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Abstract. In the paper, authors explore the possibility of using the
recurrent neural networks (RNN) - Elman, GRU and LSTM - for an
approximation of the solution of the fractional-orders differential equa-
tions. The RNN network parameters are estimated via optimisation with
the second order L-BFGS algorithm. It is done based on data from four
systems: simple first and second fractional order LTI systems, a system
of fractional-order point kinetics and heat exchange in the nuclear reac-
tor core and complex nonlinear system. The obtained result shows that
the studied RNNs are very promising as approximators of the fractional-
order systems. On the other hand, these approximations may be easily
implemented in real digital control platforms.

Keywords: Neural networks · Recurrent neural networks · Fractional
order systems · Nonlinear systems · Mathematical modelling

1 Introduction

The methods of the Fractional Order Calculus (FOC) involving, non-integer
derivatives and integrals, have been known since XVII century but only in recent
years have their technical applications been extensively reported in numerous
fields of science and engineering [13]. Also, in the field of control systems, FOC
has found its application that is mainly used for fractional-order modelling of
complex system dynamics and the fractional-order control strategies synthesis.
Literature studies demonstrate that the dynamics of many complex systems
taking part in the field of control theory can be described more accurately
with the differential equations of non-integer order. The fractional-order con-
trol strategies, with appropriate tuning and design methodologies, may achieve
better control quality in various control systems (e.g. fractional-order PID con-
trollers [17,19]).

The fractional-order dynamic systems are characterised by infinite memory,
or in other words, they are of infinite dimensions. Consequently, the mathemat-
ical models of such systems in the Laplace or Z domain are characterised by
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an irrational order and the discrete models by an infinite memory of processed
samples. While the synthesis of systems based on fractional order operators is
not particularly problematic, the implementation of such systems on digital con-
trol platforms (e.g. FPGA, DSP, PLC) is a demanding task. In the latter case,
techniques that allow for the approximation of fractional systems are needed.
Such approximation techniques most often lead to the identification of appro-
priate dynamic systems, which will be described by integer-order models or will
use finite memory resources. The most popular and widely used approximations
of fractional order systems include: continued fraction-based approximations,
Oustaloup filters, frequency response fitting approach and many other [19].

Each of the mentioned approximation methods has its own cons and pros.
Generally, they allow for an approximation of non-integer order operators with
the use of structures of classical digital, mostly linear and sometimes nonlinear,
filters. Especially in the case of approximation, the long memory length is needed
what may cause problems during the real time implementation on the real digi-
tal control platforms. Moreover, resulting polynomials: (i) may be ill-conditioned
(coefficients with very large values), which may lead to the computational insta-
bility and overflow errors on the digital platform, (ii) may contain internal insta-
bility related to the inappropriate location of polynomials zeros and poles, and
additionally, (iii) the same approximation cannot be used if there are changes in
the value of fractional-order of differentiation or integration operator, or char-
acteristic system parameters in the time/frequency domain - the approximation
procedure must be carried out again.

To more or less overcome these problems various authors propose in litera-
ture the use of Artificial Neural Networks to approximate the fractional-order
operators or linear and nonlinear fractional-order systems [9,18,20]. Typically,
various authors in their works use the feed-forward multi-layer perceptron struc-
ture of the ANN, to model fractional-order dynamic systems. In literature, the
analysis of dynamics and stability of the fractional-order neural network with
the structure of recurrent Hopfield network may be found [10].

In this paper, the authors explore the possibility of using some recent struc-
tures of recurrent neural networks (RNN), with dynamic memory, as a more
natural substitute for the approximation of evolving process states according to
various mathematical models of the dynamic systems which may be described
by ordinary, and especially by the fractional-orders differential equations sets.
Those RNN structures are: (i) Elman recurrent neural network [4], (ii) networks
consisting of GRU cells [3], (iii) and networks consisting of LSTM cells [8].

The proposed RNN structures are verified based on a series of numerical
experiments with fractional-order systems models in the form of: (i) a simple
linear fractional first-order LTI system, (ii) a simple linear fractional secondorder
LTI system, (iii) nonlinear fractional-order physical system of point kinetics and
heat exchange in the nuclear reactor core [5,14], (iv) and a complex nonlinear
system [19].



Approximation of Fractional Order Dynamic Systems Using RNN 217

The paper is organised as follows. In Sect. 2 the considered problem is
described. In Sect. 3 the methodology used in the paper is presented. Section 4
presents the results of numerical simulations. Finally, Sect. 5 concludes the paper.

2 Problem Statement

The recurrent neural networks are known for their excellent approximation prop-
erties. Following [7,12] it’s worthwhile to quote here the universal approximation
theorem:

Theorem 1. Any nonlinear dynamic system may be approximated by a recur-
rent neural network to any desired degree of accuracy and with no restrictions
imposed on the compactness of the state space, provided that the network is
equipped with an adequate number of hidden neurons.

The quoted theorem about the universal approximation of systems using
recurrent neural networks is the foundation on which the research presented
in the paper is based. In the context of the usability of the above mentioned
theorem, the following problems should be kept in mind:

1. selection of appropriate recursive network architecture i.e. selection of ade-
quate number of neurons in the hidden layer and selection of cell type of
hidden neurons,

2. selection of appropriate network parameters i.e. weights and biases,
3. selection of an appropriate optimisation algorithm to obtain satisfactory qual-

ity indicators that measure the deviation between the training/validation data
and the output of a given recursive network.

Referring to the first problem, selecting an appropriate network architecture
is a complex task. The research was limited only to increasing the number of neu-
rons/cells in one hidden network layer. It was assumed that networks will consist
of 1 to 5 cells/neurons in the hidden layer respectively. During this research, the
performance of Elman-type networks (Elman RNN), networks consisting of GRU
cells and networks consisting of LSTM cells was compared.

With regard to the second problem, the choice of network parameters was
made using optimisation techniques. It should be noted here, that on the basis
of the universal approximation theorem, it can be concluded that such a recur-
rent neural network exists, which will be able to approximate with satisfactory
accuracy the dynamic system of a fractional order. Also, it should be impor-
tant to note that there is no certainty of finding the appropriate set of network
parameters that will allow for satisfactory approximation.

The last of the problems mentioned above concerns the optimisation algo-
rithm that is used to select network parameters. In the research, the L-BFGS
algorithm [11] was used, which belongs to the family of 2nd order quasi-Newton
methods. This method has been chosen because it is characterised by the fact
that during one optimisation step, an immediate jump to the local minimum is
possible and also there is a built-in mechanism for selecting the optimiser step
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size. Additionally, the L-BFGS algorithm is less memory demanding in compari-
son to the standard BFGS algorithm. It was also noted that Hessian information
processed by the algorithm significantly accelerates the optimisation process so
that multiple optimiser runs were not an issue.

2.1 Recurrent Neural Network Architectures Used in the Research

As mentioned earlier in Sect. 2, in this study three recursive neural network
architectures were used. These architectures are described below in a compact
form [1]:

Elman RNN

ht = tanh(Wihxt + bih + Whhh(t−1) + bhh) (1)

where ht is the hidden state at time t, xt is the input at time t and h(t−1) is the
hidden state at time t−1 or the initial hidden state at time 0, Wih is the learnable
input-hidden weights matrix, Whh is the learnable hidden-hidden weights matrix,
bih is the learnable input-hidden bias and bhh is the learnable hidden-hidden
bias. As the authors of the PyTorch library state, that the second bias vector is
included for NVIDIA CUDA R© Deep Neural Network library compatibility.

GRU
rt = σ(Wirxt + bir + Whrh(t−1) + bhr)
zt = σ(Wizxt + biz + Whzh(t−1) + bhz)
nt = tanh(Winxt + bin + rt ∗ (Whhh(h−1) + bhn))
ht = (1 − zt) ∗ nt + zt ∗ h(t−1)

(2)

where rt, zt, nt are the reset, update and new gates, respectively, σ is the sig-
moid function, ∗ is the Hadamard product, Wir, Wiz, Win are learnable input-
reset, input-update and input-new weights matrices, Whr, Whz are hidden-reset
and hidden-update weights matrices, bir, biz, bin are lernable input-reset, input-
update and input-new biases, bhr, bhz, bhn are learnable hidden-reset, hidden-
update, and hidden-new biases.

LSTM
it = σ(Wiixt + bii + Whih(t−1) + bhi)
ft = σ(Wifxt + bif + Whfh(t−1) + bhf )
gt = tanh(Wigxt + big + Whgh(t−1) + bhg)
ot = σ(Wioxt + bio + Whoh(t−1) + bho)
ct = ft ∗ c(t−1) + it ∗ gt

ht = ot ∗ tanh(ct)

(3)

where ct is the cell state at time t, it, ft, gt, ot are input, forget, cell and output
gates respectively, Wii, Wif , Wig, Wio, are learnable input-input, input-forget,
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input-cell and input-output weights matrices, Whi, Whf , Whg, Who are learnable
hidden-input, hidden-forget, hidden-cell and hidden-output weights matrices,
bhi, bhf , bhg, bho are learnable hidden-input, hidden-forget, hidden-cell, hidden-
output biases.

Hidden state in each analysed neural network was subjected to linear trans-
formation in order to obtain a single network output. The first network used in
the presented study, i.e. Elman RNN is a classic recurrent neural network. In
fact, it was used as background for more advanced architectures that use gated
units. In general, gated neural networks, such as GRU and LSTM networks are
based on the idea of creating paths through time that have derivatives that nei-
ther vanish nor explode [6]. This is achieved by allowing connection weights to
change at each time step. Such a mechanism, together with the network’s ability
to learn when the self-decision about clearing the state should be taken, allows
to accumulate information over long periods of time [6]. These properties match
closely with the problem of approximation of dynamic systems of fractional order
discussed in the article and therefore it was decided to use gated networks such
as GRU and LSTM networks for this purpose.

3 Research Method

3.1 Fractional Order Dynamic Systems Models

In order to examine the approximation performance of fractional systems by
recurrent neural networks, four mathematical models involving fractional oper-
ators were used. The first model is a fractional first order LTI system (FFOS).
This model is described by the following fractional order differential equation

τDα1x(t) + x(t) = k1u(t) (4)

where τ = 1, 5 is exponential decay time constant, α1 = 0, 8 is fractional order of
differential operator D (Dα = dα

dtα , αεR, α > 0), k1 = 0, 8 is the forcing function
gain, u(t) is the forcing function and x(t) is a function of time.

The second model is a fractional second order LTI system (FSOS) of an oscil-
latory character described by the following system of fractional commensurate
order differential equations{

Dα2x1(t) = x2(t)
Dα2x2(t) = −ω2

nx1(t) − 2ζωnx2(t) + k2ω
2
nu(t)

(5)

where α2 = 1, 2 parameter is used as the base order of the system, ωn = 2
is natural frequency of the system and ζ = 0, 707 is the damping ratio of the
system. The initial conditions for LTI models were set to 0. In order to obtain
responses to the above mentioned models, the definition of Grunwald-Letnikov
fractional order operator was used.

The third system used in the study is a nonlinear nuclear reactor model in
which point-neutron kinetics is described by a system of fractional-order differen-
tial equations, based on one group of delayed-neutron precursor nuclei (6–7). In
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the later part of the article this model is referred to as Nuclear Reactor model.
The fractional model retains the main dynamic characteristics of the neutron
motion in which the relaxation time associated with a rapid variation in the
neutron flux contains a fractional order, acting as an exponent of the relaxation
time, to obtain the better representation of a nuclear reactor dynamics with
anomalous diffusion (the diffusion processes do not follow the Fick’s diffusion
law) [14]. The kinetic model is presented as follows

D1+κn(t) +
1
τκ

D1n(t) +
(

1
l

+
1 − β

Λ

)
Dκn(t)

+
1
τκ

(
β − ρ(t)

Λ

)
n(t) = λDκc(t) +

λ

τκ
c(t),

(6)

D1c(t) + λc(t) =
β

Λ
n(t), (7)

where τ is the relaxation time, κ is the anomalous diffusion order (0 < κ ≤ 1), n
is the neutron density, c is the concentration of the neutron delayed precursor,
l is the mean prompt-neutron lifetime, Λ is the neutron generation time, β is
the fraction of delayed neutrons, λ is the decay constant and ρ is the reactivity.
The initial conditions for equations (6–7) are specified as follows n(0) = n0,
c(0) = c0.

The Nuclear Reactor model also contains equations describing the thermal-
hydraulic relations and the reactivity feedback from fuel and coolant tempera-
ture, which are described by means of integer-order differential equations and
algebraic equations based on the classic Newton law of cooling [15,16]

D1TF (t) =
1

mF cpF
(fF Pth(t) − Ah(TF (t) − TC(t))) , (8)

D1TC(t) =
1

mCcpC
((1 − fF )Pth(t) + Ah(TF (t) − TC(t))+

− 2WCcpC(TC(t) − TCin))), (9)

where mF is the mass of the fuel, cpF is the specific heat capacity of the fuel,
TF is the fuel temperature, fF is the fraction of the total power generated in the
fuel, Pth is the nominal reactor thermal power, A is the effective heat transfer
area, h is the average overall heat transfer coefficient, TC is the average coolant
temperature, mC is the mass of the coolant, cpC is the specific heat capacity
of the coolant, WC is the coolant mass flow rate within the core, TCout is the
coolant outlet temperature, and TCin is the coolant inlet temperature.

While the reactivity feedback balance related to the main internal mecha-
nisms (fuel and coolant temperature effects) and external mechanisms (control
rod bank movements) is represented by the following algebraic equation [15,16].

ρ(t) = ρext + αF (TF (t) − TF,0) + αC(TC(t) − TC,0), (10)
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where ρext is the deviation of the external reactivity from the initial (critical)
value, αF is the fuel reactivity coefficient, TF,0 is the initial condition for the fuel
temperature, αC is the coolant reactivity coefficient, TC,0 is the initial condition
for the average coolant temperature. Parameters used in this research for the
fractional nuclear reactor model are presented in Table 1. The nuclear model
equations were discretised using the Diethelms approach and the trapezoidal
method.

Table 1. Parameters of the fractional nuclear reactor model

τ κ β λ Λ l cpF cpC

1.2559 · 10−4 0.99 0.007 0.0810958 0.002 0.00024 247.02 5819.65

fF A Pth h WC TCin αF αC

0.974 5564.89 3436 · 106 1135.65 19851.92 281.94 −1.98 · 10−5 −3.6 · 10−5

mF mC TF,0 TC,0 n0 c0

101032.71 11196.20 826.3684 296.8149 1.0 102.667

The last but no less important model used in the study was a non-linear
system of fractional order described by the following equation

y(t) =
3
4

[
5 sin(10t) − 3D0.9y(t)

3 + 0.2D0.8y(t) + 0.9D0.2y(t)
− ∣∣2D0.7y(t)

∣∣1.5
]

(11)

This model was taken from [19] as an example of a system that is characterised
by dynamics of fractional order and a strongly non-linear structure of the math-
ematical model. In terms of sophistication, this model is the most complex, and
it is expected to be the most difficult to approximate by neural networks used
in the research. In the later part of the article, this model is referred to as a
Nonlinear model.

3.2 Data

In order to generate the training and validation data, Amplitude Modulated
Pseudo Random Binary Sequence (APRBS) was introduced as the input for each
examined dynamic system. For all systems except Nonlinear model the APRBS
consisted of 600 samples, minimum hold time was 10 samples and maximum
hold time was 100 samples. For Nonlinear model the APRBS consisted of 3000
samples, minimum hold time was 50 samples and maximum hold time was 400
samples.

For Fractional LTI systems the amplitude was within a range of [−1, 1], for
the Nuclear Reactor system the amplitude was within a range of [−0.005, 0.005],
and for Nonlinear system the amplitude was within a range of [−3, 3] (Figs. 1,
2, 3 and 4). In order to check the ability of investigated networks to generalise,
a study was carried out based on two test signals, the sinusoidal signal and the
saw tooth signal respectively (Figs. 1, 2, 3 and 4).
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Fig. 1. Data generated on the basis of the FFOS model.

Fig. 2. Data generated on the basis of the FSOS model.

3.3 Software Environment and Optimisation

The research presented in the paper was conducted using Python [2] environment
in version 3.8.2 and PyTorch [1] library in version 1.4. The optimisation was
performed using the L-BFGS algorithm, which is part of the PyTorch library.

In order to maintain consistency of computations between optimisation of
different neural networks, the following common optimisation conditions have
been defined: (i) update history size of the L-BFGS algorithm was set to 100, (ii)
maximum number of iterations per optimisation step of the L-BFGS algorithm
was set to 10, (iii) line search conditions of the L-BFGS algorithm were set to
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Fig. 3. Data generated on the basis of the Nuclear Reactor model. For presentation
purposes, the input data has been scaled to output data level.

Fig. 4. Data generated on the basis of the Nonlinear model.

strong_wolfe, (iv) number of training epochs was set to 30, (v) number of opti-
miser runs for a specific neural network was set to 50, (vi) the initial neural net-
work parameters are randomly selected from uniform distribution U

(
−√

k,
√

k
)

where k = 1
hidden size , (vii) the loss function has been set as MSELoss. Other

properties of the optimisation package included in the PyTorch library were left
as defaults.
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4 Results

In this section, tables with mean and minimum loss functions values are pre-
sented (Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13). The abbreviations in the
column names of the tables are as follows: HU - hidden units, Train - training
data, Val - validation data, P.no. - number of parameters. The mean values were
arranged for the training, validation and test data depending on the number
of neurons/units in the hidden layer of each neural network. The last row in
each table contains the minimum value of the loss function for each data set.
In this row, the hidden column contains information about the number of neu-
rons/units in the hidden layer for which the minimum value of the loss function
was obtained. Tables 2–4, 5–7, 8–10 and 11–13 contain results for FFOS, FSOS,
Nuclear Reactor and Nonlinear dynamic systems respectively.

This section also contains exemplary plots (Figs. 5, 6, 7 and 8) which contain
outputs from the considered dynamic systems (System) and outputs from the con-
sidered neural networks (Net). The plots contain only the results from neural net-
works, which were characterised by the lowest value of the loss function for the
second testing data set. For each data set, the best network was the GRU network
with 4 units in the hidden layer and 89 learnable parameters. The exception to
this was a network approximating a Nonlinear model, which was characterised by
2 units in the hidden layer and 33 learnable parameters. As in previous cases, it
was also a GRU network. Tables 2, 3 and 4 also contain information on the number
of all learnable parameters according to the number of neurons in the hidden layer,
which are similar for other tables. The last figure in this section (Fig. 9) presents
exemplary residual error plots for the neural networks under consideration. This
figure is based on Figs. 5, 6, 7 and 8 labelled ‘Test data 2’.

Table 2. Mean and minimal Loss of
Elman RNN for FFOS data

HU Train. Val. Test1 Test2 P.no.

1 3.25e−03 6.89e−03 6.14e−03 6.52e−03 6

2 7.33e−04 1.45e−03 1.88e−03 1.18e−03 13

3 3.11e−04 8.02e−04 8.55e−04 5.82e−04 22

4 2.68e−04 8.03e−04 1.24e−03 5.94e−04 33

5 2.50e−04 8.26e−04 1.20e−03 5.38e−04 46

3,3,4,3 7.25e−05 3.06e−04 2.86e−04 1.76e−04

Table 3. Mean and minimal Loss of GRU
nets for FFOS data

HU Train. Val. Test1 Test2 P.no.

1 5.00e−04 2.11e−03 3.29e−03 1.25e−03 14

2 6.05e−05 1.32e−04 2.06e−04 2.34e−04 33

3 2.35e−05 1.29e−04 2.06e−04 1.53e−04 58

4 1.07e−05 1.30e−04 2.56e−04 1.65e−04 89

5 6.11e−06 9.90e−05 1.92e−04 1.53e−04 126

5,4,2,4 9.92e−07 2.22e−05 9.26e−06 1.88e−05

Table 4. Mean and minimal Loss of
LSTM nets for FFOS data

HU Train. Val. Test1 Test2 P.no.

1 5.71e−04 3.19e−03 3.65e+04 5.25e+00 18

2 1.64e−04 5.62e−04 6.66e−04 5.40e−04 43

3 8.85e−05 4.56e−04 8.58e−04 1.47e−01 76

4 6.55e−05 4.23e−04 6.68e−04 5.54e−04 117

5 4.58e−05 8.80e−04 2.99e−03 1.40e−02 166

4,5,2,4 1.73e−06 1.04e−04 6.27e−05 6.86e−05

Table 5. Mean and minimal Loss of
Elman RNN for FSOS data

HU Train. Val. Test1 Test2

1 1.92e−02 1.72e−02 6.83e−03 3.04e−02

2 5.02e−03 4.38e−03 2.50e−02 2.92e−02

3 1.27e−03 1.51e−03 1.63e−03 3.35e−03

4 6.30e−04 7.62e−04 9.79e−04 1.92e−03

5 3.97e−04 4.31e−04 4.02e−04 2.13e−03

4,5,2,3 7.54e−05 1.01e−04 4.97e−05 1.95e−04
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Table 6. Mean and minimal Loss of GRU
nets for FSOS data

HU Train. Val. Test1 Test2

1 1.40e−02 1.73e+04 3.73e+04 2.29e+00
2 5.19e−04 4.42e−03 2.80e−03 3.20e−03
3 2.04e−04 2.70e−04 4.75e−04 1.82e−03
4 3.60e−05 7.90e−05 2.37e−04 5.05e−04
5 2.93e−05 8.51e−05 5.55e−04 1.48e−03

4,5,5,4 3.20e−06 4.60e−06 2.56e−06 3.25e−05

Table 7. Mean and minimal Loss of
LSTM nets for FSOS data

HU Train. Val. Test1 Test2

1 1.04e−02 4.66e−02 4.70e−02 1.34e−01
2 1.76e−03 3.31e−02 9.16e−03 1.28e−02
3 2.70e−04 1.04e−03 1.98e−03 2.21e−02
4 6.48e−05 7.32e−04 2.42e−03 5.13e−03
5 5.05e−05 1.07e−04 4.78e−04 2.70e−03
5,4,2,3 3.30e−05 7.21e−05 2.34e−05 9.12e−05

Table 8. Mean and minimal Loss of
Elman RNN for Reactor data

HU Train. Val. Test1 Test2

1 1.95e−02 6.75e−03 1.51e−03 1.67e−03
2 7.08e−03 2.84e−03 9.73e−04 1.06e−03
3 6.61e−03 7.00e−03 7.42e−03 3.27e−02
4 4.65e−03 1.69e−03 4.90e−04 5.44e−04
5 4.81e−03 2.88e−03 2.03e−03 2.04e−03

3,4,5,3 9.34e−04 3.62e−04 2.08e−05 4.95e−05

Table 9. Mean and minimal Loss of GRU
nets for Reactor data

HU Train. Val. Test1 Test2

1 9.87e−03 3.29e−03 7.53e−04 8.35e−04
2 6.77e−03 2.23e−03 5.83e−04 6.32e−04
3 5.38e−03 1.74e−03 5.49e−04 5.76e−04
4 4.75e−03 1.48e−03 4.50e−04 4.73e−04
5 3.89e−03 1.28e−03 4.69e−04 4.94e−04

3,3,2,4 4.18e−04 1.36e−04 4.73e−06 2.23e−05

Table 10. Mean and minimal Loss of
LSTM nets for Reactor data

HU Train. Val. Test1 Test2

1 1.75e−02 6.01e−03 1.31e−03 1.44e−03
2 6.26e−03 2.23e−03 6.02e−04 6.82e−04
3 5.26e−03 1.81e−03 5.78e−04 6.19e−04
4 6.26e−03 2.09e−03 6.24e−04 6.74e−04
5 4.50e−03 1.52e−03 5.51e−04 5.87e−04

5,5,3,3 6.32e−04 1.96e−04 7.29e−06 3.93e−05

Table 11. Mean and minimal Loss of
Elman RNN for Nonlinear model data

HU Train. Val. Test1 Test2

1 1.09e−01 1.21e−01 3.75e+00 3.20e+00
2 6.40e−02 4.02e+00 3.16e+00 2.56e+00
3 5.22e−02 7.33e−01 2.92e+00 3.83e+00
4 4.71e−02 5.47e−01 2.07e+00 3.47e+00
5 4.00e−02 4.56e−01 2.14e+00 2.96e+00

4,2,3,5 8.73e−03 3.26e−02 6.17e−01 7.31e−01

Table 12. Mean and minimal Loss of
GRU nets for Nonlinear model data

Hidden Train. Val. Test1 Test2

1 6.90e−02 1.84e+00 3.21e+01 1.37e+01
2 1.43e−02 9.23e−01 2.87e+00 5.98e+00
3 1.00e−02 3.62e−01 3.60e+00 5.06e+00
4 4.85e−03 2.03e−01 4.70e+00 5.75e+00
5 3.54e−03 2.76e−01 6.11e+00 7.51e+00

5,4,2,2 5.86e−04 1.56e−02 2.57e−01 3.91e−01

Table 13. Mean and minimal Loss of
LSTM nets for Nonlinear model data

Hidden Train. Val. Test1 Test2

1 5.63e−02 5.36e+04 2.68e+04 9.36e+03
2 3.14e−02 1.24e+00 3.26e+00 4.43e+00
3 1.69e−02 6.75e−01 4.20e+00 4.74e+00
4 1.25e−02 3.11e−01 3.10e+00 3.75e+00
5 1.11e−02 6.24e−01 5.22e+00 5.87e+00

3,2,3,2 1.12e−03 3.31e−02 1.95e−01 4.31e−01
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Fig. 5. The best approximation for the FFOS Testing2 data @ GRU net with 4 hidden
units.

Fig. 6. The best approximation for the FSOS Testing2 data @ GRU net with 4 hidden
units.
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Fig. 7. The best approximation for the nuclear reactor Testing2 data @ GRU net with
4 hidden units.

Fig. 8. The best approximation for the Nonlinear model Testing2 data @ GRU net
with 2 hidden units.
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Fig. 9. Residual error plot for the best fitted networks based on Test2 data

5 Conclusions

In this paper, the capabilities of recurrent neural networks (RNN) were exam-
ined as the fractional-order dynamic systems approximators. Their effectiveness
in that approach was validated based on the linear, first and second fractional-
order systems and two nonlinear fractional-order systems. The RNN networks
parameters were optimised with the least squares criterion by the L-BFGS algo-
rithm. The presented numerical simulation results, in most cases, showed satis-
factory approximation performance and reliability of examined recurrent artifi-
cial neural networks structures: Elman, GRU and LSTM. Especially the GRU
network showed its potential in its practical applicability in the real digital con-
trol platform. The advantages are high accuracy with a relatively small network
structure and a relatively low number of parameters to be determined. The
presented methodology with additional extensions may be used to cover approx-
imations of fractional-order operators occurring in the control algorithms which
are planned for implementation in the digital control platforms such as FPGA,
DSP or PLC controllers.

During the study, a typical phenomenon associated with neural network over
fitting was observed. The more complicated the neural network is, the lower the
average loss for training data is observed. This relationship is visible for each
neural net structure involved and for each dynamic system studied. In the case of
conducted research, the phenomenon of over fitting is reflected especially in the
loss function values for two approximated models, i.e. a nuclear reactor model
and a complex non-linear model.

In the case of recurrent neural networks, this problem can be addressed by
focusing on the analysis of signals processed by neural network structures and,
in particular, on the analysis of the effectiveness of the utilisation and impact
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of historical samples of processed signals stored within the network on the net-
work output. A second element that can reduce the over fitting problem in this
type of networks would be to develop training signals that allow to recognise
both the dynamics of the fractional order and the nonlinearities present in the
dynamic system under consideration. The problems mentioned here represent
a very interesting extension of the research presented in the article, which the
authors would like to focus on in the future.

The second open research path related to the presented work focuses on the
problem of modification of existing structures and, in general, the development
of new recursive structures. These will be able to approximate objects with
fractional dynamics to a suitable degree. The authors also plan to address this
direction of research in the future.
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