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Preface

The Brazilian Conference on Intelligent Systems (BRACIS) is one of Brazil’s most
meaningful events for students and researchers in Artificial and Computational Intel-
ligence. Currently, In its 9th edition, BRACIS originated from the combination of the
two most important scientific events in Brazil in Artificial Intelligence (Al) and
Computational Intelligence (CI): the Brazilian Symposium on Artificial Intelligence
(SBIA), with 21 editions, and the Brazilian Symposium on Neural Networks (SBRN),
with 12 editions. The conference aims to promote theory and applications of artificial
and computational intelligence. BRACIS also aims to promote international-level
research by exchanging scientific ideas among researchers, practitioners, scientists, and
engineers.

BRACIS 2020 received 228 submissions. All papers were rigorously double-blind
peer-reviewed by an International Program Committee (an average of three reviews per
submission), followed by a discussion phase for conflicting reports. At the end of the
reviewing process, 90 papers were selected for publication in two volumes of the
Lecture Notes in Artificial Intelligence series, an acceptance rate of 40%.

We are very grateful to Program Committee members and reviewers for their vol-
unteered contribution in the reviewing process. We would also like to express our
gratitude to all the authors who submitted their articles, the general chairs, and the
Local Organization Committee, to put forward the conference during the COVID-19
pandemic. We want to thank the Artificial Intelligence and Computational Intelligence
commissions from the Brazilian Computer Society for the confidence in serving as
program chairs for BRACIS 2020.

We are confident that these proceedings reflect the excellent work in the fields of
artificial and computation intelligence communities.

October 2020 Ricardo Cerri
Ronaldo C. Prati



General Chairs

Hélida Salles Santos

Gracaliz Dimuro
Eduardo Borges

Leonardo Emmendorfer

Organization

Universidade Federal do Rio Grande, Brazil
Universidade Federal do Rio Grande, Brazil
Universidade Federal do Rio Grande, Brazil
Universidade Federal do Rio Grande, Brazil

Program Committee Chairs

Ricardo Cerri
Ronaldo C. Prati

Steering Committee

Leliane Barros
Heloisa Camargo
Flavia Bernardini
Jaime Sichman
Karina Delgado
Kate Revoredo

Renata O. Vieira

Solange Rezende
Ricardo Prudencio
Anne Canuto
Anisio Lacerda
Gisele Pappa
Gina Oliveira
Renato Tinds
Paulo Cavalin

Program Committee

Adenilton da Silva
Adrido Doéria Neto
Albert Bifet

Alberto Paccanaro
Alex Freitas

Alexandre Delbem
Alexandre Ferreira

Federal University of Sdo Carlos, Brazil
Federal University of ABC, Brazil

Universidade de Sdo Paulo, Brazil

Universidade Federal de Sao Carlos, Brazil

Universidade Federal Fluminense, Brazil

Universidade de Sido Paulo, Brazil

Universidade de Sado Paulo, Brazil

Universidade Federal do Estado do Rio de Janeiro,
Brazil

Pontificia Universidade Catélica do Rio Grande do Sul,
Brazil

Universidade de Sao Paulo, Brazil

Universidade Federal de Pernambuco, Brazil

Universidade Federal do Rio Grande do Norte, Brazil

Universidade Federal de Minas Gerais, Brazil

Universidade Federal de Minas Gerais, Brazil

Universidade Federal de Uberlandia, Brazil

Universidade de Sado Paulo, Brazil

IBM, Brazil

Universidade Federal de Pernambuco, Brazil
Universidade Federal do Rio Grande do Norte, Brazil
LTCI, Télécom ParisTech, France

Royal Holloway, University of London, UK
University of Kent, UK

Universidade de Sdo Paulo, Brazil

Universidade Estadual de Campinas, Brazil



viii Organization

Alexandre Plastino
Aline Paes

Alvaro Moreira

Ana Carolina Lorena
Ana Vendramin
Anisio Lacerda

Anderson Soares
André Coelho
André Carvalho
André Rossi
André Grahl Pereira
Andrés Salazar
Anne Canuto
Araken Santos
Aurora Pozo
Bianca Zadrozny
Bruno Nogueira
Bruno Travencolo
Carlos Ferrero
Carlos Silla
Carlos Thomaz
Carolina Almeida
Celia Ralha
Celine Vens
Celso Kaestner
Cesar Tacla
Cleber Zanchettin
Daniel Aratjo
Danilo Sanches
David Martins-Jr
Delia Farias
Denis Fantinato
Denis Maua
Diana Adamatti
Diego Furtado Silva
Eder Gongalves
Edson Gomi
Edson Matsubara

Eduardo Borges
Eduardo Costa
Eduardo Goncalves
Eduardo Palmeira
Eduardo Spinosa
Elaine Faria

Universidade Federal Fluminense, Brazil
Universidade Federal Fluminense, Brazil
Universidade Federal do Rio Grande do Sul, Brazil
Instituto Tecnoldgico de Aeronautica, Brazil
Universidade Tecnologica Federal do Parand, Brazil
Centro Federal de Educagdo Tecnoldgica de Minas
Gerais, Brazil
Universidade Federal de Goias, Brazil
Universidade de Ceara, Fortaleza, Brazil
Universidade de Sido Paulo, Brazil
Universidade de Sdo Paulo, Brazil
Universidade Federal do Rio Grande do Sul, Brazil
Universidade Tecnoldgica Federal do Parand, Brazil
Universidade Federal do Rio Grande do Norte, Brazil
Universidade Federal Rural do Semi-arido, Brazil
Universidade Federal do Paranav, Brazil
IBM, Brazil
Universidade Federal de Mato Grosso do Sul, Brazil
Universidade Federal de Uberlandia, Brazil
Instituto Federal de Santa Catarina, Brazil
Pontifical Catholic University of Parana, Brazil
Centro Universitario da FEI, Brazil
State University in the Midwest of Parand, Brazil
Universidade de Brasilia, Brazil
KU Leuven, Belgium
Universidade Tecnologica Federal do Parana, Brazil
Universidade Tecnologica Federal do Parana, Brazil
Universidade Federal de Pernambuco, Brazil
Federal University of Rio Grande do Norte, Brazil
Universidade Tecnolédgica Federal do Parana, Brazil
Universidade Federal do ABC, Brazil
Universidad de Guanajuato Lomas del Bosque, Mexico
Universidade Federal do ABC, Brazil
Universidade de Sdo Paulo, Brazil
Universidade Federal do Rio Grande, Brazil
Universidade Federal de Sao Carlos, Brazil
Universidade Federal do Rio Grande, Brazil
Universidade de Sao Paulo
Fundacdo Universidade Federal de Mato Grosso
do Sul, Brazil
Universidade Federal do Rio Grande, Brazil
Corteva Agriscience, USA
Escola Nacional de Ciéncias Estatisticas, Brazil
Universidade Estadual de Santa Cruz, Brazil
Universidade Federal do Parana, Brazil
Federal University of Uberlandia, Brazil



Elizabeth Goldbarg
Emerson Paraiso
Eraldo Fernandes
Eric Aratjo

Erick Fonseca
Fabiano Silva
Fabricio Enembreck
Fabricio Franca
Fabio Cozman
Federico Barber
Felipe Meneguzzi

Fernando Osorio
Flavio Tonidandel
Francisco Chicano
Francisco de Carvalho
Gabriel Ramos
George Cavalcanti
Gerson Zaverucha
Giancarlo Lucca
Gina Oliveira

Gisele Pappa
Gracaliz Dimuro
Guilherme Derenievicz
Guillermo Simari
Gustavo Batista
Gustavo Giménez-Lugo
Heitor Gomes
Helena Caseli

Helida Santos

Huei Lee

Humberto Bustince
Humberto Oliveira
Isaac Triguero
Ivandré Paraboni
Jaime Sichman

Jesse Read

Joao Gama

Jodo Balsa

Jodo Bertini

Jodo Mendes Moreira
Jodo Papa

Jodo Xavier-Junior
Joao Luis Rosa

Jomi Hiibner
Jonathan Silva

Organization ix

Universidade Federal do Rio Grande do Norte, Brazil

Pontificia Universidade Catolica do Parana, Brazil

Universidade Federal de Mato Grosso do Sul, Brazil

Universidade Federal de Lavras, Brazil

Instituto de Telecomunicagdes, Portugal

Universidade Federal do Parana, Brazil

Pontifical Catholic University of Parand, Brazil

Universidade Federal do ABC, Brazil

Universidade de Sao Paulo, Brazil

Universitat Politécnica de Valéncia, Spain

Pontificia Universidade Catolica do Rio Grande do Sul,
Brazil

Universidade de Sao Paulo, Brazil

Centro Universitario da FEI, Brazil

University of Malaga, Spain

Centro de Informatica da UFPE, Brazil

Universidade do Vale do Rio dos Sinos, Brazil

Universidade Federal de Pernambuco, Brazil

Federal University of Rio de Janeiro, Brazil

Universidade Federal do Rio Grande, Brazil

Universidade Federal de Uberlandia, Brazil

Universidade Federal de Minas Gerais, Brazil

Universidade Federal do Rio Grande, Brazil

Federal University of Santa Catarina, Brazil

Universidad Nacional del Sur, Argentina

Universidade de Sido Paulo, Brazil

Universidade Tecnologica Federal do Parana, Brazil

University of Waikato, New Zealand

Universidade Federal de Sao Carlos, Brazil

Universidade Federal do Rio Grande, Brazil

Universidade Estadual do Oeste do Parana, Brazil

Universidad Publica de Navarra, Spain

Universidade Federal de Alfenas, Brazil

University of Nottingham, UK

Universidade de Sao Paulo, Brazil

Universidade de Sao Paulo, Brazil

Ecole Polytechnique, France

Universidade do Porto, Portugal

Universidade de Lisboa, Portugal

Universidade Estadual de Campinas, Brazil

Universidade do Porto, Portugal

Universidade Estadual Paulista, Brazil

Universidade Federal do Rio Grande, Brazil

Universidade de Sdo Paulo, Brazil

Universidade Federal de Santa Catarina, Brazil

Universidade Federal de Mato Grosso do Sul, Brazil



X Organization

José Antonio Sanz
Julio Nievola
Karina Delgado
Kate Revoredo

Krysia Broda
Leandro Coelho
Leliane Barros

Leonardo Emmendorfer

Leonardo Ribeiro
Livy Real
Lucelene Lopes
Luciano Barbosa
Luis Garcia

Luiz Carvalho
Luiz Coletta

Luiz Merschmann
Luiza Mourelle
Marcela Ribeiro
Marcella Scoczynski
Marcelo Finger
Marcilio de Souto
Marcos Domingues
Marcos Quiles
Marilton Aguiar
Marley Vellasco

Mauri Ferrandin
Marcio Basgalupp
Mario Benevides
Moacir Ponti
Murillo Carneiro
Murilo Naldi
Myriam Delgado
Nadia Felix
Newton Spoladr
Patricia Oliveira
Paulo Cavalin
Paulo Ferreira Jr.
Paulo Gabriel
Paulo Quaresma
Paulo Pisani
Priscila Lima
Rafael Bordini

Rafael Mantovani

Universidad Publica de Navarra, Spain

Pontificia Universidade Catolica do Parana, Brazil

Universidade de Sido Paulo

Universidade Federal do Estado do Rio de Janeiro,
Brazil

Imperial College London, UK

Pontificia Universidade Catolica do Parana, Brazil

Universidade de Sdo Paulo

Universidade Federal do Rio Grande, Brazil

Technische Universitdt Darmstadt, Germany

B2W Digital Company, Brazil

Roberts Wesleyan College, USA

Universidade Federal de Pernambuco, Brazil

Universidade de Brasilia, Brazil

Universidade Tecnologica Federal do Parana, Brazil

Universidade Estadual Paulista, Brazil

Universidade Federal de Lavras, Brazil

State University of Rio de Janeiro, Brazil

Universidade Federal de Sao Carlos, Brazil

Universidade Tecnologica Federal do Parana, Brazil

Universidade de Sdo Paulo, Brazil

Université d’Orléans, France

Universidade Estadual de Maringd, Brazil

Federal University of Sdo Paulo, Brazil

Universidade Federal de Pelotas, Brazil

Pontificia Universidade Catdlica do Rio de Janeiro,
Brazil

Universidade Federal de Santa Catarina, Brazil

Universidade Federal de Sao Paulo, Brazil

Universidade Federal Fluminense, Brazil

Universidade de Sdo Paulo, Brazil

Federal University of Uberlandia, Brazil

Universidade Federal de Sdo Carlos, Brazil

Federal University of Technology of Parand, Brazil

Universidade Federal de Goias, Brazil

Universidade Estadual do Oeste do Parana, Brazil

Universidade de Sdo Paulo

IBM Research, Brazil

Universidade Federal de Pelotas, Brazil

Universidade Federal de Uberlandia, Brazil

Universidade de Evora, Portugal

Universidade Federal do ABC, Brazil

Universidade Federal do Rio de Janeiro, Brazil

Pontificia Universidade Catolica do Rio Grande do Sul,

Brazil
Federal Technology University of Parand, Brazil



Rafael Parpinelli
Rafael Rossi
Reinaldo Bianchi
Renato Assuncao
Renato Krohling
Renato Tinos
Ricardo Cerri
Ricardo Silva
Ricardo Marcacini
Ricardo Prudéncio
Ricardo Rios
Ricardo Tanscheit

Ricardo Fernandes
Roberta Sinoara

Roberto Santana
Robson Cordeiro
Rodrigo Barros

Rodrigo Mello
Rodrigo Wilkens
Roger Granada

Organization Xi

Universidade do Estado de Santa Catarina, Brazil

Federal University of Mato Grosso do Sul, Brazil

Centro Universitario FEI, Brazil

Universidade Federal de Minas Gerais, Brazil

Universidade Federal do Espirito Santo, Brazil

Universidade de Sdo Paulo, Brazil

Universidade Federal de Sao Carlos, Brazil

Universidade Tecnologica Federal do Parana, Brazil

Universidade de Sao Paulo, Brazil

Universidade Federal de Pernambuco, Brazil

Universidade Federal da Bahia, Brazil

Pontificia Universidade Catoélica do Rio de Janeiro,
Brazil

Federal University of Sdo Carlos, Brazil

Instituto Federal de Ciéncia, Educacdo e Tecnologia
de Sdo Paulo, Brazil

University of the Basque Country, Spain

Universidade de Sdo Paulo, Brazil

Pontificia Universidade Catolica do Rio Grande do Sul,
Brazil

Universidade de Sido Paulo

University of Essex, UK

Pontificia Universidade Catolica do Rio Grande do Sul,
Brazil



Contents — Part 1

Evolutionary Computation, Metaheuristics, Constrains and Search,
Combinatorial and Numerical Optimization

A New Hybridization of Evolutionary Algorithms, GRASP

and Set-Partitioning Formulation for the Capacitated Vehicle

Routing Problem. . . .. ... .. . .
André Manhdes Machado, Maria Claudia Silva Boeres,
Rodrigo de Alvarenga Rosa, and Geraldo Regis Mauri

An Evolutionary Algorithm for Learning Interpretable Ensembles
of Classifiers ... ... ... . .
Henry E. L. Cagnini, Alex A. Freitas, and Rodrigo C. Barros

An Evolutionary Analytic Center Classifier . .......................
Renan Motta Goulart, Saulo Moraes Villela,
Carlos Cristiano Hasenclever Borges, and Raul Fonseca Neto

Applying Dynamic Evolutionary Optimization to the Multiobjective
Knapsack Problem . ... ... ... .. . .
Thiago Fialho de Queiroz Lafeta and Gina Maira Barbosa de Oliveira

Backtracking Group Search Optimization: A Hybrid Approach
for Automatic Data Clustering . .. .......... ...,
Luciano Pacifico and Teresa Ludermir

Dynamic Software Project Scheduling Problem with PSO and Dynamic
Strategies Based on Memory . . ........ ..
Gabriel Fontes da Silva, Leila Silva, and André Britto

Evaluation of Metaheuristics in the Optimization of Laguerre-Volterra
Networks for Nonlinear Dynamic System Identification. . .. ............
Victor O. Costa and Felipe M. Miiller

EvoLogic: Intelligent Tutoring System to Teach Logic. . ...............
Cristiano Galafassi, Fabiane F. P. Galafassi, Eliseo B. Reategui,
and Rosa M. Vicari

Impacts of Multiple Solutions on the Lackadaisical Quantum Walk

Search Algorithm . ... ... ... .
Jonathan H. A. de Carvalho, Luciano S. de Souza,
Fernando M. de Paula Neto, and Tiago A. E. Ferreira



X1v Contents — Part 1

Multi-objective Quadratic Assignment Problem: An Approach Using
a Hyper-Heuristic Based on the Choice Function .. .................. 136
Bianca N. K. Senzaki, Sandra M. Venske, and Carolina P. Almeida

On Improving the Efficiency of Majorization-Minorization for the Inference
of Rank Aggregation Models . ... ....... ... ... ... .. .. .. . ... 151
Leonardo Ramos Emmendorfer

On the Multiple Possible Adaptive Mechanisms of the Continuous Ant
Colony Optimization . . . . . ..ottt e e e e e e 166
Victor O. Costa and Felipe M. Miiller

A Differential Evolution Algorithm for Contrast Optimization . .......... 179
Artur Leandro da Costa Oliveira and André Britto

Neural Networks, Deep Learning and Computer Vision

A Deep Learning Approach for Pulmonary Lesion Identification

in Chest Radiographs. . . ... ... ... . .. . 197
Eduardo Henrique Pais Pooch, Thatiane Alves Pianoschi Alva,
and Carla Diniz Lopes Becker

A Pipelined Approach to Deal with Image Distortion in Computer Vision . .. 212
Cristiano Rafael Steffens, Lucas Ricardo Vieira Messias,
Paulo Lilles Jorge Drews-Jr, and Silvia Silva da Costa Botelho

A Robust Automatic License Plate Recognition System

for Embedded Devices. . . . ... ... 226
Lucas S. Fernandes, Francisco H. S. Silva, Elene F. Ohata,
Aldisio Medeiros, Aloisio V. Lira Neto, Yuri L. B. Nogueira,
Paulo A. L. Rego, and Pedro Pedrosa Rebougas Filho

Assessing Deep Learning Models for Human-Robot Collaboration

Collision Detection in Industrial Environments . . .. ........... ... .... 240
lago R. R. Silva, Gibson B. N. Barbosa, Carolina C. D. Ledebour,
Assis T. Oliveira Filho, Judith Kelner, Djamel Sadok, Silvia Lins,
and Ricardo Souza

Diagnosis of Apple Fruit Diseases in the Wild with Mask R-CNN ... ... .. 256
Ramasio Ferreira de Melo, Gustavo Lameirdo de Lima,
Guilherme Ribeiro Corréa, Bruno Zatt, Marilton Sanchotene de Aguiar,
Gilmar Ribeiro Nachtigall, and Ricardo Matsumura Araujo

Ensemble of Algorithms for Multifocal Cervical Cell Image Segmentation. .. 271
Geovani L. Martins, Daniel S. Ferreira, Fatima N. S. Medeiros,
and Geraldo L. B. Ramalho



Contents — Part 1 XV

Improving Face Recognition Accuracy for Brazilian Faces in a Criminal
Investigation Department . . . .. ......... ... ... ... 287
Jones José da Silva Junior and Anderson Silva Soares

Neural Architecture Search in Graph Neural Networks. . .. ............. 302
Matheus Nunes and Gisele L. Pappa

People Identification Based on Soft Biometrics Features Obtained

from 2D PoSes . . .. .. ... 318
Henrique Leal Tavares, Jodo Baptista Cardia Neto, Jodo Paulo Papa,
Danilo Colombo, and Aparecido Nilceu Marana

Texture Analysis Based on Structural Co-occurrence Matrix Improves
the Colorectal Tissue Characterization . . . . ... ... ... ... ... 333
Elias P. Medeiros, Daniel S. Ferreira, and Geraldo L. B. Ramalho

Unsupervised Learning Method for Encoder-Decoder-Based

Image Restoration. . .. ... ... .. . . . 348
Claudio D. Mello Jr, Lucas R. V. Messias, Paulo Lilles Jorge Drews-Jr,
and Silvia S. C. Botelho

A Computational Tool for Automated Detection of Genetic Syndrome

Using Facial Images . . . ... .. ... . . . . . 361
Eduardo Henrique Pais Pooch, Thatiane Alves Pianoschi Alva,
and Carla Diniz Lopes Becker

Improving FIFA Player Agents Decision-Making Architectures Based

on Convolutional Neural Networks Through Evolutionary Techniques. . . . . . 371
Matheus Prado Prandini Faria, Rita Maria Silva Julia,
and Lidia Bononi Paiva Tomaz

Text Mining and Natural Language Processing

Authorship Attribution of Brazilian Literary Texts Through Machine
Learning Techniques . . . .. ... ... 389
Bianca da Rocha Bartolomei and Isabela Neves Drummond

BERTimbau: Pretrained BERT Models for Brazilian Portuguese. . . . ... ... 403
Fabio Souza, Rodrigo Nogueira, and Roberto Lotufo

Deep Learning Models for Representing Out-of-Vocabulary Words. . . .. . .. 418
Johannes V. Lochter, Renato M. Silva, and Tiago A. Almeida

DeepBT and NLP Data Augmentation Techniques: A New Proposal
and a Comprehensive Study . . .. ... ... . 435
Taynan Maier Ferreira and Anna Helena Reali Costa



Xvi Contents — Part 1

Dense Captioning Using Abstract Meaning Representation. . . .. ......... 450
Antonio M. S. Almeida Neto, Helena M. Caseli, and Tiago A. Almeida

Kenzo Sakiyama, Lucas de Souza Rodrigues,
and Edson Takashi Matsubara

Domain Adaptation of Transformers for English Word Segmentation. . . . . .. 483
Ruan Chaves Rodrigues, Acquila Santos Rocha, Marcelo Akira Inuzuka,
and Hugo Alexandre Dantas do Nascimento

Entropy-Based Filter Selection in CNNs Applied to Text Classification . . . . . 497
Rafael Bezerra de Menezes Rodrigues, Wilson Estécio Marcilio Junior,
and Danilo Medeiros Eler

Identifying Fine-Grained Opinion and Classifying Polarity

on Coronavirus Pandemic. . . . ....... ... ... ... .. . 511
Francielle Alves Vargas, Rodolfo Sanches Saraiva Dos Santos,
and Pedro Regattieri Rocha

Impact of Text Specificity and Size on Word Embeddings Performance:

An Empirical Evaluation in Brazilian Legal Domain . . . ............... 521
Thiago Raulino Dal Pont, Isabela Cristina Sabo, Jomi Fred Hiibner,
and Aires José Rover

Machine Learning for Suicidal Ideation Identification on Twitter

for the Portuguese Language . ........... ... .. ... .. ... 536
Vinicios Faustino de Carvalho, Bianca Giacon, Carlos Nascimento,
and Bruno Magalhdes Nogueira

Pre-trained Data Augmentation for Text Classification. . ... ............ 551
Hugo Queiroz Abonizio and Sylvio Barbon Junior

Predicting Multiple ICD-10 Codes from Brazilian-Portuguese

Clinical NOteS. . . . .ot e e e 566
Arthur D. Reys, Danilo Silva, Daniel Severo, Saulo Pedro,
Marcia M. de Sousa e Sa, and Guilherme A. C. Salgado

Robust Ranking of Brazilian Supreme Court Decisions . ... ............ 581
Jackson José de Souza and Marcelo Finger

Semi-Supervised Sentiment Analysis of Portuguese Tweets with Random
Walk in Feature Sample Networks . . ........ ... ... ... ... ... .... 595
Pedro Gengo and Filipe A. N. Verri

The Use of Machine Learning in the Classification of Electronic Lawsuits:
An Application in the Court of Justice of Minas Gerais. . .. ... ......... 606
Adriano Capanema Silva and Luiz Claudio Gomes Maia



Contents — Part 1

Towards a Free, Forced Phonetic Aligner for Brazilian Portuguese Using

Kaldi Tools . . . ...

Ana Larissa Dias, Cassio Batista, Daniel Santana, and Nelson Neto

Twitter Moral Stance Classification Using Long Short-Term

Memory Networks . . .. ..ot

Matheus Camasmie Pavan, Wesley Ramos dos Santos,
and Ivandré Paraboni

A Study on the Impact of Intradomain Finetuning of Deep Language

Models for Legal Named Entity Recognition in Portuguese . ... .........

Luiz Henrique Bonifacio, Paulo Arantes Vilela, Gustavo Rocha Lobato,
and Eraldo Rezende Fernandes

Correction to: Semi-Supervised Sentiment Analysis of Portuguese Tweets

with Random Walk in Feature Sample Networks .. ..................

Pedro Gengo and Filipe A. N. Verri

Author Index . ... ... . ... . . .. . e

Xvii



Contents — Part 11

Agent and Multi-agent Systems, Planning and Reinforcement
Learning

A Multi-level Approach to the Formal Semantics of Agent Societies. . . . . . .
Alison R. Panisson, Rafael H. Bordini,
and Antonio Carlos da Rocha Costa

A Reinforcement Learning Based Adaptive Mutation for Cartesian Genetic
Programming Applied to the Design of Combinational Logic Circuits . . . . . .
Frederico José Dias Moller, Heder Soares Bernardino,
Luciana Brugiolo Gongalves, and Sténio Sa Rosario Furtado Soares

AgentDevLaw: A Middleware Architecture for Integrating Legal
Ontologies and Multi-agent Systems . . . . .. ............ ...
Fabio Aiub Sperotto and Marilton Sanchotene de Aguiar

An Argumentation-Based Approach for Explaining Goals Selection
in Intelligent Agents . . ... ... ...
Mariela Morveli-Espinoza, Cesar A. Tacla, and Henrique M. R. Jasinski

Application-Level Load Balancing for Reactive Wireless Sensor Networks:

An Approach Based on Constraint Optimization Problems . . ... .........
Igor Avila Pereira, Lisane B. de Brisolara,
and Paulo Roberto Ferreira Jr.

Cooperative Observation of Smart Target Agents . . ..................
Matheus S. Araujo, Thayanne F. da Silva, Vinicius A. Sampaio,
Gabriel F. L. Melo, Raimundo J. Ferro Junior, Leonardo F. da Costa,
Joao P. B. Andrade, and Gustavo A. L. de Campos

Finding Feasible Policies for Extreme Risk-Averse Agents in Probabilistic
Planning . . . . ..
Milton Condori Fernandez, Leliane N. de Barros, Denis Maud,
Karina V. Delgado, and Valdinei Freire

On the Performance of Planning Through Backpropagation . ... .........
Renato Scaroni, Thiago P. Bueno, Leliane N. de Barros,
and Denis Maua

Risk Sensitive Stochastic Shortest Path and LogSumExp: From Theory

to Practice . . . . . ...
Elthon Manhas de Freitas, Valdinei Freire,
and Karina Valdivia Delgado



XX Contents — Part II

Solving Multi-Agent Pickup and Delivery Problems Using a Genetic

Algorithm . . ... 140
Ana Carolina L. C. Queiroz, Heder S. Bernardino, Alex B. Vieira,
and Helio J. C. Barbosa

Testing Multiagent Systems Under Organizational Model Moise
Using a Test Adequacy Criterion Based on State Transition Path . ... ... .. 154
Ricardo Arend Machado and Eder Mateus Gongalves

Knowledge Representation, Logic and Fuzzy Systems

A Fuzzy Approach for Classification and Novelty Detection in Data

Streams Under Intermediate Latency . . .. ........ ... .. .. ......... 171
André Luis Cristiani, Tiago Pinho da Silva,
and Heloisa de Arruda Camargo

A Fuzzy Reasoning Method Based on Ensembles of Generalizations

of the Choquet Integral . . ... ... ... ... .. . . . . . . .. ... 187
Giancarlo Lucca, Eduardo N. Borges, Helida Santos,
Gragaliz P. Dimuro, Tiago C. Asmus, José A. Sanz,
and Humberto Bustince

A Useful Tool to Support the Ontology Alignment Repair. ............. 201
Miriam Oliveira dos Santos, Carlos Eduardo Ribeiro de Mello,
and Tadeu Moreira de Classe

Aggregation with Weak, Axiological and Strong Sufficientarian Functions. .. 216
Henrique Viana and Jodo Alcantara

An Alternative to Power Measure for Fuzzy Rule-Based

Classification Systems . . . . .. ... ..t 231
Frederico B. Tiggemann, Bryan G. Pernambuco, Giancarlo Lucca,
Eduardo N. Borges, Helida Santos, Gragaliz P. Dimuro,
Jose A. Sanz, and Humberto Bustince

FT-BlinGui: A Fuzzy-Based Wearable Device System to Avoid Visually
Impaired Collision in Real Time . . ... ......... ... .. .. .. ... .. .... 245
Elidiane Pereira do Nascimento and Tatiane Nogueira

Genetic Learning Analysis of Fuzzy Rule-Based Classification Systems

Considering Data Reduction. . . . ... ... .. .. .. . . 259
Allen Hichard Marques dos Santos, Matheus Giovanni Pires,
and Fabiana Cristina Bertoni

Towards a Theory of Hyperintensional Belief Change . . ... ............ 272
Marlo Souza



Contents — Part II XXi1

Machine Learning and Data Mining

An Online Pyramidal Embedding Technique for High Dimensional Big

Data Visualization. . . . ... ... ... .. 291
Adriano Barreto, Igor Moreira, Caio Flexa, Eduardo Cardoso,
and Claudomiro Sales

Exceptional Survival Model Mining . .. ......... ... ... ... ... .... 307
Juliana Barcellos Mattos, Eraylson G. Silva,
Paulo S. G. de Mattos Neto, and Renato Vimieiro

Particle Competition for Unbalanced Community Detection
in Complex Networks . . ... ... . 322
Luan V. C. Martins and Liang Zhao

2CS: Correlation-Guided Split Candidate Selection in Hoeffding Tree

Regressors . . . ..o 337
Saulo Martiello Mastelini
and André Carlos Ponce de Leon Ferreira de Carvalho

A Distance-Weighted Selection of Unlabelled Instances for Self-training

and Co-training Semi-supervised Methods . . .. ..................... 352
Cephas A. S. Barreto, Arthur C. Gorgonio, Anne M. P. Canuto,
and Jodo C. Xavier-Junior

Active Learning Embedded in Incremental Decision Trees . . ... ......... 367
Vinicius Eiji Martins, Victor G. Turrisi da Costa,
and Sylvio Barbon Junior

Link Prediction in Social Networks: An Edge Creation History-Retrieval
Based Method that Combines Topological and Contextual Data . . ........ 382
Argus A. B. Cavalcante, Claudia M. Justel, and Ronaldo R. Goldschmidt

Predicting the Evolution of COVID-19 Cases and Deaths Through
a Correlations-Based Temporal Network . . ........ .. ... ... ... .... 397
Tiago Colliri, Alexandre C. B. Delbem, and Liang Zhao

Decoding Machine Learning Benchmarks. . . .. ..................... 412
Lucas F. F. Cardoso, Vitor C. A. Santos, Regiane S. Kawasaki Francés,
Ricardo B. C. Prudéncio, and Ronnie C. O. Alves

Towards an Instance-Level Meta-learning-Based Ensemble for Time Series
Classification . . . ... ... 426
Caio Luiggy Riyoichi Sawada Ueno, Igor Braga,
and Diego Furtado Silva

Ensemble of Binary Classifiers Combined Using Recurrent Correlation
Associative MemOTIes . . . . ... ... 442
Rodolfo Anibal Lobo and Marcos Eduardo Valle



XXil Contents — Part II

Comparative Study of Fast Stacking Ensembles Families Algorithms. . ... .. 456
Laura Maria Palomino Marinio, Agustin Alejandro Ortiz-Diaz,
and Germano Crispim Vasconcelos

KNN Applied to PDG for Source Code Similarity Classification. . ... ... .. 471
Clovis Daniel Souza Silva, Leonardo Ferreira da Costa,
Leonardo Sampaio Rocha, and Gerardo Valdisio Rodrigues Viana

Measuring Instance Hardness Using Data Complexity Measures . . . . ... ... 483
José L. M. Arruda, Ricardo B. C. Prudéncio, and Ana C. Lorena

Simulating Complexity Measures on Imbalanced Datasets . . ............ 498
Victor H. Barella, Luis P. F. Garcia, and André C. P. L. F. de Carvalho

SSL-C4.5: Implementation of a Classification Algorithm

for Semi-supervised Learning Based on C4.5 . . ... ... .. ... ........... 513
Agustin Alejandro Ortiz-Diaz, Flavio Roberto Bayer,
and Fabiano Baldo

Multidisciplinary Artificial and Computational Intelligence
and Applications

Data Streams Are Time Series: Challenging Assumptions . . ............ 529
Jesse Read, Ricardo A. Rios, Tatiane Nogueira, and Rodrigo F. de Mello

Evaluating a New Approach to Data Fusion in Wearable Physiological

Sensors for Stress Monitoring. . . . ... ... 544
Clarissa Rodrigues, William R. Fréhlich, Amanda G. Jabroski,
Sandro J. Rigo, Andreia Rodrigues, and Elisa Kern de Castro

Financial Time Series Forecasting via CEEMDAN-LSTM with Exogenous
Features. . . . . ... . 558
Renan de Luca Avila and Glauber De Bona

Improved Multilevel Algorithm to Detect Communities in Flight Networks . ... 573
Camila P. S. Tautenhain, Calvin R. Costa, and Maria C. V. Nascimento

Intelligent Classifiers on the Construction of Pollution Biosensors Based

on Bivalves Behavior . ... ... ... ... .. ... ... 588
Bruna V. Guterres, Je N. J. Junior, Amanda S. Guerreiro,
Viviane B. Fonseca, Silvia S. C. Botelho, and Juliana Z. Sandrini

New Adaptive Morphological Geodesic Active Contour Method for

Segmentation of Hemorrhagic Stroke in Computed Tomography Image . . . . . 604
Aldisio G. Medeiros, Lucas de O. Santos, Roger Moura Sarmento,
Elizangela de Souza Reboucas, and Pedro P. Rebougas Filho



Contents — Part II XXiii

Parallel Monte Carlo Tree Search in General Video Game Playing . . ... ... 619
Luis G. S. Centeleghe, William R. Frohlich, and Sandro J. Rigo

Photovoltaic Generation Forecast: Model Training and Adversarial Attack

ASPECES o v e e e 634
Everton J. Santana, Ricardo Petri Silva, Bruno B. Zarpeldo,
and Sylvio Barbon Junior

Quantifying Temporal Novelty in Social Networks Using Time-Varying

Graphs and Concept Drift Detection . ... ......... ... ... ... ... .... 650
Victor M. G. dos Santos, Rodrigo F. de Mello, Tatiane Nogueira,
and Ricardo A. Rios

Stocks Clustering Based on Textual Embeddings for Price Forecasting . . . . . 665
André D. C. M. de Oliveira, Pedro F. A. Pinto, and Sergio Colcher

Author Index . . .. ... .. ... . . ... 679



Evolutionary Computation,
Metaheuristics, Constrains and Search,
Combinatorial and Numerical
Optimization



®

Check for
updates

A New Hybridization of Evolutionary
Algorithms, GRASP and Set-Partitioning
Formulation for the Capacitated Vehicle
Routing Problem

André Manhaes Machado®™) @, Maria Claudia Silva Boeres®,
Rodrigo de Alvarenga Rosa®, and Geraldo Regis Mauri

Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
andre.manhaes@gmail.com, boeres@inf.ufes.br
{rodrigo.a.rosa,geraldo.mauri}@ufes.br

Abstract. This work presents a new hybrid method based on the route-
first-cluster-second approach using Greedy Randomized Adaptive Search
Procedure (GRASP), Differential Evolution (DE), Evolutionary Local
Search (ELS) and set-partitioning problem (SPP) to solve well-known
instances of Capacitated Vehicle Routing Problem (CVRP). The CVRP
consists of minimizing the cost of a fleet of vehicles serving a set of cus-
tomers from a single depot, in which every vehicle has the same capacity.
The DE heuristic is used to build an initial feasible solution and ELS is
applied until a local minimum is found during the local search phase of
the GRASP. Finally, the SPP model provides a new optimal solution
with regard to the built solutions in the GRASP. We perform compu-
tational experiments for benchmarks available in the literature and the
results show that our method was effective to solve CVRP instances
with a satisfactory performance. Moreover, a statistical test shows that
there is not significant difference between the best known solutions of
benchmark instances and the solutions of the proposed method.

Keywords: CVRP - Differential evolution - GRASP - Evolutionary
local search - Set-partitioning problem

1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) lies in minimizing the cost
of a fleet of vehicles serving a set of customers from a unique depot, in which
every vehicle has an uniform capacity. It has a direct application to the real-world
problems in various activities like distribution, waste management and city logis-
tics with a very active research domain in the last two decades [11]. Since the
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CVRP is classified as NP-complete and NP-hard [14], heuristics methods are
usually devised and applied to instances at medium and large sizes. These meth-
ods involve, among others, evolutionary algorithms [17], Simulating Annealing
(SA), Tabu Search (TS) [20] either with additional diversification strategies or
hybridization techniques [19].

The heuristics usually use two mutually exclusive approaches to solve CVRP:
the first way is the cluster-first-route-second in which clients are inserted into
clusters and each cluster is solved as a Traveling Salesman Problem (TSP). The
second manner is the route-first-cluster-second where vehicle capacity is relaxed
to build a TSP called giant tour, then the TSP is break into feasible trips using
a split function [11]. The route-first-cluster-second was theoretically proposed
in [5], but the first results for CVRP only were presented in [15]. Since then,
distinct approaches to tackle the CVRP were proposed [1,16].

Following the spirit of the hybridization of metaheuristics in [11], this study
proposes a new hybrid method called G-DE-SPP based on the route-first-cluster-
second approach and using Greedy Randomized Adaptive Search Procedure
(GRASP), Differential Evolution (DE), Evolutionary Local Search (ELS) and
set-partitioning problem (SPP) to solve well-known instances of CVRP in the
literature. The DE is used to build an initial feasible solution and ELS is applied
until a local minimum is found during the local search phase of the GRASP.
Finally, the SPP model provides a new optimal solution with regard to the built
solutions in the previous steps.

The main contributions of this study are: the new hybridization of GRASP
applying DE and heuristics for TSP as constructive phase and ELS for local
phase, to the best of our knowledge, it has not yet been researched for CVRP;
unlike [11], a final step using all previously CVRP solutions found as input data
for SPP; good solutions found for almost all instances as shown by the statistical
test.

The paper is organized as follows. In the next section, we mathematically
define the CVRP problem. Our hybridized method is presented in Sect. 3.
Section4 reports the performance of the proposed heuristic using a set of
instances available in the literature, followed by our conclusions in Sect. 5.

2 Mathematical Model for the Capacitated Vehicle
Routing Problem

The Capacitated Vehicle Routing Problem (CVRP) is described as a graph G =
(N, E) with the set of nodes N = {0,1,--- ,n} and the set of edges E C N x N.
Each element i € N\ {0} represents a customer with a demand ¢; whilst i =0 €
N designates the depot. The edge (i, j) € E has a weight ¢; ; > 0 indicating the
cost of traveling from ¢ € N to j € N. A set of vehicles K = {1,2,--- ,k} with
maximum capacity @ must start from the depot (i = 0) to serve each customer
i € N\ {0} and returns back to the depot. The objective is to find a set of
routes that meets all customers’ demand and minimize the total routing cost.
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The Integer Linear Programming Model (ILPM) of the CVRP can be written
as [14]:
K N N

Minimize ZZZQJ&;MJ (1)
ki g

K N
Z Z Tk,i,j = 1,Vj S N\{O} (2)

k=1 1,:071;£J
N
Zxk,o,j =1,vVke K 3)
j=1
N N
Z Thyij = Zxk,j,iyvj e NNVke K (4)
1=0,i7#j i=0
N N
Z Z QiTri; < Q,Vke K (5)
i=0 j=1,i#j

K
ZZ Z Tpi; <|Y|—-1,YY CN (6)

k=1i€Y jEY,itj
zkj € {0,1},Vk € K\Vi,j € N (7)

The objective function (1) minimizes the total travel cost. Constraints (2)
ensure that each customer is visited by exactly one vehicle. Constraints (3) and
(4) are the flow constraints, which guarantee each vehicle can leave the depot
only once and the number of the vehicles arriving at every node i € N \ {0}
is equal to the number of the vehicles leaving. Constraints (5) make sure that
the demands of the customers visited in a route is not greater than the capacity
of the vehicle k € K. The sub-tour elimination constraints (6) ensure that the
solution contains no cycles. Constraints (7) define the domains of the variables.

3 The Proposed G-DE-SPP Method

3.1 Overview

The G-DE-SPP comprises two sequential stages, the first in which the GRASP
heuristic hybridized with Differential Evolution and Evolutionary Local Search is
employed to create sub-optimal solutions. Then, it ensues the next stage in which
the set-partitioning problem is applied using as input the previous solutions
created in the first step. To do this, the concept of route-first-cluster-second
underpins the whole proposed procedure.

In the remainder of the text we used the following conventions and definitions.
Variables denoted as S are a CVRP solution, but when designated as T" represent
a tour of the Traveling Salesman Problem (TSP). The variable U represents a
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set of CVRP solutions. Parameters of each procedure are defined using the letter
m. We use the notation r; € S to denote the i-th route of CVRP. A j-th node in
the route r; is represented as t; € r; (similarly, t; € T designates j-th node in T').
The edge [t, ;] € r; connects the nodes t,t; in ;. A n-vector v has dimension
n.

The next subsections address the description of each component of the G-
DE-SPP method.

3.2 Split and Cost Functions

The proposed G-DE-SPP method explores both TSP and CVRP search spaces,
Stsp and Scygrp. A tour T, which belongs to the former space, denotes a
partial solution represented by a permutation of nodes. A CVRP solution S,
that belongs to the latter, denotes a complete solution containing a set of vehicle
trips. The solutions in the different spaces Stgsp and Scygrp are converted to
each other with the Split(-) and Split—!(-) functions as shown in Fig.1. The
function Split(-) takes a solution T in Sysp and converts it to a solution S in
Scvrp. Conversely, Split—! does the reverse way.

Split ﬁ.DD--- DD.? Split~!
el DDe

MWW :

eOD--COe

Fig. 1. Split and Split~! functions

The Split(-) function uses as its basis the Bellman’s procedure [9] as shown in
Algorithm 1. In the outer loop, the nodes (n;, nit+1,- -+ ,n;) of the tour are check
to see if the path (0,n;,nit1,- -+ ,nj,0) is feasible. If so, the path is modeled as
an arc-set using the vector P to store the indexes and the vector W to record
the trip cost. An optimal splitting of T" into feasible trips corresponds to a min-
cost path from node 0 to node n in T, where P and W provides the required
information to create the path .

The Split~1(-) function is defined as the queuing of the trips

ro,T1, - ,r; as follows. Let R = {rg,r1,---,r;} be the set of routes
of S, where 1, = (Ng,1,Mk2, " ,Nj,.), then Split~1(S) is equal to
(711,17”1,2,"' ;N1 ,5,,M2,1,12,2, 7

Niji—15Mi i)
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Algorithm 1. Function Split(T)

1: Py < 0 23: t+—0

2: P +— 400, =1,2,--- ., n 24: j—0

3: for i — 1 to n do 25: r; — 0,i=1,2,---,n
4: load «— 0 26: repeat

5: c+—0 27: t—t+1

6: Jj—1 28: i — W;

7 repeat 29: for k — i+ 1 to 5 do
8: load « load + q; 30: r; — r; U{k}

9: if ¢ = j then 31: end for

10: ¢« co,i + ¢Ci0 32: J—1

11: else 33: until ¢ =0

12: c—c—cj_1,0+Ccj—1,5 +¢jo0 34: return {ro,r1,--- ,7rn}
13: end if

14: if load < @Q then

15: if P;_1 + ¢ < P; then

16: P; — P;_1+c

17: Wi «—i—-1

18: end if

19: j—J3+1
20: end if
21: until j > n or load > Q
22: end for

Cost functions cost () and Feest (), to evaluate T and S solutions, are pro-
vided. Given a solution S, cost (-) returns the cost of S when valued by ILPM
(Integer Linear Programming Model). The function Feos: (+), given a solution T,
returns the value Fi,s:(T) = cost(Split(T)).

3.3 Differential Evolution (DE)

The DE is an evolutionary algorithm proposed in [13] for optimization prob-
lems over a continuous domain. In DE approach, a population of individuals
(solutions) evolves throughout a set of iterations (generations) of recombina-
tion, evaluation and selection. In the initial stage, this perturbations are large
because the individuals are far away from each other. As the evolutionary process
advances, the population converges to a small region of the search space. DE has
three main parameters of the DE: the scaling factor mge € [0, o] that controls
the rate at which the population evolves, the crossover probability m§, € [0,1]
that determines the ratio of bits that are transferred to the trial vector from its
opponent and m}, that sets the number of iterations.

Due to the its continuous nature, the standard encoding scheme of DE cannot
be directly adopted for CVRP. So an indirect representation based on random-
key values is imposed [12]. The underlying idea is to represent T as a n—vector
v of values in [0, 1], and to be able to rebuild T from v using as information the
position and its value. Therefore, let T' be a TSP solution with n nodes, a n-
vector 7 filled using the function rand(0,1) (which gives a uniformly distributed
random value with the range of 0 and 1) and v a n-vector for DE. Then, for each
position i of T" and node t; € T', the position ¢; of v is filled with the value of 7,
namely v;, = m;. The function enc(-) is used to encode a solution T' as shown in
Algorithm 2.
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Algorithm 2. enc(T')

1: m < rand(0,1),i=1ton
2: m « sort(m)

3: fort; €T,i=1tondo
4: c—1t;

5: Ve — T

6: end for

7: return v

Conversely, the function dec(-) gets a vector v in DE and converts into a
solution T using only the value and its position. The function dec(-) is shown in
Algorithm 2.

Algorithm 3. dec(v)

1: p;, =(0,0),i=1ton

2: T = (0)

3: for each position i of v do

L pli] < (vl 0)

5: end for

6: sort p according to the first component of its elements;
7: for each pair (a,b) in p do

8: let ¢ € N be node with index b;

9:  add node c in the last position of T’
10: end for

11: return T

DE initial population is, in general, random. However, in order to improve the
starting point for the algorithm, the initial population was generated using two
well-known constructive heuristics: Random Nearest Neighbor Heuristic (RNH)
and Random Insertion Heuristic (RIH). Given a partially built tour 7', each RNH
step consists of checking if the addition of a new unvisited node to T' after the
last currently inserted, improves its cost. The only difference between RNH e
RIH is that, in the latter, the insertion of a new node is possible in any position
of T. In both heuristics, the current node to be inserted in the tour is selected
randomly among the best m7 ,, candidate vertices in each step. More details for
both heuristics can be found in [11] and [§].

Algorithm 4 shows the DE algorithm proposed. An initial population com-
posed of tours T is constructed using RNH(-) and RIH(-) procedures. The
encoded population obtained using the enc(-) function belongs then to the first
generation Gy of the algorithm. RNH(-) and RIH(-) randomness is calibrated
by mJ,,- Then, the population of individuals is iteratively improved through-
out mfie generations, using recombination, mutation and selection tools. In the
recombination approach, a candidate solution is added to other population mem-
ber, based on the weighted difference between two randomly selected individuals
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and the factor mge. In conjunction with selection, the perturbation controlled
by the parameter m§, (mutation) samples around the search space in order to
escape of local minimum. The DE algorithm output is a solution S.

Algorithm 4. DE(m”,,,,m" ¥, m&,,m}_ mé,)

1: half — [m}?/2]
2: L — RNH(mj ., half)
3: L — LURIH(mJqy, half)
4: G1 = {enc(T)|T € L}
5 P =G,
6: for i =1 to m, do
7:  select three random individuals {v,1,vr2,vr3} € G;
8: drand < select a random dimension to mutate
9: for each d dimension do
10: if d = drang or random() < m§, then
11: Wird — Vr1,d + M, % (Vr2,a — vr3.a)
12: else
13: Ui,d < Ti,d
14: end if
15: if Feost(dec(us)) < Feost(dec(z;)) then
16: add w; in the offspring Gii1
17: else
18: add z; in the offspring G;+1
19: end if
20: end for
21: P<—PU{ZE|$€G¢+1}
22: end for

23: v™ « best solution in P
24: return Split(dec(v™))

3.4 Evolutionary Local Search (ELS)

The ELS heuristic, originally introduced in [18], is inspired on the search algo-
rithms (i.e. hill climbing) and the evolutionary algorithms such as Genetic Algo-
rithms (GA). It uses a population of unitary size that evolves in a loop of appli-
cations of the mutation operator, producing a set of offspring solutions. Among
all solutions found, the best one is returned as result. The ELS procedure is
defined combining the local search LS(-) and mutate Mutate(-) procedure.
Algorithm 5 outlines the local search LS(-) used by ELS(-). The LS(-) applies
two classical moves: 2-opt and crossover. For each pair of routes r;,7; € S, the
2-opt move repeatedly replaces the edges [ti,,tr,] € 7 and [ty,,tr,] € r; for
[tk ths] and [tx,,tg,] in S. Likewise, the crossover move repeatedly replaces the
edges [tk tk,] € r; and [ti,,tr,] € 7; for [tr,,tr,] and [tg,,tk,] in S. The 2-opt
and crossover moves are only carried out as long as yields a viable and better
cost solution. More details regarding 2-opt and crossover moves can be found in
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[10] and [11], respectively. Those two moves in LS(-) are applied in an iterative
improvement loops until no further enhancement is possible.

Algorithm 5. LS(S)
1: repeat < true

2: while repeat = true do
3. f < cost(5)

4: S« 2-opt(9)

5: S « crossover(S)
6:  if cost(S) < f then
7 f — cost(9)

8 else

9: repeat <— false
10:  end if

11: end while

12: return S

Algorithm 6 shows the Mutate(-) function used by FLS(-), which takes a
solution S as input and transform it into a solution 7'. Under such representation,
a classical swap move is performed in 7. Finally, the mutated T is converted back
into S and it is returned as the result.

Algorithm 6. Mutate(S)

1: T — Split~*(9)

2: Swap randomly two nodes in T
3: ST — Split(T)

4: return ST

Algorithm 7 presents the ELS(-) procedure. Initially, a local search LS(-) is
applied to the input solution S and the result is stored as S*. Then, the solution
S* is improved in two nested loops. The outer loop set the current best value f to
infinite so that the first solution generated in the inner loop is always accepted.
The inner for performs m?, times the mutation and local search procedure over
the best solution S*. Therefore, the outer loop allows the inner one to start with
a solution out of a local minimum by using the mutate operator. Besides, each
new solution built in the ELS is added to set U. The procedure returns the best

solution found.

3.5 Greedy Randomized Adaptive Search Procedure (GRASP)

The GRASP algorithm, initially proposed in [7], is an iterative process com-
posed of two phases: construction and local search. In the construction phase,
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Algorithm 7. ELS(S,U)
1: S* — LS(S); U —UU{S*}

2: for i — 1 to m!;, do

3: f— 400

4: fori«+1to mils do
5: S — 5*

6: S — Mutate(S)

7 S — LS(S)

8: U—UU{S}

9: if cost(S) < f then
10: S« 8, f « cost(S)
11: end if

12:  end for

13:  if f < cost(S*) then
14: S*— 8

15: end if

16: end for

17: return S~

the objective is to build a feasible solution using a procedure that is random and
greedy by definition. In the local search, the objective is to explore the neighbor-
hood of a solution until a local optimal is found. These two phases are repeated
by a predetermined number of iterations and the best solution found is returned
as the result. The GRASP proposed here is hybridized in both main steps. The
construction phase is accomplished by the Differential Evolution (DE) and local
phase is performed by the Evolutionary Local Search (ELS). Our GRASP pseu-
docode is shown in Algorithm 8. The parameter m},, ., defines its total number
of iterations.

Algorithm 8. GRASP()

J =00
S=10
U=190
for i — 1 to mémsp do
S «— DE(U)
S «— ELS(S,U)
if cost(S) < f then
S —S
f «— cost(S)
end if
: end for
: return U

= = =
N = O ©
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3.6 Set-Partitioning Problem (SPP)

The set-partitioning problem (SPP) [2] has as the objective to determine how the
items in a given set A can be partitioned into smaller subsets u € P(A), where
P(A) is the power set of A. For the CVRP, each subset represents a possible
route. However, enumerating each possible route generally is impossible given
the number of elements in search space. Therefore, CVRP formulated by SPP
usually works with a reduced number of routes.

In this formulation, each route k € K is represented by a n-binary vector
ay. The value of a;; is 1 if the node ¢ is visited on the route k, otherwise 0.
We associate each vector k € K with the cost ¢ representing the total distance
traveled on the route. Also, each route k must be feasible with respect to the
capacity constraints. Then, the CVRP can be posed as the following Linear
Programming Formulation (LPF):

Minimize Z CLTk (8)
keK
Zak,iwkzlai:]-a?a'“?n (9)
keEK
xp €{0,1} ,VE e K (10)

where the binary variable xj; determine if the route represented by column k is
in the final solution S.

Using the model LPF for CVRP, we proposed the Algorithm 9. It takes as
input the solutions stored in U from which a set of routes K are generated and
used it to solve the LPF. The output is the solution S*.

Algorithm 9. SPP(U)

1: K = {r|ris aroute of S € U}
2: S* « solve LPF for CVRP using K as the set of routes.
3: return S*

3.7 G-DE-SPP Method

The G-DE-SPP method consists of applying the GRASP hybridized with DE
and ELS, then use SPP to build a optimal solution based on the routes generated
in the GRASP. The Algorithm 10 shows the method proposed.

4 Experiments, Analysis and Results

In this section, the experimental results to analyze the performance of G-DE-
SPP are introduced. G-DE-SPP was coded in C++ and the computational tests
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Algorithm 10. G-DE-SPP()

1: U — GRASP()
2: S« SPP(U)
3: return S

were performed on AMD Ryzen 5 2600 Six-Core Processor at 1.5 GHz CPU
and 16 GB RAM, running under a Linux 4.4.0x86_64. The proposed method
was applied to 75 instances from four standard CVRP benchmarks: A, B, and P
in [4] and M in [6]. G-DE-SPP was ran 10 times independently for each tested
instance.

DE, ELS and GRASP parameters were determined by tuning G-DE-SPP
using A-n32-k5, A-n80-k10 and B-n78-k10 instances. These instances were cho-
sen since they have different sizes and features so they represent in general the
instances in the benchmarks. The tuning was executed using the combination

of values m? € {40,50,--- ,70}, m’, € {4,5,---,8}, m’, € {100,200, 300},

grasp els els
mge,mge € [0.6,0.7,---,0.9], m? € [100,200,300], m}, € [50,100,200], and
mron € [0,0.1,---,0.5]. The best value in the tuning was chosen for use in the
computational experiments and set as following. For GRASP, m! .., = 40. For

DE, m”,,, = 0.1, mf;e = 0.8, m§, = 0.9, m%, = 100 and m,? = 200. For ELS,
mt;, =5 and mils = 200. The SPP was modeled and solved by CPLEX 12.8,
with a maximum execution time of 5 min.

Tables 1 and 2 present the solutions obtained by G-DE-SPP for the A and
B benchmarks and P and M benchmarks, respectively. The Instance and BKS
columns indicate the name of the instance and its best known value. The BF'S,
AVG, SD and T(s) columns represent the best solution found, the average
solution value, the standard deviation and the average running time for the
solutions obtained by G-DE-SPP. The DEV column denotes the deviation and
it is defined as DEV=100*(AVG-BKS)/BKS. The values of BFS and AVG
columns are in bold when they are equal to BKS column.

For benchmark A, in terms of the best solution found, Table1 reveals that
G-DE-SPP always finds BKS (AVG column) in 15 out of 27 instances whereas
it found at least one BKS (BFS column) in 23 out of 27. Furthermore, G-DE-
SPP obtains solutions that are very close to BKS with maximum deviation of
0.54% and an average running time lesser than 1 min and 4s. The quality of the
solutions is confirmed by the small value of standard deviation (SD column)
with values between 0 and 3.55.

For benchmark B, Table 1 reveals that G-DE-SPP always finds BKS (AVG
column) in 15 out of 23 instances whereas it found at least one BKS (BFS
column) in 19 out of 23. In addition, G-DE-SPP achieves solutions that are
near to BKS with maximum deviation (DEV column) of 0.71% and an average
running time not exceeding 3 min, except B-n52-k7 and B-n66-k9 instances. In
those cases, most of their time is consumed running the SPP formulation and
this happens when the gap between the lower and upper bounds is hard to close.
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Table 1. Results for Benchmarks A and B.

Instance BKS | G-DE-SPP
BFS |AVG [SD |DEV|T(s)

A-n32-k5 |784 |784 |784 |0.00/0.00 |6.21
A-n33-k5 |661 661 |661 |0.00|0.00 |7.46
A-n33-k6 |742 |742 |742 [0.00|0.00 |7.44
A-n34-k5 |778 | 778 |778 |0.00/0.00 |8.44
A-n36-k5 |799 799 |799 [0.00|0.00 |8.55
A-n37-k5 |669 669 |669 |0.00/0.00 |8.89
A-n37-k6 |949 949 [949 [0.00|0.00 |9.93
A-n38-k5 |730 |730 |730 |0.00|0.00 |9.47
A-n39-k5 |822 |822 |822 [0.00/0.00 |11.61
A-n39-k6 |831 |831 |831.2 |0.63]0.02 |11.20
A-nd4-k6 937 |937 |937 [0.00/0.00 |13.00
A-nd5-k6 944 |944 |947.6 [2.55/0.38 |12.99
A-nd5-k7 |1146 1146|1146 |0.00|0.00 |15.97
A-nd6-k7 |914 |914 |914 [0.00/0.00 |14.04
A-n48-k7 107310731073 |0.00|0.00 |17.31
A-n53-k7 |1010|1010]1010.1]0.32/0.01 [20.42
A-n54-k7 1167|1167 |1167.6/0.97|0.05 |22.12
A-n55-k9 |1073|1073|1073 [0.00|0.00 |18.79
A-n60-k9 |1354|1354|1354 [0.00/0.00 |30.38
A-n61-k9 |1034|1035 |1035 [0.00|0.10 |24.61
A-n62-k8 |1288)1291 |1293.7]1.83|0.44 |50.43
A-n63-k10|1314]1314/1316.7]1.06 | 0.21 |32.84
A-n63-k9 |1616|1616|1619.4(3.31|0.21 |40.93
A-n64-k9 |1401|1404 |1408.6]2.88|0.54 |35.66
A-n65-k9 |1174|1177 |1177.5]0.53|0.30 |28.92
A-n69-k9 11591159 |1159.3|0.95|0.03 |37.58
A-n80-k10 | 1763|1763 |1769.2|3.55 |0.35 | 63.74
B-n31-k5 |672 | 672 |672 |0.00/0.00 |7.19
B-n34-k5 |788 |788 |788 [0.00/0.00 |10.47
B-n35-k5 |955 | 955 |955 |0.00/0.00 |9.52
B-n38-k6 |805 |805 |805 |0.00/0.00 |16.04
B-n39-k5 |549 549 |549 |0.00/0.00 |10.20
B-n41-k6 |829 |829 [829 |0.00|0.00 |12.89
B-n43-k6 |742 |742 |742 [0.00|0.00 |32.84
B-n44-k7 909 |909 |909 [0.00/0.00 |15.36
B-n45-k5 |751 |751 |751 |0.00|0.00 |19.97
B-n45-k6 |678 | 678 |678 |0.00/0.00 |19.70
B-n50-k7 |741 |741 |741 |0.00|0.00 |18.32
B-n50-k8 |1812|1313 |1313 [0.00|0.08 |152.62
B-n51-k7 |1082|1032|1032 [0.00|0.00 |38.11
B-n52-k7 |747 |747 |747 [0.00|0.00 |274.28
B-n56-k7 |707 |707 |707 [0.00|0.00 |67.92
B-n57-k7 |1153|1154 |1161.2]4.78 |0.71 |20.20
B-n57-k9 |1598 1598|1598 |0.00|0.00 |24.01
B-n63-k10 | 1496 | 1496 | 1502.1|5.45 |0.41 |32.51
B-n64-k9 |861 |861 |861.2 |0.63/0.02 |31.14
B-n66-k9 |1316|1316|1316.8/0.92|0.06 |327.91
B-n67-k10 | 1032|1033 |1034.2]1.03|0.21 |40.74
B-n68-k9 |1272|1274 |1274.6]0.52|0.20 |176.04
B-n78-k10 | 1221|1221 |1221.2]0.42|0.02 [171.45
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Table 2. Results for Benchmarks P and M.

Instance BKS | G-DE-SPP

BFS |AVG |SD |DEV |T(s)
P-n16-k8 450 | 450 | 450 0.00 |0.00 |2.65
P-n19-k2 212 |[212 [212 0.00 |0.00 |3.26
P-n20-k2 216 | 216 |216 0.00 |0.00 |3.21
P-n21-k2 211 | 211 211 0.00 |0.00 |2.92
P-n22-k2 216 | 216 |216 0.00 |0.00 |3.35
P-n22-k8 603 | 603 | 603 0.00 |0.00 |3.79
P-n23-k8 529 | 529 | 529 0.00 |0.00 |4.18
P-n40-k5 458 | 458 | 458 0.00 |0.00 |11.56
P-n45-k5 510 | 510 | 510 0.00 |0.00 |15.20
P-n50-k10 | 696 | 696 696 0.00 |0.00 |16.32
P-n50-k7 554 | 554 [554 | 0.00 |0.00 |17.55
P-n50-k8 631 631 [632.1 |1.60 |0.17 |16.90
P-n51-k10 | 741 |741 741 0.00 |0.00 |16.27
P-n55-k10 1694 |694 {694 |0.00  0.00 |21.90
P-n55-k15 | 989 | 989 989 0.00 |0.00 |18.18
P-n55-k7 568 | 568 |568.5 0.85 |0.09 |25.00
P-n60-k10 | 744 |744 744 |0.00 | 0.00 |24.89
P-n60-k15 | 968 | 968 968 0.00 |0.00 |22.56
P-n65-k10 | 792 | 792 792 0.00 |0.00 |30.03
P-n70-k10 | 827 |827 |827.1 |0.32 |0.01 |40.61
P-n76-k4 593 | 606 |608.6 |1.84 |2.63 |42.52
P-n76-k5 627 630 |635.8 |3.82 |1.40 |44.96
P-n101-k4 | 681 [690 |695.7 | 3.50 |2.16 |79.50

M-n101-k10 | 820 |820 | 820 0 0.00 | 158.12
M-n121-k7 | 1034 |1035|1036.7 | 1.15 |0.26 |289.52
M-n151-k12 | 1015 | 1028 | 1036.9 | 7.99 |2.16 |1029.83
M-n200-k17 | 1275 | 1301 | 1332.5 | 23.85 | 4.51 | 1662.46

Once more, the maximum standard deviation (SD column) of 5.45 asserts the
high quality of solutions found.

For benchmark P, with regard to the solutions found, Table 2 shows that G-
DE-SPP always finds BKS (AVG column) in 17 out of 23 instances whereas it
found at least one BKS (BFS column) in 20 out of 23. Furthermore, G-DE-SPP
get solutions that are near to BKS with maximum deviation (DEV column)
of 2.63% and an average running time lesser than 80s. Finally, the maximum
standard deviation (SD column) obtained was 3.50.
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For benchmark M, Table 2 reveals that G-DE-SPP only finds BKS in 1 out of
4 instances. Moreover, G-DE-SPP obtains solutions that are near to BKS with
deviation lower or equal to 4.51% and an average time of up to 5min for the
two smaller instances and 30 min or lesser for the greatest instances. However,
for the M-n200-k17 instance the standard deviation was 23.85 which shows the
algorithm found solutions more spread and not so close the BKS.

To further analyze the solutions of G-DE-SPP, a statistical analysis was
conducted using the obtained results. As the tested variables of algorithms (i.e.
solutions) are normally not following a distribution of Gaussian type, a non-
parametric test should be used such as the Mann—Whitney U test [3]. This test
was conducted using the obtained values shown in BKS and AVG columns.
The null hypothesis Hy is defined as the mean ranks of each pair values of
BKS and AVG are the same. By proceeding this way, the test shows that the
p-value is 0.901, which is greater than 0.05. According to this result, the null
hypothesis Hy of Mann-Whitney U test is accepted. Therefore, there are not
significant differences between the average solutions of G-DE-SPP and the best
known solutions (BKS).

5 Conclusion and Future Works

This paper proposed a new hybridization, called G-DE-SPP, of evolutionary algo-
rithms, GRASP and mathematical model to solve Capacitated Vehicle Routing
Problem based on the route-first-cluster-second approach. Two types of local
search algorithms, 2-opt and crossover, were integrated into the Evolution Local
Search (ELS) in local phase of GRASP. Moreover, to enhance the solution’s
quality and speed up the convergence, the Differential Evolution (DE) was used
to create the initial solution of the GRASP. Finally, a set-partitioning prob-
lem (SPP) was applied to create a final solution. Furthermore, the experimental
results show that our proposed method was effective to solve instances found in
the literature.

For future work, our G-DE-SPP method can be applied to solve other VRPs
such as CVRP with time windows or Dial-a-ride (DARP). Additionally, G-DE-
SPP can be further developed using different split methods and hybridizations.
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Abstract. Ensembles of classifiers are a very popular type of method for
performing classification, due to their usually high predictive accuracy.
However, ensembles have two drawbacks. First, ensembles are usually
considered a ‘black box’, non-interpretable type of classification model,
mainly because typically there are a very large number of classifiers in
the ensemble (and often each classifier in the ensemble is a black-box
classifier by itself). This lack of interpretability is an important lim-
itation in application domains where a model’s predictions should be
carefully interpreted by users, like medicine, law, etc. Second, ensemble
methods typically involve many hyper-parameters, and it is difficult for
users to select the best settings for those hyper-parameters. In this work
we propose an Evolutionary Algorithm (an Estimation of Distribution
Algorithm) that addresses both these drawbacks. This algorithm opti-
mizes the hyper-parameter settings of a small ensemble of 5 interpretable
classifiers, which allows users to interpret each classifier. In our experi-
ments, the ensembles learned by the proposed Evolutionary Algorithm
achieved the same level of predictive accuracy as a well-known Random
Forest ensemble, but with the benefit of learning interpretable models
(unlike Random Forests).

Keywords: Classification + Evolutionary algorithms - Ensemble
learning - Machine learning - Supervised learning

1 Introduction

The classification task of machine learning consists of training predictive mod-
els for decision-making purposes [31]. Traditionally, classification research has
focused mainly on the learned model’s predictive accuracy, but model inter-
pretability by users is currently a very active and important topic [6], espe-
cially in areas such as medicine, credit scoring, bioinformatics, and churn predic-
tion [12]. Model interpretability is particularly critical in scenarios where models
can lead to life-or-death decisions (such as in medicine), or influence decisions
that can put several lives at risk, such as the use of recommendation algorithms
© Springer Nature Switzerland AG 2020
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in a nuclear power plant [12]. Model interpretability is also often required by
law, a major example being the European Union’s Data Protection Regulation,
which includes a “right to explanation” [13].

One field of machine learning that could benefit from interpretability is
classification with ensemble learning. Ensembles are sets of classifiers which,
when combined, usually perform better than a single strong model, such as
when comparing a Random Forest ensemble [4] with a single decision tree
learned by C4.5 [2,29]. Ensembles often have hundreds or thousands of models,
which greatly hinder their interpretability by human users. Moreover, ensembles
often consist of black box base models (e.g. neural networks or support vector
machines) that prevent any direct interpretation of their reasoning. Tackling
these problems involves learning a small ensemble, consisting of a few directly
interpretable models, so that users can interpret each of the models in the ensem-
ble. This is the main problem addressed in this work.

The second problem addressed in this work is that selecting the best setting
(or configuration) of hyper-parameters for each base learner in an ensemble is
a difficult task per se [10,32], which involves testing a very large number of
candidate hyper-parameter settings in order to find the best setting for the
dataset at hand. Auto-ML (Automated Machine Learning) has recently gained
attention due to its capacity of relieving the end user from a manual optimization
of algorithms’ hyper-parameters, which can be repetitive, tiresome, and often
requires advanced domain-specific knowledge [10,28,33].

One way to perform Auto-ML is to employ a population-based algorithm,
which explores several regions in the solution space in parallel, and adapts its
search depending on the quality of solutions found in those regions. Hence, evolu-
tionary algorithms seem to be a natural choice for the Auto-ML task of optimiz-
ing the settings of ensembles’ hyper-parameters [14,20,23,33], due to performing
a global search in the solution space. Among several types of evolutionary algo-
rithms, we propose an Estimation of Distribution Algorithm (EDA) to evolve
an ensemble of interpretable classifiers.

The main difference between EDAs [24] and Genetic Algorithms (GA) [17] is
that while GAs implicitly propagate characteristics of good solutions through-
out evolution (by carrying on high-quality individuals from one generation to
another), EDAs do this explicitly, by encoding those characteristics in a proba-
bilistic graphical model (GM) [16,27].

The rest of this paper is organized as follows. Section 2 describes our pro-
posed method. Sections 3 and 4 present the experimental setup and experimen-
tal results, respectively. Section 5 discusses related work. Section 6 presents the
conclusions and future research directions.

2 The Proposed Estimation of Distribution Algorithm
(EDA) for Evolving Ensembles

EDAs evolve a probabilistic graphic model of candidate solutions, so that can-
didate solutions (individuals) are sampled from that model and evaluated at
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each generation. In general, an EDA consists of three stages performed at each
generation: (a) sampling of new individuals (candidate solutions) from the prob-
abilistic graphic model; (b) evaluation of the new individuals’ performance; and
(c) updating of the probabilistic graphic model, based on the best individu-
als selected from the current generation. Importantly, EDAs avoid the need for
specifying genetic operators like crossover and mutation (and their correspond-
ing probabilities of application). That is, instead of generating new individuals
by applying genetic operators to selected individuals, they generate new individ-
uals by sampling from the current probabilistic graphic model, which captures
the main characteristics of the best individuals selected (based on fitness) along
the evolutionary process.

Among several EDA types, we chose PBIL: Probabilistic Incremental Learn-
ing [3]. The main characteristic of PBIL is that it assumes independence between
variables in the probabilistic graphical model. Although this has the disadvan-
tage of ignoring interactions among variables, it has an important advantage in
the context of our task of evolving an ensemble of classifiers: it makes PBIL much
more computationally efficient by comparison with other EDA types that con-
sider complex variable interactions — whilst still allowing PBIL to learn ensembles
with good predictive accuracy, as shown later.

Another aspect of PBIL is the use of a learning rate « hyper-parameter
for updating probabilities in the graphical model, making this process smoother.
Take for example two initial probabilities for a binary variable V., P(V = 0) = 0.5
and P(V = 1) = 0.5, and a learning rate of 0.3. Assume only two individuals
are selected to update the graphic model’s probabilities, and both have V = 0.
In this extreme case, an EDA without learning rate would update V' so that it
would be P(V =0) = 2 =1 and P(V = 1) = 3 = 0 in the next generation.
However, using a learning rate, the new probabilities for V are P(V = 0) =
(1-03)x05+03x2=0.65and P(V=1)=(1-0.3)x0.5+0.3x 3 =0.35.
Section 2.3 discusses in more detail how probabilities are updated.

PBIL keeps track of the best individual found so far in a variable ¢. At the
end of a PBIL run, the returned solution can be the best individual stored in ¢
or the best individual in the last generation (these two approaches are compared
later).

2.1 Individuals (Candidate Solutions)

Each individual is an ensemble, composed of five base models (each learned by a
different type of base learner) and an aggregation policy. Regarding base learners,
we chose the ones that can generate readily interpretable models [12,18,26]. The
recent literature on classification focuses mainly on producing classifiers with
ever-increasing predictive performance, with little attention devoted to inter-
pretability [13]. For instance, deep learning classifiers, which have received great
attention lately due to obtaining high predictive accuracy in image tasks, are
very difficult to interpret [13], with interested researchers shifting the focus from
interpreting the models themselves to interpreting their predictions [22].
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Fig. 1. An example individual in PBIL. Note that, although PBIL assumes probabilistic
independence between variables, some values are dependent on others.

The five base learners employed are two decision-tree induction algorithms
(C4.5 [29] and CART [5]); two rule induction algorithms (RIPPER [7] and
PART [11]); and a Decision Table algorithm [19]. We use these algorithms’ imple-
mentations in the well-known Weka Toolkit [15]. For the rest of this paper, we
will refer to them by their Weka names: J48 for C4.5, SimpleCart for CART,
JRip for RIPPER, PART, and Decision Table.

An individual is encoded as an array, where each position denotes a variable,
and each value denotes the assigned value for that variable. Some variables may
not have any value, because they are not used by an individual. Figure 1 depicts
a portion of an individual’s array, regarding some variables of its J48 classifier.
J48 has three options for tree pruning: reduced error pruning, confidence factor,
and unpruned. For this example individual, reduced error pruning is used. For
this reason, there is no need to set hyper-parameters of the confidence factor
strategy, which are then set to null.

Aggregators. An aggregator is a method responsible for finding a consensus
among votes from base models. Consider a three-dimensional probability matrix
P, of dimensions (B, N, C) — respectively the number of base classifiers in the
ensemble, number of instances, and number of classes. The objective of an aggre-
gator is to transform this three-dimensional matrix into a unidimensional array
of length N, where each position has the predicted class for each instance.

We use two types of aggregators: majority voting and weighted aggregators.
The probabilistic majority voting aggregator uses the fusion function described
in [21, p. 150]:

B
p = P (1)
i=1
" )
h(XY)) = arg max Cci (2)
ceC Zk:l pg)

where pEj ) is the sum of the probabilities that the j-th instance has the c-th class,

over all B classifiers, and C is the number of classes. The weighted aggregator
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is similar to majority voting, except that individual probabilities from classifiers
are weighted according to the fitness of each classifier:

B
P =2 P 3)
i=1
) p(])
h(XY)) = arg max 067 (4)
ceC Zk:l p;cj)

where 1) is the fitness value of individual S*.

2.2 Fitness Evaluation

At the start of the evolutionary process, PBIL receives a training set. This
set is splitted into five subsets, which are used to compute each individual’s
fitness by performing an internal 5-fold stratified cross validation (SCV). By
keeping the subsets constant throughout all evolutionary process, we allow direct
comparisons between individuals from different generations. The fitness function
is the Area Under the Receiving Operator Characteristic (ROC) curve (AUC) [§]
— a popular predictive accuracy measure.

AUC values are within [0, 1], with the value 0.5 representing the predictive
accuracy of random predictions in the case of binary-class problems. In this
work, regardless of the number of classes in the dataset, we calculate one AUC
for each class, and then average the AUC among all classes. Hence, the fitness
of an individual is actually a mean of means: first, the mean AUC among all
classes, for a given fold; then, the mean AUC among all five internal folds.
Figure 2 depicts the fitness calculation procedure.

1: function COMPUTE_FITNESS(X, y, C)

2 train « (generate_train_subsets(y))

3 val « (generate_validation_subsets(y))

4: Y —0li=12,...,]S)

5: fori=1,2,...,|S| do

6: fork=1,...,5do

7 $()  build_model(X(train®) y(train®))
8 P  predict(s®, X(val™))

9 ¥ — g0 25, AUCRY, V) = clj € val®))
10: v~y 4y
11: )

12: return ¥

Fig. 2. Pseudo-code used for calculating fitness.
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2.3 PBIL’s Probabilistic Graphical Model

At each generation, new individuals are sampled from the probabilistic graphical
model (GM), and the best individuals will update GM’s probabilities. Recall
that PBIL assumes that the variables in the GM are independent, although we
know (as shown in Fig. 1) that there are some dependencies. However, this does
not prevent PBIL from finding good-performing solutions; analogously to the
overall good performance of the Naive Bayes classifier, which also assumes that
attributes are independent [30].

The sampling procedure is based on hierarchical relationships among the vari-
ables representing hyper-parameters in PBIL’s GM, as shown in Fig. 3, where
the top-level variables are hyper-parameters of base learners that will activate
or deactivate the sampling of other variables/hyper-parameters at a lower level.
When sampling a new individual, higher-level variables are sampled first, and
their descendants are sampled next. Using J48 as example, the variables for this
algorithm are useLaplace, minNumObj, useMD Lcorrection, collapseTree, doNot-
MakeSplitPointActual Value, binarySplits, and pruning. Since none of these vari-
ables have any descendent variable, with the exception of pruning, the sampling
proceeds to choose which type of pruning will be used by J48, and depending on
the chosen option, it samples the variables descendent to that option. Unused
variables are set to null. Once all pertinent variables are sampled, their values
are fed to the base classifier constructor, which will in turn generate the model.
Figure 3 depicts the variables in PBIL’s GM.

Initial Values. There are two types of variables in PBIL’s GM: 48 discrete and
2 continuous variables. Discrete variables were first introduced in the original
PBIL work [3]. We use the EDA ability of biasing probabilities to increase by
10% the probability to sample values that are the base learner’s default in Weka.
For all other values, we set uniform probabilities. For instance, for J48’s num-
Folds, the default value 3 folds has probability 20%, while each other value in
{2,4,5,6,7,8,9,10} has probability 10%. Exceptionally for variable evaluation-
Measure of Decision Table, value auc has a 50% probability of being sampled.
We do this to increase the chances that a base learner is using the same metric
used as fitness function, which in this work is the AUC.

For continuous variables, we use unidimensional Gaussian distributions. The
mean is the default Weka value for the hyper-parameter, and the standard devi-
ation was chosen in a way that borderline values have at least 10% chance of
being sampled. Values outside valid range are clipped to the closest valid value.
The range of valid values was inferred by inspecting Weka’s source code. The
list of of variables and its values is present in the source-code of our method®.

Updating PBIL’s GM. The updating of the variables’ probabilities is depen-
dent on their type. If a variable is discrete, the update follows the scheme known

! Available at https://github.com/henryzord/PBIL.
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as PBIL-iUMDA [33,34], shown in Eq. 5:

Pg+1(Vy =) = (1 = a) x py(V; = v) + a X pa4(V; = v) ()

where py(V; = v) is the probability that variable V; assumes discrete value v
in the g-th generation (estimated by the proportion of observed occurrences of
value v for variable V; among all individuals in that generation), a is the learning
rate, and pg 4(V; = v) is the proportion of occurrences of value v for V; in the set
of individuals @ which were selected (based on fitness) at the g-th generation.
This process is iterated over all values of a discrete variable. Note that when
computing py(V; = v) and pg 4(V; = v), if some individuals do not have any
value set for variable Vj, their null values are discarded and do not contribute
at all to the updating of probabilities for V}’s values.

Equation 5 was adapted to deal with continuous variables, which encode the
mean and the standard deviation of a normal distribution, as follows. The mean
of the normal distribution is updated by

tg+1(Vi) = pg(Vy) +a x (ug(V5) — pa,4(V5)) (6)

where p4(V;) is the mean of the normal distribution of the j-th variable V; in
the g-th generation, « is the learning rate, and pg 4(V;) is the observed mean
for the variable V; in the set of individuals @ selected at the g-th generation,
again considering only individuals where the variable V; was used.
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The standard deviation is decreased as follows:

a1(V5)
G

0g+1(Vj) = 04(Vj) — (7)
where o4(V;) is the standard deviation of the j-th variable V; in the g-th gener-
ation, o1(V;) the initial standard deviation for variable V}, and G is the number
of generations.

2.4 Early Stop and Termination

If the fitness of the best individual does not improve more than € in £ generations,
we assume that PBIL is overfitting the training data, and terminate the run of
the algorithm. In our experiments, we use € = 5 x 10™% and ¢ = 10.

At the end of the evolutionary process, we report the best individual from
the last generation as the final solution.

2.5 Complexity Analysis

Assume T'(train) to be the time to train an ensemble, and T'(fitness) to be the
time to assert the fitness of said ensemble. At every generation S new ensembles
are generated. This process is repeated at most G times (assuming that the
early stop mechanism of the previous section is not triggered). This procedure
has complexity GS x (T'(train) + T(fitness)).

Sampling and updating the graphical model are procedures directly depen-
dent on the number of variables |V|. Variables need first to be initialized with
default values, for later sampling and update. Variables are sampled S times
every generation, and are updated based on the number of fittest individuals, |P|.
For each variable, we iterate over all of its values, but we assume the number of its
values not to be significant — discrete variables have between 2 and 10 values, with
4 as average; continuous variables count as 2 values, i.e. mean and standard devi-
ation of normal distributions. From this analysis we have |V| x (1 + G(S + |9])).
Thus, the overall complexity of training the proposed PBIL is

O(GS x (T(train) + T(fitness)) + |V| x G(S + |®|)) (8)

3 Experimental Setup

3.1 PBIL’s Hyper-parameter Optimization

In order to find the best configuration to run PBIL, we perform a grid-search
for optimizing five of its hyper-parameters, using eight datasets, hereafter called
parameter-optimization datasets, described in Table 1. We measure PBIL’s AUC
on each dataset using a well-known 10-fold cross validation procedure. We
emphasize that these datasets were used only for PBIL’s hyper-parameter opti-
mization, i.e., they were not used to compare PBIL with baseline algorithms,
thus avoiding over-optimistic measures of predictive performance.
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We optimize 5 hyper-parameters, with the following range of values: pop-
ulation size: {75, 150}; number of generations: {100, 200}; learning rate: {0.3,
0.5, 0.7}; selection share {0.3, 0.5}; and whether the type of solution returned
is the best individual from the last generation or the best individual produced
across all generations. Thus, from the 48 combinations of hyper-parameter val-
ues, we found the combination that provided the best average AUC across all
datasets to be: population size |S| = 75, number of generations G = 200, learn-
ing rate o = 0.7, share (proportion) of selected individuals |®|/|S| = 0.5, and
type of solution returned = best individual from last generation. We use this
configuration for conducting further experiments.

3.2 Baseline Algorithms

We compare PBIL with other two algorithms: a baseline ensemble and Ran-
dom Forest. The baseline ensemble consists of the five base classifiers from
PBIL (namely J48, CART, JRip, PART, and Decision Table) with their default
hyper-parameter configuration (according to Weka), and a simple majority vot-
ing scheme as aggregation policy. The intention of using this baseline algorithm
is to check if there is a difference between simply using an ensemble of clas-
sifiers, with the simplest voting aggregation policy (i.e. majority voting), and
optimizing their hyper-parameter configuration with PBIL.

Random Forest [4] is a well-known ensemble algorithm, and in general it
is among the best classification methods regarding predictive performance [9)].
A random forest ensemble is solely composed of decision trees. Each decision
tree is learned from a different subset of N instances, randomly sampled with
replacement from the training set. For each internal node in each tree, a subset of
M attributes is randomly sampled without replacement, and the attribute that
minimizes the local class impurity is selected as splitting criterion. This process
is repeated recursively until no further split improves the impurity metric, when
nodes are then turned into leaves.

Random forests usually require a large number of trees in the ensemble
to achieve good predictive performance. Also, despite using decision trees, the
ensemble as a whole is not directly interpretable, since there are a very large
number of trees. Even if the number of trees were small, interpreting each tree
would still be problematic due to the large degree of randomness involved in
learning each tree. That randomness is necessary to provide diversity to the
ensemble, which improves its predictive accuracy, but it hinders interpretability.
There are indirect approaches to interpret random forests, using variable impor-
tance measures to rank the variables based on their importance in the model,
but such measures are out of the scope of this paper.

We also performed a grid-search for optimizing 3 hyper-parameters of Ran-
dom Forest, with their following ranges of values: number of trees in the for-
est: {100, 200, 300, 400, 500}; whether to randomly break ties between equally
attractive attributes at each tree node, or to simply use the attribute with the
smallest index; and maximum tree depth: {0 (no limit), 1, 2, 3, 4}. Hence, Ran-
dom Forests and PBIL had about the same number of configurations tested by
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the grid search (50 and 48), and both had their configurations optimized in the
same 8 parameter-optimization datasets shown in Table 1, to be fair. We found
the best combination to be: number of iterations = 300, do not break ties ran-
domly, and max tree depth = 4. We leave the other two hyper-parameters, the
number of instances in the bag for learning each decision tree, and the number of
sampled attributes at each tree node, at their default Weka values, respectively
N and log, (M — 1) + 1.

3.3 Datasets

We use a different set of 9 datasets, described in Table 1, for comparing the
predictive performance of the tested algorithms. All datasets, including the ones
used for hyper-parameter optimization, were collected from KEEL? [1] and the
UCT Machine Learning repository® [25].

Table 1. Datasets used in this work.

Attributes
Dataset Instances ‘ Total ‘ Categorical | Numeric | Classes
Hyper-parameter optimization datasets
Australian 690 14 6 8 2
Bupa 345 6 0 6 2
Contraceptive 1473 9 0 9 3
Flare 1066 11 11 0 6
German 1000 20 13 7 2
Pima 768 8 0 8 2
Vehicle 846 18 0 18 4
Wisconsin 699 9 0 9 2
Predictive performance assessment datasets
Balance-scale 625 4 0 4 3
Blood-transfusion | 748 4 0 2
Credit-approval 690 15 9 2
Diabetic 1151 19 3 16 2
Hev-Egypt 1385 28 9 19 4
Seismic-bumps 2584 18 4 14 2
Sonar 208 60 0 60 2
Turkiye 5820 32 32 0 13
Waveform 5000 40 0 40 3

2 Available at https://sci2s.ugr.es/keel/datasets.php.
3 Available at https://archive.ics.uci.edu/ml/datasets.
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4 Experimental Results

For each algorithm and each dataset, we run 10 times a 10-fold cross validation
procedure, and report the mean unweighted area under the ROC curve among

the 10 executions. The results are shown in Table 2.

Table 2. Area under the ROC curve and standard deviations for compared algorithms.

Best result for each dataset is shown in bold font.

Dataset Random forest | Baseline ensemble | The proposed PBIL
Balance-scale 0.8441 £+ 0.05 | 0.8766 + 0.01 0.8560 £ 0.00
Blood-transfusion | 0.7354 + 0.03 | 0.7335 %+ 0.00 0.6742 £ 0.00
Credit-approval | 0.9358 + 0.02 | 0.9270 4+ 0.00 0.9267 + 0.00
Diabetic 0.7307 £ 0.04 |0.7370 £ 0.01 0.7674 £ 0.00
Hev-Egypt 0.5073 £ 0.05 |0.4850 + 0.01 0.5167 £ 0.00
Seismic-bumps 0.7823 4+ 0.07 | 0.7715 £+ 0.01 0.7553 £ 0.00
Sonar 0.9214 + 0.08 |0.8612 + 0.01 0.9356 + 0.00
Turkiye 0.8549 + 0.01 | 0.8542 £ 0.00 0.8213 £ 0.00
Waveform 0.9562 £+ 0.00 |0.9502 £ 0.00 0.9670 £ 0.00

Regarding predictive performance, PBIL and Random forests obtained over-
all the best results, each with the highest AUC value in 4 datasets. The baseline
method obtained the highest value in only one dataset. The largest difference in
performance was observed in the blood-transfusion dataset, where the baseline
and the Random Forest obtained an AUC value about 6% higher than the AUC
of PBIL. In the other datasets, the differences of AUC values among the three
methods was relatively small, about 3% or less in general. We believe this is due
to the skewed nature of the class distribution in the blood-transfusion dataset.

In addition, the ensembles learned by PBIL and the baseline method have
the advantage of consisting of only 5 interpretable base classifiers; so they are
directly interpretable by users, unlike Random Forests (as discussed earlier).

Figures4 and 5 show an ensemble learned by PBIL from the sonar dataset,
as an example of such ensembles’ interpretability. The models learned by J48
and SimpleCART are both small (with 3 and 13 nodes) and consistently identify
Band11 as the most relevant variable in their root nodes. The rule lists learned
by JRip and PART are also small, with 5 and 8 rules (most being short rules).
The decision table is not so short, with 25 rows, but the fact that all rows refer
to the same selected attributes and in the same order (unlike decision trees and
rule sets) improves interpretability by users [12].

5 Related Work

Several evolutionary algorithms have been recently proposed for evolving ensem-
bles of classifiers. In [33], another PBIL version was proposed to select the best
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conditions

predicted class

Band11 < 0.168 AND Band49 <0.04 | R (42.0/1.0)
Band11
Band37 2 0.46 AND Band17 2 0.42 R (20.0/2.0)

<0.197 20.197 Band9 < 0.097 AND Band31 2 0.353 R (15.0/2.0)
Band51 < 0.012 AND Band23 < 0.681 | R (8.0/0.0)
[ R (64/15)] [M (97/26)] AND Band41 < 0.271
otherwise M (102.0/7.0)
(a) J48 (b) JRip

Band11

<0.051
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(c) SimpleCART

conditions predicted class

Band11 < 0.198 AND Band52 < 0.0205 AND Band5 < 0.0695 AND Band10 < 0.1665 AND Band7 > 0.0415 R (40.0)

Band47 > 0.063 AND Band37 < 0.48 AND Band18 < 0.914 AND Band49 > 0.0285 M (64.0)
Band54 < 0.0225 AND Band45 > 0.2745 AND Band2 < 0.044 M (9.0)

Band54 < 0.0225 AND Band8 > 0.0655 AND Band27 < 0.846 AND Band28 > 0.3585 AND Band4 < 0.109 AND Band3 < 0.0655 R (25.0)

Band8 > 0.0625 AND Band12 > 0.154 AND Band54 > 0.0105 M (17.0)

Band8 < 0.104 R (14.0)
Band17 > 0.4445 R (11.0/3.0)
otherwise M (7.0)

(d) PART
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Fig. 4. Four of the five base classifiers from the best individual of PBIL for a given run
of the sonar dataset. type is the class variable (with class labels Rock (R) and Metal
(M)), and broadly speaking the features represent the echo returned from hitting rock

and metal objects with different frequencies of audio waves.

combination of ensemble method (e.g. bagging, boosting, etc), base learners (e.g.
neural networks, SVMs, decision trees, etc.) and their hyper-parameter settings
for a given dataset. However, that work focused only on predictive accuracy, so
that their learned ensembles are in general non-interpretable (due to being very
large and often consisting of non-interpretable classifiers), unlike the ensembles

learned in this current work.
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band11 band16 band19 band36 band45 band48 band52 band56 type
(0.198-=) all all (-0-0.4425] (--0.3855] (-=-0.0755] (0.0095-x) all m
(--0.198] all all (-=-0.4425] (-=-0.3855] (-=-0.0755] (0.0095-) all r
(0.198-) all all (-0-0.4425] (--0.3855] (0.0755-) (---0.0095] all m
(--0.198] all all (-0-0.4425] (--0.3855] (0.0755-=) (-=-0.0095] all r
(0.198-=) all all (-0-0.4425] (0.3855-) (-=-0.0755] (-=-0.0095] all r
(0.198-=) all all (0.4425-=) (-=-0.3855] (-=-0.0755] (-=-0.0095] all m
(--0.198] all all (0.4425-) (--0.3855] (-0-0.0755] (---0.0095] all r
(0.198-) all all (-0-0.4425] (--0.3855] (--0.0755] (-=-0.0095] all r
(--0.198] all all (-0-0.4425] (--0.3855] (-=-0.0755] (-=-0.0095] all r
(--0.198] all all (0.4425-=) (0.3855-) (0.0755-=) (0.0095-) all r
(0.198-) all all (0.4425-) (0.3855-) (0.0755-) (0.0095-=) all m
(-0-0.198] all all (-0-0.4425] | (0.3855-) | (0.0755-) | (0.0095-) all m
(0.198-=) all all (-0-0.4425] (0.3855-) (0.0755-=) (0.0095-=) all m
(--0.198] all all (0.4425-) (-=-0.3855] (0.0755-=) (0.0095-) all r
(0.198-) all all (0.4425-) (--0.3855] (0.0755-) (0.0095-=) all r
(0.198-) all all (0.4425-) (0.3855-=) (--0.0755] (0.0095-) all r
(0.198-=) all all (0.4425-) (0.3855-) (0.0755-=) (-=-0.0095] all m
(--0.198] all all (0.4425-=) (0.3855-=) (0.0755-=) (-=-0.0095] all r
(--0.198] all all (-0-0.4425] (--0.3855] (0.0755-) (0.0095-) all m
(0.198-) all all (-0-0.4425] (--0.3855] (0.0755-=) (0.0095-) all m
(0.198-=) all all (-0-0.4425] (0.3855-) (0.0755-=) (-=-0.0095] all r
(0.198-=) all all (0.4425-=) (-=-0.3855] (-=-0.0755] (0.0095-) all r
(--0.198] all all (0.4425-) (--0.3855] (--0.0755] (0.0095-) all r
(0.198-) all all (0.4425-) (--0.3855] (0.0755-=) (-=-0.0095] all r
(--0.198] all all (0.4425-) (--0.3855] (0.0755-=) (-=-0.0095] all r

Fig. 5. The decision table learned by the best individual from PBIL for a given run of
the sonar dataset. This classifier is part of the ensemble composed of classifiers from
Fig. 4.

In [20], a Genetic Programming algorithm is used to optimize configurations
of ensemble methods (bagging, boosting, etc) and their base learners (logistic
regressors, neural networks, etc). In addition, [23] proposes a co-evolutionary
algorithm for finding the best combination of hyper-parameters for a set of base
classifiers, which might also include the best combination of data pre-processing
methods for a given dataset. AUTO-CVE concurrently evolves two populations:
a population of base models (using Genetic Programming) and a population of
ensembles (using a Genetic Algorithm). In both [20] and [23], again the focus was
on predictive accuracy, and those works tend to produce very large ensembles of
non-interpretable base classifiers. By contrast, in the current work the learned
ensembles are small (with only 5 base classifiers) and consist of interpretable
classifiers by design.

6 Conclusion and Future Work

We presented a new evolutionary algorithm (a version of PBIL) for optimizing
the configuration of a small ensemble of interpretable classifiers, aiming at max-
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imizing predictive performance on the dataset at hand whilst generating inter-
pretable models by design. The proposed PBIL and Random Forest achieved
the best predictive accuracy overall — each was the best in 4 of 9 datasets. The
baseline ensemble was the best in one dataset.

Both the proposed PBIL and the baseline ensemble produce interpretable
models consisting of only 5 interpretable classifiers, unlike random forest ensem-
bles, which are not directly interpretable as discussed earlier. Note that the
baseline ensemble proposed here is not a standard ensemble in the literature,
because the literature focuses on large, non-interpretable ensembles. Hence, the
results for the baseline ensemble reported here can also be seen as a contribu-
tion to the literature, in the sense of being further evidence (in addition to the
PBIL’s results) that small ensembles of interpretable classifiers can be competi-
tive against large, non-interpretable ensembles.

Future work will involve designing a more advanced version of PBIL encoding
dependencies among variables in the graphical model and doing other experi-
ments with more datasets.
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Abstract. Classification is an essential task in the field of Machine
Learning, where developing a classifier that minimizes errors on unknown
data is one of its central problems. It is known that the analytic center
is a good approximation of the center of mass of the version space that
is consistent with the Bayes-optimal decision surface. Therefore, in this
work, we propose an evolutionary algorithm, relying on the convexity
properties of the version space, that evolves a population of perceptron
classifiers in order to find a solution that approximates its analytic cen-
ter. Hyperspherical coordinates are used to guarantee feasibility when
generating new individuals and enabling exploration to be uniformly
distributed through the search space. To evaluate the individuals we
consider using a potential function that employs a logarithmic barrier
penalty. Experiments were performed on real datasets, and the obtained
results indicate concrete possibilities for applying the proposed algorithm
for solving practical problems.

Keywords: Machine learning - Evolutionary algorithm - Version
space + Hyperspherical coordinates - Analytic center

1 Introduction

Classification is a Machine Learning task, where it is desired to infer which class
a particular instance belongs. If all instances can be separated by a hyperplane in
the input space, then the problem is linearly separable. The focus of this work is
on finding a linear classifier that achieves a good generalization. It is presented
an evolutionary strategy applied to a population of hyperplanes in order to
approximate the population’s individuals to the analytic center of the version
space represented by a compact convex polyhedron bounded by a spherical shell.

Although meta-heuristic and evolutionary computation techniques are widely
employed in solving optimization problems, mainly in multi-objective and mixed-
integer formulations, their use in finding good classifiers is not much explored.
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An extensive search of state-of-the-art research has presented two related works.
In [18], the authors present a meta-heuristic technique for training Support Vec-
tor Machines (SVM) based on a linear Particle Swarm Optimization (PSO)
algorithm. They use a Linear PSO for each decomposed sub-problem involv-
ing a reduced number of dual variables. In [13], the authors present a genetic
algorithm for the SVM problem. They use binary code to represent the SVM
parameters and real code to represent the dual variables. The fitness measure is
based on the evaluation of the dual objective function of SVM resulting however
in a quadratic complexity in relation to the number of examples of the training
set.

In this work, it is important to highlight that the convex properties of the
version space guarantee the feasibility of the genetic operators and the use of
the system of hyperspherical coordinates makes it possible to carry out an effi-
cient search that explores only the feasible region of the spherical shell. As a
fitness measure we choose a potential function [16] that employs a logarithmic
barrier penalty, its complexity is linear in relation to the number of examples.
This function was previously proposed in [22] on a dual formulation of a pro-
jected Newton descent method. In [19], the authors proposed primal, dual, and
primal-dual formulations based on interior-point methods for solving the Ana-
lytic Center Problem (ACP). They proved the existence and uniqueness of the
analytic center solution of a spherical surface when the objective function is
strictly convex such as the logarithmic barrier function.

The proposed algorithm can be easily extended to the dual space considering
the process of kernelization on the feature space. This is due to the fact that
the convex properties and the system of hyperspherical coordinates can also be
extended to the dual space.

Experiments were performed on real datasets, and the obtained results were
compared with the SVM, Bayes Point Machine (BPM) [8], and the Version
Space Reduction Machine (VSRM) [5] results. In order to attest to the accuracy
and convergence of the method we verify the fulfillment of the KKT optimality
conditions. In relation to the generalization performance we could observe that
the proposed method outperforms these baselines algorithms indicating concrete
possibilities to be applied for solving practical problems.

The remainder of this paper is structured as follows: initially, Sect.2 will
present the binary classification problem followed by mathematical preliminar-
ies concepts. In Sect. 3, it will be presented the Perceptron Model, and the Ana-
lytic Center Problem as well as its primal formulation, properties and optimality
conditions. In Sect. 4, the evolutionary classifier is presented, both its implemen-
tation details and its operators. Section 5 describes the datasets and experiments
performed to validate the algorithm. Finally, Sect. 6 discusses the conclusions of
this paper and future work.
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2 Binary Classification and Related Concepts

In this section, it will be defined the binary classification problem as well as
the related algebraic, geometric, and trigonometric concepts crucial in order to
better understand the theoretical foundation of the work.

2.1 Binary Classification Problem

A supervised learning problem can be described as: from a set of known pairs,
each consisting of an instance and a related class, correctly infer the label of a
new instance of interest. Classification problems are a special case of supervised
learning problems where classes are discrete values [12]. If there are only two
distinct classes, the classification problem is called binary.

Formally, this problem can be defined as: being Z,, a training set of cardinal-
ity m consisting of a set X of dimensionality d called an instance set, and a set
of binary values Y called a label set, find a discriminant function that correctly
maps a instance X; to its respective label Y; and which is able to correctly map
instances not yet displayed. The training set Z,, is defined as:

Zm ={(X$,Y3), i=1,....,m}, X; € R%, Y; € {-1,1}. (1)

If we restrict the solution to a linear set of hypotheses, the discriminant
function can be considered as a d-dimensional hyperplane that lies in the input
space, associated with the decision boundary:

X;:(W-X;)+b=0, (2)

where W is the normal vector and b is the bias parameter.
The distance between a d-dimensional (W, b) hyperplane and an instance X;
is computed by the functional distance as shown in the following equation:

d

Z (W, - Xij) (3)

If we consider it respective label Y; we can impose for a given instance X; a
classification constraint described by the simple linear inequality:

Y,-(W-X;+b)>0. (4)

In this sense, in order to compute a feasible solution (W, b), our objective is
to solve the feasibility problem:

Y-8, >0,i=1,....,m. (5)
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2.2 Version Space

Given a set Z,, of training examples, the set of all possible classifiers that cor-
rectly infer the label of each instance is defined as its version space. It can be geo-
metrically visualized as a delimited spherical shell of a unit radius hypersphere
considering a unit norm set of W vectors, with hyperplanes passing through it.
Each hyperplane is defined by an instance and its label via its respective nor-
mal vector Y; - X;. The hyperspherical surface region that does not violate any
classification constraint is the version space. Formally it can be defined as:

Vo= ({W0} V(X Yi) € Zn : Vi - (W-Xi +0) 20, [W]2=1).  (6)

However, if we consider the unit radius hyperspherical constraint |[W||s <
1 instead of the unit norm constraint ||W]2 = 1, the version space can be
interpreted as a bounded convex polyhedron where each of its faces is relative to
an example of the training set. Particularly, it can be considered as a bounded
conical polyhedron or simply a cone, with each hyperplane passing through the
origin, if we associate an additional coordinate axis with the bias values.

It is well known from [6] that hypotheses that are near the center of mass of
the version space tend to be more efficient. Since computing the center of gravity
of a polyhedron in an n-dimensional space is classified as a #P-hard problem [9],
approximations that can be efficiently computed, such as the analytic center, are
considered.

2.3 Potential Function

The potential function has the property of when approaching the boundary of
the feasible region, its value tends to infinity. The logarithmic function fulfills this
requirement. More precisely, we take the function — In(|d;|) where the argument
denotes the distance module related to the instance X; according to Eq. (3). In
this sense, if we consider the hyperplanes with normal vectors Y; - X; defining
the feasible region of the version space the function values go to infinity as a
hypothesis (W, b) approximates the boundary represented by these faces.

2.4 Anaytic Center and Others Approximations

The Support Vector Machine (SVM) [3] is a well-known method for finding the
maximum margin hyperplane. It maximizes the distance between both classes in
order to provide higher power of generalization on unseen data. The center of the
largest hypersphere that can be inscribed on version space is the point relative
to the normal vector of the maximum margin hyperplane. However, in cases
where the version space is elongated or asymmetric SVM is not a good solution
compared to the center of mass or to the polyhedron centroid, see Fig. 1.

It is recognized that the Bayes point consistently outperforms the SVM in the
power of generalization. A good approximation for the Bayes point, called the
Bayes Point Machine (BPM), was proposed by Herbrich, Graepel, and Camp-
bell [8]. The BPM is a sampling method and consists of using as classifier the
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Fig. 1. In red, version spaces for two 3-dimensional problems. The diamond is the center
of mass and the cross the center of the largest sphere inscribed. The more elongated
the version space is, the more its distance to the center of the sphere. Image taken
from [8] page 261. (Color figure online)

average of a set of randomly generated perceptrons consistent with the version
space.

Considering that the version space can be defined as the intersection of a
finite number of semi-spaces each associated with a classification constraint, it
can be represented by a system of linear inequalities defining a polyhedron.
The algorithm that accurately computes the volume of an n-dimensional poly-
hedron and consequently its center of mass was a recursive procedure proposed
by Lasserre [10], however, its complexity is exponential, of order O(d"™) with d
being the dimension and m the number of inequality constraints.

Aiming to solve the problem related to the prohibitive computational cost to
find the center of mass of a polyhedron, the authors [5] presented an algorithm,
named Version Space Reduction Machine (VRSM), that approximates the center
of mass based on the successive generation of cutting planes. The addition of a
cutting plane bisects the version space into two halfspaces and the halfspace to
be chosen must reflect the majority opinion of an ensemble formed by a set of
randomly generated perceptrons. Thus, after a finite number of iterations, there
is a consistent reduction of the version space and convergence to the center of
mass of a hypothesis that agrees with the sequential decisions chosen by the
ensemble.

Another efficient alternative for approximating the center of mass is by
instead calculating its analytical center. It is a well definedness mathematical
problem. This point approximates the location of the center of mass of the ver-
sion space and can be calculated by finding the maximum for a sum of potential
functions. For m constraints and considering the use of a logarithmic barrier
function, the objective becomes:

min f (W, b) Zln (W - X; +b)). (7)
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It is important to mention that the arguments of the logarithmic function
must not have negative values. This condition is necessary in order to fulfill the
constraint given by Eq. (5) ensuring the consistency of the version space.

2.5 Hyperspherical Coordinates

The spherical coordinate system is a way of representing a vector position that
lies in a 3-dimensional space with three values, see Fig. 2a, one for the radius r
of a sphere centered at the origin, one for the polar angle ¢ and the other for the
azimuthal angle 0, in order to determine a position on such sphere’s surface [15].
This coordinate system is used for representing vectors in problems that mainly
deal with rotation operations, and therefore is appropriate for representing the
W vectors in a version space bounded by a unit radius hypersphere, see Fig. 2b.

(a) (b)

Fig. 2. (a) Spherical coordinate system in a 3-dimensional space. (b) Representation
of a 3-dimensional unit vector in a unit sphere.

This system can be extended for n-dimensions by increasing the number of
values used to represent the polar angles to n — 1, where the last angle has a
range of [0, 2] and each other angles have a range of [0, 7]. The conversion
of an n-dimensional unit vector W of Cartesian coordinates to hyperspherical
coordinates, and its inverse procedure, are described by Algorithms 1 and 2.

3 Classifiers

In this section, we introduce the Perceptron Model and the Analytic Center
Problem as well as its primal formulation, properties, and optimality conditions.
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Algorithm 1: Procedure to convert a Cartesian coordinate vector into a
hyperspherical coordinate vector.

Cartesian vector: W;

Dimension of W: d;

Polar angle vector: 0;

squared_Sum = 1;

for (i=0;i<d-2;i++) do
¢; = arccos (#&sum);
squared_Sum = squared_Sum — W; - W;;

end
if (Wgq—1 >0) then
_ Wa— .
6 = arccos ( \/m),
else

_ Wa—2 .
‘ 0 =27 — arccos ( medﬂum),

end

3.1 Perceptron Model

The Perceptron [20] is based on an artificial neuron model [11], whose connec-
tions have weights corrected by a simple procedure. An update of the param-
eters is performed if the value obtained by the Perceptron output differs from
the desired output. The classification constraints of the Perceptron Model can
be considered as a system of linear inequations. In this sense, the correction
procedure is equivalent to using a relaxation method [1]. The convergence of
the algorithm is proven to be guaranteed in a finite number of iterations if the
training set is linearly separable [17].

The Perceptron is initialized with random weights and bias. After initializa-
tion, the training is performed until all instances can be correctly classified. If
an example of the training set is misclassified, that is: Y; - (W - X; +b) < 0, the
correction rule is applied and is defined by:

Wt+1:Wt—|—T~}/i'Xi (8)
biy1="b +7r-Y, 9)

where W;, 1 is the updated weight vector, W, is the weight vector before correc-
tion, byy1 is the updated bias parameter, b; is the bias before correction, r is
the learning rate and Y; is the label associated with the instance Xj;.

3.2 Analytic Center Problem

The maximization of the logarithmic barrier function constitutes an efficient
approach to approximates the center of mass of the version space because the
optimal solution tends to be far away from all constraints or from the polyhedron
faces. However, during the optimization process we must guarantee the feasibility
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Algorithm 2: Procedure to convert a hyperspherical coordinate vector
into the Cartesian coordinate vector.

Polar angle vector: ¢;

Azimuthal angle 6;

Cartesian vector: W;

Dimension of Hyperspherical vector: dp;

squared_Sum = 1;

for (i =0;i <dn—1;i++) do
W, = cos (¢;) - v/squared_Sum;
squared_Sum = squared_Sum — W; - Wj;

end

Wa, —1 = cos (0) - /squared_Sum;

Wa,, = |\/squared_Sum — Wa, 1 - Wa, _1|;

if 8 > 7 then

| Wa, = —1-Wa,;
end

of the solution ensuring that it remains inside the version space. Another problem
is related to the scale of the functional distances for different sample vectors.
However, this problem can be overcome by introducing the unit norm constraint.
In this sense, the Analytic Center Problem can be formulated as follow:

In( X 1

(mwlgf (W, b) Zn (W - X; +b)) (10)

subjectt0K~(W~Xi+b)20,z=1,...,m (11)
wh.w=1. (12)

Although the objective function is strictly convex it is worth mentioning that
the feasible set is not due to the existence of the unit norm constraint given by

Eq. (12).
3.3 KKT Conditions

To establish the KTT conditions it is necessary to rewrite the optimization
problem given by Egs. (10) to (12) while considering the Lagrangian relaxation
of the unit norm constraint. Then, the Lagrangian function becomes:

L(W,b,\) = Zm (W Xi+b))+ A (WT W —1), (13)
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with the KKT conditions:

Y, (W-X;+b)>0,i=1,...,m (14)
A>0 (15)
wh.w =1 (16)
A (WIw —1)=0 (17)

Liis Y- X,
-y LT 2. AW =0. 18
LT 1

In particular, for the bias component we must have:

S Y;
_;—K.W.Xﬁb)_o. (19)

Observing the KKT conditions we can deduce that Eq.(14) is related to
the primal feasibility and then is fulfilled at the optimal solution. Equation (17)
is related to the property of complementary slackness and is satisfied because
multiplying Eq. (18) by WT we obtain 2- X - ||[W||2 &~ m , which implies that
[[W]|2 =1 because A > 0. Consequently, Eqgs. (15) and (16) are fulfilled. There-
fore, considering A = m/2, the KKT conditions can be simplified to the vector
equation:

- Y- X,
;Yi-(W-XZ«+b)+m W =0. (20)
Despite the existence of mathematical programming methods [19,22] for solv-
ing the Analytic Center Problem, we proposed the development of an evolution-
ary algorithm for this purpose that will be explained in the next section. The
major trouble of the mathematical approach for solving the ACP is the difficulty
in choosing a starting feasible point, the instability of the interior point methods
and the influence of redundant constraints that move way the optimal solution
from the true analytical center point. In this sense, the evolutionary approach
appears to be a good solution for circumvents these drawbacks.

4 Evolutionary Algorithm

In this section, it is presented a generational evolutionary algorithm that applies
recombination and mutation operators [14] to evolve a population of hyper-
planes, each represented by their respective weight vector and bias parameter
coded in the hyperspherical coordinate system. The algorithm starts its initial
main population of individuals by randomly training perceptron classifiers. Then,
at each generation, it is created a population of the same size as the main pop-
ulation, composed of child individuals generated by applying the recombination
and mutation operators. After this, individuals from the main population are
replaced by the child individuals that agree with the replacement criteria.
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4.1 Initial Population

The initial population consists of a set of feasible and normalized individuals
(hyperplanes) each randomly generated by the perceptron algorithm. Since the
initial population is generated though the Cartesian coordinate system, we need
to convert each initial individual to the hyperspherical coordinate system, this
is done by using Algorithm 1.

4.2 Fitness Measure

The fitness measure used for the evaluation of an individual is based on the
objective function of the ACP given by Eq. (7). Therefore, the computational
complexity to evaluate an individual (W,b) is linear in relation to the number
of examples of the training set. This function is given by:

V) = =S (¥ (- X, +5). (21)

It is important to highlight that the norm of vector W must remain unitary
for every individual of the population and the logarithm function argument can
not have negative values for each individual and for each example of the training
set.

To perform the inner product we must convert each individual back to the
system of Cartesian coordinates, that is done by Algorithm 2. In order to achieve
better results the authors [6] recommend the normalization of the training set.

4.3 Recombination Operator

A child individual is initialized by the recombination operator. The parents are
two individuals from the population chosen according to a roulette selection
process where each individual’s probability is relative to its placement on a
ordered list sorted by the fitness values of the population. The probability of an
individual to be chosen is given by:

2 — (i —1)?

(3
Pi = b) ) (22)

n
where P; is the probability for the i-th individual of the population, and n is the
size of the population. Each child has their weights initialized by a convex linear
combination of their parents’ weights. By considering the convex property of the
version space and the feasibility of the initial population these individuals will
fulfill the classification constraints. The recombination process using Cartesian
coordinates is given by:

Wf,i =X Wp17i + (1 - )\) . Wp27ia A€ [07 1]7 (23)

where Wy ;, Wp1; and Wi ; are, respectively, the i-th weights of the child and
the parent hyperplanes. The A parameter is chosen from a uniform probability
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distribution. It is important to highlight the necessity of normalization of parent
individuals before applying recombination in order to preserve the feasibility of
the unit radius hyperspherical constraint. Formally, this can be demonstrated
as:

Theorem 1. The recombination operator preserves the feasibility of the unit
radius hypersphere constraint of the version space in the Cartesian coordinates
representation system if the parents’ vectors have unit norm. That is ||[Wg||2 < 1.

Proof. Let Wy; and Wy be the parent vectors with unitary norm [[Wyi|l2 =
[|[Wy2l|2 = 1. Let the child vector be represented by a convex linear combination
of Wp1 and Wy2. Then:

1A W1+ (1 =) Wyalla < A+ [[Wpill2+ (1 =2A) - [[Wialla < A+(1-2) = 1. (24)

The convex linear combination given by Eq. (23) can also be used for comput-
ing the children coordinates in the hyperspherical coordinate system represented
by the radius, the azimuthal and polar angles. Furthermore, we can prove that
if the parents’ vectors have unit norm then, after recombination, the children
vectors also will have it satisfying the unit norm constraint of the version space.
Formally, this can be demonstrated as:

Theorem 2. The recombination operator preserves the feasibility of the unit
norm constraint of the version space in the hyperspherical coordinates represen-
tation system if the parents’ vectors have unit norm. That is rpy = 1.

Proof. Let rpp1 and 14,2 be the radius of the parent vectors with unitary norm.
Then 7,1 = 1 and rppe = 1. Therefore, 75 = Thp1 - A+Thp2- (1—X), A € [0,1] =
A+ (1=X) =1

Corollary 1. For any child vector Wy converting from the hyperspherical sys-
tem to Cartesian system, we have regardless the coordinates values, ||Wy||2 =
Thf = 1.

These results show that the vectors generated while in the hyperspherical
system preserve the unit norm, therefore it is not necessary to normalize new
individuals unlike while using the Cartesian system.

Since each individual represents a direction, the recombination operator can
be geometrically interpreted as choosing a new direction between the directions
of each parent. Making a convex combination of weight values without this rep-
resentation would not guarantee a uniform distribution for all possible angles.
For example, on a 2-dimensional problem, suppose that the first parent is an
angle of 150° while the second parent is an angle of 30°. If \ is set to 0.75, it is
expected that the child individual would be the angle of 120°. However, if the
recombination would be applied directly to the weight values, then the resulting
angle would be of approximately 136°.



An Evolutionary Analytic Center Classifier 45

The recombination operator has the objective of making individuals resem-
ble the best individual in the population, therefore acting as an accelerator by
propagating relevant information of old individuals. This can be considered as a
primary form of exploitation. On the other hand, the mutation operators, intro-
duced in the following subsection, is responsible for exploring the search space
by introducing a random diversity by generating unbiased new individuals [4].

4.4 Mutation Operator

Two mutation operators are used, each makes a change on the weight vector
and thus can be interpreted as a rotation of the hyperplane. For this, the hyper-
spherical coordinate system has two advantages: first, it keeps the vector unit
norm since only the angles are being changed, unlike on the Cartesian system;
second, if the weight values were to be changed directly, one mutation could
interfere with a previous mutation, resulting in the loss of guarantee that the
more mutations applied to an individual, the more it will change.

The first mutation operator causes a small rotation on the hyperplane. The
intensity of this change does not has a fixed value, instead, it is set as a fraction
of the distances from one parent to the other parent. This enables the muta-
tion intensity to scale as the population nears the optimal point of the version
space. The first mutation operator procedure can be expressed by the following
equation:

= T (\/(¢hp1 - ¢hp2)2 + Z (ohpl - ahPQ)z) if |¢hp1 - ¢hp2| < ™,
7 (V@ = [@np1 — np2])2 + Y (Onp1 — Opp2)?)  otherwise.

(25)

with p being the mutation intensity, in radians, and 7 the fraction size. Since the
¢ angle is circular, the difference between both parents ¢ angles can be related to
the opposite direction they are facing, which is the case if the difference results
in a value higher than 7, therefore the correct value is its explementary angle.

The second mutation operator also works with the hyperspherical coordi-
nates. It creates a vector by subtracting the hyperspherical coordinates of the
parent with lower objective function from the other, after this, the child individ-
ual has a 2/3 probability of remaining the same and a 1/3 probability of having
this vector added to its hyperspherical coordinates. This operator enables to
explore a greater region of the version space while also having a great chance of
maintaining feasibility due to its direction being the same as the recombination
operator.

4.5 Bias Optimization

The bias parameter is optimized by a binary search procedure on its feasible
interval. Since the objective function is a sum of strictly increasing functions,
any change to the bias value will increase the sum of potential functions for
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one class while decreasing the sum of the other. Therefore, the optimal bias
value is the point where the sum of derivatives of potential functions for one
class is equal to the other. This is solved by considering the minimization of
a univariate convex function when we take the set of values of the vector W
components. Therefore, for a given individual W; we have the objective:

min f (b Z In(Y; - (Wy - Xi +b)). (26)

Applying the derivative in Eq. (26) in relation to parameter b and considering
T and m~ the cardinality of the respective classes, makes it possible to deduce
the first order condition:

1
ZY Wf X, +b) ZY Wy - X, +b)

(27)
which represents the balance between the inverse of the distances between one

class and another in relation to the separating hyperplane. Notice that this is
equivalent to the KKT condition given by Eq. (19).

5 Experiments and Results
To validate the proposed method, it was used six linearly separable datasets

derived from microarray experiments as shown in Table 1. The datasets are ref-
erenced by [2,7,21] or [23].

Table 1. Information about the considered datasets.

Set Features | Samples
+1|—1]| Total
Prostate | 12600 50 |52 102
Breast 12625 10 |14 |24
Colon 2000 22 140 |62
Leukemia | 7129 47 |25 |72
DLBCL 5468 58 |19 |77
CNS 7129 21 139 |60

The results were compared to the SVM, BPM and VSRM algorithms by
employing a 10x10-10-fold cross-validation, due to the random nature of the
methods. The only exception was the SVM, where it was employed a 1x10-10-
fold cross-validation. These schemes were adopted in order to reduce the bias
of the methods. It was used a stratified cross-validation strategy, where each
fold maintains the percentage of data points of each class. For more accurate
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comparisons it was always selected, for each dataset, the same training and test
sets and also the same 10 subsets for cross-validations, preserving the generating
seed associated with the random process. The results for SVM, BPM and VSRM
were taken from [5]. For the Evolutionary Analytic Center Classifier (EACC), it
was used a population of 100 individuals evolved for 50 generations, with the first
mutation operator having a 10% probability of being applied on each dimension.
Table 2 shows the results obtained from the experiments. The best results for
each dataset are highlighted in bold.

Table 2. Comparison of mean classification errors.

Set SVM BPM VSRM EACC

Prostate |9.58 |1.35 10.46|1.57/9.46 |1.77 |8.75 |1.05
Breast 20.67 1 2.49 120.35|3.42|19.83 12.39 119.33|1.54
Colon 18.69 | 2.32 | 15.68 | 2.35|15.44 | 2.29 |15.29  2.57
Leukemia | 2.75|0.88|5.50 |1.32/3.39 |1.30 [4.91 |1.52
DLBCL |3.81 |0.68 3.86 |0.79| 3.49 0.87|4.38 |1.20
CNS 33.50 | 1.99 | 33.33|2.68 |32.87 |2.15 | 32.33 | 3.02

From the results, we can observe that EACC achieves the best results in 4
of the 6 datasets, while SVM and VSRM in 1 dataset each one.

6 Conclusions and Future Work

An evolutionary algorithm for solving the Analytic Center Problem applied to
binary classification tasks was developed. The algorithm evolves a feasible pop-
ulation of hyperplanes in order to approximate the analytic center of the version
space. The purpose of the recombination operator is to move the population
towards the optimal solution while also preserving the feasibility of each indi-
vidual. The mutation operator can be interpreted as a rotational motion of a
hyperplane. Hyperspherical coordinates were used and proved to be essential for
both operators to work correctly. The experiments showed that the Evolution-
ary Analytic Center Classifier obtained good results competing on accuracy and
most of the time overcoming the SVM, BPM, and VSRM classifiers in linearly
separable datasets. In this sense, the proposed method presents real possibilities
to be applied for solving practical problems. As future work, we plan to develop
the dual version of the algorithm for its use in nonlinear classification problems
with the introduction of kernel functions, because the convex properties and the
system of hyperspherical coordinates can easily be extended to the dual space.
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Abstract. Real-world discrete problems are often also dynamic making
them very challenging to be optimized. Here we focus on the employ-
ment of evolutionary algorithms to deal with such problems. In the last
few years, many evolutionary optimization algorithms have investigated
dynamic problems, being that some of the most recent papers investigate
formulations with more than one objective to be optimized at the same
time. Although evolutionary optimization had revealed very competitive
algorithms in different applications, both multiobjective formulations
and dynamic problems need to apply specific strategies to perform well.
In this work, we investigate four algorithms proposed for dynamic multi-
objective problems: DNSGA-II, MOEA /D-KF, MS-MOEA and DNSGA-
II1. The first three were previously proposed in the literature, where they
were applied just in continuous problems. We aim to observe the behavior
of these algorithms in a discrete problem: the Dynamic Multiobjective
Knapsack Problems (DMKP). Our results have shown that some of them
are also promising for applying to problems with discrete space.

Keywords: Dynamic multiobjective problems - Evolutionary
algorithms - Knapsack problem

1 Introduction

In the last decades, a huge research effort was employed on optimization prob-
lems and the algorithms to solve them. Several real-world problems involve opti-
mization. For example, one can want to design a production system in industry
which produces better and faster, reducing error rates in processes. Moreover,
most of the real-world optimization problems involve several objectives to be
simultaneously optimized. More recently, the dynamic nature of the multiobjec-
tive optimization problems are also being considered in several investigations [1].
This class of problems is called the Dynamic Multiobjective Optimization Prob-
lems (DMOPs). Such problems are characterized by the employment of two or
more objectives and by changing the set of objectives and restrictions along the
time. DMOPs behavior defines a new challenge to the optimization algorithms
since they change the objective space over time [9].
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Dynamic optimization is a research topic that has been focused on two
decades ago. Nonetheless, the majority of previous investigations had emphasized
only on the optimization of a single objective, known as Dynamic Single-objective
Optimization Problems (DSOPs) [16]. The field of multiobjective research in
dynamic optimization is more recent and has been attracting more and more
attention from researchers [1]. Evolutionary algorithms are considered a promis-
ing approach for multiobjective and dynamic optimization, to possess the ability
to adapt several problems with different objectives and constraints, mainly if
these characteristics change over time.

Nevertheless, most of the work related to DMOPs investigates continuous
problems and usually handling up to 3 objectives to be optimized. Here we
intend to investigate the behavior of some of these previous algorithms in a
new scenario. Thus, our focus is to evaluate the performance of evolutionary
algorithms (EAs) known in the literature on a discrete dynamic problem with 4
or more objectives to be optimized. Such problems belong to the many-objective
class, where the greater the number of objectives the more difficult the search is,
since the increase in the number of objectives causes the population to contain
only non-dominated solutions, decreasing the selective pressure [15].

In recent years, EAs with different strategies have been proposed aimed at
solving DMOPs. The behavior of each strategy is related to the way it reacts to
the changes in the environment. Recalling that an environment change refers to
the alteration of objective functions and restrictions of the problem over the time.
The most basic strategy is to restart the entire population at each environment
change, but it is often impractical, as illustrated by Branke [4]. Another way is
to use knowledge about previous evolution to speed up the search process after
the occurrence of an environment change [16]. Following this way, three types
of strategies could be observed in the related literature [1]: (i) introduction of
diversity [9]; (ii) prediction [19]; and (iii) memory [6].

Our proposal is to evaluate the performance of different evolutionary algo-
rithms proposed for continuous DMOPs in a discrete many-objective problem.
We selected some algorithms found in the literature belonging to each of the
three cited strategies. The first algorithm is the DNSGA-II [9], which is based
on the previous well-known method NSGA-IT [8]. It uses a simple strategy to
add diversity in current population after each environment change and was used
in several works related to dynamic optimization [2,14,28,29]. MOEA /D-KF
[26] was proposed by modifying the multiobjective MOEA /D [31] to a dynamic
method that uses a prediction strategy. The algorithm uses the Kalman Filter
[17] at each environment change to drive the population for the previous envi-
ronment towards the Pareto of the next one. The memory-based strategy was
also contemplated by investigating the MS-MOEA [33], which presented very
promising results, surpassing several algorithms in the literature. The method
uses the information stored on the external archive when the change of envi-
ronment occurs to assist in the evolutionary process in the next environment.
Finally, inspired by the DNSGA-II [9], in this work we adapted the well-known
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NSGA-IIT [10], which is widely applied to many-objective problems, proposing
the DNSGA-IIL.

Aiming to evaluate the performance of the selected algorithms, we used a
discrete problem well-known in the literature. The knapsack problem (KP) is
widely explored in several works [18] because it belongs to the NP-Complete
class [5]. Here we use a dynamic multiobjective version of KP called Dynamic
Multiobjective Knapsack Problem (DMKP) [11]. It has several dynamic real-life
applications, such as cargo loading, budget management, cutting stock, etc. [3].
We generated twelve instances of DMKP by varying the number of objectives
(4, 6 and 8), number of items (30 and 50) and number of environmental changes
(1 and 2). In each environment change, only the set of objectives varies with
the least severity possible, that is, only one objective changes. A small change
severity is more appropriate for investigate the strategies mentioned above [4].

2 Problem Formulation

The static version of the problems with multiple objectives to be optimized are
known as multiobjective Optimization Problems (MOPs). They involve simul-
taneous minimization (or maximization) of objectives that satisfy some restric-
tions. The concept of dominance can be defined, where a solution x dominates
another solution y (z < y), if  is better than y in at least one objective and
at least equal in all the others. All non-dominated solutions in a search space is
called the Pareto Optimum (P*). The goal of solving a MOP is to find P* or at
least a set of solutions close to P*. Equation 1 formalizes the definition of MOP.

minf(z) = {f1(z), fo(x), ..., fm ()}, where x € 2, g(x) >0, h(z) =0 (1)

Consider z a search space solution; f; refers to the value of objective ¢, where
it =1,...,m; Consider {2 as the representation of the search space (or set of all
solutions of problem); The functions g and h represent the set of restrictions of
equality and inequality of the problem.

We can see the Dynamic Multiobjective Optimization Problem, or DMOP
for short, as an extension of the concept of MOP, where certain characteristics of
the problem may change over the time. Whenever there is a change in the MOP
it means that the environment of the objective space also changes. The environ-
ment change occurs when the set of objectives or restrictions of the problem are
modified. The mathematical formulation of DMOPs in given by Eq. 2.

minf(x,t) = fi(x,t),..., fm(x,t), where x € 2, g(x,t) >0, h(xz,t) =0 (2)

The same considerations made in Eq. 1 are made in Eq. 2, adding the change
of environment that occurs with time t.

A solution z belongs to the Pareto Optimum of time ¢ (P*;) if there is no
other solution of the search space (2 that dominates it at time t. The most
important concept here is that the P* may vary with time, depending on the
environment changes. Therefore, we can assume that any change in the envi-
ronment can interfere with the dominance relationship between the search space
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solutions. Two other concepts that we must consider in a dynamic problem are
the severity of the change and the frequency of the change.

— The severity of the change means how fundamental the changes are in
terms of magnitude [27].

— The frequency of change determines how often the environment changes, it
is usually measured as the number of generations or the number of evaluations
of the objective functions [27].

The Knapsack Problem (KP) is described as the challenge of filling a knap-
sack with available items, where the sum of the values of all items in the knap-
sack must be maximized. However, the bag has a weight limit, so the sum of the
weights of the items in the knapsack cannot exceed this limit. In multiobjective
formulation the items have different values and weights for each objective, so
the same set of items inside the knapsack must respect the weight restriction of
all objective functions and maximize the value of each objective function. This
concept can be expressed in mathematical terms by the Eq. 3.

n n

> lmaz g xw); (O wig o xi < Q) (3)

j=1 i=0 i=0

Consider a set of items I, where ¢ = 0, ...,n and a set of objectives J, where
Jj=1,...,m; v;; and w; ; represents the value and weight of item 7 in objective
function j; x; is a binary value that receives 1 if item ¢ is in the knapsack and 0
otherwise; @; is the maximum weight in function j.

The dynamic characteristic adopted here for this problem is to make a mod-
ification in the set of objective functions in each environment change [11]. We
also defined that the environment change occurs after a predefined interval of
generations. The severity of change should be as low as possible. This recomenda-
tion was proposed in for [4], because this is more appropriate for investigate the
dynamic multiobjective algorithms. There for, here only one objective function
is varied per each environment change.

We generated twelve instances of DMKP by varying the number of objectives
(4, 6 and 8), the number of items (30 and 50) and the number of environmental
changes (1 and 2). We generate a set of objective functions for each instance.
Each objective function contains the value and weight of each item and the
maximum weight that the knapsack can support. We generate the value and
weight of each item by raffling a number between 0 and 1000, the maximum
weight is equal to 60% of the sum of the items weights.

For each environment change, the set of objective varies with the least sever-
ity possible, that is, only one objective changes. Before the comparative eval-
uation of the investigated algorithms, the P* associated to each instance was
approximated by running efficient many-objective algorithms (for static dis-
crete multiobjective problems) using robust parameters (for example, more than
50,000 generations). For each instance, one P* was needed to be calculated for
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each environment setting. For example, for the instances with just one environ-
mental change, two P* were calculated, the one related to the starting environ-
ment and the second related to the environment after the single change. In the
same way, for the instances with two environmental changes, three P* were cal-
culated. The size of each approximate P* varies from 300 to over 100 thousand
solutions, as the complexity of the instance increases.

3 Dynamic Multiobjective Evolutionary Algorithms

The Non-dominated Sorting Genetic Algorithm IT (NSGA-II) [8] is one of the
most-known evolutionary algorithms for solving classical MOPs (static and deal-
ing few objectives). Its basic behavior consists of dividing the population into
hierarchical fronts, where a solution from an upper front has a better fitness
than another solution from a lower front. The fronts are classified based on the
concept of non-dominance, being that a solution that is not dominated by any
other would be classified on the uppermost front. They are called the nondom-
inated solutions of the current population and the goal is to approximate this
uppermost front to the Pareto Optimum at the end of any arbitrary run. The
other solutions are classified in a hierarchy of fronts where the solutions of an
upper front dominates the solutions of lower fronts. The metric crowding dis-
tance is used to differentiate the solutions of the same front. This distance gives
a better fitness for the solutions that are more isolated in the front.

The Dynamic Non-dominated Sorting Genetic Algorithm IT (DNSGA-II) [9]
is an adaptation of NSGA-II for dynamic problems using a strategy to intro-
duce diversity. The basic evolutionary behavior of the NSGA-II was kept for
the DNSGA-II, except in environment change. In such occurrence, a percentage
of the current population is modified to promote diversity. Two strategies for
this modification was evaluated in DNSGA-II [9] defining two versions of this
algorithm. The first version was called DNSGA-II-A, where a percentage of the
population is kept intact for the next generation after the environment change (a
kind of elitism) and other new individuals are generated at random replacing the
worst individuals. The second version was called DNSGA-II-B, where the elitism
was also used to keep a percentage of the best solutions while the new individ-
uals that replaces the worst ones are generated by applying mutation over the
elite. According to the authors in [9] the performance of both versions are sim-
ilar, being that DNSGA-II-A is most adequate for DMOPs with a low change
frequency. We performed some exploratory experiments with the instances of
DMKP investigated in this work and we conclude that the performance of both
versions was extremely similar when considering the multiobjective metrics used
to compare the evolutionay algorithms. For simplification, we decided to keep
just the results of the version with strategy A that we called here just DNSGA-II.

MOEA/D [31] is an evolutionary multiobjective algorithm that decomposes
the problem into several subproblems, which are evolved simultaneously. The
decomposition is made by a scalarization function, which has the role of trans-
forming each individual in a single scalar value (fitness). The current population
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is made up of the best solutions for each subproblem. The neighborhood of each
subproblem is defined based on the distances between their weighting coefficient
vectors. The technique usually used by MOEA /D is the Tchebycheff decomposi-
tion [25]. MOEA /D was originally proposed for multiobjective problems with few
objectives but it has shown to be a successful algorithm also for many-objective
formulations, when 4 or more objetives are used [12,13,24]. Muruganantham
proposed an adaptation of MOEA/D for dynamic problems called MOEA /D-
KF [26]. This adaptation maintains the evolutionary dynamics of MOEA /D,
but modifies the population in the occurrence of an environment change. In
such occurrence, part of the population is randomly generated and the other
part is generated driven by a Kalman Filter [17].

Proposed by Wang and Li [33] MS-MOEA makes an evolutionary search
based on the concept of non-dominance. The algorithm evolves by storing non-
dominated solutions as the best solutions. However, as the population has a fixed
size, some dominated solutions can be stored to fit this size. Each non-dominated
offspring discovered in the current generation replaces another dominated solu-
tion in the population. If all solutions stored in the population are also non-
dominated, the new non-dominated solution replaces another one at random.
Whenever a non-dominated solutions is found, it is stored in an external archive
to guarantee that any non-dominated solution is preserved at the end of the
run. Since the archive grows, it also participates in the evolutionary process.
MS-MOEA uses a memory-based strategy in its dynamic formulation. In any
occurrence of an environment change, a part of the population is reinitialized:
they are replaced by new individuals, which are generated applying mutation in
the non-dominated solutions stored in the archive.

The Non-dominated Sorting Genetic Algorithm ITT (NSGA-III) is an exten-
sion of NSGA-II proposed to deal with (static) many-objectives MOPs [10]. It
kept the same basic structure of NSGA-II, the hierarchical dominance fronts,
but some adaptations were proposed to manipulate many-objective problems.
Instead of using crowding distance, the algorithm applies a niche classification
method based in the distance to points traced in a hyperplane, which better
represents the difference between two solutions in high-dimensional spaces. It
is an application of the reference-point approach previously proposed by Das
and Dennis [7]. DNSGA-IT was proposed based on NSGA-IT and we could not
find a similar approach using NSGA-III as a support for dynamic optimization.
Therefore, we propose here a dynamic version of NSGA-III based on the strategy
employed in DNSGA-II-A. This version is called here DNSGA-III, in which at
each environment change a percentage of the population is randomly generated.

4 Major Experiments

Dynamic multiobjective evolutionary algorithms that have already been applied
to continuous DMOPs are investigated here aiming to see if these algorithms
adapt well to a discrete dynamic many-objective optimization problem. Four
algorithms were investigated: DNSGA-II, DNSGA-III, MOEA /D-KF and MS-
MOEA. The discrete problem used is the Dynamic Multiobjective Knapsack
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Problem (DMKP), in its formulation where only the variation of objectives
occurs in each environment change. We investigated instances of 30 and 50
items using formulations with 4, 6 and 8 objectives. Considering the environ-
ment change frequency, two types of instances were considered. In the first type,
only one environment change happens exactly in the half of the run, whereas
in the second two changes of the environment occurs in each third part of the
total of generations. As a result, we built twelve instances of DMKP. For each
instance, the evolutionary search was performed 100 times for each evaluated
algorithm, thus calculating the mean and standard deviation of metrics over the
100 runs. In addition, the execution time of each algorithm was also computed.
All algorithms run with the following parameters: 100 generations, 100 individ-
uals, 100% crossover, 10% mutation. Considering these parameters, the number
of fitness evaluated is the same for all algorithms. For DNSGA-II and DNSGA-
IIT 20% of the population has been replaced in each environment change. In
MS-MOEA, at each change of environment, 20% of the population is made up
of individuals from the archive that has been mutated and 80% are random
individuals. MOEA /D-KF uses 10 neighbors to form the sub-populations. To
evaluate the algorithms performance two multiobjective metrics were used:

Mean Inverted Generational Distance (IGD) [32]: Based on IGD [20],
Wang and Li proposed to use the average of the IGD calculated one step before
changing the environment:

1GD(P*, p) = Lt 010

where P* is the Pareto Optimum; P is the Pareto found in the search; d(v, P*)
is the minimum Euclidean distance between v and P*; EC is the number of
environment changes; IGD; is the value calculated before the occurrence of
(i + 1)th change in the environment. This metric assesses both convergence and
diversity, the closer to zero the better the metric value.

Hypervolume Ratio (HVR) [30]: This metric represents the division of
Hypervolume [34] of the Pareto found in the search(P) with the Pareto Optimum
(P):

. HV(P,z
HVR(P*,z) = HV((P* ;)

where HV (P, z) and HV (P*,x) is the calculation of the Hypervolume of P and
P*, where z is the reference point used by Hyper-volume.

4.1 DMKP Instances with Just One Environment Change (EC = 1)

First, we will analyse the results using instances where the environment change
happens once at the starting of generation 51 (half of the run). Figure 1 shows
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the results of such instances with 30 items. MS-MOEA surpassed all other
algorithms followed by DNSGA-II. As the number of objectives increases the
supremacy of MS-MOEA becomes more clear. Surprisingly, DNSGA-II surpasses
DNSGA-III, nonetheless the static formulation of the later was proposed for
many-objective problems. MOEA /D-KF also did not perform as well as MS-
MOEA and DNSGA-II, although its performance on HV R becomes higher as
the number of objectives increases. Figure 2 shows the results of instances with
50 items and also with just one environment change. One can see that the behav-
ior did not change with the increment on the number of items and the analysis
is almost identical to the instances with 30 items.

HVR(m=4) _ HVRm=6) _ HVR(m=8) 1GD(m=4) _ 16D(m=6) 1GD(m=8)
inl TEsl F=mll g i ﬂﬁ B in
DNSGA-II DNSGA-IIl MOEA/D-KF  Ms-MoEANN

Fig.1. HVR and IGD results for DMKP instances with 30 items (EC = 1).
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Fig.2. HVR and IGD results for DMKP instances with 50 items (EC = 1).
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Fig. 3. Processing Time for DMKP instances (EC = 1): 30 and 50 items

Subsequently, the processing time of these experiments is analysed. Figure 3
shows the processing time of each algorithm for each instance previously anal-
ysed. MS-MOEA has clearly the longest execution time, being that the increase
in items and objectives makes the processing time of MS-MOEA more expen-
sive. MOEA /D-KF is the fastest among the investigated algorithms. DNSGA-II
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and DNSGA-III spend similar time processing, but we increase the number of
objectives, DNSGA-ITI-A slows down compared to DNSGA-II.

Therefore, although MS-MOEA returned the best performance on the metrics
IGD and HV R, these improvements cost a huge processing time. On the other
hand, DNSGA-II is the second method considering the multiobjective metrics
and it is much faster than MS-MOEA. Given the highlight of MS-MOEA and
DNSGA-II, we made hypothesis test T [23] with 99% confidence to check if
the difference between MS-MOEA and DNSGA-IT and the other algorithms was
significant. Table 1 shows the results of this test using MS-MOEA as the basis.
The green cells indicate the MS-MOEA was significantly higher and the white
ones indicate there was no significant difference. Analyzing this table, one can see
that MS-MOEA is significantly better in all instances considering both HV R and
IGD. Table 2 shows the results of a similar test using DNSGA-II as the basis
(MS-MOEA is ommited here because it was already analysed against NSGA-
IT in the previous table). Therefore, one can see that in general DNSGA-II is
significantly better than DNSGA-IIT and MOEA /D-KF.

Table 1. Hypothesis test (EC=1). MS-MOEA vs AlL

Objectives
4 6 8

Algorithms | Items | HVR | IGD HVR |IGD HVR|IGD
DNSGA-II 30

50
DNSGA-III 30

50
MOEA /D-KF 28

Table 2. Hypothesis test (EC=1). DNSGA-II vs All

Objectives
4 6 8
Algorithms | Items | HVR | IGD HVR |IGD HVR|IGD
DNSGA-III 30
50
MOEA/D-KF 30

50
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4.2 DMKP Instances with Two Environment Changes (EC=2)

The results of the experiments using DMKP instances where the environment
changes twice are analysed here. They occur at generations 34 and 67, that is,
at each third part of the run. Figures4 and 5 show the results of the instances
with 30 and 50 items respectively. As one can see, the comparative analysis of
the four algorithms is very similar to the experiments with just one EC. This
observation is corroborated by the results of the Hypothesis T tests shown in
Tables 3 and 4 related to the results presented in Figs.4 and 5. The processing
time analysis is also very similar to the previous instances as one can see in 6.

HVR(m=4) . HVR(m=6) HVR(m=8) 1GD(m=4) _ IeD(m=6) IGD(m=8)
DNSGA-II DNSGA-Ill 5 MOEA/D-KF Il Ms-MOEAT

Fig.4. HVR and IGD results for DMKP instances with 30 items (EC = 2).

_ HVR(m=4) HVR(m=6) HVR(m=8) 1GD(m=4) IGD(m=6) IGD(m=8)
DNSGA-II DNSGA-Ill 5 MOEA/D-KFIl  Ms-MOEAT

Fig.5. HVR and IGD results for DMKP instances with 50 items (EC = 2).

Table 3. Hypothesis test (EC = 2). MS-MOEA vs All.

Objectives
4 6 8

Algorithms | Items HVR |IGD HVR |IGD HVR|IGD
DNSGA-II 30

50
DNSGA-III 30

50
MOEA/D-KF 30

50




Dynamic Evolutionary Optimization to DMKP 59

Table 4. Hypothesis test (EC = 2). DNSGA-II vs AlL

Objectives
4 6 8
Algorithms | Items | HVR | IGD HVR |IGD HVR | IGD
DNScAInr 0 = = EEESE = S
50 > = > = > <
MOEA /D-KF 30 > < > < > <
50 > < > < > <

30 items (m=4) 30 items (m=6) _ 30items (m=8) 50 items (m=4) 50 items (m=6) 50 items (m=8)

7Hi ;mﬁi %ﬁhﬁ.l iﬁmil ?Tﬁi i!%ﬂ_li

DNSGA-II DNSGA-III MOEA/D-KFI Ms-MOEANN

Fig. 6. Processing Time for DMKP instances (EC = 2): 30 and 50 items

5 Additional Experiments: DNSGA-IT and DNSGA-IT*

Although MS-MOEA outperforms the other algorithms considering the metrics
HVR and IGD, it takes the longest time to be executed even with the guarantee
that the same number of fitness evaluations were used for all the algorithms. On
the other hand, DNSGA-II returned a much shorter execution time (specially if
one consider the experiments using 6 and 8 objectives) and a good performance
on the multiobjective metrics, being that DNSGA-IT overcame the other two
investigated algorithms (DNSGA-III and MOEA/D-KF). We decided to inves-
tigate how the additional time spent using MS-MOEA could improve its metric
results and trying to improve DNSGA-II to see if also an extra time could be
used for improving its own results. We performed these additional experiments
using the instance of 30 items and 8 objectives, because the instances with more
objectives returned more discriminant results between MS-MOEA and DNSGA-
IT and experiments with 30 items are much faster than using 50.

First, we performed some preliminary runs using DNSGA-II by increasing
the number of individuals and/or the number of generations. Although both
modifications make DNSGA-II spent a longer time (as expected), it was clear
that the metrics were more susceptible to an increment in the population size.
Therefore, we carried out new runs of DNSGA-IT increasing its population size
(200, 300, 400 and 500), but fixing the number of generations in 100. Figure7
shows these results, where we also replicate the results of DNSGA-II and MS-
MOEA in the previous experiments with 100 individuals.

One can observe that the successive increase in the population size makes
DNSGA-II to improve its metrics towards MS-MOEA results. However, even
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Time

il o %_mm||l

DNSGA-11100/  DNSGA-11200/"" DNSGA-11300[] DNSGA-11400 ll DNsGA-1I500 [l Ms-MoEA [l

Fig. 7. MS-MOEA vs DNSGA-II results (30 items and 8 objectives)

Time

0T I||

DNSGA-I1*100  DNSGA-11*200 DNSGA-11*300[l| DNSGA-11*400[ll] DNSGA-11*500[ll Ms-MOEAT

Fig. 8. MS-MOEA vs DNSGA-IT* results (30 items and 8 objectives)

using Tp = 500, it was unable to reach the MS-MOEA results. Moreover, start-
ing from 400 individuals, DNSGA-II has a higher computational cost than MS-
MOEA. The better explanation we found for this limitation on DNSGA-II com-
pared to MS-MOEA is the employment of an unrestricted external archive in
MS-MOEA to store the nondominated solutions found during all generations,
while DNSGA-II stores them in its restricted-size current population and some
Pareto solutions could be lost over the evolution. In fact, the number of non-
dominated solutions in the external archive presented in MS-MOEA runs were
around 1000 for the 30-items 8-objectives instance. Therefore, to store so many
nondominated solutions, DNSGA-II needs to be executed with Tp=1000 what
was not much practical and it will takes much longer time than MS-MOEA. As
a promising alternative, we decided to implement a modification over DNSGA-II
to also include an external archive in a similar way that it works in MS-MOEA.
We call this algorithm version as DNSGA-IT* and we carried out additional
experiments showed in Fig. 8 using DNSGA-IT* by increasing its population size
(200, 300, 400 and 500), but with 100 generations. It is possible to observe that
there was a significant improvement in all executions of DNSGA-IT* comparing
it with the standard DNSGA-II. Due to the inclusion of the external file, better
metrics (mainly HVR) was achieved with an small increase in processing time.

6 Conclusion

A comparative analysis was carried out concerning the performance of four opti-
mization evolutionary algorithms when they were applied to solve a discrete
dynamic problem with many-objectives: the Dynamic Multiobjective Knap-
sack Problem. Three of them (DNSGA-II, MOEA /D-KF and MS-MOEA) were
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extracted from the literature being that they were previously applied to opti-
mization problems defined over continuous spaces. DNSGA-III is proposed here
based on DNSGA-II by changing the subjacent multiobjective search for the
NSGA-III.

Concerning the multiobjective metrics used, HVR and IGD, MS-MOEA
clearly surpassed the other three. However, it takes a much longer processing
time. On the other way, DNSGA-II performed well (the second best) in a smaller
time. Therefore, both algorithms could be considered efficient for this problem,
depending if someone is worried about time. If both the performance of the
metrics and the processing time are equally important, the DNSGA-II is the
most recommended. We believe that the employment of an external archive is
responsible both for MS-MOEA good performance and expensive processing.
This information helps the algorithm to adapt to environmental changes but it
consumes an extra time to verify the dominance of each new solution against
all the others stored in the current archive. This observation led us to propose a
modification for DNSGA-II by using an external archive. The resulting algorithm
was called here DNSGA-IT*, which returned improved results compared to the
original one and taking a small extra computational cost. We concluded that
the modified DNSGA-IT* is the best option among the evaluated algorithms
for the investigated DMKP instances. It returns good HVR and IGD+ metrics
with a reasonable processing time. Finally, a disappointing result is related to
DNSGA-IIT since we expected that the subjacent NSGA-III search would give
competitive advantages to the DNSGA-II in many-objective formulations. On
the contrary, its performance decays as the number of objectives is incremented.

For future work, we intend to enlarge the number of scenarios with DMKP
by increasing the number of items or objectives to improve our analysis. We
also intend to investigate scenarios with more environment changes (from 3 to
50 ECs) to have more dynamic challenges for the algorithms. Such experiments
could help us to clarify if the best results obtained with MS-MOEA are due to
an interesting behavior for the dynamic problem or they came from its better
performance for the “almost static” MKP, with few and sparse changes.

Besides, we are planning to enlarge the number of many-objective evolution-
ary algorithms to be investigated as the subjacent search. MEANDS [21] and
MEANDS-II [22] are natural candidates to this adaptation since they have shown
a good performance when applied to discrete static many-objective problems.
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Abstract. Data clustering is one of the most primitive tasks in pat-
tern recognition, although it is known to be a NP-hard grouping task.
Given its complexity, standard clustering methods, such as the parti-
tional data clustering algorithms, are easily trapped in local minimum
solutions, due to their lack of good global searching mechanisms. Evo-
lutionary Algorithms (EAs) and Swarm Intelligence (SIs) methods, such
as Group Search Optimization (GSO) and Backtracking Search Opti-
mization (BSA), are commonly employed to deal with clustering task,
given their capabilities to handle global search problems. In this work, a
new hybrid evolutionary algorithm between GSO and BSA is presented,
named BGSO, to tackle clustering problem, which combines the best
features of GSO and the historical mechanisms of BSA. Also, BGSO
is developed in the context of Automatic Clustering approach, which
means that it is able to predict the best number of final clusters, so no
prior assumption about the data set at hand is required. The proposed
approach is compared to standard GSO, BSA and other three EAs and
SIs from the literature by means of nine real-world problems, showing
promising results considering four clustering metrics.

Keywords: Automatic data clustering + Group search optimization -
Backtracking search optimization

1 Introduction

From the past few decades, the amount of data daily produced has increased
exponentially. In real life systems, the need for reliable and fast techniques capa-
ble of discovering patterns from large data sets is mandatory, given that it is
impossible for a human being to analyze massive amounts of data in a short
period of time. The process of extracting useful information from raw data is
known as Data Mining, and it is a fundamental piece to the process of Knowledge
Discovery in Databases (KDD).
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Clustering analysis is a field in pattern recognition whose goal is to distribute
a set of objects (patterns) in categories (clusters or groups) in such a way that
individuals from the same cluster have a high degree of similarity among each
other, while individuals from different clusters have a high degree of dissimilarity
among each other [23]. The task is performed based only on the information
retained in each individual pattern, which makes no prior knowledge required.
When applied to a data set, clustering methods are capable of identifying hidden
properties present in the data patterns, which makes these techniques very useful
for statistical data analysis and exploration in many fields, such as engineering,
image understanding, text analysis, engineering, medicine, bioinformatics, and
so on [25,41].

The most popular clustering approaches are the partitional clustering algo-
rithms. Partitional algorithms provide a partition of the data set into a prefixed
number of clusters (an input parameter for the partitional algorithm). Each clus-
ter is represented by its centroid vector, and the clustering process is driven in
an effort to optimize a criterion function iteratively, and, in each step of the
execution, all centroids are updated in an attempt to improve the quality of the
final solution (best partition found so far). Partitional methods are known for
their sensibility to the initial centroid position, what may lead to weak solutions
(i.e., the partitional approach may be trapped in a local minimum point) if the
algorithm starts in a poor region of the problem space.

From an optimization perspective, clustering is considered as a particular
kind of NP-hard grouping problem. Evolutionary Algorithms (EAs) have been
increasingly applied to solve a great variety of complex problems, given their
capabilities to perform global searches over difficult environments and spaces.
In EAs, a population of candidate solutions for the problem at hand is kept
and evolved according to a generational process. EAs such as Genetic Algorithm
(GA) [22], Differential Evolution (DE) [37] and Backtracking Search Optimiza-
tion (BSA) [8] perform their search driven by operators that simulate biological
processes like mutation, recombination and selection. In this context, Swarm
Intelligence (SI) methods are extensions of EAs, in which all the searching oper-
ators are employed as attempts to simulate the self-organizing collective behav-
ior of social animals, like swarming, flocking and herding [4]. Examples of SI
algorithms are the Ant Colony Optimization (ACO) [14], Particle Swarm Opti-
mization (PSO) [27] and Group Search Optimization (GSO) [20]. Both EAs and
SIs searching strategies are guided in an attempt to optimize a criterion function,
the fitness function.

EAs and SIs have been successfully adapted from the past years as parti-
tional clustering algorithms [6,35], showing promising results when compared
to standard partitional clustering techniques. Another issue concerning the par-
titional clustering methods is the estimation of the best number of cluster to
compose the final partition for a given problem. The manual determination of
the optimal number of clusters requires an amount of prior knowledge concern-
ing the problem at hand that may not be available, what limits the applica-
tion of such algorithms. To avoid that limitation, many Automatic Clustering
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algorithms have been proposed recently [7,10,16,30,33,38], which try, at the
same time, to find the best cluster centroids and to predict the best number of
clusters [26] to represent a data set.

In this work, a new hybrid algorithm between Group Search Optimization
and Backtracking Search Optimization is proposed, the BGSO, which combines
the effective global search mechanisms of GSO with the backtracking features of
BSA, in an attempt to combine the best of both worlds to solve clustering prob-
lems. BGSO is employed as an Automatic Clustering model that will optimize
the number of clusters composing the final partition of the problem and, at the
same time, will find the best cluster centroids for each group.

This work is organized as follows. Section 2 presents GSO algorithm, followed
by a brief introduction on BSA model (Sect.3). Next (Sect.4), the proposed
BGSO algorithm is presented. Experimental results are shown in Sect. 5, followed
by some conclusions and leads to future works (Sect. 6).

2 Group Search Optimization

Group search optimization is inspired by animal social searching behavior and
group living theory. GSO employs the Producer-Scrounger (PS) model as a
framework. The PS model was firstly proposed by Barnard and Sibly [3] to ana-
lyze social foraging strategies of group living animals. PS model assumes that
there are two foraging strategies within groups: producing (e.g., searching for
food); and joining (scrounging, e.g., joining resources uncovered by others). For-
agers are assumed to use producing or joining strategies exclusively. Under this
framework, concepts of resource searching from animal visual scanning mecha-
nism are used to design optimum searching strategies in GSO algorithm [20].
In GSO, the population G of S individuals is called group, and each individual
is called a member. In a n-dimensional search space, the i-th member at the
t-th searching iteration (generation) has a current position X! € ®" and a
head angle ! € R"~!. The search direction of the i-th member, which is a
vector Df(al) = (dY,...,d!,) can be calculated from a! via a polar to Cartesian

Y m
coordinate transformation:

n—1
d%l = H COS(agq),
q=1

n—1
dﬁj = sin(af(jfl)) H Cos(afq)(j =1,...,n—1),
qg=1
dj,, = Sin(aﬁ(nq)) (1)

A group in GSO consists of three types of members: producers, scroungers
and dispersed members (or rangers) [20]. The rangers are introduced by GSO
mo-del, extending standard PS framework.
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During each GSO search iteration, a group member which has found the
best fitness value so far (most promising area form the problem search space) is
chosen as the producer (X,) [9], and the remaining members are scroungers or
rangers.

The producer employs a scanning strategy (producing) based on its vision
field, generalized to a n-dimensional space, which is characterized by maximum
pursuit angle 6,4, € R7! and maximum pursuit distance l,,,, € R, given by

Eq. (2).

lmaz = HU - LH =

where U, and Ly, denote the upper bound and lower bound of the k-th dimension
from the problem space, respectively.

In GSO, at the t-th iteration the producer X; will scan laterally by randomly
sampling three points in the scanning field: one at zero degree (Eq. (3)), one in
the right hand side hypercube (Eq. (4)) and one in the left hand side hypercube

(Eq. (5))-

X, = X} + r1lmaD}(a)) (3)
X, = X+ rilpaa D (o, + 220ma) (4)
r = 4hp Ttmax D Oép 2
 ~t t, ot r20maz
Xl = Xp + Tllmasz(Oép - T) (5)

where r1 € R is a normally distributed random number (mean 0 and standard
deviation 1) and ro € R ! is a uniformly distributed random sequence in the
range U(0, 1).

If the producer is able to find a better resource than its current position, it
will fly to this point; if no better point is found, the producer will stay in its
current position, then it will turn its head to a new generated angle (Eq. (6)).

t+1

ol = al + ro0maen (6)

where e, € R is the maximum turning angle.
If after a € R iterations the producer cannot find a better area, it will turn
its head back to zero degree (Eq. (7)).
a];Jra = o/; (7)
All scroungers will join the resource found by the producer, performing
scrounging strategy according to Eq. (8).

X =X 150 (XL - XE) (8)

where r3 € R” is a uniform random sequence in the range U(0,1) and o is the
Hadamard product or the Schur product, which calculates the entrywise product
of two vectors.
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The rangers will perform random walks through the problem space [21],
according to Eq. (9).
X =X +1Dj(a;t) (9)
where
li = arllmm (10)

In GSO, when a member escapes from the search space bounds, it will turn
back to its previous position inside the search space [13]. GSO algorithm is
presented in Algorithm 1.

Algorithm 1. GSO

t— 0.

Initialize randomly position XZ(.O) and head angles a§0> of all members XEO) eq.

Calculate the fitness value (fitness(Xg()))) for each member XEO).

while (termination conditions are not met) do
Pick the best group member as the X; for the current generation.
Execute producing (Xf, only) by evaluating three random points in its visual
scanning field, X (eq. (3)), X% (eq. (4)) and X! (eq. (5)).
Choose a percentage from the members (but the X}) to perform scrounging (eq.
(8)):
Ranging: The remaining members will perform ranging through random walks
(ea. (9));
Calculate the new fitness value fitness(X!) for each group member X}.
t—t+1.

end while

Return X;,"““”.

3 Backtracking Search Optimization

BSA is an EA designed to be a global optimizer [8]. BSA has a single control
parameter and a simple structure that is effective and capable of solving different
optimization problems. Furthermore, BSA is a population-based method and
possesses a memory in which it stores a population from a randomly chosen
previous generation for generating the search-direction matrix. BSA is divided
in five processes: Initialization, Selection-I, Mutation, Crossover and Selection-II.

In BSA, the population G is randomly initialized on the problem search
space. BSA’s the historical population oldG is determined as in Eq. (11).

oldGtH! — G', if rand; < rand,; a
) 0ldG?, otherwise

where rand; and rand; are values obtained from a uniformly distributed random
sequence in the range U(0,1). After that, the order of the individual in oldG is
changed (permuted) according to Eq. (12).

oldG = permuting(oldG) (12)
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A trial population M is generated using the mutation operator using Eq. (13).
M'=G"+ F @ (oldG" — G") (13)

where F' is a parameter amplitude factor (generally set as F' = 3 - N, where
N(0,1) is the standard normal distribution).

The crossover operator is obtained by a two-steps process: firstly, calculates a
binary integer-valued matrix (map) of size S x n (where S is the population size,
and n is the number of dimensions of each population individual) to indicate the
mutant individual to be manipulated by using the relevant individual; after that,
the relevant dimensions of mutant individual are updated by using the relevant
individual. The BSA’s crossover operator is described in Algorithm 2.

Algorithm 2. Crossover Operator in BSA
Initiate mapi.s,1:n 1= 1.
if a < bla,b € U(0,1) then
for i from 1 to S do
MAPi (s [mizrate-randn]) = Olu = permuting(< 1,2,...,n >).
end for
else
for i from 1 to S do
map; randi(n) ‘= 0
end for
end if-else
T:=M
for i from 1 to S do
for j from 1 to n do
if map;,; = 1 then
Tiﬁj = Gi,]'
end if
end for
end for

where T is a trial population, [] is the ceiling function, mizrate is the parameter
in BSA’s crossover process that controls the number of elements of individuals
that will mutate in a trial by using [mizrate - rand - n]). After crossover, a
boundary control mechanism is applied to avoid out-bounded individuals [8].
The Selection-1I operator is performed after the evaluation of trial popula-
tion T": each individual in 7" with a better fitness value than its correspondent
individual in G* will be selected to compose the new population G (Eq. (14)).
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Xt

(Rl

G = {Tt if fitness(T%) is better than fitness(X!) (14)

otherwise

The BSA algorithm is presented in Algorithm 3.
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Algorithm 3. BSA

t 0.

Initialize randomly position XZ(-O) ed.

Calculate the fitness value (fitness(Xg()))) for each individual XEO).

while (termination conditions are not met) do
Update and permute the historical population matrix oldG® using Selection-I
operator, according to eq. (11) and eq. (12).
Execute Mutation operator (eq. (13)).
Generate the trial population T* by the application of Crossover operator (Algo-
rithm 2).
Apply a boundary control mechanism to out-bounded individuals from 7.
Calculate the fitness value for each individual fitness(T}) from T*.
Determine the new population G*! using Selection-IT operator (eq. (14)).
t—t+1.

end while

Return Xestimas,

4 Proposed Approach: Backtracking Group Search
Optimization

This section presents the proposed partitional algorithm for automatic data clus-
tering: the BGSO. BGSO executes a global search through the problem space,
while, in parallel, performs an attempt to predict the best number of clusters
for the final partition of a given data set.

Formally, consider a partition Pc of a data set with /N patterns x; € R™
(j = 1,2,...,N) in at most C,q, clusters. Each cluster is represented by its
centroid vector g, € R™ (¢ = 1,2, ..., Cphaz)- Each population individual X; € R™
(where n = Chaz + Cmaz X m) in population G represents Cp,q. activation
threshold values and C,,4, cluster centroids at the same time, one for each
candidate cluster [7,10,16,26], as illustrated in Fig. 1.

At the t-th generation, the X! individual will be evaluated by considering only
its cluster centroids that are active, that is, cluster centroids with a threshold
value such that t{, > 0.5. Many functions are commonly adopted as the fitness
function in Automatic Clustering applications [26], such as Dunn Index [15],
Calinski-Harabasz Index [5] and Davies-Bouldin Index [11]. Such measures seek
out the optimization of both the number of clusters and the cluster centroids
themselves at the same time.

(77 7 2 G 7] ) () L
L ]

Activation Thresholds Cluster Centroids '

Fig. 1. Individual representation: the first Cp,q, features represent activation thresh-
olds for each candidate cluster, while the following Cihaz X m are the Ciae m-
dimensional candidate cluster centroids.
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The initialization process is executed by the random choice of C,,,,, patterns
from the data set currently in analysis to compose the initial cluster centroids, for
each individual XEO), as much as the determination of each activation threshold
tz(»g) (where ¢ = 1,2, ..., Cpaz) by picking a value from a uniformly distributed
random sequence in the range U(0,1).

After the initialization and the evaluation of G(®) according to the selected
fitness function, the generational process begins. In BGSO, there will be three
types of members as in GSO (producers, scroungers and rangers). BGSO imple-
ments a searching strategy that takes advantage of both GSO and BSA mech-
anisms. In each generation, half the scroungers will follow the recombination
mechanisms of BSA, while the other half will perform scrounging as in standard
GSO. Each BGSO generation starts by the execution of Selection-I operator,
just like in BSA. After the determination and reorganization of the current his-
torical population matrix oldG* (see Eq. (11) and Eq. (12)), the current best
member ng is selected to perform producing operator. The remaining members
are chosen as scroungers or rangers by a given probability.

In BGSO, if at the t-th generation the i-th member X! is chosen as a
scrounger, it will perform, with a fifty percent probability, scrounging operator
as in GSO (Eq. (8)); otherwise, it will perform recombination operator (muta-
tion and crossover) just like in BSA (see Eq.(13) and Algorithm 2). Rangers
will execute raging operator as in GSO (Eq. (9)). Both rangers and scroungers
will compose the current trial population T%. After that, GSO boundary control
mechanism is applied to the trial population T, avoiding out-bounded members.
If at any time the i-th X! member represents less than two active clusters, it will
be randomly reinitialized using the same process adopted on initialization step.
Finally, the trial population 7% is evaluated and BSA’s Selection-II operator
(Eq. (14)) is used to determine the new population G**1.

BGSO algorithm is presented in Algorithm 4.

5 Experimental Analysis

In this section, we test the clustering capabilities of the proposed BGSO, in com-
parison to five other automatic clustering evolutionary and swarm intelligence
algorithms, by means of nine real-world data sets: Banknote Authentication,
Breast Cancer Wisconsin, Pima Indians Diabetes, Heart (Statlog), Ionosphere,
Iris, Page Blocks Classification, Seeds and Waveform. All real-world data sets
are benchmark classification and clustering problems acquired from UCI Machine
Learning Repository [2]. The selected real data set features are shown in Table 1,
presenting different degrees of difficulties, such as unbalanced and overlapping
classes, different number of classes and features, and so on.

For comparison purposes, four clustering measures are employed: the
Calinski-Harabasz Index (CH) [5], the Corrected Rand Index (CR) [24], the
Davies-Bouldin Index (DB) [11], and the Jaccard Index (JI) [19].
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Algorithm 4. BGSO

t 0.
Initialization: For each member X;® € G©, pick Ciez patterns randomly as
the initial cluster centroids g;.(c = 1,2,...,Cmaz). Randomly determine the cluster

activation thresholds tgg) and head angles al(_()) of all members XZ(-O) € GO, After
that, assign each pattern x; to its closest active cluster.
Calculate the fitness value (fitness(XE()))) for each member XEO).
while (termination conditions are not met) do
Update and permute the historical population matrix oldG® using Selection-I
operator, according to eq. (11) and eq. (12).
Execute Mutation operator (eq. (13)).
Generate the trial population 7" by the application of Crossover operator (Algo-
rithm 2).
Pick the best group member as the X}, for the current generation.
Execute producing (X! only) by evaluating three random points in its visual
scanning field, X% (eq. (3)), X% (eq. (4)) and X} (eq. (5)). For each evaluated
point (X%, X% and X!), determine its partition by assigning each data pattern to
the active cluster with the nearest centroid.
Choose a percentage from the members (but the X;,) to perform scrounging;:
if rand < 0.5 then
Execute scrounging according to eq. (8). Replace the T} member by the result
of scrounging operator in trial population T°.
else
Keep the already determined T? member in trial population 7.
end if-else
Ranging: The remaining members will perform ranging through random walks
(eq. (9)) and replace their corresponding positions in current trial population T°.
Apply GSO’s boundary control mechanism to the out-bounded members from
T
Reinitialize all members in T presenting less than two active clusters.
Calculate the fitness value for each member fitness(T%) from T°.
Determine the new population G*™' using Selection-IT operator (eq. (14)).
t—t+ 1.
end while
Return X},

The selected comparison evolutionary and swarm intelligence algorithms are:
Genetic Algorithm, Differential Evolution, Particle Swarm Optimization, stan-
dard Group Search Optimization and standard Backtracking Search Optimiza-
tion. The selected approaches are state-of-the-art models from evolutionary com-
puting and data clustering literature, being successfully applied in many appli-
cations [1,28,29,31,34-36,39,40]. All EAs and SIs have been adapted to the
context of partitional automatic clustering, using the same approach adopted by
our proposed BGSO (see Sect.4 and Algorithm 4). All algorithms use Calinski-
Harabasz Index as their fitness function, running in a MATLAB 7.6 environment.
Thirty independent tests have been executed for each data set, and all methods
have started with the same initial population in each test, obtained by a random
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Table 1. Real-world data set features.

Data set Patterns | Feat | Classes
Banknote Authentication | 1372 4 |2
Cancer 699 9 |2
Diabetes 768 8 |2
Heart 270 13 |2
Tonosphere 351 34 |2
Tris 150 4 |3
Page Blocks Classification | 5473 10 |5
Seeds 210 7 13
Waveform 5000 21 |3

Table 2. Hyperparameters for each EA.

Algorithm Parameter Value

All EAs and SIs | tmaz 200
S 100
Cmaz 20

GA crossover rate |0.8

mutation rate |0.1

selection rate | 0.8

DE F 0.8

crossover rate | 0.9
PSO c1 2.0

C2 2.0

w 0.9 to 0.4
GSO and BGSO | scroungers rate | 0.8

Omax 7/a®

a0 7T/4

Qmaz Omax/2
BSA and GBSO | mizrate 1

F 3N(0,1)

process, as explained in Sect.4. Table 2 presents the hyperparameters for each
EA and SI models.

The evaluation criterion includes an empirical analysis and a rank system
employed through the application of Friedman test [17,18] for all the comparison
clustering measures. The Friedman test is a non-parametric hypothesis test that
ranks all algorithms for each data set separately. If the null-hypothesis (all ranks
are not significantly different) is rejected, Nemenyi test [32] is adopted as the
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Table 3. Experimental results for the real-world data sets (average + standard devi-

ation).
Data set Algorithm | CH' CR' DBt JI' c
Banknote authentication | GA 1423.4 £ 0.202 0.0487 £ 0.0015 | 0.8709 % 0.0012 0.3803 £ 0.0008 |2 + 0
DE 1423.6 £+ 0.153 0.0485 + 0.0006 0.8704 £ 0.0009 0.3804 + 0.0006 2+0
PSO 1387.4 + 107.6 0.0647 + 0.0420 | 0.8863 + 0.0378 0.3573 £ 0.0522 2.7667 + 2.063
BSA 1423.5 + 0.2572 0.0491 + 0.0010 0.8708 + 0.0008 0.3805 + 0.0007 |2 + O
aso 1423.7 + 0.0486 | 0.0487 £ 0.0003 | 0.8702 + 0.0004 | 0.3805 % 0.0003 | 2 £ 0
BGSO 1423.7 £ 0.0485 | 0.0486 + 0.0003 0.8702 + 0.0004 0.3805 + 0.0002 | 2 £ O
Cancer GA 1038.9 + 1.979 0.8320 + 0.0090 0.7618 + 0.0006 0.8599 + 0.0067 2+ 0
DE 1038.9 + 2.572 0.8344 + 0.0084 0.7618 + 0.0006 0.8618 + 0.0062 2+0
PSO 1029.3 £ 65.95 0.8372 £ 0.0121 | 0.7873 % 0.1429 0.8633 + 0.0116 | 2.0333 % 0.1826
BSA 1040.1 + 1.165 0.8351 + 0.0083 0.7615 £ 0.0003 0.8623 + 0.0062 2+0
GSO 1041.4 + 0.0918 | 0.8385 + 0.0029 0.7612 + 0.0001 0.8647 + 0.0022 2+ 0
BGSO 1041.4 + 0.2197 | 0.8391 + 0.0028 | 0.7612 + 0.00004 | 0.8651 + 0.0021 |2 + O
Diabetes GA 1139.1 £ 2.102 0.0443 + 0.0036 0.6646 + 0.0042 0.3789 + 0.0041 3+0
DE 1140.0 + 2.251 0.0450 + 0.0025 0.6651 + 0.0032 0.3793 + 0.0026 3+0
PSO 996.17 + 187.6 0.0501 + 0.0164 | 0.8084 + 0.2226 0.3277 £ 0.0969 4.6667 + 2.928
BSA 1136.5 + 3.586 0.0453 + 0.0046 0.6638 + 0.0037 0.3806 + 0.0050 |3 + 0
aso 1141.8 £ 2.930 | 0.0451 £ 0.0010 | 0.6673 % 0.0044 0.3783 £ 0.0017 |3 £ 0
BGSO 1142.0 £ 1.117 0.0450 + 0.0012 0.6679 + 0.0015 0.3781 + 0.0012 3+0
Heart GA 206.95 + 0.0036 | 0.0295 + 0.0012 0.9875 + 0.0006 0.3606 £ 0.0009 2+ 0
DE 206.95 £ 0 0.0302 £ 0 0.9871 £ 0 0.3611 + 0 2+0
PSO 206.84 + 0.0995 0.0250 + 0.0037 0.9871 + 0.0014 0.3591 + 0.0012 2+0
BSA 206.95 + 0 0.0302 + 0O 0.9871 + 0 0.3611 + 0 2+ 0
GSO 206.95 + 0.0041 | 0.0301 + 0.0005 0.9873 + 0.0007 0.3610 £ 0.0006 2+ 0
BGSO 206.95 + 0.0025 | 0.0300 + 0.0008 | 0.9874 + 0.0006 0.3608 + 0.0006 |2 + O
Ionosphere GA 115.65 £ 1.198 0.1464 + 0.0132 1.5341 + 0.0111 0.4190 + 0.0064 2+0
DE 115.48 + 1.601 0.1427 + 0.0158 1.5367 + 0.0143 0.4175 £ 0.0074 2+ 0
PSO 116.13 + 9.484 0.1791 + 0.0214 | 1.5375 £ 0.0895 0.4317 + 0.0084 | 2.0667 + 0.258
BSA 117.27 £ 0.9134 | 0.1564 £ 0.0151 | 1.5206 % 0.0094 0.4233 £ 0.0075 |2 + 0
GSO 118.43 £ 0.3889 0.1697 + 0.0091 1.5158 £ 0.0052 0.4298 + 0.0043 2+0
BGSO 118.76 + 0.1395 | 0.1737 £ 0.0053 1.5127 + 0.0024 0.4315 + 0.0027 2+ 0
Iris GA 561.58 + 0.256 0.7302 £ 0.0001 | 0.6622 % 0.0013 0.6958 + 0.0003 | 3 + 0
DE 561.63 + 0 0.7302 £ 0 0.6620 + 0 0.6959 + 0 3+t0
PSO 560.80 + 2.540 0.7301 + 0.0004 0.6636 + 0.0047 0.6956 + 0.0007 3+0
BSA 561.63 + 0 0.7302 £ 0 0.6620 + 0 0.6959 + 0 3+0
GSO 561.37 + 0.8113 0.7316 + 0.0040 | 0.6627 £ 0.0023 0.6971 £ 0.0037 3+0
BGSO 561.63 £ 0 0.7302 £ 0 0.6620 £ 0 0.6959 + 0 3+0
Page blocks classification | GA 14395.2 + 567.3 0.0070 + 0.0154 0.5250 + 0.0342 0.6044 + 0.0893 5.5 £+ 0.509
DE 16343.2 + 778.1 | 0.0003 £+ 0.0129 0.6159 + 0.0311 0.5195 + 0.0745 7.5 + 0.861
PSO 13372.5 & 1920.9 | 0.0109 £ 0.0059 | 0.5307 % 0.0318 0.6634 + 0.0300 | 4.7000 % 0.8769
BSA 15007.2 + 529.4 0.0057 + 0.0156 0.5626 + 0.0523 0.6031 + 0.0735 5.9667 + 0.8087
GSO 12456.9 + 1436.9 | 0.0110 + 0.0108 | 0.5364 + 0.0267 0.6667 + 0.0232 4.3667 + 0.5561
BGSO 12837.6 £+ 1623.7 | 0.0096 + 0.0075 0.5357 + 0.0388 0.6673 + 0.0246 | 4.5333 + 0.6288
Seeds GA 375.31 + 0.7548 0.7178 + 0.0086 | 0.7535 + 0.0010 0.6827 + 0.0081 |3 £ 0
DE 372.38 + 2.3840 0.7106 + 0.0209 0.7564 + 0.0041 0.6763 + 0.0194 3+0
PSO 375.73 + 0.2892 | 0.7159 + 0.0028 0.7535 + 0.0007 0.6808 + 0.0026 3+ 0
BSA 370.66 £+ 5.5973 0.6988 + 0.0274 0.7603 £ 0.0081 0.6656 + 0.0243 3+0
aso 375.68 £ 0.3881 | 0.7153 + 0.0040 | 0.7535 % 0.0007 | 0.6803 + 0.0037 |3 %+ O
BGSO 375.05 + 2.0970 0.7163 + 0.0118 0.7543 £ 0.0040 0.6814 + 0.0110 3+to0
Waveform GA 2518.7 + 11.88 0.3473 £ 0.0112 1.3783 + 0.0036 0.4374 £ 0.0067 2+0
DE 2544.2 £ 8.190 | 0.3597 %+ 0.0057 | 1.3734 £ 0.0021 0.4450 £ 0.0035 |2+ 0
PSO 2552.6 + 58.11 0.3669 + 0.0213 1.3705 £+ 0.0047 0.4480 + 0.0209 2.0333 + 0.1826
BSA 2536.2 + 7.4291 0.3537 £ 0.0093 1.3745 + 0.0027 0.4413 + 0.0056 2+0
GSO 2546.3 + 10.52 0.3608 + 0.0065 1.3733 £+ 0.0027 0.4456 + 0.0040 2+0
BGSO 2559.4 + 2.4081 | 0.3686 + 0.0026 | 1.3704 + 0.0007 0.4505 + 0.0017 |2 £ 0

post-hoc test. According to Nemenyi test, the performance of two algorithms are
considered significantly different if the corresponding average ranks differ by at
least the critical difference

CD =gq,

nalg (nalg + 1)
6ndata

(15)
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where ngqtq represents the number of data sets, ng, represents the number of
compared algorithms and ¢, are critical values based on a Studentized range
statistic divided by /2 [12]. Since CH, CR and JI are mazimization metrics
(indicated by 71), the best methods will obtain higher ranks for the Friedman
test, while for DB (a minimization metric, indicated by |), the best methods
will find lower average ranks for the Friedman test.

The experimental results are presented in Table3. As we can observe in an
empirical analysis, the proposed BGSO was able to find the best values for
the fitness function (CH) for most cases (seven out of nine problems). Almost
all algorithms (except for PSO) have been able to predict the exact estimated
number of final clusters for six out of nine data sets, which is a good result,
compatible with many works from the literature [38]. Even for Diabetes, Wave-
form and Page Blocks Classification, the best number of clusters found by the
EAs and SIs is not very much distant from the expected values, what is quite
acceptable, given the different degrees of separability among the original classes
in such data sets.

Table 4. Overall Evaluation: Average Ranks for the Friedman Test for each metric,
with CD = 2.5132.

Algorithm | CH' CR' DB JI'

GA 63.7167 | 73.5815 |103.5000 | 77.3593
DE 85.4296 | 78.5759 |108.3000 | 77.4833
PSO 101.1148 |100.7630 | 73.6870| 95.4185
BSA 72.6685 | 86.1889 |101.6130 | 88.0852
GSO 105.6963 | 99.4519 |81.8444 | 99.7370
BGSO 114.3741  104.4389 | 74.0556 | 104.9167

Considering the overall evaluation performed through the application Fried-
man hypothesis tests (Table4), BGSO obtained the best rank values for all
four evaluation metrics, showing its robustness. GSO have been able to achieve
the second best rank values for CH and JI (followed by PSO), and PSO have
reached the best rank for DB (with no statistically significant difference from
BGSO), and the second best rank value for the C'R (with no statistically signif-
icant difference from GSO).

6 Conclusions

In this work, a new hybrid evolutionary algorithm is presented, which combines
Group Search Optimization and Backtracking Search Optimization: the Back-
tracking Group Search Optimization (BGSO). In BGSO, the historical informa-
tion of BSA is aggregated to the searching process of GSO, keeping the best
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features of both models. The proposed hybrid algorithm is adapted to the con-
text of automatic data clustering as a partitional clustering model.

In an attempt to validate BGSO, five state-of-the-art algorithms are adapted
as partitional automatic clustering approaches and compared to BGSO: GA, DE,
PSO, GSO and BSA. Nine real-world data sets are employed, and four clustering
metrics are used for comparison purposes. The experimental evaluation included
an empirical analysis and a hypothesis test (Friedman test).

The experiments showed that BGSO is able to find better solutions than
standard GSO and BSA algorithms in most cases, and in an overall evaluation,
BGSO has been able to outperform all comparison approaches in relation to the
selected clustering indices.

As future works, we intend to extend our analysis on the behavior of BGSO
by employing controlled scenarios obtained through the use of synthetic data
sets, so we can understand the best features and limitations of the proposed
model on different clustering problems. Also, we intend to evaluate the influence
of the fitness function on BGSO performance.
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Abstract. The Software Project Scheduling Problem (SPSP) aims to
allocate employees to tasks in the development of a software project,
such that the cost and duration, two conflicting goals, are minimized.
The dynamic model of SPSP, called DSPSP, considers that some unpre-
dictable events may occur during the project life cycle, like the arrival of
new tasks, which implies on schedule updating along the project. In the
context of Search-Based Software Engineering, this work proposes the use
of dynamic optimization strategies, based on memory, together with the
particle swarm optimization algorithm (PSO) to solve the DSPSP. The
results suggest that the addition of these dynamic strategies improves
the quality of the solutions in comparison with the application of the
PSO algorithm only.

Keywords: Software project scheduling problem - Search-based
software engineering + Particle swarm optimization - Dynamic strategy

1 Introduction

The Software Engineering field contains many problems with conflicting goals;
they are optimization problems. Search-Based Software Engineering (SBSE) [1]
is a domain of Software Engineering that applies search based techniques to find
optimal or near optimal solutions to these problems. Metaheuristics such as bio
inspired algorithms [2] or genetic algorithms [3] are commonly used in this area.

A relevant problem with conflicting goals, when developing a software
project, is to define which tasks each employee should develop. This problem
is known as Software Project Scheduling Problem (SPSP), whose aim is to find
the best project schedule with duration and cost minimized. The duration tends
to increase when the cost decreases, and vice versa. For example, the project cost
increases when new employees are hired to develop the project more quickly; on
the other hand, the project duration increases when there are few employees
working on the project, and thus, less development costs.

There are two well-known models for the SPSP: Static [4], which does not
consider dynamic events like task effort uncertainty, and a new task or employee
arrival; and Dynamic [5] (abbreviated by DSPSP), that considers these dynamic
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events. In the case of SPSP, only one schedule is established for the project,
whereas in DSPSP, the schedule set up at the beginning of the project, is updated
after the occurrence of dynamic events.

Problems like DSPSP, whose search space changes occasionally, tend to be
hard to be solved. The metaheuristic applied must be able to identify differences
in the search space, what it is not so simple. Nguyen et al. [7] present some
approaches to handle problems that have dynamic events, like multi-population,
prediction, the introduction of diversity, and memory, i.e. historical data, of
previous solutions.

Few works incorporate dynamic optimization strategies in metaheuristics to
solve the DSPSP. Shen et al. [5] propose an e-domination based Multi-Objective
Evolutionary Algorithm (MOEA), denoted as de-MOEA, to solve DSPSP and
incorporate some dynamic strategies to construct the initial population of the
algorithm after a dynamic event, such as: usage of information from previous
schedules in the current one; incorporation of random individuals, to introduce
diversity; and proactive repair of the schedule, to preserve the solution stability.
The use of an initialization strategy in de-MOEA produces better results than
other strategies investigated in [5]. In [8] strategies used in [5] are applied to
a Q-learning-based mechanism that chooses appropriated search operators for
different scheduling environments. These works show, for the DSPSP, that the
application of dynamic optimization strategies together with metaheuristics can
improve the results achieved by the application of the metaheuristic only.

This paper aims to investigate the Particle Swarm Optimization (PSO) [2]
metaheuristic’s performance for solving the DSPSP, in three scenarios: the appli-
cation of the algorithm without dynamic strategies; the inclusion of a dynamic
strategy based on historical solutions, similar to [5]; and the inclusion of a new
strategy based on memory, here proposed, that stores the best solutions after
each new rescheduling. We are not aware of any other approach that uses PSO
for solving the DSPSP, with and without dynamic strategies, and thus, we intend
to contribute to a larger investigation of this problem in the context of SBSE.
To evaluate the proposed approach we use six DSPSP’s benchmark instances,
with a distinct number of tasks and employees.

This paper is organized as follows. Related works are discussed in Sect. 2. In
Sect. 3 the formulation of the DSPSP as an optimization problem is described.
In Sect. 4 the algorithms are briefly described. The experiments are discussed in
Sect. 5. At last, Sect. 6 presents conclusions and directions for future work.

2 Related Works

There are many studies considering the SPSP static model in the context of
SBSE. Rezende et al. [6] provide a relevant systematic review in this sub-
ject. Nevertheless, few studies have investigated the DSPSP. Seminal works
for DSPSP are the works of Shen et al. [5,8], mentioned in Sect.1. Besides,
Rezende [9] proposes an extension of the model of [5], by considering two more
dynamic events and the influence of the team experience. In this work, the author
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compares the performance of the Cooperative Multiobjective Differential Evolu-
tion (CMODE) algorithm to the Non-dominated Sorting Genetic Algorithm IIT
(NSGA-III).

The use of dynamic strategies in metaheuristics to solve DSPSP also have
been few investigated. In [5] strategies like historical solutions, diversity intro-
duction, and self-adaptive mechanisms are used in de-MOEA, whereas [8] adopt
a predicting mechanism in MOTAMAQ. Furthermore, Rezende [9] applies proac-
tive repair and historical solutions to the CMODE and NSGA-III algorithms.

The PSO algorithm was applied to solve some software engineering prob-
lems, in the context of SBSE. For example, Bardsiri et al. [10] propose a hybrid
estimation model based on a combination of a PSO and Analogy-based estima-
tion (ABE) to increase the accuracy of software development effort estimation.
Andrade et al. [11] propose a hyper-heuristic, denoted as GE-SPSP, to config-
ure the metaheuristic Speed-Constrained PSO (SMPSO), based on Grammatical
Evolution, to solve the SPSP.

Differently from those works, this work proposes the application of the meta-
heuristic SMPSO [12] for the DSPSP, by incorporating two distinct dynamic
strategies, one new and the other based on the work of [5] for the de-MOEA.

3 Dynamic Software Project Scheduling Problem

The model of DSPSP adopted in this work is due to Shen et al. [5], which is an
extension of the work of [4]. A brief description of this model is given in what
follows.

3.1 Employees

The DSPSP cousiders a set of employees E, where ¢; (i = 1,2,...,|E|) denotes
each employee in the project. Employees have a salary and a maximum dedica-
tion to the project, ranging from 0 to 1. Furthermore, each employee has a set of
skills, which is denoted by skills;. All the necessary skills required by the project,
for the set of employees, are represented by the set S = {ski,sks,...,sk|g}.
Figure1 (a) shows an example of the DSPSP, where skills like Technical leader-
ship, UML modeling, Programming, Database, and Web design are in S. Table 1
presents each variable associated to employees, where ¢; represents a rescheduling
point.

3.2 Tasks

Tasks are executed by employees and each task requires a skill set for its execu-
tion and an estimated effort expressed in person-month. There is a precedence
relationship between each task, represented by an acyclic directed graph G(T, A),
where T = {7, ..., 7, } is the vertex set, representing the set of tasks in the project
and A is an edge set representing tasks dependency, i.e., the edge (7;,7;) € A
means that task 7; needs to be concluded before that task 7; starts. This graph
is called Task Precedence Graph (TPG) and an example is showed in Fig. 1 (b).
Table 2 presents each variable associated to tasks.
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Table 1. Employee parameters in DSPSP.

Name Description
€ An employee in the project
eskills Indicates how much an employee masters a task in the

project, and is defined as

(k=1,2,...,]|5|) expresses the e; proficiency to the kth
skill. If proff = 0, then e; does not have this skill; and if
profFf = C, then e; masters the kth skill

skills; The skill set of the employee and defined as
skills; = {k|proff >0,k =1,2,...,|5|}
emav-ded | Naximum dedication of e; to the project that is the

monthly workday percentage that e; can support. If
emar-ded — 1 then e; is able to do overtime at work

ghab-sal The e; monthly salary in a regular workday
eget-sal The e; salary, if he/she does overtime at work

e?*?(¢;) | Binary variable that indicates whether e; is available or
not in t;

e-aval(t;) | A set that indicates all available employees in ¢, i. e.,
e_aval(ty) = {e;|ed*™ (t) = 1,i = 1,2,..., |E|}

sky : Technical Leadership
sk, : UML modeling
sk; - Programming

(a) sk, - Database (b)

sk Web design

Skill set = { sk,. sk,, sk, sk,. sks } skills = { sky, sk, }

effort = 15.0

Employee 1 Employee 2 Employee 3 »

.
¥
7
2o
v
¥

Skills = { sky. sky, sks} Skills= { sk3, sk4}  Skills= { sk,. sky

Salary = $4,200.00 Salary = $2,000.00 Salary = §2, 600.00 skills = { 5k1_ sks }
Maximum dedication = 1.0 Maximum dedication = 0.8 Maximum dedication = 0.75 effort = 28.0
(c) i T2 3 T

el 0.41 0.09 0.00 0.50

e2 0.00 0.30 0.50 0.00

€3 0.30 0.15 0.30 0.00

Fig. 1. Examples of (a) employees properties; (b) TPG; and (c) a dedication matrix.
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Table 2. Task parameters in DSPSP.

Name Description
T A task in the project
rykills Required skill set to 7;. Defined as

et = {skj, sk3, ..., sk¥|k = 1,2,...,|S|}, where sk¥ =1

means that the kth skill is required in 75, and sk:;-“ =0 not

req; A specific skill set to 7, where is defined as

req; = {k|skf =1,k =1,2,...,|S|}

The initial estimated effort required to complete 7; in
person-month. The uncertainess of this value follow a
normal distribution ¢(u;,0;)

T;ot,eff,est

TJ’-‘"f inished 1) | Binary variable that indicates whether 7; is finished or not
in t;

Tk (4) Binary variable that indicates whether 7; is available or
not in ¢;

T-aval(t;) A set that indicates all available tasks in #;, i. e.,

{rilrsoet(t) = 1,5 = 1,2, o0, [T| 4 [Tnew(t:)|}, where
Thew(t) is the set of new tasks that arrives in ¢

TPG An acyclic directed graph G(T, A), where the vertices
represent the tasks, and the edges indicate the precedences
between each task

3.3 Solution Representation

A solution to DSPSP is expressed by a dedication matrix M;; of size |E| x
|T|, where the rows represent the employees and columns the tasks. Thus, all
cells in the dedication matrix determine the dedication of an employee in some
tasks, which is defined as efjmf = Hk@,eqj prgfik. For example, in Fig.1 (c), the
employee e; has dedicated to the task 7 a total of 41% of his/her workday. If
the cell m;; has value 0, this means that employee e; is not allocated to the task

e

3.4 Dynamic Events

The DSPSP proposed in [5] incorporates one uncertainty and three dynamic
events to the model in [4], which are listed in what follows.

— Uncertainness about task efforts: early in the project life cycle, a software
model, such as COCOMO [13] is used to estimate the effort of each task.
However, due to changes in task specifications or erroneous estimates, task
efforts need to be modified. Therefore, it is assumed that the effort value
follows a normal distribution ¢(u, o), in such a way that the mean p and the
standard deviation ¢ values is assigned to each task. The value of the initial
effort assumes p.
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— New tasks arrival: during the project life cycle it is common that new tasks
arrive. They can be urgent or regular tasks. When urgent tasks appear, all
running tasks must pause, so that these urgent tasks can begin. On the other
hand, when regular tasks appear, they can be scheduled in a normal way,
without priority.

— Employee leaves or returns the project: an employee can leave the
project due to many reasons. He/She got sick, being part of multiple projects,
or becoming a father/mother. Likewise, the employee may return to the
project, and this event is denoted by the time since the employee leaves until
the moment he/she returns.

3.5 Objective Functions

The DSPSP considers four objective functions to be optimized, as shown in the
Table 3. Such objectives arise at any time ¢; (t; > (), where there is the following
information about the project: (1) a set of available employees e_aval(t;); (2) a
set of available tasks 7_aval(t;) with the rest of the estimated efforts; and (3)
the TPG G(T'(t;), A(t;)) that updates in ¢;.

Table 3. DSPSP objective functions.

Name | Description

fi(t:) | Remaining project duration in ¢,

f2(t:) | Initial project cost for available
tasks in #;

f3(t:) | It denotes the robustness of the
project by measuring how sensitive
scheduling is to task efforts
uncertainess

fa(t;) | The stability between schedulings
in t; and ¢;—1, where [ > 1.
Measures how much the schedule in
t; differs from the previous schedule

The optimization of these objectives is expressed by:

minF(t;) = [f1(t)), f2(t1). f3(t1), fa(t1)] (1)

where f1(t;), f2(t;1), f3(t;) and f4(t;) are defined as duration, cost, robustness,
and stability, respectively.

The objective function f;(#;) gives us the maximum required time to com-
plete the remaining efforts of each task in ¢;. Thus, the model of [5] defines
that T]fm’eff(tl) is the finalized effort from to to t; for each 7; € 7T_aval(t;),

and Test,rem,eff

; (t;) is the estimated remaining effort of a task 7; in ¢;, such
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that Tjest,rem,eff (tl) — T;ot,eff,est _ ijin,eff (tl)~ If Tjest,rem,eff (tl) < ijin,eff (tl)
and 7} nfinished (1) — 1 then the initial estimated effort was erroneous, and
Tr?ot,eff,est

J

distribution ¢(p;,0;) until the condition B > ijm’eff be true. Hence, Eq.2

defines fi(#;), where I is the initial scenario considering the remaining effort
Tjesmem’eff (t:1) as the required effort to complete 7; in #;; 75**"*(t;) is the time,
in months, wherein 7; started to be processed, from the generated rescheduling

after t;; and T]‘?”d is the time wherein 7; ends.

(5" (1)

needs to be reestimated many times by a value B from the normal

fi1(t;) = duration; = (rstart

SU)) ()

max — min
{jlrj€T-aval(t;)} {jlmj€T-aval(ti)}

The function fy(t;) defines the project cost based on the salary of each
employee e; available in ¢;. Equation3 denotes the initial project cost, where
t' > t; and e_cost! represents how much was paid to e; in t'.

fa(ty) = costy = Z Z e,costfl. (3)
t' >t e;€e_aval(ty)

There are two ways to obtain the value of e,costﬁ,, as shown in Eq.4 and

Eq. 5, where 7_active(t') = {TﬂTf"ﬂmShed(t’) =1L I3 pparqery mii () < 1,
then
e_cost! = ehab-sal ¢/ . Z mgj(t'), (4)
JET_active(t’)

otherwise if 1 < ymij(t) < emaz-ded " then

jET _aval(t’

e_cost! = ehab-sal .4/ .1 4 eevtosal g/ < Z mi;(t") — 1) (5)

JET-active(t")

To compute robustness, Eq. 6 is applied. In this equation the values of fi(¢;)
and fa(t;) are estimated, which defines the set {0,|¢ = 1,2, ...,v}, where §, is the
qth effort sample of the task, and « is a input parameter set to be 30. To generate

04 is necessary estimate the total cost of the sample 6, defined as T;Ot’COSt‘I

)

many times by normal distribution ¢(p;,0;), until the condition T;Ot’co‘qt“

ijm’eff (t1) be true. Thereby, is assumed that 6, = {T;em’effq (tl)|7';em’€ffq (t) =

T;Ot’COStq - ijm’eff (t1),7; € T_aval(t;)}, where T;em’eff" (t;) represents the gth

remaining effort sample of 7;. A is a weight parameter that determines the relative
importance of cost over duration, which is set to be 1.

f3(t)) = robustness
. . 2
_ |t i max (0, durationg(t;) - durationy(t;)
— duration(t;)

+A % i (max (0, et (zélt:(i?;tl (tl)>)2

(6)
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The stability function (see Eq. 7) is the weighted sum of the dedication devi-
ations, and it is calculated for all available tasks in ¢; (I > 1).

fa(ty) = stability =

Z Z wijlmag(t) — maj (ti-1)]

{ile; €e_aval(t;_1)Ne-aval(ty)} {j|mj €T-aval(t;_1)NT-aval(t;)}
(7)

In Eq.7 w;; is the weight parameter and contains three possible values, as
shown in Eq.8. When w;; = 2.0, an employee e; does not work in task 7; in ¢;_1,
but works in t;, which can decrease the productivity of the employee, because
may be necessary extra training and time to get familiar with the task. Differ-
ently of the first case, when w;; = 1.5, the employee e; works in task 7; in ¢;_1,
but not in ¢;. In the last case, there is no penalty, because e; remains on 7; in #;.

2.0; if my; (tl—l) = 0 and m;; (tl) > 0,
wij = § 1.5; if m;;(t;1—1) > 0 and m;;(¢;) = 0, (8)
1.0; otherwise.

3.6 Constraints

The DSPSP considers three type of constraints, where the first two are hard
constraints, and the third one is a soft constraint. These constraints are listed
below and the constraints handling are detailed in [5].

(i) No Overwork Constraints. The total dedication of an available employee
to the running tasks e_work! | in any time ¢’ > ¢;, must not exceed the maximum
employee dedication, i. e.:

Ve; € e_aval(t'),Vt' > t;, s.t. e,work:f/
= Z m(t') A ework! < erar-ded, (9)

i

jET_active(t’)

(it) Task skill constraints. The skill set of each employee scheduled to task
7; must be in the task required skill set reg;, and for each running task, at least
one available employee must be part of the team, as shown Eq. 10.

V1, € T_aval(t;) s.t. req; C U {skills;|m;;(t;) > 0}.

ej€e_aval(t;)

(10)

(i77) Maximum headcount constraint. There is a limit of employees working

together in any available task, which is denoted as 7;"“**“" and is estimated

by the formula 7" = max{l,round(2/3(7';0t’€ff’68t)0’672)} [14]. However,
if the number of employees in the task cannot be reduced, without violating
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the constraint (i7), then the effort task is penalized. Equation 11 shows the con-
straint, where 7/¢*"-*"#¢(;) is the team size of 7; in ¢, and 7;"*"“""P(t;) is the
minimum team size in 7; to satisfy the constraint i:.

V7; € T_aval(t;), 7}°*"*"*¢ < max (e, ijm’emp(tl)). (11)

4 Speed-Constrained PSO Applied to DSPSP

The PSO [2] is a metaheuristic inspired by social behavior of bird flocking or fish
schooling. The set of possible solutions is a set of particles, called a swarm, which
moves in the search space, in a cooperative search procedure. These movements
are performed by the velocity operator that is guided by a local and a social
component. In Multi-Objective Optimization, Multi-Objective Particle Swarm
Optimization (MOPSO), the Pareto dominance relation is adopted to establish
preferences among solutions to be considered as leaders. By exploring the Pareto
dominance concepts, each particle in the swarm could have different leaders, but
only one may be selected to update the velocity. This set of leaders is stored
in an external archive (or repository) that contains the best non-dominated
solutions found so far. Normally, this archive is bounded and has a maximum
size. So, two important features of PSO are the method to archive the solutions
in the repository and how each particle will choose its leader (leader’s selection).
The basic steps of a MOPSO algorithm are the initialization of the particles,
computation of the velocity, position update, and update of the leader’s archive.

The SMPSO algorithm [12] is a basic MOPSO algorithm that uses the pro-
cedure that limits the velocity of each particle. The velocity of the particle is
limited by a constriction factor x, which varies based on the values of C; and
C5 that are specific parameters which control the effect of the local and global
best particles, respectively. Besides, the SMPSO introduces a mechanism that
links or constraints the accumulated velocity of each variable j (in each particle).
Also, after the velocity of each particle has been updated a mutation operation
is applied. A polynomial mutation is applied in 15% of the population, randomly
selected. Furthermore, SMPSO uses the Crowding Distance archive.

Algorithm 1 shows the pseudocode of the SMPSO, adapted from [12], such
that: lines 1-3 initialize the position, best and velocity of the particles, respec-
tively; line 4 initializes the leaders archive with the non-dominated solutions in
the swarm; in sequence, the loop updates every particle in the swarm at each
step, until some stop condition is reached; and finally, at line 13, the archive of
leaders is returned.
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4.1 Dynamic Optimization Strategies

The application of the SMPSO to the DSPSP is straightforward since the solu-
tion to the problem, the dedication matrix, can be represented by a vector of real
numbers. Thus, the dedication matrix represents the particle position. The prob-
lem constraints are current handled by DSPSP modeling, described in Sect. 3.6.
Hence, although SMPSO can be applied in the problem solution, the incorpora-
tion of strategies to deal with the dynamic features of DSPSP may improve the
SMPSO results.

In order to try the best performance of the SMPSO for the DSPSP, two dif-
ferents kinds of dynamic strategies based on historical solutions were applied, i.e,
solutions from previous schedules will influence later schedules. The use of mem-
ory strategy is typical when the solutions return to regions near their previous
locations in the search space, after the occurrence of a change in the dynamic
problem [7]. In DSPSP, e.g., when an employee ¢; is available in the project, the
feasible solutions in some time ¢; can be reused in a time t; (k > [), when the
employee returns to the project after leaving it for some period of time.

Historical Solutions. The first strategy applied is based on the work of [5],
in which a percentage of historical solutions’ usage n is adopted to construct
the initial population after the occurrence of a dynamic event. Shen et al. [5]
added this strategy to the de-MOEA algorithm with n = 20, whose repaired and
random solutions strategies compose the remaining 80%. In our experiments,
n assumes the values 25, 50, 75, and 100, and random solutions complete the
remaining portion of the population, to analyze the impact of varying the per-
centage of historical solutions in SMPSO. The pseudocode of this algorithm is
similar to Algorithm 1. The main difference is the swarm initialization in line 1,
which includes the mentioned strategy. We denote this variant as SMPSO-HP.

Memory Approach. The second strategy modifies the SMPSO algorithm by
including a new archive, called prevLeaders (see Algorithm 2). This archive
still uses as Crowding distance as filter selection, but is updated with the best
solutions in leaders (see line 16). Moreover, at line 6 leaders receive the best
solutions of previous schedules. The input parameter schedule indicates in which
rescheduling point the project simulation is situated. The condition in line 5 is
to prevent solutions with different number of objectives in schedule = 0 and
schedule = 1, as stability is not considered when schedule = 0. We called this
variant as SMPSO-MA.
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Algorithm 2: SMPSO-MA

pseudocode
input: Reschedule indicator of the
Algorithm 1: SMPSO pseu- project schedule
docode 1 Initialize the swarm,;
L Initialize the swarm: 2 Initialize the best solution (Best);
2 Initialize the best st;lution (Best); 3 Initialize the speed vector (speed);
e ’ 4 Initialize leaders archive (leaders);
3 Initialize the speed vector (speed); if schedule > 1 th
4 Initialize leaders archive (leaders); 5 1 se edqiel d en‘th
5 while a stop condition is not 6 up az EZ ers wi
reached do + end previeaders
dat d; . L
¢ upCate speec; .. 8 while a stop condition is not
7 update swarm position; reached do
8 swarm mutation; 0 update speed;
4 . ,
1E ivag:?gelet;;izarm, 10 update swarm position;
1 update Best: ’ 11 swarm mutation;
d P ’ 12 evaluate the swarm;
12 en 13 update leaders;
13 return leaders; 14 update Best:
)
15 end

16 update prevLeaders with leaders
17 return leaders;

5 Experiments

To evaluate our hypothesis, the following algorithms are executed 10 times for
each instance: SMPSO, SMPSO-HP25, SMPSO-HP50, SMPSO-HP75, SMPSO-
HP100, and SMPSO-MA. In what follows the parameters of algorithms, the
DSPSP instances, the metrics, and statistical tests used, as well as the results
achieved, are described.

5.1 Parameterization

We use the DSPSP model of [5] implemented in Java available in the repository
of our research group'. The SMPSO and variants are implemented using the
jMetal framework. In all experiments, each algorithm evaluates 6000 times the
objective function in a reschedule, allowing a fair comparative analysis between
all metaheuristics. Since there is a great variation in the number of dynamic
events in each simulation, we delimit only the first 100 reschedule events for
each experiment; the events always occur in the same sequence for all algo-
rithms. Table 4 presents all parameters applied in the metaheuristics. The first
four parameters are the same for all algorithms. The parameter historical solu-
tions’ usage expresses the percentage of historical solutions used when a new
population is updated in the SMPSO-HPn and is used only for this algorithm.

! https://github.com /rodrigoamaral /spsp-jmetal.
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Table 4. Algorithms parameterization used in the experiments.

Number of reschedule events | 100

Stop criteria < 10000

Mutation Polynomial mutation
Archive type Crownding distance
Archive size 100

Population size 100

Historical solutions’ usage (%) | {25, 50, 75,100}

5.2 Instances

We used six artificial instances extracted from the work of [5]. These instances
simulate real projects and consider different numbers of employees, skills, tasks,
and new tasks arrival in each scenario analyzed. The occurrence of dynamic
events is associated with the instances and follows the same sequence in each
execution. We choose the instances regarding the number of tasks and employees,
which simulates small and medium-sized projects. Table 5 presents the param-
eters of all instances used in our experiments, with their respective identifiers,
where T}, is the set of new tasks that will arrive. The parameters skillsj'
and skills; specify the maximum and minimum values of the employee’s skills,
respectively.

Table 5. Instances identifiers and their respective parameters used in experiments.

Instance ID | |E| | |skills; | | [skills}| | |T| | |Tnew]
I 5 |4 5 10 |10
1> 10 |4 5 10 |10
I3 15 |4 5 10 110
14 5 |4 5 20 10
Is 10 |4 5 20 |10
Is 15 |4 5 20 10

5.3 Metrics and Statistical Tests

We use hypervolume to compare the results of each algorithm, commonly used in
multiobjective optimization works. Hypervolume is a metric that measures the
quality from a non-dominated solution set P = {p',p?,...,p"}, by calculating
the polytopus area formed between the set P and a reference point r, which is a
input parameter [15]. So, when a solution set has high values of hypervolume, this
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means a better schedule set, considering all objectives computed. In our experi-
ments, the program produces a file with the objective evaluation values after a
rescheduling. These values are normalized and used in hypervolume calculation,
which ranges from 0 to 1. As the stability objective requires the information of
two schedules, it is not optimized at the first schedule. Thus, the initial reference
point is (1.1,1.1,1.1). In the following reschedules, where stability is considered,
the reference point is (1.1,1.1,1.1,1.1).

To compare the results, we consider an accurate statistical level by the non-
parametric hypothesis test of Kruskal-Wallis and Tukey as post-hoc test [16],
in a multiple comparisons (n x n). We use a 5% as significance level to assert
whether there was a statistical difference between the results of the algorithms.

5.4 Results and Discussion

Table 6 shows the results achieved. The proposed approaches were confronted
with the basis SMPSO algorithm. Since each algorithm was compared with
SMPSO, the symbols ~, + and — indicate if the variant is significantly equal,
better or worse than SMPSO, respectively. If the p-value obtained from the sta-
tistical test is greater than 0.05, then we consider significantly equal; otherwise,
if p-value < 0.05, then it is significantly better. We regard worse when the variant
presents values of hypervolume smaller. Furthermore, in this table, a cell-shaded
in gray indicates the best value of hypervolume, for a given instance.

Table 6. Means and standard deviations values of the hypervolumes for each instance.

Algorithm Hypervolume Mean (Hypervolume standart deviation)
I I I
SMPSO 0.887 (5.81E-01) |1.186 (8.54E-02) |1.169 (1.46E-01)
SMPSO-HP25 | 0.884 (5.80E-01)— | 1.188 (9.16E-02)~ | 1.177 (1.46E-01)~
SMPSO-HP50 |0.886 (5.80E-01)=s | 1.187 (8.36E-02)~ | 1.175 (1.49E-01)~
SMPSO-HP75 |0.889 (5.82E-01)~ | 1.187 (8.80E-02)~ | 1.170 (1.42E-01)~
SMPSO-HP100 | 0.879 (5.76E-01)— | 1.201 (9.15E-02)4 | 1.167 (1.55E-01)—
SMPSO-MA | 1.392 (5.66E-02)+ | 1.364 (5.96E-02)4 | 1.362 (1.33E-01)+
Iy Is Is
SMPSO 1.171 (3.06E-01) |1.115 (8.50E-02) |1.075 (7.45E-02)
SMPSO-HP25 |1.154 (3.02E-01)— | 1.112 (8.48E-02)— | 1.072 (7.53E-02)—
SMPSO-HP50 | 1.163 (3.04E-01)— | 1.115 (8.75E-02)~ | 1.068 (7.83E-02)—
SMPSO-HP75 |1.156 (3.03E-01)— | 1.126 (8.11E-02)= | 1.078 (7.57E-02)~
SMPSO-HP100 | 1.161 (3.03E-01)— | 1.121 (8.85E-02)~ | 1.076 (7.48E-02)~
SMPSO-MA | 1.383 (6.60E-02)+ | 1.367 (7.48E-02)+ | 1.356 (7.66E-02)+
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Considering the instance I, that has the fewest employees and tasks, the
variant SMPSO-HP25 and SMPSO-HP100 were worse than SMPSO, presenting
lower values of hypervolume. For the variants SMPSO-HP50 and SMPSO-HP75,
the statistical test of Kruskal-Wallis did not indicate statistical difference to the
SMPSO, thus, they are significant equals. Nonetheless, the SMPSO-MA presents
the highest value of hypervolume, and p-value < 0.05 when compared to the
SMPSO. For this fact, the SMPSO-MA obtained the best performance for this
instance. By adding more employees to the project and preserving the number
of tasks, i.e., the instances Iy and I3, the variants SMPSO-HP25, SMPSO-HP50,
and SMPSO-HP75 had performance significantly equals to the SMPSQO, in both
instances. The SMPSO-HP100 presented best results in I, however, in I3, it
was significantly worse to the SMPSO, while the SMPSO-MA maintained the
best values of hypervolume and, consequently, was significantly better than the
SMPSO.

When the project contains a large number of tasks, but few employees, i.e.,
the instance I, note that the variant SMPSO-HPn was significantly worse to
the SMPSO in all n values. Differently, the SMPSO-MA once again presented
the best performance compared to the other variants, obtaining a p-value <
0.05. Nonetheless, when we consider the instances I5 and I, which regard more
employees to the project, the SMPSO-HP25 remains worse than SMPSO. This
does not happen with the SMPSO-HP75 and SMPSO-HP100, as even having
better values of hypervolume, however, by the Kruskal-Wallis test, are significant
equals to the SMPSO. The SMPSO-HP50 remains worse in Ig and is equal in
I5 when compared to SMPSO. The SMPSO-MA remains better to the SMPSO
and the other variants in both instances.

The results suggest that, when comparing the SMPSO with the SMPSO-
HPn, there is no gain in extending SMPSO with the dynamic optimization strat-
egy based on the work of [5]. Also, the variation of the percentage of historical
solutions does not reveal any significant impact on the quality of the solutions
achieved. Nevertheless, when comparing SMPSO-MA with the SMPSO and the
other variants, the results show a significant difference; the SMPSO-MA achieves
the best values of hypervolume in all instances and presents a significant differ-
ence. Thus, the proposed memory approach was able to improve the results of
SMPSO, when solving a dynamic optimization problem.

6 Conclusion

This paper aims to investigate whether the inclusion of two distinct dynamic
strategies based on historical solutions improve the performance of the SMPSO
when this algorithm is applied to DSPSP. For this purpose, ten independent
executions of each algorithm were accomplished, by considering six instances
that simulate real project scenarios. The results suggest that the SMPSO-MA is
better than the SMPSO and the SMPSO-HPn, for all value of n. Future works
may explore issues, such as: a) to evaluate the algorithms in more instances of
DSPSP; b) to increase the number of objective evaluations in each algorithm,
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which may influence the result precision; c¢) to apply the memory approach in
other metaheuristics and compare their performance with the SMPSO-MA.
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Abstract. The main objective of nonlinear dynamic system identifi-
cation is to model the behaviour of the systems under analysis from
input-output signals. To approach this problem, the Laguerre-Volterra
network architecture combines the connectionist approach with Volterra-
based processing to achieve good performance when modeling high-order
nonlinearities, while retaining interpretability of the system’s character-
istics. In this research we assess the performances of three metaheuristics
in the optimization of Laguerre-Volterra Networks using synthetic input-
output data, a task in which only the simulated annealing metaheuristic
was previously evaluated.

Keywords: Nonlinear dynamic systems - Laguerre-Volterra networks -
Metaheuristics

1 Introduction

Nonlinear dynamic system identification from input-output (I0) data using the
Volterra series is a broadly studied field [5,16,18,20,29]. The functional power
series, as coined by Volterra in [37], can be seen as a Taylor series with memory,
in the sense that it can approximate stable nonlinear functions with dynamic
behaviour. This functional expansion representation allows for the extraction
of kernels that characterize the system dynamics for any given nonlinear order,
which can be used to interpret characteristics of the systems under analysis. For
example, the first order Volterra kernel of a system is akin to the convolution
kernel that describes a linear time-invariant (LTT) system, and represents the
linear component of a given nonlinear system.

In practice, the estimation of high-order Volterra kernels implies in the com-
putation of a large number of coefficients, resulting in heavy computational bur-
dens and in the need for large amounts of input-output data [2]. These difficul-
ties often lead to the use of low-order models, which cannot properly represent
high-order nonlinear behaviour and are therefore biased [21]. To mitigate the
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forementioned problems, it is possible to convolve the input signal with a fil-
ter bank and then expand the Volterra series in terms of the bank’s outputs.
This representation assumes that the filter bank properly represents the sys-
tem’s dynamic characteristics and is capable of reducing the number of param-
eters in the series. The search for adequate filter banks often lead to the use of
orthonormal basis functions, and in [38] authors use a discretized version of the
continuous Laguerre functions with this purpose for the first time. Subsequently,
[19] applies the Laguerre functions proposed in [27] for this task, which are built
to be orthonormal in discrete time.

As the next step towards a decrease in the number of parameters when mod-
eling Volterra systems, [1] proposes a connectionist model which applies the
Laguerre functions proposed in [27] as a filter bank for the input signal and then
propagates the bank’s outputs through a layer of polynomial activation func-
tions. This model is referred to as the Laguerre-Volterra network (LVN), and
there is a straightforward relationship between the parameters of the network
and the corresponding Volterra kernels. The LVN has been applied to model
electrical activity in the dentate gyrus [1] and cerebral hemodynamics [23,24],
both using backpropagation (BP) to optimize the continuous parameters of the
network. Although BP is successful in the optimization of various connectionist
models (e.g. MLP, CNN, RNN), [8] argues the presence of nonmonotonic acti-
vation functions in the LVN architecture makes BP-based optimization prone
to local minima issues. Hence, [8] proposes the use of the simulated annealing
metaheuristic [15] to optimize the LVN continuous parameters. Subsequently,
[13] uses the same metaheuristic in this task.

This research is focused on the practical issue of optimizing the parameters
of LVN models from IO data with metaheuristic algorithms, and contributes
to the literature with a comparison of three metaheuristics for this purpose,
namely simulated annealing (SA), particle swarm optimization (PSO) and ant
colony optimization for continuous domains (ACOg). This comparison is rele-
vant because although the literature evidences the success of the metaheuristic
paradigm in the training of LVNs, SA is the only algorithm from this family ever
employed for the task. All source code used to collect the results reported in this
paper are publicly available at a Git repository [6] under the GNU GPL v3.

The rest of the paper is organized as follows. Section2 presents relevant
literature in the application of metaheuristics for Volterra-based system identifi-
cation. Section 3 develops on the Laguerre-Volterra network architecture and on
the metaheuristics under analysis. Section 4 explains the generation of synthetic
input-output data from two simulated nonlinear dynamic systems. In Sect. 5, we
discuss the results obtained for each metaheuristic, and finally, Sect.6 presents
concluding remarks and indications for possible future research topics.

2 Metaheuristics in Volterra Models

Although the use of metaheuristics to optimize continuous parameters of the
LVN architecture has only recently been proposed, there is plenty of literature
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relating metaheuristics to Volterra-based system identification. Here we present
some of the existing research to offer a perspective on some ways in which these
fields may interact.

In [40], authors propose using the first and second order terms of the Volterra
series as inputs of a three-layer feedforward artificial neural network, in which
each node computes the same exponential activation function. The continuous
parameters of this architecture consist of activation function thresholds; and
weights between input and hidden layers, and between hidden and output layers.
All network weights and thresholds are optimized using PSO with the mean
squared error (MSE) as cost function, which is shown to achieve smaller error
rates when compared to backpropagation, and to be robust to noisy train signals.
This approach combines the Volterra modeling and connectionist paradigm in
such a way that the final model has more free parameters than the second order
Volterra series itself.

The authors of [41] reorganize the Volterra series equations to a state-space
representation, and the resulting parameters are estimated using the Kalman
smoother (KS) adaptive filter. This approach limits the method to off-line pro-
cessing, since the KS equations are not causal. The optimization of the smoother
parameters with gradient-based methods is considered too complex for the pro-
posed system, encouraging the use of metaheuristics for the task. In this way,
the metaheuristics artificial bee colony (ABC), PSO and genetic algorithm (GA)
are applied in the second level of inference, i.e. in the search for the parame-
ters of a system which in its turn optimizes the parameters of another system.
The presented results show that metaheuristics based on the swarm intelligence
paradigm [39], i.e. PSO and ABC, achieved significantly lower errors than GA
and standalone KS. These two metaheuristics achieve error rates lower than 1%
in noiseless case and lower than 3% when considering the presence of input-
additive Gaussian white noise (GWN), which results in a 20 dB signal-to-noise
ratio (SNR).

Considering synthetic 10 signals from simulated systems, [11] compares state
transition algorithm (STA), real coded genetic algorithm (RCGA) and covari-
ance matrix adapted evolution strategy (CMA-ES) metaheuristics in the Volterra
series identification task. The research also compares the same metaheuristics
with the design of multivariate PID controllers. In the experiments, CMA-ES
had the lowest overall MSE for Volterra series optimization, while STA presented
the best performance for PID controllers design.

A novel adaptive version of the ABC metaheuristic is presented in [43], with
an inertia weight parameter varying nonlinearly according to the number of past
iterations. This algorithm is then applied to search the coefficients of a single-
input single-output second-order Volterra series, and the reported results show
that the adaptive mechanism enhances the identification of simulated nonlinear
systems.

Different procedures for initialization of hierarchical populations in GA are
compared in [3], which optimizes Volterra systems considering that for each
identification tasks only a subset of the Volterra series coefficients are active.
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According to the results, the hierarchical population scheme reduces the overall
computational burden of the system identification task. The proposed procedure
is also shown to be robust to three noise levels, with SNRs of 10, 15 and 20 dB.

The non-structural parameters of the LVN are optimized with SA for the first
time in [8], which also proposes the use of /1 regularization in the cost function. In
this way, a sparse representation is achieved by guiding insignificant parameters
towards near-zero values in the search process, implicitly solving the structure
selection problem. A recurrent sparse version of the LVN architecture is also
proposed, and applied to model the Hodgkin-Huxley neuronal firing equations
[12]. Subsequently, [13] employs the LVN in the context of large scale synapse
simulations, with the network’s continuous parameters optimized using a fusion
between SA and linear equation solving with the Moore-Penrose pseudoinverse.
In [9,10], SA is used to optimize the free parameters of the proposed neuronal
mode network (NMW) architecture for system identification from spike-train
10 data. This architecture is not Volterra-equivalent itself but stems from this
framework.

3 Theoretical Background

As the LVN architecture is described in this section, we highlight how its par-
ticularities determine the search space of the metaheuristics presented later.

3.1 Laguerre-Volterra Network Structure

In this subsection we use the notation from [21], Sects. 2.1, 2.3.2 and 4.3, only
changing indexing parenthesis for brackets to reinforce that the processing occurs
in discrete time. The LVN architecture, proposed in [1], is displayed in Fig. 3. It
is composed of a filter bank in which each filter is a discrete Laguerre functions
(DLFs) as proposed in [27], cascaded with a layer of static polynomial activation
functions, whose outputs are summed with an offset value to give the network’s
output.

A bank composed of L LTI filters has L outputs, and each output can be com-
puted by convolving the input signal with the corresponding impulse responses.
The Laguerre finite impulse response (FIR) of order j, b;, is defined in (1) as a
function of the discrete-time index m. This relation shows that the filter charac-
teristics depend directly on the a parameter and on the filter order j. Figure 1
shows that the number of zero-crossings of the Laguerre filters’ impulse response
depends on the order j. The order also determines the spread of significant val-
ues for each impulse response over time, in such a way that low order filters will
rapidly get to near-zero values.

bym] = 0 2(1 — @)/ (1) (D)()erra-ar  w

k=0

where 0 < a < 1,0<j < L—1and 0 <m < M —1. In this FIR implementation,
the memory extent of the system, M, is explicitly represented.
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Fig. 1. Finite impulse response of each DLF's for a filter bank with L =4 and « = 0.9.

— aipha=02
- =04

batm)

Fig. 2. Finite impulse response of DLFs with order j = 2, for a range of a values.

Increasing the o parameter produces a similar effect to the increment of the
order j with respect to the filter’s spread of significant values, as shown in Fig. 2,
directly influencing its memory characteristic. Although the FIR realization of
the Laguerre filter bank allows us to examine the forementioned characteristics,
it is possible obtain the bank’s outputs with reduced computational complexity
by using a recursive, IIR, implementation of the Laguerre functions proposed by
Ogura [27]. This approach dismisses the convolution operation, and the output
of each DLF is defined in (2) and initialized by (3) for an input signal z[n].

vj[n] = Vawjln — 1] + Vavj_1[n] —vj_1[n — 1] (2)

vo[n] = Vavg[n — 1] + TV1 — azx|n], (3)

where T is the sampling period of the discrete input signal z[n].

The input of each of the H nonlinear nodes is a weighted sum of the Laguerre
filter bank outputs, with unique weights for each node, as shown in (4). Each
hidden node h is a zero-memory polynomial function of nonlinear order (), with
output defined in (5).

L—-1
up[n] =Y wp (0, (4)
=0
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x[n]

ylnl zp[n]

Fig. 3. Structure of the Laguerre-Volterra network (LVN) architecture, adapted from
[21]

where h = 1,2, ..., H, resulting in L * H weights in {wy, ;}.
Q

zp[n] = Z Ch,qui [n], (5)

q=1

with H %@ polynomial coefficients in {cy, o }. When the equivalent Volterra model
of the network is extracted, its nonlinear order is also Q.

The network output is a summation of hidden layer outputs and offset term,
following (6). In the three-layer perceptron architecture the connections between
hidden and output layers are weighted, while in the LVN the output layer com-
putes a simple sum. This is because weighting these connections would give
the same results as multiplying the polynomial coefficients of a given node by
the connection’s weight. Also, the polynomial functions in the hidden layer do
not need zeroth order terms due to the trainable output offset y,. These facts
contribute to the compactness of the network’s parameters. Considering the
Laguerre parameter «, hidden layer input weights {wy, ; }, polynomial coefficients
{cn,q} and output offset yo, optimizing the network’s parameters is a problem
of dimensionality H * (L + @) + 2. In this way, the LVN architecture is more
compact when compared to both the original Volterra series representation and
the Volterra model expanded with Laguerre basis functions [1].

H
yln) =Y znln] +yo (6)
h=1

All relations shown in this subsection depend directly on the LVN struc-
ture (L, H and Q). Among the procedures proposed in the literature to select
the structure of LVN models, the selection using Bayesian information crite-
rion (BIC) is discouraged by [21], which favours ascending order model selec-
tion with a statistical stopping criterion. More recently, [8] starts with a roof
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high-dimensional model and leverages the sparsity of parameters introduced by
{1 regularization to reduce the structure via model pruning. Since the present
research focus in the optimization of continuous network parameters rather than
structure selection, in the rest of the paper we assume this step was already per-
formed.

3.2 Metaheuristics

Simulated Annealing. The connection between the fields of multivariate com-
binatorial optimization and condensed matter physics was analyzed initially in
[15], showing how it is possible to optimize cost functions by combining the rela-
tionship proposed by Metropolis in [22], used to simulate a collection of atoms at
equilibrium according to the Boltzmann distribution, and the annealing proce-
dure from metallurgy. In this way, the SA metaheuristic treats the solution under
optimization and its cost value as a configuration and the associated energy of
this configuration for a given system, respectively. Although it was initially pro-
posed in the context of combinatorial optimization, SA was later adapted to
optimize over continuous variables [4,17,35].

For every local iteration, one variable z; of the current solution x is randomly
chosen to be perturbed, generating a new value for the variable as given in
x, = x; + Az, where Az is the chosen perturbation. This new solution with
one modified variable then has its cost evaluated. For the sake of comparison,
here we use a constant step-size of random sign Ax for all variables as done in
the other researches that use SA to train LVNs [8,13]. With the cost function
treated as the system’s energy, E, the configuration generated by a perturbation
in the solution is accepted according to the probabilistic Metropolis equation,
in which §F = E(z') — E(z) is the difference in terms of costs between the
new and current solutions, defined in (7). According to this relation, a newly
generated solution is automatically accepted when its costs is smaller than the
current cost, and otherwise the probability of acceptance depends on how close
the new solution’s cost is to the current cost, and on a temperature 7. It is
noteworthy that due to the behaviour of SA, the best solution until the moment
has non-zero probability of being substituted by a solution with worst fitness.
For this reason, the current best solution must be stored apart from the current
solution.

1 ifAE <0,
P(AE) = {BAE/T otherwise. (7)

The annealing is applied when at every global iteration, T is reduced accord-
ing to some cooling schedule and the expected number of accepted solutions is
also reduced because of (7). The authors of [26] compare cooling procedures and
favours the use of the exponential decay cooling schedule, defined in (8). In this
way, considering n!2¢% local iterations, the total number of function evaluations
(FE) for SA is n9/2"* x nlocal,

iter iter
T()=nT(t—1), t=1,2,3,.., 040" (8)
where n%/°*" is the number of global iterations.
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Particle Swarm Optimization. Inspired by the behaviour of swarms in
nature, [14] proposes the PSO metaheuristic with the intent of extracting compu-
tational intelligence from simple social interactions. In the proposal, the swarm
is composed of m particles, each of which represents a different solution. These
solutions are initialized randomly, and then iteratively updated. Each particle ¢
is associated with three D-dimensional vectors, where D is the dimensionality
of the search space. The vectors are velocity vj, current position x; and per-
sonal best position pbest;. At every iteration, each particle has the cost of its
position evaluated, and if it is the lowest cost found by the particle until the
moment, these coordinates are stored in the pbest; vector. If it is also the low-
est cost ever found in the entire swarm, the coordinates are stored in the gbest
vector. The particles’ velocity vectors are then updated stochastically, taking
into account the best coordinates visited by the particle itself and by the entire
swarm according to (9), while their position vectors are updated according to
(10). When updating velocities, the ¢, and ¢, parameters are used as weights
for the personal and global best positions, respectively.

vi(t) = vi(t — 1) + rand(0,1) * cp(pbest; — x;(t — 1)) 9)
+ rand(0,1) % cy(gbest — x;(t — 1))

Xi(t) = Xi(t — 1) + Vi(t), (10)

where ¢ is the current iteration of the algorithm and rand(0,1) is an uniform
random number.

Asin [42], previous research indicate that PSO is vulnerable to stagnation due
to low swarm convergence. Beyond that, there may be uncontrolled increment
of the velocities, leading to instability in the algorithm [30]. To alleviate these
problems, [31] proposes the parameter w which acts as a forgetting factor over
past velocities of a given particle, modifying the velocity update relationship to
(11).

vi(t) = w* vi(t — 1) + rand(0,1) * c,(pbest; — x;(t — 1))

+ rand(0,1) * cy(gbest — x;(t — 1)) (11)

In this way, at each iteration all particles are stochastically guided to search
space regions considered promising by both the particle itself and the whole
swarm. Considering a total of n;;., iterations, the objective function is evaluated
M * Njte,r tiMeS.

Ant Colony Optimization for Continuous Domains. The ant colony opti-
mization (ACO) family of metaheuristics is inspired by the foraging behaviour
of ants [33], and guides the search probabilistically using the cost landscape cap-
tured as pheromone representation. Although the first algorithms of this frame-
work were proposed in the context of combinatorial optimization, metaheuristics
for continuous domains such as ACOp [32] were proposed later.

ACOg keeps information about the search history using an archive that keeps
the best k solutions found so far. In the optimization process, all solutions of
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the archive are initialized randomly and the cost function is evaluated for each
solution. The archive is then sorted in ascending order of cost, in such a way
that the best solutions are located in the first positions of the archive, and each
of these positions is associated with a weight w; according to (12).

—[rank(j) —1]?

— 2¢2k? 19
= e ,
qk\2m (12)

in which rank(j) is the archive position and ¢ is a parameter of the algorithm.
Hence, the best solution of the archive has the highest weight.

At each iteration, each ant of the population chooses a solution from the
archive, with the probability of solution [ being selected given by the weight of
I divided by a normalizing constant, as displayed in (13).

Wi

wy
D= (13)
Zj:l Wi

The selected solution is then used as the center u of the probability density
function of (14), with standard deviation defined in (15) as the average absolute
distance from the chosen solution to the entire archive, from which a new solution
is then sampled.

X (2 — )
202
i\T5 i, 0i) = € ! 14
9i(®; pir 01) = = (14)
Eo
|s5 — pil
L= S 15
o é“; y— (15)

where 83» is the value of the ith continuous variable of the jth solution in the
archive. The random variable z is the domain of the PDF.

All new solutions then have their costs evaluated, and are appended to the
achieve. The entire achieve is then sorted and only the best k solutions are kept.
Considering a total of n;., iterations, ACOg evaluates a total of k + m * njze,
objective functions during the optimization process.

4 Synthetic Signals

The two pairs of input-output signals used in this research are synthetic, being
extracted from simulated systems. One of these systems has finite nonlinear
order, while the other one has infinite order in the Taylor and Volterra senses.
The finite order system can be considered ideal because it uses the LVN archi-
tecture with structure L = 5, H = 3, () = 4, and all continuous parameters are
uniformly randomized. The output of this system is defined in (6).

The second system is defined by a linear filter cascaded by an infinite-order
static nonlinearity. The linear filter is composed of a sum of three recursive
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exponentially weighted moving averages (EWMA) with randomized smoothing
constants, defined in (16) and (17).

eiln] = Bieiln — 1] + (1 — B)z[n] (16)

pln] =3 eiln], (1)
i=1
where (;, e;[n] and p[n] are the smoothing constant, the output of the ith EWMA
and the final filter output, respectively.
The static nonlinearity is a composite function of exponential following sine,
as given in (18). Each of these functions is of infinite order, and the resulting
composition is expected increase the difficulty of the modeling task.

Ying[n] = e@]) (18)

To enable a rich display of non-linear interactions among multiple frequency
components of the presented systems, the input signals must be broadband [21].
Thus, although the input spectrum is not required to be white, we use GWN
signals as input for both simulated systems, and we consider that the IO signals
were sampled 25 Hz.

To evaluate the generalization performance of the LVN optimization task,
for each of the defined systems we extract two pairs of 10 signals, namely the
train and test signals. While the train signals are used to define a cost function
for the search process, the test signals allows us to assess the resulting models
on data unseen during the optimization. In many cases, such as for some physi-
ological signals, the acquisition of long signals is intractable [21]. Therefore, we
use short train IO signals with only 1024 data points to take this intractability
into account. The test signals, on the other side, are 2048 points long. In this
way, the search for parameters is guided with limited data, while the resulting
models are evaluated using more data.

5 Evaluation and Discussion

To compare the presented metaheuristics in the optimization of LVN models,
we use both systems from Sect. 4. To guide the search, the cost of a given set of
parameters is defined as the normalized mean squared error (NMSE) between
the expected output and the LVN model output. All experiments detailed in this
section were executed in Python 3.6.8 with the NumPy module [28] for vector
operations, and the SciPy [36] and scikit-posthoc [34] modules for statistical
significance analysis. The environment is composed of an octa-core Intel Xeon
®:E-5405 processor, an 8 GiB RAM, running the Ubuntu 18.04.3 operating
system.

Due to the inherent stochastic behaviour of metaheuristics, we perform each
experiment 30 times and present the resulting statistics. Since we deal with two
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Table 1. Parameters used for each metaheuristic.

SA PSO ACOg
nlocal =100 m =20 |m =10
n=0.99 w=0.99 k=50
Az =10"2 |¢g=2 | q=0.01
To = 10 =2 |£=085

distinct systems, for each of them we use a different LVN structure. The LVN
structures for the presented finite and infinite order systems are (L =5, H = 3,
Q =4) and (L =2, H =3, Q = 5), respectively. The parameters used for each
metaheuristic are presented in Table 1, none of which were fine tuned for the
application.

Tables2 and 3 show that the PSO metaheuristic rapidly converges to low
error rates, but does not improve in later search stages. Oppositely, the first
iterations of SA achieve high error rates, but with enough iterations it consis-
tently reaches lower rates than PSO. Although SA never exhibits lower train
errors compared to ACOg, it has lower test errors for later stages considering
the infinite order system.

Table 2. Average errors achieved by each metaheuristic when optimizing the finite
order system, with standard deviations in parenthesis.

Train NMSE Test NMSE

FE SA PSO | ACOg | SA PSO ACOr

1 x 10%]19.151{0.304 | 0.381 |19.481 (14.759) | 0.316 (0.012) | 0.379 (0.063)

1x 10° 11.840|0.301 | 0.242 | 12.052 (10.541) | 0.313 (0.004) | 0.249 (0.018)

5x10%]1.032 |0.3010.235 |1.056 (2.796) | 0.313 (0.005) | 0.250 (0 018)
(0.005) | 0.251 (0.019)
(0.005) | 0.252 (0.022)

1x10*0.724 [0.301/0.234 |0.745 (2.652) | 0.313 (0.005 0.019
1 x10°]0.245 |0.301|0.233 |0.264 (0.032) |0.313 (0.005 0.022

These differences between train and test average errors reveal the presence
of the overfitting phenomenon in our experiments, in which the minimization of
train cost does not imply in generalization capability. The phenomenon can be
seen when, for both systems, ACOg starts with relatively low train and test error
rates, and consistently improves the train errors along the iterations. However,
the test error rates do not follow this improvement and are subject to stagnation
or even mild worsening. This also happens to SA when optimizing the infinite
order system, for which it reaches competitively low error rates, when a great
decrease in the average train error (from 1 x 10* to 1 x 10° function evaluations)
actually hurts the test performance.
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Table 3. Average errors achieved by each metaheuristic when optimizing the infinite

V. O. Costa and F. M. Miiller

order system, with standard deviations in parenthesis.

Train NMSE Test NMSE
FE SA | PSO |ACOs SA PSO ACOpg
1 x 10% 1.100 | 0.401|0.447 | 1.112 (0.596) | 0.403 (0.037)|0.413 (0.033)
1x10%0.945]0.397 | 0.310 | 0.946 (0.495) | 0.402 (0.036)  0.382 (0.023)
5x 10 | 0.536 | 0.397 | 0.303 | 0.489 (0.140) | 0.401 (0.036) | 0.380 (0.013)
1x 10* 0.429 0.397 0.300 | 0.368 (0.029) 0.401 (0.036)  0.379 (0.015)
1x 10° 0.306  0.397|0.299 | 0.378 (0.018) | 0.401 (0.036) | 0.380 (0.014)
1e3 FE 1e4 FE 1e5 FE
SA SA SA
PSO PSO PsSO
ACOR ACOR ACOR .
SA  PSO ACOR SA  PSO ACOR SA  PSO ACOR p <005
. .
PSO PSO
ACOR ACOR ACOR
SA PSO ACOR PSO ACOR SA PSO ACOR

Fig. 4. Heat map representation of the Nemenyi test for a range of function evaluations,
considering finite (A) and infinite (B) order systems. Results below the 95% confidence
threshold are considered non-significant, and there are different levels of significance.

Before we make recommendations from the average errors, it is necessary
to assess the statistical significance of the stated results. Considering a confi-
dence threshold of 99%, the Friedman test for multiple repeated measures [7]
rejects the null hypothesis that the distributions of test errors are identical for
all metaheuristics. Therefore, we are able to use the Nemenyi post-hoc test [25]
to compare the significances between algorithms, in such a way that it is pos-
sible to assess the significance of specific wins and losses of each metaheuristic.
To ease interpretation, we represent the Nemenyi tests as heat maps in Fig. 4,
which show that for a small number of FE (1 x 10%) both ACOg and PSO sig-
nificantly outperform SA in the 99.9% confidence threshold. When considering
more FEs, the wins of ACOg over SA stop being significant. The SA wins over
ACOg in late search stages, however, are not consistently significant because of
the overfitting issues discussed previously. In this way, the best practice to date
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in LVN optimization seems to be using ACOg with a relatively small number of
function evaluations (e.g. 5 x 103 FE).

6 Conclusion

The results on metaheuristics optimizing the parameters of Laguerre-Volterra
networks show that the ACOg metaheuristic achieves significantly smaller error
rates within few iterations, when compared to the other two metaheuristics.
When the number of iterations is greater, however, SA is able to achieve similar
or slightly better performance. We identify the overfitting phenomenon as a
major issue when metaheuristics are able to achieve low train errors, hurting the
generalization capacity of the LVNs. Future research ideas include searching in
the wider space of multi-input multi-output network models with a more diverse
group of metaheuristics, and the use of real-world input-output data.
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Abstract. This article presents the cognitive model of the EvoLogic Intelligent
Tutoring System, developed to assist in the teaching-learning process of Natural
Deduction in Propositional Logic. EvoLogic consists of 3 agents, among which,
the Pedagogical agent (treated here as the student model) and the Specialist agent
(based on a Genetic Algorithm) compose the cognitive model. This cognitive
model allows an efficient model tracing mechanism to be developed, which will
follow each student’s step during the theorem proof. The purpose of the article,
in addition to presenting the EvoLogic, is to analyze the efficiency of the ITS in
a known exercise that has already been studied in the literature (applied to 57
students). The results show that the EvoLogic obtained all the solutions presented
by the students, allowing it to follow the student’s steps, providing real-time feed-
back, based on the steps that the students are taking (in real time), known as model
tracing.

Keywords: Natural Deduction in Propositional Logic - Genetic algorithms -
Cognitive model - Model tracing

1 Introduction

In recent years, with the advancement of the processing capacity of computers, Artificial
Intelligence (AI) has been used in several fields. The advances in Al associated with the
emergence of new technologies ended up impacting another field of research, the field
of education.

Among these technologies we have: Intelligent Tutoring Systems (ITS), Serious
Games, Affective Intelligent Tutoring Systems, Learning Management Systems, Educa-
tional Intelligent Robotics and Massive Online Open Courses. Each of these applications,
however, makes use of Al technologies in different ways.
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In the field of Education, Al has been used, primarily, in ITS with the objective of
expanding access to knowledge, as well as favoring the personalization of the teaching-
learning process. The emergence of these tools is the result of the researchers’ interest in
understanding and increasingly simulating the teaching and learning process in order to
improve the quality of teaching, so that it is possible to achieve better levels of proficiency.

ITS are computer programs designed to incorporate Al techniques commonly used in
education. A characteristic of Al and education is the use of intelligence to reason about
teaching and learning, representing what, when and how to teach certain contents. This
is aligned with Nwana’s [1] statement, that the production of a well-designed teaching-
learning system has three aspects: 1) They know what they teach; 2) They know how to
teach; and 3) Observe how students are learning.

Still in the educational context, the present work addresses the theme of logic. Logic
is a component found in curricular matrices of computing and informatics courses [2],
being typically taught in the first or second semester of these courses. The course has
as basic contents: propositional logic - propositions, formulas and truth tables (propo-
sitions and logical operators, material implication and logical equivalence, formulas
and precedence, construction of truth tables for propositional formulas, among others)
and Natural Deduction in Propositional Logic (NDPL) - arguments, inference rules and
evidence (valid arguments, truth table for arguments, formal demonstrations, natural
deduction rules, among others).

Among the various support tools for teaching logic there are: proof assistants [3, 4],
theorem prover [5-10] and ITS [11-15].

In this sense, the present work aims to present the cognitive model of ITS EvoLogic,
developed to deal with problems of Natural Deduction in Propositional Logic (NDPL).
This cognitive model composes the EvoLogic model tracing, used to follow the individ-
ual steps of each student to provide important feedback during the performance of an
exercise. This article presents a study in which several solutions obtained by Evologic to
Propositional Logic problems were contrasted with exercises carried out by 57 students
in a previous work [16], highlighting the ability to track students by different lines of
reasoning previously identified.

2 Theoretical Framework

Among the tools found in the literature that support the teaching of Logic, some ITS are
worth highlighting: Logic-ITA [11, 12], P-Logic Tutor [13] and AProS [14], in addition
to the Heraclito environment [15, 16].

Logic-ITA[11, 12] is a web-based teaching/learning assistant for propositional logic.
Its field of application is the construction of formal proofs in logic. The system acts as an
intermediary between the teacher and students: first, it provides students with an envi-
ronment to practice formal proofs with feedback and, on the other hand, allows teachers
to monitor progress and errors of the class. The system is adapted for two different types
of use: for students, it is an autonomous ITS, while for teachers, it includes the function-
ality to configure learning levels, adjust the parameters to progress through these levels,
monitor class progress and collect data. The purpose of P-Logic Tutor [13] is to teach
students fundamental concepts of propositional logic and theorem-proofing techniques.
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The P-Logic Tutor plays a dual role as an educational tool and a research environment. It
introduces students to the fundamental concepts of propositional logic and also provides
practice in solving theorems. The software also provides an environment in which it is
possible to track learning, explore the cognitive issues of problem-solving, and to inves-
tigate the possibilities of learning. The AProS project [14] started in 2006 seeking to
cover the contents of logic. However, the project has expanded and currently has several
tools that interconnect making it possible to search for exercises, solve theorems and
accompany students in the process of proving the theorem. Among them is the Proof
Tutor that bridges the gap between the tools Proof Lab and Truth Lab test. It allows
students who are struggling and receive suggestions dynamically obtained from other
proofs that have already been generated.

Hericlito is an ITS for teaching logic, allowing students to solve exercises from
truth table even on proof of arguments by the rules of Natural Deduction. To do so, it
offers one Electronic Logic Workbook - LOGOS that lets the student to create and edit
formulas, truth tables and proofs of propositional logic [15].

In addition to ITS, there are proof assistants, such as: Coq [3] and HOL [4], which
provide specification languages based on advanced logics (high order logics), capable
of offering sophisticated support for the construction of formal proofs in these Logics.
Prover9/Mace4 [5], EProver [6] and Classic SPASS [7] are automatic theorem provers
of first order logic; in addition to the editors/proofreaders JAPE [8], Pandora [9] and
Isabelle [10].

Among ITS presented (Logic-ITA, P-Logic Tutor, AProS and Her4clito), all make
use of a formal demonstration that provides an appropriate symbolic structure to monitor
the process of teaching and learning in the Logical deduction. However, only AProS
and Heraclito use demonstrations similar to those used by teachers and students in the
classroom. Still with regard to the demonstration, only Her4clito presents the possibility
of continuing the proof of the theorem where the student left off, as well as providing the
next step (based on the current proof). In this context, EvoLogic is similar to Her4clito,
for having all these characteristics. However, the difference is in the process in how the
solution is generated. While Heraclitus continues the proof from the point which has
been submitted (new exercise or partly solved by the student), generating one possible
solution among the various existing, unlike EvoLogic. By owning a Genetic Algorithm
(GA) as a specialist, the EvoLogic gets numerous solutions for the same exercise at the
time the student starts it. These different solutions can lead to different lines of reasoning,
allowing the model tracing to provide feedbacks (suggesting new steps to the student)
according to the behavior.

3 Materials and Methods

Among the materials, we mention:

e NDPL exercises: consist of a sequence of steps (application of deduction rules) that
seek to prove a theorem. These exercises are typically taught in the early semesters of
computer courses, with the aim of developing students’ logical thinking. The NDPL
exercises covered here are based on the book written by Gluz and Py, similar to
Pospesel [16].
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e Genetic Algorithm: EvoLogic’s specialist agent consists of an GA adapted to solve
NDPL problems. This agent follows the classic operation of GA with adaptations in
the representation and interpretation of the solution, crossing and mutation operators
that must avoid the generation of unviable solutions and in the fitness function.

As for the method, this research is classified as exploratory, as it seeks to identify
how students behave when solving NDPL exercises, analyzing the cognitive model of
EvoLogic.

4 EvoLogic

ITS EvoLogic consists of a multi-agent system that seeks to follow the student in the
process of solving a problem. More specifically, the focus of the ITS is on the resolution
of NDPL problems, where it is necessary to conduct out multiple steps to obtain a viable
solution.

EvoLogic is presented as an architecture composed of 3 agents: Interface, Pedagog-
ical and Specialist. In this work, the focus is on the cognitive model, composed of the
Pedagogical and Specialist agents. It should be noted that the traditional pedagogical
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Fig. 1. ITS EvoLogic multiagent architecture.
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model in an ITS comprises: teaching-learning strategies, pedagogical tactics and the
student model. Within the scope of this work, the focus of the Pedagogical agent is on
the student model. Communication between agents takes place through the exchange of
simple messages, supported by memory structures, which also store the student model
and the knowledge about the exercises solved by the Specialist agent. The organization
from the point of view of a multi-agent system can be seen in Fig. 1, which highlights
the elements that compose the system and the web service, used to receive messages
from the student’s interaction with his work environment.

The Specialist Agent consists of a GA adapted to solve NDPL problems, inspired
by the classic models of literature [17]. In this way, here the differential elements are
highlighted, which make the Specialist Agent capable of dealing with the resolution of
the problems in question: interpretation of the solution, representation of the individual,
crossover and mutation operators and fitness function.

The interpretation of the solution consists of identifying whether the solution to the
problem is correct, in other words, whether the theorem can be proved. It also evaluates
the steps that were taken to obtain the solution. Figure 2 shows two correct solutions for
a simple exercise, identifying the steps that have been taken.

A, A->B, B->C

3.HIP B->C

A, A->B, B->C

3.HIP B->C

5.AD (4)
BvC

Fig. 2. Example of two solutions for an NDPL exercise.
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At the top of Fig. 2, it is possible to observe a solution composed of 5 steps, all
leading directly to objective C. By contrast, at the bottom, it also has a correct solution,
reaching goal C, but it can be seen that was held an extra step (5.AD (4)). This step
does not make the solution unviable, since the Addition rule can be applied during the
process. However, these steps can indicate that the student is having some difficulty,
and intervention by the tutor may be convenient. It is worth mentioning that in some
exercises, the student may choose to use only basic rules, avoiding the use of derived
rules. In such cases, it is important that the tutor clearly identifies the difference between
the lines of reasoning and the extra steps.

The representation of the individual, in the GA, is done through a two-dimensional
vector, where the applied rule and its dependents are stored. An example can be seen in
Table 1 where the index was added so that it was possible to view the dependencies of
steps 4 and 5.

Table 1. Representation of the individual.

Index 0 1 2 3 4 5
Steps OBJ C HIP A HIP A->B HIP B->C MP B MP C
Dependency - - - - 1,2 4,3

The crossover operator was developed to prevent unviable solutions from being
generated (i.e., solutions that contain errors). To generate a new individual, one parent’s
objective and hypotheses are copied (this information will always be the same for all
individuals) and one of the other steps of that same father is randomly selected, copying
it together with his dependencies to the new individual. Then, a random step from the
second parent is selected and copied along with its dependents to the new individual. The
process is repeated until the new individual is complete. Finally, the mutation operator
replaces a step with a new one or includes a new step in the current solution. Fitness
function is given by Eq. 1.

f=0—-x)xti+ (x x (E; x 0)) (h

Where:

e x is an integer variable assuming a value of 1 if individual i solves the problem and 0
otherwise;

e 1; is the size of individual i (i.e., the number of genes);

e E; is the efficiency of individual i, calculated only when x = 1 through Eq. 2;

e c is a constant that determines the weight given to a solution that solves the problem.
In this work, ¢ = 25, will be used, 25 being the maximum size of an individual.

Using (1 — x) and x, it is possible to zero a part of the equation, prioritizing indi-
viduals who have more genetic characteristics (larger individuals) or more efficient
individuals. This allows individuals who have a greater genetic load to pass on part of
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their genes, in addition to allowing individuals who present valid solutions to have a
prominent place in the population by calculating the efficiency of the solution (Eq. 2).

E; =t/ (2)
Where:

e t; is the size of the individual i;
e 1] is the size of the individual i considering only the characteristics that compose the
solution to the problem.

Equation 2 shows the relationship between the size of the solution and the part that
composes the solution to the problem. In several situations, an individual can represent
the solution to a problem that requires several steps. Some of these steps can be simplified,
without having to appear in the individual. In this context, only the steps that are directly
linked to the solution are considered in the variable 7.

Stillin Eq. 1, the constant c acts as a bias to prioritize correct solutions to the detriment
of solutions that do not solve the problem. It is worth mentioning that all individuals
are acceptable during the evolutionary process since the problem addressed in this work
is not trivial and demands that a comprehensive exploration of the solution space is
performed.

Finally, the Pedagogical agent, regarding the cognitive model, is responsible for the
student model, following the steps taken by the student and categorizing it by its quality
and by the line of reasoning followed during the resolution of the exercise.

5 Results

In 2019 [15] a new student model was proposed for the Heraclito Environment, in the
context of NDLP, where the results about the resolution of 10 exercises were presented,
so that all the steps performed by the students were stored. Therefore, it is possible
to reproduce the steps of each student, individually, in EvoLogic, seeking to identify
the lines of reasoning of each student. In order to highlight the characteristics of the
cognitive model, we chose to use data related to exercise: A<->Q, F<->R, AAR |-
FAQ where the hypotheses are A<->0Q, F<->R and AAR and the goal is FAQ. Among
the 57 students who participated in the experiment, 44 correctly solved the exercise
while the rest (13 students) started the resolution, but did not complete it successfully
(either due to difficulty or lack of time). When starting the exercise, both Herdclito and
EvoLogic, solve the exercise in order to identify if it has a viable solution. Given the
operating characteristic of the Her4clito, only one solution is obtained at the beginning
(where new solutions are generated based on the student steps). The solution obtained by
Her4clito is shown in Table 2, where OBJ defines what wanted to prove, HIP represents
the Hypotheses of the problem and -EQ, SP, MP and CJ represent the Elimination
of Equivalence, Simplification, Modus Ponens and Conjunction, respectively. The first
column identifies the index while the second column shows the steps taken by the student,
where there is the rule applied, the result of applying the rule and the lines that were
used to obtain the given result.
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Table 2. Solution obtained by the herdclito environment

Heréclito

0 OBJ FAQ

1 HIP A<->Q

2 HIP F<->R

3 HIP AAR

4 -EQ R->F (2)
5 -EQ A->Q (1)
6 SP A (3)

7 SPR (3)

8 MP Q (6, 5)
9 MP F (7, 4)
10 CJ FAQ (9, 8)
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On the other hand, EvoLogic, by using an evolutionary mechanism as a specialist,
may obtain several solutions to the same problem over the generations of the population.
When applying it in the exercise in question, 8 different solutions were obtained (by
removing the extra steps), the students followed by 5 of them, shown in the Tables 3, 4
and 5, which also shows the population in which they were obtained. The parameters used
to obtain these results were: Population Size 50, Mutation Rate 5% and Total Population

Generation 500 (stopping criterion).

Table 3. Solutions 1 and 2 obtained by EvoLogic.

EvoLogic — 1 (135)

EvoLogic -2 (112)

0 OBJ FAQ 0 OBJ FAQ

1 HIP A<->0Q 1 HIP A<->0Q

2 HIP F<->R 2 HIP F<->R

3 HIP AAR 3 HIP AAR

4 -EQ R->F (2) 4 -EQ A->Q (1)
5 -EQ A->0 (1) 5 -EQ R->F (2)
6 SP A (3) 6 SP A (3)

7 SPR (3) 7 SPR (3)

8 MP Q (6, 5) 8 MPF (5, 7)
9 MPF (7, 4) 9 MP Q (4, 6)
10 CJT FAQ (9, 8) |10 CJ FAQ (8, 9)
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Table 4. Solutions

3 and 4 obtained by EvolLogic.

EvoLogic — 3 (193) EvoLogic — 4 (189)

0 OBJ FAQ 0 OBJ FAQ

1 HIP A<->Q 1 HIP A<->Q

2 HIP F<->R 2 HIP F<->R

3 HIP AAR 3 HIP AAR

4 -EQ A->Q (1) 4 SP R (3)

5 SP A (3) 5 SP A (3)

6 SP R (3) 6 -EQ A->Q (1)
7 MP Q (4, 5) 7 MP Q (6, 5)
8 -EQ R->F (2) 8 -EQ R->F (2)
9 MP F (8, 6) 9 MP F (8, 4)
10 CJ FAQ (8, 7) |10 CJ FAQ (9, 7)

Table 5. Solution 5 obtained by EvoLogic.

EvoLogic -5 (203)

0 OBJ FAQ

1 HIP A<->Q
2 HIP F<->R
3 HIP AAR

4 SP R (3)

5 -EQ R->F (2)
6 MPF (4, 5)
7 SP A (3)

8 -EQ A->Q (1)
9 MP Q (7, 8)
10 CJ FAQ (6, 9)

eration (considering the 8 obtained),
phenomenon may occur due to a lack

From the point of view of the GA, the last solution obtained was in the 203 gen-
although 500 populations were generated. This
of genetic variability, preventing GA to get new
solutions. In this context, whenever the student presents a line of reasoning that is not
contemplated, a new instance of the GA is performed, initializing the population with
characteristics similar to those presented by the student. It is noteworthy that in this
exercise it was not necessary to perform this procedure, since all the solutions presented
by the students were obtained in the first execution of the GA.
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Based on the steps taken by the 57 students, a simulation was carried out, using the
cognitive model of EvoLogic, where the individual steps of each student were performed
(in a simulated way).

Considering solutions 1 and 2, the students first chose to manipulate the Hypotheses
and then combine the results and reach the solution. It can be seen that the first steps (4
to 7) applied rules directly to the hypotheses and, only in the following steps (8 and 9)
seek to derive the propositions to reach the solution (step 10).

In the case of solution 5, it is possible to verify a different behavior, where the student
applies the rules in two Hypotheses (steps 4 and 5) and already manipulates them (step
6). Then, it returns to the hypotheses (steps 7 and 8) and again manipulates them (step
9), reaching the solution.

Comparing the two strategies, there are two different lines of reasoning that need
separate monitoring. In the first case (solutions 1 and 2), of the 28 students who presented
this solution, 5 of them took extra steps, which may indicate that they were exploring
the possibilities to understand how to proceed with the resolution. In the second case
(solution 5), 4 students followed the steps in the same order, indicating that they could
have identified the solution line before starting to interact with the environment (none
of these students took extra steps).

Besides, the other 12 students followed the steps of solutions 3 and 4, with 11 of
them taking one or more extra steps. Analyzing these solutions, it can be seen that there
is an alternation between the application of rules in the hypotheses and their derivatives.
This alternation differs from that presented in solution 5 by the way they occur as well
as by the number of extra steps. These steps indicate that students have identified that
some rules can be applied, however not one rule leads directly to the resolution of the
exercise.

It is worth mentioning that all the steps taken by the students were followed and
categorized, both in terms of quality (whether or not it is part of a direct solution) and
in terms of their line of reasoning.

5.1 Discussion

The difference between Herdclito and EvoLogic is in the way of dealing with exer-
cise solutions. While Heraclito performs the proof from the point where the student is,
EvoLogic already has the solution and only follows the student’s reasoning through the
solution.

In some cases, in the work of [15], participants stressed out that they ended up
getting confused. During the resolution of the exercises, some students were following a
reasoning line that would require 3 steps to complete the test, while Heraclito pointed out
that they needed only 2 steps (message sent as a form of incentive to the student). Since
Herdclito continued the student’s partial proof, a path with fewer steps was identified.
This may have occurred because Heraclitus completed the proof of the theorem using
some derived rule, while the student preferred to use only basic rules (obtaining the
same result with more steps). It is important to note that both solutions are correct and
that the difference is in the line of reasoning followed by the student. Unlike Heraclitus,
EvoLogic could have verified that there was still more than one possible path, starting
from where the student was, preventing such a message from being sent inaccurately.
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This subtle difference opens the possibility to explore more precise pedagogical
mediation strategies, as well as the creation of an automated model tracing mechanism,
which estimates which line of reasoning the student is following, providing feedback
directed to his profile.

Based on the students’ steps, it was found that some of them went objectively to the
solution while others ended up by taking some extra steps. These extra steps may indicate
that, for the student, the resolution process is unclear. The identification mechanism of the
student’s line of reasoning may use several characteristics such as possible continuations
from the partial solution, history of the student’s behavior (how and which steps he has
been taking), estimates of knowledge of rules that involve each path (student model) and
also the probability of knowing a certain solution (also based on the student model).

6 Conclusions

This paper presented the Intelligent Tutoring System EvoLogic, in particular, its cog-
nitive model, which consists of 2 agents: a Pedagogical and a Specialist agent. The
Pedagogical agent represents the student model, while the Specialist is responsible for
solving the NDPL exercises started by the students. The cognitive model aims to fol-
low each step of the student, identifying when he or she is showing some difficulty and
providing relevant feedback.

To evaluate the capabilities of the Specialist agent, a known exercise, applied to 57
students and recorded step by step, was given to the EvoLogic, in a simulated process.
Each step taken by the students was simulated at the ITS, where the solutions were
analyzed and compared.

EvoLogic obtained 8 direct solutions to the problem (excluding the extra steps) while
44 students that successfully proved the theorem, presented 5 of them. It was possible
to observed, that the students took different approaches in these solutions, choosing to
explore all the hypotheses before considering their derivations, or deriving the results
to the maximum and returning the hypotheses when necessary. In this process, it was
found that in some lines of reasoning (solutions 3 and 4), students presented several
extra steps. This may indicate that students were having difficulties, providing support
so that pedagogical mediation strategies aimed at each behavior can be developed.

In this way, the objectives of this study are met, opening a range of possible strate-
gies for future applications. Therefore, as future work, a more detailed analysis of the
Specialist agent is sought, especially with regard to problems with more complex deduc-
tion rules, as well as the formalization of an automated model tracing, supported by the
solutions generated by the agent Specialist.
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Abstract. The lackadaisical quantum walk is a graph search algorithm
for 2D grids whose vertices have a self-loop of weight [. Since the tech-
nique depends considerably on this [, research efforts have been esti-
mating the optimal value for different scenarios, including 2D grids with
multiple solutions. However, specifically two previous works have used
different stopping conditions for the simulations. Here, firstly, we show
that these stopping conditions are not interchangeable. After doing such
a pending investigation to define the stopping condition properly, we
analyze the impacts of multiple solutions on the final results achieved by
the technique, which is the main contribution of this work. In doing so,
we demonstrate that the success probability is inversely proportional to
the density of vertices marked as solutions and directly proportional to
the relative distance between solutions. These relations presented here
are guaranteed only for high values of the input parameters because,
from different points of view, we show that a disturbed transition range
exists in the small values.

Keywords: Quantum computing - Quantum walk - Search algorithm

1 Introduction

As the classical random walks, the quantum walks are divided into discrete-time
and continuous-time models, which were introduced in [1] and [8], respectively.
Since these two quantum models are not equivalent when analyzed in detail [18§],
a wide range of researches has been trying to find the more efficient one, mostly
in spatial search problems.

The algorithm proposed by Grover [10] can successfully search for a single
element within a disordered database of N items in O(\/N ) steps, which is a
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quadratic speedup over the classical counterparts. However, Benioff [4] showed
that a quantum robot using Grover’s algorithm is no more efficient than a clas-
sical robot because both require O(N log VN ) steps to search 2-dimensional
spatial regions of size VN x v/N.

Childs and Goldstone [7] addressed this 2D spatial search problem using
a continuous-time quantum walk but failed to provide substantial speedup.
Ambainis et al. [3] proposed an algorithm capable of finding the solution after
O(\/JV log N) steps using a discrete-time model, outperforming the previous
works. However, Childs and Goldstone [6] achieved this same runtime later using
a continuous-time model.

Over time, quantum walks for other graph structures have been developed,
such as for hypercubes and complete graphs [14,22,24], but attempts to improve
the search on 2D grids continued as well. In particular, the lackadaisical quantum
walk (LQW) developed in [26] has been drawing attention because it improved
the 2D spatial search by making a simple modification to the algorithm proposed
in [3]. The modification was to attach a self-loop of weight [ at each vertex of
the space. When this [ is optimally adjusted, the approach can find the solution
in O(v/Nlog N) steps, which is an O(y/log N) improvement over that loopless
version presented in [3].

That improvement was achieved by fitting the self-loop weight to [ = 4/N,
where N is the total number of vertices. This optimal value, although, is only
one instance of a general observation about the LQW searching vertex-transitive
graphs with m = 1 solutions. For these cases, the optimal self-loop weight [ equals
the degree of the graph without loops, which is 4 for 2D lattices, divided by N
[20]. An analytical proof of this conjecture is given in [11] using the fact that the
LQW can be approximated by the quantum interpolated walk.

However, that conjecture does not hold when the number of solutions m in
the search space is higher than 1. Thus, another adjustment of [ is required. Saha
et al. [21] showed that | = W is the optimal value when m solutions
are arranged as a block of \/m X /m within the search space. In contrast,
Nahimovs [15] demonstrated that this new fit of [ is not optimal for arbitrary
placements. Rather, two other adjustments were proposed, both in the form
l= w. After, Giri and Korepin [9] showed that one of these m solutions
can be obtained with sufficiently high probability in O(,/ % log %) steps.

In this paper, we are not focused on adjusting the weight of [ for different
scenarios than the ones addressed by previous works. We observed that Wong [26]
and Nahimovs [15] found their results using different stopping conditions for the
simulations. This naturally raised a question about the interchangeability of the
conditions for use in subsequent researches. However, our results showed that the
stopping condition used in [15] is satisfied prematurely since the probability of
measure a solution continues improving in the next iterations. Only the condition
used in [26] pursues the highest amplitude amplification of the solutions during
the system evolution and, thus, should be chosen in the works from now on.

Choosing the appropriate stopping condition was an issue to be solved before
we numerically investigate the impacts of multiple solutions, considering two
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high-level properties, on the success probability achieved at the end. Here, we
show that the success probability is inversely proportional to the density of
solutions and directly proportional to the relative distance between solutions.
However, these relations are only valid for high values of the input parameters,
which are the total number of vertices N and the number of solutions m. From
different points of view, we show that disturbed behaviors exist in a transition
between small to high values of both N and m. All of these impacts of multiple
solutions can determine the appropriateness of the technique for future practical
applications. Thus, the motivation here is in the direction of developing the LQW
and better understanding its limitations from numerical experiments.

This paper is organized as follows: Sect.2 presents some theoretical back-
ground about the task of search on 2D grids by the LQW. Here, the reader
is expected to be familiar with the basics of quantum computing. If it is not
the case, knowledge from the basic to the advanced levels can be obtained in
[12,13,17,27], to mention just a few. In Sect. 3, the different stopping conditions
used in previous works are compared. After that, Sect. 4 relates the impacts on
the success probability to both the density of solutions and the relative distance
between solutions, although a kind of transition range exists. Finally, Sect.5
presents concluding remarks.

2 Search with the Lackadaisical Quantum Walk

The classical random walk is a probabilistic movement in which a particle jumps
to its adjacent positions based on the outcome of a non-biased random variable
at each step [18]. Generally, this random variable is a fair coin that has one
degree of freedom for each possible direction of movement in the space at hand.

The quantum walk, in turn, is a generalized concept in comparison with the
classical random walk. That high-level idea of conditioned movements remains,
but quantum operations are responsible for evolving the system. In this context,
quantum properties allow the quantum walk to spread quadratically faster than
the classical one [18]. Consequently, this advantage can be used strategically to
develop faster search algorithms.

2.1 Spatial Search with a Quantum Walk

Ambainis et al. [3] proposed a quantum walk algorithm to search a single vertex,
also called the marked vertex, in the 2-dimensional grid of L x L = N vertices. In
that work, the process evolved on the Hilbert space H = Ho ® Hp, where He is
the 4-dimensional coin space, spanned by {|1), |]), |<), |—)}, and Hp represents
the N-dimensional space of positions, spanned by {|z,y) : ,y € [0,..., L —1]}.

Firstly, the coin toss is accomplished by the operator C presented in Eq. 1,
which combines the coin operators Cy and C1 in such a way that C is applied
only to the marked state |v), whereas Cy is applied to the others. Also, Cy was
defined as the Grover diffusion coin Cy = 2|s)(s| — I, where |s) = 2(|T) + |]) +
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|—) 4+ |—)), and C; was defined as —I. In turn, I; denotes the 4-dimensional
identity operator.

C=Co@ Iy —[v){v]) + Cr & |v)(v] (1)

Then, the flip-flop shift operator Sy is applied to move the quantum particle
while inverting the coin state, as presented in Eq. 2. This shift works mod v N =
L because the grid has periodic boundary conditions. Finally, the quantum walk

is a repeated application of the operator U = Sy - C to the quantum system

|v), which begins in the state [¢(0)) = ﬁ Z;{yﬁz_ol [s) @ |z, ).

Serl=)zy) = )|z +1,y)

Sl y) = =)z — 1,y)
SeeIDz,y) = D]z, y + 1) (2)
SeelDlz,y) = D]z, y — 1)

As a result, the marked vertex can be obtained at the measurement with
a probability O(1/log N) after T = O(v/Nlog N) steps. To achieve a success
probability near to 1, it was applied amplitude amplification [5], which implied
additional O(y/log N) steps. Hence, the total running time of this quantum walk
based search algorithm is O(v/N log N).

2.2 Improved Running Time by the Lackadaisical Quantum Walk

The LQW search algorithm [26] is an approach strictly based on that algorithm
designed in [3]. The main modification is to attach a self-loop of weight [ at each
vertex of the 2D grid, which implies other changes in the loopless technique.
First, H¢ is spanned now by {|1),]1), <), |—),|O)} because of the new degree
of freedom. However, no changes are required for Hp.

Regarding the coin operator, Cy was defined as the Grover diffusion coin
for weighted graphs [25], so Co = 2|s.)(s.| — I5, where |s.) is the non-uniform
distribution presented in Eq. 3. Also, better results were found when Cy = —Cj,
outperforming that choice of C1 = —I used in [3]. About the shift operator Sy,
it works like an identity operator when applied to |O)|z, y). Finally, the quantum
system |¢) begins in a uniform distribution between all vertices with their edges
in the weighted superposition |s.) instead of the uniform |s).

|se) = () + 1) + <) + =) + VI[o)) (3)

1
vVa+1

As a result, the LQW with [ = 4/N finds the marked vertex with a suc-
cess probability close to 1 after T'= O(yv/N log N) steps. This is an O(y/log N)
improvement over the loopless algorithm. More sophisticated approaches have
also achieved this improvement in running time [2,19,23], but the LQW is a
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significantly simpler and equally capable technique. Moreover, the success prob-
ability converges closer and closer to 1 if the number of vertices N increases
when using that optimal [.

These numerical results were found by simulations that stopped when the
first peak in the success probability occurred. For that, the stopping condition
monitored the success probability at each step. When the current value was
smaller than the immediately previous one for the first time, the simulation
stopped, and this immediately previous result was reported as the maximum
found.

2.3 Lackadaisical Quantum Walk with Multiple Solutions

If there are multiple marked vertices, the results for the case with only one do not
hold. Significant research efforts have focused on adjusting the weight [ optimally
for multiple solution cases. Firstly, Saha et al. [21] addressed m marked vertices
arranged as a block of \/m X y/m within a VN x /N grid, as already studied
for the loopless version in [16].

In this scenario, the LQW can produce success probabilities that exceed 0.95
for large values of IV with the optimal weight value of | = W. However,
these results do not hold if the solutions are randomly sampled, as Nahimovs [15]
demonstrated. A new choice of [ is required.

Thereby, Nahimovs [15] searched for new optimal values in the form [ = % -a.
Thus, | was adjusted as a factor of the optimal value for m = 1 reported in [26],

which was | = 4/N. As a result, two adjustments were proposed: | = %”, for
small values of m, and [ = W, for large values of m. To find these optimal

values of [, the m solutions were arranged following the M, set presented in
Eq. 4. However, random placements of solutions yielded similar results.

M,, = {(0,10d) | i € [0,m — 1]} (4)

Regarding the simulation, a different stopping condition was used rather than
monitoring the success probability at each step. Alternatively, the inner product
[(1(t)]1(0))| was monitored until its minimum is achieved, so the simulation
stopped when this inner product became close to 0 for the first time since the
process is periodic.

3 Comparison Between Different Stopping Conditions

Two different stopping conditions have been used in previous works without con-
cerning the interchangeability issue. Therefore, the interchangeability between
these conditions became an open question. Before conducting further experimen-
tal analysis, it is necessary to verify whether or not those conditions converge to
the same points from equal initial settings. Here, we made such an investigation.

The experiment setup was equal to the one used in [15], i.e., a space of
200 x 200 vertices with the m solutions following the M,, set. Under this
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scheme, a maximum of 20 solutions could be defined in that space, since
Mo = {(0,0),(0,10),...,(0,180),(0,190)}. A different organization other than
the M, set is required for m values higher than 20 on the 200 x 200 grid.

As a result, the stopping conditions converged to the same points for [ = %”.
However, it is not the case for [ = Mme‘/@, as presented in Table 1, which
contrasts the results obtained monitoring the marked vertices against the ones
obtained monitoring the inner product |(1(¢)|1(0))|. As can be seen, the results
tend to converge to the same points as m increases. Nevertheless, the conditions
were not equivalent because each one was satisfied at a different step T, which
implied different success probabilities Pr as well. Also, in all cases investigated,
monitoring the inner product [(¢(¢)|1(0))| generated inferior probabilities of
measure a solution at the end of the simulation.

Table 1. The convergence step T" and the final success probability Pr, as the number
of solutions m increases, for different stopping conditions used in previous works.

Stopping conditions

(WO (0))]
m |T | Pr T | Pr

399 1 0.140828 | 420 | 0.138489
51409 0.878178 |2880.593276
101297 | 0.867440 2491 0.704010
151290 | 0.835395 | 254 |0.747045
20| 288|0.818635 |268|0.778724

Marked vertices

—_

To investigate the divergence more deeply, Fig. 1 shows the system evolution
step by step for the m = 5 case, which had the most significant results. The black
line represents the condition that monitors the marked vertices, whereas the blue
dashed line represents the one that monitors the inner product [(¢(t)|1(0))].
As can also be seen in Table 1, the condition that monitors the inner product
in absolute value is satisfied prematurely at the step T = 288 since the suc-
cess probability continues increasing until 7" = 409. After the step T = 288,
although, the curves have a similar growth damping, which raised a question
about monitoring the real value of the inner product, rather than its absolute
value.

Figure 2 shows the system evolution during 1000 steps while monitoring both
the marked vertices, represented again by the black line, and the inner product
without calculating its absolute value, represented by the green dashed line. In
this way, one curve tracks the other throughout the entire evolution.

From these experimental results, it is possible to conclude that the stopping
conditions used in previous works are equivalent if, and only if, the inner prod-
uct is considered without calculating its absolute value. Nevertheless, all results
that will be discussed in this work from now on were found using the stopping
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Fig. 1. System evolution step by step until the condition that monitors the marked
vertices is satisfied. The black line represents the monitoring of that condition, whereas
the blue dashed line represents the monitoring of the inner product in absolute value.
(Color figure online)
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Fig. 2. System evolution step by step during 1000 steps. The black line represents
the monitoring of the marked vertices, whereas the green dashed line represents the
monitoring of the inner product without calculating its absolute value. (Color figure
online)

condition that monitors the marked vertices. Since the goal is to measure the
quantum system when the maximum amplification in the success probability
occurs, monitoring the marked vertices is the most natural choice for simula-
tions.

4 Solution Setups Affecting the Success Probability

In the last investigation, the evolution of the LQW was analyzed in order to ver-
ify if the different stopping conditions would be interchangeable. After choosing
the stopping condition properly, the next step was to address factors that affect
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the success probability achieved at the end. Previous works have already demon-
strated the considerable dependence on the weight [. Expanding the analysis, we
addressed the density of solutions and the relative distance between solutions.

4.1 Previous Evaluations About Densities of Solutions
and a Complementary Experiment

Previous works have already performed experiments that can reveal relations
m

between the success probability and the density of solutions p, which is p = 3.
However, such works did not make links between the density of solutions and
the success probability achieved at the end, at least not from this point of view.
Here, we discuss these previous experiments briefly but aiming to identify the
impacts of p in the final results. Finally, a complementary experiment was made.

Firstly, Wong [26] investigated the impacts of adding more unmarked vertices
in a space with only one solution. Actually, that experiment evaluated how
density decreasing could affect the success probability. As a result, the success
probability tends to improve, even though some unknown behavior for the first
values of N exists.

After, Nahimovs [15] inserted more and more solutions in the 200 x 200 grid
when adjusting the value of [ for multiple marked vertices. Since the space size
was fixed, that experiment increased the density with each addition of a new
solution. However, the probability of finding a marked vertex was smaller when
m increased, which would be a counter-intuitive idea in a classical environment,
but in the quantum world is different.

The following explanation is based on [18]. Consider |w) as the state where the
total energy of the quantum system is equally distributed between the marked
states, so the success probability is 1. The goal of Grover’s algorithm is to rotate
the state of the system [¢) to get as close to |w) as possible. However, this
is an iterative process in which |¢)) rotates at each step by an angle 6 that is
proportional to m. If N > m, increasing m implies fewer steps T', even though
|1} gets less close to |w) at the end, resulting in smaller success probabilities
as well. On the other hand, 6 is inversely proportional to N, so increasing N
implies more steps T', but [¢)) gets more close to |w) at the measurement.

Thus, these previous experiments suggest that the success probability is
inversely proportional to the density of solutions of the search space. In this
work, a complementary experiment was made to fill the gap not addressed by
those previous works. Thereby, we investigated how density decreasing, like in
[26], can affect the quantum walk with multiple marked vertices, like in [15].
While we conducted that experiment, we also searched for the optimal value of
[ in the form | = %a, like in [15] again.

Figure 3 shows the peaks in the success probability, represented by the black
line, and the optimal a values that generated these peaks, represented by the
brown dashed line, both as functions of N. The density of solutions decreased
in this case because m was always equal to 10, so N increased by the addition
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of unmarked vertices. Moreover, the optimal a values were searched with steps
of size 0.5 and N varied from 10* to 10% with the m = 10 solutions following the
M 10 set.
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Fig. 3. Peaks in the success probability and the respective optimal a values, both as
functions of N, which varied from 10* to 10%, with the m = 10 solutions located in the
2D grid according to the M,, set.

Again, there is an unknown behavior for the first N values. After that, the
success probability tends to 1 as well as the optimal a value tends to the number
of solutions m = 10. Hence, the construction [ = w proposed in [15] is
a way of adjusting for the cases where density is not small enough, because a is

: . - = _ 4
equal to m in the best cases of density and, consequently, | = <.

4.2 A New Set of Solutions Increasing Relative Distances

In the last experiment, the m = 10 solutions were located always at the points
{(0,0),(0,10),...,(0,90)}, following the Mg set. That distribution of solutions
did not take advantage of the increment on the total number of vertices N. If
the solutions were located farther away from each other, it would be possible
to continue evaluating how the success probability depends on the density of
solutions but also on the relative distance between solutions.

Thus, we propose an alternative to the M, set that is the Pr, ,, set presented
in Eq. 5. Following this new set, the m solutions are located depending on the
number of vertices in each dimension L so that the size of the search space is
better used. For example, m = 10 solutions on the 200 x 200 grid would be
located at the points {(0,0),(20,20),...,(180,180)}, following the Pago,10 set.
As a consequence, the solutions are father apart using the Pr, ,,, set than using

the M, set.
PLM:{(LiJL LﬁJz) } z‘e[o,m—l]} (5)
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Then, our complementary experiment that evaluated density decreasing with
m = 10 solutions was redone, but using the Py ,, set this time for localizing
the solutions farther from each other. The results obtained with this new set of
solutions are contrasted in Table 2 with the ones obtained previously, which used
the M, set. These results for the M,, set are exactly the success probabilities
already presented in Fig. 3 but in terms of L now because L is the variable used
to define the Py, ,, set, even though L? = N.

Table 2. The number of steps and the success probability as L increases for different
sets of m = 10 solutions in the 2D grid.

My, Prm

L T Pr T Pr
100 | 147 |0.849178 | 109 |0.902339
200 | 293 |0.889219| 223 | 0.927680
300 | 511 |0.871665 | 342 |0.940301
400 | 747 [0.908749 | 460 | 0.948348
500 | 965 |0.930714| 581 | 0.953927
600 | 1181 |0.943863 | 700 |0.958288
700 | 1407 1 0.951843| 822 | 0.961646
800 | 1623 |0.956787 | 941 | 0.964317
900 | 1857 |0.959761 | 1063 | 0.966613

1000 |2097 |0.961896 | 1187 | 0.968522

For all values of L, the set of solutions P, ,, generated better results because
the success probability was higher and with a smaller number of steps. Besides
this, that unknown behavior for the first values of I did not appear in the
results with the new set of solutions. Finally, it is possible to conclude from
these numerical results that the success probability is directly proportional to
the relative distance between solutions.

Regardless of whether an unknown behavior exists or does not exist for the
first L values, the success probability had an asymptotic and growing behavior
for higher values of L in all previous cases. However, that is not true for all
values of m. Table 3 shows the same investigation of density decreasing with the
Pr, , set again, but for m = {3,4, 5}, and not for m = 10 as before.

The qualitative behaviors found for these m values are not equal to the
behaviors for both m = 1, as reported in [26], and m = 10, as shown in Fig. 3 and
Table 2. In those m = 1 and m = 10 cases, an unknown behavior existed during
a transition from small to high values of L and, then, the success probability
improved continuously. However, m = {3,4,5} can be seen as a kind of transition
from small to high values but from the perspective of the number of solutions m.
It suggests that the asymptotic and growing behavior for the success probability
is only guaranteed for values high enough of both L and m.



132 J. H. A. de Carvalho et al.

Table 3. Values of m that do not have asymptotic and growing behaviors for the
success probability as the density of solutions decreases.

Pr

L m =3 m=4 m=2>5
100 |0.991433 | 0.986119 | 0.981772
200 |0.988165 | 0.992391 | 0.990397
300 | 0.985744 | 0.993451 | 0.992697
400 |0.984221 | 0.993206 | 0.993754
500 |0.983418 | 0.992604 | 0.994283
600 | 0.983100 | 0.991933 | 0.994585
700 | 0.983081 | 0.991282 | 0.994717
800 | 0.983252 | 0.990683 | 0.994677
900 | 0.983548 | 0.990138 | 0.994557
1000 |0.983927 | 0.989644 | 0.994392

4.3 Evaluation of Density Increasing with the New Set of Solutions

In fact, the density of solutions in the search space affects the success probability
achieved by the LQW. We already analyzed the density decreasing by the addi-
tion of unmarked states using both the M,, and Py, ., sets. Regarding increases
in density, we complement this analysis here using the Pr, ,,, set since results
using the M, set are found in [15]. Increases in density occur by adding more
solutions in a space of fixed size L x L.

Figure 4 shows the success probability achieved as a function of the number
of solutions m for 2D grids with different numbers of vertices per dimension L.
The colored lines represent the results for spaces with L varying from 100 to
1000 and with the number of solutions m = {1,2,...,10} following the P,
set.

As expected, because of the inversely proportional relation, the success prob-
ability decreases as the density of solutions increases by the addition of more
solutions to the search space. However, these results with the Pp, ,, set also had
that transitory phenomenon. For all cases analyzed, there are intervals where a
disturbed behavior exists and, then, the success probability tends to decrease
continuously.

This was one more different perspective showing some uncertainty about the
behavior of the LQW with small values of some input parameter. Thus, it is
more confident to apply the LQW search algorithm in real scenarios where the
input parameters are higher to avoid those unknown behaviors presented in this
work.
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5 Conclusions

In this work, first, we demonstrated that different stopping conditions used in
previous works are not interchangeable. Calculating the absolute value of the
inner product (1(¢)]1(0)) implies prematurely stops. Rather, the real value must
be used. After choosing the stopping condition properly, we demonstrated that
the success probability is inversely proportional to the density of solutions and
directly proportional to the relative distance between solutions. However, those
relations are guaranteed only for high values of the input parameters. From
different points of view, a transitory phenomenon existed between small to high
values.

Here, we took a step towards establishing the limitations of the technique
from numerical data. Future works should mathematically define upper and lower
bounds considering the impacts of multiple solutions stated in this paper, which
will enable better comparisons between the LQW and other quantum algorithms
for 2D searches. However, the analysis needs to occur in controlled schemes
because information about the solution setups might not be available in real
applications. Also, that transitory phenomenon between small to high values
should be studied in future works, as well as the limits of proximity between
solutions.
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Abstract. The Quadratic Assignment Problem (QAP) is an example
of combinatorial optimization problem and it belongs to NP-hard class.
QAP assigns interconnected facilities to locations while minimizing the
cost of transportation of the flow of commodities between facilities.
Hyper-Heuristics (HH) is a high-level approach that automatically selects
or generates heuristics for solving complex problems. In this paper is
proposed the use of a selection HH to solve the multi-objective QAP
(mQAP). This HH is based on the MOEA /DD (Evolutionary Many-
Objective Optimization Algorithm Based on Dominance and Decom-
position) and Choice Function strategy. The heuristics selected by HH
correspond to the operators that generate new solutions in an iteration
of the multi-objective evolutionary algorithm. IGD metric and statistical
tests are applied in order to evaluate the algorithm performances in 22
mQAP instances. The effectiveness of the proposed method is shown and
it is favorably compared with three other evolutionary multi-objective
algorithms: IBEA, SMS-EMOA e MOEAD/DRA.

Keywords: Combinatorial problems + Hyper-heuristics -
Multi-objective approach

1 Introduction

Combinatorial optimization problems are noted in various applications, includ-
ing communications network design, VLST (Very Large-Scale Integration) design,
machine vision, airline crew scheduling, corporate planning, computer-aided
design and manufacturing, data-base query design, cellular telephone frequency
assignment, constraint directed reasoning, and computational biology [1].

The Quadratic Assignment Problem (QAP), introduced by Koopmans and
Beckmann [2], is an example of combinatorial optimization problem and it
belongs to NP-hard class [3]. QAP was initially derived as a mathematical model
of assigning a set of economic activities to a set of locations [2]. Afterwards, a
large variety of other applications of the QAP is known including such areas
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as scheduling, wiring problems in electronics, parallel and distributed comput-
ing, statistical data analysis, design of control panels and typewriter keyboards,
sports, chemistry, archeology, balancing of turbine runners, computer manufac-
turing, and transportation [1].

For NP-hard optimization problems in the real world, there are several heuris-
tics being proposed, many find efficient solutions for a given problem, but the
heuristic being good for a specific problem does not mean that it will get good
results for all [4]. Hyper-Heuristics (HH) is a high-level approach that automati-
cally selects or generates heuristics for solving complex problems [5]. A difference
between hyper-heuristics and metaheuristics is the search space where they oper-
ate: HHs do a search in the space of heuristics while metaheuristics do a search
in the space of solutions [6]. The HHs can be divided into generation or selection,
in generation, new heuristics are built from various components, and selection
methods are used to choose the heuristic to be used in each iteration.

In this work is proposed the use of a selection HH to solve the multi-objective
QAP (mQAP), based on the MOEA /DD (Evolutionary Many-Objective Opti-
mization Algorithm Based on Dominance and Decomposition) [7] and Choice
Function (CF) strategy [8]. In the proposed approach, named MOEA /DD¢p,
the heuristics selected by HH correspond to the operators that generate new
solutions in an iteration of the multi-objective evolutionary algorithm. The effec-
tiveness of the proposed method is shown by comparison with the original algo-
rithm, without using HH. The performance of the algorithm with hyper-heuristic
is compared with three other evolutionary multi-objective algorithms: IBEA [9],
SMS-EMOA [10] e MOEAD/DRA [11].

The contribution of this work is in the analysis of the behavior of an algorithm
based on hyper-heuristics for multi-objective QAP. As far as the authors are
aware, there are no works on this in the literature.

Section 2 provides the background for Multi-objective Quadratic Assignment
Problem, Hyper-Heuristics and Choice Function. Related works are shown in
Sect. 2.3. The proposed approach is described in Sect. 3. In the Sect.4 exper-
iments are presented and discussed. Finally, the conclusions are presented in
Sect. 5.

2 Background

This section presents some basic information of some topics directly related to
the proposed approach: Multi-objective Quadratic Assignment Problem, Hyper-
Heuristics, and Choice Function. Some works related to this proposal are also
briefly commented.

2.1 Multi-objective Quadratic Assignment Problem (mQAP)

QAP assigns n interconnected facilities to n locations while minimizing the cost
of transportation of the flow of commodities between facilities [2]. The Multi-
objective Quadratic Assignment Problem (mQAP) [12] models situations where
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two or more types of flows exist. Given a square location matrix of order n A =
{a;;} and m square flow matrices of order n By = {b¥.}, k =1, ..., m, mQAP
can be formulated as [12]:

Minimize 8(7?) = {CY(7),C?*(n),...,C™ ()} (1)
m € P(n)

where E)k(ﬂ') = Y Yo abh 1 <k < T, aj is the distance between
locations ¢ and j, b?j is the k-th flow between facilities ¢ and j and m; gives
the location of facility ¢ in permutation © € P(n), where P(n) is the set of all
permutations of {1,2,... n}.

2.2 Hyper-Heuristics (HH)

Hyper heuristics are high-level methodologies developed for the optimization
of a wide range of NP-Hard problems. They can choose in the search space
whats the option that brings a good overall result in the moment to fulfill their
goals using heuristic components to create heuristics (generation heuristics) or
methods to choose the best one in each situation (selection heuristics), each
of them can be subdivided in construction or perturbation heuristics, the first
create new solutions and the second modify an existing solution. HH’s can learn
in two ways, online, where the learning takes place during the execution of the
program with the help of a feedback provided by the program, or offline when
it already comes with the rules defined before the execution of the problem [5].

A selection type HH with online learning was chosen due to the ability to
adapt for the situation, seeking the best way to achieve its goal.

Choice Function (CF). Choice Function is a high-level strategy based on the
selection type HH that seeks in a space of low-level heuristics, who’s is the most
efficient crossover and mutation to solve the problem. Every time a heuristic
is used, it receives a reward for the performance in the algorithm. In the CF
Eq. 2, h is the operator and [h is the last operator used, f1 is the performance
of an operator, f2 is the performance considering an pair of operators used in
order, f3 shows how long the operator has not been used. «, # and + indicate
the weights that each function receives, and at each iteration their values are
modified [8,13].

CF(h) =ax f1(h) + B f2(lh,h) + v * f3(h) (2)

In this work, the search space is composed of four operators that uses two
parents to generate their children, and two mutations who take an the generated
child and modify it. The operators are Cyclic Crossover [14], Permutation Two
Points Crossover [15], Order Crossover [14] and Partially Matched Crossover
[14]. The mutations are the Insertion mutation [16] and the Swap mutation [16].
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2.3 Related Works

Quadratic assignment problem is considered a challenge for many researchers
mainly due to its complexity and multiple applications in real time. There are
many works in the literature that approach the problem as mono-objective [17—
24]. However, few works apply the multi-objective [25-28] or many-objective [29]
approach to QAP. As far as the authors are aware, there are no works using the
hyper-heuristic approach to the mQAP.

In [25] are conducted experiments to approach the multi-objective QAP using
a hybrid multi-objective version of extremal optimisation, named Hybrid Multi-
objective Extremal Optimisation (HMEO). HMEO consists of a multi-objective
extremal optimisation framework, for the coarse-grain search, which contains
a novel multi-objective combinatorial local search framework for the fine-grain
search. HMEOQ is applied to solve a group of eight different mQAPs considering
two objectives by Knowles and Corne [30]. The results obtained show that the
HMEO is able to obtain competitive results to SPEA2 and NSGA-II.

In [26] is investigated hybrid algorithms combining Transgenetic Algorithms
and Evolutionary Multi-objective Optimization (EMO) frameworks to deal with
mQAP. The authors compare the ability of EMO algorithms based on Pareto
dominance with those based on decomposition to deal with the mQAP. Thus, two
hybrid algorithms are proposed to deal with the mQAP: NSTA (TA + NSGA-
IT) and MOTA/D (TA + MOEA/D). The proposed algorithms are compared
with NSGA-II and MOEA/D in 126 instances of the mQAP considering two
and three objectives: Knowles and Corne [30], and Paquete and Stiitzle [31].

In [28], the authors characterize and study the performance of different
memory strategies applied on memetic algorithms for solving different types
of instances of the Bi-objective Quadratic Assignment Problem. The memetic
approach is tested in a set of 26 instances, which were generated by the instance
generator tool.

In order to scale-up optimisation in many-objective search spaces, [29] uses
cartesian product of scalarization functions to reduce the number of objectives
of the search space. The author use a stochastic a local search algorithm with
product functions to evaluate solutions within a local search run with the goal
of generating the entire Pareto front. The performance of algorithm is compared
using several many-objective QAP instances.

As far we know, this is the first time that mQAP has been treated by a Hyper-
Heuristic. HHs, including those based on Choice Function, have been successfully
applied to several complex optimization problems [32-34].

3 Proposed Approach

MOEA/DD is a unified paradigm which combines the dominance- and
decomposition-based technique. Our approach, named MOEA /DD¢p, uses the
MOEA /DD framework coupled with a HH based on choice function in order to
choose between pairs of genetic operators within the evolutionary process. There
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are eight combinations, of the following operators: Cyclic Crossover (CX), Per-
mutation Two Points Crossover (2PX), Order Crossover (OX) and Partially
Matched Crossover (PMX), Swap mutation and Insertion mutation.

Initializations

Nondominated Sorting
method to divide
Initial Population

Max
Mating Selection evaluation
reached

Generate new solution -
using selected low Update Population
level heuristic (Algorithm 1)

Fig. 1. Steps of MOEA/DDcrF.

The Fig.1 shows the steps of the MOEA/DDgp. It starts initializing and
evaluating the population with random permutations. Then it is created a weight
vector, according to [7,35], for each individual and assign them in their respective
neighborhoods. Next, it’s used a fast nondomination sorting method [36] in the
generated population to organize it in fronts, according to the nondomination
level. The first front isn’t dominated by anybody, from the second front onward,
it withdraw the already used ones and search for the nondominated individual
until it identifies all fronts. After the nondominated sorting stage, the mating
selection chooses the parents that will suffer the operators’ action. First, it is
determined the scope from which k solutions (parents) will be randomly selected.
There is a probability A of choosing the parents from the neighborhood of the
current subregion and a probability 1.0- A of selecting them from the whole
population.

In sequence, the selection by the choice function starts after the use of every
operator in the search space of the CF, then it chooses the operator with the
highest CF value found. The selected operator is used with the parents chosen
by the mating selection, to generate new solutions with the possibility to be
accepted in the population.
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The population update process is based on a procedure which is conducted
in a hierarchical manner, sequentially depending on Pareto dominance, local
density estimation and scalarization functions. The Algorithm 1 shows how the
process is made. It starts by finding the subregion of the new solution ¥, adding
y and the population on a new temporary population P’ and updating its non-
domination levels. If P’ only have one level, the worst solution in P’ will be
removed. If it has more levels, then the Fj.,.;, that shows how many solutions
are in the last level of nondomination, will be used. If this level has only one
solution, the result depends on how many solutions exist in the associated sub-
region, if is not the only one in the subregion then remove it, but if is the only
one, then the worst solution in P’ will be deleted. If P’ have more then one
solution in the Fjeye;, will search in its most crowded subregion associated with
solutions at that level, if has more then one solution then remove for the worst
inside this subregion or if is the only solution, then delete for the worst in P’.
So, the population nondomination level update is done. To search for the worst
solution of the entire population, is used the Algorithm 2.

The rewards for the CF is calculated using the difference of the mean value of
the individual fitness of the worst parent and the best offspring. The Algorithm 3
shows how each variable is updated every time it is used. The reward is send
to the CF and all of the operators values are updated. In lines 1 to 4, the f1 is
added with the reward of the used operator s, f2 is added with the sum of the
reward of s and the one of the lastOperator, f3 receives the current time. In
lines 4 to 14, the «, § and v are updated according to the reward, if positive,
then everyone return to a fixed predetermined value, and if negative, @ and 3 will
decrease and ~ will increase while ~ is less then 0.9. This give a better chance to
use the less used operators. Then, the last Reward and lastOperator are updated
for the next time it will be called, and in lines 17 to 19, every operator will be
updated with the new values.

The termination criteria is the quantity of evaluations used, when it reaches
the maximum number of evaluations showed in Table2 it ends and the rele-
vant data for the tests are saved. The algorithm finishes and outputs the set of
nondominated solutions when the maximum number of evaluations is reached.

4 Experiments and Discussion

Our proposed approach is configured to run 30 test trials varying by random
seed. The parameters considered in this study are given in Table 2.

In experiments, we first intend to evaluate the impact of HH method. We
compared the proposed algorithm with HH (MOEA/DD¢p) with the classic
version (MOEA /DD). MOEA /DD uses the most selected operators by the choice
function, they are: cycle crossover and swap mutation.

All of algorithms were applied to solve the bi- and 3-objective quadratic
assignment problem, in a experimentation considering 22 benchmark instances
with 10, 20 and 30 locations [30]. See Table1 for the characteristics of the test
suite problems [37].
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Algorithm 1. Update Population

Input: Population P9°", offspring solution y
Output: Population P9¢"

1: Find the subregion associated with y

2: P' = Po"ui{y}

3: Update the nondomination level structure of P’

4: if level == 1 then //level is the last nondomination level

5: x' = LOCATE_.WORST(P")

6: poer = P\ x’'

7: else

8: if |Flever| == 1 then //Ficye has only one solution, x°

9: if |2"| > 1 then //|®"| is the subregion associated with the solution x"
10: P9 = PP\ x*

11: else//P" has only one solution that is important for diversity
12: x' = LOCATE_WORST(P")

13: P9 = P\ x'

14: end if

15: else

16: Identify the most crowded subregion @" associated with solutions in Fjeype;
17: if |#"| > 1 then

18: //Find the worst solution associated with ¢"

19: x" = argmazxesr gVt (x| A", z%)
20: poen = p'\ xP
21: else// " has only one solution that is important for diversity
22: x' = LOCATE_WORST(P')
23: pr = P\ x’'
24: end if
25: end if
26: end if

27: Update the nondomination level structure of PI°"

28: Return PI9°"

Algorithm 2. Find the Worst Solution in the Population (LOCATE_WORST)

Input: Population P’
Output: The worst solution x’

1: Identify the most crowded subregion $" in P’, ties are broken using the following
equation: h = argmazics Y cgi 9% (x| A7)

2: Find the solution set R, which is a subset of " that belongs to the worst nondom-
ination level

3: Find the worst solution x’' = argmazxerg™®(x|A")

4: Return x’

In comparison, we use the IGD (Inverted Generational Distance) [38] and
Hypervolume [39] metrics. The IGD and Hypervolume measures assess differ-
ent properties of a nondominated solution set, and provide a single performance
value for the set. Inverted Generational Distance indicates how far the approx-
imation front is from a reference set. Lower values of IGD represents a better
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Algorithm 3. Pseudocode of the Choice Function
Intput: Operator used s, reward of the operator reward

1: f1]s] « f1[s] + reward;

2: f2[lastOperator][s] < f2[lastOperator][s] 4+ reward + lastReward;

3: f3[s] < currentTime();

4: if reward > 0 then

5: a «— 0.49;

6: B «— 0.49;

T v «— 0.02;

8: else

9: if v < 0.9 then

10: a — a-0.01;

11: B «— 3-0.01;

12: v = 1-(a+ p);

13: end if

14: end if

15: lastReward « reward;

16: lastOperator < s;

17: fori«—0;i<8;i++ do

18: CF[i] « (a * f1[i]) + (8 * £2[s][i]) + (v * (f3[i] - currentTime()));

19: end for

Table 1. Test suite.

Test name Instance category | Number of locations | Number of flows
KC10-211-[1,...5]r] | Real-like 10 2
KC10-21- [1,2,3]un1 Uniform 10 2
KC20-21-[1,.. .5]r] | Real-like 20 2
K(C20-2fl-[1,2,3]uni | Uniform 20 2
KC30-31l-[1,2,3]uni | Uniform 30 3
KC30-3fl- [1,2,3}rl Real-like 30 3

performance. The hypervolume measures the hypervolume portion of the objec-
tive space that is weakly dominated by an approximation set A. The higher the
hypervolume dominated by an approximation set, the better it is. The reference
set is constructed considering the nondominated solutions of the union of the
approximation sets obtained by all the algorithms being compared. The results
are ranked according to the Kruskall-Wallis statistical test with Dunn-Sidak’s
post-hoc test [40]. All tests are applied with significance level of 5%.

The hyper-heuristic effect is presented in Tables3 and 4. It present mean
and standard deviation of IGD and Hypervolume values for MOEA /DD¢r and
MOEA /DD, respectively. Both metrics indicate advantages for MOEA /DD¢F in
instances with 2 objectives and a certain disadvantage in instances with 3 objec-
tives. According to IGD MOEA /DD¢p significantly outperforms MOEA /DD in
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Table 2. Parameters used in the experiments.

MOEA /DD parameters

Name Values Description

NP 100 Population size

MAX-EV | 200000 for bi-objective | Maximum number of evaluations
300000 for tri-objective
C 20 Neighborhood size

0 0.9 Scope selection probability

7 of the 22 instances considered, obtaining a better performance for the smaller
instances. MOEA /DD is the best algorithm for 2 instances. The performance of
both algorithms are statistically equivalent for 10 of the 22 instances. Hypervol-
ume shows that MOEA /DD ¢ significantly outperforms MOEA /DD in 6 of the
22 instances considered, obtaining a better performance for the smaller instances,
while MOEA /DD is the best algorithm for 5 instances. The performance of both
algorithms are statistically equivalent for 8 of the 22 instances.

The Empirical Attainment Function (EAF) provides a graphical description
of the distribution of a Pareto front approximation set, using the notion of goal-
attainment [41]. This metric can be used to identify which regions of the objective
space one approximation set is better than the other and what is the probability
of this happening. In this sense the attainment function is a more robust metric
than the others, but has a high computational cost [41]. Figure2 presents the
EAF for the graphical comparison of MOEA /DD¢r and MOEA /DD in instance
KC10-2fl-5rl. By EAF it is possible to observe that the MOEA /DD¢p surpass
the MOEA /DD, specially at the right end of the objective space.

Flow 1
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+ - - +
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T T T T T T 11

2e+06 5e+06 8e+06  1.1e+07
Flow 1

MOEA/DD-CF MOEA/DD
Fig. 2. Empirical attainment function for instance KC10-21-5rl.
An analysis of the dynamics of operator selection by HH is shown in Fig. 3.

The preferred combinations are PMX and CX crossover with Swap mutation
and the least preferred is OX crossover with insertion mutation.
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Table 3. The IGD statistics based on 30 independent runs for MOEA/DDcr and
MOEA/DD. Dark gray cells emphasize the best indicator value and light gray cells

indicate its statistically equivalent results according to the statistical tests.

KC10-21-1rl
KC10-2fl-1uni
KC10-21-2rl
KC10-2fl-2uni
KC10-211-3r]
KC10-2f-3uni
KC10-211-4r]
KC10-21l-5r1
KC20-211-1r1
KC20-2f-1uni
KC20-211-2r]
KC20-2f-2uni
KC20-211-3r]
KC20-2f-3uni
KC20-211-4r]
KC20-211-5r1
KC30-3fl-1rl
KC30-3fl-1uni
KC30-3fl-2rl
KC30-3fl-2uni
123KC30-3f1-3rl
KC30-3fl-3uni

MOEA/DDcr  MOEA/DD

— 04s.

—05

2.42e — 036.6¢—04
2.15e — 033‘26704
6.446 — 021A4e—02
6.20e — 042‘25704
1.18e — 043.5¢—05
1.10e — 064‘15706
1.32e — 038.6c—04
7.98e — 041485704
9.34e — 042.15_04
7.253 — 041,95_04
9.55e — 033,43_03

2.79e — 046415705
1.82e — 043 2¢—05

8.80e — 041‘25_04
5.97e — 041.53_04
4.97e — 048445—05
4.82¢ — 045.33_05
5.48e — 048_05_05
1.31e — 032.1¢—04
4.13¢ — 044.3¢0—05
4.16e — 043.23_05

Table 4. The hypervolume statistics based on 30 independent runs for MOEA /DD¢r
and MOEA /DD. Dark gray cells emphasize the best indicator value and light gray cells

indicate its statistically equivalent results according to the statistical tests.

KC10-2fl-1rl.dat
KC10-2fl-1uni.dat
KC10-2fl-2rl.dat
KC10-2fl-2uni.dat
KC10-2fl-3rl.dat
KC10-2fl-3uni.dat
KC10-2fl-4rl.dat
KC10-2fl-5rl.dat
KC20-2fl-1rl.dat
KC20-2fl-1uni.dat
KC20-2fl-2rl.dat
KC20-2fl-2uni.dat
KC20-21l-3rl.dat
KC20-2fl-3uni.dat
KC20-2fl-4rl.dat
KC20-211-5rl.dat
KC30-3fl-1rl.dat
KC30-3fl-1uni.dat
KC30-3fl-2rl.dat
KC30-3fl-2uni.dat
KC30-3fl-3rl.dat
KC30-3fl-3uni.dat

MOEA/DDcr  MOEA/DD
7.79e — 012‘39‘_03
8.38¢ — 013.1¢—02
9.37e — 017‘76_03
1.00e + 000.0e+00
8.29¢ — 018466—03
6.15e — 014‘73_03
T.4le — 010403+00
9.30e — 012‘83_02

7.04e — 014_25_02
6.53e — 012.85—02
81176/~ 015 0aoa! 5.06¢ — 013 4c—o2
5.28e — 011.65—01
7.88¢e — 011,25_02
6.10e — 011.65_02
8.37e — 013,35_02
7.73¢ — 014.6e—02
6.19¢ — 013.0c—02
5.26e — 012486702
6.87e — 017,63_02
4.55e — 019‘26702
6.73¢ — 013.7¢—02
5.10e — 013466702
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Fig. 3. Choice function operator selection throughout evolution process for instance

KC10-2f1-1rl.

Tables5 and 6, respectively, present mean and standard deviation of IGD
and Hypervolume metric values for MOEA/DD¢pr, SMS-EMOA, IBEA, and
MOEA/D-DRA. Based on the results of Table5, IGD values, MOEA/DD¢cp
obtains statistically better mean values than the other algorithms in 11 of 22

Table 5. The IGD statistics based on 30 independent runs for MOEA /DD¢r, SMS-
EMOA, IBEA and MOEA /D-DRA. Dark gray cells emphasize the best indicator value
and light gray cells indicate its statistically equivalent results according to the statistical

SMS-EMOA

IBEA

MOEA/D-DRA

tests.
MOEADDcr
KC10-2fl-1r]  2.05e¢ — 036.30—06
KC10-2fl-1uni  3.28e — 039.5._05
KC10-2f1-2r]  3.64e — 031 5¢—04
KC10-2f1-2uni 5.70e — 031 5¢_04
KC10-2f1-3r]  2.17e — 031.7¢—05

2.05e — 032.6e—05
3.31le — 031.7¢—04
3.59e — 031_95_04
5.34e — 034.0c—04
2.16e — 032.4¢—05

KC10-2f-3uni [5:49¢ = 045.9e—06 | 5.57¢ — 041.3c—05

KC10-2f1-4rl
KC10-21-5r1

3.17e — 037 1e—11
2.17e — 036.1e—05

3.16e — 035.5¢—05
2.16e — 035.6c—05

KC20-2f-1r1  [2:86e =081 2e204 2.88¢ — 035.5c—05
KC20-2f-1uni  2.94e — 035.0e—05 | 2:94€ — 036.6e—05 2.99¢ — 036.2c—05

KC20-2f1-2rl
KC20-2f1-2uni
KC20-21-3r]
KC20-2f1-3uni
KC20-2f1-4rl
KC20-21-5rl
KC30-3fl-1rl
KC30-3fl-1uni
KC30-3f1-2r]
KC30-3fl-2uni

5.14e — 032.2¢—04

KC30-3f1-3rl
KC30-3fl-3uni

3.14e — 031 .4¢—04
5.0le — 032.8¢—04
2.12e — 037.8¢—05
8.42e — 042.1¢—05
2.88¢ — 031.1e—04
2.7le — 031.1e—04
2.50e — 038.8¢—05
2.33e — 036.8e—05
2.57e — 039.7¢—05
3.96e — 031.3¢—04
2.23e — 039,36705
2.15e — 032.5¢—04

2.17e — 034.9¢—05
3.43e — 031.6e—04
3.68e — 031_35_04
5.46e — 033.4¢—04
2.22e — 033.9¢—05
5.99e — 041.6c—05
3.18e — 032.2¢—05
2.63e — 036.8¢—05
2.96e — 031.1e—04

3.23e — 037.2¢—05
5.05e — 032.3e—04
2.11e — 032.4e—05
8.50e — 042.3¢—05
2.98¢ — 031.2¢—04
2.71e — 037.3¢—05
2.39e¢ — 034.2¢—05
2.25e — 037.4¢—05
2.44e — 037 5e—05
4.07e — 031.4¢—04
2.06e — 035,26705
1.66e — 038.4c—05

9.43e — 041.2¢—04

3.16e — 032.1¢—04
3.29¢ — 031.4¢—04

3.38e — 033,56_04

2.49e — 031.9¢—04
1.47e — 035.9¢—05
3.09e — 032.63—04
2.93e — 032.9¢—04
3.58e — 031.83—04
3.43e — 031.7¢—04
3.52e — 032.43—04
5.11e — 032.4¢—04
2.85e — 031.63—04
2.66e — 031.3¢—04
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Table 6. The hypervolume statistics based on 30 independent runs for MOEA /DDcr,
SMS-EMOA, IBEA and MOEA/D-DRA. Dark gray cells emphasize the best indicator
value and light gray cells indicate its statistically equivalent results according to the
statistical tests.

MOEADDcp

SMS-EMOA

IBEA

MOEA/D-DRA

KC10-2fl-1rl.dat
KC10-2fl-1uni.dat
KC10-2fl-2rl.dat
KC10-2fl-2uni.dat
KC10-2fl-3rl.dat
KC10-2fl-3uni.dat
KC10-2fl-4rl.dat
KC10-2l-5rl.dat
KC20-2fl-1rl.dat
KC20-2fl-1uni.dat
KC20-2fl-2rl.dat
KC20-2fl-2uni.dat
KC20-2fl-3rl.dat
KC20-2fl-3uni.dat
KC20-2fl-4rl.dat
KC20-2fl-5rl.dat
KC30-3fl-1rl.dat
KC30-3fl-1uni.dat
KC30-3fl-2rl.dat
KC30-3fl-2uni.dat
KC30-3fl-3rl.dat
KC30-3fl-3uni.dat

8.73e — 012,25_03
9.36e — 014,43_03
9.87e — 012,35_03
9.94e — 012'25_02
9.04e — 012,75_03
6.12e — 012_55_03
9.63e — 010,03_'.00
9.70e — 011,35_03
8.35¢ — 012.6¢—02
7.70e — 011_96_02
9.26e — 012.2e—02
8.95e — 013,15_02
8.41e — 011‘46702
5.99¢ — 01g9.4¢—03
8.98e — 012‘05702
8.97¢ — 012.43—02
7.15e — 011‘75702
5.82e — 012.5¢—02
7.63e — 013.2¢—02
6.65e¢ — 013.3c—02
6.67e — 011_95702
5.00e — 012.0e—02

8.7le — 017,06703
9.21e — 011 .2¢—02
9.81e — 015.4@703
9.31le — 016.86—02
9.00e — 015.26703
6.13e — 012.83—03
9.6le — 011.36702
9.69¢ — 015.4¢—03
8.52e — 012,23_02
7.81e — 012 2¢—02
9.22e — 012.3¢ 02
8.68¢ — 014.0e—02
7.95e — 011‘76702
6.06e — 0lg.2¢—03
9.18e — 012.1¢—02
8.92¢ — 012.48_02
6.04e — 012‘757()2
5.78¢ — 012.9¢—02
6.20e — 014.4¢—02
7.49e — 013,95_02
5.10e — 012_25702
4.58¢ — 012.4¢—02

8.68e — 013.63703
9.18¢ — 011.4¢—02
9.82e — 014.63703
9.52e — 015.6e—02
8.93e — 019.73703
6.06e — 014_56_03
9.58e — 011.46702
9.65e — 016.46—03
8.41le — 013.06702
7.73¢ — 012 3¢—02
9.15e — 012.46702
8.63e — 014_75,02
8.63e — 011.53_02
6.11e — 017.26_03
9.19¢ — 012.53_02
9.00e — 012.16_02
7.626 — 012.16_02
6.6le — 012.26_02
7.95e — 013,59_02
7.40e — 013.08702
6.99¢ — 012,16_02
5.95e — 011.76_02

5.86e — 012.73702
5.46e — 015.8c—02
6.95e — 015.03702
4.85¢ — 016.0e—02
6.02e — 013.46702
4.59e — 011 4e¢—02
6.12e — 015.96702
7.82e — 013.9¢—02
3.52e — 011.96702
2.72¢ — 011 4e—02
3.97e — 013.06702
2.64e — 013 4¢—02
4.05e — 012.26702
3.51e — 011.2¢—02
4.33e — 012.96702
4.29¢ — 012.8e—02
1.45¢ — 011,102
8.89e — 028.8¢—03
1.69¢ — 011.6c—02
7.75¢ — 029 .1¢—03
1.70e — 011.0@702
1.19¢ — 01s.0e—03

instances and is equivalent to the best algorithm in two instances. MOEA /DD¢ g
achieves better performance for larger instances. The second best algorithm was
the MOEA /D-DRA, significantly better in six instances, followed by the SMS-
EMOA. The worst results were obtained by the IBEA.

According to Hypervolume results, Table 6, MOEA /DD¢r and IBEA obtain
similar performance, being statistically better mean values than the other algo-
rithms in 6 of 22 instances and are equivalent to the best algorithm in 5
instances. Both algorithms are followed by the SMS-EMOA. The worst results
were obtained by the MOEA /D-DRA.

5 Conclusions

In this work we proposed the application of the HH selection to solve the multi-
objective QAP, based on the MOEA /DD algorithm and using choice function
strategy. The proposed algorithm, named MOEA /DD¢p, were applied using
the multi-objective bi- and 3-objective quadratic assignment problem and 22
benchmark instances were considered for the experiments.

The contribution of this work is in the analysis of the behavior of an algorithm
based on hyper-heuristic for multi-objective QAP. In the tests, we first evaluated
the impact of the HH method, comparing the proposed algorithm using HH
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with the canonical version. Then, we compared our approach with other multi-
objective algorithms: SMS-EMOA, IBEA and MOEA /D-DRA.

All analyzes took into account two quality indicators and non-parametric sta-
tistical tests. According to the results of IGD and hypervolume, MOEA /DD¢p
significantly outperforms MOEA/DD in most of instances considered, spe-
cially in smaller instances. MOEA /DD¢p is also favorably compared other
multi-objective algorithms. For the IGD metric, MOEA/DD¢ g competes with
MOEA/D-DRA and it is better in large instances. According to hypervolume
indicator, MOEA /DD¢r competes with IBEA and SMS-EMOA and achieves
better performance especially for small instances.

QAP is one of the most difficult problems in NP-hard class and
MOEA /DD¢r’ results point to promising studies using hyper-heuristics for this
problem.

In the future, we will extend our approach in the direction of test other
selection heuristics instead of choice function. Additionally, we intend to test
MOEA/DD¢F on other benchmark instances considering many objective opti-
mization, for example. We also intend to analyze more deeply, different charac-
teristics of the mQAP test instances and the hyper-heuristics.
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Abstract. The Plackett-Luce model represents discrete choices from a
set of items and it is often applied to rank aggregation problems. The
iterative majorization-minorization method is among the most relevant
approaches for finding the maximum likelihood estimation of the param-
eters of the Plackett-Luce model, but its convergence might be slow. A
noninformative initialization is usually adopted which assumes all items
are equally relevant at the first step of the iterative inference process.
This paper investigates the adoption of approximate inference methods
which could allow a better initialization, leading to a smaller number
of iterations required for the convergence of majorization-minorization.
Two alternatives are adopted: a spectral inference method from the
literature and also a novel approach based on a Poisson probabilistic
model. Empirical evaluation is performed using synthetic and real-world
datasets. It was revealed that initialization provided by an approximate
method can lead to statistically significant reductions in both the number
of iterations required and also in the overall computational time when
compared to the scheme usually adopted for majorization-minorization.

Keywords: Majorization-minorization - Plackett-Luce - Poisson -
Rank aggregation

1 Introduction

The aggregation of pairwise comparisons and partial rankings is a relevant task
in the context of belief function theory with applications in many areas [14] such
as econometrics [15], psychometrics [2,21], sports ranking [5,18] and multiclass
classification [8].

The Luce’s axiom of choice [13] states that the probability of choosing an item
should not depend on the specific set of items from which the choice is made.
This assumption is also denoted as the independence from irrelevant alternatives
(ITA). Let S be the set of m items {1,2, - - ,m} which will be chosen by an agent,
or might represent competitors in a contest. The probability of selecting an item
i from the options in S is given by the Plackett-Luce (PL) model [13,18] as:
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P(i is the preferred item in S) = P(i = S) = % (1)
jes Vi

Each parameter ~; represents a positive-valued utility associated with an
item ¢. That value relates to the extent to which ¢ is superior to other items,
which translates to the item being selected more frequently than others. As a
concrete example, consider the items to be sports teams, where ~y; represents the
overall strength of team ¢ [9].

The model allows the computation of the probability of any specific ranking
k with w, items @ = {s1,82, -, 8w, }, @ C 5, as the successive application of
(1):

P(s1 = S2 >+ > Sy, ) = H - (2)
re{1,2, we} ZjeA:; Vi

where a >~ b represents that item a € ) was ranked better than item b € @ in
a contest k; the item ¢ which is the best ranked among all competitors receives
rank(i) = 1, the second is ranked as 2 and so on. A¥ is the set of options available
from @ at each rank r as Af = UY" {sf} = {sp, Sp41,- -, 5w, }, for a contest &.

Similarly, the Bradley—Terry [2] (BT) model for pairwise comparisons
describes the probabilities of the possible outcomes when individuals are judged
against one another in pairs [9):

. Ya
P(a is preferred over b) = P(a = b) = 3
(aisp )= Plarb) = 2 ®)

Other variants and extensions of that type of choice model have been pro-
posed. The Rao-Kupper (RK) model [19], for instance, extends the BT model
to the case where a comparison between two items can result in a tie.

The first iterative algorithm for maximum likelihood estimation (MLE) of
parameters for a model of pairwise comparisons was proposed in 1929 [22],
which was later shown to be a special case of the majorization-minorization
(MM) approach [9]. The algorithm was later extended to the general case of the
Plackett-Luce model. Besides MM, other iterative algorithms from the literature
such as Newton-Raphson among others [3,6] are adopted for the MLE. The MM
algorithm still provides an attractive approach, however, it was shown to present
slow convergence in some cases [9]. This prevents the approach to be adopted
in a wider range of cases, such as real-time applications which demand faster
responses.

This work evaluates two approximate methods for the estimation of parame-
ters vy = {v1,72, - , Ym } of the Placket-Luce model, which are applied to obtain
better initial values for the MM iterative process and would allow a reduction
in the number of iterations until convergence. A method from the literature is
adopted, along with a novel approximate approach.

The paper is organized as follows. Section 2 revises exact and approximate
methods for the MLE of parameters of the Plackett-Luce model. Section 3
presents the proposed approximate method. The experimental evaluation is
described in Sect. 4. Section 5 concludes the paper.
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2 Maximum Likelihood Estimation for the Placket-Luce
Model

The log-likelihood of the parameters « for model (2) given rankings of the form
Q = {81,823"' 7Sw,¢}7 Q €D is:

logL(v|D) = Z (logvs, — log Z Vi) (4)

k€E{1,2,--- ,n},re{l,2,- ,wy,} JEAE

The function in (4) is strictly concave and the model admits a unique MLE
¥ = {7,735, -+ .5} [14]. Several approaches were adopted for finding v* by
minimization of (4), but the majorization-minorization approach can be consid-
ered as a standard for the MLE in the context of Luce’s model [9,14].

Algorithm 1 MM(x())

Input: x(©

Output: x* which minimizes f(x)

1. k<0

2. repeat

3. xFHD — argmingg(x|x(®)

4. § e |xFHD) — x(R)|

5. k—k+1

6. until 6 < 7, where 7 is a predefined thereshold
7. return x*)

The MM approach was studied under various names for over 30 years [9,12].
The iterative process adopted by MM for finding the x* which minimizes f(x)
starts from an initial value x(°). A surrogate function g that majorizes f such
that f(x) < g(x|z®) is adopted at each iterative step of MM. The next z(*+1)
is obtained from z**1) = argminy,g(x|x*)). The successive minimization of
g, which might be a more tractable function, leads to the minimization of the
original function f. Algorithm 1 illustrates the adoption of MM for a given pair
of functions f(x) and g(x). The approach is quite general and covers the widely
adopted Expectation-Maximization algorithm [4] as special case [12].

Theoretical analysis of MM as an MLE has been proposed in the literature.
In [7] the number of samples enough to drive the mean-square error to down to
zero is analyzed. It was also noticed that MM might present slow convergence
in some cases [9] yet the scale of the issue and its apparent unpredictability is
surprising [14].

Other estimators have been proposed, both for the PL and BT models. The
Rank Centrality proposed in [16] builds a graph where the nodes are the items
and the transition probability is constructed from the comparisons between out-
comes. This spectral approach has been a building block for several ranking
algorithms [17]. In [14] the connection between the spectral approach of Rank
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Centrality and the MLE, providing a unifying view to the problem. The Acceler-
ated Spectral Ranking algorithm [1] efficiently finds the parameters of PL models
and also achieves optimal sample complexity under certain conditions. In [11]
the inference Luce’s model parameters from data is reformulated by breaking
rankings into pairwise comparisons and finding the transition matrix of the cor-
responding Markov chains [14].

2.1 Luce Spectral Ranking

The Luce spectral ranking algorithm [14] is adopted for approximate inference
of PL models by building a Markov chain from an expression derived from the
optimality condition of the log-likelihood.

Algorithm 2 LSR(D)

Input: rankings D as in (2)
Output: estimation ’?LSR of the parameters of a PL model

1. A= 0Omxm

2. for all (i,A’;f{mk(Z.))

3. for j € AT, i) — {i}

4. /\j,i — )\j,i + \A+

rank(i)‘
end for

1 O Ot
[¢]
=
o
g
=

The transition probabilities are computed by rewarding each item ¢ in a con-
test by a fixed amount of incoming rate that is evenly split across the alternatives
Afank(i) corresponding to the rank of 7 in each contest . Algorithm 2 illustrates
the pseudocode of LSR. Once the transition matrix is built, the algorithm gives
its corresponding stationary distribution as the result for the estimation of ‘yL SR,
The algorithm has running time O(T + S) where T' = )", , |Aj| and S is the
cost associated with finding the stationary distribution of a m x m transition
matrix [14]. Since a single iteration of MM for the problem considered here
is O(T), the approximate computation performed by LSR is expected to be
obtained at a much smaller cost.

3 Proposed Approximate Model

An ordered choice of items from a set S is called the result of a contest. Let
us define that an item ¢ “failures” when it is overlooked in favor of another
competing item j, or rank, (i) > rank,(j) in a contest k. Let us also define the
random variable X; > 0 as the degree of failure of an item in a given contest.
For instance, X; can be computed as rank, (i) — 1. Let us assume the probability
that the degree of failure for each X; follows the Poisson model as:

T =N
:)\ie i

z!

(5)
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Input data comprises ranking results from n contests ¢y, co, - - , ¢, With sizes
q1 = |c1l,q2 = |eal, -+, gn = |cnl, respectively. Each contest ¢, contains rankings
for a subset of items from S. The parameter \; which represents the expected
value E(X;) is inferred from data as the MLE:

. R,
A= g (6)
- o kr(i)—1) )
where R; = Z{““Er{ﬁ’glgzn}r(l) ) s sample mean over all rank, (i) — 1 of each
item ¢, considering contests ¢, € {¢;, 2, , ¢y} which contain item ¢ and W is

a reference number of opponents adopted for all items.

The set of strength values v = {71,792, ,¥m} as adopted in the PL model
(1) will be interpreted from (5) as the probability of i to be the first item selected,
or the item better ranked, independently from the ranking of the opponents. Each
4; is therefore defined as the probability that respective item ¢ has no failures
as:

R 20— 5 By _ Cislicen) (rankp(i)—1)
Yi = P(Xi = O) =2 0l = e_>‘l —e W —e¢ W{rli€cr I (7)

The reference number of opponents W remains to be set. It should be valid
for all items since the strength values obtained from (7) must refer to the same
scale, to be useful as measures for the relative strength of the respective items
when compared to each other under diverse types of contests. However, since it
is not feasible to set a single value for W which represents contests of all sizes,
we propose to adopt a weighted average over a range of contest sizes 2,3,--- ,q
where § = max{|ci1|, |ca|, - ,|cn|} is the largest number of items per contest as
obtained from data. A default value for W can, therefore, be computed as:

_ ZZU_:ll w(q —w)
230;11 (g - w)
which is the weighted mean among all possible amounts of opponents in the
interval w € {1,2,--- ,§ — 1}, where the weight of each w is given by (g — w).
The weighted average in (8) is designed as an attempt to represent the rel-
evance of each contest size, where smaller sizes received greater weigh. Notice
that the highest weight §— 1 is set to the smallest contest, which corresponds to
a single competitor, or a pairwise comparison. The greater relevance of smaller
contest sizes relates to the form every full or partial ranking is composed in
(2), which always includes smaller contest sizes. This supports the assumption
that smaller contest sizes should be emphasized as in (8) even when input data
comprises greater contests majorly.
Algebraic manipulation from (8) leads to:

(8)

_q+1

w=12 )
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Substituting (9) into (7) leads to the expression for the strength of each item
i under the proposed Poisson model:

~ Poisson —32{0’1“60’“} (T?nkk(i)_l)
i =e (@+D{eglice,} (10)

The strength values estimated from (10) can be adopted in the Luce model
(1, 2) for computing the probability of each item ¢ to be selected by substituting
each ~; for the respective 4;, which leads to:

rPPoisson(- - S) _ ;YZ_Poisson (11)
vz - Z s ,?Poisson
Je J

Since the computation of each 4/°¥5°" in (10) is performed in time O(n),
the method proposed has running time O(m x n).

4 Empirical Evaluation

Empirical evaluation is performed using synthetic and real-world datasets. For
both cases, the error metric is the same as adopted by [14] and [7], where a
log-transformation is applied for the parameters. The root-mean-squared-error
Erys between the exact v* and approximate 4 is computed as:

Sty (0 - 67)?

- (12)

Erms =

where Aéi = log(%; — %) and 0*; = log(v*; — %), which leads to
>, 0, =0and ) ", 6*; = 0. The approach adopted for computing parameters
0 conforms to the random utility formulation adopted in the logit model [15].

4.1 Evaluation on Synthetic Datasets

Initially, synthetic datasets are generated and grouped according to the num-
ber of items considered. The parameters adopted for the generation of synthetic
datasets were adapted from an experiment in [7] which was planned in the con-
text of a statistical efficiency assessment procedure. Several values for the number
of items were investigated, with m € {2,4, 8,16, 32, 64,128,256, 512,1024}. For
each m, a total of 100 synthetic datasets were generated. The parameters yx,
for each dataset were obtained randomly as:

i~ el 72 (13)

For each dataset obtained from (13), n = 64 rankings were generated where
each ranking contains all m items (full rankings with ¢ = m), also as in [7].

The experiments for each group of datasets are performed as follows. The
reference values for the number of iterations and computational time of each
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dataset are obtained from the execution of MM given an initial uniform unin-
formative set of parameters v° = [%, %, ,%L as usually adopted in the
literature. Two alternative treatments correspond to the execution of MM given
as input the result from approximate inference methods, which are the Poisson
model proposed in (10) and the LSR algorithm, which are called Poisson+MM
and LSR+MM respectively. The effects on both the number of iterations and
the total computational time are assessed. For each group, Wilcoxon signed-rank
tests are performed for evaluating the statistical significance of an eventual dif-
ference between the reference and each of the alternative approaches, at a 0.05
significance level.

Table 1 shows the results from the evaluations. Both methods Poisson+MM
and LSR+MM were able to achieve significantly lower number of MM iterations
when compared to the reference MM approach for most groups considered, at the
significance level considered. The average number of iterations for Poisson+MM
and LSR+MM is very similar for all m considered, while sample standard devia-
tion ¢ decreases consistently as a function of m, for both alternative treatments
and also for the reference approach. The exception is the case corresponding to
m = 2, where a reduction could not be achieved since the number of iterations
of MM does not vary over all the 100 datasets considered, independently from
the initialization adopted. This prevented the Wilcoxon signed-rank tests to be
applied. Figure 1 illustrates the number of iterations of MM as a function of m,
where a trend can be perceived and one might infer that similar conclusions
would arise for other itemset sizes m above the range considered here.

Table 1. Average number of iterations of MM =+ sample standard deviation & using
a usual uniform initialization (denoted as MM) as the reference and two alternative
initialization approaches (LSR+MM, Poisson+MM) computed from 1,000 synthetic
datasets equally distributed over 10 groups according to the itemset size m. Statistically
significant improvements at a significance level of o = 0.05 are shown in bold.

Number of | MM Poisson+MM | p-value | LSR+MM | p-value
items (m) avg. = o avg. = o avg. &+ o

2 2.0 + 0.0 2.0 + 0.0 - 20+00 |-

4 39.9 £ 30.1/36.6 £ 27.6 |<0.0001|37.0 £ 27.6 <0.0001

8 37.3 £20.632.7 £18.1 |<0.0001|33.5 £ 17.7 | <0.0001

16 38.9+9.0 33.0+ 7.8 <0.0001 | 33.5 £ 7.7 | <0.0001

32 373 £59 [30.5 +4.8 <0.0001 | 31.0 £ 5.0 | <0.0001

64 38.3 £3.7 130.3 +£2.9 <0.0001 | 30.9 + 2.8 | <0.0001

128 388 +21 [29.7+ 1.6 <0.0001 | 30.3 + 1.7 |<0.0001

256 383+16 28.3+1.2 <0.0001 | 28.9 + 1.1 | <0.0001

512 388+ 1.2 [27.9 + 1.0 <0.0001 | 28.3 + 0.8 |<0.0001

1024 399+ 1.0 |27.1 £ 0.7 <0.0001 | 27.7 £ 0.7 | <0.0001
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Fig. 1. Average number of iterations of MM = sample standard deviation & using
a usual uniform initialization (denoted as MM) as the reference and two alternative
initialization approaches (LSR+MM, Poisson+MM) computed from 1,000 synthetic
datasets equally distributed over 10 groups according to the itemset size m.

The computational time resulting from approximate computation of initial
values for PL parameters using Poisson or LSR and the subsequent execution
of MM are summed up in both cases in order to be compared to the respective
reference value from the execution of MM with a uniform input, for each dataset.
Results from this evaluation are shown in Table2. LSR+MM was not able to
achieve improvements in computational time, although the number of iterations
is actually better than the reference MM approach. This results from the payoff
corresponding to the execution of LSR, which prevents the total computational
time to be improved. A diverse result arises when Poisson+MM is considered.
The average computational time of Poisson+MM is inferior to MM for all groups
considered. Statistically significant improvements, however, are only detected for
greater itemset sizes, for m = 512 and 1024. Observable trends for the computa-
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Table 2. Average computational time + sample standard deviation & of MM using a
usual uniform initialization (denoted as MM) as the reference and computational time
of MM summed with the computational time of an alternative initialization approach
(LSR+MM, Poisson+MM) computed from 1,000 synthetic datasets equally distributed
over 10 groups according to the itemset size m. Statistically significant improvements

at a significance level of o = 0.05 are shown in bold.

Number of | MM Poisson+MM | p-value | LSR+MM p-value
items (m) |avg. o avg. £ o avg. £ o
2 0.003 + 0.006 | 0.002 £+ 0.005 |0.5297 0.006 &+ 0.008 | 0.0572
4 0.005 + 0.009 | 0.004 £+ 0.008 |0.6444 0.019 £+ 0.015 | 0.0003
8 0.005 + 0.007 | 0.004 £+ 0.008 |0.4644 0.047 4+ 0.012 | <0.0001
16 0.006 + 0.009 | 0.008 £+ 0.010 |0.2860 0.124 4+ 0.018 | <0.0001
32 0.008 + 0.010| 0.007 £ 0.008 | 0.5941 0.380 £ 0.024 | <0.0001
64 0.010 + 0.010| 0.008 £ 0.008 | 0.2081 1.360 £ 0.039 | <0.0001
128 0.012 £ 0.009 | 0.009 £ 0.008 |0.1667 5.263 £+ 0.328 | <0.0001
256 0.021 + 0.009 | 0.019 £ 0.009 |0.2120 22.376 £ 1.559 | <0.0001
512 0.046 + 0.013|0.032 £ 0.010 | 0.0005 91.357 £ 0.354 | <0.0001
1024 0.085 + 0.013|0.063 £ 0.012 | <0.0001 | 363.467 £ 7.580 | <0.0001

tional time as a function of m (not shown) suggest that significant improvements
in computational time would be obtained with even greater values for m.

4.2 Evaluation on Real-World Datasets

Two real-world datasets are used for the evaluation of the performance of Pois-
son+MM and LSR+MM when compared to the reference execution MM with
uniform initialization. The same datasets were adopted in [14] for the empirical
evaluation of LSR. The number of items m, the number of rankings n, as well
as the size of the greatest contest size g for each dataset, are given in Table 3.

The NASCAR! [9] dataset contains multiway partial rankings from 36 auto-
mobile races for the 2002 NASCAR season in the United States of America. Each
of the races involved 43 drivers, with some drivers participating in all 36 races
and some participating in only one. Altogether, 83 different drivers participated
in at least one race [14].

The Sushi? dataset [10] contains multiway partial rankings provided by sushi
consumers after performing a sensory test. It was designed so that the more
frequently supplied types of sushi in restaurants were more frequently shown to
respondents. The dataset comprises 5000 contests with sizes varying from 2 to
10 items.

! https://rdrr.io/cran/PLMIX /man/d_nascar.html.
2 http://www.kamishima.net /sushi/.
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Table 3. Datasets adopted in the empirical evaluation.

Dataset |m |'n q
NASCAR | 83 36 | 43
Sushi 100 | 5000 | 10
(a) NASCAR (b) Sushi
= < 7
o | o
’ » » M » % » w M u
Number of iterations Number of iterations

Fig. 2. Distribution of the resulting number of iterations required by MM for the infer-
ence of the parameters of the Plackett-Luce model for each datasets (a) NASCAR and
(b) Sushi, considering 100 runs where each run is performed given random initializa-
tions for the parameters 7Oi ~el™2 a5 input.

Initially, the sensitivity of MM to the initial values v° is investigated. A
total of 100 random realizations for 4° are generated as in (13) from the distri-
bution 70, ~ e[~ and MM is executed given each random vector as input.
Figure 2 illustrates the results for both datasets considered. The distribution of
the number of iterations until convergence is highly concentrated at 26 and 40
respectively for the NASCAR and Sushi datasets. Similar conclusions concerning
to the sensitivity to random initialization values were already pointed out in [9].

The effectiveness of each approximate algorithm on improving the conver-
gence of MM are shown in Table4. Both algorithms were able to reduce the
number of iterations until convergence down to a value that was not achieved
by the random variation of the parameters, as illustrated in the previous exper-
iment. This represents the effectiveness of both Poisson and LSR to reduce the
number of iterations required by MM for both datasets considered. The compu-
tational time obtained by the summation of LSR and the subsequent execution
of MM leads to a value above the computational time of the adoption of MM
with an uninformative input. The adoption of the proposed Poisson model, by
the other side, leads to better computational times for both datasets.
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Table 4. Number of iterations required by the reference MM method and computa-
tional time of MM summed with the computational time of an approximate inference
method (Poisson+MM and LSR+MM).

Dataset | Method

MM Poisson+MM LSR+MM

MM Total MM Total MM Total

iterations |time (s) |iterations |time (s) |iterations |time (s)
NASCAR | 26 0.006 21 0.005 21 0.349
Sushi 40 0.410 32 0.349 32 2.557

4.3 Evaluation of the Proposed Method as an Approximate
Inference Approach

In order to better understand how the proposed method compares to other
approximate inference methods adopted for Plackett-Luce models and also to
provide insights for future research, results obtained directly from both approxi-
mate inference methods adopted are evaluated and compared. The Egrysg values
obtained from the evaluation of the results of the Poisson method were 0.342
relative to the Poisson method and 1.396 from LSR when the NASCAR dataset
is considered. For the Sushi dataset Erprs = 0.567 was obtained from the Pois-
son method and 0.931 from LSR. The values obtained from our implementa-
tion of LSR differ slightly from the lower values reported in [14] for the same
datasets. The approximate algorithm GMM-F proposed in [20] is also evaluated
as reported in [14], which achieved Egrprs = 0.751 for the NASCAR dataset and
0.130 for the Sushi dataset.

The computational time of the Poisson method in this evaluation is also
lower when compared to LSR for both datasets considered. The Poisson method
required less than 0.001s for computing an approximate solution for the
NASCAR dataset while LSR took 0.344s. When the Sushi dataset is considered
the computational times of the algorithms are 0.005s and 2.221s respectively
from Poisson and LSR. Computational times reported for the GMM-F algorithm
in [14] are 0.06s and 0.19s for the NASCAR and Sushi dataset respectively.
Those results for GMM-F should be considered carefully, since the computa-
tional architecture used in [14] is not the same as the one adopted here.

The Fgrps results from the Poisson method could be further improved. The
adoption of a standard reference number of opponents W is defined by an ad-
hoc rule from a weighted average over a range of values. One can obtain from
(9), under the assumptions made, the relation % = % Although this issue
might be subject to further theoretical and empirical investigation, we should
here illustrate some possible alternatives which could be explored. Suppose that

W could be a parameter of the novel method such that % € 10,1] instead of

the constant value # which resulted from (8).

Figure 3 illustrates the result of the variation of W on the Egrpss of the
results from the Poisson model in (6), when compared to the exact values of
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Fig. 3. Frms computed from the results of the Poisson approximate inference method
(6) applied to two datasets from the literature, as a function of % with varying W.

the parameters, as obtained from MM. The value of % corresponding to the

optimal Fgrps is actually close to the theoretical reference % as predicted in
(9), at least for the NASCAR dataset. The optimal Egrpys = 0.291 for the
NASCAR dataset under the Poisson model corresponds to E% = 0.26, while
the theoretical aTWl = % leads to an Erps = 0.342. When the Sushi dataset
is considered, a single numerical global optimum for the Erj;s of the Poisson
model is also evident. However, the optimal Erars = 0.166 corresponds to a
relation % = 0.12, farther apart from the theoretically predicted value in (9),
which leads to a much higher Erarg = 0.567, as already shown.

The same evaluation is performed for the groups of randomly generated
synthetic datasets. The average Frps was computed from the Poisson mod-
els resulting from 100 synthetic datasets built for each itemset size considered
(m € {2,4,8,16,32,64,128,256,512,1024}). Average optimal Egrpys for each
group resulted values ranging from 0.017 to 0.135 while the average correspond-
ing % resulted values ranging from 0.14 to 0.17, also farther apart from the
theoretically predicted value % Figure 4 illustrates the results for a subset of the

groups for better visualization. Similar curves arise from the remaining groups.
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Fig.4. Average Erms computed from the results of the Poisson approximate
inference method (6) applied to synthetic datasets grouped by itemset size m €
{4,8,16,32,64,128}, as a function of TVL with varying W.

5 Discussion and Conclusions

This work evaluated the adoption of two approximate methods for the estimation
of initial values provided to the MM method when applied to the inference of
parameters of the PL model. The candidate approaches are both compared to
the adoption of the usual MM initialization which assumes that all items are
equally strong. A novel approximate method which is based on the adoption of
a simple Poisson probabilistic model was able to achieve statistically significant
reduction in both the number of iterations required by MM and also in the
computational time.

Although the Poisson model proposed was adopted for the approximate esti-
mation of parameters of PL. models, the assumptions made before the develop-
ment of the model in (10) are somewhat stronger than ITA assumption made by
PL. While the PL model assumes that the preference for an item a over b should
not depend on other items ¢ € S, the model proposed in (10) assumes, in some
sense, that the preference for an item a should not depend on the preference for
any other item ¢ € S.
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The computational time records relative to the other approximate algorithm
adopted (LSR) could be much improved, majorly as a result of how exactly the
stationary distribution of the transition matrix is computed. However, for the
sake of this evaluation, this would not raise major concerns since the aim of the
paper is not to compare LSR to the novel method but to verify whether the
efficiency of MM could be improved, which was confirmed by experiments. Con-
ceivably, the same results could be obtained using other approximate inference
methods, which is to be further investigated.

Further work should better explain the theoretical properties and/or limita-
tions that might arise from the model proposed. Further empirical investigation
should also be performed, which might include a wider variety of real-world
datasets.
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Abstract. Among the existing techniques to improve the performance
of metaheuristics in optimization problems, adaptive parameter control
consists in varying one or more parameters of a given metaheuristic
according to some indicator of the search conditions. This approach
allows metaheuristics to change algorithmic behaviour during the search,
and is particularly relevant for the optimization of dynamic problems.
In this research we theoretically analyse in which ways the parameters
of the ant colony optimization for continuous domains metaheuristic can
be adapted, regarding how each parameter influences exploration and
exploitation characteristics of the algorithm. Our experimental contri-
butions include validating the colony success rate as a search condition
estimator and choosing suitable maps from this estimator to the parame-
ters ¢ and £ of the algorithm. Beyond that, we compare the performances
of three proposed adaptive versions of the base metaheuristic and show
the benefits of simultaneously adapting multiple parameters.

Keywords: Parameter adaption + Ant colony optimization -
Continuous domains

1 Introduction

Optimization problems are often characterized by infeasibility in the computa-
tion of exact solutions. For some of these problems, often referred to as NP-hard
[19], the existence of algorithms capable of computing exact solutions in polyno-
mial time is unknown. Metaheuristic algorithms provide general search method-
ologies [3] and have been widely used for hard optimization problems without
requiring deep knowledge about the function under optimization [10].
Although metaheuristics are considered to be general, their behaviours are
often governed by some set of parameters [7,9]. The choice of values for these
parameters can be accomplished by means of parameter tuning and/or control
[6]. In tuning, parameters are chosen according to performance measures in a
set of problem instances and remain static over new searches, while in con-
trol the adjustment of parameters happens over time according to some rule

© Springer Nature Switzerland AG 2020
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or evolutionary mechanism. Regarding control, [20] emphasizes that updating
parameters online, depending on the search stage, may improve the robustness
of metaheuristics. Parameter control methods can be classified as prescheduled
or adaptive [20] depending on whether they respond to the course of time or to
the search conditions, respectively. Adaptive parameter control is specially use-
ful when the function under optimization dynamically alters its fitness landscape
[11].

Ant colony optimization (ACO) is a well-established family of metaheuristics
inspired by the foraging behaviour of ants [20] which guides the search for near-
optimal solutions probabilistically, taking advantage of the objective function
landscape captured in pheromone representation. Although initially proposed in
the context of categorical optimization, ACO was later adapted to continuous
domains (ACOg) in [19]. ACOg keeps track of the search history via a solution
archive which stores the most promising solutions found during the search.

In this research, we investigate the multiple ways in which the parameters
of the ACOg metaheuristic can be adapted during the search for solutions with
minimum cost. As a study case, we experiment using an evolutionary state esti-
mator (ESE) drawn from swarm intelligence literature [15] to adapt parameters
of ACOg, and show the benefits of adapting multiple parameters. While simul-
taneous adaption of more than one parameter is present in the literature of ACO
algorithms for categorical optimization, e.g. [4,12], we present the first results
for this task using ACOg to the best of our knowledge. All source code used to
collect the results reported in this paper are publicly available at a Git repository
[5] under the GNU GPL v3 license.

The rest of this paper is organized as follows. Section 2 reviews the functioning
of ACOg. Section 3 presents a theoretical analysis of in which ways this same
metaheuristic can be adapted to the search conditions, along with a review of
the related literature. In Sect. 4 we propose the use of a success rate strategy to
estimate search conditions, and define three adaptive versions of ACOg based on
this strategy. The description of experiments and discussion of results is given
in Sect. 5. Finally, Sect. 6 concludes the paper with a summary of the conducted
research, along with the description of some possible future directions.

2 Ant Colony Optimization for Continuous Domains

In the optimization process of ACOg [19], the entire solution archive is initial-
ized randomly and the cost function of each random solution is evaluated. The
solutions are then sorted in ascending order of cost, in such a way that the
best solutions are located in the first positions of the archive, and each of the k
solutions in the archive is associated with a weight w; according to (1).

—[rank(j) —1)2
2¢2k?2 ) (1)

w; = e
! qk\/2m

in which rank(j) is the archive position, and ¢ is a parameter of the algorithm.
Hence, most promising solutions of the archive have the highest weight.
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A central concept to ACOg is that the archive ultimately represents a mul-
tidimensional Gaussian kernel, and each of its solutions define the center of a
multidimensional Gaussian function [19]. The realization of the kernel takes place
when, for every iteration, each of the m ants in the population chooses a solution
I from the archive with probability defined in (2) to use as the center, u, of the
Gaussian probability density function (PDF) defined in (3).

Pl = —— (2)
> j=1%j

The standard deviation of this Gaussian function is described in (4) as the
average absolute distance from the chosen solution to the entire archive, multi-
plied by a parameter £. Each of the ants then uses its own PDF to sample a new
solution, which has its cost evaluated and is appended to the archive. Finally,
the archive is sorted and the worst m solutions are removed at the end of each
iteration, such that the archive remains with the best k£ solutions.

. (- )
202
(s wi, 0 e i 3
gi(; piy 0;) o o (3)
P
s — wil
,L‘: 7, 4

where s; is the value of the ith continuous variable of the jth solution in the

archive. The random variable x is the domain of the PDF.

3 Possible Parameter Adaptions for ACOg

To change the parameters of metaheuristics dynamically during the search, a
measure of the search conditions must be defined (i.e. an ESE), and then mapped
to parameter values in such a way that it improves exploration and exploitation
capabilities of the metaheuristic (also referred as diversification and intensifica-
tion, respectively). To this end, we now analyse how each parameter of ACOg
affects the search and which adaption opportunities these parameters offer.

As described in Sect. 2, each of the ants must select a solution from the
archive as the center of a Gaussian distribution prior to sampling a new solution.
Considering (1) and (2), when ¢ approaches zero ants have a strong tendency to
select top-ranked solutions as their centers, while the selection probabilities are
less biased for higher values of this parameter [19]. Therefore we can say that
low values of ¢ favor elitism and exploitation of promising search regions, while
high values favor exploration of alternative regions.

In [22], authors modify ACOg for multimodal optimization problems using
niching methods. For each niche, the ESE is a function of maximum and mini-
mum fitness values of each niche and also of the entire archive. A different value
of ¢ is used for each niche, which is defined by an exponential function of the
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ESE. The proposed algorithm is then enhanced with mutation and local search
operators and evaluated against state-of-the-art multimodal optimization algo-
rithms, evidencing the superiority of the proposed method to handle multimodal
problems.

The dispersion of the PDF used by an ant to sample a solution is defined in (4)
by taking into account the archived solutions and a parameter £. High dispersion
values lead to high diversity in the search by increasing the probability of newly
generated solutions to be far from the centers of the PDFs from which they were
sampled. As the dispersion is directly proportional to &, the higher the value
for this parameter, the slower the convergence speed of the algorithm, since the
solution generation process will be less biased towards regions already present
in the archive. In ACO literature, this parameter is related to the pheromone
evaporation rate [19].

Instead of only assessing the search conditions to guide the adaption of the
parameter ¢, [17] computes the population diversity measure defined in [18] and
imposes a linear decay for this measure. The parameter is then adapted in the
attempt to ensure that the diversity measure follows the scheduled decay. The
value of ¢ is stochastically chosen, being sampled from a distribution with mean
defined by the adaption mechanism. Meanwhile, this work assigns a completely
random variable to the parameter &.

In [1], authors use an array of 14 predefined values for £. Each of these
values has an associated probability of being selected to influence the solution
generation mechanism, and this probability is defined by the past success of each
of the values in sampling of good solutions.

Since in ACOg each solution present in the archive defines the center of a
different Gaussian function, the archive size k determines the complexity of the
resulting Gaussian kernel PDF [19]. Large archive sizes favor exploration for
allowing less promising solutions to be memorized, when compared with a small
archive. Beyond that, when k is increased the elitism of the center selection
procedure is reduced according to (1). To take advantage of this relationship,
[13] proposes a growing solution archive. The growing mechanism by itself would
be characterized as prescheduled parameter control, but after a certain number
of iterations with relatively low fitness improvement the archive is restarted to
its initial size. By doing this, the algorithm adapts its archive size to the search
conditions.

When the optimization problem is constrained with a fixed budget of time
or number of objective function evaluations, the population size parameter m
determines how this budget is used over time in the search. When compared to
large populations, small populations lead to a greater number of iterations for
the same budget. In the most extreme case of a population with a single ant,
the archive is updated to each new solution generated. With a large population,
a number solutions from the same non-updated archive will be selected at every
iteration, and therefore we reason that the use of large population sizes results in
greater exploration capabilities. This is the only parameter of ACOg parameter
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which has not been adapted in the literature, and therefore this is an open
research topic to the best of our knowledge.

4 Colony Success Rate

The search conditions estimator used in this research is drawn from the idea of
success rate, a concept which has already been explored to guide the adaption of
evolutionary [2] and swarm-based metaheuristics [15]. When, at iteration ¢, an
an ant selects a solution s; from the archive with probability as in (2) and uses
it to sample a new solution with the PDF defined in (3), the success of the given
ant depends on whether the newly sampled solution improved over the center of
the PDF from which it was sampled. This description of the ant’s success, Stuqgnt,
is also expressed in (5).

_ J1if cost(sqnt,t) < cost(s;,t),
sttant(t) = {0 otherwise. (5)

After the success of every solution generated by the population at a given
iteration is evaluated, the colony success rate (CSR) is computed as the per-
centage of solutions which improved over their respective selected solutions, as
in (6).

sryep(t) = =120 )

A high success rate indicates that the selected solutions are probably closer
to local optima regions than to some global optimum, since in the first case
it would be easier for ants to improve over the selected solutions. Beyond the
perspective it provides about the search landscape, the CSR is easy to compute
and restricted to the range 0 < srpop(t) < 1. These characteristics make it a
promising estimator.

Once an ESE is defined, it is mapped to the values of parameters under
adaption using algebraic functions, fuzzy-based or entropy-based control [23]. In
this research we explore linear, exponential and sigmoid real-valued functions
to map the CSR to parameter values. The expressions for these functions and
the definition of their constants (concerning maximum and minimum values of
a given parameter when the domain is constrained to the [0, 1] interval) are
displayed in Table 1.

With the CSR as search condition estimator, we define three adaptive ver-
sions of ACOg depending on which parameter is dynamically controlled:

— AELACORg: Adaptive elitism level ACOg, which maps srpep to g.

— AGDACORgR: Adaptive generation dispersion ACOg, which maps 1 — s7pep to
£

— BAACOg: Bi-adaptive ACOg, which applies adaptions of both AELACOg

and AGDACOg.
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Table 1. Functions evaluated in the map from ESE to parameter values.

Name Expression Constants
Linear p(];) = Ax + B A= Pmaz — Pmin
B = Pmin
Exponential | p(z) = AeB” A = Dmin
B=1In (M)
. . — Pmin
Sigmoid T) = =
& p( ) 1+ Qein Q Pmin
max 2 — min
B=In ( P 2P )
2 — pmaz pmzn

The rest of this paper is dedicated to evaluate how well the functions in
Table 1 map the ESEs to parameter values, and to assess the performance of each
proposed modification. In this way, to the best of our knowledge, we conduct the
first research of the literature with simultaneous adaption of multiple parameters
in ACOg.

5 Experimental Study

5.1 Settings and Description of Experiments

All experiments detailed in this section were executed using Python 3.6.8 with
the NumPy module [16] for vector operations, and the DEAP module [8] for
benchmark functions. The the environment is composed of an octa-core Intel
Xeon ®):E-5405 processor, an 8 GiB RAM, running the Ubuntu 18.04.3 operat-
ing system. Because the algorithms under analysis are stochastic, we run each
experiment 100 times and report the resulting statistics.

To select which functions from Table 1 will be used to map the ESE to param-
eter values in AELACOg and AGDACOg, we split the synthetic objective func-
tions of Table 2 in train and test partitions. Train functions are used to evaluate
the adequacy of each map for each version of the algorithm, while test functions
are used to evaluate the performance of the proposed metaheuristics.

In the performance evaluation, we take into account the basic version of
ACOg, all three proposed modifications and adaptive versions of the particle
swarm optimization (PSO) and simulated annealing (SA) metaheuristics from
the literature. The adaptive inertia weight particle swarm optimization (AIW-
PSO) algorithm [15] relies on the swarm success rate as ESE, which is mapped
linearly to the values of the inertia weight parameter. Beyond the inertia weight,
ATIWPSO is also governed by its population size (m) and by the weights that
govern the trade-off between social and individual behaviour (¢, and ¢p). In
[14], authors propose a version of SA in which the perturbations used to gener-
ate new solutions are random variables following the Bates distribution, and the
adaption takes place by modifying the dispersion of the distribution though the



172 V. O. Costa and F. M. Miiller

Table 2. Objective functions used in this research, with minimization as objective and
global optima at f(z) = 0.

Partition | Function d | Range Expression

1 d 2
(1) Ackley 3[=15,30]¢ | f1(x) = 20 — 20e~ "2V 4 Tty
te— 6% Zle cos(2mwzx;)

(2) Griewank 3|[—600,600]¢ |fa(x) = ﬁ Zle x?

Train i
d i
— 15— cos (%) +1
(3) Rosenbrock |3 | Unbounded |f3(x) = Z;i;ll 100(z? — wi41)?2
+(1 - xi)?
(4) Schwefel 3[[=500,5001¢ | fa(x) = a-d— % zsin(y/|a])*
*a = 418.9828872724339
(5) Bohachevsky |3 | [—100,100]1¢ | f5(x) = S0 0.7+ 22 + 222, |
—0.3cos(3mx;) — 0.4cos(dnxijt1)
(6) Cigar 3 | Unbounded | fs(x) = 22 + 106 ;'1:1 z?2
Test | (7) Himmelblau |2 |[-6, 6]7 fr(x) = (22 + 29 — 11)2

+H(w1 + 2% —7)2

(8) Rastrigin 3([=5.12,5.12]¢ | fs(x) = 10d
+>°¢ 22 — 10cos(27x;)

=11

(9) Schaffer 3/[~100,10017 | fo(x) = S¢7] (a2 + 22, )02
[sin2(50 - (22 + 22, 1)019) + 1]
(10) Sphere 3 | Unbounded | fio(x) = Zle z?

so-called crystallization factor. Since in the proposal each dimension has its own
crystallization factor, the search happens in an anisotropic manner. The other
parameters that influence this metaheuristic are the number of local iterations
(localiiy), the initial temperature (Tp) and the cooling constant (7). The pro-
posed SA modification is hereinafter called the adaptive crystallization factor
simulated annealing (ACFSA). Here we implement only the mechanisms pro-
posed to adapt parameters of the original algorithms, and leave aside additional
mechanisms unrelated to parameter adaption.

To avoid offline parameter tuning, we employed values already present in the
literature for the constant parameters of all algorithms, and also for minimum
and maximum values of the adaptive parameters. These values are displayed in
Table 3.
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Table 3. Parameters used for each metaheuristic.
ACOgr |AELACORr | AGDACOr |BAACOg AIWPSO | ACFSA
m=10 |m =10 m =10 m = 10 m = 20 local;s = 100
k=50 k=250 k=50 k=50 w € [0,1] |n=0.99
g=0.01|q€]0.01,1] ¢=0.01 q €10.01,1] |cg=2 To = 50
£E=0.851£=0.85 £€[0.1,0.85] | £ € 10.1,0.85] | ¢, =2

5.2 Results and Discussion

As mentioned earlier, here we compare the performances of three different func-
tions to map the CSR estimator to the values of ¢ (in AELACOg and BAACORg)
and ¢ (in AGDACOg and BAACOg).

Regarding the performance of each function from Table 1, the average costs
reported in Tables4 and 5 for a total of 5E3 objective function evaluations on
the train partition evidence that nonlinear maps prevail over linear ones for the
proposed algorithms. More specifically, the exponential function was the best
map to parameter ¢ for all functions, while the sigmoid was the best map to &
for most of the functions, in the context of AELACOgr and AGDACOg, respec-
tively. We note, however, that the exponential and sigmoid functions have only
minor performance differences in most cases. Henceforth, the proposed parame-
ter adaptions are always associated with the forementioned maps.

Table 4. Average costs of AELACOg for each map from ESE to q.

Function | Linear Exponential | Sigmoid

1 7.919E—14 | 0.000E+00 |3.553E—17
2 5.112E—02 | 4.470E—02 | 4.486E—02
3 3.200E—01 | 2.238E—01 | 2.793E—01
4 2.458E4-02 | 2.232E+02 | 2.323E+4-02

Table 5. Average costs of AGDACOg for each map from ESE to &.

Function | Linear Exponential | Sigmoid

1 2.120E—-02 | 3.908E—16 |3.553E—-16
2 4.427TE—02 | 4.019E—02 |3.815E—02
3 5.958E—01 | 2.74TE—01 |3.453E—-01
4 1.669E+02 | 1.509E+4-02 | 1.363E+02

To evaluate how the proposed algorithms perform against the basic non-
adaptive ACOgr and other adaptive algorithms, we collect results of ACOg,
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AELACOg, AGDACOg, BAACOg, ATWPSO and ACFSA in the test partition
of objective functions, considering a budget of 1le5 function evaluations. With
BAACOg we use the best performing map for each parameter, i.e. the exponen-
tial map for ¢ and the sigmoidal one for £&. The average cost values shown in
Table 6 evidence the advantages of the proposed adaptions. We note that, for
most functions, the basic ACOg already outperforms the adaptive versions of
other metaheuristics in terms of average minimum cost, but it is mostly out-
performed by its adaptive versions. Apart from instances 5, 6 and 10, for which
multiple algorithms reach perfect convergence, BAACOg has the lowest average
cost when compared to all other metaheuristics. The corresponding standard
deviations in Table 7 show that the dispersion of cost values is similar among
ant-based algorithms. Nevertheless, AGDACOgr and BAACOg have zero stan-
dard deviation for an instance in which ACOgr does not. When considering all
metaheuristics, AIWPSO has the lowest standard deviation for instances 8 and
9, but its average cost for these instances is relatively high. Therefore, the low
standard deviation values of AIWPSO for these instances cannot be considered
evidence of superior robustness.

Table 6. Average cost of metaheuristics for each test function.

Func.

ACOr

AELACOgr

AGDACOr

BAACOr

AIWPSO

ACFSA

1.239E-02

4.129E—-03

0.000E4-00

0.000E4-00

0.000E4-00

7.572E-01

0.000E4-00

0.000E4-00

0.000E+4-00

0.000E4-00

0.000E4-00

1.038E—-05

3.313E-31

2.367E—31

2.445E-31

1.578E—-31

1.642E—-19

1.059E—-08

1.363E+00

1.522E4-00

1.234E4-00

1.094E4-00

2.896E-+00

2.882E+01

NeRie BN B Re NG

2.676E—-03

2.490E—-03

1.322E—-03

1.215E—-03

5.624E4-00

1.695E4-01

0.000E4-00

0.000E4-00

0.000E4-00

0.000E4-00

0.000E4-00

2.629E-07

Table 7. Standard deviations of cost values found by metaheuristics for each test

function.

Func. | ACOg AELACORr | AGDACOgr | BAACOr |AIWPSO |ACFSA

5 7.044E—-02 | 4.109E—02 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 6.473E—01
6 0.000E+-00 | 0.000E+400 | 0.000E4-00 | 0.000E+00 | 0.000E+00 | 1.017E-—04
7 3.893E—31 | 3.615E—31 | 3.648E-—31 | 3.155E—31 | 1.634E—18 | 1.048E—07
8 1.031E4-00 | 1.505E+00 | 1.016E400 |9.999E—01 | 4.768E—01 | 1.464E+01
9 5.696E—03 | 5.846E—03 | 3.594E—03 | 3.211E—03 | 1.776E—15 | 3.377TE+00
10 0.000E+00 | 0.000E+4-00 | 0.000E+00 |0.000E4-00 | 0.000E+00 | 2.615E—06

To analyse the statistical significance of the wins and losses of the proposed
adaptive metaheuristics against the basic ACOg, we use the Wilcoxon signed-
rank test for paired data [21] with the costs present in Table 6. Table 8 displays
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the p-values between each proposed modification and ACOg for the set of test
functions. Although the average costs of AELACOg and AGDACOg are lower
when compared to the basic algorithm in many functions, most of these wins are
of little statistical significance. On the other side, BAACOg has the best overall
average cost among test functions and is characterized by the most significant
wins. If we consider the common confidence threshold of 95%, BAACOg signif-
icantly outperforms ACOg in instances 7 and 9, while all other algorithms have
performance similar to ACOg. The performance of BAACOg is a consequence of
how the simultaneous adaption of parameters creates a balance between explo-
ration and exploitation during the search. For high values of the CSR, when
promising solutions are most probably in local minima regions, the parameters
q and £ of BAACOg are expected to have high and low values, respectively.
In this setting, due to ¢ ants are not elitist and have a similar probability of
selecting any solution from the archive to define the centers of the distributions
from which they will sample new solutions, but because of £ this distribution has
low dispersion, i.e. the sampled solutions are likely to be close to the centers of
the distributions. This results in exploratory behaviour through exploitation of
regions which are not considered promising. When the success rate is low, higher
quality solutions are preferably chosen, but the dispersion of the sampling is also
high, which results in the conservation of solution diversity even when exploiting
top-ranked regions.

Table 8. Statistical significance of adaptive versions against ACOg. Green-colored
boxes represent wins against the base algorithm, while orange boxes indicate losses.

Function AELACOr AGDACOr BAACOR

5 0.5775 0.1025 0.1025
6 — — _
7 0.0641 0.0934 0.0005
8 0.6675 0.3437 0.0724
9 0.7991 0.0597 0.0167
10 = = —

While Table 6 displays the performances of algorithms after a large number of
iterations, Fig. 1 offers a perspective of how each algorithm behaves over time.
Each of the plotted curves is the average cost history considering 100 runs,
with a granularity of 100 function evaluations. Among all presented algorithms,
ATWPSO is the one which converges faster to good search regions, but in later
search stages it is mostly outperformed by ACOg-based algorithms. On the
other side, the curves for ACFSA were not displayed for most of the functions
due to the late convergence of this algorithm. When comparing ACOg-based
algorithms, there is no clear winner in terms of convergence speed.
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Function evaluations Function evaluations
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ACOR AELACORr AGDACOR BAACOR AIWPSO ACFSA

Fig. 1. Cost history of each metaheuristic for each test function, considering the average
costs over 100 runs of the experiments.

6 Conclusion

Based on the parameter control literature, we have analysed in which ways the
parameters of the ACOg metaheuristic can be adapted according to a search con-
dition estimator. The conducted experimental study shows that the colony suc-
cess rate is an adequate estimator of the search conditions, leading to algorithms
with good performance when mapped by nonlinear functions to the parameters
under adaption. Beyond that, our experiments evidence the benefits of combin-
ing multiple adaptions when their effects on diversification and intensification
behaviours are known and well explored, which resulted in the promising perfor-
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mance of BAACOg. An obvious future work direction is to evaluate BAACOg
against a larger pool of adaptive metaheuristics for a greater number of objec-
tive functions. With the benefits of the simultaneous adaption of multiple ACOg
parameters, applying this approach with sets of parameters not considered here
is a promising research field. We also identify that the effectiveness of adapting
of the population size parameter in ACOg is as an open research question.
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Abstract. Image Enhancement is one of the most important phases of
the image processing system. Contrast Enhancement plays a key role in
this step. Histogram Equalization (HE) is one of the main tools used
to improve the contrast of an image. However, the use of HE causes an
increase in the natural brightness of the image, which is not desirable
in many types of applications such as consumer electronics products. To
solve these limitations, it is proposed in this paper a variation of the
Differential Evolution metaheuristic algorithm for Contrast Optimiza-
tion called DECO. The results obtained were statistically compared with
other techniques and metaheuristic algorithms. The results showed that
DECO is competitive compared with other techniques.

Keywords: Differential Evolution - Contrast Optimization

1 Introduction

Despite the evolution of photo camera sensors and processing algorithms in cap-
turing the image, it is still a challenge to obtain images that present a good
contrast quality. Image pre-processing is one of the key steps in the image pro-
cessing area. Its main function is to transform the image obtained to present an
improvement for the subsequent processing step, such as detection and identifi-
cation [7].

Image enhancement is a technique widely used in this step. The main objec-
tive of image enhancement is to make changes to the image’s attributes so that its
use in a given task is more appropriate for a specific observer [11]. For example,
image enhancement is essential in medical diagnostics, or iris and fingerprint
enhancement systems for biometric recognition systems. It is usually done by
increasing the contrast or by suppressing the noise [11].

A wide number of algorithms are used to enhance the image quality. His-
togram Equalization (HE) is considered one of the most common techniques
used to enhance the contrast of grayscale images [7]. Its goal is to use an evenly
distributed histogram with a cumulative density function [3]. The HE can cause
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problems related to the image brightness level, mainly in consumer electronics
applications. In this case, preserving the brightness is essential for the success
of the application [3]. Different methodologies based in HE are found to fix the
problem of preservation of brightness. However, these methods fail to produce,
with low cost, natural quality images. CLAHE [16] (Contrast Limited Adaptive
Histogram Equalization) is a well known adaptive method of HE in the litera-
ture. Its improvement allows it to add restrictions to the HE and preserve certain
characteristics of the image.

In recent years, with the emergence of several quality metrics for improv-
ing images, it has been possible to use metaheuristic algorithms to perform this
step. Contrast optimization aims to improve image contrast by defining it as a
restricted nonlinear optimization problem. Several works have been developed
for this purpose. Evolutionary Genetic Algorithms [9,13,18], Particle Swarm
Optimization (PSO) [1] and Ant Colony Optimization (ACO) [10] have good
results for the problem. In [9] a new representation of the solution widely used
in Contrast Optimization is presented. The genetic algorithm proposed obtains
excellent results in improving the contrast of images. However, the defined objec-
tive function can be further improved to maximize its results. The algorithm per-
formance is questionable concerning the execution time, because few iterations
were used in its tests. They also do not implement statistical testing procedures,
which make it difficult to compare the divergent results of experiments between
researchers.

This paper presents a metaheuristic algorithm implementation called DECO
(Differential Evolution for Contrast Optimization). Its implementation has sin-
gularities for the contrast improvement problem, in addition, an objective func-
tion with additional parameters is used, based on in [14] that improves the results
of the final images. The main contribution of contrast optimization algorithm
DECO is related to your high convergence speed for the better solution, besides
its simple structure, versatility, and robustness. Our implementation is based on
Differential Evolution (DE) developed by Storn and Price [20] which is one of
the most superior evolutionary algorithms.

In addition, DECO is evaluated through a comparative analysis between stan-
dard methods of contrast improvement and Contrast Optimization techniques.
In those set of experiments, a statistical comparison based on [5] is performed
between different algorithms. The performance of the algorithms is analyzed
using three different criteria. The adapted fitness function proposed by [9], the
Peak Signal-to-Noise Ratio (PSNR) image quality criterion, and the time that
the algorithm took to find the best solution. The results found demonstrate that
DECO achieves positive results when solving the problem of improving image
quality.

The remainder of the paper is organized in: Sect.2 details the problem to
be addressed. Section 3 presents the algorithm and its specifications, while the
experiments and results are provided in Sect.4. The conclusion is reported in
Sect. 5.
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2 Background

2.1 Problem Formulation

Exists two categories of approaches for solving the problem of image enhance-
ment: filtering techniques and contrast enhancement methods. Filtering consists
of replacing the gray level of a given pixel with another calculated through the
neighborhood. The contrast enhancement is the operation that maps the gray
levels of the image creating a new set of gray levels distributing more homo-
geneously. The contrast enhancement can be divided into two types: global or
local. Global techniques are based on mapping all gray levels of the image and
making changes to that mapping to change the contrast of the whole image.
Unlike global techniques, local ones use different functions in different areas of
the image to make local changes [1].

Global techniques are suitable for general image enhancement. However, they
often fail to adapt to local characteristics of the image, such as brightness.
Because gray levels with high frequency often tend to dominate those with low
frequency. Local techniques are able to contour with the problems presented by
global techniques. However, they have a high cost of performance and tend to
bring a high level of improvement in only certain portions of the image and
generally increase the noise in the image.

The contrast enhancement problem can be solved using optimization tech-
niques with approaches to global image processing techniques. The representa-
tion of the solutions is based on the same used in [9] that manipulates it to
represent the chromosome in the Genetic Algorithm. The desired solution can
be seen in the upper part of Fig. 1. An ordered vector of size D of integers values
that vary in the range of [0,255]. The size D represents the number of gray levels
of the input image. Each level of gray found in the image is indicated in an index
of the vector. The first index of the solution means the lowest level of gray found
in the image. The second index is the second smallest, and so on.

To remap the image the value of the first gray level of the generated solution
is used instead of the first gray level value of the original image. In this way, dif-
ferent histograms are generated trough modifications in the solution. Given the
example in Fig.1 the transformation that will be applied to the input image
has the following description: f(40)=0, f(88)=42, f(97)=79, f(121)=113,
f(143) =188 and f(201) =255.

To convert the solution into an image, it is necessary to use a specific data
structure for the problem. Such structure maintains the coordinates of each gray
level of the original image. Thus it is possible to change the levels of the original
image according to each gray level of the transformed solution. So it is possible
to observe the image generated and perform a qualitative analysis of it.

The objective function, also known as fitness, has the role of evaluating and
measuring the quality of the generated solution. For the contrast enhancement
problem, a grayscale image with good contrast include many intensive edges [18].
The function fitness adopted in [9] is shown in Eq. 1:
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‘ 40 | 88 | 97 |121 |143|201‘ | 0 |42 | 79 |113|188|255|

1 2 3 4 5

, |

40 88 97121 143 201 0 42 79 113 188 255

(a) (b)

Fig. 1. (a) Histogram of the input image and (b) Histogram of the output image.

fitness(s) = log(log(E(I(s)))) *ne(I(s)) (1)

Where fitness(s) represents the objective function of a solution s and I(s)
represents the image generated after remapping the solution. E(1(s)) is the sum
of the intensities of the generated image edges. This sum is calculated using the
following expression [4]:

E(I(s) =YY Vh(w,y)? +ou(z,y)? (2)

T

On Eq. 2, h(z,y) and v(x,y) represent, respectively, the horizontal and vertical
gradient for the point (x, y) of the image. These values are obtained from the
convolution of the Sobel edge detector [7]. The log(log(E(I(s)))) is used in the
sum of the intensities to prevent the production of unnatural images [9]. The
number of edges detected in the image is represented by ne(I(s)) using the
convolution result and an automatic threshold value [17].

To evaluate the quality of the solution in our algorithm, a new value will
be used that improves the Eq.1 by adding the entropy of the image. The for-
mula demonstrated in Eq. 3, used by [1,6,8,14,19], has the entropy of the image
H(I(s)) as more one component of the calculation. The higher the entropy value
of the image, the more quality it has.

fitness(s) = log(log(E(I(s)))) * #*(SP)‘)/ x H(I(s)) (3)

In addition to entropy, two new values appear in the equation: PH and PV.
These values represent respectively the number of horizontal and vertical pixels
in the image.

2.2 Related Work

Different approaches for improving contrast using metaheuristics are found in the
literature. The first methods that provided the basis for contrast optimization
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used evolutionary strategies and genetic algorithms as an example in [12,15]. In
those works, the standard selection approaches in the genetic algorithm were not
performed. Instead, a technique based on user experience was implemented to
select the best individuals. The tests in [15] obtained good results on magnetic
resonance images and in [12] on satellite images. The work on [18] is one of the
pioneers to completely automate the optimization process by metaheuristics. The
proposed solution removes the human need by declaring an automatic objective
function. The function is performed based on the sum of the edges intensities.
Their implementation based on a genetic algorithm uses a Prewitt operator [7]
to calculate the objective function. The method proved to be effective in the
experiments as it presented results that improved and kept natural the contrast
of the tested images.

Modern approaches have come to address the use of different optimization
algorithms to solve the problem of image contrast. Different ways of measuring
the objective function are adopted, such as entropy, the number of pixels in the
image, and the intensity of these pixels. In [19] the Differential Evolution (DE)
algorithm with different chaotic sequence approaches is proposed to solve the
problem of contrast optimization. Their results prove to be satisfactory when
comparing to the different DE approaches proposed. A hybrid algorithm that
uses the join of Ant Colony (ACO), Simulated Annealing (SA), and a genetic
algorithm is proposed in [10]. The results are compared with the algorithms
of [1,13] and it shows to be superior.

The work on [9] proposes a spatial approach to represent the solution of the
problem. This methodology is used as a reference by several articles in the lit-
erature. Both for its behavior in mapping the solution, and in the comparison
of its results. His approach, previously discussed, is the same used in this paper
described in the previous section. Their genetic algorithm has specific selec-
tion, crossover and mutation operations that lead to excellent results in image
contrast and PSNR in the most divergent types of images. The results com-
pared to other optimization algorithms and contrast improvement techniques of
the epoch demonstrated superiority. In [6] an algorithm based on Artificial Bee
Colony (ABC) is proposed. This proposal uses the concept of [9] to represent the
solution, however, it uses a more robust fitness function. Their results surpass
the genetic algorithm of [9] in 4 out of 5 cases.

The proposal in [2] diverges from the previous works because it does not
represent the solution for optimization. It uses the Artificial Bee Colony to find
the best parameters for the Incomplete Beta Function (IBF), which has proven to
be effective in enhancing image contrast. Most related works present qualitative
and quantitative tests to validate their results. However, as verified in the tests
presented in [2,6,9], no statistical methodologies are used to validate the results
found. Some works [6,9] has a small number of iterations and is not reported the
number of times that the algorithms were executed in order to obtain a diversity
of cases for analysis.
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3 Differential Evolution for Contrast Optimization -
DECO

The algorithm proposed in this paper called DECO (Differential Evolution for
Contrast Optimization) is based on the Differential Evolution (DE) algorithm
proposed by [21]. The main motivation for choosing this algorithm as a base is
that it is one of the evolutionary algorithms that present high consistency and a
high degree of performance when compared to other evolutionary algorithms. Its
global search capability, effective handling of restrictions, reliable performance,
and low need for information mean that the algorithm has a high potential to
solve several problems in image processing [19].

3.1 Differential Evolution (DE)

The standard approach of the DE algorithm needs four different parameters for
its initialization. A maximum value t,,,, representing the number of iterations
performed or the number of generations. The size of the population to be used:
popsize. The mutation rate factor F' used to create the differential vector and
CR the probability of performing the crossover.

Mutation Operation (or Differential Operation). DE has variations in
its implementation forms. The general convention for the nomenclature of these
variations is given by DE/a/3/v. The « represents how the differential vector
will be disturbed. The 3 is the number of differential vectors used in the perturba-
tion and the ~y represents the type of crossover. In this paper, was implemented
the standard form of DE, also known as DE/rand/1/bin [21] represented by
Eq. 4:

ViG+1 = Tr1,c + F - (Zra,6 — r3.6) (4)

The rand means that the vector will be randomly selected and the bin means
that the crossover is performed in “Binomial” scheme. A variation of the algo-
rithm was also implemented, which was called DECO-BEST. The proposed algo-
rithm has the form DE/best/2/bin as base. The best means that the best vector
will be selected. This form is a high benefit method that deserves special atten-
tion [20]. It mutate individuals according to the following Eq. 5:

Vi, G+1 = Thest,G + F. (xrl,G + Tr2,G — Tr3,G — xr4,G) (5)

In the above equations, the value z; represents an individual from the popu-
lation of size NP. The elements rq, ro, r3,and r4 are random individuals selected
from the population. G represents the generation which that individual belongs.
The mutation factor is described by F € [0,2] and v; g41 represents the dif-
ferential vector generated to perform the crossover operation with the selected
individual. In Eq.5 the value described by xpest,¢ represents the best fitness
solution of that generation.
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Crossover Operation. The crossover is applied after the mutation operation
to mix individuals with the differential vectors resulting from the operation,
increasing the diversity of individuals. The resulting individual is generated by:
vji,c+1 if (randb(j) < CR) or j = rnbr(i),
Uji,G+1 = . . . . (6)

Zji.c if (randb(j) > CR) and j # rnbr(i).

On Egq. 6, j represents each position of the individual’s vector. The value of
randb(j) is the jth random value generated in the range of [0,1]. rnbr(i) is also a
random value of ¢ € [1,D] it guarantees that at least one position of the vector
will be changed.

Selection Operation. The selection step has as main objective to select which
individual will be chosen for the next generation, G + 1. Among the choices
are the individual from that iteration z; ¢ and the individual generated by the
mutation and crossover u; ¢4+1. The choice is based on the fitness value of the
individuals. The one with the highest fitness value will be chosen for the next
generation.

3.2 DECO Implementation

The pseudocode in Algorithm 1 describes the main steps that have been imple-
mented for the proposed contrast enhancement algorithm. First, the algorithm
receives an image and the same parameters of the DE. Through the input image
it is possible to extract basic structures that will serve as support for the rest
of the algorithm. After that the steps follow the same structure as the standard
implementation of the DE algorithm [21].

An initial population of size NP is created with random values. From ¢4
iterations, changes are made to the populations to improve the objective func-
tion. The change is based on, for each p of the population a new individual ¢
is generated by adding and subtracting vector from p with 3 other individuals
in the population: a, b, and c¢. The new son ¢ will be compared with the father
p and it will be added to the population if it has a greater fitness value, other-
wise it will be discarded. Because we are dealing with a maximization problem,
higher values of the objective function indicate optimization in the final result.
The best individual found is maintained and updated in each generation. Thus,
at the end of the optimization, the data for the experiments will be extracted
from the best solution and the image generated through it.

ExtractMapper Function. This function, referenced on line 2, is responsible
for generating the M structure that will be used to maintain the data from the
original input image and perform the solution conversion. A scan of the original
image is performed to extract the standard solution and the size of this solution
D which represents the number of gray levels of the individuals that will be gen-
erated. It is important to note that this value must be ordered so that there is
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Algorithm 1: DECO

input : An image I and the DE parameters: t,,q., popsize, F, CR
output: The optimized image O

1 begin

2 M «—— EztractMapper(I);

3 P «—— Initialize Population(M, popsize);

a4 repeat

5 Q «— 0;

6 for p € P do

7 a «—a copy of an individual other than p, randomly chosen;

8 b «——a copy of an individual other than p and a, randomly chosen;
9 ¢ «——a copy of an individual other than p, a and b, randomly chosen;
10 d «—— GenerateDif ferential(a,b, c, F);
11 q «—— CrossOver(d, p, CR);
12 if Fitness(q, M) < Fitness(p, M) then
13 | ¢« Copy(p)
14 if Fitness(best, M) < Fitness(q, M) then
15 | best — Copy(q)
16 Q.add(q);
17 P «—— Copy(Q);
18 until reach the mazimum number of iterations: tmaxz;
19 O «—— GenerateImage(M, best);

a reference between the original solution and the new individuals. Also, a coor-
dinate map of the original solution is kept in memory. Such map is responsible
for transform individuals into images. Each gray level of the original image is
changed in its different coordinates, for each gray level position changed in the
new individual.

Initialize Population Function. With the solution size D found in the previ-
ous step, it is possible to initialize, line 3, a population of size NP of individuals
through a random process. An individual in the population is represented by a
vector of size D with values in the range of [0,255]. To maximize the range of
gray levels, a value of 0 is assigned to the first element of the vector and a value
of 255 to the last one [9]. The vector created is increasingly ordered in order to
comply with the requirements of the proposed solution.

GenerateDifferential Function. Also known as the Mutation Operation (or
Differential Operation), this function is demonstrated in line 10. Its task is to
generate the individual d through the operation defined in the Eq. 4, in the case
of DECO-BEST the Eq.5. It is important to note that the values generated
in this operation can escape the domain of the integers in the range of [0,255].
Therefore, it is important to perform rounding and apply the range limits. If
a value generated is not within the bounds, a new random value that does not
belong to the individual is generated.

Crossover Function. In this function, referenced on line 11, the individual
q is generated by mixing the individual from the differential operation d and
the individual p from the current iteration. The function implementation follows
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the steps of the Eq.6 where there will be at least one change in values between
individuals. At the end of the process, it is necessary to reorder the vector of
the individual ¢ because the exchange of values in the crossover can generate
anomalies in the resulting image for that individual.

Fitness Function. It is necessary to transform the solution into an image to
calculate the objective function based on Eq. 3. The structure in M must be used
to perform the conversion. With the resulting image it is possible to apply the
Sobel edge detector to extract the gradient according to Eq.2 and extract the
remaining values that result in fitness. The fitness calculation of each individual
is stored in memory internally in the individual’s object to avoid excessive-
performance expenses. Because the steps taken to reach fitness proved to be
costly in large size images.

GenerateImage Function. After performing the optimization step, the best
fitness individual named best is chosen. It will be possible to obtain a final image
of this individual, on line 19, by remapping best with the data kept in M for the
entry image I and the initial solution that is kept in memory.

4 Experimental Results

In this section the two DECO and DECO-BEST implementations are applied
to a validation process. Different types of grayscale images were used that cover
different levels of contrast indicating different scenarios of use of the algorithms.
Several algorithms and metrics are used, through a statistical comparison, to
obtain validity in the tests performed.

4.1 Algorithms and Parameters

The experiments were performed with algorithms widely used in the literature to
improve the contrast, such as Histogram Equalization [7] and CLAHE [16]. Also
were included methods of contrast optimization based on metaheuristics, such
as the genetic algorithm proposed in [9] and the ABC demonstrated in [6], which
use the same representation of the solution and obtained good results in their
experiments. First, it is necessary to carry out initial isolated tests on DECO
and DECO-BEST to find initial parameters that would bring relevant results to
the work.

For DECO, DECO-BEST algorithms, and the genetic proposed by [9] the
tmaz value for the number of iterations it was set to 1,000, and the value NP
for the population size is set to 20. In DECO and DECO-BEST algorithms,
the following parameter values were used: F = 1, and CR = 0.9. Such values
obtained good results in initial isolated tests with different types of images. In the
genetic algorithm, the crossover rate and mutation rate values were respectively
0.8 and 0.1. As indicated in the tests carried out in [9]. In the ABC algorithm [6]
were used the same parameters proposed in the paper: number of solutions 25,
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both for the number of employed bees and onlookers. And the threshold of
activation of the scouts limit is set to 5. Only the number of iterations ¢,,,, has
been changed to the value of 400 to balance the number of executions of the
objective function with the other algorithms.

4.2 Images and Metrics

A set of 5 images in grayscale with different sizes, taken from the literature and
related works, were used for the experiments. The images are named by: Airplane
(size: 512x 512), Cameraman (size: 256 x 256), Crowd (size: 512x512), Messier83
(size: 640 x 640), and Chest X-Ray (size: 482 x 551). Airplane and Cameraman
presents a good variation of pixel intensities and frequencies. The Messier83
and Chest X-Ray images have many pixels with low intensity. Messier83 also
has a high region with low frequency of pixels intensity. The Crowd presents the
highest variation of pixels intensity between the images, which results in a more
equalized image. These images will make it possible to evaluate differences in
the execution of the algorithms in different image sizes and characteristics.

The performance of the algorithms is analyzed using three different criteria.
The fitness value of the best individual in each algorithm is used to analyze
which optimization achieved the best performance. With this comparison it is
possible to evaluate which algorithm can reach a higher number of intensive
edges. The Peak Signal-to-Noise Ratio (PSNR) image quality criterion, which
measures the noise ratio between the original image and the enhanced images.
And the execution time that the algorithm took to find the best solution.

Metrics evaluation will be performed using non-parametric tests with multi-
ple comparisons [5]. Each algorithm was executed 20 times and its values of u
(mean) and o (standard deviation) for each metric are counted for each algo-
rithm. It is necessary to apply a multiple comparison between the algorithms
to know if they are equivalent or not. In this paper the Kruskal-Wallis test was
used to verify if one algorithm is significantly different from the other. It is nec-
essary to reach a p-value < 0.05 for a aw = 0.05. This value indicates the lowest
level of significance that results in the rejection of the null hypothesis [5].

4.3 Results

In the first step, the algorithms were statistically evaluated for their perfor-
mance over the fitness value of the best solution. Only metaheuristic algorithms
participate in this phase because they are directly influenced by the value of
fitness. The values of p (mean) and o (standard deviation) for each algorithm
are shown in Table 1. It is shown in Table 2 the values of p-value resulting from
the Kruskal-Wallis test to compare the results of fitness in the algorithms. The
values in bold in this table represent that the algorithms are comparable to each
other. It is possible to notice that the DECO and DECO-BEST algorithms had
comparable results in all images. The Kruskal-Wallis test of these two algorithms
results in a p-value > 0.05.
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Table 1. Fitness mean and standard deviation.

Test image | [9] [6] DECO DECO-BEST
Airplane pw=19.79  p=20.46 | p = 19.98 | p = 19.99
0=016 |0 =0.10 |c=0.06 |o=0.05
Cameraman |pu=17.40 | p=1779 p=17.45|p =17.44
06=020 |0=0.09 |¢=0.03 |o0=0.04
Crowd w=2122 | p=21.75|p=21.37| p=21.40
0=010 |¢=0.09 [0=0.02 |0c=0.03
Messier83 p=2501 | ©=2559 |u=>556 |pu=>5.56
0=003 |0=009 o0c=001 |c=0.01
Chest X-Ray | u=16.89 | p=16.19  p = 16.29 | u = 16.28
0=028 |0=0.15 |0 =0.03 |0 =0.03

Table 2. Kruskal-Wallis test on fitness.

Comparison Airplane | Cameraman | Crowd Messier83 | Chest X-Ray
[9] versus [6] 5e—14 5.3e—07 1.0e—13 | 0.0014 4.6e—09

[9] versus DECO 0.00049 | 0.99 0.02987 | 0.0019 0.00044

[9] versus DECO-BEST 0.00014 | 1.00 0.00034 | 0.0027 3.0e—05

[6] versus DECO 0.00014 | 3.0e—06 5e—06 0.9998 0.12570

[6] versus DECO-BEST 0.00049 | 3.3e—07 0.00133 | 0.9980 0.38305

DECO versus DECO-BEST | 0.99068 | 0.98 0.58495 | 0.9996 0.93247

a = 0.05

In the images Airplane and Crowd it is possible to observe a better result
of algorithm [6] despite its high standard deviation value. At Cameraman the
results are very similar, but for Kruskal-Wallis, algorithm [6] differs from the
others. In Messier83 only the algorithm [9] obtained a lower result than the rest
of the algorithms, differently from Chest X-Ray where it obtained the best result.
It is notable in all images that the standard deviation of DECO and DECO-
BEST are lower than their competitors, demonstrating a standard of reliability
in the execution of the algorithm. And despite some draws, the algorithm [6]
was more successful in maximizing the objective function.

In the second step, the algorithms are compared using the PSNR. The pur-
pose of this test is to analyze the noise ratio of the generated image compared to
the original image. The HE and CLAHE techniques participate in these experi-
ments, but the mean value and standard deviation for these algorithms are not
shown because several executions of these techniques arrive at the same result.
The test data can be found in Table 3. The results of PSNR shows that the HE
and CLAHE algorithms add less noise to the images, only in Messier83 that
their results are worse than the metaheuristic algorithms, mainly the HE result.
Among the metaheuristic algorithms it is possible to see in Table4 that there
were several equivalences between them. The algorithm in [9] added less noise to
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the image only in the Airplane and in Cameraman, where there was equivalence
with all the other algorithms. [6] was superior in isolation in the image Crowd
and the Cameraman, in Messier83 it was equivalent to the others. DECO and
DECO-BEST were superior in the image Chest X-Ray and equivalent in Camera-
man and Messier83. When matching the data of these two tests, it is interesting
to note, for example, that in the image Chest X-Ray the algorithms DECO and
DECO-BEST despite being comparable with [6] in fitness, maintain a better
quality in the final image. In the image Crowd the algorithm [6] is superior in
isolation in both metrics.

Table 3. PSNR mean and standard deviation.

Test image |HE |CLAHE | 9] [6] DECO DECO-BEST
Airplane 21.87|23.64 pw=20.70 | p=19.43  p=19.70 | p = 19.49
0=051 |0=089 [0=043 |0 =047
Cameraman |21.58 | 22.86 pw=18.33|p=1819 | p=18.06 | © = 18.46
0=056 |0=072 [0=0.69 |0=0.35
Crowd 15.39 | 21.38 pw=11.26|p=12.60 p=11.74 | p = 11.92
c=028 |0=048 |0=0.27 |0=0.34
Messier83 3.68 |19.78 1 =20.60 | p=21.69 p=21.67p=21.54
0=045 |0=132 |[0=0.36 |0=0.38
Chest X-Ray | 14.36 | 18.54 w=16.82|p=16.98 | p=17.54 | p=17.50
0=041 |0=080 |0c=0.59 |o=047

Table 4. Kruskal-Wallis test on PSNR.

Comparison Airplane | Cameraman | Crowd Messier83 | Chest X-Ray
[9] versus [6] 5.5e—06 | 0.875 5.3e—11 | 0.00129 0.8994
[9] versus DECO 0.00047 | 0.66 0.01403 | 6.4e—06 0.0051
[9] versus DECO-BEST 3.8e—06 |0.75 0.00030 | 0.00014 0.0046
[6] versus DECO 0.76870 | 0.98 0.00078 | 0.63272 0.0437
[6] versus DECO-BEST 0.99985 | 0.28 0.02817 | 0.94988 0.0405
DECO versus DECO-BEST | 0.72528 | 0.14 0.72528 | 0.91446 1.0000
a = 0.05

The third step is characterized by accounting for the total execution time
of the algorithms, demonstrated in Table5. As expected, the HE and CLAHE
techniques obtain execution time values in milliseconds, due to the algorithm
technique, so only the results of the metaheuristic algorithms will be demon-
strated. DECO and DECO-BEST had better results compared to other algo-
rithms, reaching execution times well below expectations, demonstrating the
performance power that DE carries.
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Table 5. Ezxecution time mean and standard deviation.

Test Image | [9] [6] DECO DECO-BEST
Airplane pw=46.67s | p = 177.59s | p = 28.66s | u = 29.27s
0=116s |0 =8.59s |0 =249s |0 =0.03s
Cameraman | p=11.34s | p=30.21s |u=16.92s |pu="7.07s
0=025s |0=0.82s |o=0.60s |o=0.04s
Crowd p=>51.54s | p=208.24s | u = 31.63s | u = 32.39s
0c=165s |0c=13.11s |0 =2.65s |0 =0.84s
Messier83 pn=69.87s | =213.72s | p = 42.49s | p = 44.49s
0=179s |0=11.22s |0 =3.73s |0 =0.58s
Chest X-Ray | p = 44.28s | p = 190.63s | p = 27.55s | p = 27.87s
0=104s |0 =136.64s 0 =2.57s |0 =0.03s

Fig. 2. Visual quality comparison: (a) Original Image, (b) HE, (c) CLAHE, (d) [9],
(e) [6], (f) DECO and (g) DECO-BEST. From top to bottom are the respective images:
Airplane, Cameraman, Crowd, Messier83 and Chest X-Ray

The last step of the experimental process is characterized by performing a
visual analysis of the images generated by the algorithms. Figure2 shows the
comparison of all final solutions taken from the tests of each algorithm for each
image. It is noticed that the HE and CLAHE algorithms, despite having obtained
excellent results in the PSNR and runtime tests, change the characteristics of the
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images. Brightness is the most affected feature in these algorithms, the biggest
effect of this loss is seen in Messier§83. That image has a high concentration of
pixel frequency in low-level intensities, which caused HE to have difficulties in
improving the contrast. Therefore, the use of optimization algorithms is validated
to obtain images as close as possible to the original, with enhancement only in
contrast levels. It is visually noticeable that there is a lower loss in the natural
brightness of the images in the results of the metaheuristic algorithms. The visual
differences between the metaheuristic algorithms themselves are difficult to be
noticed, but in certain cases there are greater amplitudes of contrasts in certain
specific locations of the images. The noise is also little perceived visually, despite
the obtained values of PSNR which was lower than HE and CLAHE in some
cases.

5 Conclusions

In this work, an image contrast improvement based on metaheuristics was imple-
mented using two well-known strategies of the Differential Evolution algorithm
which resulted in the DECO and DECO-BEST algorithms. The representation
of the optimization problem was based on [9]. The algorithms were compared
qualitatively and statistically with other contrast improvement algorithms and
techniques: Histogram Equalization (HE), CLAHE, the genetic algorithm pro-
posed in [9], and the ABC proposed in [6].

The results found were promising, the resulting images showed to have a
good quality standard, with low noise level, and a visual contrast improve-
ment. Regarding the objective function, the DECO and DECO-BEST algorithms
achieved similar results. They demonstrated to be competitive in comparison to
the other algorithms and their standard deviation of the obtained fitness values
was much smaller than the others which demonstrates a high convergence in the
search for the solution. The results obtained in PSNR, were equivalent between
the metaheuristic algorithms which indicates a small deformation of the image
caused by the use of this solution representation. In terms of execution time,
DECO and DECO-BEST resulted in much shorter times than the metaheuristic
algorithms.

For future works, it is proposed the use of more recent variations of the
differential evolution algorithm that obtain excellent results in solving optimiza-
tion problems. A greater variety of contrast improvement techniques can also
be compared in the experiments to improve the results found. Another path to
be explored is to change the representation of the problem by mapping it as a
multi-objective problem. The motivation is to improve not only edge strength
but also PSNR and other combined quality criteria, such as SSIM and IFC. In
this way, the final result of the image quality will be improved.

Acknowledgements. This study was financed in part by the Coordenagao de Aper-
feigoamento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001.
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Abstract. Radiography is a primary examination used to diagnose
chest conditions, as it is fast, low cost, and widely available. If the physi-
cian cannot conclude de diagnosis with the radiography, a computed
tomography scan may be required. However, this exam is expensive and
has low availability, mainly in the public health system of developing
countries and low-income locations, which can delay the treatment and
cause complications to the patient’s health condition. Computer-aided
diagnosis systems provide more resources for medical diagnostic decision-
making, increasing the accuracy of the assessment of the patient’s clinical
condition. The main objective of this work is to develop a deep-learning-
based approach that performs an automatic analysis of digital images of
chest radiographs to aid the detection of pulmonary nodules and masses,
aiming to extract sufficient relevant information from the image, opti-
mizing the initial phase of the diagnosis of lung lesions. The developed
approach uses neural networks in a dataset of 8,178 annotated chest
radiographs extracted from a public dataset. Half of it is of images anno-
tated with “nodule” or “mass”, and the other half is of images with “no
findings”. We implemented and tested convolutional neural networks and
data preprocessing techniques to create a classification model. A model
with five convolution layers that achieved 0.72 accuracy, 0.75 sensitivity,
and 0.68 specificity. The proposed approach achieved results comparable
to state of the art for lesion identification using limited computational
power and can assist radiological practice as a second opinion, which can
improve the rates of early diagnosed cancer.

Keywords: Deep learning + Chest x-ray - Image processing

1 Introduction

Radiography was the first modality used in medical imaging, and even with the
invention of new modalities like computed tomography (CT), magnetic resonance
imaging, and others, it remains a significant modality to evaluate the chest [7].
© Springer Nature Switzerland AG 2020
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The x-ray exam can provide useful information and is a primary examination
used to diagnose chest conditions, as it is fast, low cost, and widely available.
If the physician can not define the diagnosis with chest radiography, a CT scan
is required. However, a CT scan exposes the patient to more radiation, is high-
priced, and has low availability, especially in the public health system and in
low-income locations.

In most countries, lung cancer is the leading cause of cancer death [2], and
the global 5-year survival rates vary between 10% and 20%. Its poor prognosis is
mainly caused by the lack of effective early detection methods and the inability
to cure metastatic diseases [10]. In the early stages, the 5-year survival rate is
about 60%, while in later stages, it can be less than 5% [17]. Missed lung cancer is
an important concern among radiologists, and 90% of the times, the misdiagnosis
occurs on chest radiographs, mostly because of observer error [5]. In some stated
cases, the radiography presents signs of early-stage cancer and is undetected by
a radiologist when the cancer is still resectable [19]. The inability to recognize an
abnormal chest radiograph may also lead to a failure in requesting a potentially
valuable CT examination [7], which has a higher sensitivity for finding pulmonary
nodules [6].

!

Fig. 1. Example of a pulmonary mass (left) and nodule (right) appearance on a chest
radiography. Image source: Wang et al. [22]

A pulmonary lesion appearance on chest radiography may indicate lung can-
cer. A nodule is a lesion smaller than 30 mm, and it is most likely benign. If the
lesion diameter is larger than 30 mm, it is described as a mass and has a higher
chance of malignity [11]. Developing automated methods for identifying these
signs might improve early detection rates of lung cancer, which leads to a better
prognosis [17].

Computer-aided diagnosis (CAD) systems provide more resources for medical
diagnostic decision-making. CAD systems use computer vision techniques to
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perform automated analysis and interpretation of medical images. Deep learning
methods can automate a series of tasks, and it is the method of choice for
most computer vision problems, including medical image analysis [14], the most
successful method being convolutional neural networks (CNNs).

The first use of CNNs in medical imaging was for lung nodule detection
in 1995 [15]. Due to computer limitations at the time, the method used image
blocks of 16 x 16 pixels subsampled from blocks of 32 x 32 pixels by averaging
the values of every 4 pixels in each 2 x 2 block. The used CNN had two hidden
layers, each one with 12 nodes, and finally, a fully connected layer with 10 nodes,
which outputs a label yes or no for nodule presence. This approach used a total
of 55 chest images, and only 25 contained nodules. The authors recognized that
the method needed more data to be validated.

Recently, a series of studies have defined that CNNs are the current standard
for image exam classification [14]. In classification problems, the models receive
an input image and output a diagnosis label. CNNs have been explored for nodule
detection and analysis both in chest radiographs and chest CT. Even though
chest radiographs are the most common radiological exam, a higher number of
studies use CT images for nodule detection [14], probably because a CT exam
offers more information and has a higher sensitivity for nodule identification and
characterization [16].

Litjens et al. [14] reviewed 308 papers on deep learning in medical image
analysis and described the key aspects of successful deep learning methods. Even
though choosing the right CNN architecture is important, some other aspects
outside of the network may be critical in finding a good solution, such as prepro-
cessing techniques and data augmentation. Another important aspect is model
hyper-parameter optimization, but it still is a rather empirical practice, since
there is no clear methodology.

A problem with applying deep learning techniques is gathering the data for
training deep neural networks without overfitting the model. The radiological
practice was one of the first medical fields to be completely digitized, and it
has been using picture archiving and communication systems (PACS) for almost
ten years, which made the creation of large datasets of medical images possible.
A study by Wang et al. [22] presented a chest x-ray database comprising more
than 100,000 annotated chest radiographs extracted from the hospital’s PACS,
which enabled the development of deep learning tools to identify diseases on
radiographs. In the same work, the authors used CNNs for supervised image
classification, which could achieve an area under the curve (AUC) of 0.69 in
identifying masses and AUC of 0.66 in identifying nodules.

This work proposes an automated approach using CNNs to identify pul-
monary nodules and masses in chest radiographs. A CNN architecture was built
based on LeNet, tested, and improved based on its results. We compare the
built CNN with Inception-v3 [21], the most popular architecture used in medical
image analysis recently [14]. We trained the LeNet-based model from scratch,
while the Inception-v3 model was previously trained on ImageNet aiming to
transfer learning from the ImageNet dataset to the chest x-ray one. Therefore,
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we make a comparison in training a small model from scratch to fine-tuning a
large pre-trained network.

The proposed model can assist radiologists to evaluate the chest condition
using radiographs in a CAD system for lesion detection and serve as a sec-
ond opinion, which could improve diagnostic accuracy, making it possible to
detect cancer at earlier stages, and to conclude false-positive diagnosis with
radiographs, reducing the demand for costly exams like CT.

This study is organized into four sections. In Sect.2, we present the sug-
gested methodology. Section 3 presents the results of the dataset simulations,
comparison, and discussion of the efficiency of the methods. Finally, in Sect. 4,
conclusions about the paper and indications of possible works are presented.

2 Background

Deep learning software attempts to simulate brain processes using a large array
of connected neurons in an artificial neural network (ANN). The ANN can
learn, with high-level precision, to recognize patterns in digital representations
of images and other data and became popular models in the past due to its abil-
ity to represent non-linearities and approximate mostly any function. Because
of computers processing capacity evolution and improvements in mathematical
approach, engineers and computer scientists can now model many more layers
in ANNs than ever before, creating deep neural networks (DNN). The DNNs
trained using a high amount of data, usually have high generalization capacity.

CNN is a type of DNN that has layers of convolution operations that extract
features of spatial information. CNNs exploit natural signals’ spatially-local cor-
relation by using local connections between neurons of adjacent layers and shared
weights [13], which means that the model can learn to detect the same object
at different positions of the image. Being a location invariant method makes it
a very suitable method for lesion identification in radiographs since the patient
positioning might vary, and a lesion can happen in multiple parts of the lungs.

Input Layer. A CNN for image classification receives an image as input. The
input layer holds the image that will be classified, so it has to be of the same
height, width, and depth as the image. The size of the input layer affects how
much memory is necessary to train the network and how many pooling layers
the network will support since it reduces the dimensionality of the input.

Convolution Layer. The convolution layer’s parameters consist of a set of
K learnable filters and biases. Every filter is small spatially (along width and
height). In the convolution layer, each filter W is convolved across the width and
height of the input image X and added with the bias bg. As the filter slides over
the width and height of the input image, it forms a feature map Xy, that represent
some types of image features, such as edges. The mathematical equation of the
convolution neuron (see Eq. 1) is similar to the multilayer perceptron (MLP) one
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since it has an operation between the weights and the input and it adds a bias
br,. However, instead of a multiplying W and X the CNN applies a convolution
operation.

X} =Wt X 4pl! (1)

For the convolution layer, we can define some hyperparameters that can
improve the network results on different datasets. The stride size defines the
number of pixels that shift over each iteration of the convolution operation. We
can apply a padding operation to fill the image matrix with zeros so that the
output matrix will be the same size as the input.

Activation Layers. Activation layers are composed of activation functions
that operate on the output of the previous layer, mapping these values into the
desired range. The rectified linear unit (ReLU) insert non-linearities in the net-
work, so it can easily obtain sparse representations and model complex functions.
ReLU’s introduction [8] made the evolution of deep learning methods possible
since it is more computationally efficient than previous functions used in neural
networks [13], which optimized the training process. The ReLU function (see
Eq.2) returns 0 for any < 0 and z for z > 0, what modifies the feature map
like shown on Eq. 3.

R(x) = max(0, ) (2)

Xy = R (Wi X707 (3)

The last layer consists of a function that returns the probabilities of the input
image being of each class. The softmax function (see Eq.4) takes the previous
layer output y and returns a value in the interval (0, 1), and every added value
sums to 1.

eYi

softmax(y;) = ST 4)

Pooling Layers. The pooling layer is a way to apply a dimensionality reduction
technique in the network architecture, which reduces the input size but keeps
relevant information by merging semantically similar features into one [13]. The
network architectures of this work were constructed using max-pooling layers of
size 2 X 2, which takes the largest element each different 2 x 2 block, reducing
the size of the input image by half.

Fully-Connected Layers. Fully-connected (FC) or dense layers are regular
MLP layers. FCs are composed of nodes that take a 1D array as input and
returns a value based on the defined function of weights and biases of each
neuron. As the input of a convolutional neural network is a matrix, the input
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must be transformed in an array to apply the FC layer functions. This operation
is called flattening and combines all the features from the previous layers to
output the values for the last activation function.

Metrics. Cross-entropy is an error function that indicates how likely the sam-
ples are correctly classified based on their inferred probabilities. Since the prob-
lem of lesion identification is binary, the cross-entropy calculation is as described
in Eq. 5, in which n is the number of samples, y; is the predicted label for sam-
ple 7, being 0 for normal or 1 for lesion presence, and p; is the probability of
the input sample 7 being of the lesion class, which is the value returned by the
softmax function in the final layer.

£(0) =~ > yiog (i) + (1~ o) log (1~ p) (5)
i=1

The model training occurs by adjusting the values of the weights W and bias
b of each neuron to minimize the binary cross-entropy. This adjustment is made
by testing the network in a subset of the data and searching for the minimum of
the function using a method called stochastic gradient descent. Each iteration
adjusts the weights and bias based on the learning rate. The number of training
examples used to create the subset is called the batch size. Each iteration passes
the batch size through the network. An epoch is the passing of all the training
samples.

We split the data into two sets, train and validation. The train set is the one
that the network uses to adjust its weights so that it can model the distribution
of the samples on the training set. We use the validation set to verify that the
model can be generalized to a set that the network has not seen during training.

If the model infers that a positive sample is positive for lesion, it is a true
positive (TP) outcome. Otherwise, if it was a normal sample, it is a false positive
(FP). If the model outputs “normal” for a normal sample, it is a true negative
(TN), and if it was a “lesion” sample, it is a false negative (FN). The metrics
used to evaluate performance are accuracy, sensibility, and specificity. Accuracy
(Eq.6) is the number of true outcomes over the total of samples. Sensitivity
(Eq. 7) is the number of TP over every positive sample, and specificity (Eq.8) is
the number of TN over every negative sample.

accuracy = TP+ TN (6)
Y"TP+TN+FP+FN
L TP
sensitivity = TP FN (7)
TN
speci ficity = (8)

TN+ FP
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3 Materials and Methods

3.1 Data Description

The NIH Chest X-ray [22] is an annotated dataset composed of 112,120 images
of 30,805 patients. FEach image has disease labels extracted from the radiological
reports using natural language processing (NLP). The labels are common tho-
racic radiological findings such as atelectasis, cardiomegaly, effusion, infiltration,
mass, nodule, pneumonia, and pneumothorax. We show an example of radiogra-
phy with pulmonary mass and nodule appearance in Fig. 1. One or more labels
could be present in a single image. For normal exams, the label is “No Finding”.
Besides the clinical data, some patient data, like age and gender, and exam data,
like pixel spacing and patient positioning, are also available.

From the NTH ChestX-ray dataset (112,120), we extracted a subset (8,178) of
images with nodules or masses and a selection of images with no findings using a
Python script. The script selected entries with posteroanterior (PA) positioning,
that contained the strings “Mass” or “Nodule” or “No Findings” in the “Finding
Labels” field. Images labeled with “Mass” or “Nodule” were assigned to the class
“Lesion” the images labeled with “No Findings” went to the “Normal” class.

Considering the dataset contained multiple images from the same patient,
only one image per patient was selected for each class, to avoid very similar
images separated between the train and test sets, which could bias the validation
metrics—resulting in 4,089 images of radiographs with lesions and 22,459 images
with no findings. Then, we sampled 4,089 “Normal” samples to balance the
dataset, therefore making a total of 8,178 images to train and test the CNN
models, split in a 50/50 relation between the two classes.

The age and gender distributions between the two classes are similar,
although there are more male patients presenting a lesion than male patients
with no findings, probably because of the higher incidence of lung cancer in
male patients [20]. The label frequency is the number of samples that present
the string in the finding labels field; it is higher for nodules (2,527 samples)
than for masses (1,855 samples), with 293 samples labeled with both nodules
and masses. Figure 2 shows an analysis of the selected samples’ age, gender, and
label distribution.

3.2 Model Development

The described models were built and trained using the Python 3.6 program-
ming language and tools available in Keras 2.2.2 [4], a high-level Python deep
learning library, which runs on top of TensorFlow [1], a software library for
numerical computation using the graphics processing unit (GPU). The used ver-
sion of TensorFlow is 1.10.0. The adopted technologies are all open-source. The
hardware used to develop and test this is an Intel Xeon e3 central processing
unit, 3.50 GHz, 16 GB of system random access memory (RAM), Nvidia Quadro
K620 GPU with 2 GB DDR3 video RAM and Windows 10 Education operational
system.
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Fig. 2. Dataset distribution of patients age and gender separated by class and number
of times a finding appeared in the labels of the samples (label frequency).

At first, we created CNet-2, a CNN architecture based on LeNet [12]. It
consists of a sequential model with 12 layers, starting with an input layer of
size 128 x 128. The first is a convolution layer with 20 5 x 5 filters, followed by
a ReLU activation layer, and a max-pooling with 2 x 2 strides and pool size.
The next three layers are another set of convolution, ReLU activation, and max
pooling, but with 50 filters. Then a flatten layer and an FC layer of 500 nodes
and a ReLLU activation layer, followed by a dense layer with 2 nodes, which is
the number of classes, and a softmax activation layer, which returns the classes
probabilities.

Then we augmented CNet-2 in order to improve the results. The CNet-3
is similar to the CNet-2 model, but instead of having two sets of convolution,
ReLU, and max pooling, it has three, and the new convolution layer has 100
filters. CNet-4 has four sets, the first three are like the ones in CNet-3, and the
fourth has 200 filters. CNet-5 has one more set than CNet-4, but the fourth
set with 150 filters and the fifth with 200. CNet-6 is the same as CNet-5 but
with one additional set of layers with 250 convolution filters. Table 1 shows the
number of layers and parameters for each architecture.

A batch size of 64 samples was used during training to avoid resource exhaus-
tion since a higher value of batch size requires more memory space. The initial
learning rate of the models is 10~2. We trained the models for 120 epochs, which
we empirically observed to be the number of epochs that reduced overfitting and
increased validation accuracy.
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3.3 Inception-v3

Another tested model was the Inception-v3 [21], developed by Szegedy et al.,
which is a very popular architecture in medical image analysis [14]. The model
used is the one available on Keras library, with weights pre-trained on Ima-
geNet, which can transfer the learning from another dataset into the proposed
application.

Table 1. Layers and number of parameters of each of the network architectures used
in this work. A reduced number of parameters in models with more layers is due to our
increase in sets of Convolution, ReLLU, and Pooling layers, reducing the final number
of parameters needed for the fully-connected layer.

Network Layers | Parameters
CNet-2 12 25,628,072
CNet-3 15 12,856,212
CNet-4 18 6,636,412
CNet-5 21 2,061,562
CNet-6 24 1,411,812
Inception-v3 [21] | 159 21,802,784

3.4 Preprocessing

Histogram equalization is an image processing technique to improve structure
visualization. It spreads the gray levels of an image, highlighting the differences
between similar pixels. Global equalization can be useful in images where most
of the gray levels are confined in a specific range of the histogram, but if they
are already distributed, some information may be lost in gray levels near the
edges (pixels next to black or white). A better approach is to use an adaptive
equalization [18], which splits the image into small blocks and applies the his-
togram equalization in each block separately. A contrast limit is also applied to
avoid amplifying noise in those regions. This technique is called contrast lim-
ited adaptive histogram equalization (CLAHE). Figure3 shows the results of
the CLAHE application in a sample image of the dataset, in which it is possi-
ble to observe that the darker lung areas became closer to black, improving the
contrast between structures of similar shades on the radiography (More details
about the method available on [18]).

As a preprocessing method, CLAHE was applied to the images of the dataset
before training and testing the CNNs. CLAHE was implemented using OpenCV
3.4 [3] for Python. The threshold for contrast limit is of 2.0, and the tile grid
size is 4 x 4.



206 E. H. P. Pooch et al.

Fig. 3. Comparison of original image (left) of a chest radiography and after CLAHE
application (right). (Original image source: Wang et al. [22])

4 Results and Discussion

The models were trained on 80% of the samples of the dataset and validated
on the remaining 20% of it. Figure4 shows the training and validation metrics
during 120 epochs. The training of the models aims at minimizing the training
loss value, which should also minimize validation loss and maximize training
and validation accuracy. When the training and validation metrics are distant,
it means that the model is not well generalized to unknown data and is presenting
overfitting of the training samples.

The results of each experiment are described in Table 2, which shows the
accuracy, sensitivity, and specificity of each model. As shown, adding more lay-
ers does not necessarily improve the network performance. Some models had
a considerable difference between sensitivity and specificity. Most models have
lower sensitivity, which makes them not a good fit for a real-world application,
since it performs poorly on its main objective, identifying nodules and masses.

The model which achieved the best overall performance without prepro-
cessing was the CNet-5, which scored higher sensitivity for lesion detection.
We decided to perform the CLAHE preprocessing on this architecture only to
reduce the total number of experiments. Applying CLAHE to the dataset images
improved the accuracy, sensitivity, and specificity of the CNet-5 model. It con-
firms what was stated by Litjens et al. [14] that the performance of the same
network architecture can be improved based on data preprocessing and other
aspects outside of the network. The results are shown in Table 3.
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Fig. 4. Training and validation metrics during each of the 120 epochs for the six devel-
oped models. The graphs show each model’s training loss (red), validation loss (blue),
training accuracy (purple) and validation accuracy (gray) values (vertical axis) at the
end of an epoch (horizontal axis). (Color figure online)

It seems that the equalization technique reduced overfitting during the train-
ing of the CNet-5, as seen in Fig. 5, which shows accuracy and loss during training
and validation. On the CNet-5 training without CLAHE, after epoch number
30, the loss and accuracy metrics on the train and validation sets are distant,
which is caused by overfitting the model to the training set, undermining gener-
alization and causing a performance reduction on unknown data. The CLAHE
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Table 2. Results of each network architecture used in this work.

Network Accuracy | Sensitivity | Specificity
CNet-2 0.65 0.65 0.65
CNet-3 0.67 0.53 0.80
CNet-4 0.70 0.65 0.75
CNet-5 0.68 0.71 0.64
CNet-6 0.69 0.61 0.78
Inception-v3 [21] | 0.64 0.50 0.78

Table 3. Comparison of the CLAHE application on the CNet-5 network architecture.

Network Accuracy | Sensitivity | Specificity
CNet-5 0.68 0.71 0.64
CNet-5 + CLAHE | 0.72 0.75 0.68

application reduced this effect in CNet-5 training, which shows a lower difference
between train and validation metrics.

Maybe because some of the images on the dataset had low contrast due
to acquisition problems and the CLAHE improved image contrast by spreading
closer gray levels, it helped to normalize pixel values of the input images, enabling
the model to generalize better.

One of the causes of the unbalanced sensitivity and specificity issue is that
the training of the network aims at lowering the binary cross-entropy of the
training set, which is not exactly what we expected from the final model. A
training strategy that also optimizes sensitivity and specificity could might to
avoid this issue.

Wang et al. [22] performed a similar experiment on the whole NIH ChestX-ray
dataset using a multi-label disease classification instead of a binary approach.
They tested some network architectures, the one that performed better was
ResNet-50 [9], a network with 168 layers, but they only trained from scratch the
transition and prediction layers. They achieved 0.66 AUC for nodule detection
and 0.69 AUC for masses, which were some of the lower rates, as stated by the
authors because these pathologies contain small objects.

The receiver operating characteristic (ROC) curve for each of the seven
approaches is in Fig. 6. Our best approach achieved 0.72 AUC for lesion detec-
tion. However, there is some difference in both approaches to make a statistically
significant quantitative comparison of AUCs, since our work uses both nodules
and masses in one class against normal chest radiographs on the other with a
balanced number of samples, used only PA positioning, and discarded repeated
samples from the same patients.
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with CLAHE (right).
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5 Conclusions

In this work, we presented a strategy to identify pulmonary lesions in chest
radiographs using CNN in an image classification approach. Our best model had
5 convolution layers, a reduced number of parameters, and a total depth of 21
layers. It was fully trained, and achieved results close to state of the art using
limited hardware.

Even with thousands of images, this model can still present overfitting. A pre-
processing strategy by applying histogram equalization on the example images
was tested and evaluated and improved the network’s results by reducing over-
fitting.
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The proposed model and preprocessing method can be used as a part of a
CAD software to become a routine second opinion on radiological practice, which
can improve the rates of early diagnosed cancer. However, the method still needs
to be validated in a real-world scenario.

For future work, developing an application that can identify and localize the
lesion in the radiography might be relevant for the radiologist to understand
why the network took that decision. Since there is a small amount of data anno-
tated with the localization of the lesion, an object detection approach might be
unfeasible. A proposed pipeline with lesion identification and then, if positive,
to search for the probable location of the lesion seems more fit for the prob-
lem. Also, a clinical trial study on whether the developed application is useful
to increase diagnostic accuracy of radiologists with the achieved sensitivity and
specificity values might be relevant.
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Abstract. Image classification is a well-established problem in com-
puter vision. Most state-of-the-art models rely on Convolutional Neu-
ral Networks to achieve near-human performance in that task. How-
ever, CNNs have shown to be susceptible to image manipulation, which
undermines the trustability of perception systems. This property is criti-
cal, especially in unmanned systems, autonomous vehicles, and scenarios
where light cannot be controlled. We investigate the robustness of sev-
eral Deep-Learning based image recognition models and how the accu-
racy is affected by several distinct image distortions. The distortions
include ill-exposure, low-range image sensors, and common noise types.
Furthermore, we also propose and evaluate an image pipeline designed to
minimize image distortion before the image classification is performed.
Results show that most CNN models are marginally affected by mild
miss-exposure and Shot noise. On the one hand, the proposed pipeline
can provide significant gain on miss-exposed images. On the other hand,
harsh miss-exposure, signal-dependent noise, and impulse noise, incur in
a high impact on all evaluated models.

Keywords: Computer vision + Data preprocessing - Image distortion

1 Introduction

Computer vision has become an important component of many robotic and
autonomous systems. Vision systems combine elements of the camera, hard-
ware, and computer algorithms to process visual data into useful information.
Domestic and assistive robots [9,18], autonomous cars [2], harvesting robots
[29], automated visual inspection [17,23], and surveillance robots [14] are some
practical uses of computer vision systems applied to robotics.
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Image Recognition is one of the most mature computer vision tasks. Recent
advancements in Deep Learning (DL) based classification have attained near
human level accuracy in various datasets. Among the state-of-the-art Convolu-
tional Neural Networks (CNN) we highlight VGG [22], DenseNet [8], Inception-
ResNet-v2 [25], MobileNet-v2 [21], NASNetLarge [35], NASNetMobile [35],
Inception-v3 [5], and ResNeXt [33].

Large and varied training datasets are crucial for machine learning classi-
fiers to achieve good performance [30]. Most of the DL image classification
models are developed to maximize accuracy on one of the following datasets:
Imagenet ILSVRC [20], MS-COCO [12], CIFAR [11], and PASCAL VOC [4].
These datasets have provided support for the development of modern CNN based
image recognition models, with extensive and diverse labeled training data. They
provide a truthful benchmark to evaluate and compare within distinct models.
Nevertheless, we usually quantify the generalization capabilities of any trained
model by measuring its performance on a held-out test set.

Image recognition models have been under hard scrutiny [10,19]. Neverthe-
less, an open issue seems to be overlooked: ‘Are classification CNNs ready to deal
with ill-exposed, noisy, or over-compressed images?’. While these conditions are
commonplace in any computer vision pipeline, we notice that their impact in
the final prediction accuracy lacks a deeper assessment. The contribution of
this paper is threefold. First, we propose a theoretical framework to support
the investigation on the impact of several image distortions on state-of-the-art
image recognition models. Then, using a comprehensive set of image recognition
models, we evaluate their robustness against image distortions that are common
to most computer-vision and machine-vision applications. Finally, we propose an
alternative pipeline and discuss the impact of image pre-processing restoration
in the classification accuracy.

2 Methodology

We divide the methodology into two main parts. First, we measure the impact
of image distortion on several DL based image recognition models using synthet-
ically generated samples. Then, we propose and evaluate a pipeline-based app-
roach which intends to mitigate the image distortions, and, therefore, improve
classification results. The remaining of this section provides the fundamentals to
reproduce our experiments.

2.1 Part I: Assessing the Impact

To assess the robustness of image recognition models towards miss-exposure
and noise we used pre-trained models on the ImageNet ILSRVC Challenge [20]
dataset. All CNN recognition models are used ‘as is’. We keep the same input
shapes, weights and biases, and pooling layers provided by the original authors,
without any fine-tuning.
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The ILSRVC Challenge rules state that, for each image, the image classifier
should generate a list of up to five labels, rated by confidence. The quality of
the classifier is evaluated based on the label that best matches the ground-truth
label for the image. Given this assessment strategy, an algorithm can identify
multiple objects in one image without being penalized in the case one of the
objects identified was not included in the ground truth.

For each model, the evaluation methodology is organized in 5 sequential steps
as follows:

1. Data Loading — All JPEG compressed images are loaded using the Python
Scikit-Image [32] library with an 8-bit unsigned integer data type. Image size
and aspect ratio may vary among files.

2. Distortion — The images are distorted with the following distortions: Gamma
power transformation, percentile-wise truncation, Salt and Pepper noise,
Gaussian noise, Poisson noise, and Speckle noise. A sample showing the orig-
inal image as well as the distorted and restored versions is shown in Fig. 1.
Details on the distortions are presented in Sect. 2.1.

3. Pre-processing — In order to fit the input size of the classification network the
images need to be cropped and reshaped. We use first-order spline interpola-
tion for resizing. For down-scaling, we use a Gaussian filter with o = 551 as
anti-aliasing strategy, where s is the scaling factor. Further adjustments are
made for each model as to fit their particularities.

4. Inference — Once pre-processed, the content of each image is labeled by the
classification model. After the inference is performed, the outcomes are stored
to allow further evaluation.

5. Evaluation — In the evaluation, we take in account five popular classifier
metrics: Top-1, Top-3, and Top-5 Accuracy, Precision, and F1-Score. Precision
and F1-Score provide relevant information once they consider the number of
true instances for each label. For the sake of brevity, only Top-1 accuracy
results will be tabulated in the body of the present text.

Distortions. Figurel shows the impact of several distortions applied to the
images and a restored counterpart (which will be discussed later in Sect.2.2).
The details about distortion models are discussed in the upcoming sections.

Gamma Power Transformation is a nonlinear operation used to encode and
decode luminance values in image systems [27]. It is used to adjust and compen-
sate the response of some luminance levels in the input image. We use Gamma
Power Transformation to mimic the conditions observed in under-exposed and
overexposed images as I = I7. The power transformation is followed by min-
max normalization in order to adjust pixel values to a valid representation
range. This transformation results in lost data in dark regions, when ~v > 1,
or bright and washed-out regions, when v < 1. For simulation purposes, we used
v =135 ;468
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Additive White Gaussian Noise (AWGN) is randomly added to the input image.
The random noise follows a normal distribution, defined by:

]. \2 2
_ —(2—%)° /20
p(z) = e 1
()= o= , 1)
where z represents intensity, z is the mean value of z and ¢ its standard deviation.
In this work, we used o = 23.55, which results in severely damaged images.

Shot Noise also know as Photon or Poisson Noise [31], it is a data-dependent
noise model. A Poisson model of noise may be more appropriate than a Gaussian
model for low light conditions where the noise is due to low photon counts
[27]. Talbot et al. [28] claims that image sensor noise is dominated by Poisson
statistics, even at high illumination level, this being a typical effect in images
captured by robots.

Salt and Pepper Noise (S€P) is an impulse noise, added to an image by setting
white (pixel value equals 255 in an 8-bit per color color-space) and black pixels
(pixel value equals 0) with a probability per pixel P. In our experiments, we use
P = 0.3. In real applications, Salt & Pepper noise is often associated with dead
pixels the camera’s sensor array.

Speckle Noise is originated from coherent processing of back-scattered signals
from multiple distributed points [31]. The Speckle interference of an image I
is expressed as I = I + (n x I), where n is a uniform noise (with p = 0 and
02 = 1). Speckle noise in real applications is often related to environmental
conditions that affect the imaging sensor during image acquisition. It is also
common in medical images, as well as active Radar images [16].

Classification Models. Image classification models are built to predict the
classes of objects present in an image. The remaining of this paper explores
CNN based classification models, which have been adjusted for the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC). Convolutional networks
have recently enjoyed great success in this task. Among these, we highlight the
following popular models: i. VGG, by Simonyan et al. [22], which obtained both
first and second place in the ILSVRC-2014; ii. ResNet, by [5], which obtained
first place in the ILSVRC-2015; #ii. Inception-v3, by [26], which introduces fac-
torized convolutions and aggressive regularization; v. Inception-ResNet-v2, by
[25], which combines residual connections; v. MobileNetV1, by [7], which includes
depthwise separable convolutions between the regular convolutions layers; wvi.
DenseNet, by [8], where each layer obtains additional inputs from all preceding
layers and passes on its own feature-maps to all subsequent layers; vii. NASNet,
by [35], NASNet which automates network design using information acquired on
a small dataset.

It is important to highlight that many state of the art object localization,
semantic segmentation, instance segmentation, image recognition, object local-
ization, object tracking, and visual odometry models, as well as feature-based
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Fig. 1. Example of the image distortions and their restored versions.
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Fig. 2. Traditional deep-learning based computer vision pipeline versus the proposed
approach

loss functions, are, in fact, built upon these popular models. Therefore, one can
assume that many of them may present a similar performance degradation when
submitted to less than optimal input data.

2.2 Part II: An Alternative Image Recognition Pipeline

Preliminary results, which will be discussed in Sect.3 have provided some
insights and instigated further developments. In this direction, the question that
we tried to answer is “How can we prevent ill-exposure and noise in real robotics
applications (weakly controlled illumination, self-driving cars)?”.

In robotics and autonomous systems, where vision-based perception is
required, the usual pipeline is designed as follows. First, a sensor acquires the
RAW data. Then, the RAW data is transformed into an sSRGB image and com-
pressed. In this step, most cameras include some basic denoising and exposure
compensator. Next, the compressed data is sent to a computer vision algorithm.
After that, the algorithm extracts the useful data. Finally, the extracted data is
used to actuate the autonomous system behavior.

Figure 2 presents an overview of a typical deep-leaning based passive com-
puter vision pipeline. We can break this pipeline in four broad activities: Image
Acquisition, Storage and Transmission, Preprocessing, and Prediction. The first
steps are often built into the hardware itself. While most manufacturers provide
some level of configuration, they hardly provide full control of the image acqui-
sition settings. The same holds for storage and transmission, where the settings
are usually restricted to popular image compression algorithms and settings to
balance quality vs time constraints.

In order to minimize the undesirable impacts of noise and miss-exposure, we
modify the traditional pipeline by introducing an image restoration step, which
operates in the RGB colorspace, after the image has already been compressed
and transmitted. The restoration takes place immediately before the computer
vision algorithm. The models used for restoration are described in Sect.2.2.
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Restoration Models. In order to restore miss-exposed images, we intro-
duced the ReExposeNet [24] image restoration model into the image recogni-
tion pipeline. This model is designed to estimate the radiance of an improperly
exposed image, a task that requires restoration and enhancement of non-clipped
pixels to maximize visibility and color accuracy, as well as reconstruction strate-
gies for regions where the signal has been clipped.

ReExposeNet is a fast and small CNN exposure correction model, capable
of synthesizing substantial clipped parts in high-resolution images. It combines
aspects of both U-Nets and Context Aggregation Networks (CANs). ReEx-
poseNet relies on supervised training considering a custom content-based objec-
tive function to maximize restoration and reconstruction in clipped areas. It has
been adjusted considering both synthetic and real miss-exposed images in three
different datasets. ReExposeNet is released as a one-size-fits-all solution, which
can be consistently applied on a wide range of image miss-exposure levels. For
the present work, we used the model as released by its authors, without further
fine-tuning.

To restore images damaged by noise, we used the DnCNN-3 model [34].
DnCNN-3 is a very deep feed-forward denoising convolutional neural network.
It relies on residual learning and batch normalization to speed up the training
process as well as boost the denoising performance. Zhang et al. claims to provide
a single DnCNN model to tackle several general image denoising tasks, such
as blind Gaussian denoising, single image super-resolution, and JPEG image
deblocking. The authors show that the DnCNN model can not only exhibit
high effectiveness in several general image denoising tasks but also be efficiently
implemented by benefiting from GPU computing, which makes it adequate for
real-time applications.

3 Results

We conducted a comprehensive evaluation of the robustness of state-of-the-art
image recognition neural networks towards image distortion. The provided met-
rics relate to the performance obtained on the ImageNet ILSRVC Challenge
validation subset. All results were computed on the Imagenet ILSRVC [20] Val-
idation subset, which consists of 1000 distinct categories with 50 images each.
We using 32-bit floating-point precision for the inference in all networks. We
notice the Top-1 Accuracy in all evaluated models is slightly different from the
official reports. This may be related to the image processing libraries, re-scaling
and interpolation strategies as well as image cropping strategies.

Table 1 shows the impact of damaged images and the effects of restoration
on the evaluated models model. We highlight each result in the presented tables
according to the following strategy. Results for undamaged images are shown
in black. Conditions that worsened the accuracy by up to 10% are marked in
green (low impact). Conditions that worsened the performance of the model
by any value between 10% and 30% are shown in orange (moderate impact).
Conditions that worsened the network outcomes by more than 30% are shown
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in red (critical impact). This scale allows for fast visualization of the models’
robustness in the light of its original performance.

Results for VGG-16 [22] indicate that this model is highly susceptible to
image distortion. Except for Shot noise, all image distortions resulted in an
accuracy drop larger than 10%. Nevertheless, we notice that the pipeline, includ-
ing restoration, provides an expressive gain even under extreme miss-exposure.
Otherwise, for noisy images, we notice that the inclusion of the denoising model
worsened the results on both AWGN and Shot noise. For S&P and Speckle noise,
the restoration offered marginal improvements.

Table 1. Top-1 Accuracy for each model on distorted images.

Classification Model | [22] | [5] | [25] | [26] | [8] |[35] *|[35]**| [21]

Original Images 0.612 | 0.668 | 0.747 | 0.773 | 0.663 | 0.806 | 0.693 | 0.600
Gamma 4 0.401 [ 0.459]0.591 | 0.626 | 0.458 | 0.691 | 0.486 | 0.376
Gamma 4 R. 0.553(0.611]0.697|0.730 | 0.633 | 0.761 | 0.631 | 0.563
Gamma 6 0.261(0.313]0.454 | 0.493 | 0.314 | 0.580 | 0.339 | 0.237
Gamma 6 R. 0.435]0.498 1 0.611 | 0.650 | 0.527 | 0.692 | 0.525 | 0.438
Gamma 8 0.175(0.217]0.342 ] 0.385 | 0.224 | 0.467 | 0.239 | 0.157
Gamma 8 R. 0.429 0.491|0.586 | 0.628 | 0.506 | 0.665 | 0.507 | 0.425
Gamma 1/4 0.4550.501 | 0.645| 0.683 | 0.445 | 0.745 | 0.551 | 0.295
Gamma 1/4 R. 0.622 | 0.665 | 0.723 | 0.754 | 0.560 | 0.781 | 0.650 | 0.479
Gamma 1/6 0.330(0.376 | 0.553 ] 0.598 | 0.313 | 0.680 | 0.425 | 0.186
Gamma 1/6 R. 0.625(0.662 | 0.722 ] 0.753 | 0.548 | 0.781 | 0.649 | 0.456
Gamma 1/8 0.236 | 0.280 | 0.469 | 0.516 | 0.222 | 0.612 | 0.324 | 0.130
Gamma 1/8 R. 0.618 0.647|0.716 | 0.746 | 0.526 | 0.776 | 0.636 | 0.419
Gauss 0.508 0.534 ] 0.687 ] 0.716 | 0.588 | 0.765 | 0.607 | 0.436
Gauss R. 0.49710.559 | 0.660 | 0.714 | 0.585 | 0.749 | 0.603 | 0.450
Poisson 0.586 [ 0.626 | 0.732]0.759 | 0.651 | 0.796 | 0.671 | 0.567
Poisson R. 0.445 | 0.506 | 0.608 | 0.672 | 0.545 | 0.714 | 0.553 | 0.377
S&P 0.14310.126 | 0.362 | 0.405 | 0.191 | 0.527 | 0.243 | 0.070
S&P R. 0.141/0.131]0.322]0.370 | 0.203 | 0.469 | 0.225 | 0.092
Speckle 0.081]0.069|0.261 | 0.311 | 0.145| 0.423 | 0.167 | 0.041
Speckle R. 0.091 [ 0.086 | 0.259 {0.310 | 0.161 | 0.402 | 0.174 | 0.057

Resnet [5] shows to be robust against mild exposure variations (y = [4;4])
and Poisson noise. Pixel value truncation, however, shows to have a higher impact
dropping Top-1 accuracy levels from 0.668 to 0.603, for truncation in the bright
part, and 0.593, for truncation in the darker pixels. Coarse miss-exposure, Gaus-
sian noise, impulse noise, and Speckle noise also have high impact in the metric.
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From Inception-v3 network [25] the results show that, in general, distorted
images have a significant interference on the classification performance. This
model appears to be robust when applied in distortions as Gamma power trans-
formation with v = [i; %; 4; 6], quantile-based truncation with both values, Gaus-
sian and Poisson noise. However, when applied heavier distortions as v = [%; 8],
S&P, and speckle, the model’s accuracy decays significantly.

The Inception-ResNet-v2 [26] model is able to achieve Top-5 accuracy larger
than 0.5 in all but speckle-noise conditions. As in the models discussed above,
we observe that the models are robust towards slightly miss-exposed images
resulting from v = [i; 4] or quantile-wise pixel value truncation, which make the
accuracy drop by a small percentage. We also observe the model’s robustness in
the face of Poisson and Gaussian noise.

The results for DenseNet201 [8] indicate that this model is little affected by
minor disturbances in pixel intensity (y = % and y = 4), pixel value truncation at
@1, and Poisson noise. Gaussian noise shows to have a moderate impact. Gross
miss-exposure generated through power transformations with v = [é, %;6;8]7
however, has shown to have expressive impact in the classification accuracy. The
metrics show a mirrored effect, displaying similar results for both dark and bright
images. Nevertheless, none of the above seems to affect classification accuracy
as much as the impulse noise and speckle noise.

NASNetLarge [35]* is the model that offers the best accuracy, precision, and
F1-Score among all models considered in this study. We find it to be robust
towards a wide range of ill exposure levels, gross Gaussian and Poisson noise.
Nevertheless, it also suffers under salt and pepper and speckle noise. NASNetMo-
bile [35]** is a smaller version (in terms of trainable parameters) of NASNet. This
model struggles considerably more under harsh conditions of miss-exposure, Salt
& Pepper noise, and Speckle interference as compared to NASNetLarge. Light
under-exposure and light over-exposure, as well as Poisson noise, tend to have
little effect on the accuracy and precision of image recognition.

Lastly, the results obtained by MobileNetV2 [21], a model conceived to
be embedded in low capacity devices, sacrificing accuracy for feasibility. On
MobileNetV2 only the original images, v = 2, quantile-wise truncated images,
and images affected by Poisson noise resulted in Top-1 accuracy higher than 0.5.
Power transformation and noise resulted in expressive accuracy drops. S&P and
Speckle noise result in fluky predictions.

Figure 3 provides an overview for all evaluated models, showing their per-
formance under optimal conditions, with distorted images, and with restored
images. Considering the results as a whole, the top-3 models with the best per-
formance are Inception-ResNet-v2 [25] and NASNetLarge [35] and Inception-v3
[26]. Overall, the NASNetLarge model was the best model in terms of accuracy
with expressive gains over the second place. However, the Xception model showed
to be cost-effective with a moderated size (in terms of trainable parameters) and
a small difference from the best accuracy.

Robustness towards typical image distortions seems to be strongly linked with
the amount of trainable parameters. On one end, NASNetLarge [35], Inception-
ResNet-v2 [25], and Inception-v3 [3] are less affected by noise and harsh
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miss-exposure. On the other end, MobileNetV2 [21], DenseNet201 [8], and NAS-
NetMobi [35] have shown to be fragile in dealing with distorted images.
Poisson noise seems to have little impact on most of the evaluated models.
We believe this to be related to the fact that most digital images already present
this type of distortion due to sensor and electronics properties. It is plausible that
the models were able to learn and avoid it during training time. Even in extreme
conditions, Gaussian noise shows little impact on image recognition. This may
be attributed to data augmentation techniques used during training time, which
often include Gaussian noise as an alternative to generating synthetic samples.
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Fig. 3. Top-1 Accuracy overview for several models under distinct noise conditions and
after image restoration

We notice that the majority of the evaluated models show a small deterio-
ration in accuracy when applied to slightly miss-exposed images. Nevertheless,
we might recall that most of the recent advances in image recognition provide
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marginal improvements over previously existing state-of-the-art image recogni-
tion models. Looking in perspective, even a modest reduction in accuracy under-
mines years of refinement.

For overexposed images, the ReExposeNet model was able to restore the per-
formance of the object recognition model to the same levels observed in undam-
aged images. For dark images, we also notice that the restoration model con-
tributed significantly to reduce the number of misclassifications. Yet for noisy
images, DnCNN-3, even though restored images are aesthetically pleasing, clas-
sification results show it is unable to improve the prediction accuracy, sometimes
even degrading the performance of the system. The same pattern is observed in
all evaluated models.

It is important to remark that the results should not be interpreted as final.
While the results obtained evince an expressive gain in ill-exposed images as
opposed to the noisy images, one might notice that using different restoration
models might result in distinct results. For the sake of feasibility, we were unable
to perform such evaluation at the present time. We believe recently proposed
models such as [1,15] for exposure correction, as well as [6,13] for blind image
denoising, might provide further advantage when introduced in the computer
vision pipeline.

We might also note that many of the state-of-the-art image and video segmen-
tation, self-steering, and natural language video description models rely on the
same basic build blocks as the image recognition models evaluated in the present
paper. Exploring the impact of the image restoration models in these applica-
tions might yield similar results. Furthermore, our modular approach is easy to
integrate in already existing computer vision setups, improving the robustness
of well established classification models.

4 Conclusion

We perform comprehensive experiments on the robustness of state-of-the-art
CNN-based image recognition models towards several common conditions in
machine vision pipelines. Our evaluation is performed considering a set of classi-
fiers which had outstanding accuracy in the ImageNet Large Scale Visual Recog-
nition Competition (ILSVRC). We explore the impact of ill exposure conditions,
usually related to poorly configured devices. We also investigate the effects of
specific signal-dependent noise, related to film-grain and speckle noise, and sig-
nal independent noise, that often originate from the faulty electronics and sensor
defects.

We provide a simple and reproducible framework that can be used as a basis
for assessing the outcome of image-based tasks. A large range of classifier metrics
allows for sensitivity and specificity assessment, which offers a succinct repre-
sentation of the performance of the classifier. Such metrics are equally relevant
and provide a straightforward indication of their applicability in robotics and
autonomous systems.

Our proposal is highly inspired on approaches that are already proven in
other research fields. Tests from many models of object recognition indicate that
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existing CNNs are little affected by slight miss-exposure or saturated pixel val-
ues. Poisson noise and AWGN also have limited effect on the accuracy in most
of the tested classification models. Otherwise the models appear vulnerable to
image distortions caused by severe miss-exposure and signal-independent noise.
For miss-exposed images, the improved pipeline, including an additional image
enhancement step, has shown to provide an expressive gain in terms of robust-
ness.

Many relevant research questions arise from the proposed approach and the
experimental results presented in this paper. One especially fruitful avenue for
further investigation is to target segmentation, mapping, and localization sys-
tems to analyze the robustness of these models in light of the growing number
of robotics and automation applications that include scene understanding and
labeling as a fundamental building block.
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Abstract. Automatic License Plate Recognition (ALPR) systems are
used in many real-world applications, such as road traffic monitoring
and traffic law enforcement, and the use of deep learning can result in
efficient methods. In this work, we present an ALPR system efficient
for edge computing, using a combination of MobileNet-SSD for vehicle
detection, Tiny YOLOv3 for license plate detection and OCR-net for
character recognition. This method was evaluated in two datasets on a
NVIDIA Jetson TX2 system, obtaining 96.87% of accuracy and 8 FPS of
framerate in a public real-world scenario dataset and achieving 90.56%
of accuracy and 11 FPS of framerate in a private dataset of traffic mon-
itoring images, considering the recognition of at least six characters. It
is faster than related works with similar deep learning approaches, that
achieved at most 2 FPS, and slightly inferior in accuracy, with less than
10% of difference in the worst scenario. This shows the proposed method
is well balanced between accuracy and speed, thus, suitable for embedded
devices.
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1 Introduction

The Automatic License Plate Recognition (ALPR) problem consists in detecting
and reading one or more license plates (LP) in images. The ALPR systems
are used in a relevant number of real-world applications, such as road traffic
monitoring, automatic toll collection, traffic law enforcement, and parking lot
access control [3].

In general, ALPR systems are composed of the following stages: the vehicle’s
LP region is located and cropped from the input image, LP’s characters are
segmented and classified, thus, reading the LP. However, recent approaches first
detect the regions of the vehicle before the LP detection in order to reduce
false positives and the processing time [7,9,10,16,17]. Also, recent works replace
character recognition and classification for character detection, combining both
stages [10,16,17] while some works use completely segmentation-free approaches
[2,5,6].

In each country or region, LPs obey some established patterns. In Brazil, for
example, most LPs are composed of a white background with black characters or
a red background with white characters. Besides considering the possible differ-
ences between LPs, ALPR systems have to deal with the variation of the quality
of the images, which may differ in illumination, shadows, blur, inclinations, and
other kinds of distortions.

Therefore, many recent approaches have used robust deep learning techniques
[9,10,16,17], as it has improved the state-of-the-art of object detection, speech
recognition, among others [11]. These methods achieve good efficiency on a high-
end Graphic Processing Unit (GPU) but may be too costly for local processing
in weaker devices, being more suitable for cloud computing deployment. This
approach using heavy deep learning methods incurs significant latency, energy,
and financial overheads and also raises privacy concerns [13], thus, limiting the
possibilities of real-world applications.

In this context, a better approach is to use edge computing, i.e., computing
the data locally on small and low powered edge devices, as this approach is more
attractive to several applications, such as robotics, drone-based surveillance, and
autonomous driving [13].

In this work, we propose a complete ALPR system for Brazillian L.Ps based on
the combination of deep learning object detection techniques and efficient enough
for embedded system execution. Our main goal is to achieve a balance between
accuracy and timing using convolutional neural networks (CNNs) to detect and
read an LP aiming a suitable performance in realistic scenarios, allowing the
extension of real-world applications through edge computation.

The remainder of this paper is organized as follows. We review related works
in Sect.2. The materials used in our experiments are presented in Sect.4. The
details of the proposed system are described in Sect. 3. In Sect. 5, we report and
discuss the experimental results. Finally, conclusions and future works are given
in Sect. 6.
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2 Related Works

In this section, we will present several works proposed for the different stages of
an ALPR system, Vehicle Detection, and LP Detection and Recognition (LPDR).
Bringing performance data in precision and execution time of the methods, since
the focus of our work is on-time processing real, we must pay attention not only
to the efficiency of the method but also to the response time.

2.1 Vehicle Detection

The first stage of an ALPR system is the detection of the vehicle since the LP
must be attached to its body. The system’s hit rate is highly dependent on
the quality of the vehicle’s detection, and once the detection method returns a
closed image of the vehicle where the LP is cut, or even no LP appears, the
system will not be able to recognize all characters and no characters belonging
to that vehicle’s LP. Next, we will discuss vehicle detection methods proposed
by different authors.

Wang et al. [18] proposed a new structure called Envolving Boxes, which
determines and refines the object boxes through different representations of
attributes of each object. A gyro-fine network (FTN) is responsible for the
refinement of the boxes. The method was evaluated using Faster R-CNN in the
DETRAC benchmark, where it achieved an improvement of 9.5% mAP, running
at 9-13 FPS on an Nvidia Titan X GPU.

Sang et al. [15] proposed a CNN based on Yolov2, Yolov2_Vehicle. During the
training of the network, the K-means ++ algorithm groups the bounding and
anchoring boxes. Other improvements were imposed, such as the normalization
of object boxes to improve the method of calculating losses, removal of repeated
convolutional layers, and the merging of attributes from different layers in order
to improve the extraction of attributes. The Yolov2_Vehicle was tested in the
vehicle dataset of the Beijing Institute of Technology (BIT), reaching 94.78%
mAP and running on 4 Nvidia Tesla K80 GPUs.

The Faster R-CNN with Envolving Boxes proposed by Wang et al. [18]
proved unable to process real-time images (30 FPS, for example) on a medium-
performance GPU. While Yolov2_Vehicle, proposed by Sang et al. [15], required
4 GPUs for use in training and validation. Therefore, both methods may not
achieve a satisfactory framerate in limited systems used in embedded applica-
tions, such as Jetson TX2.

2.2 License Plate Detection and Recognition

After detecting the vehicle, there are two more crucial steps for the operation
of the ALPR, and these are the Detection and Recognition of LP characters
(LPDR). Below we describe works that proposed LPDR methods, which used
classical attribute extractors in Computer Vision, Convolutional Neural Net-
works (CNNs), as well as Machine Learning algorithms.
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Bulan et al. [2] proposed a method for recognizing LP where the first step
consists of identifying flaws in the detection of the LP through the legibility
classification of the characters present in the LP—using the Transfer Learning
technique, with CNN AlexNet as feature extractor and Linear kernel Support
Vector Machine (SVM) as classifier. The character recognition stage, on the other
hand, used the HOG and LeNet extractors in conjunction with the SVM-Linear
classifier. The method achieved more than 99% accuracy, running on an Nvidia
GTX 570 GPU, but with a frame rate of 0.5 FPS.

Bjorklund et al. [1] used LP synthetic images from the European Union (EU)
to train LP detection and recognition CNNs. The detection task validation was
performed in the AOLP dataset, where it performed an accuracy of 99.30%, as
well as the recognition task that reached 99.80%. The methods together required
an average of 845 ms to process each 640 x 480 image on a Jetson TX1 embedded
system, while on an Nvidia GTX GPU 1080, the same procedure took 25.5 ms.

The method proposed by Bulan et al. [2] is not feasible for a real-time appli-
cation, since its framerate during the validation process was 0.5 FPS. Bjérklund
et al. [1] used synthetic images for training its detection and reconnaissance net-
works, but does not concern itself with vehicle detection, and its validation was
performed with images with and without vehicles, but all with license plates,
which does not match the purpose of our method.

2.3 Complete ALPR Systems

Some studies have proposed the complete ALPR system, from vehicle detection,
through detection to LP recognition. This type of system receives an image with
vehicles present, returning the license plate characters of each vehicle in the
image. Some real-time applications use this type of system, such as parking lots,
speed cameras, and police vehicles. We cite some examples of Complete ALPR
Systems below.

Laroca et al. [10] implemented a complete Automatic Plate Recognition
(ALPR) system composed of three versions based on the YOLO (You Ouly
Look Once) architecture: Yolov2 used in vehicle detection, Fast-Yolov2 respon-
sible for plate detection on a given vehicle, and CR-Net which is a version of
YOLO adapted for the detection and recognition of license plate characters. This
method reached 95.90% accuracy among the license plates present in Dataset
UFPR-ALPR [9], also proposed by the author. The experiment ran at 73 FPS
on a high-capacity GPU.

Silva and Jung [17] proposed an ALPR method for LP images in differ-
ent conditions of visibility, perspectives, and projections. This method uses a
network architecture called Warped Planar Object Detection Network (WPOD-
NET), which detects the LP and performs a perspective readjustment to assist
in character recognition, which is the next step to LP detection. This method
was evaluated in OpenALPR Datasets (types BR and EU), SSIG, and AOLP
(RP), as well as in the Dataset proposed in their work, the CD-HARD, which
contains LP at different angles and distances, presenting greater difficulty for
systems of ALPR. The method reached 93.52% on OpenALPR-US, 91.23% on
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OpenALPR-BR, LP datasets in frontal perspectives, while on CD-HARD, it
reached 75.00% LP accuracy at higher angles and distances, running at 5 FPS
on an Nvidia GPU Titan X.

In our work, we propose a complete ALPR system for embedded applications
in real-time, since, every day, the need for recognition of LP in security systems
and public security in general, both for storing information and in parking with
access control, as well as consultations carried out by security agents and also
record of infractions in the house of speed cameras. We will compare our method
with those previously mentioned, Laroca et al. [10] and Silva et al. [17], both
using a server machine and a device created for embedded applications, since
both validated their methods based on LP from Brazil, which is the type that
we will validate our work.

3 Proposed Methodology

C loptical Character
Recognition (OCR)

1 A E‘L
Original Image » Car Di i ----» Plate Detection [

Fig. 1. Proposed methodology flow chart (we covered the LP to maintain the vehicle’s
anonymity).

The proposed pipeline for LP recognition illustrated in Fig. 1, and is com-
posed of: (A) car detection, (B) LP detection, and (C) LP character recognition.
The first step is the vehicle detection using MobileNet-SSD; the detected vehi-
cles are isolated from the rest of the input image. These isolated vehicles are
the input for the LPD-net, because detecting the vehicle first may decrease the
number of false positives and result in better images with larger and easier LPs
for posterior detection. The LPD-net identifies LPs for each vehicle image. The
next step consists of the LP character recognition using the OCR-net. Finally,
the characters are replaced according to Brazilian LPs patterns.

3.1 Vehicle Detection

Since vehicles are common objects in pre-trained weights of usual deep learning
object detection approaches, we decided not to train new weights from scratch.
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The SSD-300 [12] with MobileNet [8] as the backbone and PASCAL-VOC [4]
pre-trained weights is fast and accurate enough for this approach, even without
any additional changes or training in the model. So, the MobileNet-SSD detects
the vehicles in the input image, and then they are isolated in separate images
that will be used in the next stages.

3.2 License Plate Detection

For each vehicle image, the LPs must be detected and isolated. In this work,
we use the Tiny YOLOv3 architecture [14] changing the last layer for one class
detection, resulting in the License Plate Detection Network (LPD-net), as shown
in Table 1. The network is small and, thus, its speed should be efficient for most
of the systems, including embedded systems.

Table 1. License Plate Detection Network (LPD-net): a modification of Tiny YOLOv3

for one class output

Layer Filters | Size Input shape Output shape
0 | conv 16 3x3/1]414 x 414 x 3 | 414 x 414 x 16
1 | max 2 x2/2 1414 x 414 x 16 | 207 x 207 x 16
2 | conv 32 3 x 3/1|207 x 207 x 16 | 207 x 207 x 32
3 |max 2 x2/2 207 x 207 x 32104 x 104 x 32
4 | conv 64 3x3/1/104 x 104 x 32104 x 104 x 64
5 | max 2x2/2[104 x 104 x 64 | 52 x 52 x 64
6 |conv 128 3x3/1|52x 52 x 64 52 X 52 x 128
7 | max 2x2/2|52x52x128 |26 x 26 x 128
8 |conv 256 3x3/1]26x26x 128 |26 x 26 x 256
9 |max 2x2/2126 x 26 x256 |13 x 13 x 256
10 | conv 512 3x3/113x13x256 |13 x 13 x 512
11 | max 2x2/113x13x512 |13 x 13 x 512
12 | conv 1024 |3 x3/1|13 x 13 x 512 |13 x 13 x 1024
13 | conv 256 1x1/1]13 x 13 x 1024|13 x 13 x 256
14 | conv 512 3x3/113x13x256 |13 x 13 x 512
15 | conv 18 1x1/1{13x13x512 |13 x 13 x 18
16 | yolo
17 | route 13
18 | conv 128 1x1/1113x13x256 |13 x 13 x 128
19 | upsample 2x 13 x 13 x 128 |26 x 26 x 128
20 | route 198
21 | conv 256 3x3/1/26x26x384 |26 x 26 x 256
22 | conv 18 1x1/1]26 x 26 x 256 |26 % 26 x 18
23 | yolo
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For training the LPD-net, we used a private dataset, which is presented in
Sect. 4.2. The four corners of each LP were manually labeled and no data aug-
mentation techniques were required. The training of the network used the follow
parameters: 416 x 416 for input size; 50k iterations of mini-batches containing
64 images; learning rate of 0.001 in the first 25k iterations and 0.0001 in the rest
of them.

3.3 Optical Character Recognition

Eventually, since the LP image is isolated, the characters can be recognized using
an Optical Character Recognition network (OCR-net) [16]. We decided not to
train a model from scratch since there are pre-trained weighs with satisfying
results [17]. Also, the vast majority of Brazilian LPs have a pattern of three
letters, followed by four numbers in a uniform background color. Thus, some
heuristics are applied to replace digits and letters when it is needed, as shown
in Table 2.

Table 2. Replacing heuristics for correcting the recognized text

ri
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4 Materials

This section provides information about the Jetson TX2, and the datasets eval-
uated in this paper.

4.1 Jetson TX2

Jetson TX2 is a power-efficient computing device. It has a powerful processor
that helps to bring artificial intelligence processing power to end products. The
Jetson TX2 is composed of a GPU with Nvidia Pascal and a dual-core 64 bit
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ARM processor. Furthermore, it has an 8 GB RAM with a speed of 59.7 GB/s.
It has standard connections for cameras, displays, mouse, and keyboard, as well
as GPIO pins, which allow for fast prototyping.

4.2 Datasets

In this paper, we used two datasets of Brazilian LP images to evaluate the pro-
posed methodology. The first one is a private dataset composed of 1988 images
of cars obtained from traffic monitoring cameras from Brazil. The resolution of
the images is 752 x 540 and they were captured during the daytime and also dur-
ing nighttime, resulting in some black and white pictures. This dataset was split
into 1331 images for training and 657 for testing. Samples of the private dataset
are presented in Fig. 2. Since this is a private dataset, we omitted characteristics
from the vehicle that can identify it, including the license plate.

Fig. 2. Samples of the private dataset of car images

The second dataset, which is called UFPR-ALPR dataset, is from real-world
scenarios, where a camera was placed inside a moving vehicle. Three different
cameras were used on the images acquisition; for each camera, approximately
1,500 images with 1920 x 1080 pixels of size were captured, totaling 4,500 images,
150 vehicles, and over 30,000 characters. This dataset was split in 40% for train-
ing, 40% for testing, and the remaining for validation. The UFPR-ALPR dataset
can only be used for academic research. Because of the private dataset has only
images of cars, we filtered the UFPR-ALPR validation set in order to have only
car images. Samples of the UFPR-ALPR dataset are shown in Fig.3. We can
observe that this dataset has a proper perspective for an embedded system.

Fig. 3. Samples of the UFPR-ALPR of car images.
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5 Experimental Results

In this section, we evaluate the proposed ALPR system in two steps. The first
step consists of experiments using the UFPR-ALPR dataset using a computer
composed by Nvidia GTX 1070 as GPU, 8 GB of RAM, with Ubuntu 16.04 LTS
as the operating system. In the second step, we evaluated the proposed ALPR
system in an embedded platform, which is the Jetson TX2.

Since the LPD-net was trained only with Brazilian plates and cars, we com-
pare our results with the works of Silva and Jung [17] and Laroca et al. [10].
Both papers proposed a complete ALPR system, and used a larger dataset than
ours; Silva and Jung [17] affirmed to be tuned for Brazilian plates, and Laroca
et al. [10] used Brazilian plates in its plate recognition training.

We performed ten runs on the validation set of each dataset on each system.
All runs resulted in the same value. The final results of the proposed system are
presented in Table 3 in bold. This table also presents the results for the methods
in both datasets that we compare the proposed method.

For the UFPR-ALPR dataset, our system recognized all seven characters in
85.27% of the images, resulting in an improvement of 6.24% when compared to
[17], but a reduction of 9.52% when compared to [10]. However, the proposed
system identified at least six characters in 96.87% of the LPs, while [10] recog-
nized at least six characters in 97.57% of the images, then the proposed system
is just 0.7% inferior.

For the private dataset, we can note that the proposed approach achieved a
recognition rate 3.51% inferior than [10] on all characters correct, but obtained a
result 2.13% better on at least six characters correct. This result can indicate that
the dataset used on the training stage influences the results. In both datasets,
the OCR-net could be responsible for the big difference between a completely
correct LP and a correct six-characters plate.

In Fig.4, we can observe that the proposed method surpass the method
proposed by [17] in both datasets, and is better than [10] in the private dataset. In
addition, even though the proposed method does not have samples of the UFPR-
ALPR dataset in its training, it has similar results to the method proposed by
[10].

Table 3. Recognition rates of the proposed ALPR system in the Nvidia GTX 1070
and Jetson TX2.

Dataset ALPR >6 characters | All correct

UFPR-ALPR cars | Silva and Jung [17] | 87.57% 79.03%
Laroca et al. [10] | 97.57% 94.79%
Proposed 96.87% 85.27%

Private dataset Silva and Jung [17] | 86.76% 75.34%
Laroca et al. [10] | 88.43% 81.74%
Proposed 90.56% 78.23%
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5.1 Evaluation Using Nvidia GTX 1070

In Table4, we present an average time required for processing the proposed
ALPR system in the UFPR-ALPR dataset using an Nvidia GTX 1070 as GPU
divided into stages. The LPD-net runs at 105 FPS, making it feasible for embed-
ded systems. The slowest step is the vehicle detection, running at 22 FPS. This
speed is due to the MobileNet-SSD with Pascal-VOC weights, which contains 20
classes, then one image can have additional classes, making the time increase.

100

95

90

85

80
Silva and Jung [17] Laroca et. al. [10] Proposed

‘ D0 UFPR-ALPR-cars dataset I Il Private dataset

Fig. 4. Graphical representation of the results for at least six characters correct.

Table 5 shows a comparison of the average of the processing times between
different ALPR systems using an Nvidia GTX 1070 as GPU. For the UFPR-
ALPR-cars dataset, we can observe that [17] achieved only 2 FPS, and [10]
reached 5 FPS, meaning that the proposed system is three times faster than
the system proposed by [10]. In the private dataset, the proposed system stood
out again, reaching about fives faster than the compared approaches. All three
systems had a better FPS in the private dataset because it has only one car per
image.

Table 4. Results of average time required for processing the ALPR system in UFPR-
ALPR dataset using a Nvidia GTX 1070.

ALPR Stage Time (ms) | FPS
Vehicle detection 45.2018 22
LP detection 9.5340 105

Character recognition | 10.2778 97
ALPR 65.0137 15
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5.2 Evaluation Using Jetson TX2

Since the results on Nvidia GTX 1070 were promising, we decided to embed the
system on a Jetson TX2. Table 6 exhibits the average time required for processing
the proposed ALPR system in the UFPR-ALPR dataset using a Jetson TX2
divided into stages. We can note that the complete system took approximately
122 ms to execute the three stages per image. Despite the time being double
than the Nvidia GTX 1070, this time still is efficient for an embedded platform,
considering that we have a complete ALPR-system.

Table 5. Comparison of average processing time between different ALPR systems
using a Nvidia GTX 1070.

Dataset ALPR Time (ms) | FPS
UFPR-ALPR cars | Silva and Jung [17] | 413.9287 2
Laroca et al. [10] | 198.5857 5
Proposed 65.0137 |15
Private dataset Silva and Jung [17] | 79.2450 |13
Laroca et al. [10] 90.9189 |11
Proposed 19.2940 |52

Table 7 presents a comparison of the average processing time between differ-
ent ALPR systems using a Jetson TX2. For the UFPR-ALPR-cars dataset, we
can observe that the proposed system is significantly faster than [17] and [10].
For the private dataset, all systems improved their times due to the characteris-
tics of the dataset, highlighting the proposed system that is approximately five
times faster than the other approaches.

In Fig. 5, we can observe that the proposed system is faster than the other
approaches in both datasets used in the experiments, processing more frames per
seconds. Thus, the proposed system is feasible and can be applied as a real-time
application in a Jetson TX2.

Table 6. Results of average time required for processing the ALPR system in UFPR-
ALPR dataset using a Nvidia Jetson TX2.

ALPR stage Time (ms) | FPS
Vehicle detection 63.3129 16
LP detection 40.9666 |24

Character recognition | 18.5270 |54
ALPR 122.8065 8
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Table 7. Comparison of average processing time between different ALPR systems
using a Nvidia Jetson TX2

Dataset ALPR Time (ms) | FPS

UFPR-ALPR cars | Silva and Jung [17] | 755.3228 1

Laroca et al. [10] | 647.4782 1

Proposed 122.8065 8

Private dataset Silva and Jung [17] | 467.7464 2

Laroca et al. [10] | 436.7330 2

Proposed 93.9716 |11
Proposed s 1 =
Laroca et. al. [10] g 2 L
Silva and Jung [17] g 2 [
0 1 2 3 1 5 6 7 8 o101 12

FPS

D.:. UFPR-ALPR-cars dataset : private dataset ‘

Fig. 5. Chart comparing the average framerate of the ALPR systems in the UFPR-
ALPR-cars and private dataset using Jetson TX2.

6 Conclusion and Future Works

In this paper, we proposed a complete ALPR system for Brazilian LPs. We used
two existing CNN networks: MobileNet-SSD with Pascal-VOC weights for the
detection of the cars, and OCR-net for character recognition. In addition, we
created the LPD-net, a CNN network modified from the Yolov3 Tiny for the
plate detection.

In order to evaluate the proposed system, we used two datasets: one pri-
vate dataset and one public dataset, the UFPR-ALPR dataset. Furthermore, we
assessed the results in two platforms, Nvidia GTX 1070 and Nvidia Jetson TX2.
This comparison was made, mainly because many papers published make the
assumption that there is unlimited computing power. However, this is not the
case when dealing with mobile or portable systems.

When considering the complete ALPR system and the recognition of at least
six characters, the proposed approach achieved 96.87% in the UFPR-ALPR
dataset and 90.56% in the private dataset. Besides, the proposed system accom-
plished the best processing times in both datasets in both platforms, Nvidia GTX
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1070 and Nvidia Jetson TX2; in Nvidia GTX 1070, the system obtained 65.01 ms
and 19.29 ms for the UFPR-ALPR dataset and the private dataset, respectively.
In Jetson TX2, the system reached the times 122.81 ms and 93.97 ms for the
UFPR-~ALPR dataset and the private dataset, respectively. Thus, these results
indicated to be efficient and feasible for embedded systems.

For future works, first, we aim to implement the system as a real-time appli-
cation inside a car, connecting cameras to the Jetson TX2. Also, we intend to
create a CNN network to detect the cars so we can speed up this step and, con-
sequently, the overall process. We also want to expand the proposed system for
motorcycles and other types of vehicles.
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Abstract. The increasing adoption of industrial robots to boost produc-
tion efficiency is turning human-robot collaborative scenarios much more
frequent. In this context, technical factory workers need to be safe at all
times from collisions and prepare for emergencies and potential accidents.
Another trend in industrial automation is the usage of machine learning
techniques - specifically, deep learning algorithms - for image classifica-
tion. Following these tendencies, this work evaluates the application of
deep learning models to detect physical collision in human-robot interac-
tions. Security camera images are used as the primary information source
for intelligent collision detection. Unlike other proposed approaches in the
literature that apply sensors like Light Detection And Ranging (LIDAR),
Laser Range Finder (LRF), or torque sensors from robots, this work
does not consider extra sensors, using only 2D cameras. Results show
more than 99% of accuracy in the evaluated scenarios, revealing that
approaches adopting deep learning algorithms could be promising for
human-robot collision avoidance in industrial scenarios. The proposed
models may support safety in industrial environments and reduce the
impact of collision accidents.

Keywords: Deep learning - Collision detection + Human-robot
collaboration

1 Introduction

The United States Bureau of Labor Statistics on Occupational Accidents in
Industry recently reported as many as 2.8 million cases of workplace injuries
and illnesses. These indicators are decreasing over the years [9]. One of the
factors behind this reduction is the introduction of technological innovations.
Nonetheless, the occurrence of accidents remains considerably high.

The use of collaborative robots in the industry represents a growing market
as they increase productivity and efficiency at lower costs. Robots can also make
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factories safer when used in conjunction with machine learning techniques to
prevent accidents. The trend report in [1] estimates that by 2020 there will be a
60% increase in collaborative robot sales over those taking place in 2019. Since
the purpose of these robots is to work together with humans within proximity,
safety measures must be carefully weighted in order to guarantee people’s health
and well-being.

To this end, several systems apply intelligent algorithms in the detection of
risk situations. Machine learning algorithms have been used in several real appli-
cations [4]. These algorithms can determine with an acceptable level of accuracy
a classification task. The use of machine learning is applicable for collision detec-
tion [15]. Among the used techniques, we can especially highlight Deep Learning.
Note that it has achieved widespread use in many scientific domains. When a
database composed of images is used for classification, the Convolutional Neural
Networks (CNN) are better suited for such task [10]. They are deep learning
architectures known to extract the best image features and classify them auto-
matically.

In the industry scenario, with a high rate of occupational accidents and the
increasing number of collaborative robots present in the market, it is necessary
to take special care regarding workers’ safety when interacting with these robots.
To deal with this problem, it is necessary to identify collision between humans
and robots, preferably before taking place. In an attempt to solve this, the works
of Gecks [5] and Henrich [6] use various static cameras to construct a 3D model of
collision of objects in the environment, which can be applied to motion planning.
Pan et al. [13] use LIDAR (a scanning laser range finder) and a stereo camera
to generate a point cloud data. This is a three-dimensional representation of
the environment generated by sensors. They then apply a probabilistic collision
detection machine learning algorithm that computes contacts between robot and
objects.

The objective of our work is to detect collision and non-collision situations
in human-robot collaboration work. For this purpose, we create a human-robot
collision database for the classification task. We used a UR5 robotic arm as a
study object. We created two databases that we use in two test cases: in the
first one, the worker wears casual clothes without color contrast to the robot.
In the second test case, the worker uses Personal Protective Equipment (PPE)
contrasts with the robotic arm. The PPE behaves like markers that facilitate the
classification task. In both test cases, the images are obtained from a security
camera. We resized the images, and we inserted them into the learning mod-
els. We applied the CNN-32-64-128, VGG-16, VGG-19 and MobileNet network
architectures to both databases. These networks are based on deep learning. We
used the metrics accuracy, sensitivity, specificity and loss to evaluate the four
models.

Note that this work seeks to evaluate the models generated from the training,
that can detect a collision using a single camera point of view with images
extracted from the security camera. So, in the future, they can be applied for
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real-time classification in a factory. However, in this work, real-time classification
performance is not evaluated.

Unlike what was reported in some previous works, we just used cameras to
make our approach. The cameras are sensors commonly present in industrial
environments. It is a advantage once we do not use extra sensors. The use of
deep learning to this end is a contribution too, once these architectures based on
transfer learning can provide more accurate results. According to the results, the
proposed models in this work may support the detection of collision situations
in the context of human-robot collaboration in industrial environments. The
contributions previously cited may support or improve the safety in industrial
environments and reduce the impact of collision accidents.

We organize the rest of this work as follows. Section2 presents the
related works of collision detection in human-robot collaboration environments.
Section 3 provides the methods and materials used in this work such as scenario
setup, creation of dataset, machine learning models, and their details. Section 4
describes the experiments and their obtained results. Section 5 shows the paper
conclusions and future works.

2 Related Works

Collision detection or collision avoidance in industrial environments in the con-
text of human-robot collaboration has been the goal of several research initia-
tives, as shown in the literature. The adopted approaches to this problem fall
into two main classes: (I) using sensors with mathematical modeling (without
machine learning) or (II) using machine learning algorithms. In this section, we
present some works targeted for collision detection in an industrial environment.

Lee et al. [11,12] modeled a system for collision detection based on the motor
and the joint friction torque. The authors made a mathematical modeling to
classify the situations. They did not use extra external sensors to achieve the
objective. A machine learning approach was not proposed in this paper, but
it is possible to make a mathematical classification in the proposed scenario.
The authors performed experiments using a robot arm. This robotic arm is usu-
ally used for human-robot collaboration in industrial environments. The results
show that the proposed method may provide a low-cost solution for detection in
collision situations.

The works proposed by Sharkawy et al. [14,15] provide a system based on
classic neural network approach. The KUKA LWR manipulator and joint torque
sensors from the robot give the data trained in the neural network. It is a pro-
prietary manipulator. The neural network architecture used was the multilayer
perceptron (MLP). In the model evaluation, the classification model provided
84% accuracy on collision situations, with 8% of error in the positive class and
16% of error in the negative class.

Takiguchi et al. [18] adopted a sensor known as Laser Range Finder (LRF)
and odometry to estimate the position and speed of objects, respectively. The
collected information is applied to a deep learning algorithm to define safe paths
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in which the robot does not encounter obstacles. LRF data is captured and clas-
sified according to the distance between the points, forming a clustered point
cloud. These points are inferred as the object, and its speed is estimated from
that. Another work based on this type of sensor, Das and Yip [2] uses machine
learning to detect collision for robotics applications. The authors propose a sys-
tem for achieving faster robot movement planning response time, considering the
objects that obstruct the path. For this, the authors make a three-dimensional
environment mapping. The evaluation metrics used were in respect to the model
size and training time.

In some of the analyzed works, it is necessary to use sensors to feed the algo-
rithm’s training. Thus, they fail to preserve the characteristic of flexibility, since
not all devices benefit from these types of sensors. In industrial environments,
we need to consider the limitation of use of some sensors. These industrial envi-
ronments generally provide the camera system monitoring that may provide a
lot of information about the scenario. These cameras, in most cases, are two-
dimensional, so they do not give depth notions. Our work aims to develop a
system to be applied in the industrial environment where it is not necessary to
use extra external sensors. In this paper, we use security cameras to capture
the images. In addition, this work focuses on identifying the accident, so that
its consequences are reduced since it was identified quickly, allowing emergency
services to be notified promptly. Note that most of the other contributions are
focused on movement planning. Another contribution that we can cite is the
use of transfer and deep learning for better decision support. We aim to evalu-
ate the applicability of our proposed models for accident collision detection in
human-robot collaboration, differently from the reported works.

3 Materials and Methods

In this section, we describe the adopted materials and methods. We report the
steps taken to achieve the work results, such as scenario setup, image retrieval,
database definition, and deep learning models.

3.1 Scenario Setup

The scenario consists of a UR5 robot, a person, a security camera, and a com-
puter. We describe the equipment specification in Table 1. Initially, the worker
will interact with the scenario to simulate several possible work situations in the
industrial environment, in direct contact, or near the robot (Fig. 1).

A single camera is responsible for capturing the images of interactions. The
goal is to verify if the camera can retrieve images that can lead to some evidence
of the possible collision. Moreover, we adopted the restriction of the absence
of depth information in the camera images, once most security cameras do not
provide this kind of information, even knowing that this negatively affects the
neural network training. The network will classify uncertain cases (e.g. a blind
spot, or overlap situations of human-robot) as collisions. In this paper we chose
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Table 1. Configurations of the equipment used in the experiments. In the left is the
attribute, in the right is its value.

Equipment Value

Robot URS5 robot arm

Camera Intelbras VHD 1120 D G3
PC Processor Core i7-2600 CPU - 3.4 GHz
PC RAM 8 GB

PC System type | 64 bits

PC Video card | GeForce GTX 1060 6 GB

.--{ Camera .- Worker
; : sl pC

URS |...
robot = :

2y

S

Fig. 1. Schematic of the experiments scenario.

to label these unresolved cases as collisions in order to avoid confusion in the
neural network classification.

The scenario simulation consists of a person interacting with the robot in the
following cases:

— human outside robot’s workspace;

— human robot collaboration with object handover;

— accidental collision caused by the human;

— accidental collision caused by the robot;

— near collision situation;

— intentional blind spot to cause a point of view confusion.

The previous described situations provide data to train our proposed deep
learning models. To strongly affirm this, we need to evaluate our models and
check their accuracy. It is important to define different situations that faithfully
represent real human-robot collaboration to teach the deep learning models to
make accurate predictions and can differentiate these situations.

We simulated the cases listed above in two different situations: In the first
situation, the person is wearing casual clothes, so he did not wear any special
industrial clothing. In the second set of experiments, he wore PPE, including
reflexives red shirt and pants and safety orange helmet.
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3.2 Image Retrieval and Database Definition

We captured the simulated scenario videos and saved these in the AVI format.
We extracted the frames to a folder using a specific public domain software,
creating JPEG files. Next, it was necessary to separate the images into two
classes: with and without collision. We perform the labeling based on the human
body overlap in the robot according to the camera viewpoint. As a result, we
obtained two folders: collision/overlap (based on 2D viewpoint) and collision-
free image sets. We performed the interaction cases described in Sect. 3.1 with
casual clothes and with PPE. Figure2 shows several examples of images taken
from our database (in this case, the worker with and without special clothes).

(c) Example of collision with (d) Example of no collision with
PPE. PPE.

Fig. 2. Example of images in the created database for collision and no collision and
the worker with and without PPE.

After the databases creation, the next step was to obtain several images for
both databases in both classes. Table2 shows the number of images in each
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database and for each class. As result according to the rule previously defined
(occlusion/overlap cases labeled as collision), the final dataset was balanced
the data generated, then the class’s quantity became as similar. Deep learning
models usually require thousands of images for the training to offer sufficient
generalization in the learning. Our database meets this requirement.

Table 2. The number of images contained in each database. Despite the difference
in the number of images in each class, there is a sufficient number of images for the
database to be considered balanced.

Database A Database B
(casual clothes) | (PPE)
Collision 8,109 7,810
No collision | 7,391 6,515

We made changes to the database images to use in the deep learning models.
First, the image resolution initially captured by the camera is in full High Def-
inition (HD), 1080 x 720 pixels. This format requires a lot of processing, which
the machine may not support. Hence, the experiments could not be performed
with this resolution. To overcome this problem, we resized the image to 138 x 178
pixels. This procedure was sufficient to represent the experimental scenario.

3.3 Deep Learning Models

To perform the classification task, we defined four deep learning models. The
first one is a simple model based on not pre-trained weights, whereas the other
three models are based on transfer learning architectures.

Transfer Learning Architecture. In the models that use transfer learning, we
defined a module that contains all pre-trained network architecture. The module
contains all weights of the network initially obtained in the Imagenet Challenge
[3]. Our objective is to use transfer learning and use previous learning through
the Imagenet database. Then these weights are not trainable in our architecture.
Figure 3 presents the base network architecture used in this work.

We defined the transfer learning module by the VGG architectures [17]
(VGG-16 and VGG-19), and MobileNet [7]. In the literature, the works that use
a transfer learning approach generally apply these architectures. VGG architec-
tures contain more convolutional layers becoming more complex. On the other
hand, the MobileNet is used for mobile application or when it is necessary to
use low-cost processing. In this work, we propose the use of these commonly
used architectures aiming to evaluate in our collision detection application. We
need to implement our system as a real-time application in the future. For this
reason, it is necessary to evaluate the deep neural network complexity and its
impacts on the final classification results.
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= =
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Fig. 3. The used networks architecture. The difference of each experiment is the trans-
fer learning architecture used. Then after there are some common trainable layers.

VGG architectures use only 3 x 3 convolutional layers. The VGG-16 and
VGG-19 contain 16 and 19 layers, respectively. The MobileNet is very fast to
train compared to other architectures. MobileNet is the simplest compared to
the others, with a smaller number of parameters. On the other hand, there are
more trainable parameters. Table 3 presents a comparison of these architectures
(it compares the number of all parameters in each network).

Table 3. Number of total parameters (trainable and non-trainable) for each architec-
tures.

Architecture | Total Trainable | Non-trainable
VGG-16 14,780,481 | 65,793 14,714,688
VGG-19 20,090,177 | 65,793 20,024,384
MobileNet | 3,409,729 | 180,865 | 3,228,864

As shown in Fig.3 there are other layers after the transfer learning. These
layers are the trainable part of our architecture and are common to all transfer
learning models. First, we performed a data reduction using the pooling layer.
Single values replace a complete nearest region of values. In this pooling layer we
used the global average function. It can provide a feature mapping and reduces
overfitting.

We defined a dense layer after the data reduction. This layer contains 128
neurons with adjustable weights in each training network process. This is the
fine tuning process, where there is an adaptation of the learn based on the
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new samples. We selected 128 neurons of neurons empirically. We believe that
a simple fine-tuning to a binary classification problem may be sufficient due to
the robust transfer learning part of the architecture.

As a result, the network architecture may use previously acquired knowledge
unified with the knowledge acquired in the neural network training process. This
forces deep networks learning more about the feature generated by the transfer
learning architecture. For the obtained data, we apply the Rectified Linear Unit
(ReLU) activation. Then the data moves to the fully connected layer. In this
layer, we defined a neuron and a sigmoid activation to determine the probability
of the data belonging to the class. Then the classification is performed through
this probability.

CNN-32-64-128 Architecture. We do not use pre-trained weights in this
architecture. All layers and their weights are changed and improved along with
the training. We used this deep learning architecture from the literature [16]. This
architecture was used to another machine learning application, but in this work,
we aim to evaluate the results in the collision detection application empirically.
Figure 4 shows the CNN architecture used.

ConvLayerl 32-3x3 - Relu l
{ Max-pooling - 2x2 —_—
Max-pooling - 2x2 [
== !
Input ConvLayer2 64 - 3x3 - Relu [}
Images [ Dense 512- Relu —
Max-pooling - 2x2 1
} =
[ Densel (Fully Connected) - Sigmoid
ConvLayer3 128 - 3x3 - Relu

Fig. 4. The used networks architecture. The difference between each experiment is the
transfer learning architecture used. Then there are some common trainable layers.

The network’s first part is composed by three convolutional layers with kernel
size 3 x 3. The first convolutional layer contains 32 filters and the other convo-
lutional layers have 64 and 128 filters respectively. After each convolution, there
are pooling layers containing the max() function. Succeeding each pooling, we
defined a dropout rate, aiming to obtain less overfitting in the training model.
Finally, we established a dense layer following a fully connected with a sigmoid
function (binary classification).

4 Experiments and Results

In this section we present the experimental settings and the results obtained
with the experiments.
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4.1 Experimental Setup

In the experiments was set some configurations in the neural network architec-
tures and in the data. We will detail these configurations in the next subsections.

General Settings. For a fair comparison, we set the same configuration hyper-
parameters for all architectures. Table4 presents these parameters and their
values.

Table 4. The network architectures hyperparameters. On the left are the hyperparam-
eters, and on the right their values.

Parameters Values

Optimizer Adam

Loss function | Binary cross entropy
Epochs 100
Batch size 24

The Adam optimizer [8] is a combination of RMSprop and stochastic gradient
descendant optimizer. We choose this optimizer because it is very fast for the
training process, thanks to requiring low memory space. It works well with large
databases using deep neural networks. We set up the loss function binary cross
entropy because our approach is based on a classification task and the last layer
uses the sigmoid as activation function. Usually the number of epochs should be
selected when it is sufficient to stagnate the accuracy increase and loss decrease.
Empirically we selected 100 epochs and it was sufficient to attend this conditions.

The batch size is the number of samples propagated in the neural networks. It
is important select a number observing the memory capacity of the PC (Table 1).
We defined 24, because it is the maximum possible to train the network without
PC crash.

We adopted the K-fold (cross-validation) as the model validation method,
with K = 5. The 5-fold provide us 5 executions containing different classification
results. Finally we calculate the average of results for all defined metrics.

Metrics. For model evaluation, we selected some representative metrics com-
monly used to evaluate machine learning models and prediction results. These
metrics are based on the amount of correctness of the positive (TP) and neg-
ative (TN) classes. We represent the positive samples as collision/overlap, and
the negative samples as non-collision. The errors of the positive (FP) and neg-
ative (FN) classes are also considered. The metrics to evaluate the prediction
results are: accuracy (ACC), sensitivity (SEN), specificity (SPE), and the F1-
score. The Egs. (1), (2), and (3), and (4) show the formulas that correspond to
the first three metrics:
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Acc = TP—i—Iz:]ij—?]]\Df—i—FN'loo (1)
SEN = TPT—|—7PFN -100 (2)
SPE = % -100 (3)
F1 — score = 2TP+2}7;]€+FN -100 (4)

We may consider the SEN as the collision rate, because the metric calculates
the acceptance of the collision class. Equally we may consider the SPE as the
non-collision rate, where it is calculated the non-collision class rate.

About the loss, it is necessary to know the predicted probability observation
(pe) of currently sample, and the boolean indicator (y) that indicates if the value
was classified correctly, and the number of classes (M). The Eq. (5) depicts the
metric formula:

M
LOSS == y-log(pc) (5)

c=1

4.2 Results and Discussion

After performing the experiments, we collected the classification results. First,
we present the accuracy (on train and test set) and the LOSS for each model.
Tables 5 and 6 show these results for the databases A and B, respectively. We
show all results using the mean+standard deviation for each metric.

Table 5. Accuracy and LOSS results obtained using casual clothes.

Model Train ACC | Test ACC | LOSS

VGG-16 96.73 +0.24 | 90.92 £ 0.03 | 0.10 4 0.01
VGG-19 95.65 + 0.30 | 88.80 + 1.30 | 0.27 £ 0.02
MobileNet 86.80 +9.42 | 58.68 £ 3.75 | 1.30 + 0.26
CNN-32-64-128 | 98.40 4 0.90 | 95.02 + 1.07 | 0.08 £ 0.08

As shown in the Tables5 and 6 the VGG-16 outperforms the other transfer
learning-based models, but CNN-32-64-128 outperforms the VGG-16. First, for
the training and testing set accuracy results are close. This phenomenon shows
that the models has not overfitted. The behavior of VGG-19 was similar to that
of the VGG-16. The model has not overfitted for both databases. The accuracy of
the CNN-32-64-128 model in both databases was very close. The model has not



Assess. Deep Learn. Models for Human-Robot Collab. Collis. Detect. 251

Table 6. Accuracy results obtained using PPE.

Model Train ACC |Test ACC |LOSS

VGG-16 98.40 + 0.89 | 96.00 + 0.07 | 0.06 £ 0.01
VGG-19 96.40 +0.74 | 95.05 £ 0.14 | 0.07 £ 0.02
MobileNet 93.80 + 5.21 | 75.41 £5.02 | 0.51 +0.19
CNN-32-64-128 | 99.00 4+ 0.70 | 98.85 + 0.80 | 0.02 + 0.04

overfitted in both databases. The initial results show the efficacy of the model
in detecting overlap and non-overlap.

Different from previous discussed models, the MobileNet model has over-
fitted. The training set accuracy outperformed on large-scale the testing set
accuracy. This is an evidence of model overfitting, the model is only used to the
training set, and has difficulty to classify a different set. Consequently, it show
us that the model cannot be applied in our detection system because of its low
accuracy rate. In the transfer learning models we can note that the VGG models
outperform the MobileNet.

About the results obtained in the database A (Table 5), due to the accuracy of
the VGG models are very close it was not possible to determinate with precision
who is better. Observing the LOSS metric, we can note that the values follow the
same behavior of the accuracy. While the accuracy increases, the loss decreases.
The LOSS of the MobileNet is greater than the VGG models. In the database B
(Table 6), analyzing the accuracy metric is possible to note that the VGG models
continue outperforming the model MobileNet. Just like the experimental results
in A database, the VGG models accuracy remains close in the B database. We
can see that the accuracy increases when compared with the experimental results
for database A. It also reflects the LOSS metric. The LOSS metric presents better
results and it follows the accuracy results.

The accuracy metric is not sufficient to determine the machine learning
model’s robustness. We show in the Tables7 and 8 the metrics and results,
including SEN, SPE and LOSS.

Table 7. Sensitivity and specificity results obtained using the database A (casual
clothes).

Model SEN SPE F1-score

VGG-16 90.01 £ 00.25 | 89.46 + 00.10 | 89.86 4 00.05
VGG-19 84.93 +00.32 | 97.00 & 00.34 | 84.32 £ 00.23
MobileNet 53.06 4 05.48 | 90.02 £ 05.31 | 52.80 + 05.67
CNN 32-64-128 | 98.63 +01.42 | 94.31 +01.21 | 97.30 £ 01.50
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About the results for the database A (Table7) obtained in other metrics,
SEN and SPE, we can note some considerations. First, all models could pro-
vide a high acceptance in the positive classes (SEN, when the collision/overlap
happens), except the MobileNet model. This means that VGG models and the
CNN-32-64-128 model are capable to detect when the collision/overlap happens,
the Fl-score confirm this hypothesis, indicating the high acceptance of the pos-
itive classes. The VGG-19 model outperformed the VGG-16 with almost 0.08
difference. These mentioned models could guarantee this acceptance rate (SPE)
superior to 0.95. The results show that the CNN-32-64-128 outperformed the
transfer learning models in all metrics. It occurs because this model has greater
complexity compared to the other models. In the transfer learning models there
is just a dense layer to be trained while in the CNN-32-64-128 there are another
convolutional layers to be trained. This suggests that the configuration chosen
empirically may not be the best one. There is a possibility of improving transfer
learning results increasing the number of neurons or trainable layers.

Table 8. Sensitivity and specificity results obtained using the database B (PPE).

Model SEN SPE F1-score

VGG-16 96.43 £ 00.22 | 96.21 + 00.19 | 96.21 4 00.23
VGG-19 94.81 £ 00.37 | 96.64 + 00.31 | 94.90 4 00.26
MobileNet 69.21 £05.42 | 73.42 £ 05.10 | 64.19 £ 05.36
CNN 32-64-128 1 99.10 £ 01.50 | 98.11 £ 01.24 | 98.75 £+ 01.20

The experimental results for the database B are in the Table8. We can note
a high impact in the MobileNet results. The SEN rate was not well as it got
in the database A. But it got a better SPE rate, making the same comparison.
These results can explain the improvement in relation to MobileNet model in
the accuracy rate in the second database. About the VGG models, the VGG-19
got a low decrease in the SEN and Fl-score metrics, but got a high increase
in the SPE metric. The VGG-16 got an increase of 0.06-0.08 in these metrics
and outperform the VGG-19 model. Again the CNN-32-64-128 outperformed the
transfer learning models in this database. The same explanation used previously
should be used now to explain this phenomenon.

Three of four proposed models presented efficient results. The exception is
the MobileNet transfer learning model. The bad results for this model can be
explained by the low complexity of this model in relation to the others used
in this work. As we showed in the Table3 this model contains less trainable
parameters compared to others models that use transfer learning. With the lower
complexity of the model, it tends to present inferior results compared to the
other models. The higher complexity of the other models provided better ranking
results on all metrics that we analyze in this paper. One thing that could also
help in the increasing of models accuracy is the generalization of the data. It
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can facilitate the classification process as the database can be easily separated
by straight lines or curves defined by the neural network in the arbitrary space.

Another point to highlight is about the special PPE clothing use in the
experiments. When the worker wore casual clothes, the results in the SEN and
SPE metrics showed an imbalance in some models. This has been observed with
the results obtained through the VGG-19 and MobileNet models. With the use
of PPE, the results for these metrics increased by about 10%. Overall accuracy
results also increased considerably with the use of PPE in all models. The results
show that the use of special clothes increased the database capacity generaliza-
tion. It provided better results for learning models classification. Thus, we can
affirm that the special clothes provided better results for collision detection and
non-collision, a result that is very encouraging. The standard deviation of the
results obtained with casual clothes and PPE indicate that there is no overlap
in the accuracy rates obtained. Therefore, we can infer that for the model vali-
dation method adopted with 5 folds, it is not necessary to carry out statistical
tests to ratify the conclusions obtained.

Overall, we can consider the results obtained as satisfactory. The paper’s
goal was to propose machine learning models capable of identifying collisions in
industrial environments. The detection occurs without the inclusion of external
sensors, that can change the common factory environment, differently of some
previously published works. We only used a two-dimensional camera and special
clothing that workers commonly wear in their daily work. It was sufficient to pro-
vide good accuracy, higher than 0.9 (or 90%). With this achieved accuracy ratio,
we can guarantee reliability in the collision detection system to be implemented.
It is an application that detects accidents, a good accuracy rate is required for
the system to actually be implemented in a real time application. We can affirm
that when this system is deployed, there is evidence that it can help the rapid
relief and reduction of consequences caused by the accident in industrial envi-
ronments. The evidence is pointed out throughout the obtained results. Finally,
to solve the problem of data labeling (overlap/collision), it is necessary to use
more 2D cameras in different points of view to have a detailed description of the
scene. With that, it is necessary to make tests to identify overlap/collision in
each one of them for final inference about collision in the scene. With this, the
real rate of TP can be improved.

5 Conclusion

In this paper, we presented a comparison of deep learning models for human-
robot collaboration collision detection in industrial environments. The first three
models are based on transfer learning, while the last one is a convolutional archi-
tecture without the pre-trained weights. The model with the best classification
results was the CNN-32-64-128, which obtained an accuracy result of 0.9932,
with the worker wearing PPE. It was possible to get well results of collision and
non-collision detection.
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With every experimental process, we were able to create a balanced database
containing collision and non-collision data. About the transfer learning based
models, only MobileNet did not achieve good results, leaving the highlight to
the VGG models. Another critical point is that the use of PPE clothing provided
an accuracy increase and balance rates comparing to the SEN and SPE metrics.
In both databases, the data provided a good generalization. It was further rat-
ified in database B, in which the worker dressed PPE. The results demonstrate
that it was possible to obtain a good collision detection accuracy without the
use of external or internal robotic sensors. These results were obtained only by
using standard tools in industrial environments such as PPE clothing, a two-
dimensional camera, and a computer to perform the data processing.

As future work, for reducing occlusions effects and improve the real time clas-
sification, more cameras may be introduced to take other points of view and to
build ensemble of classifiers with the overlap classification results. This ensem-
ble will be intended to support the final decision whether the collision actually
occurred at any given time in real time. Then we should evaluate the developed
model by currently work in real-time application with network metrics. Finally,
we also look in to detect other risk situations in industrial environments by
applying deep learning models.
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Abstract. A major challenge in image -classification tasks using
Machine Learning, and in particular when using deep neural networks, is
domain shifting in deployment. This happens when images during usage
are capture in different conditions from those used during training. In
this paper, we show that despite previous works on the diagnosis of apple
tree diseases using standard Convolutional Neural Networks displaying
high accuracy, they do so only when no domain shift is present. When
the trained model is asked to classify photos of apples taken in the wild,
a 22% reduction in F1 score is observed. We propose to treat the task as
a segmentation problem and test two different approaches, showing that
using Mask R-CNN allows not only to improve performance in the origi-
nal domain by 3%, but also significantly reduce losses in the new domain
(only 6% reduction in F1 score). We establish segmentation as an impor-
tant alternative towards improving diagnosis of apple tree diseases from
photos.

Keywords: Deep learning + Instance segmentation - Apple fruits

1 Introduction

The quick diagnosis of diseases and disorders in cultivars is essential for higher
production yields in agriculture. Many disorders present themselves by changing
visual characteristics of the plant, such as the presence of discoloration or well-
defined spots. In these cases, an expert can correctly diagnose by visual inspec-
tion, drawing on previous knowledge of the disorders. Such expertise, however,
can be expensive to obtain, taking many hours of training, and not be widely
available.
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One solution that has considerable adoption is the creation of printed quick
guides that helps a non-expert to reach a diagnosis by comparing the affected
cultivar with labeled photos. Such method can be slow and prone to errors due
to the similarity of many disorders and the difficulty of printing the wide range
of ways that a disorder may affect a plant. Machine Learning (ML) solutions
have been proposed for such scenario, automating the diagnosis process using
models trained on labeled photos.

Convolutional Neural Networks (CNN) are often used as the underlying
model, providing improved performance compared to previous approaches using
more traditional models [9,19]. When using CNNs, images are labeled by experts
and used to train a network — in this case, the whole image is fed to the model
without any additional information.

However, a major issue with deploying a system based on CNNs is domain
shifting in the wild. Images taken in the wild are subject to angular and luminos-
ity variations, partial and complete occlusions, brightness, contrast and texture
changes, the presence of external objects, among other interference [14]. This
shift may hinder the model’s performance when deployed, reducing its reliabil-
ity.

In this context, we consider the possibility of training a model using seg-
mented images and evaluate this approach using a dataset of apple fruits con-
taining images taken both in controlled settings and in the wild after harvest.
Fruits in our dataset may have Alternaria or Scabies disease, two common con-
ditions that cause spots and changes in the structure of fruits [7,19].

We evaluate two different segmentation - one that roughly segments the whole
fruit and another where each spot in each fruit is segmented. Our hypothesis is
that such granularity allow for better generalization of the model, allowing it to
better focus on parts of the image that are relevant for the task. In order to test
this hypothesis, we conduct extensive experiments that, in particular, evaluate
the performance when training a network using only images taken in controlled
settings and testing it on images taken in the wild.

The main contributions of this work are:

(i) A dataset of annotated images for segmentation of diseases of the type
Alternaria and Scabies in apple fruits;
(ii) An evaluation of the Mask R-CNN method applied to the diagnosis of
Alternaria and Scabies diseases in apple fruits;
(iii) A comparison of the approach based on segmentation to conventional CNN
based models, showing and improved performance when using the former.

The rest of the paper is organized as follows: Sect.2 presents an overview
of related works. Section 3 presents the main goals and the methodology of this
work. Section 4 addresses the instances segmentation Mask R-CNN architecture.
Section 5 details the dataset. Section 6 describes the experiments carried out and
the training process, and the Mask R-CNN model adopted. Section 7 evaluates
the results of the tests performed. Finally, Sect.8 presents the limitations, pro-
posals for future activities and conclusions of this work.
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2 Related Works

Machine learning models have been used successfully in analyzing large data
sets of apple images taken in controlled settings, such as disease classification in
apple fruits or leaves [1,3,7,19], detection of defective apple fruits [13].

Nachtigall et al. [19] developed a CNN model for diagnosing apple tree disor-
ders using a dataset of approximately 10,000 images of leaves and fruits divided
into 12 classes. They reported 97% accuracy in apple leaf’s classification and
91% accuracy in apple fruit classification using a simple AlexNet architecture.
All images were obtained with fruits and leaves in controlled settings.

The issue of domain shifting received ample reporting in the literature (see
e.g. [26] for a survey). Domain shifting happens when training and test data
differ in their joint probability distribution — e.g. when one trains a model to
classify objects taken with a particular camera, but then uses the trained model
to classify the same objects with photos taken with a very different camera. This
often results in poor performance and several techniques for Domain Adaptation
exists, most requiring access to at least some examples in the target domain
[8,20]. Zero-shot learning [16] is an instance of domain adaptation where no
examples from the target domain is made available during training.

Image segmentation is the task of segmenting an image into different parts,
aiming at e.g. detecting objects’ locations in images or counting objects. Deep
neural network approaches have proven very successful at this task, in particu-
lar semantic segmentation — i.e. pixel-level classification [6,23]. See [17] for an
extensive survey on image segmentation.

3 Goals and Methodology

The main objective of this paper is to evaluate the performance of training a
deep neural network for Instance segmentation of apples’ diseases in photos and
using the network for diagnosing these diseases in unseen photos that may have
suffered domain shifting — i.e. were taken in very different settings compared to
those used during training. We establish as specific goals:

(i) To evaluate whether training a model for segmentation improves general-
ization to unseen domain-shifted images, when compared to conventional
CNN’s trained for whole-image classification;

(ii) To evaluate different segmentation granularity, one encompassing the whole
fruit and another focusing on the characteristic visual manifestation of each
disease;

In order to do so, we leverage two datasets containing labeled images of
apple fruits displaying symptoms of diseases. In one, photos of the fruits are
taken under controlled settings using a semi-professional camera (we will refer
to this dataset as the Lab dataset); in the other, photos are taken using a simple
smartphone, after harvesting (we will refer to this dataset as the Wild dataset).
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Using the two diseases (Alternaria and Scabies) that intersect both datasets,
we labeled using a segmentation tool several photos from the Lab dataset. Exper-
iments with two types of segmentation are conducted: one enclosing the whole
fruit and another segmenting each individual visual manifestation of the diseases
(often discolored/distorted patches or spots).

For each segmentation type, we then train a Mask R-CNN [15], a deep neural
network aimed at learning instance segmentation for images, using the labeled
images and then use the trained model to infer the disease from both unseen
Lab images and Wild images, measuring its performance using several metrics.

In addition, we also train a more standard CNN using solely images from the
Lab dataset and also evaluate its performance on unseen images from the Lab
and Wild datasets.

Our hypothesis is that training a model for segmentation allows it to focus
on parts of the image that are relevant to the task and that this leads to better
generalization when the domain shifts — i.e. we hypothesize that Mask R-CNN
will perform better in the Wild dataset than the CNN counterpart.

In what follows, we detail each part of this methodology.

4 Mask R-CNN Architecture

Mask R-CNN[15] is a deep neural network developed in 2017, evolved from Faster
R-CNN [22] for object detection and instance segmentation in images.

Mask R-CNN is based on the concept of Regions of Interest (ROI). It consists
of using a Features Pyramid Network (FPN) to generate the features maps of
the images. Then, a Region Proposal Network (RPN) analyzes the features maps
generated by the FPN to find possible regions of the image (anchors) capable of
representing an object [21,22,24].

Anchors can form regions of interest of varying sizes, so ROI Align opera-
tion resizes them to a single size. In the sequence, the convolutional and fully-
connected layers are responsible for making the prediction.

The Mask R-CNN has three outputs: the class, the bounding box, and the
segmentation mask [4,14,15]. Figure 1 details the Mask R-CNN architecture
adopted in this work.

Mask R-CNN uses a multi-task loss function and weights can be assigned
to loss functions during training to adjust the model [5,21]. The Equation of
multi-task loss function is given by:

Total Loss = Class Loss + Bbox loss + Mask Loss (1)

Details on the adjustments of the loss function used in the proposed model are
discussed in Sect. 6. Additionally, Mask R-CNN can use different architectures
such as ResNet, VGG, MobileNet, among others [4,14].

5 Dataset Preparation

We use part of a dataset of apple tree disorders that affect fruits and leaves,
provided and validated by researchers at EMBRAPA. The dataset includes more
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CNN — feature maps’ »

Fig. 1. The original Mask R-CNN architecture adapted from [14]

than 7000 labeled images of apple fruits divided into 14 classes (11 disorders and
3 types of healthy fruits). All photos were taken under controlled settings, using
a single camera, white background and controlled lighting. More details about
the dataset can be found in [19].

A second dataset, also provided by EMBRAPA for this project, contains
photos of apple fruits taken during harvest in the wild. This dataset contains
samples of only two diseases and photos are labeled as either having a fruit
with Alternaria or Scab. Photos were taken using a smartphone and the pho-
tographer was only instructed to keep the fruit of interest centered and with the
symptoms, when present, visible. Since photos were taken during harvest, most
photos contain other apples in the background — apples are not attached to the
tree anymore.

Apple Scab is a disease caused by the fungus Venturia Inaequalis. It is present
in all apple-producing regions in the world. It causes small circular lesions, iso-
lated or scattered. In an advanced state, it provokes dark-colored cracks and
cancers in fruits and leaves [9,19]. Alternaria attacks several cultivars such as
cotton, rice, beans, corn, among others. It can occur in leaves and fruits of apple
trees. The disease starts with circular brown spots, can cause leaf necrosis, and
spread through the fruits, giving an appearance of rot [7,9]. Figure 2 shows
examples of each disease.

We used the VGG Image Annotator (VIA) [12] to annotate 1629 images
available in the original dataset, equally divided between Alternaria and Scab
classes'. VIA is an open-source web tool used for graphic annotation in images,
audios, and videos.

! The dataset will be made available after publication.
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Fig. 2. Dataset preparation: a. Alternaria lab; b. Sarna lab; c. Scab wild

The annotations of the images must be accurate at the pixel level. However,
it is common that the polygons extracted in these annotation tools do not accu-
rately represent the object’s limits, compromising the training and evaluation of
segmentation techniques [10,11,14].

In order to address this, two different approaches were used in the anno-
tation (see Fig. 3): i) circles annotation which demarcates the whole fruit to
the edges, ii) polygons annotation which demarcates regions that correspond to
visual disease symptoms.

6 Model Adjustment

6.1 Loss Function

As previously described in Sect. 4, the Mask R-CNN loss function combines
losses for classification, location of the bounding box (bbox), and mask.

In summary, five loss calculations are used to compose the total loss function
of the Mask R-CNN model. The first loss functions of the class and bounding
box are applied during the training of the RPN which is responsible for find-
ing the ROT’s in the images. In this step, the RPN class loss is computed for
cross-entropy, and the RPN bbox loss is calculated via regression function. The
best-rated ROI’s per class is then passed to ROI Align through non-maximum
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Fig. 3. Image annotation approaches: a. Whole fruit; b. Symptoms

suppression (NMS). The Mask R-CNN loss functions are then applied to the
selected ROI’s. The mrcnn class and mrenn bbox loss functions were used in the
former model Faster R-CNN. Mrcnn mask loss uses binary cross-entropy to eval-
uate the mask pixels in the foreground (instance) and background concerning
the class label [15,22].

The weights of the Mask R-CNN loss function were adjusted in training
performed only with Lab images and prioritized the classification task. Therefore,
the weights of the loss functions assigned to the class were adjusted together.
For example, higher weights were attributed only to classification losses up to a
maximum value of 6. The loss function weights of the Mask R-CNN model used
for training are as follows:

— RPN class loss: 2.0;
RPN bbox loss: 1.0;
— MR-CNN class loss: 2.0;
MR-CNN bbox loss: 1.0;
— MR-CNN mask loss: 1.0;

6.2 Training

Transfer learning was employed to train the Mask R-CNN model. We adopted
the pre-trained weights from the COCO challenge dataset [18] to initialize the
network. COCO provides a large dataset of annotated images for object detection
and segmentation tasks and includes a generic apple class.

We modified the Mask R-CNN output to fit the task and preserved the
knowledge of the upper layers. This step is essential for learning the coordinates
of the bounding boxes, masks, and classes of the model (see Fig. 4).
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Fig. 4. First row: original images. Second row: Masks. Third row: Instances and bound-
ing boxes. First column (a) shows the symptoms (polygon) approach while (b) shows
whole-fruit (circles) approach.

Additionally, the task of segmenting apple disease symptoms is a complicat-
ing factor when considering small datasets, since ground truth masks do not
have a defined pattern or format and can vary widely depending on the stage
of the disease. We applied data-augmentation using geometric transformations
in the training images to improve diversity of examples. Details on the applied
data-augmentation transformations are presented in Fig. 5.

The Mask R-CNN was developed using the Matterport implementation [2],
TensorFlow and Keras API. The model is trained for 40 epochs and 100 steps
per epoch, with a learning rate of 0.001, momentum rate of 0.9 and weight decay
of 0.0001. Backbones and optimizers are evaluated in the Sect. 7. The size of the
RPN’s anchors varies between 16 and 256 and generates 200 ROI’s for each image
during training. The best ROI evaluated by class are filtered by non-maximum
suppression (NMS). A maximum number of 100 instances can be detected per
image, in inference mode. The model uses input image sizes of 256 x 256. We
used Google Colab? on a single Tesla K80 GPU.

2 The source code for the Mask R-CNN model will be made available after publication.
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Fig. 5. Data augmentation in training images: a. Original image; b. Horizontal flip; c.
Vertical flip; d. Multiply; e. Rotation 15°; f. Rotation 45°; g. Rotation 90°; h. Rotation
270°; i. Scale;

6.3 Evaluation

We used two sets of validation data to evaluate the performance of the Mask
R-CNN model. A dataset consisting of Lab images and another consisting of
images in the wild.

We evaluate the model both for segmentation and classification performance.
As metrics, we use Average Accuracy (mAP), Average Recovery (mAR) and
F1 Measure (F1). We adopted IoU threshold values of (0.5), (0.75) and (0.5:
0.95) and mean Intersection over Union (mloU) to assess the quality of the
segmentation. We compared the predictive ability of the Mask R-CNN model
with a traditional CNN model, in both datasets.

Intersection over the union (IoU) is a measure that assesses the overlap of
bounding boxes. The IoU value is calculated by the intersection between the
predicted area and the ground-truth area to analyze whether the detection is
valid (True Positive) or not (True Negative). It is given by:

Area Overlap
fol = Area Union 2)

An IoU threshold greater than or equal to 0.5 is used to output 1 as predic-
tion and 0 otherwise. We calculate the mAP, mAR, and F1-measure on the IoU
threshold equal to 0.5 because it is considered a standard measure of segmenta-
tion quality [4,14].

7 Experimental Results and Discussion

The results of the Mask R-CNN model are organized into three parts. The first
step analyzes the performance of the model for the classification of apple fruit
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diseases. The second step assesses the quality of the segmentation generated by
the model. Finally, the Mask R-CNN model best evaluated in the two previous
steps is compared to a traditional CNN classifier.

The experiments cover two architectures, ResNet-50 and ResNet-101, and two
optimizers, SGD and ADAM. The images of train and validation are partitioned
with an 80:20 ratio. The same set of validation of images in the wild was used for
evaluating the models. All experiments went through the same training steps,
discussed in the previous section.

Table 1 shows the results of all experiments performed for the classification
task. The values of mAP, mAR, and F1 shown in the table are calculated for
the IoU threshold of 0.5 and the best-obtained results are presented in bold.

Table 1. Summary of the experiments applied in the apple fruit disease classification
task. Tests 1-4: the training and validation data set contains laboratory images (1099
and 366, respectively). In tests 5-8: the training set consists of laboratory images
(1099), the validation set contains images in the wild (164). In tests 9 to 12: the
training set contains laboratory images (310), the validation set contains images in the
wild (164)

Experiments | Dataset Annotation | Classification task results
Backbone Optimizer | mAP mAR | F1

Test 1 Whole-fruit ResNet-50 | ADAM 0.99 [0.99 |0.99
Test 2 (1099/366) ResNet-50 | SGD 0.99 | 0.99 |0.99
Test 3 ResNet-101 | ADAM 0.99 1099 [0.99
Test 4 ResNet-101 | SGD 0.98 [0.99 |0.98
Test 5 Whole-fruit ResNet-50 | ADAM 0.91 (0.92 |0.91
Test 6 (1099/164) ResNet-50 SGD | 0.93 |0.93 |0.93
Test 7 ResNet-101 | ADAM 0.88 [0.91 |0.89
Test 8 ResNet-101 | SGD 0.92 [0.92 |0.92
Test 9 Symptoms ResNet-50 | ADAM 0.87 10.92 |0.89
Test 10 (310/164) ResNet-50  SGD 0.91 |0.92 0.91
Test 11 ResNet-101 | ADAM 0.78 [0.92 |0.84
Test 12 ResNet-101 | SGD 0.78 1092 [0.84

All tests that used the ResNet-50 backbone and SGD optimizer combined
obtained better results in the evaluation, both for the laboratory image valida-
tion dataset and for the Wild image validation dataset in the two annotation
approaches.

The R-CNN mask model achieved high predictive performance when trained
and tested on Lab images, reaching 99% precision and recall rates. Test 6
achieved the best prediction results in the Wild image validation dataset with
the whole-fruit annotation approach and obtained 93% precision and recall and
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Fl-measure rates. It surpassed the tests using the symptom annotation app-
roach.

Using the ResNet-50 backbone led to the highest values of mAP and mAR,
with an emphasis on Test 6, which uses the SGD optimizer and proved to be
the best solution for the classification task in both validation datasets (Lab and
Wild).

The higher the IoU threshold, the better correspondence between the predic-
tion and the ground truth. Thus, the values of mAP@0.5 (VOC PASCAL met-
rics), mAP@0.75, and mAP@.5:.95 (both, standard COCO metrics) and mloU
are compared below to assess the quality of segmentation of Mask R-CNN model.

The mAP@.5:.0.95 is the standard measure of the COCO detection challenge
that measures mAP achieved for different ToU thresholds, from 0.5 to 0.95 [0.5:
0.05: 0.95].

The results presented in the Table 2 summarizes the mAP rates achieved for
ToU thresholds. Again, the tests which use the ResNet-50 backbone performed
better in the segmentation task, in general. For the Lab validation set, the ADAM
classifier was able to provide better results for the instances segmentation as
it is possible to observe in Tests 1 and 3. These tests’ results are practically
equivalent, with a small advantage for test 3, which reached a precision rate of
75% for ToU threshold of 0.5:.95 and mean IoU rate of 85%.

In this case, the choice of the appropriate solution can consider issues such
as processing, storage capacities, training, and inference times, that were not
analyzed here and depend on the specific application. The tests performed on
the Wild validation set that obtained the best results used the SGD classifier
and maintained the same pattern as the classification task. the best solution was
achieved in Test 6 which reached higher the values of mAP@0.5, mAP@0.7, and
mAP@.5:.95 with rates of 93%, 71%, and 62%, respectively, and mlIoU rate of
78%.

Table 2. Evaluating the quality of the segmentation for IoU thresholds

Segmentation task results

Annotation Whole-fruit Whole-fruit Symptoms

Tests 1 2 3 4 5 6 7 8 9 10 11 |12
mAP (IoUQ@0.5) 0.99/0.99/0.99 {0.98/0.91/0.93|0.88/0.92/0.87/0.91/0.78/0.78
mAP (IoU@0.75) 0.91/0.90/0.90 {0.900.65/0.71/0.65|0.65|0.70|0.71|0.55|0.58
mAP (IoU@.5:.95)0.74 |0.71|0.75|0.660.56|0.62|0.61|0.62|0.58|0.55|0.50|0.45

mloU Score 0.84 10.84/0.85/0.80|0.77|0.78|0.77|0.77|0.80 | 0.80|0.78|0.79
Train Lab 1099 1099 310

Validation Lab. 366 - -

Validation Wild |- 164 164

In all experiments, when using as backbone the ResNet-101 accuracy dropped
considerably, probably due to insufficient training data. In contrast, the lower
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number of ResNet-50 parameters helps prevent overfitting, reduces training time,
and allows the model to be used on less expensive hardware, such as mobile or
embedded devices.

Test 6 details the best performance solution found for both tasks. These
results are compared to a CNN assessed on the same data set of Lab and Wild
images. We performed approximately the same number of tests on the proposed
CNN that followed the same pattern as the Mask R-CNN model. We tested in an
ad hoc fashion different backbones, optimizers and hyper-parameters and show
only the best found solution.

The proposed CNN model uses ResNet-50 as the backbone and ADAM opti-
mizer and it was trained for 80 epochs with a learning rate of 0.001, weight
decay of 0.0001, and a mini-batch size of 32. The results achieved in the vali-
dation set composed of Lab images are comparable to those found in previous
work [9,19,25]. The results are detailed in the Table 3.

Table 3. Comparing apple disease classification models

Models Dataset Images |Classification task results

Train | Validation | Laboratory Wild

Lab |Lab|Wild | mAP mAR|F1 |mAP|mAR|F1
CNN 1099 |366 |164 |0.97 |0.96 0.96 0.81 |0.76 |0.75
Mask R-CNN| 1099 | 366 164 0.99 |0.99 0.99 0.93 |0.93 0.93

Therefore, it is possible to conclude that the Mask R-CNN model, trained
with Lab images, performed well in the task of classifying apple diseases in both
Lab and Wild images and surpassed the results achieved by a CNN method in
both cases, with emphasis on the 12% increase in the average precision rate on
images in the wild.

A CNN typically analyzes the entire image to label an object, which does not
work well when subjected to the classification of images with a lot of interference,
as in the case as in the case of images in the wild. The main advantage of using
the Mask R-CNN to classify apple fruit diseases in the wild is that the use of
ROIs makes the network focus only on the regions of the image that potentially
best represent the object. Our results show that it can decrease the interference
in the images and allow for better generalization.

Figure 6 shows examples of inference (Test 6) when applied to unseen images,
using a minimum confidence value of 0.95. It can be seen that the model was
effective in solving the classification and segmentation tasks even with diverse
visual manifestation of the symptoms.
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Fig. 6. Viewing images of apples in inference mode: Scabies (a—f, i-p); Alternaria: (g-k,
q, r); Masks and bounding boxes: (a, b, i, k, o, p); Masks: (c, d, h, i); Refined bounding
boxes: (e, f, j, k, m, n, g, r)

8 Conclusion

In this work we tackled the issue of domain shifting when using deep neural
network models to diagnose apple tree diseases from photos.

We showed that a standard CNN trained on images taken in a controlled
environment suffers a 22% drop in F1 score when applied to images in the wild.
By training a Mask R-CNN to segment input images we were able to reduce this
drop to 6% while improving performance in the original domain by 3%.

This result was obtained by using a segmentation where the whole-fruit is
annotated using a circle. This simpler segmentation outperformed a finer-grained
one where individual visual symptoms were annotated. This was unexpected but
also welcome since annotating the whole-fruit is much easier.

The main contribution of this work is establishing segmentation as an impor-
tant alternative towards improving diagnosis of apple tree diseases from photos
taken in different contexts.

As future work, we aim at annotating segments for more disorders and dis-
eases and more images, in order to allow for a direct comparison against models
trained on all available classes of the original dataset. There is also opportunities
to use different backbones, including more modern ones such as DenseNet.
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Abstract. One of the main challenges for cell segmentation is to sep-
arate overlapping cells, which is also a challenging task for cytologists.
Here we propose a method that combines different algorithms for cer-
vical cell segmentation of Pap smear images and searches for the best
result underlying the maximization of a similarity coefficient. We carried
out experiments with three state-of-the-art segmentation algorithms on
images with clumps of cervical cells. We extracted features such as coef-
ficient of variation and overlapping ratios for each cell grouping and
selected the most appropriate algorithm to segment each cell clump. For
decision criterion, we identified the cell clumps of the training dataset
and calculated the mentioned features. We segmented each clump by
the algorithms and reckoned the Dice measure from each segmentation.
Finally, we used the kNN classifier to predict the best algorithm among
neighboring k-clumps by choosing the one with the largest number of
wins. We validated our proposal on multifocal cervical cell images and
obtained an average Dice around 76.6% without using a threshold value.
These results demonstrated that the proposed ensemble of segmentation
algorithms is promising and suitable for cervical cell image segmentation.

Keywords: Cervical cells + Cell segmentation - Ensemble of
algorithms - Multifocal cytology

1 Introduction

Cervical cancer is a chronic degenerative disease with a high degree of lethality
and morbidity, however, it has a great possibility of cure if diagnosed early.
According to the latest worldwide estimate, 570,000 new cervical cancer cases
were diagnosed in 2018, and 311,000 women died from this disease. About 85%
of the deaths occurred in underdeveloped countries [2].

The most commonly used method for cervical cancer screening is the Pap
(Papanicolaou) smears [16]. Nevertheless, this examination is based on human
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visual analysis, which can lead to misinterpretation, resulting in false negative
results [5]. Besides the subjectivity of the diagnosis, the successive evaluation of
several slides can cause eye strain, contributing to the occurrence of errors. Thus,
the use of computational techniques improves the quality of the exam and works
as a pre-screening to the cytopathologist, increasing accuracy and decreasing the
waiting time of the results.

By processing images, it is possible to extract information to highlight details,
which helps and provides means for human interpretation. The first step to
perform image analysis is commonly the segmentation. This procedure consists
of defining automatic image cut-offs to identify objects or regions of interest
to obtain a semantic interpretation of the scene according to the application.
Segmentation subdivides an image into its constituent parts or objects [7] and
is one of the key tools in medical image analysis.

Computational approaches for automatic cervical cell pre-diagnosis have been
a frequent subject in recent years [3,26]. It is relevant to emphasize the existence
of factors that damage the performance of these algorithms, such as intrinsic
aspects of the slides or even of images, such as capture conditions, noise, and
resolution. Furthermore, the number of cells sampled per frame, the overlap
between these cells, the low contrast of the cell cytoplasm, and the presence of
mucus and blood [6] also lead to a considerable variation of the results.

Since the computational systems for cervical cell pre-diagnosis usually need
reliable information about the cell features, the performance of segmentation
methods plays an important role in accurate systems. As observed in [29], hand-
crafted cell features are valuable for abnormal cell detection when there exists
reliable segmentation. Recently, there are methods for cervical cell nuclei seg-
mentation based on deep learning [25], which are highly efficient for this task.
These methods commonly require high computational cost and a large number
of images for the training stage.

In images of Pap smears, we can extract different information through seg-
mentation, as shown in Fig. 1. From the frame in Fig. 1a, it is possible to extract
nuclei (Fig. 1b), the cytoplasmic mass of each cell (Fig. 1c) and the cytoplas-
mic mass of the cell clump (Fig. 1d). The segmentation result is represented as
observed in Fig. le, in which the nuclei present yellow borders, and the cyto-
plasms have distinct colors identifying the different elements detected in the
frame.

In general, we can divide the algorithms that deal with cervical cell segmen-
tation into four approaches: (i) methods that only segment nuclei, (ii) methods
that segment images containing a single cell, (iii) methods that segment nuclei
and the boundaries of cell clumps in multiple cell images and (iv) methods that
segment nuclei and regions of each cytoplasm with several cells [14,26].

Nuclei detection and segmentation are important steps in cancer diagnosis.
The most traditional methods of the literature segment the nuclei from isolated
or partially overlapping cells. In [19,20], the authors estimate the contours of the
nuclei initially through morphological operations and, finally, apply the snake
algorithm to find the final contours. In [9], the researchers introduce an approach
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(d) ()

Fig. 1. Results of cell components of a Pap smear image. (a) Original image, (b) nuclei,
(c) individual cytoplasm of cells, (d) cell clump, (e) final segmentation.

based on a Bayesian classifier to separate an overlapped or clumped nuclei.
Various schemes using curvature information have been investigated to separate
the overlapped nuclei, such as in [4,11,27]. In [8], the authors published an
interesting nuclei segmentation review.

The second category of cell segmentation methods processes the nucleus and
cytoplasm into images with only one cell. In [3], they proposed a method to
segment the nucleus and cytoplasm of cervical cells by using the fuzzy C-means
(FCM) clustering technique. The pre-processed image is segmented into seven
groups using through FCM technique. Then each group is identified as a nucleus,
cytoplasm, or background image based on two thresholds. In [13], the authors
introduced a snake-based method to obtain the regions of the nucleus and cyto-
plasm, called radiating gradient vector flow (RGVF), which requires for initial-
ization the initial outline of the object of interest and the map of edges of the
image. The initial contours for the nucleus and cytoplasm are obtained by divid-
ing the image into three regions using the k-means method.
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The third approach consists of methods that segment nuclei and the mass
of the cell clumps. In [10], the authors introduced a technique with two steps.
Initially, the image is divided using a hierarchical segmentation algorithm. Then,
the previously selected segments are classified as nucleus or cytoplasm with the
support vector machines (SVM) classifier by considering size, the average inten-
sity of pixels, circularity, and homogeneity. The final region of the cytoplasmic
mass is obtained by joining all segments that are not classified as nuclei. In [6],
the authors improved this method using different classifiers in the second stage of
the process. A method based on thresholding and graph cut-based segmentation
was presented to segment images containing several cervical cells [28].

The fourth approach focuses on the complete segmentation of individual cyto-
plasm and nuclei of overlapping cells. The authors in [15] introduced a new con-
tinuous variational segmentation framework with star-shape prior using direc-
tional derivatives to segment overlapping cervical cells in Pap smear images.
In [23], the authors proposed an approach based on superpixel-based features
and guided shape deformation. In [14], joint optimization of multiple level set
functions is used, where each function represents a cell within a clump. In [12],
the authors segmented multiple overlapping cervical cells in microscopic images
with superpixel partitioning and cell-wise contour refinement. The ensemble of
segmentation algorithms proposed in this paper decides between three state-of-
the-art methods that belong to this category. They are adapted to work with
stacks of multifocal images, which is a more informative dataset for segmenta-
tion. More details on these methods are given in Sect. 2.3.

Scenarios for applying methods that segment cervical cells in Pap smears can
be identified in cell clumps. This approach differs from the literature because
the methods are generally evaluated at the cell level. However, some features
obtained at the level of cell clump can better characterize the complexity of the
segmentation. Thus, we propose a methodology that combines state-of-the-art
algorithms in the segmentation of cervical cells into multifocal images according
to characteristics extracted directly from cell clumps.

The remainder of this paper is structured as follows. Section 2 presents the
methodology used to implement the ensemble approach. The comparative results
of the evaluated methods are exposed and discussed in Sect. 3. Finally, Sect. 4
discusses the conclusions and future works.

2 Materials and Methods

The ensemble of segmentation algorithms methodology shown in Fig. 2 can be
divided into two main important flows. The dashed flow illustrates the data
training to support the ensemble approach decision of which algorithm is more
appropriate to the test samples, represented by the solid flow.

Figure 2 shows the training flow performed based on a training dataset pro-
vided by the IEEFE International Symposium on Biomedical Imaging (ISBI 2015).
The training images are pre-processed in Step 2 to detect cell clumps. The esti-
mation of cell clumps is performed from the ground truth (GT) provided by the
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Fig. 2. Methodology of the ensemble of segmentation algorithms for multifocal cervical
images.

ISBI 2015 dataset. Then, Step 3 extracts the overlap and coefficient of variation
from the detected clumps. We discarded the samples with isolated cells because
the overlap in these cases is equal to zero, which is not significant to analyze the
algorithm performance. Thus, 54 cell clumps were obtained. Step 4 uses three
different methods (PCCS2015, PCCS2016, and SPVD+) to segment each sam-
ple. Finally, Step 5 evaluates which algorithm offers the best segmentation for
each cell clump according to the Dice coefficient (see Subsect. 2.4). The ensemble
of segmentation algorithms predicts the best segmentation method for test sam-
ples based on a scatter diagram that relates the extracted features and winner
method.

The testing dataset contains nine images available by ISBI 2015. The first
three steps in Fig. 2 are similar for both training and testing flows. The differ-
ence between them consists of the number of cell clumps, which are 52 samples
to the testing dataset. After the feature extraction in Step 3, the testing flow
proceeds to Step 6. In this stage, the segmentation of each clump is performed
by the ensemble of segmentation algorithms, which chooses the most appro-
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priate method according to the characteristics extracted. For each cell clump,
the proposed method uses the kNN classifier to find the training samples with
similar overlap and coefficient of variation. Then, the ensemble of segmentation
algorithms segments the cells using the method that presents the highest val-
ues of Dice among the k neighbors in Step 7. Finally, Step 8 approaches the
quantitative evaluation of the algorithms.

2.1 Dataset

The ISBI 2015 dataset provided by the Second Owverlapping Cervical Cytology
Image Segmentation Challenge consists of a collection of 17 multi-layer cervi-
cal cell volumes, from which eight will be used for training and 9 for testing.
This dataset was obtained from 17 different fields of view (FOV) acquired from
the same specimen. Each sample is composed of 20 images or layers, forming
a stack of images multifocal, with each layer defined by a 1024 x 1024 8-bit
PNG file [14]. For each multi-layer cell volume, an image obtained by a one-pass
extended depth of field (EDF) algorithm [1] is also provided. This set of images is
more informative for cervical cell detection and segmentation and, consequently,
achieves more accurate results. Figure 3 shows an EDF image of the ISBI 2015
dataset and some multifocal samples of the EDF.

Fig. 3. Sample of ISBI 2015 dataset. (a) EDF, (b)—(c) multifocal samples.

2.2 Feature Extraction

Two main features are analyzed in our study, the overlap and coefficient of
variation, which are presented in more detail in the following.

Coefficient of Variation (CV). The coefficient of variation, also known as the
relative standard deviation (RSD), is a standardized measure of the dispersion
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of a probability distribution or frequency distribution. It is defined as the ratio
of the standard deviation o to the mean pu.

o
cv o (1)
We considered the coefficient of variation as a parameter of the roughness of
the cell clumps, measuring the pixel intensity variation.
Overlap (0). We propose this metric to estimate the overlap in cell clumps.
Based on each cell cytoplasm annotations, it is possible to estimate the overlap
of a cell with its neighbors according to the following equation:

Q
1 A — A
Ocelli = 6 1- E ] z 5 (2)
F=0s5#i !

where @ is the number of cells overlapping with cell i, A; stands for the area of
the cell ¢, and A; corresponds to the area of the cell j, which overlaps with cell
i. Then, we calculate the overlap in the cell clump Opump, according to:

QC
Ocellj 3 (3)
0

1
Oclump = Q
c
J

where Q). is the number of cells in a clump. Our overlap metric results zero for
the single cells. Therefore, we discarded these cases of our experiments.

2.3 Ensemble

We describe the adopted segmentation algorithms and the proposed decision
criterion of our ensemble method in the following subsections.

Segmentation Methods. We choose methods based on nuclei and cytoplasm
segmentation on multifocal images with several cervical cells to compose our
ensemble algorithm. In [17], the researchers proposed the first algorithm. Here,
we named it PCCS2015. This algorithm ranked first in the Second Segmenta-
tion of Overlapping Cervical Cells from Extended Depth of Field Cytology Image
Challenge that is held under the auspices of the IEEE International Symposium
on Biomedical Imaging (ISBI 2015). It processes cervical images based on three
steps: detection of nuclei using an iterative thresholding approach, segmentation
of cell clumps with Gaussian mixture and morphological operations, and seg-
mentation of each cell cytoplasm dividing the depth images into grid squares
and classifying them based on gradient features.

The second algorithm of our proposal is PCCS2016. This algorithm cor-
responds to an improvement of PCCS2015 and was proposed in [18]. The
PCCS2016 method implemented a new algorithm to identify regions of potential
nuclei, and segments cell clumps by learning a Gaussian mixture model using the
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EM (Expectation-Maximization) algorithm. It also implements a new distance
measure to approximate the limit of the cytoplasm of each detected nucleus.

The third algorithm (SPVD+) was introduced in [22] and won the second
place in the ISBI 2015 challenge. This method is an improved version of SPVD
[24]. Tt consists of three main steps: rough segmentation of subcellular compart-
ments using superpixel combined to Voronoi diagrams, structural refinement of
the cytoplasm boundary through the calculus of variations, and morphological
reconstruction combined to optimization methods to determine the minimum
enclosing ellipse.

Decision Criterion. The k-nearest neighbor (ANN) classifier was chosen to
support the ensemble of segmentation algorithms in the decision task of selecting
among all algorithms, the most suitable to segment a cell clump. This classifier
is defined as follows for a given training set:

T={<x1,y1 >, < To,y2 >,.., < T, Yn, >} (4)

The kNN classifier searches for a subset S C T of k samples closer to z. In
this way, the label assigned to z is the one with the highest frequency among the
samples in S. A distance function calculates the distance between all x and all
training samples. Our experiments were performed with the Cityblock, Fuclidean
and Mahalanobis distances, and the values of ¥ = 3, 5, 7, and 9.

As shown in Step 5 of the training flow, each cell clump is represented by
the algorithm with the highest value of the Dice metric calculated from its cor-
responding segmentation result. Thus, this algorithm represents the sample at a
point in the scatter diagram related to the extracted features. Then, the selec-
tion of the algorithm that should segment a given sample in the testing flow is
the one that wins among the k-nearest neighbors defined by the classifier.

2.4 Evaluation Metric

The Zijdenbos Similarity Index (ZSI) [30], also known as Dice similarity coeffi-
cient (DSC), is defined as:

2|AN B

DSC =2~
Al +|B|

()
where A denotes a reference region, and B is a segmentation result of an image
region. A and B are measured in pixels in the two-dimensional space. This
measure indicates the segmentation accuracy. According to [21], the “good” cell
segmentation result occurs when DSC > 0.7. The false negative rate (FNR)
can be obtained from the proportion of cells with DSC < 0.7. Our approach
does not establish a specific threshold for the Dice values, as suggested in [21].
Therefore, the FNR metric is discarded from our analysis.
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3 Experimental Results and Discussion

The results of the training and testing flows are shown and discussed in Subsects.
3.1 and 3.2, respectively.

3.1 Preliminary Data Analysis

Figure 4 shows the histograms of the segmentation results of each state-of-art
method on the training dataset. We also present the segmentation results for
our approach, where the best algorithm for each cell clump was chosen. There-
fore, the histogram of the ensemble of algorithms corresponds to the possible
maximization of the Dice metric for the training dataset.
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Fig. 4. Histograms of the Dice values for single segmentation methods and our proposed
ensemble algorithm.

The histograms in Fig. 4 reveal the occurrence of methods that did not
perform a good segmentation in certain cell clumps. For instance, PCCS2015
and PCCS2016 presented samples with Dice values equal to zero.

The probability density function curves show the data trend. Moreover, it
demonstrates that the use of the ensemble of algorithms is suitable and promising
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for cell segmentation since the Dice values did not obtain values below 0.6, and
its corresponding curve is concentrated above this value.

The dashed vertical lines in Fig. 4 represent the mean of the Dice values.
The ensemble of segmentation algorithms achieved the best average Dice. In
absolute terms, we observed DSC = 0.8297 and the lowest standard deviation
in comparison to the state-of-the-art methods. This demonstrates a low variation
for the Dice metric in this experiment. Table 1 shows the absolute values of the
mean Dice of the results for comparison purposes.

Table 1. Segmentation results (Training flow).

Methods Dice

PCCS2015 0.7569 + 0.1566
PCCS2016 0.7738 £ 0.1656
SPVD+ 0.7169 £ 0.1900
Our approach (best case)| 0.8297 + 0.0849

The variability of our segmentation results accomplished by the ensemble of
algorithms is displayed in the scatter plot in Fig. 4. Each point in this graph
represents a cell clump and the method by which it was segmented to obtain the
best Dice. Besides that, each axis is equivalent to the features extracted from
the segmented region.

In Fig. 5, we also estimated the marginal distributions of the segmentation
methods on each axis, which allow better visualization of the probability distri-
bution of the occurrence for each method. PCCS2015 has a better performance
in the segmentation of clumps with overlap between 0.3 and 0.75 and coefficient
of variation above 0.15. PCCS2016 appears to cover a greater range of overlap
and coeflicient of variation. However, for cell clumps with a low coefficient of
variation and overlap, the SPVD+ seems to be more suitable according to the
marginal distributions and the occurrences observed in this range.

A comparative analysis of the segmentation of the algorithms is presented
in Fig. 6. They exhibit different behaviors when segmenting the two-cell clump.
PCCS2015 tends to estimate contours with a serrated aspect. This characteristic
reduces the performance of this algorithm in clumps with low overlap, where the
edges of the cells segmented by the other studied algorithms are more regular.
The edge segmentation of PCCS2016 has a smoother aspect due to its refining
algorithm. Cell clumps with moderate overlap and coefficient of variation can
achieve good results with the PCCS2016 algorithm since it defines the cell con-
tour based on the intensity of the pixels in radial lines that depart from the
nuclei. Excessive variation in pixel intensity can affect the definition of the con-
tour in these lines. SPVD+ estimates the contour of the cytoplasm by connecting
candidate stretches of edge, resulting from a high-pass filter, which approaches
an ellipse. As the SPVD+ traces the ellipse based on the Voronoi diagram from
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Fig. 5. Scatter plot of the training flow samples.

(a) (b) () (d)

Fig. 6. Comparative analysis of the segmentation of methods. (a) Cell clump, (b)
PCCS2015, (c) PCCS2016 and (d) SPVD+. The blue lines correspond to the cytoplasm
annotations of each cell in a clump. The red lines represent the segmentation of the
methods. (Color figure online)

the nuclei, clumps with high overlap can generate smaller ellipses, distancing
themselves from the true cytoplasm. The cell clump used in this analysis has
overlap and coefficient of variation equals to 0.4215 and 0.1599, respectively.
The PCCS2015 algorithm obtained the best segmentation with DSC = 0.9160.
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Table 2. Segmentation results (Testing flow).

Methods Dice

PCCS2015 0.7171 £ 0.1541
PCCS2016 0.7588 + 0.1683
SPVD+ 0.6952 + 0.1718
Our approach (best case) | 0.8029 £+ 0.1005

The data presented in Fig. 5 aided the ensemble of algorithms approach to
decide the segmentation method to apply to the new samples of cervical cell
clumps, according to testing flow.

3.2 Results

Table 2 shows the segmentation results of each method and the estimate of the
maximum average Dice that our approach obtained in an experiment with the
testing dataset. Based on these results, PCCS2016 was the method that pre-
sented the best average Dice among the three evaluated methods. The objective
of the ensemble of segmentation algorithms is to overcome this Dice value that
can reach up to 0.8029.

Given the promising results of Table 2, we performed a case study following
the same steps of the testing flow presented in Sect. 2. The decision of the
ensemble of segmentation algorithms was assisted by the KNN classifier that
we trained from the data obtained in the training flow, which generated the
two-dimensional space of Fig. 5.

Table 3 shows the Dice result by varying the type of distance and the value
of k. According to this table, the best decision of the ensemble of segmentation
algorithms occurred when the kNN chose the methods with the Mahalanobis
distance and k= 7.
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Table 3. Segmentation results using the kNN classifier (Testing flow).

k=3 k=5 k=17 k=9
Distance | Cityblock 0.7526 4+ 0.1384 | 0.7591 £ 0.1291 | 0.7635 + 0.1284 0.7566 4+ 0.1399
Euclidean 0.7522 £+ 0.1384 | 0.7607 4+ 0.1278 | 0.7626 + 0.1283 0.7439 £+ 0.1741

Mahalanobis

0.7517 £ 0.1378

0.7586 £ 0.1294

0.7658 £ 0.1262

0.7489 £+ 0.1732

Table 4 shows the confusion matrix between the single segmentation algo-
rithm and the predicted method by the kNN, considering all testing cell clumps.
Since our ensemble approach uses the predicted single algorithms to perform the
cell segmentation in each clump, our proposal achieves the best performance if we
observed a diagonal confusion matrix. However, there were cases in which some
samples were classified incorrectly. They were not segmented by the appropriate
method, which could provide the best segmentation. Thus, we found quantities
outside the main diagonal. Our approach was able to identify 25 out of 31 cell
clumps that PCCS2016 would be more efficient. Only 6 samples were classified
by methods that did not optimize the Dice value. The kNN provided the worst
predictions for SPVD+ clumps, where 8 out of 9 were incorrectly addressed to
other segmentation methods.

Table 4. Confusion matrix in predicting the clump cell segmentation method by the
our best kNN(k) setup: k = 7 and Mahalanobis distance (Testing flow).

Methods Predicted methods
PCCS2015 | PCCS2016 | SPVD+
PCCS2015 |5 5 2
PCCS2016 |1 25 5
SPVD+ 1 7 1

Thus, given the conditions of this experiment, the case study using NN
resulted in DSC = 0.7658 for the ensemble of segmentation algorithms. This
value was greater than the Dice values of state-of-the-art methods, such as
PCCS2016, and can improve its results for up to DSC = 0.8029.

Our experiments demonstrated that our approach optimized the final seg-
mentation result compared to the results of each isolated method. The prelimi-
nary analysis justifies this result when it presents state-of-the-art methods that
do not segment all the cell clumps of the training flow, according to the Dice
histograms. Furthermore, the scatter plot on Fig. 5 shows ranges of the greater
and lesser probability of segmentation results for each method. This is important
to analyze these regions to decide the segmentation approach of each cell clump.
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4 Conclusion

Here, we proposed an ensemble of algorithms to segment overlapping cells of Pap
smears using multifocal images from the ISBI 2015 database. We compare our
proposal to state-of-the-art cervical cell segmentation methods, and we state that
it is capable of improving cell detection performance. Our method was applied
to clumps of overlapping cells, from which features were extracted and used
to select the most suitable segmentation algorithms to process different regions
in the same cell image. In addition, we introduced a measure to calculate the
overlap ratio in cell clumps from the ground truth of the cells. Further work
will investigate new features that can improve the characterization of the cell
clumps as well as other decision-making models. We will also evaluate other
cross-validation procedures that better apply to the size of the dataset.
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4) and CNPq.
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Abstract. This work addresses a critical problem in the use of the Face
Recognition (FR) task by a police department state of Brazil. FR is
a valuable crime-fighting tool that can help the police service prevent
and detect crime, preserve public safety, and bring offenders to justice.
Although significant advances have been shown in the last years, the
works are based on large labeled datasets and supervised training. But
with this approach, the lack of representative data distribution is an
issue, known as data bias, mainly according to some aspects that makes
FR harders: gender and race. Recent works have suggested that these
two aspects may cause a significant accuracy drop. Thus, the paper is
concerned over the FR data bias problem for Brazilian faces. Using pre-
trained models learned from public datasets, we demonstrate that even
in the small training dataset, it is possible to improve the accuracy of
Brazilian faces with simple yet effective implementation tricks in fine-
tuning. Two important conclusions wast obtained from this study using
a non-public police dataset. First, there is a strong suggestion of data bias
concerning ethnicity when evaluating models trained with public datasets
on Brazilian faces, and second, the fine-tuning task implemented over
non-public police dataset showed a relevant improvement to minimize
the dataset bias problem.

Keywords: Face recognition - Deep learning - Real-world application

1 Introduction

The growing attention in Face Recognition (FR) system is due to the need for
identity verification in the digital world and the need for face analysis and mod-
eling techniques in multimedia data management and computer entertainment.
The last years showed significant progress in this area, owing to advances in
deep learning algorithms. Currently, the algorithms with the highest accuracy
rates are based on Deep Convolutional Neural Networks, DCNN, trained in a
supervised manner by specific cost functions for this task, exceeding human
identification capacity [20].
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Although research in automatic face recognition has been conducted,
although decades, there are critical challenges to address, however, regarding
FR applied to law enforcement, two relevant tasks can be enumerated: Live Face
Recognition (LFR) and Face Identification (FI). The LFR consists of monitoring
live digital video cameras spread across public spaces and verify if each detected
person is on a blacklist of wanted people. Another relevant task on law enforce-
ment is Face Identification, generally called as Face Recognition, which consists
of search on a gallery with thousands or millions of images to find potential
matches to a probe image. This task is an open-set protocol problem, and none
of the gallery and probe images identities are present at the training set. A probe
image is usually a person of interest obtained during a criminal investigation from
several sources such as local crime CCTVs, false identification documents, and
fake profiles in social networks.

In this Face Recognition scenario, DCNNs are used to extract encoded and
compact representations from facial images, or embeddings. These embeddings
are compared by some distance metric, which aims to be equivalent to facial
similarity. Embeddings from more similar faces should have shorter distances.
Therefore, it is a metric distance learning (DML) problem. A work published
on 2014 called Facenet [16] adopted the loss function Triplet Loss in conjunc-
tion with online triplets generation with semi-hard samples. The model reached
state-of-art with an accuracy of 99.63% in the Labeled Faces in the Wild (LFW)
benchmark. It is a proposal based on a model that learns to directly map facial
images to a Euclidean space, where the distances correspond directly to the
degree of similarity between the faces. Subsequent work achieved results very
close to FaceNet using training data with a lower number of samples - 500 times
smaller. One of these works is known as AM-Softmaz [19], which consists of
a modified version of Softmax loss to supervise the training of DCNN models
and drive feature embeddings learning with an emphasis on the angular separa-
tion between those of the same and different identities. This work obtained an
accuracy of 99.12% in LFW.

All these states of art proposals share the common property of been based on
supervised training. Thus, all these models are subjected to the data bias issue,
which contributes to the depreciation of accuracy in people with facial features
not equally represented in the training data [7,8,10,13,20]. Due to this factor,
models using this approach have shown higher error rates when evaluated in
certain demographic subgroups, such as afro-descendant. The data bias problem
leads to several Civil rights groups to raise alerts, alleging the possibility of
unfair treatment, making this a critical subject to law enforcement agencies. On
July-2019 a false positive identification from a LFR system in Rio de Janeiro,
Brazil, caused an innocent person to be taken to a police station by Military
Police [14]. Although the scientific investigation is required to find out whether
this case is a data bias problem, this situation warned about the possibility of
prejudice in FR systems.

We could not find works digging into data bias problem in the context of
law enforcement in Brazil. Face recognition is a important tool on criminal
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investigations, since there’s a regular scenario where detectives obtain face
images of crime suspects, from CCTV and fake profiles social media, and need
to get the real identification of this person of interest [18]. Also, there is a lack of
methods and datasets to evaluate the real accuracy of FR algorithms trained on
foreign faces datasets, mainly when applied on real-world criminal investigation
scenarios, with probe match search on large gallery sets.

In this work, we investigate how to reduce data bias in models trained in pub-
lic data collection, composed by celebrities worldwide, when used in Brazilian,
facial images. The main objective is to verify, through training in fine-tuning
mode, the best cost function to improve, for the context of Brazilian faces, a
pre-trained Convolutional Neural Network architecture in these collections is no
adequate distribution of images regarding ethnicity.

2 Background

2.1 Data Bias

The term Bias has been widely used in machine learning and statistics with
somewhat different meanings. In this work we adopt the definition of [9] where
the author defines bias as any basis for choosing one generalization over another,
other than strict consistency with the instances. In the context data, this defini-
tion can be understood to any preference for choosing one hypothesis explaining
the data over other (equally acceptable) hypotheses, where such preference is
based on extra information independent of the data.

The origin can be several problems such as a non-distributed training data
in a representative way. In this case, two scenarios can be presented:

— the features of each sample are not sufficiently captured by the model during
training (or are not available);

— the training set does not contain representative examples of the problem to
be addressed.

According to [8] the bias problem is not caused by Artificial Intelligence
itself, but the methods of training models. For facial recognition to work as
expected, with high accuracy and fairness, the training set must have balance
and comprehensiveness in its samples, with enough representative diversity to
reflect all possible ways in which faces can inherently be different.

Many public available datasets for training and testing, such as Casia-
Webface [1], MS-celeb-1M [4] and VGGFace2 [2] are collected on the internet
with majority of photos of celebrities and famous people in good lightning, pose,
face expression and mostly caucasian race. These datasets are made up of 84.4%,
76.3% and 74.2% caucasian people respectively, and The LFW bencharmark
LFW, 69.9% [21].

According to [10] the American Civil Liberties Union, ACLU, carried out
the following test with the company Amazon' facial recognition tool, known

1 Amazon.com, Inc.
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as Rekognition: using wanted criminals images, the organization compared to
photos of US deputies and 28 of them were falsely recognized as being one of
the criminals. This article also found that the error rate was 100% higher in
Afro-descendant representatives, thus exposing, in addition to the false positive
problem, a higher propensity to make mistakes in specific ethnic groups.

A gender and skin color audit algorithm was proposed in [13] and named
Gender Shades, which used a dataset labeled by gender and skin color called
Pilot Parliaments Benchmark with equal distribution by theses subgroups, was
used to evaluate commercial facial recognition solutions.

The evaluated face recognition products were Face++, MSFT, IBM, Amazon
and Kairos. Performance results are listed in Table 1:

Table 1. Error rate in Pilot Parliaments Benchmark. This table shows de error
rates (%) for PPB groups and subgroups. FW = Femela white skin; MW = Male white
skin; FD = Female dark skin; MD = Male dark skin.

Company | Total | Female | Male | Dark skin | White skin | FW | MW |FD | MD
Face++ |1,6 2,5 0,9 2,6 0,7 4,1 1,3 |1,0 |0,5
MSFT 0,48 10,90 0,15 10,89 0,15 1,52 10,33 /10,34|0,0
IBM 4,41 19,36 0,43 | 8,16 1,17 16,97 10,63 |2,37|0,26
Amazon |8,86 |18,73 |0,57 | 15,11 3,08 31,37 /1,26 | 7,12 0,00
Kairos 6,60 |14,10 0,60 | 11,10 2,80 22,50 1,30 | 6,40 0,00

According to results in Table1, all products achieved lower error rates in
the group of males in the gender category and white in skin color category.
Conversely, dark-skinned women are mistakenly classified in the highest number.
The Amazon has the highest error rate in the group of black women, 31.37%,
followed by Kairos with 22.5%. These results are quite high values compared
to men of white skin, which Amazon reached 0%, suggesting that ethnic and
gender data bias can result in unfairness false positives for specific subgroups
and need to be better studied and overcome.

In [10] authors performed cross check experiments, in a controlled way, the
leverage of training samples genders on the accuracy rate regarding to white and
black individuals.

Two models Light CNN-9 [24] was trained from scratch using training sam-
ples with only one race each and evaluated by two test datasets separated by
race: black and white individuals. This experiment was accomplished using the
following datasets: CMU Multi-PIE [12], Craniofacial Longitudinal Morpholog-
ical Morphological (MORPH) Album-2 [5] and Racial Faces in-the- Wild, REW
[21]

The accuracy of these models for each test dataset is:

— Model trained with only white people images achieved 79,23% accuracy on
white individuals test dataset and 34,31% on the dataset with black individ-
uals.
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— Model trained with only black people images achieved 82,36% accuracy on
black individuals test dataset and 28,89% on the dataset with white individ-
uals.

These results suggest that models learn embeddings with extraction of spe-
cific features for each race, demonstrating the need of using train datasets with
samples closer to the final use regarding the demography.

Since miscegenation is one of the main characteristics of the Brazilian popula-
tion, it is quite complex and subjective to carry out any classification according
to this criterion, in addition to being a very controversial topic. IBGE? itself
adopted self-classification as a race definition criteria in the 2010 census [3]. In
this research, 47.73% declared themselves as prados, a criterion that encom-
passes mulattos, cablocos, cafuzos, mamelucos or mestizos of black people with
another races.

Due to these factors, this work considers Brazilian faces as belonging to a
unique and own ethnicity, so that in this way it is possible to evaluate the behav-
ior of the models in relation to this categorization. There is a lack of works dig-
ging more precisely the data bias problems regarding to public security. Specially
when we consider Brazil realities, where we can fit on gender categorization.

2.2 Transfer Learning

Transfer Learning is a technique that aims to improve the accuracy performance
of a model by transferring the knowledge from a pre-trained model with a related
domain. Due to the dependence on large dataset data of DCNN, this technique
can be used to get betters results when the amount of data train available is not
enough to train from scratch. Furthermore, according to [26], transfer learning
can also be employed to correct the unequal distribution data problem.

Fine-Tuning. Fine-tuning is a particular form of transfer learning and has been
used with multiple purposes on Face Recognition [20]. On [2] this technique was
used to find an optimal performance by training first on MS-Celeb-1M then fine-
tuning on VGGface2 supervised by Softmax Loss function. The model fine-tuned
achieved higher accuracy on IJB-A [6] than the others training with each one of
this data set alone.

3 Method

This work uses known cost functions to fine-tune a pre-trained state-of-art FR
model [15]. This reference model is used to improve performance accuracy on
Brazilian data set in the context of law enforcement. Qur approach focuses on
the face recognition step, where each previously detected and cropped image
face with the same size is submitted to a model to extract a compact and dis-
criminate face representation in vector-column shape, i.e., embedding. So, the

2 Brazilian Institute of Geography and Statistics.
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embedding is a encoded representation of the face in an feature space, where
distances corresponds to face similarities. The embedding is matched to each
other according to metric distance enforced by the cost function during training,
so that an indicator, or distance measure, indicates the probability of being from
the same person or not.

In face recognition research field the most relevant performance improve-
ments has been achieved by new cost functions [20], since they supervise models
to generate for discriminate embeddings. The cost functions employed on this
work are FaceNet [16] and AM-Softmaz [19].

Facenet was chosen because achieved the second highest accuracy in the LFW
collection (99.67%) [20]. Several later works were based on modified versions of
Softmax loss and also reached the state-of-art, as A M-Softmaz, which achieved
accuracy only 0.5% lower than FaceNet using Casia- Webface dataset, which
is 100 times smaller than Facenet’s private dataset. Therefore, there are two
proposals with close results and with very different training methods, the first
being based on triplets and the second a classifier.

3.1 FaceNet

The FaceNet generated embedding, represented by f(x) € R, encodes an input
image x in a euclidean space of d dimensions. These embeddings are normalized
such that ||f(z)|l, = 1. The cost function used in FaceNet for DCNN training
is called Triplet Loss, inspired by [22]. The embedding are generated from a
x image, such that the quadratic distance between all faces, regardless of the
conditions of the image, is small for the same identity and large for images
of different identities. The function Triplet Loss supervises the training of the
model so that the embedding generated from the anchor image sample z{ of
a given person must be spatially closer to the embedding from another image
of the same identity, the positive sample ¥, than the embedding from another
person’s identity, negative example 27, in a space of features R%.
The cost function Triplet Loss is define by Eq. 1:

L= "[If @) = f@D)ls = I1f @) — f@)5 + o (1)

where « is the margin that separates embeddings from different identities
samples.

The FaceNet authors also proposed an online triplet generation method
within a mini-batch that violates the constraint in 1 for faster convergence.
Thus, the positive sample is select such that arg max,.||f(z{) — f(a:f)H; and
the negative such that arg min. || f(z¢) — f(xf)Hg To avoid the local minima
another criteria was proposed to select the negative in 2:

L= () = f@D)llz < /() = fa])ll3 (2)

and defined as semi-hard negatives.
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3.2 AM-Softmax

The AM-Softmazx cost function [19] is an adaptation from Softmaz Loss and
defined in Eq. 3:
T
1< eWuili
L= 23 g S 3)
W,
nia 22:1 it
where f; is the input of last fully connected layer associated to from the i-th
sample, WyT1 is the weight vector associated to the y class and W; the j-th weight
vector from the last fully connected layer. After successive transformations using
properties like cosine similarity the cost function AM-Softmaz is defined by 4:

65'(W”7; fi—m)

—m) c sWITf;
Y €

(4)

1 n
Ls = E glOg 65-(W;f;fi

where m is the angular margin separating interclass samples and s is an
hyper-parameter to scale de cosine values of the angle between weight vector
and embedding. Suggested values are s = 30 e m = 0.35.

3.3 Reference Model

This work uses as reference the Inception-Resnet-vl [17] model available at [15],
trained with CASIA-Webface dataset [1] and generates 128 dimensional (128d)
embeddings. This model achieved 98.5% accuracy in the LFW benchmark.

The training was supervised by the cost function Center Loss proposed in
[23] for joint supervision with Softmaz. This function aims to learn a center, in
a Euclidean space R?, of dimension d, for each identity and penalize the model
when the intraclass embeddings are far from the center, forcing greater intraclass
compression.

The cost function Center loss is defined by Eq.5 :

1 m
L.= 5 Z”xt — Cy;
i=1

where z; is i-th embedding sample, y; is the class, or identity, of this sample
and ¢, is the center of all embeddings from samples of y; class, so {c,,,r;} € R%.

; (5)

The expression ||z; — ¢y, g computes the distance between the embedding x; and
its center cy,.
As it is a joint supervision, the total error calculated by the two cost functions

is defined by the Eq. 6:

L=L,+ )L, (6)

where A is an scalar parameter to balance the leverage of Center Loss on
total error.
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4 Experiments

Detection and face alignment was performed using the method developed by
[25]. The aligned images have shape of 160 x 160 pixels. The reference model is
used to choose the probe set by using itself for finding mismatch identification
on the Brazilian dataset, and to serve as a pre-trained model for the fine-tuning
training proposed in this work.

Brazilian Dataset. The Brazillian dataset used in the experiments was built
from databases of private photos of the police department state (omitted just for
the double-blind review). This dataset is composed of 61,221 images of 27,653
identities, or classes, as displayed in the Table 4.

Table 2. Dataset statistics. This Table shows the Brazillian dataset statistics.

Total identities | Total samples | Median | Standard Most Less samples
Dev samples |identities
identity
27.653 61.221 2,21 1,23 32 2

This dataset was then split into training and testing sets. The test suite,
in turn, consists of the gallery, probe, and validation samples. The Probes set
those samples in which the embeddings generated by the reference model has
intraclass distance greater than the interclass. That is, scenarios in which there
was an error in face identification. The classes of the mismatched samples were
also kept out of the training set and added to the gallery in order to guarantee
the same hard scenarios (Table 2).

Figure 1 shows the samples selection scheme for the probe set, as well the
identity split in the mismatch occurrences.

The validation set was created from the random selection of 20% of the
remaining identities, totaling 5,000. For each class, a sample was also randomly
selected to compose the validation set, which will be compared against the
gallery. The remaining samples of each class were moved to the gallery as match
images. This set of data aims to evaluate the generalization of the models, so that
it is possible to guarantee that they, after training, have improved the accuracy
in the most difficult examples, collection of tests, but also maintain the accuracy
rate in the other cases.

A structure of the test collection can be seen in Fig.2. The embedding of
probe and validation samples are matched to the gallery using the distance
metric consistent with each model, determined by the function used.

In Table4 we enumerate the splitted dataset with the number of samples
and classes. The sum of the sub-totals of the samples from the data collections
exceeds the total number of samples and classes due to the fact that there is an
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(a) Face identification error example (b) Misidentified samples division

Fig. 1. (a) Face identification error, since the distance di between examples of different
classes is less than the distance d> between samples of the same identity. (b) Samples
from classes with misidentification are moved to gallery, in order to maintain the same
scenario in later model evaluations.
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Fig. 2. This Figure shows the dataset structure for models evaluation performance.
Each probe and validation sample is compared to the gallery. The gallery is formed
by: 1) Match The match samples of probe and validation identities; 2) Distractors,
which are samples with no correspondence and aims to increase identification difficulty;
Mismatch Samples that were mistakenly consider closer, by reference model, to a
sample than their matches.

overlap of samples between the probe and matche images, since a given sample
can be in both bins.
Table 4 show the number of disctrators grouped by genre.

Fine-Tuning Models. The models were fined-tuned, which implies that all the
weights of the reference model were loaded before the training started, and thus
all the features previously learned provides an advanced starting point (Table 3).

In order to compare the performance of cost functions in the most iso-
lated way, the same values were used for all common hyper-parameters of the
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Table 3. Brazillian dataset size. This Table shows the subsets split size of the
dataset used in this work. Probe, Validation, Mismatch, Match and Distractors are
subsets of the gallery.

Total (identities/samples) | Male (identities/samples) Female (identities/samples)
Train 20,672/45,698 14,268 (69.1%)/32,666 (71.4%) | 6,404 (30.9%)/13,032 (28.6%)
Probe 838/1,252 477 (56,9%) /706 (56,3%) 361 (43,0%)/546 (43,6%)
Validation | 5,000/5,000 3,464 (69,2%)/3,464 (69.2%) | 1,536 (30,7%)/1,536 (30,7%)
Mismatch | 1,143/2,782 669 (58,5%)/1808 (64.9%) 474 (41,4%)/974 (35,0%)
Match 5,838/7,340 3,941 (67.5%)/5,185 (70.6%) | 1,897 (32.5%)/2155 (29.3%)
Total 27,653/61,221 18,878 (68.2%)/43,359 (70.8%) | 8,887 (31.7%)/17,862 (29.2%)

Table 4. Distractors size. This Table shows the size of disctractores samples, as well
the rates of males on females.

Total Male Female
Disctrators | 208,187 | 132,576 (63.67%) | 75,618 (36.3%)

architecture. All models were trained on the same computer, equipped with a
Graphics Processing Unit GTX-1070 with 8 GB of RAM and 1920 CUDA cores.
The batch size is 60 samples and Stochastic Descending Gradient with Momen-
tum [11] as optimizer, with the moment term v equals to 0.9.

The 7 learning rate used was 0.01 and as regularization techniques, those
already used in the reference model were maintained, with L2 regularization with
a weight decay rate of 0.0001 and Dropout with a probability of maintaining each
neuron of 0.8. In order to determine the correct time for stop training, the error
curve generated by the cost function, the accuracy of the probe and validation
sets were adopted as convergence criteria.

Although the number of distractors in the gallery used to evaluate the results
is more than 208,000 individuals, during the training 5,400 were used. This
reduction aims to reduce the computational cost and time of training.

The Fig. 3 shows the training/test framework. The embeddings are collected
from the output of the last Fully Connected Layer. Then, the distance between
them are evaluated using de similarity metric.

5 Results

The Triplet Loss supervised model was trained with 135 epochs. The stop train-
ing criteria was not increasing the validation and Probe accuracy after ten
epochs, which happened after 125 epochs. Furthermore, as shown in Fig. 4, the
value of triplet loss stayed steady after 130 epochs.

The model using cost function AM-Softmaz was trained for 6h, 178 epochs
in total. As a criterion for convergence, accuracy in the training set was also
considered. As can be seen in Fig. 5a, the accuracy in the training set reached
a value above 99% from epoch 150, keeping this level until the end. However,
the accuracy of the validation set in Fig. 5b stabilized around 96.5% between
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Fig. 3. This figure show train and test framework main modules adopted on this work.
The cost function is only used training, then is dismissed for testing, hence the face
embeddings are collected as a output of the last Fully Connected Layer and matched
by a metric distance.
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Fig. 4. This shows the evolution of (a) Triplet loss on train dataset; (b) Identification
accuracy on validation set; (c) Identification accuracy on probe set. The training was
interrupted after the loss stopped decreasing and identification on validation and probe
set stoped increasing.

Table 5. Rank-1 results. This Table shows validation and test results regarded to
genders.

Fungédo Custo | Validacao Teste
Feminino | Masculino | Total Feminino | Masculino | Total
(1536) (3464) (5000) (546) (706) (1252)
Baseline 88,15% 92,58% 91,22% 0,18% 0,14% 0,16%

AM-Softmax | 90,89% 94,60% 93,46% 32,42% 44,05% 38,98%
Triplet Loss 94,79% 96,62% 96,06% 50,18% 54,53% 52,64%

periods 60 and 179, not exceeding 96.7%. In probe set, as shown in Fig. 5c, the
model reached 58% in epoch 120, with a maximum value of 58.7%, oscillating
around 58.5% until the end training.

Rank-1. Table5 enumerates Rank-1 identification accuracy for the three eval-
uated models and full set of distractors.

Figure 6 shows the Rank-1 accuracy split by gender, both probe and val-
idation set. Our implementation using Triplet Loss model not only achieved
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Fig. 5. This shows the evolution of (a) train dataset accuracy; (b) Identification accu-
racy on validation set; (c) Identification accuracy on probe set. The training was inter-
rupted after all theses indicators stop increasing, meaning that the model converged.

better results but also narrowed the gender gap. The accuracy of the Triplet
Loss model in the probe set for women was 4.15% lower than for men. The
AM-Softmaz gender accuracy difference in the results was 11.63%. Therefore,
in addition to better accuracy performance in both genres, our implementation
achieved a better capacity to reduce the bias for the female gender.
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(a) Rank-1 accuray for male and female (b) Rank-1 accuray for male and female
probe set, evaluation Validation set evaluation

Fig. 6. These graphs shows Rank-1 accuracy with respect of gender. Triplet Loss
achieved higher accuracy for both genders in Validation and Probe sets.

To analyze the variation in Rank-1 accuracy according to the increase of the
number of samples, and evaluate the scalability of each model, Fig. 7 shows the
accuracy with different quantity of distractors. The model trained with super-
vision of TripletLoss achieved better results in all variations in the number of
distractors.

CMC Courve. The CMC courves in Fig. 8 were drawed to assess the accuracy
of models regarding to variation of Rank metric, from Rank-1 to Rank-30. Triplet
Loss model surpassed other models performance for all values of Rank-N.
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Fig. 7. Rank-1 accuracy considering various amounts of distractors. Triplet Loss model
performed better for all distractor quantities.
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Fig. 8. CMC courves of performance models from Rank-1 to Rank-30. Triplet Loss
model achieved higher accuracy in Probe set for every value of Rank.

6 Concluding Remarks

Contributions. The main contribution of this work is to point out Triplet loss
as the cost function with the best performance for fine tuning with datasets with
restricted size. The online generation of triplets provides a greater exploitation
of the limited data, driving the model to a better extraction of discriminative
features.

This work also demonstrates that it is possible to improve the performance of
already state-of-art pre-trained models in massive datasets when applied on sub-
jects with different demographic distribution than the trainset. There is a strong
suggestion for the existence of data bias concerning ethnicity when evaluating
models trained with public datasets on Brazilian faces.

We also presented an accuracy comparison of state-of-the-art cost functions
for finetuning training. In the original work, the FaceNet FaceNet, the authors
performed supervised training using Triplet Loss, reporting 99.63% accuracy
in LFW, a training dataset consisting of 200 million samples from 8 million
individuals. Whereas a model trained using Am-Softmax reported 99,12% accu-
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racy using a training dataset of 0.41M samples from 10k different identities Am-
Softmaz.

These numbers may lead to the conclusion that AM-Softmax could perform
better than FaceNet when trained on the same dataset. However, the results show
that Triplet Loss performed better in this finetuning scenario. These results also
demonstrate that Triplet Loss was able to reduce the data bias in female faces,
decreasing the proportion of errors relative to samples from male individuals
compared to AM-Softmax.

Future Directions. In research should gather a wider and more representative
dataset to train and evaluate FR models on Brazillian faces. As demonstrated
in this work, high accuracy on a specific benchmark does not mean similar per-
formance on different demographic subgroups.
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Abstract. Performing analytical tasks over graph data has become
increasingly interesting due to the ubiquity and large availability of
relational information. However, unlike images or sentences, there is no
notion of sequence in networks. Nodes (and edges) follow no absolute
order, and it is hard for traditional machine learning (ML) algorithms
to recognize a pattern and generalize their predictions on this type of
data. Graph Neural Networks (GNN) successfully tackled this problem.
They became popular after the generalization of the convolution concept
to the graph domain. However, they possess a large number of hyper-
parameters and their design and optimization is currently hand-made,
based on heuristics or empirical intuition. Neural Architecture Search
(NAS) methods appear as an interesting solution to this problem. In this
direction, this paper compares two NAS methods for optimizing GNN:
one based on reinforcement learning and a second based on evolutionary
algorithms. Results consider 7 datasets over two search spaces and show
that both methods obtain similar accuracies to a random search, raising
the question of how many of the search space dimensions are actually
relevant to the problem.

Keywords: Graph Neural Networks - Neural architecture search -
Evolutionary algorithms - Reinforcement learning

1 Introduction

Performing analytical tasks over graph! data has become increasingly interesting
due to the ubiquity and large availability of relational information. Predicting
interaction between proteins, classifying users in social networks and recom-
mending movies to users are some classical examples of such tasks [24]. However,
unlike images (formed by a grid of pixels) and sentences (formed by a string of
ordered words), there is no notion of sequence in networks. Nodes (and edges)
follow no absolute order, so it is hard for traditional machine learning (ML)
algorithms, which were built to handle data stored in tensors, to recognize a
pattern and generalize their predictions on this type of data [23].

! In this work we use the terms “graph” and “network” interchangeably. When refer-
ring to “neural networks” we will use NN or “neural network”.
© Springer Nature Switzerland AG 2020
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Due to the success of convolutional neural networks (CNNs) for tasks such
as image classification [12], object identification [14] and semantic segmentation
[1], a large body of work began to re-define the concept of convolution to the
graph domain. Following the work of Gori et al. [10] and Scarselli et al. [17] on
Graph Neural Networks (GNNs), the concept of spectral-based graph convolu-
tion function was defined by Bruna et al. [3] and later refined by Defferrard et al.
[5]. In this approach, unlike traditional neural networks where the architecture
is composed by fully connected layers of neurons, graph neural networks follow
the graph structure itself [17]. Forward propagation is done on the nodes of the
graph, which pass information onto the next layer by aggregating information
from the neighborhood and applying an activation function to the result.

Since the concept of convolution was adapted to the context of graphs, a
plethora of GNN models were proposed, including GraphSAGE [11], Graph
Attention Networks (GAT) [20], Graph Isomorphism Network (GIN) [22] and
many others. These methods achieve state-of-the-art results on tasks such as
node classification and link prediction. However, the design and optimization
of GNN architectures is currently hand-made, based on heuristics or empirical
intuition, which makes it an ineffective and error prone task [22].

Automated Machine Learning (AutoML) appears as a solution to this prob-
lem, as it aims to automate the process of building and optimizing machine learn-
ing pipelines, relieving users from that burden [7]. Neural Architecture Search
(NAS) is considered the current challenge in automating machine learning algo-
rithms [8]. Its methods are composed by a search space of possible architectures,
a search method to explore this space and an evaluation framework for the gen-
erated architectures.

To the best of our knowledge, there were few attempts in the literature to
employ NAS for GNNs [9,25]. In these works, reinforcement learning methods are
used to explore similar search spaces. The NAS literature poses two main types
of methods as the most effective to solve the problem: reinforcement learning
(RL) and evolutionary algorithms (EAs) [8]. The second type of technique has
been so far overlooked in the context of GNNs.

This work employs an EA previously proposed for NAS in the context of
image classification [16] to optimize GNNs and performs a comparative analy-
sis of the method with reinforcement learning and random search in terms of
model accuracy and runtime. It also conducts a study of the characteristics of
the previously proposed search spaces for GNNs in order to identify opportuni-
ties for performance improvement on GNN NAS algorithms. Results show that
both RL and EA are able to find equivalent models in terms of accuracy, with
EA being faster in some cases, which corroborates previous findings for image
classification. Furthermore, following the already discussed problems of large
search spaces — such as those required in the case of GNNs — with many low
effective dimensions [2], we show a Random Search is able to find architectures
with equivalent accuracy while being faster. We discuss these results in the light
of previous works that discuss this problem.
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The remainder of this work is organized as follows. Section 2 introduces
background on GNNs and Sect.3 discusses related work. Section 4 describes
the methodology followed to apply the tested methods in GNN search spaces,
while Sect. 5 presents the results. Finally, Sect. 6 draws conclusions and discusses
directions of future work.

2 Background

In this work, we assume as input a graph composed of a set of nodes and edges,
G = (N, E). Each node n; € N is attached to a feature/attribute vector z; € X,
and a label I; € L. The presence of node labels indicates that we are assuming a
supervised learning situation. We define by N (z) the neighborhood of a node
i, i.e., the set of nodes connected to ¢ by an edge. The primary concept behind
GNNss is that each node in the graph represents an abstract concept, and edges
represent the relationship between these concepts. Therefore, the node’s features
should correlate with its neighboring features, defining a state (or hidden node
representation) h; € Hy for each node [17].

Traditionally, each GNN layer is composed of a function that aggregates
information from the neighborhood of each node A/ (%), forming an intermediate
vector har(;), and a second function that combines this value with the current
node representation h;, which in turn goes through an activation function before
being output [11,17]. Formally, this process can be defined as:

h/(\];zi) = aggregate(h?71 1 j € N(i)) (1)
hz(.k) = activate(combine(hl(‘k_1)7 hﬁ\lﬁzz))) (2)

By convention, the first hidden representation of each node is its feature vec-
tor, hl(-o) = z; [13]. Figure 1 shows how the structure of a GNN is generated.
Given the graph represented in part (a) of the figure, which has 4 nodes n; and
a feature vector x; associated to each of them, an intermediate representation is
generated ((b) in the figure). In this representation, for each node, the neighbor-
hood information generates the intermediate vectors h; according to the process
described in Eq. 1. The third part of the picture (¢) shows the GNN itself, where
each layer corresponds to an update of the state of the feature vectors of the
current node.

In this work we consider undirected graphs and a one-hop neighborhood for
each node, which means that only features from a node’s direct neighbors are
considered in aggregation. There are many options of aggregation and activa-
tion functions, and other mechanisms can also be added to this standard GNN
architecture. These components choices are the main subject of this paper, as
detailed in Sect. 4.1.
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Fig. 1. Structure of a GNN, adapted from Scarselli et al. [17]

3 Related Work

NAS is considered the current challenge in automating machine learning algo-
rithms, after the success of automated feature engineering [8]. Famous NAS
works can be roughly split into two categories: Reinforcement Learning (RL)
[4,26] and Evolutionary Algorithms (EA) [16]. It has been shown that both
types of methods are able to find models that perform better than hand-crafted
engineered ones, but Real et al. presents empirical proof that EA-based and
RL-based methods are able to find equally well-suited models in terms of perfor-
mance, with EA-based methods finding less complex models in less overall time
[8,16]. Our idea is to adapt and employ NAS methods to the task of finding a
good GNN model for large-scale graph embedding, whereas in previous works,
the tasks of interest were mostly image classification and object detection.

To the best of our knowledge, NAS has not yet been largely explored in the
context of GNNs. GraphNAS [9] is one of the few that uses RL to find feasible
architectures for the node classification task. The authors define a search space
composed of sampling, aggregation and gated functions, which can be extended
to account for hyperparameters. Auto-GNN [25] follows the same line of work,
exploring RL and a similar search space to GraphINAS.
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Fig. 2. Macro search space GNN layer example

Table 1. Macro search space options for 5 actions.

ATT AGG |ACT
const, e;; =1 sum |tanh
gen, e;; = 1/d;d; mean | linear
gat, e;; = leaky-_relu((Wih; + Wrh;)) | max |softplus
sym-gat, e;; = €j; + €;; mlp | sigmoid
cos, e;; =< Wihi, Wrh; > elu
linear, e;; = tanh(sum(W;h;)) relu
gen_linear, e;; = Wytanh(Wih; + Wih;) relu6
leaky _relu

K 2t i e {1,..,6}
DIM 2t ie{2,..,8}

4 Methodology

The problem of NAS in GNNs can be formally defined as follows. Given a dataset
D — split into training and validation sets Diyqin and Dyqiiq, respectively —and a
search space of Graph Neural Architectures A, capable of generating a GNN with
an architecture a € A with its own set of hyperparameters A, the goal is to find
the model with the highest expected accuracy £ on Dyqii4, when its parameters
w* are set on Dypqin, setting the following bi-level optimization problem:

argmax  E[(ax(w*, Dyatia))]
a)xEANEA w*

s.t.w* = argmin L(a)(w, Dirain)),
w

This section details the search spaces A previously defined for GraphNAS [9]
and describes the evolutionary algorithm and the RL methods we evaluated in
the context of GNN architecture search.
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Table 2. Micro search space action and hyperparameters.

CNV |GAT:... s, GCN, Cheb, SAGE, ARMA, SG, Linear, Zero
CMB | Add, Product, Concat

ACT | Sigmoid, tanh, elu, relu, linear

LR [ {1x107%,1x107%1x 107*}

DO | {0.0,0.1,...,0.9}

WD | {0,1x1073,1x107%,5x107% 1 x 107°,5 x 107°}

HU |2i€{3,..,9}

4.1 Search Spaces

The two search spaces evaluated in this work, named by the authors in [9] as
“Macro” and “Micro”, are composed by different GNN layers, as detailed next.

Macro Search Space. The name “Macro” comes from the fact that architec-
tures generated from this space always follow the same structure: each layer is
composed by a multi-head attention mechanism AT7T and the number of heads
K, a choice of aggregator AGG, the output dimension DIM and an activation
function ACT, in this order. The neighborhood sampling method is fixed as a
first-order sampler, i.e. only direct neighbors of each node are sampled at each
step.

Considering the definitions in Sect. 2, we have a new component here, which
is the attention mechanism. As described by the authors in [20], an attention
mechanism — implemented by the coefficients e;;, is designed to attribute dif-
ferent importance value to the features of each of a node’s neighbors. Such
coefficients are calculated only for j € N (i) for performance reasons (in order
to avoid an N x N matrix), and in practice define the importance of node j’s
features over node ¢. They are implemented as a single-layer feed-forward neural
network, and a range of options to this mechanism is available (see first col-
umn of Table 1). Multi-head attention is a way of having independent attention
mechanisms over the node’s features. It has been proven that concatenating the
results of these independent mechanisms yields better results than using a single
attention head [20].

Figure 2 presents the disposition of the actions. The number of multi-heads
K can be merged with the attention mechanism ATT as they alter the same
behavior. The output dimension DIM can also be merged with the activation
function ACT.

Table 1 presents the options for each action on the layers. Considering the
number of options for each action on the layers, the search space presents (7 x
6 x 4 x 7 x 8) = 9408 possibilities for each layer. According to the authors
n [13], GNNs achieve the best overall results using architectures with 2 or 3
layers. Therefore in this paper the architectures have 2 layers, in a total of
94082 = 88,510, 464 architecture possibilities.
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One important characteristic of this search space is that the hyperparameters
of the GNNs, such as learning rate, dropout, weight decay are kept fixed. The
learning rate is set to 0.005, the dropout to 0.6 and the weight decay to 5x 1074,

Micro Search Space. The name “Micro” comes from the fact that architec-
tures generated from this search space are composed by combining different con-
volution schemes, and do not follow a single fixed structure. The choice of actions
in this space are: a convolutional layer CNV | a combination scheme CM B and
an activation function ACT. The hyperparameters which can be tuned are: the
learning rate LR, the dropout rate DO, the weight decay rate W D and the num-
ber of hidden units HU. In the options for CNV, the option GAT g means
that there are 8 possible GAT convolutions, using 1 to 8 multi-heads attention.

CNV

\ 4

In CMB ACT > Out

Fig. 3. Micro search space GNN architectures example

Figure 3 illustrates the types of architectures that can be generated from
this space. The straight arrows represent one type of connectivity, where the
input is fed to two separate convolutional layers and their outputs are fed to
the combination layer. The dashed line represents the second type, when two
convolutional layers are stacked before feeding the output to the combination
layer. The full list of actions and hyperparameters for this space is presented in
Table 2. Regarding the number of possibilities for each action and hyperparam-
eter listed, there are (15 x 15 x 3 x 5 x 3 x 10 x 5 x 7) = 3,543, 750 architecture
possibilities in this space.

Note that the architectures in the micro-space take advantage of convolu-
tions. Graph convolution methods are classified mainly into two streams, both
covered by the micro-search space: spectral-based and spatial-based methods
[21]. Spectral methods [3,13] rely on spectral properties of the graph, by find-
ing eigenvectors of the normalized graph Laplacian. This approach is limited
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because eigendecomposition is an expensive operation, eigenbasis are sensible
to minimal graph perturbations and the learned filters do not generalize well
to graphs of different structure (therefore they do not work well on inductive
learning scenarios). Spatial-based methods [11,20] follow the message passing
idea of traditional GNNs (also known as Recursive GNNs), in which a node’s
hidden representation is an input to its neighbors computation. These methods
are scalable to large graphs and are more generalizable to various types of graphs
(heterogeneous, directed, graphs which contain edge labels, etc.).

4.2 Search Methods

This section describes the two methods we apply to search the macro and micro
search spaces described in the previous section: the evolutionary method and the
reinforcement learning. We also describe the random search method that will be
used as a baseline for the results.

Evolutionary Algorithm - Evolutionary methods are inspired by Darwin’s
theory of evolution, and evolve a set of individuals — which represent solutions to
the problem at hand — for a number of iterations (also known as generations) [6].
From one iteration to the next, individuals are evaluated according to a fitness
function, which assesses their ability to solve the problem. The value of fitness
is used to probabilistic select the individuals that will undergo crossover and
mutation operators, which are applied according to user-defined probabilities.
We explore an evolutionary method inspired on the Aging Evolution method,
described by Real et al. [16]. In this method, a population of individuals —i.e., a
set of GNNs — is generated randomly by sampling options for each action in a
layer, considering the number of layers specified. These GNNs are then trained
in a training set and have their accuracy measured on a validation set. This value
of accuracy is used to select an individual via tournament selection to generate a
new offspring. The child individual is generated via mutation, which is uniform
over the actions and replaces the selected action by a random option. The child
individual is always added to the population and the oldest individual in the
population (i.e., the individual that has been in the population for the highest
number of iterations) is always removed (hence the name “Aging Evolution”).

Reinforcement Learning - GraphNAS uses a LSTM (Long-Short Term Mem-
ory) network as a controller to generate fixed-length architectures, which act as
GNN architecture descriptors and can be viewed as a list of actions. The accu-
racy achieved by the GNN in the validation dataset at convergence is used as
the reward signal to the training process of the reinforcement learning controller.
As the reward signal R is non-differentiable, a policy gradient method is used
to iteratively update 6 with a moving average baseline for reward to reduce
variance.

Random Search - An initial random GNN is generated by sampling options
from each action in a layer, for the specified number of layers. The GNN is trained
and the accuracy on the validation set measured. This process is repeated for
the specified number of iterations, storing the GNN with the highest accuracy.
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5 Experimental Analysis

We assess the performance of the evolutionary algorithm (EA)?, the reinforce-
ment learning (RL) method and the random search (RS) on the transductive
learning scenario, in a node classification task, over a set of 7 datasets in terms
of accuracy and runtime, as detailed next. It is important to note that this
work does not compare the architectures obtained by the optimization methods
to hand-crafted ones, as that was already done in GraphNAS’ paper [9].

5.1 Datasets

Table 3 presents the details of the datasets, as previously used in [19] and pro-
vided by Pytorch Geometric?. For all cases, we are dealing with a node clas-
sification task, where we use information from the nodes with known-labels to
assign a class to nodes with unknown label (test set).

Table 3. Dataset characteristics.

Dataset (Abbrv.) # Classes | # Features | # Nodes | # Edges
CORA (COR) 7 1433 2708 10556
Citeseer (CIT) 6 3703 3327 9104
Pubmed (MED) 3 500 19717 88648
Coauthor CS (CS) 15 6805 18333 163788
Coauthor physics (PHY) |5 8415 34493 495924
Amazon computers (CMP) | 10 767 13752 491722
Amazon photo (PHO) 8 745 7650 238162

The first three datasets (COR, CIT, MED) are paper co-authorships net-
works, used previously in [13]. Nodes represent documents, and an edge between
two documents means that one paper cited the other. Class labels represent sub-
areas of machine learning [18]. Node features are sparse bag-of-words vectors.

CS and PHY are also co-authorship networks, based on the Microsoft Aca-
demic Graph from KDD Cup 2016. However, in these datasets nodes represent
authors instead of papers, connected by an edge if they have co-authored a paper.
Node features represent paper keywords for each author’s papers. Class labels
indicate the most active field of study for each author in the network.

CMP and PHO are segments of the Amazon co-purchase graph, where
nodes represent products and edges are added between items frequently bought
together. The nodes features are a bag-of-words representation of product
reviews, and class labels represent the product category.

2 Code available at: https://github.com/mhnnunes/nas_gnn.
3 https://github.com /rustyls/pytorch_geometric.
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Table 4. Accuracies and execution times (in x10* seconds) of search methods.

Macro

Micro

Accuracy

Time

Accuracy

Time

COR

EA

0.83 £ 0.007

0.75+£0.16

0.82 £ 0.005

1.73+£0.53

RL

0.83 £ 0.003

1.45 4+ 0.38

0.81 £ 0.001

2.42 +0.62

RS

0.82 +0.003

0.96 £ 0.02

0.80 £ 0.009

1.20+£0.21

CIT

EA

0.75 £ 0.002

1.18 £0.10

0.71 £ 0.007

2.80 £0.72

RL

0.73 £ 0.004

1.52+0.42

0.68 £ 0.006

2.24+0.08

RS

0.73 £ 0.005

1.05+0.03

0.69 +£ 0.006

1.29 £ 0.04

MED

EA

0.82 +0.003

1.40+£0.37

0.82 £ 0.009

1.40 £ 0.09

RL

0.80 £ 0.003

2.10+£0.14

0.76 £0.017

2.58 £0.28

RS

0.85 £ 0.045

1.31+£0.02

0.80 £ 0.009

1.10£0.18

CS

EA

0.98 £ 0.001

3.35+£0.78

0.99 +£ 0.002

2.65 £ 0.48

RL
RS

0.95 £ 0.001
0.97 £ 0.001

3.13+£0.11
1.50 £ 0.03

0.97 £ 0.002
0.99 £ 0.001

2.90 £0.34
1.58 £ 0.05

PHY

EA
RL

0.99 £ 0.002
0.98 £ 0.001

4.21 +0.85
3.34 £0.27

0.99 £ 0.000
0.98 £ 0.001

1.53 £0.15
2.01 +£0.19

RS

0.98 +0.001

2.08 £0.07

0.99 £ 0.001

1.11 £ 0.05

CMP

EA

0.91 £ 0.005

3.09 £0.49

0.93 £ 0.004

4.02+1.94

RL

0.90 £ 0.010

3.43+0.21

0.92 £ 0.008

3.68 £0.27

RS

0.89 £ 0.004

1.69 £ 0.07

0.92 £ 0.002

2.05 £ 0.07

PHO

EA

0.97 £ 0.002

2.48 £0.22

0.98 £ 0.004

1.66 £0.41

RL

0.96 &+ 0.005

3.65 +£0.19

0.97 £ 0.002

1.88+0.23

RS

0.96 £ 0.002

1.82 +£0.04

0.97 £ 0.002

1.08 £ 0.04

5.2 Experimental Setup

All search methods were executed for 1000 iterations in order to enable a fair
comparison. In each iteration, a single GNN architecture is generated, trained on
Dirain and evaluated (in terms of accuracy) on Diqpi4. The architecture with the
highest validation accuracy is saved across iterations, and returned as the result
of the optimization process. The generated architectures are trained using the
following fixed hyperparameters for all search spaces and methods: minimizing
cross-entropy loss using ADAM optimizer, initial learning rate of 0.005 and an
early stopping strategy with a patience of 100 epochs.

Random search has only one parameter: the number of iterations. The rein-
forcement learning controller is trained using the same hyperparameters as
described on GraphNAS’ paper [9]: a one-layer LSTM with 100 hidden units,
ADAM optimizer, learning rate at 3.5 x 107* and random initialization of
weights. Aging Evolution has three main parameters: the population size, the
tournament size k and the number of iterations n. The first parameter is related
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to the number of solutions evaluated during the search process, while the tour-
nament size controls the convergence speed. The higher the value of k, the faster
the algorithm converges. From all tested values ({100, 25}, {25, 2}, {100, 3}), the
best results were achieved using the population size set to 100 and & set to 3.

The dataset split between training, validation and testing sets was done
in the same way as in the GraphNAS public code*: the last 1000 nodes are
separated for validation and testing, split evenly between the two.

All experiments were repeated 5 times as the methods are non-deterministic.
The experiments were run on a machine with a 16-core Intel(R) Xeon(R) Silver
4108 CPU @ 1.80GHz, 16GB DIMM DDR4 @ 2666 MHz RAM, and a NVIDIA
GV100 [TITAN V] graphics card, with 12GB dedicated RAM.

5.3 Results
CIT COR
0.8 e —
0.7
I
]
H0.6
C
2
©0.5
3o.
©
>
0.4
— EA —— EA
0.3 RL RL
...... RS «eeeen RS
0 200 400 600 800 1000 O 200 400 600 800 1000
Iteration Iteration

Fig. 4. Highest validation accuracy by iteration, for CIT and COR datasets, on the
Macro search space.

Table 4 shows the results of accuracy and execution time for the Macro and
Micro search spaces, at the end of the optimization process (after 1000 itera-
tions). In terms of accuracy, the results obtained by the EA and RL methods are
very similar to the ones obtained by the random search. In terms of execution
time, RS wins in most cases. The execution time for the search varies between
2 and 12 GPU hours.

Figure 4 presents the evolution of the highest validation accuracy value
achieved by an GNN architecture across the iterations, by search method®. Each

* https://github.com/GraphNAS/GraphNAS.
5 We present only the results for the Macro search space because the results for
Micro are very similar.
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line represents the mean validation score across all seeds, and the shaded area
around it represents the standard deviation of this value. It is very clear that all
methods converge (find a good performing architecture and plateaus) within
only a few iterations. The fact that the EA already starts at a high value
may be attributed to the population initialization process, depicted in Fig. 6.

It may seem counter-intuitive that we are using sophisticated methods to
obtain results that can be also be achieved by a random search method, but as
the authors in [2] have previously discussed, in large search spaces where many
of the dimensions are irrelevant to the task at hand the random search can be
as effective as more sophisticated methods. This problem is aggravated by the
neutrality of the space, i.e., architectures in neighbour regions of the search space
may differ in a few components but do not lead to a value of accuracy different
from their neighbors [15]. Another stronger indicator of a neutral search space
is the fact that many high quality individuals are generated in the initialization
step, and evolution takes a minor part in improving them, as shown in Fig. 4.

CIT COR
— RL — RL
800 RS RS
...... EA seeeer EA

(o)}
o
o

# Archs w/ Val. Score > 0.7
N B
o o
o o

0 200 400 600 800 1000 O 200 400 600 800 1000
Iterations Iterations

Fig. 5. Cumulative number of architectures with validation accuracy higher than
threshold, for CIT and COR . datasets, on the Macro search space.

Figure 5 presents the number of evaluated architectures with validation
accuracy over 0.7, for CIT and COR, in the Macro search space. The 0.7
threshold was set because this value represents approximately the best accuracy
value for CIT on the Macro search space. The pattern shown in the figure
is consistent for all datasets in both search spaces. It shows that the EA
tends to converge to a better region of the search space faster than the other two
methods, thus evaluating more high quality architectures. Such tendency could
be explained by the EA’s selective pressure (driven by the tournament selection
process), which makes the algorithm prioritize good individuals for mutation
and evaluation.
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Fig. 6. Distribution of EA’s initial population validation accuracies on both search
spaces.

The parameter size of GNNs is dependent on the dataset (since the struc-
ture of the neural network follows the graph) and on the choice of architecture.
Table 5 presents the percentage of generated architectures which exceeded GPU

Table 5. Percentages of generated architectures which exceeded the GPU memory and
therefore were not evaluated, by dataset and search method

Aveg. % Max %
MED | EA | 0.60 4+ 0.89 2.0
RL | 3.20£0.84 4.0
RS | 2.804+0.84 4.0
CS EA | 4.60+£1.52 6.0
RL | 10.20 £ 2.59 |14.0
RS | 9.60£1.52 |11.0
PHY EA |13.60+1.82 |16.0
RL | 41.80 £9.44 |56.0
RS | 47.80 £0.45 |48.0
CMP EA 11.60+2.61 |14.0
RL | 47.00 £20.94 | 81.0
RS 38.40£1.67 |41.0
PHO EA | 4.6042.70 9.0
RL | 20.80 £3.42 |24.0
RS [11.80+1.48 |14.0
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memory, by each dataset and search method.® EA is consistently the search
method for which the smallest percentage of generated architectures are too
big for the GPU memory, with the highest value as 16%, while RL reaches 81%
of all architectures being too large. This corroborates the findings of Real et al.
[16] which state that Evolutionary Algorithms are able to find less complex but
equally well performing architectures than RL.

6 Conclusions and Future Work

GNNs are able to achieve state-of-the-art performances in prediction tasks over
networks. However, their design and optimization is currently hand-made and
error prone. This paper compared the results of two NAS search methods — a
reinforcement learning technique and an evolutionary algorithm — to a random
search in the task of searching for architectures and hyperparameters for GNNs.

The three methods produced GNN architectures which achieved similar
results in terms of accuracy when considering a set of 7 datasets and two archi-
tecture layer search spaces, with the random search being the fastest method
followed by the evolutionary algorithm and reinforcement learning. Architec-
tures generated by EA tend to fit in GPU memory, while the other methods
generate oversized architectures in up to 80% of cases. This shows that EA gen-
erates less complex structures while achieving a similar accuracy value to the
other methods, corroborating the findings of Real et al. [16] for images.

In general, the results indicate that there are irrelevant dimensions to this
task in the defined search spaces, which will require a more in-depth study of
each of these spaces. Further, the neutrality of this space, i.e., the fact that neigh-
bor solutions present different architectures but very similar results of accuracy
make search even harder. As future work, we intend to perform a more in-depth
investigation of the dimensions of the search space in order to identify those that
may be irrelevant to search, as well as propose new search methods that may
include mechanisms to try to avoid these neutral regions.
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Abstract. An important challenge in the research field of Biometrics
is real-time identification, at a distance, in uncontrolled environments,
using low-resolution cameras. In such circumstances, soft biometrics can
be the only option. In this work, we propose two novel descriptor meth-
ods for biometric identification based on ensemble of anthropometric
measurements and joints heat-map of the person skeleton, captured
from video frames through state-of-the-art 2D poses estimation methods.
The proposed methods were assessed on a popular benchmark dataset,
CASIA Gait Dataset B, and obtained good results (85% and 89% of
rank-1 identification rates, respectively) with PifPaf 2D pose estimation
method.

Keywords: Biometrics + 2D pose estimation + Anthropometric
measurements + Joints heat-maps + People identification

1 Introduction

Biometrics is the science of establishing the identity of a person based on phys-
ical or behavioral attributes [9]. As biometric-based methods are more reliable
and difficult to fraud than the traditional identification methods based on pos-
session (cards, documents, etc.) and knowledge (passwords, codes, etc.), they
have become increasingly used for human identification in different applications.
An important challenge in the area of Biometrics is the automatic identifica-
tion carried out in real-time, in uncontrolled environments, using low-resolution
cameras, like CCTV cameras, installed at a distance in positions that are not
always favorable. In these types of scenarios, the use of traditional biometric fea-
tures, such as iris, fingerprint, or even face, may be very difficult or unfeasible.
In such cases, the utilization of gait or soft biometrics can be the only option.
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Gait has gained interest especially because it requires low user interaction
and, normally, the images needed for such type of subject identification can be
low-resolution [4,5,7,15,17-19]. However, gait identification depends on motion,
which is an important limitation. Besides, since it is a behavioral characteristic, it
can be easily imitated by individuals that want to attack the biometric system.
Soft biometrics are ancillary information (e.g. height, gender, skin color, hair
color) easily distinguished at a distance but not fully distinctive when used
individually in recognition tasks [16]. However, soft biometrics features can be
very effective when used together with gait features. Gait and some soft biometric
information can be extracted from videos through 2D poses. Fig. 1 shows the 2D
outline of a human pose represented by the main parts of the human skeleton.

1 - Left Shoulde, 0 - Right Shoulder

3 - Left Elbow 2 - Right Elbow

5 - Left Wrist 4 - Right Wrist

7~ Left Hip 6 - Right Hip

9 - Left Knee 8 - Right Knee

11 - Left Ankle 10 - Right Ankle

Fig. 1. Example of a 2D human pose represented by the main parts of the human
skeleton. The labels refer to the 12 main joints of the human skeleton.

Recently, two methods for 2D human pose estimation from videos were pro-
posed: OpenPose [6] and PifPaf [11]. OpenPose [6] utilizes Part Affinity Fields
(PAFs) to learn how to associate parts of the body with individuals that are
detected within an image. PifPaf [11] utilizes Part Intensity Field (PIF) to detect
the body part of an individual and a Part Association Field (PAF) to associate
parts of the body and build a whole human body. Figure 2 shows an example
of a 2D human pose estimated by PifPaf. One can observe that the method was
able to detect all 12 joint points of the human skeleton, and, consequently, their
corresponding parts, like arms, legs and torso. Both methods, OpenPose and
PifPaf, are able to estimate 2D poses from video in real time and, therefore, can
be used for gait or soft biometric features extraction in biometric systems.

The goal of our work is to investigate if a soft biometric feature ensemble,
composed by the lengths of the skeleton parts of the human body, related to
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Fig. 2. Example of 2D human pose generated by PifPaf [11]. One can observe that the
method was very precise in detecting the skeleton joints and their associated parts.

the twelve joints labeled in Fig. 1, has sufficiently discriminating information to
identify a person. Another goal is to assess the use of joints heat-maps, outputted
by OpenPose and PifPaf, as descriptors for gait recognition. As we intend to
use methods like OpenPose and PifPaf to detect the parts of the human body
skeleton, a secondary goal of our work, but equally important, is to analyse which
method is more effective for our person identification application. Regarding the
OpenPose method, we analysed two different implementation versions, one using
Caffe Deep Learning Framework [10] and the other using Tensorflow framework
[1]. Experimental results obtained on CASIA Gait Dataset B [13] showed that
PifPaf leaded to better results and that both descriptor methods proposed in
our work obtained good identification rates.

The rest of this paper is organized as follows: Sect. 2 gives a brief introduction
to soft biometrics. Section 3 presents some related works. Section 4 presents
details of the 2D pose estimation methods. Section 5 describes the proposed
approach. Section 6 shows the experimental results, and Sect. 7 draws some
conclusions of our work.

2 Soft Biometrics

Soft biometrics feature is defined as a characteristic that provides some type of
discriminating information but not enough for assuring a subject identity [2].
There are two types of soft biometrics characteristics, discrete or continuous. A
discrete characteristic is an intrinsic and more permanent trait from the subject’s
body, like skin tone and iris color, while a continuous characteristic is a trait that
can change progressively over time, like height and weigh [2].

In general, soft biometrics are utilized together with hard features in order to
increase the robustness of a biometric identification system [2]. For instance, a
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face-based biometric system will have its performance reduced in an environment
where the presence of identical twins is frequent but, if soft biometrics features
are used together, the performance of the biometric system can be maintained.

Contrary to the soft biometrics definition, some emerging works related to
this subject have shown that, in many cases, soft biometrics information are
discriminating enough. Analysing the works presented in Sect. 3 it is possible to
see some pieces of evidence that point towards the possibility of using this type
of feature on its own. Advances in Machine Learning, more specifically in deep
learning, have had a positive impact in several areas. Surely, these advances will
also help the biometric systems to learn the soft biometrics features that are
most discriminatory for people identification.

3 Related Work

In this Section, some works related to ours are briefly presented. They were
divided into two groups: gait-based and soft biometrics-based.

3.1 Gait-Based Methods

In Chao et al. [7] the proposed method is based on a network called GaitSet. This
network utilizes sets of independent frames of gait to learn identity information.
On the paper, it is noted that the method is robust to the permutation of frames
and can integrate frames from different videos recorded in different scenarios. It
achieved rank-1 accuracy of 95% on the CASTA Gait Dataset A on its best case
and 62.5% on the worst scenario.

Ben et al. [5] had built a framework that utilizes tensor representation applied
to cross-view gait recognition. There were three criteria utilized: Coupled Multi-
Linear Locality-Preserved (CMLP) with the responsibility to preserve the ten-
sorial manifold structure, Coupled Multi-Linear Marginal Fisher (CMMF) with
the responsibility to encode intra-class compactness and inter-class separability,
and Coupled Multi-Linear Discriminant Analysis (CMDA) with the responsi-
bility to minimize the intra-class scatter and maximizes inter-class scatter. This
work is also validated with the CASTA Gait Dataset A and has a rank-1 accuracy
of 99% on the best case and 62% on the worst.

The work presented in [4] utilizes a couple patch alignment (CPA) to deal
with changes in view, this is made for matching with different pairs of gaits. Each
patch is made with a sample from the gait, its closest intra-class and inter-class
neighbor. This is following by an objective function that balances the cross-view,
intra-class, and inter-class variations. The results on the CASIA Gait Dataset A
ranges from 48% to 100% of rank-1 recognition rate, depending on the utilized
protocol.

3.2 Soft Biometrics-Based Methods

In [8] the authors propose a new fusion technique, a joint density distribution-
based rank-score fusion, in order to combine rank and score information. Another
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interesting aspect of this work is that it evaluates the influence of distance
depending on the soft biometric characteristic. Face, body, and clothing traits
are utilized to build a representation for different subjects, several soft features
are extracted from those different parts. More specifically, gender, age, height,
weight, shoulder shape, hair color, hair length, neck length, humpback, and arm
length are extracted from the body. The authors propose and utilize a new soft
biometric database, in which the accuracy varies from 98.5% in close scenarios
and 82.6% from a far scenario.

Ran, Rosenbush, and Zengh [12] utilize gender, body size, height, cadence,
and stride as a set of characteristics to do the identification. They utilize two
datasets for evaluating their method, the USF outdoor dataset, and the SET
HD indoor dataset. The method achieved 80% of Genuine Accept Rate (GAR)
at a False Accept Rate (FAR) of 0.05%.

In [3], the authors utilize a Microsoft Kinect sensor to extract the skeleton
from the subjects and calculate several anthropometric measurements. The uti-
lized features are left and right arms, left and right forearms, left and right legs,
left and right thighs, thoracic spine, cervical spine, and height. For classification,
the authors created a dataset with 8 subjects and trained several models to do
classification: a multi-layer perceptron, a decision tree, a random forest, and a
K-NN with K = 1. The work reported accuracy of, on average, 99%.

4 Pose Estimation

Human pose estimation has gained importance in recent years due to its great
potential for use in many computer vision applications (e.g. human action recog-
nition, human-computer interface). Its main objective is to localize joints in the
body (e.g. elbow, knee) or parts (e.g. arm, legs) [14]. In this work, our interest
is mainly focused on finding the main joints and parts of the human body and
utilize joints heat-maps and parts lengths as biometric features for people iden-
tification. For this task, two state-of-the-art methods were assessed in our work,
OpenPose [6] and PifPaf [11].

4.1 OpenPose

OpenPose was proposed in [6]. It mainly relies on a pipeline with multiple stages.
It starts with a set of 2D confidence maps of the body part locations, then, in the
next step, it generates a set of 2D vector fields of part affinities, which describes
the affinities between two body parts. Figure 3 shows a block diagram of the
OpenPose method. As one can see, the predictions and feature images in each
stage are concatenated for the next stage. The four initial stages generates a set
of part affinity fields and the last two stages are utilized to predict the confidence
maps.

Finding body parts in an image utilizes the idea that, knowing that the image
has a body, a part of it can be found in any pixel. The confidence maps are 2D
representations that capture this heuristic. In a scenario where there is only one
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Loss

Convolution X
l block m 1 X 1 Convolution
3x3

Fig.3. A block diagram that illustrates the network architecture of the OpenPose
multiple-stage CNN (block diagram inspired in [6]).

person in an image it is expected a single peak in the map, in other scenarios,
there should be a peak per person. To associate different detected parts, a 2D
vector with the encoded direction of one limb to another is utilized, the integral
of a line that joins the current vector and other parts vector is calculated and
utilized for joining parts.

4.2 TF-Pose Estimation

The TF-Pose Estimation' is an implementation of the OpenPose method using
the Tensorflow framework [1]. It has some variation with changes in the network
structure, which allows utilizing it in real-time on CPU or embedded devices.

We also utilized this implementation to verify if there is a difference in the
observable behavior and if this impacts in any way the obtained result. In the
Sect. 6 the results with both implementations of OpenPose method, original
Caffe framework and TensorFlow framework, are listed.

4.3 PifPaf

In [11], Kreiss, Bertoni, and Alahi propose a method called PifPaf that focuses
on estimating human poses in crowded images. PifPaf utilizes a shared ResNet
with two head networks, one of the networks precisely estimates the location
and size of a joint in the body, this is named Part Intensity Field (PIF). In order
to estimate the association between the parts, other head networks are utilized,
this is called Part Association Field (PAF).

The PIF can be defined as a structure that holds a scalar for the confidence
in which that is a body part, a vector that points towards the closest body
part, and one more scalar that has the estimated size of the joint. Since the
confidence map of a PIF is coarse, it is necessary to join its vectorial part with
a high-resolution confidence map.

For finishing the constructed predicted skeleton, it is necessary to build the
PAFs. A PAF consists of two vectors specifying the parts that are associated with

! https://github.com/ildoonet /tf-pose-estimation.
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two widths. In order to determine the vectors, a two-step algorithm is utilized.
First, for determining the first vector, the closest joint of a part is found. The
second step is needed for determining the second vector, to do this the ground
truth is utilized. With this, the junction of PIFs and PAF's are utilized to build
the predicted skeletons. Figure 4 shows a block diagram of the PifPaf method.

7X7 Conv

m
>
8
&
“

Fig. 4. A block diagram that illustrates the PifPaf network architecture. The encoder is
responsible for extracting the fields from the original image and the decoder is respon-
sible for transforming those fields into keypoints.

5 Proposed Methods

This work proposes a novel ensemble of soft-biometric features coupled with a
pre-processing stage. Figure 5 presents a block diagram of our proposed method
for people identification based on soft biometrics features obtained from 2D
poses. As one can observe, our method has five main stages: background sub-
traction, pre-processing, pose estimation, feature extraction and, finally, person
identification.

In the first stage, the input image is subtracted from the background image,
thus removing the background and maintaining the foreground. In the second
stage, we perform a morphological filtering on the foreground image resulting
from the subtraction stage. More precisely, we apply an opening morphological
operator in order to eliminate high frequency noise in the foreground areas of the
image. In the third stage, we apply on the filtered images a 2D pose estimation
method, such as OpenPose [6] or PifPaf [11], in order to obtain the skeleton
of the person in the scene. In the fourth stage, the ensemble of soft biometrics
features is extracted and a feature vector is generated. Our feature vector has
dimension 8. The first feature is the length of right Humerus of the individual
being identified, which is calculated by measuring the distance between joints
0 (right shoulder) and 2 (right elbow). The second feature is the length of left
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Background Pose Estimation

Subtraction Pre-Processing

Feature

FEEE Extraction

Identification

o 7
Right

Left
Humerus Tibia

Ri
Humerus

Fig. 5. Block diagram of the proposed method for people identification based on an
ensemble of soft-biometric features obtained from 2D poses.

Humerus, which is calculated by measuring the distance between joints 1 (left
shoulder) and 3 (left elbow). The third feature is the length of right Ulna, which
is calculated by measuring the distance between joints 2 (right elbow) and 4
(right wrist), The fourth feature is the length of left Ulna, which is calculated by
measuring the distance between joints 3 (left elbow) and 5 (left wrist), and so
on. Finally, in the fifth stage, the feature vector obtained from the 2D skeleton
is used to fed a classifier in order to identify the subject. In our work, we used a
1-NN classifier, and assessed two distance functions: Euclidean and City-Block.

In the target application for our method, the goal is to identify a person
walking in a area under surveillance. So, the input information to our biometric
system will be a sequence of video-frames captured by a surveillance camera
(CCTV camera). So, we hypothesized that the biometric system will have in its
database (gallery) at least one video per person which will be compared with
the query video (probe). Therefore, in order to authenticate a subject’s identity,
the distance of the probe video to the gallery video associated to the claimed
identity must be lower than a given threshold (in the authentication mode we
have 1:1 comparison). For finding the identity of an unknown person, the probe
video will have to be compared to all gallery videos (in the identification mode
we have 1:n comparisons). In this case, the identity associated to the gallery
video with the lowest distance to the probe video will be taken as the identity
of the subject.

In order to compute the distance D between two videos, probe and gallery,
that have m and n frames, respectively, the m feature vectors of the probe video
are compared with the n feature vectors of the gallery video. Then, the distance
D is taken as the mean of the k lowest frame distances (in our experiments the
best results was obtained with k = 11).

Another important aspect of our method regards the occlusions of parts of the
body that can occurs when capturing the video images. When occlusions occur,
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the methods of pose estimation will not be able to localize all joints. Actually,
OpenPose and PifPaf returns a quality measure of each joint detected. Within
our method, we used a function that determines a threshold of acceptance of
a particular extracted feature, that is, we use a joint information only if the
quality measure of that joint detection is superior to 70% (this threshold value
was defined experimentally).

This work also proposes to use the joints heat-maps obtained from the 2D
pose estimation methods as descriptor for gait recognition. Figure 6 presents a
block diagram of the proposed method for gait recognition based on joints heat-
maps features obtained from 2D poses. As one can observe, this method has
three main stages: pose estimation, feature extraction and person identification.

Heat-Map Feature Person
Estimation Extraction Identification

VIDEO

Fig. 6. Block diagram of the proposed method for gait recognition based on joint
heat-map features obtained from 2D poses.

In the first stage, we apply on the input video a 2D pose estimation method,
such as OpenPose [6] or PifPaf [11], in order to obtain the joints heat-maps
from each frame from the video. In the second stage, a mean joints heat-map is
calculated. Finally, in the third stage, the feature vector (mean joints heat-map)
is used to fed a classifier in order to identify the subject. In this case, a ANN
(Artificial Neural Network) classifier is used.

6 Experimental Results

In this Section, we present the experimental results obtained with the novel
methods proposed for people identification based on the ensemble of anthropo-
metric measurements and joints heat-maps obtained from 2D poses.

In our experiments we assessed the OpenPose (with its two implementations)
and the PifPaf methods. These methods are described in Sect. 4. Besides, we
assessed two distance functions (Euclidean and City-Block) when using the 1-NN
classifier. For the ANN, we used a feedforward ANN (Artificial Neural Network)
with an input layer, three hidden layers and an output layer, created by using
Tensorflow [1] and Keras.

The proposed methods were assessed using the subset of videos captured at
90 degrees, available on CASTA Gait Dataset-B, which is described in Sect. 6.1.
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6.1 Dataset

The dataset used in our experiments is a subset of CASIA Gait Dataset-B [13].
This dataset has several frames extracted from videos of 124 subjects from var-
ious angles and perspectives, backgrounds and previously classified silhouettes.
Figure 7 shows two samples of frames of a video from this dataset.

(a) (b)

Fig. 7. Examples of images of a subject from two distinct videos from CASIA Gait
Dataset-B, captured by two distinct cameras.

CASIA Gait Dataset-B is a very complete dataset. For a greater challenge in
extracting characteristics, it has intra-class variations, that is, the same person
was recorded with and without carrying a bag and with or without wearing a
coat.

In our experiments we used 620 videos of the lateral view (view angle equal
to 90 degrees) from the CASIA Gait Dataset-B, with the following information:

— The videos have 66 frames on average;

— From each frame it was detected 14 points of interest (joints of the estimated
skeletons);

— For each person we used the videos with the three variations (person walking
with no objects and no jacket, person carrying a bag and person wearing a
jacket);

— Each variation has at least 2 shots;

— Right legs and arms were only possible to be captured in 36% of the frames
due to the camera’s angle.

6.2 Results

Figure 8 presents the Cumulative Match Curve (CMC) obtained with our pro-
posed methods using the three pose estimation algorithms with the ANN and
the 1-NN classifiers (with the Euclidean and City-Block distances). CMC is a
measure commonly used to assess the performance of biometric systems that
operate in identification mode (1:n comparisons).
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Regarding the rank-1 identification rate, as one can see in Fig. 8, the best
result was obtained with the PifPaf 2D pose estimation method with the ANN
classifier and the joints heat-map features (89% of rank-1 identification rate).
The second best result was also obtained by PifPaf, but with the 1-NN classifier,
with Euclidean distance, and the anthropometric measurements (85% of rank-1
identification rate). The worst result was obtained with the TF-Pose-Estimation
method, with 1-NN classifier, with City Block distance, and the anthropometric
measurements (70% of rank-1 identification rate).

Regarding the overall performance, the best result was obtained by the PifPaf
2D pose estimation method with the ANN classifier and the joints heat-map
features since this combination presented the highest area under the CMC. The
overall worst result was obtained by the OpenPose 2D pose estimation method
with the ANN classifier and the joints heat-map features, since this combination
presented the lowest area under the CMC.

CMC Recognition Rate from Soft-Biometric on CASIA DATABASE

1.0
0.8
3
S 0.6
c
;,g —e— 1-NN with Euclidean Distance using PifPaf (85.0% of accuracy on rank-1)
5 —&— 1-NN with City Block Distance using PifPaf (76.0% of accuracy on rank-1)
§ 0.4 1 —%— 1-NN with Euclidean Distance using OpenPose (80.0% of accuracy on rank-1)
« —#— 1-NN with City Block Distance using OpenPose (72.0% of accuracy on rank-1)
1-NN with Euclidean Distance using Tf-Pose-Estimation (79.0% of accuracy on rank-1)
024 1-NN with City Block Distance using Tf-Pose-Estimation (70.0% of accuracy on rank-1)
—4#— ANN Network Training Using PifPaf (89.0% of accuracy on rank-1)
—4#— ANN Network Training Using OpenPose (77.0% of accuracy on rank-1)
—+— ANN Network Training Using Tf-Pose-Estimation (75.0% of accuracy on rank-1)
0.0 T T
0 5 10

Rank Score

Fig. 8. Cumulative match curves obtained using three pose estimation methods (Pif-
Paf, OpenPose and TF-Pose-Estimation), two biometric features (soft and gait), and
three classifiers (ANN, 1-NN with Euclidean distance and 1-NN with City-Block
distance).

In order to assess the performance of the proposed methods in a biomet-
ric systems that would operate in authentication mode, we also calculated the
F1-Score. Table 1 shows the results obtained by using PifPaf as the 2D pose
estimation method. The F1-Score was 89%, which can be considered a good
result when taking into account that we are using gait biometric features in this
experiment. OpenPose and Tf-Pose-Estimation methods obtained 12% and 14%,
respectively, in loss of accuracy in relation to the PifPaf method.
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Table 1. Precision, Recall and F1-Score values obtained by using PifPaf and ANN on
the complete dataset.

Precison | Recall | F1-Score

Accuracy 0.89
Macro avg 0.89 0.89 |0.89
Weighted avg | 0.89 0.89 10.89

Our last experiment was designed to simulate a scenario where it is necessary
to identify a small group of known people (that is, a close set identification
problem), but at a distance and in unconstrained conditions. This scenario could
regard, for instance, a small set of employees being monitored while working on
the factory floor of an industry. So, for that, we randomly chose ten individuals
from the CASTA Gait Dataset B. For this experiment we used only the ANN
classifier. We used 75% of the data available for the class for training the network
and, consequently, 25% of the rest of the data for the evaluation of results.
Figure 9 shows the CMC obtained in this experiment. As one can see, the best
result jumped from 89% to 97% of rank-1 identification rate.

CMC Recognition Rate from Soft-Biometric on CASIA DATABASE

1.0
——eo—o—o—o—9o
/'"

| — L L L L L L -

0.8 1 —e— ANN Training Using PifPaf with 10 classes (97.0% of accuracy on rank-1)
—— ANN Network Training Using OpenPose with 10 classes (91.0% of accuracy on rank-1)

—#+— ANN Network Training Using Tf-Pose-Estimation with 10 classes (89.0% of accuracy on rank-1)
0.6

Recoanition Rate

T T
0 5 10
Rank Score

Fig. 9. Cumulative match curve obtained using the three pose estimation algo-
rithms (PifPaf, OpenPose and TF-Pose-Estimation), with the ANN classifier, for
10 individuals.

The precision, recall and F1-Score measures for each individual obtained in
this experiment by using the PifPaf 2D pose estimation and the ANN classi-
fier are shown in Table 2. As one can see, the accuracy measure jumped from
89% to 96%. OpenPose and Ti-Pose-Estimation methods obtained 6% and 8%,
respectively, in loss of accuracy in relation to the PifPaf method.
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Table 2. Precision, Recall and F1-Score values obtained by using PifPaf and ANN on
a subset of 10 individuals.

Individual Precision | Recall | F1-Score
0 0.97 0.98 10.98
1 0.98 0.98 10.98
2 0.97 0.96 |0.96
3 0.95 0.95 10.95
4 0.94 0.97 10.95
5 0.96 0.93 10.95
6 0.97 0.97 10.97
7 0.99 0.92 10.95
8 0.95 0.95 10.95
9 0.90 0.96 0.93
Accuracy 0.96
Macro avg 0.96 0.96 |0.96
Weighted avg | 0.96 0.96 |0.96

7 Conclusions

In this paper we proposed novel methods for people identification based on
soft and gait biometrics features obtained from 2D poses. Such features consist,
respectively, of an ensemble of lengths of parts of the skeleton and of joints
heat-maps of the 2D poses estimated from the person being identified.

The proposed methods were assessed on a subset of CASIA Gait Dataset B,
a popular dataset commonly used as a benchmark for soft biometrics methods
based on gait recognition. The results obtained in our experiments showed that
the proposed methods were successful, mainly if is taken into account that we
are using soft and gait biometrics in scenarios in which most traditional and hard
biometric features will fail, or will not be possible to use. Our best results, 89%
and 85% of rank-1 identification rates for gait and soft features, respectively,
were reached by using the PifPaf method for 2D pose estimation. In a smaller
subset randomly selected from the CASIA Gait Dataset B, the gait result jumped
to 97%. In all experiments, PifPaf overcame both implementations of OpenPose
method, when utilizing the same features, and the same classifier.

We did not compare our results with other works since we could not find
other works that utilize the same dataset, the same experimental protocol, and
just the same, or similar, anthropometric measurements (length of body’s parts).

As our method is intended for scenarios where it is possible to record videos
at a distance of people walking, a natural extension of our work is to fuse both
anthopometric and gait features. This is one of our future work. Another exten-
sion of our work is to use a tracking method in order to be able to address the
problem of identifying multiple persons present in the same scene.
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Abstract. Colorectal cancer causes the deaths of thousands of people
worldwide according to the World Health Organization. Automatic tissue
recognition of histopathological images is essential for early disease diag-
nosis. Most research consists of employing texture descriptors to capture
features that identify tumor samples. However, accurate multi-class clas-
sification is a challenge due to the complexity of colorectal tissue images.
Recently, researchers have shown that the analysis of texture structural
patterns degraded by image filtering provides valuable features for pre-
diagnosis in several medical applications. Here we propose an approach
to automatically classify eight types of colorectal tissues using Structural
Co-occurrence Matrix. We carried on experiments on 5000 tissue patches
from a public dataset to evaluate our algorithm, considering two scenar-
ios: structural differences as a single descriptor, and combined with other
characteristics. We found that our strategy improves the state-of-the-
art, achieving, accuracy: 91.30%, precision: 91.41%, sensitivity: 91.31%,
specificity: 98.76% e Fl-score: 91.31%.

Keywords: Colorectal cancer - Structural co-occurrence matrix -
Image classification

1 Introduction

Colorectal cancer is the term attributed to a pathology when a tumor is found in
the large intestine or rectum. It can also be called colon or rectal cancer, depend-
ing on where the symptoms started [26]. Early detection of the disease is a vital
strategy to find the tumor in the initial phase, thus increasing the chances of
successful treatment. The presence of abnormalities caused by this cancer can be
detected mainly by sigmoidoscopy and colonoscopy exams. Upon finding abnor-
malities in the examination, confirmation occurs through tissue biopsy of the
suspected region, using the Hematoxylin-Eosin (H&E) staining technique [25].
Pathologists are responsible for diagnosing and studying tissue properties, such
as structure, quantity, and shape of cells [9]. Figure 1 shows different examples
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of tissues that make up the colorectal structure. They have a wide range of
lighting, stain intensity, and fabric textures. The diversity of characteristics and
classes, makes the analysis process present some problems: (i) time spent; and
(ii) biased nature. The pathologist’s pre-existing knowledge guides manual anal-
ysis [14]. Therefore, to reduce the time of analysis and subjective interpretations,
the use of CAD (Computer-Aided Diagnosis) systems can improve pathologists’
productivity and increase confidence results.

Most CAD systems have the architecture divided into three parts: pre-
processing, feature extraction, and classification [15,16,23]. In the context of
feature extraction, several works aim to improve the classification performance
by analyzing methods that represent, in the best way, important structures of
the images of the problem addressed. Several feature extractors are explored
in the literature regarding the construction of CADs for diagnostics in medi-
cal images. Narvaez F. et al. [15] used the curvelet multiresolution technique
to extract texture resources, and Zerkine moments to extract the shape charac-
teristics in breast images. PS e Dharun [19] explored Gray Level Co-occurrence
Matrix (GLCM) texture information and shape (area, perimeter, and circularity)
in the brain abnormality classification process by analyzing Magnetic Resonance
Images (MRI) images. Filho et al. [22] compared the classification performance
and extraction time of the methods GLCM, Hu moments, Statistical moments,
Zernike’s moments, Elliptic Fourier features, Tamura’s features, Structural Co-
occurrence Matrix (SCM), and Analysis of Human Tissue Densities (AHTD).
They observed promising results of classification and extraction time of AHTD
and SCM in analysis of lung and brain images.

(h)

Fig. 1. H&E patches of colorectal tissue. (a) tumour epithelium, (b) simple stroma,
(¢) complex stroma, (d) immune cell conglomerates, (e) debris and mucus, (f) mucosal
glands, (g) adipose tissue, and (h) background.
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Most approaches for analyzing H&E histological images have two limitations:
(i) they consider only two categories of tissue (tumour and stroma), which makes
these approaches inappropriate for more heterogeneous parts of the tumor; or
(ii) studies use private datasets, which impacts their reproducibility [12]. For
example, Altunbay et al. [2] evaluated a private dataset during the application of
graphs to mathematically represent normal, low-grade, and high-grade cancerous
tissue structures.

Bianconi, Alvarez-Larrén e Ferndndez [3] used image characteristics based
on visual perception (coarseness, contrast, directionality, line probability, and
roughness) for discrimination of epithelial tissue and stroma on 1376 images.
However, their dataset consists of samples with different resolution ranges (in
pixels) per each class, which can lead to a bias in the classifier. On the other
hand, Kalkan et al. [11] used information from GLCM and Gabor to separate
the same tissue classes by analyzing 2000 images.

Kather et al. [12] introduced a new dataset with 5000 H&E images of col-
orectal cancer, including eight types of tissues. The authors used these images
to compare the performance of a varied set of texture extractors (Gabor; GLCM;
visual perception characteristics; Local binary patterns - LBP; and high and low
order histogram statistics), in addition to a set of classifiers (k-Nearest Neighbor
- kNN, Decision Tree, and SVM). The results were evaluated for characteriza-
tion in two and eight types of tissue. Kather et al. [12] managed to improve
state-of-the-art in the classification in two classes (epithelial-stroma), reaching
98.6% accuracy, associating characteristics of six extractors. As for eight types of
tissues, the accuracy obtained was 87.4% with the union of information from five
extractors. However, the approaches that achieved the best accuracy were those
that demanded the longest extraction times. Before, no work has addressed the
problem of separating H&E tissues from colorectal cancer into eight classes using
only texture information. Some challenges remained open, such as: (i) improve
accuracy result; (ii) decrease the feature extraction runtime of the approach
and; (iii) identify which classes cause the most confusion when classifying the
problem.

Wang et al. [28] proposed an algorithm called bilinear CNN (BCNN) for
classification of histopathology images. The algorithm first decomposes the input
into the H (Hematoxylin) and E (Eosin) components of the H&E images. BCNN
is composed of two Convolutional Neural Networks (CNN) that are responsible
for extracting characteristics from the decompositions. The outputs are combined
by a bilinear pooling and classified with the Support Vector Machine (SVM).
The results showed high efficiency of the method, but the authors selected a
set of 1000 images from a universe of 5000 for evaluation. Rachapudi e Devi
[20] also proposed a new CNN architecture. The complete model has sixteen
convolutional layers, five layers of max-pooling, and a fully-connected layer. The
network output is classified into eight classes.

The SCM is a generic structural analysis method proposed by Ramalho et al.
[21] in a study of disease detection on medical images using rotation-invariant
feature extractors. SCM was shown to be faster than most classic rotation-
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invariant feature extractors. Having the ability to capture structural degradation
in images, SCM is a condensed global descriptor method useful to describe tex-
tures or region-guided structures that characterize marks of diseases in medical
images. Previous works [17,22,23] have used a vector descriptor containing up to
eight originally defined attributes computed from SCM giving it likeness power
within classes.

Different from previous approaches, which explore classifying tissues using
single descriptors, we propose to analyze the combination of them. Particularly,
we are interested in investigating whether the structural analysis of the texture
patterns provides valuable features to categorize colorectal tissue images, accord-
ing to two scenarios: 1) SCM as a single descriptor, and 2) SCM combined with
other state-of-the-art descriptors. Thus, we introduce SCM as a feature extrac-
tor on H&E images, addressing this method to classification into eight classes.
This paper describes three contributions:

— C#1: Proposal of a SCM setup for extracting H&E image characteristics
from colorectal tissue.

— C#2: Quantitative evaluation of SCM in comparison to state-of-the-art
descriptors on H&E images.

— C#3: Ensemble of features that enhance the discrimination of colorectal
tissues into different classes.

The remainder of this paper is organized as follows. Section 2 presents the
SCM algorithm and discusses its application as a feature extractor for digital
images. Section 3 introduces our methodology for colorectal tissue characteriza-
tion, addressing the problem in two scenarios: single and combined descriptors.
Section 4 presents the datasets and evaluation metrics. The experiment results
are discussed in Sect. 5, and Sect. 6 draws our conclusions and future directions.

2 Structural Co-occurrence Matrixz - SCM

SCM is a rotation-invariant features extraction technique for signals proposed
by Ramalho et al. [21]. This method consists of a descriptor that enables the
analysis of the relationship between low-level signal structures in 1D or 2D space.
The information resulting is compacted in a 2D matrix. Figure 2 illustrates the
computation of SCM.

Consider two bi-dimensional images f and g on the same domain and same
spatial dimension. The SCM values are the frequency of the pair values satisfying
the Eq. (1). For feature extraction applications, we make g = f. The k function
provides an image transformation, usually either a high-pass or low-pass filter
for the input signal. The goal of k is to evidence the structural difference between
f and k(g). The pixel intensity at position p is represented by f,, and k(g)p+d
given a d offset. For most feature extraction applications d is set to zero. @) is
a quantization function, meaning it maps the pixel values of the image to the
discrete domain where Q(f), € {0, ..., N—1} values. The 2D matrix of structural
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Fig. 2. Generic SCM model for two input signals. From Ramalho et al. [21]

co-occurrence of the signs Q(f) and Q(k(g)), represented by M = m,; is obtained
using the following expression:

mi; = #{(6,5)|P(i, ), i = Q(f)p, J = Q(k(9))p+d}, (1)

where #{-} represents the cardinality of the subset of pairs (i, ) that satisfies
the property P. This property depicts the relationship between the discrete
values Q(f), and Q(k(g))p+a4 at the positions p e p + d, respectively. A set of
attributes, derived from SCM, represent the structural information stored in M.
These attributes are divided into three groups: statistical group, information
group, and divergent group. In the statistical group are included the correlation
(COR), inverse difference moment (IDM) and entropy (ENT). The divergent
group presents the divergence of Kullback & Leibler (DKL) and complementary
absolute difference (CAD). The information group presents Chi-square distance
(CSD), Chi-square ratio (CSR) and mean absolute difference ratio (MDR) [21].
The attributes are often used as a feature vector to describe the input image
f in most applications. SCM provides two marginal (marginal Y and marginal
X) distributions given by the sum of rows and the sum of columns of M. The
marginal histograms are equivalent to the histograms of the pixel values of the
images f and g, respectively.

3 Methodology

We conducted experiments based on the approach described in Fig. 3. First, we
converted the input RGB images to grayscale using the equation GS = 0.298« R
+ 0.5870% G + 0.1140* B [18], where GSS is the grayscale image and R (Red), G
(Green), B (Blue) are components of input image. Later, we extracted texture
attributes using different techniques for investigating the impact of using SCM
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on colorectal tissue characterization. We addressed two scenarios: S1: SCM as a
single feature extractor, and S2: SCM combined with other texture descriptors.

Table 1 describes our experiments, as well as the reference methods, to cover
both scenarios.

Table 1. Experimental design for both scenarios: 1) SCM as a single feature extractor,

and 2) SCM combined with classical texture descriptors.

Scenario

Strategy

Reference methods

1

Classification of colorectal tissue
samples based only on SCM. We per-
formed statistical analysis to validate
SCM regarding the state-of-the-art.
This experiment achieves the C#1
and C#2 contributions

We analyzed the SCM performance
in comparison to GLCM [10]; LBP
[29]; Gabor [7]; perceptual informa-
tion from the human visual sys-
tem (PERC) [3,27]; and Lower-
order (HL) and higher-order (HH)
histogram features [13]

Classification of colorectal tissue
samples based on the combination of
SCM and classic descriptors. We per-
formed statistical tests to identify the
potential descriptors for an ensemble
solution based on SCM. This experi-
ment leads to the C#3 contribution

We referred the combination of five
techniques called best5 (PERC +
HH + HL + LBP + GLCM). The
best5 was proposed by Kather et al.
[12] for multi-class classification in
colorectal tissue and corresponds to
the state-of-the-art

We applied state-of-the-art machine learning algorithms to classify the col-
orectal image samples in our pipeline. We adopted the following algorithms:
Decision Tree [24], KNN [8], and SVM with Linear kernel, Polynomial kernel
(Poly) and Radial Basis Function kernel (RBF) [4,6]. For classification, the fea-
ture sets were divided into training (75%) and testing (25%). The process was
repeated 1000x, always with random sampling for the training and test sets.
Therefore, our findings for each descriptor are reasoned on the performance
observation in 1000 iterations classification process.

4 Performance Assessment

4.1 Dataset

We carried out tests using a database containing 5000 image patches from dif-
ferent parts of colorectal cancer H&E exams. This dataset was introduced by
Kather et al. [12] from the samples of the pathological archive of the Univer-
sity Medical Center Mannheim. The patches are labeled in eight types of tissue:
epithelial tumour; simple stroma; complex stroma; immune cells; debris (includ-
ing necrosis, bleeding, and mucus); normal mucous glands; adipose tissue and
background. For each class, 625 non-overlapping patches were obtained, with
dimensions 150px x 150px (74pm x 74pum), totaling 8 x 625 = 5000 images.
Figure 1 shows some examples of the adopted database.
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Fig. 3. A proposed approach to the colorectal cancer classification process. n stands
for the different evaluation metrics employed. S1 and S2 correspond to our studied
scenarios. (Color figure online)

4.2 Evaluation Metrics

We considered metrics based on True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN) values to quantitatively assess our results.
Specifically, we computed the accuracy (ACC), precision (PREC), sensitivity
(SENS), specificity (SPEC), and Fl-score as follows:

ACCZTP+;FJ§I§J1\£+FN’ @
PREC = %, (3)
SENS = %, (4)
SPEC — %. (5)

F1_score combines precision and recall (REC) to bring a unique number
that indicates the general quality of the model. Recall has the same meaning as
sensitivity (SENS).

PREC x REC

Fl. =9y o M B
SCOTC = X PREC + REC (©)

According to the proposed methodology (Fig. 3), we achieved a population
of size N for each metric. Based on these values, we employed the one-way
ANOVA statistical test [5] with the post-hoc Turkey test (o = 0.05) [1] for each
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metric, reporting the pairwise combinations that differ significantly from each
other. Our motivation to use this statistical analysis was to produce a systematic
comparison between the different descriptors, revealing those whose results are
potentially interesting.

5 Experimental Results

We investigated the following SCM parameters that maximize the discrimination
performance on colorectal tissue images. Therefore, we perform tests varying the
k filter; and the SCM output as a feature vector. We analyzed the following
filters as k function: {low-pass: average and gaussian}, and {high-pass: sobel
and laplace}. We tested the SCM-based feature vector as SCM attributes (ATT)
proposed in [21]; SCM marginal X and Y (MX and MY); and the vectorization
of the SCM matrix (LIST).

Table 2 presents the classification results of colorectal cancer images using
different SCM parameters. The SVM RBF achieved the best results. Our experi-
ments revealed that the low-pass filters in conjunction with the LIST lead to bet-
ter characterization. Particularly, we show that the degradation of high frequen-
cies of colorectal tissue images provides a valuable descriptor for pre-diagnosis in
eight different classes. Therefore, we reported the average filter and LIST as our
best SCM setup. For these parameters, we found ACC: 90.84%, PREC: 91.10%,
SENS: 90.70%, SPEC: 98.69%, and F1-score: 90.79%. We adopted our best SCM
parameters to analyze the scenarios S1 and S2.

Table 2. Classification results of H&E images of colorectal into eight tissue classes
using different SCM parameters and SVM RBF classifier.

Filter Output | ACC (%) PREC (%) SENS (%) SPEC(%) F1l-score (%)

Average | LIST 90.84+1.47 | 91.10+1.36 | 90.70 - 1.44 | 98.69 + 0.21 | 90.79 + 1.39
MX 82.38 +£1.49 82.48 +1.54 82.41+1.48 97.48 £0.21 82.35+1.51
MY 80.18 +2.03 80.21 £ 2.16 80.14 £ 2.11 97.17 £0.29 80.09 £+ 2.12

ATT 77.92+£0.77 | 78.10£1.06 |77.924+0.86 |96.85+0.11 77.87+£0.98
Gaussian | LIST 89.98+£0.69 | 90.08+0.69 | 90.00+0.70 |98.57+0.10 | 90.00+0.69
MX 82.84+1.90 | 82.95+2.07 |82.80+1.97 |97.554+0.27 | 82.82+2.02
MY 81.84+1.43 |81.914+1.23 |81.94+1.24 |97.41+0.21 81.82+1.30
ATT 73.92+2.67 | 73.99+2.64 |73.944+2.62 |96.284+0.39 73.70 £ 2.64
Laplace LIST 88.54+1.45 88.75+1.57 |88.60+1.49 |98.36+£0.21 88.55 +1.46

MX 80.96 £3.12 | 81.18 +2.92 | 80.98+3.13 | 97.28+0.44 | 80.89+3.29
MY 59.60£1.90 |61.80£1.29 |59.60+1.39 |94.234+0.28 | 58.89+1.56
ATT 81.62+1.64 |81.98+1.60 |81.60+1.64 |97.37+0.24 |81.66+1.62
Sobel LIST 88.66+1.08 | 88.79+1.25 |88.57+1.11 |98.38+0.15 |88.62+1.17
MX 82.044+1.92 |82.10+1.93 |82.04+1.79 |97.44+0.28 |81.99+1.87
MY 57.40+£3.24 |59.39+£2.55 |57.49+3.10 |93.924+0.47 |57.23+3.23

ATT 77.78£2.28 | 77.73£2.25 |77.89+2.13 |96.834+0.33 | 77.631+2.22
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5.1 S1 Analysis

S1 analyzes the performance of the SCM as a single descriptor. We found that
the SVM RBF classifier performs better with the surveyed descriptors, regard-
less of the evaluation metric. Figure 4 presents our quantitative evaluation. We
confirmed that the performance of best5 is superior to that presented by each of
its single components, including Gabor. Our experiments revealed that the single
SCM performs better than best5, improving the state-of-the-art. For all extrac-
tors, SPEC was above 94%, showing the ability of the methods to identify true
negative cases. SCM contributed further, improving the performance on other
metrics (ACC, PREC, SENS, and Fl-score). Thus, we argue that the modeling
of structural differences caused by a low-pass filter is a valuable descriptor for
the characterization of colorectal tissue images.

PERC Gabor HH GLCM LBP HL bestS SCM

Fig. 4. Quantitative evaluation for the surveyed single descriptors. All values shown
are in (%).

Table 3. Average execution time for each feature extraction method.

Method | SCM |HL |HH | GLCM |PERC | LBP | Gabor
Time(s)  0.01 | 0.03 0.05 0.10 | 0.12 | 0.72 | 0.86

Table 3 describes the average runtime for all surveyed algorithms. We found
that SCM had the best performance, with a gain of 66.66% and 98.83% in feature
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extraction runtime when compared to HL (second fastest algorithm) and Gabor
(last fastest algorithm) methods, respectively. It is noteworthy that the SCM
computational time is related to N value in the function @ of SCM (Eq.1). In
our experiments, we adopted N = 8. If IV increases, consequently, the number
of operations to compute the co-occurrence matrix and its attributes tends to
increase considerably. We recommend to Ramalho et al. [21] for more details on
the computational complexity of SCM.

Table 4. Combination of descriptors based on SCM.

Descriptors Combined descriptor
SCM + GLCM + HH + HL + PERC | set_01
SCM + LBP + GLCM + HH + HL set_02
SCM + LBP + GLCM + HH + PERC | set_03
SCM + LBP + GLCM + HL+ PERC | set_04
SCM + LBP + HH + HL + PERC set_05

5.2 S2 Analysis

S2 analyzes the combination of SCM with other texture descriptors. Since that
the state-of-the-art for characterization of eight classes of colorectal tissue corre-
sponds to a descriptor ensemble, we are interested in analyzing the SCM perfor-
mance in conjunction with best5, which is described in Table 1. To this end, we
perform the following procedure: each method that composes best5 was gradu-
ally replaced by SCM, proposing 5 different feature vectors. Table 4 summarizes
the SCM-based proposed combinations.

Figure 5 shows our S2 results. Similar to S1, the SVM RBF classifier pro-
vides the best results. Although the performance of the combined descriptors
that using the SCM is similar, we observed that all SCM-based sets outper-
form best5 for all evaluation metrics. Furthermore, the performance of the single
SCM and the combined SCM is close, signaling that the characteristics extracted
by SCM are relevant in the combined feature vector. An interpretation here is
that structural differences, encoded by SCM, are uncorrelated to the features
extracted by other descriptors. Future works might address this finding towards
the SCM interpretability.

Table 5 describes our quantitative results in terms of the metric averages.
In this perspective, set_01 was our best combined SCM. However, the ANOVA
and post-hoc Turkey statistical tests (o« = 0.05) did not identify statistical dif-
ferences between set_01 and set_03 and set_04; set_03; set_03 and set_04; set_03
and set_04; and set_03 for the ACC, PREC, SPEC, SENS and F1-score met-
rics, respectively (Fig. 6). The proposed set_01 also had the advantage of being
the fastest surveyed SCM-based combination. Since the SCM runtime signifi-
cantly shorter than other surveyed techniques, we argue that SCM improved
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Fig. 5. Quantitative evaluation for SCM combined with classical texture descriptors.
The horizontal line stands for the best single SCM result.

the performance of the ensemble of descriptors without relevantly impacting its
computational time.

Figure 7 presents the confusion matrices for a colorectal tissue classification
into eight classes. Our analysis was based on set_01, as it is our best perform-
ing algorithm. We observed that the discrimination between simple stroma and
complex stroma is hard, due to the tissue’s similarity. When comparing Fig. 7
(a) and Fig. 7 (b), set_01 contributed to decrease the error in all classes, mainly
in classes simple stroma and complex stroma.

Finally, we analyzed the set_01 classification performance into eight classes
of colorectal tissue, considering the state-of-the-art methods on our adopted
dataset. Table 6 shows the result of the evaluation metrics for each method.
We achieved results with ACC: 91.30%, PREC: 91.41%, SENS: 91.31%, SPEC:
98.76% and F1-score: 91.31% using 5000 images in the methodology. Our results
are better when compared to the ACC of the Kather (2016) et al. [12] and
Rachapudi e Devi (2020) [20] approaches. The ACC of the Wang et al. (2017)
[28] approach was 1.4% higher; however, they used only 1000 images.



344 E. P. Medeiros et al.
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SPEC Fl-score
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Fig. 6. Pairwise comparisons for all combined SCM using the ANOVA with post-hoc
Turkey statistical tests. The gray boxes represent the pairs with significant difference
at o = 0.05.
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Fig. 7. Confusion matrices for colorectal tissue images classification. a) Results
obtained from best5 e b) set_01. The true labels and predicted labels are described
as 1 - tumour epithelium, 2 - simple stroma, 3 - complex stroma, 4 - immune cell con-
glomerates, 5 - debris and mucus, 6 - mucosal glands, 7 - adipose tissue e 8 - background.
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Table 5. Classification results of the H&E images of colorectal cancer into 8 classes
using the SCM combined features.

Features | Classifier ACC PREC SENS SPEC F1l-score Extraction
time(s)

bests KNN 82.240.84 82.57+1.08 |82.294+1.06 |97.454+0.11 |82.13+1.12 |1.04

SVM Linear |87.46+1.04 |87.494+1.01 |87.47+£1.05 |98.204+0.14 |87.44+1.06

SVM Poly 88.50+1.49 |88.52+1.47 [88.51+1.58 |98.35+0.21 |88.46+1.56

SVM RBF |88.514+0.99 | 88.86+0.97|88.531+0.96|98.36+0.14 | 88.501+0.97

Decison Tree |78.02+1.14 |78.04+1.38 |77.97+1.49 |96.854+0.15 |77.94+1.43
set_01 KNN 87.78+1.20 |87.92+1.28 |87.82+1.28 |98.254+0.16 |87.78+1.28 |0.33

SVM Linear |89.72+0.81 |89.8440.70 |89.77+0.79 |98.531+0.11 |89.75+0.77

SVM Poly 86.00+6.51 |86.68+5.79 |86.04+6.49 |98.004+0.92 |86.134+6.39

SVM RBF |91.304+0.86/91.41+0.85|/91.311+0.86|98.76+0.12|91.311+0.86

Decison Tree |81.364+1.10 |81.38+1.12 |81.47+1.06 |97.33+0.15 |81.334+1.08
set_02 KNN 87.20+0.85 |87.65+0.98 |87.26+£0.91 |98.174+0.11 |87.24+1.09 |0.93

SVM Linear |89.52+0.58 |89.724+0.82 |89.54+0.77 |98.50+0.07 |89.58+0.81

SVM Poly 88.85+1.06 |89.30+1.02 |88.85+1.28 |98.40+0.14 |88.93+1.24

SVM RBF |91.06+0.83/91.16+0.80|/91.07+0.81|98.72+0.12|91.07+0.81

Decison Tree | 82.20+0.83 |82.144+1.24 |82.1941.23 |97.45+0.11 |82.07+1.22
set_03 KNN 87.58+1.47 |87.98+1.45 |87.61+1.53 |98.22+0.21 |87.60+1.50 |1.02

SVM Linear |89.32+0.66 |89.444+0.67 |89.32+0.69 |98.474+0.09 |89.31£0.67

SVM Poly 89.62+2.06 |89.89+1.79 [89.61+2.10 |98.51+0.29 |89.6442.00

SVM RBF |91.29+0.78 |91.374+0.76|91.3+0.77 |98.76+0.11|91.30+0.77

Decison Tree|81.52+1.50 |81.50+1.49 |81.66+1.48 |97.364+0.21 |81.46+1.46
set_04 KNN 87.56+1.07 |87.97+1.23 |87.56+1.22 |98.22+0.14 |87.584+1.20 |1.00

SVM Linear |89.74+0.79 |89.9240.88 |89.73+0.81 |98.53£0.11 |89.751+0.84

SVM Poly 88.66+2.69 |89.02+2.33 |88.58+2.84 |98.38+0.38 |88.66+2.69

SVM RBF |91.20+0.77|91.284+0.76|91.21+0.76 |98.74+0.11 |91.21+0.76

Decison Tree |81.824+0.83 |81.92+0.88 |81.83+0.65 |97.40+0.12 |81.80+0.76
set_05 KNN 86.96+0.30 |87.37+0.49 [86.97+0.34 |98.13+0.04 |87.024+0.36 |0.95

SVM Linear |88.96+0.93 |89.154+0.93 |88.99+0.86 |98.42+0.13 |89.01+0.88

SVM Poly 82.90£15.21 | 86.00+8.96 |83.04+£14.99 | 97.55+2.17 |82.62416.00

SVM RBF |90.754+0.77/90.86+0.76 | 90.77+0.76 | 98.68+0.11 |90.77+0.76

Decison Tree |82.16+£1.58 |82.214+1.67 |82.15£1.50 |97.454+0.22 |82.14+1.56

Table 6. Comparison of the proposed approach with the state of the art for classifica-
tion of the same image dataset. Only the standard deviations provided by the authors
were presented.

Approach Number of | ACC (%) PREC (%) |SENS (%) |SPEC (%) |F1l-score (%)
1images

This paper 5000 91.30 + 0.86{91.41+0.85|91.31 +0.86|98.76 - 0.12|91.31 + 0.86

Kather et al. (2016) 5000 87.40 - - - -

Wang et al. (2017) 1000 92.60+1.20 |- - - -

Rachapudi e Devi (2020) | 5000 77.30 - - - -

6 Conclusion and Future Directions

Here we studied state-of-the-art texture descriptors to categorize colorectal tissue
samples into eight different classes, including normal and abnormal. We explored
seven descriptors (SCM, HH, HL, PERC, Gabor, GLCM, LBP) in two scenarios:
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isolated and in groups. Our experiments show that degrading high frequencies in
the colorectal tissue images and encoding the resulting structural differences by
SCM is valuable for pre-diagnosis into 8 classes. According to state-of-the-art,
our approach enables gain of up to 3.93% in terms of accuracy when SCM is
used as a single extractor, and 4.46%, when combined with others descriptors.
Since the performance of single and combined SCM are close, we conclude that
the texture information captured by SCM is relevant to achieving an accurate
pre-diagnosis on colorectal tissues. Furthermore, our best SCM-based ensemble
outperforms the state-of-the-art with up to 68.26% of the computational time.

Since we show the potential of SCM in applications with colorectal tissue
images, future work should investigate the factors that make this structural
co-occurrence matrix appropriate to this problem. Also, researches aimed at
the development of CAD systems can benefit from the proposal of a descriptor
that reaches a sensitivity of 91.31% and specificity of 98.76%, with satisfactory
runtime to the clinical routine.
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Abstract. The restoration of a corrupted image is a challenge to com-
puter vision and image processing. In hazy, underwater and medical
images, the lack of paired images lead the state of the art to synthe-
size datasets. The Generative Adversarial Networks (GANs) are widely
used in these cases. However, computational cost and training instabil-
ity are current concerns. We present an unsupervised learning algorithm
that does not requires paired dataset to train encoder-decoder-like neural
network for image restoration. An encoder-decoder learn to represent its
input data in a latent representation and reconstruct then in the output.
During the training stage, our algorithm applies the encoder-decoder
output image to a degradation block that reinforces its degradation. The
degraded and input images are matched using a loss function. After the
training process, we obtain a restored image from the decoder. We used
ill-exposed images to evaluate and validate our algorithm.

Keywords: Unsupervised learning - Image restoration + Neural
network

1 Introduction

Image restoration and image enhancement in the image processing has been
received much attention from the researchers. Ill-exposition effects such as noise
and over/under exposition are typical problems tackled to obtain image quality
in many applications [1]. The over/under exposition occurs during image acqui-
sition, when the signal is acquired by the sensor that presents limited acquisition
range of light intensity. This situation produces the clipping phenomenon and
interferes in bright regions of the scene, resulting in overexposure and in dark
regions result in underexposure. In general, overexposure and underexposure are
caused by poorly adjusted camera aperture, exposure time or gain [23].

Image restoration algorithms aim to reduce the artifacts in degraded images
and to recover details, contrast and color. This is an important step in comput-
ing vision and applications like robotics, inspection, surveillance, recognition,
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etc. [19]. These algorithms must to tackle both spatially variant and invariant
degradation [1]. However, recovering the image quality is an ill-posed problem
given the image degradation is an irreversible process [15].

Convolutional Neural Networks (CNN)-based methodologies are widely used
in the image restoration and enhancement-related works. Despite of the results,
these works present complex network structures often using Generative Adver-
sarial Networks (GANs) with moderate to high computational cost and hard
training [12,14]. Although the GAN-based approach is unsupervised learning,
the most of those works use supervised training strategy and require paired
datasets containing images with and without specific features. Frequently, the
datasets are synthesized to generate paired images [9,24,30].

Recently, unsupervised learning works using non-paired datasets have
obtained great progress in image restoration [8], medical imaging problems
[13,17,26] and audio denoising [16]. In these works are presented probabilistic
approaches and encoder/decoder-type networks are used.

The Autoencoder (AE) is an encoder-decoder-like architecture and the most
common in unsupervised deep learning. In general terms, AEs are neural net-
works which produce codifications from input data and they are trained so that
their decodifications resemble of the inputs as closely as possible [4]. Based on
AFE’s characteristic, we aim to restore an image that can be coded/decoded
by AE or similar neural network. Our assumption establishes that the output
(decodification) in the training stage can be properly degraded and applied to
the loss function. As result we expect the neural network learn to restore the
input degraded information. Thus, leading to correct the degradation imposed
on training.

In this work, we present a new unsupervised training methodology to image
restoration based on assumption described above. Our algorithm does not require
paired dataset just a degradation function. The presented results are promising
and are obtained for under and overexposed images generated via gamma varia-
tion. We restore ill-exposed RGB images and we compares the results obtained
with supervised training using paired dataset.

2 Related Works

The application of the neural networks in image restoration increased in the
recent years [7,11,28]. However, there are few proposals on CNN-based over-
exposed image restoration using unsupervised learning. In related works, the
main issue tackled is the lack of paired datasets relating images with and with-
out degradation. The main strategy adopt is synthesizing data and performing
supervised training of the networks.

Although of recent advances, images containing high contrast scenes are dif-
ficult to be acquired. Images captured using conventional cameras operating in
the visible light spectrum are commonly affected by artifacts and distortions due
to excess or lack of light [22]. An image overexposure occurs when the sensor
receives too much light, making it unable to differentiate the lighter parts of
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the image. The underexposure of an image may occur due to several factors,
including insufficient lighting, short exposure time, or small aperture of the lens
iris [21]. A method using a GAN to restore images ill-exposed is presented in
[23]. Although the good looking results, the images show vibrant colors and
unnatural-looking. High computational cost and instability of the GAN training
convergence were observed.

A deep learning-based Single Image Contrast Enhancement (SICE) model is
proposed in [3]. Three specialized networks are presented to correct the general
image lightness, to restoring edges and high-frequency details and to combine
the respective outputs.

Recently, similar approaches on dehazing and underwater image restoration
were presented [7,9,24,30]. CNN-based structures using GANs and synthesiz-
ing datasets are adopted. An end-to-end image dehazing algorithm is presented
in [7]. The model called FD-GAN uses a densely connected encoder-decoder as
the generator. The main contribution is the novel Fusion-discriminator which
integrates the high and low frequency information as additional priors and con-
straints into the learning procedure. The networks are trained using a synthetic
dataset generated by the authors from the public datasets.

The approach described in [24] proposed the Underwater GAN (UWGAN)
generate synthetic underwater style images. In the UWGAN training step, the
generator network uses in-air image and depth map pairs based on improved
underwater imaging model to output an underwater-style image. At the end
of training, the generator is able to simulate an underwater-style image and a
dataset is produced and used to training an Unet [18] architecture network.

Similarly, in [30] two GAN networks are employed to underwater image
restoration. The UGAN proposed by [9] is trained to generate turbid images
from clear ones. A synthetic dataset is produced and used to train another
GAN. During inference, the generator network predicts clear images from blurry
images as input.

The above mentioned works are supervised learning initiatives and they syn-
thesize paired dataset to train the neural networks. On the other hand, unsuper-
vised learning approaches no require paired images. This approach is adopted in
several areas such as seismic analysis [5], medical imaging [13,26], image restora-
tion [8] and audio applications [16]. In these works, probabilistic approaches are
described with strategies applied to remove gaussian noise. Autoencoders or
varational autoencoders are the chosen architectures to denoising task.

In this work, we present an unsupervised learning algorithm that requires
only a dataset with non-paired images and a degradation function to train the
neural network to perform image restoration.

3 Methodology

Synthesizing paired data is widely used to train neural networks to image restora-
tion of ill-exposed images. These synthetic data are necessary to train the neural
networks via supervised learning. However, we present an unsupervised learning
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algorithm and we do not use paired datasets. In this section, we describe our
algorithm in details.

3.1 Proposed Algorithm

The most common architecture in unsupervised deep learning is the encoder-
decoder. Many proposals need to compute costly optimization algorithms to
encode a latent representation or sampling methods to reach a reconstruction
(decode). Autoencoders capture both in their structure. With the advantage of
training them become easier and faster [4].

In this work we present an unsupervised learning methodology for neural net-
works aiming to restore corrupted information. For this purpose, we applied to
restoration of ill-exposed images. However, the method can be extended and eval-
uated to different contexts like audio denoising, sensor signal denoising, dehaz-
ing, underwater image restoration, etc. Fig. 1 describes our conceptual proposal.
Essentially, an encoder-decoder network must reproduce its input information
as precisely as according to its training. Therefore, a degraded input informa-
tion, for example an image I, is coded by the encoder G generating a latent
representation Y. The decoder Gp produces decoded and similar version I of
the input image. In other words,

Input
Image
(lll-exposed)

Parameters (W, b)

Fig. 1. The proposed image restoration architecture.

The core of our proposal is to insert a degradation step (a function or pipeline)
D over training stage that simulate the effects to be removed on the encoder-
decoder output image. Both input and degraded images are matched by loss
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function L. Our hypothesis is that, during the training stage, a proper degrada-
tion and the loss function minimization leads the encoder-decoder to perform an
useful restoration of the input image. This restored image is presented at output
1.

In the training process, the overdegradated image I* is the output image and
it is matched to the input image using a loss function L. We assume § = (W, b),
with the weight matrix (W) and bias vector (b), the parameters of the Gg and
6 = (VAV7 5), the parameters of the Gp. The hypothesis establishes that,

I* = D(I), (3)

and X R
0,0 = argmin[L(I,I")]. (4)

Thereby, minimizing the difference between I and I* allow the image at
decoder output be a restored version of input image (I’), thus

I' =D Y(I). (5)

A critical point is the degradation function or pipeline D (named degradation
block) since the adequate specification allows and lead the network to learn what
effects (artifacts) in image space that must be reduced. The correct specification
can be complex and a challenging task. This conception can be applied to data
from another nature. Similarly, the choose of the loss function is important and
can be based on input data and characteristics of the restoration aimed.

Our proposal focus on unsupervised learning and it does not require an addi-
tional or a paired dataset. This is also important in areas like medical, seismic
or underwater imaging, where often paired dataset is not available. Encoder-
decoder neural networks like AE are easier and faster to train and to implement.

In the next sections we described the details of the implementation of the
algorithm and validation. We applied the algorithm on under and over exposed
images and the neural network used in the tests was the ReExposed-net [21].

3.2 Network Architecture: ReExpose-net

We implemented the neural network ReExpose-net [21] to restore ill-exposed
images. This model minimizes the memory requirements of the network and
improves the results for image exposure correction. The network uses atrous con-
volutions and trainable down-scaling and up-scaling layers. This network improve
the prediction accuracy and increase the size of each batch during the training
stage. The architecture is shown in the Fig. 2.

The convolutional block includes four 3 x 3 parallel atrous convolutional
layers, with dilatation rates ranging from 2° up to 23. Thus, each convolutional
block (Conv. Block) is able to cover 19 features in the input space using only nine
trainable weights for each filter. Atrous convolutions provide context aggregation
for each pixel by allowing the model to access a large region in the neighborhood,
allowing us to reduce the amount of scaling layers in the network [21].
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Fig. 2. ReExposed-net Architecture [21].

The learned down-scaling through strided convolutions perform better than
pooling layers, especially in large saturated regions. For spatial up-scaling is used
nearest neighbor interpolation followed by convolution. The Exponential Linear
Unit (ELU) [6] activation function is used in the hidden layers. It speeds up the
learning stage and leads to improve the image quality.

The downscale performed by the convolutional layers (stride = 2) and the
upscale performed by the up sampling layers in the neural network identify the
encoder-decoder aspect to the architecture.

3.3 Loss Function

The adopted loss function combines Structural Dissimilarity (DSSIM) [21] and
Pixel-wise Euclidean Distance (Lg). DSSIM is based on SSIM [25], a similarity
index calculated on various 3 x 3 window of an image. DDSIM provides great
insight on image quality, but it does not able to account the pixel values in the
exact position. The pixel values in ill-exposed regions in the image are closer
the sensor limits. Then the loss function has the Lo term and a element-wise
multiplication reinforce the pixel values that are more likely to be affected by ill-
exposure conditions. Assuming images I and I* are in the representation interval
[0; 1], with an empirical constant A = 0.2, loss function is shown in Eq. (6).

L(I,1*) = A\0.5 — I*| o Lo(I,1*) + (1 = \)DDSIM (I, 1*), (6)

where the symbol o represents element-wise multiplication.

3.4 Dataset and Training Parameters

We use the MIT-Adobe FiveK Dataset [2]. It features 5,000 images taken with
SLR cameras by a set of different photographers. The images are made available
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in DNG file format, a lossless raw image format. All the information recorded
by the camera sensor is preserved. For training, we converted the DNG file to
RGB representation. We do not need paired images. We aimed to validate the
proposed unsupervised learning algorithm. For this task, we evaluate over and
underexposed image restoration problem. Thus, the degraded image dataset was
build with images from FiveK dataset, but increasing or decreasing the lumi-
nance and to create bright or dark regions and simulate over and underexposed
images. We applied over the images the gamma correction to produce bright or
dark images, described by Eq. (7). The parameter v > 1 produces darkening
scenes and v < 1 whitening scenes.

I=Al". (7)

where A = 1, I, is the dataset image and for overexposition the v = % For
underexposition the v = 3. The corrupted image dataset generated is used to
train the neural network.

All trainable weights are initialized using the Glorot uniform initializer [10].
The model is trained using the Adam optimization algorithm with its default
parameters. Training is stopped after 5000 batches are processed without yield-
ing an improvement larger than 107°.

3.5 Degradation Block

Our methodology needs the degradation block D be able to reproduce the con-
ditions of the input image degradation. Therefore, the degradation block is rep-
resented by the gamma factor, then:

D=Al,", (8)
I* = D), (9)
I =Al. (10)

The training architecture diagram is indicated in the Fig. 3. The loss block
represents the Eq. (6).

4 Experimental Results

In this section, we present the results obtained from image restoration algorithm
based on unsupervised learning without paired dataset whose conceptual scheme
is described in the methodology section. In addition, we shown a comparative
between unsupervised and supervised learning via image quality metrics. The
ReExpose-net is used to image processing in both cases.

The results are obtained for the ReExposed-net separately trained for under
and overexposed images. We set v = 3.0 to simulate underexposed images. The
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Fig. 3. The adopted architecture.

Fig. 4. Underexposed image restoration results. (a) Original Images, (b) Input images,

(¢) Output images (Restored).
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overexposed images are simulated with v = % In both cases the training was
performed in the unsupervised mode, i.e. without ground-truth.

Figure 4 shows resulting images for the underexposed context. Figure 4(a)
corresponds the image from FiveK dataset without distortion shown to ease
the comparison, Figs. 4(b) and (c) correspond the input image with distortion
produced by gamma correction (y = 3) and output image restored (I in the Fig.
3), respectively.

The neural network restored the underexposed images and the visual quality
of the resulting images are is widely satisfactory. We can observe the improve-
ment of regions with light colors in the scene. There is a slight change in the
colors with enhancement of the red channel. These features are consequences of
the gamma correction process, unsupervised learning, absence of ground-truth
and of the ReExposed-net processing like highlighted in [21].

Figure 5 shows the resulting images for the overexposed images. Figure 5(a)
correspond the images from FiveK dataset without distortion shown to ease
the comparison, Figs. 5(b) and (c¢) correspond to the input image with distor-
tion produced by gamma correction (v = %) and output image, respectively.
Our ReExposed-net restored the overexposed effect. The colors present changes
with the red and the green channels are slightly attenuated. Dark regions in
the no-distortion images are strongly darkened and present black areas in the
resulting images. These areas in the input image are located near to the lower
limit of the dynamic range. The overdegradation produces pixels values lower
than zero and they are clipped. The content information is not recovered. These
features are due to the gamma correction process, absence of ground-truth and
the ReExposed-net processing. They can be perceived comparing Fig. 5(a) and
Fig. 5(b).

In spite of color variations, the main result is the validation of the proposed
unsupervised learning algorithm to restore degraded images. We use only one
dataset and did not synthesize any ground-truth. The necessary information are
the input information (with a specific noise or distortion), and a degradation
pipeline or function. Also, it is important to highlight that the algorithm was
implemented on a light neural network, whose performance was increased by the
fact that the exta-degradation is an external function and it was not necessary
to add on the network learning demands.

Tables 1 and 2 are show the quantitative results for under and overexposition
cases, respectively. The values are obtained comparing both input and output
images with the no-distortion image from FiveK dataset.

The indicated metrics are image quality metrics often utilized to evaluate
image restoration methods. Specifically, Peak Signal-to-Noise Ratio (PSNR) [23],
Mean Square Error (MSE) [23], Structural Similarity (SSIM) [25], Gradient Mag-
nitude Similarity Deviation (GMSD) [27], CIEDE2000 [20], Feature Similarity
and Feature Similarity with Chrominance (FSIM and FSIMc) [29].

We adopted a wide range of metrics to properly evaluate our method. We
use pixel-wise metrics (PSNR, MSE), structure-related metrics (SSIM, GMSD),
color metrics (CIEDE2000) and visual perception based metrics (FSIM, FSIMc).
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]

Fig. 5. Overexposed image restoration results. (a) Original Images, (b) Input images,
(c) Output images (Restored).

From Table 1, all metrics point out that the neural network effectively per-
formed the restoration of the underexposed images. There is a significant differ-
ence among metrics related pixel-wise, structure and color. However, the metrics
related to visual perception produced close values.

Results for overexposed image restoration are shown in the Table 2. Although
the most of metrics point out the best results for output image, the differences
are smaller than underexposed case. In addition, the GMSD metric is smaller
for the output image and values for visual perception metrics are close. These
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Table 1. Quantitative results in underexposed images.

Metric Input image | Output image
PSNR 1 12.008 24.775

MSE | 4455.3 238.1

SSIM 1 0.310 0.750

GMSD | 0.164 0.099
CIEDE2000 | | 22.030 8.158

FSIM 71 0.738 0.831

FSIMc 1 0.717 0.813

Table 2. Quantitative results in overexposed images.

Metric Input image | Output image
PSNR 1 10.209 13.557

MSE | 6339.5 3008.2

SSIM 1 0.658 0.781

GMSD | 0.075 0.104
CIEDE2000 | | 26.582 23.589

FSIM 7 0.926 0.921

FSIMc 1 0.905 0.885

observations indicate that the performance of the neural network for overexposed
image is lower than the underexposed one, assuming the mean of the dataset.

5 Conclusions and Future Works

We presented and validated a new unsupervised learning algorithm for restora-
tion of corrupted informations using to train an encoder/decoder-like neural
network. No paired datasets is needed and we did not synthesize anyone. The
algorithm requires as input corrupted information and an adequate function or
pipeline of additional degradation to be applied on output information. The
input and output informations are matched in the loss function. Starting from
no-corrupted images, we simulate under and overexposed images by gamma cor-
rection. The additional distortion required by algorithm also is performed by
gamma correction. The results show the effectiveness of the method. However,
a high degradation can limit the restoration. This was shown on underexposed
image restoration results. The image restoration is related to effect produced
by the degradation block and its incorrect definition or incorrect parameters
can limit the output image quality. In further work, we will extend the analysis
and the research to another image restoration context like underwater images.
Furthermore, we intend to improve the presented degradation pipeline since the
limitation in challenge situation.
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Abstract. Early diagnosis of genetic syndromes has a vital importance
in the prevention of any potential related health problems. Down syn-
drome is the most common genetic syndrome. Patients with down syn-
drome have a high probability of developmental disorders, like Congen-
ital Heart Disease, which is best treated when discovered in the early
stages. These patients also have particular facial characteristics that are
identified by geneticists in a physical exam. However, there is subjec-
tivity in the professional analysis, which can lead to a late diagnosis,
aggravating the patient’s health condition. This paper proposes a soft-
ware framework for the automatic detection of Down syndrome using
facial features extracted from digital images, which could be used as a
tool to help in the early detection of genetic syndromes. For training the
machine learning model, we create a dataset gathering 170 pictures of
children available on the internet. 50% of the pictures were of children
with Down syndrome and the other 50% of healthy children. Then, we
automatically identify faces and describe the images with facial land-
marks. Next, we use two approaches for feature extraction. The first is a
traditional computer vision approach using selected distances and angles
and textures between the landmarks. The other, a deep learning approach
using a Convolutional Neural Network to extract the features automati-
cally. Then, the feature vector is fed to a Support Vector Machine with
a linear kernel on both feature extraction approaches. We validate the
results measuring the accuracy, sensitivity, and specificity of both feature
extraction approaches using 10-fold cross-validation. The deep learning
method resulted in an accuracy of 0.94, while the traditional approach
achieved 0.84 of accuracy in our dataset. The results shows that the deep
learning approach has a higher classification accuracy for this task, even
with a small dataset.
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1 Introduction

Early detection of genetic syndromes in children has an important role in the
treatment of patients and diseases. Precocious diagnosis helps to prevent critical
health problems, such as congenital heart diseases and respiratory problems.
Women in pregnancy routinely make ultrasound and blood tests. Other more
invasive tests for prenatal diagnosis, such as amniocentesis and chorionic villus
sampling, are required if there is a high risk of genetic syndromes After birth,
the diagnosis is often based on physical variations or dysmorphology [1].

More than 50% of patients affected by genetic syndromes have particular
facial characteristics [1], and there is a great subjectivity in the analysis and iden-
tification of dysmorphia as an identifier of a genetic syndrome, causing variation
in the diagnostic decision of the physical examination among different profession-
als. After identifying the facial characteristics, the diagnosis can be confirmed
by a cytogenetic examination of karyotype, fluorescence in situ hybridization
(FISH), or molecular genetic tests, which perform DNA sequencing,.

Down syndrome is the most well-known genetic syndrome with particular
facial characteristics, and it is the main cause of congenital heart diseases [4].
This syndrome’s diagnostic accuracy in newborns is around 64% [6,21], and can
be lower in regions with precarious health conditions. Some other common syn-
dromes associated with heart diseases are Turner, 22q11.2 deletion, Williams
and Noonan [9]. After identifying congenital malformations, the newborn’s car-
diac condition needs to be evaluated and monitored; therefore, detecting these
syndromes earlier may increase the chances of survival and the quality of life of
these patients.

In the last few years, automatic methods to identify different genetic syn-
dromes from digital images have been developed [1,23]. In countries where access
to cytogenetic examinations is limited, the accuracy of an early diagnosis based in
facial characteristics is critical. Some techniques of computer vision and machine
learning have been explored for the task of a fast diagnosis in a significant num-
ber of genetic syndromes.

Zhao et al. [23] proposed a strategy based on machine learning to detect Down
syndrome automatically. Geometric and texture features based on local binary
patterns are extracted around the landmarks. The best performance achieved
an accuracy of 0.95 using a Support Vector Machine (SVM) with a radial basis
function kernel. In the study of Cerrolaza et al. [1], they presented a general
framework for the detection of multiple genetic disorders, including Down syn-
drome, on a database of 145 facial pictures, combining geometrical and tex-
ture features. This study proposed the combination of morphological and local
appearance features using local binary patterns, achieving a detection accuracy
of 0.94. Dima et al. [3] uses facial recognition methods to extract the features and
use SVMs and K-nearest neighbors classifiers in order to recognize the presence
of Down syndrome. They use 50 down syndrome samples and achieve accuracy
results ranging from 0.93 to 1.0 when using different datasets for the control
group. Kumov et al. [11] explores 3D face reconstruction besides geometric and
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deep features to classify 8 genetic syndromes. They use a database of 1462 total
samples and achieve an average accuracy of 0.92.

Deep convolutional neural networks (CNNs) are the state-of-the-art in image
classification. CNNs use convolution for automated feature extraction and data
classification, learning how to represent data with layers of abstraction [14]. The
technique is being used in several medical image analysis applications with great
results [15], making it a possible high accuracy diagnostic method for genetic
syndromes.

-----------------------------------------------------------------------
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Fig. 1. The two proposed approaches in this paper.

In this paper, we propose a software implementation of two frameworks for
automatic classification of Down syndrome, which are summarized in Fig. 1. The
first is using geometric and texture features extracted from digital images to feed
an SVM with a linear kernel based on previous works [1,23]. The second is a
deep learning approach, using a pre-trained CNN model for feature extraction
[22] and the same Linear SVM model for classification. We perform a comparison
between the two approaches and demonstrate how this architecture can classify
Down syndrome using facial images with high accuracy.

This study is divided into four sections. In Sect. 2, we present the suggested
recognition methodologies. Section 3 presents the results of the data set simu-
lations, comparison, and discussion of the efficiency of the methods. Finally, in
Sect. 4, conclusions about the paper and indications of possible future work are
presented.

2 DMaterials and Methods

2.1 Data Description

There is no publicly available dataset for this task. So, we created the dataset
using 170 pictures of children available on the internet. Half of the images were
of children with Down syndrome, and the other half was a control group. The
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samples of the Down syndrome group were collected from a gallery named Babies
with Down Syndrome from a parenting website [18] and from the figures on the
Kruszka et al. [10] paper, which presents Down syndrome in different ethnicities.
The control group is a random sample manually selected from the children cate-
gory on the ImageNet database [2]. The dataset used in this paper is composed
of frontal images of children of both sexes, from 0 to 5years of age, and from
different ethnicities. The faces were automatically segmented from the images
with a Python programming language script based on the Dlib-ml library [8] face
detector. It is an object detector based on that uses a Histogram of Oriented
Gradients (HOG) as a feature extractor and a linear classifier trained for face
detection.

A

Fig. 2. Average image made of all the aligned samples from each group in the dataset.
A: Control group; B: Down syndrome group.

2.2 Facial Landmarks

After segmenting the faces, the location of some facial landmarks were identified,
and the segmented faces were aligned based on the eyes and mouth position to
achieve a rotation normalization of the dataset and then all the images were
resized to 150 x 150 pixels for scale normalization. We also used the facial
landmarks to obtain a feature vector that can represent the particular facial
characteristics of genetic syndromes, which was done by calculating some geo-
metric relations between the landmarks and the texture around them. The facial
landmarks were detected with Dlib’s implementation of Kazemi et al. [7] pose
estimator based on an ensemble of regression trees for face alignment and trained
on the iBUG 300-W face landmark dataset [20] which can estimate the coordi-
nates of 68 facial landmarks (see Fig. 2A).
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2.3 Feature Extraction

Traditional Approach. The extracted geometric features were 9 Euclidean
distances and 18 angles between the inner landmarks, which were based on the
measures that geneticists use to assess particular facial characteristics and diag-
nose genetic syndromes (see Fig.3). To improve the results, we used the local
binary patterns (LBP) descriptor, a rotation, and grayscale invariant texture
classification [17] based on pixel relations of the p surrounding points in a circu-
larly symmetric neighborhood, in which the radius of the circle is equal to r. To
compose the feature vector, 11 textures were extracted from the image in a 35
x 35 pixels region around some selected landmarks (see Fig. 3). For each region,
the LBP representation with p = 12 and r = 2 was computed and used to build
a normalized histogram counting the occurrence of each binary pattern, gener-
ating a p + 2 sized vector. Therefore, the feature vector is the concatenation of
the distances, angles, and texture representations, forming a total of 181 values.

Fig. 3. A: Facial landmarks location; B: Computed distances between the points; C:
Computed angles; D: Region of the extracted textures. (Image sample from the CAFE
dataset [16]).

Deep Learning Approach. Deep-learning software attempts to simulate the
brain process using a large array of neurons in an artificial neural network
(ANN). The ANN learns, with high-level precision, to recognize patterns in digi-
tal representations of images and other data. Because of evolution and improve-
ments in mathematical approach and powerful computers, computer scientists
engineers can now model many more layers in ANN than ever before, creating
the deep-learning networks (DLNs).

In the group of DLNs, we have CNNs, which are inspired in variants of multi-
layer perceptrons (MLPs). CNNs exploit spatially-local correlation by enforcing
a local connectivity pattern between neurons of adjacent layers, proving to be
very effective in areas such as image recognition and classification. The convo-
lution layer’s parameters consist of a set of learnable filters. Every filter is small
spatially (along width and height). During the forward path, it is convolved each
filter across the width and height of the input image and compute dot products
between the entries of the filter and the input at any position. As we slide the
filter over the width and height of the input image the activation map that gives
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the responses of that filter at every spatial position. So, the CNN will learn
filters that activate when they found some type of features, such as an edge of
some orientation on deep layers of the network, and each of them will produce
a separate 2-dimensional activation map. These activation maps are produced
along the depth dimension producing the output.

One of the first appearances of successful CNN applications in the literature
was LeNet-5 [12] created for digit recognition in documents using the MNIST [13]
dataset, which features 70,000 labeled handwritten digit images. The LeNet-5
architecture consists of two sets of convolution, activation and pooling, a fully-
connected layer, an activation layer, another fully-connected layer containing a
number of neurons equal to the number of output classes, and a softmax function
for the classification. The convolution layers receive inputs, perform the convolu-
tion operation with a given kernel, and result in a feature map representing the
characteristics extracted through the convolution [5]. The activation function
is responsible for inserting non-linearity in the model. Pooling or subsampling
reduces the dimensionality of the feature map by grouping the information using
a simple operation like max or average; that is, it is a technique that reduces
its size while maintaining information. The fully-connected layer combines the
features extracted by the other layers to create the model. The last layer has
a softmax activation function that shows the probability that the input is from
each of the classes, and we choose the class with the highest probability as the
output.

Very deep CNNs have been central to the largest advances in image recogni-
tion performance in recent years. One example is the Inception architecture that
has been shown to achieve very good performance at relatively low computational
cost [22]. In this work we studied and implemented the Inception-ResNet-v2 [22]
to extract the image features automatically. Figure4 shows the architecture of
Inception-ResNet-v2. We use a model pre-trained on the ImageNet dataset and
remove the softmax classifier in the last layer, keeping the 2048 features that the
network extracted as the face’s descriptor. We used a mini-batch size of 64 and
trained for 35 epochs.

2.4 Classifiers

For the classification problem, a supervised learning method using linear classifi-
cation was implemented using the Python programming language and the tools
available on the Scikit-learn library [19]. Linear classification is a method of sta-
tistical classification, which will use the dataset to create a model that is able
to separate the classes based on the samples feature values and deduce the class
of a new unknown subject, in this case, syndromic or non-syndromic. To train
the model, the presence or absence of Down syndrome is added to the feature
vector. The trained and tested model is an Support Vector Machine with a linear
kernel and a C = 0.001. The model optimizes a set of hyperplanes to separate
the target classes based on the extracted features by maximizing the distance of
the hyperplanes to the features of each class.
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Fig. 4. Inception-ResNet-v2 architecture. Source: [22]

2.5 Evaluation Metrics

To evaluate performance, we split our dataset into two sets (train and test)
and test the model on samples it has not seen during training. If the model
infers that a sample is positive for down syndrome, it is a true positive (TP)
outcome. If it was a wrong prediction and it was actually a negative sample, this
prediction counts as a false positive (FP). If the model outputs negative for a
sample that is really negative for down syndrome, it is a true negative (TN), and
if it was actually a down syndrome (positive) case, it counts as a false negative
(FN). The metrics used to evaluate performance are accuracy, sensibility, and
specificity. Accuracy (Eq.1) is the number of true outcomes over the total of
samples. Sensitivity (Eq.2) is the number of true positives over the total of
positive samples, and specificity (Eq.3) is the number of true negatives over the
total of negative samples.

accuracy = TP+ TN (1)
Y TP+TN+FP+FN
TP
P 9
sensitivity TP FN (2)
TN
speci ficity = (3)

TN+ FP
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3 Results and Discussion

To test the trained models, the data was split into training and testing sets
using the k-folds cross-validation method, in which the data is divided into k
different parts and the model is trained and tested k times, each time with
one different part as the training set, and then calculating the average of the
classification scores. A k = 10 was used for this validation, therefore the model
was trained and tested 10 times, each time with 153 samples for training and 17
for testing. Table 1 shows the results of the two proposed approaches. The first
one is using handcrafted features, distances, angles and local binary patterns on
the regions of the facial landmarks, which was an approach based on the work of
Cerrolaza et al. [1], since their code and data are not publicly available, we can’t
directly compare our results. Our first approach achieved 0.84 accuracy, 0.81
sensitivity and 0.86 specificity, with an AUC of 0.83 (Fig.5). The best results
were obtained using the CNN-based feature extraction, in which was possible to
achieve a classification accuracy of 0.94, a sensitivity of 0.95, and a specificity of
0.92.

Table 1. Performance comparison of both proposed approaches, the one with the
feature extractor using distances, angles and LBP (D+A+LBP) and the one using a
CNN. Presenting the accuracy, sensitivity, and specificity metrics for each one.

D+A+LBP | CNN
Accuracy |0.84 0.94
Sensitivity | 0.81 0.95
Specificity | 0.86 0.92
ROC curve
1.0
0.8
0.6
o
&
0.4 1
0.2 1
,/’ —— D+A+LBP (area = 0.83)
0.01 » CNN (area = 0.94)
0.0 02 0.4 0.6 08 10

FPR

Fig. 5. Receiver Operating Characteristic (ROC) curve and area under curve of both
proposed approaches traditional (D+A+LBP) and using convolutional neural networks
(CNN). Vertical axis shows the models’ true positive rate (TPR) and the horizontal
axis the false positive rate (FPR).
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4 Conclusion

Two fully automated framework for detecting Down syndrome were proposed,
one using classic computer vision techniques based on previous works and
another using a deep learning approach which achieved better results. In this
work, it was possible to develop a model using a Linear SVM with a CNN feature
extractor that is capable of identifying Down syndrome with 94% of accuracy
using facial images, while the approach similar to the one presented by Zhao
et al. [23], with some differences on the extracted features, such as a different
selection of landmarks and Euclidean distances, instead of horizontal and verti-
cal distances, showed an accuracy of 84% in our dataset. The results show that
it is possible to build a software to assist the neonatal staff in identifying chil-
dren that might have Down syndrome using state-of-the-art techniques in image
classification, enabling an early detection that could improve the treatment of
the Down syndrome conditions. A limitation of this study was the absence of
a general database for this problem. We highlight the need for a public and
well-controlled dataset for this task, in order to better develop and compare
approaches in a closer to real-world scenario as well as evaluate possible bias.
A mobile application powered by our model can improve the decision accuracy
by having a protocol for image acquisition to standardize the submitted images,
and present to the user a confidence metric for each classification. The code we
created for this work can be used to create an application programming interface
for a cloud-based mobile application. To evaluate the potentiality of this study,
as future work, it is intended to test the methodology proposed in classifying
other genetic syndromes, requiring an effort in gathering more samples of genetic
syndrome patients.

References

1. Cerrolaza, J.J., Porras, A.R., Mansoor, A., Zhao, Q., Summar, M., Linguraru,
M.G.: Identification of dysmorphic syndromes using landmark-specific local texture
descriptors. In: 2016 IEEE 13th International Symposium on Biomedical Imaging
(ISBI) (2016)

2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.-F.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248-255. IEEE, June 2009

3. Dima, V., Ignat, A., Rusu, C.: Identifying down syndrome cases by combined use
of face recognition methods. In: Balas, V.E., Jain, L.C., Balas, M.M. (eds.) SOFA
2016. AISC, vol. 634, pp. 472-482. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-62524-9_35

4. Ekure, E.N., Animashaun, A., Bastos, M., Ezeaka, V.C.: Congenital heart diseases
associated with identified syndromes and other extra-cardiac congenital malforma-
tions in children in Lagos. West Afr. J. Med. 28(1), 33-37 (2009)

5. Goodfellow, 1., Bengio, Y., Courville, A.: Deep Learning. MIT Press, New York
(2016). http://www.deeplearningbook.org

6. Hindley, D., Medakkar, S.: Diagnosis of down’s syndrome in neonates. Arch. Dis.
Child. Fetal Neonatal Ed. 87(3), F220-1 (2002)


https://doi.org/10.1007/978-3-319-62524-9_35
https://doi.org/10.1007/978-3-319-62524-9_35
http://www.deeplearningbook.org

370

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

E. H. P. Pooch et al.

Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regres-
sion trees. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition
(2014)

King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10(Jul),
1755-1758 (2009)

. Ko, J.M.: Genetic syndromes associated with congenital heart disease. Korean

Circ. J. 45(5), 357-361 (2015)

Kruszka, P., et al.: Down syndrome in diverse populations. Am. J. Med. Genet. A
173(1), 42-53 (2017)

Kumov, V., Samorodov, A.: Recognition of genetic diseases based on combined fea-
ture extraction from 2D face images. In: 2020 26th Conference of Open Innovations
Association (FRUCT), pp. 1-7. IEEE (2020)

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278-2324 (1998)

LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.
com/exdb/mnist/

LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436444
(2015)

Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image
Anal. 42, 60-88 (2017)

LoBue, V., Thrasher, C.: The child affective facial expression (CAFE) set: validity
and reliability from untrained adults. Front. Psychol. 5, 1532 (2015)

Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Trans. Pattern
Anal. Mach. Intell. 24(7), 971-987 (2002)

Parenting: A special joy: babies with down syndrome galleries, Decem-
ber 2010. https://www.parenting.com/article/a-special-joy-babies-with-down-
syndrome-galleries

Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12(Oct), 2825-2830 (2011)

Sagonas, C., Antonakos, E., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces
in-the-wild challenge: database and results. Image Vis. Comput. 47, 3-18 (2016)
Sivakumar, S., Larkins, S.: Accuracy of clinical diagnosis in down’s syndrome.
Arch. Dis. Child. 89(7), 691 (2004)

Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact
of residual connections on learning. CoRR abs/1602.07261 (2016). http://arxiv.
org/abs/1602.07261

Zhao, Q., Rosenbaum, K., Okada, K., Zand, D.J., Sze, R., Summar, M., Linguraru,
M.G.: Automated down syndrome detection using facial photographs. In: 2013 35th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), pp. 3670-3673. IEEE (2013)


http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.parenting.com/article/a-special-joy-babies-with-down-syndrome-galleries
https://www.parenting.com/article/a-special-joy-babies-with-down-syndrome-galleries
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261

®

Check for
updates

Improving FIFA Player Agents
Decision-Making Architectures Based on
Convolutional Neural Networks Through

Evolutionary Techniques

Matheus Prado Prandini Faria!®™) | Rita Maria Silva Julia!,
and Lidia Bononi Paiva Tomaz?

1 Computer Science Department, Federal University of Uberlandia,
Uberlandia, Brazil
matheusprandini.96Qgmail.com, ritamariasilvajulia@gmail.com
2 Computer Science Department, Federal Institute of Tridngulo Mineiro,
Uberaba, Brazil
ldbononi@gmail.com

Abstract. Convolutional Neural Network (CNN) is a fundamental tool
in Deep Learning and Computer Vision due to its remarkable ability to
extract relevant characteristics from raw data, which has been allowing
significant advances in image classification tasks. One of the great chal-
lenges in using CNNss is to define an architecture that is suitable for the
problem for which they are being designed. Thus, there is a big effort in
many recent works to propose approaches to automatically define appro-
priate CNN architectures. Among them, the Convolutional Neural Net-
work designed by Genetic Algorithm (CNN-GA) method stands out. As
CNN-GA has only been validated in static scenarios involving image
classification data sets, the main contributions of the present paper are
the following: implementing an improved version of CNN-GA, named
as Minimum CNN-GA (MCNN-GA), that automatically defines CNN
architectures through a policy that minimizes the weigh vector dimen-
sions and the classification error rate of the CNNs; implementing a set of
imitation learning based agents that operate in a complex and dynamic
scenario of FIFA game exploring distinct raw image representations for
the environment at the input of CNNs designed according to the MCNN-
GA approach. The performance of these agents were evaluated through
their in-game score in tournaments against FIFA’s engine. The results
corroborate that the decision-making ability of such agents can be as
good as human ability.
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1 Introduction

Machine Learning (ML) has consolidated itself as one of the pillars for the
advancement of Artificial Intelligence (AI) due to its success in investigating
effective approaches to endow automatic agents with essential skills that make
them able to solve modern life problems with as much autonomy as possible
[20]. Among these problems, for example, autonomous systems, predictive sys-
tems, image recognition and digital games stand out [14]. In this way, ML allows
for the conception of agents able to automatically learn to make decisions from
experiences, instead of being previously programmed with built in knowledge to
do this. In order to have such skill, the agents must count on powerful tools and
adequate learning techniques that make them able to perceive the environment
and to reprogram their own decision-making modules, so as to be capable of
choosing actions that are compatible with such perception.

In this context, Deep Learning (DL) based agents highlight [12]. DL is an
approach in which the agents seize the world (or environment) through a hierar-
chy of concepts [5]. Particularly, the DL based Convolutional Neural Networks
(CNNs) - one of the key elements of Computer Vision (CV) - present excellent
level of performance in tasks involving visual data, especially in image classifi-
cation tasks [11,11]. That is why the CNNs have being very successfully used as
tools that endow the agents with the capacity of perceiving the environment in
which they operate and of acting according to this perception.

CV allows abstracting a high level of understanding from low-level informa-
tion commonly known as raw images or raw pixels. Due to its simplicity, low-level
information has been widely used to represent the environment in autonomous
agents (for example, the current screenshot in player agents). Further, it is very
suitable to be used as environment representation tool at the input of CNN-based
agents.

In terms of supervised learning, the CNNs can be trained from a set of labeled
instances so as to be apt to identify implicit behavior patterns in unknown
instances. Due to its high generalization capacity, the appropriate choice of the
CNN architecture depends on the characteristics of the task in which it will
perform. This architecture is composed of elements called network structure
hyperparameters, such as the number of layers and the number of neurons in
each layer.

Most of the state-of-the-art works involving the construction of remarkable
CNNs, such as AlexNet [11] and ResNet [6], relies on manually designed architec-
tures carried out by specialists who have excellent domain knowledge from both
this type of neural network and the problem investigated. In the context of digital
games, CNNs are popularly used as a decision-making module in player agents
both in the scenario of Imitation Learning (IL) [8] and Reinforcement Learning
(RL) [9]. In [4], two autonomous agents are implemented with the purpose to
replicate human behavior in the confrontation mode of the FIFA game. These
agents perceive the environment through raw images and their decision-making
modules are composed of CNNs trained by IL algorithms. It is important to
note that the CNNs architecture was derived from the one used in [7], which was
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manually designed for navigation tasks. As these navigation tasks have simpler
environment characteristics than the confrontation mode, the results presented
in [4] can be improved through the use of a more suitable architecture for this
problem. However, designing a new CNN manually from scratch can be a costly
task even for an expert. Thus, it would be interesting to automate this process
to build a more appropriate and efficient architecture.

Several proposals for automating the designing process of a CNN architec-
ture have been made in the literature, divided into two main categories: based
on evolutionary algorithms [13,18,23,24] and based on RL [1,25]. Among the
former approach, Convolutional Neural Network designed by Genetic Algorithm
(CNN-GA) highlights [23]. This method aims to evolve a population of CNN
architectures to find the best one for a given image data set in terms of accu-
racy. It is noteworthy here that CNN-GA was validated only in a static scenario
(evaluated on data sets), presenting a state-of-art performance in benchmark
image classification tasks.

Motivated by such facts, in this paper the authors extend the approaches
proposed in [23] and [4] by investigating an evolutionary approach based on
CNN-GA to design optimized architectures used as decision-making modules for
intelligent agents in the complex learning scenario of FIFA agents.

Thus, the main contributions here are: 1) Implementing a new version of
CNN-GA, named Minimum CNN-GA (MCNN-GA), which improves the former
with a new fitness function that combines the number of parameters (size of
weights vector) and the classification error of a CNN architecture. In this sense,
the term “Minimum” is due to the fact of minimizing the number of parameters
of a CNN; 2) Proposing a set of IL-based FIFA agents whose decision-making
architecture is automatically designed by MCNN-GA exploring two distinct raw
images environment representations (with and without color information). These
agents were evaluated in terms of in-game score playing against FIFA’s engine
on confrontation mode. The results showed the great potential that MCNN-GA
has in building appropriate CNN architectures significantly lighter than those
used in the agents developed in [4] (manually designed architectures).

The next sections are structured as following: Sect. 2 resumes the background;
Sects. 3 and 4 describes, respectively, the MCNN-GA method and the player
agents proposed in this paper; Sect. 5 presents the experiments and results;
finally, Sect. 6 shows the conclusions and the future works.

2 Background

In neural networks projects (covering CNNs), one of the most important tasks
is the definition of their architectures (for example, hyperparameters such as
the number of layers and the number of neurons in each one). Thus, due to the
huge number of possible combinations (large search space), the task of defining
a good architecture manually is very costly. In this sense, recent works automate
this process to build optimized architectures for a specific task, highlighting [23].
The mentioned work proposes the CNN-GA method that evolves a population
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of CNN architectures through genetic algorithm aiming to find the one with the
best accuracy in an image classification task. It is noteworthy that CNN-GA
obtained significant results in well-known benchmark image data sets, such as
CIFAR-10 and CIFAR-100 [10]. As shown in Table 1, the present paper propose a
new version named MCNN-GA that extends CNN-GA concerning the individual
encoding and evaluation, limiting the size of an individual’s architecture (in
terms of blocks, which are composed of one or more layers) and developing a
new fitness function that combines the classification error and the number of
parameters (size of weights vector) of the CNN architecture. Besides, this new
version uses the Stratified K-fold cross-validation [19] training strategy to better
explore the distribution of the data increasing the probability of finding a higher
quality decision-making CNN. Such a training strategy was adopted since it
allows small data sets to be more appropriately exploited by the evolutionary
method than Holdout [21] (originally used in CNN-GA). All the characteristics
exposed in the referred table will be detailed in Sect. 3.

Table 1. Parallel between CNN-GA [23] and MCNN-GA

Approach

CNN-GA [23]

MCNN-GA

Individual encoding

Unlimited size

Limited size (maximum 10

blocks)

Blocks type

Skip and Pooling

Skip and Pooling

Fitness function

Maximize Accuracy

Minimize classification error
and number of parameters

Training strategy

Holdout

Stratified K-fold
cross-validation

Parent selection

Binary tournament

Binary tournament

Crossover One-point One-point

Mutation Add, remove or Add, remove or modify a
modify a block block

Environmental Binary tournament | Binary tournament + Elitism

selection + Elitism

Experiments Image classification | Dynamic Scenario of FIFA

application data sets game

CNNs are commonly used in the context of player agents in both the IL
and RL approaches, for example in [2,7,17]. In particular, [4] presents an inves-
tigation of two IL algorithms, named Direct Imitation (DI) and Deep Active
Imitation (DAI), in confrontation mode of FIFA game. IL consists of a super-
vised DL training strategy where the agents learn by replicating human experts’
behavior from demonstrations [8]. DI is one of the most trivial methods from IL
approach aiming to produce a policy that maps observations to actions directly
[15]. DAT extends DI through the use of active learning to improve the general-
ization of the policy obtained with the latter method [7]. So, [4] implemented two
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IL-based agents (built according to DI and DAT) whose decision-making modules
are composed of CNNs that process the current frame of the game. Both agents
were evaluated according to the environment representation based on raw image
without color information. As a result, the DAI-based agent obtained the best
performance performing reasonably well compared to the human player used as
a supervisor. It is important to note that the CNNs were retrieved from [7],
which were manually designed for navigation tasks. In this way, the presented
paper extends [4] improving the decision-making module with optimized CNNs
architectures and investigating the behavior of IL-based agents with colored raw
images environment representation, as shown in Table 2.

Table 2. Parallel between [4] and the present approach

Approach

[4]

Present paper

Learning strategy

IL based methods

IL based methods

Environment
Representations

Grayscaled raw
images

IL Grayscaled and colored
raw images

CNNs5s design

Manually designed
retrieved from [7]

Automatically designed
through MCNN-GA

Experiments
application

Confrontation mode

Confrontation mode

The FIFA game scenario named confrontation mode explores the situation
involving two soccer players in yellow uniform controlled by an agent (human or
autonomous) against two players in orange uniform manipulated by the game

itself (FIFA’s engine), as illustrated in Fig. 1.

Fig. 1. Confrontation mode (Color figure online)
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In this context, the agent’s performance is measured by the in-game score.
If the agent scores a goal, the in-game score increases by 1000 points. If FIFA’s
engine scores a goal, the in-game score decreases by 100 points. Thus, the objec-
tive is to achieve the highest possible in-game score within 45s (duration of a
game). It is necessary to emphasize that this scenario provides an excellent case
study due to its properties (dynamic, multi-agent, unknown and stochastic [20]),
which are major challenges in the learning process of a player agent.

3 MCNN-GA

This section presents the first contribution of the present paper: the implemen-
tation of MCNN-GA and its differences from GA-CNN. Algorithm 1 displays the
structure of both methods. Basically, they try to find the best CNN architec-
ture to classify an image classification data set through an evolutionary process
consisting of the following steps: 1) Initialization of an arbitrary population; 2)
Evaluation of individuals’ fitness; 3) Generation of the offspring (new individu-
als); 4) Environmental selection.

Algorithm 1. Structure of CNN-GA and MCNN-GA

Input: size of the population N, number of generations T, the image data set for
classification task.

Output: best CNN architecture.

1: Py < Initialize a population with size N (Step 1)

2:t—0

3: whilet < T do

4:  Evaluate the fitness of each individual in P; (Step 2)

5. Q¢ <« Offspring generated by Crossover operation among the selected parent
individuals (Step 3)

6:  Pi41 < Environmental selection of P;|JQ: (Step 4)

7 t—t+1

8: end while

9: return Individual with the best fitness in P;.

3.1 Step 1: Initializing Population

In this step, a population of predefined size individuals corresponding to CNN
architectures is randomly initialized. Their architectures are made up of two
distinct types of blocks: Skip and Pooling. The Skip block, inspired by the con-
struction of the residual blocks (initially proposed in ResNet [6]), consists of two
or three convolutional layers and a skip connection [23]. Table 3 presents the
configuration used in the implementation of the Skip block. Note that the Filter
Size, Stride and Padding hyperparameters are represented by constant values
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(retrieved from CNN-GA), while Number of Filters is the only one taken into

account in the evolutionary process (F1 and F2). In the case of the present work,
it can assume the following values: 8, 16, 32 or 64.

Table 3. Skip block hyperparameters configuration

Number of filters | Filter size | Stride | Padding
convl | F1 3 x3 1 x1 |same
conv2 | F2 3 x3 1 x1 | same
conv3 | F2 1x1 1 x1 |same

The Pooling block used in MCNN-GA has the Filter Size and Stride hyper-
parameters values equal to 2 x 2 (retrieved from CNN-GA). Thus, the only
hyperparameter taken into account in the encoding process is the pooling oper-
ation type (P1). Such an operation can take one of the following values: max
pooling or average pooling.

It is important to highlight that a great difference between MCNN-GA and
CNN-GA is that, in the former, an individual is composed of a maximum of ten
blocks, while there is no limit regarding the size of the architecture in the latter.
The main reasons that justify this choice made by the present paper are: 1) the
best architectures and, consequently, the best solutions found by CNN-GA in [23]
had a maximum of nine blocks in their architectures; 2) ease of implementing
a fitness function based on the number of parameters, since it is possible to
compute the largest possible number of parameters a CNN architecture can
assume based on the Skip and Pooling blocks configurations aforementioned; 3)
execution time is a great weakness of evolutionary methods. Thus, limiting the
maximum size of an individual is a way to speed up the execution of MCNN-GA.

3.2 Step 2: Evaluating Individuals

Algorithm 2 presents the process of evaluating individuals in a population. For
each individual, two phases are performed: 1) CNN architecture decoding process
(line 2); 2) Evaluation of its performance (lines 3 to 18).

In the first phase, the CNN architecture of the individual p is decoded (line
2). Throughout this process, the batch normalization operation followed by the
ReLu activation function is added to the output of each convolutional layer in
the Skip blocks, as done in CNN-GA. After this whole process, a fully connected
layer - representing the output layer implemented with the Softmaz activation
function - is added to the end of such an architecture. The number of classes is
determined by the problem addressed.

The second phase begins with the creation of the partitions used for train-
ing and testing the neural network using the stratified k-fold cross-validation
method with K equal to five (line 3). In this way, it is guaranteed that the
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Algorithm 2. Individuals evaluation

Input: Current Population P;, image data set, MAX_PARAM.
Output: Population P, evaluated.

1: for each individual p in P; do

2: p.CNN < CNN architecture decoding in p

3 partitions «— Stratified k-fold cross-validation (K = 5)

4: accuracy-sum «— 0

5:  for each iteration i in partitions do

6: Initializing p. CNN with random parameters (weights vector)
7 Training p. CNN with training data

8 accuracy; < evaluating p.CNN with test data

9: ACCUTACY-SUM <— ACCUTACY-SUM + ACCUracy;

10:  end for

11:  dimension < total number of parameters in p. CNN
12:  dimension_fitness < dimension | MAX_PARAM
13: accuracy-average — accuracy-sum | K

14: error_fitness < 1 — accuracy-average

15:  p.fitness < dimension_fitness + error_fitness

16: end for

17: return P;

architecture will be evaluated once with all the examples from the data set pro-
vided. Besides, the variable accuracy_sum (representing the sum of the accuracy
obtained for each combination of partitions) is initialized equal to zero (line 4).
For each iteration performed on partitions, the architecture is initialized with
random parameters (line 6), trained with the training partitions for ten epochs
and Categorical Cross Entropy loss function (line 7) and evaluated with the test
partition (line 8). This evaluation generates a measure called accuracy; (accuracy
referring to iteration ), which is added to accuracy_sum (line 11). Therefore,
the individual’s fitness is computed (lines 13 to 17).

The individual’s fitness (line 18) corresponds to a linear combination between
two terms defined in Eq. 1. T'A; represents the fitness related to number of
parameters of the architecture. T' A, represents the performance of the architec-
ture based on the classification error. Thus, F' (fitness function) is a minimization
problem in relation to T'A; and T As, which are described below.

F =min(TA1) +min(TAs) = min(TA; +TAs) (1)

— T Aj: the total number of parameters that make up the individual’s archi-
tecture is set to dimension (line 13). Then, T' Ay (dimension_fitness) is
defined based on the division of dimension by MAX_PARAM (line 14).
MAX_PARAM 1is a constant value that represents the maximum number
of parameters that a CNN architecture can have in the worst case (ten Skip
Blocks with F} and F5 equal to 64, corresponding to 3.474.500 parameters).
Thus, T'Aq is better the smaller the dimension of an architecture.
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— T As: the average accuracy obtained in partitions is calculated from accu-
racy-sum and K (number of partitions) and set to accuracy-average (line
15). Then, T' Az (fitness_error) is defined based on the calculation of the aver-
age classification error (1 - accuracy-average) (line 16). Thus, T'As is better
the smaller the error (a small error means the architecture has an excellent
ability to deal with the data of the set provided).

3.3 Step 3: Generating the Offspring

The process of generating individual children consists of two phases: 1) par-
ent individuals selection and execution of the crossover operation; 2) mutation
operation executed on generated children individuals.

The first phase is performed using binary tournament [16] to select parent
individuals and applying the one-point crossover operation [22] over each pair
of selected parents to generate the offspring. The second phase can mutate the
children through the following operations (as described in [23]): 1) Add a Skip
block randomly; 2) Add a Pooling block randomly; 3) Remove a block ran-
domly; 4) Modify a block configuration (hyperparameters) randomly. Finally, it
is noteworthy here that the children are also limited to the number of ten blocks
(excluding the output layer) in order to maintain the algorithm consistency.

3.4 Step 4: Environmental Selection

This process is carried out by combining the binary tournament and an elitist
strategy. The best individual is automatically placed in the next population and
the others are selected through binary tournament.

4 Implementation of the IL-Based Agents for FIFA

This section presents the second contribution of this paper: development of IL-
based agents through distinct raw images environment representations and dis-
tinct ways of defining the CNN architecture. Such agents consist on two CNNs
- named as Movement CNN and Control CNN - as defined in [4]. The former
is responsible for the movement actions: Go Left, Go Down, Go Right and Go
Up (named movement actions). and the latter controls the interactions involv-
ing the agent, the ball and the opponents: Defending, Passing, Kicking and No
Action (named control actions). Table 4 summarizes the main characteristics of
the agents proposed here.

Table 4. IL-based agents implemented for confrontation mode

Agent Environment representation | CNN design
DI-Agent | Variable Variable
DAI-Agent | Variable Automatic
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These agents present the following variations in relation to the environment
representation and the CNNs designing process:

— DI-Agent with Grayscaled Images and Manual.

— DI-Agent with Colored Images and Manual.

— DI-Agent with Grayscaled Images and Automatic.
— DI-Agent with Colored Images and Automatic.

— DAI-Agent with Grayscaled Images and Automatic.
— DAI-Agent with Colored Images and Automatic.

The environment representation corresponds to the current frame of size
120 x 90. Grayscaled Images represents raw images without color informa-
tion (that is, the current frame is a 120 x 90 x 1 matrix) and Colored Images
represents raw images with color information (that is, the current frame is a
120 x 90 x 3 matrix). The CNN architecture can be manually designed
(Manual), retrieved by the one used in [4] (composed of three Convolutional
layer and Pooling layer pairs and two fully connected layers), or automatically
designed through the M-CCN-GA method (Automatic).

It should be noted that DI-Agent takes into account demonstrations related
to 100 games, producing a set of movement actions and control actions composed
of 18000 and 3000 examples respectively. Both sets are balanced in the number of
classes. The demonstrations were ret