
Compiling Quantitative Type Theory
to Michelson for Compile-Time

Verification and Run-time Efficiency
in Juvix

Christopher Goes(B)

Metastate AG, Zug, Switzerland
cwgoes@metastate.dev

Abstract. Michelson, the stack-based virtual machine of the Tezos
blockchain, integrates type-checking for program execution completion
but not program correctness. Manual stack tracking is efficient but less
ergonomic to write in than a higher-level lambda calculus with variables.
Compiling McBride’s Quantitative Type Theory to Michelson allows
for compile-time verification of semantic predicates and automatic stack
optimisation by virtue of the type-theoretic usage accounting system.

Keywords: qtt · Michelson · Tezos · Juvix

1 Introduction and Prior Work

Smart contracts running on distributed ledgers are an archetypal example of
a security-critical application, and one where the popular conceit of security-
through-obscurity cannot serve since contract code is public, yet results so far
from languages such as Solidity [1], the contract language most popular on the
Ethereum blockchain [2], have not been promising. Numerous hacks and losses
numbering in the hundreds of millions [3,4] have resulted from often quite simple
bugs in contracts.

Michelson is the smart contract language of Tezos [5]. The Michelson lan-
guage is stack-based, with high-level data types & primitive functions. A Michel-
son program consists of a series of instructions, each of which describes a state
transition rule which re-writes the stack. At compile-time, static type-checking
ensures that the instruction sequence has the correct stack types by starting with
the initial stack type & walking through the start & return stack types of each
instruction. An run-time, instructions are executed in sequence according to the
rewrite rules, with input values provided by the caller (e.g. as arguments to a
smart contract call). Michelson’s static type checking provides for verification of
executability but not for verification of semantic correctness—it can say nothing
about how the start & end storage values of a contract relate to each other or
to the arguments provided in the contract call.

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12478, pp. 146–160, 2020.
https://doi.org/10.1007/978-3-030-61467-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61467-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-61467-6_10


Compiling Quantitative Type Theory 147

Due to its stack-based nature, pure Michelson is not particularly ergonomic
to develop in—the contract author must mentally track which stack position
corresponds to what value at each instruction in the sequence of instructions
which together comprise the contract, and limited facilities exist for function
abstraction and avoidance of code duplication. For this reason, prior efforts have
build intermediate languages for Michelson, such as Albert [6], which allow the
programmer to use a higher-level syntax to define functions which operate on
named variables, and automatically handle the conversion to Michelson oper-
ation sequences by tracking the relationship between variables names & stack
positions during compilation. Due to the higher-level abstraction, however, these
techniques frequently come at a cost in runtime efficiency, since the automatic
translation cannot easily take into account whether a variable used as an argu-
ment to a function will need to be used later (and so must be kept around on the
stack) or is only used once (and so can be safely discarded), as a programmer
might do mentally when writing low-level Michelson by hand.

Prior efforts to bring semantic verification to Michelson, in particular
Nomadic Labs’ Mi-Cho-Coq [7] framework for the verification of Michelson con-
tracts in Coq, have provided verification capabilities by expressing the semantics
of Michelson in an existing theorem prover. This allows for precise verification
of contract behavioural semantics, but requires that such verification be done
at the low-level of Michelson instruction sequences—so if a developer writes a
contract in a higher-level language which compiles to Michelson, they will need
to perform verification on the translated Michelson output, instead of in the
higher-level language itself. Furthermore, the verification must operate at the
level of Michelson stack semantics—one cannot, for example, express invariants
about the behaviour of functions with named variables written in the higher-level
language, but must instead reason about values at particular stack positions. Of
course, this has the advantage of guarding against mistakes in the translation
from the higher-level language to Michelson, but requires this verification over-
head in every analysis performed—ideally, one would express properties of each
unique contract in the semantics of the higher-level language, verify (once) the
compiler transformation to the semantics of Michelson, and thereby obtain an
equivalent level of assurance.

Outside the Tezos ecosystem, Edstrom & Pettersson’s prior effort to realise
dependently-typed smart contracts [8] achieved high-level semantic verification,
but found the output code to be too inefficient to execute. They wrote an Idris [9]
backend targeting Ethereum’s LLL language [10]. Our approach shares a similar
goal of high-level verification, but utilises a bespoke compilation pipeline—their
approach handicapped itself by compiling to LLL instead of directly to EVM
opcodes, and Idris’ lack of linearity meant that they had to perform expensive
memory-management operations in output contracts.

Conor McBride’s Quantitative Type Theory (QTT) [11] elegantly melds full-
spectrum dependent-type semantics with precise usage accounting. In our high-
level smart contract language Juvix, we alter QTT to include the semantics of
built-in Michelson operations in the higher-level language so that semantic veri-
fication can be performed in the language in which the developer is writing, and



148 C. Goes

we utilise the precise usage information to optimise the output code produced
by our Michelson compilation pipeline. Juvix also includes a high-level frontend
language, datatype system, pattern matching, etc., but those abstractions can
be desugared to the core representation, so this paper describes only the core
altered quantitative type theory & the variable-usage stack accounting used in
the Michelson compilation pipeline. We expect that this fundamental approach
could also be reused with other frontends or other stack-based virtual machines
without much difficulty.

2 Core Language

Our core syntax & type theory is based on QTT, altered to include additional
primitives, and instantiated over the semiring of the natural numbers plus ω for
maximum granularity in expressing usage information.

2.1 Preliminaries

A semiring R is a set R with binary operations + (addition) and · (multipli-
cation), such that (R,+) is a commutative monoid with identity 0, (R, ·) is a
monoid with identity 1, multiplication left and right distribute over addition,
and multiplication by 0 annihilates R.

The core type theory must be instantiated over a particular semiring. Choices
include the boolean semiring (0, 1), the zero-one-many semiring (0, 1, ω), and the
natural numbers with addition and multiplication.

We instantiate the type theory over the semiring of natural numbers plus ω,
which is the most expressive option—terms can be 0-usage (“contemplated”),
n-usage (“computed n times”), or ω-usage (“computed any number of times”).

Let S be a set of sorts (i, j, k) with a total order.

Let K be the set of primitive types, C be the set of primitive constants, and
...

be the typing relation between primitive constants and primitive types, which
must assign to each primitive constant a unique primitive type and usage. When
instantiated for compiling to Michelson, these sets are the sets of built-in types
& values in the Michelson language [12].

Let F be the set of primitive functions, where each f is related to a function

type, including an argument usage annotation, by the
... relation and endowed

with a reduction operation , which provided an argument of the function input
type computes an argument of the function output type. When instantiated for
compiling to Michelson, this set is the set of built-in operations in the Michelson
language, e.g. ADD, MUL, NOT, etc., endowed with appropriate types.

Primitive types, primitive constants, and primitive functions are threaded-
through to the untyped lambda calculus to which the core language is erased,
so they must be directly supported by the low-level execution model, in this
case Michelson. The core type theory and subsequent compilation pathways are

parameterised over K, C, F ,
..., and the reduction operations , which are

assumed to be available as implicit parameters.



Compiling Quantitative Type Theory 149

2.2 Syntax

Our syntax is inspired by the bidirectional syntax of Conor McBride in I Got
Plenty o’ Nuttin’ [13].

Let R,S, T, s, t be types & terms and d, e, f be eliminations, where types
can be synthesised for eliminations but must be specified in advance for terms
(Fig. 1).

Fig. 1. Core syntax

Sorts are explicitly levelled. Dependent function types, dependent conjunc-
tion types, and type annotations include a usage annotation π.

Judgements have the following form:

x1
ρ1: S1, . . . , xn

ρn: Sn � M
σ
: T

where ρ1 . . . ρn are elements of the semiring and σ is either the 0 or 1 of the
semiring.

Further define the syntactic categories of usages ρ, π and precontexts Γ:

ρ, π ∈ R

Γ := � | Γ, x
ρ
: S

The symbol � denotes the empty precontext.



150 C. Goes

Precontexts contain usage annotations ρ on constituent variables. Scaling a
precontext, πΓ, is defined as follows:

π(�) = �
π(Γ, x

ρ
: S) = πΓ, x

πρ
: S

Usage annotations in types are not affected.
By the definition of a semiring, 0Γ sets all usage annotations to 0.
Addition of two precontexts Γ1 + Γ2 is defined only when 0Γ1 = 0Γ2:

� + � = �
(Γ1, x

ρ1: S) + (Γ2, x
ρ2: S) = (Γ1 + Γ2), x

ρ1+ρ2: S

Contexts are identified within precontexts by the judgement Γ �, defined by
the following rules:

Emp� �
Γ � 0Γ � S Ext

Γ, x
ρ
: S �

0Γ � S indicates that S is well-formed as a type in the context of 0Γ. Emp,
for “empty”, builds the empty context, and Ext, for “extend”, extends a context
Γ with a new variable x of type S and usage annotation ρ. All type formation
rules yield judgements where all usage annotations in Γ are 0—that is to say,
type formation requires no computational resources).

Term judgements have the form:

Γ � M
σ
: S

where σ ∈ 0, 1.
Primitive constant term judgements have the form:

� M
γ
: S

where γ is any element in the semiring.
A judgement with σ = 0 constructs a term with no computational content,

while a judgement with σ = 1 constructs a term which will be computed with.
For example, consider the following judgement:

n
0
: Nat, x

1
: Fin(n) � x

σ
: Fin(n)

When σ = 0, the judgement expresses that the term can be typed:

n
0
: Nat, x

1
: Fin(n) � x

0
: Fin(n)



Compiling Quantitative Type Theory 151

Because the final colon is annotated to zero, this represents contemplation,
not computation. When type checking, n and x can appear arbitrary times.

Computational judgement:

n
0
: Nat, x

1
: Fin(n) � x

1
: Fin(n)

Because the final colon is annotated to one, during computation, n is used
exactly 0 times, x is used exactly one time. x can also be annotated as ω,
indicating that it can be used (computed with) an arbitrary number of times.

2.3 Typing Rules

2.3.1 Universe (Set Type)
Let S be a set of sorts i, j, k with a total order.

2.3.1.1 Formation Rule

2.3.1.2 Introduction Rule

Sorts can be contemplated (typed in the σ = 0 fragment) only.

2.3.2 Primitive Constants

2.3.2.1 Formation and Introduction Rule

c ∈ C κ ∈ K c
...(γ, κ)

Prim − Const
� c

γ
: κ

Primitive constants are typed according to the primitive typing relation, and
they can be produced in any computational quantity wherever desired.

2.3.3 Primitive Functions

2.3.3.1 Formation and Introduction Rule

Primitive functions are typed according to the primitive typing relation, and
they can be produced in any computational quantity wherever desired. Primi-
tive functions can be dependently-typed—in the case of Michelson, polymorphic
primitives such as ADD will be represented in the core language as dependently
typed, i.e. add : (t: Type) -> t -> t, where t is restricted to the primitive
types for which Michelson supports ADD.



152 C. Goes

2.3.3.2 Elimination Rule
Primitive functions use the same elimination rule as native lambda abstractions.

2.3.4 Dependent Function Types
Function types record usage of the argument.

2.3.4.1 Formation Rule

2.3.4.2 Introduction Rule

The usage annotation π is not used in judgement of whether T is a well-
formed type. It is used in the introduction and elimination rules to track how x is
used, and how to multiply the resources required for the argument, respectively:

2.3.4.3 Elimination Rule

0Γ1 = 0Γ2 means that Γ1 and Γ2 have the same variables with the same
types.

In the introduction rule, the abstracted variable x has usage σπ so that non-
computational production requires no computational input.

In the elimination rule, the resources required by the function and its argu-
ment, scaled to the amount required by the function, are summed.

The function argument N may be judged in the 0-use fragment of the system
if and only if we are already in the 0-use fragment (σ = 0) or the function will
not use the argument (π = 0).

2.3.5 Dependent Multiplicative Conjunction (Tensor Product)
Multiplicative conjunctions, colloquially referred to as “pair” type, can be
dependent.

2.3.5.1 Formation Rule

0Γ � A 0Γ, x
0
: S � T ⊗

0Γ � (x
π
: S)⊗ T

Type formation does not require any resources.



Compiling Quantitative Type Theory 153

2.3.5.2 Introduction Rule

Γ1 � M
σ
: S Γ2 � N

σ
: T [x := M ] 0Γ1 = 0Γ2

πΓ1 + Γ2 � (M,N)
σ
: (x

π
: S)⊗ T

This is similar to the introduction rule for dependent function types above.

2.3.5.3 Elimination Rules

Γ � M
0
: (x

π
: S) ⊗ T

Γ � fst⊗ M
0
: S

Γ � M
0
: (x

π
: S) ⊗ T

Γ � snd⊗ M
0
: T [x := fst⊗(M)]

Under the erased (σ = 0) part of the theory, projection operators can be
used as normal.

0Γ1, z
0
: (x

π
: S) ⊗ T � U Γ1 � M

σ
: (x

π
: S) ⊗ T Γ2, x

σπ
: S, y

σ
: T � N

σ
: U[z := (x, y)] 0Γ1 = 0Γ2 ⊗ Elim

Γ1 + Γ2 � let (x, y) = M in N
σ
: U[z := M]

Under the resourceful part, both elements of the conjunction must be
matched and consumed.

2.3.6 Variable and Conversion Rules
The variable rule selects an individual variable, type, and usage annotation from
the context:

� 0Γ, x
σ
: S, 0Γ′

Var
0Γ, x

σ
: S, 0Γ′ � x

σ
: S

The conversion rule allows conversion between judgmentally equal types:

Γ � M
σ
: S 0Γ � S ≡ T Conv
Γ � M

σ
: T

Note that type equality is judged in a context with no resources.

2.3.7 Equality Judgements
Types are judgmentally equal under beta reduction:

Terms with the same type are judgmentally equal under beta reduction:

As primitive types, values, and functions are included in the type theory,
proofs about behavioural semantics can then be created in the usual fashion.



154 C. Goes

2.4 Erasure

Terms which are merely contemplated (in the σ = 0 fragment) are erased at
compile-time, and thereby incur no runtime cost.

Define the core erasure operator �.
Erasure judgements take the form Γ � t

σ
: S � u with t

σ
: S a core judgement

and u an erased core term.
Computationally relevant terms are preserved, while terms which are only

contemplated are erased.
Note that σ/ = 0 must hold, as the erasure of a computationally irrelevant

term is nothing.

2.4.1 Primitives and Lambda Terms

c
σ
: S σ/ = 0

Prim-Const-Erase-+
c

σ
: S � c

f
σ
: S σ/ = 0

Prim-Fun-Erase-+
f

σ
: S � f

� 0Γ, x
σ
: S, 0Γ′ σ/ = 0

Var-Erase-+
0Γ, x

σ
: S, 0Γ′ � x

σ
: S � x

Γ � s
π
: S s � u π/ = 0

Ann-Erase-+
Γ � s

π
: S � u

In the Lam-Erase-0 rule, the variable x bound in t will not occur in the cor-
responding u, since it is bound with usage 0, with which it will remain regardless
of how the context splits, so the rule Var-Erase-+ cannot consume it.



Compiling Quantitative Type Theory 155

2.4.2 Multiplicative Conjunction

2.4.2.1 Constructor

Γ � (s, t)
σ
: (x

π
: S) ⊗ T σ/ = 0 π/ = 0 s � u t � v ⊗-Erase-++

Γ � (s, t)
σ
: (x

π
: S) ⊗ T � (u, v)

If the first element of the pair is used, the constructor is erased to the untyped
constructor.

Γ � (s, t)
σ
: (x

π
: S) ⊗ T σ/ = 0 π = 0 t � v ⊗-Erase-0+
Γ � (s, t)

σ
: (x

π
: S) ⊗ T � v

If the first element of the pair is not used, the constructor is erased completely.

2.4.2.2 Destructor

Γ1 � s
σ
: (x

π
: S) ⊗ T Γ1 + Γ2 � let (x, y) = s in t

σ′
: M[z := (x, y)] σ, σ′/ = 0 s � u t � v

let-Erase-++

Γ1 + Γ2 � let (x, y) = s in t
σ′
: M[z := (x, y)] � let (x, y) = u in v

If the pair is used, the destructor is erased to the untyped destructor.

Γ1 � s
σ
: (x

π
: S) ⊗ T Γ1 + Γ2 � let (x, y) = s in t

σ′
: M[z := (x, y)] σ = 0 ∧ σ′/ = 0 t � v

let-Erase-0+

Γ1 + Γ2 � let (x, y) = s in t
σ′
: M[z := (x, y)] � v

If the pair is not used, the destructor is erased completely.

2.5 Reduction Semantics

Contraction is
De-annotation is
The reflexive transitive closure of and yields beta reduction as

usual.

2.5.1 Parallel-Step Reduction Let parallel reduction be �, operating on
usage-erased terms, by mutual induction.



156 C. Goes

2.5.1.1 Basic Lambda Calculus

2.5.1.2 Multiplicative Conjunction

Reduction takes place inside a multiplicative conjunction.

2.5.1.3 Primitives

κ ∈ K
κ � κ

c ∈ C
c � c

Primitive types and primitive constants reduce to themselves.

Primitive functions reduce according to the reduction operation defined for
the function according to the Michelson semantics [12].



Compiling Quantitative Type Theory 157

2.6 Examples

2.6.1 SKI Combinators

2.6.1.1 S Combinator The dependent S (“substitution”) combinator can be
typed as (Fig. 2):

Fig. 2. S combinator

This will also typecheck if the x, y, and z argument usages are replaced with
ω (instead of 1 and 2).

2.6.1.2 K Combinator The dependent K (“constant”) combinator can be typed
as (Fig. 3):

Fig. 3. K combinator

This will also typecheck if the x and y argument usages are replaced with ω
(instead of 1 and 0).

2.6.1.3 I Combinator The dependent I (“identity”) combinator can be typed as
(Fig. 4):

Fig. 4. I combinator

This will also typecheck if the x argument usage is replaced with ω (instead
of 1).

2.6.2 Church-Encoded Natural Numbers
The dependent Church-encoded natural n, where the successor function s is
applied n times, can be typed as (Fig. 5):

Fig. 5. Church-encode n



158 C. Goes

This will also typecheck if the s argument usage is replaced with ω (instead
of n for some specific n).

3 Towards Compilation to Michelson

The erased core language can be compiled to Michelson by fairly standard proce-
dure, with accommodations for the particular cost model of Michelson—the main
addition is the more efficient stack manipulation enabled by usage accounting.

3.1 Stack Tracking

As is standard for compilation of the lambda calculus to stack machines, we
track a virtual symbolic stack which maps variable names to stack positions.
When a function call is compiled, such as:

let f x y = x * y

x and y are fetched from their positions in the stack and the body of f is inlined
(suppose x is at stack position 3 and y is at stack position 4:

{DUG 3; DUP; DIG 4; DUG 5; DUP; DIG 6; MUL}

Lambdas in Michelson are quite expensive—each can take only one argument,
so multiple-argument functions compiled to lambdas must tuple their arguments
before calling the function, and the function body must un-tuple them—so we
inline aggressively and also track virtual closures on the stack to avoid compiling
to LAMBDA whenever possible. All of this is standard fare.

3.2 Usage Accounting

Consider the following indicative example—compilation of the identity function:

let f x = x

In a normal compilation of the lambda calculus to a stack machine without
quantitative type theory or any notion of linearity, x must be kept on the stack
in case it is used elsewhere and only dropped after the computation is complete,
so f must be compiled to:

{DUG 5; DUP; DIG 6}

With quantitative type theory, the compiler can lookup the usage annotation
for x, and if x is only used once, then x can simply be moved from lower in the
stack instead:

{DUG 5}

This technique easily generalises to multi-argument functions and any usage
on the semiring—in cases of usage ω, the non-quantitative behaviour is preserved,
and x is instead dropped after the computation is complete.



Compiling Quantitative Type Theory 159

3.3 Usage Propagation

Consider the following function which uses its argument twice:

let f x = x * x

Suppose that x is five slots down in the stack, with a total usage of 3. A
naive implementation without lookup caching might fetch x twice:

{DUG 5; DUP; DIG 6; DUG 6; DUP; DIG 7; MUL}

Or, alternatively, with lookup caching but without linearity, x might be dupli-
cated more than necessary (as each lookup must treat the variable as possibly
being used elsewhere):

{DUG 5; DUP; DIG 6; DUP; DUP; DIG 2; MUL; DIP {DROP}}

Instead, with usage annotations, we can propagate two usages of x upwards
immediately and avoid both the double-fetch and the unnecessary duplica-
tion/cleanup:

{DUG 5; DUP; DIG 6; DUP; MUL}

4 Future Work

4.1 Improved Usage Accounting with ANF

As detailed in a blog post [14], we plan to add an administrative normal form
transformation, such that all functions take primitives—for example, ANF would
transform

f a (x + y) b

into

let xy0 = x + y in f a xy0 b

This would allow all usages of variables to be moved forward to the top of
the stack when used and remaining uses to be moved back, instead of moving
all usages but one forward, which is currently required.

4.2 First-Class Usages

Work is in progress to add dependent usages [15], where terms can be lifted
into usages and usages can be converted to terms, such that usages can depend
on terms in the usual dependent-type-theory sense. This will allow more precise
usage accounting in cases where an annotation of ω would otherwise be required,
such as where the usage of one argument to a function depends on the value of
another argument, although it requires more complex accounting in the compiler.

Acknowledgements. This paper describes part of the ongoing research work being
undertaken to develop the Juvix smart contract language [16,17] by the Juvix team
at Metastate, including Marty Stumpf, Jeremy Ornelas, Andy Morris, and April
Goncalves. Thanks to an anonymous reviewer for comments and suggestions.



160 C. Goes

References

1. S. Developers, Solidity: An object-oriented, high-level language for implementing
smart contracts. https://solidity.readthedocs.io/en/v0.6.8/

2. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
https://gavwood.com/paper.pdf

3. Parity Technologies: A postmortem on the parity multi-sig library self-
destruct. https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-
self-destruct/

4. 0x Core Team, “Post-mortem: 0x v2.0 exchange vulnerability.” https://blog.
0xproject.com/post-mortem-0x-v2-0-exchange-vulnerability-763015399578

5. Goodman, L.M.: Tezos - a self-amending crypto-ledger, September 2014. https://
tezos.com/static/white paper-2dc8c02267a8fb86bd67a108199441bf.pdf

6. Bernardo, B., Cauderlier, R., Pesin, B., Tesson, J.: Albert, an intermediate smart-
contract language for the tezos blockchain (2020). https://arxiv.org/abs/2001.
02630

7. Bernardo, B., Cauderlier, R., Hu, Z., Pesin, B., Tesson, J.: Mi-cho-coq, a framework
for certifying tezos smart contracts. https://arxiv.org/abs/1909.08671 (2019)

8. Pettersson, J.: Safer smart contracts through type-driven development. https://
publications.lib.chalmers.se/records/fulltext/234939/234939.pdf

9. Brady, E.: IDRIS - systems programming meets full dependent types. In: PLPV
2011 - Proceedings of the 5th ACM Workshop on Programming Languages Meets
Program Verification, pp. 43–54 (2011)

10. Edgington, B.: Ethereum lisp like language. https://lll-docs.readthedocs.io/en/
latest/lll introduction.html

11. Atkey, R.: Syntax and semantics of quantitative type theory. In: Proceedings of
the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 56–65
(2018)

12. N. Labs: Michelson: The language of smart contracts in tezos. https://tezos.gitlab.
io/whitedoc/michelson.html

13. McBride, C.: I got plenty o’ Nuttin’. In: Lindley, S., McBride, C., Trinder, P., San-
nella, D. (eds.) A List of Successes That Can Change the World. LNCS, vol. 9600,
pp. 207–233. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30936-
1 12

14. Ornelas, J.: Compiling Juvix to Michelson, May 2020. https://research.metastate.
dev/juvix-compiling-juvix-to-michelson/

15. Goes, C., Morris, A.: Usage polymorphism and dependent usages in Juvix, Septem-
ber 2019. https://github.com/cryptiumlabs/juvix/issues/87

16. Goes, C.: The why of Juvix: on the design of smart contract languages, January
2020. https://research.metastate.dev/the-why-of-juvix-part-1-on-the-design-of-s
mart-contract-languages/

17. Goes, C.: The why of Juvix: Ingredients & architecture, January 2020. https://
research.metastate.dev/the-why-of-juvix-ingredients-architecture/

https://solidity.readthedocs.io/en/v0.6.8/
https://gavwood.com/paper.pdf
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://blog.0xproject.com/post-mortem-0x-v2-0-exchange-vulnerability-763015399578
https://blog.0xproject.com/post-mortem-0x-v2-0-exchange-vulnerability-763015399578
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf
https://arxiv.org/abs/2001.02630
https://arxiv.org/abs/2001.02630
https://arxiv.org/abs/1909.08671
https://publications.lib.chalmers.se/records/fulltext/234939/234939.pdf
https://publications.lib.chalmers.se/records/fulltext/234939/234939.pdf
https://lll-docs.readthedocs.io/en/latest/lll_introduction.html
https://lll-docs.readthedocs.io/en/latest/lll_introduction.html
https://tezos.gitlab.io/whitedoc/michelson.html
https://tezos.gitlab.io/whitedoc/michelson.html
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://research.metastate.dev/juvix-compiling-juvix-to-michelson/
https://research.metastate.dev/juvix-compiling-juvix-to-michelson/
https://github.com/cryptiumlabs/juvix/issues/87
https://research.metastate.dev/the-why-of-juvix-part-1-on-the-design-of-smart-contract-languages/
https://research.metastate.dev/the-why-of-juvix-part-1-on-the-design-of-smart-contract-languages/
https://research.metastate.dev/the-why-of-juvix-ingredients-architecture/
https://research.metastate.dev/the-why-of-juvix-ingredients-architecture/

	Compiling Quantitative Type Theory to Michelson for Compile-Time Verification and Run-time Efficiency in Juvix
	1 Introduction and Prior Work
	2 Core Language
	2.1 Preliminaries
	2.2 Syntax
	2.3 Typing Rules
	2.4 Erasure
	2.5 Reduction Semantics
	2.6 Examples

	3 Towards Compilation to Michelson
	3.1 Stack Tracking
	3.2 Usage Accounting
	3.3 Usage Propagation

	4 Future Work
	4.1 Improved Usage Accounting with ANF
	4.2 First-Class Usages

	References




