
Ensuring Safety with System Level
Formal Modelling

Thierry Lecomte(B), Mathieu Comptier, Julien Molinero, and Denis Sabatier

ClearSy, 320 avenue Archiméde, Aix en Provence, France
thierry.lecomte@clearsy.com

Abstract. During the last five years, Event-B formal modelling has
been successfully applied to various railway systems to demonstrate
safety early in the design process or once systems are in operation. This
approach is aimed at formalising a safety reasoning instead of modelling
every bit of the system. This approach is intrinsically fit to scale up to
large systems (or system of systems), hence able to handle centralised or
distributed systems.

Keywords: B method · Safety platform · Automated proof

1 Introduction

Railway signalling systems, legacy, new, and/or forthcoming, are complex sys-
tems, difficult to validate and certify. A large number of works have been reported
over years, taking into account exploitation procedure [7], interlocking design
data [6], hybrid systems [10], distributed systems [4,5]. Some projects report
difficulties to scale up or to properly transmit knowledge through the very for-
mal models.

Since several years, CLEARSY has driven large projects about using formal
proofs at system level for railway signalling systems. The fundamental goal in
these projects is, instead of modelling all the components of a signalling system,
to extract the rigorous reasoning that establishes that the considered system
ensures its requested properties, and to assert that this reasoning is correct and
fully expressed. The concerned systems were either under preliminary specifica-
tion, under design or already existing.

This paper makes clear the recent advances in the domain of system-level
modelling aimed at demonstrating the safety of railways signalling systems, that
remains manageable by the signalling engineer and understandable by the recip-
ient of the study.

This paper is structured in six parts. Section 2 introduces the Terminology.
Section 3 briefly introduces the B method. Section 4 presents the methodologi-
cal framework. Section 5 presents some applications on real signalling systems
performed the last years.

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12478, pp. 393–403, 2020.
https://doi.org/10.1007/978-3-030-61467-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61467-6_25&domain=pdf
https://doi.org/10.1007/978-3-030-61467-6_25


394 T. Lecomte et al.

2 Terminology

This section contains specific definitions, concepts, and abbreviations used
throughout this paper.

Atelier B is an Integrated development environment (IDE) supporting the
B method and the B language for software development, and Event-B for system-
level analysis.

B0 is a subset of the B language that must be used at implementation level.
It contains deterministic substitutions and concrete types. B0 definition depends
on the target hardware associated to a code generator.

Safety refers to the control of recognized hazards in order to achieve an
acceptable level of risk.

SIL put for Safety Integrity Level [11], is a relative level of risk-reduction
provided by a safety function. Its range is usually between 0 and 4, SIL4 being
the most dependable and used for situations where people could die.

3 Introduction to the B Method

B [1] is a method for specifying, designing, and coding software systems. It covers
central aspects of the software life cycle (Fig. 1): the writing of the technical
specification, the design by successive refinement steps and model decomposition
(layered architecture), and the source code generation.

Fig. 1. A typical B development cycle, from requirements to code.

B is also a modelling language that is used for both specification, refinement
(Fig. 2), and implementation. It relies on substitution calculus, first order logic
and set theory. All modelling activities are covered by mathematical proof that
finally ensures that the software system is correct.

B is structured with modules and refinements. A module is used to break
down a large software into smaller parts. A module has a specification (called a



Ensuring Safety with System Level Formal Modelling 395

machine) where are formalized both a static and a dynamic description of the
requirements. It defines a mathematical model of the subsystem concerned:

– an abstract description of its state space and possible initial states,
– an abstract description of operations to query or modify the state.

This model establishes the external interface for that module: every imple-
mentation will conform to this specification. Conformance is assured by proof
during the formal development process. A module specification is refined. It is
re-expressed with more information: adding some requirements, refining abstract
notions with more concrete notions, getting to implementable code level. Data
refinement consists in introducing new variables to represent the state variables
for the refined component, with their linking invariant. Algorithmic refinement
consists in transforming the operations for the refined component. A refine-
ment may also be refined. The final refinement of a refinement column is called
the implementation, it contains only B0-compliant models. In a component
(machine, refinement, or implementation), sets, constants, and variables define
the state space while the invariant define the static properties for its state vari-
ables. The initialisation phase (for the state variables) and the operations (for
querying or modifying the state) define the way variables are modified. From
these, proof obligations are computed such as: the static properties are consis-
tent, they are established by the initialisation, and they are preserved by all the
operations. Atelier B contains a model editor merging model and proof (Fig. 3)
by displaying the number of proof obligations associated to any line of a B model,
its current proof status (fully proved or not) and the body of the related proof
obligations. An Event-B project is a project containing one refinement column
(one specification machine refined several times) and possibly context machines
(machines containing only constants and sets definitions). Instead of B opera-
tions called sequentially, Event-B components contains atomic events which may
be triggered when their enabling condition holds. An Event-B model represents
the specification of a system (a device, a procedure, a business rule, etc.) with
asynchronous transitions from one state to an other. Similarly to B models,

Fig. 2. Structure of MACHINE and REFINEMENT components.



396 T. Lecomte et al.

Fig. 3. Atelier B model editor showing proof status.

Event-B models have to verify their invariant properties: initialisation should
establish invariant, and for each event fired, if the invariant was true before then
it remains true after the execution of the event.

4 Methodology

The methodology described is issued from [2,3,8]. Figure 4 illustrates its different
stages, which can be called “the ideal formal world” and which makes it possible
to obtain a system that is guaranteed to be zero-defect.

The left side of the diagram represents the “formal proof of correct inter-
operability”. The aim is to ensure that if the individual sub-systems making
up the overall solution are implemented in accordance with their specifications,
then the safety of the overall system is guaranteed. This proof enables the entity
responsible for the integrated system to ensure that there are no hidden safety
bugs in the subsystem breakdown.

The right side of the schema could be named “formal proof of correct design”.
It is a question of guaranteeing that a given implementation (RBC for example) is
designed in such a way that the safety expectations expressed in the specifications
are effectively met. This part is not included in the project as it is not required
and is only provided for illustration.

The “formal proof of correct interoperability” is in three steps, detailed below.



Ensuring Safety with System Level Formal Modelling 397

Fig. 4. The complete picture of the formal approach for safe systems.

4.1 Overall Safety Study, Roles and Responsibilities
of the Subsystems

The objective is to acquire sufficient knowledge of the selected architecture and
of the functional decomposition planned (or anticipated) within the framework
of the target project.

It allows more concretely to identify the different actors involved in the secu-
rity of the global systems as a first analysis of the security principles distributed
within these subsystems. This analysis leads to a first version of a set of sub-
properties resulting from the breakdown of the global non-collision and non-
derailment properties to be respected by the subsystems through their different
functionalities. This first phase also enables listing the different functionalities
of the subsystems involved in safety and on which the formal proof has to be
applied.

4.2 Formal Safety Demonstration Against the Risks of Collision
and Derailment

This phase is the core of the formal proof of correct interoperability. It com-
prises a formalisation stage, i.e. a stage where all the elements involved in the
safety demonstration (software variables, trains, signal states, points, etc.) are
transformed into unambiguous mathematical objects.

4.2.1 Formalizing the Global Properties
Thefirst activity consists in formalizing the global properties (mainly anti-collision
and non-derailment) as well as the expected properties of the different subsystems
in natural language (English) but with the precision of the mathematical language,
which allows to obtain a definition without any possible ambiguity.

For example, sets can be a possible representation of trains and moving
blocks. In this case the anti-collision property can be formalized as follows



398 T. Lecomte et al.

where t1 and t2 represent the locations covered by each train.They are typed
as sets. The anti-collision property implies that their intersection is empty.

Let us imagine that during the first phase of the study, it was identified that
safety with regard to anti-collision is based on the principle of blockage, i.e. at
any given moment, there is at most one train per block, so the anti-collision
property can be refined by this principle of blockage:

It reads that there exists only one train intersecting with a block (given that,
implicitly, blocks do not intersect among themselves).

As long as the blocks do not intersect (reasoning hypothesis taken), it is
possible to prove the anti-collision property mathematically from the refined
property. In the same way, this property describing the blockage principle can
be refined into sub-properties directly applicable to the subsystems.

For example, the ERTMS Blocking Principle will only be possible if the RBC
has a correct train tracking (i.e. all trains on the track are tracked by the RBC
at all times) but also if its Movement Authority (MA) management function
is correct (i.e. the RBC never sends an MA to a train beyond a block already
occupied by another train).

4.2.2 Performing an Irrefutable Mathematical Demonstration
The second activity consists of performing an irrefutable mathematical demon-
stration that the various subsystems meet the expected refined properties. Each
functionality of each subsystem is analysed in order to verify that the require-
ments described in the specifications are sufficient to demonstrate the preserva-
tion of the expected properties. This demonstration shall be based on a set of
explicit and justified assumptions, i.e. accompanied by the description of worst-
case scenarios in case of non-compliance with these assumptions.

For example, the mathematical demonstration of the previous property
requiring that a RBC never sends an MA to a train beyond a block already
occupied by another train may be based on the assumption that the RBC never
extends an MA from a train beyond a restrictive signal.

Assumptions thus obtained will have to be directly described in the specifi-
cation or will be sub-properties requiring sub-demonstrations based in turn on
other assumptions.

The outputs of the steps are:

– A formal safety demonstration (or correct interoperability) with regard to the
risks of collision and derailment, described in natural language and formalised
in mathematical language.

– The complete list of the so-called safety assumptions: all those used in the
previous demonstration, together with their justification (worst-case scenario
in case of non-compliance).



Ensuring Safety with System Level Formal Modelling 399

4.3 Modelling, Proof, and Animation of Event-B Models
with Atelier B and ProB Tools

Atelier B is a tool for system modeling and proof of invariant properties of
the modeled system. This modelling is done in a mathematical language: the
B language. An “invariant” property is a property that is true at all times. In
practice, the aim is to prove the invariance of the negation of the dreaded event
(meaning that the opposite situation to the dreaded event is always true, e.g.
“no collision”).

The proof of invariant properties is based on the principle of induction: there
is no evolution of the system leading to the invariant not being respected. The
proof is obtained by demonstrating that the initial state of the system conforms
to the expected properties, and each of the possible transitions of this same
system preserves these properties (assuming the true properties at the input of
the function).

The objective here is to model with Atelier B the reasoning conducted in the
first two phases described in the two previous paragraphs. The production of
these B models, accompanied by formal proof via the Atelier B tool, will ensure
that the reasoning carried out on paper does not contain any logical errors and
that all the security hypotheses have been expressed (no implicit hypothesis
forgotten during the “paper” reasoning).

The outputs are:

– A proof model written in the B language, encapsulating the core concepts
and the formal safety reasoning and associated safety concepts;

– A formal proof of important safety properties (no collision, no derailment,
etc.) conducted within Atelier-B;

– Various instances of the proof model for animation with ProB, to ensure
consistency and functionality. The models will be accompanied by various
scenario files, to ensure that the formal models can implement various use
cases;

– Vizualisations to ensure that domain experts can inspect the formal model
without having to understand the B language (Fig. 5);

– An executable demonstrator for running more extensive functionality tests.

5 Applications

The methodology above have been used at several occasions:

– Formal proof of the safety properties for the NYCT Line 7 Mod-
ernization Project [9]. The New York City Transit Authority has included
formal proofs at system level as part of the safety assessment for its New
York subway Line 7 modernization project (Fig. 6), based on the CBTC from
Thales Toronto. The main goal was to obtain a formal proof for the main
safety properties of the system: no collision and no over-speeding. A book of
assumptions was built up, covering every relevant aspect of the system, from



400 T. Lecomte et al.

Fig. 5. Formal B model of Hybrid Level 3 Principles running in real-time. Source:
Deutsche Bahn, https://www.youtube.com/watch?v=FjKnugbmrP4

internal design to external conditions. Safety properties were then obtained by
pure logical reasoning only from these well defined assumptions. This study
revealed all assumptions needed and reached a “proof level” confidence for
the system properties.

– Safety Analysis of the Octys CBTC System [2]. RATP was going to
upgrade their subway lines with driver with Octys, with the objective to
improve throughput and safety by ensuring continuous train speed control,
to participate in ensuring the safety of passenger transfers through the train
and platform screen doors, to diminish the headway and to reduce wayside
signaling requirements. Octys relies on multi-sourcing and interchangeabil-
ity. The system is split in different sub-parts that are to be developed by
different suppliers and interchangeable in the sense that any compliant sub-
part, whatever its brand, shall fit seamlessly in the system. Octys had been
deployed successively on Paris lines 3, 5 and 9; two other lines were scheduled
to be equipped in the near future. The formal safety analysis consisted in
expressing properties that are key to the safety of the system both in natu-
ral language and mathematical notation, and in constructing formal proofs
that these properties hold. The conclusion was that such system level proof
is feasible for a system like the Octys CBTC, with the appropriate level of
independence with the intricate but out of scope interlocking. The findings
(not disclosed) provided their benefits. The output results were expected to
be reused as input properties for subsystem formal analysis performed by
RATP.

https://www.youtube.com/watch?v=FjKnugbmrP4


Ensuring Safety with System Level Formal Modelling 401

Fig. 6. NYCT line 7 modernization project - the structure of the formal proof for the
main safety properties of the system: no collision and no over-speeding.

– Validation of a CBTC zone controller [3]. The analyzed CBTC is a
flagship product of Alstom that is already in operation for over 95 metro
lines worldwide. The formal analysis was applied at the software design level.
The objective was to prove that a software specification and its implementa-
tion satisfy the expected system properties. The functional part of the ana-
lyzed software was developed with the B Method. A formal model of the
software components was created, then formally refined and finally formally
implemented. With the validation of the high-level specification of each com-
ponent of a CBTC, we wanted to guarantee system-wide safety properties
in light of evolving requirements specification of the components, and taking
into account optimization to increase availability of the system. The following
results were obtained:

• Retrieve and/or explain clearly the fundamental design principles.
• Exhibit and explain formally the assumptions made about the studied

function inputs.
• Retrieve and formalize the historical reasoning of the designers and keep

track of their justification.
• Identify complexity that is not necessary to maintain the properties and

has become useless or obsolete, providing opportunities for functional
improvements and performance gains.

• Possibly detect corner cases where the properties are not fulfilled, provid-
ing the safety teams the elements necessary to analyze the consequences.

• Propose design improvements.

From the point of view of the system teams at the origin of the design, it is
no longer necessary to try to imagine all possible combinations of functions.



402 T. Lecomte et al.

In return, any newly developed function must preserve the invariant proper-
ties. An implemented function is safe as long as it preserves the key invariant
properties as exhibited by the study. To validate the safety of an evolution, it
is therefore sufficient to require a formal demonstration, and to ensure that it
does not contain logical errors. Any evolution can be mathematically proven
even before it enters the traditional software development cycle.

6 Conclusion and Perspectives

Formally proving railway signalling systems is a very challenging activity,
whether the system is centralized (this is the case of many legacy systems) or
distributed. In this paper, we proposed a novel approach. We successfully exper-
imented with the approach on several real-size systems, already in exploitation
or to be deployed for the first time. Instead of modelling the different parts of
the railway system, the approach extracts the rigorous reasoning that estab-
lishes that the considered system ensures its requested properties, and to assert
that this reasoning is correct and fully expressed. This approach supports large
systems without problem, is able to deliver understandable outputs in natural
language as well as graphical model animation to exhibit key scenarios. This
approach seems to be adequate for both centralized and distributed signalling
systems. Several other experiments are on-going in several European countries
for the main lines (ERTMS) that will be reported in the future.

References

1. Abrial, J.: The B-book - Assigning Programs to Meanings. Cambridge University
Press, Cambridge (2005)

2. Comptier, M., Déharbe, D., Perez, J., Mussat, L., Pierre, T., Sabatier, D.: Safety
analysis of a CBTC system: a rigorous approach with event-B. In: Fantechi, A.,
Lecomte, T., Romanovsky, A. (eds.) RSSRail 2017. LNCS, vol. 10598, pp. 148–159.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68499-4 10

3. Comptier, M., Leuschel, M., Mejia, L.-F., Perez, J.M., Mutz, M.: Property-based
modelling and validation of a CBTC zone controller in Event-B. In: Collart-
Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495,
pp. 202–212. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-
6 13

4. Geisler, S., Haxthausen, A.: Stepwise development and model checking of a dis-
tributed interlocking system using raise. Formal Aspects Comput. (2020)

5. Hei, X., Takahashi, S., Nakamura, H.: Distributed interlocking system and its safety
verification, pp. 8612–8615 (2006)

6. Iliasov, A., Stankaitis, P., Adjepon-Yamoah, D.: Static verification of railway
schema and interlocking design data. In: Lecomte, T., Pinger, R., Romanovsky,
A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 123–133. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-33951-1 9

7. Metayer, C., Clabaut, M.: DIR 41 case study. In: Börger, E., Butler, M., Bowen,
J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 357–357. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87603-8 44

https://doi.org/10.1007/978-3-319-68499-4_10
https://doi.org/10.1007/978-3-030-18744-6_13
https://doi.org/10.1007/978-3-030-18744-6_13
https://doi.org/10.1007/978-3-319-33951-1_9
https://doi.org/10.1007/978-3-540-87603-8_44


Ensuring Safety with System Level Formal Modelling 403

8. Sabatier, D.: Using formal proof and B method at system level for industrial
projects. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS,
vol. 9707, pp. 20–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33951-1 2

9. Sabatier, D., Burdy, L., Requet, A., Guéry, J.: Formal proofs for the NYCT line 7
(flushing) modernization project. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid,
S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp.
369–372. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30885-
7 34

10. Stankaitis, P., Iliasov, A.: Theories, techniques and tools for engineering hetero-
geneous railway networks. In: Fantechi, A., Lecomte, T., Romanovsky, A. (eds.)
RSSRail 2017. LNCS, vol. 10598, pp. 241–250. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68499-4 16

11. Wikipedia contributors: Safety integrity level - Wikipedia, the free encyclope-
dia (2020). https://en.wikipedia.org/wiki/Safety integrity level. Accessed 08 May
2020

https://doi.org/10.1007/978-3-319-33951-1_2
https://doi.org/10.1007/978-3-319-33951-1_2
https://doi.org/10.1007/978-3-642-30885-7_34
https://doi.org/10.1007/978-3-642-30885-7_34
https://doi.org/10.1007/978-3-319-68499-4_16
https://doi.org/10.1007/978-3-319-68499-4_16
https://en.wikipedia.org/wiki/Safety_integrity_level

	Ensuring Safety with System Level Formal Modelling
	1 Introduction
	2 Terminology
	3 Introduction to the B Method
	4 Methodology
	4.1 Overall Safety Study, Roles and Responsibilities of the Subsystems
	4.2 Formal Safety Demonstration Against the Risks of Collision and Derailment
	4.3 Modelling, Proof, and Animation of Event-B Models with Atelier B and ProB Tools

	5 Applications
	6 Conclusion and Perspectives
	References




