
30 Years of Simulation-Based
Quantitative Analysis Tools:

A Comparison Experiment Between
Möbius and Uppaal SMC

Davide Basile1(B) , Maurice H. ter Beek1(B) , Felicita Di Giandomenico1 ,
Alessandro Fantechi1,2 , Stefania Gnesi1 , and Giorgio O. Spagnolo1

1 ISTI–CNR, Pisa, Italy
{basile,terbeek,digiandomenico,fantechi,gnesi,spagnolo}@isti.cnr.it

2 University of Florence, Florence, Italy

Abstract. We provide a brief comparison of the modelling and analysis
capabilities of two different formalisms and their associated simulation-
based tools, acquired from experimenting with these methods and tools
on one specific case study. The case study is a cyber-physical system from
an industrial railway project, namely a railroad switch heater, and the
quantitative properties concern energy consumption and reliability. We
modelled and analysed the case study with stochastic activity networks
and Möbius on the one hand and with stochastic hybrid automata and
Uppaal SMC on the other hand. We give an overview of the performed
experiments and highlight specific features of the two methodologies.
This yields some pointers for future research and improvements.

1 Introduction

Industrial critical, cyber-physical systems typically need to satisfy a number of
quantitative properties. The formal modelling and efficient analysis of such sys-
tems is challenging and has been extensively studied recently. Indeed, simulation-
based analysis techniques and tools have been used for decades to perform
quantitative analysis, well before the NSF workshop on cyber-physical systems
in October 2006 made them fashionable. In particular, stochastic model-based
analysis has a longstanding and rich history in Mathematics, well preceding
Computer Science as a discipline [4,29]. Statistical Model Checking (SMC) may
be traced back to hypothesis testing in the context of probabilistic bisimula-
tion [1,21], but the notion has become popular during the last two decades as
a result of Younes’s Ph.D. thesis [22,34,35]. Tools that support SMC are more
recent [1]. For instance, the first version of Uppaal SMC [17] was released in 2014.
The stochastic analysis tool Möbius [15] can be traced back much further, to its
predecessors UltraSAN [16,32] and MetaSAN [33]. The latter offer analysis tech-
niques for performability models based on stochastic activity networks (SAN),
which are a generalization of stochastic Petri nets [2], which are considered to
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 368–384, 2020.
https://doi.org/10.1007/978-3-030-61362-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_21&domain=pdf
http://orcid.org/0000-0002-7196-6609
http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0002-8760-7299
http://orcid.org/0000-0002-4648-4667
http://orcid.org/0000-0002-0139-0421
http://orcid.org/0000-0002-7771-0882
https://doi.org/10.1007/978-3-030-61362-4_21

30 Years of Simulation-Based Quantitative Analysis Tools 369

mark the starting point of cross-fertilization between the fields of performance
evaluation and formal verification [4].

In this paper, we continue this cross-fertilization by providing a brief com-
parison of some of the modelling and analysis capabilities of Möbius and Uppaal
SMC, their two different modelling formalisms and their simulation-based quan-
titative analysis techniques, acquired by experimenting with these methods and
tools on one and the same case study. The case study is a cyber-physical system
from the railway domain, namely a railroad switch heater, and the quantitative
properties concern energy consumption and reliability. This case study comes
from our industrial partners in STINGRAY (SmarT station INtelliGent RAil-
waY), a project funded by the Tuscany region, which advocates the study of
energy-saving algorithms in the railway domain. The models and analyses with
stochastic activity networks (SAN) and Möbius have originally been presented
in [5], while those with stochastic hybrid automata (SHA) and Uppaal SMC
have originally been presented in [9].

The agenda of compared features ranges from modelling features (e.g. com-
munication primitives and delay distributions) to properties specification (e.g.
measures of interest) and experiments and presentation of results (e.g. exper-
iment parameter setup), cf. the leftmost column of Table 1 in Sect. 5. While
most of the findings of our comparison are likely well known by the communi-
ties around Möbius and Uppaal SMC, this might be less so for someone who
is facing her first attempt at modelling a real-time system with the aim of per-
forming quantitative analyses. Our comparison can help such user evaluate which
method and tool better fits her specific needs, or at least make her aware of pos-
sible limitations and specificities of the chosen methodology. Furthermore, we
conclude our comparison by providing some possible pointers to future research
and improvements, from the point of view of usability, for both methodologies.

Finally, our approach to model and analyse one and the same case study
with two different formalisms and their associated tools also responds to the
call for formal methods diversity in the railway sector as put forward in [27,28].
This call, inspired by code/design diversity [24], is based on the assumption that
the application of different, non-certified analysis tools on a replication of the
same design may increase confidence in the correctness of the analysis results.
We believe this to be a useful concept.

Outline. After this Introduction, we provide a short description of the case study
and its context in Sect. 2. In Sect. 3, we briefly describe the two tools, followed
by a description of the models and experiments that our comparison is based
on in Sect. 4. The main contribution of our paper is presented in Sect. 5, where
we present a detailed comparison of a number of specific features of the two
methodologies, concluded by some pointers to possible improvements for the
future. Section 6, finally, wraps up the paper.

370 D. Basile et al.

2 Context of the Case Study

In this section, we provide a brief description of the case study and project where
it originates from. Traditionally, railway stations have a private energy distribu-
tion and communication system. The main reasons for this are to ensure unin-
terrupted power supply and security, but this isolation has two main drawbacks.
First, it prohibits integration with ‘smart cities’, in which, ideally, information
between different transport systems (i.e. bike sharing, car sharing, urban trans-
port, etc.) is synergically exploited. Second, the station system fails to benefit
from modern energy-saving techniques.

The project STINGRAY (SmarT station INtelliGent RAilwaY), funded by
the Tuscany region, aims to enhance the integration of railway stations into smart
cities of the future as well as to study advanced energy-saving techniques. To this
aim, the design and development of a station communication infrastructure is
studied, integrating powerline and wireless technologies. Powerlines are utilised
to enable a more efficient management of machinery and energetic resources.
The goals of the project are:

– to realise a LAN over the station plants using power line and wireless tech-
nologies;

– to allow the control and monitoring of station equipment via Supervisory
Control And Data Acquisition (SCADA), and in particular railroad switch
heaters as studied in this paper;

– to create value-added services for both customers and railway staff, such as
connectivity, monitoring fault prediction service (FPS), video surveillance,
environmental surveying and integration and access to so-called smart city
infomobility services; in particular the energy management service (EMS) is
addressed;

– to optimise existing strategies for managing energy consumption within the
station, to avoid wasting energy.

The case studies of STINGRAY provided by the industrial partners from the
railway domain are station lighting and the heating of the railroad switches in
ice conditions (cf. Fig. 1). In this paper, we address the latter case study.

Railroad switch heaters assure correct working of switches in case of ice and
snow through a central control unit in charge of managing policies of energy con-
sumption while satisfying reliability constraints. Although apparently a rather
focused system, with restricted functionalities, it represents very well the pecu-
liarities of a cyber-physical system: physical components (the heater), cyber
components (the heating policies and the related coordinator), stochastic aspects
(failure events and weather forecasts), and logical/physical dependencies.

3 Description of the Tools

Before providing the models, we briefly describe Möbius and Uppaal SMC.

30 Years of Simulation-Based Quantitative Analysis Tools 371

Fig. 1. Gas heating keeping a railroad switch free from snow and ice (Di Fabian Grun-
der (FabiBerg) – Opera propria, CC BY-SA 3.0, https://commons.wikimedia.org/w/
index.php?curid=641923)

3.1 Möbius

Möbius [15] offers a distributed discrete-event simulator, and, for Markovian
models, explicit state-space generators and numerical solution algorithms. It is
possible to analyse both transient and steady-state reward models. Möbius sup-
ports different formalisms, among which the aforementioned SAN, and models
specified in different formalisms can be composed in different ways. Reward mod-
els are used to define the measures under analysis. A SAN is composed of the
following primitives: places, activities, input gates, and output gates. Places and
activities have the same interpretation as places and transitions in Petri nets [30].
Input gates control the enabling conditions of an activity and define the change
of marking when an activity completes. Output gates define the change of mark-
ing upon completion of the activity. Activities can be of two types: instantaneous
or timed. Instantaneous activities complete once the enabling conditions are sat-
isfied. Timed activities take an amount of time to complete, following a temporal
stochastic distribution function which can be, e.g., exponential or deterministic.
Cases are associated to activities, and are used to represent probabilistic uncer-
tainty about the action taken upon completion of the activity. Primitives of the
SAN models are defined using C++ code.

3.2 Uppaal SMC

Statistical Model Checking (SMC) concerns running a sufficient number of (prob-
abilistically distributed) simulations of a system model to obtain statistical

https://commons.wikimedia.org/w/index.php?curid=641923
https://commons.wikimedia.org/w/index.php?curid=641923

372 D. Basile et al.

evidence (with a predefined level of statistical confidence) of the quantitative
properties to be checked [1,22]. Uppaal SMC [17] is an extension of Upp-
aal [11], a well-known toolbox for the verification of real-time systems mod-
elled by (extended) timed automata. Timed automata are finite-state automata
enhanced with real-time modelling through clock variables; their stochastic
extension replaces non-determinism with probabilistic choice and time delays
with probability distributions (uniform for bounded time and exponential for
unbounded time). These automata may communicate via (broadcast) channels
and shared variables. The resulting stochastic hybrid automata (SHA) form the
input models of Uppaal SMC. Uppaal SMC allows to check (quantitative)
properties over simulation runs of an Uppaal SMC model (i.e. a network of
SHA). These properties must be expressed in a dialect [12] of the Metric Inter-
val Temporal Logic (MITL) [3].

4 Models and Experiments

To contextualize the comparison between the two methodologies, in this section
we briefly describe the models and experiments performed in [5,9].

Although the modeling studies on the railroad switch heating system have
since been further extended to focus on other aspects (mainly, to account for
more sophisticated weather dynamics and representation, e.g. in [14]), these only
exploited the SAN formalism and Möbius. Hence for our comparison experiment
the two works mentioned in the beginning of this section are the most suitable.

4.1 Modelling Approaches

The aforementioned energy-saving policies for railroad switch heaters are based
on dynamic power management, according to which energy is turned on and
off based on predefined temperature thresholds. Moreover, the system can be
constrained to not exceed a given maximum amount of power. This is especially
useful in case of degraded operational modes which forbid to exceed a certain
amount of power. In particular, once the system temperature falls below a tem-
perature warning threshold (Twa), the heating needs to be activated, otherwise
the associated switch fails. Once the temperature rises and reaches the working
threshold (Two), the heating system can be safely turned off.

The models (in both tools) are parameterized based on these two temperature
thresholds Twa and Two, and on NHmax, which is the maximum power that the
system can provide at every instant of time, expressed as the percentage of
heaters that can be turned on at the same time.

The continuous physical behaviour concerning the increment and decrement
of the temperature of the railroad track when the heater is turned on or off,
respectively, is modelled by an ordinary differential equation (ODE) representing
the balance of energy.

When the temperature of the railroad track is below the freezing threshold
(i.e. 0 ◦C in the performed experiments), a switch may experience a failure. In

30 Years of Simulation-Based Quantitative Analysis Tools 373

init

clock

heater

Fig. 2. The SAN model RailRoadSwitchHeater from [5]

this case, the time-to-failure is modelled with an exponential distribution with
fixed rate, which is based on the temperature of the railroad track. This rate is
an input parameter.

To model the external weather conditions, the model takes as input data
structures containing profiles of average temperatures in those days for which the
analysis is relevant (e.g. winter days). Different daily weather profiles retrieved
from the Internet are used in the performed experiments. The time window under
analysis is divided into intervals to which an average reference temperature is
assigned.

The two main logical components describing the discrete cyber part of the
analysed system are the heater and the central coordinator. The overall model is
then composed of n heaters and the coordinator. The heater model implements
the policy for activating and deactivating the heating phase. The central coor-
dinator manages the activation and deactivation of each heater, by interacting
with the network of heaters, to notify the activation or deactivation, respec-
tively, of a heater, according to a specific communication protocol designed by
the authors.

SAN Model. We first describe the SAN model of the railroad switch heating
system, built with the functionalities provided by Möbius.

The main SAN model concerning the railroad switch heater is depicted in
Fig. 2, reproduced from [5]. It is partitioned into three logical components: the
init subnet, the clock subnet, and the heater subnet.

The init subnet initialises the data structures used by the SAN model. The
clock subnet models the evolution of time (during one day in our analysis) and
it is used to update the environment temperature and the temperature of the
railroad track. In [5], we considered as unit of time one hour. The activity Clock

374 D. Basile et al.

Fig. 3. SHA H from [9], modelling an instance of a railroad switch heater

has a deterministic distribution of time (non-Markovian) and completes each
hour. When Clock completes, the place Temperature is updated: if the heater
is turned on then the temperature increases, otherwise the temperature will be
updated according to the temperature of the environment. Indeed, the time-step
has been discretized to account for the temperature profile windows.

The heater subnet represents the status of the railroad switch heater. The
heater subnet interacts with a SAN model Coordinator (not depicted here)
through places that are shared among all the replicas of the heater model and
the coordinator model.

The function representing the heating exchange is defined in C++, and it is
called by the output gate O1 clock shown in Fig. 2 to update the temperature of
the railroad each interval of time t. The activity TA failure models the failure
of a heater. It has an exponential distribution of time based on the temperature
of the railroad track: the more the temperature is below the freezing threshold
the more likely the activity will fire, according to the rate of the distribution
which is an input parameter of the model.

The SAN model Coordinator represents the central management unit and it
interacts with all heaters in the network by activating, deactivating, or moving
them into a waiting state.

SHA Model. Next we describe the SHA model of the railroad switch heating
system, built with the functionalities provided by Uppaal SMC. SHA allow to
capture discrete, continuous, and stochastic aspects in a single framework. We
briefly outline the formalisation of the system of (remotely controlled) railroad
switch heaters as a product of SHA.

The ODE is expressed in the SHA model H in Fig. 3, where the temperature
T is a continuous clock and the flow function F (i.e. the ODE) is similar in
different states. Indeed, when H is in state on, F adds the term Q (i.e. power),
which does not occur in states off and ready.

30 Years of Simulation-Based Quantitative Analysis Tools 375

Fig. 4. SHA K from [9], modelling the coordinator

The two main logical components describing the discrete cyber part of the
analysed system are the heater H and the central coordinator K, depicted in
Figs. 3 and 4, respectively, both reproduced from [9]. The network composed of
n heaters and the coordinator is realised by the product of K and the replicas of
the SHA Hid, id ∈ 1, . . . , n, where each heater is uniquely identified by its id,
i.e. (

⊗
id∈1,...,n Hid) ⊗ K.

The SHA heater model depicted in Fig. 3 implements the policy for activating
and deactivating the heating phase, similarly to the SAN heater model depicted
in Fig. 2. In particular, the dotted transitions are urgent (i.e. instantaneous)
probabilistic transitions used for selecting one of the available weather profiles.
The main states are on, off, ready, and fail, which correspond to the places of
the SAN model RailRoadSwitchHeater. Note that each state has an inner cycle
modelling the decrease and increase of the internal temperature according to
the flow function, and that both incoming transitions to state fail have an
exponential distribution of time, whose rates are input parameters to fine tune
the model. During a simulation, the current time is stored in the clock x and
a variable hour stores the current hour. The function Te(), used in the flow
function of T, selects the actual external temperature based on the current hour,
and it is implemented in Uppaal.

The SHA model depicted in Fig. 4 implements the coordinator model. Its
behaviour is similar to that of the SAN model Coordinator mentioned above.
The queue of pending heaters is modelled with the array queue[] of length
equal to NHmax, and the functions enqueue(int id) and dequeue() are used
for inserting and removing elements, while empty() returns true if the queue of
pending heaters is empty.

The coordinator sends messages to the network of heaters through two arrays
of channels, NI[id] and NO[id], both indexed by the identifiers of the heaters,
to notify the activation and deactivation, respectively, of a heater. Note that
Uppaal SMC only allows broadcast channels, hence an array of channels has been
adopted in order to implement one-to-one communications. Following the de
facto standard notation in component-based systems, sending a message through
a channel a is denoted as a!, while reading is denoted as a?. Upon reception of

376 D. Basile et al.

the notification NI[id]?, the heater with identifier id switches from state ready
to state on.

The heaters communicate to the coordinator their transition from off to
ready through the channel ins, asking to be activated, and their transition
from on to off through the channel rem; both channels are many-to-one. All
channels are urgent : no delay will occur in case a synchronisation is available.

While the coordinator is in a busy state, a shared variable lock is used as
a semaphore to prevent a heater from sending messages that cannot be elabo-
rated, and it is used by the heaters for communicating their identifiers to the
coordinator.

4.2 Quantitative Analyses

The conducted analyses focussed on reliability as well as energy consumption
indicators. More precisely, the two measures of interest concerning energy con-
sumption and reliability of the system under analysis were defined as follows.

1. The time (in hours) a generic heater is activated in a specific time interval. By
multiplying such measurement for the power consumed (kilowatt per hour),
it is possible to derive the energy consumed by the system.

2. The probability that a generic switch fails (becomes frozen). Reliability is
computed as the probability that no failure occurs in the interval of time
under analysis.

In Möbius, reward structures were used for evaluating the measures of inter-
est, while in Uppaal SMC they were defined as formulae in the aforementioned
MITL [3], which are enriched with quantification operators on the replicated
models and expected values.

First consider the SAN model. The first measure of interest was computed
as the sum of the time that each heater model spends in markings encoding
its operative state, that is the time that each heater is activated. The second
measure of interest, the probability of failure, instead was computed as the prob-
ability that there is one token in the place encoding a failure state in the heater
model at the end of the experiment.

Next consider the SHA model. In Uppaal SMC, a discrete clock energy was
used to count the hours each heater is activated. For the first measure of interest,
the energy consumption, the number of hours in which the heaters are active
was estimated as the formula:

E[<= 24; 10000] (max :
∑

i:idt

Hi.energy)

In this formula, E stands for the expected value, 24 is the considered interval of
time (24 h) and 10000 is the number of simulations executed by the tool. The
overall energy consumption is the sum for all Hi of all clocks energy.

The second measure of interest, the probability of failure, was instead esti-
mated by Uppaal SMC through the formula:

P(♦h≤24∃(i : idt)(Hi.fail))

30 Years of Simulation-Based Quantitative Analysis Tools 377

This formula evaluates the probability that in the interval [t, t + l] (24h) there
exists at least a switch Hi in the network which has failed, i.e. Hi is in state fail.

Experiments conducted on a system of 10 switches, grouped according to
their priority, confirmed that both modelling and analysis methodologies, i.e.
SAN and Möbius on the one hand and SHA and Uppaal SMC on the other
hand, are suitable to address the analyses. Results were aligned in spite of some
differences in the models, thus also serving as mutual cross-validation, as advo-
cated by formal methods diversity (cf. Introduction).

As expected, the analyses confirmed how energy consumption and reliability
are contrasting requirements: by reducing the energy consumption the overall
system reliability decreases. However, experiments made it possible to find a
parameter setup that represents the best compromise between these two mea-
sures. Of course, the nature of the adopted approaches did generate differences
in the evaluation experience, as discussed in the next section.

5 Comparison

In this section, we present the main contribution of our paper, in the form
of a number of considerations subjective to our experiences with applying the
two methodologies to the above mentioned case study. Our aim is merely to
highlight some specific features that the two methodologies offer, to be used
by potential modellers in deciding which one better suits their need for the
particular case study at hand. In addition, we underline that the comparison
carried out touches only those functionalities of the two modeling and evaluation
environments that were involved given the needs of the case study under analysis.
Therefore, we cannot claim that we exhaustively considered all features, and
consequently our goal is by no means to pronounce a definitive verdict concerning
the methodologies’ suitability, let alone quality. Generally speaking, we note
that Möbius is a mature tool that has been widely adopted in the evaluation of
performance and dependability aspects of real-world systems, while Uppaal is a
mature tool oriented to the quantitative verification of properties of real-time
systems of which Uppaal SMC is a recent, as yet less mature extension.

Our comparison should be seen in the light of a recent study, reported in [10],
of the outcomes of three questionnaires on the adoption of formal methods and
tools in the railway domain, which were performed within three different projects
of the EU Shift2Rail innovation programme (cf. https://shift2rail.org/). As part
of an analysis of the respondents’ expectations on tools, the paper reports that
the most relevant functionalities are formal verification and support for formal
modelling, followed by traceability, simulation, test and code generation. Instead,
the most relevant quality features are related to the maturity, usability, and
learnability of the tools.

Our comparison addresses the following three groups of features (summarised
in the leftmost column of Table 1 below) in the next three sections.

Modelling Features: these concern the composition of, and interactions
between, different models (i.e. heterogeneous formalisms, replicated models,

https://shift2rail.org/

378 D. Basile et al.

dynamic process instantiation, communication primitives) and the ability
towards modelling hybrid and stochastic systems (i.e. delay distributions, hybrid
variables);
Properties Specification: these concern the definition of measures of interest
(i.e. measures of interest) and the ability to verify properties of the defined
models (i.e. property verification);
Experiments and Presentation of Results: these concern the setup and
execution of experiments, as well as data collection and plotting the results (i.e.
experiment parameter setup).

We note that, for this comparison experiment that is focused on usability
and expressiveness, we specifically consider whether features are primitively sup-
ported by the tool. Of course, for features that are not built-in, both tools may
rely on external software packages or libraries for accessing extended functionali-
ties at the cost of an extra modelling effort. In the end, we provide some pointers
to future research and improvements for both methodologies.

5.1 Modelling Features

Systems under analysis are often composed of different types of components, and
in general more components of the same type may be involved, as is the case for
the railroad switch heater system of our case study. Möbius allows to develop
a composite overall model where individual models can be replicated, joined,
and defined in different formalisms (e.g. Petri nets [30,31], PEPA [19], Fault
trees [23], etc.). However, replication operators treat models as anonymous, so
in case non-anonymous instantiations are required, as in our case study, a specific
mechanism to assign a unique identifier to each replica model needs to be added
to the model under development. Anticipating the discussion, we mention that
the replication operator in Möbius has recently been enhanced in efficiency [26],
thus alleviating to some extent the additional computational overhead required
by the mechanism to implement non-anonymity. Moreover, efficient solutions to
non-anonymous model replication have been also proposed (cf., e.g., [13,25]),
which resort to a script on top of primitive facilities provided by Möbius.

Similarly, Uppaal offers template models that can be replicated, but each
replica has its own built-in identifier. Identifiers can be used for quantifying
formulae, as we did for the measures of interest in our case study. It is also
possible to dynamically create new processes during a simulation, through a fork
primitive. Several instances of models can be joined through the composition
operator. Accordingly, when different formalisms are necessary for designing the
system under analysis and the replicas are anonymous, Möbius is more adequate.
If the replicas are instead non-anonymous, Möbius requires to distinguish them
through ad-hoc networks that result in a larger state space. Moreover, if the
system to be modelled comprehends the dynamic generation of new processes,
then this feature is primitively available in Uppaal, making it very suitable.

Concerning the interaction between different instances of models, in the SAN
models defined in Möbius communication is implemented through shared places

30 Years of Simulation-Based Quantitative Analysis Tools 379

(i.e. places where different networks can read/write). Indeed, through tokens in
different places it is possible to codify the identifiers of the interacting parties
and the messages sent. The SHA models defined in Uppaal SMC are endowed
with primitives for I/O communication, allowing to describe interactions among
entities in a high-level language. When modelling communication-based systems,
SHA models thus offer both I/O primitives at message level and shared variables,
while SAN models interact through shared places (acting as shared variables).
We note in passing that shared places/variables are part of the state space,
while synchronous messages may reduce the state space by avoiding interleavings
(e.g. places notifyIn and notifyOut in Fig. 2 are rendered as communication
channels NI and NO in Fig. 3).

Concerning modeling stochastic and hybrid Systems, both SAN and SHA
models are capable of describing probabilistic transitions and stochastic delays.
Through SAN models it is possible to describe Markovian and non-Markovian
models with several probability distributions for delays in firing a transition,
whereas only uniform and exponential distributions for delays are available for
SHA models. Therefore, in general, SAN models allow for a more accurate rep-
resentation of physical phenomena. Both formalisms can model instantaneous
transitions, which are called instantaneous activities in SAN models and urgent
transitions in SHA models.

SHA models allow to describe discrete and hybrid clocks for updating values
according to given ODE, whereas SAN models do not provide a built-in solver of
ODE. Instead, the equations have to be solved and implemented in, for example,
C++ functions or via calls to external solvers. The hybrid clocks are stored in
Uppaal SMC through double precision types, while Möbius provides extended
places for storing high precision values.

Hence, Uppaal SMC deals with hybrid systems by primitively supporting
ODE. Möbius, on the other hand, primitively allows to model several stochastic
distributions in SAN models.

5.2 Properties Specification

Concerning definition of measures of interest, in Möbius, measures of interest
(performance variables) on the composed model are defined through reward
models. A reward model defines the data that needs to be collected from the
model (using C++ code), through analytic solvers or simulations. Rate rewards
on the measures of interest specify whether the reward is collected based on the
marking of the SAN models or the firing of activities, and if it is collected at a
specific instant of time, over an interval of time, over a time-averaged interval
of time, or after the system reaches a steady state.

In Uppaal SMC, measures of interest are introduced by means of formulae
in a weighted extension of MITL [12]. The available evaluation methods are
probability estimation, hypothesis testing, and probability comparison. It is also
possible to perform simulations to monitor the values of interest. The possibility
of expressing measures of interest as formulae in a temporal logic has the advan-
tage that a precise formal semantics endows those measures. Moreover, it is

380 D. Basile et al.

possible to define fine-grained properties directly through the available temporal
operators. For example, the formula P(♦[0,24]∃(i : idt)(�[0,2]Hi.on)) evaluates
the probability that there exists, in the interval of 24 hours, a component Hi
(where i is its index) in state on, for at least 3 consecutive time units.

Uppaal offers high-level expressions for the formal definition of varieties of
indicators to be analysed, while Möbius typically requires to enrich the model
to properly account for sophisticated properties, such as the one described by
the temporal logic formula above (e.g., by adding ad-hoc places and transitions
to code the property to be analysed, thus resulting in a more complex model).
Continuing the example, an extra place should be added to Fig. 2 with a token
being added once the heater is on for more than 3 time units, and the reward
model should be based upon this extra place.

Concerning the verification of the models and performances, Uppaal provides
the possibility of verifying properties such as for example the absence of dead-
locks. It is also possible to perform trace analysis and simulation of the models
for debugging purposes, and in case a property is violated the tool reports the
trace which violates it as counterexample.

Möbius does not provide any built-in verification of properties expressed in
some kind of logic. The property must be encoded in a Markov Reward Model,
thus requiring more effort from the point of view of the user. However, it is
possible to perform LTL model checking on traces obtained from the logs of
the simulations in Möbius by means of external prototypical tools, such as for
example Traviando [20].

Summing up, Uppaal supports model checking of temporal logic formulae,
while Möbius offers a more prototypical trace-based analysis.

Finally, in relation to the specific experiments carried out in [5,9], Möbius
showed better performances than Uppaal SMC. This might be due to the fact
that Uppaal SMC solves the defined ODE during simulation and the number of
simulations is fixed. No general conclusions can be drawn from two experiments.

5.3 Experiments and Presentation of Results

The experiments in Möbius can be organised in batches, called studies. Each
study contains the parameter setup of the experiment (such as temperature
thresholds and energy available in our case), which can then be executed in
series or in parallel. This feature enhances efficiency, by allowing to perform all
required experiments in background. In Uppaal SMC, instead, the parameters
must be instantiated manually for each experiment to be evaluated.

The results of the experiments performed by Möbius are stored into tabular
data, ready to be analysed and plotted through a database (PostgreSQL) or
external tools. Uppaal provides built-in graphic visualisers of, for example, the
density and cumulative distribution of the evaluated property.

In the specific case study presented in this paper, Möbius proved effective
in dealing with several parameter setups and a large amount of resulting data
concerning the experiments. From the viewpoint of presentation of the results,
Uppaal automatically generates the visualisation of results while Möbius requires
a pre-processing phase.

30 Years of Simulation-Based Quantitative Analysis Tools 381

5.4 Discussion

The comparison performed in this section so far is summarised in Table 1, which
reflects one of the main contributions of this paper. In the remainder of this
section, we highlight some directions for future developments for both Möbius
and Uppaal SMC to address some of the points discussed so far.

Table 1. Comparison between SAN + Möbius and SHA + Uppaal SMC

Features SAN+Möbius SHA+Uppaal SMC

Measures of interest Reward Models MITL formulae

Experiments parameter setup Batches Single

Replicated models Anonymous Distinguished

Dynamic process instantiation Not available Available

Heterogeneous formalisms Available (SAN, PEPA, etc.) Not available (SHA)

Communication primitives Shared places Channels

Delay distributions Various distributions Exponential, Uniform

Hybrid variables No primitive support ODE solver available

Property verification Not available Temporal logics

Concerning SAN and Möbius, improvement of the anonymous replication
aspect appears to be a major advancement to pursue. Actually, this is already
ongoing activity (involving a subset of the authors), aiming at implementing the
principles at the basis of the replication mechanism defined in [13] as a native
Möbius operator.

A further interesting extension of Möbius, from the point of view of usability,
would be the automatic generation of plot graphs from predefined measures of
interest. Indeed, although Möbius is conceived as a meta-tool to be coupled
with a variety of other tools (including visual tools and other functionalities),
offering an internal visualization facility would be certainly appreciated by those
users that prefer to have all they need within the same working environment.
Motivated by the same reasoning, also a primitive support for ODE solving would
be a step towards making easier the modeling effort of cyber-physical systems,
without requiring the knowledge of software libraries tailored to specific needs.

Moving to SHA and Uppaal SMC, we note that the tool lacks the possibility
of organising experiments in batches, where each batch has a specific parameter
setup. In the current version, this has to be done manually or by means of exter-
nal scripts. An interesting facility from the point of view of usability would be
to equip the tool with the possibility to automatically execute batches of exper-
iments (and collect the results). The possibility to primitively express other
distribution delays (different from exponential distributions) would increase the
expressiveness of the SHA formalism. For example, the SAN model presented
previously discretises the time-steps by simply having a deterministic distri-
bution delay that fires each specific time unit. We note in passing that such

382 D. Basile et al.

behaviour (deterministic time) is typical of many real-time specifications, i.e.
interacting periodically with a fixed period. This behaviour can be obtained in
Uppaal by an encoding of an invariant on a state of the form x ≤ t and an
outgoing transition from that state of the form x ≥ t. This ensures that the
transition is fired exactly at time t. Note that in Uppaal invariants are defined
for each state individually. Making such behaviour primitively expressible in the
tool would improve its usability, as well as the readability of the models. Fur-
thermore, it would typically reduce the state space (in the above example, we
would need to instantiate a clock x and a parameter t).

Finally, we envisage that a formal mapping from SHA to SAN models would
pave the way for automatic replicas of analyses, thus increasing the confidence
in results and the soundness of the tools’ implementations. In [7], a subset of
the authors already provided a formal translation from contract automata [6]
to SAN. Contract automata are similar to the SHA formalism used in Uppaal,
and a timed extension also exists [8]. This former translation could be extended
to deal with stochastic delays (to be encoded in SAN activities) and real-time
clocks.

6 Conclusion

We have compared the modelling and analysis capabilities offered by SAN and
Möbius with those offered by SHA and Uppaal SMC. This comparison experi-
ment is based on modelling and analysing a single, small cyber-physical system
from an industrial railway project (cf. [18] for a judgement study involving Upp-
aal SMC and 8 other tools). We have provided an overview of the performed
experiments and based on those we have highlighted some specific features of
the two methodologies. This has resulted in a few pointers for future research
and improvements for both, to be considered during the next 30 years.

Acknowledgements. Supported by POR FESR 2014–2020 project STINGRAY
(SmarT station INtelliGent RAilwaY) and MIUR PRIN 2017FTXR7S project IT
MaTTerS (Methods and Tools for Trustworthy Smart Systems).

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6:1–6:39 (2018). https://doi.org/10.1145/3158668

2. Ajmone Marsan, M., Bobbio, A., Donatelli, S.: Petri nets in performance analysis:
an introduction. In: Reisig, Rozenberg, [30], pp. 211–256. https://doi.org/10.1007/
3-540-65306-6 17

3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996). https://doi.org/10.1145/227595.227602

4. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Performance evaluation
and model checking join forces. Commun. ACM 53(9), 76–85 (2010). https://doi.
org/10.1145/1810891.1810912

https://doi.org/10.1145/3158668
https://doi.org/10.1007/3-540-65306-6_17
https://doi.org/10.1007/3-540-65306-6_17
https://doi.org/10.1145/227595.227602
https://doi.org/10.1145/1810891.1810912
https://doi.org/10.1145/1810891.1810912

30 Years of Simulation-Based Quantitative Analysis Tools 383

5. Basile, D., Chiaradonna, S., Di Giandomenico, F., Gnesi, S.: A stochastic model-
based approach to analyse reliable energy-saving rail road switch heating systems.
J. Rail Transp. Plan. Manag. 6(2), 163–181 (2016). https://doi.org/10.1016/j.
jrtpm.2016.03.003

6. Basile, D., Degano, P., Ferrari, G.L.: Automata for specifying and orchestrating
service contracts. Log. Methods Comp. Sci. 12(4) (2016). https://doi.org/10.2168/
LMCS-12(4:6)2016

7. Basile, D., Di Giandomenico, F., Gnesi, S.: A refinement approach to analyse crit-
ical cyber-physical systems. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS,
vol. 10729, pp. 267–283. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-74781-1 19

8. Basile, D., ter Beek, M.H., Legay, A.: Timed service contract automata. Innov.
Syst. Softw. Eng. 16(2), 199–214 (2019). https://doi.org/10.1007/s11334-019-
00353-3

9. Basile, D., Di Giandomenico, F., Gnesi, S.: Statistical model checking of an energy-
saving cyber-physical system in the railway domain. In: Proceedings of the 32nd
Symposium on Applied Computing (SAC), pp. 1356–1363. ACM (2017). https://
doi.org/10.1145/3019612.3019824

10. ter Beek, M.H., et al.: Adopting formal methods in an industrial setting: the rail-
ways case. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS,
vol. 11800, pp. 762–772. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30942-8 46

11. Behrmann, G., et al.: UPPAAL 4.0. In: QEST. pp. 125–126. IEEE (2006). https://
doi.org/10.1109/QEST.2006.59

12. Bulychev, P., David, A., Larsen, K.G., Legay, A., Li, G., Poulsen, D.B.: Rewrite-
based statistical model checking of WMTL. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 260–275. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35632-2 25

13. Chiaradonna, S., Di Giandomenico, F., Masetti, G.: A stochastic modeling app-
roach for an efficient dependability evaluation of large systems with non-anonymous
interconnected components. In: Proceedings of the 28th International Symposium
on Software Reliability Engineering (ISSRE), pp. 46–55. IEEE (2017). https://doi.
org/10.1109/ISSRE.2017.17

14. Chiaradonna, S., Di Giandomenico, F., Masetti, G., Basile, D.: A refined framework
for model-based assessment of energy consumption in the railway sector. In: ter
Beek, M.H., Fantechi, A., Semini, L. (eds.) From Software Engineering to Formal
Methods and Tools, and Back. LNCS, vol. 11865, pp. 481–501. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30985-5 28

15. Clark, G., et al.: The Möbius modeling tool. In: Proceedings of the 9th International
Workshop on Petri Nets and Performance Models (PNPM), pp. 241–250. IEEE
(2001). https://doi.org/10.1109/PNPM.2001.953373

16. Couvillion, J.A., et al.: Performability Modeling with UltraSAN. IEEE Softw. 8(5),
69–80 (1991). https://doi.org/10.1109/52.84218

17. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015). https://doi.
org/10.1007/s10009-014-0361-y

18. Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H., Fantechi, A.: Comparing
formal tools for system design: a judgment study. In: Proceedings of the 42nd
International Conference on Software Engineering (ICSE), pp. 62–74. ACM (2020).
https://doi.org/10.1145/3377811.3380373

https://doi.org/10.1016/j.jrtpm.2016.03.003
https://doi.org/10.1016/j.jrtpm.2016.03.003
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.1007/978-3-319-74781-1_19
https://doi.org/10.1007/978-3-319-74781-1_19
https://doi.org/10.1007/s11334-019-00353-3
https://doi.org/10.1007/s11334-019-00353-3
https://doi.org/10.1145/3019612.3019824
https://doi.org/10.1145/3019612.3019824
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1007/978-3-642-35632-2_25
https://doi.org/10.1007/978-3-642-35632-2_25
https://doi.org/10.1109/ISSRE.2017.17
https://doi.org/10.1109/ISSRE.2017.17
https://doi.org/10.1007/978-3-030-30985-5_28
https://doi.org/10.1109/PNPM.2001.953373
https://doi.org/10.1109/52.84218
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1145/3377811.3380373

384 D. Basile et al.

19. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press (1996). https://doi.org/10.1017/CBO9780511569951

20. Kemper, P., Tepper, C.: Traviando - debugging simulation traces with message
sequence charts. In: QEST, pp. 135–136. IEEE (2006). https://doi.org/10.1109/
QEST.2006.58

21. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991). https://doi.org/10.1016/0890-5401(91)90030-6

22. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statis-
tical model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 478–504. Springer, Cham (2019). https://doi.org/
10.1007/978-3-319-91908-9 23

23. Limnios, N.: Fault Trees. ISTE (2007). https://doi.org/10.1002/9780470612484
24. Littlewood, B., Popov, P., Strigini, L.: Modeling software design diversity: a

review. ACM Comput. Surv. 33(2), 177–208 (2001). https://doi.org/10.1145/
384192.384195

25. Masetti, G., Chiaradonna, S., Di Giandomenico, F.: Model-based simulation in
Möbius: an efficient approach targeting loosely interconnected components. In:
Reinecke, P., Di Marco, A. (eds.) EPEW 2017. LNCS, vol. 10497, pp. 184–198.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66583-2 12

26. Masetti, G., Chiaradonna, S., Di Giandomenico, F., Feddersen, B., Sanders, W.H.:
An efficient strategy for model composition in the Möbius modeling environment.
In: Proceedings of the 14th European Dependable Computing Conference (EDCC),
pp. 116–119 (2018). https://doi.org/10.1109/EDCC.2018.00029

27. Mazzanti, F., Ferrari, A.: Ten diverse formal models for a CBTC automatic
train supervision system. In: Gallagher, J.P., van Glabbeek, R., Serwe, W. (eds.)
MARS/VPT. EPTCS, vol. 268, pp. 104–149 (2018). https://doi.org/10.4204/
EPTCS.268.4

28. Mazzanti, F., Ferrari, A., Spagnolo, G.O.: Towards formal methods diversity in
railways: an experience report with seven frameworks. Int. J. Softw. Tools Technol.
Transfer 20(3), 263–288 (2018). https://doi.org/10.1007/s10009-018-0488-3

29. Pinsky, M.A., Karlin, S.: An Introduction to Stochastic Modeling, 4th edn. Aca-
demic Press, Cambridge (2011). https://doi.org/10.1016/C2009-1-61171-0

30. Reisig, W., Grzegorz, R. (eds.): ACPN 1996. LNCS, vol. 1491. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-65306-6

31. Reisig, W., Grzegorz, R. (eds.): ACPN 1996. LNCS, vol. 1492. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-65307-4

32. Sanders, W., Obal II, W., Qureshi, M., Widjanarko, F.: The UltraSAN modeling
environment. Perform. Eval. 24(1), 89–115 (1995). https://doi.org/10.1016/0166-
5316(95)00012-M

33. Sanders, W.H., Meyer, J.F.: METASAN: a performability evaluation tool based
on stochastic acitivity networks. In: Proceedings of the 1986 Fall Joint Computer
Conference, pp. 807–816. IEEE (1986)

34. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-
9 16

35. Younes, H.L.S.: Verification and Planning for Stochastic Processes with Asyn-
chronous Events. Ph.D. thesis, Carnegie Mellon University, January 2005. http://
reports-archive.adm.cs.cmu.edu/anon/2005/CMU-CS-05-105.pdf

https://doi.org/10.1017/CBO9780511569951
https://doi.org/10.1109/QEST.2006.58
https://doi.org/10.1109/QEST.2006.58
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1002/9780470612484
https://doi.org/10.1145/384192.384195
https://doi.org/10.1145/384192.384195
https://doi.org/10.1007/978-3-319-66583-2_12
https://doi.org/10.1109/EDCC.2018.00029
https://doi.org/10.4204/EPTCS.268.4
https://doi.org/10.4204/EPTCS.268.4
https://doi.org/10.1007/s10009-018-0488-3
https://doi.org/10.1016/C2009-1-61171-0
https://doi.org/10.1007/3-540-65306-6
https://doi.org/10.1007/3-540-65307-4
https://doi.org/10.1016/0166-5316(95)00012-M
https://doi.org/10.1016/0166-5316(95)00012-M
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
http://reports-archive.adm.cs.cmu.edu/anon/2005/CMU-CS-05-105.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2005/CMU-CS-05-105.pdf

	30 Years of Simulation-Based Quantitative Analysis Tools: A Comparison Experiment Between Möbius and Uppaal SMC
	1 Introduction
	2 Context of the Case Study
	3 Description of the Tools
	3.1 Möbius
	3.2 Uppaal SMC

	4 Models and Experiments
	4.1 Modelling Approaches
	4.2 Quantitative Analyses

	5 Comparison
	5.1 Modelling Features
	5.2 Properties Specification
	5.3 Experiments and Presentation of Results
	5.4 Discussion

	6 Conclusion
	References

