbücher, M., Hochgeschwender, N., Kraetzschmar, G.K.,
Gherardi, L., Brugali, D.: The BRICS component model: a model-based devel-
opment paradigm for complex robotics software systems. In: SAC, pp. 1758–1764.
ACM (2013)

11. Buravlev, V., De Nicola, R., Mezzina, C.A.: Evaluating the efficiency of Linda
implementations. Concurr. Comput. Pract. Exp. 30(8) (2018)

12. De Nicola, R., Di Stefano, L., Inverso, O.: Toward formal models and languages
for verifiable multi-robot systems. Front. Rob. AI 5, 94 (2018)

13. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents
interaction and mobility. IEEE Trans. Software Eng. 24(5), 315–330 (1998)

14. Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.: RobotML, a domain-
specific language to design, simulate and deploy robotic applications. In: Noda, I.,
Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS (LNAI), vol.
7628, pp. 149–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34327-8_16

15. Di Ruscio, D., Malavolta, I., Pelliccione, P.: A family of domain-specific lan-
guages for specifying civilian missions of multi-robot systems. In: Proceedings of
MORSE@STAF. CEUR Workshop Proceedings, vol. 1319, pp. 16–29 (2014)

16. Djukic, V., Popovic, A., Tolvanen, J.: Domain-specific modeling for robotics: from
language construction to ready-made controllers and end-user applications. In:
Proceedings of MORSE@RoboCup, pp. 47–54. ACM (2016)

17. Efftinge, S., et al.: Xbase: implementing domain-specific languages for Java. In:
GPCE, pp. 112–121. ACM (2012)

https://doi.org/10.1007/11498094_17
https://doi.org/10.1007/978-3-030-21485-2_8
https://doi.org/10.1007/978-3-642-34327-8_16
https://doi.org/10.1007/978-3-642-34327-8_16

Writing Robotics Applications with X-Klaim 379

18. Frigerio, M., Buchli, J., Caldwell, D.G.: A domain specific language for kinematic
models and fast implementations of robot dynamics algorithms. In: Proceedings of
DSLRob’11. CoRR, vol. abs/1301.7190 (2013)

19. Gelernter, D.: Generative Communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

20. Houliston, T., et al.: NUClear: a loosely coupled software architecture for humanoid
robot systems. Front. Rob. and AI 3, 20 (2016)

21. Meng, W., Park, J., Sokolsky, O., Weirich, S., Lee, I.: Verified ROS-based deploy-
ment of platform-independent control systems. In: Havelund, K., Holzmann, G.,
Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 248–262. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-17524-9_18

22. Milner, R.: Communication and Concurrency. PHI Series in Computer Science.
Prentice Hall, Upper Saddle River (1989)

23. Nordmann, A., Hochgeschwender, N., Wigand, D., Wrede, S.: A survey on domain-
specific modeling and languages in robotics. J. Softw. Eng. Rob. 7, 75–99 (2016)

24. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Work-
shop on Open Source Software (2009)

25. Ramaswamy, A., Monsuez, B., Tapus, A.: SafeRobots: a model-driven approach
for designing robotic software architectures. In: Proceedings of CTS, pp. 131–134.
IEEE (2014)

26. Rutle, A., Backer, J., Foldøy, K., Bye, R.T.: CommonLang: a DSL for defining
robot tasks. In: Proceedings of MODELS 2018 Workshops. CEUR Workshop Pro-
ceedings, vol. 2245, pp. 433–442 (2018)

27. Schlegel, C., Steck, A., Lotz, A.: Model-driven software development in robotics:
communication patterns as key for a robotics component model. In: Introduction
to Modern Robotics, pp. 119–150. iConcept Press (2011)

28. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. IEEE Com-
put. 39(2), 25–31 (2006)

29. Voelter, M.: Using language workbenches and domain-specific languages for safety-
critical software development. In: Proceedings of SE/SWM. LNI, vol. P-292, pp.
143–144. GI (2019)

https://doi.org/10.1007/978-3-319-17524-9_18

Measuring Adaptability and Reliability
of Large Scale Systems

Valentina Castiglioni1(B), Michele Loreti2(B), and Simone Tini3(B)

1 Reykjavik University, Reykjavik, Iceland
valentinac@ru.is

2 University of Camerino, Camerino, Italy
michele.loreti@unicam.it
3 University of Insubria, Como, Italy
simone.tini@uninsubria.it

Abstract. In this paper we propose a metric approach to the analysis and ver-
ification of large scale self-organising collective systems. Typically, these sys-
tems consist of a large number of agents that have to interact to coordinate their
activities and, at the same time, have to adapt their behaviour to the dynamic
surrounding environment. It is then natural to apply a probabilistic modelling to
these systems and, thus, to use a metric for the comparison of their behaviours.
In detail, we introduce the population metric, namely a pseudometric measuring
the differences in the probabilistic evolution of two systems with respect to some
given requirements. We also use this metric to express the properties of adapt-
ability and reliability of a system, which allow us to identify potential critical
issues with respect to perturbations in its initial conditions. Then we show how
we can combine our metric with statistical inference techniques to obtain a math-
ematically tractable analysis of large scale systems. Finally, we exploitmean-field
approximations to measure the adaptability and reliability of large scale systems.

1 Introduction

The ever increasing complexity of the digital world has moved the focus of researchers
to new classes of systems that are characterised by a large number of interacting com-
ponents, or agents. These agents, when considered in isolation from the system, usually
show a rather simple behaviour. However, the interaction of a massive number of them
enables the desired complex behaviour of the system. Most prominent examples of this
class of systems are IoT systems [19], wireless sensors networks, and self-organising
collective systems [2] (SCS). The latter ones are characterised by a large number of
interacting agents that coordinate their activities in a decentralised and often implicit
way. Each agent may change its behaviour according to the current status of the other
agents in order to make the system reach its objectives. However, the dynamic behaviour
of a massive number of agents, and the potential interaction of the system with users
and physical phenomena, make these changes subject to uncertainties and unpredictable
events. For simplicity, given one agent, we call environment the ensemble of all other
agents, users and phenomena that can affect its behaviour. We are interested in ensuring
that the system, and thus each agent, is able to adjust its behaviour with respect to the
current environmental conditions in order to fulfil its tasks.
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 380–396, 2020.
https://doi.org/10.1007/978-3-030-61470-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_23&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_23

Measuring Adaptability and Reliability of Large Scale Systems 381

Due to the unpredictable behaviour of the environment, it is natural to employ a
probabilistic model for the formal specification of the behaviour of these systems. In
particular, we can use a discrete-time Markov chain (DTMC) to model the semantics
of each agent and, thus, of the system (see, e.g., [20]). When quantitative aspects of
systems behaviour are considered, we can use metrics for verification purposes [4,6,
8,14,15,23], as they allow us to quantify how far the current behaviour of a system is
from its intended one. In the literature, several formal frameworks have been proposed
for modelling and analysing SCS (see among others [7,13,25,31]). However, to the best
of our knowledge, so far there have been no proposals of a metric semantics for SCS.

Hence, our first contribution consists in filling this gap as we propose a metric app-
roach to the analysis and verification of large scale SCS. For the specification, we con-
sider the probabilistic model from [20]: agents are identical, at any point in time each
agent can be in any of finitely many states, and the evolution of the system proceeds in a
clock-synchronous fashion. As each agent can change its state probabilistically, at each
time step we obtain a probability distribution over the possible configurations of the
system. Therefore, we express system’s semantics in terms of its evolution sequence,
i.e., the sequence of probability distributions so obtained. Then, we introduce the popu-
lation metric, a (time-dependent) pseudometric measuring the differences between the
evolution sequences of systems. Besides the disparities in the probabilistic behaviour,
the distance considers the ability of systems to fulfil their tasks. The population metric
consists of two components: a metric on global states and the Wasserstein metric [29].
The former considers the global state of the system, i.e. the identification of the cur-
rent state of each agent, and is defined in terms of a (time-dependent) penalty function
comparing two global states only on the base of the objectives of the system (at a given
time). The latter lifts this metric to a metric on distributions over global states, and thus
on the evolution sequences of systems. We then exploit the population metric to define
the notions of adaptability and reliability of a system, allowing us to analyse its ability
to adjust its behaviour to perturbations in the initial environmental conditions.

As systems are constituted by a large number of agents, a direct evaluation of the
population metric is generally unfeasible. Hence, as our second contribution, we pro-
vide a randomised algorithm, based on statistical inference and on results in [26,28,30],
to compute the distance between two systems in time O(TR log(R)), where R is
the number of samples used to estimate the evolution sequences of the two systems,
and T denotes the number of comparisons performed between the estimated evolution
sequences, each one at a different time step. We then show an application of our algo-
rithm to evaluate the adaptability of a system in the balancing scenario from [5].

Nevertheless, when the number of agents increases dramatically, the proposed empir-
ical technique falls short of efficiency. For this reason, as our third contribution, we pro-
pose a modification of our randomised algorithm based on mean-field approximation
and the results in [21]. We express system’s evolution in terms of the changes in its
occupancy vector, whose elements correspond to the fraction of agents in a particular
state. In [21] it was proven that when the number of agents goes to infinity, the DTMC
capturing the evolution of the occupancy vector of the system can be approximated by a
deterministic process. This process corresponds to the deterministic solution of a set of
difference equations called mean-field, and it can be exploited to obtain a good estima-
tion of the behaviour of the entire system. As an application example, we evaluate the
adaptability of the system in the balancing scenario with an infinite number of agents.

382 V. Castiglioni et al.

2 Background

As general notational conventions, given a set X we let |X | denote its cardinality, and
given a vector x ∈ X n, we let x[i] denote the i-th component of x.

Metrics. A metric on a set X is a function m : X × X → R
≥0 with m(x1, x2) = 0 iff

x1 = x2, m(x1, x2) = m(x2, x1), and m(x1, x2) ≤ m(x1, x3) + m(x3, x2), for all
x1, x2, x3 ∈ X . We obtain a pseudometric by relaxing the first property to m(x1, x2) =
0 if x1 = x2. As elsewhere in the literature, as the difference in the two notions is not
relevant for our purposes, we will not distinguish between metrics and pseudometrics
and use the term metric as a general term to denote both. A metric m is l-bounded if
m(x1, x2) ≤ l for all x1, x2 ∈ X .

Probability distributions. Given a countable set X , a discrete probability distribu-
tion, henceforth simply distribution, over X is a mapping μ : X → [0, 1] such that∑

x∈X μ(x) = 1. The support of μ is the set supp(μ) = {x ∈ X | μ(x) > 0}. By
Δ(X) we denote the set of all distributions over X , ranged over by μ, π, μ′, . . . Given
an element x ∈ X , we let δx denote the Dirac (or point) distribution on x, defined by
δx(x) = 1 and δx(y) = 0 for all y �= x. For a finite set of indexes I , weights pi ∈ (0, 1]
with

∑
i∈I pi = 1 and distributions μi ∈ Δ(X) with i ∈ I , the distribution

∑
i∈I piμi

is defined by (
∑

i∈I piμi)(x) =
∑

i∈I pi · μi(x), for all x ∈ X .

Discrete-time Markov chains. A discrete-time Markov chain (DTMC) is a pair M =
〈X ,P〉 consisting in a countable set of states X and a |X | × |X | one step probability
matrix P such that Px,y expresses the probability of reaching state y from state x in
one computation step. Equivalently, we can define a Markov chain M as a stochastic
process {Xt}t∈N satisfying the Markov property, i.e., the probability of moving to the
next state depends only on the current state and not on the previous ones. Formally,

Pr(Xt+1 = x | X0 = x0, . . . ,Xt = xt) = Pr(Xt+1 = x | Xt = xt) = Pxt,x.

3 A Calculus of Interacting Agents

In this section we present a simple formalism that can be used to describe the behaviour
of N identical interacting agents. At any point in time, each agent can be in any of
its finitely many states and the evolution of the system proceeds in a clock-synchronous
fashion: at each clock tick each member of the population must either execute one of the
transitions that are enabled in its current state, or remain in such a state. The presented
formalism is a simple adaptation of the one introduced first in [21] and in [20].

Agent specifications. An agent specification consists of a triple 〈S,Act,D〉, where:
– S is a finite non-empty set of state constants, ranged over by A,A′, A1, . . .;
– Act is a countable non-empty set of actions, ranged over by a, a′, a1, . . .;
– D is a set of agent definitions associating each state constant Ai ∈ S with a summa-

tion of enabled actions:
Ai :=

∑

j∈Ji

aij .Aij ,

with Ji a finite index set, Ai, Aij ∈ S, and aij ∈ Act, for i ∈ I and j ∈ Ji.

Measuring Adaptability and Reliability of Large Scale Systems 383

Fig. 1. Behaviour of agents in Example 1.

We let Act(Ai) = {aij | j ∈ Ji} denote the set of actions enabled in state Ai. Notation∑
j∈Ji

aij .Aij can be thought of as the n-ary extension of the standard binary nonde-
terministic choice operator. We assume that aij �= aij′ whenever j �= j′ for j, j′ ∈ Ji.
Since S is finite we can assume, without loss of generality, that the state constants are
ordered and univocally identified by their index, namely S = {A1, . . . , A|S|}.

In order to show how this simple formalism can be used to model the behaviour of
a population of agents, and as a running example for an application of our results, we
consider the following balancing scenario from [5].

Example 1 (Balancing scenario). Let us consider a group of agents that can be either
red or blue. We want to guarantee that the two groups are balanced in size, without any
centralised control. Each agent can change its colour only by interacting with the other
participants in the systems. An agent of a given colour starts a transitional phase when
it meets another agent of the same colour. In this phase, if another agent with the same
colour is met, the agent changes its own. The transitional phase is cancelled when an
agent with a different colour is found. As typical of SCS, this procedure may never end.

The above behaviour is rendered via state constants B, R, RT and BT. The first two
states indicate a blue and a red agent, respectively; while the last two states describe an
agent in a transition phase. We let DRB be the following set of agent definitions:

B := blueSeen.BT BT := redSeen.B+ blueSeen.R

R := redSeen.RT RT := redSeen.B+ blueSeen.R

where action redSeen is performed when a red agent is met, while blueSeen indicates
that the colour of encountered agent is blue.

Finally, the agent specificationΣRB isΣRB = 〈SRB ,ActRB ,DRB〉, where SRB =
{B,R,BT,RT}, ActRB = {blueSeen, redSeen}, and DRB is the one defined above.

An agent specification can be also depicted via a graph as reported in Fig. 1. As
common in the literature, for Ai :=

∑
j∈J aj .Aj , we write Ai

aj−−→ Aj to denote that if
an agent in state Ai performs action aj then its state changes to Aj , for each j ∈ J .

Global states and occupancy vectors. An agent specification 〈S,Act,D〉 describes
the behaviour of a set of agents operating in a system. A configuration of a system
consists of any representation of the current states of the N agents in it. Two different

384 V. Castiglioni et al.

levels of abstraction for modelling configurations can be considered. The basic, and
more detailed, one is based on global states. This consists of a sequenceA in SN of the
form (Ai1 , . . . , AiN

), where Aik
is the current state of agent k, for each k = 1, . . . , N .

We refer to N as the population size, and we letA[k] denote the k-th element inA. The
state of each agent operating in the system is then univocally identified. Appropriate
syntactical shorthands will be used to denote system configurations. For instance, we
let 〈B[1000],R[0],BT[0],RT[0]〉 denote the configuration with only 1000 blue agents.

However, sometimes we can abstract from the precise state of each single agent
while we are interested in considering only the fraction of agents in each state. For
this reason, a configuration can be also represented via an occupancy vector associat-
ing each state with the fraction of agents in that state. An occupancy vector o is then
an element in U |S| = {u ∈ [0, 1]|S| | ∑|S|

i=1 u[i] = 1}, namely the unit simplex of
dimension |S|. We let OFS,N denote the function mapping each global state in SN to
the corresponding occupancy vector: OFS,N : SN → U |S| is defined for all A ∈ SN

by:

OFS,N (A)[i] =
1
N

N∑

k=1

1[A[k]=Ai]

where 1[A[k]=Ai] is 1 ifA[k] = Ai, and it is 0 otherwise, i = 1, . . . , |S|.
We call OFS,N the occupancy function on SN . We shall drop the subscripts S and

N from OFS,N when no confusion shall arise.

Probability functions. Let us consider an agent specification 〈S,Act,D〉 and a global
state A ∈ SN . The behaviour of A is modelled via a probabilistic process. Each agent
in A selects probabilistically the next action to perform. The probability of an agent in
a given state Ai to perform an action a ∈ Act(Ai) in the current time step depends on
the distribution of the current states of the other agents, and thus on OF(A). Clearly,
the changes in the distribution of the states of the agents induced by each computation
step entail a modification of the (probabilistic) behaviour of each agent at the next step
until an equilibrium is eventually reached.

Formally, as a first step in the definition of the dynamic behaviour of agents, we
assign a weight to each action in a global state A by means of a weight function
μS : U |S| ×Act → R. The weight function is built on the weight expressions E ∈ Exp,
defined according to the following grammar:

E:: = v | frc (A) | 〈uop〉E | E 〈bop〉E | (E)

Above v ∈ [0, 1] and for each state A ∈ S, frc (A) denotes the fraction of agents in
the system that are currently in state A out of the total number of objects N . Operators
〈uop〉 and 〈bop〉 are standard arithmetic unary and binary operators.

Each expression is interpreted over a u ∈ U |S| by means of an expressions inter-
pretation function �·�u : Exp → R defined as follows:

�v�u = v �frc (Ai)�u = u[i] �〈uop〉E�u = 〈uop〉 (�E�u)

�E1 〈bop〉E2�u = (�E1�u) 〈bop〉 (�E2�u) �(E)�u = (�E�u)

Measuring Adaptability and Reliability of Large Scale Systems 385

Hence, we can associate each action a ∈ Act with a weight expression Ea and define
the weight of action a with respect to an occupancy vector o by μS(o, a) = �Ea�o.

We say that a state A ∈ S is probabilistic in an occupancy vector o if

0 ≤
∑

a∈Act : A
a−→A′

μS(o, a) ≤ 1,

i.e., if the total weight assigned by μS to the actions enabled for A with respect to o is
non-negative and smaller than 1. Then, we say that μS is a probability function if all
the states in S are probabilistic in o, for any o ∈ U |S|. In the remainder of the paper we
shall consider only functions μS that are probability functions.

We shall drop the subscript S from μS when no confusion shall arise.

Example 2. For the red blue balancing scenario of Example 1, given an occupancy
vector o, we can consider the probability function μSRB

defined as follows:

μSRB
(o, blueSeen) = �α · (frc (B) + frc (BT))�o

μSRB
(o, redSeen) = �α · (frc (R) + frc (RT))�o,

with α a parameter in [0, 1] expressing the probability of an agent to see another agent.

Systems semantics. A system specification Σ is a tuple of the form 〈S,Act,
D, μS〉, where 〈S,Act,D〉 is an agent specification and μS is a probability function.
We let ΣN denote a system Σ composed by N agents.

As outlined above, the behaviour of a global state A ∈ SN can be described in
terms of the (probabilistic) evolution of the states of the agents. To this end, let us focus
on the behaviour of a single agent in its interaction with the others. Let o be an occu-
pancy vector in U |S|. The agent transition functionK is used to express the probability
under o of an agent in state Ai to change its state to Aj after one computation step.
Formally, we define K : U |S| × S × S → [0, 1] as follows:

K(u)Ai,Aj
=

⎧
⎪⎪⎨

⎪⎪⎩

∑

a∈I(Ai)

μS(u, a) if Ai �= Aj

1 −
∑

a∈I(Ai)

μS(u, a) if Ai = Aj

,

where I(Ai) = {a ∈ Act | ∃Aj ∈ S : Ai
a−→ Aj ∧ Ai �= Aj}.

As we are assuming that all the states in S are probabilistic in any occupancy vector
o, we can interpret K(o) as a one step |S| × |S| transition probability matrix, and call
it the agent transition matrix. Then, the second case in the definition ofK(o) expresses
the probability of an agent in state Ai to remain in that state after the clock tick.

Starting from K, we can define the probabilistic behaviour of global states via the
global state transition matrix P(N) : SN × SN → [0, 1] defined for allA,A′ ∈ SN as

P(N)
A,A′ =

N∏

k=1

K(OF(A))A[k],A
′
[k]

(1)

386 V. Castiglioni et al.

Fig. 2. Single simulation run of red-blue scenario. (Color figure online)

Since all states in S are probabilistic in any occupancy vector o, the |SN | × |SN |
matrixP(N) corresponds to the one step transition probability matrix of the (finite state)
DTMC modelling a possible single step of the system as result of the parallel execution
of a single step of each of the N agents In detail, given a global state A ∈ SN , we
define the evolution sequence of A as the sequence πA,0, . . . , πA,t, . . . of probability
distributions over SN such that πA,0 = δA and πA,t+1 = πA,tP(N), for each t > 0.
In this case, we letX(N)

A (t) denote the Markov chain with transition probability matrix

P(N) as above and X(N)
A (0) = A, i.e. with initial probability distribution δA. From

the Markov chain {X(N)
A (t)}t∈N we can obtain the occupancy DTMC {O(N)

A (t)}t∈N,
namely the Markov chain modelling the evolution in time of the occupancy vector of
the system. Intuitively, and with a slight abuse of notation, O(N)

A (t) corresponds to

OF(X(N)
A (t)) and its transition probability is defined by:

Pr{O(N)
A (t + 1) = o′ | O(N)

A (t) = OF(A)} =
∑

A′ : OF(A′)=o′
P(N)

A,A′ (2)

Notice that O(N) is well-defined: if OF(A) = OF(A′′), then A and A′′ are two per-
mutations of the same local states. Hence, for all A′ we have P(N)

A,A′ = P(N)
A′′,A′ .

Example 3. We can use the presented semantics to generate the stochastic process of
our system of Example 1. The result of the simulation of a single computational path
is reported in Fig. 2. There we consider an initial state composed by N = 100 agents
out of which 75 are in the state R and 25 are in the state B. We consider α = 0.5
(see Example 2). We can observe that, after few steps, the system is able to evolve
to balanced configurations. (Data have been obtained by using Spear Tool available at
https://github.com/quasylab/spear.)

4 Measuring the Adaptability and Reliability of Systems

In this section we provide the tools necessary to study and analyse the differences in the
dynamics of the systems described in the previous section. More precisely, we introduce

https://github.com/quasylab/spear

Measuring Adaptability and Reliability of Large Scale Systems 387

a metric over systems, called the population metric m, that quantifies the dissimilarities
over the evolution sequences of the initial configurations of the systems. The definition
of the population metric will then make use of a (time-dependent) metric on global
states, measuring the differences of each pair of global states with respect to some
parameters of interest, and of the Wasserstein metric, allowing for lifting the former
metric to probability distributions over global states. We then exploit the population
metric to define the notions of adaptability and reliability of a system, expressing how
well the system can adjust its behaviour with respect to changes in the initial conditions.

4.1 A Metric over Systems: The population Metric

A metric over global states. We start by proposing a metric over global states. This
metric expresses the distance between two given configurations by comparing them
with respect to some parameters representing the ideal, optimal behaviour of a system.
To this end, we introduce a penalty function ρ : SN → [0, 1], namely a function assign-
ing to each global state A ∈ SN a penalty in [0, 1] expressing how far the values of
the parameters on interest in A are from their desired ones. Intuitively, ρ(A) = 0 if
A respects all the parameters. Since some parameters can be time-dependent, so is the
penalty function: at any time step t, the t-penalty function ρt compares the global states
with respect to the values of the parameters expected at time t.

Example 4. In Example 1 one is interested in verifying that blue and red agents are
balanced. It is then natural to define a penalty function on SN

RB such that: (i) the penalty
is zero if the number of red agents is equal to the number of the blue ones; (ii) the
penalty is higher for less balanced systems, (iii) the penalty does not depend on time,
(iv) the penalty is a value in [0, 1].

Given the occupancy function OF of SN
RB , we set

ρt(A) =
∣
∣
(
OF(A)[B] + OF(A)[BT]

) − (
OF(A)[R] + OF(A)[RT]

)∣
∣,

for all t ∈ N, where, with a slight abuse of notation, we let OF(A)[A] denote the
component of the occupancy vector corresponding to state A, for A ∈ SRB .

The (timed) metric over global states is then defined as the difference between the
values assigned to them by the penalty function.

Definition 1 (Metric over global spaces). For any time step t, let ρt : SN → [0, 1] be
the t-penalty function on SN . The timed metric over global states in SN , mρ,t : SN ×
SN → [0, 1], is defined, for all global statesA1,A2 ∈ SN , by

mρ,t(A1,A2) = |ρt(A1) − ρt(A2)|.

When no confusion shall arise, we shall drop the ρ, t subscript. It is not hard to see
that for allA1,A2,A3 ∈ SN we have that (i) 0 ≤ m(A1,A2) ≤ 1, (ii) m(A1,A1) =
0, (iii) m(A1,A2) = m(A2,A1), and (iv) m(A1,A2) ≤ m(A1,A3) + m(A3,A2),
thus ensuring that m is well defined.

Proposition 1. Function m is a 1-bounded pseudometric over SN .

388 V. Castiglioni et al.

We remark that the use of the penalty functions allows us to define the distance
between two global states, which are elements in SN , in terms of a distance onR. As we
will discuss in Sect. 5, this feature significantly lowers the complexity of the evaluation
of the population metric. Moreover, thanks to the penalty function, the metric on global
states m could be directly generalised to a metric over SN1 ×SN2 with N1 �= N2, i.e., a
metric over global states of different dimensions. However, to simplify the presentation
in the upcoming sections and ease of notation, we preferred to consider only the case
of global states of the same dimension.

Lifting m to distributions. The second step in the definition of the population met-
ric consists in lifting m to a metric over probability distributions over global states.
In the literature, we can find a wealth of notions of distances over probability mea-
sures (see [22] for a survey). For our purposes, the most suitable one is theWasserstein
metric [29]. This metric has been applied in several different contexts, from image pro-
cessing to economics, and it is known under different names, accordingly. Among the
most prominent ones, we recall its use in optimal transport problems [30], where it is
called the Earth mover’s distance, and in the definition of bisimulation metrics (see
among others [6,10,14,15]), where it is usually referred to as the Kantorovich metric
[18]. More recently, the Wasserstein metric has been successfully implemented in pri-
vacy problems [9,11] and has found a wealth of applications in machine learning for
improving the stability of generative adversarial networks training [3,17,27].

Definition 2 (Wasserstein metric). For any two probability distributions μ, ν on SN ,
theWasserstein lifting of m to a distance between μ and ν is defined by

W(m)(μ, ν) = min
w∈W(μ,ν)

∑

A,A′∈SN

w(A,A′) · m(A,A′)

whereW(μ, ν) is the set of the couplings for μ and ν, i.e., the set of joint distributionsw
over the product space SN ×SN having μ and ν as left and right marginal respectively,
i.e.,

∑
A′∈SN w(A,A′) = μ(A) and

∑
A′∈SN w(A′,A) = ν(A), for all A ∈ SN .

Thus, the inifimum in Definition 2 is always achieved and it is, in fact, a minimum.
Due to the convexity of the Wasserstein lifting and in light of Proposition 1, we are

guaranteed that W(m) is a well-defined pseudometric.

Proposition 2. Function W(m) is a 1-bounded pseudometric over Δ(SN).

The population metric.We are now ready to lift the distanceW(m) to a distance over
systems, which we call the population metric. This is obtained from the comparison of
the evolution sequences of the initial configurations of two systems. To favour computa-
tional tractability, we will not compare all the probability distributions in the evolution
sequences, but only those that are reached at certain time steps, called the observa-
tion times (OT). To perform such a comparison, we propose a sort of weighted infinity
norm of the tuple of the Wasserstein distances between the distributions in the evolu-
tion sequences. More precisely, we consider a non-increasing function λ : OT → (0, 1]

Measuring Adaptability and Reliability of Large Scale Systems 389

allowing us to express howmuch the distance at time t, namelyW(mρ,t)(πA1,t, πA2,t),
affects the overall distance between global states A1 and A2. Following the terminol-
ogy used for behavioural metrics [1,16], we refer to λ as to the discount function, and
to λ(t) as to the discount factor at time t.

Definition 3 (Population metric). Assume a finite set OT of observation times, a
penalty function ρt : SN → [0, 1] for each t ∈ OT and a discount function λ : OT →
(0, 1]. The λ-population metric over OT, mλ

OT : SN × SN → [0, 1] is defined, for all
A1,A2 ∈ SN , by

mλ
OT(A1,A2) = sup

t∈OT
λ(t) · W(mρ,t)

(
πA1,t, πA2,t

)
.

We remark that although both mρ,t and mλ
OT are formally defined as metrics over

global states in SN , their expressive power is totally different. On one hand, mρ,t com-
pares the global statesA1 andA2 seen as static objects. In fact, mρ,t(A1,A2) is based
on the evaluation of ρt on the current states of A1 and A2. On the other hand, mλ

OT

compares A1 and A2 as dynamic objects. The distance mλ
OT(A1,A2) is in fact evalu-

ated by considering the evolution sequences of the two global states.
The following proposition is a direct consequence of Proposition 2.

Proposition 3. Function mλ
OT is a 1-bounded pseudometric over SN .

Notice that if λ is a strictly decreasing function, then it specifies how much the
distance of future events is mitigated and, moreover, it guarantees that to obtain upper
bounds on the population metric only a finite number of observations is needed.

Furthermore, as for the metric m, the population metric could be easily generalised
to a metric over systems composed by a different number of agents. For consistency
with the choice made for Definition 1, we considered only the simple case of systems
having the same number of agents. We leave as future work an in-depth analysis of the
population metric over SN1 ×SN2 , forN1 �= N2. In particular, our metric could be used
to measure the differences between the systems ΣN and ΣN+1, namely to analyse the
impact of the addition (or removal) of a single agent from the system.

4.2 System Adaptability and Reliability

We now apply the population metric to verify whether a system is able to adjust its
behaviour to changes in the initial conditions. For instance, we are interested in verify-
ing whether a small perturbation to the initial distribution of states produces a controlled
perturbation to the dynamics of the system. We express this kind of properties in terms
of the notions of adaptability and reliability of a system. The main difference between
these notions is in how time is taken into account.

The notion of adaptability imposes some constraints on the long term behaviour of
systems, disregarding their possible initial dissimilarities. Given the thresholds η1, η2 ∈
[0, 1) and an observable time t̃, we say that a system ΣN is adaptable around a global
stateA0 if whenever the computation is started from a global stateA′ that differs from
A0 for at most η1, then we are guaranteed that the distance that we can observe between
the evolution sequences of the two systems after time t̃ is bounded by η2.

390 V. Castiglioni et al.

Fig. 3. Function giving R samples of the evolution sequence ofA with time horizon T .

Definition 4 (Adaptability). Consider a system specification Σ over N agents. Let
t̃ ∈ OT and η1, η2 ∈ [0, 1). We say that ΣN is (t̃, η1, η2)-adaptable around A0 if

∀A′ ∈ SN with mρ,0(A0,A′) ≤ η1 it holds m
λ
{t∈OT|t≥t̃}(A0,A′) ≤ η2.

Roughly, ΣN is adaptable if whenever the starting conditions are changed, then ΣN

is able to return close to the original behaviour within the time threshold t̃. The notion
of reliability strengthens that of adaptability by bounding the distance on the evolution
sequences of systems from the beginning. A system is reliable if it ensures that small
variations in the initial conditions cause only bounded variations in its evolution.

Definition 5 (Reliability). Consider a system specification Σ over N agents. Let
η1, η2 ∈ [0, 1). We say that ΣN is (η1, η2)-reliable around stateA0 if

∀A′ ∈ N with mρ,0(A0,A′) ≤ η1 it holds mλ
OT(A0,A′) ≤ η2.

5 Statistical Estimation of Adaptability and Reliability

Given two evolution sequences one could explicitly compute the distance among them.
However, this approach is unfeasible when the number of agents in the involved states
increases. For this reason, in this section, we discuss an empirical technique that given
two global states A1 and A2 allows us to generate their evolution sequences and then
evaluate the distance between them. The same technique will be used to verify the
adaptability and reliability of a system around a given global stateA.

5.1 Computing Empirical evolution sequences

To compute the empirical evolution sequence of a global state A the function
ESTIMATE in Fig. 3 can be used. This function invokes R times function SIMULATE,
i.e., any simulation algorithm sampling a sequence of global states A0, . . . ,AT , mod-
elling T steps of a computation from A = A0. Then, a sequence of observations
O0, . . . ,OT is computed, where each Ot is the tuple A1

t , . . . ,A
R
t of global states

observed at time t in each of the R sampled computations. Each Ot can be used to

Measuring Adaptability and Reliability of Large Scale Systems 391

Fig. 4. Functions used to estimate the population metric on systems.

estimate the real probability distribution πA,t. For any t, with 0 ≤ t ≤ T , we let π̂R
A,t

be the probability distribution such that, for any A′ ⊆ SN , π̂R
A,t(A

′) = |A′|Ot

R where
|A′|Ot

denotes the number of occurrences of A′ in Ot. Since the R samples are i.i.d,
we can apply to them the weak law of large numbers, obtaining that π̂R

A,t converges
weakly to πA,t:

lim
R→∞

π̂R
A,t = πA,t. (3)

5.2 Computing Distance Between Two Configurations

We now evaluate the distance between the evolution sequences of two global statesA1

andA2 by exploiting the independent samples collected via function ESTIMATE. To this
end, we apply the approach of [26] to estimate the Wasserstein distance between two
(unknown) distributions. In order to approximate the distance W(mρ,t)(πA1,t, πA2,t),
for any 0 ≤ t ≤ T , we consider R independent samples O1,t = {A1

1, . . . ,A
R
1 } taken

from πA1,t and �R samples O2,t = {A1
2, . . . ,A

�R
2 } taken from πA2,t. We then apply

the t-penalty function ρt to them, obtaining the two sequences of values {ωl = ρt(Al
1) |

1 ≤ l ≤ R} and {νh = ρt(Ah
2) | 1 ≤ h ≤ �R}. Without loss of generality, we

can assume that ωl ≤ ωl+1 and νh ≤ νh+1, i.e., the two sequences are ordered. In
light of the next theorem, which is based on results from [26,28,30], we have that
W(mρ,t)(πA1,t, πA2,t) can be approximated by 1

�R

∑�R
h=1 |ω� h

� 	 − νh|, and that the
latter value converges to the real distance when R → ∞.

Theorem 1. Let πA1,t, πA2,t ∈ Δ(SN) be unkonwn. Let {A1
1, . . . ,A

R
1 } be indepen-

dent samples taken from πA1,t, and {A1
2, . . . ,A

�R
2 } independent samples taken from

πA2,t. Let {ωl = ρt(Al
1) | 1 ≤ l ≤ R} and {νh = ρt(Ah

2) | 1 ≤ h ≤ �R} be the
ordered sequences obtained from the samples and the t-penalty function. Then

W(mρ,t)(πA1,t, πA2,t)
a.s.= lim

R→∞
1

�R

�R∑

h=1

|ω� h
� 	 − νh|.

Functions DISTANCE and COMPUTEW in Fig. 4 realise the procedure outlined
above. The former takes as input the two global states to compare, the penalty func-
tion (seen as the sequence of the t-penalty functions), the discount function λ, the

392 V. Castiglioni et al.

bounded set OT of observation times, and the parameters R and � used to obtain
the samplings of the computations. It calls function ESTIMATE to collect the sam-
ples Ot of possible computations during the observation period [0,maxOT]. Then, for
each observation time t ∈ OT, the distance at time t is computed via the function
COMPUTEWO1,t,O2,t, ρt. Since the penalty function allows us to evaluate the Wasser-
stein distance on R, the complexity of function COMPUTEW is O(�R log(�R)) due to
the sorting of {νh | h ∈ [1, . . . , �R]} (cf. [26]).

Example 5. We use function COMPUTEW to evaluate the impact of a perturbation in
the initial configuration of the system in Example 3. There, we have considered an initial
state of the form A1 = 〈B[25],R[75],BT[0],RT[0]〉. Consider the new initial config-
uration A2 = 〈B[0],R[100],BT[0],RT[0]〉. Figure 5(a) shows the variation in time of
the distance between A1 and A2, for R = 100 and � = 10: after around 10 steps,
the two systems cannot be distinguished. Therefore, we can infer that, after around 10
steps, the actual distance between the two systems will be bounded by the approxima-
tion error eW = |W(mρ,10)(π̂100

A1,10, π̂
1000
A2,10) − W(mρ,10)(πA1,10, πA2,10)|. We refer

the interested reader to [24, Corollary 3.5, Equation (3.10)] for an estimation of eW.

5.3 Estimating Adaptability and Reliability

We can use a randomised algorithm to verify the adaptability and reliability of a system.
Given a global state A, a set OT of observation times and a given threshold η1 ≥ 0,
we can sample M variations {A1, . . . ,AM} of A such that, for any i = 1, . . . , M ,
mρ,0(A,Ai) ≤ η1. Then, for each sample we can estimate the distance between A
andAi at the different time steps in OT, namely mλ

{t∈OT|t≥t̃}(A,Ai) for any t̃ ∈ OT.

Finally, for each t̃ ∈ OT , we let Lt̃ = maxi{mλ
{t∈OT|t≥t̃}(A,Ai)}. We can observe

that, for the chosen η1, each Lt̃ gives us a lower bound to the t̃-adaptability of our
system. Similarly, for tmin = minOT t, Ltmin gives a lower bound for its reliability.

Example 6. Figure 5(b) shows the evaluation of Lt̃ for configuration A1 from Exam-
ple 3 with parameters M = 20 and η1 = 0.25. Observe that the initial perturbation is
not amplified and after 15 steps it is less than 0.05. Hence, our system of Example 3 is
(15, 0.25, η2)-adaptable around A1 for any η2 ≥ eW.

6 Mean-Field Approximation of Adaptability
and Reliability

When the number of agents increases dramatically, sampling the behaviour of each
global state may become unfeasible. Hence, in this section we strengthen our ran-
domised algorithm by means of mean-field approximation [21]. We have seen in Sect. 3
that we can express the behaviour of a system via the Markov chain {X(N)

A (t)}t∈N

taking values in SN . However, we can also abstract from the identity of each single
agent while focusing only on the fraction of agents in a given state, and model systems
behaviour via the occupancy DTMC, namely the Markov chain {O(N)

A (t)}t∈N taking

Measuring Adaptability and Reliability of Large Scale Systems 393

Fig. 5. Some experiments carried out with the Spear Tool.

values in U |S|. We recall that, for each N , the occupancy DTMC {O(N)
A (t)}t∈N is given

byO(N)
A (t) = OFS,N (X(N)

A (t)), with initial distribution δOFS,N (A).
In the following we use the fundamental result due to Le Boudec et al. [21] that

guarantees that when N goes to infinite, the Markov chain O(N)
A (t) converges to a

deterministic behaviour. Given a global state A ∈ SN , we let cA denote the global
state in ScN such that (cA)[γ·N+k] = A[k] for any 1 ≤ k ≤ N and 0 ≤ γ < c.
Intuitively, cA consists of c copies ofA and it is called a c-scale ofA. We can observe
that for any A ∈ SN and for any c ≥ 1, OFS,N (A) = OFS,cN (cA). Hence, for all
Ai, Aj ∈ S, K(OFS,N (A))Ai,Aj

= K(OFS,cN (cA))Ai,Aj
. Consequently, scaling a

state by a factor c has no effect on the behaviour of an agent since the probability to
select an action does not change. We can consider the sequence of occupancy DTMCs
{O(cN)

cA (t)} obtained by increasing the scale c of our system. By Theorem 4.1 of [21],
this sequence converges almost surely to the following deterministic process in U |S|:

– DA(0) = O(N)
A (0);

– DA(t + 1) = DA(t) · K(DA(t)).

394 V. Castiglioni et al.

In other words,
lim

c→∞O(cN)
cA (t) = DA(t) (4)

Example 7. In Fig. 5c we can observe how when the scale of the system of Example 3
is increased (we consider N = 100, N = 1000 and N = 10000), the single sampled
simulation run gets close to the mean-field approximation.

We say that a penalty function ρ : SN → [0, 1] is scale invariant if there exists
a function ρo : U |S| → [0, 1] such that ρ(A) = ρo(OFS,N (A)). We can use mean-
field approximation to study the adaptability and reliability around a given stateA with
respect to a scale invariant penalty function.

Proposition 4. Assume a penalty function ρt that is scale invariant for each t ∈ N. Let
mλ

OT be the population metric defined on mρ,t. Then,

lim
c→∞mλ

OT(cA1, cA2) = sup
t∈OT

λ(t) · |ρo(DA1(t)) − ρo(DA2(t))|. (5)

We let mfλOT(A1,A2) = supt∈OT λ(t) · |ρo(DA1(t)) − ρo(DA2(t))|.
The same randomised algorithm outlined in Sect. 5.3 can be adapted to estimate

adaptability and reliability via mean-field approximation. Given a global state A, a
set OT of observation times and a threshold η1 ≥ 0, we can sample M variations
{A1, . . . ,AM} of A, such that for any i, mρ,0(A,Ai) ≤ η1. Then, for each sampled
global state we can compute the distance between A and Ai by using their mean field
approximants DA1(t) and DA2(t). Finally, a lower bound to the t̃-adaptability of our
system can be computed as Lt̃ = maxi{mfλ{t∈OT|t≥t̃}(A,Ai)}. Similarly, for tmin =
minOT t, Ltmin gives a lower bound for its reliability.

Example 8. Figure 5d shows the evaluation of Lt̃ for configurationA1 from Example 3
with parameters M = 20 and η1 = 0.25. Observe that the initial perturbation is not
amplified and after 15 steps it is absorbed. Hence, while we increase the scale of our
system, we can guarantee that it is (15, 0.25, η2)-adaptable aroundA1 for any η2 ≥ eW.

7 Concluding Remarks

We have proposed the population metric, a pseudometric allowing us to compare the
behaviour of self-organising collective systems. This metric quantifies the differences in
the evolution sequences of two systems, i.e., the sequences of probability distributions
over global states describing the (probabilistic) behaviour of each system. Then we
have provided a randomised algorithm for the evaluation of the metric over large scale
systems. Moreover, we have shown how we can use the population metric to verify the
properties of adaptability and reliability of system, expressing its ability of adjusting
its behaviour to perturbations in its initial configuration. We have then modified our
algorithm to obtain an estimation of the adaptability and reliability of a system via
mean-field approximations.

In this work we have considered a discrete-time approach to systems modelling.
Hence, as future work, it would be interesting to provide an adaptation of our framework

Measuring Adaptability and Reliability of Large Scale Systems 395

to system with a continuous model of time. In particular, we could exploit the fluid-flow
approximation based on [12], in place of the mean-field one, to deal with system with a
dramatically large population. Another interesting direction for future research, would
be to use our metric to analyse systems with a different number of agents. From the
technical point of view, our definitions and results can be directly lifted to cover this
case. However, it would allow us to analyse the impact of a new agent (or a new set of
agents) on the dynamics of the system. Finally, we could extend our metric approach to
study other properties than adaptability and reliability, and thus obtain some measures
on systems performance.

References

1. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems theory. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol.
2719, pp. 1022–1037. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-
0 79

2. Anderson, S., Bredeche, N., Eiben, A., Kampis, G., van Steen, M.: Adaptive collective sys-
tems: herding black sheep. Bookprints (2013)

3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Pro-
ceedings of ICML 2017, pp. 214–223 (2017). http://proceedings.mlr.press/v70/arjovsky17a.
html

4. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On the total variation distance of semi-
Markov chains. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 185–199. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46678-0 12

5. Bortolussi, L., Hillston, J., Loreti, M.: Fluid approximation of broadcasting systems. Theoret.
Comput. Sci. 816, 221–248 (2020). https://doi.org/10.1016/j.tcs.2020.02.020

6. Breugel, F.: A behavioural pseudometric for metric labelled transition systems. In: Abadi,
M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 141–155. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11539452 14

7. Bures, T., Plasil, F., Kit, M., Tuma, P., Hoch, N.: Software abstractions for component inter-
action in the internet of things. Computer 49(12), 50–59 (2016)

8. Castiglioni, V.: Trace and testing metrics on nondeterministic probabilistic processes. In:
Proceedings of EXPRESS/SOS 2018. EPTCS, vol. 276, pp. 19–36 (2018). https://doi.org/
10.4204/EPTCS.276.4

9. Castiglioni, V., Chatzikokolakis, K., Palamidessi, C.: A logical characterization of differen-
tial privacy via behavioral metrics. In: Bae, K., Ölveczky, P.C. (eds.) FACS 2018. LNCS, vol.
11222, pp. 75–96. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02146-7 4

10. Castiglioni, V., Loreti, M., Tini, S.: The metric linear-time branching-time spectrum on non-
deterministic probabilistic processes. Theoret. Comput. Sci. 813, 20–69 (2020). https://doi.
org/10.1016/j.tcs.2019.09.019

11. Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L.: Generalized bisimulation metrics.
In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 32–46. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44584-6 4

12. Darling, R., Norris, J.: Differential equation approximations for Markov chains. Probab.
Surv. 5, 37–79 (2008). https://doi.org/10.1214/07-PS121

13. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic systems
programming: the SCEL language. ACM Trans. Auton. Adapt. Syst. 9(2), 7:1–7:29 (2014).
https://doi.org/10.1145/2619998

https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/3-540-45061-0_79
http://proceedings.mlr.press/v70/arjovsky17a.html
http://proceedings.mlr.press/v70/arjovsky17a.html
https://doi.org/10.1007/978-3-662-46678-0_12
https://doi.org/10.1016/j.tcs.2020.02.020
https://doi.org/10.1007/11539452_14
https://doi.org/10.4204/EPTCS.276.4
https://doi.org/10.4204/EPTCS.276.4
https://doi.org/10.1007/978-3-030-02146-7_4
https://doi.org/10.1016/j.tcs.2019.09.019
https://doi.org/10.1016/j.tcs.2019.09.019
https://doi.org/10.1007/978-3-662-44584-6_4
https://doi.org/10.1214/07-PS121
https://doi.org/10.1145/2619998

396 V. Castiglioni et al.

14. Deng, Y., Chothia, T., Palamidessi, C., Pang, J.: Metrics for action-labelled quantitative tran-
sition systems. Electron. Not. Theoret. Comput. Sci. 153(2), 79–96 (2006). https://doi.org/
10.1016/j.entcs.2005.10.033

15. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labeled Markov sys-
tems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 258–273.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48320-9 19

16. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov pro-
cesses. Theoret. Comput. Sci. 318(3), 323–354 (2004). https://doi.org/10.1016/j.tcs.2003.09.
013

17. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of
Wasserstein GANs. In: Proceedings of Advances in Neural Information Processing Systems,
pp. 5767–5777 (2017). http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-
gans

18. Kantorovich, L.V.: On the transfer of masses. Dokl. Akad. Nauk 37(2), 227–229 (1942)
19. Kopetz, H.: Internet of things. In: Kopetz, H. (ed.) Real-Time Systems. Real-Time Systems

Series, pp. 307–323. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-8237-
7 13

20. Latella, D., Loreti, M., Massink, M.: On-the-fly PCTL fast mean-field approximated model-
checking for self-organising coordination. Sci. Comput. Program. 110, 23–50 (2015). https://
doi.org/10.1016/j.scico.2015.06.009

21. Le Boudec, J.Y., McDonald, D., Mundinger, J.: A generic mean field convergence result for
systems of interacting objects. In: Proceedings of QEST 2007, pp. 3–18. IEEE Computer
Society (2007). https://doi.org/10.1109/QEST.2007.8

22. Rachev, S.T., Klebanov, L.B., Stoyanov, S.V., Fabozzi, F.J.: The Methods of Distances in
the Theory of Probability and Statistics. Springer, New York (2013). https://doi.org/10.1007/
978-1-4614-4869-3

23. Song, L., Deng, Y., Cai, X.: Towards automatic measurement of probabilistic processes. In:
Proceedings of QSIC 2007, pp. 50–59 (2007). https://doi.org/10.1109/QSIC.2007.65

24. Sriperumbudur, B.K., Fukumizu, K., Gretton, A., Schölkopf, B., Lanckriet, G.R.G.: On the
empirical estimation of integral probability metrics. Electron. J. Stat. 6, 1550–1599 (2021).
https://doi.org/10.1214/12-EJS722

25. Talcott, C., Nigam, V., Arbab, F., Kappé, T.: Formal specification and analysis of robust
adaptive distributed cyber-physical systems. In: Bernardo, M., De Nicola, R., Hillston, J.
(eds.) SFM 2016. LNCS, vol. 9700, pp. 1–35. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-34096-8 1

26. Thorsley, D., Klavins, E.: Approximating stochastic biochemical processes with Wasserstein
pseudometrics. IET Syst. Biol. 4(3), 193–211 (2010). https://doi.org/10.1049/iet-syb.2009.
0039

27. Tolstikhin, I.O., Bousquet, O., Gelly, S., Schölkopf, B.: Wasserstein auto-encoders. In: Pro-
ceedings of ICLR 2018 (2018). https://openreview.net/forum?id=HkL7n1-0b

28. Vallender, S.S.: Calculation of the Wasserstein distance between probability distributions on
the line. Theory Probab. Appl. 18(4), 784–786 (1974)

29. Vaserstein, L.N.: Markovian processes on countable space product describing large systems
of automata. Probl. Peredachi Inf. 5(3), 64–72 (1969)

30. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71050-9

31. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Collective
Autonomic Systems. LNCS, vol. 8998. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-16310-9

https://doi.org/10.1016/j.entcs.2005.10.033
https://doi.org/10.1016/j.entcs.2005.10.033
https://doi.org/10.1007/3-540-48320-9_19
https://doi.org/10.1016/j.tcs.2003.09.013
https://doi.org/10.1016/j.tcs.2003.09.013
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans
https://doi.org/10.1007/978-1-4419-8237-7_13
https://doi.org/10.1007/978-1-4419-8237-7_13
https://doi.org/10.1016/j.scico.2015.06.009
https://doi.org/10.1016/j.scico.2015.06.009
https://doi.org/10.1109/QEST.2007.8
https://doi.org/10.1007/978-1-4614-4869-3
https://doi.org/10.1007/978-1-4614-4869-3
https://doi.org/10.1109/QSIC.2007.65
https://doi.org/10.1214/12-EJS722
https://doi.org/10.1007/978-3-319-34096-8_1
https://doi.org/10.1007/978-3-319-34096-8_1
https://doi.org/10.1049/iet-syb.2009.0039
https://doi.org/10.1049/iet-syb.2009.0039
https://openreview.net/forum?id=HkL7n1-0b
https://doi.org/10.1007/978-3-540-71050-9
https://doi.org/10.1007/978-3-540-71050-9
https://doi.org/10.1007/978-3-319-16310-9
https://doi.org/10.1007/978-3-319-16310-9

Centrality-Preserving Exact Reductions
of Multi-Layer Networks

Tatjana Petrov(B) and Stefano Tognazzi(B)

University of Konstanz, Konstanz, Germany
{tatjana.petrov,stefano.tognazzi}@uni-konstanz.de

Abstract. Multi-Layer Networks (MLN) generalise the traditional, sin-
gle layered networks, by allowing to simultaneously express multiple
aspects of relationships in collective systems, while keeping the descrip-
tion intuitive and compact. As such, they are increasingly gaining popu-
larity for modelling Collective Adaptive Systems (CAS), e.g. engineered
cyber-physical systems or animal collectives. One of the most important
notions in network analysis are centrality measures, which inform us
about the relative importance of nodes. Computing centrality measures
is often challenging for large and dense single-layer networks. This chal-
lenge is even more prominent in the multi-layer setup, and thus motivates
the design of efficient, centrality-preserving MLN reduction techniques.
Network centrality does not naturally translate to its multi-layer coun-
terpart, since the interpretation of the relative importance of nodes and
layers may differ across application domains. In this paper, we take a
notion of eigenvector-based centrality for a special type of MLNs (mul-
tiplex MLNs), with undirected, weighted edges, which was recently pro-
posed in the literature. Then, we define and implement a framework
for exact reductions for this class of MLNs and accompanying eigenvec-
tor centrality. Our method is inspired by the existing bisimulation-based
exact model reductions for single-layered networks: the idea behind the
reduction is to identify and aggregate nodes (resp. layers) with the same
centrality score. We do so via efficient, static, syntactic transformations.
We empirically demonstrate the speed up in the computation over a
range of real-world MLNs from different domains including biology and
social science.

Keywords: Multi-Layer Networks · Centrality measures · Model
reduction · Efficient algorithms

1 Introduction

Traditional network analysis has facilitated key developments in research on Col-
lective Adaptive Systems (CAS). CAS are a focus of important research efforts of
today, such as ensuring the safety of cyber-physical systems, planning for smart
cities, or understanding animal collective behaviour. These systems consist of
a large number of entities which continuously interact with each other and the
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 397–415, 2020.
https://doi.org/10.1007/978-3-030-61470-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_24&domain=pdf
http://orcid.org/0000-0002-9041-0905
https://doi.org/10.1007/978-3-030-61470-6_24

398 T. Petrov and S. Tognazzi

environment, they self-organise and often give rise to a system-level dynamics,
emergent behaviours, which can not be seen by studying individuals in isola-
tion. Network representation of a collective system is intuitive, and it allows to
reason over the different aspects of the modelled system, e.g. information flows,
or its evolution over time. Network analysis often centers around classification
of network components – nodes, edges etc. – wrt. different importance notions.
Importance is defined through a centrality measure, and different algorithms for
computing such measures have been proposed over time. A centrality measure
is a real-valued function which associates nodes to their importance and, there-
fore, allows to rank them accordingly. Historically, the Bonacich index [5,6] (most
often referred to as eigenvector centrality) and other extensions inspired by the
Bonacich index such as Katz centrality [31] and PageRank [42] played a promi-
nent role in network analysis. Other measures of centrality are based accordingly
on different factors such as shortest paths [28], diffusion capability [1] and nodes
with high contagion potential [14]. Although each of these notions measure dif-
ferent features of the nodes, they share common mathematical traits [4].

However, the traditional, single-layered networks allow to capture only one
type of interaction among nodes. In many real-world scenarios, relations among
individuals have multiple facets: in social networks, the same individuals may
communicate via multiple communication platforms (i.e., they can use different
online social networks to spread and gather information [54]). During epidemics,
individuals interact both in the physical world, in which they spread the infec-
tion, and in a virtual communication network, where awareness about the dis-
ease is spread [26]. Moreover, animals belonging to the same collective (herd,
fish school, etc.) can relate to each other differently through different activi-
ties such as grooming, social aggregation, foraging, as shown for baboons [2,23],
dolphins [25] and birds [21].

Any finite, discrete number of different communication aspects among a set
of agents, can be formally captured by adding typed edges or edge colours to the
network description. Enriching the network formalism with multiple views/layers
results in a multi-layer network (MLN) [17]. MLNs offer a novel way to model
interactions among the components of a system as connected layers of differ-
ent types of interactions. General MLNs allow for stacking up a collection of
graphs over possibly different node-sets, through arbitrary coupling relation-
ships between pairs of layers. In this work, we focus on a class of MLNs called
multiplex networks. A multiplex is a collection of graphs over the same set of
nodes but different edge sets, each of which is modelling a different type of inter-
action. Single-layer Networks are conveniently represented as matrices and many
tools from matrix analysis have proven to be useful in identifying important net-
work components. Along these lines, multiplex MLNs can be represented using
tensors.

Carrying over the theory from network analysis to MLNs is desirable but
non-trivial: most of the notions and concepts that are fundamental for single-
layer network centrality do not naturally translate to its multi-layer counterpart,
since the interpretation of the relative importance of nodes and layers may differ

Centrality-Preserving Exact Reductions of Multi-Layer Networks 399

across application domains. For instance, in an effort to extend the Bonacich
index to MLNs, several eigenvector-based centrality measures have been defined
for multiplexes in the last few years [3,18,19,46]. In this work, we focus on the
extension presented in [50] which is based on eigenvector centrality for undirected
and (potentially) weighted multiplex MLNs. Among the large variety of method-
ologies for single-layer network analysis [29] such as clustering [7], blockmodel-
ing [8] and role-equivalent partitioning [35,53], we here aim for exact, centrality-
preserving network reduction. In general, model reduction techniques aim to
provide a smaller or simpler dynamical model from the original one. Reductions
are exact, when they guarantee an exact, provable relationship between their
respective solutions, without error (otherwise, the reductions are approximate,
when the error is either guaranteed or estimated). Exact, centrality-preserving
network reduction was proposed in the context of single-layer networks [48].
This method is based on efficient model reduction framework for more gen-
eral dynamical systems [27,49]; The core of these frameworks is based on an
efficient partition-refinement procedure of Paige and Tarjan [43]. More specif-
ically, some model reduction techniques based on lumping states have shown
to preserve centrality properties of single-layer networks (such as Eigenvector
centrality, Katz centrality and PageRank centrality) while, at the same time,
relating to a variety of notions from different fields: exact role assignment [53],
equitable partitions [37,38], lumpability [22,24] and bisimulation [44,51].

In this work, we define and implement a framework for exact model reduction
of multiplex MLNs, by lumping states and layers. Reduction is designed so to
preserve the eigenvector centrality for multiplex MLNs, defined in [50] (i.e., two
nodes equivalent in the ODEs enjoy the same eigenvector centrality). While
our proposed framework directly extends the concept used in [48] for single-
layer networks, the major technical challenge arising in the multi-layer setup is
that the iterative scheme for computing eigenvector centrality for MLNs contains
non-linear terms. In addition, two real-valued exponents, introduced to guarantee
convergence, require additional care when lifting from the reduced solution to the
original one. The relevance of our framework is demonstrated by benchmarking
over a number of real-world multiplex MLNs.

Paper outline. Section 2 reviews the background notions, while Sect. 3 intro-
duces the proposed model reduction framework. Section 4 features an experi-
mental evaluation on real-world multiplex MLNs. Section 5 concludes the paper.

2 Background

In this section we provide an overview of the notions that will be used through-
out the paper: single- and multi-layer networks (MLNs), eigenvector centrality
measure for MLNs, IDOL programs for specifying dynamical systems and model
reduction techniques based on Backward Differential Equivalence.

400 T. Petrov and S. Tognazzi

Notation. Throughout this work, when clear from context, we will use xi both
to denote the i-th element of vector x or the value of the map x(i) (following
Definition 3). For a partition H over a variable set Vp ⊆ {x1, x2, . . .}, induced by
an equivalence relation ∼H⊆ Vp ×Vp, we will denote elements of a partition class
H ∈ H by xH,1, xH,2, . . . , xH,|H|. We denote by ‖·‖1 the 1-norm. We will denote
with VN = {1, . . . , N}, VL = {1, . . . , L} the set of nodes and layers, respectively.
Vectors will be assumed to be written in column notation.

2.1 Networks and Multiplex Multi-Layer Networks

Definition 1. A (weighted, directed) graph is a pair G = (VN , E), where VN is
a set of N ≥ 1 nodes and E : VN ×VN → R≥0 is an edge-weighting function, such
that E(i, j) = 0 reflects that there is no edge in the graphical representation of
the network. In matrix notation, a graph is given by a non-negative adjacency
matrix A = (Aij) ∈ R

N×N
≥0 . Graph G is undirected, if the matrix A is symmetric.

In this paper, we will work with a generalisation of networks called multiplex
networks or edge-colored-graphs, which are useful for simultaneously representing
different kinds of relationships over the same set of nodes. This paper will focus
on weighted, undirected multiplex networks.

Definition 2. A multiplex network with L layers is an ordered collection of L
graphs over the same set of nodes:

G = {G(l) = (VN , E(l))}l∈VL
,

where E(l) : VN × VN → R≥0 are the edge weights at layer l ∈ VL. For every
layer l, we denote the non-negative adjacency matrix of the graph G(l) by A(l) =
(A(l)

ij) ∈ R
N×N
≥0 . Then, the multiplex network can be represented by a 3rd-order

adjacency tensor :

A = (Aijl) ∈ R≥0
N×N×L, such that Aijl := A

(l)
ij = E(l)(i, j),

that is, Aijl is the weight of the edge from node i to node j in layer l.

Example 1. The adjacency tensor for the multiplex depicted in Fig. 1 left is given

by layers A(1) =

⎛
⎝

0 1 1
1 0 0
1 0 0

⎞
⎠ and A(2) =

⎛
⎝

0 1 0
1 0 1
0 1 0

⎞
⎠.

Remark 1. While in this work we will focus on multiplex networks, they are
a special case of a more general notion of interconnected multilayer networks
(MLNs), where layers can have different node sets, and, moreover, they can be
coupled across layers in arbitrary ways. For example, modelling public transport
by different means (e.g. bus, train or metro) requires such a model.

Centrality-Preserving Exact Reductions of Multi-Layer Networks 401

2.2 Centrality Measures

Given an undirected graph G = (VN , E) and its adjacency matrix A ∈ R
N×N
≥0 ,

we first recall the definition of eigenvector centrality for single-layer networks
[39].

Definition 3. Eigenvector centrality x : VN → R≥0 maps each node to the
weighted sum of eigenvector centralities of all nodes directly reachable from it:
for i ∈ VN , x(i) = 1

λ

∑
j∈Vn

Aijx(j), where 1
λ is some positive constant. In vector

notation, the eigenvector centrality vector x ∈ R
VN

≥0 is such that Ax = λx, that
is, x is the right eigenvector wrt. the adjacency matrix A.

For a given graph with adjacency matrix A, eigenvector centrality may not be
well-defined, that is, there may exist no unique non-negative right eigenvector
(up to linear scaling). By the famous Perron-Frobenius result, whenever the
largest real eigenvalue of A is unique, eigenvector centrality is guaranteed to be
well-defined, and it is the respective eigenvector, with all non-negative entries.
When eigenvector centrality is well-defined, it can be efficiently computed with
the power iteration scheme. We restate this well-known result, for the sake of
transparent analogy with the case of MLN’s, which we introduce next.

Theorem 1 ([39]). If there exists a unique, non-negative eigenvector centrality
on A, denoted by x∗, and such that ‖x∗‖1 = 1, it can be computed as a limit of
the power iteration sequence x(k) = Ax(k−1)

‖Ax(k−1)‖1

for k ≥ 0 and initially x(0) = 1N .

In this paper, we will use one possible extension of eigenvector centrality for
multiplex MLNs, proposed in [50]. The authors propose a 2-map, f -eigenvector
centrality, in which the first component of the map represents the centrality
associated to the nodes, while the second component is centrality associated to
the layers.

Definition 4 ([50]). Let A ∈ R
N×N×L
≥0 be the adjacency tensor of an MLN with

weighted, undirected layers, and let α, β > 0 be such that 2
β < (α − 1). Then,

define f = (f1, f2) : RN
≥0 × R

L
≥0 → R

N
≥0 × R

L
≥0 as follows:

f1(x, t)i =

⎛
⎝

N∑
j=1

L∑
l=1

Aijlxjtl

⎞
⎠

1
α

for i ∈ VN , f2(x, t)l =

⎛
⎝

N∑
i=1

N∑
j=1

Aijlxixj

⎞
⎠

1
β

for l ∈ VL.

In words, the centrality xi of node i is a sum of the centralities of each of
its neighbouring nodes, weighted by the product of the edge-weight and the
centrality of the layer at which that connection lies. At the same time, the
centrality of a layer tl is a sum of the centrality of all edges at that layer, where an
importance of an edge is, in addition to its own weight, weighted by the centrality
of the two nodes which constitute it. The parameters α and β are introduced
in order to guarantee convergence and respectively well-definedness in case of
undirected MLNs. Further discussion is beyond the scope of this manuscript
and we refer the interested reader to [50].

402 T. Petrov and S. Tognazzi

Fig. 1. An example with two MLNs and their respective f -eigenvector centralities.

Similarly as in the case of single-layer networks, a power iteration scheme for
computing f -centrality is desired. Throughout the rest of the work, we will use
a normalised version of f -mapping, denoted by g:

g(x, t) =
(

f1(x, t)
‖f1(x, t)‖1

,
f2(x, t)

‖f2(x, t)‖1

)

We now restate a result from [50], that, for a given MLN with undirected
layers, f -centrality is well-defined and it can be computed as a limit of a power
iterative sequence.

Theorem 2 ([50]). There exists a unique, non-negative fixed point of the map-
ping g. Moreover, this fixed point, denoted by (x∗, t∗) ∈ R

N
≥0 × R

L
≥0, is a limit

of the following iterative scheme1:

(x(k), t(k)) = g(x(k−1), t(k−1)) for k ≥ 1 and initially (x(0), t(0)) = (1N ,1L)
(1)

Notice that, from the definition of g, independently of k ≥ 0, it holds that∥∥x(k)
∥∥

1
=

∥∥t(k)
∥∥

1
= 1, including the limit value (x∗, t∗).

Example 2. Consider the MLN depicted in Fig. 1 (left). The iterative scheme to
compute the f -eigenvector centrality (Definition 4) is the following:

x
(k+1)
1 = (1x

(k)
2 t

(k)
1 + 1x

(k)
3 t

(k)
1 + 1x

(k)
2 t

(k)
2)

1
α /||f1(x, t)||1

x
(k+1)
2 = (1x

(k)
1 t

(k)
1 + 1x

(k)
1 t

(k)
2 + 1x

(k)
3 t

(k)
2)

1
α /||f1(x, t)||1

x
(k+1)
3 = (1x

(k)
1 t

(k)
1 + 1x

(k)
2 t

(k)
2)

1
α /||f1(x, t)||1

t
(k+1)
1 = (2x

(k)
1 x

(k)
2 + 2x

(k)
1 x

(k)
3)

1
β /||f2(x, t)||1

t
(k+1)
2 = (2x

(k)
1 x

(k)
2 + 2x

(k)
2 x

(k)
3)

1
β /||f2(x, t)||1

1 We refer the interested reader to the original reference, for a discussion on the error
and rate of convergence.

Centrality-Preserving Exact Reductions of Multi-Layer Networks 403

Example 3. In Fig. 1 we show two different MLNs and their respective f -
eigenvector centralities. Adding an edge at Layer 2 changes both the node cen-
trality and the layer centrality scores. More specifically, Node 1 and 3 gain impor-
tance while Node 2 loses importance. Moreover, if in the left example the two
layers had equivalent centralities, in the right one, Layer 2 becomes more impor-
tant because it contains more connections between high-centrality-nodes. This
shows that when we choose f -eigenvector centrality as the measure of choice, the
role played by the nodes and layers is intertwined and therefore the two aspects
of the f mapping can not be computed independently.

2.3 Intermediate Drift Oriented Language (IDOL)

The Intermediate Drift Oriented Language (IDOL) is a language for describing
non-linear, first-order, autonomous and explicit finite systems of coupled ordi-
nary differential equations (ODEs). We here report the fragment of the syntax
and semantics of IDOL which is useful for presenting this work.

Syntax. An IDOL program p over a set of variables Vp is written in the following
syntax:

p :: = ε | x′
i = η, p

η :: = n | xi | η + η | η · η

where xi ∈ Vp, n ∈ Z and ε is used to define the end of the program.

Semantics. We will consider conventional ODE semantics for a given IDOL
program p, as the solution of the system of ODE’s that it represents. The solution
map �·� : R|Vp|

≥0 → (Vp → ([0, T) → R≥0)) will (deterministically) map each initial
condition and a variable to a trace from the time domain with horizon T ∈ R≥0

to a value. For simplicity, we will denote the solution for variable xi by �xi�x0 ,
and we omit the dependency on initial condition x0 ∈ R

|Vp|
≥0 when clear from

context.

2.4 Backward Differential Equivalence

Backward differential equivalence (BDE) is a model reduction technique for
dynamical systems written in IDOL [9,12]. BDE groups IDOL variables which
are exact fluid lumpable - they have the same ODE semantics whenever they are
given the same initial assignment. Finding the (largest) BDE amounts to finding
the coarsest partition over the variable set, which ensures that the semantic cri-
terion is met. This criterion allows to construct a smaller IDOL program, using
only one representative variable from each partition class. The reduction algo-
rithms proposed in [9,12] are only syntactically manipulating the IDOL program,
and they are of polynomial complexity in the number of variables of the program.
We propose in this paper to use BDE reductions, to reduce the computation of
f -centrality measure for MLNs.

404 T. Petrov and S. Tognazzi

Definition 5. We call x ∈ R
|Vp|
≥0 constant on H if for all H ∈ H and all xi, xj ∈

H, it holds that xi = xj .

Definition 6. Let p be an IDOL program and H a partition over the variable
set Vp. Then, the IDOL program p is exact fluid lumpable wrt. partition H, if
�x�x0(t) is constant on H for all t ≥ 0, whenever x0 is constant on H. Then, we
will call H a BDE partition of Vp.

Following [9], the coarsest BDE partition can be computed in polynomial
time complexity, for any IDOL program which corresponds to a set of chemical
reactions with mass-action kinetics.

We now state the result which shows how to use a BDE to construct a reduced
IDOL program, operating over only the representative variables (BDE quotient).

Theorem 3 ([10]). Let p be an IDOL program and H a BDE partition over
its variable set Vp, and T > 0 a time horizon. The backward reduced program
of p with respect to H, denoted by p̃H, is defined over a set of variables VpH =
{x̃1, . . . , x̃|H|}, and with the following update functions:

x̃′
H = ηH,1[xH̄,1/x̃H̄ , . . . , xH̄,|H̄|/x̃H̄ : H̄ ∈ H], for H ∈ H,

where, xH̄,i/x̃H̄ denotes the action of renaming variable xH̄,i by x̃H̄ .

Originally designed for reducing ODEs, BDE techniques have also been
applied for reducing single-layer networks, continuous-time Markov chains
(CTMCs) and differential algebraic equations. In particular, in [48], a property-
preserving exact model reduction algorithm for networks is shown. The given
network is first transformed into an IDOL program, and then a BDE reduction
ensuring exact fluid lumpability is applied. We restate a Theorem showing that
BDE reduction also preserves the measure of eigenvector centrality.

Theorem 4 ([48]). Given a graph G = (VN , E) with adjacency matrix A, let
pG be the IDOL program over the set of variables VN :

x′
i =

∑
1≤j≤n

Aij · xj , for all i ∈ VN .

Let x∗
i denote the eigenvector centrality of node i. Then, H is a BDE of pG if

and only if, for all H ∈ H and for all xi, xj ∈ H, it holds that x∗
i = x∗

j .

In words, the transformation from network to IDOL program is such that
the equation for the derivative of variable xi is the weighted sum of its direct
(outgoing) edges2. So, the key idea in the transformation from the network to
an IDOL program is that the equations in the IDOL program exactly match the
iterative scheme for computing the centrality measure of interest.

Notice that the obtained IDOL program contains only linear transforma-
tions over its variables. We next propose an analogue of Theorem4 for multiplex
MLNs. The translation to an IDOL program will encode the iterative scheme
for computing f -centrality, which involves non-linear terms (of second order).
2 In case of symmetric graphs, ingoing and outgoing edges will be indistinguishable

and overall neighbours are accounted for.

Centrality-Preserving Exact Reductions of Multi-Layer Networks 405

3 Centrality-Preserving MLN Reduction

Given a multi-layered network, its f -centrality can be computed with the itera-
tive scheme g presented in Theorem 2 (Eq. 1) . Our aim is to bypass the direct
computation and instead compute the f -centrality indirectly, by first detecting
sets of variables which evolve equivalently throughout the iterations, and then
proposing a reduced iterative scheme g̃, where only one representative variable
is kept for each set of equivalent ones.

To do so, we first introduce an assignment of an IDOL program to a given
MLN. Then, given an IDOL program, we compute its BDE-equivalent quotient,
as described in Sect. 2. BDE equivalence guarantees that the original and smaller
IDOL programs have the same differential, continuous-step semantics. On the
other hand, the iterative scheme g defines a discrete-step semantics over the
variables of the MLN. Our proposal is to compute the centrality measure of
the original MLN using the smaller IDOL program. To do so, we need to show
that the reduced iterative scheme g̃ over the BDE-quotient of the original IDOL
program, preserves the solutions of the iterative scheme g. A diagram of the
workflow of the proposed framework is presented in Fig. 2.

The following theorem shows which are the quantities that we should account
for when we search for equivalences among the centrality scores.

Theorem 5. For i ∈ VN , define the quantity of interest

x̄
(k)
i :=

N∑
a=1

L∑
l=1

Aialx
(k)
a t

(k)
l ,

Fig. 2. An illustration of the proposed methodology. The arrows are used for illus-
trative purpose and they are not to be formally interpreted. For a given MLN G, its
f -centrality vector (x∗, t∗) can be computed directly through the iterative map g (dot-
ted line). Alternatively, as depicted with thick full arrows, the equations in g can first
be translated into an IDOL program p with variables, and its BDE quotient program
pH is used to define a reduced iterative scheme g̃ over a reduced set of variables, the
solution of which, (x̃∗, t̃

∗
), allows to exactly reconstruct the f -centrality of the original

MLN.

406 T. Petrov and S. Tognazzi

which is the right hand side of the mapping f from Definition 4, without the
exponential operator α. Then, for all pairs of nodes i, j ∈ VN , it holds that

if x̄
(k)
i = x̄

(k)
j then x

(k+1)
i = x

(k+1)
j , for all k ≥ 0.

The key idea is to go from the definition of the multilayer network eigenvector
centrality obtained with the iterative scheme (1) to an IDOL program p such that
there is a correspondence between the node and the layer eigenvector centrality
and the variables of the IDOL program.

Definition 7. (IDOL translation) Let G be a multiplex network and let Aijl be
the 3-rd order adjacency tensor of the multiplex G. We define an IDOL program
p, with Vp = VN ∪ VL, as follows:

x′
i =

N∑
j=1

L∑
l=1

Aijlxjtl t′
l =

N∑
i=1

N∑
j=1

Aijlxixj

for all i ∈ VN and for all l ∈ VL. With x0 = 1N and t0 = 1L.

We now want to identify which nodes in the MLN have identical f -eigenvector
centrality. This holds if they follow equivalent equations in the iterative scheme
used for computing them. Similarly to the result presented in Theorem4 which
shows a similar translation for single layer networks, the iterative scheme equa-
tions used to compute the f -eigenvector centralities on MLNs can be translated
to an IDOL program. The major technical difference is that the MLN trans-
lation contains non-linear terms, and the exponents α and β. Once we have
obtained the corresponding IDOL program we can apply the general technique
for computing the equivalences among its variables.

The next Theorem shows how to write an IDOL program, such that if two
variables have the same semantics in the dynamical system of the IDOL program,
then, the respective nodes in the iterative scheme of a given MLN have identical
centrality scores over all the steps of the computation, provided the equivalence
over initial conditions.

Theorem 6. Let G be a multiplex network and let Aijl be the 3-rd order adja-
cency tensor of the multiplex network G. Let f be the mapping as defined in
Definition 4, and let g its normalized version. Let (x∗, t∗) be the unique solution
(the centrality scores). Given any initial conditions (x(0), t(0)) ∈ R

N
≥0 ×R

L
≥0 and

(x(k+1), t(k+1)) = g(x(k), t(k)), the following holds:

lim
k→∞

(x(k), t(k)) = (x∗, t∗)

Then, in the IDOL program p obtained via Definition 7, for some i, j ∈
{1, . . . , N} and l, q ∈ {1, . . . , L}, the following holds:

– If ∀t ∈ [0, T) . �xi�(t) = �xj�(t) in the IDOL program p, then ∀k ∈ N . x
(k)
i = x

(k)
j

– If ∀t ∈ [0, T) . �tl�(t) = �tq�(t) in the IDOL program p, then ∀k ∈ N . t
(k)
l = t

(k)
q

Centrality-Preserving Exact Reductions of Multi-Layer Networks 407

From Theorem 6 we now know that we can build a non-linear IDOL program p
such that if two variables are equal in the IDOL program then, the corresponding
nodes (or layer) centrality are equal. Now, we can use the established results on
the IDOL program and calculate the BDE partition H on the IDOL program p
generated with Theorem 6. With the next Theorem we show that, because of the
relationship established by Theorem6 and the established results on the notion
of BDE, we can carry over the results that we obtain on the IDOL program to
the procedure to calculate the multilayer node (or layer) centrality.

Up to this point, starting from a multiplex graph G we provided a procedure
to translate it into an IDOL program and we provided a technique to calculate a
BDE partition H on the IDOL program. Now, we introduce the following lemma
and definition to formally translate partition H, which is defined over the IDOL
program’s variables, to its counterpart H∗ defined over the nodes and the layers
of the multiplex graph G.

Lemma 1. Let G be a multiplex network and let p be the IDOL program defined
in Theorem 6 and let H = (Hx,Ht) be a BDE partition over the set of variables
such that there is no overlap between the nodes and the layers, i.e. Hx is a
partition over the node variables {x1, . . . , xN} and Ht is a partition over the
layer variables {t1, . . . , tL}. Then, for all initial conditions the following holds:

– ∀t ∈ [0, T), ∀xi, xj ∈ Hx, ∀Hx ∈ Hx . �xi�(t) = �xj�(t) =⇒ ∀k ∈ N . x
(k)
i = x

(k)
j

– ∀t ∈ [0, T), ∀tl, tq ∈ Ht, ∀Ht ∈ Ht . �tl�(t) = �tq�(t) =⇒ ∀k ∈ N . t
(k)
l = t

(k)
q

Moreover, let G be the corresponding multiplex graph and we define H∗ =
(H∗

x,H∗
t) as the corresponding partition over the node and layer variables

{x1, . . . , xN , t1, . . . , tL} of G. We define H∗ as follows:

∀i, j ∈ {1, . . . , N},Ha,x ∈ Hx . xi, xj ∈ Ha,x =⇒ H∗
a,x ∈ H∗ . xi, xj ∈ H∗

a,x

∀i, j ∈ {1, . . . , L},Ha,t ∈ Ht . ti, tj ∈ Ha,t =⇒ H∗
a,t ∈ H∗ . ti, tj ∈ H∗

a,t

Example 4. If we go back to the running example presented in the left of Fig. 1
and we apply Theorem6 we obtain the following IDOL program p:

x′
1 = 1x2t1 + 1x3t1 + 1x2t2 t′

1 = 2x1x2 + 2x1x3

x′
2 = 1x1t1 + 1x1t2 + 1x3t2 t′

2 = 2x1x2 + 2x2x3

x′
3 = 1x1t1 + 1x2t2

We consider the following partition H = {{x1, x2}, {x3}, {t1}, {t2}}, which is a
BDE of p and we shall use x̃1 as the representative of block {x1, x2}, x̃2 as the
representative of block {x3} and r1, r2 representatives of the blocks {t1}, {t2},
respectively. The IDOL quotient of p given H is the following:

y′
1 = 1y1r1 + 1y2r1 + 1y1r2 r′

1= 2y1y1 + 2y1y2

y′
2 = 1y1r1 + 1y1r2 r′

2= 2y1y1 + 2y1y2

408 T. Petrov and S. Tognazzi

Now that we established the relationship between the partitions we proceed
to define the proper reduced system to calculate the multiplex node and layer
centrality as follows.

Definition 8. Let (x(k), t(k)) = g(x(k−1), t(k−1)) be the iterative scheme and let
H = (Hx,Ht) be the BDE partition on the IDOL program p obtained using The-
orem 6 and Lemma 1. Let H∗ = (H∗

x,H∗
t) be the corresponding partition on the

iterative scheme as defined in Lemma 1. We define (y(k), r(k)) = g̃(y(k−1), r(k−1))
as the Reduced iterative scheme with respect to H∗:

f̃ 1 = f 1[xHx,1/yHx , . . . , xHx,|Hx|/yHx , tHt,1/rHt , . . . , tHt,|Ht|/rHt : Hx ∈ Hx , Ht ∈ Ht]

f̃ 2 = f 2[xHx,1/yHx , . . . , xHx,|Hx|/yHx , tHt,1/rHt , . . . , tHt,|Ht|/rHt : Hx ∈ Hx , Ht ∈ Ht]

Next, we define ȳ
(k)
i , similarly as we previously defined x̄

(k)
i , and the reduced

computation to retrieve the values of x(k):

ȳ
(k)
i =

N∑
j=1

L∑
l=1

Aijly
(k−1)
Hx,j

r
(k−1)
Ht,l

, x(k) =
x̄(k)

∥∥x̄(k)
∥∥

1

=
ȳ(k)

∑m
j=1 |Hx,j |ȳ(k)

j

= y(k).

where, Hx,j = i if xj ∈ Hx,i and Ht,q = l if tq ∈ Ht,l. We can now focus
on the second component of the mapping and we define r̄

(k)
l and its reduced

computation:

r̄
(k)
l =

N∑
i=1

N∑
j=1

Aijly
(k−1)
Hx,i

y
(k−1)
Hx,j

, t(k) =
t̄
(k)

∥∥∥t̄(k)
∥∥∥

1

=
r̄(k)

∑Q
j=1 |Ht,j |r̄(k)

j

= r(k).

where, Hx,j = i if xj ∈ Hx,i.

Example 5. If we consider the running example presented in the left of Fig. 1, we
know that the partition H = {{x1, x2}, {x3}, {t1}, {t2}} is a BDE of the IDOL
program p and we obtained the following reduced IDOL program:

y′
1 = 1y1r1 + 1y2r1 + 1y1r2 r′

1= 2y1y1 + 2y1y2

y′
2 = 1y1r1 + 1y1r2 r′

2= 2y1y1 + 2y1y2

In order to compute the original f -eigenvector centrality values we set up the
following iterative scheme:

ȳ
(k)
1 = 1y

(k−1)
1 r

(k−1)
1 + 1y

(k−1)
2 r

(k−1)
1 + 1y

(k−1)
1 r

(k−1)
2 r̄

(k)
1 = 2y

(k−1)
1 y

(k−1)
1 + 2y

(k−1)
1 y

(k−1)
2

ȳ
(k)
2 = 1y

(k−1)
1 r

(k−1)
1 + 1y

(k−1)
1 r

(k−1)
2 r̄

(k)
2 = 2y

(k−1)
1 y

(k−1)
1 + 2y

(k−1)
1 y

(k−1)
2

4 Experimental Results

In this section we present the results of our experimental evaluation on some
real world case studies. We measure the performance of our approach in terms
of model reduction ratio and we measure the speed up in the computation of the
desired centrality measures.

Centrality-Preserving Exact Reductions of Multi-Layer Networks 409

Implementation and Environment. The tools used for the experiments are MAT-
LAB and ERODE [11], a state-of-the-art tool for model reduction for systems of
ODEs and Chemical Reaction Networks. The input is the list of edges E(l) for
all l ∈ {1, ..., L} representing a multiplex network G = {G(l) = (VN , E(l))}l∈VL

.
ERODE accepts the input as a file that encodes an ODE system or a Chemical
Reaction Network (CRN). Due to a bottleneck in the processing of files in the
ODE format we had to input the files in the CRN format. A MATLAB script
translates the list of edges in the CRN. ERODE then proceeds with the model
reduction and provides the reduced CRN as its output. The centrality scores
are computed with a MATLAB script and another MATLAB script is used to
convert the reduced CRN into the reduced model and used to calculate the cen-
trality score on the reduced model. All the experiments have been conducted on
a MacBook Pro with a 2.6 GHz Intel Core i7 with 16 GB of RAM.

The Instances. In order to provide some real-world case studies we ran our
proposed reduction technique on multiplex MLNs retrieved from the CoMuNe
Lab repository (https://comunelab.fbk.eu). The results for both undirected and
directed instances are presented in Table 1. We first present the undirected graphs
instances. These instances are undirected in the repository.

– Padgett-Florentine-Families (1): this multiplex describes the relationships
between Florentine families in the Renaissance, the two layers represent mar-
riage alliances and business relationships, respectively [41].

– CS-Aarhus (2): this multiplex social network consists of five kinds of relation-
ships between the employees of the Computer Science department at Aarhus
university. The layers represent the following relationships: Facebook, Leisure,
Work, Co-Authorship and Lunch [36].

– London-Transport (3): the nodes in this multiplex represent the train stations
in London and edges encode existing routes between stations. The layers
represent the Underground, Overground and DLR stations, respectively [16].

– EUAirTrainsportation (4): the multilayer network is composed by thirty-
seven different layers each one corresponding to a different airline operating
in Europe [13].

– PierreAuger (5): this instance represents the different working tasks carried
out over a two years span within the Pierre Auger Collaboration between
the CoMuNe Lab and the Pierre Auger observatory. Each layer represents 16
different topics based on the keywords and the content of each submission [20].

– arxiv-netscience (6): this multiplex consists of layers corresponding to dif-
ferent arXiv categories. Nodes represent authors and edges represent the
weighted co-authorship relationship [20].

Due to the fact that many of the undirected instances are small we do not obtain
sensible reductions nor speed up in the computation. Despite this, we can observe
a meaningful reduction for the largest of the undirected instances, namely the
arxiv-netscience instance. We now present the instances that in the repository
are directed. It is worth noting that, because of the fact that the centrality
measure we considered throughout this paper is defined for the undirected case

https://comunelab.fbk.eu

410 T. Petrov and S. Tognazzi

only, we modified these instances to make them undirected in order to prove the
effectiveness of our proposed methodology. Another reason to do so is the fact
that there is a small number of undirected instances. Moreover, the undirected
instances present a limited variety of nodes, edges and layer sizes.

– Krackhardt-High-Tech (7): this multiplex social network describes the rela-
tionships between managers of an high-tech company. The layers represent
advice, friendship and “reports to” relationships, respectively [33].

– Vickers-Chan-7thGraders (8): this data was collected from 29 seventh grade
students in a school in Victoria, Australia. Students were asked to nominate
their classmates on a number of relations including the following three (lay-
ers): Who do you get on with in the class? Who are your best friends in the
class? Who would you prefer to work with? [52].

– Kapferer-Tailor-Shop (9): this instance represents the interactions in a tailor
shop in Zambia over a period of ten months. The layers represent two differ-
ent types of interactions, recorded at two different times. The relationships
captured by this multiplex are instrumental (work-related) and sociational
(friendship, socio-emotional) interactions [30].

– Lazega-Law-Firm (10): this multiplex social network consists of three kinds
of relationships between partners and associates of a corporate law part-
nership. The layers represent co-work, friendship and advice relationships,
respectively [34,45].

– Genetic interaction instances (11-28): we consider a variety of genetic inter-
actions networks that are present in the CoMuNe Lab repository [15]. In turn,
these instances were taken from the Biological General Repository for Interac-
tion Datasets (BioGRID) and represent different types of genetic interactions
for organisms [47]. More specifically, according to the nomenclature used in
the repository we present experimental results on the following instances:
HepatitusC (11), DanioRerio (12), HumanHerpes4 (13), CElegans Connec-
tome (15), Bos (16), Candida (17), Xenopus (18), HumanHIV1 (19), Plas-
modium (20), Rattus (21), CElegans (22), Sacchpomb (23), Sacchere (24),
Arabidopsis (25), Mus (26), Drosophila (27), Homo (28).

– CKM-Physicians-Innovation (14): this multiplex describes how new drugs
adoption spreads in a community of physicians.

– Fao-Trade (29): this multiplex describes different types of trade relationships
among countries, it was originally obtained from the Food and Agriculture
Organization of the United Nations. The worldwide food import/export net-
work is an economic network in which layers represent products, nodes are
countries and edges at each layer represent import/export relationships of a
specific food product among countries. It is worth pointing out that, due to
the nature of this instance, it has the peculiarity that there are more layers
than nodes [15].

– MoscowAthletics2013 (30): this multiplex represents the different types of
social relationships among Twitter users during the 2013 World Champi-
onships in Athletics. The three layers correspond to retweets, mentions and
replies over the time frame of the event. These are the relationships that will
be also used for the following Twitter instances [40].

Centrality-Preserving Exact Reductions of Multi-Layer Networks 411

– NYClimateMarch2014 (31): this instance describes the Twitter interactions
among the users during the People’s Climate March in 2014 [40].

– MLKing2013 (32): this instance describes the Twitter interactions among the
users during the 50th anniversary of Martin Luther King’s speech in 2013 [40].

– Cannes2013 (33): this instance describes the Twitter interactions among the
users during the Cannes Film Festival in 2013 [40].

As expected, similarly to the undirected instances, the small instances do not
provide much insight on the effectiveness of the methodology but, as the size of
the instance increases we can see significant reductions and speed ups. Notably,
when tackling the big instances the proposed methodology yields reductions
that reduce the size of the network to half of its original size and, in the case
of the largest instance we can obtain a reduction that at least provides some
information about which nodes have the same centrality. Such information could
not be retrieved by calculating the centrality directly on the original multiplex
because of the computational cost.

Table 1. Experimental results. Columns show the ID of the instance, the number of
nodes (N), the number of layers (L), the number of nodes in the reduced model (rN), the
number of layers in the reduced model (rL), the time spent to compute the centrality
measure using the original model (Cen), the time spent to do the BDE reduction (BDE)
and the time spent to compute the centrality measure using the reduced model (rCen).

Undirected instances Directed instances

ID N L rN rL Cen(s) BDE(s) rCen(s) ID N L rN rL Cen(s) BDE(s) rCen(s)

(1) 16 2 16 2 0.26 0.00 - (18) 461 5 276 5 0.18 0.01 0.08

(2) 61 5 61 5 0.07 0.01 - (19) 1005 5 137 5 0.51 0.02 0.13

(3) 368 3 366 3 0.14 0.01 0.15 (20) 1203 3 994 3 1.04 0.04 0.94

(4) 450 37 374 37 0.67 0.03 0.55 (21) 2640 6 1264 6 3.50 0.06 1.19

(5) 514 16 351 16 1.28 0.18 0.52 (22) 3879 6 2372 6 7.90 0.10 4.16

(6) 14488 13 8008 13 192.53 0.66 83.71 (23) 4092 7 3613 7 53.71 0.75 59.47

Directed Instances

ID N L rN rL Cen(s) BDE(s) rCen(s)

(7) 21 3 21 3 0.05 0.00 - (24) 6570 7 6087 7 494.21 10.14 428.68

(8) 29 3 29 3 0.06 0.00 - (25) 6980 7 4527 7 32.74 0.11 17.21

(9) 39 4 39 4 0.07 0.01 - (26) 7747 7 4887 7 35.99 0.30 19.58

(10) 71 3 71 3 0.14 0.02 - (27) 8215 7 7397 7 76.42 0.45 72.34

(11) 105 3 11 3 0.06 0.00 0.03 (28) 18222 7 13978 7 747.52 1.97 562.42

(12) 155 5 90 5 0.08 0.00 0.04 (29) 214 364 214 364 49.17 0.50 –

(13) 216 4 46 4 0.09 0.00 0.03 (30) 88804 3 37773 3 3359.26 6.68 1316.53

(14) 246 3 242 3 0.21 0.01 0.18 (31) 102439 3 48018 3 6188.51 5.36 3296.76

(15) 279 3 279 3 0.70 0.05 - (32) 327707 3 63136 3 21289.98 2.51 1806.65

(16) 325 4 162 4 0.12 0.01 0.09 (33) 438537 3 180443 3 >10 h 12.05 >3 h

(17) 367 7 62 7 0.13 0.00 0.09

412 T. Petrov and S. Tognazzi

5 Conclusions and Future Work

In this paper we have related an extension of eigenvector centrality on undirected
and (possibly) weighted multiplex MLNs to BDE, an exact model reduction tech-
nique for dynamical systems. We have shown that we can use a BDE-inspired
technique to introduce a framework that allows to reduce MLNs while preserving
the f -eigenvector centrality measure. The relevance of the result was demon-
strated by efficiently computing reduction of real-world MLNs and by showing
a speed up in the computation of such measure of interest. Throughout this
work we considered exact reductions although it is worth noting that one of
the possible future directions is to consider approximate reductions which are
already prominent in the study of clustering in networks [7] and approximate
lumping in agent-based models [32]. Future work will focus on the extension of
these results to multiplex MLNs that feature directed layers. Other directions
will include extending the framework to other centrality measures and other fam-
ilies of MLNs. Thanks to the theory established in this paper, we can naturally
approach the study of approximate versions of this reduction technique because
it is known that exact reductions might not yield significant reductions in very
asymmetric real-world case studies. Moreover, this framework is a very versatile
cornerstone work that, with few appropriate changes, can be easily modified to
deal with other types of notions such as extensions of role equivalence on MLNs.

Acknowledgements. The authors’ research is supported by the Ministry of Sci-
ence, Research and the Arts of the state of Baden-Württemberg, and the DFG Cen-
tre of Excellence 2117 ‘Centre for the Advanced Study of Collective Behaviour’ (ID:
422037984). The authors would like to thank Ulrik Brandes and Giacomo Rapisardi for
the inspiring discussions on the topic, Andrea Vandin for the support and the insights
on the use of the tool ERODE and the anonymous reviewers for their suggestions and
comments.

References

1. Banerjee, A., Chandrasekhar, A., Duflo, E., Jackson, M.: The diffusion of microfi-
nance. Science 341, 1236498 (2013)

2. Barrett, L., Henzi, P., Lusseau, D.: Taking sociality seriously: the structure of
multi-dimensional social networks as a source of information for individuals. Phil.
Trans. Roy. Soc. Lond. Ser. B Biol. Sci. 367, 2108–2118 (2012)

3. Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks.
Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 89, 032804 (2014)

4. Bloch, F., Jackson, M., Tebaldi, P.: Centrality measures in networks. SSRN Elec-
tron. J. (2016)

5. Bonacich, P.: Factoring and weighting approaches to status scores and clique iden-
tification. J. Math. Sociol. 2(1), 113–120 (1972)

6. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5),
1170–1182 (1987)

7. Brandes, U., et al.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20,
172–188 (2008)

Centrality-Preserving Exact Reductions of Multi-Layer Networks 413

8. Brandes, U., Lerner, J.: Structural similarity: spectral methods for relaxed block-
modeling. J. Classif. 27(3), 279–306 (2010)

9. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Efficient syntax-driven
lumping of differential equations. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 93–111. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9 6

10. Cardelli, L., Tribastone, M.,Tschaikowski, M., Vandin, A.: Symbolic computation
of differential equivalences. In: 43st ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL) (2016)

11. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the
evaluation and reduction of ordinary differential equations. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 310–328. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5 19

12. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Maximal aggregation
of polynomial dynamical systems. PNAS 114(38), 10029–10034 (2017)

13. Cardillo, A., et al.: Emergence of network features from multiplexity. Sci. Rep. 3,
1344 (2013)

14. Christakis, N., Fowler, J.: Social network sensors for early detection of contagious
outbreaks. PloS One 5, e12948 (2010)

15. De Domenico, M., Nicosia, V., Arenas, A., Latora, V.: Structural reducibility of
multilayer networks. Nat. Commun. 6, 6864 (2015)

16. De Domenico, M., Solé-Ribalta, A., Gómez, S., Arenas, A.: Navigability of inter-
connected networks under random failures. Proc. Natl. Acad. Sci. 111, 8351–8356
(2014)

17. De Domenico, M., et al.: Mathematical formulation of multi-layer networks. Phys.
Rev. X 3, 07 (2013)

18. De Domenico, M., Solé-Ribalta, A., Omodei, E., Gomez, S., Arenas, A.: Centrality
in interconnected multilayer networks. Phys. D Nonlinear Phenom. 323, 11 (2013)

19. De Domenico, M., Solé-Ribalta, A., Omodei, E., Gomez, S., Arenas, A.: Ranking
in interconnected multilayer networks reveals versatile nodes. Nat. Commun. 6,
6868 (2015)

20. De Domenico, M., Lancichinetti, A., Arenas, A., Rosvall, M.: Identifying modu-
lar flows on multilayer networks reveals highly overlapping organization in social
systems. ArXiv, abs/1408.2925 (2015)

21. Farine, D., Aplin, L., Sheldon, B., Hoppitt, W.: Interspecific social networks pro-
mote information transmission in wild songbirds. Proc. Biol. Sci. Roy. Soc. 282,
20142804 (2015)

22. Feret, J., Henzinger, T., Koeppl, H., Petrov, T.: Lumpability abstractions of rule-
based systems. Theor. Comput. Sci. 431, 137–164 (2012)

23. Franz, M., Altmann, J., Alberts, S.: Knockouts of high-ranking males have limited
impact on baboon social networks. Curr. Zool. 61, 107–113 (2015)

24. Ganguly, A., Petrov, T., Koeppl, H.: Markov chain aggregation and its applications
to combinatorial reaction networks. J. Math. Biol. 69(3), 767–797 (2014)

25. Gazda, S., Iyer, S., Killingback, T., Connor, R., Brault, S.: The importance of
delineating networks by activity type in bottlenose dolphins (Tursiops truncatus)
in cedar key, Florida. Roy. Soc. Open Sci. 2, 140263 (2015)

26. Granell, C., Gomez, S., Arenas, A.: Dynamical interplay between awareness and
epidemic spreading in multiplex networks. Phys. Rev. Lett. 111, 128701 (2013)

27. Iacobelli, G., Tribastone, M., Vandin, A.: Differential bisimulation for a markovian
process algebra. In: MFCS, pp. 293–306 (2015)

https://doi.org/10.1007/978-3-662-49674-9_6
https://doi.org/10.1007/978-3-662-49674-9_6
https://doi.org/10.1007/978-3-662-54580-5_19

414 T. Petrov and S. Tognazzi

28. Jackson, M.: Social and Economic Networks (2008)
29. Johnson, J., Borgatti, S., Everett, M.: Analyzing Social Networks (2013)
30. Kapferer, B.: Strategy and transaction in an African factory: African workers and

Indian management in a Zambian town. Manchester Univ. Press 43(4), 362–363
(1972)

31. Katz, L.: A new status index derived from sociometric analysis. Psychometrika
18(1), 39–43 (1953)

32. KhudaBukhsh, W.R., Auddy, A., Disser, Y., Koeppl, H.: Approximate lumpability
for markovian agent-based models using local symmetries. J. Appl. Probab. 56, 04
(2018)

33. Krackhardt, D.: Cognitive social structures. Social Netw. 9(2), 109–134 (1987)
34. Lazega, E.: The Collegial Phenomenon: The Social Mechanisms of Cooperation

among Peers in a Corporate Law Partnership. Oxford University Press, Oxford
(2001)

35. Lerner, J.: Role assignments. In: Network Analysis: Methodological Foundations
[Outcome of a Dagstuhl Seminar, 13–16 April 2004], pp. 216–252 (2004)

36. Magnani, M., Micenková, B., Rossi, L.: Combinatorial analysis of multiple net-
works. CoRR, abs/1303.4986 (2013)

37. McKay, B.: Practical graph isomorphism. Congressus Numerantium 30, 45–87
(1981)

38. McKay, B., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 6009,
94–112 (2013)

39. Newman, M.: Networks: An Introduction. Oxford University Press Inc., New York
(2010)

40. Omodei, E., De Domenico, M., Arenas, A.: Characterizing interactions in online
social networks during exceptional events. Front. Phys. 3, 06 (2015)

41. Padgett, J.F., Ansell, C.K.: Robust action and the rise of the medici, 1400–1434.
Am. J. Sociol. 98(6), 1259–1319 (1993)

42. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web. In: WWW 1999 (1999)

43. Robert Paige and Robert Endre Tarjan: Three partition refinement algorithms.
SIAM J. Comput. 16(6), 973–989 (1987)

44. Pappas, G.J.: Bisimilar linear systems. Automatica 39(12), 2035–2047 (2003)
45. Snijders, T.A.B., Pattison, P.E., Robins, G.L., Handcock, M.S.: New specifications

for exponential random graph models. Sociol. Methodol. 36(1), 99–153 (2006)
46. Conde, L.S., Romance, M., Herrero, R., Flores, J., del Amo, A.G., Boccaletti, S.:

Eigenvector centrality of nodes in multiplex networks. Chaos (Woodbury, N.Y.)
23, 033131 (2013)

47. Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.:
Biogrid: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–
D539 (2006)

48. Tognazzi, S., Tribastone, M., Tschaikowski, M., Vandin, A.: Differential equivalence
yields network centrality. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018, Part III.
LNCS, vol. 11246, pp. 186–201. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03424-5 13

49. Tschaikowski, M., Tribastone, M.: Exact fluid lumpability for Markovian process
algebra. In: CONCUR, pp. 380–394 (2012)

50. Tudisco, F., Arrigo, F., Gautier, A.: Node and layer eigenvector centralities for
multiplex networks. SIAM J. Appl. Math. 78(2), 853–876 (2018)

51. van der Schaft, A.J.: Equivalence of dynamical systems by bisimulation. IEEE
Trans. Autom. Control 49, 2160–2172 (2004)

https://doi.org/10.1007/978-3-030-03424-5_13
https://doi.org/10.1007/978-3-030-03424-5_13

Centrality-Preserving Exact Reductions of Multi-Layer Networks 415

52. Vickers, M., Chan, M.: Representing classroom social structure. Victoria Institute
of Secondary Education, Melbourne (1981)

53. Stanley, W., Katherine, F.: Social Network Analysis: Methods and Applications,
vol. 8. Cambridge University Press, Cambridge (1994)

54. Wei, X., Valler, N.B., Prakash, A., Neamtiu, I., Faloutsos, M., Faloutsos, C.: Com-
peting memes propagation on networks: a case study of composite networks. ACM
SIGCOMM Comput. Commun. Rev. 42, 5–11 (2012)

Towards Dynamic Dependable Systems
Through Evidence-Based Continuous

Certification

Rasha Faqeh1(B), Christof Fetzer1(B), Holger Hermanns2,3(B),
Jörg Hoffmann2(B), Michaela Klauck2(B), Maximilian A. Köhl2(B),

Marcel Steinmetz2(B), and Christoph Weidenbach4(B)

1 Technische Universität Dresden, Dresden, Germany
{rasha.faqeh,christof.fetzer}@tu-dresden.de

2 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
{hermanns,hoffmann,klauck,mkoehl,steinmetz}@cs.uni-saarland.de

3 Institute of Intelligent Software, Guangzhou, China
4 Max Planck Institute for Informatics, Saarland Informatics Campus,

Saarbrücken, Germany
weidenbach@mpi-inf.mpg.de

Abstract. Future cyber-physical systems are expected to be dynamic,
evolving while already being deployed. Frequent updates of software
components are likely to become the norm even for safety-critical sys-
tems. In this setting, a full re-certification before each software update
might delay important updates that fix previous bugs, or security or
safety issues. Here we propose a vision addressing this challenge, namely
through the evidence-based continuous supervision and certification of
software variants in the field. The idea is to run both old and new variants
of component software inside the same system, together with a supervis-
ing instance that monitors their behavior. Updated variants are phased
into operation after sufficient evidence for correct behavior has been col-
lected. The variants are required to explicate their decisions in a log-
ical language, enabling the supervisor to reason about these decisions
and to identify inconsistencies. To resolve contradictory information, the
supervisor can run a component analysis to identify potentially faulty
components on the basis of previously observed behavior, and can trig-
ger micro-experiments which plan and execute system behavior specif-
ically aimed at reducing uncertainty. We spell out our overall vision,
and provide a first formalization of the different components and their
interplay. In order to provide efficient supervisor reasoning as well as
automatic verification of supervisor properties we introduce SupERLog,
a logic specifically designed to this end.

Authors are listed alphabetically. This work was partially supported by the ERC
Advanced Investigators Grant 695614 (POWVER), by DFG Grant 389792660 as part of
TRR 248 (see https://perspicuous-computing.science), and by the Key-Area Research
and Development Program Grant 2018B010107004 of Guangdong Province.
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 416–439, 2020.
https://doi.org/10.1007/978-3-030-61470-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_25&domain=pdf
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-61470-6_25

Dynamic Dependable Systems: A Vision 417

Keywords: Certification · Dependability · Model checking ·
Planning · Supervision

1 Introduction

The complexity of constructing dependable systems is increasing dramatically,
as future cyber-physical systems – like those used in the context of autonomous
vehicles – are expected to change dynamically: they need to evolve not only to
changing needs, but also according to lessons learned in the field. Systems where
software components are constantly updated in the field are likely to become
the norm, together with a general acceptance of the fact that it seems outright
impossible to upfront guarantee safety-by-design. Over the last years, Tesla has
been pioneering this approach with apparent success [24,34] and other companies
will follow.

Safety certification of such systems requires a process combining formal guar-
antees, statistical methods, in-field testing, simulation and proven-in-practice
arguments. This is doomed to be a lengthy process. The update of any com-
ponent requires, however, a new certification so as to assure absence of safety
violations. Such a re-certification is costly and might delay important updates
that are meant to fix previous bugs. Rapid deployment of fixes is imperative espe-
cially for security-relevant bugs since adversaries notoriously attempt to attack
systems that are not yet patched, and because security loopholes make any safety
guarantee void.

In this paper, we are thus exploring how to enable the immediate deploy-
ment of new software variants without time-intensive re-certification. Software
updates might take the form of device drivers and microcode updates relating to
hardware components, so we are factually facing variability of software as well
as hardware(-induced) behavior.

In this setting, the primary goal is to ensure that new variants for system
components do not cause safety violations, e.g., by the introduction of new bugs.
Our vision is the evidence-based continuous supervision and certification of soft-
ware variants in the field. At its core is the idea to run multiple variants of
the component software inside the same system, together with a supervising
instance that monitors and compares the variants’ behaviors. The supervising
instance itself is trusted, i.e., it is formally verified. Ideally, the verification can
be done fully automatically. Furthermore, the supervisor reasoning needs to be
effective and efficient to fulfill the monitoring and decision task of the supervisor.
The logic SupERLog, (Sup)ervisor (E)ffective (R)easoning (Log)ics, supports all
these requirements: it is decidable, so properties of the supervisor can be auto-
matically verified. SupERLog enables fast reasoning on ground facts, the typical
situation when the supervisor is run on the evidence (ground facts) provided by
the different components. The supervisor itself is expected to not evolve regu-
larly during the lifetime of the system. If it were to evolve, this would require a
re-certification. The supervisor can be designed fail-operational, i.e., it tolerates
failures and hence is considered not to be a single point of failure in the system.

418 R. Faqeh et al.

Note that the supervisor can not use the traditional majority voting to han-
dle the variants because the variants are expected to be non-deterministic in
behavior. Therefore, there might not be any majority despite all variants being
correct. And even if a majority exists, it is not guaranteed that the majority is
correct. In our approach, each variant has to deliver evidence for its decisions
and a majority that does not provide sufficient evidence will lose to a minority
that provides sufficient evidence.

To explain why variants need to be treated as non-deterministic, consider that
a new variant might be putting different emphasis on the different sensor types
like video vs. LIDAR signals. Moreover, a new variant might have added new
features or have fixed some bugs or deficiencies in the older variants. However,
a new variant might also introduce new bugs that could violate the safety of the
system.

Our approach is meant to enable the continuous certification of variants of
component software, by collecting in-field evidence demonstrating the safety of
new variants while at the same time using the older variants to safeguard critical
activities. Of course, the older variant of a component software is not always
the one to trust. In order to determine the ground truth despite component mis-
behavior, we envision an approach to resolve contradictory information arriving
from different components and their variants: a component analysis and micro-
experiments. Component analysis identifies potentially faulty components based
on previously observed behavior; and, in case previous observations are insuf-
ficient to disambiguate between faulty vs. correct variants, micro-experiments
generate behavior specifically aimed to achieve such disambiguation.

We will first introduce our generic architecture and then give a more formal
and detailed description of our approach.

2 Approach

A component is dependable if and only if reliance can justifiably be placed on
the service it delivers [7,30]. Intuitively, we are justified in placing reliance on
a component, provided the body of available evidence suggests it to be depend-
able. Stronger evidence enables us to place more reliance on a component or
system. We apply a staged approach to continuously certify variants of com-
ponent software, centered on the collection of evidence to show the safety of a
new variant.1 New component variants are introduced after bug fixes or after
the addition of new features. Updates are executed in shadow mode, to test their
behavior while older variants are still in charge. In this way, the system can
fail-over to an updated but not yet certified variant in case the behavior of an
older variant is considered to be unsafe. Updates are phased into operation after
sufficient evidence for correct behavior was collected.

We envision this process to be orchestrated by a central supervisor compo-
nent. All component variants V1, V2, . . . of a component are assumed to produce
1 The idea is not limited to software components but expands to hardware components

as well.

Dynamic Dependable Systems: A Vision 419

Fig. 1. Architecture overview.

outputs, but only the output of one variant is forwarded to other components of
the system. The supervisor is responsible for the decision on which output to for-
ward. It monitors the outputs received, and selects one. So a component variant
can never expect to be in charge, i.e., that its outputs are the ones forwarded.
Note that such arrangements are already being used in practice:

Example 1 (Component not in Charge). Modern cars have software components
to assist in the steering of the car, but the human driver can always overwrite
the decision of the software. So the outputs are controlled by the human driver
and the software components are robust enough to adjust their future actions to
the behavior that is imposed by the driver.

Figure 1 sketches our architectural vision. The supervisor component is the
central decision entity. It monitors the different variants of each component, and
decides which variant is in charge. It can at any point switch from one variant
to another. To support these decisions, each component variant must be able
to explicate its decision for a given output to the supervisor, which cross-checks
the explications. We envision that these explications will be based on predicate
logics extended with theories. The supervisor maintains a knowledge base, and
reasons about the explications using standard as well as sophisticated reasoning
mechanisms tailored to the efficacy needs in a running system.

The supervisor reasoning connects and compares outputs produced by differ-
ent variants of individual components, and across components. Leveraging the
explications in combination with the supervisor’s knowledge base, the supervisor
thus attempts to resolve any contradictions that may exist between variants.

If the supervisor reasoning can resolve the relevant contradictions, a unique
decision is obtained. But that will not always be the case:

Example 2 (Conflicting Sensors). Assume we have updated the software com-
ponent responsible for lane changing maneuvers in an autonomous vehicle. The

420 R. Faqeh et al.

new variant of the component proposes to change to the left lane and explains
its decision to the supervisor by a LIDAR sensor reading indicating that there
is an obstacle ahead but the left lane is free. The older variant of the component
instead proposes to stay on the current lane and explains its decision by a read-
ing of a different sensor, a RADAR sensor, indicating the lane is free but the
left lane is blocked. To resolve this conflict, the supervisor needs to know which
sensor to trust - unless there is an alternative on which all variants agree upon
like changing to the right lane instead.

To allow the supervisor to determine the ground truth despite component
misbehavior, we envision machinery to resolve contradictory information and
decisions arriving from different component variants. The supervisor can trigger
this machinery when needed.

The first step in the machinery is component analysis, which identifies faulty
components based on previously observed behavior. Component analysis com-
pares models of component behavior to system-trace observations collected in
the past, and based on this evidence reduces the set of component models to
those that are indeed compatible with the observations, including possible fault
models. The latter information can be qualitative (“which faults are possible?”)
or quantitative (“which faults are most likely?”). This feeds back to the super-
visor, fostering its ability to decide which actions are safe to be carried out and
which components to trust.

However, previous observations may not be enough to sufficiently disam-
biguate between faulty vs. correct components. For such cases, we envision the
use of micro-experiments as a second, more radical, step. Based on the possible
model information as derived by component analysis, micro-experiment planning
then identifies behavior – system actions – optimized to minimize the uncertainty
about the actual model employed by the components, and thus about which com-
ponents are faulty in which way. The supervisor executes the micro-experiment
(in an execution-and-replanning loop) and draws conclusions from the observed
behaviors. Micro-experiments are limited to “small” activities (hence the name)
which do not endanger the mission performance, nor, of course, the safety of the
system.

Example 3 (Micro-experiment). In the above situation, we keep a model that
among others estimates the distance to obstacles with two different sensors,
LIDAR and RADAR. Assuming that the alleged obstacle is fixed, e.g., a traffic
cone, deceleration and acceleration has a very specific effect on the sensor read-
ing. If we now make the vehicle decelerate slightly, we can predict the distance
change if the respective sensors were behaving correctly. So we carry out the
deceleration (which is not a risk maneuver) while observing the sensor changes,
so as to draw conclusions about the sensor believed to be faulty.

Notably, component analysis and micro-experiments can be performed
only under particular circumstances. Component analysis is a complex time-
consuming process. The same is true for micro-experiment planning, and actually
executing a micro-experiment can of course be done only when circumstances

Dynamic Dependable Systems: A Vision 421

allow, i.e., when the system is safe. Our vision therefore is for component analysis
and micro-experiment planning to be triggered and executed alongside system
execution whenever computational resources are available (locally or via commu-
nication with an external server), and for the supervisor to execute safe fallback
actions (like pulling over to the right-hand side of the road) if conflicts cannot
be resolved on the spot. Supervisor reasoning about explications, in this context,
serves as a quick means to detect and resolve simple conflicts online, without
the need to embark on more complex analyses.

The role of the supervisor in a dynamic software deployment process is anal-
ogous to the role of a certifier for a sophisticated algorithm. Verification of a
sophisticated algorithm is beyond the scope of any automatic verification tech-
nology. Certifiers are rather small, far less complicated components that check
the correctness of the output of the sophisticated algorithm. They can often be
addressed by automatic verification technology. For example, while the verifica-
tion of modern SAT solving technology is still at the level of effort of a PhD
thesis using an interactive theorem prover [17], the implementation and verifica-
tion of a proof certifier for SAT in an interactive theorem prover is a standard
exercise and even leads to code that outperforms hand-written certifiers [29]. In
the same vein, the software deployed into a cyber-physical system is beyond the
scope of automatic verification, but the safety of its suggested actions can be
controlled by reasoning on its explications, effectuated by a far simpler supervi-
sor, for which we envision a logic, called SupERLogs for (Sup)ervisor (E)ffective
(R)easoning (Log)ics, as a standard knowledge representation framework main-
tained by the supervisor. Reasoning about the explications will use standard
reasoning mechanisms, with satisfiability of the relevant SupERLogs fragments
being decidable, and their Horn fragments serving as an efficient rule-based pro-
gramming language to ensure efficacy in the running system.

In the sequel, we will shed more light on the challenges and intricacies of this
vision. We will first discuss related literature, then detail the concepts needed for
the three major system components, i.e., supervisor, component analysis, and
micro-experiments.

3 Related Work

Dependable systems. Dependable systems must detect and tolerate failures
at different levels of abstraction such as hardware, architecture, systems software
and application level [41]. Traditional dependable systems are usually static [6],
i.e., there will be at most minor changes after deployment. Their correctness
needs to be certified prior to the use in operations, e.g., [3,37]. This certification
is mostly process-based in the sense that one ensures the quality of a newly devel-
oped system by assessing the quality of the development processes [13]. Recent
software systems tend to be more dynamic and require continuous updates, fast
and cost effective deployment [1] which is hard to achieve with such traditional
certification process [12]. Therefore, an alternative approach for the certification
of dependable systems is an evidence-based approach [9]: one collects sufficient

422 R. Faqeh et al.

evidence to show that a system is safe in a given environment and safety cases
attest to the safety of the system based on the given evidence.

Online updates of dependable software in the field is a double-edged sword
as it can increase safety, fixing critical vulnerabilities, but can also decrease
safety through the introduction of new bugs. Dynamic software updates require
mechanisms for robust software management [15]. System failures can differ sub-
stantially in impact [21]. Avoiding system failures that violate safety, i.e., put
human lives at risk, has the highest priority. System failures that reduce sys-
tem availability have lower priority, but higher priority than failures that merely
result in inconveniences. This can be achieved with multiple mechanisms like
proactive fault management [40] and failure transformation [44].

Ensuring system integrity online. Our approach focuses on collecting evi-
dence during run-time from different variants using explications. We depend
on a supervisor component that cross-checks explications and conducts online
experiments to obtain additional information to identify faulty components when
required. Related work investigates the use of agents testing each other [20]
requiring a predefined number of agents to confirm an agent faulty. Agents check
the information collected from the environment in addition to generating test
events and evaluating the reaction of their peers. Similarly, we test multiple,
diverse components at run-time using explications and using micro-experiments
but we rely on the centralized supervisor component. This centralized unit allows
to overcome the problem of having multiple agents failing by which the prede-
fined number of agents may no longer be in reach.

The supervisor is required to be fail-operational, otherwise, it would poten-
tially be a single point of failure. In addition to the traditional approaches to
ensure that the supervisor is correctly designed, we also need to ensure that it is
correctly executed. Specifically, related work investigates the correct execution
of the supervisor when executed on potentially unreliable hardware [25], under
security attacks [5,27,28] or even protect its integrity despite the existence of
CPU design faults [26].

Supervisory control. Supervisory control theory, rooted in the work of
Ramadge and Wonham [38] is a method for automatically synthesizing con-
trollers based on formal models of hardware and control requirements. The super-
visory controller observes machine behavior by receiving signals from ongoing
activities, upon which it sends back control signals about allowed activities [10].
Assuming that the controller reacts sufficiently fast on machine input, this feed-
back loop is modeled as a pair of synchronizing processes. The model of the
machine, referred to as plant, is restricted by synchronization with the model
of the controller, referred to as supervisor. This theory has been the nucleus
for a plethora of foundational and applied work, reaching out to the SCADA
(supervisory control and data acquisition) framework in process industry, but
also linking to the context of reactive synthesis, where cyber-physical systems
are abstracted as discrete transition systems subject to specifications expressed

Dynamic Dependable Systems: A Vision 423

in temporal logic. Notably, while our setup has a conceptual similarity with that
setting, we address supervision at a higher architectural level. Our supervisors
are software artifacts (of considerable complexity) that are manually crafted in a
SupERLog, not synthesized; they supervise several other software artifacts each
of which is meant to play the role of a partial plant controller; our machinery of
explications, reasoning about these, and formal methods for component analysis
and micro-experiment planning are used to achieve supervision at this level.

4 Formal Underpinning

To set the stage for the discussion that follows, we now provide details on the for-
mal models needed to conceptualize supervisor, component analysis, and micro-
experiments.

4.1 SupERLog

In order to allow for a sketch of our supervisor architecture in a generic form
(Sect. 5.2), we introduce the basics of a SupERLog based on a function-free pred-
icate logic with integer arithmetic. The logic supports the modeling of supervisor
behavior via rules. Reasoning in SupERLog is effective in the sense that verifi-
cation of supervisor properties is decidable, and that consequence finding, can
be efficiently done in a bottom-up reasoning style. Consequence finding is the
main task of the supervisor.

Predicates of SupERLog range over abstract objects (constants) as well as
numbers with respect to an integer arithmetic theory. Constant symbols iden-
tify the objects of interest, function symbols are not required. Abstract objects
identify particles of the real world such as technical components, a sensor, or a
car. Integer numbers represent sensor input or calibration data of the supervi-
sor. The resulting logic can be viewed (i) as an extension of basic datalog with
integer arithmetic, potentially non-Horn rules and unsafe variables [11], (ii) as
an extension of SMT (Satisfiability Modulo Theory) by universally quantified
variables [36], and (iii) as an instance of function-free first-order logic extended
with integer arithmetic [22,43]. Satisfiability in this logic is undecidable in gen-
eral [23]. However, it is decidable if integer variables are of bounded range in all
rules. We assume this as a typical property in a technical environment. The pre-
requisite of finitely bounded variables also enables SupERLog support for rich
arithmetic operations, as we will demonstrate in Example 5.

Definition 1 (SupERLog Signature). A SupERLog signature Σ = (Ω,Π,
IA) consists of a finite set Ω of predicate symbols, a finite set Π of constant
symbols, and the symbols IA from integer arithmetic.

Each P ∈ Ω is associated with its arity k. We also write P (x0, . . . , xk−1)
to indicate the predicate’s arguments explicitly. Variables may either range over
finite domains generated by constants from Π or over integer numbers.

424 R. Faqeh et al.

Definition 2 (SupERLog Rules). Given a SupERLog signature Σ, a rule

H1, . . . , Hn ← B1, . . . , Bm ‖ Λ

for Hi = Pi(�xi, �cj), Bi = Qi(�yi, �di), Qi, Pi ∈ Ω, cj , dj ∈ Π, and Λ is an
arithmetic IA constraint over variables

⋃
i(�xi, �yi).

Definition 3 (Facts). Given a SupERLog signature Σ = (Ω,Π, IA) and an
atom P (x0, . . . , xk−1), P ∈ Ω, for any tuple �c = (c0, . . . , ck−1) ∈ (Π ∪
const(IA))k we say that the instantiation of P (x0, . . . , xk−1) with �c, written
P (c0, . . . , ck−1), is a (ground) fact. We denote by F [Σ] the set of all facts in Σ.

In case n = 1 a SupERLog rule becomes a Horn rule. Such rules are used
to define supervisor behavior, because of their unique minimal model semantics.
In this case reasoning is complete in a datalog-style, hyper-resolution fashion:
the premises Bi are matched against ground facts Ai by a ground substitution
σ and if the respective constraint Λσ is satisfied, the head H1 is inferred. Given
a finite set R of SupERLog Horn rules, we say that a fact H is derivable from
R if there exists an iteratively applicable sequence of (grounded) rules from R
whose outcome contains H. The derivation F [[R]] ⊆ F [Σ] from F with R is the
set of all such H. Obviously, because Π is finite and integer variables appear
only bounded, the above bottom-up reasoning terminates and F [[R]] is finite.

The case of general SupERLog rules (n > 1) results from verification.
For example, a component model typically includes non-deterministic behavior
expressible by disjunction. Then, bottom-up reasoning is no longer complete and
we stick to model-driven reasoning [16] which is also terminating for SupERLog
non-Horn clause sets.

4.2 System Model

We will be working in a setting with components interacting through input/out-
put synchronization. We use a very natural extension of the I/O-automata for-
malism [33] to a setting with probabilistic transition effects, known as proba-
bilistic I/O systems [19]. Probabilistic I/O automata give us the opportunity
to model in a very natural manner typical cyber-physical systems (CPS) which
are built up of components that interact and exchange information. In addi-
tion, CPS often occur in only partially controllable or known environments and
also the modelling is bounded by technical and physical challenges which can be
represented in the design of probabilistic automata.

Definition 4 (PIOS [19]). A probabilistic I/O atom is a tuple (S,Act , G,R, s̄),
where S is a finite set of states, Act is a finite set of action labels, G ⊆ S ×
D(Act × S) is a generative output transition relation, R : S × Act → D(S) is a
reactive transition function, and s̄ ∈ S is an initial state.

Dynamic Dependable Systems: A Vision 425

A probabilistic I/O system (PIOS) is a finite vector P = (α1, . . . , αn) of
probabilistic I/O atoms αi = (Si,Act i, Gi, Ri, s̄i) for i ∈ {1, . . . , n}. The set of
states of the system is the product of the component states S(P) :=×i

Si and
s̄(P) := (s̄1, . . . , s̄n) is the system’s initial state. Let A := D(

⋃
i Act i) be the set

of transition labels. We define a transition relation → ⊆ S(P) × A × D(S(P))
such that ((s1, . . . , sn), κ, μ) ∈ → if and only if there exists an i ∈ {1, . . . , n} and
κi ∈ D(Act i×Si) such that (si, κi) ∈ Gi, for all a ∈ Act i, κ(a) =

∑
s∈Si

κi(a, s),
and for all (s′

1, . . . , s
′
n) ∈ S(P):

μ(s′
1, . . . , s

′
n) =

∑

a∈Acti

κ(a, s′
i)

∏

j �=i

{
Rj(sj , a)(s′

j) a ∈ Actj

δ(sj)(s′
j) a �∈ Actj

Executions of CPS modelled as probabilistic I/O systems can be described
and observed by traces which include the actions taken in the system and paths
which in addition contain the system states which occurred during the execu-
tion. Having these information one can reconstruct what happened during the
execution and what was the reason.

Definition 5 (Paths and Traces). For a given PIOS P = (α1, . . . , αn), a
finite path is an alternating sequence of states and transitions s0 t0 s1 t1 . . .
tk−1 sk where si ∈ S(P) for 0 ď i ď k and for each index j ∈ {0, 1, . . . , k−1},
tj = (sj , κj , μj) ∈ → such that μ(sj+1) > 0. For such a path, the sequence of
actions κ1 κ2 . . . κk is called its trace. Each such trace is a word ρ̂ ∈ A∗. Let
T[P] denote the set of all traces of PIOS P.

The supervisor is a special component of the complete PIOS defining the
CPS under investigation. This component contains only one state and repeatedly
executes control actions and thereby fully determines the system’s behavior. This
is later needed for conducting the micro-experiments.

Definition 6 (Supervisor Model). We model the supervisor as a component
αs = (Ss,Acts, Gs, Rs, s̄s) with Ss := {s̄s}, Gs := {(s̄s, δ((a, s̄s))) | a ∈ ActC}
for some set of control actions ActC ⊆ Acts, and Rs(s̄s, a) := δ(s̄s).

The set ActC will correspond to a certain set of facts under the control of the
supervisor.

4.3 Observers and Boolean Monitors

We assume that a system perceives its environment through sets of facts which
are provided by an observer based on an execution trace as defined in Defini-
tion 5. The action sequences given by execution traces contain information such
as sensor readings which the observer translates into facts:

Definition 7. An observer is a function mapping traces to sets of facts:

O : A∗ → 2F [Σ]

426 R. Faqeh et al.

To formally specify observers, we harvest results from the area of runtime ver-
ification. Runtime verification techniques allow to check whether a trace of a
system under scrutiny satisfies or violates a given property [32] usually specified
in a formal specification language e.g., [8,14]. Work in the area also expands
to the computation of quantitative properties e.g., [2,31]. We abstract from the
concrete specification language and introduce the following framework-agnostic
notion of boolean monitors:

Definition 8. A boolean monitor is a function mapping traces to booleans:

MB : A∗ → B

The property observed by a boolean monitor then provides a verdict regarding
a particular ground fact. For instance, there may be a boolean monitor that
determines whether a lane is free based on information provided by a LIDAR
sensor extracted from the current execution trace. We capture this correspon-
dence between boolean monitors and ground facts formally as follows.

Definition 9 (M-Observer). Let M be a set of pairs 〈MB, p(�c)〉 of boolean
monitors and grounded facts. For each M we define an observer:

O[MB](ρ̂) := { p(�c) | 〈MB, p(�c)〉 ∈ M s.t. MB(ρ̂) = �}

The boolean monitors making up M can be based on any work in the area of
runtime verification that is suitable for computing boolean properties over traces
as defined in Definition 5. This includes specification languages for quantitative
properties as long as they also allow the computation of boolean properties.
While this setup is very general, there are some practical constraints. In partic-
ular, the set M must be finite or at least finitely representable such that we can
actually compute the set of facts for a given trace.

5 The Supervisor

With its central role in our envisioned architecture, the supervisor has to fulfill a
variety of tasks. Most prominent is the reasoning about component explications,
but the coordination role requires also other activities. We first give an overview
of the supervisor role as a whole, then delve into the details of reasoning. Com-
ponent analysis and micro-experiments are tackled by separate components, and
will be addressed in Sect. 6 and Sect. 7 respectively.

The supervisor itself is assumed to be a reusable, dependable component.
It is designed using state-of-the-art dependability approaches like formal proofs
and fault-tolerance mechanisms, like [42], to prevent that the supervisor becomes
a single point of failure.

Dynamic Dependable Systems: A Vision 427

5.1 Overall Role and Tasks

Consider again the architecture overview in Fig. 1. The supervisor is the entity
communicating with all other components and emitting the action decisions to
be executed in the system’s environment. It makes use of a knowledge base and a
reasoning engine for reasoning about component explications. From this central
position and design, the following tasks arise:

(i) Knowledge base maintenance. The supervisor needs to update its knowl-
edge of the environment and its behavior, adjusting, e.g., for environment
changes and low-probability events that were not observed before deploy-
ment. This knowledge base might be shared with the supervisors of other
systems.

(ii) Reasoning about explications. As previously outlined, the supervisor needs
to check component outputs, and in particular suggested action decisions,
for contradictions given its knowledge.

(iii) Synchronization with component variants. The supervisor needs to contin-
uously inform the component variants about the state of affairs, i.e., which
action decisions were executed, which variants are in charge, which outputs
have been forwarded to other components.

(iv) Observations statistics maintenance. The supervisor must collect and main-
tain the system execution data relevant for component analysis and, indi-
rectly, micro-experiments.

(v) Taking action decisions. The supervisor is responsible for deciding whether
the outcome of reasoning is sufficient to take an action decision, whether
a safe fallback action should be executed, or whether further investigation
through component analysis or micro experiments should be triggered.

(vi) Executing micro-experiments. Micro-experiments are used to identify action
strategies that minimize uncertainty about faulty components. The super-
visor is responsible for executing these strategies.

(vii) Taking analysis results into account. The supervisor must be able to incor-
porate the results from component analysis and micro-experiments into its
decisions as per (v).

While items (i), (iii), and (iv) can be based on well-understood principles
(e.g., [35,39]), items (ii), (v) and (vi) need more discussion. For reasoning about
explications (ii) we employ SupERLog reasoning, as outlined below. This comes
with a trade-off between expressivity and efficiency paving a controlled way to
the use of online, real-time decision making in dynamic systems.

For the core of item (v), a straightforward solution consists of hardcoded
rules like “execute an action only if proved safe” or “trigger component analysis
if uncertainty greater than threshold”. A more advanced and robust solution is
to formulate the entire decision-making process – encompassing regular actions,
fallback actions and whether to trigger component analysis – as a single over-
all reasoning process. Our SupERLog reasoning mechanism is suited for this
purpose.

428 R. Faqeh et al.

Micro-experiment execution in item (vi) takes the form of re-planning [18],
based on an action policy suggested by the micro-experiment planner (see
Sect. 7). In each execution step, this policy suggests an action A to execute to
the supervisor. The supervisor decides whether to execute A or another action
(like a fallback action, or a decision to remain idle and just observe the environ-
ment behavior). The supervisor communicates its decision back to the micro-
experiment planner, which re-plans an adapted policy if needed.

For taking analysis results into account (vii), Micro-experiment execution
generates new observations (feeding into the supervisor like all observations, via
an M-Observer cf. next sub-section), while component analysis results need to
be directly fed into the supervisor knowledge base. A canonical instance of the
latter is to feed back assessments classifying component variants as “correct”
vs. “potentially faulty” vs. “definitely faulty” (which we shall specify formally in
Sect. 6). If required, more detailed properties can be communicated by including
corresponding predicates and knowledge about fault-model specifics.

5.2 Reasoning About Component Explications

A central issue in logical reasoning is the trade-off between expressivity and
efficiency: more powerful logics allow to express more complex phenomena, but
are more complex to reason about and quickly become undecidable. Reasoning
in Horn SupERLog terminates and can be efficiently implemented making it a
perfect choice for online decision making in dynamic systems. We next specify a
possible form of a supervisor model based on SupERLog and introduce different
modes of reasoning along these lines, using SupERLog deduction over ground
facts. We first address component variants, then the supervisor itself. For the
implementation of the supervisor we employ a Horn SupERLog rule base.

Component variants are components in system control, working together to
choose actions (from the action set ActC in our system model). At the abstraction
level in our supervisor model here, they are collections of functions on facts
over a signature, implemented by Horn rules of the supervisor, where the target
signature contains an encoding of system control information:

Definition 10 (Variant). Given the set of actions ActC , a (component) vari-
ant V is a finite set {V1, . . . , Vk} of functions Vi : 2F [ΣI] �→ 2F [ΣO

i], where ΣI

and ΣO
i are SupERLog signatures. We require that ΠI ⊇ ActC and that, for all

i, ΠO
i ⊇ ΠI ∪ {V } and ΩO

i ⊇ ΩI ∪ {pctrl
i }. We will refer to pctrl

i as Vi’s control
predicate.

Note that the set ActC comprises the actions in control of the supervisor,
cf. Definition 6. The input 2F [ΣI] common to all functions Vi here connects to
observations on the trace of the system, i.e., the facts in F [ΣI] are associated with
boolean monitors in an M-Observer as per Definition 9. That M-Observer is
permanently associated with the supervisor, serving to connect its representation
of facts to the system trace observations in the model underlying component
analysis.

Dynamic Dependable Systems: A Vision 429

A component variant is a collection of functions, rather than a single func-
tion, to allow to distinguish its outputs with respect to individual control pred-
icates. Such predicates encode outputs that form part of the system control,
i.e., that provide information about which actions ActC should be chosen. This
includes direct control information through predicates like doAction(V, a) and
illegalAction(V, a) where variant V decides to execute a or deems that action to
be illegal in the current situation. It also includes intermediate information like
emergencyBreakNeeded(V) indicating that one part of the machinery suggests
an action (like an emergency-break unit which raises a need to break whenever
an obstacle is detected ahead) which will be combined with other information in
the supervisor before taking an actual decision (like changing the lane instead).
The remaining (non-control-predicate) output of each individual function Vi is
an explication in terms of the subset of relevant input facts responsible for the
control-predicate decision made by Vi.

Naturally, for every input fact set F , the output Vi(F) of each function
should be a subset of F (the explication) plus exactly one control fact, and
the control facts should not contradict each other across different Vi(F). Our
definition does not make these restrictions to permit exceptions, and to allow the
model to capture faulty components where implementation bugs may disvalidate
these properties. It is the supervisor’s task to reason about inconsistencies in
component variants’ outputs. Furthermore, our defined predicate logic enables
effective computation of guarantees such as the existence of single control facts.

The functions Vi are arbitrary in our definition to keep our concepts generic
and as the internal working of the component variant is not of interest in the
supervisor specification (it is, instead, the subject of faulty component analysis
and micro-experiments). In practice, implementations of the component variants
must, for use in our framework, be extended with an implementation of the
functions Vi describing their behavior in terms of predicates as specified above
to support supervisor reasoning. As an example, the emergency-break unit as
above, reacting to obstacles detected in front-camera pictures, requires to have
simple adaptors that translate the relevant signals (“obstacle detected”, “control:
break”) into suitable ground facts.

The supervisor now simply takes as input the component variants’ outputs,
and processes this information with its SupERLog rules set.

Definition 11 (Supervisor). Given a set of actions ActC and a set V of vari-
ants, a supervisor is defined by a SupERLog signature Σs where

⋃
V ∈V,Vi∈V ΩO

i

⊆ Ωs, as well as a finite set Rs of SupERLog Horn rules for Σs.

Given a set of facts F ⊆ F [ΣI] for each variant V , the supervisor com-
putes the SupERLog derivation FO[[Rs]] from the union of outputs FO :=⋃

V ∈V,Vi∈V Vi(F). It takes decisions based on that derivation.
For example, a simple situation is that where the supervisor checks for

contradictions when dealing with a variant V that is already certified, and
another variant V ′ with recent security updates that we want to certify. To
this end, we include a predicate contradiction(x, y) into Ps, and the rule

430 R. Faqeh et al.

contradiction(x, y) ← doAction(x, a), illegalAction(y, a) into Rs. We then check
for ground instances contradiction(x, y) ∈ FO[[Rs]]. The absence of such a con-
tradiction between V and V ′ for a long period of time increases confidence in
the safety of V ′. If there is a contradiction however, there are two possible cases.
First, contradiction(V ′, V) where V forbids an action suggested by V ′, indicat-
ing that V ′ is unsafe. Second, vice versa contradiction(V, V ′), which results in
an ambiguous situation as V ′ is not yet certified yet may have an important
security update. In both cases, the supervisor may decide to take an emergency
action, like a handover to the human operator. Or, given sufficient time is avail-
able, it may invoke component analysis, and transitively micro-experiments, to
gain more confidence in which of V and V ′ is correct.

In the latter case, the supervisor uses the explications delivered by V and
V ′ as part of their output. Namely, say the reason for V ’s decision is the input
fact p ∈ F and that for V ′’s decision is q ∈ F . We assume that the integrity of
the inputs can be verified by the supervisor, i.e., a variant can neither generate
inputs nor can it modify inputs. This can be achieved, for example, by digitally
signing all inputs. Each of p and q are associated with boolean monitors in the
supervisor’s M-Observer, 〈Mp

B
, p(�c)〉 and 〈Mq

B
, q(�c)〉. The supervisor communi-

cates Mp
B

and Mq
B

to component analysis, which makes use of this information
about system traces to narrow down the possible fault models as we shall specify
in the next section.

Example 4 (Conflicting Sensors: Supervisor Reasoning). Consider, as in Exam-
ple 2, an update to the software component responsible for lane changing maneu-
vers in an autonomous vehicle. Say the vehicle is currently driving in the right
lane. The old variant V outputs a control predicate doAction(V, gostraight) ∈
Vi(F) while the new variant V ′ outputs illegalAction(V ′, gostraight) ∈ V ′

j (F).
With the above simple reasoning, the supervisor concludes contradiction(V, V ′),
indicating a conflict. Say the supervisor decides to handover to the human oper-
ator and, simultaneously, to trigger component analysis. The explications pro-
vided by Vi and V ′

j are p = free(rightlane) and q = blocked(rightlane) respec-
tively.2 The supervisor maps these to boolean monitors Mp

B
and Mq

B
in its M-

Observer.

From a SupERLog reasoning perspective, action-contradiction checking as
above is extremely simple. More complex reasoning arises, for example, in meta-
reasoning about which decision to take given mixed evidence (go ahead? bail
out? trigger component analysis?); and when components do not output actions
directly, but pieces of information that will need to be assembled by the supervi-
sor reasoning to arrive at an action decision. The latter makes sense, for example,
in the context of a lane change scenario, where what is a safe distance depends
on road conditions:

2 Note that, for the sake of efficiency, SupERLog reasoning may not explicitly handle
negation. Instead, the relevant contradictory fact combinations can be identified via
appropriate extra rules.

Dynamic Dependable Systems: A Vision 431

Example 5 (Lane Change). The supervisor calculates a safe distance ahead of
car depending on wet or dry road conditions using the explications provided
by the variants (speed(S), distance(D)). For example, the supervisor decides
based on following rules if the distance between the car x and a car y in front
of it is safe (Safe_Distance_Ahead(SDA)). Specifically, the distance should be
large enough (Base_Safe_Distance_Ahead(BSDA)) in addition to extra space
required if the road is wet (Extra_Distance(ED)). Note that BSDA rules
varies depending on the speed of the car x compared to the speed of car y.

SDA(x, y, sx, sy, z)← BSDA(x, y, sx, sy, v),ED(x, sx,w), ‖ z > v + w
BSDA(x, y, sx, sy, v)← S(x, sx),S(y, sy),D(z, x, y) ‖ sx > sy, z > sx ∗ 10
BSDA(x, y, sx, sy, v)← S(x, sx),S(y, sy),D(z, x, y) ‖ sx ď sy, z > sx

ED(x, sx,w)← S(x, sx),Wet(u) ‖ w = div(sx ∗ u, 10)

6 Component Analysis

Given a formal and componentwise model of the system, the component analysis
identifies potentially faulty components in the system.

Definition 12 (System Configuration). Let 〈C1, . . . , Cn〉 be a finite vector of
components and Mi := {αi

1, . . . , α
i
ki

} be a set of PIOS atoms for each component
Ci. A system configuration is a PIOS c = 〈α1, . . . , αn〉 such that αi ∈ Mi. Let
C be the set of all system configurations. Then T[C] := ⋃

c∈C T[c] is the set of all
finite traces over all system configurations.

Definition 13 (Observation Function). Let Obs be a potentially infinite set
of observables. An observation function O : T[C] → Obs maps traces to observ-
ables o ∈ Obs. For each system configuration c ∈ C the set Obs(c) = {O(π̂) | π̂ ∈
T[c]} ⊆ Obs is the set of observables consistent with c.

Given an observation of an observable o ∈ Obs we seek to explain o in virtue of
a system configuration which is consistent with o, i.e., a system configuration that
may result in an observation of o. The different models αi

x for each component
Ci enable us to ask and answer model-based what-if questions.

Example 6. Returning to Example 2, imagine a distance sensor component Ci

measuring the distance to obstacles in the present lane based on which a boolean
monitor concluded that there is an obstacle ahead. Now, given an observation o
and different models αi

N and αi
F for sensor Ci where αi

N describes the behavior
of a perfectly functioning and αi

F the behavior of a faulty sensor, we may ask:
what if the sensor were faulty, would that explain the observation o? To answer
this question, we check whether o is consistent with a configuration where the
sensor behaves normally versus a configuration where the sensor is faulty. The
answer allows the supervisor to determine which components to trust.

432 R. Faqeh et al.

Definition 14 (Faulty Components). With respect to an observable o, we
call a component potentially faulty if and only if there exists a configuration c
consistent with o such that the component’s model in c describes faulty behav-
ior. We call a component definitely faulty if and only if for all configurations c
consistent with o, the component’s model in c describes faulty behavior.

Note that if there is a failure mode of the component that may still produce
the correct behavior in some execution, e.g., a sensor which non-deterministically
provides values, then Definition 14 always considers the sensor potentially faulty.
This matches our intuition that in such a case we can never be certain that the
sensor is not already faulty until it actually misbehaves.

In case of probabilistic systems one may further assign a (minimal/maximal)
probability to each configuration c with respect to a given observable o capturing
how probable it is to observe o if the system were configured according to c. Such
probabilities provide the supervisor with insights about the likelihood of certain
components being faulty and can be a further basis for its decision.

With regard to the architecture displayed in Fig. 1, the environment, each
sensor, and the actuators are represented as components. Treating them as
components allows us to capture interactions between actuator commands and
expected sensor readings.

For instance, if the obstacle in Example 2 is fixed then acceleration and
deceleration should have a specific effect on the slope of the measured distance.

Example 7 (Component Analysis). Recapitulating Example 2 and Example 3,
we model the system as four components, the LIDAR sensor CL, the RADAR
sensor CR, the environment CE , and the supervisor CS . For the environment,
we define a single probabilistic I/O atom with digital clock semantics describing
how the distance of the car changes in response to (discrete) speed changes
of the supervisor. The supervisor is modeled as per Definition 6 which results
in non-determinism in the model regarding the acceleration and deceleration
decisions. Those acceleration and deceleration actions are, however, provided by
the observation and thereby resolved by the actual system. For both sensors, we
have a nominal model capturing the measured distance with respect to changes
in the environment. In addition, we have the following failure models: (1) the
measured distance is non-deterministically stuck and does not change and (2)
the measured distance is multiplied by 5. Now, if the car decelerates slightly, the
correct measurements are described by the nominal models. Our model predicts
that given an observation of a deceleration action this should be followed by a
specific change in distance. If the observed value for a sensor does not change
at all, then this is in line with what the failure model (1) would predict. If the
value changes over-proportionally by a factor of 5, then this is in line with what
the failure model (2) would predict.

For the observation function, we assume that a subset AO ⊆ A of the transi-
tion labels in the PIOS are directly observable, e.g., sensor readings and actuator
commands. The set Obs of observables is the set of finite words over AO, i.e.,

Dynamic Dependable Systems: A Vision 433

Obs = A∗
O. For a finite trace ρ̂ = κ0κ1 . . . κn ∈ A∗ of a PIOS (α1, . . . , αn) we

define the observation function O as follows:

O(κ0κ1 . . . κn) = O(κ0)O(κ1) . . . O(κn) with O(κ) :=

{
κ if κ ∈ AO

ε otherwise

The supervisor provides the component analysis with the boolean monitors
responsible for the contradiction. We assume that some of the boolean monitors
respond to specific transition labels generated by particular components. For
example, the I/O atoms modeling a LIDAR sensor have generative transitions
for specific LIDAR-sensor-reading actions which are the basis for the monitor’s
verdict regarding the distance to obstacles on the lanes. Based on this infor-
mation, we prioritize different sets of system configurations we consider for the
analysis. Note, however, that a contradiction of facts may not only be caused by
malfunctioning of the components which are directly connected via monitors to
those facts. Hence, the information provided by the supervisor is merely used as
a hint to quickly identify potential faults by assuming that all other components
except those involved in the contradiction are functioning nominally.

If the component analysis is not able to determine which of the components
is faulty because there are multiple configurations consistent with a given obser-
vation, then the component analysis invokes micro-experiment planning. To this
end, the micro-experiment planner is provided with a set of possible configura-
tions C♦ ⊆ C and the given observation o.

7 Micro-Experiments

The purpose of a micro-experiment is to provide the supervisor with specific
instructions that, when followed, will allow to distinguish between the system
models C♦ still considered possible after component analysis. Ultimately, upon
the completion of a micro-experiment, a unique possible model is identified. We
next define what a micro-experiment is (in terms of an action selection function),
and outline the use within the supervisor framework.

As previously discussed, the supervisor resolves action choices, as captured
by actions in our model (cf. Sect. 4.2). For instance, in our lane change example,
a component could request a lane change in either left or right direction in order
to evade an obstacle on the current lane. We formalize micro-experiments based
on these action choices, as a function of observations.

Concretely, in the system model formalization, Definition 4, the supervisor is
represented abstractly via atom αs. The supervisor’s control actions are ActC .
For ease of presentation, we assume that the control actions available in a specific
situation can be observed by the supervisor directly, i.e., ActC ⊆ AO. Intuitively,
components must explicitly request the supervisor to make a decision. For that
request to make sense, the supervisor must be able to know (and thus to observe)
the available options. Given this, micro-experiments are defined as follows:

434 R. Faqeh et al.

Definition 15 (Micro-Experiment). The observation histories H denote the
set of all finite sequences of pairs AO×{�,⊥}. A micro-experiment is a (partial)
function π : H �→ AO ∪ {�}.

Observation histories allow to track and to accordingly react to observations
made since the beginning of the micro-experiment execution. Micro-experiments
are hence decision strategies that inform the supervisor what to do next depend-
ing on what has been observed so far.

This is non-trivial in two aspects. First, the uncertainty about system models
entails uncertainty which actions are enabled. Indeed, applicability of observable
actions is the information at our disposal to distinguish between different system
models. Definition 15 reflects this with the annotation symbols � and ⊥, which
encode applicability and inapplicability respectively. Second, the supervisor can
control only some, not all, of the observable actions. Non-controlled observable
actions must be taken into account as signals for the execution of a micro-
experiment, i.e., they must be added to the observation history. Definition 15
hence permits arbitrary observable actions as the micro-experiment output.

The micro-experiment execution is structured accordingly. It consists of a
loop, where in each iteration the supervisor queries the micro-experiment with
the current observation history h. The history is initially empty, and is extended
by one more element in each step. Each loop iteration has an active or pas-
sive nature depending on whether the suggested action a := π(h) is (a) a control
action a ∈ ActC or (b) a non-control action a ∈ AO\ActC . In case (a), the super-
visor checks whether a is enabled. If yes, the supervisor executes a and updates
the observation history to h ◦ 〈π(h),�〉; if no, the supervisor updates the obser-
vation history to h ◦ 〈π(h),⊥〉. In case (b), the supervisor takes a passive role,
merely monitoring the system behavior and updating the history accordingly.
The micro-experiment at such a point essentially asks the supervisor whether the
next action executed by the system is a. The supervisor updates h to h◦〈π(h),�〉
if the observed action indeed matches the requested action a, and to h◦〈π(h),⊥〉
otherwise. The micro-experiment terminates when π(h) = �. The observation
history h collected until this point allows to remove those models from C♦ that
are inconsistent with h.

Example 8. In continuation of Examples 2, 3, and 7, assume that our system
contains a potentially faulty distance sensor CS . Let αN (nominal), αV (errors
at higher speeds), and αA (errors at certain view angles to the obstacle) be our
models of CS that are consistent with the current observations. The supervisor
now wishes to obtain additional information about the potential faultiness of CS .
Figure 2 illustrates a possible micro-experiment π for that purpose. The control
actions here are those actions that actively change the state of the car. The non-
control actions represent sensor outputs. The distinguish between the two, the
latter are shown in italic. The gray sets reflect how the possible models of CS

change according to the observations made during micro-experiment execution.

Dynamic Dependable Systems: A Vision 435

Fig. 2. An example
micro-experiment π.

Assume that the car is currently moving on a straight
road with a speed of 14m

s . Let there be a static obsta-
cle detected by CS with a distance of 100m. π immedi-
ately requests the supervisor to slightly decelerate (step
i). If this is not possible, i.e., the supervisor answers with
“⊥”, the execution of π is stopped without obtaining addi-
tional information about the models. If it is possible “�”, π
requests the supervisor to observe how the distance mea-
surement of CS changes when decelerating (step ii). The
amount of deceleration is chosen large enough to assure
that even under fault model αV , the sensor now measures
the correct distance. Consequently, if the new measure-
ment does not agree with what would be expected given
the initial distance estimate, the “⊥” case, then the initial
distance estimate must have been wrong. Thus, the chosen
control action implies that αV has to be the model of CS .
Vice versa, for “�” we know that αV cannot be underlying CS since the change
in speed was indeed adequately represented in the distance measurement. The
execution of π then continues from the reduced model set αN and αA as further
depicted in Fig. 2.

The question of course is how to construct a suitable micro-experiment in
the first place. We conjecture that this can be done via standard tools based on
an encoding into partially observable Markov decision processes (POMDP) [45].
Specifically, the uncertainty about system models can be encoded into POMDP
state uncertainty by making the true system model an unobservable part of the
state, and defining the transition behavior according to the true model. Observ-
able actions in such a POMDP then decrease state uncertainty by distinguishing
states where the action is enabled from ones where it is not. The objective of
maximally decreasing uncertainty can be encoded as a reward dependent on the
POMDP’s belief state, as in so-called ρPOMDPs [4]. It remains a topic for future
work to spell out this approach.

8 Discussion and Outlook

Cyber-physical systems that evolve dynamically through in-field component
updates are clearly a grand challenge to dependability, especially when facing
insufficient time for full re-certification of the updates. Our approach brings
together five key ideas to design an architecture addressing that challenge:

(i) Not a single but several component variants are maintained, and a supervisor
monitors and arbitrates their behavior.

(ii) Component variants must provide explications for their decisions.
(iii) Effective and verifiable reasoning is used by the supervisor to identify incon-

sistencies across components and component variants.

436 R. Faqeh et al.

(iv) In-field component analysis identifies possible faults from past system obser-
vations.

(v) In-field micro-experiments disambiguate between faults through injection of
dedicated system behavior.

In short, our proposed architecture safeguards uncertified component variants
through a certifiable control layer, and offers the system the possibility to self-
diagnose (autonomously, if necessary) in the field. Each of the ideas (i) – (v)
draws on established concepts in different areas of computer science. Our con-
tribution lies in bringing them together, and providing a first formalization of
the constituents and their interplay.

At this stage, our contribution is a vision. It remains to implement and
evaluate the envisioned architecture.

Observe that, to this end, for (i), (iii), (iv), and (v) one can draw on estab-
lished techniques in dependability, logics, verification, and artificial intelligence
respectively. The present paper brings together these areas and outlines a pos-
sible architecture instance together with its formalization. Many other instanti-
ations are conceivable given the wealth of concepts available in each area.

For (ii), the computation of explications, matters are somewhat different as
the process of explicating decisions remains in itself a grand challenge for classical
software engineering as well as for machine learning (ML) systems. For ML this
is commonly known as the Explainable AI challenge. While for now we assume
a relatively benign form of explications, namely identifying the relevant subset
of the input which led to the output, we expect that our architecture vision will
profit from progress in that highly active area.

Our next steps will be to spell out different aspects of our architecture, to
be implemented and evaluated in individual use cases, paving the way to the
vision of a full integrated system. We believe that this opens a new sub-area
of dependable systems research, which we hope will inspire other researchers as
well.

References

1. Aizpurua, J., Muxika, E., Papadopoulos, Y., Chiacchio, F., Manno, G.: Applica-
tion of the D3H2 methodology for the cost-effective design of dependable systems.
Safety 2(2), 9 (2016). https://doi.org/10.3390/safety2020009

2. Alur, R., Fisman, D., Raghothaman, M.: Regular programming for quantitative
properties of data streams. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632,
pp. 15–40. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-
1_2

3. Alvaro, A., de Almeida, E.S., de Lemos Meira, S.R.: Software component certifi-
cation: a survey. In: 31st EUROMICRO Conference on Software Engineering and
Advanced Applications, pp. 106–113 (2005)

4. Araya, M., Buffet, O., Thomas, V., Charpillet, F.: A POMDP extension with belief-
dependent rewards. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel,
R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23,
pp. 64–72. Curran Associates, Inc. (2010)

https://doi.org/10.3390/safety2020009
https://doi.org/10.1007/978-3-662-49498-1_2
https://doi.org/10.1007/978-3-662-49498-1_2

Dynamic Dependable Systems: A Vision 437

5. Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind, J.,
Muthukumaran, D., O’Keeffe, D., Stillwell, M.L., Goltzsche, D., Eyers, D., Kapitza,
R., Pietzuch, P., Fetzer, C.: SCONE: secure Linux containers with intel SGX.
In: 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2016), Savannah, GA, pp. 689–703. USENIX Association (2016). https://
www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov

6. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Secur. Com-
put. 1(1), 11–33 (2004). https://doi.org/10.1109/TDSC.2004.2

7. Avizienis, A., Laprie, J.C., Randell, B., et al.: Fundamental concepts of depend-
ability. University of Newcastle upon Tyne, Computing Science (2001)

8. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272.
Springer, Heidelberg (2006). https://doi.org/10.1007/11944836_25

9. Bishop, P., Bloomfield, R.: A methodology for safety case development, February
1998. https://doi.org/10.1007/978-1-4471-1534-2_14

10. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 2nd edn.
Springer, Heidelberg (2010)

11. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog
(and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989)

12. Council, N.R.: Software for Dependable Systems: Sufficient Evidence? The
National Academies Press, Washington, DC (2007). https://doi.org/10.17226/
11923. https://www.nap.edu/catalog/11923/software-for-dependable-systems-
sufficient-evidence

13. Currit, P.A., Dyer, M., Mills, H.D.: Certifying the reliability of software. IEEE
Trans. Softw. Eng. SE–12(1), 3–11 (1986)

14. D’Angelo, B., Sankaranarayanan, S., Sanchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous
systems. In: 12th International Symposium on Temporal Representation and Rea-
soning (TIME 2005), pp. 166–174 (2005)

15. Felser, M., Kapitza, R., Kleinöder, J., Schröder-Preikschat, W.: Dynamic software
update of resource-constrained distributed embedded systems. In: Rettberg, A.,
Zanella, M.C., Dömer, R., Gerstlauer, A., Rammig, F.J. (eds.) IESS 2007. ITIFIP,
vol. 231, pp. 387–400. Springer, Boston, MA (2007). https://doi.org/10.1007/978-
0-387-72258-0_33

16. Fiori, A., Weidenbach, C.: SCL with theory constraints. CoRR abs/2003.04627
(2020). https://arxiv.org/abs/2003.04627

17. Fleury, M.: Formalization of logical calculi in Isabelle/HOL. Ph.D. thesis, Saarland
University, Saarbrücken, Germany (2020)

18. Ghallab, M., Nau, D., Traverso, P.: Automated Planning and Acting. Cambridge
University Press, Cambridge (2016)

19. Giro, S., D’Argenio, P.R., Fioriti, L.M.F.: Distributed probabilistic input/output
automata: expressiveness, (un)decidability and algorithms. Theoret. Comput. Sci.
538, 84–102 (2014). Quantitative Aspects of Programming Languages and Systems
(2011–2012). https://doi.org/10.1016/j.tcs.2013.07.017. http://www.sciencedirect.
com/science/article/pii/S0304397513005203

20. Heck, H., Rudolph, S., Gruhl, C., Wacker, A., Hähner, J., Sick, B., Tomforde,
S.: Towards autonomous self-tests at runtime. In: 2016 IEEE 1st International
Workshops on Foundations and Applications of Self* Systems (FAS*W), pp. 98–
99 (2016)

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/978-1-4471-1534-2_14
https://doi.org/10.17226/11923
https://doi.org/10.17226/11923
https://www.nap.edu/catalog/11923/software-for-dependable-systems-sufficient-evidence
https://www.nap.edu/catalog/11923/software-for-dependable-systems-sufficient-evidence
https://doi.org/10.1007/978-0-387-72258-0_33
https://doi.org/10.1007/978-0-387-72258-0_33
https://arxiv.org/abs/2003.04627
https://doi.org/10.1016/j.tcs.2013.07.017
http://www.sciencedirect.com/science/article/pii/S0304397513005203
http://www.sciencedirect.com/science/article/pii/S0304397513005203

438 R. Faqeh et al.

21. Heimerdinger, W., Weinstock, C.: A conceptual framework for system fault tol-
erance. Technical report CMU/SEI-92-TR-033, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA (1992). http://resources.sei.cmu.edu/
library/asset-view.cfm?AssetID=11747

22. Horbach, M., Voigt, M., Weidenbach, C.: On the combination of the Bernays–
Schönfinkel–Ramsey fragment with simple linear integer arithmetic. In: de Moura,
L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 77–94. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63046-5_6

23. Horbach, M., Voigt, M., Weidenbach, C.: The universal fragment of Pres-
burger arithmetic with unary uninterpreted predicates is undecidable. CoRR
abs/1703.01212 (2017)

24. Kessler, A.M.: Elon musk says self-driving tesla cars will be in the US by
summer. The New York Times 19, 1 (2015). https://www.nytimes.com/2015/03/
20/business/elon-musk-says-self-driving-tesla-cars-will-be-in-the-us-by-summer.
html

25. Kuvaiskii, D., Faqeh, R., Bhatotia, P., Felber, P., Fetzer, C.: HAFT: hardware-
assisted fault tolerance. In: Proceedings of the Eleventh European Conference on
Computer Systems, EuroSys 2016. Association for Computing Machinery, New
York (2016). https://doi.org/10.1145/2901318.2901339

26. Kuvaiskii, D., Fetzer, C.: δ-encoding: Practical encoded processing (2015)
27. Kuvaiskii, D., Oleksenko, O., Arnautov, S., Trach, B., Bhatotia, P., Felber, P.,

Fetzer, C.: SGXBOUNDS: memory safety for shielded execution. In: Proceedings
of the Twelfth European Conference on Computer Systems, EuroSys 2017, pp. 205–
221. Association for Computing Machinery, New York (2017). https://doi.org/10.
1145/3064176.3064192

28. Kuvaiskii, D., Oleksenko, O., Bhatotia, P., Felber, P., Fetzer, C.: ELZAR: triple
modular redundancy using intel AVX (practical experience report). In: 2016 46th
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), June 2016. https://doi.org/10.1109/dsn.2016.65

29. Lammich, P.: Efficient verified (UN)SAT certificate checking. J. Autom. Reason.
64(3), 513–532 (2020)

30. Laprie, J.C.: Dependability: basic concepts and terminology. In: Laprie, J.C. (ed.)
Dependability: Basic Concepts and Terminology. DEPENDABLECOMP, vol. 5,
pp. 3–245. Springer, Vienna (1992). https://doi.org/10.1007/978-3-7091-9170-5_1

31. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: TeSSLa: run-
time verification of non-synchronized real-time streams. In: ACM Symposium on
Applied Computing (SAC), France. ACM, April 2018

32. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009). The 1st Workshop on Formal Languages
and Analysis of Contract-Oriented Software (FLACOS ’07)

33. Lynch, N.: Input/output automata: basic, timed, hybrid, probabilistic, dynamic,
In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 191–192.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45187-7_12

34. Lyyra, A.K., Koskinen, K.M.: With software updates, Tesla upends product life
cycle in the car industry. LSE Bus. Rev. (2017)

35. Moore, E.F., et al.: Gedanken-experiments on sequential machines. Automata
Stud. 34, 129–153 (1956)

36. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53, 937–977 (2006)

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11747
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11747
https://doi.org/10.1007/978-3-319-63046-5_6
https://www.nytimes.com/2015/03/20/business/elon-musk-says-self-driving-tesla-cars-will-be-in-the-us-by-summer.html
https://www.nytimes.com/2015/03/20/business/elon-musk-says-self-driving-tesla-cars-will-be-in-the-us-by-summer.html
https://www.nytimes.com/2015/03/20/business/elon-musk-says-self-driving-tesla-cars-will-be-in-the-us-by-summer.html
https://doi.org/10.1145/2901318.2901339
https://doi.org/10.1145/3064176.3064192
https://doi.org/10.1145/3064176.3064192
https://doi.org/10.1109/dsn.2016.65
https://doi.org/10.1007/978-3-7091-9170-5_1
https://doi.org/10.1007/978-3-540-45187-7_12

Dynamic Dependable Systems: A Vision 439

37. Palin, R., Ward, D., Habli, I., Rivett, R.: ISO 26262 safety cases: Compliance and
assurance, vol. 2011, September 2011. https://doi.org/10.1049/cp.2011.0251

38. Ramadge, P., Wonham, W.: Supervisory control of a class of discrete event pro-
cesses, 25, 206–230 (1987). https://doi.org/10.1007/BFb0006306

39. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pren-
tice Hall, Upper Saddle River (2010)

40. Salfner, F., Malek, M.: Architecting dependable systems with proactive fault man-
agement. In: Casimiro, A., de Lemos, R., Gacek, C. (eds.) WADS 2009. LNCS,
vol. 6420, pp. 171–200. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17245-8_8

41. Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-end arguments in system design.
ACM Trans. Comput. Syst. 2(4), 277–88 (1984). https://doi.org/10.1145/357401.
357402

42. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. (CSUR) 22(4), 299–319 (1990)

43. Voigt, M.: The Bernays–Schönfinkel–Ramsey fragment with bounded difference
constraints over the reals is decidable. In: Dixon, C., Finger, M. (eds.) FroCoS
2017. LNCS (LNAI), vol. 10483, pp. 244–261. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66167-4_14

44. Wu, W., Kelly, T.: Safety tactics for software architecture design. In: Proceedings
of the 28th Annual International Computer Software and Applications Conference
2004, COMPSAC 2004, vol. 1, pp. 368–375 (2004)

45. Åström, K.: Optimal control of Markov processes with incomplete state informa-
tion. J. Math. Anal. Appl. 10(1), 174–205 (1965). https://doi.org/10.1016/0022-
247X(65)90154-X

https://doi.org/10.1049/cp.2011.0251
https://doi.org/10.1007/BFb0006306
https://doi.org/10.1007/978-3-642-17245-8_8
https://doi.org/10.1007/978-3-642-17245-8_8
https://doi.org/10.1145/357401.357402
https://doi.org/10.1145/357401.357402
https://doi.org/10.1007/978-3-319-66167-4_14
https://doi.org/10.1007/978-3-319-66167-4_14
https://doi.org/10.1016/0022-247X(65)90154-X
https://doi.org/10.1016/0022-247X(65)90154-X

Forming Ensembles at Runtime:
A Machine Learning Approach

Tomáš Bureš1(B), Ilias Gerostathopoulos1,2(B), Petr Hnětynka1(B),
and Jan Pacovský1(B)

1 Charles University, Prague, Czech Republic
{bures,hnetynka,pacovsky}@d3s.mff.cuni.cz

2 Vrije Universiteit Amsterdam, Amsterdam, Netherlands
i.g.gerostathopoulos@vu.nl

Abstract. Smart system applications (SSAs) built on top of cyber-
physical and socio-technical systems are increasingly composed of com-
ponents that can work both autonomously and by cooperating with each
other. Cooperating robots, fleets of cars and fleets of drones, emer-
gency coordination systems are examples of SSAs. One approach to
enable cooperation of SSAs is to form dynamic cooperation groups—
ensembles—between components at runtime. Ensembles can be formed
based on predefined rules that determine which components should be
part of an ensemble based on their current state and the state of the envi-
ronment (e.g., “group together 3 robots that are closer to the obstacle,
their battery is sufficient and they would not be better used in another
ensemble”). This is a computationally hard problem since all compo-
nents are potential members of all possible ensembles at runtime. In
our experience working with ensembles in several case studies the past
years, using constraint programming to decide which ensembles should
be formed does not scale for more than a limited number of components
and ensembles. Also, the strict formulation in terms of hard/soft con-
straints does not easily permit for runtime self-adaptation via learning.
This poses a serious limitation to the use of ensembles in large-scale and
partially uncertain SSAs. To tackle this problem, in this paper we pro-
pose to recast the ensemble formation problem as a classification problem
and use machine learning to efficiently form ensembles at scale.

Keywords: Adaptation · Ensembles · Cooperative systems · Machine
learning

1 Introduction

Smart system applications (SSAs) are cyber-physical and socio-technical systems
that comprise a number of components that cooperate towards a common goal.
These systems are increasingly popular and include wide range of applications
spanning from smart building management (coordinating heat, ventilation, air

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 440–456, 2020.
https://doi.org/10.1007/978-3-030-61470-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_26&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_26

Forming Ensembles at Runtime: A Machine Learning Approach 441

conditioning with physical access control, etc.), smart traffic, emergency response
systems, up to smart farming or smart underwater exploration.

The cooperation among components is a key feature of these systems. The
cooperation is typically governed by certain application-specific collaboration
rules. For instance, in the smart farming domain, the drones monitoring the
crop on fields may coordinate to keep three drones in the air patrolling the sur-
veyed area while the rest of the drones recharges or stays idle on the ground.
This naturally leads to describing the coordination in these systems using a set
of constraints (both hard constraints and soft constraints) that govern which
components should cooperate at a particular point in time and what their task
is. For instance, such constraints would assign the three drones the task to patrol
the fields. The selection would be based on the battery level of the drone and its
distance to the patrolled area. Formally speaking, the correct and optimal oper-
ation of such a system is then reduced to the problem of finding the assignment
of components to collaboration groups that satisfy the constraints and optimize
the soft-optimization rules.

In our work we use the architectural concept of autonomic component ensem-
ble to model the collaboration group. The ensemble defines its potential mem-
bers and stipulates the set of hard constraints and optimization rules that govern
which components are eventually selected as members. As multiple ensembles
can co-exist at the same time, there are naturally also constraints across the
ensembles—for enforcing that the same component may be a member of only
one of several ensembles of the same type. The problem of finding such assign-
ment of components to ensembles (we term this ensemble resolution) is inher-
ently exponential and cannot be easily overcome even with state-of-the-art SMT
or CSP solvers.

The problem is even aggravated by the fact that the solution to the problem
has to be found repeatedly—essentially whenever the state of the components or
the environment changes. This is because the constraints controlling the mem-
bership of components in ensembles typically directly depend on the state of the
components and the environment. As this state constantly changes, ensembles
have to be continuously re-resolved at runtime. This puts hard practical lim-
its on the time needed to complete the ensemble resolution to be in order of
seconds (up to minutes), and consequently on the maximum size of the system
(which, based on our experiments [9], depends on the complexity of ensembles
often limited to a dozen or a few dozens of components). Longer waiting times
means that the system cannot flexibly react to ever changing situations in its
environment.

In this position paper, we thus explore an approach to address the problem
of ensemble resolution that does not require exponential time at runtime. In
particular, we show how the problem of ensemble resolution can be recast to a
classification problem. In our work we use both neural networks and decision
trees as classifiers. After training the classifier offline, we can execute it quickly
at runtime, thus significantly cutting down the time needed to resolve ensembles.

442 T. Bureš et al.

As we discuss further in the text, using the classifier conceptually changes the
problem from crisp solutions that strictly follow the hard constraints to fuzzied
solutions that do not necessarily have to strictly obey the hard constraints.

As it turns out, if well designed, such a system with approximate solutions
still works. This requires a bit more robust design that balances well the responsi-
bilities in the system among autonomously operating components (meaning that
the components themselves are responsible for ensuring their safe and reliable
operation) and ensemble-level decisions that deal with high-level coordination
of components. However, such a design is overall necessary to make the system
more robust to uncertainty and to facilitate decentralization.

In this paper we report on our initial experiments in this direction. To demon-
strate and evaluate the idea, we adopt a use-case inspired by our work in a smart
farming project [9]. We use the agent-based simulator of the use-case scenario
to draw indicative results pointing to the feasibility of our approach.

We describe our running example inspired by our work in the smart farming
project [9] in Sect. 2. Then we explain how to recast the problem of ensemble
formation to a classification problem in Sect. 3. Section 4 provides an initial
evaluation of the feasibility of our prediction-based ensemble resolution. Finally,
Sect. 5 positions the work w.r.t related ones, and Sect. 6 concludes with a sum-
mary and outlook.

2 Running Example

As a motivational example, we use an actual scenario taken from our ECSEL
JU project AFarCloud1, which focuses on smart-farming and efficient usage of
cyber-physical and cloud-systems in agriculture. Figure 1 shows a screenshot
from our simulator developed to demonstrate the scenario.

Fig. 1. Example

1https://www.ecsel.eu/projects/afarcloud.

https://www.ecsel.eu/projects/afarcloud

Forming Ensembles at Runtime: A Machine Learning Approach 443

In the scenario, there is a farm with several fields—the yellow ones repre-
sent fields with crop requiring a protection from birds (which can damage the
crop) while the brown and dark-green ones require no protection. The whole
farm is continuously monitored by a fleet of autonomous drones. The drones
perform environment monitoring (humidity, temperature, etc.) and also detec-
tion of flocks of birds. In case a flock is detected, the drones are used to scare
the flock away from the crop fields to the birds-insensitive farm areas. To be
effective in scaring, the drones have to form a group (depending on the size of
the flock). Additionally, the drones can operate for a limited time only (depend-
ing on the battery capacity) and need to periodically recharge in the charger
(the rounded arrow blocks at the center), but which can charge only a limited
number of drones at the same time. Thus in order to be effective as a whole,
the system has to balance between the number of drones monitoring the farm,
scaring the birds, and charging themselves. Plus, the system needs to select the
most suitable drones for individual tasks (i.e. the closest ones, with a sufficient
amount of energy, etc. depending on the task).

To model and run dynamic and autonomous systems (like this one), we use
our approach based on autonomic ensembles [13]. In this approach, entities of a
system are modeled as components and cooperation among the components is
modeled via ensembles, which are dynamic context-dependent (time and space
bound) groups of components. For simple and easy development and experimen-
tation with ensembles, we have created a Scala-based internal domain-specific
language (DSL) to specify components and ensembles.

Listing 1.1 shows an excerpt of the specification of the example in DSL.
Both the component and ensemble types are modeled as classes, while the actual
component and ensemble instances are instantiations of these classes (there can
be a number of instances of a particular type). In the example, there are four
component types—DroneComponent, FieldComponent, ChargerComponent and
FlockComponent (lines 1–23). A component state (called component knowledge)
is modeled via the class fields. The FieldComponent and FlockComponent are
non-controllable components, i.e., they cannot be directly controlled by the sys-
tem and their state is observed only.

Fig. 2. Ensembles hierarchy in the running example.

444 T. Bureš et al.

There are six ensemble types—the top level one and five nested ones (the
structure is shown in Fig. 2). An ensemble is formed dynamically in order to
execute a group-level behavior (e.g., scare the flock). Only the top-level ensem-
ble instance (called the root ensemble) exists for the whole lifetime of the system
(it is instantiated at line 97). The component instances grouped in the ensemble
are not defined statically but via its membership condition, which is a conjunc-
tion of predicates over the component instances and their knowledge and which
is continuously evaluated. For instance, in the DroneProtectionSystem ensemble,
the lines 30–33 of Listing 1.1 identify component instances in the system and cat-
egorize them by mode. These groups of components are then used in ensembles
to declare potential members. The declaration of potential members is done via
oneOf (e.g. line 65) and subsetOfComponents (e.g. line 41). These two declarations
differ only in cardinality constraints.

A particular component instance can be a member of several ensemble
instances at the same time. If additional conditions have to be hold, the
constraint construct can be used (e.g., at line 91 in the DroneProtectionSystem).
The utility construct (e.g., at line 85 in the DroneProtectionSystem) represents
a soft condition, which is an optimization function for forming ensembles (i.e.,
in the case, there are several possibilities to choose component instances for
the ensemble). Finally, the tasks construct assigns responsibilities to component
instances which are members of a particular ensemble instance.

As already mentioned, ensembles can be nested; members (i.e. component
instances) of an ensemble are also members of a parent ensemble. The meaning
of nesting is that the root ensemble (the one without any parent) defines the
overall goal of the system while the nested ones represent particular sub-goals.
The DroneProtectionSystem ensemble is the root and represents the whole system.
The ApproachFieldUnderThreat ensemble is used to direct the necessary number of
drones to the field with detected birds. When the necessary number of drones is
above the field, an instance of the ScareFormation ensemble replaces the instance
of the previous ensemble and tries to scare birds away from the field by moving
drones above the field in a formation that equally spreads the drones over the
field. To simplify definition of assignment of the drones to positions over the
affected field, the ensemble contains the sub-ensembles SegmentAssignment. The
PatrolUnknown ensemble is used to guide a drone to a field that has unknown
status (no information about birds). And finally, the ChargerAssignment ensemble
is instantiated per charger place and assigns a drone that has a low energy level
to the charger.

The sub-ensembles are declared using ensembles (e.g. line 80) and rules (e.g.
line 70). The former declares a potential ensemble instance (i.e. such that will
be instantiated if constraints allow it), the latter declares a mandatory ensemble
instance (i.e. such that has to exist if its parent ensemble instance gets instan-
tiated).

Forming Ensembles at Runtime: A Machine Learning Approach 445

1 case class DroneComponent(
2 id: String, mode: DroneMode.DroneMode, position: Position, energy: Double,
3 chargingInChargerId: Option[ChargerId], observedFields: Map[String, FieldObservation]
4) extends Component {
5 name(id)
6 }
7

8 case class FieldComponent(idx: Int, flocks: Map[String, FlockState]) extends Component {
9 name(s”Field ${idx}”)

10 val center = FieldIdHelper.center(idx), val area = FieldIdHelper.area(idx)
11 val isUnknown = false, val isUnderThreat = flocks.values.exists(flock => area.contains(flock.position))
12 val requiredDroneCountForProtection = FieldIdHelper.protectingDroneCountRequired(idx)
13 val protectionCenters = FieldIdHelper.centers(idx, requiredDroneCountForProtection)
14 }
15

16 case class ChargerComponent(idx: Int, isFree: Boolean) extends Component {
17 name(s”Charger ${idx}”)
18 val chargerId = ChargerId(idx), val position = chargerId.position
19 }
20

21 case class FlockComponent(position: Position) extends Component {
22 name(s”Flock @ ${position}”)
23 }
24

25 class Scenario(simulationState: SimulationState) extends /∗....∗/ {
26

27 class DroneProtectionSystem extends Ensemble {
28 name(s”Root ensemble of the protection system”)
29

30 val operationalDrones = allDrones.filter(drone => drone.mode != DroneMode.DEAD &&
drone.mode != DroneMode.CHARGING && drone.energy > Drone.chargingThreshold)

31 val dronesInNeedOfCharging = allDrones.filter(drone => drone.mode != DroneMode.DEAD &&
drone.mode != DroneMode.CHARGING && drone.energy < Drone.chargingThreshold)

32 val fieldsWithUnknownStatus = allFields.filter(.isUnknown)
33 val fieldsUnderThreat=allFields.filter(.isUnderThreat), val freeChargers=allChargers.filter(.isFree)
34

35 class ApproachFieldUnderThreat(val field: FieldComponent) extends Ensemble {
36 name(s”ApproachFieldUnderThreat ensemble for field ${field.idx}”)
37

38 val flocksInField = allFlocks.filter(x => field.area.contains(x.position))
39 val dronesInField = operationalDrones.filter(x => field.area.contains(x.position))
40 val droneCount = field.requiredDroneCountForProtection, val center = field.center
41 val drones = subsetOfComponents(operationalDrones, <= droneCount)
42

43 utility {drones.sum(x=>if (field.area.contains(x.position)) 10 else dist2Utility(x.position, center))}
44

45 tasks {
46 if (flocksInField.isEmpty) {
47 for (drone <− drones.selectedMembers) moveTask(drone, center)
48 } else {
49 val selectedDronesInFieldCount = drones.selectedMembers.count(x =>

field.area.contains(x.position))
50 /∗ ... ∗/
51 }
52 }
53 }
54

55 class ScareFormation(val field: FieldComponent) extends Ensemble {
56 name(s”ScareFormation ensemble for field ${field.idx}”)
57

58 val dronesInField = operationalDrones.filter(x => field.area.contains(x.position))
59 val droneCount = field.requiredDroneCountForProtection
60 val segmentCenters = field.protectionCenters
61

62 class SegmentAssignment(val segmentCenter: Position) extends Ensemble {
63 name(s”Assignment for field ${field.idx} @ ${segmentCenter.x},${segmentCenter.y}”)
64

65 val drone = oneOf(operationalDrones)
66

67 utility { drone.sum(x => dist2Utility(x.position, segmentCenter)) }

446 T. Bureš et al.

68 tasks { moveTask(drone, segmentCenter) }
69 }
70 val protectionSegmentAssignments = rules(segmentCenters.map(new SegmentAssignment()))
71

72 utility { protectionSegmentAssignments.sum(assignment => assignment.utility) / droneCount }
73 constraint(protectionSegmentAssignments.map(.drone).allDisjoint)
74 }
75

76 class PatrolUnknown(val field: FieldComponent) extends Ensemble { /∗ ... ∗/ }
77

78 class ChargerAssignment(charger: ChargerComponent) extends Ensemble { /∗ ... ∗/ }
79

80 val patrolUnknown = ensembles(fieldsWithUnknownStatus.map(new PatrolUnknown()))
81 val chargerAssignments = ensembles(freeChargers.map(new ChargerAssignment()))
82 val approachFieldsUnderThreat =

ensembles(fieldsUnderThreat.filter(ApproachFieldUnderThreat.isInSituation()).map(new
ApproachFieldUnderThreat()))

83 val scareFormations = ensembles(fieldsUnderThreat.filter(ScareFormation.isInSituation()).map(new
ScareFormation()))

84

85 utility {
86 approachFieldsUnderThreat.sum(assignment => assignment.utility) +
87 scareFormations.sum(assignment => assignment.utility) +
88 patrolUnknown.sum(assignment => assignment.utility) / 4 +
89 chargerAssignments.sum(assignment => assignment.utility)
90 }
91 constraint(
92 (patrolUnknown.map(.drone) ++ approachFieldsUnderThreat.map(.drones) ++

scareFormations.map(.drones)).allDisjoint &&
93 chargerAssignments.map(.drone).allDisjoint
94)
95 }
96

97 val root = EnsembleSystem(new DroneProtectionSystem)
98 }

Listing 1.1. Running example in DSL

The more complete version of the example is available in [9] together with details
of the ensemble definition and DSL definition. The complete code of the example
is available at https://github.com/smartarch/afcens.

3 Methods

3.1 As a Constraint Satisfaction Problem

Our existing approach to instantiating ensembles (described, e.g., in [13]) is to
cast it as a constraint satisfaction (CSP) and optimization problem. That is,
how to assign given component instances to ensemble instances such that the
cardinality restrictions (e.g., line 65 or line 41 in Listing 1.1) and constraint
blocks in ensembles (e.g., line 91) are satisfied and such that the utility function
of the root ensemble instance is maximized.

The ensemble specification (Listing 1.1) describes all potential ensemble
instances and for each potential ensemble instance, it defines its potential mem-
ber component instances. However, not all of these potential ensemble instances
are eventually created. Only those are created that together satisfy the con-
straints while maximizing the utility function. Technically, existence of each

https://github.com/smartarch/afcens

Forming Ensembles at Runtime: A Machine Learning Approach 447

potential ensemble instance is represented in the constraint optimization problem
by a Boolean variable. Similarly, membership of a component instance in a partic-
ular ensemble instance is again represented by a Boolean variable. Constraints
are formed to reflect the structural constraints between ensemble component
instances (such as those that existence of a sub-ensemble instance implies exis-
tence of the parent ensemble instance) and the constraints expressed in the spec-
ification. The result of the constraint optimization is the assignment of Boolean
variables that indicate which ensemble instances are to be created and which
components are their members. We perform the constraint optimization using
an existing CSP solver (in particular Choco Solver2).

An obvious problem with this approach is that the constraint optimization
has by its nature exponential complexity. We performed several test on various
scenarios and all indicate that while the approach works well and has clear and
crisp semantics, it does not scale beyond a dozen or several dozens of component
instances (depending on the complexity of the specification). Beyond such limit,
the CSP solver requires minutes or even hours to run, which makes it imprac-
tical for forming ensembles at runtime as this requires periodic re-evaluation of
ensembles (for instance every couple of seconds or minutes). As such, we explore
further in this section an alternative way to decide on which ensembles to instan-
tiate by re-casting the ensemble forming as a classification problem. Though the
training phase of the classifier takes long, the actual execution of the classifier
is almost instantaneous—thus very suitable for constant re-evaluation of the
situation at runtime.

3.2 As a Classification Problem

When casting the ensemble resolution as a classification problem, we take the
inputs and outputs of the CSP solver as a starting point and, instead of invoking
a CSP solver to determine the assignment of component instances to ensemble
instances, we train classifiers to predict such assignment given the same inputs
as the CSP solver. Our approach is application of supervised learning where each
classifier is trained on a number of examples of inputs and outputs provided by
the historical invocations of the CSP solver.

The inputs of the classification problem are identical to the CSP problem
inputs and comprise the component knowledge (Listing 1.1) that influences in
any way the ensemble resolution process, i.e. is considered in the constraints
expressed in the specification. In our running example, the knowledge fields
included are the ones presented in Table 1.

2https://choco-solver.org/.

https://choco-solver.org/

448 T. Bureš et al.

Table 1. Inputs of classification problem.

Component Field Domain Example

Charger occupied Boolean True

Drone energy float 0.82

x float 113.125

y float 53.375

mode enum CHARGING

Flock x float 157.875

y float 66.187

The outputs of the CPS problem are the Boolean variables that represent
membership of a component instance to an ensemble instance. For the classifica-
tion problem, we use as outputs nominal variables that represent the membership
of component instances to ensembles.

Since there are several outputs and the outputs follow a nominal scale, the
overall classification problem we need to solve to assign component instances to
ensemble instances in our setting is a multi-output, multi-class problem. Such
problems can be solved by training either one multi-output, multi-class classifier
(which simultaneously predicts all outputs) or several independent single-output,
multi-class classifiers (one for each output). In our experiments, we used both
single-output and multi-output classifiers and different learning methods, namely
decision trees and neural networks, overviewed next.

Decision Trees (DT) represent a supervised learning method that can be used
both for classification and regression. Its operation is based on creating a tree
structure where leaves represent class labels (in case of classification) or continu-
ous values (in regression) and branches represent decision rules inferred from the
values of the inputs that lead to the leaves. In the case of multi-output problems,
leaves represent a set of class labels, one for each output. A DT is iteratively
constructed by an algorithm that selects, at each iteration, a value for an input
that splits the output dataset into two subsets and uses a metric to evaluate the
homogeneity of the output within the subsets. In our experiments, we used the
Gini impurity metric [12]. We did not use any pruning or set a maximum depth
to the derived trees. Finally, since we deal with unbalanced data (Fig. 5), we
use class weighting in training, with the inverse of the class distribution in our
training sets. We experimented with two DT variants: the multi-output variant,
in which a single DT was trained to predict the decisions of four drones (we used
this number of drones for all our experiments, see Sect. 4.1) and the single-output
variant, in which four separate DTs were trained, one for each drone.

Forming Ensembles at Runtime: A Machine Learning Approach 449

Neural networks (NN). In our experiments, we used fully connected feed-forward
NNs with residual connections that connect layers that are not adjacent. In
between the dense layers and within the first layer we regularize the outputs with
batch normalization [10]. As a optimizer we use LAMB [16]—(stochastic gradient
descent method that is based on Layer-wise adaptive estimation of first-order
and second-order moments) with multiple steps of logarithmic learning decay. We
used a batch size of 50.000 and trained the NNs for 50 epochs. We experimented
with different network architectures—Fig. 3 shows the architecture of the best
performing NN (called large NN henceforth), Fig. 4 a shows less complex, but
only slightly worse performing network, which we term small NN. Both networks
have four outputs corresponding to the decisions of the four drones.

4 Evaluation

In this section, we provide an initial evaluation of the feasibility of our prediction-
based ensemble resolution approach. First, we describe the experimental setup
used for both obtaining historical data and for evaluating the use of the trained
classifiers at runtime. Then, we overview the classification performance of the
different learning methods using different metrics. Finally, we describe the results
obtained when using the trained classifiers, together with the CSP solver, for
ensemble resolution at runtime.

Fig. 3. Architecture of large NN with emphasized residual connections. Numbers
denote width of the fully connected layers.

450 T. Bureš et al.

Fig. 4. Architecture of small NN with emphasized residual connections. Numbers
denote width of the fully connected layers.

4.1 Experimental Setup

Our experimental setup consists of a simulation that runs the smart farming system
described in Sect. 2. In all our experiments, we have used the following number of
component instances: four drones, five fields, three chargers, and five flocks.
Instead of considering all the component instances and all the potential ensem-
bles in the evaluation of our prediction-based approach, in our preliminary exper-
iments we focused on the drone component and the ApproachFieldUnderThreat
ensemble. We created classifiers to predict four output variables, each correspond-
ing to one drone in the simulation, capturing whether the drone belongs to the
ApproachFieldUnderThreat ensemble formed for the protection of a particular
field. So, each output variable takes one of six values: “no field”, “field 1”, “field
2”, “field 3”, “field 4”, “field 5”.

Fig. 5. Distribution of dataset in different classes.

Forming Ensembles at Runtime: A Machine Learning Approach 451

4.2 Evaluation of Classification Performance

To evaluate the performance of the different classifiers we trained, we used the
metrics of balanced accuracy, precision, recall, and F1-score. These metrics are
computed as follows. We count true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) that characterize whether a class has
been correctly predicted by a classifier. In particular, for each of the six classes
(“no field”, “field 1”, “field 2”, “field 3”, “field 4”, “field 5”) and for each output
variable, TP, TN, FP, and FN numbers are calculated in the following way. Given
a predicted value ypred and a real value yreal and considering a class c:

(a) TPc is increased by one if ypred = c and yreal = c;
(b) TNc is increased by one if ypred �= c and yreal �= c;
(c) FPc is increased by one if ypred = c and yreal �= c;
(d) FNc is increased by one if ypred �= c and yreal = c.

Given the above, the following metrics can be defined for a class c:(i)
accuracyc = TPc+TNc

TPc+TNc+FPc+FNc
, capturing the ratio of correct predictions; (ii)

precisionc = TPc

TPc+FPc
, capturing the time a positive prediction was also correct;

(iii) recallc = TPc

TPc+FNc
, capturing the times a positive value was also predicted

as such; and (iv) F1scorec = 2∗precisionc∗recallc
precisionc+recallc

, the harmonic mean of precision
and recall.

To give a single indicator of classification performance, the above metrics
can be averaged over the different six classes in our dataset. A popular overall
metric in multi-class classification is the average accuracy calculated by simply
averaging the accuracy from all classes. However, such calculation can lead to
biased estimates of classifier performance when tested on imbalanced datasets.
In our case, we indeed have a imbalanced datasets, since the “no ensemble” class
appears much more often than the other classes (Fig. 5). We have thus opted
for calculating the balanced accuracy by first dividing each class accuracy by the
number of instances of that class and then taking the average [6].

Table 2 depicts the balanced accuracy of the different classifiers we have
trained, averaged over the four outputs. The testing set was always set to 100
million samples. A first observation is that the four separate single-output deci-
sion tree classifiers outperform the multi-output decision tree one (which per-
formed overall very poorly). Another observation is that the two neural networks

Table 2. Average balanced accuracy of the different classifiers, calculated with testing
set of 100 million samples, for three sizes of training sets.

Training samples (million) 1 10 100

multi-output decision tree 49.11% 62.29% 72.33%

single-output decision trees 70.18% 77.21% 83.01%

small neural network 71.87% 94.02% 97.03%

large neural network 75.55% 95.86% 98.77%

452 T. Bureš et al.

Fig. 6. Weighted averages of precisions, recalls, and F1-scores for different classifiers
and training set sizes, in million (10M depicts the delta between the result obtained
with 10M and 1M samples and 100M the delta between 100M and 10 M samples).

outperform the decision tree classifiers in all cases, while big improvements are
seen compared to the decision trees when trained with 10 and 100 million sam-
ples. Finally, for all classifiers, there is always an improvement when trained with
more data; however, while for decision trees the improvement is linear (e.g. ∼7%
from one to 10 million and ∼6% from 10 to 100 million for the single-output
case), for the neural networks it is more profound when going from one to 10
million (∼20–23%) compared to going from 10 to 100 million (∼3%).

We also calculated the weighted average of precision, recall, and F1 score for
each drone. The weighted average is calculated by weighting each class according
to its inverse prevalence (Fig. 5). Figure 6 shows the weighted averages of the
three metrics, averaged over the four drones. We observe that the single-output
classifiers perform universally better than the multi-output one; similarly, the
large neural network performs slightly better than the small one across the board.
Also, we see the same pattern as with weighted averages: in neural networks,
there is a large gain when using 10 instead of 1 million data; this gain is much

Fig. 7. Boxplots of overall utilities (undisturbed time for birds) when plugging the
different predictors in the simulation of our running example.

Forming Ensembles at Runtime: A Machine Learning Approach 453

smaller when using 100 instead of 10 million data. Instead, for decision trees,
there is an almost equal gain when using 10 times more data. Finally, contrary
to the balanced accuracy results, the single-output decision tree classifier out-
performs the other classifiers (including the neural network ones) in all metrics
when trained with 1 million data.

4.3 Experiments Using Classifiers for Ensemble Resolution

To evaluate how effective the trained classifiers are when used together with the
CSP solver in ensemble resolution, we plugged them in the simulation of our
running example and evaluated the overall utility of a run, given by the amount
of undisturbed time that birds spend on fields. We compared the following cases:

– Runs where the drones were never participating in the ApproachFieldUnder-
Threat ensemble. This serves as the overall baseline.

– Runs with ensemble resolution every 1 min of simulation time by invoking the
CSP solver.

– Runs with ensemble resolution every 1 min of simulation time by means of
invoking a respective predictor to determine the participation of each drone
in ApproachFieldUnderThreat. (As the other ensembles were not handled
by the predictor, we still formed them based on the CSP solver.)

Each run had a duration of 600 min of simulated time; we performed 1000
runs (randomizing the starting position of flocks and drones) for each case, with
the results depicted in Fig. 7.

The boxplots show that, for each predictor, using more training data resulted
in higher overall utility. Also, while in most of the cases, using the predictor with
the CSP resulted in a reduction of the system utility w.r.t using only the CSP
solver, all cases performed better than not participating in ensembles at all. Also,
in two cases (nn small and nn large trained with 100 million samples) there
was a marginal improvement over the CSP case. We believe this happens due
to the classifier being able to generalize over the solution provided in the form
of hard/soft constraints and was able to improve on corner cases which lead for
instance to short intervals of oscillation when a drone was switching between
two targets and, as the result, did not move. Another interesting observation
is that higher balanced accuracy does not always translates to higher utility in
the simulation: e.g. even though the small nn on 1 million samples had slightly
higher balanced accuracy than the respective dd single (Table 2), its overall
utility is slightly lower, as can be seen in Fig. 7.

5 Related Work

The original idea of ensembles is based on the SCEL language [11]. In its
implementation JRESP3 [11], the ensembles are formed implicitly, as they are

3http://jresp.sourceforge.net/.

http://jresp.sourceforge.net/

454 T. Bureš et al.

abstractions capturing groups of components and dynamically determined by
their attribute-based communication. Almost the same approach is used in the
AbaCuS [2] (which is not strictly an ensemble-based framework however it is
built on the principles of the attribute-based communication). Another ensemble-
based framework is Helena [8] but here, the ensembles are formed explicitly, i.e.,
the components indicate, to which the ensemble they belong. In our implemen-
tation [13] of ensemble-based system, we have used the constraint solver for
forming ensembles but its issues have been already mentioned in Sect. 3.

The concept of ensembles targets emergent configurations. In the implemen-
tation of the ECo-IoT [1] approach, the emergent configurations are solved using
a state space planner, nevertheless its performance is also hindered by exponen-
tial complexity. The planner is also employed in [7], where the linear complexity
is claimed. However, measurements are done with respect to the growing number
of adaptations in a system (and not the size of the system).

Machine learning has been recently used in different ways to replace heavy
computations that are part of constraint satisfaction and combinatorial optimiza-
tion problems by fast approximations using machine learning, as overviewed in
a recent survey [4]. For example, decision trees have been used in predicting the
satisfiability of SAT instances [15], while deep neural networks have been used
in predicting the satisfiabilities of random Boolean binary CSPs with high pre-
diction accuracies (>99.99%) [14]. Other approaches have tried to embed neural
networks, but also decision trees and random forests, in constraint program-
ming [3,5]. The idea is to learn part of the combinatorial optimization model
and embed the learned piece of knowledge in the combinatorial model itself. We
too train classifiers to overcome computational issues associated with ensemble
resolution, where constraint programming is the host technology.

6 Conclusion

In this paper, we proposed a new approach for formation of ensembles at run-
time. Instead of relying on a constraint solver to decide on optimal placement
of components to ensembles, we employed machine learning. This allows us to
tackle the problem of exponential time needed by the constraint solver, which is
especially a problem since ensembles have to be formed at runtime (typically in
real-time). When employing machine learning, we can (after the initial training
stage) decide on placement of components into ensembles with linear time.

In our approach, we casted the problem of ensemble formation to a classi-
fication problem. To give comparison how well this approach works, we imple-
mented two different classifiers—decision trees and neural networks. We show
that with enough data, we were able to train the predictor with high enough
accuracy. Not only that, when we plugged the predictor in the simulation of our
running example and evaluated the overall utility, we observed that some clas-
sifiers even perform marginally better than the original solution that employed
the constraint solver. We attribute this to the fact that the classifier was able
to generalize the solution provided in the form of ensemble specification (i.e.,
logical predicates and optimization function).

Forming Ensembles at Runtime: A Machine Learning Approach 455

This paper provided the initial idea and indicative experiments. In future
work, we would like to focus on generalization which would allow the predic-
tors to be trained on smaller models and generalize them to larger scope. Also,
we are looking into how to further improve the prediction and how to include
reinforcement learning to take also into account the overall end-to-end utility
function (e.g. the time that the birds spend undisturbed in the field – as used
in our running example).

Acknowledgment. This paper is part of a project that has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 810115). Also, the research leading to
these results has received funding from the ECSEL Joint Undertaking (JU) under grant
agreement No 783221 and was partially supported by Charles University institutional
funding SVV 260451.

We are also grateful to Milan Straka from Institute of Formal and Applied Linguis-
tics at Faculty of Mathematics and Physics at Charles University for valuable input in
the field of deep networks that improved the training speed and results significantly.

References

1. Alkhabbas, F., Spalazzese, R., Davidsson, P.: ECo-IoT: an architectural approach
for realizing emergent configurations in the Internet of Things. In: Cuesta, C.E.,
Garlan, D., Pérez, J. (eds.) ECSA 2018. LNCS, vol. 11048, pp. 86–102. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00761-4 6

2. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming of CAS systems by
relying on attribute-based communication. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016. LNCS, vol. 9952, pp. 539–553. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47166-2 38

3. Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Neuron constraints to model
complex real-world problems. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 115–
129. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7 11

4. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’Horizon. arXiv: 1811.06128 [cs, stat], March 2020

5. Bonfietti, A., Lombardi, M., Milano, M.: Embedding decision trees and random
forests in constraint programming. In: Michel, L. (ed.) CPAIOR 2015. LNCS,
vol. 9075, pp. 74–90. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
18008-3 6

6. Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accu-
racy and its posterior distribution. In: Proceedings of ICPR 2010, Istanbul, Turkey,
pp. 3121–3124. IEEE, August 2010. https://doi.org/10.1109/ICPR.2010.764

7. Bucchiarone, A.: Collective adaptation through multi-agents ensembles: the case
of smart urban mobility. ACM Trans. Auton. Adapt. Syst. 14(2), 1–28 (2019).
https://doi.org/10.1145/3355562

8. Hennicker, R., Klarl, A.: Foundations for ensemble modeling – the Helena app-
roach. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Soft-
ware. LNCS, vol. 8373, pp. 359–381. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54624-2 18

https://doi.org/10.1007/978-3-030-00761-4_6
https://doi.org/10.1007/978-3-319-47166-2_38
https://doi.org/10.1007/978-3-319-47166-2_38
https://doi.org/10.1007/978-3-642-23786-7_11
http://arxiv.org/abs/1811.06128
https://doi.org/10.1007/978-3-319-18008-3_6
https://doi.org/10.1007/978-3-319-18008-3_6
https://doi.org/10.1109/ICPR.2010.764
https://doi.org/10.1145/3355562
https://doi.org/10.1007/978-3-642-54624-2_18
https://doi.org/10.1007/978-3-642-54624-2_18

456 T. Bureš et al.

9. Hnetynka, P., Bures, T., Gerostathopoulos, I., Pacovsky, J.: Using component
ensembles for modeling autonomic component collaboration in smart farming. In:
Proceedings of SEAMS 2020, Seoul, Korea (2020, accepted)

10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv:1502.03167 [cs], March 2015

11. Nicola, R.D., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. ACM Trans. Auton. Adapt. Syst. 9(2),
7:1–7:29 (2014). https://doi.org/10.1145/2619998

12. Raileanu, L.E., Stoffel, K.: Theoretical comparison between the Gini index and
information gain criteria. Ann. Math. Artif. Intell. 41(1), 77–93 (2004). https://
doi.org/10.1023/B:AMAI.0000018580.96245.c6

13. Bures, T., et al.: A language and framework for dynamic component ensembles
in smart systems. Int. J. Softw. Tools Technol. Transfer 22(4), 497–509 (2020).
https://doi.org/10.1007/s10009-020-00558-z

14. Xu, H., Koenig, S., Kumar, T.K.S.: Towards effective deep learning for constraint
satisfaction problems. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 588–597.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9 38

15. Xu, L., Hoos, H.H., Leyton-Brown, K.: Predicting satisfiability at the phase tran-
sition. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelli-
gence. AAAI 2012, pp. 584–590. AAAI Press, Toronto, July 2012

16. You, Y., et al.: Large batch optimization for deep learning: training BERT in 76
minutes. arXiv:1904.00962 [cs.LG] (2019)

http://arxiv.org/abs/1502.03167
https://doi.org/10.1145/2619998
https://doi.org/10.1023/B:AMAI.0000018580.96245.c6
https://doi.org/10.1023/B:AMAI.0000018580.96245.c6
https://doi.org/10.1007/s10009-020-00558-z
https://doi.org/10.1007/978-3-319-98334-9_38
http://arxiv.org/abs/1904.00962

Synthesizing Control for a System with
Black Box Environment, Based on Deep

Learning

Simon Iosti1(B), Doron Peled2(B), Khen Aharon2(B), Saddek Bensalem1(B),
and Yoav Goldberg2(B)

1 University Grenoble Alpes VERIMAG, 38410 St. Martin d’Héres, France
iosti.simon@gmail.com, saddek.bensalem@gmail.com

2 Department of Computer Science, Bar Ilan University, 52900 Ramat Gan, Israel
doron.peled@gmail.com, khen.aharon@gmail.com, yoav.goldberg@gmail.com

Abstract. We study the synthesis of control for a system that inter-
acts with a black-box environment, based on deep learning. The goal is
to minimize the number of interaction failures. The current state of the
environment is unavailable to the controller, hence its operation depends
on a limited view of the history. We suggest a reinforcement learning
framework of training a Recurrent Neural Network (RNN) to control
such a system. We experiment with various parameters: loss function,
exploration/exploitation ratio, and size of lookahead. We designed exam-
ples that capture various potential control difficulties. We present exper-
iments performed with the toolkit DyNet.

1 Introduction

Deep learning (DL) [8] led to a huge leap in the capabilities of computers. Notable
examples include speech recognition, natural language processing, image recog-
nition and calculating strategies for difficult games, like Chess [5] and Go [4].

We study the deep-learning based synthesis of control for finite state systems
that interact with black-box environments. In the studied model, the internal
structure of the environment is not provided and its current state is not observ-
able during the execution. In each step, the system makes a choice for the next
action, and the environment must follow that choice if the action is enabled.
Otherwise, a failed interaction occurs and the system does not move while the
environment makes some independent progress. The control enforces the next

S. Iosti and S. Bensalem—The research performed by these authors was partially
funded by H2020-ECSEL grants CPS4EU 2018-IA call - Grant Agreement number
826276.
D. Peled and K. Aharon—The research performed by these authors was partially
funded by ISF grants “Runtime Measuring and Checking of Cyber Physical Systems”
(ISF award 2239/15) and “Efficient Runtime Verification for Systems with Lots of Data
and its Applications” (ISF award 1464/18).

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 457–472, 2020.
https://doi.org/10.1007/978-3-030-61470-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_27&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_27

458 S. Iosti et al.

action of the system based on the available partial information, which involves
the sequence of states and actions that occurred so far of the system and the
indication of success/failure to interact at each point. The control goal is to min-
imize the number of times that the system will offer an action that will result in
a failed interaction.

The motivation for this problem comes from the challenge to construct dis-
tributed schedulers for systems with concurrent processes that will lower the
number of failed interactions between the participants. In this case, the environ-
ment of each concurrent thread is the collection of all other threads, interacting
with it. An alternative approach for constructing schedulers that is based on
distributed knowledge was presented in [2].

Algorithmic synthesis of control for enforcing temporal constraints on inter-
acting with an environment was studied in [12,13]. It includes translating a
temporal logic specification into an automaton [7], determinizing it [14], and
computing a winning strategy for a game defined over that automaton [18].
Reinforcement learning (RL) [15] suggests algorithmic solutions for synthesizing
control for systems where the goal is to maximize (minimize, respectively) some
accumulated future reward (penalty, respectively) over the interaction with the
environment. In RL, a complete model of the environment does not have to be
given, and in this case control can be synthesized through experimenting with
it. However, often the current state of the environment is fully observable; this
is not the case in our studied problem.

One approach for constructing control of a system that interacts with a black-
box environment is to first apply automata learning techniques [1] in order to
obtain a model of the environment. However, a complete learning of a model
for the environment is sometimes infeasible for various reasons, e.g., when one
cannot interface directly with the environment in isolation for making the needed
experiments, or due to high complexity.

We study the construction of control based on neural networks, where after
training, the neural network is used to control the system. This control con-
struction is adaptive, which is important in the cases where the environment can
change its typical behavior or where the tradeoff between further training and
improved performance is not clear in advance; we can resume the training after
deploying the system, and collecting runtime statistics.

We employ Recurrent Neural Networks (RNN), which include a feedback
loop that returns part of the internal state as additional input. This allows the
output to depend on the history of inputs rather than only on the last input. An
RNN is well suited to provide the control strategy due to the invisibility of the
structure and the immediate state of the environment; the controller’s choice for
the next step of the system needs to be based on its limited view of the past
execution history.

Neural networks have been used within reinforcement learning for finding
strategies for difficult board games such as Chess and Go. They were trained to
provide the quality function Q from the current state of the game to a numeric
value. The obtained game strategy chooses the move that maximizes the current

Synthesizing Control for a System with Black Box Environment 459

quality function. Our model cannot calculate a Q function, since the current state
of the environment, corresponding to the game board in those examples, is not
visible. Instead, we exploit a summary of the visible part of the execution so far,
as calculated by the trained neural network. Notable work that involve training
an RNN includes playing Atari games such as space invaders or breakout [9].
The reason for using the RNN architecture for these games is that the strategy
depends on a limited number of preceding states (specifically for these games,
four states are used); this permits the strategy to be influenced by the speed and
trajectory of the movement. By contrast, our study involves training an RNN
to produce a strategy that depends on a long history of the interaction between
the system and the environment.

In [11] we compared the potential use of automata learning, deep learning
and genetic programming for control synthesis. In this paper we focus on deep
learning and present a full study of a methodology for synthesizing control to
a system that interacts with a black-box environment. We study the required
architecture and training parameters and present experiments using the DyNet
tool [6].1

2 Preliminaries

We study the construction of control for a finite state reactive system that inter-
acts with black-box environment.

System and Environment. We study systems that are modeled as finite state
automata. Let A = (G, ι, T, δ) be an automaton, where

– G is a finite set of states with ι ∈ G its initial state.
– T is a finite set of actions (often called the alphabet).
– δ : (G × T) → G ∪ {⊥} is a partial transition function, where ⊥ stands for
undefined. We denote en(g) = {t|t ∈ T ∧ δ(g, t) �= ⊥}, i.e., en(g) is the set of
actions enabled at the state g. We assume that for each g ∈ G, en(g) �= ∅.

– An optional component is a probabilistic distribution on the selection of
actions d : G × T → [0, 1] where Στ∈T d(g, τ) = 1. Then, the model is called
a Markov Chain. In this case, δ(g, t) = ⊥ iff d(g, t) = 0.

The asymmetric combination of a system and an environment As	Ae involves
the system automaton As = (Gs, ιs, T s, δs), and the environment automaton
Ae = (Ge, ιe, T e, δe), where T s ∩ T e �= ∅. The two components progress syn-
chronously starting with their initial state. The system offers an action that
is enabled from its current state. If this action is enabled also from the cur-
rent state of the environment automaton, then the system and the environment
change their respective states, making a successful interaction. If the action is

1 DyNet is a python package for automatic differentiation and stochastic gradient
training, similar to PyTorch, and TensorFlow but which is also optimized for strong
CPU performance.

460 S. Iosti et al.

not currently enabled by the environment, the interaction fails; in this case, the
system remains at its current state, and the environment chooses randomly some
enabled action and moves accordingly. After a failed interaction, the system can
offer the same or a different action.

Formally,
As	Ae = (Gs × Ge, (ιs, ιe), T s × T e, δ)

where

δ((gs, ge), (ts, te)) =

{
(δs(gs, ts), δe(ge, ts)), if ts ∈ en(ge)
(gs, δe(ge, te)), otherwise

An environment with a probabilistic distribution on selecting actions makes a
probabilistic choice only if the action offered by the system is currently disabled.
In this case, δ((gs, ge), (ts, te)) = (gs, δe(ge, te)) with probability d(ge, te). We
restrict ourselves to non-probabilistic (and deterministic) systems.

An execution ξ of As	Ae is a finite or infinite alternating sequence

(gs
0, g

e
0) (ts0, t

e
0) (gs

1, g
e
1) . . .

of pairs of states and pairs of actions, where gs
0 = ιs, ge = ιe and (gs

i+1, g
e
i+1) =

δ((gs
i , g

e
i), (t

s
i , t

e
i)). According to the definitions, if tsi �= tei , then gs

i = gs
i+1; this is

the case where the interaction failed. We denote by ξ|i the prefix of ξ that ends
with the states (gs

i , g
e
i).

Consider the system in Fig. 2 (left) and its environment (middle). This system
can always make a choice between the actions a, b and c, and the environment
has to agree with that choice if it is enabled from its current state. If the system
selects actions according to (abc)∗, then the environment can follow that selection
with no failures. On the other hand, if the system selects actions according to
(baa)∗, the system will never progress, while the environment keeps changing
states.

Supervisory control studies the problem of constructing a controller that
restricts the behavior of a system; the combination guarantees additional require-
ments [16]. Our work is related to two methods for supervisory control, reinforce-
ment learning and deep learning.

Reinforcement Learning. Reinforcement learning includes methods for con-
trolling the interaction with an environment [15]. The goal is to maximize the
expected utility value that sums up the future rewards/penalties; these can be
discounted by γn with respect to its future distance n from the current point,
with 0 < γ ≤ 1, or be summed up with respect to a finite distance (horizon).
Typically, the model for RL is a Markov Decision Process (MDP), where there is
a probability distribution on the states that are reached by taking an action from
a given state. When the current state of the environment is not directly known
to the controller during the execution, the model is a Partially Observable MDP
(POMDP).

Synthesizing Control for a System with Black Box Environment 461

A value-based control policy (strategy) can be calculated by maximizing
either a state value function V (s) or a state-action value Q(s, a). When the
structure of the environment is known, a procedure based on Bellman’s equa-
tion [15] can be used. If the structure is unknown, a randomized-based (Monte
Carlo) exploration method can be used to update the value function and convert
towards the optimal policy.

Policy based RL methods avoid calculating the optimal utility value directly
at each state, hence are more effective when the number of possible states is huge.
The policy is parametric and its parameters are optimized based on gradient
descent. Such parameters can be, in particular, the weights of a neural network.

The training data is either selected a priori, according to some predefined
scheme, or using the output of the partially trained neural network. In mixed
training mode, we perform with probability ε an exploration step based on a
random choice with uniform probability and with probability 1−ε an exploitation
step, based on the selection of the partially trained network. The value of ε may
diminish with the progress of the training.

Deep Learning. Deep learning is a collection of methods for training neural
networks, which can be used to perform various tasks such as image and speech
recognition or playing games at an expert level. A neural network consists of
a collection of nodes, the neurons, arranged in several layers, each neuron con-
nected to all the neurons in the previous and the next layer. The first layer is the
input layer and the last layer is the output layer. The other layers are hidden.

The value xi of the ith neuron at layer j + 1 is computed from the column
vector y = (y1, . . . , ym) of all the neurons at layer j. To compute xi, we first
apply a transformation ti = wiy+bi where wi is a line vector of weights, and bi is
a number called bias. Then we apply to the vector t = (t1, . . . , tn) an activation
function, which is usually non-linear, making the value of each neuron a function
of the values of neurons at the preceding layer. Typical activation functions
include the sigmoid and tanh functions, as well as the softmax.

The softmax activation function takes a vector of values and normalizes it
into a corresponding vector of probability distributions, i.e., with values between
0 and 1, summing up to 1.

softmax(t1, . . . , tn) =
(

et1

Σieti
, . . . , . . . ,

etn

Σieti

)

Given values for all neurons in the input layer, we can compute the values for
all neurons in the network, and overall a neural network represents a function
R

n → R
m where n is the size of the input layer, and m the size of the output

layer.
The values of the weights wi and the biases bi are initially random, and mod-

ified through training. A loss function provides a measurement on the distance
between the actual output of the neural net and the desired output. The goal of
training is to minimize the loss function. Optimizing the parameters is performed
from the output layer backwards based on gradient descent.

462 S. Iosti et al.

For applications where sequences of inputs are analyzed, as e.g. in language
recognition, one often uses a form of network called Recurrent Neural Network
(RNN). An RNN maintains a feedback loop, where values of some neurons are
returned to the network as additional inputs in the next step. In this way an
RNN has the capability of maintaining some long term memory that summarizes
the input sequence so far. The backward propagation of the gradient descent is
applied not only once to the RNN, but continues to propagate backwards accord-
ing to the length of the input sequence, as the RNN has been activated as many
times as the length of the input so far. This allows training the RNN with respect
to the input sequence instead of the last input. However the long propagation
increases the problem of vanishing/exploding gradient. A more specific type of
RNN that intends to solve this problem is a Long Short-Term Memory, LSTM.
It includes components that control what (and how much) is erased from the
memory layer of the network and what is added.

3 Controlling a System Interfacing with a Black Box

We seek to construct a controller for the system that will reduce the number of
failed interactions. This is based on the information visible to the system (hence
also to the controller), which is the executed sequence of system states, actions
offered and the success/failure status of these interactions. The controller main-
tains and uses a summary of visible part of the execution so far. In addition, it
receives the information about the latest execution step: the state of the system,
the action selected by the system and whether the interaction succeeded or not.
It then updates the summary and selects an enabled action; see Fig. 1.

Fig. 1. A contoroller for the system

We now formally define the particular control problem. The view (visi-
ble part) v(ξ) of an execution ξ = (gs

0, g
e
0) (ts0, t

e
0) (gs

1, g
e
1) . . . is the alternating

Synthesizing Control for a System with Black Box Environment 463

sequence gs
0(t

s
1, b1)gs

1(t
s
2, b2) . . ., where bi = (tsi = tei). v(ξ|i) is the prefix of v(ξ)

that ends with gs
i . The control output is a function from the visible part of an

execution to an action that is enabled in the current state of the system and will
be offered to the environment in the next step.

Due to the invisibility of the environment structure and the state, there can
be multiple histories (i.e., prefixes of an execution) that correspond to the same
view. Future failing actions can cause the environment to make choices that are
invisible to the controller; there can be multiple continuation from the current
state. The goal of adding control is to minimize the sum of penalties due to failed
interactions up to some fixed horizon.

The length of the current execution prefix, and subsequently the view, can
grow arbitrarily. Instead, we maintain a finite summary of the view m(v(ξ|i))
that we can use instead of v(ξ|i) itself. We seek a control function that is based
on a summary of the view of the current prefix of the execution, and in addition
the most recent information about the action selected by the system.

We assume a fixed probability on the selection of actions by the environment,
in case of an interaction failure; for the experiments, we will assume a uniform
distribution. We limit ourselves to deterministic policies, where at each point
there is a unique selection of an enabled action. After training, our RNN will
output some probability distribution on the selection of the next action, and the
system will select the action with the highest probability.

A Suite of Examples

The following examples present for constructing a controller. They were used
to select the loss function needed for training the neural networks used as con-
trollers.

In Example permitted in Fig. 2, the system allows actions a, b and c. A
controller that has the same structure as the environment would guarantee that
the system never makes an attempt to interact that will fail, restricting the
system to the single sequence (abc)∗. The action that appears in the figure next
to a state of the controller is the action it enforces to select.

Note that the finite state controllers suggested in the figures of this section
are not the actual ones that are implemented using neural networks trained
through deep-learning.

464 S. Iosti et al.

g1

a, b, c

e1 e2

e3

a

bc

s1{a} s2 {b}

s3

c

a

bc

Fig. 2. permitted: System (left), Environment (middle) and Controller (right)

In Example schedule in Fig. 3, the controller must make sure that the system
will never choose an a. Otherwise, after interacting on a, the environment will
progress to e3, and no successful interaction with b will be available further. A
controller with two states that alternates between b and c, i.e., allows exactly
the sequence of interactions (bc)∗ is sufficient to guarantee that no failure ever
occurs.

System

g1

g2 g3
a

b

b

c

Environment

e1

e2 e3 e4b

c
a

c

a

Fig. 3. schedule: The control needs to avoid the action a as its initial choice

In Example cases in Fig. 4 the system is obliged to offer an a from its initial
state. The environment allows initially only b or c. Hence, the interaction will
fail, the system will stay at the same state and the environment will progress to
e2 or to e3, according to its choice, which is not visible to the system. After the
first a, the system does not change state, hence it is again the only action that it
offers. The controller that appears in Fig. 4 (left) moves after offering the first a,
which is due to fail, from s1 to s2. It checks now whether offering a fails again;
if not, it moves to s3 and restricts the environment to offer (ba)∗. Otherwise, it
moves to s4 and will restrict the environment to offer (ac)∗.

In Example strategy in Fig. 5, the system offers initially only the interaction
a, which necessarily fails, and consequently the environment makes a choice that
is invisible to the system. After that, the system and the environment synchronize
on an a. At this point, if the system chooses, by chance, an action that is enabled
by the environment, making a successful interaction (b or c, respectively), it will

Synthesizing Control for a System with Black Box Environment 465

g1

g2

ab, c

e1

e2 e3

e4 e5

b

ab

c

ca

s1 {a}

s2 {a}

s3{b} s4 {a}

s5 c

g1

g2

g1
g1

g2g1

Fig. 4. cases: Needs to check if a succeeded

necessarily lead to entering self loops that are incompatible (at g3 and e7, or at
g4 and e6, respectively), and no further successful interaction will happen. On
the other hand, if the system chooses an interaction that immediately fails, it
must repeat that same choice; This leads to compatible loops (g3 and e6, or g4

and e7), and there will be no further failures; flipping to the other choice after
that will lead again to the incompatible loops.

Unfortunately, because of the invisible choice of the environment at the begin-
ning of the execution, no controller can guarantee to restrict the number of fail-
ures in every execution. However, a weaker goal can be achieved, restricting the
number of failures with some probability, which depends on the probability p of
the environment to choose an b over c from its initial state. If we can learn the
probability p, we may guarantee restricting the number of failures to two in at
least max(p, 1 − p) ≥ 0.5 of the cases.

The Training Process

We will now show how an RNN of type LSTM can be trained to control a system
in order to reduce the overall number of failures. The input layer is a vector of
size q × |T |, where q is the number of states of the system and |T | is the number
of transitions. The output of the last layer is passed through a softmax function
to give the actual output of the network.

Let us consider the situation after a partial execution, where the RNN is fed
the input and produces an output w. The system uses this output to choose
an action aj among its available actions. Let t be the number of such currently
enabled actions. We distinguish two cases:

466 S. Iosti et al.

System

g1

g2

g3 g4

a

b

b

c

c

Environment

e1

e2 e3

e4 e5

e6 e7

b

a

c

b

c

a

b

c

Fig. 5. strategy: Fail next, or succeed and fail forever

– If action aj is successful, then the loss is defined to be

−log(softmax(w)j)

where softmax(w)j is the jth coordinate of the softmax of the output w.
– If action aj is failed, then the loss is defined to be

Σ1≤i≤t,i�=j − 1
t − 1

log(softmax(w)i)

Note that in the failed case, if there is only one available action (t = 1), then
the loss is 0, which is not problematic since there is only one action to choose
from. A backward propagation pass in then done through the RNN using this
loss formula.

This loss function can initially seem counter-intuitive because of the second
case, i.e., of a failed action. When offering action aj fails, we chose to interpret
this failure as meaning that any other choice would have been equally good.
Consequently, we update their probabilities towards this. In other words, when
aj fails, instead of reducing its probability, we “even out” the probabilities of
all other actions towards a uniform distribution among them. This effectively
results in a reduction of the probability of aj , but with more control over the
probabilities of other actions.

We compare the above loss with another loss function (which we used in
earlier experiments) that follows a more direct approach. It is computed in the

Synthesizing Control for a System with Black Box Environment 467

same way as the one described in the case of a successful action. In the case
where action aj is failed, the loss is computed as

log(softmax(w)j)

This results in effectively “punishing” the choice of selecting aj , lowering its
probability, instead of rewarding all other actions. We will call this loss the
naive loss. Experiments show that this loss function has a tendency to learn less
efficiently than the other one, and sometimes does not learn an optimal behavior
at all.

Training Pattern with Fixed Lookahead. We fix a lookahead number l ≥ 0
(where l = 0 corresponds to use the simple training pattern described above).
We train the network at step n only when the execution reaches step n + l, and
the loss is computed according to the same formulas as above, except that the
l last steps of the execution are taken into account to compute the loss at step
n. When the current partial execution of length n + l, we observe the output w
that the RNN has generated at step n, with action aj that was chosen by the
system. Let successes be the number of successful actions taken by the system
between step n and step n + l, and failures to be the number of failures between
the same steps.

The loss is then computed as:

successes × −log(softmax(w)j) + failures × −Σ1≤i≤tlog(softmax(w)i)

The backward propagation is then applied to this loss at step n (and not at step
n + l).

We also experimented with fixing a probability ε for exploring actions ran-
domly, not based on the output of the partially trained RNN, both with a fixed
ε and with diminishing the value of ε as training progressed. Another variant
we experiment with is using a dual network, where, for diminishing instability
of the updates, one is used for the exploitation of the partial training, and the
other is updated. Switching between them each fixed number of steps.

The output provided by our RNN after training is, as a result of the softmax
activation function, a probability distribution among the actions that can be
taken from the current state. After training, we choose the action suggested
by the controller with the highest probability. In many cases the training will
converge towards a non probabilistic control policy, but will be limited due to
the duration of the training. It is known from RL theory that for an environment
that is deterministic or a Markov Chain, there exists an optimal deterministic
policy that guarantees the highest expected discounted-sum utility from each
state.

The fact that the environment is a black box does not change the situation,
and a deterministic optimal control policy still exists. Yet, if we do not know
how many states the environment has, we cannot even bound the size of such a
policy. The number of states affects the number of required experiments and their

468 S. Iosti et al.

length. A further complication occurs because the state of the environment, and
its selection in case of a failure, are unobservable. Based on a given finite view,
the environment can be in one of several states according to some probability
distribution (which we cannot calculate, since the environment is a black box).
In fact, it is possible that there can be infinitely many such distributions for
different views.

Even when there exists an optimal deterministic strategy, we have no guar-
antee that the deep learning training will converge towards a deterministic strat-
egy. For consider again Example strategy in Fig. 5. In case that the environ-
ment makes its choice from e1 with uniform probability, any probabilistic choice
between b and c by the system will make as good (or bad) policy as making a
fixed choice between these two actions.

4 Experiments

We describe several experiments with the examples from the training suite. The
experiments show testing different training patterns on each individual example.
All results have been obtained using a similar structure for the RNN associated
to the network. The size of the LSTM layer is 10. Initializing the non-recurrent
parameters of the network is according to the Glorot initialization. The train-
ing passes have been done in every case by generating training sequences of
increasing size, from 1 to 50, and repeating this 50 times.

Comparison of the Actual and the Naive Loss. The aim of this section is
to show the advantage of using our actual loss described in the previous section
over using the naive loss.

We present in Table 1 the results of experiments on four examples from the
training suite, with various values for the lookahead and ε. The rows correspond
to the different environments, and the columns to the pair (l, ε), where l is the
lookahead in the training, and ε is the probability of performing an exploration
step. Shaded lines correspond to the results when using the naive loss, while
unshaded lines show the results for our actual loss. The entries in the table show
the average percentage of failures when generating 100 executions of size 200.

Table 1. Summary of Experiments; shaded results are obtained using the naive loss

%failures \ (l, ε) (0, 0) (0, 0.2) (0, 0.5) (3, 0) (3, 0.2) (3, 0.5) (20, 0) (20, 0.2) (20, 0.5)

0.0 0.0 0.0 0.0 0.0 7.6 15.9 22.2 27.0
permitted

15.69 18.62 18.68 43.79 55.01 61.44 65.56 65.32 67.39

98.5 98.4 98.5 9.9 0.2 0.0 0.5 0.3 78.5
schedule

98.39 96.47 97.08 0 0 0 0 0 94.75

1.7 1.6 6.9 1.5 1.5 1.6 34.5 38.9 45.6
cases

3.04 1.78 2 1.56 1.54 1.94 56.06 42.98 47.04

46.7 49.6 44.9 80.1 85.0 85.0 28.7 22.3 4.5
choice-scc

46.22 54.2 64.0 80.2 73.7 70.5 36.8 30.3 33.5

Synthesizing Control for a System with Black Box Environment 469

We first discuss the results concerning our actual loss function (unshaded
lines in the table).

In example permitted, the basic no-lookahead learning without exploration
works very well, and both lookahead and exploration tend to be counterproduc-
tive. This is not too surprising observing that a lookahead or exploration pattern
here would only blur the fact that a good choice is immediately interpretable as
such, depending on the failure or success of the action. In example schedule,
the lookahead is crucial for learning, and the exploration is again either counter-
productive, or at least not advantageous (depending on the lookahead). In exam-
ple cases, a long lookahead is again not efficient, and the exploration is not
necessary. In example choice-scc, a very long lookahead is beneficial, which
is to be expected in this example since a good choice at the beginning of the
execution can be identified as such only after the three first steps. Seeing several
successful steps afterwards to counter the effect of the failures at the beginning.
Even in the case of a long lookahead, exploration with the high probability of
0.5, improves dramatically the results, where a long lookahead is insufficient to
reach an almost optimal behavior. This shows the importance of exploration
in this kind of situations where better strongly connected components are only
reachable through worse paths that the system tends to avoid in the case of pure
exploitation.

Note that the training was performed on sequences of length at most 50, but
the behavior of the controller is verified on sequences of length 200, showing
that a training on short sequences allow the controller to generalize its behavior
on longer sequences. This gives evidence that a finite training is effective to
learn an optimal behavior on very (possibly arbitrary) long sequences. Of course,
without having a good estimate on the number of states of the environment,
a“combination locks” in it can hide behaviors that deviate from the learned
control.

Results using the naive loss appear as shaded lines in Table 1, for compar-
ison with our actual loss. We will use as point of comparison the values of the
parameters where the use of one loss or the other raises results that are almost
optimal. In examples schedule and cases, we can see that both losses perform
similarly: the situations where the training is optimal are the same for both
losses. In examples permitted and choice-scc, we see that the naive loss per-
forms very badly in comparison with the actual loss. In both cases the naive loss
never manages to reach an optimal behavior for the system, while the actual loss
performs very well for good choices of parameters.

Additional Experiments. Several other experiments were made using direct
variations of our training scheme. We tested two standard techniques from deep
learning: diminishing the value of the exploration/exploitation ratio ε along the
training, and using two “dual” networks. One of which is updated at every step as
usual, and the other is trained only at the end of a training sequence but is used
to generate these sequences. Depending on the examples we tested these variants
on, the results were either slightly better or similar to our results without these.

470 S. Iosti et al.

Another kind of experiments that we did was using combinations of pairs of
our examples from the training suite. We devised examples mixing the behav-
iors of permitted and schedule, and mixing the behavior of permitted and
choice-scc. Both of these combined examples were built using examples for
which the optimal values of the parameters were very different. Surprisingly, we
found that we still were able to learn these examples, using the same training
pattern but alternating variables l and ε from those that achieved the optimal
values for the two original examples. On the other hand, the length and number
of training sequences had to be chosen using some additional heuristics, because
the original values for these were not efficient for training. We detail our results
in the following table. P is the number of training passes; a training pass involves
running the usual training scheme with the first values of (l, ε) with N sequences
of length L, then again with the second values of (l, ε). Every experiment was
repeated 20 times, and the lowest, highest, and average failure rates are in the
shaded columns (Table 2).

Table 2. Parameters and results for combined examples

Values of
(l, ε)

L N P lowest highest average

permitted and
schedule

(5, 0) and
(0, 0)

8 1000 2 0.0 98.0 5.0

permitted and
choice-scc

(50, 0.5)
and (0, 0)

50 10 8 1.5 66 33.5

5 Conclusions and Discussion

We presented a methodology for constructing control for a system that inter-
acts with a black-box environment: it is not restricted to a specific objective,
and it can be applied to various types of systems and environments. Instead of
training the control for a specific system, we suggested the use of small, well
designed, examples, which feature various potential challenges for training. We
demonstrated our approach on training a set of examples using the DyNet tool.

Compared with the impressive use cases of deep learning, such as image
recognition, translating natural languages, autonomous driving or playing games,
the learning-based control synthesis problem that we considered here seems much
simpler. However, it allows studying the principles and effect of different learning
techniques.

Our use of recurrent deep learning, based on RNNs or LSTMs, has several
benefits. First, the method is independent of knowing the states of the environ-
ment. The states of the constructed controller are kept implicitly in the hidden
layer(s) of the neural network. We are oblivious of whether two internal repre-
sentations are isomorphic w.r.t. the strategy, nor do we have to care.

Synthesizing Control for a System with Black Box Environment 471

Some works on deep reinforcement learning use recurrent deep learning,
e.g., [9,10,17]. This was done for interactive Atari games, where the single cur-
rent observed screen frame does not provide a complete current state. Since the
control objective is the standard one, these methods apply a standard loss func-
tion that is based on the square of the difference between the current and the
previous objective value.

Our long term goal is to expand this approach for constructing distributed
schedulers for systems with concurrent processes that will lower the number of
failed interactions between the participating processes. This can then be com-
pared with an alternative approach for constructing schedulers that is based on
distributed knowledge [2,3].

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

2. Basu, A., Bensalem, S., Peled, D.A., Sifakis, J.: Priority scheduling of distributed
systems based on model checking. Formal Methods Syst. Des. 39(3), 229–245
(2011)

3. Bensalem, S., Bozga, M., Graf, S., Peled, D., Quinton, S.: Methods for knowledge
based controlling of distributed systems. In: Bouajjani, A., Chin, W.-N. (eds.)
ATVA 2010. LNCS, vol. 6252, pp. 52–66. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-15643-4 6

4. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

5. Silver, D., et al.: Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. CoRR, abs/1712.01815 (2017)

6. Neubig, G., et al.: DyNet: the dynamic neural network toolkit. CoRR,
abs/1701.03980 (2017)

7. Gerth, R., Peled, D.A., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic ver-
ification of linear temporal logic. In: Dembinski, P., Sredniawa, M., (eds.) Proto-
col Specification, Testing and Verification XV, Proceedings of the Fifteenth IFIP
WG6.1 International Symposium on Protocol Specification, Testing and Verifica-
tion, Warsaw, Poland, June 1995. IFIP Conference Proceedings, vol. 38, pp. 3–18.
Chapman & Hall (1995)

8. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep learning. In: Adaptive Compu-
tation and Machine Learning. MIT Press (2016)

9. Hausknecht, M.J., Stone, P.: Deep recurrent Q-learning for partially observable
mdps. CoRR, abs/1507.06527 (2015)

10. Heess, N., Hunt, J.J., Lillicrap, T.P., Silver, D.: Memory-based control with recur-
rent neural networks. CoRR, abs/1512.04455 (2015)

11. Peled, D., Iosti, S., Bensalem, S.: Control synthesis through deep learning. In:
Bartocci, E., Cleaveland, R., Grosu, R., Sokolsky, O. (eds.) From Reactive Systems
to Cyber-Physical Systems - Essays Dedicated to Scott A. Smolka on the Occasion
of His 65th Birthday, pp. 242–255. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-31514-6 14

12. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Conference
Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, 11–13 January 1989, pp. 179–190 (1989)

https://doi.org/10.1007/978-3-642-15643-4_6
https://doi.org/10.1007/978-3-642-15643-4_6
https://doi.org/10.1007/978-3-030-31514-6_14
https://doi.org/10.1007/978-3-030-31514-6_14

472 S. Iosti et al.

13. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri,
USA, 22–24 October 1990, vol. II, pp. 746–757 (1990)

14. Safra, S.: On the complexity of omega-automata. In: 29th Annual Symposium on
Foundations of Computer Science, White Plains, New York, USA, 24–26 October
1988, pp. 319–327. IEEE Computer Society (1988)

15. Sutton, R.S., Barto, A.G.: Reinforcement Learning - An Introduction. Adaptive
Computation and Machine Learning, 2nd edn. MIT Press (2018)

16. Wonham, W.M., Ramadge, P.J.: Modular supervisory control of discrete-event
systems. MCSS 1(1), 13–30 (1988)

17. Zhu, P., Li, X., Poupart, P.: On improving deep reinforcement learning for pomdps.
CoRR, abs/1704.07978 (2017)

18. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998)

A Formal Model for Reasoning About the
Ideal Fitness in Evolutionary Processes

Thomas Gabor(B) and Claudia Linnhoff-Popien

LMU Munich, Munich, Germany
thomas.gabor@ifi.lmu.de

Abstract. We introduce and discuss a formal model of evolutionary
processes that summarizes various kinds of evolutionary algorithms and
other optimization techniques. Based on that framework, we present
assumptions called “random agnosticism” and “based optimism” that
allow for new kinds of proofs about evolution. We apply them by pro-
viding all a proof design that the recently introduced notion of final
productive fitness is the ideal target fitness function for any evolutionary
process, opening up a new perspective on the fitness in evolution.

Keywords: Evolution · Evolutionary algorithms · Fitness

1 Introduction

Evolution in its broadest sense describes a process that finds solutions to complex
problems via the application of comparatively simple local operators. Mostly,
this process can be described as a search that starts quite uninformed and uses
the knowledge gained through trial and error to guide the further search pro-
cess. Note that usually this happens without central control and mostly without
even any central viewpoint that would allow to overlook all parts of the evolu-
tion. However, evolution is often implemented deliberately (using evolutionary
algorithms in software, e.g.) in order to search or optimize for a specific result
according to an externally given target.

While this target is often provided directly to the evolutionary process so
that intermediate results may be evaluated, many studies empirically show bet-
ter results when using slightly different goal than going directly for the exter-
nal target metric. Our recent study [8] has brought up empirical evidence that
one such “indirect” metric (called final productive fitness) might be theoreti-
cally optimal (even when or perhaps because it is extremely costly to compute).
However, little formal framework exists to reason about evolutionary processes
(specifically goals in evolutionary processes) at such a broad level in order to
formally prove a claim of optimality.

The aim of this paper is to show what kind of formal framework would be
sufficient to produce a formal proof of final productive’s fitness optimality. To
this end, we first introduce two bold but crucial assumptions hat allow us to strip

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 473–490, 2020.
https://doi.org/10.1007/978-3-030-61470-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_28&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_28

474 T. Gabor and C. Linnhoff-Popien

away much of the complexity of reasoning about evolution. Then we construct
the desired proof from them to show how they work. We hope that the novel
tools (i.e., mainly Assumptions 1 and 2) designed here can be used for other
high-level arguments about evolution.

All necessary definitions involving evolutionary processes are given in a con-
sistent way in Sect. 2. Section 3 then discusses the issue of the ideal fitness func-
tion and introduces the tools to reason about it. We give a short glance at related
work in Sect. 4 and conclude with Sect. 5.

2 Definitions

We follow the formal framework sketched in [8] to a vast extent but substantially
expand it in generality. We provide an example in Sect. 2.3.

2.1 Evolutionary Processes

For all definitions, we aim to give them in such a basic form that they can span
over various disciplines, from biology to formal methods. We use P to denote
the power set.

Definition 1 (Evolution). Let X be an arbitrary set called search space. Let
g ∈ N be called the generation count. Let Xi ⊆ X for any i ∈ N, 0 ≤ i ≤ g be
a subset of X called population. Let E : P(X) → P(P(X)) be a function called
evolutionary function.

A tuple (〈Xi〉0≤i≤g, E) is called an evolution over X iff Xi ∈ E(Xi−1) for
all i ∈ N, 1 ≤ i ≤ g.

Any element of the search space x ∈ X is called solution candidate (or
sometimes just solution for short). Members of a given population x ∈ X are
obviously always solution candidates, but are often also called individuals. Every
i within the generation count 1 ≤ i ≤ g is called a generation number with Xi

being the respective generation’s population. If no confusion is possible, both i
and Xi will also be called a generation. X0 is called the initial population.

Note that an evolution can be generated given a configuration consisting of a
search space X , an initial population X0 and an evolution function E. However,
many possible evolutions can follow from the same configuration. Often, the
initial population X0 is not given as a set but instead generated (semi-)randomly.
We write that as an initialization function I : R → P(X) where R stands for
random inputs.1 Notation-wise, we omit random inputs and write X0 ∼ I() (or
simply X0 = I() if no confusion is possible) for the initial population generated
by such a function.

Definition 2 (Target). Let X be a search space. A function t : X → [0; 1] that
assigns all elements in the search space a scalar value is called a target function.

1 In computers, these are often provided by a seed value and a hash function.

Reasoning About the Ideal Fitness 475

A target function assigns a value to each point in the search space, i.e., to any
given solution candidate.2 We assume that target values are bounded, so w.l.o.g.
we can assume the target value space to be restricted to [0; 1] in Definition 2.
Again this can be generalized but is rarely useful in praxis. Also note that target
functions themselves are unconstrained: They can always be applied to the whole
search space. Hard constraints must be implemented by altering the search space
or “softening” them by representing them with different target values.

Furthermore, w.l.o.g. we assign every goal function a minimization semantic:
For two solution candidates x1, x2 ∈ X we say that x1 fulfills a goal t better iff
t(x1) < t(x2). Any solution candidate x ∈ X so that t(x) ≤ t(x′) ∀x′ ∈ X is
called a global optimum. An algorithm searching for increasingly better solutions
candidates is called an optimization algorithm. A configuration, a target function
and an evolution form an evolutionary process:

Definition 3 (Evolutionary Process). Let X be a search space. Let E : P(X) →
P(P(X)) be an evolutionary function. Let t : X → [0; 1] be a target function.
Let Xi be a population for any i ∈ N, 0 ≤ i ≤ g.

A tuple E = (X , E, t, 〈Xi〉i≤g) is an evolutionary process iff (〈Xi〉i≤g, E) is
an evolution.

Effectively, an evolutionary process consists of a history of past populations
(Xi) and the means to generate new population (E). We often implement the
evolutionary function by giving an evolutionary step function e : P(X) × R →
P(X) and write Xi+1 ∼ e(Xi) (or simply Xi+1 = e(Xi) if no confusion is possi-
ble) for any population Xi+1 that evolved from Xi by applying the evolutionary
step function alongside with some (omitted) random input.

An evolutionary process also carries a target function t. An evolutionary pro-
cess E is optimizing iff minx∈X0 t(x) ≥ minx′∈Xg

t(x′). For many mechanisms in
stochastic search as well as for more natural phenomena like biological evolution
or human software development processes, optimization is a rather strong prop-
erty. However, if we have sufficient space within a population and access to the
target function, we can turn all evolutionary processes into optimizing ones by
just saving the currently best individual alongside the evolution, i.e., ensuring
that arg minx∈Xi

t(x) ∈ Xi+1.

Definition 4 (Elitism). An evolutionary process E = (X , E, t, 〈Xi〉i≤g) is called
elitist iff for all i ∈ N, 1 ≤ i ≤ g, it holds that minx∈Xi−1 t(x) ≥ minx′∈Xi

t(x′).

All elitist processes are optimizing. If not noted differently, we from now on
assume every evolutionary process to be elitist by default.

2 Note that by giving a function only parametrized on the individual itself, we assume
that the target function is static. Dynamic optimization is an entire field of research
that we heavily use in this paper. However, we leave dynamic target functions in our
formalism to future work.

476 T. Gabor and C. Linnhoff-Popien

2.2 Evolutionary Algorithms

An evolutionary algorithm is special case of evolutionary process that uses an
evolutionary function made up of a number of standard components called evo-
lutionary operators. We now introduce standard definitions for these components
that most instances of evolutionary algorithms can be mapped to. However, the
field of evolutionary algorithms is vast and there are variants that alter many
smaller details of how they work. It is interesting to note how robust the general
concept of evolution is to such variations.

Nearly all evolutionary algorithms that use set-based populations introduce
a fixed population size n ∈ N for all generations. This allows to keep memory
resources easily manageable as the overall memory consumption will not increase
over time. We also use this opportunity to introduce the concept of fitness func-
tions. Note that E is the space of all evolutionary processes.

Definition 5 (Fitness). Let X be a search space. A function f : X × E × R →
[0; 1] is called a fitness function. This function takes an individual, its evolution-
ary process up until now, and random input and returns a scalar value.

The fitness function can be regarded as generalization of the concept of a
target function (cf. Definition 2). It represents the goal definition that the evo-
lutionary process can call upon and actively follows, which may or may not
coincide with the target function. In addition to the solution candidate itself, it
is able to process additional information about the context. Various approaches
may allow nearly arbitrary information here. For a rather general approach, we
just pass on a snapshot of the evolutionary process that generated the individual
until now. This includes:

– The current population that the evaluated individual is a part of allows to
define the fitness of an individual relative to its peers.

– The history of all populations until now allows to observe relative changes
over time as well as trace the ancestry of individuals throughout evolution.

– The number of the current generation allows the fitness function to change
over time and implement, e.g., a cool-down schedule.

Note that the random input that is also passed along allows fitness functions
to also vary fitness values stochastically. However, most fitness functions will not
make use of all this information. In these cases we allow to trim down the fitness
function’s signature and simply write f(x) for an individual x ∈ X if all other
parameters are ignored.

In many practical instances, developers will choose the target function as a
fitness function, i.e., f(x) = t(x) for all x ∈ X , and for most target functions,
evolution will end up achieving passable target values this way. It is the main
point of this paper, however, to prove that the optimal choice in general is a
different function derived from the target function.

Alongside the fitness function f an evolutionary algorithm also uses vari-
ous selection functions. In general, a selection function returns a subset of the
population for a specific purpose.

Reasoning About the Ideal Fitness 477

Definition 6 (Selection). A function s : P(X) × E × R → P(X) is called a
selection function iff s(X, E , r) ⊆ X for all X, E , r. This function takes a pop-
ulation, its evolutionary process, and random input and returns a subset of the
given population.

Again note that we allow for a multitude of information that will rarely be
used directly in any selection function and that will be omitted if not necessary.
Most importantly, however, any selection function is able to call any fitness
function since all its inputs can be provided.

As seemingly limitless variations of selection functions exist we use this
opportunity to provide a few examples and at the same time define all fami-
lies of selection functions that we use for the remainder of this paper. (Note that
the current population X is always provided with an evolutionary process E .)

Random Selection. This function �m(X, E , r) = {x ∼ X} ∪ �m−1(X, E , r)
selects m individuals of the population at random. Note that x ∼ X is one
element x ∈ X sampled uniformly at random. We define �0(X, E , r) = ∅.

Cutoff Selection. This function σm(X, E , r) = {arg minx∈X f(x, E , r)} ∪
σm−1(X, E , r) selects the m best individuals according to the fitness func-
tion f . We define σ0(X, E , r) = ∅.

We can now move on to define the evolution function E. For all variants
of evolutionary algorithms there exist certain building blocks, called evolution-
ary operators, that most evolutionary functions have in common. They take as
arguments some individuals and return some (possibly new) individuals. During
the execution of an evolutionary operator its input individuals are referred to as
parents and its output individuals are referred to as children.

Mutation. This operator mut : X × R → X generates a randomly slightly
altered individual from a parent.

Recombination. This operator rec : X × X × R → X takes two individuals to
combine them into a new individual.

Migration. This operator mig : R → X generates a random new individual.

Again, countless variants and implementations exist, most importantly
among them there is non-random mutation and recombination with various
amounts of parents and children. For brevity, we omit everything we do not
use in this paper’s study. Please note that all of these operators return entirely
new individuals and leave their parents unchanged. In practical applications, it
is equally common to apply (some of) these operators in-place, which means
that the generated children replace their parents immediately. We, however, opt
to just add the children to the population (and possibly eliminate the parents
later) so that parents and their children can exist side by side within the same
generation. Our main aim in doing this is that it makes elitism much easier to
achieve.

As these operators work on single individuals, we define a shortcut to apply
them to sets of individuals:

478 T. Gabor and C. Linnhoff-Popien

Definition 7 (Application of Operators). Let X ⊆ X be a set of individuals in
search space X . Let s be a selection function. We write X �mut s = {mut(x) | x ∈
s(X)} and X �rec s = {rec(x1, x2) | x1 ∈ s(X), x2 ∼ X} for the sets of children
when applying the respective operators. For consistency, we also write X �mig

s = {mig() | x ∈ s(X)} to create |s(X)| many new random individuals, even
though their values do not depend on the individuals in X.

We are now ready to define a scheme for the evolution function E in evo-
lutionary algorithms. We do so by providing an evolutionary step function e as
discussed above with parameters A1, A2, A3 ∈ N:

e(X) = σ|X|(X ∪ (X �rec σA1) ∪ (X �mut �A2) ∪ (X �mig �A3)) (1)

Note again that in this evolutionary step we place all generated children
alongside their parents into one population and then cutoff-select the best from
this population.3 As it is common, we use random selection to select mutation
parents. The selection function for the recombination parents is also called parent
selection. We use cutoff selection on one parent with a randomly selected partner
here. This gives some selective pressure (i.e., better individuals have a better
chance of becoming recombination parents) without overcentralizing too much.
Although many approaches to parent selection exist, we choose this one as it
is both effective in practical implementations and mathematically very clean to
define. The final selection function that is called upon the combined population
of potential parents and new children is called survivor selection. We simply use
cutoff selection here for ease of reasoning. Many evolutionary algorithms use
more advanced survivor selection functions like roulette wheel selection where
better individuals merely have a higher chance of being picked. We choose a
hard cutoff for this kind of selection, mainly because it is simpler to define and
understand, and its transparent to elitism. Since the cutoff point varies with the
population’s fitness structure that is subjected to random effects, the practical
difference between both approaches for our examples is negligible. Note that
we can emulate a lot of different selection schemes by choosing an appropriate
fitness function: As the fitness function can vary at random, we can for example
make the cutoff more fuzzy by simply adding noise to each fitness evaluation
instead of changing the selection function. Also note that adding all the children
non-destructively and using cutoff-selection makes the algorithm elitist if f = t.

We parametrize the evolutionary step function with the amount of recombi-
nation children A1, amount of mutation children A2 and amount of migration
children A3. These are also often given as rates relative to the population size.

Definition 8 (Evolutionary Algorithm). An evolutionary algorithm is an evo-
lutionary process E = (X , E, t, 〈Xi〉i≤g) where the evolutionary function is given
via an evolutionary step function of the form described in Eq. 1, where a fitness
function f is used for all selection functions and evolutionary operators and the
target function t is only accessible insofar it is part of f .

3 In the field of evolutionary computing, this is called a μ + λ selection scheme.

Reasoning About the Ideal Fitness 479

Note that for the ease of use in later notation, we will often denote two
evolutionary processes that differ solely in their fitness function (φ vs. ψ, e.g.)
by denoting that fitness function as a subscript (Eφ vs. Eψ). Independently of
that we denote the best individual of the final generation of Eφ according to
some fitness or target function ψ with

|Eφ|ψ = arg min
x∈Xg

ψ(x) (2)

and the best of all generations with

||Eφ||ψ = arg min
x∈Xi
i∈N

0≤i≤g

ψ(x). (3)

It is clear that if Eφ is elitist with respect to ψ, then |Eφ|ψ = ||Eφ||ψ. Note that
when we use a fitness function f
= t then we usually obtain the overall result
of the evolutionary algorithm by computing ||Ef ||t or |Ef |t if we are confident
about the elitism at least to the extent that we do not worry about substantial
results getting lost along the way. In most cases we will assume that if f is close
enough to t at least in the final generations, elitism with respect to f grants us
quasi-elitism with respect t, i.e., if f ≈ t and Ef is elitist with respect to f , we
assume that ||Ef ||t ≈ ||Ef ||f .

2.3 Example

We provide a running example accompanying these definitions.4 For a target
function, we choose two common benchmark functions from literature as they
are implemented in the DEAP framework [2,12]. The first problem is based on
the two-dimensional Schwefel function although we adjusted the target value
space to fit comfortably within [0; 1] (cf. Fig. 1a). We chose only two dimensions
for ease of visualization. Higher-dimensional Schwefel is also covered in [8]. The
Schwefel function is characterized by many valleys and hills of varying depth.
The global optimum is at X = Y ≈ 420. By contrast, our second example is
the H1 function [14] that features one very distinct global optimum at X =
8.6998, Y = 6.7665. However, it feature very many little (hard to see) local
optima throughout the whole surface. We took the classical H1 function, which
is defined as a maximization problem and turned it upside down to produce a
minimization problem (cf. Fig. 1b). For both target functions t ∈ {tSchwefel, tH1}
we construct the same evolutionary algorithm.

The search space is given as XSchwefel = [−500; 500] ⊆ R
2 and XH1 =

[−100; 100] ⊆ R
2 respectively. We initialize the search by generating X0 from 25

random samples within the search space in both cases. The size of this popula-
tion remains constant with application of the evolutionary step function e, which
is constructed according to Eq. 1 with A1 = 0.3·|X|, A2 = 0.1·|X|, A3 = 0.1·|X|.
4 The code for all examples can be found at github.com/thomasgabor/isola-evolib.

http://www.github.com/thomasgabor/isola-evolib

480 T. Gabor and C. Linnhoff-Popien

(a) Normalized two-dimensional Schwefel (b) Inverse normalized H1

Fig. 1. Benchmark target functions used for the running example.

Let w be the range of a single dimensional value in the search space (i.e.,
wSchwefel = 1000, wH1 = 200), then the mutation operator returns

mut((X,Y)) ∈ {(X ⊕ δ, Y), (X,Y ⊕ δ) | δ ∈ [−0.1w; 0.1w]} (4)

chosen random uniform where ⊕ only adds or subtracts as much of its second
argument so that the resulting value remains within the search space. We further
define the recombination operator so that its result is at random uniform picked
from

rec((X,Y), (X ′, Y ′)) ∈ {(X,Y), (X,Y ′), (X ′, Y), (X ′, Y ′)}. (5)

Note that both operators include random cases where the operator does not
do anything at, which does not harm the overall search and can be further
counter-acted by increasing the respective amount of selected individuals for
that operator. The migration operator just samples random uniform from the
search space, returning mig() ∈ X .

To illustrate the behavior of evolution, we ran independently initialized evo-
lutionary processes for each problem 500 times each for 50 generations. Figure 2
shows all solution candidates found within a specific generation among all evo-
lutionary processes. We can clearly trace how the search start random uniform
and then focuses towards the global optima, sometimes getting stuck in local
optima in the target value landscape (compare Fig. 1).

3 Approach

We apply the framework to give the definition of productive fitness. To present
the full proof design we introduce and discuss Assumptions 1 and 2. We continue
our example in Sect. 3.3.

3.1 The Ideal Fitness

So far, we discussed some example definitions using the target function as fitness,
f = t, and noted that it works (but not optimally). Obviously, having f correlate

Reasoning About the Ideal Fitness 481

(a) Schwefel, generation 1 (b) H1, generation 1

(c) Schwefel, generation 10 (d) H1, generation 10

(e) Schwefel, generation 50 (f) H1, generation 50

Fig. 2. Individuals from 500 independent runs of the evolutionary processes.

to some extend with t is a good thing if in the end we value our results with
respect to t. However, it has long been known that augmenting the fitness with
additional (meta-)information can greatly aid the optimization process in some
cases. This fact is extensively discussed in literature [1,15] including previous
works by the authors [7,8]. We sum the results up in the following observation:

482 T. Gabor and C. Linnhoff-Popien

Observation 1. There exist evolutionary processes Eφ = (X , Eφ, t, 〈Xi〉i≤g)
and Et = (X , Et, t, 〈X ′

i〉i≤g) whose configurations only differ in the fitness func-
tion and there exist fitness functions φ
= t so that ||Eφ||t < ||Et||t.

Observation 1 states that an evolutionary process can yield better results
with respect to t by not using t directly but a somewhat approximate version
of t given via φ, which includes additional information but likewise “waters
down” the pure information of our original target. It is somewhat surprising
that a deviation from the original target can yield an improvement. Commonly
this phenomenon is explained by the exploration/exploitation trade-off : In an
unknown solution landscape made up by t, we gain knowledge through evaluating
solution candidates. When we have evaluated all solution candidates x ∈ X ,
we simply need to compute arg minx∈X t(x), which of course is infeasible for
most practical search spaces. Giving limited time resources, we need to decide
if we put additional effort into exploring more and new parts of the search
space in hope of finding valuable solution candidates there or if we exploit the
knowledge we have already gathered to further improve the solution candidates
we already evaluated. This can be seen of a trade-off between large-scale search
for exploration and small-scale search for exploitation.

Dealing with the exploration/exploitation trade-off certainly is one of the
central tasks when implementing metaheuristic search and has been covered
extensively in literature. Many of these approaches have been discovered bottom-
up, often by analogy to biological or physical processes. Even though many
similarities between approaches have been discovered, there does not exist a
general framework for how to construct the right fitness function for a specific
target function and evolutionary process.

Problem 1. Given a target function t, what is the theoretically best fitness func-
tion φ∗ for an evolutionary process Eφ∗ to optimize for t, i.e., optimize ||Eφ∗ ||t?

We gave an answer to that question for the special case of standard evo-
lutionary algorithms in [8]: We defined a measurement called final productive
fitness and have sketched a proof that it represents the ideal fitness function
for evolutionary algorithms. However, it is important to note that computing it
a priori is infeasible. We approximated final productive fitness for an evolution
a posteriori and provided empirical evidence that evolutionary algorithms are
working better the better their fitness approximates final productive fitness.

In this paper, we formally introduce the necessary tools to provide the full
proof of the ideal fitness for evolutionary algorithms. First, we need to re-iterate
a few definitions of [8] in order to formally define final productive fitness.

Definition 9 (Descendants [8]). Given an individual x in the population of gen-
eration i, x ∈ Xi, of an evolutionary process E. All individuals x′ ∈ Xi+1 so that
x′ resulted from x via a mutation operator, i.e., x′ = mut(x, r) for some r ∈ R,
or a recombination operator with any other parent, i.e., there exists y ∈ Xi so
that x′ = rec(x, y, r) for some r ∈ R, are called direct descendants of x. Further
given a series of populations (Xi)0<i<g we define the set of all descendants Dx

as the transitive hull on all direct descendants of x.

Reasoning About the Ideal Fitness 483

The main idea behind productive fitness is to measure an individual’s effect
on the optimization process. If the optimization process is stopping right now,
i.e., if we are in the final generation g, then we can equate any individual’s
effect with its target function value. However, for any previous generations an
individual’s effect on the optimization corresponds to the best target function
values that its descendants have achieved within the evolution.

Definition 10 (Productive Fitness [8]). Given an individual x in the population
of generation i, x ∈ Xi, of an evolutionary process E. Let Dx ⊆ X be the set of
all descendants from x. The productive fitness after n generations or optimistic
n-productive fitness φ+

n is the average achieved target value of x’s descendants
n generations later, written

φ+
n (x) =

{
avgx′∈Dx∩Xi+n

t(x′) if Dx ∩ Xi+n
= ∅
1 otherwise.

(6)

Note that in case the individual x has no descendants in n generations, we
set its productive fitness φ+

n (x) to a worst case value of 1.
From [8] we repeat two major arguments against this definition:

– The use of avg as an aggregator over target values might be a bit pessimistic.
By doing so, we penalize an individual’s fitness if that individual bloats up
the optimization with many low-value individuals. However, if it thereby also
delivers at least one superior descendant, we should actually be fine with
that when we only care about the end result. If such effects actually occur
in practical scenarios is up to future work to discover. Empirical evidence
discovered in [8] strongly argues in favor of using the average, which is why
we repeat it in this definition. In the proof we will later derive a min-version
from one of our assumptions.

– Assigning the value 1 in case the given individual has no further descendants
in generation i + n is a design choice. We might leave the productive fitness
in this case undefined or at least assign a value outside the common range of
target function values. We suggest that even without living descendants there
might still be inherent value to having explored certain solution candidates
(and having them clearly discarded for the ongoing process). Still, determining
this incentive is up to future research.

Of course, productive fitness φ+
n only measures the effect locally after a fixed

amount of generations. For the effect for the whole evolution we can now easily
define the notion of final productive fitness.

Definition 11 (Final Productive Fitness). Given an individual x in the popu-
lation of generation i, x ∈ Xi, of an evolutionary process E with g generations
in total. The final productive fitness of x is the fitness of its descendants in the
final generation, i.e.,

φ†(x) = φ+
g−i(x). (7)

484 T. Gabor and C. Linnhoff-Popien

Described shortly, the final productive fitness of an individual x can be seen
as an answer to the question: “How much did x contribute to the fitness of the
individuals of the final population?” We claim that optimizing for that measure-
ment results in the optimal evolutionary process (as considered in Problem 1).

Practically, of course, optimizing for that measurement is rather difficult
(which in fact may be the entire reason it is the optimal fitness function): To
make the completely right decision in generation i = 1, we would have to eval-
uate all possible future generations for each single individual being involved in
any selection or altered in any way by evolutionary operators. Within a sin-
gle generation, these are exponentially many possibilities, which of course grow
exponentially with each generation. Still, in [8] we designed some approxima-
tion of final productive fitness that can at least be computed a posteriori for an
already run evolution, giving some insight into the algorithm’s workings. In this
paper, we now provide the full design for a proof of final productive fitness’s
optimality, although there are still many risky new tools involved.

3.2 Proof Design

We hope that the notion of final productive fitness is intuitive enough so that it
seems plausible how φ† might be the ideal fitness function φ∗ for any evolutionary
algorithm. However, evolutionary processes are highly stochastic entities and
little framework exists to reason about their performance. We now first provide
such a framework, although we resort to making some strong assumptions along
the way.

Assumption 1 (Random Agnosticism). Random effects residing in selection
functions and evolutionary operators exert the same general effects on the evo-
lutionary function E regardless of the used fitness function.

The main intention behind Assumption 1 is, of course, to exclude any concept
of randomness from the proof design. We effectively assume that the distribu-
tion of outcomes (i.e., selected individuals or generated children) depending on
random inputs does not depend on the fitness function. At first, this is a cer-
tainly outlandish and strong assumption, especially as it allows us to deduce
quite strong properties. We just give a few reasons why it might be viable:

– Wherever random effects are used, they are usually designed to break clear
fitness borders (for example when using a fuzzy cutoff vs. a discrete cutoff).
In these cases, random effects overpower the effect of the fitness function so
that (in the extreme case, consider random selection) the used fitness function
has little impact on the outcome. If we flip the perspective around, different
fitness functions then also have little difference for the outcome.

– Within the evolutionary function E, typically lots of random effects come
together. Even if some of their distributions are altered by using a different
fitness function, as long as they are not altered towards a specific result,
the effect may still cancel out on the larger scale. Basically, we expect the
outcome distribution of the whole evolutionary function E to approach the
normal distribution irregardless of (un-systematic) mix-ups.

Reasoning About the Ideal Fitness 485

– From practical perspective, the shape of outcome distributions is rarely con-
sidered directly when constructing an evolutionary algorithm. That should
usually indicate that not much effect can be observed there in most cases.

Eventually, all these reasons are flawed, of course. Otherwise, we would not
have kept Assumption 1. Still, we feel that proofs built on Assumption 1 might
have practical relevance for the time being.

It would be natural to follow up the effective elimination of randomness
(coming from Assumption 1) by replacing all possibly random outcomes with
the expected value of the distribution and treating all function as non-stochastic.
However, the expected value is still computed from the distribution, so this would
not make things much easier. Instead, we opt of the ideal outcome, which can be
derived much easier, but might shift effects drastically: A recombination operator
that performs so bad on average that it brings down the whole evolutionary
process might now look like it gives rise to a very effective evolutionary process
just because it has a very small chance of getting a really good result.

Assumption 2 (Based Optimism). For an evolutionary function E with a lim-
ited amount of possible outcomes, the best possible outcome is representative for
its expected average result.

We recognize that “limited” is not fully defined here. We suggest that future
work looks into enumerability or local boundedness. For practical purposes, how-
ever, it is clear which of the classic operators are affected: Random initialization
and migration can generate individuals across the whole search space. If we
minimize over their possible outcomes, the whole algorithm reaches the global
optimum in a single step. Mutation and recombination (with any kind of selec-
tion) on the other side are limited operators: Given certain individuals as input
parameters, they will only navigate a limited range of options related to those
individuals. Again the main argument for the plausibility of Assumption 2 is
that the results usually approach normal distribution anyway and there is no
real reason why they should act any differently given exactly the two fitness
functions we are about to compare. However, given that we completely alter the
rules of evolutionary algorithms with this one, it is definitely a bold assumption.
Further note how we interpret the qualification “best” in Assumption 2: For
a given evolutionary function E, its notion of “best” corresponds to its fitness
function. So if we choose the best of two evolutionary processes with different
fitness functions, we might actually choose two different points in the outcome
distribution (depending on the fitness), which again is an immensely powerful
tool based on a big assumption.

What Assumption 2 then provides is means to simplify Definition 10: Pro-
ductive fitness is defined as the average fitness of all descendants. We can now
use the best fitness of the descendants to compute the fitness measurement which

486 T. Gabor and C. Linnhoff-Popien

we will call optimistic productive fitness.5 Note that implementing these assump-
tions has a great effect on the behavior of the evolutionary process. However, we
do not claim that they leave the evolutionary process intact, we just claim that
a clearly better fitness function remains the better fitness function even in the
altered setting.

The tools provided by Assumptions 1 and 2 are rather novel and very pow-
erful, so we are aware that any results based on them should be taken with a
great amount of caution. However, in order to present these tools at work, we
can use them to provide a proof that final productive fitness φ† is one answer
for Problem 1.

Proof 1 (Problem 1). Let E† = 〈X , E†, t, (X†
i)i<g〉 be an evolutionary process

using optimistic final productive fitness φ†. Let E∗ = 〈X , E∗, t, (X∗
i)i<g〉 be an

evolutionary process using a different (possibly more ideal) fitness φ∗. According
to the transformation discussed in Sect. 2.1, let both E† and E∗ be elitist. Let
X†

0 = X∗
0 . We assume that t(||E†||t) > t(||E∗||t), i.e., because of elitism

min
x∈X†

g

t(x) > min
x∈X∗

g

t(x). (8)

From Eq. 8 it follows that there exists an individual x ∈ X∗
g so that x /∈ X†

g

and t(x) < miny∈X†
g
t(y). The better individual x could not have been introduced

into the population of E∗ by migration (or random initialization for that matter)
as we could use Assumption 1 to just introduce x into E† then.

Then x needs to stem from an individual x′ that is an ancestor of x, i.e.,
x ∈ Dx′ , so that x′ was selected for survival in E∗ and not in E†, which implies
that φ†(x′) > φ∗(x′). However, since x is a possible descendant for x′, the com-
putation of φ†(x′) should have taken t(x) into account,6 meaning that x′ should
have survived in E† because of elitism after all, which contradicts the previous
assumption (Eq. 8). ��

3.3 Example

We now illustrate the notion of productive fitness for our running example.
For each of the individuals generated in Sect. 2.3 we computed an a posteriori
approximation for final productive fitness: Basically, we took the descendants
that have in fact been generated during evolution as a representative subset of

5 Note that the best possible choice for the average fitness of descendants is the mini-
mum of the possible descendants’ fitness values. When we are allowed to adjust the
random choice for the best possible outcomes, worse-than-optimal children will not
be born. This changes the game: Our ideal choice from the vast space of random
possibilities now yields at most one (i.e. the best possible) descendant per individual
per generation.

6 Note that t(x) cannot be compensated by other descendants of x′ with possibly
bad objective fitness since we assumed optimistic final productive fitness following
Assumption 2.

Reasoning About the Ideal Fitness 487

the descendants that could have been generated. This allows us to compute a
value for φ† for an already finished evolution.7

Note that the notion of final productive fitness is most powerful in the begin-
ning of the evolutionary process, when it carries information about the whole
evolution to come. Figures 3a and 3b provide a clear situation how final produc-
tive fitness is a better fitness function than the target function:

– The final productive fitness landscape has fewer valleys as its local optima
correspond to individuals that remained in the final generation of some evo-
lutionary process. This makes the landscape less deceptive and individuals
are more clearly guided towards at least somewhat good results.

– The basins around the optima are wider, again making the local optimization
towards the final result more clear.

– The differences between the global optimum and other local optima are more
pronounced, giving an edge to the global optimum.

As discussed, if we could use final productive fitness during evolution, it
would allow for better results. However, approximations of various quality may
exist for specific problems or problem instances [8].

In Figs. 3c and 3d we can see how the final productive fitness landscapes
deteriorates with the progressing evolution. As we can see from the red dots,
evolution has focused on certain areas of the solution landscape, leaving wide
areas without a meaningful final productive fitness to be computed. This effect is
even more prominent in Figs. 3e and 3f, where individuals that are still randomly
generated in certain areas die out rather quickly, leaving them with a productive
fitness of 1. Note that productive fitness cannot meaningfully be computed for
the last generation so we deliberately choose to show generation 49 last here.

Note how Fig. 3 also illustrates the usage of different evolutionary operators:
For the Schwefel function, many individuals have a good final productive fitness
when the evolution starts. That means they have direct descendants who manage
to achieve nearly optimal target values. By contrast, H1 shows no individuals
with good productive fitness in the beginning, meaning that the final results
were mostly discovered via the migration operator mig as that is not traced by
productive fitness.8

4 Related Work

We first introduced the gist of the formal framework for evolutionary processes
as well as the notion of productive fitness in [8]. In this paper, we provide and
discuss the full, substantially extended framework and introduce the assumptions
and tools a proof design for productive fitness’s validity can be built with.

Theoretical work on evolutionary algorithms has been traditionally focused
on the complexity of the search process (on rather simple search problems) or
7 For details on how this is done, please refer to [8].
8 Migrants are generated randomly and are thus not ascribed to be any individual’s

descendant. How to include migrants in productive fitness is left for future work.

488 T. Gabor and C. Linnhoff-Popien

(a) Schwefel, generation 1 (b) H1, generation 1

(c) Schwefel, generation 10 (d) H1, generation 10

(e) Schwefel, generation 49 (f) H1, generation 49

Fig. 3. Individuals from 500 independent runs of the evolutionary processes plotted
with their a posteriori approximated final productive fitness. The surface represents
the same data set as the scatter points, where each tile has the Z value equal to the
average Z value of all the points within it.

Reasoning About the Ideal Fitness 489

the performance of various types and variants of algorithms in general. We point
to [4–6] for a few selective examples without any attempt at giving a full overview
over this old and comprehensive field of research. By contrast, we fully work out
the difference between a target function that is given from the outside world and
a fitness function that (potentially) emerges implicitly throughout the process
of evolution. As this concept in itself is rather novel, the constructs supporting
it have been freshly developed as well (and are still in their infancy).

It should be pointed out that there probably exists a connection from the
assumptions and approximations we make to a complexity-based analysis of
evolution, as these tools allow us to rule out exponentially many options and
thus bring the respective computation to a feasible level.9

Various meta-measurements of fitness in evolutionary algorithms have been
designed. We would like to point out effective fitness [13], which describes the
fitness threshold under which individuals can manage to increase their dominance
in the population. This usually is a harsher border than reproductive fitness [11],
which is the probability of an individual to successfully produce offspring. Both
follow a similar line of thought of measuring what fitness an individual needs to
have for certain effects to occur, but none suggest using the meta-measurement
as a fitness value itself.

5 Conclusion

We have introduced and discussed a formal description of evolutionary processes
that summarizes various kinds of evolutionary algorithms and other optimization
techniques. Based on that framework, we defined the notion of productive fitness
as it is defined in [8], where an argument was sketched why it might be the ideal
fitness function. In this paper, we introduced the tools necessary to implement
the proof, discussed their validity and thus gave the full proof design. We argue
that while the approach is somewhat bold, the assumptions made could be useful
for similar arguments about evolutionary processes and hope the perspective
on fitness functions given here will open up new ways to reason about highly
dynamic and uncertain processes, especially evolution.

We pointed out future work where we encountered open questions. We con-
sider the connection suggested to traditional runtime analysis of evolutionary
algorithms and subsequently to the No Free Lunch theorem [10] and how it
related to the cases of having and using as well as finding and approximating
the ideal fitness function to be especially promising. In addition, we suggest that
it might be of particular relevance to also expand the scope of the framework
beyond evolutionary algorithms; even the proof design might be adapted to not
only work for fitness used by evolutionary operators but for example to deliver
the ideal reward function for reinforcement learning [3,9].
9 As no computational limit on biological evolution, e.g., has been recognized it could

be an interesting endeavor to use the framework presented in this paper to translate
arguments from runtime analysis of evolutionary algorithms back to a more general
concept of evolution.

490 T. Gabor and C. Linnhoff-Popien

References

1. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey
and categorisation. Inf. Fusion 6(1), 5–20 (2005)

2. DEAP Project: Benchmarks (2020). https://deap.readthedocs.io/en/master/api/
benchmarks.html. Accessed June 1 2020

3. Dewey, D.: Reinforcement learning and the reward engineering principle. In: 2014
AAAI Spring Symposium Series (2014)

4. Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolutionary
computation. Theoret. Comput. Sci. 425, 17–33 (2012)

5. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoret. Comput. Sci. 276(1–2), 51–81 (2002)

6. Friedrich, T., Oliveto, P.S., Sudholt, D., Witt, C.: Analysis of diversity-preserving
mechanisms for global exploration. Evol. Comp. 17(4), 455–476 (2009)

7. Gabor, T., Belzner, L., Linnhoff-Popien, C.: Inheritance-based diversity measures
for explicit convergence control in evolutionary algorithms. In: Genetic and Evo-
lutionary Computation Conference, pp. 841–848 (2018)

8. Gabor, T., Phan, T., Linnhoff-Popien, C.: Productive fitness in diversity-aware
evolutionary algorithms (2021). (submitted)

9. Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S.J., Dragan, A.: Inverse reward
design. In: Advances in Neural Information Processing Systems, pp. 6765–6774
(2017)

10. Ho, Y.C., Pepyne, D.L.: Simple explanation of the no free lunch theorem of
optimization. In: 40th IEEE Conference on Decision and Control (Cat. No.
01CH37228), vol. 5, pp. 4409–4414. IEEE (2001)

11. Hu, T., Banzhaf, W.: Evolvability and speed of evolutionary algorithms in light of
recent developments in biology. J. Artif. Evol. Appl. 2010, 1 (2010)

12. Rainville, D., Fortin, F.A., Gardner, M.A., Parizeau, M., Gagné, C., et al.: Deap:
a python framework for evolutionary algorithms. In: Conference Companion on
Genetic and Evolutionary Computation, pp. 85–92. ACM (2012)

13. Stephens, C.R.: “Effective” fitness landscapes for evolutionary systems. In: 1999
Congress on Evolutionary Computation (CEC 1999), vol. 1, pp. 703–714. IEEE
(1999)

14. Van Soest, A.K., Casius, L.R.: The merits of a parallel genetic algorithm in solving
hard optimization problems. J. Biomech. Eng. 125(1), 141–146 (2003)

15. Wineberg, M., Oppacher, F.: The underlying similarity of diversity measures used
in evolutionary computation. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS,
vol. 2724, pp. 1493–1504. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-45110-2 21

https://deap.readthedocs.io/en/master/api/benchmarks.html
https://deap.readthedocs.io/en/master/api/benchmarks.html
https://doi.org/10.1007/3-540-45110-2_21
https://doi.org/10.1007/3-540-45110-2_21

A Case Study of Policy Synthesis
for Swarm Robotics

Paul Piho(B) and Jane Hillston

University of Edinburgh, Edinburgh, UK
paul.piho@ed.ac.uk

Abstract. Continuous time Markov chain models, derived from process
algebraic descriptions of systems are a powerful method for studying the
dynamics of collective adaptive systems. Here, we study a formal mod-
elling framework, based on the CARMA process algebra, where infor-
mation about the possible control actions of individual components in
such systems can be incorporated in the process algebraic description.
The formal semantics for such specifications are defined to give rise to
continuous time Markov decision processes. Here we show how, together
with a given specification of desired collective behaviour, such models
can be readily treated as stochastic policy or control synthesis problems.
This is demonstrated through an example scenario from swarm robotics.

1 Introduction

Computational modelling and simulation approaches provide a useful set of tools
for studying complex dynamics of both man-made and natural collective systems.
Various formal modelling approaches have been proposed to simplify the creation
of such models. In particular stochastic process algebras with continuous time
Markov chain (CTMC) semantics [3,14,18], have provided a powerful high-level
framework for modelling collective systems, allowing compositional definitions
of complex models and formal semantics for automation of model creation.

Process algebra-based models have been used to study a variety of phenomena
in literature in order to better understand the processes involved or predict the
real life performance of the system. Stochastic process algebras with underlying
CTMC-based semantics lend themselves well to numerical or statistical analysis
as well as various model-checking methods proposed over the years [15,16]. In
the context of man-made or engineered systems the interesting questions often
relate to policy or parameter synthesis problems. In particular, how the com-
ponents in such systems should be designed so that a system level objective is
achieved. The link between high-level process algebraic models and the related
policy synthesis models is usually not made explicit. In this paper we present
a swarm robotics-inspired case study where this connection is made explicit by
incorporating the information about control actions or possible choice of param-
eters into the process algebraic description of the system.

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 491–506, 2020.
https://doi.org/10.1007/978-3-030-61470-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_29&domain=pdf
http://orcid.org/0000-0002-4072-1000
http://orcid.org/0000-0003-4914-9255
https://doi.org/10.1007/978-3-030-61470-6_29

492 P. Piho and J. Hillston

We consider an existing stochastic process algebra Carma [18] which has pre-
viously successfully been applied to a range of application domains like pedes-
trian movement [12], urban transportation services [25], availability of cloud
services [20] and ambulance deployment [11]. The language features a set of
communication primitives that, in conjunction with attribute-based filtering of
communication partners, are capable of capturing a versatile set of communica-
tion behaviours. The set of communication primitives in Carma correspond to
broadcast and unicast, making it particularly suitable for open collectives where
the participants of the communications cannot be known in advance.

The aim in this paper is to demonstrate through an example scenario from
swarm robotics [7,19] that processes algebraic constructions in Carma lend
themselves well to stochastic policy or parameter synthesis problems. Swarm
robots provide rich modelling examples in the context of collective systems,
since the directly controllable behaviours and interactions are those of individual
robots but the design goals for the systems are phrased in terms of the aggre-
gate behaviour of the entire collective rather that of individual robots. To that
end, Carma can be equipped with continuous time Markov decision processes
(CTMDPs) based semantics [22] providing a natural formalisation of policy syn-
thesis problems and bridging the gap between the formal high-level modelling
and policy synthesis problems for collectives such as robot swarms. The contri-
bution of this paper is to illustrate these constructions with a case study and
show how ideas from formal modelling and policy synthesis come together in a
framework for stochastic control or parameter synthesis problems.

The paper is structured as follows. In Sect. 2, as background, we introduce
the notions of CTMDPs and population CTMDPs. In Sect. 3 we give a brief
overview of the Carma-based modelling framework for policy synthesis through
a simple example. In Sect. 4 we present the swarm robotics-inspired case study.
Finally we end the paper with related work and conclusions in Sects. 5 and 6.

2 Background

The underlying mathematical model considered in this paper is a CTMDP. In
particular, we consider a high-level formal modelling framework where the con-
structed models can be related to a CTMDP. To start let us give the definition
of a CTMDP and introduce the related policy or parameter synthesis problems.

Definition 1. A continuous-time Markov decision process (CTMDP) is defined
by the tuple {S,A, q(i, j | a)} where S is the countable set of states, A set of
actions and q(i, j | a) gives the transition rates i → j given the control action
a ∈ A. We use A(i) to denote the set of feasible actions in state i.

The evolution of CTMDPs is described by the following: after the process
reaches some state and an action is chosen, the process performs a transition
to the next state depending only on the current state and the chosen action.
The time it takes for state transitions to happen is governed by an exponential
distribution with a rate given by the function q in Definition 1. The actions at
every such step are chosen according to some policy as defined below.

A Case Study of Policy Synthesis for Swarm Robotics 493

Definition 2. A policy is a measurable function ψ : R≥0 ×S ×A → [0, 1] which
for every time t ∈ R≥0, state i ∈ S and action a ∈ A(i) assigns a probability
ψ(t, i, a) that the action a is chosen in i at time t. In other words, policy ψ
defines a distribution over actions in any state of the CTMDP at time t. We call
a policy where, for every t ∈ R≥0 and i ∈ S, we have that ψ(t, i, a) ∈ {0, 1}, a
deterministic policy. A policy ψ independent of t is a stationary policy.

Note that fixing a policy ψ resolves the non-determinism in the model and since
the times that state transitions take are exponentially distributed the result is
a continuous time Markov chain.

When we consider a system consisting of a large number of components with
identical behaviours it is often convenient to consider a special case of CTMDPs.

Definition 3. A population CTMDP (pCTMDP) is a tuple (X, T ,A, β) where:

– X = (X1, · · · ,Xn) ∈ S = Z
n
≥0 where each Xi takes values in a finite domain

Di ⊂ Z≥0.
– β is a function such that β(a,X) returns a boolean value indicating whether

action a ∈ A is available from state X.
– T is a set of transitions of the form τ = (a,vτ , rτ (X)) such that β(a,X) = 1,

vτ is an update vector specifying that the state after execution of transition τ
is X+ vτ and rτ (X) is a rate function.

In order to give semantics to the above definition of a population CTMDP we
associate it with the equivalent CTMDP in the following way:

– the state and action space of the corresponding CTMDP is the same as for
the population CTMDP.

– the set of feasible actions for state i ∈ S, denoted A(i), is defined by

A(i) = {a ∈ A | β(a, i) = 1}.

– the rate function q is defined as

q(i, j | a) =
∑

τ∈T ,τ=(a,vτ ,rτ (j)),i=j+vτ

rτ (i).

To form a policy synthesis problem for a given CTMDP we need a reward or a
cost function which maps a chosen policy to a real value. A common approach
for defining a reward function, for example, is as a function of the expected
behaviour of the resulting CTMC.

3 Carma-C for Policy Synthesis

Carma [18] is a stochastic process algebra for quantitative modelling of collective
adaptive systems. It supports the specification of complex stochastic behaviour,
based on continuous time Markov chains, in a compositional way. In particular,

494 P. Piho and J. Hillston

each component in Carma consists of a process definition P and a local store
γ. Carma models then consist of a collective N , composed of individual com-
ponents or agents C, operating in an environment E . This structure of Carma
models is illustrated in Fig. 1.

Fig. 1. Illustration of the structure of Carma models.

The Function Labelled Transition Systems (FuTS) style operational seman-
tics [10] of Carma, as described in [18], give rise to a labelled transition sys-
tem which can be simulated directly or translated into a CTMC for numerical
analysis. The aim of this section is to introduce the extension Carma-C [22]
for specifying policy synthesis problems. The underlying CTMDP model allows
us to specify non-deterministic behaviour, corresponding to different possible
action choices, in a Carma-C model. The approach is to incorporate the non-
determinism into the store definitions. In Carma each attribute in store refers
to a single value that is used in the semantics, for example, to evaluate guards
or filter communication partners. Instead, in Carma-C we relax this construc-
tion and allow store attributes to refer to value domains which leads to non-
determinism over a range of possible behaviours. Note that a parametric CTMC
would be another reasonable choice for the underlying semantics that account
for non-determinism. The semantics of the languages would not change much
in that case as the construction of the parameter space of a CTMC from the
high-level model description is analogous to the construction of the action space.

In the following we describe Carma-C and as a running example present the
model for the case study in Sect. 4.1. This example model is outlined below.

Example 1. The model considers a simple robot swarm where an exploration
phase is modelled by a random walk on the graph structure in Fig. 2. The swarm
attempts to discover and gather at the target location (x, y). This is modelled by
an exploration followed by an aggregation phase. The switch between the two
phases happens via broadcast communication. When any single robot detects
the target at (x, y) it broadcasts this knowledge to the rest of the swarm.

A Case Study of Policy Synthesis for Swarm Robotics 495

Fig. 2. Spatial structure for the example.

3.1 Local Store

Let us start by considering the local stores of components. The local store is
used to hold the attributes of an individual component. For example, a location
attribute of a component can be used to implement communication within a
given range. Carma and Carma-C differ in their treatment of the local store—
in Carma-C we use the store attributes to also specify the action space of
the underlying CTMDP. By associating each attribute in a store with a value
domain rather than a single value, we introduce the non-determinism required
to establish an action space. Here, the local store of each of the robots can be
defined to hold attributes for location, denoted loc, set of known target locations,
denoted target. The robustness parameter, succp, taking values in the interval
[0, 1], models how reliably the robots move when navigating towards a target.

γl = {loc �→ {(0, 0)}, target �→ {∅}, succp �→ [0, 1]}

The location loc and target target are defined to have singleton value domains
consisting of pair (0, 0) and the empty set respectively. The robustness parameter
succp on the other hand takes values in the real interval [0, 1].

In the semantics of Carma-C the available control actions in the underlying
CTMDP are associated with the possible ways we can refine the defined store to
correspond to single values from the defined value domains. In particular, a con-
trol action f from a state of the Carma-C system resolves all non-determinism
in the descriptions. As an example, we can suppose that a given control action f
applied to γl gives the following: f(γl) = {loc �→ (0, 0), target �→ ∅, succp �→ 0.7}.
This control action results in a local store of a component at location (0, 0) with
no known targets. The parameter succp, when a target is known, captures the
probability of the component successfully moving towards it.

3.2 Processes

Next let us consider the process definitions P . The processes are composed of
action primitives corresponding to input and output actions for broadcast and
unicast communication. Note that broadcast in Carma is non-blocking—the
output action is executed even if there is no component able to receive the
message. Unicast on the other hand is blocking. Unicast output is denoted
by α∗ [πs] 〈e〉σ while unicast input is denoted by α [πs] 〈e〉σ. Similarly broad-
cast output is denoted by α∗ [πs] 〈e〉σ while broadcast input is denoted by
α∗ [πr] (x)σ.

496 P. Piho and J. Hillston

The following notation is used

– α is an action type which is used to distinguish between different actions.
– πs, πr, π denote boolean predicates that have to be satisfied before the action

can be executed. As mentioned previously, the communication in Carma and
Carma-C is attribute-based—guards are used to filter out communication
partners based on attributes such as location or communication range.

– e is an expression built using appropriate combinations of values, attributes
and variables. In the semantics, the expressions are evaluated over the sending
component’s local store and passed on to the receiving component.

– x is a variable which takes on the values that were communicated to the
receiving process by the sender.

– σ is a function from Γ → Dist(Γ) where Dist(Γ) is the set of distributions
over the set of possible stores Γ . The function σ thus denotes a store update
and defines how the given store is changed as a result of an action.

The processes are composed via the standard constructs—action prefix (.), choice
(+), and parallel composition (‖). The behaviour of processes can be further
modified by setting guards on processes. As an example, we can consider the
following processes that we use to model the scenario in Example 1.

Explore def= [πr]random∗[◦]〈◦〉{loc �→ R(loc)}.Explore
+ [πd]directed∗[◦]〈◦〉{loc �→ D(loc)}.Explore
+ [πr]sense∗[◦]〈loc〉{target �→ target ∪ {loc}}.Explore

Listen def= [πr]sense∗[◦]({(x, y)}){target �→ target ∪ {(x, y)}}.Listen

Robot def= Explore ‖ Listen

Our example can then be modelled by the processes illustrated in Fig. 3. The
broadcast actions random∗ and directed∗ describe a random walk and a directed
walk towards (x, y) respectively. Despite being defined as broadcast actions,
neither of these actions have any effect on the other robots in the collective
because the outgoing message is set to be empty. The guards πr and πd check
whether the target location is known or not and make sure only one of the
actions random∗ and directed∗ is enabled at a time. The guards are evaluated
conditionally on a chosen control action f in the following way.

πr =

{
true if f(γ)(target) = ∅.

false otherwise.
πd =

{
true if f(γ)(target) = {(x, y)}.

false otherwise.

The sense∗ action models the detection of the target location. In particular,
the broadcast output action models the robot detecting and sending the target
location to the rest of the swarm. The corresponding broadcast input action
models the robot’s ability to receive such a message.

The actions random∗ and directed∗ change the loc attribute of the robot
component according to functions R and D respectively. The (random) function

A Case Study of Policy Synthesis for Swarm Robotics 497

Fig. 3. Behaviour of individual Robot components.

Fig. 4. Local component store changes induced by actions.

R corresponds to the next location being selected uniformly from the set of
available next locations defined by the graph structure in Fig. 2. Similarly, D
corresponds to the next location taking the robot closer to the target with some
probability p, specified by the robustness attribute succp, and to one of the other
directly connected locations with probability 1 − p. This defines a distribution
over the possible unresolved local stores the components can evolve to and models
unreliable navigation. The sense∗ action updates the set of target locations with
the current location of the sending robot.

The functions R, D as well as the set operation ∪ are applied element-wise to
all elements in the relevant value domains as illustrated in Fig. 4. For example,
consider the update loc �→ R(loc). This means that the function R is applied to
every element in the value domain for loc. The store update for a given initial
store are illustrated in Fig. 4.

3.3 Environment

Finally we are going to address the environment. An environment is defined by
a global store γg that models the overall state of the system and an evolution
rule ρ. The global store is defined similarly to the local store. To continue the
example, we define two global store variables—one corresponding to the rate at
which the actions random∗ and directed∗ happen, denoted mover. We specify
the value domain for this variable to be [0,∞). Similarly, we specify the value
domain for the store attribute senser, corresponding to the rate of the action
sense∗, to be [0,∞). Finally, we specify an attribute that keeps track of the
location of the target. In particular,

γg = {mover �→ [0,∞), senser �→ [0,∞), tloc �→ {(1, 1)}}.

498 P. Piho and J. Hillston

The evolution rule gives, depending on the current time, the global store
and the current state of the collective, and a control action f , a tuple of func-
tions ε = 〈μp, μw, μr, μu〉 called the evaluation context. The functions μp and
μw depend on the activity type α and the stores of the sender (γs) and receiver
(γr) and determine the probabilities for eligible receivers to receive a message
corresponding to an output action α. In the case of μp, the function gives a prob-
ability of a broadcast message being received successfully. In contrast μw deals
with the unicast communication and returns a weight value. The probability of a
given receiver receiving the message is obtained by normalising the weight with
respect to the sum of weights of all possible receivers. The functions μr and μu

depend on the activity type and the sender store. The function μr determines the
rate with which a given output action is performed and μu defines the updates
on the environment (global store and collective) induced by the action.

In our example, suppose f denotes the action chosen at time t and let γs and
γr denote the sender and receiver store respectively. Firstly, we define

μp(f(γs), f(γr), sense∗) = 1 for all stores γs and γr.

In particular, a broadcast message is received with probability 1 by all eligible
receivers. There are no unicast actions in this model so the definition of μw is
trivial. Supposing f(γg)(mover) = rm, f(γg)(senser) = rs we can say that the
rates of the actions are given as follows.

μr(f(γ), random∗) = μr(f(γ), directed∗) = rm for all local stores γ

μr(f(γ), sense∗) =

{
rs for all local stores γ such that f(γ)(loc) = f(γg)(tloc)
0 otherwise

Thus, the sense∗ action, in this case, is only possible from the location (1, 1).
The global store definitions and the composition of the collective do not change
so μu is again trivial. This completes the description of the Carma-C model.

3.4 System

As mentioned, a Carma-C system is composed of a collective of components
operating in an environment. For the running example we define the robot com-
ponents as a pair composed of process description and a store (Robot , γl). Finally
we consider a collective of N robots denoted (Robot , γl)[N] in (γg, ρ).

Further details on the decision process semantics are omitted here due to
space constraints and can be found in [22]. We simply note that the state of the
pCTMDP corresponding to the described Carma-C model are represented by
one counting variable for each considered location. The set of feasible actions in
each state corresponds to the choices of the mover, senser and succp attribute
values from the sets [0,∞), [0,∞) and [0, 1] respectively. The value domains of
the remaining attributes are trivial to resolve being defined as singleton sets.

A Case Study of Policy Synthesis for Swarm Robotics 499

4 Case Study

4.1 Stationary Target

In the previous section we gave the Carma-C model of the robot swarm example.
In this section we explore this model further. To start we describe the CTMDP
model that arises if appropriately chosen semantics are applied. As discussed in
Sect. 2 it is often useful to consider the population structure of the model.

The process state of the robots does not change throughout the evolution.
Thus, the only part of each component’s state that changes is the location
attribute. Let us denote the state space of the pCTMDP by the counting vari-
ables

X = (X01,X00,X10,X11,X
11
01 ,X11

00 ,X11
10 ,X11

11)

Fig. 5. Behaviour of individuals in the swarm model with 4 locations under some
deterministic policy ψ.

where Xij denotes the count of robots at location (i, j) that do not know the
target location while X11

ij denotes the count of robots at location (i, j) that know
that the target location is (1, 1).

The rates with which the actions are performed are linked to the global store
variables mover and senser that are only specified through their value domains.
This corresponds to the first part of the action space for the pCTMDP—at
each state of the model we need to specify the particular values to be used for
mover and senser. The second part of the action space corresponds to the local
succp attribute. For each location we have to specify the value of succp from the
interval [0, 1]. A policy, following the definition given in Sect. 2, is a function

ψ : R≥0 × Z
8
≥0 × R

2
≥0 × [0, 1]8 → [0, 1]

assigning a probability for each of the possible combinations of attributes mover,
senser and succp for each time t ∈ R≥0 and state x ∈ Z

8
≥0. Remember, that the

choice of succp has to be made for each location giving rise to four copies of
[0, 1] in the signature of the function. The above corresponds to the non-trivial

500 P. Piho and J. Hillston

parts of the policies ψ. To give a perfectly precise description according to the
semantics the policy would also have to assign values for each of the loc and target
attributes. However, as explained, the value domains for these remain singleton
sets throughout the evolutions and thus the choice of policy with respect to those
attributes is trivial. Denote the resulting space of probability distributions by
Π. In the following we are going to consider deterministic policies such that

ψ : R≥0 × Z
8
≥0 × R

2
≥0 × [0, 1]8 → {0, 1}.

Application of a policy ψ to the pCTMDP corresponding to the model gives us
behaviours of individual robots as given in Fig. 5. We have denoted by ψ

(i,j)
1 (t,x)

the rate of robots moving out of location (i, j) at time t given the population
state x under the deterministic policy ψ. Similarly, ψ2(t,x) denotes the rate of
sensing and broadcasting the message about the target.

Policy Synthesis. In this section we are going to restrict the space of policies Ψ
to those that are stationary, or in other words, not dependent on time. However,
instead of having policies that map each state of the population to the same
fixed value, we are going to model the situation where the movement rate of
the robots decreases as the density in a given location increases. Congestion
or interference is a common problem in swarm robotics that usually leads to
degraded performance [17,21,24]. This happens especially in the cases where
robots are moving towards a common target region and have to compete for
available space. For this example we are considering one possible way to capture
such effects on the swarm behaviour.

In order to model the congestion effects we are going to construct the policy
ψ so that some maximum movement rate rm, given by the global store attribute
mover, of robots is multiplied by the exponential e−a× x

N where x denotes the
population density at the given location. In particular, the rate of movement
out of location (i, j) under policy ψ becomes ψ

(i,j)
1 (t,x) = rme−a× xij

N , where
xij is the population density at location (i, j). Such exponential degradation
of the performance of individual robots in a swarm was reported, for example,
in [17]. The constant a controls how fast the rate of movement decreases with
the increase in number of robots in a given location. The higher values of a
correspond to more severe effects of congestion. The meaning of this model
would be that if the entire swarm is in the same location the congestion has the
effect of approximately halving the rate of movement.1

In the context of the running example we consider the synthesis of the succp
parameter. That is, how robust the behaviour of the robots should be for the
collective to satisfy its goal. We consider the following objective: with probability
greater than 0.9, 80% of the swarm reach the target location (1, 1) in the finite
time interval [0, 10]. We will refer to this as Obj 1.

1 Note that the above construction could equivalently be done directly in the definition
of the rates of random∗ and directed∗ actions.

A Case Study of Policy Synthesis for Swarm Robotics 501

4.2 Moving Target

In this section we are going to propose and study an extension to the model
considered in Sect. 4.1. In particular, there we assumed that the target location
remains the same throughout the evolution of the system. We extend the model
by considering a target whose location will change over time. To achieve that we
add an extra component, named Target to the system. Suppose the initial state
of its local store is γtarg = {loc �→ {(1, 1)}}. For the movement we are going to
define the following process

Move def= [πmt]move∗[◦]〈◦〉{loc �→ K(loc)}.Move

where K maps locations (1, 1) �→ (1, 2). The guard πmt is defined to stop the
target after reaching location (1, 2). A simple way to model that after the target
has moved to a different location the robots have to look for it again is to
suppose that the robots also have a process that defines the broadcast input
action corresponding to move∗.

ListenT def= move∗◦{target �→ {∅}}.ListenT

Robot def= (Explore ‖ Listen ‖ ListenT , γ)

Fig. 6. Probability of success with both mover and succp varying. Constant a fixed to
0.7.

In particular, when the target location changes the robots immediately know that
their current set of target locations is no longer valid. To complete the extension
we need to define the rate at which the target moves and the probability with
which the broadcast resulting from move∗ is received. In our example we set the
rate of move∗ to 0.05 and assume that all robots will be aware of when the target
has left its current location. Finally, the global store update for action move∗

changes the value domain for the attribute tloc to correspond to the location
of the target component. This ensures that after the target moves the sense
actions will be available only from the new location of the target. The rest of
the model remains the same. The objective, denoted Obj 2, for the new scenario
is the following: with probability greater that 0.9, 80% of the swarm reach the
target locations while the target is there, in the finite time interval [0, 30].

502 P. Piho and J. Hillston

4.3 Simulation Results

In both of the described models we have left the exact values of succp and mover
unspecified. The third parameter in the model descriptions is the congestion
parameter a. This parameter would in general relate to the physical size of the
considered location, size of the robots and their collision avoidance behaviour.
For this simulation analysis we are going to simplify the situation by considering
a range of 21 equally spaced values in the interval [0.5, 0.9] and see how the
results to the policy synthesis problems change with these values. Similarly, for
each value of the congestion parameter we consider 10 classes of policies with
each keeping the movement rate attribute mover constant in the interval [0.0, 5.0].

For each class of policies where the constant a and rate attribute mover are
kept constant we are going to vary the values of succp. We treat the policy
synthesis problem as a logistic regression problem, aiming to separate the values
succp based on whether the objectives would be satisfied or not. This is done
by sampling values of succp and simulating the CTMC dynamics resulting from

Fig. 7. Probability of success with fixed mover = 1.0 and varying succp. Blue results
correspond to congestion parameter set to 0.5 while red results correspond to congestion
parameter 0.9. (Color figure online)

Fig. 8. Changes in the decision boundary for logistic regression as mover changes.
Points indicate the mean over the tested values of congestion constant a with error
bars indicating the range of values acquired.

A Case Study of Policy Synthesis for Swarm Robotics 503

fixing a policy of the constructed models. This is akin to works on parameter
synthesis which aim to find the regions of the parameter space where a given
specification is satisfied [5,6,9].

The approach for this is standard: consider a linear function y = w0+w1p of
single explanatory variable (in this case value of succp, denoted p) and a logistic
function σ(r) = 1/(1 + e−w0−w1p) where σ(p) is interpreted as the probability
of success given succp value p. We are going to expect the goal to be satis-
fied if σ(p) > 0.5. The weights for the regression model are going to be fitted
based on trajectories sampled using stochastic simulation for 200 random succp
values. For each of the resulting 42000 parametrisations of the model we gener-
ated 5000 trajectories using Gillespie’s algorithm. Based on these trajectories we
estimated the satisfaction probability for the defined objectives. Currently, the
tools for Carma do not support the non-deterministic specifications described
here. In this paper the structure of the models as well as the policies are rel-
atively simple and for each choice of policy (or parametrisation) of the model
we can readily construct a chemical reaction network model that captures the
behaviour of the Carma-C model. These models were constructed and simulated
with the DifferentialEquations.jl [23] package for the Julia programming language
which includes methods for specifying chemical reaction networks and imple-
ments stochastic simulation algorithms for simulating the underlying CTMC.

Figure 6 shows the empirical success probabilities for a fixed value of parame-
ter a = 0.7. We can see that for the simpler model with stationary target there is
a quicker transition from not satisfying the objective to satisfying the objective
as either of the succp or mover parameters are increased. For the example with
the moving target this transition is more gradual. This observation is confirmed
by Fig. 7 where both the constant a and the rate of movement mover are kept
constant while varying the attribute succp. In the case of the moving target
example we see that setting the movement rate of the robots to 1.0 means the
defined objective will not be satisfied. In both cases varying the parameter a
within the rage [0.5, 0.9] does not have a large effect on whether the objective
can be satisfied. Finally, Fig. 8 presents the results of the logistic regression being
performed on the simulation data. Unsurprisingly the effect of varying the con-
gestion constant gives a more pronounced effect on the decision boundaries for
the logistic regression. Similarly, the stationary target scenario is more robust
to unreliable navigation by the robots. The decision boundary for the stationary
target falls below 0.5 for faster robot components. This is due to robots not
moving out of the target’s location when the location is known.

Finally, we make a note about the computational difficulty of treating such
problems. Even for the relatively simple problems presented here, the computa-
tion time becomes large. The multi-threaded (16 threads) sampling of trajecto-
ries for the fixed policies took 5.9 h in total for the stationary target example
while the moving target simulations took about 11.4 h.

504 P. Piho and J. Hillston

5 Related Works

There exists a large body of work on CTMDPs both from the model checking and
optimisation perspectives. CTMDP models incorporate non-determinism in the
model description which is usually interpreted as possible control actions that
can be taken from a given state of the system. The model checking approaches
seek to verify whether or not a CTMDP satisfies the requirements for a given
class of policies. These commonly deal with time-bounded reachability [1,8].
The optimisation perspective is to find a policy which maximises some utility or
minimises a cost function. In both cases the core issue is scalability; statistical or
simulation-based approaches offer a set of tools feasible for complex systems of
collective behaviour [2,4]. An alternative interpretation would be to consider the
non-determinism as being uncertainty about parts of the system’s behaviour. In
the context of process algebras this idea has been considered in [13] to integrate
data and uncertainty into formal quantitative models in a meaningful way.

6 Conclusion

In this paper we have presented a swarm robotics-inspired case study which
presents a framework fitting together ideas from formal modelling and policy
synthesis. In particular, we described a model expressed in the Carma-C lan-
guage equipped with CTMDP semantics and set up a simple policy synthesis
problem where parameters can be changed or controlled. The semantics of the
language presented does not discriminate against more complex cases like time-
dependent or probabilistic policies. With an appropriate choice of policy space
we could, for example, consider scenarios where the movement rate of the robots
further degrades with time. This makes the considered framework a powerful
modelling tool for stochastic control problems for collective systems. However,
as seen, the statistical and simulation based approaches considered here, while in
general more scalable than exact methods, are already becoming time-consuming
for relatively simple problems. For the examples in this paper we may be able to
decrease the number of evaluated policies for reasonable estimates but further
work on approximate methods on policy synthesis for the models is of interest
to reduce computational burden and allow dealing with complex policies.

References

1. Baier, C., Hermanns, H., Katoen, J., Haverkort, B.R.: Efficient computation of
time-bounded reachability probabilities in uniform continuous-time Markov deci-
sion processes. Theor. Comput. Sci. 345(1), 2–26 (2005)

2. Bartocci, E., Bortolussi, L., Brázdil, T., Milios, D., Sanguinetti, G.: Policy learning
in continuous-time Markov decision processes using Gaussian processes. Perform.
Eval. 116, 84–100 (2017)

3. Bernardo, M., Gorrieri, R.: Extended Markovian process algebra. In: Montanari,
U., Sassone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 315–330. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61604-7_63

https://doi.org/10.1007/3-540-61604-7_63

A Case Study of Policy Synthesis for Swarm Robotics 505

4. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time Markov chains. Inf. Comput. 247, 235–253 (2016)

5. Bortolussi, L., Policriti, A., Silvetti, S.: Logic-based multi-objective design of chem-
ical reaction networks. In: Cinquemani, E., Donzé, A. (eds.) HSB 2016. LNCS,
vol. 9957, pp. 164–178. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47151-8_11

6. Bortolussi, L., Silvetti, S.: Bayesian statistical parameter synthesis for linear tem-
poral properties of stochastic models. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 396–413. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3_23

7. Brambilla, M., Brutschy, A., Dorigo, M., Birattari, M.: Property-driven design for
robot swarms: a design method based on prescriptive modeling and model checking.
ACM Trans. Auton. Adapt. Syst. 9(4), 17:1–17:28 (2014)

8. Butkova, Y., Hatefi, H., Hermanns, H., Krčál, J.: Optimal continuous time Markov
decisions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364,
pp. 166–182. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-
7_12

9. Češka, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M., Brim, L.: Precise
parameter synthesis for stochastic biochemical systems. Acta Informatica 54(6),
589–623 (2016). https://doi.org/10.1007/s00236-016-0265-2

10. De Nicola, R., Latella, D., Loreti, M., Massink, M.: A uniform definition of stochas-
tic process calculi. ACM Comput. Surv. 46(1), 5:1–5:35 (2013)

11. Galpin, V.: Modelling ambulance deployment with Carma. In: Lluch Lafuente, A.,
Proença, J. (eds.) COORDINATION 2016. LNCS, vol. 9686, pp. 121–137. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39519-7_8

12. Galpin, V., Zon, N., Wilsdorf, P., Gilmore, S.: Mesoscopic modelling of pedestrian
movement using CARMA and its tools. ACM Trans. Model. Comput. Simul. 28(2),
1–26 (2018)

13. Georgoulas, A., Hillston, J., Milios, D., Sanguinetti, G.: Probabilistic program-
ming process algebra. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS,
vol. 8657, pp. 249–264. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10696-0_21

14. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, New York (1996)

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46029-2_13

16. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9_11

17. Lerman, K., Galstyan, A.: Mathematical model of foraging in a group of robots:
effect of interference. Auton. Robots 13(2), 127–141 (2002). https://doi.org/10.
1023/A:1019633424543

18. Loreti, M., Hillston, J.: Modelling and analysis of collective adaptive systems with
CARMA and its tools. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM
2016. LNCS, vol. 9700, pp. 83–119. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-34096-8_4

19. Luckcuck, M., Farrell, M., Dennis, L.A., Dixon, C., Fisher, M.: Formal specification
and verification of autonomous robotic systems: a survey. ACM Comput. Surv.
52(5), 1–14 (2019)

https://doi.org/10.1007/978-3-319-47151-8_11
https://doi.org/10.1007/978-3-319-47151-8_11
https://doi.org/10.1007/978-3-319-89963-3_23
https://doi.org/10.1007/978-3-319-89963-3_23
https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/s00236-016-0265-2
https://doi.org/10.1007/978-3-319-39519-7_8
https://doi.org/10.1007/978-3-319-10696-0_21
https://doi.org/10.1007/978-3-319-10696-0_21
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1023/A:1019633424543
https://doi.org/10.1023/A:1019633424543
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/978-3-319-34096-8_4

506 P. Piho and J. Hillston

20. Lv, H., Hillston, J., Piho, P., Wang, H.: An attribute-based availability model for
large scale IaaS clouds with CARMA. IEEE Trans. Parallel Distrib. Syst. 31(3),
733–748 (2020)

21. Soriano Marcolino, L., Tavares dos Passos, Y., Fonseca de Souza, Á.A., dos San-
tos Rodrigues, A., Chaimowicz, L.: Avoiding target congestion on the navigation of
robotic swarms. Auton. Robots 41(6), 1297–1320 (2016). https://doi.org/10.1007/
s10514-016-9577-x

22. Piho, P., Hillston, J.: Policy synthesis for collective dynamics. In: McIver, A., Hor-
vath, A. (eds.) QEST 2018. LNCS, vol. 11024, pp. 356–372. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99154-2_22

23. Rackauckas, C., Nie, Q.: DifferentialEquations.jl – a performant and feature-rich
ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5, 15
(2017)

24. Schroeder, A., Trease, B., Arsie, A.: Balancing robot swarm cost and interfer-
ence effects by varying robot quantity and size. Swarm Intell. 13(1), 1–19 (2018).
https://doi.org/10.1007/s11721-018-0161-1

25. Zon, N., Gilmore, S.: Data-driven modelling and simulation of urban transportation
systems using Carma. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018, Part III.
LNCS, vol. 11246, pp. 274–287. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03424-5_18

https://doi.org/10.1007/s10514-016-9577-x
https://doi.org/10.1007/s10514-016-9577-x
https://doi.org/10.1007/978-3-319-99154-2_22
https://doi.org/10.1007/s11721-018-0161-1
https://doi.org/10.1007/978-3-030-03424-5_18
https://doi.org/10.1007/978-3-030-03424-5_18

Maple-Swarm: Programming Collective
Behavior for Ensembles by Extending

HTN-Planning

Oliver Kosak(B) , Lukas Huhn, Felix Bohn, Constantin Wanninger ,
Alwin Hoffmann , and Wolfgang Reif

Institute for Software and Systems Engineering at the University of Augsburg,
Universitätsstraße 2, 86159 Augsburg, Germany

kosak@isse.de

Abstract. Programming goal-oriented behavior in collective adaptive
systems is complex, requires high effort, and is failure-prone. If the sys-
tem’s user wants to deploy it in a real-world environment, hurdles get
even higher: Programs urgently require to be situation-aware. With our
framework Maple, we previously presented an approach for easing the
act of programming such systems on the level of particular robot capa-
bilities. In this paper, we extend our approach for ensemble programming
with the possibility to address virtual swarm capabilities encapsulating
collective behavior to whole groups of agents. By using the respective
concepts in an extended version of hierarchical task networks and by
adapting our self-organization mechanisms for executing plans resulting
thereof, we can achieve that all agents, any agent, any other set of agents,
or a swarm of agents execute (swarm) capabilities. Moreover, we extend
the possibilities of expressing situation awareness during planning by
introducing planning variables that can get modified at design-time or
run-time as needed. We illustrate the possibilities with examples each.
Further, we provide a graphical front-end offering the possibility to gener-
ate mission-specific problem domain descriptions for ensembles including
a light-weight simulation for validating plans.

Keywords: Task orchestration · HTN-Planning · Swarm behavior ·
Robot swarms · Multi-agent systems · Multipotent systems

1 Motivation

The range of versatile applications for collective adaptive systems and espe-
cially for multi-robot systems steadily increased during the last years due to the
potential benefits these applications can deliver for research, our daily life, or
society in general. We can find examples that already profit from this develop-
ment everywhere, e.g., for research in space exploration [18] or meteorological
science [4,13,22], for autonomous search and rescue in major catastrophe scenar-
ios [2,15], among many others. One crucial hurdle that every application needs to

Partially funded by DFG (German Research Foundation), grant number 402956354.

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 507–524, 2020.
https://doi.org/10.1007/978-3-030-61470-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_30&domain=pdf
http://orcid.org/0000-0003-0563-9797
http://orcid.org/0000-0001-8982-4740
http://orcid.org/0000-0002-5123-3918
https://doi.org/10.1007/978-3-030-61470-6_30

508 O. Kosak et al.

[fire-fighter with ensemble] [swarming for

surveillance] [situative re-planning]

Fig. 1. Fire-fighter orchestrating an ensemble to deal with a forest fire scenario.

take before a user can actually profit from it is that of proper task-orchestration
for the collective. Unfortunately, the current trend is that instead of aiming for
a generic solution for that problem, every single new application requires a new
software approach for its realization [3,9]. Besides varying hardware require-
ments [21], the often high complexity of performing specific goal-oriented task
orchestration and planning for such ensembles hinders the reuse of previously
successfully applied approaches for a broader set of applications. Achieving a
general approach becomes even more complex as tasks show a high versatility
or the user requires the ensemble to act in different problem domains. With our
approach Maple [12], we already developed a task orchestration and execution
framework for multipotent robot ensembles [15] having the potential to fill that
gap. In multipotent systems, robot ensembles being homogeneous at design time
can become heterogeneous concerning their capabilities at run-time by combin-
ing physical reconfiguration on the hardware level with self-awareness [10].

In this paper, we demonstrate how we extend our approach to Maple-Swarm
for supporting the operation of whole collectives by introducing the concepts
of agent groups and virtual swarm capabilities. Swarm capabilities encapsulate
collective behavior, where the local interaction of individuals provides useful
emergent effects on the ensemble level, e.g., for distributing in an area with
a potential field algorithm [20] or searching for the highest concentration of
a parameter with an adapted particle swarm optimization algorithm [23]. We
assume that we can alternate the specific swarm behavior with different param-
eters for the swarm capability like we present in [11]. To integrate these new
concepts, we adapt to how we perform the designing, task planning, and task
allocation process of Maple. In Maple-Swarm, we further extend the concept of
hierarchical task networks (HTN) [6] we use for defining partial plans for specific
situations and for generating situation-aware plans with automated planning at
run-time. With agent groups, addressing all agents, any agent, a set of agents,
or a swarm of agents, we extend the flexibility the multipotent system has for
executing tasks. We thereby further increase the autonomy of multipotent robot
ensembles that can choose which concrete agents adopt the respective roles at
run-time in a self-organized manner while still preserving the possibility for the
user to keep control over actions of particular robots, when necessary.

Maple-Swarm: Programming Collective Behavior for Ensembles 509

The running example we use for illustration purposes assumes a fire-fighter
requiring to handle a forest fire scenario (cf. Fig. 1). Within a defined area, fires
may ignite spontaneously. The fire-fighter needs to instruct its available ensemble
of mobile robots to move to that area, continuously observe it, identify new fires,
and extinguish them as fast as possible. Because of the size of the area, the high
amount of robots available, and other urgent tasks only a human can accomplish,
it is not always a feasible option for the fire-fighter to manually define routes
for all robots or to react ad-hoc to newly identified fires. Instead, the fire-fighter
wants to specify how the ensemble should react in different situations on an
abstract level and let the system act appropriately and as autonomously as
possible. Then, the system should decide on what to do according to its current
state and that of the environment, e.g., by applying useful collective behavior.

The remainder of the paper is structured as follows. In Sect. 5 we subsume
approaches for solving the problem of task orchestration for ensembles. In Sect. 2,
we briefly reflect on the current state of Maple and its integration in our reference
architecture for multipotent systems and illustrate our objectives. In Sect. 3, we
propose our solution Maple-Swarm. In Sect. 4 we demonstrate the functionality
of our approach for the firefighter scenario as proof of concepts. In Sect. 6 we
conclude our findings and point out possible future research challenges.

2 Current State and Objectives

In multipotent systems, we generally differentiate between the user device and
the multipotent ensemble consisting of multiple agents implementing a layered
software architecture (cf. Fig. 2). The user device offers the possibility for design-
ing problem domain definitions and thereby acts as an interface to the multi-
potent ensemble. The different layers each agent in the multipotent ensemble
implements encapsulate their own functionality and communication pattern.

Fig. 2. Simplified multipotent systems refer-
ence architecture for ensembles from [10].

On the lowest layer, we enable
hardware access to self-descriptive
hardware with the semantic hard-
ware layer. A self-awareness mech-
anism that detects changes in the
respective agent’s physical hard-
ware configuration updates the set
of capabilities the agent knows it
can currently execute with that
hardware autonomously [7]. On
the superordinate agent layer and
ensemble layer, we implement the
necessary self-organization mecha-
nisms to form ensembles with a
market-based task allocation app-
roach [14] and to autonomously exe-
cute tasks [13] introduced by the

510 O. Kosak et al.

task layer. On task layer, we evaluate the user-specified problem domain def-
inition against the current state of the world the system is currently aware of
and generate plans for this situation with an automated planner. We integrated
this automated planner in our approach for a multi-agent script programming
language for multipotent ensembles (Maple) [12]. There, we extend the approach
of hierarchical task network (HTN) planning [5] for defining a problem domain
and generating plans. We prefer this approach of plan-space planning over that
of state-space planning [8] because of its efficiency and a higher level of control in
real-world applications [6]. Plans in HTN are not “invented” by the planner (as in
state-space planners), but selected and combined from a set of predefined partial
plans. This achieves more control over the system where it is urgently needed,
e.g., our fire-fighter scenario from Sect. 1. We use partial plans to define how
robots need to execute capabilities for successfully accomplishing the plan, i.e.,
define partial plans on the level of the particular robot’s capabilities. According
to the situation of the system that is defined by the world state, the automated
planning in Maple then can generate plans that are relevant for the respective
situation. The multipotent system itself then updates the world state by exe-
cuting plans and thereby generates new situations. To make plans executable,
Maple includes a mechanism to transform generated plans into executable tasks
that include necessary coordination information. We provide the possibility to
define sequential, concurrent, alternative, and repeated as well as parallel and
synchronized capability execution. For the concrete execution of plans, we let
the multipotent system autonomously form appropriate ensembles at run-time.

Challenges for Maple-Swarm: For integrating agent groups and swarm capa-
bilities encapsulating collective behavior in Maple-Swarm, we obviously need to
adjust the way we design problem domains and generate plans for ensembles.
While in Maple, we can already design tasks for the ensemble by using a common
knowledge base enlisting all possible robot capabilities including their param-
eters and return values, we need to adapt this knowledge base accordingly for
swarm capabilities. For the valid application of the application of swarms we
present in the following, we assume swarms of robots to be ensembles of poten-
tially heterogeneously configured robots that nevertheless are capable of exe-
cuting the capabilities necessary for the respective swarm behavior (e.g., move
with a certain movement vector, communicate measurements with each other).
While we do not want to investigate the concrete execution of swarm capabilities
here (we focus on this in [11]), we nevertheless require to define an appropriate
interface including possible parameters and return types of swarm capabilities.
This is necessary for initializing the task designer interface that requires a fully
described capability knowledge base as well as for using return values of swarm
capabilities during plan design and planning. We thus need to integrate the
results of swarm capabilities in our concept of planning variables and adapt our
planning mechanism accordingly. Further, we require to integrate the concepts
for the respective agent groups we want to enable the problem domain designer
to make use of in partial plans.

Maple-Swarm: Programming Collective Behavior for Ensembles 511

Addressing a group of robots with agent groups in a swarm capability requires
an adaptation of the market based, self-awareness enabled task-allocation mecha-
nism [13] we currently use in Maple for executing plans. To achieve this adapta-
tion, we need to address two related challenges: Our task-allocation mechanism
relies on the self-awareness information describing whether a robot can provide
all required robot capabilities a task requires, delivered by the semantic hard-
ware layer (cf. Fig. 2). Each robot uses this information it has available locally
for validating its fitness for participating in that task. In case of a task requiring
a swarm capability, we need to derive necessary self-awareness information on
whether the robot can execute the task according to the capability’s parametriza-
tion at run-time. A specific robot might be able to provide a swarm capability
implementing a dedicated collective behavior for some parametrization but not
for all : In case the swarm capability encapsulates the collective behavior of an
adapted particle swarm optimization (PSO) [23] algorithm like we present in [10],
the search parameter can require a wide range of different robot capabilities for
performing measurements, depending on the concrete parameter specified by the
user. The robot does not necessarily have all of these capabilities available and
thus is not capable of participating in all possible instances of the swarm capa-
bility. Thus, we need to extend our self-awareness mechanism to not only provide
information on whether a capability is available but also if it is executable, i.e.,
if the particular agent has all capabilities available that the swarm capability
addresses with its specific parameters.

We further need to enable the task-allocation mechanism to deal with agent
groups. In Maple [12], we can transform generated plans into tasks that address
specific agents at any time (e.g., directly after planning). Now, we need to per-
form this transformation with respect to the current situation at run-time before
we allocate them to actual robots. While in Maple, capabilities included in par-
tial plans directly address particular agents, this is no longer the case in Maple-
Swarm. Partial plans can contain any combination of capabilities, either address-
ing particular agents or any type of agent group. Thus, we require to adapt the
requirements for tasks included in plans concerning the set of necessary capa-
bilities a robot must provide for being able to work on that task accordingly.
We need to do this appropriately for all possible combinations of capabilities
addressing particular agents, any agent, all agents, a set of agents, or a swarm
of agents. Also when a plan includes these agent groups, we need to determine
the tasks we actually require and generate them at run-time.

Assumptions: We assume that in the simplified multipotent system, we eval-
uate our task orchestration framework with and perform task allocation in to
validate the functionality of Maple-Swarm, we already have an appropriately
configured system to abstract from physical reconfiguration needed otherwise.
If necessary, we can create such situations, e.g., with our self-organized resource
allocation mechanism we already proposed in [7].

512 O. Kosak et al.

[primitive node editor] [swarm capabilities

cv] [partial plan containing cv]

Fig. 3. The problem domain definition interface, here used for swarm capabilities.

3 Approach

In the following, we extend the possibilities available for defining the problem
domain with the concepts of configurable, virtual swarm capabilities, and agent
groups. Further, we describe how we extend our current graphical designer
interface based on HTN, illustrate the necessary adaptations to our plan-
ning algorithm, and the transformation process for generating executable tasks
from plans. Moreover, we describe how we adapt the self-awareness and self-
organization approach for task allocation accordingly. We refer to the human
creating a problem domain description in the form of Maple-Swarm hierarchical
task networks HT N with our graphical tool as the designer. Further, we call
our algorithm creating plans ρ ∈ P for the executing multipotent system as the
planner P. In our HT N and ρ resulting from executing P on the HT N and the
world state ws (holding the current variable assignments), we use the concept
of planning agents αρ ∈ Aρ to define roles of responsibility within a plan. To
robots that adopt roles in ρ and that form an ensemble E for executing that plan
at run-time, we refer to as executing agents αe ∈ Ae instead (Fig. 3).

3.1 Extending the Knowledge Base for Swarm Capabilities

In Maple, we already enlist possible (physical) robot capabilities cp ∈ Cp

including their necessary set of parameters and their return values as a triple
〈cp,parcp ,retcp〉 in a capability knowledge base. Cp are such capabilities a robot
can execute alone with physically available hardware, e.g., measure the concen-
tration of a gas of type g with a gasg sensor. For a physical capability cp

mv-pos,

Maple-Swarm: Programming Collective Behavior for Ensembles 513

Fig. 4. Addressing cv
pso ∈ Cv to a swarm

of min = 4 and max = 8 agents and cp
str ∈

Cp to any agent of this swarm.

Fig. 5. Parallely addressing cp
temp ∈ Cp

to an agent set {αρ
1, α

ρ
3, α

ρ
5} and cp

gasg
∈

Cp to αρ
3 and then cp

mv-pos ∈ Cp to all
agents

that moves a robot to a certain position, e.g., the designer can find an entry
defining the respective parameter parcp

mv-pos

:= 〈x,y,z〉 and the return value
retcp

mv-pos

:= 〈x,y,z〉 within the knowledge base. The designer can use all entries
in the capability knowledge base to include them in partial plans ρpart and
address them to planning agents αρ ∈ Aρ within the problem domain descrip-
tion in the HT N . For expressing this association between capabilities and αρ ∈
Aρ, we use operators (op in our figures). We now extend this knowledge base with
virtual swarm capabilities cv ∈ Cv ⊂ C, i.e., cp ∈ Cp ⊂ C and Cp ∩ Cv = ∅ and
Cp ∪ Cv = C by adding their respective information. This enables the designer
to define ρpart addressing any capability, no matter whether it is physical or
virtual (cf. Sect. 3.1, addressing a swarm-agent introduced in Sect. 3.2). Despite
there is a great difference in executing a cv instead of a cp because all cv ∈ Cv

can only be executed by whole collectives while all cp ∈ Cp also by particular
robots alone, we enable the designer to abstract from the details when designing
any ρpart for the problem domain. To include a virtual swarm capability, e.g., for
executing PSO algorithm to determine the position of the highest concentration
of a certain gasg (cf. Sect. 3.1), we thus include an entry for cv

pso
∈ Cv with

the parameter parcv
pso

:= gasg and the identified position retcv
pso

:= 〈x,y,z〉
(cf. Sect. 3.1). This enables the designer to use virtual capabilities similar to
physical capabilities.

3.2 Extending the Maple Domain Description Model

For creating a HT N and the partial plans ρpart it contains, the designer can
use all elements of our extended HTN planning approach from [12], i.e., com-
pound nodes (cn), primitive nodes (pn), world state modification nodes (ws),
re-planning nodes (rp), as well as our concept for looped execution of nodes.
A partial plan ρpart thus consists of nodes containing information the designer
requires the system to execute, e.g., ρpart1 := [pn1,pn2,ws,rp] ∈ HT N . In con-
trast to cn (a commonly known element of HTN [6]) we use for structuring the
HT N and for achieving situation awareness concerning the world-state during
planning (cf. Sect. 3.3), all other nodes can occur in a plan ρ and thus contain
instructions the multipotent system should execute. We now describe the new
possibilities the designer has to define instructions in these other nodes.

514 O. Kosak et al.

Planning Agent Groups and Virtual Swarm Capabilities: In Maple,
one specific plan ρ can contain one or more pn that can assign capabilities to
different planning agents αρ ∈ Aρ in multiple operators (op). Thereby, each ρ
generates requirements for executing agents αe ∈ Ae to be met at run-time.
We distinguish between multiple classes of planning agents. Particular planning
agents αρ

i ∈ Aρ
I ⊂ Aρ can be reused across the plan. To adopt the role of an αρ

i

we consequently require αe
i to provide all capabilities assigned to αρ

i within ρ in
any node. While it was only possible to require the execution of a capability from
such a specific αρ

i in Maple [12] (cf. Sect. 3.1), we now allow the designer to also
specify that a swarm of agents αρ

{min

max
}, all agents αρ

∀, any agent αρ
∃, or a set of

particular agents {αρ
1, ..., α

ρ
n} need to execute a specific capability in an operator.

This becomes necessary for swarm capabilities cv ∈ Cv encapsulating collective
behavior (cf. Sect. 3.1). We can not or even do not want to determine precisely
how many executing agents αe ∈ Ae in an ensemble should execute a swarm
capability cv ∈ Cv at run-time. An ensemble executing cv

pso
∈ Cv (cf. Sect. 3.1),

e.g., can achieve the desired emergent effect with very different swarm sizes
and thus we want to decide on the number of participating entities at run-time
rather than at design-time concerning the current situation the system finds
itself located in. Nevertheless, there may be minimum and maximum bounds
for swarm behavior to emerge at all and stay efficient [1]. For enabling the
designer to define such bounds, we introduce a swarm-agent αρ

{min

max
} ∈ Aρ

S ⊂ Aρ.
This can become handy, e.g., if at least min and at most max agents should
execute cv

pso
(cf. primitive node search in Fig. 4). An execution agent can take

the role of up to one αρ
i and additionally adopt any number of swarms-agent

roles. Thus, we can also express the concept of any-agent αρ
∃ = αρ

{1

1
} as a specific

swarm-agent. With an operator addressing a capability in ρ to the all-agent
with αρ

∀ ∈ Aρ
∀ ⊂ Aρ, the designer can achieve that all i agents in an ensemble E

= {αe
1, ..., α

e
i } created at run-time need to execute the associated capability (Aρ

I ,
Aρ

S , and Aρ
∀ are pairwise disjunct sets). This can be useful, e.g., when all agents

should gather at a dedicated position pos1 by executing cp
mv-pos after measuring

parameters of interest at different locations (cf. pn gather in Fig. 5). Similarly,
by associating a capability with an agent-set {αρ

1, ..., α
ρ
n} ⊆ Aρ

I , the designer
can require that a concretely specified set of particular agents {αe

1, ..., α
e
n} ⊆ E

executes the associated capability (cf. measuring temperature with cp
temp in pn

measure in Fig. 5). Like with associating a capability to a particular planning
agent αρ

i in an operator, the designer can reference to a single planning agent
with the any-agent αρ

∃. Both αρ
i and αρ

∃, require that one αe ∈ E executes the
capability at run-time. But instead of determining a particular role αρ

i at design-
time that needs to execute all capabilities in ρ assigned to αρ

i , using αρ
∃ allows

for any αe to take the role of αρ
∃ in addition to any role it already took. This

means that any one of {αe
1, α

e
2, α

e
3} adopting the roles {αρ

1, α
ρ
2, α

ρ
3} later on can

also execute the capabilities assigned to αρ
∃. This can also be useful when using

αρ
{min

max
} in plans, e.g., if after determining a point of interest with cv

pso
, anyone of

the agents that executed cv
pso

should stream a video from that point of interest
with cp

str (cf. pn observe in Fig. 4). While we introduce the swarm-, all-, set-,

Maple-Swarm: Programming Collective Behavior for Ensembles 515

Fig. 6. Modify var1 at planning time pws Fig. 7. Modify pos at run-time rws

and any-agent having virtual swarm capabilities in mind, a designer can also
make use of them for addressing physical capabilities Cp. To indicate to the
designer, that for executing a virtual swarm capability we require a collective
and not a particular planning agent, we restrict the possibilities the designer has
for addressing any cv ∈ Cv to the respective planning agents.

Planning Variables: We further extend the concept of variables we use for
expressing situations of the world state in our problem domain description, aim-
ing for more flexibility and expressiveness. The designer now can require that
values of variables update dynamically in partial plans not only during planning
time but also at run-time. Moreover, we extend the way how updated variable
values can be used within parameters of capabilities and in conditions, we eval-
uate during execution or planning. During planning time, we can update vari-
able values only by explicitly using planning time world-state modification nodes
(pws) in partial plans [12]. A pws node can contain one or multiple assignments
to variables where the left side is a variable and the right side is an expression
containing variables or constants, e.g., {var1 := 1}, {var2 := 2 · var1}, or {var1

:= 1, var2 := 2}. This can be useful, e.g., if we want to create plans contain-
ing iterative behavior. We can achieve such by using a variable in a capability’s
parameter and in a condition the planner P evaluates during planning at the
same time. If, e.g., we require an ensemble to repeat a primitive node containing
cp
mv-pos with parcp

mv-pos

:= 〈0, 0, var1〉 for 10 iterations, where var1 is a variable we
update during planning, we can achieve this by explicitly updating the value of
var1 in a pws node (cf. Fig. 6).

We further extend our problem domain description in a way that we can
also use the results of capability executions to update variable values during
run-time. If we want to use variables updated that way, we need to differentiate
between two cases concerning the way we want to use them in partial plans. A)
When we use variables in primitive nodes that are updated by the executing
ensemble during run-time within the same partial plan, there is no need for

516 O. Kosak et al.

Fig. 8. if/else block evaluating the result
of cp

dnf that can detect fires.
Fig. 9. while block, terminated if a fire
is detected.

making these updates explicit within world state modification nodes. Because the
ensemble executing the plan produces the new variable value itself by executing
the respective capability, it is aware of that update and thus can use it in a
following pn. In the partial plan in Fig. 4, e.g., we can use the result r1 from
executing cv

pso
in the pn search as a parameter for cp

str in the pn observe after
storing the result r1 with a rws node in the variable pos which we can use in a
subsequent rp node. B) When we use the results of any capability’s execution
contained in one specific partial plan ρpart1 in another partial plan ρpart2 , we
require to make the update to that variable explicit within a run-time world
state modification node (rws). We can use this if we do not necessarily want
the ensemble executing ρpart1 to be the same than that executing ρpart2 . If, e.g.,
in contrast to the example in Fig. 4 we want to explicitly let another ensemble
consisting of αρ

1 execute cp
str instead of the ensemble executing cv

pso
, we can

store the result of cv
pso

in an additional variable (pos) in a rws node. Now, we
can still access pos after finishing the value-producing plan during a subsequent
re-planning that is aware of the update in pn observe (cf. Fig. 7). We further
can use rws to generate even more situation awareness, e.g., decide on the next
pn according to the result of a capability’s execution with conditional successor
nodes (cf. Figs. 8 and 9). Each pn in a ρpart ∈ HT N can have any number of
conditional successors assigned with variables in addition to a default successor
(cf. planning variables in Sect. 3.2), evaluated by the ensemble at run-time.

3.3 Extending the Maple Planner

Executing the automated planner P on an HT N and its accompanying world
state ws (that holds the current values of relevant variables), i.e., applying P

(HT N , ws), results in a plan ρ and a modified version of ws. Depending on
the current situation represented in an up-to-date world state (updated by pre-
vious capability executions or world state modifications, cf. planning variables
in Sect. 3.2), this ρ then connects partial plans (using ⊕) from HT N whose
execution the designer intended to be necessary for that situation (cf. Fig. 10).

Maple-Swarm: Programming Collective Behavior for Ensembles 517

Fig. 10. Because val = 1 in the world state, P (HT N ,
ws) results in the plan ρ = [split1] ⊕ (ρpart

1 ⊕ ρpart

4 |
ρpart

2), consisting of two concurrent sequences.

By evaluating condi-
tions on variables in the
world state, P decomposes
a compound node cn into
a HT N ’, which is a sub-
component of the original
HT N . Each HT N ’ then
includes the associated par-
tial plans, i.e., when decom-
posing cn root in Fig. 10a
with the variable val = 1,
the resulting HT N ’ con-
sists of the subordinated
partial plans ρpart1 :=
[pt1, pt2, pt5, pt6], ρpart2 :=
[pt3, pt4], and a successor
ρpart4 := [pt7] (ρpart3 :=
[pt5, pt6] is not included).
If the designer intends to
have multiple concurrent
plans, the designer can add

multiple concurrent successors to a decomposition node. If a decomposition node
with concurrent successors is encountered when running P (HT N , ws), then a
split node(e.g., split1 in Fig. 10) connects the concurrent partial plans resulting
in the plan ρ = [split1] ⊕ (ρpart1 | ρpart2), where the | operator indicates that
those partial plans can be executed concurrently. Using split nodes results in a
plan consisting not only of one but multiple sequences as the output executing P,
each consisting of concatenated partial plans (cf. Fig. 10b). To make explicit how
these concurrent sequences of partial plans are concatenated, a split node speci-
fies which sequence continues the original plan (cf. double lined arrow in Fig. 10b)
and which are concurrent sequences. If the cn is decomposed and has a default
successor (e.g., ρpart4), then this successor gets concatenated with the previous
original plan, i.e., ρ = [split1] ⊕ (ρpart1 ⊕ ρpart4 | ρpart2) in Fig. 10. The operation
ρpart1 ⊕ρpart4 sets the starting node of ρpart4 as the default successor of each node
in ρpart1 which has no default successor yet. In contrast to cn and pws, the other
nodes pn, rws, and rp are effectively included in a plan ρ if they occur in a
partial plan ρpart that P selects during planning. By using a rp, the designer can
enforce the generation of new plans at run-time. rp nodes hold a reference to
another node of the HT N indicating where to start a subsequent execution of
P at run-time with updated variables in the world state (cf. planning variables
in Sect. 3.2).

518 O. Kosak et al.

3.4 Extending the Self-awareness and Market-Based
Task-Allocation

We extend our local self-awareness mechanism to maintain the functionality
of our market-based task-allocation mechanism introduced in [14]. While we
redefine the task allocation problem in this section, we do not modify the task
allocation process itself and still fall back to our constraint satisfaction and
optimization-based solution from [13] and [7]. Referring to our multipotent sys-
tems reference architecture (cf. Fig. 2), each αe ∈ Ae can only provide a (phys-
ical) capability cp and participate in a specific plan ρ requiring that capability,
i.e., adopt the role of the associated αρ included in ρ, if all necessary hardware
for cp is connected. Thus, αe can execute, e.g., the capability cp

gasg
for measuring

the concentration of gasg when it has a respective gasg connected. If this is the
case, we add this capability to the set of available capabilities Cae ⊂ C of αe.

In contrast to physical capabilities, virtual swarm capabilities cv ∈ Cv do not
require any hardware. Instead, the parametrization parcv of a specific swarm
capability referencing other capabilities cp ∈ parcv determines whether the agent
can execute cv or not and thus, if the virtual capability is available to the execut-
ing agent or not. A virtual swarm capability cv

pso
, e.g., parametrized to find the

source of a gasg (e.g., a fire) requires the physical capabilities cp
gasg

and cp
mv-vel

(for moving with a given velocity) to be executable. Thus, a cv ∈ Cv is only avail-
able to a αe, if all capabilities included in the virtual capability’s parameters are
also available to the agent, i.e., cv ∈ Cαe ⇔ ∀cp ∈ parcv | cp ∈ Cαe .

To form an ensemble E consisting of executing agents that are collectively
able to execute a certain plan ρ, we formulate a task allocation problem. We
define a task tαρ

i
for each different role of an identified planning agent αρ

i ∈ Aρ
I

that is included in a plan ρ first. Thereby, we generate a set T ρ
I := {tαρ

i
| αρ

i ∈ ρ}
of tasks we need to assign to executing agents for finally executing ρ at run-
time. Besides information on how to execute ρ cooperatively within E , which
we do not further focus on here1, we include a set Ct of required capabilities
in each task’s description. An executing agent αe can adopt the role of a αρ

i if
it has all necessary capabilities available for the respective task, i.e., we require
Ct ⊆ Cαe for the respective role’s task to achieve a valid adoption. If this is the
case, an executing agent αe can participate in the market-based task allocation
mechanism by generating a proposal proαe(t) for that task t ∈ T ρ

I , cf. Eq. (1).
All αe ∈ Ae then send their proposals to the plan’s coordinator. This coordinator
then can select one proposal for every task t ∈ T ρ

I generated from the planning
agent roles αρ

i contained in the current plan ρ to achieve a valid task assignment.
The coordinator can perform a valid task allocation ta for ρ if there exists
an injective function f mapping each task tαρ

i
generated from ρ to a distinct

executing agent αe ∈ Ae, cf. Eq. (2). This executing agent then adopts the role
of the planning agent the task was generated for.

1 We describe how we coordinate plans containing only physical capabilities cp ∈ Cp

in [12] and how we extend that process for virtual swarm capabilities cv ∈ Cv in [11].

Maple-Swarm: Programming Collective Behavior for Ensembles 519

∀t ∈ T I
ρ : proαe(t) ⇔ Ct ⊆ Cαe (1)

ta(T I
ρ) ⇔ ∃f :T I

ρ →Ae∀tj �=k∈T I
ρ

: f(tj) �= f(tk) ∧ prof(tj)(tj) ∧ prof(tk)(tk) (2)

While this adaptation of the self-awareness of executing agents in the market-
based task allocation mechanism can handle virtual swam capabilities, we need
to perform a second adaptation to also support the agent groups introduced
in Sect. 3.2. For realizing the αρ

∀, αρ
∃, and αρ

{min

max
}, we need to extend the original

requirements concerning the necessary capabilities for tasks t ∈ T ρ
I before we

start the task allocation ta. If the designer addresses capabilities with αρ
∀ in the

plan ρ which we can collect in the set of capabilities C∀, for creating a proposal
an αe needs to provide all these capabilities in addition to the capabilitites each
task t ∈ T ρ

I already requires, i.e., proαe(t) ⇔ (Ct ∪ C∀) ⊆ Cαe (cf. Eq. (1)).
Concerning adaptations of the task allocation, we fortunately can handle αρ

∃
and αρ

{min

max
} equally as we can express αρ

∃ as cρ
{1
1}. For every occurrence of αρ

∃ or
αρ

{min

max
}, we create a swarm task tsw which we collect in a set T ρ

sw. Similar to tasks
t ∈ T ρ

I we request proposals from executing agents for all tsw ∈ T ρ
sw. Further, we

extend the requirements for a valid task allocation to ta(T ρ
I) ∧ ta(T ρ

sw), where
ta(T ρ

sw) is valid if we have at last min proposals from distinct executing agents
for every task tsw ∈ T ρ

sw (cf. Eq. (2)). To select a range of min and max agents for
every tsw ∈ T ρ

sw, we can optionally accept any further proposal for the respective
task from a distinct agent until we reach the respective limit of max.

4 Proof of Concepts

We demonstrate the new possibilities of Maple-Swarm within an exemplary
HT N consisting of partial plans ρpart1 , . . . , ρpart4 and the plans resulting in dif-
ferent situations for our motivating example in Fig. 11.

In a first partial plan ρpart
1

:= [pws1,pn1] we include in HT N during the
designing process, we initialize the relevant variables in the world state (pws1

sets variables fws to Nil, initializes the area of interest A where 〈0, 0, 40, 40〉
defines x and y coordinates as well as length and width, and F to {}) and direct
the whole ensemble to the center of the forest at 〈20, 20〉 which we want to
survey in an altitude of 50 m. We achieve this by using the physical capabil-
ity cp

mv-pos with the parameter 〈20, 20, 50〉 and addressing the agent group αρ
∀

(commanded in the respective operator included in pn1). If we do not know
any fires located in the forest (i.e., pfire = Nil), we design another partial plan
ρpart
2

:= [pn2,rws2,rp2] to let a swarm of agents αρ
{10

50
} consisting of a mini-

mum of 10 and a maximum of 50 agents execute a virtual swarm capability to
equally distribute in the area of interest (A) with the potential field algorithm

520 O. Kosak et al.

Fig. 11. An example HT N consisting of situation-aware par-
tial plans for handling the fire-fighter scenario from Sect. 1
including possible plans resulting from executing P (HT N).

encapsulated in cv
pot

in pn2. We assume,
that the swarm can
autonomously adapt
the altitude for gain-
ing surveillance qual-
ity according to the
amount of swarm
members like it is pro-
posed to be achiev-
able in [20]. We can
achieve such behav-
ior with an appropri-
ate implementation of
the respective swarm
capability cv

pot
(we

explain how we can
achieve this in the
accompanying publi-
cation concerning the
execution of swarm
capabilities [11]). In
that partial plan, we
use the capability cp

dnf

for detecting new fires
(i.e., such not already
included in F) on the
ground as the param-
eter of cv

pot
to return

the position of a fire
f := 〈fx, fy, 0〉 as
soon as one member
of the swarm detects
a fire. Detecting a
fire then causes an

update of the world state in rws2 that sets the variable fws to the result of
cv
pot

, i.e., fws := f , followed rp2 referencing the only cn in the HT N (keep ara
fire-save). If the ensemble is aware of a fire, i.e., the world state holds a respec-
tive entry and fws �= nil and contains the location of the fire (cf. Fig. 11a), we
design two concurrent partial plans and ρpart

3
:= [pn3] and ρpart

4
:= [pws4-a,

pws4-b, pws1, pn1] we want the ensemble to execute in that situation. In ρpart
3

,
we address αρ

1 to execute a physical capability cp
ext for extinguishing the fire at

the identified location and αρ
∃ to should stream a video from that execution to the

user by executing a respective capability cp
str, parcp

str

:= fws which we include
in an respective operator in pn3. We can thus let the system decide with respect

Maple-Swarm: Programming Collective Behavior for Ensembles 521

to the current availability of capabilities in the ensemble whether one executing
agent αe is sufficient for executing that plan (i.e., αρ

1 = α∃) or two agents are
used instead. As parameter for both, cp

str and cp
ext, the planning process gen-

erates a copy of the concrete position of the fire, e.g., if fws := 〈23, 47, 11〉, we
use the parameter parcp

ext

:= 〈23, 47, 11〉 and parcp
str

:= 〈23, 47, 11〉. We need
that copy because in an the concurrent partial plan ρpart

4
, we add the identified

location of the fire fws to a set of known fires F in pws4-a and then reset fws to
Nil in pws4-b before an other ensemble again executes observe area in the con-
catenated partial plan ρpart

2
. Given this problem domain description, executing

P on HT N and ws thus results in a plan consisting of ρpart
1

⊕ ρpart
2

if fws = Nil
(cf. Fig. 11b) and in a plan consisting of ρpart

3
concurrent to ρpart

4
if fws �= Nil

(cf. Fig. 11c). Besides this exemplary HT N , we demonstrate the functionality of
our approach with video materials and provide our application including source
files for the presented examples from previous sections on GitHub2.

5 Related Work

Some research already exists focusing on the problem of task orchestration for
collectives, ensembles, aggregates, or swarms. A framework providing a script-
ing language for multi-vehicle networks is Dolphin [17]. With Dolphin, a human
operator is able to define tasks for particular robots and teams of robots with-
out explicit knowledge of the concrete implementation of these tasks’ execution.
While a user can define tasks for pre-formed robot teams with Dolphin, it does
not support a possibility for exploiting emergent effects of collective behavior
like, e.g., swarm algorithms can deliver. Further, Dolphin does not include the
possibility for online and situation-aware re-planning that can generate new tasks
at run-time as we support in Maple-Swarm. PaROS [3] is another multi-robot
tasks orchestration framework. It introduces primitives for collectives the user
can define tasks with and let them distribute within a swarm of UAV. Unfortu-
nately, only homogeneously equipped UAV are in the focus of PaROS and there
is no support for multi-robot systems in general. While PaROS does support
some promising abstractions for encapsulating certain swarm behavior in tasks
for groups of UAVs, it does not aim at interconnecting those tasks in complex
programs with parallel, concurrent, alternating, or iterated execution of differ-
ent swarm algorithms we aim for in Maple-Swarm. Further, there is no feature
providing situation-awareness and run-time task generation. With TeCola [16],
users can program missions for heterogeneous teams of robots on an abstract
level. By abstracting the robots and capabilities of robots as services avail-
able to the user, TeCola reduces complexity for coordinating ensembles. TeCola
eases the programming of robot teams with primitives for abstracting robots in
teams and missions but still requires fine-grained management of those during
task specification. Neither collective behavior achieved by swarm algorithms nor
situation-aware task generation is supported by TeCola. Voltron [19] provides
a task orchestration framework for robot teams. While the authors can achieve
2 Materials on https://github.com/isse-augsburg/isola2020-maple-swarm.git.

https://github.com/isse-augsburg/isola2020-maple-swarm.git

522 O. Kosak et al.

the abstraction of particular robot actions including parallel task execution, scal-
ing, and concurrent execution, by introducing so-called team-level programming,
they lose the ability for controlling and specifying tasks for particular robots.
Up to now, with Voltron a user can not specify collective behavior in the form
of swarm algorithms. While Voltron does include a mechanism to compensate
for failures at run-time, e.g., to maintain the execution of once-defined tasks, it
does not support other situation-aware modifications of missions. There is no
possibility for an autonomous generation of tasks at run-time like we provide
with re-planning in Maple-Swarm. Recapitulating the findings in the literature,
we can see that up to now there exists no task orchestration framework support-
ing all features we integrate into Maple-Swarm. While all presented approaches
deliver benefits for programming collectives, each lacks some aspects that are of
great relevance in our opinion.

6 Conclusion

Performing task orchestration for multi-robot systems is complicated, especially
for domain-only experts. In this paper, we propose our approach for easing this
by extending the task definition layer of our multi-agent script programming lan-
guage for multipotent ensembles with virtual swarm capabilities encapsulating
collective behavior. We, therefore, extended our current approach Maple con-
cerning the graphical task designer interface, the automated planner, and the
market-based task allocation mechanism including the local self-awareness func-
tionality for every robot to Maple-Swarm. Users are now able to address tasks
not only to particular robots but whole ensembles. Thereby, users can make
use of collective adaptive behavior, e.g., of swarm behavior and useful emergent
effects arising thereof. We demonstrated the new possibilities in examples as
well as in the proof of concepts for a fire-fighter case study we provide online.
Our next steps include the integration with our reference implementation for a
multipotent system that can execute swarm capabilities with mobile robots.

Acknowledgement. The authors would like to thank all reviewers for their valuable
suggestions.

References

1. Barca, J., Sekercioglu, Y.: Swarm robotics reviewed. Robotica 31, 345–359 (2013)
2. Daniel, K., Dusza, B., Lewandowski, A., Wietfelds, C.: Airshield: a system-of-

systems MUAV remote sensing architecture for disaster response. In: Proceedings
of 3rd Annual IEEE Systems Conference (SysCon) (2009)

3. Dedousis, D., Kalogeraki, V.: A framework for programming a swarm of UAVs. In:
Proceedings of the 11th Pervasive Technologies Related to Assistive Environments
Conference, pp. 5–12 (2018)

4. Duarte, M., Costa, V., Gomes, J., et al.: Evolution of collective behaviors for a real
swarm of aquatic surface robots. PLoS ONE 11(3), 1–25 (2016)

Maple-Swarm: Programming Collective Behavior for Ensembles 523

5. Erol, K., Hendler, J., Nau, D.S.: HTN planning: complexity and expressivity. AAAI
94, 1123–1128 (1994)

6. Georgievski, I., Aiello, M.: An overview of hierarchical task network planning
(2014). CoRR abs/1403.7426, http://arxiv.org/abs/1403.7426

7. Hanke, J., Kosak, O., Schiendorfer, A., Reif, W.: Self-organized resource allocation
for reconfigurable robot ensembles. In: 2018 IEEE 12th International Conference
on Self-Adaptive and Self-Organizing Systems (SASO), pp. 110–119 (2018)

8. Koenig, S.: Agent-centered search. AI Mag. 22(4), 109 (2001)
9. Kosak, O.: Facilitating planning by using self-organization. In: IEEE 2nd Inter-

national Workshops on Foundations and Applications of Self* Systems (FAS*W),
pp. 371–374 (2017)

10. Kosak, O.: Multipotent systems: a new paradigm for multi-robot applications. Org.
Comp. Doc. Dis. Coll. 10, 53 (2018). Kassel university press GmbH

11. Kosak, O., Bohn, F., Eing, L., et al.: Swarm and collective capabilities for multipo-
tent robot ensembles. In: 9th International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation (2020)

12. Kosak, O., Bohn, F., Keller, F., Ponsar, H., Reif, W.: Ensemble programming for
multipotent systems. In: 2019 IEEE 4th International Workshops on Foundations
and Applications of Self* Systems (FAS*W), pp. 104–109 (2019)

13. Kosak, O., Wanninger, C., Angerer, A., et al.: Decentralized coordination of het-
erogeneous ensembles using jadex. In: IEEE 1st International Workshops on Foun-
dations and Appl. of Self* Systems (FAS*W), pp. 271–272 (2016). https://doi.org/
10.1109/FAS-W.2016.65

14. Kosak, O., Wanninger, C., Angerer, A., et al.: Towards self-organizing swarms of
reconfigurable self-aware robots. In: IEEE International Workshops on Foundations
and Applications of Self* Systems, pp. 204–209. IEEE (2016)

15. Kosak, O., Wanninger, C., Hoffmann, A., Ponsar, H., Reif, W.: Multipotentsys-
tems: combining planning, self-organization, and reconfiguration inmodular robot
ensembles. Sensors 19(1), 17 (2018)

16. Koutsoubelias, M., Lalis, S.: Tecola: a programming framework for dynamic and
heterogeneous robotic teams. In: Proceedings of the 13th International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and Services, pp. 115–
124 (2016)

17. Lima, K., Marques, E.R., Pinto, J., Sousa, J.B.: Dolphin: a task orchestration
language for autonomous vehicle networks. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 603–610. IEEE (2018)

18. Lorenz, R.D., Turtle, E.P., Barnes, J.W., et al.: Dragonfly: a rotorcraft lander
concept for scientific exploration at titan. Johns Hopkins APL Tec. Dig. 34, 374–
387 (2018)

19. Mottola, L., Moretta, M., Whitehouse, K., Ghezzi, C.: Team-level programming of
drone sensor networks. In: Proceedings of the 12th ACM Conference on Embedded
Network Sensor Systems, pp. 177–190 (2014)

20. Villa, T.F., Gonzalez, F., Miljievic, B., Ristovski, Z.D., Morawska, L.: An overview
of small unmanned aerial vehicles for air quality measurements: present applica-
tions and future prospectives. Sensors (Basel, Switzerland) 16(7), 1072 (2016)

21. Wanninger, C., Eymüller, C., Hoffmann, A., Kosak, O., Reif, W.: Synthesizing
capabilities for collective adaptive systems from self-descriptive hardware devices
bridging the reality gap. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS,
vol. 11246, pp. 94–108. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03424-5 7

http://arxiv.org/abs/1403.7426
https://doi.org/10.1109/FAS-W.2016.65
https://doi.org/10.1109/FAS-W.2016.65
https://doi.org/10.1007/978-3-030-03424-5_7
https://doi.org/10.1007/978-3-030-03424-5_7

524 O. Kosak et al.

22. Wolf, B., Chwala, C., Fersch, B., et al.: The scalex campaign: scale-crossing land
surface and boundary layer processes in the tereno-prealpine observatory. Bull.
Am. Meteorol. Soc. 98(6), 1217–1234 (2017)

23. Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarmoptimization
algorithm and its applications. Math. Prob. Eng. (2015)

Swarm and Collective Capabilities
for Multipotent Robot Ensembles

Oliver Kosak(B) , Felix Bohn, Lennart Eing, Dennis Rall,
Constantin Wanninger , Alwin Hoffmann , and Wolfgang Reif

Institute for Software and Systems Engineering at the University of Augsburg,
Universitätsstraße 2, 86159 Augsburg, Germany

kosak@isse.de

Abstract. Swarm behavior can be very beneficial for real-world robot
applications. While analyzing the current state of research, we identi-
fied that many studied swarm algorithms foremost aim at modifying
the movement vector of the executing robot. In this paper, we demon-
strate how we encapsulate this behavior in a general pattern that robots
can execute with adjusted parameters for realizing different beneficial
swarm algorithms. We integrate the pattern as a virtual swarm capability
in our reference architecture for multipotent, reconfigurable multi-robot
ensembles and demonstrate its application in proof of concepts. We fur-
ther illustrate how we can lift the concept of virtual capabilities to also
integrate other known approaches for collective system programming as
virtual collective capabilities. As an example, we do so by integrating the
execution platform for the Protelis aggregate programming language.

Keywords: Swarm behavior · Multi-agent systems · Robot swarms ·
Multipotent systems · Collective adaptive systems · Ensembles

1 Motivation

The use of ensembles or swarms of autonomous robots, especially unmanned
aerial vehicles (UAV), is very beneficial in many situations in our daily life. This
statement is validated by the multitude of different applications for ensembles
that emerged during the past decade making use of the benefits collective behav-
ior can deliver, e.g., with emergent effects achieved by swarm behavior. Unfortu-
nately, the current trend is that every single new application also requires a new
software approach for its realization [3,8]. While these specialized approaches
show beneficial results for their dedicated applications, e.g., using collective
swarm behavior for searching [27], or distributed surveillance [15,16] among
many others, users can find it hard to adapt them and profit from previous
developments in (even only slightly) different use cases.

To come by this issue, we propose to make use of a common pattern instead
that can express the collective swarm behavior of a certain class in general. Devel-
opers of multi-robot systems can implement such pattern once at design time

Partially funded by DFG (German Research Foundation), grant number 402956354.

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 525–540, 2020.
https://doi.org/10.1007/978-3-030-61470-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_31&domain=pdf
http://orcid.org/0000-0003-0563-9797
http://orcid.org/0000-0001-8982-4740
http://orcid.org/0000-0002-5123-3918
https://doi.org/10.1007/978-3-030-61470-6_31

526 O. Kosak et al.

and parametrize it differently at run-time to achieve specific emergent effects.
We identified such a common pattern researchers frequently use for implement-
ing movement-vector based swarm behavior of different types in swarm robotic
systems. While producing a different emergent effect each, we can see that swarm
algorithms like the particle swarm optimization algorithm [27], the commonly
known flocking behavior originally analyzed in [21], shaping and formation algo-
rithms [22], and distribution algorithms [15,16] make use of the same set of
local actions: measuring one or multiple specific parameters, communicating with
neighbors in the swarm, and modifying the movement vector of the robot.

For this paper, we implement such a common pattern in our reference archi-
tecture for multipotent multi-robot ensembles [9,14]. Therefore, we introduce
the concept of configurable, virtual, collective capabilities that encapsulate com-
plex behavior of individual robots by composing other capabilities, i.e., services
a robot already provides, and produce collective behavior when executed coop-
eratively in an ensemble. For example, to realize flocking behavior following [21],
each individual robot requires to execute certain capabilities in an appropriate
combination, perform position and velocity measurements, needs to exchange
resulting values with swarm members and adapt its movement vector accord-
ingly, which then results in the collective emergent effect of the individuals form-
ing a flock as an ensemble. By executing such a virtual capability collectively in
a multi-robot system, we can realize swarm behavior and achieve useful emer-
gent effects. We further validate the concept of virtual collective capabilities by
demonstrating how other approaches for programming collective behavior can
be integrated into our multipotent systems reference architecture by the exam-
ple of Protelis [19] as a further example of a virtual collective capability. The
contributions of this paper thus are: 1) The identification and demonstration of
a common pattern for realizing swarm behavior for collective adaptive systems,
2) the extension of our current reference architecture for multipotent systems
with the concept of virtual capabilities, 3) the integration and evaluation of vir-
tual capabilities realizing collective behavior for multipotent systems with our
common swarm pattern and the external approach Protelis [19].

The remainder of the paper is structured as follows. In Sect. 2 we illustrate our
objectives and highlight the challenges we need to tackle and then propose our
solution in Sect. 3. In Sect. 4 we demonstrate the functionality of our approach
for our case study in a simulation environment and deliver proof of concepts
supported by expressive video materials. In Sect. 5 we subsume approaches for
programming collectives and analyze current implementations of swarm behavior
for swarm robotic systems. In Sect. 6 we conclude our findings and point out
possible future research challenges.

2 Challenges Resulting for Multipotent Systems

Extending our multipotent systems reference architecture [9] with virtual swarm
capabilities for exploiting useful emergent effects and to easily program collective
systems poses some challenges. In multipotent systems, robot ensembles being

Swarm and Collective Capabilities for Multipotent Robot Ensembles 527

homogeneous at design time can become heterogeneous concerning their capa-
bilities at run-time by combining physical reconfiguration on the hardware level
with self-awareness. We aim at exploiting this property for enabling robots to
implement the reference architecture to also adapt at run-time for participating
in swarm algorithms. While we already provide the possibility of extending the
range of domain-specific capabilities in multipotent systems when it is necessary,
we want to reduce the effort a system designer needs to invest when integrating
virtual capabilities. In our multipotent systems reference architecture (cf. Fig.
1), we integrate capabilities within the semantic hardware layer which is an
interface to self-descriptive hardware [25]. The semantic hardware layer recog-
nizes new hardware connected to the robot and updates the available capabilities
respectively in a self-aware manner. It provides these capabilities to its super-
ordinate agent layer that can make use of them when involved in an ensemble
(coordinated on ensemble layer) that currently executes a task introduced on
task layer.

Fig. 1. The multipotent systems reference
architecture for multi-robot ensembles, sim-
plified version adapted from [14].

We generate tasks by automated
planning on the task definition the
system’s user introduces through
an interface on task layer. Agents
α1..n ∈ A in the multipotent ensem-
ble then allocate these tasks coop-
eratively to agents capable of solv-
ing the task. These agents then
form an ensemble coordinated by
one specific agent through its ensem-
ble layer, e.g., α1 (cf. Fig. 1). The
ensemble then executes the respec-
tive task by the appropriate inter-
play of the coordinator’s ensemble
layer and the other ensemble mem-
bers’ agent layer. To enable the sys-
tem to make use of such new capa-
bilities that are coupled with physi-
cal hardware, an expert first needs to
make changes to this core element of

the system. Necessary adaptions include, e.g., extending the domain model of the
ensemble appropriately, implementing the hardware access (drivers) accordingly,
or integrating the new hardware physically into the system (hardware adapters,
wiring). While adaptations of the domain model are necessarily required when a
user introduces new hardware modules that offer new capabilities, e.g., an gasx

sensor module offering the previously unknown capability of measuring-gasx,
we aim at avoiding this for virtual capabilities. If a capability is not directly
associated with and not only available through the presence of dedicated physi-
cal hardware, e.g., for participating in swarm algorithm A instead of algorithm
B or for executing a Protelis program C instead of program D, we aim at avoid-
ing such modifications to the core system for certain classes of capabilities. Our

528 O. Kosak et al.

challenge here is to identify such classes where it is possible to separate a fixed
part from a variable part. Then, we can implement that fixed part into the sys-
tem once at design-time as a virtual capability, and integrate the variable part
dynamically at run-time as the virtual capability’s parameters. Further, we also
require to adapt our current mechanism for task execution accordingly. For real-
izing virtual capabilities aiming at collective behavior, we need to introduce the
possibility of direct communication between instances of the same type of vir-
tual capabilities which was only possible through agent layer up to now. Without
the direct exchange of relevant information between participating entities many
external programming approaches for ensembles can not function because they
rely on some form of directly accessible messaging interfaces [19,20].

3 Approach

To be available to an agent α ∈ A in the multipotent systems reference architec-
ture [14], a capability requires a set of physical hardware modules, i.e., sensors
and/or actuators (S/A). While the set of S/A does not need to be the same
for every instantiation of a capability, we require the set of S/A to have the
necessary user-specified functionality [5,25], e.g., determine the presence of an
object. For their execution, capabilities do require a set of parameters, e.g., a
direction vector for a move capability. In this paper, we refine this capability
concept (cf. light-grey part of Fig. 2) by differentiating between virtual and phys-
ical capabilities (darker part of Fig. 2). Therefore, we demonstrate how we can
combine already existing physical capabilities Cp for achieving collective behav-
ior that we can parametrize in virtual capabilities for collectives Cv. We apply
this concept in a virtual capability for movement-vector based swarm behavior
(cf. Movement-Vector Based Swarm Capability in Fig. 2) realizing the general
pattern for individual agent participation in respective swarm algorithms. We
further introduce a second virtual capability offering an interface between agents
and their capabilities in our reference architecture and other collective program-
ming approaches (cf. External Collective Programming Capability Fig. 2).

We assume that every agent can communicate with any other agent in the
ensemble E it currently participates in. This is necessary to realize certain types
of swarm behavior (e.g., particle swarm optimization PSO [27]) because we can
not assume local sensors for all spatially distributed relevant values (e.g., mea-
surements of other agents). Moreover, we can not assume to have perfect local
sensors for every robot enabling it to externally determine the state of other
robots precisely enough in a real-world setting. We achieve this by exploiting
the communication middleware of the multi-agent framework Jadex [1]. With
this framework, we can ease the conceptualization and implementation of our
distributed multipotent systems through the use of Jadex Active Components,
which are autonomously acting entities. Implementing each instance of Cp, Cv,
and A as such active components and encapsulating their functionality in ser-
vices each enables their direct interaction where this is necessary. We further
assume that no outages (e.g., communication, sensor failures, broken robots)
occur.

Swarm and Collective Capabilities for Multipotent Robot Ensembles 529

Fig. 2. General concept model for virtual capabilities. Instead of direct access to S/A,
we provide access indirectly through associated physical capabilities.

3.1 Static and Dynamic Model of Virtual Capabilities

We differentiate between virtual capabilities Cv and physical capabilities Cp

which both refine the previous concept of a capability, i.e., a service a robot pro-
vides for execution. In comparison to physical capabilities, virtual capabilities are
not directly associated with S/A. Instead, for executing a virtual capability we
require it to invoke associated other (physical) capabilities. Thus, virtual capabil-
ities do only have indirect access to hardware but can be used to construct more
complex behavior. Consequently, the set of parameters for a virtual capability
needs to include additional information, e.g., the set of other capabilities it needs
for its execution. This has also consequences for our currently established self-
awareness [13], and self-organization mechanisms [12] we use to execute plans in
multipotent systems. Because the execution of a virtual capability might require
the cooperation within the ensemble E ⊆ A executing it, we allow for every αi

executing a specific cv ∈ Cv to directly exchange information with other αj �=i

within the same ensemble that are executing the same instance of cv. Further,
communication is an urgent requirement for collective programming approaches
we want to enable as external capabilities. We therefore separate each cv ∈ Cv

in an active part cv:act and a passive part cv:pas. While the active part differs
for all cv ∈ Cv, we can define the passive part as a procedure receive(cv,Vαi

)
used for receiving relevant data Vαi

from another agent αi executing the same
virtual capability cv in general for all cv ∈ Cv. receive updates the values for
these other agents stored in a shared map M

E := 〈α ∈ E〉, 〈Mα〉 holding the
most recent values Mα received from all α ∈ E . To enable the exchange of data,
the active and passive part of each cv ∈ Cv share this map. This means, when
receiving Vαi�=j

in cv:pas, an agent αj can update the entries referenced in Vαi

concerning αi in M
E and subsequently access the data in cv:act. In our code

snippets, we indicate that αj executing cv sends Vαj
to a specific other agent

αi executing the same instance of cv with αi.send(cv,Vαj
). Besides shared data

and data received from other agents, in our algorithms we indicate local input
with name := 〈input1, ..., inputn〉.

3.2 Termination and Results of Virtual Capability Executions

Like for physical capabilities, we can define different termination types for vir-
tual capabilities. Physical capabilities can terminate internally on their own or
require external events for termination. A robot executing, e.g., its physical
capability for moving to a certain position cp

mv pos can rely on the automatic

530 O. Kosak et al.

Algorithm 1. cv:fin-coord := 〈f:aggrcv , f:termcv 〉
1: Raggr ← f:aggrcv (ME) # aggregates the ensemble’s current measurements
2: term ← f:termcv (Raggr) # decide for termination using the aggregated result
3: if term then
4: store(Raggr) # if terminating, store the result for external evaluation
5: for αi ∈ E do
6: αi.send(cv,term) # broadcast the termination decision in the ensemble

termination of cp
mv pos when it reaches the position defined in the parameters.

Instead, a physical capability cp
mv vec that moves a robot in a direction using a

speed vector does not terminate itself as the movement does not have a natural
end and thus needs to be terminated externally. Likewise, virtual capabilities
can terminate their execution internally or require external termination. This is
especially relevant for all virtual capabilities that implement collective behavior.
We can define termination criteria with appropriate parameters for some swarm
behavior, e.g., executing a virtual capability implementing a PSO can terminate
itself when all agents in the swarm gather within a certain distance [27]. For
other swarm behavior, e.g., achieving the equal distribution of robots in a given
area with the triangle algorithm [15], we do not want to define such criteria (e.g.,
for achieving the continuous surveillance of that area) or even can not do it at
all (e.g., for steering a swarm in one direction with guided flocking [2]) and thus
rely on an external event for termination. Besides defining when to terminate a
cv implementing swarm behavior or other collective behavior, we also require to
quantify the emergent effect of executing cv and store it for up-following evalua-
tion like we do with the results originating from physical capability executions.
For PSO, e.g., we finally want to determine the position the highest concentra-
tion of a parameter an ensemble was searching for was measured. In this case,
we can calculate the position of relevance by calculating the ensemble’s center of
gravity when the geometrical diameter of the swarm, i.e., the euclidean distance
between the αi, αj ∈ E having the greatest distance between each other, gets
lower than a user-defined threshold. For such calculations and to determine ter-
mination for virtual capabilities therewith, we extend the role of the ensemble
coordinator that is responsible to coordinate a plan’s execution [10]. Concerning
the results of (physical) capability executions, the coordinator only acts as a
pass-through station for results originating from any capability execution in the
ensemble. The coordinator stores each result in a distributed storage and eval-
uates data when necessary, e.g., for deciding on the current plan’s progress or
during replanning on the task layer (cf. Fig. 1). To determine the termination of
a virtual capabilities execution, we now enable the coordinator to also aggregate,
analyze and post-process the intermediate results from virtual capabilities before
storing them by using capability specific procedure cv:fin-coord (cf. Algorithm 1).
Because we guarantee with an additional constraint in our constraint-based task
allocation mechanism [6] that the agent adopting the coordinator role always
also participates in the execution of the collective behavior, i.e., executes the

Swarm and Collective Capabilities for Multipotent Robot Ensembles 531

Algorithm 2. cv:act
sw

:= 〈Cp
sw,calcsw, Esw〉

1: repeat
2: for each ci ∈ Cp

sw parallel do
3: M

self[ci] ← exec(ci) # execute all relevant capabilities and store the results
4: M

E [self] ← M
self # store local results in the map for all ensemble results

5: for each αi ∈ Esw parallel do
6: αi.send(cvsw,Mself) # distribute stored results in the ensemble
7: parc

p
mv vec

← calcsw(ME) # calculate the new movement vector
8: exec(cpmv vec) # update the current movement vector
9: until term # decide on termination using the received value

respective cv:act, it can also receive values other ensemble members send and
thus has access to M

E . By using an aggregation function f:aggrcv taking M
E

as input parameter that is specific for each cv, we can quantify the emergent
effect every time the entries in M

E change (L. 1 in Algorithm 1). If the ter-
mination criteria (f:termcv in Algorithm 1) holds for the current result (L. 2
in Algorithm 1), the coordinator can store that result in the distributed stor-
age (L. 4 in Algorithm 1) and distribute the current termination state term

within the ensemble (L. 6 in Algorithm 1). Each agent can receive this signal
with a respective service cv:fin-part to receive the coordinator’s termination sig-
nal term with receive(cv,term). The service cv:fin-part shares term with the
active part cv:act of cv in term

E , which we use to stop the execution of cv. For
cv ∈ Cv that can terminate externally only, we can thus enable the user to also
have the possibility to terminate the execution of cv.

3.3 A Capability for Movement-Vector Based Swarm Algorithms

For achieving emergent effects generated by movement-vector based swarm
behavior, we introduce a Movement-Vector Based Swarm Capability cv

sw
with its

according parameters parcv
sw

(cf. Fig. 2). This virtual capability realizes swarm
behavior from the class of movement-vector-based swarm algorithms such as the
PSO [7,27], flocking [21], or the triangle formation [18] among others, that can
be of use for multipotent systems. We illustrate the respective active part cv:act

sw

of cv
sw

in Algorithm 2 that executes a general pattern capable of producing the
mentioned swarm behaviors. In a first step, each agent executing cv

sw
measures

and remembers relevant values according to the set of physical parameters Cp
sw

included in parcv
sw

in parallel (cf. L. 3 in Algorithm2). After finishing the exe-
cution of all capabilities in case of self-terminating capabilities or after starting
to execute non-self-terminating capabilities respectively, agents executing cv

sw
in

parallel exchange these local measurements M
self with all agents in the current

ensemble Esw that execute the same instance of cv
sw

(cf. L. 6 in Algorithm 2).
Each agent α ∈ Esw remembers these measurements in the virtual capability’s
locally shared map M

E that holds the most recent values for all neighbors includ-
ing itself (cf. L. 4 in Algorithm2). By using this aggregated measurements M

E ,
each agent then is able to determine the necessary adaption to its current move-

532 O. Kosak et al.

Algorithm 3. cv
ext

:= 〈progext,pcext, Eext〉
1: repeat
2: M

E
snap ← M

E # create a snapshot of the current ensemble values
3: 〈Cp

ext,termext, pcext, Vext〉 ← prog(pcext,M
E
snap) #execute the program

4: for each ci ∈ Cp
ext parallel do

5: M
self[ci] ← exec(ci) #execute capabilities required by the program

6: M
E [self] ← M

self #store results for next iteration of the program
7: for each αi ∈ Eext parallel do
8: αi.send(cvext, Vext) #distribute relevant data of the program
9: until termext ∨ term #check termination set by the program or coordinator

ment vector (cf. L. 8 in Algorithm 2) for achieving the intended specific swarm
behavior encapsulated in calcsw (cf. L. 7 in Algorithm 2). As all agents in Esw

repeatedly execute this behavior until a specific termination criteria term holds
(passed over to the passive part cv:pas of cv

sw
from the coordinator, cf. Sect. 3.2),

they achieve the specific swarm algorithm’s emergent effect collectively (cf. L. 9
in Algorithm 2). By adjusting calcsw in particular, we can exploit this generally
implemented form of a virtual capability to execute different swarm algorithms
that would require an individual implementation each otherwise.

3.4 An Interface for External Collective Programming Languages

During the design of multipotent systems, we can not foresee all necessary func-
tionality in specific use cases a user of the system might have in mind. Therefore,
we offer the possibility of external programming to the system’s user. We do this
by introducing virtual capabilities cv

ext
∈ Cv for external collective programming

approaches which become a fixed part of the multipotent system and represent an
interface to the run-time environment of a specific programming language each.
In contrast to cv

sw
, where we need to define the actual calculation calcsw within

the host system and its respective programming language (i.e., that the multipo-
tent system reference architecture from Sect. 2 is implemented with), we are not
restricted to that when using a specific cv

ext
. Instead, we encapsulate necessary

information in a program written in the respective external programming language
and only need to define the interface for the communication of that programming
language’s execution environment and the multipotent system’s implementation.
These external programs then define, how values we generate within the multipo-
tent system are used and transformed into instructions for the multipotent system.
Like for any cv ∈ Cv, we enable each cv

ext
to execute other already existing capabil-

ities cp ∈ Cp of the multipotent system, i.e., choose respective parameters and read
results from those capabilities’ execution that we store in ME through the defined
interface (L. 5 in Algorithm 3). This way, a user can program new complex behav-
ior progext in the external programming language while also using already avail-
able functionality provided by Cp within our system. The programmer only needs
to know the interface to relevant cp ∈ Cp and does not require further knowledge
of the underlying multipotent system, e.g., if the progext requires the change the

Swarm and Collective Capabilities for Multipotent Robot Ensembles 533

current movement vector of the executing robot. For its execution, the respective
cv
ext

then uses progext as an additional parameter (cf. Algorithm3). This way,
and to allow for changing the behavior of cv

ext
, the programmer can dynamically

exchange the external program at runtime. With the start of the capability exe-
cution within the active part of each cv:act

ext
, we run progext from its entry point

by handing over a program pointer pcext and a snapshot of the current state of
M

E (initially empty, L. 2 and 3 in Algorithm3). When the execution of progext

stops, we require it to return a data vector 〈Cp
ext,termext,pcext,Vext〉 encapsu-

lating instructions from the external program to the multipotent system. The first
entry indicates whether the external program’s control flow requires that physi-
cal capabilities Cp

ext get executed in the following (L. 4 and 5 in Algorithm3).
The second entry determines, whether progext already reached its termination
criteria termext and the execution of cv

ext
can be finished internally (L. 9 in Algo-

rithm3). The third entry determines, what the next program counter pcext is if
termext does not hold. Because information on which values need to be within
the ensemble Eext is encapsulated in progext but the distribution itself is per-
formed by the multipotent system’s agent communication interface, in a fourth
entry Vext determines those values (L. 7 and 8 in Algorithm 3). While termext

does not hold and no termination signal is received from the coordinator of Eext in
cv:fin-part (cf. Sect. 3.2), the execution of cv

ext
continues to execute progext with

the current pcext in the following iteration. Thereby, it uses an updated version
of ME (L. 2 in Algorithm3) containing latest local values (L. 6 in Algorithm3)
as well as such received in cv:pas

ext meanwhile (Sect. 3.1). Each progext adhering
to this convention thus can access the set of locally available physical capabilities
and use the communication middleware of our multipotent system in the current
ensemble. This creates a high degree of flexibility in the way of programming with
our approach.

4 Proof of Concepts

To demonstrate the flexibility of our approach we give proof of concepts in the
following. We, therefore, implemented a virtual capability for movement-vector
based swarm algorithms cv

sw
and evaluated it with different parameters to achieve

different emergent effects. We demonstrate the concept of a virtual capability
for the movement-vector based swarm behavior with video materials1 isolated
in a NetLogo simulation2 and integrated with our multipotent systems reference
implementation. Further, we demonstrate the feasibility of integrating an exter-
nal programming language for collectives as a virtual capability by example.

4.1 Executing Movement-Vector Based Swarm Algorithms

We validate the concept of the virtual capability for movement-vector based
swarm algorithms cv

sw
we introduced in Sect. 3.3 using different parameters for

1 https://github.com/isse-augsburg/isola2020-swarm-capabilities.git.
2 NetLogo download on https://ccl.northwestern.edu/netlogo/download.shtml.

https://github.com/isse-augsburg/isola2020-swarm-capabilities.git
https://ccl.northwestern.edu/netlogo/download.shtml

534 O. Kosak et al.

(a) Gathering (b) Guided Boiding (c) PSO (d) Triangle

Fig. 3. Screen shots of a simulation environment showing the use of a swarm capability
for different parameters resulting in respective emergent effects (top down perspective).
See footnotes 1, 2 for video material and a respective NetLogo simulation source file.

realizing different emergent effects. In a simplified major catastrophe scenario, a
firefighter might want to a) gather its ensemble of mobile robots, b) move them
collectively to the area where, e.g., a gas accident happened, c) search for the
source of the gas leak, and d) survey the area close to the leak (video materials
on our GitHub). We can instruct our system, e.g., with our task-orchestration
approach for ensembles Maple-Swarm [11]. To handle this scenario we can use
the cv

sw
with different sets of parameters in steps a)-d) each (cf. Figs. 3a to

3d), illustrating the flexibility of our concept of cv
sw

including its termination
functionality. For all instances of cv

sw
we execute to realizing the desired emer-

gent effect for achieving a)-d), we assume the following: A sufficiently equipped
ensemble Esw is available concerning the set of physical capabilities Cp

sw necessary
for that concrete instantiation which we can achieve, e.g., with our self-aware
and market-based task allocation mechanism [13] in combination with our self-
organized resource allocation mechanism [6]. For each result of calc, we nor-
malize (norm) the resulting distance (dist) vector originating from the robots
current position posα and scale it with the robots maximum velocity with ν. We
assume a working collision avoidance system provided by the robotics controller.

a) For gathering the ensemble, we can execute cv
sw

with Cp
sw := {cp

pos},
where cp

pos measures the executing robot’s current position (cf. Fig. 3a). Each
robot can terminate the execution of cv

sw
locally when the diameter diam() of

the swarm is below a user-defined threshold x, calculated with the measure-
ments available in M

E , i.e., termsw := diam(ME [∗][cp
pos]) ≤ x. We calculate

the desired moving vector using the ensemble’s center of gravity grav(), i.e.,
calc() := ν ·norm(dist(posα,grav(ME [∗][cp

pos]))). Both, diam() and grav()

only require information concerning the position of each robot in Esw, thus results
from executing cp

pos stored in M
E are sufficient therefore.

b) For controlling the ensemble to a goal location with an adapted flock-
ing approach following the idea of boiding in [21], we execute cv

sw
with Cp

sw :=
{cp

pos, c
p
vel}, where cp

pos measures the executing robot’s current position and cp
vel

its current velocity (cf. Fig. 3b). We can calculate the desired moving vector by
appropriately weighting the three urges for the cohesion coh of the ensemble,

Swarm and Collective Capabilities for Multipotent Robot Ensembles 535

the separation sep from the closest neighbor in the ensembles, and the align-
ment ali of the individual robot’s moving direction with that of the ensemble
known from [21]: calc := ω1 · sep(ME [∗][cp

pos]) + ω2 · coh(ME [∗][cp
pos]) + ω3 ·

ali(ME [∗][cp
vel]). To guide the ensemble to the goal location we exploit how

ensemble members evaluate M
E for adapting their movement vector (L. 7 in

Algorithm 2) by adding an additional entry for a non-ensemble member (i.e., a
dedicated leader robot or any other position-aware device) that also measure-
ments of Cp

sw frequently. Because all ensemble members use the complete map
M

E , the emergent effect is what we aim for: guiding the collective to a goal
location the non-ensemble robot is moving to. Robots can not terminate the
execution of cv

sw
locally in this case because they have no information on the

goal location and thus rely on an external termination signal term from their
coordinator (who possibly requires to receive it from the user itself).

c) For searching for the highest concentration of a certain parameter, we
execute cv

sw
with an adapted version of the particle swarm optimization algorithm

(PSO) [27] (cf. Fig. 3c). Obviously, we require to contain the respective capability
for measuring the parameter of interest cp

par in Cp
sw, in addition to cp

pos and cp
vel,

i.e., Cp
sw := {cp

par, c
p
pos, c

p
vel}. To determine the movement vector of robot α,

we define calc := ω1 · dist(posα,max(max(ME [self][cp
par],maxself))) + ω2 ·

dist(posα,max(max(ME [*][cp
par],maxE))+ω3 ·dist(posα,rand(x, y, z)) as the

weighted sum of distance vectors pointing from the robot α’s current position
αpos to the position with the iteratively updated highest measurement of the
parameter of interest from the robot itself maxself, the whole ensemble max

E ,
and a random direction rand(x, y, z) included for exploration. Similar to the
execution of cv

sw
for gathering in a), we can let the agents in the ensemble decide

on the termination on cv
sw

by determining whether the diameter of the ensemble
is below a threshold x, i.e., termsw := diam(ME [∗][cp

pos]) ≤ x.
d) For realizing the distributed surveillance of an area of interests, we adapted

the triangle formation algorithm from [15] to also work within a 3D-environment
(cf. Fig. 3d). With this algorithm, we can exploit the emergent effect of a swarm
distributing in an area holding a predefined distance s to each other at a given
height h. To produce the desired emergent effect, a robot α requires position mea-
surements of its two closest neighbors only, i.e., Cp

sw := {cp
pos}. To determine the

required movement vector, we first need to determine the two closest neighbors
α1,2 of α in the ensemble, i.e., ¬∃αi ∈ E : dist(α, αi) < dist(α, α1) ∧ ¬∃αi ∈
E \ α1 : dist(α, αi) < dist(α, α2). We then calculate the center of gravity
grav(α1, α2) between α1 and α2 and determine the distance vector pointing
from α to the closest intersection point of the plane at height h (defined parallel
to ground level) and the circle around the center of gravity with radius

√
3 · s

2
(being perpendicular to the straight defined by α1 and α2) as the goal position of
α. While we can define a condition for termination of the execution of cv

sw
, e.g.,

in case that all distances between closest neighbors only vary marginally for all
robots in the ensemble, we do not want to specify such in the case of continuous
surveillance. Like in b), we require an external termination term signal from
the user or another external entity.

536 O. Kosak et al.

1 module count neighbors
2 let num of neighbors = sumHood(nbr(1))
3 num of neighbors

1 module term after iterations
2 def iterations () = rep(x <− 0) { x + 1 }
3 def term after(x) =
4 if (iterations () > x) { self .term() }
5 else { iterations () }
6 terminate after(10)

1 module measure temp
2 import ParamFactory.get;
3 def measure temp() {
4 let cap type = self .getType(”temp”)
5 let measurement param = get(cap type)
6 let param = measurement param.get()
7 param.set(”measureOnce”, true)
8 let temp = self.request(param, cap type)
9 temp

10 }
11 measure temp()

Fig. 4. Minimal Protelis programs demonstrating the feasibility of the integration:
Communication between agents (top left), enforcing the self-termination from the host
system (bottom right), and accessing to capabilities of the host system (right).

4.2 Protelis as an Example for an External Virtual Capability

We demonstrate the feasibility of integrating an external programming lan-
guage into the multipotent systems reference architecture by example. There-
fore, we instantiate the concept of an external collective programming capabil-
ity with cv

prot
providing an interface for the Protelis Aggregate Programming

approach [19]. To validate the concepts we introduced in Sect. 3.4, we give a
proof of concepts concerning the relevant parts executing an external capability.
These concepts are the communication between participating agents, command-
ing the execution and making use of the results of capabilities running on the
host system, and ensuring self-termination of the external capability, if neces-
sary. According to [19], for communication between entities, Protelis requires
a network manager. With cv

prot
we implement such (L. 7 in Algorithm 3). We

can validate its functionality with the minimal example of a Protelis program
we give in Fig. 4 (top left) that counts all members of the ensemble using the
nbr construct in L. 2 in Fig. 4 (top left). The example showcases the ability of
communication between agents executing cv

prot
. In the Protelis program in Fig. 4

(right), we demonstrate how external capabilities can define required access to
physical capabilities of the multipotent system host system (implemented in
JAVA) using the self construct of Protelis for measuring temperature (L. 11 in
Fig. 4 - right). In L. 4–7 of Fig. 4 (right), we access the knowledge base of our
architecture by importing the ParamFactory (L. 2 in Fig. 4 - right). We use this
knowledge base for loading the correct format of the necessary parameters for
the measure temperature capability. For achieving this, we make use of the JAVA
Reflection API. With self.request (L. 8 in Fig. 4 - right), we define the request
the external capability has concerning the execution of physical capabilities (L.
3 in Algorithm 3) whose result we return in L. 9 in Fig. 4 (right) when it is avail-
able. To avoid the blocking of the Protelis program’s execution when it requests
a capability execution, we implement the data interface to our multipotent sys-
tem as a reload cache. To validate the correct program flow and validate correct
self-termination of cv

prot
, in the Protelis program we give in Fig. 4 (top left) we

let each member of the ensemble iterate a counter (L. 6 in Fig. 4 - bottom left).
Because there is no access to physical capabilities included in the program, the

Swarm and Collective Capabilities for Multipotent Robot Ensembles 537

execution of each instance terminates after 10 iterations and accordingly noti-
fies the encapsulating external capability cv

prot
with termext evaluating true

when it finally reaches self.terminate() in L. 4 in Fig. 4 (bottom left). Thus, we
demonstrate the feasibility of integrating an interface between Protelis and our
multipotent systems reference architecture with a specific virtual capability as
a proof of concepts for our concept of from Sect. 3.4. We provide video mate-
rial for demonstration purposes on GitHub. The integration of cv

prot
currently is

limited to only execute one Protelis program per agent in parallel and relies on
capabilities provided by the host system to terminate on their own (cf. Sect. 3.2).

5 Related Work

The literature on swarm behavior, swarm algorithms, or swarm intelligence is
manifold. When swarm behavior should be exploited in a real-world application,
there are two common directions researchers currently follow. The first direction
is that of focusing on one specific behavior found in nature that gets analyzed and
migrated to technical systems. Examples for that direction are manifold, thus we
only can give an excerpt of research relevant for this paper. To achieve a collective
transport of an object, the authors in [4,17] developed a specialized controller by
using an evolutionary algorithm for mobile ground robots. While they achieve
the desired effect, suffer from the evolutionary algorithms inherent properties of
high specialization and the lack of generality: The generated controller can not
be used in any other use case. To achieve a close-to equal distribution of swarm
entities in a given area, e.g., for distributed surveillance, the authors in [16] adapt
a potential-field based deployment algorithm. Unfortunately, the algorithm thus
can only be used for exactly that use case. While the authors of [15] propose that
they can adapt their swarm approach for distributed surveillance to also achieve
flocking and obstacle avoidance they, unfortunately, do not further investigate
in this direction. In our opinion, this is a step in the right direction to generate
a general pattern for achieving swarm behavior which we try to make with our
approach. In [23] the authors adapt the particle swarm optimization algorithm
(PSO) [27] for the use of UAV in disaster scenarios to explore an area and detect
victims. While the authors can adapt parameters to achieve different goals, the
approach is still limited to that narrowly defined area and can not easily be
extended. With an adapted flocking algorithm based on the approach of [21],
the authors in [24] demonstrate how UAVs can achieve swarm behavior that is
very close to that of natural swarms. Unfortunately, the implementation is very
specific and can solely achieve this specific swarm behavior.

The second direction researchers follow is that of abstracting from spe-
cific applications and use cases and developing a general framework for col-
lective behavior that can be programmed or parametrized in different ways.
There already exist interesting approaches for programming collective behavior
addressed in the ASCENS project [26]. Protelis [19] is one approach we also
categorize in this direction. The authors center it around the idea of abstracting
entities in a collective system as a point in a high dimensional vector field. Pro-
gramming of the collective happens by performing operations on that field. By

538 O. Kosak et al.

using implicit communication between entities, the programmer can achieve that
changes performed in these fields are distributed within the collective. While a
user can exploit this behavior to implement complex collective on an abstract
level, it is not easy to achieve swarm behavior for complex mobile robot tasks
solely with Protelis. Its lack of general hardware integration and a general task
concept necessary for goal-oriented robot collaboration requires Protelis to be
integrated into a further framework as we perform it in this paper. Another
programming language aiming at collective systems is Buzz [20]. In comparison
to Protelis, the authors of Buzz directly aim at integrating their programming
language within robot operating systems. They provide swarm primitives for
achieving a certain desired collective behavior each. Unfortunately, Buzz also
lacks a concept for goal-oriented task orchestration. Further and like for using
Protelis, a user of Buzz currently requires a system specifically designed for the
respective programming language. With our approach, we can overcome this by
providing the possibility to use programs written with any of the two languages
in an integrated task orchestration framework. Further, we also try to find some
general abstraction from specific applications and use cases in our approach.
Moreover, we can use it to analyze and implement specific swarm behavior.
Thus, we try to close the gap between the two methods currently existing in the
literature.

6 Conclusion

The research community already exploits the positive properties of swarm behav-
ior like robustness and scalability within many different approaches for control-
ling the behavior of collective adaptive systems. In this paper, we demonstrated
how we can subsume many of these approaches by extracting their general swarm
behavior in a virtual capability for movement-vector based swarm algorithms.
We integrated this virtual capability into our reference architecture for multi-
potent systems. We further demonstrate how we can use instances of virtual
capabilities to provide adapters to other programming approaches for collective
systems on the example of Protelis [19]. Thus, virtual capabilities, in general,
can compose existent capabilities of robots, i.e., complexly integrate already
provided robot services, which we can exploit to create collective behavior in
ensembles. In future work, we will elaborate on if and how we can drop our
current assumption of having a steady communication link between ensemble
members. This will help us to better deal with failures or complete break down
of robots.

References

1. Braubach, L., Pokahr, A.: Developing distributed systems with active components
and jadex. Scalable Comput. Pract. Experience 13(2), 100–120 (2012)

Swarm and Collective Capabilities for Multipotent Robot Ensembles 539

2. Celikkanat, H., Turgut, A.E., Sahin, E.: Guiding a robot flock via informed robots.
In: Asama, H., Kurokawa, H., Ota, J., Sekiyama, K. (eds.) Distributed Autonomous
Robotic Systems, pp. 215–225. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00644-9 19

3. Dedousis, D., Kalogeraki, V.: A framework for programming a swarm of UAVs. In:
Proceedings of the 11th Pervasive Technologies Related to Assistive Environment
Conference, pp. 5–12 (2018)

4. Dorigo, M., et al.: The SWARM-BOTS project. In: Şahin, E., Spears, W.M. (eds.)
SR 2004. LNCS, vol. 3342, pp. 31–44. Springer, Heidelberg (2005). https://doi.
org/10.1007/978-3-540-30552-1 4

5. Eymüller, C., Wanninger, C., Hoffmann, A., Reif, W.: Semantic plug and play -
self-descriptive modular hardware for robotic applications. Int. J. Semant. Comput.
(IJSC) 12(04), 559–577 (2018)

6. Hanke, J., Kosak, O., Schiendorfer, A., Reif, W.: Self-organized resource allocation
for reconfigurable robot ensembles. In: 2018 IEEE 12th International Conference
on Self-Adaptive and Self-Organizing Systems (SASO), pp. 110–119 (2018)

7. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of
ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948.
IEEE (1995)

8. Kosak, O.: Facilitating planning by using self-organization. In: 2017 IEEE
2nd International Workshops on Foundations and Applictions of Self* Systems
(FAS*W), pp. 371–374 (2017)

9. Kosak, O.: Multipotent systems: a new paradigm for multi-robot applications.
In: Organic Computing: Doctoral Dissertation Colloquium, vol. 10, p. 53. kassel
University Press GmbH (2018)

10. Kosak, O., Bohn, F., Keller, F., Ponsar, H., Reif, W.: Ensemble programming for
multipotent systems. In: 2019 IEEE 4th International Workshops on Foundations
and Applications of Self* Systems (FAS*W), pp. 104–109 (2019)

11. Kosak, O., Huhn, L., Bohn, F., et al.: Maple-swarm: programming collective behav-
ior for ensembles by extending HTN-planning. In: 9th International Symposium
on Leveraging Application of Formal Methods, Verification and Validation (2020)

12. Kosak, O., Wanninger, C., Angerer, A., et al.: Decentralized coordination of het-
erogeneous ensembles using jadex. In: IEEE 1st International Workshops on Foun-
dations and Application of Self* Systems (FAS*W), pp. 271–272 (2016)

13. Kosak, O., Wanninger, C., Angerer, A., et al.: Towards self-organizing swarms of
reconfigurable self-aware robots. In: IEEE International Workshops on Foundations
and Applications of Self* Systems, pp. 204–209. IEEE (2016)

14. Kosak, O., Wanninger, C., Hoffmann, A., Ponsar, H., Reif, W.: Multipotent sys-
tems: combining planning, self-organization, and reconfiguration in modular robot
ensembles. Sensors 19(1), 17 (2018)

15. Li, X., Ercan, M.F., Fung, Y.F.: A triangular formation strategy for collective
behaviors of robot swarm. In: Gervasi, O., Taniar, D., Murgante, B., Laganà,
A., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2009. LNCS, vol. 5592, pp. 897–911.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02454-2 70

16. Ma, M., Yang, Y.: Adaptive triangular deployment algorithm for unattended
mobile sensor networks. IEEE Trans. Comput. 56(7), 847–946 (2007)

17. Mondada, F., Gambardella, L.M., Floreano, D., et al.: The cooperation of swarm-
bots: physical interactions in collective robotics. IEEE Rob. Autom. Mag. 12(2),
21–28 (2005)

https://doi.org/10.1007/978-3-642-00644-9_19
https://doi.org/10.1007/978-3-642-00644-9_19
https://doi.org/10.1007/978-3-540-30552-1_4
https://doi.org/10.1007/978-3-540-30552-1_4
https://doi.org/10.1007/978-3-642-02454-2_70

540 O. Kosak et al.

18. Nishimura, Y., Lee, G., Chong, N.: Adaptive lattice deployment of robot swarms
based on local triangular interactions. In: 2012 9th International Conference on
Ubiquitous Robots and Ambient Intelligence, pp. 279–284 (2012)

19. Pianini, D., Viroli, M., Beal, J.: Protelis: practical aggregate programming. In:
Proceedings of the 30th Annual ACM Symposium on Applied Computing, pp.
1846–1853. ACM (2015)

20. Pinciroli, C., Beltrame, G.: Buzz: an extensible programming language for hetero-
geneous swarm robotics. In: 2016 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 3794–3800 (2016)

21. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM
SIGGRAPH Comput. Graph. 21(4), 25–34 (1987)

22. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a
thousand-robot swarm. Science 345(6198), 795–799 (2014)

23. Sánchez-Garćıa, J., Reina, D., Toral, S.: A distributed PSO-based exploration algo-
rithm for a UAV network assisting a disaster scenario. Fut. Gener. Comput. Syst.
90, 129–148 (2019)

24. Vásárhelyi, G., Virágh, C., Somorjai, G., et al.: Outdoor flocking and formation
flight with autonomous aerial robots. In: 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 3866–3873 (2014)

25. Wanninger, C., Eymüller, C., Hoffmann, A., Kosak, O., Reif, W.: Synthesizing
capabilities for collective adaptive systems from self-descriptive hardware devices
bridging the reality gap. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS,
vol. 11246, pp. 94–108. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03424-5 7

26. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-16310-9

27. Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarm optimiza-
tion algorithm and its applications. Math. Prob. Eng. 2015 (2015)

https://doi.org/10.1007/978-3-030-03424-5_7
https://doi.org/10.1007/978-3-030-03424-5_7
https://doi.org/10.1007/978-3-319-16310-9
https://doi.org/10.1007/978-3-319-16310-9

Author Index

Abdi, Mehrdad II-9
Aharon, Khen II-457
Aho, Pekka I-543
Ahrendt, Wolfgang III-9
Aichernig, Bernhard K. I-426
Alt, Leonardo III-178
Amendola, Arturo III-240
Ashok, Pranav I-331
Audrito, Giorgio II-344

Bacci, Giorgio I-275
Bacci, Giovanni I-275
Bacher, Isabelle II-55
Baier, Christel I-240
Baranov, Eduard I-404
Barbanera, Franco I-39
Bartoletti, Massimo III-25
Basile, Davide I-368, III-467
Becchi, Anna III-240
Beckert, Bernhard I-60, III-43
Bensalem, Saddek II-457
Bernardo, Bruno III-60
Bettini, Lorenzo II-361
Beyer, Dirk I-143, I-168, I-449
Blasco, Ernesto Calás I-543
Bloem, Roderick I-290
Bohn, Felix II-507, II-525
Boigues, Ismael Torres I-543
Bon, Philippe III-404
Borgarelli, Andrea I-558
Bourr, Khalid II-361
Braithwaite, Sean I-471
Brünjes, Lars III-73
Bubel, Richard III-9
Buchman, Ethan I-471
Bureš, Tomáš II-295, II-440

Casadei, Roberto II-344
Caselli, Ashley II-205
Castiglioni, Valentina II-380
Cauderlier, Raphaël III-60
Cavada, Roberto III-240
Chakravarty, Manuel M. T. III-89, III-112

Chapman, James III-89, III-112
Ciatto, Giovanni II-205
Cimatti, Alessandro III-240
Claret, Guillaume III-60
Cleophas, Loek I-211
Collart-Dutilleul, Simon III-404
Comptier, Mathieu III-393
Coto, Alex I-22

Daca, Przemysław I-331
Damiani, Ferruccio I-81, I-558, II-344
De Nicola, Rocco II-161, II-261
Demeyer, Serge II-3, II-9
Di Giandomenico, Felicita I-368
Di MarzoSerugendo, Giovanna II-205
Donetti, Simone I-558
Drechsler, Rolf III-326
Dubslaff, Clemens I-240
Duong, Tan II-261

Eing, Lennart II-525
Ellul, Joshua III-131
Enoiu, Eduard I-350
Eugster, Patrick III-178

Fahrenberg, Uli I-262
Fantechi, Alessandro I-368, III-389, III-467
Faqeh, Rasha II-416
Ferrari, Alessio III-467
Fetzer, Christof II-416
Filliâtre, Jean-Christophe I-122
Fränzle, Martin III-255
Friedberger, Karlheinz I-449

Gabbay, Murdoch J. III-73
Gabor, Thomas II-473
Gashier, Eamonn III-195
Geisler, Signe III-449
Gerostathopoulos, Ilias II-440
Gheyi, Rohit II-138
Given-Wilson, Thomas I-404
Glesner, Sabine III-307

Gnesi, Stefania I-368, III-389, III-467
Goes, Christopher III-146
Goldberg, Yoav II-457
Göttmann, Hendrik II-55
Griggio, Alberto III-240
Große, Daniel III-326
Gu, Rong I-350
Guanciale, Roberto I-22
Gurov, Dilian I-3, III-235, III-348

Hähnle, Reiner I-3, II-3, II-117
Hamers, Ruben I-489
Hansen, René Rydhof II-280
Haxthausen, Anne E. III-389, III-415,

III-449
Heinrich, Robert II-295
Hennicker, Rolf II-224
Herber, Paula III-235, III-307
Herdt, Vladimir III-326
Hermanns, Holger I-240, II-416
Heydari Tabar, Asmae II-117
Hillston, Jane II-491
Hnětynka, Petr II-295, II-440
Hoffmann, Alwin II-507, II-525
Hoffmann, Jörg II-416
Huhn, Lukas II-507
Huisman, Marieke I-421, III-273
Hungar, Hardi III-293
Hyvärinen, Antti E. J. III-178

Incerto, Emilio I-307
Inverso, Omar II-243, II-261
Iosti, Simon II-457

Jacobs, Bart I-509
Jaeger, Manfred I-275
Jähnichen, Stefan II-161
Jakobs, Marie-Christine II-72
Jakobsson, Arvid III-60
Jansen, Nils I-290
Jensen, Peter G. I-385
Jensen, Peter Gjøl I-275
Johnsen, Einar Broch I-103, I-558
Jongmans, Sung-Shik I-489
Jørgensen, Kenneth Y. I-385

Kamburjan, Eduard I-3
Kanav, Sudeep I-168

Kirsten, Michael I-60
Klamroth, Jonas I-60
Klauck, Michaela I-240, II-416
Kleinekathöfer, Jan III-326
Klüppelholz, Sascha I-240
Knüppel, Alexander I-187
Köhl, Maximilian A. I-240, II-416
Könighofer, Bettina I-290
Konnov, Igor I-471
Kosak, Oliver II-507, II-525
Kosmatov, Nikolai I-525
Křetínský, Jan I-331
Kröger, Paul III-255

Lamela Seijas, Pablo III-161
Lande, Stefano III-25
Lanese, Ivan I-39
Larsen, Kim G. I-325, I-385
Larsen, Kim Guldstrand I-275
Laursen, Per Lange III-415
Lecomte, Thierry III-393
Legay, Axel I-211, I-262, I-325, I-404
Lentzsch, Daniel II-25
Liebrenz, Timm III-307
Lienhardt, Michael I-81
Linnhoff-Popien, Claudia II-473
Lochau, Malte II-55
Longuet, Delphine I-525
Lorber, Florian I-290
Loreti, Michele II-380
Lundqvist, Kristina I-350
Luthmann, Lars II-55

MacKenzie, Kenneth III-89, III-112
Maderbacher, Benedikt I-426
Maffei, Matteo III-212
Mantel, Heiko II-3, II-72
Marescotti, Matteo III-178
Mariani, Stefano II-189
Martínez, Héctor Martínez I-543
Masullo, Laura III-467
Mazaheri, Arya II-117
Mazzanti, Franco III-467
McIver, Annabelle I-216
Melkonian, Orestis III-89, III-112
Meywerk, Tim III-326
Mikučionis, Marius I-385
Milosevic, Zarko I-471

542 Author Index

Molinero, Julien III-393
Monti, Raúl E. III-273
Morgan, Carroll I-216
Müller, Jann III-89, III-112
Muñiz, Marco I-385

Napolitano, Annalisa I-307
Naumann, David A. II-93
Nielson, Flemming II-280
Nielson, Hanne Riis II-280
Norouzi, Mohammad II-117
Nyberg, Mattias III-348

Omicini, Andrea II-205
Orlov, Dmitry II-44
Otoni, Rodrigo III-178

Pace, Gordon J. III-3
Pacovský, Jan II-440
Paolini, Luca I-81
Parsai, Ali II-9
Paskevich, Andrei I-122
Peled, Doron II-457
Peleska, Jan III-434
Pesin, Basile III-60
Petrov, Tatjana II-397
Peyton Jones, Michael III-89, III-112
Piattino, Andrea III-467
Piho, Paul II-491
Poulsen, Danny B. I-385
Pugliese, Rosario II-361
Pun, Violet Ka I II-138

Rall, Dennis II-525
Reif, Wolfgang II-507, II-525
Reisig, Wolfgang II-171
Ricós, Fernando Pastor I-543
Rius, Alfonso D. D. M. III-195
Runge, Tobias I-187

Sabatier, Denis III-393
Sánchez, César III-3
Scaglione, Giuseppe III-240
Schaefer, Ina I-187, I-211, III-235
Scherer, Markus III-212
Schiffl, Jonas III-43
Schlingloff, Bernd-Holger III-366
Schneider, Gerardo III-3
Schneidewind, Clara III-212
Schürmann, Jonas II-311

Seceleanu, Cristina I-350, I-421
Seifermann, Stephan II-295
Sharygina, Natasha III-178
Smith, David III-161
Soulat, Romain I-525
Spagnolo, Giorgio O. I-368
Steffen, Bernhard II-311
Steffen, Martin I-103
Steinhöfel, Dominic II-117
Steinmetz, Marcel II-416
Stoilkovska, Ilina I-471
Stolz, Volker II-138
Stumpf, Johanna Beate I-103
Sürmeli, Jan II-329
Susi, Angelo III-240

Tacchella, Alberto III-240
Tapia Tarifa, Silvia Lizeth I-558
Tegeler, Tim II-311
ter Beek, Maurice H. I-211, I-368, III-467
Tessi, Matteo III-240
Tesson, Julien III-60
Thompson, Simon III-161
Tiezzi, Francesco II-361
Tini, Simone II-380
Tognazzi, Stefano II-397
Trentini, Daniele III-467
Tribastone, Mirco I-307
Trinh, Van Anh Thi III-415
Trubiani, Catia II-243
Tuosto, Emilio I-22, I-39, II-243
Turin, Gianluca I-558

Ulbrich, Mattias I-60, II-25

van Bladel, Brent II-9
Vercammen, Sten II-9
Vinogradova, Polina III-89, III-112
Viroli, Mirko II-344
Vos, Tanja I-543

Wadler, Philip III-89, III-112
Walter, Marcel III-326
Walter, Maximilian II-295
Wanninger, Constantin II-507, II-525
Watson, Bruce W. I-211
Wehrheim, Heike I-143
Weidenbach, Christoph II-416
Weigl, Alexander II-25
Weininger, Maximilian I-331

Author Index 543

Westman, Jonas III-348
Widder, Josef I-471
Wirsing, Martin II-161, II-224
Wolf, Felix II-117

Zahnentferner, Joachim III-112
Zambonelli, Franco II-189
Zamfir, Anca I-471
Zunino, Roberto III-25

544 Author Index

	Introduction
	Organization
	Contents – Part II
	Automating Software Re-Engineering
	Automating Software Re-engineering*12pt
	1 Introduction
	2 Track Organization
	3 Track Contributions
	3.1 Verification for Program Analysis
	3.2 Formal Foundations
	3.3 Formal Verification for Concurrency

	4 Conclusion
	References

	Formal Verification of Developer Tests: A Research Agenda Inspired by Mutation Testing
	1 Introduction
	2 Background
	2.1 Formal Specification and Verification
	2.2 Mutation Testing

	3 Research Agenda
	3.1 Equivalent Mutants
	3.2 Infinite Loops
	3.3 Flaky Tests
	3.4 Test Clones
	3.5 Test Amplification

	4 Related Work
	5 Conclusion
	References

	Modular Regression Verification for Reactive Systems
	1 Introduction
	2 Foundations
	2.1 Regression Verification
	2.2 Programmable Logic Controllers
	2.3 Formal Equivalence Relations

	3 Modularisation
	3.1 Motivational Example
	3.2 Formalisation
	3.3 Modularisation for Conditional and Relational Equivalence

	4 An Algorithm for Modular Regression Verification
	4.1 Conformance by Syntactical Congruence
	4.2 Conformance by Symbolic Execution
	4.3 Conformance by Reduction to SMT
	4.4 Conformance by Modular Abstraction
	4.5 Conformance by Model Checking

	5 Evaluation
	5.1 Selected Evolution Scenarios
	5.2 Results
	5.3 Discussion

	6 Related Work
	7 Conclusion
	References

	Finding Idioms in Source Code Using Subtree Counting Techniques
	Abstract
	1 Introduction
	2 Idiom Formalization
	3 Data Structures for Subtree Representation
	4 Function Optimization on Subtree Space
	5 Using Developed Algorithm for Source Code Analysis
	6 Idiom Extraction Experiment
	7 Conclusion
	References

	Parametric Timed Bisimulation
	1 Introduction
	2 Preliminaries
	2.1 Timed Automata
	2.2 Timed Bisimulation

	3 Parametric Timed Automata
	3.1 Illustrating Examples
	3.2 Defining Parametric Timed Automata
	3.3 L/U-PTA

	4 Parametric Timed Bisimulation
	4.1 Illustrating Examples
	4.2 Defining Parametric Timed Bisimulation
	4.3 Parameter-Abstracted Timed Bisimulation

	5 Related Work
	6 Conclusion
	References

	A Unifying Framework for Dynamic Monitoring and a Taxonomy of Optimizations
	1 Introduction
	2 Preliminaries
	2.1 Labeled Transition Systems and Properties
	2.2 Finite Automata and Formal Languages

	3 A Framework for Monitoring and Enforcement
	3.1 Policies and Anti-policies
	3.2 Monitors and Enforcement of Policies
	3.3 Watch-Dogs and Prevention of Anti-policies

	4 A Performance Model for Monitors
	5 Towards a More Formal Treatment of Optimizations
	5.1 Formal Definitions of Optimizations and Performance Gain
	5.2 Application Scenarios for the Optimizations
	5.3 Preservation Theorems

	6 Optimizations for Run-Time Monitoring
	6.1 A Taxonomy of Optimizations for RTM
	6.2 Classifying Optimizations into Optimizing Transformations

	7 Conclusion
	References

	Thirty-Seven Years of Relational Hoare Logic: Remarks on Its Principles and History
	1 Introduction
	2 Preliminaries
	2.1 The Inductive Assertion Method
	2.2 Hoare Logic

	3 Relational Properties, Alignment, and Program Products
	3.1 Product Automata Represent Alignments
	3.2 Examples

	4 Rules of Relational Program Logic
	4.1 Diagonal and One-Side Rules
	4.2 From Unary Correctness to Relational
	4.3 From Relational Correctness to Unary
	4.4 Reasoning About Specs
	4.5 Transformations
	4.6 Alignment Completeness

	5 Selected Additional Related Work
	6 Conclusion
	References

	Safer Parallelization
	1 Introduction
	2 Restructuring for Parallelization
	3 Abstract Execution and Dynamic Frames
	4 Correctness of Transformation Schemata with Loops
	5 Preconditions for Safe Transformation Schemata
	5.1 CU Repositioning
	5.2 Loop Splitting
	5.3 Geometric Decomposition
	5.4 Practical Application of Abstract Program Models

	6 Related Work
	7 Conclusion and Future Work
	References

	Refactoring and Active Object Languages
	1 Introduction
	2 The ABS Language
	3 Refactorings and Their Effects on Concurrency
	3.1 Hide Delegate
	3.2 Async-to-Sync Refactoring
	3.3 Inline Method
	3.4 Move Field
	3.5 Move Method
	3.6 Extract Class
	3.7 Discussion

	4 Related Work and Conclusion
	References

	Rigorous Engineering of Collective Adaptive Systems
	Rigorous Engineering of Collective Adaptive Systems Introduction to the 3rd Track Edition
	References

	Composition of Component Models - A Key to Construct Big Systems
	1 Motivating Examples
	1.1 Example: a producer, a broker, and a client
	1.2 Example: The Business Process of a Car Insurer
	1.3 Example: A BPMN Model
	1.4 UML Diagram

	2 A Fundamental Problem
	3 Components
	3.1 The Notion of Component
	3.2 Elementary Components and Abstractions

	4 Composition of Components
	4.1 The Composition Operator
	4.2 Some Aspects of Composition

	5 Adapters
	6 An Algebraic Calculus
	7 Derived Components
	7.1 The Mirror of a Component
	7.2 Semi Closed Components

	8 The Closure Operator
	9 Related Work
	References

	Degrees of Autonomy in Coordinating Collectives of Self-Driving Vehicles
	1 Introduction
	2 Coordinating Collectives of Self-Driving Vehicles
	2.1 Overview of Coordination Problems
	2.2 Coordination Solutions and Decision Making Autonomy

	3 The Case of Intersection Crossing
	3.1 Centralised
	3.2 Negotiation-Based
	3.3 Agreement-Based
	3.4 Emergent

	4 Adjustable Autonomy
	5 Additional Research Challenges
	5.1 Systemic Coordination
	5.2 Intersection Markets
	5.3 Mixed Scenarios

	6 Conclusions
	References

	Engineering Semantic Self-composition of Services Through Tuple-Based Coordination
	1 Introduction
	2 State of the Art
	2.1 Service Composition
	2.2 Linda and TuSoW

	3 Formal Model
	3.1 Syntax
	3.2 Operational Semantics

	4 Architecture
	4.1 Linda-Based Architecture
	4.2 Implementation Details

	5 Case Study
	6 Conclusion
	References

	A Dynamic Logic for Systems with Predicate-Based Communication
	1 Introduction
	2 Component Systems
	3 Ensemble Specifications
	4 Semantics of Ensemble Specifications
	5 Ensemble Realisations
	6 Conclusion
	References

	Abstractions for Collective Adaptive Systems
	1 Introduction
	2 A Bird-Eye View of AbC
	3 AbC-inspired Behavioural Types
	4 Speculating on ABeT
	5 Autonomous Robots
	5.1 A Coordination Protocol
	5.2 A Specification in ABeT

	6 Quantitative Analysis
	7 Conclusions, Related and Future Work
	References

	Verifying AbC Specifications via Emulation
	1 Introduction
	2 Translating AbC into C
	2.1 AbC in a Nutshell
	2.2 Emulating AbC Systems in C
	2.3 Encoding Properties

	3 Experimental Evaluation
	3.1 Case Studies
	3.2 Verification Results

	4 Concluding Remarks
	References

	Adaptive Security Policies
	1 Introduction
	2 Syntax
	3 Semantics
	4 Agent-Level Security
	5 System-Level Security
	6 Precomputing Security Checks
	7 Conclusion
	References

	Capturing Dynamicity and Uncertainty in Security and Trust via Situational Patterns
	1 Introduction
	2 Classification of Uncertainty in Security and Trust
	2.1 State of the Art in Access Control and Uncertainty
	2.2 Classification of Uncertainty in Access Control

	3 Representative Examples/Use-Cases
	3.1 Examples Analysis
	3.2 Summary

	4 Situational Patterns for Uncertainty
	4.1 Pattern 1a – Adding an allow Rule
	4.2 Pattern 1b – Adding a deny Rule
	4.3 Pattern 2a – Removing an allow Rule
	4.4 Pattern 2b – Removing a deny Rule
	4.5 Pattern 3 – A New Access Rule Validator

	5 Applying Patterns in an Adaptation Framework
	6 Conclusion
	References

	Guaranteeing Type Consistency in Collective Adaptive Systems
	1 Introduction
	2 Overview
	3 The TFG Language
	4 Type-Checking TFG
	5 GraphQL Generator
	6 TypeScript Generator
	6.1 Static Type-Checking in the Generated Client
	6.2 Assuring Type Safety at Run Time

	7 Related Work
	8 Conclusion
	References

	Epistemic Logic in Ensemble Specification
	1 Introduction
	2 Preliminaries
	2.1 Ensembles, Worlds, Information Asymmetry
	2.2 A Short Primer to Epistemic Logics

	3 Ensemble-Specific Atomic Propositions and Axioms
	3.1 Peer Relationship
	3.2 Collaboration and Membership
	3.3 Ensemble Lifecycle and State Mapping

	4 Epistemic Logic and Dynamic Ensembles
	4.1 A New Knowledge Operator: Ensemble Knowledge
	4.2 Instantiation of Roles
	4.3 Evolution of Ensembles and Their Environments

	5 Conclusion and Future Work
	6 Appendix
	6.1 Kripke Structures
	6.2 Semantics of L
	6.3 Semantics of Le

	References

	FScaFi: A Core Calculus for Collective Adaptive Systems Programming
	1 Introduction
	2 Background
	2.1 Aggregate Computing
	2.2 Related Work

	3 Featherweight ScaFi: A Core Calculus for ScaFi
	4 Showcasing FScaFi: Programming Examples
	4.1 Scala Syntax
	4.2 Programming Examples

	5 Conclusion and Future Work
	References

	Writing Robotics Applications with X-Klaim
	1 Introduction
	2 Background Notions
	2.1 Klaim
	2.2 Klava and X-Klaim
	2.3 ROS

	3 Our Approach and Framework
	4 X-Klaim at Work on a Robotics Scenario
	5 Related Work
	6 Concluding Remarks and Future Work
	References

	Measuring Adaptability and Reliability of Large Scale Systems
	1 Introduction
	2 Background
	3 A Calculus of Interacting Agents
	4 Measuring the Adaptability and Reliability of Systems
	4.1 A Metric over Systems: The population Metric
	4.2 System Adaptability and Reliability

	5 Statistical Estimation of Adaptability and Reliability
	5.1 Computing Empirical evolution sequences
	5.2 Computing Distance Between Two Configurations
	5.3 Estimating Adaptability and Reliability

	6 Mean-Field Approximation of Adaptability and Reliability
	7 Concluding Remarks
	References

	Centrality-Preserving Exact Reductions of Multi-Layer Networks
	1 Introduction
	2 Background
	2.1 Networks and Multiplex Multi-Layer Networks
	2.2 Centrality Measures
	2.3 Intermediate Drift Oriented Language (IDOL)
	2.4 Backward Differential Equivalence

	3 Centrality-Preserving MLN Reduction
	4 Experimental Results
	5 Conclusions and Future Work
	References

	Towards Dynamic Dependable Systems Through Evidence-Based Continuous Certification
	1 Introduction
	2 Approach
	3 Related Work
	4 Formal Underpinning
	4.1 SupERLog
	4.2 System Model
	4.3 Observers and Boolean Monitors

	5 The Supervisor
	5.1 Overall Role and Tasks
	5.2 Reasoning About Component Explications

	6 Component Analysis
	7 Micro-Experiments
	8 Discussion and Outlook
	References

	Forming Ensembles at Runtime: A Machine Learning Approach
	1 Introduction
	2 Running Example
	3 Methods
	3.1 As a Constraint Satisfaction Problem
	3.2 As a Classification Problem

	4 Evaluation
	4.1 Experimental Setup
	4.2 Evaluation of Classification Performance
	4.3 Experiments Using Classifiers for Ensemble Resolution

	5 Related Work
	6 Conclusion
	References

	Synthesizing Control for a System with Black Box Environment, Based on Deep Learning
	1 Introduction
	2 Preliminaries
	3 Controlling a System Interfacing with a Black Box
	4 Experiments
	5 Conclusions and Discussion
	References

	A Formal Model for Reasoning About the Ideal Fitness in Evolutionary Processes
	1 Introduction
	2 Definitions
	2.1 Evolutionary Processes
	2.2 Evolutionary Algorithms
	2.3 Example

	3 Approach
	3.1 The Ideal Fitness
	3.2 Proof Design
	3.3 Example

	4 Related Work
	5 Conclusion
	References

	A Case Study of Policy Synthesis for Swarm Robotics
	1 Introduction
	2 Background
	3 Carma-C for Policy Synthesis
	3.1 Local Store
	3.2 Processes
	3.3 Environment
	3.4 System

	4 Case Study
	4.1 Stationary Target
	4.2 Moving Target
	4.3 Simulation Results

	5 Related Works
	6 Conclusion
	References

	Maple-Swarm: Programming Collective Behavior for Ensembles by Extending HTN-Planning
	1 Motivation
	2 Current State and Objectives
	3 Approach
	3.1 Extending the Knowledge Base for Swarm Capabilities
	3.2 Extending the Maple Domain Description Model
	3.3 Extending the Maple Planner
	3.4 Extending the Self-awareness and Market-Based Task-Allocation

	4 Proof of Concepts
	5 Related Work
	6 Conclusion
	References

	Swarm and Collective Capabilities for Multipotent Robot Ensembles
	1 Motivation
	2 Challenges Resulting for Multipotent Systems
	3 Approach
	3.1 Static and Dynamic Model of Virtual Capabilities
	3.2 Termination and Results of Virtual Capability Executions
	3.3 A Capability for Movement-Vector Based Swarm Algorithms
	3.4 An Interface for External Collective Programming Languages

	4 Proof of Concepts
	4.1 Executing Movement-Vector Based Swarm Algorithms
	4.2 Protelis as an Example for an External Virtual Capability

	5 Related Work
	6 Conclusion
	References

	Author Index

