
Inferring Performance
from Code: A Review

Emilio Incerto(B), Annalisa Napolitano(B), and Mirco Tribastone(B)

IMT School for Advanced Studies, 55100 Lucca, Italy
{emilio.incerto,annalisa.napolitano,mirco.tribastone}@imtlucca.it

Abstract. Performance is an important non-functional property of soft-
ware that has a direct impact on the end-user’s perception of quality of
service since it is related to metrics such as response time, throughput,
and utilization. Performance-by-construction can be defined as a devel-
opment paradigm where executable code carries some kind of guarantee
on its performance, as opposed to the current practice in software engi-
neering where performance concerns are left to the later stages of the
development process by means of profiling or testing. In this paper we
argue that performance-by-construction techniques need to be proba-
bilistic in nature, leveraging accurate models for the analysis. In sup-
port of this idea, here we carry out a literature review on methods that
can be used as the basis of performance-by-construction development
approaches. There has been significant research—reviewed elsewhere—
on performance models derived from high-level software specifications
such as UML diagrams or other domain-specific languages. This review,
instead, focuses on methods where performance information is extracted
directly from the code, a line of research that has arguably been less
explored by the software performance engineering community.

1 Introduction

Non-functional (also called extra-functional) properties of software are related
to issues concerning how a system works, as opposed to functional properties
which establish what it does. Among many relevant such properties including
security, dependability, and reliability is software performance. Briefly, it can be
understood as a property analyzable through a number of quantitative metrics
related to how fast the software system can yield the desired output. Typical
performance metrics of interest are response time, i.e., how long it takes to obtain
a reply since a request has been issued; throughput, i.e., how many requests can be

This work has been partially supported by the Italian Ministry for Education under
grant SEDUCE no. 2017TWRCNB.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-61362-4 17) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 307–322, 2020.
https://doi.org/10.1007/978-3-030-61362-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_17
https://doi.org/10.1007/978-3-030-61362-4_17
https://doi.org/10.1007/978-3-030-61362-4_17


308 E. Incerto et al.

served per unit time; and utilization, i.e., the percentage of time that a software
resource is busy servicing some request.

Performance metrics can be defined mathematically (e.g., [11]), in which
case it is possible to easily see how they can be formally related to each other.
They can also be related to other metrics such as energy consumption (via
appropriate models [41]) and availability (e.g., excessively long response times
of a web application causing server crashes).

Performance is a key property that directly affects the end-user’s perception
of quality of a software system. It is such an important aspect that, as claimed by
Harman and O’Hearn [29], “in many practical deployment scenarios, particularly
mobile, performance is the new correctness.” Despite its relevance, however,
the practice of software engineering does not seem to make use of principled
criteria to reason about performance. For example, the Android developers’ guide
suggests a rule of thumb for improving the performance of an app by means of
multithreading [1]:

“You can use trial-and-error to discover the minimum number of threads
you can use without running into problems.”

Such state of affairs is unsatisfactory for at least two reasons. First, conduct-
ing performance analysis only through testing or runtime profiling raises several
issues about the cost and the degree of coverage of the experiments. Indeed,
it implies a software development process where performance issues are left to
the latest stages, which may make serious flaws too expensive to fix, such as
in the notable case of halting a NASA space mission due to on-board software
producing unacceptably large response times [2]. The second limitation is that
testing approaches can detect the presence of performance issues, but they do
not carry explanatory and generalization power on their own. Specifically, they
do not provide a model of the software system under investigation that can be
used for the analysis of further what-if scenarios or for formal verification.

A paradigm based on performance-by-construction principles aims instead
at the development of software with guarantees of achieving given performance
objectives [57]. In order to achieve this, it appears inescapable that this paradigm
leverage appropriate models of software systems that can yield (accurate) perfor-
mance predictions. Traditionally, performance models of computer and commu-
nication systems are probabilistic [11,56]. Essentially, this can be motivated by
two orthogonal modeling choices to capture external and internal uncertainty,
respectively [45]. With the former we refer to the typical use of stochastic pro-
cesses to model the workload of software system (i.e., the pattern of arrivals of
requests) as well as to abstract from the details of other environmental features
such as the hardware on which the software system runs. With the latter we refer
to the explicit use of programming primitives that generate samples from given
probability distributions, as in the context of probabilistic programming [27].

A model capable of predicting performance properties is necessarily a distinct
artifact than the software system under consideration. Of course, it could be built
by hand by the software architect/engineer. However this would not fit with the
need of providing automated support within a development process. Moreover,



Inferring Performance from Code: A Review 309

in general it is likely difficult to find engineers who have competences both in the
problem domain and in the performance modeling techniques—recognized as a
main obstacle to model-based performance analysis in software engineering [63].

More automated support to model building can be offered by model-driven
development techniques where the performance model is algorithmically derived
from software specifications such as behavioral UML diagrams (e.g., [58,59,64])
or domain-specific languages (e.g., [10]) annotated with quantitative information.
Some of the vast literature on this topic has already been reviewed [7,35].

Model-driven approaches may not always be applicable, for instance when
the code that is automatically generated from the higher-level specification is
likely to undergo manual modifications. Indeed, after these, the related perfor-
mance model may not be a faithful representation of the actual system under
consideration any longer [23]. In order to avoid this problem, another approach
might be to use the code as the model of the software system itself, thus infer-
ring performance models directly from the code. Of course, this rules out the
possibility of conducting performance analysis at the very early stages of the
software development. However, it fits well with agile processes based on succes-
sive iterations, where changes in the codebase can be reflected onto changes in
the associated performance model.

In this paper we present a literature review on the state of the art of tech-
niques which produce performance predictions for code analysis in order to eval-
uate their feasibility as tools to be used within a performance-by-construction
development framework. The literature analyzed, consisting of 24 research papers
published with the period 1982–2019, is mostly located in the sub-fields of com-
puter science regarding programming languages and software engineering. In
addition to a brief description of each method, we provide a classification in
terms of the assumptions on the input program, the type of technique employed
(i.e., whether it uses static or dynamic analysis), and the output provided (i.e.,
if it yields a model or directly a performance prediction). We conclude the paper
with a discussion of the main limitations of the state of the art for their use in
realistic development processes based on performance-by-construction.

Search and Selection. The research was conducted by selecting from a search
engine a set of representative and highly cited papers from the literature, which
deal with the issue of extracting performance from the code, specifically [13,18,
21,24,25,38,51,65]. We then evaluated the ongoing and outgoing citation links
of these papers and the most interesting, as well as the most cited, were selected
for analysis in this semi-systematic review.

2 Analysis Dimensions

In this section, we analyze the several aspects that distinguish the analyzed
methods of performance generation from code. They concern learning techniques,
exploration techniques, the type of the output model or performance metrics,
and the scalability level.



310 E. Incerto et al.

2.1 Learning Techniques

Although they differ greatly from each other, all performance learning techniques
from software can be condensed into two categories:

– Static analysis: the source-code of the program is systematically inspected
to infer performance. Often, an intermediate model is created, e.g. differential
equations [61], Markov processes [47], or a step-counting function [50] which
simplifies the software by focusing only on performance evaluation.

– Dynamic analysis: an instrumented version of the program is executed,
and by analyzing traces, the necessary information to build the performance
model is gathered (e.g., which parts of the code have been actually explored,
the number of calls issued to a particular functions). While some approaches
are based on one single run to inspect one specific profile [28], others perform
several runs with different workloads to obtain metrics, models and trend
functions of different profiles such as worst-, average-, best-case scenarios [65].
This could be costly if the program needs to be executed numerous times with
different input sizes. There are several techniques to select the workloads (e.g.,
load-testing, probabilistic symbolic execution, random sampling), which we
will analyze later in Subsect. 2.2.

Notice that often these techniques are combined together for the definition of
hybrid approaches. For example, static analysis is used to create an instrumented
version of the program that is then executed with dynamic analysis [21].

2.2 Exploration Techniques

In this subsection, we will describe the different techniques that can be used
both for exploring the program’s paths in the static analysis and to generate the
workload input sequences that guide the dynamic analysis.

– Runtime monitoring implies analyzing the logs or execution traces of the
real (instrumented) system. Approaches that exploit runtime monitoring care
about instrumenting the program as efficiently as possible, so that to leave
the system performance unchanged [6].
This kind of exploration technique does not make any assumption on the
input features and thus the resulting performance models show the typical
system behavior and not a peculiar case.

– Load testing is an input generation technique that tries to stress the soft-
ware by evaluating it with a workload of increasing size [25]. This may imply
evaluating a particular scenario for a given size e.g., worst and best cases, try-
ing to find out the right workload based on user-specified features, heuristics
on the complexity of the data structures, or observations.

– Random sampling implies testing the program under an input randomly
distributed according to some probability distribution [55]. Random sampling
is efficient and easy to implement; in addition, sometimes it might be the



Inferring Performance from Code: A Review 311

only viable option when the program is too complex or some source-code
portions are unknown [19]. However, the main limitation is that without any
heuristic it could be extremely unlikely to observe interesting but rare system
behaviors [14].

– Symbolic execution exhaustively explores the execution tree of a program
using symbolic values for the input instead of concrete ones [5,33]. Each exe-
cution edge could be described by a condition formula on the input variables.
A path is described with the conjunction of all conditional formulas of its
edges, called the path condition. The execution tree can be explored with
any algorithms for traversing trees, such as breadth-first search. The search
is done by trying to symbolically satisfy the (partial) path condition: if the
set of solutions is not empty the search continues, by evaluating also child
edges conditions; otherwise, the path condition is impossible to satisfy and
thus that branch of the tree is marked as unreachable. Probabilistic symbolic
execution [24] arises when symbolic execution is combined with model count-
ing [26] in order to obtain not only reachability/unreachability information
but also path probabilities, by comparing the number of path solutions, i.e.,
the cardinality of the path condition admissibility set, with the cardinality
of the input set [18]. While in random testing the input distribution can be
arbitrarily chosen, probabilistic symbolic execution works only for uniformly
distributed input.

2.3 Output Model

The output models of the surveyed methods differ in many aspects, such as the
amount of information they encode, the predictive power or the efficiency of the
analysis techniques. They can be categorized as follows.

– Enriched call graphs and control-flow graphs. Mostly path or edges
probabilities obtained through the code analysis are stored in a compact form
in (enriched) control flow graphs or call graphs [6]. Since the total amount
of program’s paths is often exponential with respect to the number of visited
branches, these techniques typically limit the exploration of the hottest ones,
i.e., those that have the greatest impact on performance.

– Performance metrics. Often profiling approaches deal with discovering
some static or dynamic performance metrics, e.g., number of procedure
calls [20] and average runtimes [9]. The information level of this kind of model
is low since it has no predictive power and it gives no indication as to the
reason why the program execution shows those performance metrics.

– Bottlenecks detection provides insight on the worst case of the program
execution, which can be given in terms of hot paths detection [16], or input
values that trigger performance bottlenecks [3]. We consider this model to
have a low information level since the worst-case scenario does not capture
exhaustively the whole program’s behavior.

– Cost functions. All the approaches that provide some kind of cost-function
in terms of the size of input belong to this category. This function could



312 E. Incerto et al.

represent the average-case [65] as the asymptotic one [25]. Cost functions
provide insight on how the program behaves as the input grows and thus
they are considered medium-level informative. For instance, these techniques
do not allow to select the best alternative of an algorithm among a set of
functionally and asymptotically equivalent ones.

– Markov processes [47]. Markov processes are a fundamental model for soft-
ware systems [11]. To build a Markov model that is compact and has an ana-
lytical solution in a closed form (i.e., a Markov chain) it is necessary that the
analyzed program is memoryless. This implies that the probabilities of the
edges are all mutually independent.

– Target events probabilities [38,51]. These approaches aim to evaluate
the probability that certain target events happen. Even if these techniques
are typical of bug finding and do not give directly a performance measure,
they can provide insight on performance, since the target events could be
previously selected as costly functions or inefficient blocks of code.

3 Model Construction Methods

In this section, we briefly describe all the methods that infer performance from
code, presented in chronological order.

Gprof [28] periodically samples the program counter in a single program run
with a certain workload, and counts the number of calls and execution times of
each procedure. A post-processing step then propagates the sampled values to
the program call-graph to estimate the total running time in each procedure.

Sarkar et al. [52] propose a framework for obtaining the mean and variance
of the execution times for program’s procedures. These values are obtained by
a counter-based execution profile of the program and then inserted in the pro-
gram’s extended control flow graph. The proposed solution assumes that the
average execution time of a procedure call is independent of the call site and
thus the observed time value is multiplied by the frequency of that procedure
call, without any concern about the program history and data flow.

Ramalingam et al. [47] study the problem of determining how often, i.e.,
with what probability, a fact holds true during program execution. The input
is the program control flow graph whose edges are labeled with a probability.
The program is simply modeled as a first-order Markov chain, by assuming the
probability of the program execution following a particular branch is independent
of the execution history, which does not hold in general for real programs.

Ball et al. [6] focus on path profiling, i.e., computing paths’ frequencies and
performance metrics. They claim that since edges probabilities are not indepen-
dent, it is impossible to obtain paths frequencies by simply combining edges
frequencies. In many cases the next visited program instructions are dependent
on the execution history, thus making path profiling essential for finding accu-
rate performance models of programs. Unfortunately while edge profiling is linear
respect to the program size, path profiling is exponential. In order to tame such
issue, the authors provide a solution for runtime estimation of intra-procedural



Inferring Performance from Code: A Review 313

path frequencies of an acyclic version of the program, by minimizing the over-
head of the instrumentation. To further mitigate the scalability issues they only
consider dynamic paths, i.e., those that have been actually executed during the
program runtime monitoring.

Whole Program Paths (WPP) [36] is an approach to learn and represent
the program’s dynamic control flow, i.e., the set of executed paths. Differently
from previous approaches, it considers loop iterations as well as interprocedural
paths. The work shows also how to compute hot subpaths. The instrumentation
and path discovery phase is done relying on the published work [6]; the novelty of
WPP is the compression algorithm, which, by finding regularities (i.e., repeated
code), transforms the traces more compactly into the directed acyclic graph.

JinsightEx [54] samples performance metrics (i.e., execution time, memory
and other resource usage) of a Java program’s execution slices, which are user-
defined through dynamic or static criteria. The slices represent the primary view
of the performance models and they can be grouped in workloads to facilitate
larger analysis procedures. JinsightEx allows the user to browse this data to
evaluate the number of called objects, allocations, method calls; and to find
performance and memory problems in many industrial applications.

Magpie is an online performance modeling service that collects detailed
end-to-end traces from users on the running system and constructs probabilis-
tic models of its behavior [8,9]. It instruments the system using black-box
approaches such as kernel-level tracing for Windows [53] or WinPcap packet
capture library [48]. Magpie constructs a model of the observed behavior, by
clustering requests features and performance. Using these behavioral clusters it
is possible to detect anomalous requests and system malfunctions.

Ammons et al. [4] find bottlenecks, given some kind of profiles (e.g. call tree)
of the system execution. There are two algorithms: one that finds expensive paths
of a program and another that computes how the path cost differs from similar
execution runs. They build a summarized model of the program that is based
on heuristics, by collecting cost metrics of execution paths, and they provide an
interface for querying this model and comparing paths cost metrics to find the
worst-case. The approach is evaluated on a real-world case study.

Trend-prof [25] derives the asymptotic behavior of a program by computing
its empirical computational complexity. This is done by executing the program
on workloads of different sizes and user-specified numerical features, for example
the number of bytes of the input file. Measured execution times of program blocks
are fit against linear or power law models. Trend-prof is evaluated on several
large programs; the authors report cases in which the program meets its expected
bounds, performs better than its worst-case, or shows performance bugs.

Buse et al. [16] provide a descriptive statistical model of paths frequencies
that is obtained by static analysis of the source code with path enumeration. The
approach is validated on several benchmarks. The qualitative analysis provides
insights on which source code features characterize hot paths. Since the number
of program paths could be exponential, only interprocedural paths within one
single class are considered; calls across class boundaries are ignored. The idea



314 E. Incerto et al.

that underlines the approach is that the most likely hot paths are those that
have little impacts on the program state, intended in terms of changes of global
variables and stack. With this idea in mind, any machine learning algorithm
could be trained to select the source-level features that identify hot paths; in
the paper, Weka [31] is used. This approach suffers from overfitting, and in case
the behavior of the program is not fully captured by a single class, it may reveal
unuseful.

Zaparanuks et al. [65] exploit heuristics to determine a program’s approx-
imated cost functions from traces of representative program executions. This
approach automatically determines the input size, measures the program’s cost
for each input, and fits a cost function. Several cost measures are supported
such as algorithmic steps, number and size of reads/writes on data structures
and the number of objects creations. The program input type (e.g., recursive
data structures, arrays, and so on) and the input size are obtained by com-
puting the number of elements of the structure or its memory occupation. A
limitation of this approach is that it cannot infer the input size of programs
that do not work with data structures but on primitive types, and that since it
is based on heuristics, it returns an approximate cost-function rather than an
exact one.

Geldenhuys et al. [24] propose an extension of Java Symbolic PathFinder [44]
that estimates probabilities of each particular program locations using proba-
bilistic symbolic execution. Although the cost of symbolic execution is mitigated
by implementing some heuristics, the scalability of this technique is still a con-
cerning issue. In the paper, the authors present case studies involving 4 and
5 operations on a data structure, i.e., insertions and deletions from Binomial-
Heap, TreeMap, and BinaryTree. They claim the infeasibility of the analysis for
programs having a sequence of 14 operations.

Coppa et al. [21] present a profiling methodology to discover hidden asymp-
totic inefficiencies from program traces. Grow rates of routines as a function of
the input size is dynamically measured with a metric—the read memory size
(RMS)—that counts the accessed numbers of memory cells. Thee supporting
tool, named aprof, builds upon Valgrind [42] for the instrumentation. It deter-
mines the RMS and the minimum and maximum cost of executing routines
and exploits curve fitting and curve bounding to obtain the functions that best
describe their asymptotic behavior.

Sankaranarayanan et al. [51] statically analyze probabilistic programs, char-
acterized by variables that assume uncertain values during execution, by assign-
ing them probability distributions. They provide bounds on the probability that
a certain event happens and claim that to determine those bounds only an ade-
quate subset of program’s execution paths is needed. The initial set of paths is
obtained using random simulations and statistical tests, while probability bounds
are obtained using symbolic execution, a heuristic they implement for the prob-
lem of computing the volume of an n-dimensional convex polyhedron, namely
probabilistic volume bound computation and Monte Carlo sampling.



Inferring Performance from Code: A Review 315

Like the previous work, Luckow et al. [38] consider the probability of a tar-
get event in case of nondeterministic programs, e.g., multithreaded or distributed
programs. They firstly implement a symbolic tree scheduler to handle uncertain-
ties using Markov decision processes [46] (exact algorithm) or Monte Carlo sam-
pling (approximated algorithm) on the symbolic tree generated with a bounded
symbolic execution of the program. Then they exploit reinforcement learning [32]
to iteratively improve the tree of the approximate algorithm. Finally, model
counting techniques and some heuristics are used to compute branch probabili-
ties until reaching the target event.

Filieri et al. [22] propose a method for computing the probability of a target
event for a program. The method is based on Monte Carlo sampling to improve
Bayesian estimates of the sought probability. To speed up convergency they
propose the informed sampling technique, with which paths with high statistical
significance are explored first.

Borges et al. [12] describe a methodology for the automatic estimation of
the probability of a target event given an input profile described via continuous
probability distribution over the floating-point domain. The method supports
three strategies, based on gradient descent optimization [43] and on heuristics, to
improve the learning phase (hence, the scalability of the approach) that are based
on ranking the edge condition constraints of the symbolic execution according
to their impact on the convergence of the statistical analysis and counting.

Brünink et al. [13] present an approach to infer the performance specification
of a running system by creating runtime models and subsequently producing
performance assertions. These models are graphs that describe the expected
behavior of the system in its hot functions, tracing probabilities in a context-
sensitive or insensitive way, as needed. The context information is inserted when
the performance metrics (i.e., the runtimes) of the procedures, evaluated for
different contexts, belong to different clusters of values. Although they do not
exploit analytical rigorous models they succeed to obtain accurate performance.

PerfPlotter [18] is a framework for performance analysis of a program that
takes as input the source code and a usage profile and generates a probability
density cost function. PerfPlotter extends Java Symbolic PathFinder [44] using
probabilistic symbolic execution to detect paths with low and high probabilities
under the given usage profile, and the resulting set of paths are executed to
measure the effective runtime (precisely the subset chosen is that of the paths
with high or low probability whose termination within a certain number of steps
has been established). Finally, these results are combined and weighted with
paths’ probabilities to obtain the probability density function (PDF). This app-
roach can infer the PDF, still having a scalability limitation due to the usage of
probabilistic symbolic execution.

Luckow et al. [37] propose a technique based on guided symbolic execution
to generate the worst-case complexity function of the input size. First, symbolic
execution is run with a small value of input size, which is subsequently increased.
The symbolic execution is guided by selecting only the paths that account for the
worst cases. To be more accurate, during path selection the history of choices



316 E. Incerto et al.

is taken into account when deciding which branch to execute next. Thus, the
method produces a context-sensitive model of worst-case paths that are analyzed
to fit the cost function using some resource consumption metrics (e.g., execution
time or memory usage).

Wang et al. [60] present an approach to analyze the performance of appli-
cations deployed on Cloud. The approach first tests the Cloud infrastructure
with typical micro-benchmarks and evaluates the performance distribution of
each resource, e.g., memory and CPU. Then it tests the user-defined application
with a given input that characterizes the program’s typical workload, result-
ing in the resource usage profile of the target application. Finally, it conducts
the same tests on the application deployed in the cloud producing the baseline
performance. By combining these models the approach provides statistics that
allow the developer to understand which kind of performance specification the
application meets.

Speedoo [20] is an approach to identify groups of methods that are crucial to
the program’s performance and whose optimization would lead to the best speed-
up possible. It suggests optimization opportunities for these methods based on
performance (anti-)patterns detection, e.g., cyclic invocation, expensive recur-
sion. Speedoo ranks the methods based on metrics of architectural importance
(e.g. the size of the sub-calls tree) according to the Design Rule Hierarchy algo-
rithm (DRH), defined by Cai et al. and Wong et al. [17,62], dynamic execution
metrics (e.g., CPU time), and static complexity metrics (e.g., the number of
loops).

PT4Cloud [30] is concerned about obtaining performance models of appli-
cation developed on the cloud, addressing the issue of performance uncertainty
due to IaaS resource managing. Their purpose is to find reliable stop conditions
to test runs to cut down the cost of performance testing. They test the selected
benchmarks with their pre-specified workloads and compute the performance
distribution of the deployed application. By using a non-parametric statistical
approach, they stop testing when they find that two subsequent distribution are
statistically equivalent.

PerfXRL [3] presents an approach to find input values that trigger the per-
formance bottlenecks of the system. Given an input space, possibly very large
with multiple possible combinations, PerfXRL dynamically analyzes the system
by executing it with a certain input and then guiding the analysis with the
resulting cost reward value, using reinforcement learning.

4 Conclusion and Future Lines of Reseach

Performance is a crucial non-functional property that affects the user’s percep-
tion of the software’s quality. While it could be useful to know performance from
early development stages, model-driven approaches may not always be applica-
ble. When the code is continuously developed the real software source-code may
differ considerably from model artifacts. In this scenario, performance models
should be inferred directly from the deployed system. In this work we present a



Inferring Performance from Code: A Review 317

Table 1. Summary of the analyzed methods

Method Learning
Techn.

Exploration Techn. Output Model Info. Level Scalability

[28] Dynamic
analysis

Runtime monitoring Enriched call-graph Low Medium

[52] Static and
dynamic
analysis

Offline monitoring with
given input

Performance metrics
(sub-routines execution
times and variance)

Low Low

[47] Static analysis CFG sequential exploration Markov Chain Medium Medium-low

[6] Dynamic
analysis

Runtime monitoring Enriched CFG with acyclic
intraprocedural path
frequencies DAG (Directed
Acyclic Graph)

Medium Medium-high

[36] Dynamic
analysis

Uses [6] Whole program paths and
hot subpaths detection

Medium Medium-high

[54] Dynamic
analysis

Realistic traces as input Performance metrics
organized in execution
slices

Low Medium

[9] Dynamic
analysis

Runtime monitoring Performance metrics
organized in clusters of
request features

Low High

[4] Dynamic
analysis

Profiles navigation
searching the longest path

Bottlenecks detection Medium-low Medium-high

[25] Dynamic
analysis

Offline monitoring of
chosen workloads described
with numerical features

Computational complexity
function of user-specified
features

Medium Medium

[16] Static analysis Loop bounded static path
enumeration and counting
with machine learning

Hot paths identification Medium-low Medium

[65] Dynamic
analysis

Realistic traces as input Approximate descriptive
cost function

Medium-low Medium

[24] Static analysis Symbolic execution Paths probabilities Medium Low

[21] Dynamic
analysis

Traces as input Asymptotic cost function Medium Medium

[51] Simulation +
Static analysis

Random sampling with
Monte Carlo + symbolic
execution

Target events probabilities Medium Medium

[38] Static analysis
+ simulation

Symbolic execution +
Monte Carlo sampling and
reinforcement learning

Target event probability Low Medium-high

[22] Static analysis
+ simulation

Symbolic execution +
Monte Carlo sampling and
Hypothesis testing (i.e.
Importance Sampling)

Target event probability Low Medium-high

[12] Static analysis Symbolic execution Target event probability Low Medium

[13] Dynamic
analysis

Runtime monitoring Performance metrics of hot
functions (context sensitive
profiling)

Medium-high Medium

[18] Static analysis Symbolic execution Probability density function
of program runtime

High Medium-low

[37] Static analysis Symbolic execution +
policy guided exploration

Asymptotic cost-function Medium High

[60] Dynamic
analysis

Offline monitoring with
typical benchmarks (Cloud)
and typical input
(stand-alone)

Cloud application
performance statistics

Medium High (Cloud)

[20] Static and
dynamic
analysis

Design Rule Hierarchy
algorithm + profiling tools

Optimization suggestions Medium-low High

[30] Dynamic
analysis

Testing with given inputs +
non-parametric statistical
approach for stop
conditions

Cloud application
performance distributions

High High (Cloud)

[3] Dynamic
analysis

Reinforcement learning
guided testing

Input values that trigger
performance bottlenecks

Low High



318 E. Incerto et al.

literature review of methods that produce performance information from code,
trying to underline typical inefficiencies and future lines of research. Table 1
presents a summary of the evaluated methodologies and a comparison according
to the proposed analysis dimensions.

Initially, the focus of the literature was on system profiling (mainly through
dynamic analysis), using runtime monitoring [6,9,36] or offline monitoring start-
ing from some realistic representative traces of program executions [25,34,54].
Recently, efforts have moved toward improving the applicability and scalability
of symbolic execution (mainly with static analysis) [22,37,38]. Heuristics tried
to speed up learning by approximating the paths probabilities [51] or by limiting
the set of paths considered by the analysis to the most representative ones, i.e.,
worst-case, best-case, average-case [18].

In addition, most of the methodologies analyzed are able to learn low or
medium information content models, such as performance metrics [13,54] or
identification of hot paths [4,16]. The work presented by Ramalingam and Gane-
san [47] is the only approach that extracts a model with a high predictive power
like a Markov chain. Unfortunately, their model needs the memoryless assump-
tion, i.e., the probability of the program execution following a particular branch
is independent of the execution history, which obviously does not hold true in
many cases. Also noteworthy are all the approaches that learn the probability
density functions of the execution cost of the program [18,30], a compact but at
the same time informative performance model, as it encapsulates the execution
probabilities and the runtime.

Another interesting consideration, present in works of Brünink et al. and
Luckow et al. [13,37], is to consider the impact of the context information on
the probabilities of execution of the path, creating a context-aware model. It
is evident, indeed, that the future behavior of the program is highly dependent
on the state (i.e., the values of the variables) and therefore on past history.
Explicitly considering this information in the performance model can provide
a new and interesting view and allow the developer to better understand the
reasons behind the performance behavior of a program. One could envisage the
use of models with high predictive and implicitly context-sensitive content such
as variable-length Markov chains [15,49], typically used for text analysis and
pattern recognition. These techniques, never used for performance, have been
used by Mazeroff et al. [39,40] to describe the behavior of the system in order
to identify anomalies and malicious behaviors.

References

1. Android Developers’ Guide: Threading performance. https://developer.android.
com/topic/performance/threads.html. Accessed 23 July 2020

2. NASA delays satellite launch after finding bugs in software program. https://
fcw.com/Articles/1998/04/19/NASA-delays-satellite-launch-after-finding-bugs-
in-software-program.aspx. Accessed 4 Feb 2018

3. Ahmad, T., Ashraf, A., Truscan, D., Porres, I.: Exploratory performance testing
using reinforcement learning. In: 2019 45th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pp. 156–163. IEEE (2019)

https://developer.android.com/topic/performance/threads.html
https://developer.android.com/topic/performance/threads.html
https://fcw.com/Articles/1998/04/19/NASA-delays-satellite-launch-after-finding-bugs-in-software-program.aspx
https://fcw.com/Articles/1998/04/19/NASA-delays-satellite-launch-after-finding-bugs-in-software-program.aspx
https://fcw.com/Articles/1998/04/19/NASA-delays-satellite-launch-after-finding-bugs-in-software-program.aspx


Inferring Performance from Code: A Review 319

4. Ammons, G., Choi, J.-D., Gupta, M., Swamy, N.: Finding and removing perfor-
mance bottlenecks in large systems. In: Odersky, M. (ed.) ECOOP 2004. LNCS,
vol. 3086, pp. 172–196. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24851-4 8

5. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. (CSUR) 51(3), 1–39 (2018)

6. Ball, T., Larus, J.R.: Efficient path profiling. In: Proceedings of the 29th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 29, pp. 46–
57. IEEE (1996)

7. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: a survey. IEEE Trans. Softw. Eng. 30(5), 295–
310 (2004)

8. Barham, P., Donnelly, A., Isaacs, R., Mortier, R.: Using magpie for request extrac-
tion and workload modelling. In: OSDI, vol. 4, p. 18 (2004)

9. Barham, P., Isaacs, R., Mortier, R., Narayanan, D.: Magpie: online modelling and
performance-aware systems. In: HotOS, pp. 85–90 (2003)

10. Becker, S., Koziolek, H., Reussner, R.: Model-based performance prediction with
the palladio component model. In: Proceedings of the 6th International Workshop
on Software and Performance (WOSP), pp. 54–65 (2007)

11. Bolch, G., Greiner, S., De Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applica-
tions. Wiley, Hoboken (2006)

12. Borges, M., Filieri, A., d’Amorim, M., Păsăreanu, C.S.: Iterative distribution-aware
sampling for probabilistic symbolic execution. In: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, pp. 866–877 (2015)

13. Brünink, M., Rosenblum, D.S.: Mining performance specifications. In: Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 39–49 (2016)

14. Bucklew, J.: Introduction to Rare Event Simulation. Springer, New York (2013).
https://doi.org/10.1007/978-1-4757-4078-3

15. Bühlmann, P., Wyner, A.J., et al.: Variable length Markov chains. Ann. Stat.
27(2), 480–513 (1999)

16. Buse, R.P., Weimer, W.: The road not taken: estimating path execution frequency
statically. In: 2009 IEEE 31st International Conference on Software Engineering,
pp. 144–154. IEEE (2009)

17. Cai, Y., Sullivan, K.J.: Modularity analysis of logical design models. In: 21st
IEEE/ACM International Conference on Automated Software Engineering (ASE
2006), pp. 91–102. IEEE (2006)

18. Chen, B., Liu, Y., Le, W.: Generating performance distributions via probabilis-
tic symbolic execution. In: Proceedings of the 38th International Conference on
Software Engineering, pp. 49–60 (2016)

19. Chen, T.Y., Kuo, F.C., Merkel, R.G., Tse, T.: Adaptive random testing: the art
of test case diversity. J. Syst. Softw. 83(1), 60–66 (2010)

20. Chen, Z., et al.: Speedoo: prioritizing performance optimization opportunities. In:
Proceedings of the 40th International Conference on Software Engineering, pp.
811–821 (2018)

21. Coppa, E., Demetrescu, C., Finocchi, I.: Input-sensitive profiling. ACM SIGPLAN
Not. 47(6), 89–98 (2012)

22. Filieri, A., Păsăreanu, C.S., Visser, W., Geldenhuys, J.: Statistical symbolic exe-
cution with informed sampling. In: Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, pp. 437–448 (2014)

https://doi.org/10.1007/978-3-540-24851-4_8
https://doi.org/10.1007/978-3-540-24851-4_8
https://doi.org/10.1007/978-1-4757-4078-3


320 E. Incerto et al.

23. Garcia, J., Krka, I., Mattmann, C., Medvidovic, N.: Obtaining ground-truth soft-
ware architectures. In: Proceedings of the 35th International Conference on Soft-
ware Engineering (ICSE), pp. 901–910 (2013)

24. Geldenhuys, J., Dwyer, M.B., Visser, W.: Probabilistic symbolic execution. In: Pro-
ceedings of the 2012 International Symposium on Software Testing and Analysis,
pp. 166–176 (2012)

25. Goldsmith, S.F., Aiken, A.S., Wilkerson, D.S.: Measuring empirical computational
complexity. In: Proceedings of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pp. 395–404 (2007)

26. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting (2008)
27. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic program-

ming. In: Proceedings of the Future of Software Engineering (FOSE), pp. 167–181
(2014)

28. Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: a call graph execution profiler.
ACM Sigplan Not. 17(6), 120–126 (1982)

29. Harman, M., O’Hearn, P.: From start-ups to scale-ups: opportunities and open
problems for static and dynamic program analysis. In: SCAM (2018)

30. He, S., Manns, G., Saunders, J., Wang, W., Pollock, L., Soffa, M.L.: A statistics-
based performance testing methodology for cloud applications. In: Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 188–199 (2019)

31. Holmes, G., Donkin, A., Witten, I.H.: WEKA: a machine learning workbench.
In: Proceedings of ANZIIS 1994-Australian New Zealnd Intelligent Information
Systems Conference, pp. 357–361. IEEE (1994)

32. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J.
Artif. Intell. Res. 4, 237–285 (1996)

33. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

34. Kluge, M., Knüpfer, A., Nagel, W.E.: Knowledge based automatic scalability anal-
ysis and extrapolation for MPI programs. In: Cunha, J.C., Medeiros, P.D. (eds.)
Euro-Par 2005. LNCS, vol. 3648, pp. 176–184. Springer, Heidelberg (2005). https://
doi.org/10.1007/11549468 22

35. Koziolek, H.: Performance evaluation of component-based software systems: a sur-
vey. Perform. Eval. 67(8), 634–658 (2010)

36. Larus, J.R.: Whole program paths. ACM SIGPLAN Not. 34(5), 259–269 (1999)
37. Luckow, K., Kersten, R., Păsăreanu, C.: Symbolic complexity analysis using

context-preserving histories. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST), pp. 58–68. IEEE (2017)

38. Luckow, K., Păsăreanu, C.S., Dwyer, M.B., Filieri, A., Visser, W.: Exact and
approximate probabilistic symbolic execution for nondeterministic programs. In:
Proceedings of the 29th ACM/IEEE International Conference on Automated Soft-
ware Engineering, pp. 575–586 (2014)

39. Mazeroff, G., De, V., Jens, C., Michael, G., Thomason, G.: Probabilistic trees and
automata for application behavior modeling. In: 41st ACM Southeast Regional
Conference Proceedings (2003)

40. Mazeroff, G., Gregor, J., Thomason, M., Ford, R.: Probabilistic suffix models for
API sequence analysis of windows XP applications. Pattern Recogn. 41(1), 90–101
(2008)

https://doi.org/10.1007/11549468_22
https://doi.org/10.1007/11549468_22


Inferring Performance from Code: A Review 321

41. Möbius, C., Dargie, W., Schill, A.: Power consumption estimation models for pro-
cessors, virtual machines, and servers. IEEE Trans. Parallel Distrib. Syst. 25(6),
1600–1614 (2014)

42. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. ACM Sigplan Not. 42(6), 89–100 (2007)

43. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Heidelberg (2006).
https://doi.org/10.1007/978-0-387-40065-5

44. Păsăreanu, C.S., Rungta, N.: Symbolic pathfinder: symbolic execution of Java byte-
code. In: Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering, pp. 179–180 (2010)

45. Perez-Palacin, D., Mirandola, R.: Uncertainties in the modeling of self-adaptive
systems: a taxonomy and an example of availability evaluation. In: Proceedings
of the 5th ACM/SPEC International Conference on Performance Engineering, pp.
3–14 (2014)

46. Puterman, M.L.: Markov decision processes. Handb. Oper. Res. Manag. Sci. 2,
331–434 (1990)

47. Ramalingam, G.: Data flow frequency analysis. ACM SIGPLAN Not. 31(5), 267–
277 (1996)

48. Risso, F., Degioanni, L.: An architecture for high performance network analysis. In:
Proceedings of the Sixth IEEE Symposium on Computers and Communications,
pp. 686–693. IEEE (2001)

49. Ron, D., Singer, Y., Tishby, N.: The power of amnesia: learning probabilistic
automata with variable memory length. Mach. Learn. 25(2–3), 117–149 (1996).
https://doi.org/10.1023/A:1026490906255

50. Rosendahl, M.: Automatic complexity analysis. In: Proceedings of the Fourth Inter-
national Conference on Functional Programming Languages and Computer Archi-
tecture, pp. 144–156 (1989)

51. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilis-
tic programs: inferring whole program properties from finitely many paths. In:
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 447–458 (2013)

52. Sarkar, V.: Determining average program execution times and their variance. In:
Proceedings of the ACM SIGPLAN 1989 Conference on Programming Language
Design and Implementation, pp. 298–312 (1989)

53. Schlabach, T.: Insight into event tracing for windows (2019)
54. Sevitsky, G., De Pauw, W., Konuru, R.: An information exploration tool for perfor-

mance analysis of Java programs. In: Proceedings Technology of Object-Oriented
Languages and Systems, TOOLS 38, pp. 85–101. IEEE (2001)

55. Sharir, M., Pnueli, A., Hart, S.: Verification of probabilistic programs. SIAM J.
Comput. 13(2), 292–314 (1984)

56. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation. Princeton
University Press, Princeton (2009)

57. Tribastone, M.: Towards software performance by construction. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 466–470. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03418-4 27

58. Tribastone, M., Gilmore, S.: Automatic extraction of PEPA performance models
from UML activity diagrams annotated with the MARTE profile. In: Proceedings
of the Seventh International Workshop on Software and Performance (WOSP)
(2008)

https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1023/A:1026490906255
https://doi.org/10.1007/978-3-030-03418-4_27


322 E. Incerto et al.

59. Tribastone, M., Gilmore, S.: Automatic translation of UML sequence diagrams into
PEPA models. In: Fifth International Conference on the Quantitative Evaluation
of Systems (QEST), pp. 205–214 (2008)

60. Wang, W., et al.: Testing cloud applications under cloud-uncertainty performance
effects. In: 2018 IEEE 11th International Conference on Software Testing, Verifi-
cation and Validation (ICST), pp. 81–92. IEEE (2018)

61. Wegbreit, B.: Mechanical program analysis. Commun. ACM 18(9), 528–539 (1975)
62. Wong, S., Cai, Y., Valetto, G., Simeonov, G., Sethi, K.: Design rule hierarchies

and parallelism in software development tasks. In: 2009 IEEE/ACM International
Conference on Automated Software Engineering, pp. 197–208. IEEE (2009)

63. Woodside, M., Franks, G., Petriu, D.C.: The future of software performance engi-
neering. In: Proceedings of the Future of Software Engineering (FOSE), pp. 171–
187 (2007)

64. Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Merseguer, J.: Perfor-
mance by unified model analysis (PUMA). In: Proceedings of the 5th International
Workshop on Software and Performance, pp. 1–12. ACM, New York (2005)

65. Zaparanuks, D., Hauswirth, M.: Algorithmic profiling. In: Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pp. 67–76 (2012)


	Inferring Performance from Code: A Review
	1 Introduction
	2 Analysis Dimensions
	2.1 Learning Techniques
	2.2 Exploration Techniques
	2.3 Output Model

	3 Model Construction Methods
	4 Conclusion and Future Lines of Reseach
	References




