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Abstract. An ensemble method should cleverly combine a group of base
classifiers to yield an improved classifier. The majority vote is an example
of a methodology used to combine classifiers in an ensemble method. In
this paper, we propose to combine classifiers using an associative mem-
ory model. Precisely, we introduce ensemble methods based on recurrent
correlation associative memories (RCAMs) for binary classification prob-
lems. We show that an RCAM-based ensemble classifier can be viewed as
a majority vote classifier whose weights depend on the similarity between
the base classifiers and the resulting ensemble method. More precisely,
the RCAM-based ensemble combines the classifiers using a recurrent
consult and vote scheme. Furthermore, computational experiments con-
firm the potential application of the RCAM-based ensemble method for
binary classification problems.
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1 Introduction

Inspired by the idea that multiple opinions are crucial before making a final
decision, ensemble methods make predictions by consulting multiple different
predictors [31]. Apart from their similarity with some natural decision-making
methodologies, ensemble methods have a strong statistical background. Namely,
ensemble methods aim to reduce the variance – thus increasing the accuracy – by
combining multiple different predictors. Due to their versatility and effectiveness,
ensemble methods have been successfully applied to a wide range of problems
including classification, regression, and feature selection. As a preliminary study,
this paper only addresses ensemble methods for binary classification problems.

Although there is no rigorous definition of an ensemble classifier [23], they
can be conceived as a group of base classifiers, also called weak or base classifiers.

This work was supported in part by CNPq under grant no. 310118/2017-4, FAPESP
under grant no. 2019/02278-2, and Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior - Brasil (CAPES) - Finance Code 001.

c© Springer Nature Switzerland AG 2020
R. Cerri and R. C. Prati (Eds.): BRACIS 2020, LNAI 12320, pp. 442–455, 2020.
https://doi.org/10.1007/978-3-030-61380-8_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61380-8_30&domain=pdf
http://orcid.org/0000-0001-9600-8469
http://orcid.org/0000-0003-4026-5110
https://doi.org/10.1007/978-3-030-61380-8_30


Ensemble of Binary Classifiers Combined Using RCAMs 443

As to the construction of an ensemble classifier, we must take into account the
diversity of the base classifiers and the rule used to combine them [23,30]. There
are a plethora of ensemble methods in the literature, including bagging, pasting,
random subspace, boosting, and stacking [2,10,14,38]. For example, a bagging
ensemble classifier is obtained by training copies of a single base classifier using
different subsets of the training set [2]. Similarly, a random subspace classifier
is obtained by training copies of a classifier using different subsets of features
[14]. In both bagging and random subspace ensembles, the base classifiers are
then combined using a voting scheme. Random forest is a successful example of
an ensemble of decision tree classifiers trained using both bagging and random
subspace ensemble ideas [3].

In contrast to the traditional majority voting, in this paper, we propose to
combine the base classifiers using an associative memory. Associative memories
(AMs) refer to a broad class of mathematical models inspired by the human
brain’s ability to store and recall information by association [1,13,21]. The Hop-
field neural network is a typical example of a recurrent neural network able to
implement an associative memory [15]. Despite its many successful applications
[16,32–34], the Hopfield neural network suffers from an extremely low storage
capacity as an associative memory model [24]. To overcome the low storage
capacity of the Hopfield network, many prominent researchers proposed alter-
native learning schemes [18,27] as well as improved network architectures. In
particular, the recurrent correlation associative memories (RCAMs), proposed
by Chiueh and Goodman [5], can be viewed as a kernelized version of the Hop-
field neural network [8,9,29]. In this paper, we apply the RCAMs to combine
binary classifiers in an ensemble method.

At this point, we would like to remark that associative memories have been
previously used by Kultur et al. to improve the performance of an ensemble
method [22]. Apart from addressing a regression problem, Kultur et al. use an
associative memory in parallel to an ensemble of multi-layer perceptrons. The
resulting model is called ensemble of neural networks with associative memory
(ENNA). Our approach, in contrast, uses an associative memory to combine
the base classifiers. Besides, Kultur et al. associate patterns using the k-nearest
neighbor algorithm which is formally a non-parametric method used for classifi-
cation or regression. Differently, we use recurrent correlation associative memo-
ries, which are models conceived to implement associative memories.

The paper is organized as follows: The next section reviews the recurrent cor-
relation associative memories. Ensemble methods are presented in Sect. 3. The
main contribution of the manuscript, namely the ensemble classifiers based on
associative memories, are addressed in Sect. 3.2. Section 4 provides some com-
putational experiments. The paper finishes with some concluding remarks in
Sect. 5.
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2 A Brief Review on Recurrent Correlation Associative
Memories

Recurrent correlation associative memories (RCAMs) has been introduced by
Chiueh and Goodman as an improved version of the famous correlation-based
Hopfield neural network [5,15].

Briefly, an RCAM is obtained by decomposing the Hopfield network with
Hebbian learning into a two-layer recurrent neural network. The first layer com-
putes the inner product (correlation) between the input and the memorized items
followed by the evaluation of a non-decreasing continuous activation function.
The subsequent layer yields a weighted average of the stored items.

In mathematical terms, a RCAM is defined as follows: Let B = {−1,+1} and
f : [−1,+1] → R be a continuous non-decreasing real-valued function. Given a
fundamental memory set U = {u1, . . . ,uP } ⊂ B

N , the neurons in the first layer
of a bipolar RCAM yield

wξ(t) = f

(
1
N

N∑
i=1

zi(t)u
ξ
i

)
, ∀ξ ∈ 1, . . . , P, (1)

where z(t) = [z1(t), z2(t), . . . , zN (t)]T ∈ B
N denotes the current state of the

network and uξ = [uξ
1, . . . , u

ξ
N ]T is the ξth fundamental memory. The activation

potential of the output neuron ai(t) is given by the following weighted sum of
the memory items:

ai(t) =
P∑

ξ=1

wξ(t)u
ξ
i , ∀i = 1, . . . , N. (2)

Finally, the state of the ith neuron of the RCAM is updated as follows for all
i = 1, . . . , N :

zi(t + 1) =

{
sgn

(
ai(t)

)
ai(t) �= 0,

zi(t), otherwise.
(3)

From (2), we refer to wξ(t) as the weight associated to the ξth memory item.
In contrast to the Hopfield neural network, the sequence {z(t)}t≥0 produced

by an RCAM is convergent in both synchronous and asynchronous update modes
independently of the number of fundamental memories and the initial state vec-
tor z(0) [5]. In other words, the limit y = limt→∞ z(t + 1) of the sequence given
by (3) is well defined using either synchronous or asynchronous update.

As an associative memory model, an RCAM designed for the storage and
recall of the vectors u1, . . . ,uP proceeds as follows: Given a stimulus (initial
state) z(0), the vector recalled by the RCAM is y = limt→∞ z(t + 1).

Finally, the function f defines different RCAM models. For example:

1. The correlation RCAM or identity RCAM is obtained by considering in (1)
the identity function fi(x) = x.



Ensemble of Binary Classifiers Combined Using RCAMs 445

2. The exponential RCAM, which is determined by

fe(x;α) = eαx, α > 0. (4)

The identity RCAM corresponds to the traditional Hopfield network with Heb-
bian learning and self-feedback. Different from the Hopfield network and the
identity RCAM, the storage capacity of the exponential RCAM scales exponen-
tially with the dimension of the memory space. Apart from the high storage
capacity, the exponential RCAM can be easily implemented on very large scale
integration (VLSI) devices [5]. Furthermore, the exponential RCAM allows for a
Bayesian interpretation [11] and it is closely related to support vector machines
and the kernel trick [8,9,29]. In this paper, we focus on the exponential RCAM,
formerly known as exponential correlation associative memory (ECAM).

3 Ensemble of Binary Classifiers

An ensemble classifier combines a group of single classifiers, also called weak or
base classifiers, in order to provide better classification accuracy than a single one
[23,31,38]. Although this approach is partially inspired by the idea that multiple
opinions are crucial before making a final decision, ensemble classifiers have a
strong statistical background. Namely, ensemble classifiers reduce the variance
combining the base classifiers. Furthermore, when the amount of training data
available is too small compared to the size of the hypothesis space, the ensemble
classifier “mixes” the base classifiers reducing the risk of choosing the wrong
single classifier [19].

Formally, let T = {(t1, d1), . . . , (tM , dM )} be a training set where ti ∈ X and
di ∈ C are respectively the feature sample and the class label of the ith training
pair. Here, X denotes the feature space and C represents the set of all class
labels. In a binary classification problem, we can identify C with B = {−1,+1}.
Moreover, let h1, h2, . . . , hP : X → C be base classifiers trained using the whole
or part of the training set T .

Usually, the base classifiers are chosen according to their accuracy and diver-
sity. On the one hand, an accurate classifier is one that has an error rate better
than random guessing on new instances. On the other hand, two classifiers are
diverse if they make different errors on new instances [12,19].

Bagging and random subspace ensembles are examples of techniques that
can be used to ensure the diversity of the base classifiers. The idea of bagging,
an acronym for Bootstrap AGGregatING, is to train copies of a certain classifier
h on subsets of the training set T [2]. The subsets are obtained by sampling
the training T with replacement, a methodology known as bootstrap sampling
[23]. In a similar fashion, random subspace ensembles are obtained by training
copies of a certain classifier h using different subsets of the feature space [14].
Random forest, which is defined as an ensemble of decision tree classifiers, is
an example of an ensemble classifier that combines both bagging and random
subspace techniques [3].
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Another important issue that must be addressed in the design of an ensem-
ble classifier is how to combine the base classifiers. In the following, we review
the majority voting methodology – one of the oldest and widely used combina-
tion scheme. The methodology based on associative memories is introduced and
discussed subsequently.

3.1 Majority Voting Classifier

As remarked by Kuncheva [23], majority voting is one of the oldest strategies
for decision making. In a wide sense, a majority voting classifier yields the class
label with the highest number of occurrences among the base classifiers [10,35].

Formally, let h1, h2, . . . , hP : X → C be the base classifiers. The majority
voting classifier, also called hard voting classifier and denoted by Hv : X → C,
is defined by means of the equation

Hv(x) = argmax
c∈C

P∑
ξ=1

wξI[hξ(x) = c], ∀x ∈ X , (5)

where w1, . . . , wP are the weights of the base classifiers and I is the indicator
function, that is,

I[hξ(x) = c] =

{
1, hξ(x) = c,

0, otherwise.
(6)

When C = {−1,+1}, the majority voting ensemble classifier given by (5) can be
written alternatively as

Hh(x) = sgn

⎛
⎝ P∑

ξ=1

wξhξ(x)

⎞
⎠ , ∀x ∈ X , (7)

whenever
∑P

ξ=1 wξhξ(x) �= 0 [7].

3.2 Ensemble Based on Bipolar Associative Memories

Let us now introduce the ensemble classifiers based on the RCAM models. In
analogy to the majority voting ensemble classifier, the RCAM-based ensemble
classifier is formulated using only the base classifiers h1, . . . , hP : X → B. Pre-
cisely, consider a training set T = {(ti, di) : i = 1, . . . , M} ⊂ X × B and let
X = {x1, . . . ,xL} ⊂ X be a batch of input samples. We first define the funda-
mental memories as follows for all ξ = 1, . . . , P :

uξ = [hξ(t1), . . . , hξ(tM ), hξ(x1), . . . , hξ(xL)]T ∈ B
M+L. (8)

In words, the ξth fundamental memory is obtained by concatenating the outputs
of the ξth base classifier evaluated at the M training samples and the L input
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samples. The bipolar RCAM is synthesized using the fundamental memory set
U = {u1, . . . ,uP } and it is initialized at the state vector

z(0) = [d1, d2, . . . , dM , 0, 0, . . . , 0︸ ︷︷ ︸
L−times

]T . (9)

Note that the first M components of initial state z(0) correspond to the targets
in the training set T . The last L components of z(0) are zero, a neutral element
different from the class labels. The initial state z(0) is presented as input to the
associative memory and the last L components of the recalled vector y yield the
class label of the batch of input samples X = {x1, . . . ,xL}. In mathematical
terms, the RCAM-based ensemble classifier Ha : X → B is defined by means of
the equation

Ha(xi) = yM+i, ∀xi ∈ X, (10)

where y = [y1, . . . , yM , yM+1, . . . , yM+L]T is the limit of the sequence {z(t)}t≥0

given by (3).
In the following, we point out the relationship between the bipolar RCAM-

based ensemble classifier and the majority voting ensemble described by (7). Let
y be the vector recalled by the RCAM fed by the input z(0) given by (9), that
is, y is a stationary state of the RCAM. From (2), (3), and (8), the output of
the RCAM-based ensemble classifier satisfies

Ha(xi) = sgn

⎛
⎝ P∑

ξ=1

wξhξ(xi)

⎞
⎠ , (11)

where

wξ = f

(
1

M + L

M+L∑
i=1

yiu
ξ
i

)
, ∀ξ = 1, . . . , P. (12)

From (11), the bipolar RCAM-based ensemble classifier can be viewed as a
weighted majority voting classifier. Furthermore, the weight wξ depends on the
similarity between the ξth base classifier hξ and the ensemble classifier Ha. Pre-
cisely, let us define the similarity between two binary classifiers H,hξ : X → B

on a set of samples S by means of the equation

Sim(H,h) =
1

Card(S)

∑
s∈S

I
[
h(s) = H(s)

]
. (13)

Using (13), we can state the following theorem:

Theorem 1. The weights of the RCAM-based ensemble classifier given by (11)
satisfies the following identities for all ξ = 1, . . . , P :

wξ = f
(
1 − 2 · Sim(Ha, hξ)

)
, ∀t ≥ 1, (14)

where the similarity in (14) is evaluated on the union of all training and input
samples, that is, on S = X ∪ T = {t1, . . . , tM} ∪ {x1, . . . ,xL}.
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Proof. Since we are considering a binary classification problem, the similarity
between the ensemble Ha and the base classifier hξ on S = X ∪ T , with N =
Card(S) = M + L, satisfies the following identities:

Sim(H,h) = 1 − 1
N

N∑
i=1

I[h(si) �= Ha(si)] = 1 − 1
4N

N∑
i=1

(
h(si) − Ha(si)

)2

= 1 − 1
2N

N∑
i=1

(
1 − Ha(si)h(si)

)
=

1
2

(
1 − 1

N

N∑
i=1

Ha(si)h(si)

)

Equivalently, we have

1
Card(S)

∑
s∈S

H(s)h(s) = 1 − 2 · Sim(H,h). (15)

Now, from (1), (10), and (15), we obtain the following identities:

wξ = f

(
1
N

N∑
i=1

yiu
ξ
i

)
= f

(
1 − 2 · Sim(Ha, hξ)

)
,

which concludes the proof.

Theorem 1 shows that the RCAM-based ensemble classifier is a majority vot-
ing classifier whose weights depend on the similarity between the base classifiers
and the ensemble itself. In fact, in view of the dynamic nature of the RCAM
model, Ha is obtained by a recurrent consult and vote scheme. Moreover, at the
first step, the weights depend on the accuracy of the base classifiers.

4 Computational Experiments

In this section, we perform some computational experiments to evaluate the
performance of the proposed RCAM-based ensemble classifiers for binary clas-
sification tasks. Precisely, we considered the RCAM-based ensembles obtained
using the identity and the exponential as the activation function f . The parame-
ter α of the exponential activation function has been either set to α = 1 or it has
been determined using a grid search on the set {10−2, 10−1, 0.5, 1, 5, 10, 20, 50}
with 5-fold cross-validation on the training set. The RCAM-based ensemble clas-
sifiers have been compared with AdaBoost, gradient boosting, and random forest
ensemble classifiers, all available at the python’s scikit-learn API (sklearn)
[28].

First of all, we trained AdaBoost and gradient boosting ensemble classi-
fiers using the default parameters of sklearn. Recall that boosting ensemble
classifiers are developed incrementally by adding base classifiers to reduce the
number of misclassified samples [23]. Also, we trained the random forest classi-
fier with 30 base classifiers (P = 30) [3]. Recall that the base classifiers of the
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random forest are decision trees obtained using bagging and random subspace
techniques [2,14]. Then, we used the base classifiers from the trained random for-
est ensemble to define the RCAM-based ensemble. In other words, the same base
classifiers h1, . . . , h30 are used in the random forest and the RCAM-based clas-
sifiers. The difference between the ensemble classifiers resides in the combining
rule. Recall that the random forest combines the base classifiers using majority
voting. From the computational point of view, training the random forest and
the RCAM-ensemble classifiers required similar resources. Moreover, despite the
consult and vote scheme of the RCAM-based ensemble, they have not been sig-
nificantly more expensive than the random forest classifier. The grid search used
to fine-tune the parameter α of the exponential RCAM-based ensemble is the
major computational burden in this computational experiment.

For the comparison of the ensemble classifiers, we considered 28 binary clas-
sification problems from the OpenML repository [36]. These binary classification
problems can be obtained using the command fetch openml from sklearn. We
would like to point out that missing data has been handled before splitting the
data set into training and test sets using the command SimpleImputer from
sklearn. Also, we pre-processed the data using the StandardScaler transform.
Therefore, each feature is normalized by subtracting the mean and dividing by
the standard deviation, both computed using only the training set. Furthermore,
since some data sets are unbalanced, we used the F-measure to evaluate quanti-
tatively the performance of a certain classifier. Table 1 shows the mean and the
standard deviation of the F-measure obtained from the ensemble classifiers using
stratified 10-fold cross-validation. The largest F-measures for each data set have
been typed using boldface. Note the exponential RCAM-based ensemble clas-
sifier with grid search produced the largest F-measures in 11 of the 28 data
sets. In particular, the exponential RCAM with grid search produced outstand-
ing F-measures on the “Monks-2” and “Egg-Eye-State” data sets. For a better
comparison of the ensemble classifiers, we followed Demšar’s recommendations
to compare multiple classifier models using multiple data sets [6]. The Friedman
test rejected the hypothesis that there is no difference between the ensemble clas-
sifiers. A visual interpretation of the outcome of this computational experiment
is provided in Fig. 1 with the Hasse diagram of the non-parametric Wilcoxon
signed-rank test with a confidence level at 95% [4,37]. In this diagram, an edge
means that the classifier on the top statistically outperformed the classifier on
the bottom. The outcome of this analysis confirms that the RCAM-based ensem-
ble classifiers statistically outperformed the other ensemble methods: AdaBoost,
gradient boosting, and random forest.

As to the computational effort, Fig. 2 shows the average time required by the
ensemble classifiers for the prediction of a batch of testing samples. Note that
the most expensive method is identity RCAM-based ensemble classifier while
the gradient boosting is the cheapest. The exponential RCAM-based ensemble
is less expensive than the AdaBoost and quite comparable to the random forest
classifier.
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Table 1. Mean and standard deviation of the F-measures produced by ensemble clas-
sifiers using stratified 10-fold cross-validation.

Data set AdaBoost Gradient

boosting

Random

forest

Identity

RCNN

Exponential

RCAM

Exp.

RCAM +

grid search

Arsene 84.0 ± 5.9 86.2 ± 7.6 81.5 ± 8.9 83.8 ± 8.4 83.8 ± 8.4 85.2 ± 10.2

Australian 82.1 ± 3.4 85.8 ± 3.8 85.4 ± 3.4 85.3 ± 2.9 85.3 ± 2.9 85.0 ± 2.9

Banana 67.9 ± 2.1 88.1 ± 1.6 88.0 ± 1.3 88.2 ± 1.2 88.2 ± 1.2 87.2 ± 1.2

Banknote 99.6 ± 0.4 99.5 ± 0.9 99.3 ± 0.7 99.2 ± 0.7 99.2 ± 0.7 98.9 ± 0.9

Blood

transfusion

43.0 ± 13.1 37.9 ± 11.2 32.3 ± 10.4 33.3 ± 10.6 33.3 ± 10.6 32.5 ± 8.2

Breast cancer

Wisconsin

94.7 ± 2.0 95.2 ± 2.4 94.9 ± 3.4 95.4 ± 2.9 95.1 ± 3.3 95.2 ± 4.2

Chess 96.5 ± 1.1 97.9 ± 0.8 99.0 ± 0.5 99.0 ± 0.6 99.0 ± 0.6 99.2 ± 0.4

Colic 87.1 ± 6.4 86.7 ± 7.4 88.7 ± 5.7 88.6 ± 5.4 88.6 ± 5.4 88.9 ± 4.6

Credit approval 86.4 ± 2.9 86.9 ± 3.2 88.4 ± 2.8 88.4 ± 2.5 88.4 ± 2.5 88.3 ± 2.3

Credit-g 82.3 ± 2.5 84.2 ± 2.8 83.7 ± 2.4 84.3 ± 2.2 84.3 ± 2.2 83.9 ± 1.8

Cylinder bands 78.3 ± 4.8 84.0 ± 4.8 83.0 ± 6.6 83.3 ± 6.4 83.3 ± 6.4 87.0 ± 4.2

Diabetes 63.1 ± 5.2 65.1 ± 6.5 63.9 ± 8.8 65.6 ± 8.2 65.6 ± 8.2 62.4 ± 7.8

Egg-eye-state 70.1 ± 1.3 78.0 ± 0.9 91.5 ± 0.7 91.8 ± 0.8 91.8 ± 0.8 92.9 ± 0.8

Haberman 35.4 ± 9.5 30.8 ± 14.2 27.4 ± 13.4 30.6 ± 9.6 30.6 ± 9.6 34.9 ± 12.9

Hill-valley 40.9 ± 5.4 52.9 ± 7.3 54.9 ± 4.6 56.6 ± 3.8 56.6 ± 4.0 59.1 ± 6.2

Internet

advertisements

98.0 ± 0.3 98.6 ± 0.3 98.8 ± 0.4 98.7 ± 0.4 98.7 ± 0.4 98.7 ± 0.5

Ionosphere 94.3 ± 1.7 94.4 ± 2.0 94.2 ± 2.5 94.0 ± 2.5 94.0 ± 2.5 94.7 ± 2.7

MOFN-3-7-10 100.0 ± 0.0 100.0 ± 0.0 99.8 ± 0.2 99.7 ± 0.3 99.7 ± 0.3 99.7 ± 0.5

Monks-2 0.0 ± 0.0 69.3 ± 8.7 93.1 ± 3.3 93.5 ± 3.3 93.5 ± 3.3 98.5 ± 2.7

Phoneme 68.3 ± 3.0 75.4 ± 2.4 84.0 ± 3.0 84.1 ± 2.7 84.1 ± 2.7 85.7 ± 2.0

Pishing websites 94.4 ± 0.4 95.3 ± 0.5 97.5 ± 0.6 97.4 ± 0.6 97.4 ± 0.6 97.5 ± 0.5

Sick 78.3 ± 6.4 88.8 ± 3.9 87.5 ± 3.1 88.6 ± 3.9 88.6 ± 3.9 89.7 ± 3.6

Sonar 83.9 ± 8.0 81.3 ± 6.2 81.9 ± 11.4 83.3 ± 11.1 83.3 ± 11.1 83.2 ± 11.1

Spambase 91.8 ± 1.5 93.1 ± 1.7 94.2 ± 1.1 94.0 ± 1.2 94.1 ± 1.2 94.0 ± 1.2

Steel plates fault 100.0 ± 0.0 100.0 ± 0.0 99.0 ± 0.8 99.2 ± 0.6 99.2 ± 0.6 99.4 ± 0.7

Tic-Tac-Toe 84.5 ± 2.6 94.8 ± 2.1 95.6 ± 1.2 95.5 ± 1.2 95.5 ± 1.2 96.5 ± 1.5

Titanic 58.8 ± 4.3 53.8 ± 4.4 53.6 ± 4.2 53.6 ± 4.2 53.6 ± 4.2 53.8 ± 4.4

ilpd 41.4 ± 11.4 35.3 ± 15.1 35.1 ± 15.8 37.5 ± 16.6 37.5 ± 16.6 33.5 ± 14.6

Finally, note from Table 1 that some problems such as the “Banknote”’ and
the “MOFN-3-7-10” data sets are quite easy while others such as the “Haber-
man” and “Hill Valley” are very hard. In order to circumvent the difficulties
imposed by each data set, Fig. 3 shows a box-plot with the normalized F-measure
values provided in Table 1. Precisely, for each data set (i.e., each row in Table 1),
we subtracted the mean and divided by the standard deviation of the score val-
ues. The box-plot in Fig. 3 confirms the good performance of the RCAM-based
ensemble classifiers, including the exponential RCAM-based ensemble classifier
with a grid search. Concluding, the boxplots shown on Figs. 2 and 3 supports
the potential application of the RCAM models as an ensemble of classifiers for
binary classification problems.
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AdaBoost

Gradient Boosting Random Forest

Identity RCAM Exponential RCAMExp. RCAM + Grid Search

Fig. 1. Hasse diagram of Wilcoxon signed-rank test with a confidence level at 95%.

Fig. 2. Box-plot of the average time for prediction of batch of input samples.
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Fig. 3. Box-plot of the normalized F-measures produced by the ensemble classifiers.

5 Concluding Remarks

This paper provides a bridge between ensemble methods and associative mem-
ories. In general terms, an ensemble method reduces variance and improve the
accuracy and robustness by combining a group of base predictors [23,38]. The
rule used to combine the base predictors is one important issue in the design of
an ensemble method. In this paper, we propose to combine the base predictors
using an associative memory. Associative memory is a model designed for the
storage and recall of a set of vectors [13]. Furthermore, an associative memory
should be able to retrieve a stored item from a corrupted or partial version of it.
In an ensemble method, the memory model is designed for the storage of eval-
uations of the base classifiers. The associative memory is then fed by a vector
with the target of training data as well as the unknown predictions. The output
of the ensemble method is obtained from the vector retrieved by the memory.

Specifically, in this paper, we presented ensemble methods based on the
recurrent correlation associative memories (RCAMs) for binary classifications.
RCAMs, proposed by Chiueh and Goodman [5], are high storage capacity asso-
ciative memories which, besides Bayesian and kernel trick interpretation, are
particularly suited for VLSI implementation [8,9,11,29]. Theorem 1 shows that
the RCAM model yields a majority voting classifier whose weights are obtained
by a recurrent consult and vote scheme. Moreover, the weights depend on the
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similarity between the base classifiers and the resulting ensemble. Computational
experiments using decision tree as the base classifiers revealed an outstanding
performance of the exponential RCAM-based ensemble classifier combined with
a grid search strategy to fine-tune its parameter. The exponential RCAM-based
ensemble, in particular, outperformed the traditional AdaBoost, gradient boost-
ing, and random forest classifiers.

In the future, we plan to investigate further associative memory-based ensem-
ble methods. In particular, we plan to extend these ensemble methods to multi-
class classification problems using, for instance, multistate associative memory
models [17,20,25,26].
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