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Abstract. The physiological signs are a reliable source to identify stress states,
and wearable sensors provide precise identification of physiological signs asso-
ciated with the stress occurrence. The literature review shows that the use of
physiological signs as a source for stress patterns identification is still a critical
investigation subject. Few studies evaluate the effect of combining several dif-
ferent signals and the implications of the data acquisition procedures and details.
This article’s objective is to investigate the possible integration of data obtained
from heart rate variability, electrocardiographic, electrodermal activity, and elec-
tromyography to detect stress patterns, considering a new experimental protocol
to data acquisition. The data acquisition involved the Trier Social Stress Test,
wearable sensor monitoring, and complementary stress perception instruments,
resulting in a publicly available dataset. This dataset was evaluated using dif-
ferent machine learning classifiers, considering the obtained annotated data and
exploring different physiological features and their combinations.
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1 Introduction

The stress consists of body response to some situations, and the physiological signs
are a source for the identification of this occurrence. Some approaches, such as the
Biofeedback [32], consider this aspect to generate effective patient interventions. The
biofeedback approach is based on the organism’s response and its physiological pro-
cesses, which are measured through body-driven sensors, further stored and processed
by computer applications. Therefore, it allows for awareness of emotional states and
training for the voluntary control of physiological and emotional responses.
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In recent years, improvements in wearable sensors have presented the possibility of
using these devices as sources of data to monitor the user’s physiological state. Most
of these wearable sensors consist of low-cost devices that provide good quality signals
[4, 6, 12]. Consequently, it can generate data utilized as source material to Machine
Learning approaches aiming to model and predict these stress states [1, 7, 8]. As a
related element, the wide-spread use of mobile devices and their capabilities presents
the possibility to collect, process and integrate those physiological signs with more
elaborated applications. The physiological data provided by the sensors can be collected
on an online basis by mobile devices. In contrast, these devices can support applications
to detect specific states and generate interventions to be followed by the users [9–11].

Nevertheless, some critical questions associated with this context are the focus of
further research. The physiological wearable sensor data acquisition is a very dynamic
field, continually proposing new sensors and improving its capabilities. Some research
can be observed in the data analysis and data fusion models, due to the number of pos-
sibilities to process the features and integrate the acquired data [9, 04, 11]. Another
question of interest is how to ensure the correct identification of some specific data pat-
tern associated with a psychologic state [14]. Finally, there are few works dedicated to
evaluating the complete cycle of Biofeedback comprehensively, which comprise using
the wearable devices, applying Machine Learning patterns detection algorithms, gen-
erating the psychologic intervention, besides monitoring its effects and recording the
history of events [9, 15]. Several works were developed considering just one sensor
or a few sensors [1–3, 5, 30]. These works, in significant part, do not broadly address
the investigation of using a group of different biosignals compositions to identify stress
patterns. Papers do not bring enough details on the data acquisition protocol, which is a
necessity to make clear the annotation procedures adopted [12, 20, 23].

As outlined above, he literature review shows, that wearables sensors’ use to acquire
physiological signs as a source to stress patterns identification is still a critical investiga-
tion subject. Few studies investigate the effect of combining several different signals and
the implications of the data acquisition procedures. Besides, this is a growing area, and
there are no standardized and broadly used benchmarking datasets [11, 31]. Our work
intends to address these two shortcomings. Therefore, this involves investigating the
integration of data obtained from HFV, EDA, EMG to detect stress patterns, considering
a new experimental protocol to data acquisition proposed by Psychology researches.
The data acquisition involves the Trier Social Stress Test, wearable sensor monitoring,
cortisol markers acquisition, and complementary stress perception instruments. Besides
that, the generated dataset will be available to broad and open use. It was evaluated
using different machine learning classifiers considering the obtained annotated data and
exploring different physiological features and their combinations.

The main contributions of this article are: a) Present an experimental protocol to
data acquisition regarding stress using the standard TSST protocol and complements
with wearable sensors and additional stress perception elements, such as personal ques-
tionnaires. b) Investigate a broad set of features and signs to evaluate classification
results with a well-known feature set and machine learning classification methods; c)
Make available a new dataset, as a publicly available resource. This dataset comprises
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all the data acquired from the experiments and is designed to promote further research
comparison.

2 Background

Stress is a physiological response to internal or external stimuli triggered by the ner-
vous system, particularly by the sympathetic nervous system. The primary physiological
known responses are accountable for a broad set of reactions. Some examples are sweat,
gastrointestinal discomfort or pains in the stomach, allergies, heart palpitations, altered
blood pressure, high cortisol, pupil dilation, the blink of the eye increasing as anxiety
levels increase.

Derived from psychophysiology and influenced by different areas, such as behav-
ioral therapy, behavioral medicine, stress intervention research and strategies, biomed-
ical engineering, among others, the Biofeedback [32]. Biofeedback is the organism’s
response (physiological processes), measured through body-allocated sensors and sent
to a base (computer program or application), which allows training for the voluntary
control of physiological and emotional responses.

The study of stress is essential to improve understanding of themechanisms involved
and to achieve scientific and technological advances concerning its evaluation and inter-
vention. However, reliable testing, which is capable of generating acute stress in labo-
ratory situations, is necessary to be able to study it, so that there may be experimental
control, a safe environment for the participants and generate valid scientific results [34].

Currently, TSST is recognized as the gold standard protocol for stress experiments.
There are different adaptations of this protocol, including group and virtual reality
options, and adaptations for different age groups [34]. The standard TSST protocol,
for adult application in person, consists of three minutes of preparation for a speech,
where the participant introduces himself, simulating a job interview. This presentation
lasts five minutes, and the last task consists of mental arithmetic exercises, also for five
minutes, in front of evaluators (for more details, see the methodology section). The total
protocol time is 13 [35].

The responses of elevation of cortisol and HPA axis levels in the TSST application
are higher in the morning due to the circadian rhythm. However, both morning and
afternoon applications are reliable [35]. TSST can generate robust responses to stress,
which are perceptible through psychological, physiological, and biological measures.

3 Related Work

In recent years, many studies have been conducted to detect stress based on wearables
measured biosignals and also towards the evaluation of the best psychological inter-
vention to deal with this situation. Among the studies regarding stress detection, the
overall focus observed involves choosing a few physiological aspects and the choice of
a respective sensor to measure it. When considering the works with the focus on support
application for the regulation of anxiety or stress and use of biofeedback, in general,
we can observe few studies incorporating a broad set of signs as the source of the stress
indication. In the case of using the wearable sensors to online detection of such patterns,
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then the data preprocessing plays a fundamental role, due to the time spent on this activ-
ity. Below are described related works organized by its primary focus. The first part with
a focus on data acquisition, preprocessing, and classification. The second with a focus
on the online use of wearables as biofeedback support to psychological intervention.

Choi andOsuna [1] describe an approach to detectingmental stress using unobtrusive
wearable sensors. It follows the heart rate variability only, using a nonlinear system
identification technique known as principal dynamic modes, with a success rate varying
from 83% to 69% depending on the experiment carried out. The skin conductance and
the possibilities of emotional stateswere investigated in [26]. Betti et al. [12] describes an
experiment using three biosignals (ECG, EDA, EEG) to generate classification models
and correlated this with the cortisol level, which is considered an objective and reliable
stressmarker. The Support VectorMachine (SVM) classification algorithmwas used and
the results obtained provided 86% accuracy. The data was collected from 15 participants,
and 15 data features were analyzed, together with a correlation with cortisol information.

Some works are dedicated to a specific context, such as the truck drivers’ work
journey, as can be seen in [5], which describes an experiment for data acquisition in
real situations. In this work, a deep learning approach was used, compared with a base-
line feedforward Artificial neural network. Another specific context, the construction
workers’ daily routine, is studied in [10], with the selection of EEG signals and Online
Multi-Task Learning (OMTL) algorithms. Schmidt et al. [11] describes Wearable Stress
and Affect Detection (WESAD), one public dataset integrating several sensors signals
and the use of a set of classifiers to identify stress patterns. The data acquisition also
integrates the emotional aspect, along with stress. The precision of 93% was obtained
with classifiers experiments. The work of Wijman [13] describes the use of EMG sig-
nals to identify stress. An experiment with 22 participants was conducted, and both the
wearables signals and questionnaires were considered.

In some cases, experiments were made to integrate both sensors acquired signals
with other sources, such as smartphone-based activity. Sano [7] performed integration
of sensors signals such as EDAwhile using smartphones to use social networks, read the
news, or other related activities. Similarly, [8] approach is dedicated to assessing cogni-
tive problems using the EDA sensor signal and the data obtained with pen movements
of the patient while writing with a digital pen able to record some aspects of the writing
movements. Paredes [9] explores the design of a smartphone app to interact with users
and suggest interventions when detected the necessity, due to a stress situation.

Some works with the main focus on dataset construction. [6] describes the construc-
tion of a dataset regarding humanmovement identification. Thewearable approach is one
of the possibilities to collect and process the necessary data to identify daily activities. In
the case of stress identification, the complementary information regarding human move-
ment can be of interest to support better quality stress patterns identification. Some of the
normal daily physical activities will generate impacts on the physiological signals used
in most stress patterns recognition approaches. Schmidt et al. [11] describe WESAD,
one public dataset integrating several sensors’ signals and using a set of classifiers to
identify stress patterns. The data acquisition also integrates the emotional aspect, along
with stress. The precision of 93% was obtained with classifiers experiments.
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Wijsman et al. [3] present a set of wearables sensors in an ambulatory context,
dedicated to collecting data frompatients for future analysis. Besides that, the experiment
provided the opportunity to use a set of previously acquired stress patterns information,
used to estimate a stress probability over time, with the wearable data signals online
analysis. The primary objective of someworks is to provide an integration of components
that could support biosignals’ online analysis. In work presented by Attaran [4], we can
observe an architecture dedicated to integrating the sensor signals acquisition and the
processing, even with the dedicated support to execute the classification of the patterns
in an online capacity. Therefore, the results can support wearable devices integration
the sensors and the online processing, opening the possibility to several applications.
Henriques et al. [14] main focus was to evaluate the positive effects of biofeedback
software as a mechanism to reduce anxiety in a group of students. The main biosignal
monitored, in this case, was the heart rate variability. Two pilot experiments consisting of
four weeks each were designed to verify the effectiveness of this computer-based heart
rate variability feedback system to help in reducing anxiety and negative mood in college
students. Gaglioli et al. [15] describe the main features and preliminary evaluation of
a free mobile platform for the self-management of psychological stress. The platform
can provide guided relaxation techniques to the users, besides the possibility to show
visual information regardingwearables sensorsmeasures from the heart rate. The overall
data set obtained during the platform’s use is available to the users, as well as the self-
reports generated. Dilon et al. [16] describe an experiment using smartphones and games
integrated with physiological signs sensors to help in stress reduction. The skin electrical
conductance and the TSST test were used as data sources.

Some works are dedicated to analyzing the data generated by the usage of some
mobile devices, such as the smartphone. Vildjiounaite et al. [17] described an experi-
ment based on datasets generated by several kinds of use of the smartphone, manually
annotated regarding the users’ perception of stress during the periods. This approach
does not use any additional sensor and can only generate late reports on the identified
situation. The opportunities identified in the context of health, with the support of new
wearable sensors, communication, and integration possibilities have been described in
recent works [24, 25]. Besides the opportunities to data acquisition and monitoring in
real-time and with good precision, using Machine Learning approaches to classify these
data regarding specific stress, or emotion patterns are promising [27–29]. Particular
attention in increasing on the design of systems based on wearables sensors capabilities
and in the flexibility and integration aspects [31].

4 Materials and Methods

In this section, we describe the experimental study protocol used to acquire the annotated
data from wearables sensors in a session using the TSST protocol.

4.1 Experimental Study Protocol

This is a study with a quasi-experimental, single-group design with interrupted time
series. This type of study can present a single group, but in this case, it performs several
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evaluations, with repeated measures, at different times. The quasi-experimental designs
are less controlled than a simple experiment, usually having a control group, but do not
present a random distribution of participants to the groups. Participants were selected
by convenience. The research was disclosed to undergraduate and graduate students of a
university in the metropolitan region. The courses with a high number of students, other
than the health area, were selected.

Were excluded from the experiment, people with cardiac disease, psychiatric dis-
orders, or other illness chronic self-reported. Were also excluded people who use psy-
choactive drugs or beta-blockers, who have consumed caffeine or other stimulants up
to three hours before the study, having insomnia or other sleep problems, reported pain
at the time of data collection, pregnant or lactating women, or who have passed (in
the last 120 days) or are experiencing a severe stressor (e.g., family assault or severe
illness). These criteria were stipulated to gain greater control over the experiment due
to its influence on physiological stress and cortisol measurements. A total number of 71
participants were selected for the experiment.

The estimated total TSST [36] protocol time, involving pre-tests and post-tests, is
116 min. The experiment consists of the following steps. In step 1, Initial Evaluation,
the participant answers the questionnaires to check the inclusion and exclusion criteria.
Only participants who meet the requirements for the experiment are selected. In step 2,
Habituation, the participant will take a rest time of twenty minutes before the pre-test.
This rest helps avoid the influence of events before applying the test and establishes a
safe baseline. In step 3, Pre-test, the sensors are allocated, a saliva sample is collected,
and the psychological instruments are applied.

In step 4, Explanation of procedure and preparation, the researcher will deliver writ-
ten and standardized instructions, explaining the activity that the subject will perform.
The participant reads the instructions, and the researcher ensures that he understands
the task specifications. Then it is sent to the room with the jurors, equipped as if it were
a room of a company. The jury is trained to remain neutral during the experiment, not
giving positive verbal or non-verbal feedback during the experiment for the subject. The
researcher informs that the participant will speak in front of the microphone, with a
marked point on the ground, at a distance of one to three meters from the jury table. A
camera and a microphone will be used to record the participant. The researcher briefly
presents the jurors the objective of the subject in his presentation, remembers the presen-
tation will be recorded, and leaves the room. The participant then begins the preparation
for the speech. The committee asks the subject to sit down with paper and pencil and
prepare their presentation. The participant will have three minutes to prepare.

In step 5, Free speech presentation, after three minutes of preparation, the participant
is requested to go to the marked point and start his speech, being informed that he can
not use the notes. If he closes earlier than five minutes, the jurors warn him that he still
has time and expect him to talk more. After five minutes, the jurors interrupt the subject
and direct it to the next task. In step 6, Arithmetic task, the jurors request an arithmetic
task in which the participant must subtract mentally and consecutively the number 17,
beginning with 2023. He is asked to perform the calculation as quickly and correctly as
possible. At times, the jurors interrupt and warn that the participant has made a mistake,
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requesting that he begin again. After five minutes, the task is terminated. In step 7, Post-
test evaluation, the experimenter receives the subject outside the room for the post-test
evaluations. Pre-test, initial response, peak, and stress recovery levels are verified.

In the step 8, Feedback and clarification, the investigator and jurors talk to the subject
and clarify what the task was about. They should take this moment to thank for the
participation, to resolve any discomfort, and to indicate the return of the data. In step 9,
the Relaxation technique, a recording will be used with the guidelines on how to perform
a relaxation technique. It will be used only breathing. The inspiratory-expiration time
measure will be 10 s per complete cycle, with about six cycles per minute. Participants
will be instructed to inhale for four seconds and expire for six seconds. Firstly, they
will be guided and trained in the technique and, afterward, will perform the procedure
with recording and pacer, in a standardized way for all participants. The physiological
measures will be evaluated during the application of the technique, and, afterward,
physiological, psychological, and biological measures will be repeated. In step 10, final
post-test, some of the psychological instruments will be reapplied, saliva samples will
be collected, and the sensors will still be picking up the physiological signals.

In Fig. 1, each of the mentioned steps is indicated regarding the duration of the task
and the different kind of data collected.

Fig. 1. Overall view of the experimental protocol steps

The instruments applied for the evaluation of the sample are divided among instru-
ments for inclusion or exclusion of the sample in the study; sociodemographic and
health questionnaire; instruments for psychological data collection; physiological and;
biological. The following is a description of the instruments for collecting additional
data.

Some psychological data collection instruments used are commented. The Perceived
Stress Scale (PSS) assesses cognitive aspects of stress perception, verifying the indices
in which people assess situations in their context. The Inventory of State-Trait Anxiety
Inventory (STAI) is used for the verification of anxiety symptoms. It has two scales, one
that evaluates anxiety as a state, that is, a temporary situation, and another as a trait,
referring to a more stable condition of presence or absence of anxiety during life. The
Visual Analogue Scale (EVA) for stress presents in the form of a horizontal line of ten
centimeters, enumerated in its extremities with the numbers zero (0) and ten (10), where
0 means “no stress” and 10 means “maximum stress”.

The instruments for collecting physiological data are diversified. The BeWell is com-
posed by the following sensors of the BITalino Kit - (PLUX Wireless Biosignals). The
Electrocardiogram (ECG) sensor, provides data on heart rate and heart rate variability.
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The Electrodermal activity (EDA) sensor allows the capture of the bioelectrical signals
sent to the muscular fibers. The electromyography (EMG) sensor allows the data col-
lection of the electrical activity of the sweat glands. Another instrument used was the
Polar RS800CX Heart Rate Variability Monitor. This instrument uses a sensor that is
attached to the chest by an elastic band. The data collected by the sensor are transmitted
simultaneously to the Polar clock, allowing the transfer to a computer for analysis, gen-
erally performed in the Kubios HRV Software. The MindField Esense Skin Response:
Measures the galvanic responses of the skin (electrodermal activity), and the electrical
activity of the sweat glands can be verified. The sensors are placed in the fingers, using
an application to verify the response emitted by the sensors.

The salivary dosage of the hormone cortisol is a non-invasive method, which does
not require the presence of doctors or nurses for the collection. It is a practical and
reliable method for obtaining cortisol analysis. However, it is necessary to take into
account the different influences to which this measure is subject, such as the time of
collection of the saliva sample, gender, use of stimulants, or medical conditions, which
may influence the results obtained. Evaluations of weight and height measurements of
each participant were performed for the analysis. Samples of saliva were collected by
the participant himself, with the assistance and guidance of the team responsible for
the project. The Elisa Kit for Salivary Cortisol from DRG Instruments was used, an
enzymatic immunoassay kit to measure active free, solid-phase cortisol, based on the
principle of competitive binding.

4.2 Data Acquisition

For the analysis of the physiological data, there was assistance from a specialist in the
area. The heart rate variability data was computed through the root mean square of the
successive differences (RMSSD) calculation, as it is indicated for HRV evaluations in
research contexts.

The cortisol analyzes were carried out in the biology laboratory of the University
of Vale do Rio dos Sinos. For this analysis, besides the authors, we counted on the
collaboration of the Group of Advanced Studies in Health Psychology, with the support
of the technicians of the laboratory of biology and supervision of teachers, who possess
the necessary technical skills to carry out these analyses. The sociodemographic and
psychological data, together with the cortisol analyzes and physiological responses,
were registered to a Statistical Package for the Social Sciences (SPSS), version 25.0.
The level of significance considered was 5% (p < 0.05).

For the development of the device for biosignal measures, we first verified similar
applications developed in the area, performing a systematic review of scientific articles
on the subject and searching non-systematically in app stores such as Google Play and
Apple Store, not being found devices with the same characteristics. Some applications
found in this line evaluate physiological signals and training in biofeedback in a specific
and specific time or interventions in Cognitive-Behavior Therapy without the use of
sensors for biofeedback.

The vast majority of applications found do not use sensors to obtain physiological
responses, but offer intervention through relaxation techniques, for example. There are
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programs and applications of biofeedback for evaluating physiological signals, with pos-
sibilities of allocating sensors in different regions of the body. However, these devices
usually use a single sensor, or when they use more, they are allocated separately in
different regions of the body. To date, no applications have been found that present con-
tinuous, momentary, and automatic measurement characteristics with different sensors
in a single wearable, offering empirically supported intervention, which is the final pro-
posal of BeWell. Recently, studies are emerging in this direction, pointing out to be an
area with promising results.

After performing these searches, the different types of biofeedback sensors were
studied. They selected those that were reliable and were most used, with the possibility
of integrating into a single wearable. From these surveys, three sensors were selected
to obtain measurements: ECG, EDA, EMG. The ECG sensor is used for the collection
of HR and HRV data through the electrical signals emitted by cells in the heart. This
sensor allows the capture of these electrical signals and their transformation into numer-
ical values (BITALINO, 2015a). Higher HRV indicates an ideal interaction between
the sympathetic and parasympathetic nervous systems. There are different measures
of HRV. We will use the RMSSD, because it is more appropriate for our study at the
moment and because it is more used in research. The EDA sensor allows the capture of
the bioelectrical signals from the motor control neurons in the brain, sent to the mus-
cular fibers. These signals are translated into numerical values, enabling their analysis
(BITALINO, 2015b). Electro-dermal activity, also known as galvanic skin response or
skin conductance, refers to the ability of the skin to conduct electricity. Skin conduc-
tance is associated with the amount of moisture produced by eccrine sweat glands. This
activity signals the sympathetic nervous system’s activation, which produces more sweat
and increases the electrical conductivity of the skin, which can be detected by biofeed-
back sensors. Stress and SNS activation will be detected by the device, feedback on
the functioning of the organism in this regard. Therefore, this kind of biofeedback is
a way of measuring the activation of sweat glands in stress situations directly through
electrical activity and indirectly. The EMG sensor allows the sweat glands’ electrical
activity data collection. The transformation of these electrical changes into numerical
data, make possible the analysis. Electromyographic biofeedback measures the emitted
by the skin during contraction muscular. Motor control neurons signal to the muscle,
and that signal is perceived by the biofeedback sensor, that the translates into numerical
terms, different applicability to it. This process is related to the skeletal nervous system.

4.3 Methods for Analysis and Evaluation of the Acquired Data

The obtained data was analyzed and evaluated with the well-known data processing
chain, consisting of the following main steps:

Preprocessing, segmentation, feature extraction, classification. The biosignals were
acquired with BITalino [32]. The data was preprocessed with the support of the available
API BioSPPY (https://biosppy.readthedocs.io/). The segmentation of the sensor signals
was done considering a sliding window, with a window shift. For the biosignals the
window size selected was NN seconds, according to arguments described by Kreibig
[18]. The ECG signal was analyzed with Peak detection algorithms. From the peaks,
computed the heart rate and statistical features such as mean and standard deviation.

https://biosppy.readthedocs.io/
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Also, the heart rate variability was obtained from the analysis of the location of the
heartbeats. Also were computed the energy in different frequency bands. A detailed
description of the HR and HRV analysis can be found in [19].

EDA signal is strongly associated with stressful situations since the Sympathetic
Nervous System controls it. Due to its high sensitivity, a lowpass filter is used in several
works using this biosignal [20, 21]. In our case, we used a lowpass filter of 5 Hz.With the
result of this operation, the following statistical features were calculated: mean, standard
deviation, dynamic range. We used skin conductance response (SCR) and skin conduc-
tance level (SCL). The first represents a short response for some stimulus. The second
represents a baseline conductivity that can slowly vary. These two components were
separated, and also additional information such as the number of peaks was computed
using the reference provided by [22, 23]. The EMG features were processed, applying
different filters. First was applied a lowpass filter (50 Hz) to the raw EMG signal. The
result of the processed signal was segmented in 60-second windows. In these windows,
the reassures of the different peaks, and the mean amplitude was measured. The second
approach used a high pass filter and then segmented inwindows of 5 s. The signal in these
windows was used to calculate peak frequencies. The spectral energy was computed in
bands ranging from 0 to 350 Hz. Details of this approach can be found in [13].

5 Experiments

This section presents details of the experiments conducted and the results obtained during
the step of the process and analysis of data. The code developed is written in Python
due to the libraries available in this programming language, specific for data analysis,
machine learning, and filtering in biosignals. During the verification of data, it is possible
to check that there is some absence in part of the signal during some periods. The main
hypothesis for it happened is the loss of communication between the BITalino and the
computer that stored the signal during the experiments. The reason assessed for this loss
of communication must be a function of the signal acquisition rate, as verified in later
tests with the wearable.

During the verification of the signs, each participant’s data is checked separately, for
graphic analysis and signal average to check the plausibility of the data. The developed
script reads the files with the raw data of each participant and a CSV file with the
annotations of all participants in each step of the experiment. It is stored in dataframes
of Pandas library, developed for data analysis. The raw data contains information from
all wearable channels. To facilitate the process, the unused channels are discarded in
the first step of the data processing. The script verifies the timestamp of the signals and
combines all information compared with the data times for each step of the CSV file.

The whole experiment had its steps divided into six categories (Baseline, TSST,
Arithmetic, Sensor Post-Test I, Sensor Post-Test II and No Category) and all data is
categorized with base in the time for each step. In sequence, the dataframe is stored in
other CSV file discarding the category “No Category”, because the data in this classi-
fication is about steps without relevant information about the experiment. This dataset
is generated for participants to be used as training and testing data for the Machine
Learning stage. The next step is data filtering, using the BioSSPY library. This library
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is developed for filtering and frequency analysis of biosignals. For example, Blood Vol-
ume Pulse (BVP), Electrocardiogram (ECG), Electromyograph (EMG), Electrodermal
Activity (EDA), Electroencephalograph (EEG). This filtering is used the data classified
as “Filtered”, for having a linear variability rate and all signals there is this kind of
filtering.

Each participant has approximately 1.886.000 rows of data for the entire experiment.
Due to the computational power limitation, it is not very easy to use a large amount of data
to apply someMachine Learning technic. For this reason, a technique called windowing
is applied. Windowing, also known as a window function, is a mathematical function
with the objective to reduce the amount of data, it has as characteristic of retiring a part
of data for each period, the removing of the information is done symmetrically. One way
to reduce some eventual distortion, all data that removed is used to calculate the delta
and is implemented in place of the data taken. In other words, if there are 1000 rows of
data, implementing this technique using windowing with 10 times, the result is 100 rows
of data are pure data, and 100 rows of data come from the average of the data removed,
200 lines of data remain. It is a great reducing, and as there is a large amount of data,
this reduction is not noticeable.

Lastly, the script creates the dataset to apply the Machine Learning stage. During
this step, the dataframe is converted and divided in two lists, the first list is the train
dataframe, and this list has data about the signals. The other list is the test dataframe.
Both lists have information about the class, which in this context is the “Category”
applied in Machine Learning. After processing the data, these lists are stored in NumPy
files, to facilitate data handling in any application.

5.1 Data Analysis

TheMachineLearning stage used different combinations of the signalswith the objective
to determine what is the best method. The combinations used are only ECG, only EMG,
only EDA, ECG and EMG, ECG and EDA, and EMG and EDA.

The library used to apply Machine Learning is the Scikit-Learn, an open-source
library for Python, with modules of different algorithms. For each combination are
applied six algorithms, the SVMwith Linear Kernel, SVMwith Radial Kernel, Decision
TreeClassifier, RandomForest Classifier andGaussianNaiveBayes. For each algorithm,
four metrics are used to evaluate the results: accuracy, precision, recall, and F1 score
(the combination of recall and precision). Based on this information, it is possible to
determine the best method for implementing a system for detecting people’s status.
During the experiments with the machine learning codes, it was implemented all process
using two different windowing approaches, the first using 10 frames and the second with
100 frames.

The process performed with a windowing of 10 times, the code took considerably
longer, about 30% more, than windowing 100 times. Most combinations did not return
good results when applying most algorithms, and only the ECG signal presented some
significant result. Regarding themetrics obtained, both presented results very close to one
another. Comparing themetrics resulting from the differentwindowing performed during
the Machine Learning process and all six combinations, the best context in precision
was the combination of ECG and EMG.
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With the results commented before, it is possible to verify no difference which
justifies the use of smaller windowing. Another conclusion is that the EDA signal is
not a good option to implement some artificial intelligence to determine the person’s
status. All the metrics used in combination with this signal showed low accuracy and
precision. In contrast, the EMG and ECG signal presented good responses, mainly using
the algorithm Gaussian Naïve Bayes.

6 Conclusion

In this paper, we presented a new experimental protocol to acquire physiological data
regarding stress situations, based on the well-known TSST protocol, improved with
questionnaires for self-reports of the participants and physiological measures obtained
with wearables sensors. During the graphical analysis of the participants’ signals with
the signaled categories, it was evident that the TSST protocol fulfills the objective.

The protocol differentiates from previous works regarding the number of signals,
evaluation of the combination, complement with questionnaires annotated with cortisol.
This work is part of a broader effort to support online identification of the patterns, which
is important to foster biofeedback applications. As a future improvement to this work,
new machine learning experiments will be carried out using a larger volume of data and
will also be implemented deep learning techniques.

An alternative is the standardization of the volume of data in each category, ensuring
that there as much data in one stage as in another. As a suggestion for future works, it
is recommended to perform new tests with the wearable reducing the sampling rate and
monitoring the stability of the acquisition signals. Reducing the acquisition rate from
1 kHz to 100 Hz, the signal tends to have lower communication losses, but it is necessary
to carry out validation.
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