®

Check for
updates

Grid-Based Approach to Determining
Parameters of the DBSCAN Algorithm

Artur Starczewski'®™) and Andrzej Cader®?

! Institute of Computational Intelligence, Czestochowa University of Technology,
Al Armii Krajowej 36, 42-200 Czestochowa, Poland
artur.starczewski@iisi.pcz.pl
2 Information Technology Institute, University of Social Sciences,

90-113 Lédz, Poland
acader@san.edu.pl
3 Clark University, Worcester, MA 01610, USA

Abstract. Clustering is a very important technique used in many fields
in order to deal with large datasets. In clustering algorithms, one of
the most popular approaches is based on an analysis of clusters den-
sity. Density-based algorithms include different methods but the Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) is one
of the most cited in the scientific literature. This algorithm can identify
clusters of arbitrary shapes and sizes that occur in a dataset. Thus, the
DBSCAN is very widely applied in various applications and has many
modifications. However, there is a key issue of the right choice of its two
input parameters, i.e the neighborhood radius (eps) and the MinPts. In
this paper, a new method for determining the neighborhood radius (eps)
and the MinPts is proposed. This method is based on finding a proper
grid of cells for a dataset. Next, the grid is used to calculate the right
values of these two parameters. Experimental results have been obtained
for several different datasets and they confirm a very good performance
of the newly proposed method.
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1 Introduction

Clustering algorithms discover naturally occurring structures in datasets. Nowa-
days, extensive collections of data pose a great challenge for clustering algo-
rithms. So, many researchers create different new clustering algorithms or mod-
ify existing approaches [5,6,11,19,21]. It is worth noting that data clustering is
applied in various areas, e.g. biology, spatial data analysis, or business. The key
issue is the right choice of input parameters because the same algorithm can
produce different results depending on applied parameters. This problem can
be resolved by using different cluster validity indices, e.g., [10,26,29,30]. Gen-
erally, clustering algorithms can be divided into four categories: partitioning,
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hierarchical, grid-based, and density-based clustering. Well-known partitioning
algorithms include the K-means or Partitioning Around Medoids (PAM) [3,32].
The next clustering category called hierarchical is based on an agglomerative
or divisive approach, e.g. the Single-linkage, Complete-linkage, Average-linkage,
or Divisive ANAlysis Clustering (DTANA) [17,23]. On the other hand, the grid-
based approach creates a grid of cells for a dataset, e.g. the Statistical Informa-
tion Grid-based (STING) or Wavelet-based Clustering (WaveCluster) methods
[18,28,31]. The last category can be represented by the Density-Based Spa-
tial Clustering of Application with Noise (DBSCAN) algorithm [9] which has
many modifications [7,12,13,15,27]. This algorithm can discover clusters of an
arbitrary shape and size but requires two input parameters, i.e. the eps and
the MinPts. The determination of these parameters is very important for the
DBSCAN algorithm to work properly. It is important to note that clustering
methods can be used during the process of designing various neural networks
[1,2], fuzzy, and rule systems [4,8,14,16,20,22,24,25].

In this paper, a new approach to determining the eps and Min Pts parameters
is proposed. It is based on the creation of a proper grid of cells and the grid is
used to define the values of the two parameters. This paper is organized as
follows: Sect.2 presents a description of the DBSCAN clustering algorithm.
In Sect.3 the new method for determining the parameters is outlined, while
Sect. 4 illustrates the experimental results on datasets. Finally, Sect. 5 presents
the conclusions.

2 The DBSCAN Algorithm

The concept of the DBSCAN algorithm is presented in this section. As men-
tioned above, this algorithm is very popular, because it can find clusters of
arbitrary shapes and requires only two input parameters, i.e. the eps and the
MinPts. The eps is usually determined by the user and it has a large influence
on the creation of clusters. The next parameter, i.e. the MinPts is the mini-
mal number of neighboring points belonging to the so-called core point. Let us
denote a dataset by X, where point p € X. The following definitions (see [9])
will be helpful in understanding how the DBSCAN algorithm works.

Definition 1: The eps-neighborhood of point p € X is called Ne,s(p) and is
defined as follows: Neps (p) = {q € X|dist(p,q) < eps}, where dist(p,q) is a dis-
tance function between p and q.

Definition 2: p is called the core if the number of points belonging to Neps(p)
is greater or equal to the MinPts.

Definition 3: Point ¢ is directly density-reachable from point p (for the given
eps and the MinPts) if p is the core point and ¢ belongs to Neps(p).

Definition 4: if point ¢ is directly density-reachable from point p and the
number of points belonging to Neps(g) is smaller than the MinPts, ¢ is called a
border point.
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Definition 5: Point q is a noise if it is neither a core point nor a border point.

Definition 6: Point ¢ is density-reachable from point p (for the given eps and
the MinPts) if there is a chain of points ¢, g2, ..., ¢n and ¢1 = p, g, = ¢, so that
Gi+1 is directly density-reachable from g;

Definition 7: Point q is density-connected to point p (for the given eps and
the MinPts) if there is point o such that ¢ and p are density-reachable from
point o.

Definition 8: Cluster C (for the given eps and the MinPts) is a non-empty
subset of X and the following conditions are satisfied: first, Vp, ¢: if p € C' and q
is density-reachable from p, then q € C, next Vp,q € C: p is density-connected
to gq.

The DBSCAN algorithm creates clusters according to the following: at first,
point p is selected randomly if | Neps(p)| > MinPts, than point p will be the core
point and a new cluster will be created. Next, the new cluster is expanded by
the points which are density-reachable from p. This process is repeated until no
cluster is found. On the other hand, if | Neps(p)| < MinPts, then point p will be a
noise, but this point can be included in another cluster if it is density-reachable
from some core point.

3 Grid-Based Approach to Determining the Eps
and MinPts Parameters

The right choice of the eps and MinPts parameters is a fundamental issue for
the high performance of the DBSCAN algorithm. The proposed method is based
on a uniform grid of cells which is created for a dataset. In order to provide a
clearer explanation of this new approach, an example of a 2-dimensional dataset
is generated. Figure 1 shows this dataset consisting of 1200 elements located in
four clusters, i.e. 200, 250, 300 and 450 elements per cluster, respectively. Next,
for this dataset an example grid of cells can be created, e.g. consisting of 100
cells (10x10). Figure 2 shows this uniform grid of cells. It can be noted that the

Fig. 1. An example of a 2-dimensional dataset consisting of four clusters.
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Fig. 2. Uniform grid consisting of 100 cells (10x 10) for the example dataset.

proper grid can be used to define the value of the eps parameter, but the key
issue is an appropriate choice of the size of the grid, which has a big influence on
the value of the parameter. In this new method, a way of solving this problem is
proposed and it consists of a few steps. First, several grids of cells are created,
where the size of rows and columns of grids change in a wide range, i.e. from
2 to 90 (2x2 and 90x90 cells). So, the number of cells is changed from 4 to
8100. Such a number of cells gives precise information about the properties of a
dataset. Let us denote the size of a grid by G;... For all the created grids, three
ranges can be defined as in the following:

rangel for 2 < Ggze < 30
range2 for 30 < Ggize < 60 (1)
ranged for 60 < Gge < 90

It is worth noting that the second parameter of the DBSCAN algorithm, i.e. the
MinPts is also very important and it affects a number of so-called noise data.
Generally, the choice of this parameter is often realized individually depending
on a dataset, but very often the MinPts equals 4, 5, or 6. Such values of this
parameter ensure a good compromise between the size of clusters and an amount
of noise data in most cases. So, in this new approach, the values of the MinPts
are selected from 4 to 6. As mentioned above, the sizes of the grids range from 2
to 90. Next, in all the created grids are found cells which include only 4 elements.
Then, the grid which includes a maximum number of cells with four elements is
found and the size of the grid is noted by G,,qz4. Furthermore, the grids which
include a maximum number of cells with 5 and 6 elements are also found and
the sizes of grids are noted by G5 and Goqz6. In the next step, the disty,
dists; and distg parameters are determined for the Goaz4, Gmazs and Gmazs
grid sizes, respectively. The values of these parameters are maximum distances
between the elements of the cells which include 4, 5, and 6 elements, respectively.
Next, if condition (Gmaza > Gmazs > Gmaze) is fulfilled, the value of the eps is
defined as follows:
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axdisty for Gpmaza € Trangel
eps = { bxdists for Gpaza € range2 (2)
cxdistg  for Guaza € Tange3

where factors a, b and ¢ are experimentally determined and their values are 1,
1.2 and 1.5, respectively. On the other hand, the MinPts is expressed as follows:

4 for Gumaga € Tangel
MinPts =<5 for Gpawa € range2 (3)
6 for Gaza € range3

Sometimes, for different datasets condition (Graza > Gmazs > Gmaze) May not
be fulfilled. This means that the clusters have a different density because when
the MinPts increases and the clusters have a similar density, the maximum
number of cells should be decreased. In these cases, when the condition is not
fulfilled the values of the a, b, and ¢ factors should be increased so that they equal
2. In Table1 are presented the values of G4, Gmazs and Goaz¢ calculated
for the example dataset. It can be observed that for the MinPts equal to 5, the
size of the grid is larger than the size for the MinPts equal to 4. So, clusters
are of different density in the dataset (see Fig.1). Condition (Gpaza > Gmazs >
Grmaze) 1s not fulfilled and the b parameter is increased (equals 2). Moreover,
when the MinPts is equal to 4, Ginaza is 52 and is included in range2. Thus,
eps = b x dists (see Eq.2) and the values of the eps and MinPts parameters
are 0.20 and 5, respectively. Such values of input parameters are used in the
DBSCAN algorithm.

Table 1. Values of Gmaza, Gmazs and Gmaze for the example dataset

Maximum number of cells Values of the MinPts | Number of cells
Gmaza = 52 (52x52—2704 cells) | 4 33
Gmazs = 62 (62x62—3844 cells) | 5 24
Gmaze = 48 (48x48—864 cells) |6 17

Figure 3 shows the results of the DBSCAN clustering algorithm for the exam-
ple dataset. In the next section, the results of the experimental tests are presented
to confirm the effectiveness of the new approach.
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Fig. 3. Results of the DBSCAN clustering algorithm for the example dataset.

4 Experimental Results

In this section, several experiments have been conducted on 2-dimensional arti-
ficial datasets. In these experiments, the DBSCAN algorithm is used to cluster
the data. As mentioned above, the eps and MinPts parameters play a very
important role in creating correct clusters by this clustering algorithm. So, they
are defined based on the new method described in Sect.3 and the calculated
values of these parameters are presented in Table 3. Moreover, the evaluation of
the accuracy of the DBSCAN algorithm is conducted by a visual inspection. It
is worth noting that the artificial datasets include clusters of various shapes and
sizes. On the other hand, for clustering multidimensional datasets, determining
the input parameters of the DBSCAN algorithm is very difficult.

Table 2. A detailed description of the artificial datasets

Datasets | No. of elements | Clusters
Data 1 | 700 2
Data 2 | 700 3
Data 3 | 3000 3
Data 4 | 1000 3
Data 5 | 900 4
Data 6 | 500 4
Data 7 | 500 4
Data 8 | 1800 5
Data 9 | 700 6
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Table 3. The eps and MinPts values used by the DBSCAN algorithm

Datasets | eps | MinPts
Data 1 10.36 |5
Data 2 10.22 |4
Data 3 10.16 |6
Data 4 10.20 |5
Data 5 10.34|6
Data 6 10.33|5
Data 7 10.20 |5
Data 8 10.23|5
Data 9 10.21 |5

4.1 Datasets

In the conducted experiments nine 2-dimensional datasets are used. Most of
them come from the R package. The artificial data are called Data 1, Data 2,
Data 3, Data 4, Data 5, Data 6, Data 7, Data 8 and Data 9, respectively. They
consist of a various number of clusters, i.e. 2, 3, 4, 5, and 6 clusters. The scatter
plot of these data is presented in Fig.4. As it can be observed on the plot, the
clusters are located in different areas and some of the clusters are very close
to each other and the others are quite far apart. For instance, Data 1 is a so-
called spirals problem, where the points are on two entangled spirals, in Data
5 the elements create a Gaussian, square, triangle and wave shapes and Data
6 consists of 2 Gaussian eyes, a trapezoid nose and a parabola mouth (with a
vertical Gaussian one). Moreover, the sizes of the clusters are different and they
contain a various number of elements. In Table 2 is shown a description of these
datasets.

4.2 Experiments

The experimental analysis is designed to evaluate the performance of the new
method to specify the eps and MinPts parameters. As mentioned above, these
parameters are very important for the DBSCAN algorithm to work correctly.
In standard approaches, they are determined by a visual inspection of the sorted
values of a function which computes a distance between each element of a dataset
and its k-th nearest neighbor. The new approach described in Sect.3 is based
on finding a proper grid of cells and it makes it possible to determine these two
input parameters. In these experiments, the nine 2-dimensional datasets used
are called Data 1, Data 2, Data 3, Data 4, Data 5, Data 6, Data 7, Data 8 and
Data 9 datasets. It is worth noting that the value of the MinPts parameter is
also chosen when the size of the grid changes from 2 to 90 (2x 2 and 90x 90 cells).
Then, when these parameters are specified by the new method, the DBSCAN
algorithm can be used to cluster these datasets. Figure5 shows the results of
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Fig. 4. Examples of 2-dimensional artificial datasets: (a) Data 1, (b) Data 2, (¢) Data 3,
(d) Data 4, (e) Data 5, (f) Data 6, (g) Data 7, (h) Data 8 and (i) Data 9.

the DBSCAN algorithm, where each cluster is marked with different signs. The
data elements classified as the noise are marked with a circle. Thus, despite the
fact that the differences in the distances and the shapes between clusters are
significant, all the datasets are clustered correctly by the DBSCAN. Moreover,
a number of the data elements classified as noise in all the datasets is relatively
insignificant.
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Fig. 5. Results of the DBSCAN clustering algorithm for 2-dimensional datasets: (a)
Data 1, (b) Data 2, (c) Data 3, (d) Data 4, (e) Data 5, (f) Data 6, (g) Data 7, (h)
Data 8 and (i) Data 9

5 Conclusions

In this paper, a new approach is proposed to calculate the eps and MinPts
parameters of the DBSCAN algorithm. It is based on finding the right grid of
cells, which is selected from many other grids. As mentioned above, the sizes
of the grids change from 2 to 90. It is worth noting that the determination
of the MinPts parameter is also difficult and it is often chosen empirically
depending on datasets being investigated. In this new method, the values of
the MinPts parameter are selected from 4 to 6. Generally, the right grid of
cells makes it possible to correctly calculate these two input parameters. In
the conducted experiments, several 2-dimensional datasets were used, where a
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number of clusters, sizes, and shapes were very different. All the presented results
confirm the high efficiency of the newly proposed approach.

References

1. Bilski, J., Smolag, J., Zurada, J.M.: Parallel approach to the Levenberg-Marquardt
learning algorithm for feedforward neural networks. In: Rutkowski, L., Kory-
tkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 3-14. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19324-3_1

2. Bilski, J., Wilamowski, B.M.: Parallel Levenberg-Marquardt algorithm with-
out error backpropagation. In: Rutkowski, L., Korytkowski, M., Scherer, R.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI),
vol. 10245, pp. 25-39. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
59063-9_3

3. Bradley, P., Fayyad, U.: Refining initial points for k-means clustering. In: Proceed-
ings of the Fifteenth International Conference on Knowledge Discovery and Data
Mining, pp. 9-15. AAAI Press, New York (1998)

4. Bologna, G., Hayashi, Y.: Characterization of symbolic rules embedded in deep
DIMLP networks: a challenge to transparency of deep learning. J. Artif. Intell.
Soft Comput. Res. 7(4), 265-286 (2017)

5. Chen, X., Liu, W., Qui, H., Lai, J.: APSCAN: a parameter free algorithm for
clustering. Pattern Recogn. Lett. 32, 973-986 (2011)

6. Chen, J.: Hybrid clustering algorithm based on PSO with the multidimensional
asynchronism and stochastic disturbance method. J. Theor. Appl. Inform. Technol.
46, 343-440 (2012)

7. Chen, Y., Tang, S., Bouguila, N., Wang, C., Du, J., Li, H.: A fast clustering algo-
rithm based on pruning unnecessary distance computations in DBSCAN for high-
dimensional data. Pattern Recogn. 83, 375-387 (2018)

8. D’Aniello, G., Gaeta, M., Loia, F., Reformat, M., Toti, D.: An environment for
collective perception based on fuzzy and semantic approaches. J. Artif. Intell. Soft
Comput. Res. 8(3), 191-210 (2018)

9. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proceeding of 2nd Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 226-231 (1996)

10. Franti, P., Rezaei, M., Zhao, Q.: Centroid index: cluster level similarity measure.
Pattern Recogn. 47(9), 3034-3045 (2014)

11. Hruschka, E.R., de Castro, L.N., Campello, R.J.: Evolutionary algorithms for clus-
tering gene-expression data. In: Data Mining, Fourth IEEE International Confer-
ence on Data Mining (ICDM 2004), pp. 403-406. IEEE (2004)

12. Karami, A., Johansson, R.: Choosing DBSCAN parameters automatically using
differential evolution. Int. J. Comput. Appl. 91, 1-11 (2014)

13. Lai, W., Zhou, M., Hu, F., Bian, K., Song, Q.: A new DBSCAN parameters deter-
mination method based on improved MVO. IEEE Access 7, 104085-104095 (2019)

14. Liu, H., Gegov, A., Cocea, M.: Rule based networks: an efficient and interpretable
representation of computational models. J. Artif. Intell. Soft Comput. Res. 7(2),
111-123 (2017)

15. Luchi, D., Rodrigues, A.L., Varejao, F.M.: Sampling approaches for applying
DBSCAN to large datasets. Pattern Recogn. Lett. 117, 90-96 (2019)


https://doi.org/10.1007/978-3-319-19324-3_1
https://doi.org/10.1007/978-3-319-19324-3_1
https://doi.org/10.1007/978-3-319-59063-9_3
https://doi.org/10.1007/978-3-319-59063-9_3

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Grid-Based Approach to Determining Parameters 565

Ferdaus, M.M., Anavatti, S.G., Matthew, A., Pratama, G., Pratama, M.: Devel-
opment of C-means clustering based adaptive fuzzy controller for a flapping wing
micro air vehicle. J. Artif. Intell. Soft Comput. Res. 9(2), 99-109 (2019). https://
doi.org/10.2478 /jaiscr-2018-0027

Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms.
Comput. J. 26(4), 354-359 (1983)

Patrikainen, A., Meila, M.: Comparing subspace clusterings. IEEE Trans. Knowl.
Data Eng. 18(7), 902-916 (2006)

Pei, Z., Hua, X., Han, J.: The clustering algorithm based on particle swarm opti-
mization algorithm. In: Proceedings of the 2008 International Conference on Intel-
ligent Computation Technology and Automation, Washington, USA, vol. 1, pp.
148-151 (2008)

Prasad, M., Liu, Y.-T., Li, D.-L., Lin, C.-T., Shah, R.R., Kaiwartya, O.P.: A new
mechanism for data visualization with TSK-type preprocessed collaborative fuzzy
rule based system. J. Artif. Intell. Soft Comput. Res. 7(1), 3346 (2017)

Rastin, P., Matei, B., Cabanes, G., Grozavu, N., Bennani, Y.: Impact of learners’
quality and diversity in collaborative clustering. J. Artif. Intell. Soft Comput. Res.
9(2), 149-165 (2019). https://doi.org/10.2478/jaiscr-2018-0030

Riid, A., Preden, J.-S.: Design of fuzzy rule-based classifiers through granulation
and consolidation. J. Artif. Intell. Soft Comput. Res. 7(2), 137-147 (2017)

Rohlf, F.: Single-link clustering algorithms. In: Krishnaiah, P.R., Kanal, L.N.,
(eds.) Handbook of Statistics, vol. 2, pp. 267284 (1982)

Rutkowski, T., Lapa, K., Nielek, R.: On explainable fuzzy recommenders and their
performance evaluation. Int. J. Appl. Math. Comput. Sci. 29(3), 595-610 (2019).
https://doi.org/10.2478 /amcs-2019-0044

Rutkowski, T., Lapa, K., Jaworski, M., Nielek, R., Rutkowska, D.: On explain-
able flexible fuzzy recommender and its performance evaluation using the akaike
information criterion. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019.
CCIS, vol. 1142, pp. 717-724. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-36808-1_78

Sameh, A.S., Asoke, K.N.: Development of assessment criteria for clustering algo-
rithms. Pattern Anal. Appl. 12(1), 79-98 (2009)

Shah G.H.: An improved DBSCAN, a density based clustering algorithm with
parameter selection for high dimensional data sets. In: Nirma University Interna-
tional Engineering (NUiCONE), pp. 1-6 (2012)

Sheikholeslam, G., Chatterjee, S., Zhang, A.: WaveCluster: a wavelet-based clus-
tering approach for spatial data in very large databases. Int. J. Very Large Data
Bases 8(3-4), 289-304 (2000)

Shieh, H.-L.: Robust validity index for a modified subtractive clustering algorithm.
Appl. Soft Comput. 22, 47-59 (2014)

Starczewski, A.: A new validity index for crisp clusters. Pattern Anal. Appl. 20(3),
687—700 (2017)

Wang, W., Yang, J., Muntz, R.: STING: a statistical information grid approach to
spatial data mining. In: Proceedings of the 23rd International Conference on Very
Large Data Bases. (VLDB 1997), pp. 186-195 (1997)

Zalik, K.R.: An efficient k-means clustering algorithm. Pattern Recogn. Lett. 29(9),
1385-1391 (2008)


https://doi.org/10.2478/jaiscr-2018-0027
https://doi.org/10.2478/jaiscr-2018-0027
https://doi.org/10.2478/jaiscr-2018-0030
https://doi.org/10.2478/amcs-2019-0044
https://doi.org/10.1007/978-3-030-36808-1_78
https://doi.org/10.1007/978-3-030-36808-1_78

	Grid-Based Approach to Determining Parameters of the DBSCAN Algorithm
	1 Introduction
	2 The DBSCAN Algorithm
	3 Grid-Based Approach to Determining the Eps and MinPts Parameters
	4 Experimental Results
	4.1 Datasets
	4.2 Experiments

	5 Conclusions
	References




