
Statistical Model Checking: Black
or White?

Pranav Ashok(B), Przemys�law Daca, Jan Křet́ınský(B),
and Maximilian Weininger(B)

Technical University of Munich, Munich, Germany
ashok@in.tum.de, jan.kretinsky@tum.de, maxi.weininger@tum.de

Abstract. One of the advantages of statistical model checking (SMC)
is its applicability to black-box systems. In this paper, we discuss the
advantages gained when SMC is applied to white-box systems, utilizing
the knowledge of their internals. We focus on the setting of unbounded-
horizon properties such as reachability or LTL. We compare our app-
roach to other statistical and numerical techniques both conceptually as
instantiations of the same framework, and experimentally. It not only
clearly preserves scalability advantages of black-box SMC compared to
classical model checking (while providing high level of guarantees), but
it also scales yet better than either of the two for a wide class of models.

1 Introduction

Classical probabilistic verification techniques rely on iterative approximation
algorithms for linear equation systems and linear programs, such as value iter-
ation (VI), e.g. [Put14]. However, the scalability of such numeric analyses is
severely limited, compared to standard non-quantitative (hardware or software)
verification, since exact transformations, such as abstraction or partial-order
reduction, are more difficult to use. Consequently, weaker guarantees such as
probably approximately correct (PAC) results become acceptable even for com-
pletely known systems (white box) and not only in contexts where the system
is executable but unknown (black box), and where thus absolute guarantees are
principally impossible.

Example 1. Consider the task of model checking a reachability property of
a probabilistic communication protocol, which starts by generating a few, say k,
random bits. Thus the execution immediately branches into 2k states. If there are
only few or hard-to-find symmetries in the behaviour, standard analysis quickly
becomes infeasible. In the following, we discuss drawbacks of previously studied
alternative approaches; then we suggest a new one that overcomes the difficulties
for a wide class of models.

This research was funded in part by TUM IGSSE Grant 10.06 (PARSEC) and the Ger-
man Research Foundation (DFG) project 383882557 Statistical Unbounded Verification
(KR 4890/2-1).

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 331–349, 2020.
https://doi.org/10.1007/978-3-030-61362-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_19

332 P. Ashok et al.

The exponential state-space explosion quickly renders explicit VI unable
to propagate information by more than a single step. Besides, if the transi-
tion probabilities depend on the generated bits, even the symbolic variants of
VI [BCH+97] cannot help much. There have been two major alternatives pro-
posed, both relying on extensive use of simulations.

• (I) For large and possibly unknown systems, statistical model checking
(SMC) [YS02] reincarnates the Monte Carlo method. It runs simulations of
the system; the resulting statistics then yields confidence intervals, i.e. PAC
results. However, for unbounded-horizon properties, such as reachability or
linear temporal logic (LTL) [Pnu77], performing simulations of finite length
requires some information about the model [Kře16]:

1. Either the second eigenvalue of the transition matrix can be
bounded [LP08,YCZ10], which requires essentially the complete knowl-
edge of the system (white box) and is as hard as solving the model
checking problem, or

2. the topology of the underlying state-graph is known [YCZ10,HJB+10]
(sometimes called grey box, e.g. [AKW19]) and the whole system is pre-
processed, which beats the purpose of sublinear analysis, or

3. a bound on the minimum transition probability pmin is known as is the
case in [BCC+14,DHKP17]. This is the closest to black box, thus called
black SMC here.

In black SMC, long enough simulations can be run to ensure the system
passes from the transient to the recurrent part and reliable information on
the whole infinite run is obtained. While the a-priori length is practically
infeasible [BCC+14], early detection of recurrent behaviour has been pro-
posed [DHKP17] as follows. Based on the observed part of a simulation run,
a hypothesis on the topology of the system is made, answering what bottom
strongly connected component (BSCC) this run ends up in. With repetitive
observations of transitions over the run, the confidence grows that what cur-
rently looks as a BSCC indeed is a BSCC. Since quite a few repetitions of all
transitions in the BSCC are required, this approach turns out practical only
for systems with small BSCCs and not too small pmin.
In this paper, assuming knowledge of the system (white-box setting), we twist
the technique to a more efficient one as follows. After quickly gaining (unre-
liably low) confidence that the run entered a BSCC, we use the knowledge
of the topology to confirm this information—again very quickly since not
the whole model is built but only the local BSCC. Consequently, BSCCs are
detected fast even in the case with larger BSCCs or small pmin. As the infor-
mation used turns out quite limited, corresponding to the grey-box setting,
we call this approach grey SMC.

• (II) The other alternative to VI, now in the context or large but known sys-
tems, is the asynchronous value iteration, e.g. [BT89], a generalization of the
Gauss-Seidel method and the core of reinforcement learning and approximate
dynamic programming. There, the VI updates on states of the system are per-
formed in varying orders, in particular possibly entirely skipping some states.

Statistical Model Checking: Black or White? 333

The class of algorithms providing guarantees is represented by bounded real-
time dynamic programming (BRTDP) [MLG05,BCC+14,AKW19] where the
states to be updated at each moment are those appearing on a current sim-
ulation run. Consequently, states with low probability of visiting and thus
low impact on the overall value are ignored. While this allows for treating
very “wide” systems with lots of unimportant branches, the scalability prob-
lem persists as soon as the branching is very uniform (see also Example 5 on
Fig. 2b). From this perspective, grey SMC relaxes the rigorous approximation
in the transient part and replaces it with a statistical estimate.

Overall, grey SMC fills the gap in the following spectrum:
VI BRTDP grey SMC black SMC

analysis
analysis with simulation with

simulation
simulation inside analysis inside

On the one end, numeric analysis (VI) provides reliable results; in BRTDP, sim-
ulations are additionally used in the analysis to improve the performance while
preserving the guarantees. On the other end, simulations (SMC) provide PAC
guarantees; grey SMC then improves the performance by additional analysis in
the simulation.

Our contribution can be summarized as follows:

– We modify the black SMC for unbounded properties of [DHKP17] to perform
better in the white-box (and actually also in the so-called grey-box) setting.

– We compare our grey SMC to black SMC, BRTDP and VI both conceptually,
illustrating advantages on examples, as well as experimentally, comparing the
runtimes on standard benchmarks.

– We present all algorithms within a unified framework, which in our opinion
eases understanding and comparison, provides a more systematic insight, and
is pedagogically more valuable.

Outline of the Paper: After recalling necessary definitions in Sect. 2, we describe
and exemplify the algorithms in Sect. 3 and the respective key sub-procedure
in Sect. 4. Then we compare the algorithms and other related work in Sect. 5,
discussing the expected implications, which we confirm experimentally in Sect. 6.
For a broader account on related work on SMC in the context of unbounded-
horizon properties, we refer the interested reader to the survey [Kře16].

2 Preliminaries

A probability distribution on a finite set X is a mapping δ : X → [0, 1], such
that

∑
x∈X δ(x) = 1. The set of all probability distributions on X is denoted by

D(X).

Definition 1 (MC). A Markov chain (MC) is a tuple (S, s0, δ), where S is a
finite set of states with a designated initial state s0 ∈ S, and δ : S → D(S)

334 P. Ashok et al.

is a transition function that given a state s yields a probability distribution δ(s)
over successor states. For ease of notation, we write δ(s, t) instead of δ(s)(t) and
Post(s) := {t | δ(s, t) > 0} to denote the set of successors of a state.

The semantics of an MC is given in the usual way by the probability space on
paths. An infinite path ρ is an infinite sequence ρ = s0s1 · · · ∈ (S)ω, such that for
every i ∈ N we have si+1 ∈ Post(si). A finite path is a finite prefix of an infinite
path. The Markov chain together with a state s induces a unique probability
distribution Ps over measurable sets of infinite paths [BK08, Ch. 10].

Definition 2 (Reachability probability). For a target set T ⊆ S, we write
♦T := {s0s1 · · · | ∃i ∈ N : si ∈ T} to denote the (measurable) set of all infinite
paths which eventually reach T. For each s ∈ S, we define the value in s as

V(s) := Ps(♦T).

The reachability probability is then the value of the initial state V(s0).

The value function V satisfies the following system of equations, which is
referred to as the Bellman equations:

V(s) =

{
1 if s ∈ T
∑

s′∈S δ(s, s′) · V(s′) otherwise
(1)

Moreover, V is the least solution to the Bellman equations, see e.g. [CH08].
Certain parts of the state space are of special interest for the analysis of MC

with respect to unbounded-horizon properties, such as reachability:

Definition 3 (SCC, BSCC). A non-empty set T ⊆ S of states is strongly
connected if for every pair s, s′ ∈ S there is a path (of non-zero length) from s
to s′. Such a set T is a strongly connected component (SCC) if it is maximal
w.r.t. set inclusion, i.e. there exists no strongly connected T ′ with T � T ′. An
SCC T is called bottom (BSCC), if for all states s ∈ T we have Post(s) ⊆ T ,
i.e. no transition leaves the SCC.

Note that the SCCs of an MC are disjoint and that, with probability 1,
infinitely often reached states on a path form a BSCC.

We consider algorithms that have a limited information about the MC:

Definition 4 (Black box and grey box setting). An algorithm inputs an
MC as black box if it cannot access the whole tuple, but

– it knows the initial state,
– for a given state, it can sample a successor t according to δ(s),1

1 Up to this point, this definition conforms to black box systems in the sense of [SVA04]
with sampling from the initial state, being stricter than [YS02] or [RP09], where
simulations can be run from any desired state.

Statistical Model Checking: Black or White? 335

– it knows pmin ≤ min
s∈S,t∈Post(s)

δ(s, t), an under-approximation of the minimum

transition probability.

When input as grey box, it additionally knows the number |Post(s)| of successors
for each state s.2

3 Description of Algorithms

In this section, we describe all of the algorithms that we compare in this paper.
They all use the framework of Algorithm1. The differences are in the instanti-
ations of the functions (written in capital letters). This allows for an easy and
modular comparison.

Algorithm 1. Framework for all considered algorithms
Input: MC M, reachability objective T
Output: (An estimate of) Ps0

(♦T)
1: procedure Compute reachability probability
2: INITIALIZE
3: repeat
4: X ← GET STATES
5: UPDATE(X)
6: until TERM CRIT

3.1 Value Iteration

Value iteration (VI), e.g. [Put14], computes the value for all states in the MC.
As memory, it saves a rational number (the current estimate of the value) for
every state. In INITIALIZE, the estimate is set to 1 for target states in T and to 0
for all others. GET STATES returns the whole state space, as the estimate of all
values is updated simultaneously. The UPDATE works by performing a so called
Bellman backup, i.e.g.iven the current estimate function Li, the next estimate
Li+1 is computed by applying the Bellman Equation (1) as follows:

Li+1(s) =
∑

s′∈S

δ(s, s′) · Li(s
′)

Example 2. Consider the MC from Fig. 1a, with δ(s2, s2) = δ(s2, t) = δ(s2, s3) =
1
3 and the reachability objective {t}. The estimates that VI computes in the first 4
iterations are depicted in Fig. 1b. The target state t is initialized to 1, everything
else to 0. The estimate for s3 stays at 0, as it is a BSCC with no possibility to

2 This requirement is slightly weaker than the knowledge of the whole topology, i.e.
Post(s) for each s.

336 P. Ashok et al.

s0 s1 s2

s3

t

(a)

Iter. L(s0) L(s1) L(s2)

0 0 0 0
1 0 0 1/3

2 0 1/3 4/9

3 1/3 4/9 13/27

4 4/9 13/27 40/81

(b)

Iter. L(s2) U(s2)

0 0 1
1 0.01 0.99
2 0.029 0.980
3 0.039 0.970
4 0.048 0.961

(c)

Fig. 1. (a) Example Markov chain (b) Under approximations computed by value iter-
ation, see Example 2 (c) Under- and over-approximations computed by bounded value
iteration, see Example 3.

reach the target state. Since these two states do not change, they are omitted
in the figure. In every iteration, the estimates are updated and become more
precise, coming closer to the true value 0.5 for s0, s1 and s2. However, they
converge to 0.5 only in the limit, as for any finite number of iterations there is
a positive probability to remain in s2. Note that s0 always is two steps behind
s2, as it takes two iterations to backpropagate the current estimate.

VI converges to the true value only in the limit, hence we need some termi-
nation criterion TERM CRIT to stop when we are close enough. However, to be
certain that the estimate is close, one has to perform an exponential number of
iterations [CH08], which is infeasible. Hence, usually this version of VI does not
give convergence guarantees, but instead just runs until the difference between
two successive iterations is small. The result of this heuristic is guaranteed to be
a lower bound, but can be arbitrarily imprecise [HM18], as we will also see in
Example 3.

3.2 Bounded Value Iteration

To be able to give convergence guarantees, Bounded value iteration (BVI, also
called interval iteration) was introduced more generally for Markov decision pro-
cesses in [BCC+14,HM18]. In this paper, we only focus on Markov chains, i.e.
Markov decision processes with a single action in every state. In addition to the
under-approximation computed by VI, this approach also computes a convergent
over-approximation. For this, it stores a second rational number for every state.
Dually to the under-approximation, INITIALIZE sets the estimate to 0 in states
that cannot reach the target and 1 everywhere else. Note that finding the states
with value 0, i.e. BSCC that do not contain the target, BVI has to perform
a graph analysis, e.g. a backwards search from the targets. BVI still works on
the whole state space and the update is completely analogous to VI, only this
time updating both approximations. As TERM CRIT, BVI checks that difference
between the over- and under-approximation in the initial state is smaller than a
given precision ε. This guarantees that the returned value is ε-precise.

Statistical Model Checking: Black or White? 337

Example 3. Consider the MC from Fig. 1a with the same objective, but this time
with δ(s2, s2) = 0.98 and δ(s2, t) = δ(s2, s3) = 0.01. Note that by pre-processing
we set the over approximation U(s3) to 0, as it is a BSCC with no possibility of
reaching the target. The estimates BVI computes for s2 in the first 4 iterations
are depicted in Fig. 1c.

If we were running VI only from below, we might stop after iteration 4, as
the lower bound changes by less than 0.01 between these iterations and hence
it seems to have converged close to the value. However, the difference between
upper and lower bounds is still very high, so BVI knows that there still is a huge
uncertainty in the values, as it could be anything between 0.048 and 0.961. Even-
tually, both estimates converge close enough to 0.5; for example, after around
400 iterations the lower bound is 0.49 and the upper bound 0.51. Then BVI can
return the value 0.5 (the center of the interval) with a precision of 0.01, as this
value is off by at most that.

3.3 Simulation-Based Asynchronous Value Iteration

The biggest drawback of the two variants we introduced so far is that they
always work on the whole state space. Because of the state-space explosion,
this is often infeasible. In contrast, asynchronous value iteration only updates
parts of the state space in every iteration of the loop, i.e. GET STATES does
not return the whole state space, but instead heuristically selects the states to
update next. This not only speeds up the main loop, but also allows the algo-
rithm to reduce the memory requirements. Indeed, instead of storing estimates
for all states, one stores estimates only for the partial model consisting of pre-
viously updated states. In [BBS95,MLG05,BCC+14], the heuristic for selecting
the states is based on simulation: a path is sampled in the model, and only the
states on that path are updated. The partial model contains all states that have
been encountered during some of the simulations. If the part of the state space
that is relevant for convergence of value iteration is small, this can lead to enor-
mous speed-ups [BCC+14,KM19]. For more details on why this happens and a
formal definition of ’state space relevant for convergence’, we refer the interested
reader to [KM19].

Algorithm 2. Simulation-based implementation of GET STATES
Input: MC M, reachability objective T, s0
Output: A set of states X ⊆ S
1: procedure SIMULATE
2: ρ ← s0
3: repeat
4: s′ ← sample from δ(last(ρ)) according to NEXT STATE
5: ρ ← ρs′

6: until last(ρ) ∈ T or STUCK
7: return ρ

338 P. Ashok et al.

s0

s1 s2 t

1− ε

ε

(a)

s0

s1

s2

.

.

.
sn

ε

ε

ε

(b)

Fig. 2. (a) A Markov chain where exploring the whole state space can be avoided. ε
denotes a transition probability. The cloud represents an arbitrarily large state space.
(b) A Markov chain with high branching. From s0, there is a uniform probabilistic
choice with n = 1

ε
successors.

Algorithm 2 shows how states can be sampled through simulations, as done
in [BCC+14]: Starting from the initial state, in every step of the simulation a
successor is chosen from the distribution of the last state on the path. Note
that this choice depends on another heuristic NEXT STATE. The successor
can be chosen according to the transition probabilities δ, but it has proven to
be advantageous to additionally consider the difference between the upper and
lower bound in the successor states [MLG05,BCC+14]. In consequence, states
where we already know a lot (under- and over-approximations are close to each
other) are given less priority than states where we still need information.

The simulation is stopped in two cases: Either (i) it reaches a target state
or (ii) it is stuck in a BSCC with no path to the target. Different heuristics for
checking whether the simulation is stuck are discussed in depth in Sect. 4. Note
that being able to differentiate between targets and non-target BSCCs during the
simulations allows us not to do anything in INITIALIZE; we can set the value to 1
when reaching a target and 0 in the other case. The UPDATE function for simu-
lation based asynchronous value iteration again uses the Bellman equation (1) to
update the estimates of all states on the path; moreover, it can utilize additional
information: Since GET STATES returns a path, there is a notion of order of the
states. Updating the states in reverse order backpropagates information faster.

Example 4. Consider the MC in Fig. 2a, again with reachability objective {t}.
The cloud represents an arbitrarily large state space. However, since it is only
reachable with a very small probability ε (and we are interested in an ε-precise
solution), it need not be explored. Let the first sampled path be s0s1s2t. This
happens with high probability, as the only other possibility would be to select
a successor from the cloud in state s0, but since the selection process depends
on the transition probabilities δ , going to s1 has a higher probability. After the

Statistical Model Checking: Black or White? 339

simulation reaches t, this value is backpropagated in reverse order. First the
lower estimate L(s2) is set to 1, then L(s1) is set to 1, then L(s0) is set to 1 − ε.
At this point the algorithm has converged, as difference between the lower and
upper bound is ε.

So in this example, sampling the most probable path a single time gives a
good approximation. The algorithm avoids exploring the large cloud and back-
progagates values faster than synchronous VI.

Example 5. As an adversarial example, consider the MC in Fig. 2b. Here, the
model exhibits high branching, so every single path has a low probability, and
only by aggregating all paths we actually get a high value. Unlike the previous
example, there is no part of the state space that is clearly irrelevant. In fact,
to achieve precision of ε the algorithm has to see so many paths that their
cumulative probability is 1 − ε, which in this case means seeing all but one
transition from the starting state. This needs at least 1

ε simulations, but since
the successors are chosen probabilistically, most likely a lot more.

Note that similarly to synchronous VI, there are versions of asynchronous VI
without (RTDP [BBS95]) and with (BRTDP [MLG05,BCC+14])3 guaranteed
error bounds.

3.4 Statistical Model Checking

Algorithms for statistical model checking (SMC), [YS02], are different from all
previously described ones in two ways, namely what they store and what they
return. The VI-based algorithms store estimates for every (seen) state and they
update these values to be ever more precise. Thus, the returned bounds on the
values are certainly correct, although possibly quite loose. In contrast, SMC
stores only a single accumulator (for the value of the initial state) and the
returned value is probably approximately correct (PAC [Val84]). Being PAC
with probability α and approximation ε > 0 guarantees the following: with high
probability (α), the returned value is close to the true value (off by at most ε).
However, the returned confidence interval is not guaranteed to be a valid under-
and over-approximation; if we are unlucky (i.e. with the remaining probability
1 − α), there is no guarantee whatsoever on the returned value.

SMC does not need to do anything in INITIALIZE. It only stores a single
accumulator to remember how often a target state was reached. GET STATES
works as in Algorithm 2 with NEXT STATE typically sampling the successor
according to the transition probabilities δ (in some settings, importance sampling
may also be possible, e.g. [JLS12,BDH17]). UPDATE remembers whether we
reached the target or not; in the end we can divide the number of reaches by
the total number of samples to get the probability estimate. TERM CRIT is a
(typically low) number of samples that depends on the required probability of

3 While all are more generally applicable to Markov decision processes, [MLG05] only
ensures convergence if no end components [BK08] are present (for MC, no BSCCs
without a target are present) and [BCC+14] lifts this restriction.

340 P. Ashok et al.

the guarantee and the width of the confidence interval; see [DHKP17, Section 2.2]
for details or [JSD19] for more advanced techniques.

Example 6. Consider again the MC depicted in Fig. 1a. Let the first sampled
path be s0s1s2s2t. At this point the simulation stops, as we have reached a
target state, and we remember that we have seen a target once. Let the second
path be s0s1s2s2s2s3s3 On the one hand, the STUCK function has to let the
simulation continue, even though s2 is seen 3 times and it looks like a cycle. On
the other hand, it has to detect that the simulation will loop forever in s3 and
has to stop it. Ways to detect this are discussed in Sect. 4. After detecting that
we are stuck, we remember that the simulation did not reach the target.

Let the required probability of the guarantee be α = 0.9 and the width of
the confidence interval ε = 0.1. Using Hoeffding’s inequality [Hoe63] we can
show that the required number of samples for this is 461. So assume that after
461 simulations we have seen the target 223 times. Then we know that with
probability at least 0.9, the value is in the interval 223/461±0.05, i.e. [0.434, 0.534].
Increasing the number of simulations can both increase the confidence or decrease
the width of the interval.

Note that this number of simulations is independent of the system. While
461 simulations are a lot for this small system, the number would be the same
if we were considering a model with several billion states where value iteration
is impossible.

4 STUCK

In this section, we discuss heuristics for detecting whether a simulation is stuck
in a BSCC with no path to a target state. We also propose one new such heuristic
with convenient theoretical properties.

For simulation-based asynchronous value iteration, previous work either
excluded the existence of non-target BSCCs in their assumptions [BBS95,
MLG05] or used a heuristic with no false negatives, but the possibility of false
positives [BCC+14]. This means that if the simulation is stuck in a BSCC, the
simulation definitely is stopped, which is required for termination. However, if the
simulation is not stuck in a BSCC, it might still be stopped, guessing the value
of the last state in the path is 0, although it might not be. The STUCK-heuristics
used in previous work either depend on the path length ([BCC+14,Ujm15,
Chapter 7.5]) or simply stops exploring when any state is seen twice [AKW19,
Appendix A.3].

SMC has to be sure with high probability that the simulation is stuck, as
otherwise it loses the probabilistic guarantee. In [YCZ10], two approaches are
described. The first approach requires knowledge of the second eigenvalue of the
MC in order to guarantee asymptotic convergence. However, getting the second
eigenvalue is as hard as the verification problem itself. The second approach
works in the grey-box setting and pre-processes the MC so that all potentially
infinite paths are eliminated. A similar transformation, using white-box informa-

Statistical Model Checking: Black or White? 341

tion, was suggested in [HJB+10]. However, both of these approaches transform
the whole model and thus face problems in the case of very large models.

An alternative was suggested in [DHKP16]. It monitors the finite path sam-
pled during the simulation, implicitly constructing a graph with all seen states as
nodes and all seen transitions as edges. The candidate of the current path is the
(possibly empty) set of states forming the maximal BSCC of this graph. Intu-
itively, it is what we believe to be a BSCC given the observation of the current
simulation. This candidate has to be validated, because as we saw in Example 6,
a state set can look like a BSCC for several steps before being exited. In the
black-box setting, this validation works by continuing the simulation until the
probability of overlooking some transition exiting the candidate becomes very
small [DHKP16].

In this paper, we pinpoint that in the grey-box or white-box setting, this
costly type of validation is not necessary. Instead of validating the candidate
by running around in it for a huge number of steps, one can verify it using the
additional information on the model. If no successor of any state in the candidate
is outside of the candidate, then it indeed is a BSCC. Formally, for a candidate
T , we check that {s | ∃t ∈ T : s ∈ Post(t)} ⊆ T (if the topology is known),
or alternatively that ∀t ∈ T : |P̂ost(t)| = |Post(t)| (in what we defined as the
grey-box setting) where P̂ost yields the number of successors within the observed
candidate.

Example 7. Consider again the MC depicted in Fig. 1a. When a simulation enters
s3, STUCK should return true in order to stop the simulation, as it has reached a
BSCC with no path to a target. In the black box setting of [DHKP16], this is only
possible after continuing the simulation for another huge amount of steps. For
example, even in a BSCC with only a single state, hundreds of further steps can
be necessary to reach the required confidence. Given the grey-box information,
the algorithm can determine that all successors of the states in the candidate
({s3}) have been seen and conclude that the candidate is indeed a BSCC.

However, this check stops the simulation and can incur an overhead if there
are many SCCs in the transient part of the state space. Hence, we can delay it,
not checking at the first occurrence of a cycle, but e.g. only when every state in
the candidate has been seen twice. Alternatively, one can only allow the check
every n (e.g. hundred) steps of the simulation. Depending on the model and the
implementation of the algorithm, these heuristics can have some impact on the
runtime.

Furthermore, one might modify this heuristic even further. If a state of the
BSCC is only reached with low probability, it takes many steps for the simulation
to reach it. When we check whether the current candidate is a BSCC, this
state might not have occurred in the simulation yet. Instead of concluding that
the information is insufficient and the simulation has to continue, one could
deterministically explore the unknown successors and compute the BSCC. On
the one hand, for small to medium sized BSCCs, this could result in a speed-up.
On the other hand, it increases the overhead when transient SCCs are checked

342 P. Ashok et al.

by STUCK. Consequently, in the available benchmarks, this heuristic did not
prove advantageous. Hence we do not even report on it in the evaluation section.

5 Discussion

5.1 Dependency of Simulation Length on Topology

Although the number of samples in SMC is independent of the model size, the
length of the simulations is highly dependent on the model size and even more
on the structure. Indeed, any kind of cyclic behaviour in the transient part
of the state space increases the simulation time for two reasons. Firstly, the
simulation loops in transient SCCs and does not make progress towards a target
or a BSCC. Secondly, the check whether the simulation is stuck in transient
SCCs incurs an overhead. An adversarial handcrafted worst-case example where
simulations struggle is given in [HM18, Figure 3]. Moreover, the structure of
BSCCs affects the length of the simulation. For cyclic BSCCs, the simulation
easily encounters all states of the BSCC and can quickly terminate. For more
complex topologies, some states are typically only seen with very low frequency
and thus the simulation takes longer.

If the model exhibits many transient SCCs, using any simulation-based tech-
nique is problematic.

5.2 Black, Grey and White SMC

The difference between the variants of SMC we report on are their knowledge
of the transition system: pmin corresponds to black, the number of successors to
grey and the exact successors and probabilities to the white-box setting. This
information can be used in the STUCK-check; apart from that, the algorithms
are the same.

Comparing grey and black box, it is apparent that simulations in grey box
can be much shorter, as upon detection of a candidate that is a BSCCs the
simulation is immediately stopped, whereas in the black box setting it has to
continue for a number of steps. This number of steps depends on two things: (i)
The size of the BSCC, as larger BSCC take longer to explore, especially since all
states, no matter how improbable, need to be seen a certain amount of times,
and (ii) the given under-approximation of the minimum transition probability
pmin, as this determines how often every state in the candidate has to be seen
until the probability of a false positive is small enough.

Thus, for large BSCCs or small pmin, grey SMC is clearly better, as we also
experimentally validate in Table 3 (large BSCC) and Table 2 (various pmin) in
the next section. For small BSCCs (e.g. only of size 1) and not so small pmin,
black and grey SMC become more comparable, but grey SMC still has shorter
simulations. However, practically, the overhead of verifying the candidates in
grey SMC can be so large that black SMC can even be slightly faster than grey
SMC (see e.g., leader6 11 in Table 1).

Statistical Model Checking: Black or White? 343

Heuristically reducing the number of checks in grey SMC (as described in
Sect. 4) can make it faster again, but the effectiveness of the heuristics depends
on the models. So, if it is known that the BSCC-detection is very easy for black
SMC (e.g. they are of size 1 or cyclic and pmin is not too small), black SMC can
be a viable choice. However, as black SMC is never far better, using grey SMC
is the safer variant when facing models with uncertain topology.

5.3 Comparison of Algorithms

Finally, we compare the (dis-)advantages of the different algorithms, giving a
practical decision guidance. If hard guarantees are required, then BVI or BRTDP
are to be used. The latter is simulation based, and thus good if only a small part
of the state space is relevant for convergence. Additionally, if the model is too
large for BVI, BRTDP still has a chance, but quite possibly the partial model
will also be too large. Conversely, if the model contains lots of transient SCCs,
BVI is preferable, as simulation based approaches fail on this kind of model, see
Sect. 5.1. Note that, if there are small probabilities present, it might take very
long for BVI and BRTDP to converge, see Example 3.

For a quick estimate, or if PAC guarantees are sufficient, or if the system is
too large, so that it is not possible to provide hard guarantees, SMC is to be
used, if possible (white or grey box setting) in our grey variant. As both the
memory and the termination criterion are independent of the size of the system,
SMC always has a chance to yield an estimate, which additionally comes with a
probabilistic guarantee.

There is no case in which un-guaranteed (synchronous or asynchronous) VI
are preferable, as they suffer from the same drawbacks as BVI and BRTDP, but
additionally do not provide guarantees. Whenever hard guarantees are not of
interest and the system is not strongly connected, grey SMC should be used for
a quick estimate.

5.4 Extensions to Other Unbounded-Horizon Properties

For more complex unbounded-horizon properties [BK08], such as Until (avoid-
reach), LTL or long-run average reward, (B)VI pre-processes the state space
to analyze the BSCCs [BK08] and BRTDP [BCC+14] can either do the same
or analyze the encountered BSCCs only. Black SMC of [DHKP17] is applicable
through additional analysis of the BSCC candidates after they have been found
likely to be BSCCs. This is directly inherited by grey SMC and makes it available
for these specifications with low overhead.

6 Experimental Evaluation

We implemented grey SMC in a branch of the PRISM Model Checker [KNP11]
extending the implementation of black SMC [DHKP17]. We ran experiments on
(both discrete- and continuous-time) Markov chains from the PRISM Benchmark

344 P. Ashok et al.

Table 1. Runtime (in seconds) comparison of black and grey SMC for various bench-
marks. BVI runtimes are also presented as a baseline.

Model/property Size pmin BSCC (no.,
max. size)

SMC BVI

Black Grey

bluetooth(10)time qual >569K 7.81× 10−3 >5.8K, 1 9 7 TO

brp nodl(10K,10K)p1 qual >40M 1× 10−2 >4.5K, 1 86 84 TO

crowds nodl(8,20)positive qual 68M 5× 10−2 >3K, 1 10 8 TO

egl(20,20)unfairA qual 1719T 5× 10−1 1, 1 43 25 TO

gridworld(400,0.999)prop qual 384M 1× 10−3 796, 160K 15 8 TO

herman-174tokens 10G 4.7× 10−7 1, 34 TO 73 98

leader6 11elected qual >280K 5.6× 10−7 1, 1 106 152 OOM

nand(50,3)reliable qual 11M 2× 10−2 51, 1 11 10 455

tandem(2K)reach qual >1.7M 2.4× 10−5 1, >501K 7 7 62

Suite [KNP12a]. In addition to a comparison to black SMC, we also provide
comparisons to VI and BVI of PRISM and BRTDP of [BCC+14]. An interested
reader may also want to refer [DHKP17, Table II] for a comparison of black
SMC against two unbounded SMC techniques of [YCZ10].

For every run configuration, we run 5 experiments and report the median.
In black SMC, the check for candidates is performed every 1000 steps during
path simulations, while in grey SMC the check is performed every 100 steps.
Additionally, grey SMC checks if a candidate is indeed a BSCC once every state
of the candidate is seen at least twice. In all our tables, ‘TO’ denotes a timeout
of 15 min and ‘OOM’ indicates that the tool ran out of memory restricted to
1GB RAM.

6.1 Comparison of Black and Grey SMC

Table 1 compares black SMC and grey SMC on multiple benchmarks. One can see
that, except in the case of leader6 11 and brp nodl, grey SMC finishes atleast
as soon as black SMC. In bluetooth, gridworld, leader and tandem, both
the SMC methods are able to terminate without encountering any candidate
(i.e. either the target is seen or the left side of the until formula is falsified).
In brp nodl, crowds nodl and nand, the SMC methods encounter a candidate,
however, since the candidate has only a single state (all BSCCs are trivial),
black SMC is quickly able to confidently conclude that the candidate is indeed a
BSCC. The only interesting behaviour is observed on the herman-17 benchmark.
In this case, every path eventually encounters the only BSCC existing in the
model. Grey SMC is able to quickly conclude that the candidate is indeed a
BSCC, while black SMC has to sample for a long time in order to be sufficiently
confident.

Statistical Model Checking: Black or White? 345

Table 2. Effect of pmin on black SMC runtimes (in seconds) on some of the benchmarks.
Lower pmin demands stronger candidates, due to which black SMC has to sample longer
paths.

Model Black SMC/pmin Grey SMC

1 × 10−2 1 × 10−3 1 × 10−4 1 × 10−5

brp nodl(10K,10K) 86 93 183 TO 84

crowds nodl(8,20) 11 41 334 TO 9

egl(20,20) 47 106 875 TO 44

The performance of black SMC is also a consequence of the pmin being quite
small. Table 2 shows that black SMC is very sensitive towards pmin. Note that
grey SMC is not affected by the changes in pmin as it always checks whether a
candidate is a BSCC as soon as all the states in the candidate are seen twice.

6.2 Grey SMC vs. Black SMC/BRTDP/BVI/VI

We now look more closely at the self-stabilization protocol herman [KNP12b,
Her90]. The protocol works as follows: herman-N contains N processes, each
possessing a local boolean variable xi. A token is assumed to be in place i if
xi = xi−1. The protocol proceeds in rounds. In each round, if the current values
of xi and xi−1 are equal, the next value of xi is set uniformly at random, and
otherwise it is set equal to the current value of xi−1. The number of states in
herman-N is therefore 2N . The goal of the protocol is to reach a stable state
where there is exactly one token in place. For example, in case of herman-5, a
stable state might be (x1 = 0, x2 = 0, x3 = 1, x4 = 0, x5 = 1), which indicates
that there is a token in place 2. In every herman model, all stable states belong
to the single BSCC. The number of states in the BSCC range from 10 states in
herman-5 to 2,000,000 states in herman-21.

For all herman models in Table 3, we are interested in checking if the prob-
ability of reaching an unstable state where there is a token in places 2–5, i.e.
(x1 = 1, x2 = 1, x3 = 1, x4 = 1, x5 = 1) is less than 0.05. This property, which
we name 4tokens, identifies 2N−5 states as target in herman-N. The results in
Table 3 show how well grey SMC scales when compared to black SMC, BRTDP,
BVI4 and VI. Black SMC times out for all models where N ≥ 11. This is due
to the fact that the larger models have a smaller pmin, thereby requiring black
SMC to sample extremely long paths in order to confidently identify candidates
as BSCCs. BVI and VI perform well on small models, but as the model sizes
grow and transition probabilities become smaller, propagating values becomes
extremely slow. Interestingly, we found that in both grey SMC and black SMC,
approximately 95% of the time is spent in computing the next transitions, which

4 We refrain from comparison to other guaranteed VI techniques such as sound
VI [QK18] or optimistic VI [HK19] as the implementations are not PRISM-based
and hence would not be too informative in the comparison.

346 P. Ashok et al.

Table 3. Runtime (in seconds) of the various algorithms on the Herman self-
stabilization protocol [KNP12b] with the property 4tokens. The median runtimes are
reported for grey SMC, black SMC [DHKP17], BRTDP [BCC+14], Bounded value
iteration (BVI) and Value iteration (VI). The SMC algorithms use SPRT method with
parameters α = 0.01 and β = 0.01. BRTDP, BVI and VI run until a relative error of
0.01 is obtained.

Model States Grey SMC Black SMC BRTDP BVI VI

herman-5 32 11 15 TO 1 1

herman-7 128 12 57 TO 1 1

herman-9 512 10 775 TO 1 1

herman-11 2048 19 TO TO 1 1

herman-13 8192 18 TO TO 1 1

herman-15 33K 17 TO TO 9 3

herman-17 131K 49 TO TO 98 21

herman-19 524K 252 OOM TO 602 113

herman-21 2M 759 OOM OOM TO TO

grow exponentially in number; an improvement in the simulator implementation
can possibly slow down the blow up in run time, allowing for a fairer comparison
with the extremely performant symbolic value iteration algorithms.

Finally, we comment on the exceptionally poor performance of BRTDP on
herman models. In Table 4, we run BRTDP on three different properties: (i)
tokens in places 2–3 (2tokens); (ii) tokens in places 2–4 (3tokens); and (iii)
tokens in places 2–5 (4tokens). The number of states satisfying the property
decrease when going from 2 tokens to 4 tokens. The table shows that BRTDP is
generally better in situations where the target set is larger.

In summary, the experiments reveal the following:

– For most benchmarks, black SMC and grey SMC perform similar, as seen in
Table 1. As expected, the advantages of grey SMC do not show up in these
examples, which (almost all) contain only trivial BSCCs.

– The advantage of grey SMC is clearly visible on the herman-N benchmarks,
in which there are non-trivial BSCCs. Here, black SMC quickly fails while
grey SMC is extremely competitive.

– Classical techniques such as VI and BVI fail when either the model is too
large or the transition probabilities are too small. However, they are still to
be used for strongly connected systems, where the whole state space needs to
be analysed for every run in both SMC approaches, but only once for (B)VI.

Statistical Model Checking: Black or White? 347

Table 4. Effect of restrictive properties (satisfied in fewer states) on the runtime (in
seconds) of BRTDP in the herman benchmarks.

Model Property

2tokens 3tokens 4tokens

herman-5 1 2 TO

herman-7 1 1 TO

herman-9 1 2 TO

herman-11 2 2 TO

herman-13 2 2 TO

herman-15 3 3 TO

herman-17 5 6 TO

herman-19 9 9 TO

herman-21 104 111 TO

herman-23 OOM OOM OOM

7 Conclusion

While SMC has found its use also in the white-box setting as a scalable alter-
native, we introduce the first approach that utilizes the knowledge in a local
way, without globally processing the state space, and thus preserves the effi-
cency advantages of black-box SMC. We call this approach grey SMC since we
utilize only the topological information and not the quantitative information
(sometimes referred to as grey box). On the one hand, this is useful as the
quantitative information is often unavailable or imprecise w.r.t. the modelled
reality. On the other hand, while the full quantitative information is irrelevant
in BSCCs, it plays a major role in the transient phase and could be used to
further enhance the approach. For instance, it could be used for importance
sampling in order to handle rare events efficiently [JLS12,BDH17] even in the
context of unbounded-horizon properties.

References

[AKW19] Ashok, P., Křet́ınský, J., Weininger, M.: PAC statistical model checking for
Markov decision processes and stochastic games. In: Dillig, I., Tasiran, S.
(eds.) CAV 2019. LNCS, vol. 11561, pp. 497–519. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25540-4 29

[BBS95] Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time
dynamic programming. Artif. Intell. 72(1–2), 81–138 (1995)

[BCC+14] Brázdil, T., et al.: Verification of Markov decision processes using learning
algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol.
8837, pp. 98–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-11936-6 8

https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8

348 P. Ashok et al.

[BCH+97] Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska, M.,
Ryan, M.: Symbolic model checking for probabilistic processes. In: Degano,
P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol.
1256, pp. 430–440. Springer, Heidelberg (1997). https://doi.org/10.1007/
3-540-63165-8 199

[BDH17] Budde, C.E., D’Argenio, P.R., Hartmanns, A.: Better automated impor-
tance splitting for transient rare events. In: Larsen, K.G., Sokolsky, O.,
Wang, J. (eds.) SETTA 2017. LNCS, vol. 10606, pp. 42–58. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69483-2 3

[BK08] Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cam-
bridge (2008)

[BT89] Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation:
Numerical Methods. Prentice-Hall Inc., Upper Saddle River (1989)

[CH08] Chatterjee, K., Henzinger, T.A.: Value iteration. In: Grumberg, O., Veith,
H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 107–138.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69850-0 7

[DHKP16] Daca, P., Henzinger, T.A., Křet́ınský, J., Petrov, T.: Faster statistical model
checking for unbounded temporal properties. In: Chechik, M., Raskin, J.-
F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 112–129. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49674-9 7

[DHKP17] Daca, P., Henzinger, T.A., Kret́ınský, J., Petrov, T.: Faster statistical model
checking for unbounded temporal properties. ACM Trans. Comput. Log.
18(2), 12:1–12:25 (2017)

[Her90] Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67
(1990)

[HJB+10] He, R., Jennings, P., Basu, S., Ghosh, A.P., Wu, H.: A bounded statistical
approach for model checking of unbounded until properties. In: ASE, pp.
225–234 (2010)

[HK19] Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. CoRR,
abs/1910.01100 (2019)

[HM18] Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and
IMDPs. Theor. Comput. Sci. 735, 111–131 (2018)

[Hoe63] Hoeffding, W.: Probability inequalities for sums of bounded random vari-
ables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)

[JLS12] Jegourel, C., Legay, A., Sedwards, S.: Cross-entropy optimisation of impor-
tance sampling parameters for statistical model checking. In: Madhusudan,
P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 327–342. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 26

[JSD19] Jégourel, C., Sun, J., Dong, J.S.: Sequential schemes for frequentist esti-
mation of properties in statistical model checking. ACM Trans. Model.
Comput. Simul. 29(4), 25:1–25:22 (2019)

[KM19] Křet́ınský, J., Meggendorfer, T.: Of cores: a partial-exploration framework
for Markov decision processes. (2019, Submitted)

[KNP11] Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of prob-
abilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1 47

[KNP12a] Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite.
In: QEST, pp. 203–204. IEEE Computer Society (2012)

https://doi.org/10.1007/3-540-63165-8_199
https://doi.org/10.1007/3-540-63165-8_199
https://doi.org/10.1007/978-3-319-69483-2_3
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-662-49674-9_7
https://doi.org/10.1007/978-3-642-31424-7_26
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

Statistical Model Checking: Black or White? 349

[KNP12b] Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic verification of
Herman’s self-stabilisation algorithm. Formal Asp. Comput. 24(4–6), 661–
670 (2012). https://doi.org/10.1007/s00165-012-0227-6

[Kře16] Křet́ınský, J.: Survey of statistical verification of linear unbounded prop-
erties: model checking and distances. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016. LNCS, vol. 9952, pp. 27–45. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-47166-2 3

[LP08] Lassaigne, R., Peyronnet, S.: Probabilistic verification and approximation.
Ann. Pure Appl. Logic 152(1–3), 122–131 (2008)

[MLG05] Mcmahan, H.B., Likhachev, M., Gordon, G.J.: Bounded real-time dynamic
programming: RTDP with monotone upper bounds and performance guar-
antees. In: ICML 2005, pp. 569–576 (2005)

[Pnu77] Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
[Put14] Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic

Programming. Wiley, Hoboken (2014)
[QK18] Quatmann, T., Katoen, J.-P.: Sound value iteration. In: Chockler, H., Weis-

senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 643–661. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 37

[RP09] El Rabih, D., Pekergin, N.: Statistical model checking using perfect sim-
ulation. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp.
120–134. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
04761-9 11

[SVA04] Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-
box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS,
vol. 3114, pp. 202–215. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27813-9 16

[Ujm15] Ujma, M.: On verification and controller synthesis for probabilistic systems
at runtime. Ph.D. thesis, University of Oxford, UK (2015)

[Val84] Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142
(1984)

[YCZ10] Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of prob-
abilistic properties with unbounded until. In: Davies, J., Silva, L., Simao,
A. (eds.) SBMF 2010. LNCS, vol. 6527, pp. 144–160. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19829-8 10

[YS02] Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event
systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.)
CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45657-0 17

https://doi.org/10.1007/s00165-012-0227-6
https://doi.org/10.1007/978-3-319-47166-2_3
https://doi.org/10.1007/978-3-319-47166-2_3
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1007/978-3-642-04761-9_11
https://doi.org/10.1007/978-3-642-04761-9_11
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-642-19829-8_10
https://doi.org/10.1007/3-540-45657-0_17

	Statistical Model Checking: Black or White?
	1 Introduction
	2 Preliminaries
	3 Description of Algorithms
	3.1 Value Iteration
	3.2 Bounded Value Iteration
	3.3 Simulation-Based Asynchronous Value Iteration
	3.4 Statistical Model Checking

	4 STUCK
	5 Discussion
	5.1 Dependency of Simulation Length on Topology
	5.2 Black, Grey and White SMC
	5.3 Comparison of Algorithms
	5.4 Extensions to Other Unbounded-Horizon Properties

	6 Experimental Evaluation
	6.1 Comparison of Black and Grey SMC
	6.2 Grey SMC vs. Black SMC/BRTDP/BVI/VI

	7 Conclusion
	References

