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Abstract. One of the main challenges in Machine Learning and Data
Mining fields is the treatment of large Data Streams in the presence of
Concept Drifts. This paper presents two families of ensemble algorithms
designed to adapt to abrupt and gradual concept drifts. The families
Fast Stacking of Ensembles boosting the Old (FASEO) and Fast Stack-
ing of Ensembles boosting the Best (FASEB) are adaptations of the Fast
Adaptive Stacking of Ensembles (FASE) algorithm to improve run-time,
without presenting a significant decrease in terms of accuracy when com-
pared to the original FASE. In order to achieve a more efficient model,
adjustments were made in the update strategy and voting procedure of
the ensemble. To evaluate the methods, Näıve Bayes (NB) and Hoeffd-
ing Tree (HT) are used, as learners, to compare the performance of the
algorithms on artificial and real-world data-sets. An experimental inves-
tigation with a total of 32 experiments and the application of Friedman
and Bonferroni-Dunn statistical tests showed the families FASEO and
FASEB are more efficient than FASE with respect to execution time in
many experiments, also some methods achieving better accuracy results.

Keywords: Concept drift · Data stream · Ensemble methods

1 Introduction

In recent years, data generated by different sources such as cell phones, sensors,
networks, and satellites has increased significantly. Part of these data can be
viewed as a sequence of examples that arrive at high rates and can often be read-
only once using a small amount of processing time [1]. In the literature, such
data are known as data-streams. According to [2], in the streaming scenario,
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two primary issues have to be dealt with in the construction of training models:
One-pass Constraint, and Concept Drift.

The first aspect, One-pass Constraint, is when a model needs to analyze each
of the data only once. This feature is very important in online learning. Second,
a concept drift can be described from the change between two different concepts:
initial concept (PI) and final concept (PF ) [3]. Attending to the time it takes
to change from PI to PF (tch), this change can be abrupt (sudden) (tch ∼ 0) or
gradual (tch > 0).

Depending on the taxonomy of the involved aspects in the distribution
change, different types of Concept Drift can be analyzed: virtual concept drift
(the distribution of instances change but the underlying concept does not), real
concept drift (there exist a change in the class boundary), recurrence of the con-
cepts (when previously active concept reappears after some time) [4], and some
other types.

The presence of Concept Drift affects the performance of the classification
algorithms because models become stale over time. Therefore, it is crucial to
adjust the model in an incremental way in order for the algorithm to achieve
high accuracy over current unknown instances.

Many of the works published so far have focused mainly on accuracy as a
fundamental parameter to establish comparisons between learning algorithms.
However, in many real-life scenarios other parameters like run-time should also
be taken into account due to their importance. Motivated by previous works
[5] that analyzed the performance of several algorithms, it was observed that
Fast Adaptive Stacking of Ensembles (FASE) [7] (one of the compared meth-
ods) presents good accuracy results, but its run-times indicate there is room for
improvement.

The present work aims to introduce the families of methods Fast Stacking of
Ensembles boosting the Best (FASEB) and Fast Stacking of Ensembles boost-
ing the Old (FASEO) obtained from the algorithm FASE. All methods present,
from both families, are designed to adapt to concept drifts, whether abrupt
or gradual and to increase the “efficiency” of their base model. The word “effi-
ciency” has a particular meaning here: it is a “suitable” balance among accuracy
and run-time highlighting. Furthermore, “suitable” is associated with the degree
to which these aspects have relevance in a given context [6]. In order to obtain the
variants of FASE, it was experimentally investigated two main modifications,
regarding (i) the update strategy and (ii) the voting procedure of the ensemble.
This work is an extension of paper [12].

The paper is organized as follows: Sect. 2 describes related work; Sect. 3
explains the families methods and the explored strategies. Sect. 4 presents the
data-set characteristics and provides the experimental results analyzing the main
findings. Section 5 provides the performance evaluation of the FASE‘s family on
Sensor data-stream, identify which of the methods had the best performance in
the experimental evaluation. Finally, Sect. 6 concludes.
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2 Related Works

In this section, a bibliographic study of the Fast Adaptive Stacking of Ensembles
(FASE) [7] and Hoeffding-based Drift Detection Methods (HDDM) [8] will be
carried out aiming to highlight the methods related.

2.1 FASE

Fast Adaptive Stacking of Ensembles (FASE) [7] is based on the Online Bagging
algorithm [9], and uses HDDMA as a drift detection mechanism to estimate
the error. It has a set of adaptive learners to handle Concept Drift explicitly by
detecting the changes and updating the model if a Concept Drift is detected. The
adaptive learners estimate error rates (by the corresponding change detectors)
with a predictive sequential approach (test-then-train). FASE uses weighted
voting to combine the predictions of the main and alternative models. It uses a
meta-classifier too, combining the predictions of the adaptive learners. For that,
it generates a training meta-instance M = (ŷ1, . . . , ŷj , . . . , ŷk; y) where each ŷj
is an attribute value and y is its corresponding class label. Each attribute value
ŷj of the meta-instance M corresponds to the prediction from classifier hj for
the example z. The class label of the meta-instance M is the same label of the
original training example [7].

2.2 HDDM

Hoeffding-based Drift Detection Methods (HDDM) authors [8] propose to mon-
itor the performance of the base learner by applying “some probability inequali-
ties that assume only independent, univariate and bounded random variables to
obtain theoretical guarantees for the detection of such distributional changes”.
HDDMA “involves moving averages and is more suitable to detect abrupt
changes” and the second HDDMW “follows a widespread intuitive idea to deal
with gradual changes using weighted moving averages”. For both cases, the
Hoeffding inequality [10] is used to set an upper bound to the level of differ-
ence between averages.

3 FASEO and FASEB Families Methods

This section introduces two families of classifier ensemble methods derived from
FASE: FASEO and FASEB. These algorithm families are originated using dif-
ferent change adaptation strategies and methods to combine the predictions of
the classifiers that make up the ensemble.

3.1 Overview of the Methods

According to [11], when designing ensemble of classifiers two main points must
be considered: (i) how the base classifiers in the ensemble are updated and (ii)
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how they are combined to make a joint prediction. Taking into account the above
assumption, variations were introduced in FASE to search for a better balance
between accuracy and other necessary resources (run-time) for its operation.

The original algorithm is composed of a set of adaptive classifiers. Each one is
formed by a base classifier and an alternative classifier (both classifiers include a
drift detection mechanism) that is generated each time the base classifier issues
a warning state. Both classifiers, the main and the alternative, process each
instance and by weighted voting determines its class. This strategy is followed
in the adaptive classifiers that form the ensemble, but also in the level of the
meta-classifier that receives as input the predictions of each classifier in the form
of a meta-instance [7].

Considering this scenario, the derived methods aim to handle resources more
efficiently while keeping accuracy at similar levels. Thus, the main proposed
modifications made on FASE are (i) the update strategy and (ii) the voting
procedure of the ensemble. As a result of these modifications, two families of
ensemble algorithms derived from FASE were devised: FASEO and FASEB.

In general, one of the main modifications made to the algorithm variants
derived from FASE was to eliminate the use of alternative adaptive classifiers
and create, in the structure of the general model, a parallel ensemble. In this
alternative ensemble, a classifier is activated and begins to train once one of the
classifiers of the main ensemble reaches the warning level. On the other hand,
when a concept-drift level is detected, then one of two variants is followed, (i) the
oldest classifier, the one that stayed longer in the alternative classifier ensemble
is promoted, or (ii) the classifier with the best accuracy is promoted. Based on
these strategies, the families of algorithms FASEO and FASEB were created
respectively.

Each family of algorithms is based on classifiers that integrate detection
mechanisms. So, the associated detector triggers each of the three different
drift signals manipulated in the model. The first two methods, (FASEO and
FASEB), maintained the meta-classifier proposed in FASE in order to per-
form class voting while the others combine weighted voting for final decision. To
determine the whole weight of each classifier, accuracy, entropy degree and class
probabilities are combined in different ways. Moreover, they are also considered
two-class voting strategies. The first variant uses combined voting using a meta-
classifier, like the FASE algorithm. The second one uses combined voting using
weighted majority voting in different ways. The description of each algorithm
follows below: The description of each algorithm follows below:

– FASEO: To update the main ensemble, the classifier with more training time
in the set of alternative classifiers is promoted. To determine the final class,
a meta-classifier is used with its inputs being the meta-instances formed by
the predictions of each classifier in the main ensemble.

– FASEOwv1: As in FASEO, to update the main ensemble, the oldest classifier
in the set of alternative classifiers is promoted. To vote the final class, the
weight of each classifier is computed taking into account accuracy, entropy
degree, and the class probability vector.



460 L. M. P. Mariño et al.

– FASEOwv2: As in FASEO and FASEOwv1, to update the main ensemble
the classifier with more training time in the set of alternative classifiers is
promoted. To vote the final class, the weight of each classifier is computed
taking into account only accuracy and the class probability vector.

– FASEOwv3: As in the three former cases, to update the main ensemble,
the classifier with more training time in the set of alternative classifiers is
promoted. To vote the final class, the weight of each classifier is computed
taking into account only accuracy and entropy degree.

– FASEB [12]: To update the main ensemble, the classifier with the best accu-
racy among the alternative classifiers is promoted. The decision on the final
class is given by a meta-classifier, whose inputs are the meta-instances formed
by the predictions from each classifier in the main ensemble.

– FASEBwv1: As in FASEB, to update the main ensemble, the classifier with
the best accuracy among the alternative classifiers is promoted. To vote the
final class, the weight of each classifier is computed taking into account accu-
racy, entropy degree, and the class probability vector.

– FASEBwv2: As in FASEB and FASEBwv1, to update the main ensemble, the
classifier with the best accuracy among the alternative classifiers is promoted.
To vote the final class, the weight of each classifier is computed taking into
account only accuracy and the class probability vector.

– FASEBwv3 [12]: As in the three last cases, to update the main ensemble,
the classifier with the best accuracy is promoted. To vote the final class, the
weight of each classifier is computed taking into account only accuracy and
entropy degree.

3.2 The Update Strategy

This section provides a description of update strategy used in the FASEO and
FASEB families. In a general way, the derived methods are updated once one
of the learners (classifier with change detection mechanism) that compose the
main ensemble, experiment any of the following change of states:

(i) A classifier initially in-control, triggered a warning (through its detection
mechanism)

(ii) A classifier suddenly reaches the drift level from in-control state
(iii) A classifier reaches the drift level from state of warning
(iv) A classifier, currently in warning, return to the (by-default state) in-control

In (i), an alternative classifier is activated and placed in a parallel set (ensem-
ble of alternative classifiers). When no drift is detected, the learning process is
carried out by the learners of the main set.

When one of the classifiers of the main set reached an out-of-control signal
(drift), (case (ii) or (iii)) the main set is updated, firstly the drifted classifier is
deleted and then is promoted to the main ensemble a) the alternative classifier
with the greatest accuracy (FASEB methods) or b) the oldest alternative classi-
fier (FASEO methods). Once the alternative classifier is promoted, it is deleted
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from the parallel ensemble. Then, in (ii), the model activates a new alternative
classifier, since, due to a sudden change, it was not created and, therefore, it was
taken “borrowed” from a classifier that triggered warning, therefore, should be
“returned to it”.

In order to handle the final states there is an arrangement of states: initially,
it is assumed that each value corresponding to the status of each classifier that is
part of the main ensemble is in-control and therefore takes value 0; whenever a
classifier of the ensemble enters warning, its status has value 1. When a classifier
of the main ensemble detects a drift, either by going from in-control to drift or
from warning to drift, the algorithm quickly updates the ensemble and the state
is again in-control. Therefore, once the algorithm removes the classifier from the
array of alternatives, it updates the state corresponding to the new classifier
that became part of the main ensemble to in-control.

3.3 Class Voting Strategies

An ensemble of classifiers H(x) are models learned from a set of classifiers
h1(x), ..., hj(x), ..., hk(x). During the training process, it receives as an input
a labeled instance (xi, yi), and the model H(x) aims to predict the class ŷi of
each instance in unlabeled data-set. To achieve this task, there is different ways
of ensemble combination methods like stacking, voting schemes, unweighted vot-
ing schemes. Thus, in these methods the classification is done using the stacking
and the weighted-voting strategies. The particular way in which these strategies
are applied is explained below.

Meta-classifier Strategy: The goal of a meta-learning process is to train a
meta-classifier (meta-learner), which will combine the ensemble members’ pre-
dictions into a single prediction. Thus, the input of the meta-learner are the
outputs of the ensemble-member classifiers. In this process, both the ensemble
members and the meta-classifier need to be trained. The meta-classifier is the
ensemble’s combiner, thus it is responsible for producing the final prediction
[13]. Similar to the ensemble-members, the meta-classifier of these methods is a
one class classifier; it learns a classification model from meta-instances, whose
attributes are nominal. As FASE, both methods uses a Prequential method-
ology to generate meta-instances; the idea of this methodology is to use each
instance first to test the model, and then to train the model. Thus, for each
original training instance z = (x, y) it is generated a training meta-instance
M = (ŷ1, . . . , ŷj , . . . , ŷk; y), where each attribute value ŷj of the meta-instance
M corresponds to the prediction from the base classifier j in the main ensemble
for the original example z. The class label of the meta-instance M is the same
label of the original training example.

Weighted Voting Strategies: A weighted voting is a system in which not
all learners have the same amount of influence over the outcome because their
votes have a different weight. In the classification task, an ensemble classifier can
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combines the decision of a set of classifiers by weighted voting to classify unknown
examples. The weighting methods are best suited for problems where individual
classifiers perform the same task [14]. Therefore, that is the reason why in this
work was used the weighted majority vote to obtain the final prediction of the
class label.

To determine the weight of each classifier, the accuracy (a component of the
weight derived from historical performance) and the degree of entropy in its
classification (the component of the weight coming from the current behavior
of the classifier) are taken into account. A similar idea was previously proposed
in [15].

These component are combined in different ways originating three weighting
approaches: (1) it is used the classifier accuracy weight, class probability vec-
tor and entropy weight; (2) it is used the classifier accuracy weight and class
probability vector; and (3) it is used the classifier accuracy weight and entropy
weight.

4 Experimental Results and Analysis

4.1 Data-Sets

Table 1 summarizes the main characteristics of the data-sets used in the experi-
ments. A total of 4 synthetic generators and 8 real data-sets were considered. The
synthetic data-sets were built with two different sizes: 10000 (10k) and 50000
(50k) instances. Abrupt and gradual controlled concept drifts were introduced.
MOA framework allows us to simulate the different types of concept drift using
a sigmoid function. Real data-sets employed are available on the MOA web-
site. These data-sets have very diverse characteristics regarding the number of
instances, the number of classes, and the presence or absence of different types
of concept drift. This diversity allows us to better describe the real problem
situations that algorithms may face.

4.2 Experimental Results and Analysis

This section compares the performance between the families of methods and
FASE using the synthetic and real data-sets. Both in the synthetic (8) and real
(8) data-sets each algorithm is tested and trained using the classifiers HT and
NB. In summary, 32 experiments were carried out to evaluate the performance
of each method according to the two metrics considered.

Tables 2 and 3 present accuracy rates and run-times achieved by the algo-
rithms in synthetics and real data-sets using both NB and HT as base learners.

In order to improve the visualization, the methods name was exposed as
in parentheses: FASEO (FO), FASEOwv1 (FOwv1), FASEOwv2 (FOwv2)
and FASEOwv3 (FOwv3). FASEB (FB), FASEBwv1 (FBwv1), FASEBwv2

(FBwv2), and FASEBwv3 (FBwv3).
The first values appearing in each table refer to respective base-learner used,

NB or HT. The first rows of each table show the results obtained over the
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Table 1. Main characteristics of synthetic and real datasets

Type Data-sets Size # Atributes # Class

Synthetic LED 10k & 50k 24 10

Sine 10k & 50k 2 2

Waveform 10k & 50k 40 3

Random-RBF 10k & 50k 40 6

Real Connect-4 67557 42 3

Covertype-Sorted 581,012 54 7

Lung-cancer 32 56 3

NslKdd99 125,973 41 2

Pokerhand-1M 1,000,000 10 10

WineRed 1599 11 9

Usenet-2 1500 100 2

Sensor 2,219,803 5 54

synthetic data sets and the last rows show the results over real data sets. Each cell
in the tables presents the values reached by the methods. The result indicating
improvements with respect to FASE are in highlighted bold (the winner) and
italics. Note that higher values in accuracy indicate better performance whereas,
for the run-time, the lower values are the better.

Regarding accuracy, the FASE‘s families methods performs better using NB
as base classifier. With this base classifier, FASEB outperformed FASE in 4 out
8 synthetics data-sets. FASE outperformed each one out of all derived methods
in 4 data-sets. FASEO, FASEOwv and FASEBwv methods outperformed FASE
in 3 data-sets. On the other hand, using HT, FASEB outperformed FASE in
3 out 8 synthetics data-sets. FASE outperformed each one out of all derived
methods in 3 data-sets. FASEOwv and FASEBwv methods outperformed FASE
in 2 data-sets and FASEO outperformed FASE in 3 data-sets.

In general, FASEB, FASE, FASEBwv2 and FASEO presented the best aver-
age results. With synthetic data, FASEB had better performance than the other
variants followed by FASE, FASEO and FASEBwv2. The data-set on which the
developed variants performed better were those obtained from the Led generator,
where the methods that use weighted voting to perform classification reached
better behavior, especially FASEOwv2 and FASEBwv2. Concerning real data-
sets, FASEOwv2 and FASEBwv2 performed equally or better than FASE in 5
out of 8 real data-sets using NB as base classifier. Similarly, FASEB improved
or tied FASE in 5 out of the 8 real data-sets when HT was employed. In general,
FASEOwv2 and FASEBwv2 are the best-ranked methods.

Considering run-time, the implemented variants of FASE had better perfor-
mance than FASE, in almost all data-sets. In general, FASEBwv3, FASEBwv2,
FASEBwv1 and FASEOwv3 presented the best average results. In particular, the
same result was obtained in synthetic data-sets. FASEB performed slower than
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FASE more frequently in real data-sets. FASEOwv3, FASEBwv3, FASEBwv1

and FASEBwv2 are the best-ranked methods. In conclusion, the variant of FASE
with a meta-classifier demanded more run-time to perform the classification than
the others with weighted voting. Particularly, FASEBwv3 is the fastest among
all proposed methods.

Table 2. Mean accuracies in percentage (%) with 95% confidence intervals in scenarios
of abrupt and gradual concept drifts with artificial data-sets and real data-sets using
NB and HT.

BC DATA-SET FO FOwv1 FOwv2 FOwv3 FB FBwv1 FBwv2 FBwv3 FASE

NB LED-10k-gra 67,00 67,77 67,79 67,51 67,21 67,79 67,81 67,51 67,10

Sine-10k-gra 81,78 81,52 81,52 81,35 81,86 81,60 81,59 81,35 81,71

Waveform-10k-gra 77,62 77,56 77,53 77,36 77,62 77,58 77,55 77,36 78,19

Random-10k-gra 30,90 30,81 30,79 30,92 30,94 30,84 30,82 30,85 31,61

LED-10k-abr 69,13 69,68 69,72 69,44 69,13 69,66 69,70 69,45 68,64

Sine-10k-abr 86,29 86,22 86,23 86,12 86,32 86,25 86,25 86,15 86,42

Waveform-10k-abr 78,63 78,53 78,50 78,38 79,00 78,65 78,53 78,50 78,38

Random-10k-abr 30,96 30,84 30,82 30,95 30,87 30,85 30,83 30,95 31,58

HT LED-50k-gra 72,18 72,52 72,57 72,49 72,20 72,52 72,58 72,50 72,41

Sine-50k-gra 90,80 90,20 90,21 89,84 90,84 90,21 90,22 89,84 90,91

Waveform-50k-gra 81,45 80,54 80,70 80,31 81,42 80,61 80,79 80,38 81,46

Random-50k-gra 33,54 32,55 32,64 32,74 33,57 32,53 32,67 32,71 33,38

LED-50k-abr 72,52 72,79 72,85 72,75 72,52 72,80 72,87 72,75 72,73

Sine-50k-abr 91,98 91,35 91,39 91,00 92,01 91,36 91,38 91,01 91,98

Waveform-50k-abr 81,48 80,81 80,97 80,63 81,53 80,82 80,97 80,64 81,59

Random-50k-abr 33,64 32,59 32,75 32,71 33,60 32,52 32,72 32,67 33,40

NB Connect-4 74,47 75,10 75,10 74,66 74,48 74,92 74,92 74,64 74,66

Covertype-Sorted 68,10 68,61 69,55 69,15 68,27 68,67 69,74 69,35 69,06

Lung-cancer 77,97 65,57 66,82 65,57 77,97 65,57 66,82 65,57 77,97

NslKdd99 89,83 89,79 89,79 89,75 89,83 89,79 89,79 89,75 89,81

Pokerhand-1M 50,10 50,10 50,11 50,11 50,10 50,09 50,11 50,11 49,87

WineRed 48,74 48,38 52,86 54,09 48,74 48,38 52,86 54,09 50,60

Usenet-2 70,23 67,31 67,31 66,84 70,11 67,10 67,10 66,27 72,86

Sensor 86,41 89,36 88,06 86,01 87,15 89,86 88,30 87,00 86,23

HT Connect-4 75,01 74,89 75,13 74,50 75,06 74,78 74,96 74,44 74,94

Covertype-Sorted 74,08 72,13 72,71 71,73 73,70 72,46 73,28 71,95 72,04

Lung-cancer 74,74 67,29 66,46 67,29 74,74 67,29 66,46 67,29 74,74

NslKdd99 98,62 98,35 98,47 98,41 98,62 98,35 98,47 98,41 98,67

Pokerhand-1M 54,40 50,36 52,69 52,81 54,30 50,36 52,69 52,81 53,32

WineRed 48,57 50,13 54,41 54,25 49,06 50,66 54,24 53,79 54,02

Usenet-2 66,53 68,07 67,79 68,10 66,56 68,07 67,79 68,10 67,95

Sensor 85,59 89,39 88,43 86,71 86,06 89,55 88,84 87,71 86,03

In order to conduct a statistical analysis of the derived methods regard-
ing a control method (the original FASE), the Friedman test [16,17] and the
Bonferroni-Dunn test [17,18] were applied. The tests were used with a signif-
icance level of 5%. The total of the experiment taken into consideration was
32, corresponding to the test performed by the base classifier (NB or HT) in
synthetic and real data-sets.
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Table 3. Mean of time in percentage (%) with 95% confidence intervals in scenarios
of abrupt and gradual concept drifts with artificial data-sets and real data-sets using
NB and HT.

BC DATA-SET FO FOwv1 FOwv2 FOwv3 FB FBwv1 FBwv2 FBwv3 FASE

NB LED-10k-gra 2,67 2,47 2,34 2,45 2,65 2,30 2,33 2,27 3,03

Sine-10k-gra 1,20 1,13 1,14 1,16 1,24 1,13 1,14 1,12 1,42

Waveform-10k-gra 1,88 1,74 1,69 1,68 1,96 1,62 1,65 1,70 2,25

Random-10k-gra 3,74 3,06 3,20 3,11 3,87 3,09 3,01 3,00 4,40

LED-10k-abr 2,76 2,44 2,38 2,37 2,66 2,31 2,32 2,30 2,92

Sine-10k-abr 1,23 1,12 1,15 1,14 1,26 1,12 1,12 1,12 1,39

Waveform-10k-abr 1,91 1,70 1,70 1,71 2,19 1,94 1,63 1,66 1,70

Random-10k-abr 3,81 3,09 3,26 3,21 3,87 3,16 3,03 2,98 4,43

HT LED-50k-gra 16,39 15,97 15,81 14,87 17,32 14,41 15,14 15,16 17,75

Sine-50k-gra 13,29 12,47 11,97 11,55 12,81 11,64 11,37 11,12 13,58

Waveform-50k-gra 18,43 16,77 16,53 17,42 18,93 16,51 17,03 17,04 19,16

Random-50k-gra 22,79 20,07 21,05 19,92 22,85 19,61 18,93 19,19 24,94

LED-50k-abr 16,48 15,51 15,78 15,17 17,19 14,37 14,50 15,02 17,65

Sine-50k-abr 13,90 12,64 12,45 11,77 12,88 11,54 11,67 11,59 13,52

Waveform-50k-abr 17,52 16,12 16,24 16,80 18,32 16,48 16,05 16,12 19,32

Random-50k-abr 22,86 20,10 19,90 19,68 22,28 19,78 19,32 18,56 24,37

NB Connect-4 11,90 11,81 13,03 11,99 12,55 12,45 15,88 12,69 13,58

Covertype-Sorted 156,96 139,68 132,32 128,72 140,94 124,66 122,60 120,41 149,64

Lung-cancer 0,05 0,06 0,06 0,05 0,06 0,06 0,06 0,05 0,06

NslKdd99 24,30 24,62 30,45 24,33 26,85 25,42 21,94 21,60 27,96

Pokerhand-1M 183,64 129,78 125,88 126,00 163,13 123,44 126,20 130,43 181,06

WineRed 0,56 0,53 0,45 0,51 0,56 0,52 0,54 0,49 0,70

Usenet-2 0,89 0,92 0,91 0,86 0,86 0,85 0,90 0,82 0,92

Sensor 1028,25 693,5 678,79 695,9 1042,65 635,06 644,64 654,65 1153,36

HT Connect-4 21,87 22,60 23,61 22,21 27,94 33,10 26,91 23,55 27,08

Covertype-Sorted 372,31 269,34 278,12 267,18 333,73 262,40 268,59 275,65 245,78

Lung-cancer 0,11 0,11 0,14 0,12 0,14 0,17 0,10 0,12 0,11

NslKdd99 1256,79 1218,50 1107,60 1137,01 1052,11 1013,71 1155,79 1109,51 1069,80

Pokerhand-1M 605,85 472,22 427,66 435,17 559,44 421,31 433,76 445,22 438,03

WineRed 0,93 0,88 0,92 0,90 1,01 0,94 0,98 1,00 1,09

Usenet-2 1,51 1,22 1,37 1,38 1,70 1,56 1,35 1,40 1,70

Sensor 4697,27 1085,96 1059,98 1076,79 4547,49 1093,21 1063,68 1078,59 1384,75

Regarding accuracy, the best-ranked method was FASEB. FASEB and
FASE are significantly better than FASEBwv3 and FASEOwv3 tacking into
consideration all data-sets. With respect to the other methods the observed dif-
ferences were not statistically significant. The same happens in synthetic data-
sets. On the other hand, FASEOwv2 is the best ranked in real data-set, but the
methods do not present significant differences.

Concerning run-time, the best ranked algorithm was FASEBwv3. Tacking
into consideration all data-sets, FASE, FASEB and FASEO are the worst
ranked and significantly less fast with respect to the others methods. Regarding
synthetic data-sets FASE and FASEB are more time consuming methods, sig-
nificantly less fast with respect to all methods (except FASEO). On the other
hand, FASEOwv3 and FASEBwv3 are the best ranked and only they presents
statistical differences respect to the FASEB and FASE in real data-sets.
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Figure 1 showed the best measurements located in the first positions. Par-
ticularly, Figs. 1(a) show a comparison of the methods accuracies using the
Bonferroni-Dunn test in synthetic and real data-sets. Figure 1(b) show a com-
parison of the methods run-time using the same test tests in all data-sets.

(a) Ranks Accuracy

(b) Ranks Time

Fig. 1. Comparison of methods accuracies and time using the Bonferroni-Dunn tests
with a 5% of significance level.

5 Application of the FASE Family Methods
on the Sensor Data-Stream

A sensor, is a device that detects some physical stimulus (such as heat, light,
sound, pressure, magnetism, or a particular motion) and responds usually with
a transmitted signal resulting of impulse (as for measurement or operating a
control) [6]. Normally, it is used to record that something is present or that
there are changes in something [19]. Hence the importance of validating the
behavior of these methods in data stream from sensors, because it represents a
high complexity problem likely to presenting concept drift.

Particularly, the present research compared the performance of the FASEB,
FASEO families and FASE method on the Sensor data-set. Sensor Stream [20]
contains information collected from 54 sensors deployed in the Intel Berkeley
Research Lab (temperature, humidity, light, and sensor voltage). It contains
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consecutive information recorded over a 2 months period, with one reading every
1–3 minutes. The sensor ID is the target attribute, which must be identified
based on the sensor data and the corresponding recording time. This data-set
is constituted of 2,219,803 instances, 5 attributes, and 54 classes. This is an
interesting and intriguing data-set because, in addition to being much larger
than the others, produces considerable variations in the accuracy performance
of the methods.

Tables 2 and 3 presented the performance of the evaluated methods on the
Sensor data-set among others. In addition, Fig.2 shows the results achievement
on Sensor data-set using NB and HT.

(a) Accuracy (b) Run-time

Fig. 2. Comparison of methods accuracies and run-time using NB and HT on Sensor
data-stream.

As shown in the Fig. 2, the method that had the best performance on Sensor
data-stream using NB and HT was FASEBwv1 followed by FASEOwv1 regard-
ing the accuracy achievement. The worst result was by FASEO with HT. In gen-
eral, this method and FASE had a worse rank. On the other hand, FASEBwv2

was the best-ranked method regarding run-time. In particular, with NB the
best result was achieved by FASEBwv1, and FASEOwv2 using HT. In general,
FASE, FASEO and FASEB were the least fast.

Figure 3 show the performance of FASE derived algorithms with respect to
the original algorithm using NB, when processing a fragment of 100,000 instances
of the Sensor data-set. As it is possible to see, in all the methods the perfor-
mance over time during the processing of the instances is more stable both in
the FASEB and FASEO families regarding FASE, except in the FASEOwv3

method in NB. Frequently, it can be seen that the accuracy values in all cases
in the FASE method fall down more than in the methods derived from it.
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(b) FASEBwv1
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(c) FASEBwv2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20000  40000  60000  80000  100000

%
 o

f c
or

re
ct

 c
la

ss
ifi

ed

instances processed

FASEBwv2-NB
FASE-NB

(d) FASEBwv3
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(e) FASEO
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(f) FASEOwv1
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(g) FASEOwv2
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(h) FASEOwv3
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Fig. 3. Performance evaluation of the methods with respect to FASE regarding the
accuracy over time on the Sensor data-stream using NB.

6 Conclusions

This work proposed FASEB and FASEO families of algorithms, a total of eight
ensemble methods for operation in concept drift scenarios with full access to
labeled classes. The algorithms are variants of the FASE ensemble. The main
difference of FASEB and FASEO families as compared to FASE is the update
strategy employed by the algorithms. While FASE uses adaptive classifiers to
keep the ensemble updated, the implemented algorithms have in common a par-
allel ensemble formed by alternative classifiers, activated and set to be trained
when one of the classifiers in the main ensemble issues a warning.

When a Concept Drift is detected, algorithms in the FASEB family boosts
the alternative classifier with the greatest accuracy. Algorithms in the FASEO
family, instead, promote the oldest active alternative classifier. The proposed
variants were compared to FASE through similar parametrization and same
testing conditions in order to accordingly evaluate their performance, using HT
and NB as base learners. In terms of accuracy, FASEB obtained the best results
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in most of the tested data-sets using HT and NB, but it was noticed a very close
approximation of FASEBwv2 as compared to those of FASEB.

In addition, the performance of the methods studied in the Sensor data-
stream was analyzed because it is a data-set of high complexity, large size, and
representative of a real problem prone to presenting concept drift. FASEBwv1

achieved the best result regarding accuracy. FASEBwv2 was among the first 3
results in accuracy and, at the same time, it was the most rapid.

The statistical significance of the results provided by the experiments were
evaluated using the non-parametric Friedman test together with the Bonferroni-
Dunn test. Those tests confirmed the proposed algorithms were often signif-
icantly better than FASE with respect to run-time. In particular, versions
FASEBwv2 and FASEOwv2, while not showing significant accuracy losses, were
noticeably faster than the original FASE algorithm. This can be very useful in
contexts that require quick access to partial information, a high level of accuracy
is still needed, but a very fast decision has to be made.
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