
Tiziana Margaria · Bernhard Steffen (Eds.)
LN

CS
 1

24
76

9th International Symposium
on Leveraging Applications of Formal Methods, ISoLA 2020
Rhodes, Greece, October 20–30, 2020, Proceedings, Part I

Leveraging Applications
of Formal Methods,
Verification and Validation
Verification Principles

Lecture Notes in Computer Science 12476

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Tiziana Margaria • Bernhard Steffen (Eds.)

Leveraging Applications
of Formal Methods,
Verification and Validation
Verification Principles

9th International Symposium
on Leveraging Applications of Formal Methods, ISoLA 2020
Rhodes, Greece, October 20–30, 2020
Proceedings, Part I

123

Editors
Tiziana Margaria
University of Limerick and Lero
Limerick, Ireland

Bernhard Steffen
TU Dortmund
Dortmund, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-61361-7 ISBN 978-3-030-61362-4 (eBook)
https://doi.org/10.1007/978-3-030-61362-4

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
Chapters 8, 9, and 26 are licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/). For further details see license information in the
chapters.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5547-9739
https://orcid.org/0000-0001-9619-1558
https://doi.org/10.1007/978-3-030-61362-4
http://creativecommons.org/licenses/by/4.0/

Introduction

It is our responsibility, as general and program chairs, to welcome the participants to
the 9th International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA), planned to take place in Rhodes, Greece, during
October 20–30, 2020, endorsed by the European Association of Software Science and
Technology (EASST).

This year’s event follows the tradition of its symposia forerunners held in Paphos,
Cyprus (2004 and 2006), Chalkidiki, Greece (2008), Crete, Greece (2010 and 2012),
Corfu, Greece (2014 and 2016), and most recently in Limassol, Cyprus (2018), and the
series of ISoLA workshops in Greenbelt, USA (2005), Poitiers, France (2007),
Potsdam, Germany (2009), Vienna, Austria (2011), and Palo Alto, USA (2013).

Considering that this year’s situation is unique and unlike any previous one due to
the ongoing COVID-19 pandemic, and that ISoLA’s symposium touch and feel is much
unlike most conventional, paper-based conferences, after much soul searching we are
faced with a true dilemma. “Virtualizing” the event, as many conferences have done,
violates the true spirit of the symposium, which is rooted in the gathering of com-
munities and the discussions within and across the various communities materialized in
the special tracks and satellite events. Keeping with the physical meeting and holding it
in a reduced form (as many may not be able to or feel comfortable with travel) under
strict social distancing rules may also end up not being feasible. At the time of writing
there is a resurgence of cases in several countries, many nations are compiling “green
lists” of countries with which they entertain free travel relations, and these lists are
updated – most frequently shortened – at short notice, with severe consequence for the
travelers. Many governments and universities are again strengthening the travel
restrictions for their employees, and many of us would anyway apply caution due to
our own specific individual situation.

To be able to react as flexibly as possible to this situation, we decided to split ISoLA
2020 into two parts, one this year and one in October 2021, with the track organizers
deciding when their track will take place. So far both dates have promoters, but it may
still happen that, in the end, the entire event needs to move. All accepted papers are
published in time, but some tracks will present their papers at the 2021 event.

As in the previous editions, ISoLA 2020 provides a forum for developers, users, and
researchers to discuss issues related to the adoption and use of rigorous tools and
methods for the specification, analysis, verification, certification, construction, test, and
maintenance of systems from the point of view of their different application domains.
Thus, since 2004, the ISoLA series of events serves the purpose of bridging the gap
between designers and developers of rigorous tools on one side, and users in engi-
neering and in other disciplines on the other side. It fosters and exploits synergetic
relationships among scientists, engineers, software developers, decision makers, and
other critical thinkers in companies and organizations. By providing a specific,
dialogue-oriented venue for the discussion of common problems, requirements,

algorithms, methodologies, and practices, ISoLA aims in particular at supporting
researchers in their quest to improve the usefulness, reliability, flexibility, and effi-
ciency of tools for building systems, and users in their search for adequate solutions to
their problems.

The program of the symposium consists of a collection of special tracks devoted to
the following hot and emerging topics:

• Reliable Smart Contracts: State-of-the-art, Applications, Challenges and Future
Directions
(Organizers: Gordon Pace, César Sànchez, Gerardo Schneider)

• Engineering of Digital Twins for Cyber-Physical Systems
(Organizers: John Fitzgerald, Pieter Gorm Larsen, Tiziana Margaria, Jim
Woodcock)

• Verification and Validation of Concurrent and Distributed Systems
(Organizers: Cristina Seceleanu, Marieke Huisman)

• Modularity and (De-)composition in Verification
(Organizers: Reiner Hähnle, Eduard Kamburjan, Dilian Gurov)

• Software Verification Tools
(Organizers: Markus Schordan, Dirk Beyer, Irena Boyanova)

• X-by-Construction: Correctness meets Probability
(Organizers: Maurice H. ter Beek, Loek Cleophas, Axel Legay, Ina Schaefer,
Bruce W. Watson)

• Rigorous Engineering of Collective Adaptive Systems
(Organizers: Rocco De Nicola, Stefan Jähnichen, Martin Wirsing)

• Automated Verification of Embedded Control Software
(Organizers: Dilian Gurov, Paula Herber, Ina Schaefer)

• Automating Software Re-Engineering
(Organizers: Serge Demeyer, Reiner Hähnle, Heiko Mantel)

• 30 years of Statistical Model Checking!
(Organizers: Kim G. Larsen, Axel Legay)

• From Verification to Explanation
(Organizers: Holger Herrmanns, Christel Baier)

• Formal methods for DIStributed COmputing in future RAILway systems (DisCo-
Rail 2020)
(Organizers: Alessandro Fantechi, Stefania Gnesi, Anne Haxthausen)

• Programming: What is Next?
(Organizers: Klaus Havelund, Bernhard Steffen)

With the embedded events:

• RERS: Challenge on Rigorous Examination of Reactive Systems (Falk Howar,
Markus Schordan, Bernhard Steffen)

• Doctoral Symposium and Poster Session (A. L. Lamprecht)
• Industrial Day (Falk Howar, Johannes Neubauer, Andreas Rausch)

vi Introduction

Colocated with the ISoLA symposium is:

• STRESS 2020 – 5th International School on Tool-based Rigorous Engineering of
Software Systems (J. Hatcliff, T. Margaria, Robby, B. Steffen)

Altogether the ISoLA 2020 proceedings comprises four volumes, Part 1: Verifica-
tion Principles, Part 2: Engineering Principles, Part 3: Applications, and Part 4: Tools,
Trends, and Tutorials, which also covers the associated events.

We thank the track organizers, the members of the Program Committee and their
referees for their effort in selecting the papers to be presented, the local organization
chair, Petros Stratis, and the EasyConferences team for their continuous and precious
support during the entire two-year period preceding the events, and Springer for being,
as usual, a very reliable partner for the proceedings production. Finally, we are grateful
to Kyriakos Georgiades for his continuous support for the website and the program,
and to Markus Frohme and Julia Rehder for their help with the editorial system
Equinocs.

Special thanks are due to the following organization for their endorsement: EASST
(European Association of Software Science and Technology) and Lero – The Irish
Software Research Centre, and our own institutions – TU Dortmund University and the
University of Limerick.

We wish you, as an ISoLA participant, a wonderful experience at this edition, and
for you, reading the proceedings at a later occasion, valuable new insights that hope-
fully contribute to your research and its uptake.

August 2020 Tiziana Margaria
Bernhard Steffen

Introduction vii

Organization

Symposium Chair

Tiziana Margaria University of Limerick and Lero, Ireland

PC Chair

Bernhard Steffen TU Dortmund University, Germany

PC Members

Christel Baier Technische Universität Dresden, Germany
Maurice ter Beek ISTI-CNR, Italy
Dirk Beyer LMU Munich, Germany
Irena Bojanova NIST, USA
Loek Cleophas Eindhoven University of Technology, The Netherlands
Rocco De Nicola IMT Lucca, Italy
Serge Demeyer Universiteit Antwerpen, Belgium
Alessandro Fantechi University of Florence, Italy
John Fitzgerald Newcastle University, UK
Stefania Gnesi CNR, Italy
Kim Guldstrand Larsen Aalborg University, Denmark
Dilian Gurov KTH Royal Institute of Technology, Sweden
John Hatcliff Kansas State University, USA
Klaus Havelund Jet Propulsion Laboratory, USA
Anne E. Haxthausen Technical University of Denmark, Denmark
Paula Herber University of Münster, Germany
Holger Hermanns Saarland University, Germany
Falk Howar Dortmund University of Technology and

Fraunhofer ISST, Germany
Marieke Huisman University of Twente, The Netherlands
Reiner Hähnle Technische Universität Darmstadt, Germany
Stefan Jähnichen TU Berlin, Germany
Eduard Kamburjan Technische Universität Darmstadt, Germany
Anna-Lena Lamprecht Utrecht University, The Netherlands
Peter Gorm Larsen Aarhus University, Denmark
Axel Legay Université Catholique de Louvain, Belgium
Heiko Mantel Technische Universität Darmstadt, Germany
Tiziana Margaria University of Limerick and Lero, Ireland
Johannes Neubauer Materna, Germany
Gordon Pace University of Malta, Malta
Cesar Sanchez IMDEA Software Institute, Madrid, Spain

Ina Schaefer TU Braunschweig, Germany
Gerardo Schneider University of Gothenburg, Sweden
Markus Schordan Lawrence Livermore National Laboratory, USA
Cristina Seceleanu Mälardalen University, Sweden
Bernhard Steffen TU Dortmund University, Germany
Bruce Watson Stellenbosch University, South Africa
Martin Wirsing Ludwig-Maximilians-Universität München, Germany
James Woodcock University of York, UK

Reviewers

Aho, Pekka
Aichernig, Bernhard
Backeman, Peter
Baranov, Eduard
Basile, Davide
Beckert, Bernhard
Bensalem, Saddek
Bettini, Lorenzo
Beyer, Dirk
Bourr, Khalid
Bubel, Richard
Bures, Tomas
Casadei, Roberto
Castiglioni, Valentina
Ciatto, Giovanni
Cimatti, Alessandro
Damiani, Ferruccio
Di Marzo Serugendo, Giovanna
Duong, Tan
Filliâtre, Jean-Christophe
Fränzle, Martin
Gabor, Thomas
Gadducci, Fabio
Galletta, Letterio
Geisler, Signe
Gerostathopoulos, Ilias
Guanciale, Roberto
Heinrich, Robert
Hillston, Jane
Hnetynka, Petr
Hoffmann, Alwin

Hungar, Hardi
Inverso, Omar
Iosti, Simon
Jacobs, Bart
Jaeger, Manfred
Jensen, Peter
Johnsen, Einar Broch
Jongmans, Sung-Shik
Jähnichen, Stefan
Kanav, Sudeep
Konnov, Igor
Kosak, Oliver
Kosmatov, Nikolai
Kretinsky, Jan
Könighofer, Bettina
Lanese, Ivan
Lecomte, Thierry
Lluch Lafuente, Alberto
Loreti, Michele
Maggi, Alessandro
Mariani, Stefano
Mazzanti, Franco
Morichetta, Andrea
Nyberg, Mattias
Omicini, Andrea
Orlov, Dmitry
Pacovsky, Jan
Parsai, Ali
Peled, Doron
Piho, Paul
Pugliese, Rosario

x Organization

Pun, Violet Ka I
Reisig, Wolfgang
Schlingloff, Holger
Seifermann, Stephan
Soulat, Romain
Steinhöfel, Dominic
Stolz, Volker
Sürmeli, Jan
Tiezzi, Francesco
Tini, Simone
Tognazzi, Stefano
Tribastone, Mirco

Trubiani, Catia
Tuosto, Emilio
Ulbrich, Mattias
Vandin, Andrea
Vercammen, Sten
Viroli, Mirko
Wadler, Philip
Wanninger, Constantin
Weidenbach, Christoph
Wirsing, Martin
Zambonelli, Franco

Organization xi

Contents – Part I

Modularity and (De-)Composition in Verification

Who Carries the Burden of Modularity? Introduction to ISoLA 2020 Track
on Modularity and (De-)composition in Verification 3

Dilian Gurov, Reiner Hähnle, and Eduard Kamburjan

On Testing Message-Passing Components . 22
Alex Coto, Roberto Guanciale, and Emilio Tuosto

Composing Communicating Systems, Synchronously. 39
Franco Barbanera, Ivan Lanese, and Emilio Tuosto

Modular Verification of JML Contracts Using Bounded Model Checking. . . . 60
Bernhard Beckert, Michael Kirsten, Jonas Klamroth,
and Mattias Ulbrich

On Slicing Software Product Line Signatures . 81
Ferruccio Damiani, Michael Lienhardt, and Luca Paolini

Assumption-Commitment Types for Resource Management in Virtually
Timed Ambients . 103

Einar Broch Johnsen, Martin Steffen, and Johanna Beate Stumpf

Abstraction and Genericity in Why3 . 122
Jean-Christophe Filliâtre and Andrei Paskevich

Verification Artifacts in Cooperative Verification: Survey and Unifying
Component Framework . 143

Dirk Beyer and Heike Wehrheim

An Interface Theory for Program Verification. 168
Dirk Beyer and Sudeep Kanav

Scaling Correctness-by-Construction . 187
Alexander Knüppel, Tobias Runge, and Ina Schaefer

X-by-Construction: Correctness Meets Probability

X-by-Construction: Correctness Meets Probability . 211
Maurice H. ter Beek, Loek Cleophas, Axel Legay, Ina Schaefer,
and Bruce W. Watson

Correctness by Construction for Probabilistic Programs 216
Annabelle McIver and Carroll Morgan

Components in Probabilistic Systems: Suitable by Construction 240
Christel Baier, Clemens Dubslaff, Holger Hermanns, Michaela Klauck,
Sascha Klüppelholz, and Maximilian A. Köhl

Behavioral Specification Theories: An Algebraic Taxonomy. 262
Uli Fahrenberg and Axel Legay

Approximating Euclidean by Imprecise Markov Decision Processes 275
Manfred Jaeger, Giorgio Bacci, Giovanni Bacci,
Kim Guldstrand Larsen, and Peter Gjøl Jensen

Shield Synthesis for Reinforcement Learning . 290
Bettina Könighofer, Florian Lorber, Nils Jansen, and Roderick Bloem

Inferring Performance from Code: A Review . 307
Emilio Incerto, Annalisa Napolitano, and Mirco Tribastone

30 Years of Statistical Model Checking!

30 Years of Statistical Model Checking . 325
Kim G. Larsen and Axel Legay

Statistical Model Checking: Black or White? . 331
Pranav Ashok, Przemysław Daca, Jan Křetínský,
and Maximilian Weininger

Probabilistic Mission Planning and Analysis for Multi-agent Systems 350
Rong Gu, Eduard Enoiu, Cristina Seceleanu, and Kristina Lundqvist

30 Years of Simulation-Based Quantitative Analysis Tools: A Comparison
Experiment Between Möbius and Uppaal SMC. 368

Davide Basile, Maurice H. ter Beek, Felicita Di Giandomenico,
Alessandro Fantechi, Stefania Gnesi, and Giorgio O. Spagnolo

Fluid Model-Checking in UPPAAL for Covid-19 . 385
Peter G. Jensen, Kenneth Y. Jørgensen, Kim G. Larsen,
Marius Mikučionis, Marco Muñiz, and Danny B. Poulsen

Improving Secure and Robust Patient Service Delivery 404
Eduard Baranov, Thomas Given-Wilson, and Axel Legay

xiv Contents – Part I

Verification and Validation of Concurrent and Distributed Systems

Verification and Validation of Concurrent and Distributed Systems
(Track Summary) . 421

Marieke Huisman and Cristina Seceleanu

Step-Wise Development of Provably Correct Actor Systems. 426
Bernhard K. Aichernig and Benedikt Maderbacher

Violation Witnesses and Result Validation for Multi-Threaded Programs:
Implementation and Evaluation with CPAchecker . 449

Dirk Beyer and Karlheinz Friedberger

Tendermint Blockchain Synchronization: Formal Specification
and Model Checking . 471

Sean Braithwaite, Ethan Buchman, Igor Konnov, Zarko Milosevic,
Ilina Stoilkovska, Josef Widder, and Anca Zamfir

Safe Sessions of Channel Actions in Clojure: A Tour of the
Discourje Project. 489

Ruben Hamers and Sung-Shik Jongmans

Modular Verification of Liveness Properties of the I/O Behavior
of Imperative Programs . 509

Bart Jacobs

Formal Verification of an Industrial Distributed Algorithm:
An Experience Report . 525

Nikolai Kosmatov, Delphine Longuet, and Romain Soulat

Deploying TESTAR to Enable Remote Testing in an Industrial CI Pipeline:
A Case-Based Evaluation . 543

Fernando Pastor Ricós, Pekka Aho, Tanja Vos, Ismael Torres Boigues,
Ernesto Calás Blasco, and Héctor Martínez Martínez

A Formal Model of the Kubernetes Container Framework 558
Gianluca Turin, Andrea Borgarelli, Simone Donetti,
Einar Broch Johnsen, Silvia Lizeth Tapia Tarifa, and Ferruccio Damiani

Author Index . 579

Contents – Part I xv

http://dx.doi.org/10.1007/978-3-030-61470-6_1

Contents – Part II

Automating Software Re-Engineering

Automating Software Re-engineering: Introduction to the ISoLA
2020 Track. 3

Serge Demeyer, Reiner Hähnle, and Heiko Mantel

Formal Verification of Developer Tests: A Research Agenda Inspired
by Mutation Testing . 9

Serge Demeyer, Ali Parsai, Sten Vercammen, Brent van Bladel,
and Mehrdad Abdi

Modular Regression Verification for Reactive Systems 25
Alexander Weigl, Mattias Ulbrich, and Daniel Lentzsch

Finding Idioms in Source Code Using Subtree Counting Techniques 44
Dmitry Orlov

Parametric Timed Bisimulation . 55
Malte Lochau, Lars Luthmann, Hendrik Göttmann, and Isabelle Bacher

A Unifying Framework for Dynamic Monitoring and a Taxonomy
of Optimizations . 72

Marie-Christine Jakobs and Heiko Mantel

Thirty-Seven Years of Relational Hoare Logic: Remarks on Its Principles
and History . 93

David A. Naumann

Safer Parallelization. 117
Reiner Hähnle, Asmae Heydari Tabar, Arya Mazaheri,
Mohammad Norouzi, Dominic Steinhöfel, and Felix Wolf

Refactoring and Active Object Languages . 138
Volker Stolz, Violet Ka I Pun, and Rohit Gheyi

Rigorous Engineering of Collective Adaptive Systems

Rigorous Engineering of Collective Adaptive Systems Introduction
to the 3rd Track Edition. 161

Martin Wirsing, Rocco De Nicola, and Stefan Jähnichen

Composition of Component Models - A Key to Construct Big Systems 171
Wolfgang Reisig

Degrees of Autonomy in Coordinating Collectives
of Self-Driving Vehicles . 189

Stefano Mariani and Franco Zambonelli

Engineering Semantic Self-composition of Services Through Tuple-Based
Coordination. 205

Ashley Caselli, Giovanni Ciatto, Giovanna Di Marzo Serugendo,
and Andrea Omicini

A Dynamic Logic for Systems with Predicate-Based Communication 224
Rolf Hennicker and Martin Wirsing

Abstractions for Collective Adaptive Systems . 243
Omar Inverso, Catia Trubiani, and Emilio Tuosto

Verifying AbC Specifications via Emulation. 261
Rocco De Nicola, Tan Duong, and Omar Inverso

Adaptive Security Policies . 280
Flemming Nielson, René Rydhof Hansen, and Hanne Riis Nielson

Capturing Dynamicity and Uncertainty in Security and Trust
via Situational Patterns . 295

Tomas Bures, Petr Hnetynka, Robert Heinrich, Stephan Seifermann,
and Maximilian Walter

Guaranteeing Type Consistency in Collective Adaptive Systems 311
Jonas Schürmann, Tim Tegeler, and Bernhard Steffen

Epistemic Logic in Ensemble Specification. 329
Jan Sürmeli

FSCAFI : A Core Calculus for Collective Adaptive Systems Programming . . . 344
Roberto Casadei, Mirko Viroli, Giorgio Audrito, and Ferruccio Damiani

Writing Robotics Applications with X-KLAIM . 361
Lorenzo Bettini, Khalid Bourr, Rosario Pugliese, and Francesco Tiezzi

Measuring Adaptability and Reliability of Large Scale Systems 380
Valentina Castiglioni, Michele Loreti, and Simone Tini

Centrality-Preserving Exact Reductions of Multi-Layer Networks 397
Tatjana Petrov and Stefano Tognazzi

Towards Dynamic Dependable Systems Through Evidence-Based
Continuous Certification . 416

Rasha Faqeh, Christof Fetzer, Holger Hermanns, Jörg Hoffmann,
Michaela Klauck, Maximilian A. Köhl, Marcel Steinmetz,
and Christoph Weidenbach

xviii Contents – Part II

Forming Ensembles at Runtime: A Machine Learning Approach 440
Tomáš Bureš, Ilias Gerostathopoulos, Petr Hnětynka, and Jan Pacovský

Synthesizing Control for a System with Black Box Environment, Based
on Deep Learning . 457

Simon Iosti, Doron Peled, Khen Aharon, Saddek Bensalem,
and Yoav Goldberg

A Formal Model for Reasoning About the Ideal Fitness in Evolutionary
Processes . 473

Thomas Gabor and Claudia Linnhoff-Popien

A Case Study of Policy Synthesis for Swarm Robotics 491
Paul Piho and Jane Hillston

Maple-Swarm: Programming Collective Behavior for Ensembles
by Extending HTN-Planning. 507

Oliver Kosak, Lukas Huhn, Felix Bohn, Constantin Wanninger,
Alwin Hoffmann, and Wolfgang Reif

Swarm and Collective Capabilities for Multipotent Robot Ensembles. 525
Oliver Kosak, Felix Bohn, Lennart Eing, Dennis Rall,
Constantin Wanninger, Alwin Hoffmann, and Wolfgang Reif

Author Index . 541

Contents – Part II xix

http://dx.doi.org/10.1007/978-3-030-61467-6_1

Contents – Part III

Reliable Smart Contracts: State-of-the-art, Applications, Challenges
and Future Directions

Reliable Smart Contracts . 3
Gordon J. Pace, César Sánchez, and Gerardo Schneider

Functional Verification of Smart Contracts via Strong Data Integrity 9
Wolfgang Ahrendt and Richard Bubel

Bitcoin Covenants Unchained . 25
Massimo Bartoletti, Stefano Lande, and Roberto Zunino

Specifying Framing Conditions for Smart Contracts. 43
Bernhard Beckert and Jonas Schiffl

Making Tezos Smart Contracts More Reliable with Coq 60
Bruno Bernardo, Raphaël Cauderlier, Guillaume Claret,
Arvid Jakobsson, Basile Pesin, and Julien Tesson

UTxO- vs Account-Based Smart Contract Blockchain Programming
Paradigms . 73

Lars Brünjes and Murdoch J. Gabbay

Native Custom Tokens in the Extended UTXO Model. 89
Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie,
Orestis Melkonian, Jann Müller, Michael Peyton Jones,
Polina Vinogradova, and Philip Wadler

UTXOma: UTXO with Multi-asset Support . 112
Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie,
Orestis Melkonian, Jann Müller, Michael Peyton Jones,
Polina Vinogradova, Philip Wadler, and Joachim Zahnentferner

Towards Configurable and Efficient Runtime Verification of Blockchain
Based Smart Contracts at the Virtual Machine Level 131

Joshua Ellul

Compiling Quantitative Type Theory to Michelson for Compile-Time
Verification and Run-time Efficiency in Juvix. 146

Christopher Goes

Efficient Static Analysis of Marlowe Contracts . 161
Pablo Lamela Seijas, David Smith, and Simon Thompson

Accurate Smart Contract Verification Through Direct Modelling 178
Matteo Marescotti, Rodrigo Otoni, Leonardo Alt, Patrick Eugster,
Antti E. J. Hyvärinen, and Natasha Sharygina

Smart Derivatives: On-Chain Forwards for Digital Assets 195
Alfonso D. D. M. Rius and Eamonn Gashier

The Good, The Bad and The Ugly: Pitfalls and Best Practices in Automated
Sound Static Analysis of Ethereum Smart Contracts 212

Clara Schneidewind, Markus Scherer, and Matteo Maffei

Automated Verification of Embedded Control Software

Automated Verification of Embedded Control Software:
Track Introduction. 235

Dilian Gurov, Paula Herber, and Ina Schaefer

A Model-Based Approach to the Design, Verification and Deployment
of Railway Interlocking System . 240

Arturo Amendola, Anna Becchi, Roberto Cavada, Alessandro Cimatti,
Alberto Griggio, Giuseppe Scaglione, Angelo Susi, Alberto Tacchella,
and Matteo Tessi

Guess What I’m Doing!: Rendering Formal Verification Methods Ripe
for the Era of Interacting Intelligent Systems . 255

Martin Fränzle and Paul Kröger

On the Industrial Application of Critical Software Verification
with VerCors . 273

Marieke Huisman and Raúl E. Monti

A Concept of Scenario Space Exploration with Criticality Coverage
Guarantees: Extended Abstract . 293

Hardi Hungar

Towards Automated Service-Oriented Verification of Embedded Control
Software Modeled in Simulink . 307

Timm Liebrenz, Paula Herber, and Sabine Glesner

Verifying Safety Properties of Robotic Plans Operating in Real-World
Environments via Logic-Based Environment Modeling 326

Tim Meywerk, Marcel Walter, Vladimir Herdt, Jan Kleinekathöfer,
Daniel Große, and Rolf Drechsler

Formally Proving Compositionality in Industrial Systems
with Informal Specifications . 348

Mattias Nyberg, Jonas Westman, and Dilian Gurov

xxii Contents – Part III

Specification, Synthesis and Validation of Strategies for Collaborative
Embedded Systems . 366

Bernd-Holger Schlingloff

Formal methods for DIStributed COmputing in future
RAILway systems

Formal Methods for Distributed Computing in Future Railway Systems. 389
Alessandro Fantechi, Stefania Gnesi, and Anne E. Haxthausen

Ensuring Safety with System Level Formal Modelling 393
Thierry Lecomte, Mathieu Comptier, Julien Molinero,
and Denis Sabatier

A Modular Design Framework to Assess Intelligent Trains. 404
Simon Collart-Dutilleul and Philippe Bon

Formal Modelling and Verification of a Distributed Railway Interlocking
System Using UPPAAL. 415

Per Lange Laursen, Van Anh Thi Trinh, and Anne E. Haxthausen

New Distribution Paradigms for Railway Interlocking 434
Jan Peleska

Model Checking a Distributed Interlocking System Using k-induction
with RT-Tester . 449

Signe Geisler and Anne E. Haxthausen

Designing a Demonstrator of Formal Methods for Railways
Infrastructure Managers . 467

Davide Basile, Maurice H. ter Beek, Alessandro Fantechi,
Alessio Ferrari, Stefania Gnesi, Laura Masullo, Franco Mazzanti,
Andrea Piattino, and Daniele Trentini

Author Index . 487

Contents – Part III xxiii

Modularity and (De-)Composition
in Verification

Who Carries the Burden of Modularity?

Introduction to ISoLA 2020 Track on Modularity
and (De-)composition in Verification

Dilian Gurov1(B), Reiner Hähnle2(B), and Eduard Kamburjan2(B)

1 KTH Royal Institute of Technology, Stockholm, Sweden
dilian@kth.se

2 Technische Universität Darmstadt, Darmstadt, Germany
{reiner.haehnle,eduard.kamburjan}@tu-darmstadt.de

Abstract. Modularity and compositionality in verification frameworks
occur within different contexts: the model that is the verification target,
the specification of the stipulated properties, and the employed verifi-
cation principle. We give a representative overview of mechanisms to
achieve modularity and compositionality along the three mentioned con-
texts and analyze how mechanisms in different contexts are related. In
many verification frameworks one of the contexts carries the main bur-
den. It is important to clarify these relations to understand the potential
and limits of the different modularity mechanisms.

1 Introduction

Modularity and compositionality are core principles in all engineering fields and
play a major role in verification approaches in Computer Science as well. While
the two notions are sometimes used interchangeably, they relate to two slightly
differing principles:

Compositionality is a way to break up a problem or system into subproblems
or subsystems.

Modularity describes that a subsystem is a module: it has a clear interface and
can be exchanged within the overall system with another module that has
the same interface.

Hence, modularity is a desirable property of compositional systems, which is
concerned with the design of interfaces between subsystems.

Modularity and compositionality in verification frameworks occur within dif-
ferent contexts. One can clearly distinguish three different contexts: the model
that is the verification target, the specification of the stipulated properties, and
the employed verification principle. We give a representative overview of mech-
anisms to achieve modularity and compositionality along the three mentioned
contexts and analyze how mechanisms in different contexts are related. In many
verification frameworks one of the contexts carries the main burden. It is impor-
tant to clarify these relations to understand the potential and limits of the various
modularity mechanisms.
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 3–21, 2020.
https://doi.org/10.1007/978-3-030-61362-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_1

4 D. Gurov et al.

System model: The language in which the verification target is formalized.
This could be a mainstream programming language such as Java or C, a
modeling language such as ABS [78] or ProMeLa [71], or a more abstract
formalism such as the Actor model [68] or automata [6,56,75]. In any case, we
assume that we have as a minimal requirement an executable language with
a formal syntax and a precisely stated (though not necessarily formalized)
runtime semantics.

System specification: The language in which system properties are expressed.
In the simplest case, this means just assertions of Boolean expressions or
even a finite set of fixed properties. But in most cases a specification is based
on a more expressive logic, such as temporal or first-order logic. Even more
expressive safety properties are possible with contract-based languages such
as JML [91] or ACSL [15]. Finally, logical frameworks such as Coq [21] or
Isabelle [102] permit not only to specify almost any property, but also the
syntax and semantics of the system model.

Verification principle: Less obvious than the first two, this concerns the ver-
ification methodology used to (dis-)prove properties of the system model
expressed in the specification language. For example, state exploration
together with abstraction refinement [43,62] is a popular approach in model
checking. Axiomatic approaches based on a calculus for a program logic are
common in deductive verification [65]. Symbolic execution [29,38,86] is often
the underlying principle in either [3,24]. On the other hand, interactive the-
orem proving based on structural induction is the main verification principle
employed in logical frameworks [21,102] and inductive theorem proving of
functional programs [36,121].

In each context, mechanisms for modularity are expressed at differing levels of
granularity. Before we discuss and analyze some representative modularity mech-
anisms, we can already state a few observations at a high level of abstraction:

1. The choice of modularity mechanism in different contexts is not independent.
For example, a specification language with contracts does not make sense
in combination with a system model that knows no procedures, symbolic
execution cannot be used to prove properties of abstract programs.

2. Often one of the contexts is dominant over the others or can be considered
as the starting point of the overall approach. In this case, choosing the mod-
ularity mechanism in the “lead” context determines the one in the others.

3. The burden of modularity may be unfairly allocated among different contexts:
one can restrict an execution model to the extent that modular specification
and verification become straightforward, such as the strong encapsulation of
Din and Owe [54]. Or one can shift the burden to the power of the underlying
verification approach, as the CPAchecker system [23] does. This may or may
not be aligned with the dominant context.

Who Carries the Burden of Modularity? 5

2 Modularity and Composition Mechanisms:
A Representative Collection

We follow the classification into the three contexts discussed above. Observe that
artifacts belonging to different contexts are not necessarily separately formalized
entities. For example, in interactive proof assistants the (abstract) syntax of the
model, the specification language, and the verification approach are uniformly
represented in higher-order formalisms, such type theory [21] and higher-order
logic [102]; in dynamic logic [67], programs and their specifications both appear
inside formulas, etc. Nevertheless, the context distinction is conceptually present
and it is useful to make.

2.1 Model

Perhaps the central and most important modularity mechanism in programming
is the method1 abstraction. It is a pillar of modularity, because—in principle—
one does not need to know the implementation details of a method in order to
use it. Rather, it is sufficient to know under which assumptions it is supposed
to work and what the intended effects (side effects and returned result) are.

Methods can be too fine-grained or too coarse-grained to modularize a pro-
gram’s behavior. This is especially true in concurrent systems. For example, a
system model may provide full data encapsulation via objects [112] or behavioral
encapsulation via atomic (non-interruptable) code segments [48]. Then all meth-
ods of an object cooperate to (re-)establish the object invariant at return from
each call. The actor model is a point in case [4,34,54]. Vice versa, in languages
such as C, where preemption and direct manipulation of the heap is permitted,
one can neither abstract away from the implementation of a method, nor from
its execution context.

Packages and modules in the sense of Java, C, etc., are important for com-
positionality at the level of the model, but they are limited to provide syntactic
mechanisms for managing the namespace and help with disambiguation. For
verification purposes this is not enough, because it is essential to (de-)compose
behavior.

Some abstract modeling languages have been designed with parallel com-
position operators that enjoy algebraic properties that make reasoning about
correctness easy. Such process calculi include CCS [96], CSP [70], or the π-
calculus [97,98]. The downside is that their concurrency models are not realistic
enough to permit efficient implementation. A different class of abstract models
with “innate” modularity are pure functional programs. By construction, pure
functions can be specified and verified independently of each other. Where mod-
ularity comes into play is when induction arguments in the proof of complex
functions need to be decomposed to become automatically provable. This has

1 There are plethora of synonyms for the same concept in different contexts: function,
procedure, routine, etc. In this paper we use the term method without committing
to a specific execution model.

6 D. Gurov et al.

led to the development of such techniques as rippling [37] or generalization [119]
that help with lemma discovery [77].

Some of the abstract concurrency models use the encapsulation inherent to
distributed systems to provide modularity. Choreographies [7,31,105] implement
a global view for message passing between services, e.g., in business proto-
cols [39]. A choreography is used as the endpoint projection to generate code
for single services. This code is guaranteed by construction to realize the order
of messages in the choreography. Similarly, orchestration [105] describes a central
entity that controls messages between services. It is crucial that the entities are
encapsulated and have no other way of communicating. Both notions are deeply
connected and choreographies can be used to derive an orchestrator [94]. Chore-
ographies may either commit to one interaction style or mix different interaction
styles (e.g., synchronous and asnychronous communication) [10]. The aforemen-
tioned actor model is another concurrency model that uses encapsulated distri-
bution to provide modularity.

In software product line engineering (SPLE) modularity is expressed along
the composition of features as requested by a product specification [107]. Specifi-
cally, in delta-oriented programming [109] the implementation of features is asso-
ciated with code deltas specifying the implementation of a feature relative to a
given core. A general overview of feature-oriented implementation techniques
is [8].

In system engineering and hybrid systems continuous state changes, in addi-
tion to calls and discrete state changes, are modeled. One compositional tech-
nique to do so are components [61]. Components strictly distinguish between the
internal behavior model and the interface model that connects different compo-
nents via their ports. The interface model can be synchronous or asynchronous
and different instances of behavior models are supported. In the area of hybrid
systems, (hybrid) I/O automata [93] also offer a basic composition mechanism
as a low-level device, albeit only via modeling synchronization on transitions.

2.2 Specification

In the simplest case, a specification consists merely of a generic property, for
example, “absence of deadlocks”, “(normal) termination”, etc. Model-specific
properties are mostly expressed in suitable logics. In a basic setup, logical asser-
tions are placed at certain locations in the model, where they must hold in
any run. When an assertion appears at the syntactic end of a method it func-
tions as a postcondition. Dual to assertions, one can instrument a model with
assumptions. These are properties that can be assumed to hold in the execu-
tion state where they occur. An assumption placed at the syntactic beginning
of a program works as a precondition. Hoare logic [69] is based on assumption-
program-assertion triples.

Program logics specify not merely a single computation state, but express
properties of whole runs and thus can relate multiple execution states. They
include temporal logic [12] and dynamic logic [67]. Generic properties, assertions,
assumptions, and program logics do not provide any support for modularity in

Who Carries the Burden of Modularity? 7

themselves, but assumptions and assertions can be used as elements of modular
specification formalisms.

A simple form of modularity are invariants. They can take the form of object
or loop invariants, but in either case the idea is the same: assume that a certain
property (the “invariant” I) holds initially. If—under this assumption—the exe-
cution of a given model M asserts the invariant upon termination in each run,
then I is an invariant for M . A simple induction yields that I is also an invariant
for an arbitrary number of subsequent executions of M . Now imagine that M is
a loop body and I is asserted at the start of the loop. Or M is any method of
an object and all constructors assert I. Then I holds whenever the loop or a call
to one of the object’s methods terminates, respectively. This allows to replace
the behavior of a loop or of an object by its invariant during verification and it
constitutes a base line of modularity.

Most contemporary deductive verification frameworks (for example, [3,26,76,
87,118]) use a specification language based on the notion of a method contract.
First introduced by Meyer [95] as design-by-contract in the context of runtime
verification, a method contract comprises the assumptions under which a method
is supposed to work correctly, together with an assertion of its intended effects
(side effects and returned result). Thus, contracts can be composed from the
building blocks “assertion” and “assumption” over a logical language (usually,
typed first-order logic). The requirements that need to hold for a method contract
to enter into force are its precondition. The stipulated final computation state
(including the returned result) after a method terminates is its postcondition.
The memory locations a method can read are called its footprint, the memory
locations it can write to are called its frame.

Method contracts are a central device to achieve a degree of modularity in
specification, because they can characterize the effect of a method call without
actually having to analyze the called method. This is essential to make verifi-
cation of large programs feasible: clearly a program with hundreds of method
declarations cannot be analyzed by inlining method calls. Enforcing modular-
ity here also enables local re-verification: changes in one method require one to
re-verify the changed method, not the whole system. In the case of recursively
defined methods, contracts even enable verification in the first place. In some
cases, in particular, in dynamic analyses, the notion of contract is only implicit,
for example [64] speak of structural properties and [60] of summaries.

While it is obvious that method contracts must describe the behavior of the
called method (the caller ’s perspective), it is less obvious that one must pay as
well attention to the call context (the callee’s perspective). The problem arises,
whenever the frame or footprint of a method include the heap. Since the callee
cannot know in which heap state it is called, the pre- and postcondition have to
be expressed so that they are valid in arbitrary states. This means, for example,
that the effects of a method on an unknown heap that may intersect with its
frame and footprint have to be described correctly. A number of techniques to
achieve this have been developed, including dynamic frames [85,111], ownership
types [42,51], boxing [92,106], and separation logic [103].

8 D. Gurov et al.

The situation worsens in the case of concurrent programs, because of task
interleaving. This led to mechanisms such as fractional permissions [30], con-
current separation logic [32], and combinations thereof [28], for low-level concur-
rency, and to context-aware contracts [83] for concurrency with atomic segments.
Assumption-guarantee reasoning is not necessarily bound to method contracts,
pairs of pre- and postconditions can also be used to specify processes [99].

It has to be stressed that while various framing theories make it possi-
ble to achieve a certain degree of modularity when specifying complex, heap-
manipulating software [5,49] this does not mean that the approach is practical
yet: often specifications become considerably longer than the specified model
and are harder to understand [16].

From a feature-oriented SPLE perspective it makes sense to compose con-
tracts. Specification deltas [66] reuse contract elements in analogy to code deltas,
but this works smoothly only when behavioral subtyping is assumed. That this
is generally not the case is shown in [116], which also contains an overview of
feature-oriented contract composition techniques.

Contracts specify the behavior of a method at its endpoints. In particular to
specify concurrent models, it may be necessary to expose some of the intermedi-
ate behavior. Therefore, it is a natural idea to generalize contracts to symbolic
traces [53,81,115]. It remains to be seen, however, whether this leads to improved
modularity.

Component contracts were studied to specify the interface level of compo-
nents [20]. These contracts are also based on assumption-guarantee reasoning,
and specify what a component must guarantee to the environment and what
it can rely on from the environment. Component contracts differ from method
contracts, as they specify the continuously changing ports of a component at
interface level. Component contracts abstract not only from the concrete behav-
ior of a component, but also from the language of its implementation. This
allows contracts to inherit the compositional properties of components through
contract operators [19], but limits the specifications to boolean assertions over
ports. Interface automata [47] are a formalism similar to the aforementioned
I/O automata that specify the temporal behavior of automata and have a com-
position mechanism compatible with open systems: They specify the expected
behavior of the environment of an I/O automaton.

One version of program development by step-wise refinement works by speci-
fying a series of ever more precise abstract machines [1,2,27,110] that are finally
translated into executable code. Such a development can be seen as a series of
modular specifications.

2.3 Verification

Modularity can occur in several places in the verification context, either by
decomposition following another context, e.g., following the structure of con-
tracts or methods, or decompose a problem that is neither specified modularly
nor executed modularly.

Who Carries the Burden of Modularity? 9

With axiomatic decomposition we denote a verification approach that allows
to decompose a verification task into subtasks by way of a decomposition axiom.
The frame rule of separation logic [103] that allows to localize heap reason-
ing is a well-known example. Another example can be found in early work on
modular verification of simple concurrent programs (without heaps and method
calls) in the form of assumption-guarantee reasoning [80] and its predecessor, the
Owicki-Gries composition axiom [104]2. Similarly, composition of proofs based
on the communication between processes has been axiomatized for synchro-
nization based formalisms, such as ADA [9,59]. These principles are implicitly
present in many contemporary approaches as well and have been frequently gen-
eralized (for example, [57,90]). Being based on axiomatic decomposition, they
lend themselves well to deductive verification. In fact, contract-based specifi-
cation can be seen as a specification language well aligned with assumption-
guarantee reasoning.

Not in each case is the underlying logical framework expressive enough to jus-
tify a decomposition step. For example, [54,84] prove a meta theorem justifying
the problem decomposition. This is more a matter of taste or perhaps the desired
degree of mechanization, because it is often possible to justify decomposition in
a suitably expressive logic [81,101]. The limitation of axiomatic decomposition
is often that the decomposition theorem holds only under certain constraints,
which becomes an issue with respect to scalability to complex target languages.

A different decomposition technique is projection. Session Types [72,73] are a
behavioral type discipline [7,74] using global types to describe protocols. Global
types are projected onto a role—this generates a local type for each protocol end-
point. It is similar to projection of choreographies on the modeling level [40] (cf.
Sect. 2.1): indeed, global types are used as specifications of choreographies [39].
The target language, where type checking happens, are the local types. Projec-
tion is designed in a way that enforces further encapsulation in the concurrency
model to ensure modularity: the main verification step is a fully automatic argu-
ment that composes adherence to the local types to adherence of the whole
system to the global types. Not every global type can be projected and projec-
tion depends very much on the concurrency model of the target language. In
particular, the notion of an endpoint may correspond to a fixed entity in the
concurrency model (for example, for actors [82]), but does not need not to do so
(for example, for the π-calculus [73]).

Correctness-by-construction [11,52,63,89,113] is the step-wise development
of (simple, usually imperative) programs in a series of refinement steps. Each step
is justified in a suitable program logic, so that this can be seen as a modular
verification strategy.

Abstraction is a general principle to approximate the behavior of a model and
its datastructures during execution. This approach was pioneered by Cousot &
Cousot [45] as abstract interpretation of programs. It allows to abstract away

2 It is worth noting that the original Owicki-Gries composition axiom verifies all
involved processes without encapsulation, i.e., changing one process requires to
reprove the composition as well.

10 D. Gurov et al.

Table 1. Mechanisms to achieve modularity and compositionality in different contexts

Context Model Specification Verification

Baseline unstructured
code

assume, assert intermediate
assertion, cut,
interpolant,
abstraction

Mechanism method, loop contract, framing,
loop invariant

axiomatic
decomposition,
abstract execution

object, actor,
atomic segment

invariant,
symbolic trace

meta composition

feature contract
composition

proof composition

(generic) session type projection

choreography (generic) projection

component component contract (generic)

process
calculus

(generic) axiomatic
decomposition

functional
program

abstract machine refinement

imperative
program

assume, assert

pure functions assume, assert rippling,
generalization

(verification-
specific)

(verification-
specific)

proof reuse

from intricate data structures or complex behavior, so that a specified property
is easier to prove. Of course, it can happen that the property does not hold
anymore for the abstract version. In this case, it is desirable to find the exact
degree of abstraction where it still holds. Abstraction refinement [43,62] allows
to determine it in an automated manner. Abstraction is not a modularization
technique per se, but a base line verification principle.

This is in contrast to abstract execution [114], where a program with abstract
statements is symbolically executed, so that whatever can be proven about the
abstract program holds as well for any of its (legal) instances. It allows to decou-
ple programs from their execution contexts, because the latter can be specified
by abstract symbols.

It is also possible to modularize verification problems at the level of proofs.
A well-known example is TLA+ [41], where proofs are arranged hierarchically.3

Similarly, proofs for hybrid systems can be composed if the underlying structure

3 It is also possible to view refinement-based approaches from this angle.

Who Carries the Burden of Modularity? 11

has a component-like structure [100]. Proof reuse can also be seen as modulariza-
tion, for example, lazy symbolic execution [35,55], proof repositories [33], or proof
adaptation [18,108,120]. In the context of family-based verification approaches in
SPLE, a number of proof composition techniques have been explored [14,50,117].
Several of these techniques do not work directly on proofs, which tends to be
brittle, but on more abstract representations such as contracts or proof scripts.
Even so, these techniques are necessarily tied to a specific verification approach.

3 Alignment of Context and the Burden of Modularity

In Table 1 we summarize some of the modularity mechanisms discussed above.
In addition, we attempt to relate them across different contexts. Obviously, this
correspondence is neither precise nor exhaustive, but should be seen as a basis
for more in-depth investigations or for discussion. In each row we highlight the
context that carries the burden of modularity in boldface. Under carrying the
burden we mean the burden to provide the modularity that is used by the other
contexts.

One can instantiate the table to a wide range of established verification
approaches. Just as an example, deductive verification [65] is typically built
around the notions of contract and framing of structured pieces of code (blocks,
methods, loop bodies).

4 Track Contributions

We briefly discuss the contributions of the ISoLA 2020 track on “Modularity
and (De-)composition in Verification” in the light of the classification above and
mention where in an approach the burden of modularity lies.

4.1 Modularity in the Context of the Model

Coto et al. [44] (On Testing Message-Passing Components) address the prob-
lem of generating tests for the components of systems in which the components
(or participants) communicate via asynchronous message passing (but where the
message buffers do not preserve the order of the messages). The correct coordina-
tion of the components is specified by means of global choreographies. Following
the (top-down) correctness-by-construction principle, the component test suites
are obtained by projecting the choreography suitably along the (interfaces of
the) components. The generated tests are guaranteed to be suitable, in the sense
that every valid implementation of the given component necessarily passes them.
The authors discuss a number of aspects of the considered problem, such as test
oracles, efficiency of test generation, and coverage criteria.

12 D. Gurov et al.

4.2 Modularity in the Context of the Specification

Barbanera et al. [13] (Composing Communicating Systems, Synchronously)
investigate the preservation of generic behavioural properties, and in particular
deadlock freedom, under the synchronous composition of systems of communicat-
ing finite state machines. A composability condition, two structural constraints,
and two types of composition are defined, for which it is proved that compos-
ing composable systems satisfying the structural constraints preserves deadlock
freedom. The authors argue that the same reasoning can be applied to other
generic behavioural properties such as lock freedom and liveness.

Beckert et al. [17] (Modular Verification of JML Contracts Using Bounded
Model Checking) aim to connect the worlds of contract-based deductive verifica-
tion (DV) with the one of bounded software model checking (BMC). The burden
is in translating JML-annotated Java into plain Java with asserts and assumes.
The latter then can serve as input to the bounded model checker JBMC. Obvi-
ously, the translation must be parameterized with a (loop and recursion) bound.
Technically, the problem of replacing quantifiers by non-deterministic assign-
ments is a central issue. The translation creates the opportunity to run JBMC
on JML-annotated programs. In addition to better efficiency and higher automa-
tion, this opens up interesting new scenarios for collaboration of DV and MC the
authors point out. It is worth to point out that the suggested tool combination
perfectly aligns with the case for integration of verification approaches brought
forward in [65].

Further, in the domain of Software Product Line Engineering (SPLE), Dami-
ani et al. [46] (On Slicing Software Product Line Signatures) present an abstrac-
tion and decomposition technique based on slicing. A slice of SPL Signature
(SPLS) for some feature set F is a product line that contains neither imple-
mentation details of its classes nor products that depend on features outside F .
The paper defines such slices and discusses the challenges for an algorithm that
computes the slice manually and efficiently. As the main driver of this approach
is the specified feature set F , the burden of modularity lies with the specification
and the check that the slice is given correctly.

Johnsen et al. [79] (Assumption-Commitment Types for Resource Manage-
ment in Virtually Timed Ambients) introduce a type system for resource man-
agement in the context of nested virtualization. The type system is based on
effect/coeffect pairs that specify how much resources a process may consume
from its context and how much it must offer to its child process. This allows
to type check a process in isolation by specifying a resource interface. Nonethe-
less, the burden of modularity is only partially with the specification: as the
effect/coeffect pairs are derived for the inner processes automatically, it lies also
with the verification. However, this is enabled by the structure of the specifica-
tion.

4.3 Modularity in the Context of Verification

Filliâtre and Paskevich [58] (Abstraction and Genericity in Why3) argue that
any approach invented for modularity in programming can also be adapted to

Who Carries the Burden of Modularity? 13

program verification. The purpose of their contribution is to show how they
achieve this in WhyML, the language of the program verification tool Why3.
WhyML uses a single concept of module, a collection of abstract and concrete
declarations, and a basic operation of cloning which instantiates a module with
respect to a given partial substitution, while verifying its soundness. This mech-
anism brings into WhyML both abstraction and genericity, which the authors
illustrate on a small verified Bloom filter implementation.

Then, Beyer and Wehrheim [25] (Verification Artifacts in Cooperative Ver-
ification: Survey and Unifying Component Framework) give a classification of
combinations of verification approaches. The focus is on black-box integration
through the exchange of artifacts between multiple tools. The paper discusses
the exchange format and different roles that tools can play in a cooperative verifi-
cation framework. The approach described here places the burden of modularity
firmly on the verification.

Beyer and Kanav [22] (An Interface Theory for Program Verification) take a
verification-centric view: the set of all behaviors of a program P is viewed as a
behavioral interface IP . Verification is then recast as a theory of approximation
of behavioral interfaces. As pointed out above, different viewpoints on verifica-
tion are relevant, because they suggest different decomposition strategies of the
verification process. Ideally, this leads to the identification and optimization of
core reasoning tasks or to new cooperation strategies. The present paper suggests
to use over- and underapproximations of the target program as a uniform mech-
anism to exchange information between different tools in the form of behavioral
interfaces. This leads naturally to a decomposition strategy inspired by gradual
specification refinement. A number of known verification approaches are char-
acterized from this angle. The paper provides a uniform view of existing work
that invites to think about new ways by which verification tools may cooperate.

Finally, Knüppel et al. [88] (Scaling Correctness-by-Construction, CbC) sug-
gest an architectural framework for contract-based, CbC-style program devel-
opment. While both the target language as well as the current implementation
are at the proof-of-concept level, it is a promising start. The CbC approach
was until recently characterized by an almost complete lack of tools. The paper
describes steps towards scaling mechanized CbC development to more complex
programs and to establish a repository of reusable off-the-shelf components. To
this end, the authors present a formal framework and open-source tool named
ArchiCorC. There, a developer models software components in UML-style with
required and provided interfaces. Interface methods are associated to specifica-
tion contracts and mapped to verified CbC implementations. A code generator
backend then emits executable Java source code.

5 Conclusion

In this paper we gave an overview of modularity in verification and attempted
a classification. Hopefully, this can serve as a starting point for the structural
use of modularity principles in verification: First, we hope that the classification

14 D. Gurov et al.

helps the research community to transfer ideas between subfields by guiding dis-
cussions and reengineering approaches. Abstraction from the technical details of
modularity allows the underlying ideas to be carried over to fields where the orig-
inal system is not directly applicable. Second, we believe that the classification
has the potential to motivate systematic search for new modularity mechanisms.
Lastly, a classification may shed light on the structure of existing systems and
so may guide their eventual reengineering for an increase of modularity.

Acknowledgements. We thank Marieke Huisman and Wolfgang Ahrendt for their
very constructive and valuable feedback on a draft.

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge Univer-
sity Press, Cambridge (1996)

2. Abrial, J.-R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice.
LNCS. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

4. Ahrendt, W., Dylla, M.: A verification system for distributed objects with asyn-
chronous method calls. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009.
LNCS, vol. 5885, pp. 387–406. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10373-5 20

5. Alkassar, E., Hillebrand, M.A., Paul, W., Petrova, E.: Automated verification of a
small hypervisor. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE
2010. LNCS, vol. 6217, pp. 40–54. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15057-9 3

6. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comp. Sci. 126(2),
183–235 (1994)

7. Ancona, D.: Behavioral types in programming languages. Found. Trends Program.
Lang. 3(2–3), 95–230 (2016)

8. Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-37521-7

9. Apt, K.R., Francez, N., de Roever, W.P.: A proof system for communicating
sequential processes. ACM Trans. Program. Lang. Syst. 2(3), 359–385 (1980)

10. Arbab, F., Cruz-Filipe, L., Jongmans, S., Montesi, F.: Connectors meet chore-
ographies. CoRR, abs/1804.08976 (2018)

11. Back, R.: A calculus of refinements for program derivations. Acta Informatica
25(6), 593–624 (1988)

12. Banieqbal, B., Barringer, H., Pnueli, A. (eds.): Temporal Logic in Specification.
Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-51803-7

13. Barbanera, F., Lanese, I., Tuosto, E.: Composing communicating systems, syn-
chronously. In: Margaria, T., Steffen, B. (eds.) 9th International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation, ISoLA
2020. LNCS, Rhodes, Greece, vol. 12476, pp. 39–59. Springer, Heidelberg (Octo-
ber 2020)

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-642-10373-5_20
https://doi.org/10.1007/978-3-642-10373-5_20
https://doi.org/10.1007/978-3-642-15057-9_3
https://doi.org/10.1007/978-3-642-15057-9_3
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/3-540-51803-7

Who Carries the Burden of Modularity? 15

14. Batory, D.S., Börger, E.: Modularizing theorems for software product lines: the
Jbook case study. J. Univers. Comput. Sci. 14(12), 2059–2082 (2008)

15. Baudin, P., et al.: ACSL: ANSI/ISO C Specification Language. CEA LIST and
INRIA, Version 1.4 (2010)

16. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Lessons learned from micro-
kernel verification - specification is the new bottleneck. In: Cassez, F., Huuck,
R., Klein, G., Schlich, B. (eds.) Proceedings of the 7th Conference on Systems
Software Verification. EPTCS, vol. 102, pp. 18–32 (2012)

17. Beckert, B., Kirsten, M., Klamroth, J., Ulbrich, M.: Modular verification of JML
contracts using bounded model checking. In: Margaria, T., Steffen, B. (eds.) 9th
International Symposium on Leveraging Applications of Formal Methods, Verifi-
cation and Validation, ISoLA 2020. LNCS, Rhodes, Greece, vol. 12476, pp. 60–80.
Springer, Heidelberg (October 2020)

18. Beckert, B., Klebanov, V.: Proof reuse for deductive program verification. In: 2nd
International Conference on Software Engineering and Formal Methods (SEFM),
Beijing, China, pp. 77–86. IEEE Computer Society (2004)

19. Benveniste, A., Caillaud, B., Elmqvist, H., Ghorbal, K., Otter, M., Pouzet, M.:
Multi-mode dae models - challenges, theory and implementation. In: Steffen, B.,
Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp.
283–310. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91908-9 16

20. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple viewpoint contract-based specification and design. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol.
5382, pp. 200–225. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-92188-2 9

21. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development-
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07964-5

22. Beyer, D., Kanav, S.: An interface theory for program verification (position
paper). In: Margaria, T., Steffen, B. (eds.) 9th International Symposium on Lever-
aging Applications of Formal Methods, Verification and Validation, ISoLA 2020.
LNCS, Rhodes, Greece, vol. 12476, pp. 168–186. Springer (October 2020)

23. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

24. Beyer, D., Lemberger, T.: Symbolic execution with CEGAR. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 195–211. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 14

25. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: survey
and unifying component framework. In Margaria, T., Steffen, B. (eds.) 9th Inter-
national Symposium on Leveraging Applications of Formal Methods, Verification
and Validation, ISoLA 2020. LNCS, Rhodes, Greece, vol. 12476, pp. 143–167.
Springer (October 2020)

26. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verifica-
tion of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.)
IFM 2017. LNCS, vol. 10510, pp. 102–110. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66845-1 7

https://doi.org/10.1007/978-3-319-91908-9_16
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-47166-2_14
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7

16 D. Gurov et al.

27. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-642-18216-7

28. Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.J.: Permission accounting
in separation logic. In: Palsberg, J., Abadi, M. (eds.) Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2005, Long Beach, California, USA, 12–14 January 2005, pp. 259–270.
ACM (2005)

29. Boyer, R.S., Elspas, B., Levitt, K.N.: SELECT–a formal system for testing and
debugging programs by symbolic execution. ACM SIGPLAN Not. 10(6), 234–245
(1975)

30. Boyland, J.: Fractional permissions. In: Clarke, D., Noble, J., Wrigstad, T. (eds.)
Aliasing in Object-Oriented Programming. Types, Analysis and Verification.
LNCS, vol. 7850, pp. 270–288. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36946-9 10

31. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography con-
formance and contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC
2007. LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-77351-1 4

32. Brookes, S., O’Hearn, P.W.: Concurrent separation logic. SIGLOG News 3(3),
47–65 (2016)

33. Bubel, R., et al.: Proof repositories for compositional verification of evolving soft-
ware systems. In: Steffen, B. (ed.) Transactions on Foundations for Mastering
Change I. LNCS, vol. 9960, pp. 130–156. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46508-1 8

34. Bubel, R., Din, C.C., Hähnle, R., Nakata, K.: A dynamic logic with traces and
coinduction. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323,
pp. 307–322. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-
2 21

35. Bubel, R., Hähnle, R., Pelevina, M.: Fully abstract operation contracts. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 120–134. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8 9

36. Bundy, A.: The automation of proof by mathematical induction. In: Robinson,
J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 845–911.
Elsevier and MIT Press (2001)

37. Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-level Guidance for
Mathematical Reasoning. Cambridge Tracts in Theoretical Computer Science,
vol. 56. Cambridge University Press, Cambridge (2005)

38. Burstall, R.M.: Program proving as hand simulation with a little induction. In:
Information Processing, vol. 1974, pp. 308–312. Elsevier/North-Holland (1974)

39. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8:1–8:78
(2012)

40. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party sessions. In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE-2011. LNCS,
vol. 6722, pp. 1–28. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21461-5 1

41. Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: A TLA+ proof system. In:
Rudnicki, P., Sutcliffe, G., Konev, B., Schmidt, R.A., Schulz, S. (eds.) Proceedings
of the LPAR Workshops on Knowledge Exchange: Automated Provers and Proof

https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-36946-9_10
https://doi.org/10.1007/978-3-642-36946-9_10
https://doi.org/10.1007/978-3-540-77351-1_4
https://doi.org/10.1007/978-3-540-77351-1_4
https://doi.org/10.1007/978-3-319-46508-1_8
https://doi.org/10.1007/978-3-319-46508-1_8
https://doi.org/10.1007/978-3-319-24312-2_21
https://doi.org/10.1007/978-3-319-24312-2_21
https://doi.org/10.1007/978-3-662-45231-8_9
https://doi.org/10.1007/978-3-642-21461-5_1
https://doi.org/10.1007/978-3-642-21461-5_1

Who Carries the Burden of Modularity? 17

Assistants, and the 7th International Workshop on the Implementation of Logics,
CEUR Workshop Proceedings, Doha, Qatar, vol. 418. CEUR-WS.org (2008)

42. Clarke, D., Östlund, J., Sergey, I., Wrigstad, T.: Ownership types: a survey. In:
Clarke, D., Noble, J., Wrigstad, T. (eds.) Aliasing in Object-Oriented Program-
ming. Types, Analysis and Verification. LNCS, vol. 7850, pp. 15–58. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36946-9 3

43. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

44. Coto, A., Guanciale, R., Tuosto, E.: On testing message-passing components.
In: Margaria, T., Steffen, B. (eds.) 9th International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation, ISoLA 2020. LNCS,
Rhodes, Greece, vol. 12476, pp. 22–38. Springer, Heidelberg (October 2020)

45. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: 4th ACM
Symposium on Principles of Programming Language, Los Angeles, pp. 238–252.
ACM Press, New York (January 1977)

46. Damiani, F., Lienhardt, M., Paolini, L.: On slicing software product line signa-
tures. In: Margaria, T., Steffen, B. (eds.) 9th International Symposium on Lever-
aging Applications of Formal Methods, Verification and Validation, ISoLA 2020.
LNCS, Rhodes, Greece, vol. 12476, pp. 81–102. Springer, Heidelberg (October
2020)

47. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Tjoa, A.M., Gruhn, V.
(eds.) Proceedings of the 8th European Software Engineering Conference Held
Jointly with 9th ACM SIGSOFT International Symposium on Foundations of
Software Engineering 2001, Vienna, Austria, 10–14 September 2001, pp. 109–120.
ACM (2001)

48. de Boer, F., et al.: A survey of active object languages. ACM Comput. Surv.
50(5), 761–7639 (2017). Article 76

49. De Gouw, S., De Boer, F.S., Bubel, R., Hähnle, R., Rot, J., Steinhöfel, D.: Verify-
ing OpenJDK’s sort method for generic collections. J. Autom. Reasoning 62(6),
93–126 (2019). https://doi.org/10.1007/s10817-017-9426-4

50. Delaware, B., Cook, W.R., Batory, D.S.: Product lines of theorems. In: Lopes,
C.V., Fisher, K. (eds.) Proceedings of the 26th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA, Portland, OR, USA, pp. 595–608. ACM (2011)

51. Dietl, W., Müller, P.: Universes: lightweight ownership for JML. J. Object Tech-
nol. 4(8), 5–32 (2005)

52. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Upper Saddle River
(1976)

53. Din, C.C., Hähnle, R., Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.: Locally
abstract, globally concrete semantics of concurrent programming languages. In:
Schmidt, R.A., Nalon, C. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501,
pp. 22–43. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66902-1 2

54. Din, C.C., Owe, O.: Compositional reasoning about active objects with shared
futures. Formal Aspects Comput. 27(3), 551–572 (2015)

55. Dovland, J., Johnsen, E.B., Owe, O., Steffen, M.: Incremental reasoning with lazy
behavioral subtyping for multiple inheritance. Sci. Comput. Program. 76(10),
915–941 (2011)

https://doi.org/10.1007/978-3-642-36946-9_3
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/s10817-017-9426-4
https://doi.org/10.1007/978-3-319-66902-1_2

18 D. Gurov et al.

56. Emerson, E.A.: Automata, tableaux, and temporal logics. In: Parikh, R. (ed.)
Logic of Programs 1985. LNCS, vol. 193, pp. 79–88. Springer, Heidelberg (1985).
https://doi.org/10.1007/3-540-15648-8 7

57. Feng, X.: Local rely-guarantee reasoning. In: Shao, Z., Pierce, B.C. (eds.) Pro-
ceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL, Savannah, GA, USA, pp. 315–327. ACM (2009)

58. Filliâtre, J.-C., Paskevich, A.: Abstraction and genericity in Why3. In: Margaria,
T., Steffen, B., (eds.) 9th International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation, ISoLA 2020. LNCS, Rhodes,
Greece, vol. 12476, pp. 122–142. Springer, Heidelberg (October 2020)

59. Gerth, R., de Roever, W.P.: A proof system for concurrent ADA programs. Sci.
Comput. Program. 4(2), 159–204 (1984)

60. Godefroid, P., Luchaup, D.: Automatic partial loop summarization in dynamic
test generation. In: Dwyer, M.B., Tip, F. (eds.) Proceedings of the 20th Interna-
tional Symposium on Software Testing and Analysis, ISSTA, Toronto, Canada,
pp. 23–33. ACM (2011)

61. Gößler, G., Sifakis, J.: Composition for component-based modeling. Sci. Comput.
Program. 55(1–3), 161–183 (2005)

62. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63166-6 10

63. Gries, D.: The Science of Programming. Texts and Monographs in Computer
Science. Springer, New York (1981). https://doi.org/10.1007/978-1-4612-5983-1

64. Gurov, D., Huisman, M.: Reducing behavioural to structural properties of pro-
grams with procedures. Theoret. Comput. Sci. 480, 69–103 (2013)

65. Hähnle, R., Huisman, M.: Deductive software verification: from pen-and-paper
proofs to industrial tools. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science. LNCS, vol. 10000, pp. 345–373. Springer, Cham (2019). https://
doi.org/10.1007/978-3-319-91908-9 18

66. Hähnle, R., Schaefer, I.: A Liskov principle for delta-oriented programming. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 32–46. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0 4

67. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic (Foundations of Computing).
MIT Press, Cambridge (2000)

68. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: Proceedings of the 3rd International Joint Conference
on Artificial Intelligence, IJCAI 1973, pp. 235–245. Morgan Kaufmann Publishers
Inc. (1973)

69. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580, 583 (1969)

70. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

71. Holzmann, G.J.: The SPIN Model Checker. Pearson Education, London (2003)
72. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,

vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-
540-57208-2 35

73. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016)

74. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016)

https://doi.org/10.1007/3-540-15648-8_7
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/978-1-4612-5983-1
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-642-34026-0_4
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35

Who Carries the Burden of Modularity? 19

75. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages
to program structures. Mach. Learn. 96(1–2), 65–98 (2014)

76. Jacobs, B., Piessens, F.: The VeriFast program verifier. Technical report CW-520,
Department of Computer Science, Katholieke Universiteit Leuven (August 2008)

77. Johansson, M., Dixon, L., Bundy, A.: Dynamic rippling, middle-out reasoning
and lemma discovery. In: Siegler, S., Wasser, N. (eds.) Verification, Induction,
Termination Analysis. LNCS (LNAI), vol. 6463, pp. 102–116. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17172-7 6

78. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core
language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

79. Johnsen, E.B., Steffen, M., Stumpf, J.B.: Assumption-commitment types for
resource management in virtually timed ambients. In: Margaria, T., Steffen, B.
(eds.) 9th International Symposium on Leveraging Applications of Formal Meth-
ods, Verification and Validation, ISoLA 2020. LNCS, Rhodes, Greece, vol. 12476,
pp. 103–121. Springer, Heidelberg (October 2020)

80. Jones, C.B.: Specification and design of (parallel) programs. In; Mason, R.E.A.
(ed.) Information Processing 83, Proceedings of the IFIP 9th World Computer
Congress, Paris, France, 19–23 September 1983, pp. 321–332. North-Holland
(1983)

81. Kamburjan, E.: Behavioral program logic. In: Cerrito, S., Popescu, A. (eds.)
TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 391–408. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29026-9 22

82. Kamburjan, E., Chen, T.-C.: Stateful behavioral types for active objects. In:
Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 214–235. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98938-9 13

83. Kamburjan, E.. Din, C.C., Hähnle, R., Johnsen, E.B.: Behavioral contracts for
cooperative scheduling. In: Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R.,
Ulbrich, M. (eds.) Deductive Software Verification: Future Perspectives. LNCS,
vol. 12345. Springer, Heidelberg (2020)

84. Kamburjan, E., Hähnle, R., Schön, S.: Formal modeling and analysis of railway
operations with Active Objects. Sci. Comput. Program. 166, 167–193 (2018)

85. Kassios, I.T.: The dynamic frames theory. Formal Aspects Comput. 23(3), 267–
288 (2011)

86. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

87. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015)

88. Knüppel, A., Runge, T., Schaefer, I.: Scaling correctness-by-construction. In: Mar-
garia, T., Steffen, B. (eds.) 9th International Symposium on Leveraging Applica-
tions of Formal Methods, Verification and Validation, ISoLA 2020. LNCS, Rhodes,
Greece, vol. 12476, pp. 187–207. Springer, Heidelberg (October 2020)

89. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to
Programming. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
27919-5

90. Lahav, O., Vafeiadis, V.: Owicki-Gries reasoning for weak memory models. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9135, pp. 311–323. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47666-6 25

https://doi.org/10.1007/978-3-642-17172-7_6
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-030-29026-9_22
https://doi.org/10.1007/978-3-319-98938-9_13
https://doi.org/10.1007/978-3-642-27919-5
https://doi.org/10.1007/978-3-642-27919-5
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-662-47666-6_25

20 D. Gurov et al.

91. Leavens, G.T., et al.: JML Reference Manual. Draft revision 2344 (May 2013)
92. Leino, K.R.M., Müller, P., Wallenburg, A.: Flexible immutability with frozen

objects. In: Shankar, N., Woodcock, J. (eds.) VSTTE 2008. LNCS, vol. 5295, pp.
192–208. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87873-
5 17

93. Lynch, N., Segala, R., Vaandrager, F., Weinberg, H.B.: Hybrid I/O automata.
In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp.
496–510. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0020971

94. McIlvenna, S., Dumas, M., Wynn, M.T.: Synthesis of orchestrators from service
choreographies. In: Kirchberg, M., Link, S. (eds.) 6th Asia-Pacific Conference on
Conceptual Modelling (APCCM), Conceptual Modelling 2009. CRPIT, Welling-
ton, New Zealand, vol. 96, pp. 129–138. Australian Computer Society (2009)

95. Meyer, B.: Applying “design by contract”. IEEE Comput. 25(10), 40–51 (1992)
96. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,

Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3
97. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. I. Inf. Comput.

100(1), 1–40 (1992)
98. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, II. Inf. Comput.

100(1), 41–77 (1992)
99. Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE Trans. Softw.

Eng. 7(4), 417–426 (1981)
100. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: Tactical

contract composition for hybrid system component verification. Int. J. Softw.
Tools Technol. Transf. 20(6), 615–643 (2018)

101. Nieto, L.P.: The rely-guarantee method in Isabelle/HOL. In: Degano, P. (ed.)
ESOP 2003. LNCS, vol. 2618, pp. 348–362. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36575-3 24

102. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL – A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45949-9

103. O’Hearn, P.W.: Separation logic. Commun. ACM 62(2), 86–95 (2019)
104. Owicki, S.S., Gries, D.: Verifying properties of parallel programs: an axiomatic

approach. Commun. ACM 19(5), 279–285 (1976)
105. Peltz, C.: Web services orchestration and choreography. IEEE Comput. 36(10),

46–52 (2003)
106. Poetzsch-Heffter, A., Schäfer, J.: Modular specification of encapsulated object-

oriented components. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever,
W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 313–341. Springer, Heidelberg
(2006). https://doi.org/10.1007/11804192 15

107. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations Principles and Techniques. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-28901-1

108. Reif, W., Stenzel, K.: Reuse of proofs in software verification. In: Shyamasundar,
R.K. (ed.) FSTTCS 1993. LNCS, vol. 761, pp. 284–293. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-57529-4 61

109. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented
programming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010.
LNCS, vol. 6287, pp. 77–91. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15579-6 6

110. Schellhorn, G., Ahrendt, W.: Reasoning about abstract state machines: the WAM
case study. J. Univ. Comput. Sci. 3(4), 377–412 (1997)

https://doi.org/10.1007/978-3-540-87873-5_17
https://doi.org/10.1007/978-3-540-87873-5_17
https://doi.org/10.1007/BFb0020971
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-36575-3_24
https://doi.org/10.1007/3-540-36575-3_24
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/11804192_15
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-57529-4_61
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1007/978-3-642-15579-6_6

Who Carries the Burden of Modularity? 21

111. Schmitt, P.H., Ulbrich, M., Weiß, B.: Dynamic frames in Java dynamic logic. In:
Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 138–152.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18070-5 10

112. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fundamenta Informatica 63(4), 385–410 (2004)

113. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall Inter-
national Series in Computer Science, London (1992)

114. Steinhöfel, D., Hähnle, R.: Abstract execution. In: ter Beek, M.H., McIver, A.,
Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 319–336. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30942-8 20

115. Steinhöfel, D., Hähnle, R.: The trace modality. In: Soares Barbosa, L., Baltag,
A. (eds.) DALI 2019. LNCS, vol. 12005, pp. 124–140. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-38808-9 8

116. Thüm, T., Knüppel, A., Krüger, S., Bolle, S., Schaefer, I.: Feature-oriented con-
tract composition. J. Syst. Softw. 152, 83–107 (2019)

117. Thüm, T., Schaefer, I., Kuhlemann, M., Apel, S.: Proof composition for deduc-
tive verification of software product lines. In: 4th IEEE International Conference
on Software Testing, Verification and Validation (Workshop Proceedings), ICST,
Berlin, Germany, pp. 270–277. IEEE Computer Society (2011)

118. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0 53

119. Urso, P., Kounalis, E.: Sound generalizations in mathematical induction. Theoret.
Comput. Sci. 323(1–3), 443–471 (2004)

120. Walther, C., Kolbe, T.: Proving theorems by reuse. Artif. Intell. 116(1–2), 17–66
(2000)

121. Walther, C., Schweitzer, S.: About VeriFun. In: Baader, F. (ed.) CADE 2003.
LNCS (LNAI), vol. 2741, pp. 322–327. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-540-45085-6 28

https://doi.org/10.1007/978-3-642-18070-5_10
https://doi.org/10.1007/978-3-030-30942-8_20
https://doi.org/10.1007/978-3-030-38808-9_8
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-540-45085-6_28
https://doi.org/10.1007/978-3-540-45085-6_28

On Testing Message-Passing Components

Alex Coto1(B) , Roberto Guanciale2(B) , and Emilio Tuosto1(B)

1 Gran Sasso Science Institute, L’Aquila, Italy
{alex.coto,emilio.tuosto}@gssi.it

2 KTH, Stockholm, Sweden
robertog@kth.se

Abstract. We instantiate and apply a recently proposed abstract frame-
work featuring an algorithm for the automatic generation of tests for
component testing of message-passing systems. We demonstrate the
application of a top-down mechanism for test generation. More precisely,
we reduce the problem of generating tests for components of message-
passing applications to the projection of global views of choreographies.
The application of the framework to some examples gives us the pretext
to make some considerations about our approach.

1 Introduction

Distributed message-passing applications, as most classes of distributed systems,
are hard to develop, reason about, and validate. A principal source of complexity
is due to the fact that the state of the computation is scattered across the system.
This makes it hard to attain correct coordination of components. Mistakes in the
information or control flow may negatively affect the behaviour of the system
leading to inconsistent states where a group of components engage in interactions
that are not aligned with those of other groups of components. Asynchronous
communications and causal dependencies across-components are among the most
important hindering factors.

We advocate the combination of model-driven testing with choreographies in
order to validate message-passing applications. The notion of choreographies that
we adopt is inspired by the one introduced about fifteen years ago by the W3C
consortium for WS-CDL [18], a language for specifying service-oriented systems
choreographically. Key elements introduced in WS-CDL were global and local
views and the notion of a projection operation relating these views. Basically,
global views are holistic descriptions of the behaviour in terms of the interactions
among components. The application of the projection operation to global views
produces local views, that is, the behaviour of single components in “isolation”
that enact the roles of the choreography.

Based on those mechanisms, the community of formal methods developed a
so-called correctness-by-construction principle. A distinguished example in this

Research partially supported by the EU H2020 RISE programme under the Marie
Sklodowska-Curie grant agreement No 778233 , MIUR project PRIN 2017FTXR7S IT
MATTERS (Methods and Tools for Trustworthy Smart Systems) and the TrustFull
project, funded by the Swedish Foundation for Strategic Research.

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 22–38, 2020.
https://doi.org/10.1007/978-3-030-61362-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_2&domain=pdf
http://orcid.org/0000-0003-1427-4099
http://orcid.org/0000-0002-8069-6495
http://orcid.org/0000-0002-7032-3281
https://doi.org/10.1007/978-3-030-61362-4_2

On Testing Message-Passing Components 23

sense is the development of behavioural types [15,17]. The cornerstone of those
formal methods is the identification of properties of global views that ensure the
correct enactment of the communications they specify. A paramount example is
the analysis of distributed choices where participants have to reach consensus
about which branch of the choice they have to execute.

These constraints capture suitable notions of well-formedness of global views
that guarantee the correct exchange of messages for participants projected from
the global view. For instance, approaches such as [5,7,9,13,14,16] (to mention
but a few) study notions of well-formedness to guarantee the safety of commu-
nications, e.g., through awareness of choices. The interesting properties usually
are (dead)lock-freedom or no message losses.

We have recently started to investigate the use of choreographic models to
test applications [8]. The initial results in [8] feature an abstract framework
for component testing of message-passing application, dubbed here CGT, after
choreographies for generation of tests. More precisely, CGT is based on abstract
properties of well-formedness and projection operations to automatically extract
tests for a participant from a syntactic presentation of the global views. The gen-
eration of tests exploits the local views resulting from a projection operation to
identify tests of interest for a fixed component of the choreography. The app-
roach in [8] is abstract in the following sense: instead of concrete project oper-
ations, CGT identifies (mild) conditions on them so that a component can be
tested. A peculiar aspect of CGT is that it relies on the methods underlying
correctness-by-construction approaches of choreographies. In particular, CGT
uses well-formedness conditions to generate test suites that any “valid imple-
mentation” should pass. Also, CGT is equipped in [8] with an algorithm that
generates “meaningful” tests for the component under testing. To some extent,
this solves the oracle problem for such automatically generated tests.

In this paper, we instantiate CGT on a specific choreographic model and
apply it to a non-trivial scenario. This experiment yields another contribution of
this paper which is an analysis of testing approaches to message-passing appli-
cations as well as a discussion on possible optimisations of the algorithm in [8]
as well as some open problems. Despite being a well-established area of soft-
ware engineering, testing is not widely applied to distributed applications. This
domain is indeed quite challenging due to several factors that we discuss (cf.
Sect. 5) through some considerations on our experiment.

We apply a model-driven component testing framework for choreography
where participants coordinate by asynchronously message-passing. More pre-
cisely, we assume that each pair of participants communicate through a uni-
directional point-to-point lossless and error-free channel that buffers messages
without preserving the order of outputs. As discussed in the paper, we advocate
testing to harness the correctness-by-construction principle of choreographies.
The main reason for this is that many practices in software development may
spoil correctness. We list some situations that may break correctness.

– Often choreographic frameworks abstract away local computations, which
therefore require manual intervention.

24 A. Coto et al.

– Third-party software may not be correct-by-construction.
– Testing may harness those formal settings that do not provide feedback when

well-formedness is violated.
– Architects may need to validate choreographies that do not enjoy well-

formedness since it is a sufficient but not necessary condition for correctness.
Likewise, problems may depend on misbehaviour of underlying communica-
tion middlewares rather than applications at hand.

– Software evolution may introduce defects when e.g., a correctly realised com-
ponent is replaced with a new version because the top-down approach of
choreographies is not correctly followed.

Outline. Section 2 surveys background material. Section 3 describes the instanti-
ated framework that we consider here. Section 4 introduces a non-trivial scenario
and shows how to apply CGT. Section 5 discusses improvements and some open
problems. Section 6 considers related work and draws some conclusions.

2 Background

We briefly sketch the choreographic framework adopted in CGT. Global and
local views are respectively formalised in terms of global choreographies (g-
choreographies) [13] and of a variant of communicating finite-state machines
(CMFSs) [4]. Both models abstract asynchronous message-passing.

2.1 Global Choreographies

A g-choreography G models the communication protocol of a set of participants.
The units of communication are interactions representing the exchange of a
message between a sender and a receiver. We write A−→B : m for the interaction
where the sender A sends message (of sort) m to the receiver B which is supposed
to receive it. We let P denote the set of participants and let A,B, . . . range over
P. Messages (ranged over by m, n, y, . . .) represent sorts for data rather than
actual values.

We illustrate the problem of well-
formedness of g-choreographies informally
through the diagram on the right represent-
ing an example borrowed from [1]. This g-
choreography models the protocol followed
by two components, C1 and C2 to control the
level of uranium (UR) and nitric acid (NA)
for the production of energy in a nuclear
power plant. Each component can request
variations of the energy production by incre-
menting or doubling the level of the elements.
In the diagram, + and its darker variant respectively represent selection and
merge of a distributed choice while | and its darker variant respectively repre-
sent the fork and join of concurrent activities in the global view. Note that edges

On Testing Message-Passing Components 25

represent causal relations between communication events; for instance, the edge
from the interaction C2−→NA : dbl and C1−→NA : inc means that the former caus-
es/precedes the latter. Intuitively, the intended meaning of the g-choreography
above is that either (i) both uranium and nitric acid are first doubled and then
incremented (left branch of the choice), or (ii) they are both first incremented
and then doubled (right branch of the choice). In either case, each controller and
its respective element execute those operations in parallel. A natural expectation
of this protocol is that, upon termination, the levels of the two elements is the
same. We anticipate that this is not case when the protocol runs distributively
and with asynchronous communications. In fact, UR may first receive and pro-
cess the message from C1 and then the one from C2 while the one controlling
nitric acid may process the messages of the two controllers in the opposite order.
This results in one unit of uranium (2x + 2) more than nitric acid (2x + 1). If
the invariant is crucial for maintaining the security of the plant, this behaviour
may lead to a catastrophic incident.

The semantics of a g-choreography, written [[G]], is defined in terms of a
set of pomsets (i.e. partially ordered multisets). Each pomset represents the
causal dependencies among events of a single branch. Events are labelled by
communicating actions l ∈ Lact, where AB!m represents participant A sending
message m to B and AB?m represents participant B receiving message m from A.
The subject (i.e. sbj(l) = A) of AB!m and AB?m are A and B respectively.

Each pomset represents all possible traces caused by different interleavings of
concurrent events. Therefore, the language of a g-choreography, written L[G], is
the closure under prefix of the set of all linearisations of [[G]], where a linearisation
of a pomset is a permutation of its events that preserves the order of the pomset.

Pomset-based conditions that check well-formedness of g-choreographies have
been identified in [26]. The g-choreography above does not satisfy these condi-
tions. The problem arises because both NA and UR make a local choice with-
out communicating with the other partner. For example, it can happen that
NAdecides to first double and then increment while UR decides for the opposite.

2.2 Communicating Systems

Communicating systems were introduced in [4] as an expressive model of
message-passing protocols. Participants of a protocol are modelled as a com-
municating finite-state machine (CFSM), namely a finite state automaton M =
(Q, q0,−→) where labels are communication actions in Lact. A CFSM is A-local
if any label l on its transitions is such that sbj(l) = A. Below are two CFSMs
corresponding to participants NA and C1 of the example in Sect. 2.1

q0C1

q1

q2

q3

C1
NA

!in
c

C1UR!inc

C1UR!inc

C1
NA

!in
c

and q0NA

q1

q2

q3

C1
NA

?in
c

C2NA?dbl

C2NA?dbl

C1
NA

?in
c

(1)

Notice that the parallel composition in the g-choreography is expressed through
commuting transitions in the CFSMs. Due to the obvious symmetry, the two

26 A. Coto et al.

CFSMs corresponding to participants UR and C2 are analogous to the machine
corresponding to NA and C1 respectively.

A (communicating) system is a map S = (Mi)i∈I where Mi = (Qi, q0i,−→i)
is a CFSM for each index i ∈ I. For each pair of participants A �= B there is a
channel AB from A to B formally, C = {AB

∣
∣ A �= B ∈ P} is the set of channels.

Each channel AB ∈ C has an unbounded buffer bA B containing the messages that
A has sent to B and from which B consumes the messages sent by A. Here we
assume buffers to be finite multisets (in the original definition of CFSMs in [4],
buffers are unbounded FIFO queues).

The semantics of a communicating system is a transition system which keeps
track of the state of machines and the content of buffers. A configuration of S is
a pair s = 〈q ; b〉 where q = (qi)i∈I with qi ∈ Qi and b = (bA B)A B∈C. The initial
configuration s0 is the one where, for all i ∈ I, qi = q0i is the corresponding
initial state and all its buffers are empty. A configuration s = 〈q ; b〉 moves
to s′ = 〈q′ ; b′〉, written s

l−−�s′, if there is a machine that is ready to send a
message or if there is a pending message and a machine that is ready to consume
it. In both cases, the transition of the machine is fired and the message is either
added or removed from the corresponding buffer.

For instance, the following sequence of transitions

s
C1 NA!inc−−−−−−−� s′ C1 NA?inc−−−−−−−� s′′ (2)

is possible in the system containing the CFSMs in (1) where the local states of
both C1 and NA is their initial state s while s′ and s′′ are such that

– the only state changed in s′ is the local state of C1, which is set to q1, and
the buffer of C1NA in s′ is obtained by adding an inc message to the buffer
of C1NA in s

– s′′ equals s but for the local states of the CFSMs C1 and NA which are both
q1 in s′′.

Notice that s′ C2 NA!dbl−−−−−−−�s′′′ is possible, namely in s′ the controller C2 can send
the message dbl to NA before the latter consumes the message inc from the
buffer of C1NA. Obviously s � C1 NA?inc−−−−−−−� if the buffer of C1NA in s does not
contain inc.

A configuration s is stable for C′ ⊆ C if all buffers in C′ are empty in s (we
simply say s stable if C′ = C) and it is a deadlock if s �−−� and either there is a
machine ready to perform an input or s is not stable.

Let Π(S, s) be the set of runs of a communicating system S starting from
a configuration s of S, that is the set of sequences π = {(si, li, si+1)}0≤i≤n with
n ∈ N∪{∞} such that s0 = s, and si

li−−−�si+1 for every 0 ≤ i ≤ n. For instance,
the sequence in (2) is a run from s. Also, the run π is maximal if n = ∞ or sn �−−�.
We denote with Π(S) the runs of S starting from its initial configuration. The
trace of a run π is the sequence of actions li occurring in it, and the language of
a communicating system S, written L[S] is the set of traces of the runs Π(S).

On Testing Message-Passing Components 27

3 Instantiating CGT

Well-Formedness and the projection operation are parameters of CGT and are
abstracted away by means of some requirements. A projection function � gen-
erates local models from global models. In our case, this intuitively means that
G�A is a CFSM “reflecting” the communication pattern specified in G for the
participant A. The requirements of CGT on well-formedness and projection are
that they capture deadlock-free realisable systems, namely that well-formedness
of G guarantees

– the existence of a system S realising G, namely that L[S] ⊆ L[G] whose runs
are deadlock-free;

– and that the projection of G yields a system realising G.

A well-known problem of software testing is to decide when a test is success-
ful. In fact, this decision is application-dependent and usually has to be specified
manually [2]. To tackle this problem we appeal to the syntax corresponding to
the diagrammatic representation of g-choreographies seen before. It is immaterial
to give the actual syntax here; the interested reader is referred to e.g., [13,26].
The procedure assigning the expected outcome to tests is called oracle. In our
setting, this corresponds to single out configurations of communicating systems
according to a sub-tree of a choreography as defined below.

Test success. an oracle scheme is a map ΩG,� that for each participant A and
syntactic subtree of G yields a set of states of the CFSM G�A such that for
every syntactic subtree τ of G, every maximal run in Π(G �) has a stable
configuration where the local state of participant A belongs to ΩG,�(A, τ).

The oracle scheme ΩG,� is supposed to “mark” as successful the states that the
CSFMs forming a test can possibly reach after having executed the portion of
the protocol corresponding to τ . When satisfied, the success requirement estab-
lishes that any execution of the test reaches a stable configuration where all the
participants are in a successful state. Notice that tests do not check global views;
rather they probe (possibly wrong implementations of) local views in order to
establish their “compliance” with respect correct global views.

With these ingredients we can define a test for a participant A of G as a map
T =

(

〈Mi, Qi
〉
)

1≤i≤n
where Q

i
is a subset of the states of Mi, which in turn

– is a deterministic CFSM with at most one output transition from each state,
– and the subject of each transition is neither A nor the subject of a transition

in a machine Mj with j �= i.

The tests for a participant A of G can be generated from projections by taking all
the combinations of CFSMs involving different subjects obtained by “separating”
all internal choices until a deterministic machine is attained: i.e., the output
transitions from a same state or transitions with the same labels. If, for example,

28 A. Coto et al.

we were to test NA in the choreography in Sect. 2 we could generate the following
test machines from C1 in (1):

q0C1 q1 q3
C1NA!inc C1UR!inc and

q0C1 q2 q3
C1UR!inc C1NA!inc

where the colour-filled states are the successful ones assigned by an oracle
scheme. In this case the success of the state disregards anything that happens
after that the message C1UR!inc has been sent.

We instantiate the abstract notions with the well-formedness notion and the
projection operation respectively with the predicate WF () and the function �
on g-choreographies defined in [13,26]. For example, if G is the g-choreography
in Sect. 1, then as explained WF (G) does not hold, and G�C1 and G�NA are the
CFSMs in (1). In general, the projection operation � yields deterministic but
not necessarily minimal CFSMs. In the following, we let G�= (G�A)A∈P represent
the system induced by the projections of G.

It is immaterial to spell out the definitions of well-formedness and projection
here; it suffices to note

– that G�A is a deterministic A-local CFSM for each participant A in G;
– that WF (G) implies L[G�] ⊆ L[G], namely G� realises G;
– no run in Π(G�) contains a deadlock configuration;

In other words, WF and � satisfy the soundness requirements of CGT.
Let us now apply the instantiated framework. As said, we need to start from

well-formed g-choreographies and the one in Sect. 2 is not. So let us focus on the
leftmost parallel composition of the choreography in Sect. 2 that is well-formed
and can be syntactically written as

Gl = C2−→NA : dbl;C1−→NA : inc | C2−→UR : dbl;C1−→UR : inc

Notice that the projections of Gl on C1 and C2 are as those in Sect. 2. We want
to test a (wrong) implementation of NA given by the following CFSM:

q0MNA
q1 q3

C1NA?inc C2NA?inc

that tries to consume inc from C2. Our tests are of the form

T =
(

〈MX, QX
〉
)

X∈{C1,C2,UR}
for some Q

X

where each MX is obtained by applying the algorithm sketched above to G�X.
Note that UR is deterministic and has only input transitions, hence the only
possible test is TUR = G�UR. itself. Instead, the initial states of C1 and C2 both
have more than one output transition, so the resulting machines are

q0TC1,1 q1 q3
C1NA!inc C1UR!inc and

q0TC1,2 q2 q3
C1UR!inc C1NA!inc

q0TC2,1 q1 q3
C2NA!dbl C2UR!dbl and

q0TC2,2 q2 q3
C2UR!dbl C2NA!dbl

On Testing Message-Passing Components 29

We fix the oracle scheme so that (i) the only success state for both C1 and
C2 is q3 and (ii) any state of UR is a success state (in a sense we care only
that UR consumes all the messages when C1 and C2 terminate). Now, consider
the communicating systems consisting of MNA TC1,i, TC2,j , and TUR with i, j ∈
{1, 2}. It is easy to see that every run of each such system cannot reach a stable
configuration where both C1 and C2 are in state q3 because MNA will never
consume the message dbl sent by C2.

4 An Example

We apply CGT to a business-to-business (B2B) example among a customer C, a
provider P, a land shipping company T, and maritime shipping company S. The
scenario is described by the g-choreography GB2B below. When C buys a product

+

|

C P:Payment

|

P S:Goods

T C:Goods

S T:Goods

P

+

|

P S:Cancel

|

P C:Cancel P T:Cancel

T C:Cancel

C T:PlaceOrder

|

C P:PlaceOrder

|

C S:ShipmentDetails

P C:Quote

C P:RequestForQuote

from P, the delivery is outsourced
to T and S. The choreography starts
with the customer requesting a quote
and the provider replying with details
of the quote. Notice that the sec-
ond interaction causally depends on
the first one. Then, before1 booking a
truck delivery, in parallel the customer
sends the order to the provider and the
shipping details to the shipping com-
pany.

Once the order has been placed,
the transaction can be either successful
or cancelled. The latter case may hap-
pen because e.g., goods are not avail-
able on the date of shipping. In case
of a cancelled transaction, the cus-
tomer is notified by the truck company
and the provider. In case of successful
transaction, the goods are delivered to
the customer while the customer pays
the provider.

In order to apply CGT we have
to check the well-formedness of GB2B.
This is done with the help of Chor-
Gram [20], a toolchain for the chore-

ographic development of message-passing applications. Basically, ChorGram con-
firms that the closure properties hold for GB2B; in fact, all participants are aware
of the branch selected by P. Also, ChorGram computes the projections of GB2B,
1 This scenario is instrumental to the discussion of Sect. 5; for simplicity we consider
only the interesting case when C accepts the quote from P. More realistically, C
should decide whether to accept or not the quote (and perhaps bargain with P).

30 A. Coto et al.

0

1

CP?RequestForQuote

2

PC!Quote

3

CP?PlaceOrder

4

PC!Cancel

5

PT!Cancel

6

13

PS!Cancel

14

PT!Cancel

11

PC!Cancel

7

CP?Payment

8

PS!Goods

9

PS!Goods CP?PaymentPS!CancelPT!Cancel PS!Cancel

(a) Provider Machine

0

1

CP!RequestForQuote

2

PC?Quote

3

CP!PlaceOrder

4

CS!ShipmentDetails

5

CS!ShipmentDetails CP!PlaceOrder

6

CT!PlaceOrder

7

TC?Cancel

8

PC?Cancel

9

12

PC?Cancel TC?Cancel 10

CP!Payment

11

TC?Goods

TC?Goods CP!Payment

(b) Customer Machine

0

1

CT?PlaceOrder

2

PT?Cancel

3

ST?Goods

4

TC!Cancel TC!Goods

(c) Truck Machine

0

1

CS?ShipmentDetails

2

PS?Cancel 3

PS?Goods

ST!Goods

(d) Ship Machine

Fig. 1. Correct machines obtained from projecting GB2B

which are reported in Fig. 1, where dashed states correspond to the completion
of the execution of the choreography (as given by an oracle scheme Ω in CGT).

Suppose that the correctness of all components but C has been spoiled due to
some modifications. We apply CGT to projections to test the various components.

Testing the Provider. Assume we have the following (faulty) implementation of
P (where, for readability, the final state is split in states 5, 8, and 9):

0 1CP?RequestForQuote 2PC!Quote 3CP?PlaceOrder

4

5
PC!Cancel

6PS!Goods

7

CP?Payment

9CP?Payment

8PS!Goods

On Testing Message-Passing Components 31

This implementation can bring the whole system to deadlock: suppose the
provider decides to cancel the transaction by sending a message to the customer
(PC!cancel) and ends it execution on state 5. A correct implementation of S
will be expecting either for the goods to arrive from the provider (PS?goods)
or for a cancellation message (PS?cancel), and a similar scenario occurs for the
truck. A set of machines that can be generated through CGT and can detect this
problem is the following:

0 1CS?ShipmentDetails 2

PS?Cancel

3

PS?Goods ST!Goods

0 1CP!RequestForQuote

6

7TC?Cancel

8PC?Cancel

9

2PC?Quote

4

CS!ShipmentDetails

5

CP!PlaceOrder

CT!PlaceOrder

12

PC?Cancel

TC?Cancel

10
CP!Payment

TC?Goods

0 1CT?PlaceOrder

2PT?Cancel

3

ST?Goods 4

TC!Cancel

TC!Goods

The system composed of the previous wrong implementation of P and the test
machines generated by CGT will never reach a success configuration. Notice the
execution where P executes PC!cancel and does not also notify the truck and
ship of this cancellation (PT!Cancel and PS!Cancel), as required by the original
projections. Participant S would then await forever in state 1 either on input
PS?goods or on input PS?cancel, whereas T would also be stuck on its state
1, waiting to fire either PT?cancel or ST?goods.

The fact that more than one machine is not in a state marked as final by an
oracle scheme means this implementation fails a test. The offending trace can
then be used by the developer to better understand and solve the problem.

Testing the Ship. Tests fail also when not all messages of interest are consumed.
We see this with the following wrong implementation of S.

0 1CS?ShipmentDetails 2PS?Goods 3ST!Goods

In this case, it might occur that the faulty component decides to finish its
execution at state 1, just after receiving the details of the shipment, without ever
receiving the goods from the provider, neither sending them to T. This problem
would be caught by the following system:

32 A. Coto et al.

0 1CP!RequestForQuote

6

7TC?Cancel

8PC?Cancel

9

2PC?Quote

3

CP!PlaceOrder

5

CS!ShipmentDetails

CT!PlaceOrder

12

PC?Cancel

TC?Cancel

10
CP!Payment

TC?Goods

0 1CP?RequestForQuote 2PC!Quote 3CP?PlaceOrder 6 8PS!Goods 9CP?Payment

0 1CT?PlaceOrder

2PT?Cancel

3

ST?Goods 4

TC!Cancel

TC!Goods

This is because a stable configuration will never be reached in the system,
due to the dangling Goods message. A similar example can be derived in the
case of T, which we omit for the sake of brevity.

Undetected Errors. There are, however, errors that cannot be detected by the
generated tests (as known, tests can reveal the presence of bugs, but not their
absence [12]). Indeed, since CGT treats the component under test as a black
box, it cannot detect certain interleaving of events of the component under
test due to asynchrony. As an example, assume we want to test the C: there
is no way to ascertain through testing whether the events CP!PlaceOrder and
CS!ShipmentDetails will be done in parallel (instead of e.g. sequentially).

A second example of a scenario where testing might not suffice is when causal
dependencies are not preserved. For instance, in Fig. 1c, if we swap the order of
events TC!Goods and ST!Goods as follows:

0 1CT?PlaceOrder

2PT?Cancel

3

TC!Goods 4

TC!Cancel

ST?Goods

then participant T can send a Goods message before receiving it from S first (as
stated in the original g-choreography).

5 Discussion and Open Problems

We now develop some considerations based on the examples presented in the
previous sections.

On test generation The mechanisms we used in our examples to test components
of message-passing systems hinge on the so called top-down approach featured
by an existing choreographic model. A distinctive element of our line of work
is the combination of techniques emerged in formal choreographic approaches
with model-driven testing. Given mild assumptions on the model, CGT gen-
erates tests for component testing of message-passing applications. We remark

On Testing Message-Passing Components 33

that the choreographic model adopted, albeit abstract, mimics real programming
paradigms, mainly those based on actor models such as Erlang or Akka.

We adopted existing notions of well-formedness and projection. These are
the parameters of an abstract test-generation adopted in CGT which fixes the
basic notions of test, test feasibility, and test success within the framework of
g-choreographies and communicating systems.

The algorithm for test generation discharges inputs in mixed-choice states,
namely those states with both output and input outgoing transitions. For
instance, both Customer and Provider in the shipping example of Sect. 4
have mixed-choice states after the confirmation message is sent by Provider
to Customer. Note that mixed-choice states emerge if there is a parallel g-
choreography with a participant sending on one thread and receiving on another.
The alternative strategy, i.e. discharging outputs of mixed choices, may be prob-
lematic and lead to generation of “unsafe” tests. We illustrate this with the
following CFSMs:

MB =

q0

q1 q2

q3 q4

B
C!
n

C
B
?n

C
B
?n

B
C!
n

AB?m

MC =

q0

q1 q2

q3

C
B!
n

B
C?n

B
C?n

C
B!
n

(3)

and suppose to use them to test an implementation of A that simply executes
AB!m (as expected). The test consisting of the dashed transitions will lead to a
deadlock configuration despite the fact that MA behaves as expected.

There might be alternative approaches to CGT. Firstly, test generation may
be done differently when adopting different types of tests. A natural alternative
can be obtained by “dualising” projections. Namely, we could take the projection
of one component, say M , and consider as test cases the CFSMs obtained by
applying our algorithm to the CFSM where all transitions are of M are dualised
(i.e., each input label is replaced with the corresponding output label and vice
versa). Note that this yields a non-local CFSM, which CGT encompasses.

Oracles. Relying on the principled design of the so-called top-down develop-
ment of choreographic frameworks, we can guarantee that generated tests are
suitable, that is they must be passed by valid implementations. This yields a
main advantage: CGT solves the oracle problem for the class of generated tests
because the oracle scheme can be automatically inferred for a given projection.
The problem of determining the expected outcome of a test is indeed well-known
in software testing. Usually, this decision problem is application-dependent and
requires human intervention [2]. However, there is a trade-off. The exhaustive
generation of suitable tests is a source of inefficiency of the algorithm as we argue
later.

34 A. Coto et al.

Efficiency & Feasibility. The theoretical complexity of our test generation algo-
rithm is exponential in the size of the g-choreography. This is essentially due to
two main facts.

Firstly, parallel composition of g-choreographies yields an exponential blow-
up as it could introduce a number of fictitious internal-choice states in the pro-
jections. For instance, consider the variant of the shipping example where, in
the parallel composition executed when the order is cancelled, the interactions
Provider−→Customer : cancel and Provider−→Ship : cancel are in parallel. Then,
the algorithm will generate tests that change only for the interleaving of inde-
pendent outputs. Such tests will be all equivalent and therefore redundant in an
asynchronous setting.

Secondly, the exhaustive use of all the syntactic sub-trees yields an high num-
ber of tests. This could be unfeasible for large g-choreographies. Note however
that the oracle specification is a parameter of our algorithm and, in practice,
one can tune it up so to target only “interesting” parts of the g-choreography.

Some optimisations are however possible. A first optimisation can be the
reduction of internal choices generated by the parallel composition in our exam-
ples. In fact, those tests are redundant and one would be enough in the semantics
of communicating systems adopted here (where channels are multisets of mes-
sages similar to Erlang’s mailboxes). A second optimisation could exploit an
analysis of the syntactic structure in order to exclude immaterial sub-trees. For
instance, the tree of the whole g-choreography in Sect. 4 is subsumed by the
subtree rooted in the second interaction Provider−→Customer : quote. Indeed any
run “going through” the latter tree also goes through the former one. A pre-
processing of the oracle specification may therefore improve the efficiency. Note
that adopting this approach probably requires a careful transformation of the
oracle specification. This may not be easy to attain.

Another optimisation comes from the study of some notion of “dominance”
of tests. The discussion above about mixed-choices is an example: in a mixed-
choice state, the tests with a bias on first-outputs dominate those starting with
inputs. For instance, the test with solid transitions in (3) above dominate the
one with dashed transitions.

Quality of Test Suites. In software testing it is widely accepted that it is unfeasi-
ble to perform a high number of tests. Hence, test suites are formed by carefully
selected tests that satisfy some coverage criteria. This yields a number of ques-
tions that we did not address yet: What is a good notion of coverage for commu-
nicating systems? Can choreographic models help in identifying good coverage
measures? What heuristics lead to good coverage? Remarkably, this problem
pairs off with the problem of concretisation in model-driven testing [23]. Given
an abstract test (as the ones we generate), how should it be concretised to test
actual implementations? In fact, the abstract notion of coverage only considers
distributed choices, but actual implementations may have local branching com-
putations that should also be covered to some extent. This probably requires
our approach to be combined with existing approaches to testing.

On Testing Message-Passing Components 35

Semantics, Theory & Practice Obviously, the assumptions on the underlying
communication model affect the nature of tests. For instance, the identification
of redundant tests discussed above changes if buffers of communicating systems
follow a FIFO policy, as per the original definition in [4]. In fact, if one takes such
communication model inputs from a same sender become sensitive to the order
of the messages. Therefore, a permutation in the sequence of outputs may lead
to a deadlock configuration where a receiver cannot consume a message because
it is not the top message of the FIFO queue in the buffer.

Studying the semantic aspects of message-passing systems probably requires
to develop a suitable theory. An intriguing research direction is indeed the con-
nection between CGT and the theory of testing of communicating systems [10].
This theory has been extended to asynchronous communications [3] and has a
natural connection with CGT: the notion of success that we adopt is similar to
must-preorder in the theoretical setting. We believe that deeper relations may
be unveiled by a systematic study.

Finally, we have started to integrate CGT framework in [20], a toolchain
supporting g-choreographies. We believe that tool support is crucial both for
experimental analysis and to enable designers to actually adopt CGT.

6 Conclusions and Related Work

We considered component-testing. An intriguing open problem is to apply the
ideas of this paper to support integration testing. In fact, one could think of
defining group projections, namely projection operations that generate commu-
nicating systems representing the composition of several participants. We believe
that this approach could pay off when the group onto which the g-choreography
is projected can be partitioned in a set of “shy” participants that interact only
with participants within the group and others that also interact outside the
group. The former set of participants basically corresponds to units that are
stable parts of the system that and do not need to be (re-)tested as long as the
components in the other group pass some tests.

Instead of concretising abstract tests, one could extract CFSMs from actual
implementations and run the tests on them. Note that such technique should (i)
be more efficient than concretisation (because it does not let abstract tests pro-
liferate into many concrete ones) and (ii) allow to test implemented components
for which the source code is not available (e.g., by using some machine learning
algorithm to infer the CFSMs). Moreover, another advantage of this approach
could be that it enables us to exploit the bottom-up approach of choreographies,
where global views are synthesised from local ones (e.g., as in [19,21]). The syn-
thesised choreography can be compared with a reference one to derive tests that
are more specific to the implementation at hand. These are definitely interesting
alternatives that we plan to explore in the future.

36 A. Coto et al.

Notoriously, in software engineering, testing is considered the tool2 for verify-
ing software and assuring its quality. The Software Engineering Book of Knowl-
edge available from http://www.swebok.org describes software testing as (bold
text is ours):

“the dynamic verification of the behaviour of a program on a finite set
of test cases, suitably selected from the usually infinite executions
domain, against the expected behavior.”

Our framework reflects the description above3 for model-driven testing of
message-passing systems. An immediate goal of ours is to experimentally check
the suitability of the test cases obtained with our algorithm. For this we plan to
identify suitable concretisation mechanisms of the abstract tests generated by
our algorithm and verify Erlang or Golang programs.

Since message-passing systems fall under the class of reactive systems we
got inspiration from the work done on model-driven testing of reactive sys-
tems [6]. In particular, we showed that choreographic models can, at least to
some extend, be used to automatically generate executable tests and as test case
specifications [24]. Technically, we exploited the so-called projection operation
of choreographic models. Here, we gave an abstract notion of projection. A con-
crete projection was formalised for the first time in [15] (for multi-party session
types) and for g-choreographies in [13,14,26], elaborating on the projection of
global graphs [11]. As discussed in Sect. 5, in the future we will also explore the
use of choreographic model-driven testing to address other problems related to
testing message-passing systems.

Traditional testing has been classified [25] according to parameters such as
the scale of the system under test, the source from which tests are derived
(e.g., requirements, models, or code). There are also classifications according to
the specific characteristics being checked [22]; our work can be assigned to the
category of behavioural testing.

According to [27], the generation of test cases is one of the ways model-
based testing can support software verification. Our model explicitly features a
mechanism for test generation paired with the notion of an oracle scheme (cf.
Sect. 3) as a precise mechanism to identify the expected outcome of test cases.
In fact, unlike in most cases, choreographic models contain enough information
about the expected behaviour of the system under test in order to make accurate
predictions. We believe that this is a peculiarity of our approach.

The use of choreographies in model-driven testing is not new. Model-driven
testing exploiting choreography models had been for instance studied in [28].
This work focuses on integration testing rather than component testing. In a

2 Regrettably, barred for few exceptions, rigorous formal methods that aim to show
absence of defects rather than their presence are less spread in current practices. We
cannot embark in a discussion on this state of the matter here.

3 Although for simplicity we did not consider iterative g-choreographies in our exam-
ples, the algorithm can deal with arbitrary unfolding of the loops, which make infinite
the state of possible behaviours of g-choreographies.

http://www.swebok.org

On Testing Message-Passing Components 37

sense, our approach complements the one in [28]. In fact, as its authors note,
their proposal assumes that component testing has been already performed. A
technical difference is that test generation is not attained from the syntax of
a global view as we do. Rather, tests are generated in [28] by exploring the
resulting transition system. In addition, our approach allows us to generate only
valid tests through the oracle scheme we propose.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE
Trans. Softw. Eng. 29(7), 623–633 (2003)

2. Barr, E., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem in
software testing: a survey. TOSEM 41(5), 507–525 (2015)

3. Boreale, M., Nicola, R.D., Pugliese, R.: Trace and testing equivalence on asyn-
chronous processes. Inf. Comput. 172(2), 139–164 (2002)

4. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

5. Bravetti, M., Zavattaro, G.: Contract compliance and choreography conformance
in the presence of message queues. In: Bruni, R., Wolf, K. (eds.) WS-FM 2008.
LNCS, vol. 5387, pp. 37–54. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-01364-5 3

6. Broy, M., Jonsson, B., Katoen, J., Leucker, M., Pretschner, A. (eds.): Model-Based
Testing of Reactive Systems, Advanced Lectures, Lecture Notes in Computer Sci-
ence, vol. 3472. Springer (2005). https://doi.org/10.1007/b137241

7. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. MSCS 26(2), 238–302 (2016)

8. Coto, A., Guanciale, R., Tuosto, E.: An abstract framework for choreographic
testing. In: Lange, J., Mavridou, A., Safina, L., Scalas, A. (eds.) Proceedings 13th
Interaction and Concurrency Experience. Electronic Proceedings in Theoretical
Computer Science, vol. 324, pp. 43–60. Open Publishing Association, 19 June 2020.
https://doi.org/10.4204/EPTCS.324.5

9. Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I., Jacopo, M.: Dynamic
choreographies - safe runtime updates of distributed applications. COORDINA-
TION 2015, 67–82 (2015). https://doi.org/10.1007/978-3-319-19282-6 5

10. De Nicola, R., Hennessy, M.: Testing equivalences for processes. TCS 34, 83–133
(1984)

11. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2 10

12. Dijkstra, E.: Notes on structured programming. In: Structure Programming, pp.
1–82. ACM, January 1972

13. Guanciale, R., Tuosto, E.: An abstract semantics of the global view of choreogra-
phies. In: Interaction and Concurrency Experience, Electronic Proceedings in The-
oretical Computer Science, vol. 223, pp. 67–82, September 2016. https://doi.org/
10.4204/EPTCS.223.5, http://arxiv.org/abs/1608.03323

14. Guanciale, R., Tuosto, E.: Semantics of global views of choreographies. J. Logic
Algebraic Methods Programm. 95 (2017). Revised and extended version of [13].
Version with proof http://www.cs.le.ac.uk/people/et52/jlamp-with-proofs.pdf

https://doi.org/10.1007/978-3-642-01364-5_3
https://doi.org/10.1007/978-3-642-01364-5_3
https://doi.org/10.1007/b137241
https://doi.org/10.4204/EPTCS.324.5
https://doi.org/10.1007/978-3-319-19282-6_5
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.4204/EPTCS.223.5
https://doi.org/10.4204/EPTCS.223.5
http://arxiv.org/abs/1608.03323
http://www.cs.le.ac.uk/people/et52/jlamp-with-proofs.pdf

38 A. Coto et al.

15. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016). Extended version of a paper presented at POPL08

16. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 1–67 (2016). https://doi.org/10.1145/2827695. Extended version of a
paper presented at POPL08

17. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 1–36 (2016). https://doi.org/10.1145/2873052, http://dl.
acm.org/citation.cfm?doid=2911992.2873052

18. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y.: http://www.
w3.org/TR/2004/WD-ws-cdl-10-20041217. Working Draft 17 December 2004

19. Lange, J., Tuosto, E.: Synthesising choreographies from local session types. In:
Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 225–239.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32940-1 17

20. Lange, J., Tuosto, E.: ChorGram (2015). https://bitbucket.org/emlio tuosto/
chorgram/wiki/Home

21. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 221–232 (2015)

22. Oberkampf, W.L., Roy, C.J.: Verification and Validation in Scientific Computing.
Cambridge University Press, Cambridge (2010)

23. Pretschner, A., Philipps, J.: Methodological issues in model-based testing. In: Broy,
M., Jonsson, B., Katoen, J.P., Leucker, M., Pretschner, A. (eds.) Model-Based
Testing of Reactive Systems, vol. 3472, pp. 281–291. Springer, Berlin Heidelberg,
Berlin, Heidelberg, October 2005. http://link.springer.com/10.1007/11498490 13

24. Pretschner, A., Philipps, J.: Methodological issues in model-based testing. In: Broy
et al. [6], pp. 281–292 (2005)

25. Tretmans, J.: Model-based testing: Property checking for real. In: International
Workshop for Construction and Analysis of Safe Secure, and Interoperable Smart
Devices (2004)

26. Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. J. Logic
Algebraic Methods Program. 95, 17–40 (2018)

27. Utting, M., Legeard, B.: Practical Model-Based Testing - A Tools App-
roach. Morgan Kaufmann (2007). http://www.elsevierdirect.com/product.jsp?
isbn=9780123725011

28. Wieczorek, S., et al.: Applying model checking to generate model-based integra-
tion tests from choreography models. In: Núñez, M., Baker, P., Merayo, M.G.
(eds.) FATES/TestCom -2009. LNCS, vol. 5826, pp. 179–194. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-05031-2 12

https://doi.org/10.1145/2827695
https://doi.org/10.1145/2873052
http://dl.acm.org/citation.cfm?doid=2911992.2873052
http://dl.acm.org/citation.cfm?doid=2911992.2873052
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217
https://doi.org/10.1007/978-3-642-32940-1_17
https://bitbucket.org/emlio_tuosto/chorgram/wiki/Home
https://bitbucket.org/emlio_tuosto/chorgram/wiki/Home
http://springerlink.bibliotecabuap.elogim.com/10.1007/11498490_13
http://www.elsevierdirect.com/product.jsp?isbn=9780123725011
http://www.elsevierdirect.com/product.jsp?isbn=9780123725011
https://doi.org/10.1007/978-3-642-05031-2_12

Composing Communicating Systems,
Synchronously

Franco Barbanera1, Ivan Lanese2(B), and Emilio Tuosto3,4

1 Department of Mathematics and Computer Science, University of Catania,
Catania, Italy

2 Focus Team, University of Bologna/INRIA, Bologna, Italy
ivan.lanese@gmail.com

3 Gran Sasso Science Institute, L’Aquila, Italy
4 University of Leicester, Leicester, UK

Abstract. Communicating systems are nowadays part of everyday life,
yet programming and analysing them is difficult. One of the many rea-
sons for this difficulty is their size, hence compositional approaches are a
need. We discuss how to ensure relevant communication properties such
as deadlock freedom in a compositional way. The idea is that commu-
nicating systems can be composed by taking two of their participants
and transforming them into coupled forwarders connecting the two sys-
tems. It has been shown that, for asynchronous communications, if the
participants are “compatible” then composition satisfies relevant com-
munication properties provided that the single systems satisfy them. We
show that such a result changes considerably for synchronous communi-
cations. We also discuss a different form of composition, where a unique
forwarder is used.

1 Introduction

The behaviour of systems which communicate via point-to-point message passing
can be described in terms of systems of Communicating Finite State Machines
(CFSMs) [10], that is systems of finite state automata whose transitions are
labelled by sending and receiving actions. Such systems can be then analysed to
check whether they enjoy relevant communication properties such as deadlock
freedom, lock freedom, etc. (see, e.g., [6,7,16,20,24]).

Traditionally these systems are viewed as closed, thus one needs full knowl-
edge of the whole system in order to analyse it. In scenarios such as the Internet,
the Cloud or serverless computing, such assumption is less and less realistic.

Research partly supported by the EU H2020 RISE programme under the Marie
Sk�lodowska-Curie grant agreement No 778233, by the MIUR project PRIN
2017FTXR7S “IT-MaTTerS” (Methods and Tools for Trustworthy Smart Systems)
and by the Project PTR - UNICT 2016-19. The first and second authors have also
been partially supported by INdAM as members of GNCS (Gruppo Nazionale per il
Calcolo Scientifico). The authors thanks the reviewers for their helpful comments and
also M. Dezani for her support.

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 39–59, 2020.
https://doi.org/10.1007/978-3-030-61362-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_3

40 F. Barbanera et al.

Recently, an approach to the composition of systems of CFSMs has been
proposed [3,4]. The main idea of the approach is to take two systems, select
two of their participants (one per system) and transform them into coupled
gateways connecting the two systems. More precisely, if a message is sent to one
of the gateways, it is forwarded to the other gateway, which sends it to the other
system.

Of course, for such a composition to be well-behaved, the two gateways should
exhibit behaviours which are essentially dual of each other: when one wants to
send a message the other one needs to be willing to receive the same mes-
sage. Such an intuition has been formalised as a compatibility relation. It has
also been shown that compatibility, together with conditions of no mixed states
and ?!-determinism on the selected participants, ensures that the composition is
well-behaved. For instance, if the components are deadlock-free then the system
resulting from the composition is deadlock-free too.

In this paper we first revise such results in a setting of synchronous CFSMs,
while [3,4] focus on the asynchronous FIFO case. Somehow surprisingly, stricter
conditions are required to ensure compositionality of deadlock freedom. We then
propose a new composition methodology which replaces the two selected par-
ticipants with a unique gateway. Beyond saving some communications and sim-
plifying the analysis, this second methodology is also more general since the
conditions needed for compositionality of deadlock freedom are slightly weaker.
We call this second composition semi-direct, to distinguish it also from direct
composition as proposed in [5] in a context of multiparty session types [17], which
avoids the need for gateways altogether. Notably, two-gateways composition is
completely transparent for the participants different from the interface ones,
semi-direct composition requires renaming some of their communications, while
direct composition may require a non-trivial restructuring of their behaviours.

Structure of the Paper. Section 2 introduces systems of CFSMs and related
notions. Composition by gateways and semi-direct composition are discussed
in Sect. 3 and Sect. 4, respectively. Conclusions, related and future work are
discussed in Sect. 5.

2 Background

Communicating Finite State Machines (CFSMs) [10] are Finite State Automata
(FSAs) where transitions are labelled by communications.

Definition 2.1 (FSA). A Finite State Automaton (FSA) is a tuple A =
〈S, s0,L,→〉 where

– S is a finite set of states (ranged over by s, q, . . .);
– s0 ∈ S is the initial state;
– L is a finite set of labels (ranged over by l, λ, . . .);
– →⊆ S×L×S is a set of transitions.

Composing Communicating Systems, Synchronously 41

We use the usual notation s1
λ−→ s2 for the transition (s1, λ, s2) ∈−→, and s1 −→ s2

when there exists λ such that s1
λ−→ s2, as well as −→∗ for the reflexive and

transitive closure of −→. The set of reachable states of A is R(A) = { s | s0 −→∗

s }.

Let s
λ−→ s′ ∈ A emphasise that the transition belongs to (the set of transitions

of) an FSA A; likewise, q ∈ A stands for “q belongs to the states of A”. A
transition s

λ−→ s′ (resp. s′ λ−→ s) is an outgoing (resp. incoming) transition of s.
We write f [x �→ y] for the update of the function f in a point x of its domain
with the value y. Also, dom(f) denotes the domain of the function f .

We now define systems of CFSMs, by adapting the definitions in [10] to our
context. Let P be a set of participants (or roles, ranged over by A, B, etc.) and
M a set of messages (ranged over by m, n, etc.). We take P and M disjoint.

Definition 2.2 (Communicating system). A communicating finite-state
machine (CFSM) is an FSA with labels in the set

Lact = {AB!m,AB?m | A �= B ∈ P,m ∈ M}

of actions. The subject of an output (resp. input) action AB!m (resp. AB?m)
is A (resp. B). A CFSM is A-local if all its transitions have subject A.

A (communicating) system is a map S = (MA)A∈P assigning an A-local CFSM
MA to each participant A ∈ P where P ⊆ P is finite and any participant occur-
ring in a transition of MA is in P.

Note that systems satisfying the above definition are closed: in fact any input or
output action does refer to participants belonging to the system itself.

We now define, following [6,7], the synchronous semantics of systems of
CFSMs, which is itself an FSA (differently from the asynchronous case, where
the set of states can be infinite).

Definition 2.3 (Synchronous semantics). Let S be a communicating system.
A synchronous configuration of S is a map s = (qA)A∈dom(S) assigning a local
state qA ∈ S(A) to each A ∈ dom(S).

The synchronous semantics of S is the FSA �S� = 〈S, s0,Lint,→〉 where

– S is the set of synchronous configurations of S, as defined above;
– s0 = (q0A)A∈dom(S) ∈ S is the initial configuration where, for each A ∈ dom(S),

q0A is the initial state of S(A);
– Lint = {A−→B : m | A �= B ∈ P and m ∈ M} is a set of interaction labels;

– s
A−→B : m−−−−−→ s[A �→ q,B �→ q′] ∈ �S� if s(A) A B!m−−−→ q ∈ S(A) and s(B) A B?m−−−→ q′ ∈

S(B).

We say that s enables q
A B!m−−−→ q′ ∈ S(A) (resp. q

BA?m−−−→ q′ ∈ S(A)) when s(A) = q.

As expected, an interaction A−→B : m occurs when A performs an output
AB!m and B the corresponding input AB?m.

42 F. Barbanera et al.

As discussed in the Introduction, in this paper we will study preservation
of communication properties under composition. As sample property we choose
the well-known notion of deadlock freedom. The definition below adapts the one
in [13] to a synchronous setting (as done also in [20,27]).

Definition 2.4 (Deadlock freedom). Let S be a communicating system. A
configuration s ∈ R(�S�) is a deadlock if

– s has no outgoing transitions in �S� and
– there exists A ∈ P such that s(A) has an outgoing transition in S(A).

System S is deadlock-free if for each s ∈ R(�S�), s is not a deadlock.

3 Composition via Gateways

This section discusses composition of systems of CFSMs via gateways, as intro-
duced in [3,4], and studies its properties under the synchronous semantics. The
main idea is that two systems of CFSMs, say S1 and S2, can be composed by
transforming one participant in each of them into gateways connected to each
other. Let us call H the selected participant in S1 and K the one in S2. The
gateways for H and K are connected to each other and act as forwarders: each
message sent to the gateway for H by a participant from the original system
S1 is now forwarded to the gateway for K, that in turn forwards it to the same
participant to which K sent it in the original system S2. The dual will happen
to messages that the gateway for K receives from S2. A main advantage of this
approach is that no extension of the CFSM model is needed to transform sys-
tems of CFSMs, which are normally closed systems, into open systems that can
be composed. Another advantage is that the composition is fully transparent to
all participants different from H and K.

We will now define composition via gateways on systems of CFSMs, following
the intuition above.

Definition 3.1 (Gateway). Given a H-local CFSM M and a participant K,
the gateway of M towards K is the CFSM gw(M,K) obtained by replacing:

– each transition q
HA!m−−−→ q′ ∈ M with q

KH?m−−−→ q′′ HA!m−−−→ q′ for some fresh
state q′′;

– each transition q
AH?m−−−→ q′ ∈ M with q

AH?m−−−→ q′′ HK!m−−−→ q′ for some fresh
state q′′.

We compose systems with disjoint participants through two of them, say
H and K, by taking all the participants of the original systems but H and K,
whereas H and K are replaced by their respective gateways.

Definition 3.2 (System composition). Let S1 and S2 be two systems with
disjoint domains. The composition of S1 and S2 via H ∈ dom(S1) and K ∈
dom(S2) is defined as

Composing Communicating Systems, Synchronously 43

S1
H↔KS2 = A �→

⎧
⎪⎨

⎪⎩

Si(A), if A ∈ dom(Si) \ {H,K} with i ∈ {1, 2}
gw(S1(H),K), if A = H

gw(S2(K),H), if A = K

(Note that dom(S1
H↔KS2) = dom(S1) ∪ dom(S2).)

We remark again that, by the above approach for composition, we do not
actually need to formalise the notion of open system. In fact any closed system
can be looked at as open by choosing (according to the current necessities) two
suitable participants in the “to-be-connected” systems and transforming them
into two forwarders.

We also note that the notion of composition above is structural: a corre-
sponding notion of behavioural composition has been studied in [5] in a context
of multiparty session types [17].

Example 3.3. Take the systems S1 and S2 below

S1 =
0

A

AH!m

0

H

AH?m

S2 =
0

1

K

K
C
!m

K
D
!m

0

C

KC?m

0

D

KD?m

The system consisting of the following CFSMs

0

A

AH!m

0

0′

H

A
H
?
m

H
K
!m

0

0′

1

1′

K

H
K
?m

K
C!
m

H
K
?m

K
D
!m

0

C

KC?m

0

D

KD?m

is the composition S1
H↔KS2.

Given a configuration of the composition of systems S1 and S2 we can retrieve
the configurations of the two subsystems by taking only the states of participants
in Si (for i ∈ {1, 2}) while avoiding, for the gateways, to take the fresh states
introduced by the gateway construction.

Definition 3.4 (Configuration projection). Let s be a configuration of a
composed system S1

H↔KS2. The projection of s on S1 is the map s|1 defined by

s|1 : A �→

⎧
⎪⎨

⎪⎩

s(A), if s(A) is not fresh
q, if A = H, s(H) is fresh and q

KH?m−−−→ s(H) ∈ M

q, if A = H, s(H) is fresh and s(H) HK!m−−−→ q ∈ M

where M = gw(S1(H),K). The definition for s|2 is analogous.

44 F. Barbanera et al.

Intuitively, in the projection s|1, if H is in a fresh state after receiving from
K, then the other participants in S1 are still not aware of the message arrival,
hence to have a coherent configuration we take the state of H before the receive.
If instead H is in a fresh state before sending to K, then the other participants in
S1 know that the message has been sent, hence to have a coherent configuration
we take the state of H after the send. (A similar intuition applies to s|2.)
Example 3.5. Let us consider the system S = S1

H↔K S2 of Example 3.3. Take its
configuration s = (0A, 0H, 1

′
K, 0C, 0D). It is easy to check that s ∈ R(�S�). In fact

s0 = (0A, 0H, 0K, 0C, 0D)
A−→H : m−−−−−→ (0A, 0

′
H, 0K, 0C, 0D)

H−→K : m−−−−−→ (0A, 0H, 0
′
K, 0C, 0D)

K−→C : m−−−−−→ (0A, 0H, 1K, 0C, 0D)
A−→H : m−−−−−→ (0A, 0

′
H, 1K, 0C, 0D)

H−→K : m−−−−−→ (0A, 0H, 1
′
K, 0C, 0D)

The projections of s on, respectively, S1 and S2 are

s|1 = (0A, 0H) and s|2 = (1K, 0C, 0D)

Notice that (as we shall prove in Proposition 3.11), from s ∈ R(�S�) it is possible
to infer that s|1 ∈ R(�S1�) and s|2 ∈ R(�S2�).

Being able to build the composition via gateways does not ensure that the
result is well-behaved or that its behaviour is related in any way to the behaviour
of the original systems. We provide below sufficient conditions for this to happen.
We focus in particular on whether deadlock freedom is preserved under compo-
sition. Somehow surprisingly, in the synchronous case preservation of deadlock
freedom requires stricter conditions than in the asynchronous one.

Informally, two CFSMs M1 and M2 are compatible if M1 is bisimilar to the
dual of M2 provided that the communicating partners are abstracted away. In
order to define compatibility, a few simple definitions are handy.
Let Li/o = { ?m, !m | m ∈ M} and define the functions

io : Lact → Li/o and (·) : Li/o → Li/o

by the following clauses

io(AB?m) = ?m io(AB!m) = !m and ?m = !m !m = ?m

which extend to CFSMs in the obvious way: given a CFSM M = 〈S, q0,Lact,→〉,
we define io(M) = 〈S, q0,Li/o,→′〉 where →′= { q

io(l)−−→ q′ ∣
∣ q

l−→ q′ ∈ M }; and
likewise for M .

Definition 3.6 (Compatibility). Two CFSMs M1 and M2 are compatible if
io(M1) is bisimilar to io(M2). Given two communicating systems S1 and S2,
participants H ∈ dom(S1) and K ∈ dom(S2) are compatible roles if S1(H) and
S2(K) are compatible CFSMs.

We refer to the bisimilarity in Definition 3.6 as compatibility bisimilarity. Note
that the compatibility bisimilarity between M1 and M2 is a relation between their
states. It is easy to check that H and K of Example 3.3 are compatible roles.

Composing Communicating Systems, Synchronously 45

Definition 3.7. An A-local CFSM M is:

i) ?-deterministic (resp. !-deterministic) if q
X A?m−−−→ q′ and q

Y A?m−−−→ q′′ ∈ M

(resp. q
A X!m−−−→ q′ and q

A Y!m−−−→ q′′ ∈ M) implies q′ = q′′;
ii) ?!-deterministic if it is both ?-deterministic and !-deterministic;
iii) mixed-deterministic if m �= n for all q

X A?m−−−→ q′ and q
A Y!n−−−→ q′′ ∈ M .

A state q ∈ M is a sending (resp. receiving) state if it has outgoing transitions,
all of which are labelled with sending (resp. receiving) actions; q is a mixed state
if it has outgoing transitions and q is neither sending nor receiving.

Definition 3.8 ((H,K)-composability). Two systems S1 and S2 with disjoint
domains are (H,K)-composable if H ∈ dom(S1) and K ∈ dom(S2) are two com-
patible roles whose machines have no mixed states and are ?!-deterministic.

Definition 3.9. Let gw(MH,K) be a gateway extracted from an H-local CFSM.
Function nofMH

(·) maps the states of gw(MH,K) to the states of MH as follows:

nofMH
(q) =

⎧
⎪⎨

⎪⎩

q if q is not fresh
q′ if q is fresh and q′ AH?m−−−→ q ∈ gw(MH,K) for some A,m

q′ if q is fresh and q
HA!m−−−→ q′ ∈ gw(MH,K) for some A,m

Lemma 3.10. Function nofMH
is well-defined.

Proof. The restriction of nofMH
to the states of MH is the identity. If q is not

a state of MH, then it is fresh by definition of gw(MH,K). By definition of
gw(MH,K) again, there is a unique q′ such that either q′ AH?m−−−→ q ∈ gw(MH,K)
or q

HA!m−−−→ q′ ∈ gw(MH,K). ��
In the system S = S1

H↔K S2 of Example 3.3 it is easy to check, for example,
that nofS(H)(0) = 0 and nofS(K)(1′) = 0.

Function nofMH
is close to the definition of configuration projection (but for

considering a single state instead of a whole configuration) with a main change.
Indeed, when gw(MH,K) receives a message from its own system S1 going to
some fresh state q′′, configuration projection maps it to the next state, since the
rest of S1 is aware of the transition but gw(MH,K) will complete the transition
only in the next state. Instead, function nofMH

maps q′′ to the previous state
since S2, and K in particular, are not yet aware of the transition. Thus, function
nofMH

is designed to establish a correspondence with the other system as shown
by the next proposition.

Proposition 3.11. Let S = S1
H↔K S2 be the composition of two (H,K)-

composable systems S1 and S2. If s ∈ R(�S�) then exactly one of the following
cases hold for qH = s(H) and qK = s(K), the states in s of the gateway CFSMs:

1. both qH and qK are not fresh;
2. either qH is fresh, qK is not fresh, qH

HK!m−−−→ q ∈ S1(H), or, symmetrically, qK

is fresh, qH is not fresh, qK
KH!m−−−→ q ∈ S2(K);

46 F. Barbanera et al.

3. either qH is fresh, qK is not fresh, and there is A ∈ dom(S1) such that qH
HA!m−−−→

q ∈ S1(H), or, symmetrically, qK is fresh, qH is not fresh, and there is B ∈
dom(S2) such that qK

KB!m−−−→ q ∈ S2(K);
4. both qH and qK are fresh and either qH

HK!m−−−→ q ∈ S1(H), and there is A ∈
dom(S2) such that qK

KB!n−−−→ q ∈ S2(K), or, symmetrically, qK
KH!m−−−→ q ∈

S2(K), and there is A ∈ dom(S1) such that qH
HA!n−−−→ q ∈ S1(H).

Also, s|1 is reachable in S1, s|2 is reachable in S2 and nofMH
(qH) ∼ nofMK

(qK).

Proof. The proof is by induction on the number n of transitions performed to
reach s. If n = 0 then by construction we are in case 1. The conditions on
configurations and on bisimulation hold by construction.

Let us assume that we are in one of the cases above and a further transition is
performed. Since composition is symmetric for each possibility we do not detail
the symmetric case. Also note that in each of the cases, if the transition does
not involve the gateways, then we are still in the same case. The condition on
configurations hold since the same step can be taken by the same participants
in one of the two systems, and the ones of the other system do not move. The
condition on bisimulation holds since the state of the gateways does not change.

If we were in case 1, a transition involving a gateway has necessarily the form

s
A−→H : m−−−−−→ s′ (or a similar one for the gateway for K) since an output from a

gateway would require a gateway to be in a fresh state. This leads us to case 2.
Indeed, the gateway for H goes to the fresh state s′(H) and is willing to execute
the gateway communication s′(H) HK!m−−−→ q, while the state of the gateway for
K does not change. The condition on configurations hold by induction on s|2
and holds on s|1 since s′(H)|1 = q and by construction s|1 A−→H : m−−−−−→ s′|1. The
condition on bisimulation holds by inductive hypothesis since nofMH

(q) = s|1(H)
and the state of the gateway for K does not change.

In case 2 a transition involving the gateway necessarily is the gateway com-

munication s
H−→K : m−−−−−→ s′, leading us to case 3. Indeed, the gateway for H cannot

perform other transitions and thanks to the condition on compatibility and the
fact that gateway roles do not have mixed states K cannot perform any input
from its system. Thus, the gateway for H goes to a non-fresh state while the
gateway for K goes to a fresh state, willing to execute an output s′(K) KB!m−−−→ q
towards its system. The condition on configurations holds by inductive hypoth-
esis since projection generates the same configurations as before. The condition
on bisimulation holds since the two participants take corresponding steps. The
resulting states are in a correspondence thanks to ?!-determinism.

In case 3 for a transition involving a gateway there are two possibilities,
according to whether the gateway taking a transition is in a fresh state or not.

– The gateway in a fresh state, say K, takes a transition. By construction
it delivers a message m to a participant in its system via a transition

s
K−→B : m−−−−−→ s′. This leads us to case 1. Indeed, K goes to a non-fresh state,

Composing Communicating Systems, Synchronously 47

while H was in a non-fresh state by hypothesis and does not move. The con-
dition on configurations holds by inductive hypothesis for s|1 and holds for
s|2 since B can do the same move as in s and the two moves of the gateway
for K (the gateway transition which was not taken into account yet and the
delivery of message m) correspond to the complementary move of K in s|2.
The condition on bisimulation holds by inductive hypothesis since nofMH

(·)
projects on the same states as before the transition.

– The gateway in a non-fresh state, say H, takes a transition. By construction it

takes a message from its own system via a transition s
A−→H : n−−−−−→ s′. This leads

us to case 4. Indeed, H goes to a fresh state while K was already in a fresh
state. Then s′(K) KB!m−−−→ q by inductive hypothesis and s′(H) HK!n−−−→ q′ by
construction. The reasoning on conditions of configurations and bisimulation
is similar to the one of a message taken by the gateway in case 1.

In case 4, when a transition involving a gateway, say K, is performed, it is

necessarily of the form s
K−→B : m−−−−−→ s′ since the gateway for K by construction

cannot take any other action. This leads to case 2. Indeed, H remains in a fresh
state and willing to execute a transition s′(H) HK!m−−−→ q while K goes to a non-
fresh state. The reasoning for the conditions on configurations and bisimulation
is similar to the one for case 3 when K delivers a message to its system. ��

Now, one may think that analogously to what happens in [3,4], if two systems
are (H,K)-composable and deadlock-free then their composition is deadlock-free
too. Unfortunately, this is not the case, as shown by the examples below. The
first example is based on an example in [4], that shows that mixed states have to
be forbidden and that holds for the synchronous case as well. In the synchronous
case, however, we can also exchange some inputs with outputs and obtain the
same behaviour without mixed states.

Example 3.12. Take the following CFSMs

0 1

A

AH!m

0

1

H

A
H
?
m

A
H
?
x

0

1

K

K
B
!m

K
B
!x

0 1

B

KB?x

and consider the composition of the system with participants A and H with the
one with participants K and B. Clearly, the two systems are (H,K)-composable
and deadlock-free, yet their composition has a deadlock; in fact, when the gate-
way for K receives m, participant B is waiting only for x. By considering the
second system alone, this is not a deadlock, since B forces K to select the right
branch.

Note that the situation would be different in an asynchronous setting. Indeed,
the second system could deadlock. This is due to the fact that K could send m
without synchronising with B.

48 F. Barbanera et al.

Example 3.13. Take the CFSMs below

0 1

A

AH!m

0

B

0

1

H

A
H
?
m

B
H
?
x

0

1

K

K
C
!m

K
D
!x

0 1

D

KD?x

0

C

The same reasoning of Example 3.12 can be applied here, to systems with par-
ticipants A,B,H and C,D,K. Hence, choices made by different participants are
problematic as well.

Example 3.14. Take the CFSMs below

0 1

2

A

AH!m

A
B
!g
o

0 1

2

B

AB?go

B
H
!x

0

12

3

H

A
H
?m

B
H
?x

A
H
?m

B
H
?x

0

1 2

3

K

K
D
!x K

C!m

K
D
!xK

C!m

0 1

2

D

KD?x

D
C
!g
o

0 1

2

C

DC?go

K
C
?
m

The reasoning is again similar, and shows that the composition of systems A,B,H
and K,C,D deadlocks while the two systems in isolation do not. Hence also
concurrency diamonds are problematic.

Given the examples above, it is clear that, differently from the asynchronous
case, deadlock freedom can be preserved only under very strict conditions on
interface participants. Indeed we show below that it can be preserved if interface
participants do not contain choices.

Definition 3.15 (Sequential CFSM). A CFSM is sequential if each of its
states has at most one outgoing transition.

It is immediate to check that gw(M,H) is sequential if M is so. Moreover,
trivially, a sequential M is also ?!-deterministic and with no mixed state (and
hence mixed-deterministic).

Theorem 3.16 (Deadlock freedom for sequential interfaces). Let S1 and
S2 be two (H,K)-composable and deadlock-free systems, such that S1(H) and
S2(K) are sequential. Then the composed system S1

H↔KS2 is deadlock-free.

Proof. We show that if the composed system S1
H↔K S2 reaches a deadlock con-

figuration s then at least one of s|1 and s|2 is a deadlock. First, we show that

Composing Communicating Systems, Synchronously 49

if a participant A (say from S1) is willing to take an action in a configuration
s of the composed system then some participant is willing to take an action in
s|1 or in s|2 (and the same for participants in S2). Note that s|1 and s|2 are
reachable in, respectively, S1 and S2 thanks to the condition on configurations
in Proposition 3.11.

If A �= H then A wants to take the same action by definition of s|1.
If A = H and it is willing to receive from K then, by the definition of s|1 and

of gateway, H in s|1 is willing to send a message to some participant in S1.
If A = H and it is willing to send to K then nofMH

(s(H)) ∼ nofMK
(s(K)) by

the condition on bisimulation of Proposition 3.11. By definition of nofMH
(·) and

of gateway, nofMH
(s(H)) is willing to take a message from its own system, hence

nofMK
(s(K)) is willing to send such a message to its own system thanks to the

definition of bisimulation. By definition of configuration projection nofMK
(s(K))

is also a state in s|2, hence there is a participant willing to take a transition.
Now we show that if no transition is enabled in a configuration s of the

composed system then no transition is enabled in s|1 and s|2. We prove the
contrapositive, showing that if there is an enabled transition in s|1 or in s|2 then
there is a transition enabled in s as well. There are a few cases to consider.

Transition not involving the interface roles: this case follows immediately
from the definition of system transition and of configuration projection.

Communication towards an interface role: let A be the sender and H the
interface role. The transition is of the form s|1 A−→H : m−−−−−→ s1. There are two
possibilities. If the gateway for H is not in a fresh state in s then the same
transition can trigger in the composed system thanks to the definition of
system transition and of configuration projection.
If it is in a fresh state then thanks to the definition of gateway and of con-
figuration projection it still needs to complete a previous gateway commu-
nication. The other gateway, K, may be in a fresh state or not. If it is not,
thanks to the definition of nofMH

(·) and to the condition on bisimulation of
Proposition 3.11 it is willing to accept the gateway communication which can
thus trigger as desired. If K is in a fresh state then thanks to the definition of
configuration projection and of gateway it is willing to deliver a message to
S2. Since S2 is not a deadlock and a participant is willing to take a transition
then a transition can trigger in S2 too. Thus, we can apply the other cases
to find a witness transition in the composed system. Note that the transition
in S2 cannot be towards an interface role thanks to the condition on bisim-
ulation of Proposition 3.11 and since there are no mixed states, hence this
reasoning does not cycle.

Communication from an interface role: let K be the interface role and B

the target participant. Hence, the transition is of the form s|2 K−→B : m−−−−−→ s2.
Thanks to the definition of gateway and of system projection the gateway
for K in s is either willing to deliver a message to some participant in S2

or to receive from the gateway for H. In the first case, since the gateway is
sequential then the participant is B and the message m, hence the transition
can trigger.

50 F. Barbanera et al.

If K is willing to receive from H then thanks to the definition of nofMH
(·)

and the condition on bisimulation of Proposition 3.11 then the gateway for
H is willing to receive a message from its system or has just received it
and is willing to send it through the gateway. In the last case the gateway
communication can occur.
If H is willing to receive a message from some participant in S1 since S1 is
not a deadlock then there is an enabled transition in S1 as well. Thus, we can
apply the other cases to find a witness transition in the composed system.
Note that the transition in S1 cannot be from an interface role thanks to the
condition on bisimulation of Proposition 3.11 and since there are no mixed
states, hence this reasoning does not cycle.

Thus, if there is a deadlock configuration s in the composed system then
either s|1 or s|2 are deadlocks against the hypothesis. The thesis follows. ��

We can infer deadlock-freedom of the system S = S1
H↔KS2 of Example 3.3 by

the result above, since S1 and S1 are (H,K)-composable and deadlock-free, and
S1(H) and S2(K) are sequential.

The result above, however, is not fully satisfying since the sequentiality con-
dition is very strict, but, as shown by Examples 3.12, 3.13, and 3.14, any form
of choice is problematic.

However, we can complement the result above with an additional one pin-
pointing where deadlocks can happen when gateways with choices are allowed:
deadlocks can only occur in communications from the gateway to its own system.

Equivalently, we can drop the sequentiality condition if the systems are such
that, whenever their interface role is willing to send a message, the system is
ready to receive it. We formalise this condition by the notion of !live participant.

Definition 3.17 (!live participant). Let S be a system and let A ∈ dom(S).
We say that A is !live in S if, for any s ∈ R(�S�),

s(A) A B!m−−−→ implies s −→∗ s′ A−→B : m−−−−−→ for some s′

We remark that !liveness is not a property of the gateway but a property of
the system to which it belongs.

It is immediate to check that K is not !live in system S2 of Example 3.12,
whereas K is !live in the following system.

0 1

K
KB!m

KB!x

0 1

B
KB?m

KB?x

Theorem 3.18 (Deadlock freedom for !live interfaces). Let S1 and S2 be
(H,K)-composable and deadlock-free systems. If S1(H) and S2(K) are !live in,
respectively, S1 and S2 then the composed system S1

H↔KS2 is deadlock-free.

Composing Communicating Systems, Synchronously 51

Proof. The proof has the same structure of the one for Theorem 3.16. The only
difference is when showing that if there is an enabled transition in s|1 or in s|2
then there is a transition enabled in s as well. Just the case of communication
from an interface node changes, in particular when the gateway is willing to
deliver some message to some participant in its system. There, !liveness can be
used instead of sequentiality to show that indeed some transition can happen.
Hence, the thesis follows. ��

4 Semi-direct Composition

One may notice that in the form of composition discussed in the previous section
the two gateways simply forward messages, and wonder whether they are strictly
needed. Indeed, a form of direct composition, where gateways are completely
avoided, has been studied in [5] in a multiparty session type [17] setting. It has
also been shown that applying this technique has a non trivial impact on the par-
ticipants in the connected systems. We discuss here a different form of composi-
tion where a unique gateway is used, and we call it semi-direct composition. This
has the advantage of saving one gateway and some communications, and also of
simplifying some proofs. Moreover, the conditions for deadlock preservation are
weaker when non-sequential interfaces are considered (see Theorem 4.10). On
the other hand, participants in the composed systems are affected, but just by
a renaming.

Definition 4.1 (Semi-direct gateway).
Let M1 and M2 be, respectively, an H- and a K-local CFSM such that

– M1 and M2 are compatible
– for all q1

l1−→ q′
1 ∈ M1 and q2

l2−→ q′
2 ∈ M2 the participants occurring in l1

are disjoint from those occurring in l2

If W is a fresh role then the semi-direct gateway sgw(M1,W,M2) is the CFSM
〈S, q0,L,→〉 such that

– q0 = (q0
1 , q

0
2) with q0

1 initial state of M1 and q0
2 initial state of M2;

– S includes all pairs (q1, q2) and all triples (q1,m, q2) such that q1 is a state
of M1, q2 of M2 and m a message which are reachable from the initial state
(q0

1 , q
0
2) via the transitions in →;

– → includes, for each q1 ∈ M1 and q2 ∈ M2 related by the compatibility bisim-
ilarity:

• (q1, q2)
AW?m−−−→ (q′

1,m, q2)
WB!m−−−→ (q′

1, q
′
2) where q1

AH?m−−−→ q′
1 ∈ M1,

q2
KB!m−−−→ q′

2 ∈ M2,
• (q1, q2)

BW?m−−−→ (q1,m, q′
2)

WA!m−−−→ (q′
1, q

′
2) where q2

BK?m−−−→ q′
2 ∈ M2,

q1
HA!m−−−→ q′

1 ∈ M1.

The semi-direct composition of two systems takes all the machines of the
participants in each system (with some channel renaming so to turn communi-
cations with H or K into communications with W) but the interface participants,
which are replaced by the semi-direct gateway construction of their CFSMs.

52 F. Barbanera et al.

Definition 4.2 (Semi-direct system composition). Given two systems S1

and S2 with disjoint domain, two compatible roles H ∈ dom(S1) and K ∈
dom(S2), and a fresh role W �∈ dom(S1) ∪ dom(S2), the system

S1
H�K

W S2 : A �→
{
Si(A)[W/H][W/K], if A ∈ dom(Si) \ {H,K } for i ∈ {1, 2}
sgw(S1(H),W,S2(K)), if A = W

is the W-composition of S1 and S2 with respect to H and K. In the definition,
the notation M [B/A] denotes the machine obtained by replacing role A with B
in all the labels of transitions in M .

Note that since the gateway construction exploits the compatibility bisim-
ilarity relation then the interface participants need to be compatible for the
composition to make sense. This was not the case in the gateway construction
in Sect. 3.

In the following simple example we show how the compatibility bisimilarity
is exploited in the construction of a semi-direct composition.

Example 4.3. Let us take system S1 with participants A and H and system S2

with participants K, C and D as defined in Example 3.3. Participants H and K
are trivially compatible. Then the following system

0

A

AW!m

0, 0

0,m, 0

0, 1

0,m, 1

W

A
W
?m

W
C!
m

A
W
?m

W
D
!m

0

C

WC?m

0

D

WD?m

is the semi-direct composition S1
H�K

W S2.

We now study systems obtained by semi-direct composition. As in the pre-

vious section, we will focus on preservation of deadlock-freedom.
Configurations of a composed system are projected on the two subsystems

by taking only the states of their participants and the respective component of
the states of the interfaces.

Definition 4.4 (Projection of configurations). Given a configuration s ∈
R(�S1

H�K
W S2�), the map s||i, for i ∈ { 1, 2 }, defined as

s||i : A �→

⎧
⎪⎨

⎪⎩

s(A), if A ∈ dom(Si) \ {H,K }
q1, if A = H and either s(W) = (q1,m, q2) or s(W) = (q1, q2)
q2, if A = K and either s(W) = (q1,m, q2) or s(W) = (q1, q2)

is the projection of s on Si.

Composing Communicating Systems, Synchronously 53

As for the composition via gateways we define a notion of state projection
to relate the states of the two systems.

Definition 4.5. Let M = sgw(MH,W,MK) be a semi-direct gateway. The func-
tions nofdi(·), where i ∈ { 1, 2 }, on the states of M are defined as follows

nofdi(q) = qi if either q = (q1, q2) or (q1, q2)
AW?m−−−−→ (q′

1,m, q′
2) = q for some m,A

We can now discuss the properties of composed systems.

Proposition 4.6. Let S1 and S2 be two systems with disjoint domains and let
H ∈ dom(S1) and K ∈ dom(S2) be two compatible roles. Then for each s ∈
R(�S1

H�K
W S2�) we have that

i) s||1 ∈ R(�S1�), s||2 ∈ R(�S2�) and nofd1(s(W)) ∼ nofd2(s(W));
ii) s(A) l−→ q iff one of the following holds

(a) A ∈ dom(Si) \ {H,K } and s||i(A) l−→ q and W �∈ l, for i ∈ { 1, 2 };
(b) A ∈ dom(S1) \ {H } and l = AW!m and s||1(A) AH!m−−−→ q;
(c) A ∈ dom(S1) \ {H } and l = WA?m and s||1(A) HA?m−−−→ q;
(d) A ∈ dom(S2) \ {K } and l = AW!m and s||2(A) AK!m−−−→ q;
(e) A ∈ dom(S2) \ {K } and l = WA?m and s||2(A) KA?m−−−→ q;
(f) A = W and s||1(H) HB!m−−−→ q1 and s||2(K) = q2 and q = (q1, q2) and l =

WB!m;
(g) A = W and s||1(H) BH?m−−−→ q1 and s||2(K) = q2 and q = (q1,m, q2) and

l = BW?m;
(h) A = W and s||2(K) KB!m−−−→ q2 and s||1(H) = q1 and q = (q1, q2) and l =

WB!m;
(i) A = W and s||2(K) BK?m−−−→ q2 and s||1(K) = q1 and q = (q1,m, q2) and

l = BW?m;

Proof. The proof of (i) and (ii) is by simultaneous induction on the number of
steps from the initial state. In the initial state (i) and (ii) hold by construction.

Let us consider the inductive case. We consider the following possible cases
for the last transition.

s′ A−→B : m−−−−−→ s with A,B ∈ dom(S1) (the case A,B ∈ dom(S2) can be treated
similarly).
By definition of configuration transition, we have that s′(A) A B!m−−−→ s(A) and
s′(B) A B?m−−−→ s(B) and s′(C) = s(C) for each C ∈ dom(S1) \ {A,B }. Now,
by the induction hypothesis (ii), we have that s′||1(A) A B!m−−−→ s(A) = s||1(A)
and s′||1(B) A B?m−−−→ s(B) = s||1(B) (where the two equalities can be inferred
by definition of configuration projection, since A,B �= W). Hence we have

that s′||1 A−→B : m−−−−−→ s||1. Now, since by the induction hypothesis we have that
s′||1 ∈ R(�S1�), we can infer that s||1 ∈ R(�S1�). We obtain, instead, s||2 ∈
R(�S2�) immediately by the induction hypothesis since, from A,B ∈ dom(S1)

54 F. Barbanera et al.

and definition of configuration projection we have that s||2 = s′||2. Also
nofd1(s(W)) ∼ nofd2(s(W)) immediately follows from the induction hypoth-
esis since A,B �= W implies s(W) = s′(W). Regarding (ii), if A �= W then the
same participant wants to take the same action thanks to (i), as desired. If
A = W is willing to communicate with some participant in S1 then thanks to
(i) and definition of semi-direct gateway, H is willing to do the same in s||1.
Symmetrically, if A = W is willing to communicate with some participant in
S2 then K is willing to do the same in s||2.

s′ A−→W : m−−−−−→ s with A ∈ dom(S1) (the case A ∈ dom(S2) can be treated sim-
ilarly). By definition of system transition, we have that s′(A) AW!m−−−→ s(A)
and s′(W) AW?m−−−→ s(W) and s′(C) = s(C) for each C ∈ dom(S1) \ {A }.
Moreover, by the induction hypothesis, s′||1 ∈ R(�S1�), s′||2 ∈ R(�S2�) and
s′||1(H) ∼ s′||2(K). By definition of configuration projection and of semi-direct
gateway construction we have that s||2 = s′||2, and hence we can immediately
infer that s||2 ∈ R(�S2�).
Now, by the induction hypothesis (ii), we have that s′||1(A) AH!m−−−→ s(A) and
s′||1(H) AH?m−−−→ q1 and s′||2(K) = q2 where s(W) = (q1,m, q2). Now, by def-
inition of configuration projection, from s(W) = (q1,m, q2) we obtain that
q1 = s||1(W). So, by definition of configuration transition, we have that

s′||1 A−→W : m−−−−−→ s||1, and then s||1 ∈ R(�S1�). For what concerns nofd1(s(W)) ∼

nofd2(s(W)), this is obtained by the induction hypothesis and by definition of
nofd (·) and of semi-direct gateway. Also, (ii) holds, as in the previous case,
by (i) and definition of semi-direct gateway and of configuration projection.

s′ W−→A : m−−−−−→ s with A ∈ dom(S1) or A ∈ dom(S2).
Similar to the previous case. ��

We now give a definition of composability for semi-direct composition.

Definition 4.7 (Semi-direct (H,K)-composability). Two systems S1 and S2

with disjoint domains are semi-directly (H,K)-composable if H ∈ dom(S1) and
K ∈ dom(S2) are two compatible roles whose machines are ?!-deterministic and
mixed-deterministic.

Notice that semi-direct (H,K)-composability is strictly weaker than (H,K)-
composability. In fact, whereas both require ?!-determinism, the former enables
some mixed states whereas the latter completely forbids them.

It is easy to check that the counterexamples for deadlock-freedom preserva-
tion of Sect. 3 do hold also in case semi-directed gateways are used on (H,K)-
composable systems. As before, this forces us to select interface roles which are
sequential or which are in systems always willing to receive the messages they
send. Before presenting the results we give an auxiliary lemma.

Lemma 4.8. Let S1 and S2 be two semi-directly (H,K)-composable systems.
Then for each configuration s of the composed system S1

H�K
W S2 we have that:

Composing Communicating Systems, Synchronously 55

– if s(W) = (q1, q2) then q1, q2 are in the compatibility bisimilarity;
– if s(W) = (q1,m, q2) then s(W) has a unique transition to and from a state

of the form in the item above.

Proof. By construction. Uniqueness relies on ?!- and mixed-determinism. ��
Theorem 4.9 (Deadlock freedom for sequential interfaces). Let S1 and
S2 be two semi-directly (H,K)-composable and deadlock-free systems. If S1(H)
and S2(K) are sequential, then the composed system S1

H�K
W S2 is deadlock-free.

Proof. We will show that if S1
H�K

W S2 has a deadlock then at least one of S1 and
S2 has a deadlock as well.

First, Proposition 4.6(ii) immediately yields that for each configuration s of
S1

H�K
W S2 if there is some participant A such that s(A) has an outgoing transition,

then for some participant B either s||1(B) or s||2(B) has an outgoing transition.
Now we show that if no transition is enabled in a configuration s of S1

H�K
W S2

then no transition is enabled in s||1 and s||2. We prove the contrapositive, showing
that if there is an enabled transition in s||1 or in s||2 then there is a transition
enabled in s as well. If the transition does not involve H,K this follows from
Proposition 4.6. Let us now consider a transition involving H (the case of K is

symmetric). If the transition is of the form s||1 A−→H : m−−−−−→ ŝ and the state of W in

s is a pair, by construction s can perform a transition s
A−→W : m−−−−−→ s′ as desired.

If the state of W in s is a triple then thanks to Lemma 4.8 and definition of semi-
direct gateway, the previous state was in the compatibility bisimilarity with a
state of K, which has not changed. Hence K is willing to take a transition and
thanks to deadlock-freedom of S2 we can infer that there is a transition enabled
in s||2. From this we can deduce that there is a transition enabled in s too as
shown above, but for the case in which the enabled transition is from K. In this
last case thanks to sequentiality the transition towards H and the one from K are
complementary, thus S2 is ready to take the message from the gateway, hence
the communication can trigger.

A similar reasoning applies in case the transition is of the form s||1 H−→A : m−−−−−→ ŝ.
Thus, if there is a deadlock configuration s in the composed system then

either s||1 or s||2 are deadlocks against the hypothesis. ��
Notice that S1 and S2 of Example 4.3 are deadlock-free and (H,K)-

composable. Besides, both H and K are sequential. Deadlock-freedom of S1
H�K

W S2

can hence be inferred by the above result.
As done for the composition via gateways, we can extend the above result

by dropping the sequentiality condition in presence of !live interfaces.

Theorem 4.10 (Deadlock freedom for !live interfaces). Let S1 and S2

be two semi-directly (H,K)-composable and deadlock-free systems. Moreover, let
S1(H) and S2(K) be !live, respectively, in S1 and S2. Then the composed system
S1

H�K
W S2 is deadlock-free.

56 F. Barbanera et al.

Proof. The proof is similar to the one of Theorem 4.9. The only difference is
that !liveness is used instead of sequentiality when showing that if there is an
enabled transition in s||1 or in s||2 then there is a transition enabled in s as well.

��

5 Related and Future Work

We have considered the synchronous composition of systems of CFSMs following
the approach proposed in [3,4] for asynchronous composition. Quite surprisingly,
enforcing that composition preserves deadlock freedom requires very strong con-
ditions on the interface roles, as shown by means of some examples. Indeed, we
proved compositionality of deadlock freedom for sequential interface roles only.
We hence complemented this result by showing that, if a deadlock occurs, it
needs to be when the gateway tries to deliver a message to the other system.

We also discussed semi-direct composition, based on a unique gateway.
Beyond sparing some communications, the conditions required to ensure compo-
sitionality of deadlock freedom using this second approach are slightly weaker.

While we only discussed deadlock freedom, the same reasonings can be
applied to other behavioural properties such as lock freedom [6,18,19] and live-
ness [6,23].

The above approach to composition has also been discussed in [5], in the set-
ting of systems of processes obtained by projecting well-formed global types [17].
This setting is far less wild than ours, since global types ensure that each send is
matched by a receive. Thus, all the counterexamples we showed cannot happen
and deadlock freedom is ensured in all typable systems. Thanks to these restric-
tions they were able to develop a more comprehensive theory, including direct
composition, a notion of structural decomposition and notions of behavioural
composition and decomposition. Also, they could use as compatibility a relation
weaker than bisimilarity. Understanding whether such a theory can be amended
to fit in our more general setting is an interesting item for future work.

Compositionality in the setting of global types has been also studied in [22].
There the compositionality mechanism is different since it relies on partial sys-
tems, while the approach we use allows one to compose systems which are
designed as closed, by transforming some participants into gateways. On the
other hand they are able to model ways of interaction more structured than
having a single communication channel as in our case. Extending our approach
to cope with the composition via multiple interfaces at the same time can be
an interesting aim for future work and can contribute to match their expressive
power.

A compositional approach for reactive components has been proposed in [12,
25]. Composition is attained by means of a specified protocol regulating the
communications between components that are supposed to produce results as
soon as they get their inputs. Roughly speaking, this protocol represents the
composition interface that rules out, among the communications of components,
those not allowed in the composition. In this way, a component may be used in

Composing Communicating Systems, Synchronously 57

compositions under different protocols if its communications are compliant with
(part of) the protocols. A difference with our approach is that the framework
in [12,25], as common in session type approaches, requires the specification of a
global type from which to derive local types to type check components in order
to compose them.

Among the automata-based models in the literature, I/O automata [21], team
automata [26], interface automata [15], and BIP [9] are perhaps the closest to
communicating systems. In these models composition strategies based on some
notion of compatibility have been proposed. However, these approaches differ
from ours on a number of aspects.

First, the result of such a composition is a new automaton, not a system as
in our case. Correspondingly, our notion of “interface” is more elaborated than
in the other models. Indeed, for us an interface is a pair of automata rather than
sets of actions of a single automaton.

Second, such automata have a fixed interface, since they distinguish internal
from external actions. Instead, we do not fix an explicit interface: the interface
is decided in a relative fashion. This gives a high degree of flexibility; e.g., we
could use as interface a CFSM H′ when composing a system S with a system,
say S′, and a different CFSM H′′ in S when composing it with another system
S′′.

As previously pointed out, and related to the previous observations, we could
think of our approach as not been based on a notion of “open” systems. We com-
pose closed systems by “opening them up” depending on their relative structures,
namely on the fact that they possess compatible components.

Extensive studies about compositionality of interacting systems have been
conducted in the context of the BIP model [9]. Composition in BIP happens
through operators meant to mediate the behaviour of the connected components.
The composition can alter the non-deterministic behaviour by suitable priority
models. In [1,2] it is shown that, under mild hypothesis, priority models do not
spoil deadlock freedom. This requires to compromise on expressiveness. Whether
our conditions are expressible in some priority model is open and left for future
work. BIP features multi-point synchronisations while CFSMs interactions are
point-to-point. Very likely CFSMs can be encoded in BIP without priorities and
one could use D-Finder [8] to detect deadlock of composed systems. However,
our conditions on interfaces allows us to avoid such analysis.

In the present approach, the transformations generating the gateway(s) from
the interface roles do not depend on the rest of the systems to be composed.
Besides investigating relaxed notions of compatibility (in the style of [5]), it
would also be worth considering the possibility of dropping the compatibility
requirement altogether and developing methods to generate ad-hoc gateways
(i.e., taking into account the other CFSMs of the two systems to be composed)
that preserve deadlock freedom and communication properties in general by
construction. It would also be worth investigating whether our approach can
be extended to cope with types of message passing communications other than
point-to-point, such as multicast [14], broadcast or many-to-many [11].

58 F. Barbanera et al.

References

1. Baranov, E., Bliudze, S.: Offer semantics: achieving compositionality, flattening
and full expressiveness for the glue operators in BIP. Sci. Comput. Program. 109,
2–35 (2015)

2. Baranov, E., Bliudze, S.: Expressiveness of component-based frameworks: a study
of the expressiveness of BIP. Acta Informatica (2019). https://doi.org/10.1007/
s00236-019-00337-7

3. Barbanera, F., de’Liguoro, U., Hennicker, R.: Global types for open systems. In:
Bartoletti, M., Knight, S. (eds.) ICE, Volume 279 of EPTCS, pp. 4–20 (2018)

4. Barbanera, F., de’Liguoro, U., Hennicker, R.: Connecting open systems of commu-
nicating finite state machines. JLAMP 109 (2019)

5. Barbanera, F., Dezani-Ciancaglini, M., Lanese, I., Tuosto, E.: Composition and
decomposition of multiparty sessions. JLAMP (2020). Submitted

6. Barbanera, F., Lanese, I., Tuosto, E.: Choreography automata. In: Bliudze, S.,
Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134, pp. 86–106. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-50029-0 6

7. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: POPL,
pp. 191–202 (2012)

8. Bensalem, S., Griesmayer, A., Legay, A., Nguyen, T.-H., Sifakis, J., Yan, R.:
D-Finder 2: towards efficient correctness of incremental design. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
453–458. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 32

9. Bliudze, S., Sifakis, J.: The algebra of connectors: structuring interaction in BIP.
In: International Conference on Embedded Software. ACM, September 2020

10. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

11. Bruni, R., Corradini, A., Gadducci, F., Melgratti, H., Montanari, U., Tuosto, E.:
Data-driven choreographies à la Klaim. In: Boreale, M., Corradini, F., Loreti, M.,
Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent and Distributed
Programming. LNCS, vol. 11665, pp. 170–190. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-21485-2 11

12. Carbone, M., Montesi, F., Vieira, H.T.: Choreographies for reactive programming.
CoRR, abs/1801.08107 (2018). http://arxiv.org/abs/1801.08107

13. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication.
I&C 202(2), 166–190 (2005)

14. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. Mathematical structures in computer
science 26(2), 238–302 (2016)

15. De Alfaro, L., Henzinger, T.: Interface automata. ACM SIGSOFT Softw. Eng.
Notes 26(5), 109–120 (2001)

16. Gouda, M.G., Chang, C.: Proving liveness for networks of communicating finite
state machines. ACM Trans. Program. Lang. Syst. 8(1), 154–182 (1986)

17. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016)

18. Kobayashi, N.: A partially deadlock-free typed process calculus. ACM TOPLAS
20(2), 436–482 (1998)

19. Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta Infor-
matica 42(4–5), 291–347 (2005)

https://doi.org/10.1007/s00236-019-00337-7
https://doi.org/10.1007/s00236-019-00337-7
https://doi.org/10.1007/978-3-030-50029-0_6
https://doi.org/10.1007/978-3-642-20398-5_32
https://doi.org/10.1007/978-3-642-20398-5_32
https://doi.org/10.1007/978-3-030-21485-2_11
https://doi.org/10.1007/978-3-030-21485-2_11
http://arxiv.org/abs/1801.08107

Composing Communicating Systems, Synchronously 59

20. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: POPL, pp. 221–232. ACM (2015)

21. Lynch, N., Tuttle, M.: Hierarchical correctness proofs for distributed algorithms.
In: ACM Symposium Principles of Distributed Computing, pp. 137–151. ACM
(1987)

22. Montesi, F., Yoshida, N.: Compositional choreographies. In: D’Argenio, P.R., Mel-
gratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 425–439. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40184-8 30

23. Padovani, L., Vasconcelos, V.T., Vieira, H.T.: Typing liveness in multiparty com-
municating systems. In: Kühn, E., Pugliese, R. (eds.) COORDINATION 2014.
LNCS, vol. 8459, pp. 147–162. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43376-8 10

24. Peng, W., Purushothaman, S.: Analysis of a class of communicating finite state
machines. Acta Inf. 29(6/7), 499–522 (1992)

25. Savanović, Z., Vieira, H., Galletta, L.: A type language for message passing
component-based systems. In: ICE, EPTCS (2020). To appear

26. ter Beek, M.H., Kleijn, J.: Team automata satisfying compositionality. In: Araki,
K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 381–400.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45236-2 22

27. Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. JLAMP 95,
17–40 (2018)

https://doi.org/10.1007/978-3-642-40184-8_30
https://doi.org/10.1007/978-3-662-43376-8_10
https://doi.org/10.1007/978-3-662-43376-8_10
https://doi.org/10.1007/978-3-540-45236-2_22

Modular Verification of JML Contracts
Using Bounded Model Checking

Bernhard Beckert1,2(B), Michael Kirsten1(B) , Jonas Klamroth2(B),
and Mattias Ulbrich1(B)

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{beckert,kirsten,ulbrich}@kit.edu

2 FZI Research Center for Information Technology, Karlsruhe, Germany
klamroth@fzi.de

Abstract. There are two paradigms for dealing with complex verifi-
cation targets: Modularization using contract-based specifications and
whole-program analysis. In this paper, we present an approach bridg-
ing the gap between the two paradigms, introducing concepts from the
world of contract-based deductive verification into the domain of soft-
ware bounded model checking. We present a transformation that takes
Java programs annotated with contracts written in the Java Modeling
Language and turns them into Java programs that can be read by the
bounded model checker JBMC. A central idea of the translation is to
make use of nondeterministic value assignments to eliminate JML quan-
tifiers. We have implemented our approach and discuss an evaluation,
which shows the advantages of the presented approach.

Keywords: Software verification · Modular design · Design by
contract · Software bounded model checking

1 Introduction

Over the last decades, the reach and power of formal methods for program ver-
ification has increased considerably. However, at some point, one has to face
the complexities of real-world systems. There are two paradigms for dealing
with complex verification targets. (1) Modularization and (de-)composition using
contract-based specifications: Components – typically methods or functions –
are verified separately, and can then be replaced by their abstract contracts
for verifying the overall system. (2) Whole-program analysis, where the search
space is restricted by over- or under-approximating the set of reachable states.
While modular verification is most often performed using a deductive verifica-
tion engine relying on some form of theorem prover, whole-program verification
applies techniques like predicate abstraction, abstract interpretation or bounded
model checking to reduce the size of the state space.

Here, we focus on bounded model checking where the search space is
restricted using bounds on the number of loop iterations and the size of data
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 60–80, 2020.
https://doi.org/10.1007/978-3-030-61362-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_4&domain=pdf
http://orcid.org/0000-0001-9816-1504
https://doi.org/10.1007/978-3-030-61362-4_4

Modular Verification of JML Contracts Using Bounded Model Checking 61

structures. While modularization requires user interaction to specify the com-
ponents, software bounded model checking is fully automatic, but comes at the
cost of potential false negatives that miss program failures beyond the chosen
bounds. In this paper, we present an approach that bridges the gap between the
two paradigms by introducing concepts from the world of contract-based deduc-
tive verification [12,23] into the domain of software bounded model checking [5].
Our method enables a software bounded model checker to verify properties of
components (methods) written in a contract-based specification language. This
allows for modular proofs in a software bounded model checking context. The
proofs can also be hybrid where only some parts are modular in an otherwise
monolithic proof. We envision three main application areas: (1) The reach of soft-
ware bounded model checking is extended. While many program parts can be
dealt with using exhaustive search, other parts need to be decomposed in order
to verify them for non-trivial bounds. This may even allow for an increase of the
bounds for the non-modular parts to the point where the software bounded model
checker can explore the full search space. (2) Software bounded model checking
can be combined with deductive program verification, where those components
that – even after decomposition – cannot be handled by a model checker can be
verified using a deductive verification tool. (3) Our bridging approach has the
potential of being a valuable tool during the engineering phase of a deductive
proof. Typically, formulating contracts and constructing a proof in a deductive
verification tool requires several iterations of adjusting either code or specifica-
tion until a proof is found. A software bounded model checker that can handle
contracts may be used to spot bugs in the specification and the code before a
full deductive verification is started.

While the concepts behind our approach apply to a range of languages
and tools, in the following we target the Java programming language, bringing
together two important players in formal methods for Java: The Java Bounded
Model Checker (JBMC) [10] meets the Java Modeling Language (JML) [19].
We present a transformation that takes Java programs annotated with con-
tracts written in JML and turns them into Java programs that can be read by
JBMC, i.e., the JML specifications are turned into Java code and annotations
in the form of assume and assert statements understood by JBMC. A cen-
tral idea of the translation is to make use of nondeterministic value assignments
‘x = *’1 to eliminate (part of the) JML ‘forall’ and ‘exists’ quantifiers. There-
fore, the resulting programs are not executable, but can be handled by JBMC
more efficiently.

The rest of this paper starts with a brief introduction to software (bounded)
model checking, deductive verification, as well as the syntax and semantics of
JML in Sect. 2. Then, Sect. 3 shows the main ideas of our approach, and Sect. 4
illustrates our translation from Java with JML into Java with assertions, assump-
tions and nondeterministic assignments. In Sect. 5, we present a prototypical

1 The notation x = *; (and semantics) are borrowed from nondeterministic assign-
ment in dynamic logic [15]. Boogie, e.g., often refers to this as the havoc statement.

62 B. Beckert et al.

implementation2 and evaluate our approach on multiple case studies in Sect. 6.
We discuss related work in Sect. 7 and conclude in Sect. 8.

2 Background

Software Bounded Model Checking (SBMC) is a formal program verification
technique that, given a program and a software property to be checked, verifies
fully automatically whether the program satisfies the property [5]. In a nutshell,
that question is translated into a reachability problem w.r.t. the given program.
SBMC symbolically, i.e., without the need for concrete values, executes the pro-
gram and exhaustively checks it for errors that could violate the given property
within some given bounds that restrict the number of loop iterations and recur-
sive method calls. Using these bounds, SBMC limits all runs through the pro-
gram to a bounded length and can thereby unroll the control flow graph of the
program and transform it into static single assignment form [8]. This bounded
program is then translated into a formula in a decidable logic, e.g., an instance
of the SAT problem. The formula is satisfiable if and only if a program run exists
that violates the given software property within the given bounds. Modern SAT
or SMT solvers [2,13] can be used to check whether such a program run exists, in
which case the SBMC tool constructs the corresponding problematic input and
presents the counterexample to the user. If no such program run is found, that
may be either because the property is actually satisfied, or because it is invalid
only for runs exceeding the given bounds. In some cases, SBMC is also able
to infer statically which bounds are sufficient, in order to come to a definitive
conclusion. SBMC tools also permit to extend the program with nondeterminis-
tic value assignments and assume statements in order to restrict the values and
states that are to be considered. The properties to be checked are given in the
form of assert statements. Hence, SBMC checks whether there are any runs
through the program that satisfy all encountered assume statements but violate
an assert statement.

Deductive Program Verification is based on a logical (program) calculus to
construct a proof for a formula expressing that a program satisfies its speci-
fication [12,23]. Typically, deductive verification uses invariants and induction
to handle loops. In order to mitigate complexity, most deductive approaches
employ design by contract [21], where functions resp. methods are specified with
formal pre- and postconditions. These additional annotations enable a modular
verification[3], where each method is individually proved to satisfy its contract.
To this end, each method – together with its contract – is translated into a for-
mula, e.g., using some form of weakest precondition computation [11]. Method
calls are replaced by the contract of the called method (instead of the method
body), and loops are replaced by their invariants (instead of loop unwinding).
The resulting formulas are either discharged using automatic theorem provers,
e.g., SMT solvers [2], or shown to the user for interactive proof construction.
2 The source code is available at https://github.com/JonasKlamroth/JJBMC.

https://github.com/JonasKlamroth/JJBMC

Modular Verification of JML Contracts Using Bounded Model Checking 63

/*@ requires 0 <= x1;
@ ensures \result == x1 * x2;
@ assignable \nothing;
@*/

public int mult(int x1, int x2) {
int res = 0;
/*@ loop_invariant 0 <= i && i <= x1 && res == i * x2;

@ decreases x1 - i;
@ assignable \nothing;
@*/

for (int i = 0; i < x1; ++i) res += x2;
return res;

}

Listing 1. An example of a method specified with JML.

The Java Modeling Language (JML) is a specification language for Java pro-
grams that follows the design-by-contract paradigm and enables the user to anno-
tate Java programs with modular specifications, e.g., method contracts and loop
invariants [19]. JML annotations are written in Java comments that are initiated
with the character sequence “/*@”. The syntax and semantics for JML expres-
sions are equivalent to those of Java expressions, which additionally permits
universal and existential quantifiers as well as special keywords, e.g., \old that
enables the postcondition to refer to expressions before executing the method.

Consider, for example, Listing 1, where the method mult multiplies two inte-
gers using repeated addition. The precondition (indicated by requires) requires
that both integers are non-negative; the postcondition (indicated by ensures)
demands that the returned value (indicated by \result) is the product of the
two parameters x1 and x2. Note that, even though this program may produce
an integer overflow, the specification is still correct, as JML and Java have the
same integer semantics. Moreover, the assignable clause restricts the heap loca-
tions which the method may change. The keyword \nothing requires that no
heap location may be changed. In case we allow the method to change existing
heap locations, we would specify a sequence of storage references (either field
accesses o.f, object accesses o.* meaning that all fields of o may be written, or
array access ranges a[i..j] meaning that any index between i and j in array
a may be written). JML also permits to give auxiliary specifications, e.g., loop
invariants to specify the behavior of a loop, that are specified inside the method
body. The loop invariant in Listing 1 specifies that, for each loop execution,
the currently computed result res is equal to the value of the loop variable
multiplied by the second parameter x2. Loop invariants may also be extended
by a decreases clause that specifies an integer expression which must strictly
decrease in every loop iteration and never become negative. Since infinite strictly
decreasing sequences are not possible within the domain of the natural numbers,
this clause permits to prove termination of the loop. While JML encompasses

64 B. Beckert et al.

many more concepts, we assume in the rest of this paper that method contracts
are desugared, i.e., they adhere to the description from above [1,19].

There are two deductive verification tools available for JML-annotated Java
code: the KeY tool and OpenJML. The KeY tool supports both automatic and
interactive verification [1]. KeY’s support for user interaction permits deductive
verification w.r.t. expressive specifications. OpenJML is an automatic verifica-
tion tool for verifying JML annotations [9]. The JML proof obligations are first
reduced to SMT formulas which are then discharged by SMT solvers.

The Java Bounded Model Checker (JBMC) is an extension of the C Bounded
Model Checker (CBMC) and performs (software) bounded model checking on
Java bytecode for a bit-accurate verification of Java programs by combining
SAT/SMT solving with a full symbolic state-space exploration [10]. It includes
an exact and verification-friendly model of standard Java library classes. Behav-
ioral subtyping is handled by conducting a case distinction over all possible
implementations expanding their respective method bodies. JBMC supports all
control flow mechanisms of Java including exceptions. The tool is fully automatic
and its scalability depends mainly on the complexity of string operations, loops,
recursion and floating-point arithmetic in the analyzed code.

3 The Main Ideas Behind the Approach

At the base of our approach is the assumption that the reach of software bounded
model checking is extended when modularization is added, which comes with
three individual arguments as following. (1) While many program parts can be
dealt with using exhaustive search, other parts need to be decomposed in order
to verify them for non-trivial bounds. (2) For devising a formal program spec-
ification, it is often worthwhile to early on either gain trust in its validity or
uncover its incorrectness already for a bounded domain or scope. Exploiting
this small scope hypothesis [16] lets us do effective program verification within a
bounded scope and mitigate the otherwise common state space explosion. How-
ever, prominent examples such as the TimSort algorithm show that the more
labor-intensive deductive program verification within a universal scope is gen-
erally desirable [14]. (3) With the approach taken in this paper, we enable a
powerful combination of both methodologies on a modular level, such that a
verification engineer can avoid wasting time in labor-intensive interactive ver-
ification when guarantees within a bounded scope suffice. The bounded scope
in our case does not only refer to unwindings and recursion inlinings, but also
to data structures. With data always being finite, program verification becomes
a theoretically decidable and in many cases practically manageable problem.
Our approach gives the user a fine-grained control as to which degree or which
parts and how much of the program to verify either within a bounded scope or
deductively. The communication between both verification techniques happens
on specification level via method contracts, loop invariants, or block contracts,
making use of the design-by-contract paradigm (see Sect. 2).

Modular Verification of JML Contracts Using Bounded Model Checking 65

Consider, e.g., the common case where the user develops a method together
with some inner helper method. For the deductive verification scenario, the outer
method would have a method contract corresponding to its API. However, also
the inner method would need a contract, which is not known yet when it is still
being developed. In this early development stage, the user can rapidly gain con-
fidence in possible contracts for this inner method by employing a modular proof
within a bounded scope, as no user interaction is needed. Once the development
of the method is finished, the user can opt for employing an unbounded modular
proof, after gaining confidence that the proof will succeed. Often, the size of mod-
ules for SBMC can be considerably larger than that for deductive verification
scenarios where every small method is individually specified. We automatically
translate proof obligations induced by modular specification contracts into spe-
cial code constructs that let the SBMC tool restrict the state space to the one
defined by the precondition and insert assertions into the code that are equiv-
alent to the postcondition. This relieves us from manually creating an execu-
tion harness for the whole-program approach that SBMC otherwise takes, which
inlines method invocations. Similar to the technique of runtime assertion check-
ing or runtime verification, the necessary abstractions from, e.g., method con-
tracts are automatically encoded in assertions that are inserted into the program
(see Sect. 7). However, unlike in runtime verification, we insert statements into
the code that are only useful for static verification, namely assume statements
and nondeterministic value assignments. These additional statements enhance
the expressiveness and efficiency for static verification, but alter the execution
semantics of the program. Quantifiers that cannot be represented by nondeter-
minism are translated into loops that iterate over the quantified domain. We
evaluate such expressions in additional statements that implement side compu-
tations.

Within our formal translation rules described in Sect. 4, we reflect the dis-
tinction of side computations and computing the value of an expression E by
splitting the translation E into two parts: (a) a command translation �E�

cmd

and (b) a value translation �E�
val . We make use of nondeterministic assign-

ment when translating quantifiers by using a form of skolemization – instead of
translating into a loop with many assertions. In order to express, e.g., that all
elements of an array a are positive, instead of

for (int i = 0; i < a.length; i++){ assert 0 < a[i]; },

we generate the following more efficient, yet equivalently valid translation:

int i := *; assert !(0 <= i && i < a.length) || 0 < a[i];

The latter encoding makes use of the builtin nondeterministic choice operation of
SBMC to make sure that all possible valuations are covered, whereas the former
translation makes this explicit by iterating over all possible values. For the latter
encoding, the assertion is violated once there exists a value within the bounds
which makes the assertion invalid. The advantage of nondeterministic choice is
that the instantiation task is given to a SAT or SMT solver that is optimized to
cover all cases in a more clever way than by naive explicit enumeration.

66 B. Beckert et al.

4 Translating JML Annotations

Basics. This section describes how a Java program with JML annotations (in
particular method contracts and loop invariants) can be translated into Java
code ready for the analysis with the bounded model checker JBMC. The target
language is Java code without JML annotations as the annotations are replaced
by additional Java statements. The additional Java code includes statements that
are interpreted by the model checker in a particular way: assume statements and
nondeterministic value assignments. While we present them as keyword state-
ments in this paper, they are expressed as special method invocations in the
actual implementation. The meaning of an assertion assert c; is the usual one
of Java: A program run is considered failing if the assertion is reached and the
evaluation of the asserted proposition c evaluates to false. In contrast, if in
the statement assume c; the condition c evaluates to false, then the program
run is not considered failing, but irrelevant. One may think of this as a grace-
ful, but abrupt termination of the program at this point. The nondeterministic
assignment x = *; assigns an arbitrary, nondeterministically chosen, not further
constrained value of x’s static type to x. When such an assignment is reached
multiply during a program run, each time a different value may be chosen.

Formally, our translation is defined as a syntactical replacement function

�·� : JML ∪ Java → Java

that takes Java annotated with JML and returns Java constructs without JML
(but with assumptions and nondeterministic assignments). The translation is
recursively applied as a rewriting rule to the program in a top-down fashion. In
the following subsections, we present the most noteworthy rewriting rules that
define �·�, but refrain from providing a complete list due to space limitations.
We focus on a subset of Java and JML, where

– method calls only appear standalone in the form lhs = o.m(a1,a2,. . .),
– break and continue statements do not occur, and
– try-catch statements do not occur.

This is not a fundamental restriction; additional rules for handling these features
can easily be added. Our implementation, in fact, supports already a consider-
ably larger subset of Java and JML than shown in this paper (see Sect. 5).

4.1 Translating Method Contracts

As design by contract targets individual methods (and not the whole program)
for a method-modular program analysis, we start with a translation pattern
in (1) that covers blocks of pre- and postconditions for method contracts. This
easily extends to classes by applying the translation to all methods in a class.

Modular Verification of JML Contracts Using Bounded Model Checking 67

�

�
�
�
�

/*@ requires R;
@ ensures E;
@*/

{ B }

�

�
�
�
	

= { �assume R�; �B�; �assert E�; } (1)

The translation of the precondition R is assumed before the block and the
translation of the postcondition E is asserted after its execution. The transla-
tion’s goal is that any program that satisfies the block contract on the left does
not fail any assert in the program on the right and vice versa. This encoding
schema is also the basis for the translation schema for methods with contracts.
However, it is important that the control flow in B does not bypass the assertion
at the end of the block (e.g., by throwing an exception).

�

�
�
�
�
�
�
�
�
�
�

/*@ requires R;
@ ensures E;
@ assignable M;
@*/

T m(P) throws S {
B

}

�

�
�
�
�
�
�
�
�
�
	

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T m(P) throws S {
� assume R �;

T result;
saveOld(E,B);
try { �B� }
catch (ReturnExc e) {}

� assert E �;
return result;

}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

The specified method m is translated into a method with the same signature,
embedding the pre- and postcondition as assumption and assertion, respectively.
Moreover, we need additional statements and declarations. New variables are
initialized in saveOld(E,B) to enable the translation of \old that refers to values
at method entry. We add the variable result for the return value of the method.
Together with the exception ReturnExc, this encodes return statements. The
correctness of the translation is captured by the following claim:

Correctness of Translation. A JML-annotated Java method m satisfies
its JML contract if and only if the translation of m does not fail3 any of
its assertions for any initial state, argument values, nondeterministically
chosen values and bound on the number of loop iterations.

This claim has been shown for a simple while language, but remains to be
proven for the full semantics of Java and JML [17]. Most Java statements s in a
method body B are translated by the identity (�s� = s), i.e., are left unchanged.
The translation differs only for modularity-related aspects, e.g., modular han-
dling of loops, assignable clauses, and abstractions of method calls using con-
tracts, which are covered in Sect. 4.4 and 4.5.
3 Failure means that an exception is thrown when evaluating the assertion.

68 B. Beckert et al.

For methods, we furthermore need to translate assert, assume and return
statements. The former two occur directly in the method’s translation, and the
latter one is required for a control flow that contains the explicit cast of an excep-
tion. In order to evaluate conditions in assertions and assumptions, we need to
know their “polarity”, which depends on whether they occur within an assump-
tion or an assertion, and changes within negated expressions. As an example,
the translation of quantifiers requires to distinguish their polarity. For expres-
sions, there are several different translation functions for the contexts in which
the expression occurs. Depending on the polarity of the expression (i.e., whether
it occurs negated or not and whether it is assumed or asserted), we translate
expressions differently (indicated by the assert or assume subscript). Moreover,
some expressions require that code is executed before their evaluation. There is,
hence, for both modes another translation function that gives the code to eval-
uate the expression (it is denoted by the superscript cmd while the superscript
val indicates the code for the expression itself). This distinction enables a more
efficient treatment of quantifiers as shown in Sect. 4.3.

�assert A� = {�A�
cmd
assert ; assert �A�

val
assert ;}

�assume A� = {�A�
cmd
assume ; assume �A�

val
assume ;}

�return E� =
{
result = E; throw new ReturnException();

}

4.2 Translating JML Expressions

The expression language in JML extends the side-effect-free expressions in
Java. In most cases, the translation operator is simply propagated to all sub-
expressions. For literals and local variables, the translation is the identity. We
hence give rules for the majority of all binary operations ◦, such as + or ==:

�A ◦ B�
val = �A�

val ◦ �B�
val

�A ◦ B�
cmd = �A�

cmd ; �B�
cmd

�x�
val = x �x�

cmd = {}

The translation of unary operators, field and array accesses, etc., follows the
same principle. Special attention must be given to the case of binary Boolean
connectives that have a short-circuit semantics in Java, i.e., the second operand
is only evaluated if the result is not determined by the value of the first one.
This applies to Java operators such as “&&” and “||”, but also to the implication
“==>” in JML (see Sect. 4.6). The rules are the same both for assert and assume:

�A && B�
val = �A�

val && �B�
val

�A || B�
val = �A�

val || �B�
val

�A ==> B�
val = �!A�

val || �B�
val

�A && B�
cmd = �A�

cmd ; if(�A�
val){ �B�

cmd }

�A || B�
cmd = �A�

cmd ; if(�!A�
val){ �B�

cmd }

�A ==> B�
cmd = �A�

cmd ; if(�A�
val){ �B�

cmd }

Modular Verification of JML Contracts Using Bounded Model Checking 69

An additional twist occurs with operators that modify polarity, most notably
negation. In that case, assert gets switched to assume and vice versa:

�!A�
val
assert = ! �A�

val
assume �!A�

cmd
assert = �A�

cmd
assume

�!A�
val
assume = ! �A�

val
assert �!A�

cmd
assume = �A�

cmd
assert

The ternary conditional operator (C ? T : E) is special, since the condition
C occurs both positive (as a guard for T in case C is true) and negative (as a
guard for E in case C is false). Furthermore, we introduce another mode demonic
which makes sure that the optimizations proposed in Sect. 4.3 are not applied
(there are also the dual rules to the following ones for assert):

�C ? T : E�
val
assume = �C�

val
demonic ? �T �

val
assume : �E�

val
assert

�C ? T : E�
cmd
assume =

�C�
cmd
assume ; if(�C�

val
assume){ �T �

cmd
assume } else { �E�

cmd
assume }

Apart from pure Java, also JML-specific constructs, e.g., implications as
shown in the beginning of this subsection, may occur within specifications. We
support the \old(E) construct which can be used to refer to the value of an
expression E in the state at the beginning of the current method invocation.
This semantics is achieved by storing the prestate value of all expressions used
as arguments for this operator in fresh variables before executing the method (as
done for saveOld in (2)). The keyword \result can be used in postconditions
to refer to the result of the method invocation. We translate it into the new
variable result during the translation of the method body in (2).

�\result�val = result �\result�cmd = {}

�\old(E)�val = oldVar(E) �\old(E)�cmd
x = �E�

cmd
x

The symbol x is used as a placeholder for either assume or assert mode.
Moreover, we require special treatment when \old(E) occurs within a quantified
expression if it contains the quantified variable.

4.3 Translating Quantifiers

JML also supports universally and existentially quantified expressions, and
although JML permits to quantify over objects and unbounded ranges, the fol-
lowing rules only cover bounded integer ranges, where for an integer variable i
bounded by L and H, and the quantified expression E, expressions are as follows:

(\forall int i; L <= i && i < H; E)
(\exists int i; L <= i && i < H; E)

In JBMC’s semantics, assert statements can be seen as implicitly univer-
sally quantified and assume statements as implicitly existentially quantified (see
Sect. 2). Hence, we translate the JML clause

ensures (\forall int i; 0 <= i && i < 10; 0 <= a[i]);

70 B. Beckert et al.

by assigning a nondeterministic value to i and eliminating the quantifier:

int i = *; assert !(0 <= i && i < 10) || 0 <= a[i];

Note that this also works for unbounded quantifiers. By the duality of the
quantifiers, an equivalent translation exists for the assumption of existentially
quantified expressions. We denote such quantifiers that may be translated in this
way as “angelic” quantifiers, since they are the “easy” case regarding translation.

�(\forall int i; L <= i && i < H; E)�cmd
assert = int i=*; �E�

cmd
assert

�(\forall int i; L <= i && i < H; E)�valassert =

�(L <= i && i < H) ==> E�
val
assert

�(\exists int i; L <= i && i < H; E)�cmd
assume = int i=*; �E�

cmd
assume

�(\exists int i; L <= i && i < H; E)�valassume =

�(L <= i && i < H) && E�
val
assume

The integer expressions for the bounds L and H of the index variable i are
not subject to the translation �·�cmd and must not contain quantifiers. Special
care must be given to quantifiers that cannot be translated by implicit semantics,
i.e., universal quantifiers within assume and existential quantifier within assert.
We call these quantifiers “demonic quantifiers”, as these are more problematic
and we need an explicit loop within our translation:4

�

�
�
�
�

(\exists int i;
L <= i && i < H;
E)

�

�
�
�
	

cmd

assert

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b = false;
for (int i = L; i < H; ++i) {
�E�

cmd
assert

b = (b || �E�
val
assert)

}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

�
�
�
�

(\forall int i;
L <= i && i < H;
E)

�

�
�
�
	

cmd

assume

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b = true;
for (int i = L; i < H; ++i) {

�E�
cmd
assume

b = (b && �E�
val
assume)

}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

4 Using the demonic translation also for angelic quantifiers would be sound, yet less
efficient. Hence, we use it in the demonic mode of the ternary operator.

Modular Verification of JML Contracts Using Bounded Model Checking 71

�(\exists int i; L <= i && i < H; E)�valassert = b

�(\forall int i; L <= i && i < H; E)�valassume = b

In this translation, b is a fresh Boolean variable that does not occur in the
program, and is assumed to be declared at the beginning of the program. The
translations of \forall and \exists differ in the initialization value of b and
the Boolean operation in the loop body. The requirement of bounded integer
ranges is crucial (the loop must terminate). Although this translation may be
more intuitive, it is significantly less efficient for verification and hence only used
when necessary. Note that the quantified range must not only be bounded, but
must also be of the expected form. Consider, e.g., the set of even integers smaller
than 10. This set is clearly bounded, but it does not fit the expected form, as
there is an additional constraint in the guard. This can, however, always be fixed
by moving the additional constraint to the inner expression within the quantifier.

4.4 Translating Frame Conditions

So far, we only considered the translation of pre- and postconditions. In JML,
however, method contracts also contain frame conditions, which are specified
within assignable clauses (see Sect. 2). The basic idea is to add an assertion
for each assignment that fails if and only if the assignment violates the frame
condition (for the sake of simplicity, we only consider assignments, but our app-
roach also applies to other state-changing operations). Note that these rules only
cover assignments to arrays and object fields, as assignments to local variables
are always permitted. If ‘assignable a1, a2, . . ., an’ is the assignable clause
for the enclosing method, the translation rules for an assignment to a left-hand
side of the form O.f , where O is of type OT , as well as a left-hand side of the
form A[I], where A is of array type AT[], are as follows:

�O.f=E;� =

⎛
⎜⎜⎜⎜⎝

OT nO = O;
assert mc(nO.f,\old(a1)) || . . . ||

mc(nO.f,\old(an));
nO.f = E;

⎞
⎟⎟⎟⎟⎠

�A[I]=E;� =

⎛
⎜⎜⎜⎜⎝

AT[] nA = A;
assert mc(nA[I],\old(a1)) || . . . ||

mc(nA[I],\old(an)));
nA[I] = E;

⎞
⎟⎟⎟⎟⎠

The predicate mc(l, a) determines whether an assignment to location l (a
field access o.f or an array access a[i]) is justified by a storage reference a in

72 B. Beckert et al.

the assignable clauses. This predicate is defined as follows, where for all other
combinations not explicitly mentioned, mc is false:

mc(o.f, p.g) ⇔ false mc(o.f, p.f) ⇔ o==p mc(o.f, p.∗) ⇔ o==p

mc(a[i], b[l..h]) ⇔ (a == b && l <= i && i < h)

The above translation is sound, but produces false positives for newly created
objects. Consider, e.g., a method annotated by ‘assignable \nothing;’ that
starts by creating a new object, then stores this object in a local variable, and
finally assigns a new value to one of the object’s fields. Our translation would lead
to a frame-condition violation being reported as there is no storage reference in
the assignable clause that justifies this assignment. In order to fix this problem,
we introduce a predicate that we call newObj , which we assume for each new
object. We are then able to adapt our assertions by requiring that an assignment
is permitted by the assignable clause (as before) or the newObj predicate is true
for the left-hand side of the assignment.

4.5 Translating Method Invocations

So far, we have seen how to translate JML expressions and use that to translate
method contracts. However, in order to achieve a truly modular approach, we
need to replace parts of Java code by their contracts, namely method calls. In
this section, we moreover show how loops can be replaced by loop invariants, as
the general idea for both method calls and loops is very similar: First, the precon-
dition (or the invariant) is asserted, then the parts of the state that are modi-
fiable by the method call (or the loop) according to the JML assignable clause
are anonymized, and finally the post condition is assumed. The same translation
technique can be applied for block contracts and statement contracts (not shown
here). The standard treatment for method calls in JBMC is to inline the method
body. We can exploit this behavior, as we replace the original definition of the
method by a “symbolic” definition, which contains the method contract instead
of the method body. Once the symbolic method body gets inlined, it takes care
of all necessary assertions and assumptions. The transformation of the method
definition is contained in the following rule:

�

�
�
�
�
�
�
�
�
�
�
�

/*@ requires R;
@ ensures E;
@ assignable A;
@*/

T m(P) throws S {
B

}

�

�
�
�
�
�
�
�
�
�
�
	

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T mContract(P) throws S {
� assert R �;
T result;
saveOld(E,B);
havoc(A);
� assume E �;
return result;

}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Modular Verification of JML Contracts Using Bounded Model Checking 73

The “normal” translation of a method contract, as shown in the beginning of
this section, is used to prove that a method satisfies its contract, while the above
translation uses the contract and assumes its correctness. Both translations use
the method saveOld to store values of variables which may be referred from
thereon via the keyword \old. We introduce a variable for the return value before
the postcondition is assumed, since the postcondition may contain restrictions
to the returned value. Moreover, we introduce the translation method havoc(A),
which anonymizes the values of all location sets of the assignable clause A. “Hav-
ocing” for primitive types is equivalent to assigning a nondeterministic value of
that type. We must also assume and enable that, if A contains locations of object
type, then havoc(A) may nondeterministically generate new objects, which may
be used in the assignments and cannot be easily reduced to a nondeterministic
assignment for JBMC (see Sect. 5). Remember that, as to provide a compact
representation for our rules, we do not permit method calls to occur as sub-
expressions but only in assignments to local variables. Thus, the translation rule
for method calls extends the rule for Java statements (see Sect. 4.1) and is as
follows:

�var=m(P);� = var=mContract(�P �);

Therein, the assignment to the local variable var is optional. The same as for
method calls can be applied to loops. Verifying loops is inherently challenging, in
particular if no bound on the number of loop iterations is known beforehand. For
this matter, we can use loop invariants, which can be understood as the contract
for a loop, as a loop invariant must be guaranteed and can be assumed for the
whole loop execution. A loop invariant acts both as a pre- and a postcondition
for the loop, as it must hold before and after each loop iteration.

�

�
�
�
�
�
�
�

/*@ loop_invariant I;
@ assignable A;
@ decreases D;
@*/

while (C) { B }

�

�
�
�
�
�
�
	

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

int oldD = D;
� assert I �;

havoc(A);
� assume I �;
if (C) {

�B�;
� assert I �;
assert D < oldD && 0 <= D ;
assume false;

}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

On the right side of the above rule (a similar rule is defined for for-loops),
we (1) assert the invariant, then (2) we “havoc” the assignable set of the
loop that replaces all loop iterations that may already have occurred, then (3)
assume the invariant, (4) execute the loop body once, and finally, (5) assert

74 B. Beckert et al.

the invariant again. Steps (1) to (3) make use of the invariant to replace multiple
loop iterations, while Steps (3) to (5) prove the inductive invariant. Proving the
invariant for a single loop execution suffices to establish its validity. Additionally,
we prove that the loop terminates by asserting that the decreases clause does
indeed decrease and is still greater than zero.

Finally, we append the statement “assume false;” to the loop body, as we
chose an arbitrary loop iteration, but all assertions after the loop must only
hold in case the loop is fully executed. Essentially, as long as the loop body is
executed, we prevent the model checker from reporting any assertion violations,
since this is not a valid program run.

4.6 Ensuring Correct Behavior for Boolean Operators

As seen in Sect. 4.2, binary Boolean connectives that have a short-circuit seman-
tics in Java need special consideration during the translation. According to JML’s
semantics, if an exception is raised during the evaluation of an expression, then
the whole clause is considered to have failed, i.e., the program does not satisfy
that clause [7]. Thus, no method can satisfy the ill-defined specification ‘ensures
1/0 == 0;’. However, the definition uses the short-circuit semantics of Java

operators, so that every method satisfies ‘ensures true || (1/0 == 0);’ In
most cases, our translation easily leads to the right behavior of the resulting
code. For example, ‘ensures 1/0 == 0;’ becomes ‘assert 1/0 == 0;’, which
brings the invalid postcondition directly to the Java code in form of an assertion
whose evaluation throws an exception.

However, we need to be careful when translating short-circuit behavior in
combination with “demonic” quantifiers. Consider, for example, the following
postcondition:

ensures (true || (\exists int i; 0 <= i && i < 1; 1/i == 0));

Due to the short-circuit semantics of ||, and since the first operand is true, we
never evaluate the second operand, and the whole expression evaluates to true,
which is trivially satisfied by any method. If the special behavior of || were not
considered, our translation would produce the following (wrong) result:

b = false;
for (int i = 0; i < 1; ++i) { b = (b || 1/i == 0); } // WRONG
assert true || b;

However, this translation is wrong, since the for-loop throws an exception
when i equals 0 in the first iteration, which would falsely indicate a failure.
Hence, in order to deal with such behavior, our translation adheres to the rules
presented in Sect. 4.2, and the code �B�

cmd for the second operand B of a disjunc-
tion is only evaluated if the first operand A evaluates to false. Consequently,
our translation produces the following code with the desired behavior, where the
loop is not executed and no exception is thrown:

Modular Verification of JML Contracts Using Bounded Model Checking 75

if (!true) {
b = false;
for (int i = 0; i < 1; ++i) { b = (b || 1/i == 0); }

}
assert true || b;

5 Implementation

We provide a prototypical implementation of our approach in form of the com-
mand-line application JJBMC.5 It translates a Java source file annotated with
JML specifications into a Java file to be read by JBMC. The implementation
makes use of the OpenJML back end (see Sect. 2) to parse and manipulate the
given Java/JML. The user can choose to either verify only a single method or all
methods in the given Java file. Furthermore, they can pass any JBMC options
for a customized behavior, e.g., concerning various bounds for objects, arrays,
or object structures, as well as the handling of exceptions, the employed SAT or
SMT solver, or the output format. If JBMC is able to find a counterexample for
the given specification and program, the counterexample is parsed and provided
as a program trace, i.e., the sequence of program states up to the violated asser-
tion (with concrete instantiations for the nondeterministic values). The output
is optimized from the original JBMC output such that the user may (relatively)
easily understand and analyze the semantics. We provide additional options for
the user to choose whether auxiliary specifications (contracts of called methods
and loop invariants) or inlining shall be used. Even though ignoring contracts
seems to contradict our modular approach, it is sometimes useful to try verifica-
tion that way first, so that unnecessary modularization may be avoided. Inlining
also allows the user to flexibly distinguish between errors in the top-level spec-
ification and individual auxiliary specifications. Note that our implementation
is still prototypical and does currently not support full JML and Java. How-
ever, we provide a clear user feedback whenever unsupported features are used,
in order to maintain the soundness of our approach. For full (sequential) Java,
everything except for catching exceptions, break and continues statements, and
inheritance is supported. For JML, we currently support preconditions, postcon-
ditions, loop invariants, frame conditions (limited to fields and array ranges) for
contracts and loops, assertions, assumptions, \old (with similar restrictions as
for frame conditions), and universal and existential quantifiers.

Given that both SBMC and runtime assertion checking do not involve the
full abstraction from JML contracts, tasks that require to distinguish different
heap states or specify object anonymization are new and challenging for JBMC’s
semantics. Consider, e.g., the keyword \old that “remembers” a variable’s value
before method execution. Java lacks support for deep copies of objects, which
hinders the implementation of such a concept. Furthermore, JBMC’s semantics
5 The source code is available at https://github.com/JonasKlamroth/JJBMC.

https://github.com/JonasKlamroth/JJBMC

76 B. Beckert et al.

/*@ requires a != null && a.length <= 5;
@ ensures \result <= a.length * 32;
@ assignable \nothing;
@*/

int naiveHammingWeight(int[] a) {
int result = 0;
/*@ loop_invariant result <= i * 32;

@ loop_invariant 0 <= i && i <= a.length;
@ assignable result;
@*/

for (int i = 0; i < a.length; i++) {
int x = a[i];
while (x != 0) { result += x&1; x = x >>> 1; }

}
return result;

}

Listing 2. Calculation of the hamming weight for an array.

of nondeterministic value assignments for objects is not sufficient to implement
anonymization of heap locations: JBMC interprets a nondeterministic object as
a new object with nondeterministic values assigned to its fields. JML, however,
demands that this “anonymous” object may or may not be new, and its fields may
or may not point to existing or new objects. For implementing such semantics,
we would need an explicit model of all objects within the Java program, such
that we can do a nondeterministic selection among all those objects.

6 Evaluation

We evaluated our translation and its implementation on a selection of JML-
annotated Java examples6 that are shipped with the KeY tool [1], which illus-
trate a variety of JML’s and KeY’s features. The goal of our evaluation was to
demonstrate correctness and feasibility of our approach, i.e., that JML anno-
tations are translated into programs which are correctly read and verified by
JBMC. Using a bound of 5 on the number of loop iterations and array sizes, all
verification tasks were successfully performed by JBMC within a few seconds.
Besides simple examples, our evaluation included algorithms that perform array
manipulations, e.g., sorting algorithms, and algorithms with bit-operations.

Let us first consider the program given in Listing 2, which calculates the
hamming weight of an integer array by iterating over all array elements and
adding together their respective hamming weights. Each hamming weight is –
very inefficiently – calculated by iterating over every bit and checking whether
it is zero or not. The program contains two loops, but a loop invariant is only
provided for the outer one. This is what an engineer may do in practice, as the
6 All case studies are available at https://github.com/JonasKlamroth/JJBMC.

https://github.com/JonasKlamroth/JJBMC

Modular Verification of JML Contracts Using Bounded Model Checking 77

inner loop is guaranteed to run at most 32 times (for each bit of the integer
value) and is thus a prime suspect for loop unrolling, since it does not neces-
sarily require a loop invariant. In contrast, the outer loop iterates over array
elements, where the number of iterations is unknown. Using our translation,
JBMC verifies this program for our default upper bound with an array size of 5.
Note that, for very large arrays, the postcondition is actually not satisfied, as
a.length * 32 may overflow. The fact that this is not discovered by JBMC is
due to the inherently bounded nature of bounded model checking and does not
mean that our translation is incorrect. In addition to this inefficient hamming
weight calculation, we also implemented and verified a more efficient version that
uses a sequence of bit operations without the need for an inner loop.

Let us further consider bubble sort7, which performs array manipulations.
The JML contract demands that the result array is sorted, i.e., each entry is less
than or equal to the consecutive entry. The program contains two nested loops
that iterate over the array and move the greatest remaining element to the end
of the unsorted part of the array. Element swaps are carried out by a method
swap(int[] a, int i, int j) which swaps a[i] and a[j] and is implemented
as an in-place xor-operation. For this example, we evaluated different levels of
modularity. In the first step, we verified the (translation of the) top-level speci-
fication of bubble sort with JBMC by unrolling the loops and inlining the swap
method, i.e., a (non-modular) whole-program verification. In the next step, we
used the contract of the swap method instead of its implementation and then,
in the final step, we also used two loop invariants. This demonstrates that our
approach may support finding both the right specification and implementation
without the need of having everything ready from the beginning.

7 Related Work

Pnueli and Shahar present a verification system that combines both deductive
verification and bounded model checking, where they verify finite-state systems
w.r.t. constraints in linear temporal logic (LTL) [22]. Moreover, Shankar exam-
ines the interrelations between the two paradigms by exploring various examples
for their combination, and illustrates the advantages [24]. The synergy of such a
combination is also discussed by Beckert et al. on the verification of C programs,
who focus, however, on combining two tools rather than doing program transfor-
mation [3]. Lourenço et al. present a minimal model as a combined theoretical
basis for the two paradigms [4]. Similar to our work, they capture both con-
crete loop unrollings and abstract loop invariants. Whereas their model works
on a simple while language, we target the Java programming language that
comes with a richer semantics. Furthermore, the field of runtime verification
also translates program specifications into assertions that are checked at runtime.
Burdy et al. present a tool that translates JML annotations into runtime asser-
tion checks for Java programs [6]. They encounter similar challenges as we do,
e.g., interpreting well-definedness of specifications and translating quantifiers.
7 We do not print the code, as we used the well-known standard implementation.

78 B. Beckert et al.

Their translation covers the quantification over iterable collections and other
forms of quantifiers such as \sum. While Burdy et al. focus on runtime checks,
we use the translation as input for static verification, and instead of translat-
ing into pure Java, our output is extended by assertions and assumptions. The
underlying idea, however, namely that “JML accommodates both runtime asser-
tion checking and formal verification” is the same [20]. Chalin et al. discuss this
approach for the strong-validity semantics of JML [7]. Similar work has been
conducted by Kosmatov et al. for C programs and ACSL specifications [18].

8 Conclusion and Future Work

We presented a translation of JML-annotated Java code into Java programs
that can be read by the software bounded model checker JBMC, which enables
JBMC to check JML annotations at an early stage when developing the specifi-
cation. This extends JBMC’s reach such that it may use method contracts and
loop invariants additionally to (mere) method body inlining or unwinding loops.
Finally, we presented a prototypical implementation which we evaluated on first
case studies that can be read and verified by JBMC.

As future work, we plan to extend our approach to support further features of
Java and JML, e.g., full exception handling and abrupt termination within loops.
We also plan to extend our translation to fully capture JML’s semantics of heap
anonymization or “havocing”, as we are currently restricted by JMBC’s default
semantics of nondeterminism that excludes previously created objects. Moreover,
we plan to evaluate and improve both the performance and the usability of
our implementation, e.g., the readability of reported counterexamples. Finally,
we performed first experiments for the verification of stability properties for
floating-point operations such as addition, which we plan to extend.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book: From Theory to Practice. LNCS,
vol. 10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

2. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E., Henzinger, T.,
Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 305–343. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_11

3. Beckert, B., Bormer, T., Merz, F., Sinz, C.: Integration of bounded model checking
and deductive verification. In: Beckert, B., Damiani, F., Gurov, D. (eds.) FoVeOOS
2011. LNCS, vol. 7421, pp. 86–104. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31762-0_7

4. Belo Lourenço, C., Frade, M.J., Sousa Pinto, J.: A generalized program verifica-
tion workflow based on loop elimination and SA form. In: 7th International Work-
shop on Formal Methods in Software Engineering, FormaliSE 2019, pp. 75–84.
IEEE/ACM (2019). https://doi.org/10.1109/FormaliSE.2019.00017

5. Biere, A., Kröning, D.: SAT-based model checking. In: Clarke, E., Henzinger, T.,
Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 277–303. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_10

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-642-31762-0_7
https://doi.org/10.1007/978-3-642-31762-0_7
https://doi.org/10.1109/FormaliSE.2019.00017
https://doi.org/10.1007/978-3-319-10575-8_10

Modular Verification of JML Contracts Using Bounded Model Checking 79

6. Burdy, L.: An overview of JML tools and applications. Int. J. Softw. Tools Technol.
Transf. 7(3), 212–232 (2004). https://doi.org/10.1007/s10009-004-0167-4

7. Chalin, P., Rioux, F.: JML runtime assertion checking: improved error reporting
and efficiency using strong validity. In: Cuellar, J., Maibaum, T., Sere, K. (eds.)
FM 2008. LNCS, vol. 5014, pp. 246–261. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-68237-0_18

8. Clarke, E.M., Kroening, D., Yorav, K.: Behavioral consistency of C and Verilog
programs using bounded model checking. In: 40th Design Automation Conference,
DAC 2003, pp. 368–371. ACM (2003). https://doi.org/10.1145/775832.775928

9. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5_35

10. Cordeiro, L., Kesseli, P., Kroening, D., Schrammel, P., Trtik, M.: JBMC: a bounded
model checking tool for verifying Java bytecode. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 183–190. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96145-3_10

11. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975). https://doi.org/10.1145/360933.
360975

12. Filliâtre, J.: Deductive software verification. Int. J. Softw. Tools Technol. Transf.
13(5), 397–403 (2011). https://doi.org/10.1007/s10009-011-0211-0

13. Gomes, C.P., Kautz, H.A., Sabharwal, A., Selman, B.: Satisfiability solvers. In:
Handbook of Knowledge Representation, FAI, vol. 3, pp. 89–134. Elsevier (2008).
https://doi.org/10.1016/S1574-6526(07)03002-7

14. de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R.: OpenJDK’s
Java.utils.Collection.sort() is broken: the good, the bad and the worst case. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 273–289.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_16

15. Harel, D.: Dynamic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philo-
sophical Logic, vol. 165, pp. 497–604. Springer, Dordrecht (1984). https://doi.org/
10.1007/978-94-009-6259-0_10

16. Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In: International
Symposium on Software Testing and Analysis, ISSTA 2000, pp. 14–25. ACM
(2000). https://doi.org/10.1145/347324.383378

17. Klamroth, J.: Modular Verification of JML Contracts Using Bounded Model Check-
ing. Master’s thesis, Karlsruhe Institute of Technology (KIT) (2019). https://doi.
org/10.5445/IR/1000122228

18. Kosmatov, N., Signoles, J.: Runtime assertion checking and its combinations with
static and dynamic analyses. In: Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS,
vol. 8570, pp. 165–168. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09099-3_13

19. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. SIGSOFT Softw. Eng. Notes 31(3), 1–38
(2006). https://doi.org/10.1145/1127878.1127884

20. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of
JML accommodates both runtime assertion checking and formal verification. Sci.
Comput. Program. 55(1–3), 185–208 (2005). https://doi.org/10.1016/j.scico.2004.
05.015

21. Meyer, B.: Applying “design by contract”. IEEE Comput. 25(10), 40–51 (1992).
https://doi.org/10.1109/2.161279

https://doi.org/10.1007/s10009-004-0167-4
https://doi.org/10.1007/978-3-540-68237-0_18
https://doi.org/10.1007/978-3-540-68237-0_18
https://doi.org/10.1145/775832.775928
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://doi.org/10.1007/s10009-011-0211-0
https://doi.org/10.1016/S1574-6526(07)03002-7
https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1007/978-94-009-6259-0_10
https://doi.org/10.1007/978-94-009-6259-0_10
https://doi.org/10.1145/347324.383378
https://doi.org/10.5445/IR/1000122228
https://doi.org/10.5445/IR/1000122228
https://doi.org/10.1007/978-3-319-09099-3_13
https://doi.org/10.1007/978-3-319-09099-3_13
https://doi.org/10.1145/1127878.1127884
https://doi.org/10.1016/j.scico.2004.05.015
https://doi.org/10.1016/j.scico.2004.05.015
https://doi.org/10.1109/2.161279

80 B. Beckert et al.

22. Pnueli, A., Shahar, E.: A platform for combining deductive with algorithmic ver-
ification. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp.
184–195. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5_68

23. Shankar, N.: Automated deduction for verification. ACM Comput. Surv. 41(4),
20:1–20:56 (2009). https://doi.org/10.1145/1592434.1592437

24. Shankar, N.: Combining model checking and deduction. In: Clarke, E., Hen-
zinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 651–684.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_20

https://doi.org/10.1007/3-540-61474-5_68
https://doi.org/10.1145/1592434.1592437
https://doi.org/10.1007/978-3-319-10575-8_20

On Slicing Software Product
Line Signatures

Ferruccio Damiani1(B) , Michael Lienhardt2, and Luca Paolini1

1 University of Turin, Turin, Italy
{ferruccio.damiani,luca.paolini}@unito.it

2 ONERA, Palaiseau, France
michael.lienhardt@onera.fr

Abstract. A Software Product Line (SPL) is a family of similar pro-
grams (called variants) generated from a common artifact base. Variabil-
ity in an SPL can be documented in terms of abstract description of func-
tionalities (called features): a feature model (FM) identifies each variant
by a set of features (called a product). Delta-orientation is a flexible
approach to implement SPLs. An SPL Signature (SPLS) is a variability-
aware Application Programming Interface (API), i.e., an SPL where each
variant is the API of a program. In this paper we introduce and formal-
ize, by abstracting from SPL implementation approaches, the notion of
slice of an SPLS K for a set of features F (i.e., an SPLS obtained from by
K by hiding the features that are not in F). Moreover, we formulate the
challenge of defining an efficient algorithm that, given a delta-oriented
SPLS K and a set of features F, sreturns a delta-oriented SPLS that is
an slice of K for F. Thus paving the way for further research on devis-
ing such an algorithm. The proposed notions are formalized for SPLs of
programs written in an imperative version of Featherweight Java.

1 Introduction

A Software Product Line (SPLs) is a family of similar programs, called vari-
ants, that have a well-documented variability and are generated from a com-
mon artifact base [3,10,39]. An SPL can be structured into: (i) a feature model
describing the variants in terms of features (each feature is a name representing
an abstract description of functionality and each variant is identified by a set of
features, called a product); (ii) an artifact base comprising language dependent
reusable code artifacts that are used to build the variants; and (iii) configuration
knowledge connecting feature model and artifact base by specifying how, given
a product, the corresponding a variant can be derived from the code artifacts—
thus inducing a mapping from products to variants, called the generator of the
SPL.

An interface can be understood as a partial specification of the function-
alities of a system. Such a notion of interface provides a valuable support for
modularity. If a system can be decomposed in subsystems in such a way that all
the uses of each subsystem by the other subsystems are mediated by interfaces
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 81–102, 2020.
https://doi.org/10.1007/978-3-030-61362-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_5&domain=pdf
http://orcid.org/0000-0001-8109-1706
http://orcid.org/0000-0002-4126-0170
https://doi.org/10.1007/978-3-030-61362-4_5

82 F. Damiani et al.

of the subsystem, then subsystem changes that do not break the interfaces are
transparent (with respect to the specifications expressed by the interfaces) to
the other subsystems.

In this paper we formalize, by abstracting from SPL implementation
approaches, the problem of designing an efficient algorithm that, given an SPL
and subset F of it features, extracts an interface for the SPL that exposes only
the functionalities associated to the features in F . We build on the notions of
signature and interface of an SPL introduced in [17] (see also [19]). An SPL Sig-
nature (SPLS) is a variability-aware Application Programming Interface (API),
i.e., an SPL where each variant is a program API. The signature of an SPL L
is an SPLS Z where: (i) the features are the same of L; (ii) the products are the
same of L; and (iii) each variant is the program signature (i.e., a program API
that exposes all the functionalities) of the corresponding variant of L. An SPLS
Z1 is:

– an interface of an SPLS Z2 iff1 (i) the features of Z1 are a subset of the
features of Z2; (ii) the products of Z1 are obtained for the products of Z2 by
dropping the features that are not in Z1; and (iii) for each product p1 of Z1, its
associated variant is an interface of all the variants associated to the products
of Z2 from which p1 can be obtained by dropping the features that are not in
Z1; and

– an interface of an SPL L iff it is an interface of the signature of L.

The contribution of this paper is twofold.

1. We introduce and formalize, by abstracting from SPL implementation
approaches, the notion of slice of an SPLS for a set of features F . It lifts
to SPLs the notion of slice of a FM introduced in [1] (see also [43]). Namely,
we define an operator that given an SPLS Z and a set of features F returns
an SPLS that has exactly the features in F and is an interface of Z.

2. We introduce and formalize the problem of devising a feasible algorithm that
takes as input a delta-oriented SPLS Z [19] and a set of features F , and yields
as output a delta-oriented SPLS that is a slice of Z for F . Thus paving the
way for further research on devising such an algorithm.

Since extracting the signature of a delta-oriented SPL is quite straightfor-
ward [17], an algorithm like the one described in point 2 above would provide
a way to extract from an SPL an interface that exposes only the functionalities
associated to a given set of features. This would enable refactoring a delta-
oriented SPL by decomposing it into a Multi SPL (MPL), that is a set of inter-
dependent SPLs that need to be managed in a decentralized fashion by multiple
teams and stakeholders [29], and performing compositional analysis of delta-
oriented MPLs [19]. Moreover, the implementation-independent formalization
described in point 1 above might foster further research on MPLs comprising
SPLs implemented according to different approaches (see, e.g., [3,42,47] for a
presentation of different SPL implementation approaches).
1 In [19] the phrase “subsignature of an SPLS” is used instead of “interface of an

SPLS”.

On Slicing Software Product Line Signatures 83

Organisation of the Paper. Section 2 provides the necessary background on SPLs,
SPLSs and interfaces. Section 3 provides a definition of the SPLS slice opera-
tor that abstracts from SPL implementation approaches. Section 4 recalls delta-
oriented SPLs and illustrates the problem of devising a feasible algorithm for
slicing delta-oriented SPLSs. Related work is discussed in Sect. 5, and Sect. 6
concludes the paper by outlining possible future work.

2 A Recollection of SPLs, SPL Signatures and Interfaces

2.1 Feature Models, Feature Module Slices and Interfaces

The following definition provides an extensional account on the notion of feature
model, namely a feature model is represented as a pair “(set of features, set
of products)”, thus allowing to abstract from implementation approaches—see
e.g. [4] for a discussion on possible representations of feature models.

Definition 1 (Feature model, extensional representation). A feature
model M is a pair (F ,P) where F is a set of features and P ⊆ 2F is a set
of products.

The slice operator for feature models introduced by Acher et al. [1], given a
feature model M and a set of features Y , returns the feature model obtained
from M by removing the features not in Y .

Definition 2 (Feature model slice operator). Let M = (F ,P) be a feature
model. The slice operator ΠY on feature models, where Y is a set of features, is
defined by: ΠY (M) = (F ∩ Y, {p ∩ Y | p ∈ P}).

More recently, Schröter et al. [43] introduced the slice function S such that
S(M, Y) = ΠF\Y (M) Schröter et al. [43] also introduced the following notion
of feature model interface.

Definition 3 (Interface relation for feature models). A feature model
M0 = (F0, P0) is an interface of feature model M = (F ,P), denoted as
M0 � M, whenever both F0 ⊆ F and P0 = {p ∩ F0 | p ∈ P} hold.

It is worth observing that M0 � M holds if and only if M0 = ΠY (M), where
Y are features of M0. Moreover, the interface relation for feature models is
reflexive, transitive and anti-symmetric.

Given a product p, we define Ip(x) =
{
true if x ∈ p,
false otherwise and, given a

propositional formula over features (i.e., where propositional variable are fea-
ture names) φ, we wrote Ip |= φ to mean that φ evaluates to true by replacing
its variables according to Ip.

Example 1 (Slicing the Expression Feature Model). Consider the propositional
formula φEPL = Lit ∧ (Print ∨ Eval). The feature model MEPL = (FEPL,PEPL)
has 4 features FEPL = {Lit,Add,Print,Eval} and 8 products PEPL = { p | p ⊆

84 F. Damiani et al.

P ::= CD Program
CD ::= class C extends C { AD } Class Declaration
AD ::= FD | MD Attribute (Field or Method) Declaration
FD ::= C f Field Declaration
MH ::= C m(C x) Method Header
MD ::= MH {return e; } Method Declaration
e ::= x | e.f | e.m(e) | new C() | (C)e | e.f = e | null Expression

Fig. 1. IFJ programs

FEPL and Ip |= φEPL}. It describes a family of programs implementing an
expression datatype where Literals are mandatory and Additions are optional,
and where either a Print operation or an Evaluation operation must be sup-
ported. Let FEPL0 = {Lit,Add,Print}, then we have that ΠFEPL0

(MEPL) =
MEPL0 = (FEPL0 ,PEPL0), where PEPL0 = { pI, pII, pIII, pIV } with pI = {Lit},
pII = {Lit,Add}, pIII = {Lit,Print}, pIV = FEPL0 .

2.2 SPLs of IFJ Programs

Imperative Featherweight Java (IFJ) [7] is an imperative version of Featherweight
Java (FJ) [30]. The abstract syntax of IFJ programs is given in Fig. 1. Following
Igarashi et al. [30], we use the overline notation for (possibly empty) sequences
of elements—e.g., e stands for a sequence of expressions e1, . . . , en (n ≥ 0)—and
we denote the empty sequence by ∅.

A program P is a sequence of class declarations CD. A class declaration
comprises the name C of the class, the name of the superclass (which must
always be specified, even if it is the built-in class Object) and a list of attribute
(field or method) declarations AD. Variables x include the special variable this
(implicitly bound in any method declaration MD), which may not be used as
the name of a method’s formal parameter. All fields and methods are public,
there is no field shadowing, there is no method overloading, and each class is
assumed to have an implicit constructor that initialized all fields to null.

An attribute name a is either a field name f or a method name m. Given a
program P , a class name C and an attribute name a, we write dom(P), P (C),
domP (C), ≤:P , CD(a), and lookupP (a, C) to denote, respectively:

the set of class names declared in P ; the declaration of C in P when it
exists; the set of attribute names declared in P (C); the subtyping relation in P
(i.e., the reflexive and transitive closure of the immediate extends relation); the
declaration of attribute a in CD; and the declaration of the attribute a in the
closest superclass of C (including C itself) that contains a declaration for a in
P , when it exists. We write <:P to denote the strict subtyping relation in P ,
defined by: C1 <:P C2 if and only if C1 ≤:P C2 and C1 �= C2.

As usual, we identify two IFJ programs P1 and P2 (written P1 = P2) up to:
(i) the order of class declarations and attribute declarations, and (ii) renaming of
the formal parameters of methods. The following notational convention entails

On Slicing Software Product Line Signatures 85

the assumption that the classes declared in a program have distinct names, the
attributes declared in a class have distinct names, and the formal parameter
declared in a method have distinct names.

Convention 1 (On sequences of named declarations). Whenever we write
a sequence of named declarations N (e.g., classes, attributes, parameters, etc.)
we assume that they have pairwise distinct names. We write names(N) to denote
the sequence of the names of the declarations in N . Moreover, when no confusion
may arise, we sometimes identify sequences of pairwise distinct elements with
sets, e.g., we write e as short for {e1, . . . , en}.
We require that every IFJ program P satisfies the following sanity conditions:

SC1: For every class name C (except Object) appearing anywhere in P , we
have C ∈ dom(P).

SC2: The strict subtyping relation <:P is acyclic.
SC3: If C2 <:P C1, then dom(P (C1))∩dom(P (C2)) does not contain field names.
SC4: If C2 <:P C1 then for all method names m ∈ dom(P (C1)) ∩ dom(P (C2))

the methods P (C1)(m) and P (C2)(m) have the same header (up to renaming
of the formal parameters).

Note that SC3 and SC4 formalize the requirements “there is no field shadowing”
and “there is no method overloading”, respectively. Type system, operational
semantics, and type soundness for IFJ are given in [7].

Remark 1 (Sugared IFJ syntax). To improve readability, in the examples we use
Java syntax for field initialization, primitive data types, strings and sequential
composition. Encoding in IFJ syntax a program written in such a sugared IFJ
syntax is straightforward (see [7]).

Example 2 (The Expression Program). Figure 2 illustrates a sugared IFJ pro-
gram called the Expression Program (EP for short), that encodes the following
grammar of numerical expressions:

Exp ::= Lit | Add Lit ::= non-negative-integers Add ::= Exp “+” Exp

The EP consists of: (i) a class Exp representing all expressions; (ii) a class Lit
representing literals; and, (iii) a class Add representing an addition between two
expressions. All these classes implement a method toInt that computes the value
of the expression, and a method toString that gives a textual representation of
the expression. Note that the concept of expression is too general to provide a
meaningful implementation of these methods, and thus the class Exp is supposed
to be used as a type and should never be instantiated.

The following definition (taken form [35]) provides an extensional account on
the notion of SPL, thus allowing to abstract from implementation approaches—
see e.g. [42,47] for a survey on SPL implementation approaches.

86 F. Damiani et al.

class Exp extends Object {
String name = ”Exp”;
Int toInt() { return null; }
String toString() { return name; }

}

class Lit extends Exp {
Int val;
Lit setLit(Int x) { this.val=x; return this; }
Int toInt() { return this.val; }
String toString() { return this.val.toString(); }

}
class Add extends Exp {
Exp a; Exp b;
Int toInt() { return this.a.toInt().add(this.b.toInt()); }
String toString() { return this.a.toString() + ”+” + this.b.toString(); }

}

Fig. 2. The expression program

Definition 4 (SPL, extensional representation). An SPL L is a pair
(ML,GL) where ML = (FL,PL) is the feature model of the SPL and GL is the
generator of the SPL, i.e., a function from the products in PL to the variants.2

Type system, operational semantics, and type soundness for IFJ are given in [7].
We say that the extensional representation of an SPL of IFJ programs is well
typed to mean that the variants are well-typed IFJ programs.

Example 3 (The Expression Product Line). The Expression Product Line (EPL)
is the SPL EPL = (MEPL,GEPL) where MEPL = (FEPL,PEPL) is as in Exam-
ple 1, GEPL(FEPL) is the program EP in Example 2, and the other 7 variants are
obtained from EP by dropping class Add whenever feature Add is not selected
and by dropping methods toString and toInt whenever features Print and Eval
are not selected, respectively.

2.3 Signatures and Interfaces for SPLs of IFJ Programs

The abstract syntax of IFJ program signatures is given Fig. 3. From a syntactic
perspective, a program signature is essentially a program deprived of method
bodies, and a class signature is a class deprived of method bodies. The signature
of a program P , denoted as signature(P), is the program signature obtained
from P by dropping the body of its methods.

Remark 2 (On the signature of a sugared IFJ program). The signature of a pro-
gram written in sugared IFJ syntax (introduced Remark 1) is obtained by drop-
ping the body of the methods and the initialization of the field declarations.
Notably, the signature of a sugared IFJ program is an IFJ program signature.

Given a program signature PS, a class name C, a class signature CS and
an attribute name a, we write dom(PS), PS(C), domPS(C), ≤:PS, CS(a), and
lookupPS(a, C) to denote, respectively: the set of class names declared in PS; the

2 In [35] the generator is modeled as a partial function in order to encompass ill-formed
SPLs where, for some product, the generation of the associated variant fails. In this
paper we focus on well-formed SPLs, so we consider a total generator.

On Slicing Software Product Line Signatures 87

PS ::= CS Program Signature
CS ::= class C extends C { AS } Class Signature
AS ::= FD | MH Attribute (Field or Method) Signature

Fig. 3. IFJ program signatures

declaration of the class signature of C in PS when it exists; the set of attribute
names declared in PS(C); the subtyping relation in PS; the set of attribute names
declared in CS; and the signature of the attribute a in the closest supertype of
C (including itself) that contains a declaration for a in PS, when it exists. We
write <:PS to denote the strict subtyping relation in PS, defined by: C1 <:PS C2

if and only if C1 ≤:PS C2 and C1 �= C2.
We require that every IFJ program signature PS satisfies the sanity condi-

tions listed below.

SCi: For every class name C (except Object) appearing in an extends clause
in PS, we have C ∈ dom(PS).

SCii: The strict subtyping relation <:PS is acyclic.
SCiii: If C2 <:PS C1, then for all attributes a ∈ dom(PS(C1)) ∪ dom(PS(C2))

we have PS(C1)(a) = PS(C2)(a).

It is worth noticing that sanity condition SCi is weaker than SC1: a program
signature is not required to provide a declaration for the class names occurring in
attribute declarations. Recall that in IFJ field shadowing if forbidden (cf. sanity
condition SC3). For the sake of simplicity, in program signatures there is no
such a restriction: field and method signatures are treated uniformly.

A program signature PS can be understood as an API that expresses require-
ments on programs. I.e., program signature PS is an interface of program P if
P provides at least all the classes, attributes and subtyping relations in PS.
Similarly, program signature PS is an interface3 of program signature PS0 if
PS0 provides at least all the classes, attributes and subtyping relations in PS.
These notions are formalized by the following definitions.

Definition 5 (Interface relation for program signatures). A program sig-
nature PS1 is an interface of a program signature PS2, denoted as PS1 � PS2,
iff: (i) dom(PS1) ⊆ dom(PS2); (ii) ≤:PS1 ⊆ ≤:PS2 ; and (iii) for all class name
C ∈ dom(PS1), for all attribute a, we have that if lookupPS1

(a, C) is defined then
lookupPS2

(a, C) is defined and lookupPS1
(a, C) = lookupPS2

(a, C).

Definition 6 (Interface relation between signatures and programs). A
program signature PS is an interface of program P , denoted as PS � P , iff
PS � signature(P) holds.

The interface relation for program signatures is a preorder. Namely, it is
reflexive (which implies signature(P) � P), transitive, and (due to the possi-
bility of overriding of attribute signatures) not antisymmetric (i.e., PS1 � PS2

3 In [19] the word “subsignature” is used instead of “interface”.

88 F. Damiani et al.

and PS2 � PS1 do not imply PS1 = PS2). Since � is a preorder, the relation
� = (� ∩) is an equivalence relation, and the relation � can be under-
stood as a partial order (reflexive, transitive and antisymmetric) on the set of
�-equivalence classes. The (equivalence class of the) empty program signature ∅
is the bottom element with respect to �.

Example 4 (Signature and interfaces of the Expression Program). Let EP be the
program illustrated in Fig. 2. Given the following three signatures
EPS=

class Exp extends Object {
String name;
Int toInt(); String toString();

}
class Lit extends Exp {
Int val; Lit setLit(Int x);
Int toInt(); String toString();

}
class Add extends Exp {
Exp a; Exp b;
Int toInt(); String toString();

}

ESP1 =

class Exp extends Object {
String name;
Int toInt(); String toString();

}
class Lit extends Exp {
Int val; Lit setLit(Int x);

}

class Add extends Exp {
Exp a; Exp b;

}

EPS2 =

class Exp extends Object {
String name;
String toString();

}
class Lit extends Exp {
String name;
Int toInt();

}
class Add extends Object {
String name;
Exp a;

}

we have: EPS = signature(EP), EPS1 � EPS, EPS2 � EPS, and EPS �� EPS2.

The notion of SPL signature (SPLS) [19] describes the API of an SPL, i.e.,
the APIs of the variants generated by the SPL. Namely, an SPLS is an SPL
where the variants are program signatures instead of programs. The following
definition provides an extensional account of this notion.

Definition 7 (SPLS, extensional representation). An SPLS Z is a pair
(MZ,GZ) where MZ = (FZ,PZ) is the feature model of the SPLS and GZ is
the generator of the SPLS, i.e., a mapping from the products in PZ to variant
signatures.

The notion of signature of an SPL [19] naturally lifts that of signature of a
program. Namely, the signature of an SPL L = (ML,GL) is the SPLS defined by
signature(L) = (ML, signature(GL)), where signature(GL) is defined by

signature(GL)(p) = signature(GL(p)), for all p ∈ PL.

The notion of interface of an SPLS [19] naturally lifts the one of interface of
a program signature (in Definition 5) by combining it with the notion of feature
model interface (in Definition 3).

Definition 8 (Interface relation for SPLSs). An SPLS Z1 is a interface of
an SPLS Z2, denoted as Z1 � Z2, iff: (i) MZ1 � MZ2 ; and (ii) for each p ∈ PZ2 ,
GZ1(p ∩ FZ1) � GZ2(p).

Similarly, the notion of interface of an SPL lifts the notion interface of a program
(in Definition 6).

On Slicing Software Product Line Signatures 89

Definition 9 (Interface relation between SPLs and SPLSs). An SPLS Z
is an interface of an SPL L, denoted as Z � L, iff Z � signature(L) holds.

It is worth observing that the interface relation for SPLSs has two degrees of
freedom: it allows to hide features from the feature model (as described in Defi-
nition 3), and it allows to hide declarations from the SPLS variants (as described
in Definition 5). Additionally, note that the interface relation for SPLSs, like the
one for program signatures (see the explanation after Definition 6), is reflexive,
transitive and not anti-symmetric. We say that two SPLSs Z1 and Z2 are equiv-
alent, denoted as Z1 � Z2, to mean that both Z1 � Z2 and Z2 � Z1 hold.

Example 5 (Signature and interfaces of the EPL). Consider the signature of the
EPL of Example 3: signature(EPL) = EPLS = (MEPLS,GEPLS). Let EPLS′ =

(MEPL,GEPLS′), where GEPLS′(p) =
{

EPS1 (see Example 4) if p = FEPL,
GEPLS(p) otherwise.

We have EPLS′
� EPLS. Moreover, let EPLS′′ = (MEPL,GEPLS′′), where

GEPLS′′(p) =
{

EPS2 (see Example 4) if p = FEPL,
GEPLS(p) otherwise. We have EPLS′′ �

EPLS and EPLS �� EPLS′′. Consider also the following four program signa-
tures
EPSI =

class Exp extends Object{
String name;

}

class Lit extends Exp{
Int val; Lit setLit(Int x);

}

EPSII =

class Exp extends Object{
String name;
String toString();

}
class Lit extends Exp{
Int val; Lit setLit(Int x);

}

ESPIII =

class Exp extends Object{
String name;

}

class Lit extends Exp{
Int val; Lit setLit(Int x);

}
class Add extends Exp {
Exp a; Exp b;

}

EPSIV =

class Exp extends Object{
String name;
String toString();

}
class Lit extends Exp{
Int val; Lit setLit(Int x);

}
class Add extends Object{
Exp a; Exp a;

}

and the SPLS EPLS0 = (MEPL0 ,GEPLS0) where MEPL0 = (FEPL0 ,PEPL0) is as
in Example 1 and GEPLS0(pi) = EPLSi for i ∈ {I, II, III, IV}. We have EPLS0 �
EPLS and EPLS �� EPLS0.

Let EPS′
I, EPS′

II, EPS′
III, EPS′

IV be the program signatures obtained from
EPSI, EPSII, EPSIII, EPSIV by dropping all the fields (respectively), and let
EPLS′

0 = (MEPL0 ,GEPLS′
0
) be the SPLS such that MEPL0 is as above and

GEPLS′
0
(pi) = EPLS′

i for i ∈ {I, II, III, IV}. We have EPLS′
0 � EPLS0 and

EPLS0 �� EPLS′
0.

3 The Slice Operator for SPLSs of IFJ Programs

In this section we lift the feature model slice operator to SPLs in extensional
form. In order to do this, we first introduce some auxiliary notions.

Given a feature model M = (F ,P) and a set F0 of features, the slice
ΠF0(M) = M0 = (F0,P0) determines a partition of P. Namely, let cplF0,M :
P0 → 2P be the function that maps each sliced product p0 ∈ P0 to the set of
products {p | p ∈ P and p0 = p ∩ F0} that complete it, then:

90 F. Damiani et al.

1. cplF0,M(p0) is non-empty, for all p0 ∈ P0;
2. p′ �= p′′ implies cplF0,M(p′) ∩ cplF0,M(p′′) = ∅, for all p′, p′′ ∈ P0; and
3.

⋃
p∈P0

cplF0,M(p) = P.

The following definition introduces a canonical form for the elements of the
equivalence classes of the relation � between program signatures (introduced
immediately after Definition 6).

Definition 10 (Thin program signatures). We say that a program signature
PS is in thin form (thin for short) to mean that, for all classes C1, C2 ∈ dom(PS)
and for all attributes a ∈ dom(PS(C1)), if C2 <:PS C1 then a �∈ dom(PS(C2)).
We denote thin(PS) the thin form of a program signature PS.

Example 6 (Thin signature of the Expression Program). Recall the program
EP and the signatures EPS and EPS1 considered in Example 4, where EPS =
signature(EP). It is straightforward to check EPS1 = thin(EPS) holds.

Given a non-empty set of program signatures PS = PS1, ...,PSn (n ≥ 1) we
write

∧
PS to denote the thin program signature that is the infimum (a.k.a.

greatest lower bound) of PS with respect to the interface relation—it is a pro-
gram signature (which is unique modulo program signature equivalence �) that
exposes exactly the (classes, fields, methods and subtyping) declarations that
are present in all the program signatures PS. The following theorem states that∧

PS is always defined.

Theorem 1 (Infimum for program signatures w.r.t. �). The thin program
signature

∧
PS that is the infimum with respect to � of a non empty set of

program signature PS = PS1, ...,PSn (n ≥ 1) is always defined.

Proof. See AppendixA. ��
The following definition lifts the feature model slice operator ΠF0 (Defini-

tion 2) to SPLSs.

Definition 11 (SPLS slice). Let F0 be a set of features and, let Z = (MZ,GZ)
be an SPLS with feature model MZ = (FZ,PZ) and generator GZ. The slice
operator ΠF0 on SPLSs returns the SPLS ΠF0(Z) = (M0,G0) where

(i) M0 = (F0,P0) = ΠF0(MZ); and
(ii) for each p0 ∈ P0 we have that G0(p0) =

∧
p∈cplF0,MZ

(p0)

GZ(p).

Note that not all the interfaces of an SPLS Z are slices of Z (cf. the observation
immediately after Definition 3). Namely, ΠF0(Z) is an interface (which is unique
modulo SPLS equivalence �) that is the greatest (with respect to the � relation
between SPLSs) interface of Z with exactly the features of Z that are in F0 I.e.,
if Z1 � Z and Z1 has exactly the features of Z that are in F0, then Z1 � ΠF0(Z).
The SPLS slice operator induces therefore a restriction of the SPLS interface
operator by limiting the possibility to hide declarations from SPLS variants (cf.

On Slicing Software Product Line Signatures 91

the second degree of freedom discussed immediately after Definition 9). Namely,
if ΠF0((FZ,PZ),GZ)) = ((M0,P0),G0) then, for all p0 ∈ P0, we have that G0(p0)
exposes exactly the declarations that are present in all the program signatures
GZ(p) such that p ∈ cplF0,(FZ,PZ)(p0).

The SPL slice is an operator that given an SPL and a set of features returns
its greatest interface with exactly the given features. It is defined as follows.

Definition 12 (SPL slice). Given an SPL L and a set of features F0 we define
ΠF0(L) as ΠF0(signature(L)).

Example 7 (Slicing the EPL). Consider the SPL EPL of Example 3 and the
SPLSs EPLS, EPLS0 and EPLS′

0 of Example 5. We have that EPLS0 is a slice
of both EPLS and EPL. Namely, EPLS0 = ΠY0(EPLS) = ΠY0(EPL), where
Y0 = {Lit,Add,Print} are the features of EPLS0. Instead, EPLS′

0 is not a slice of
EPLS.

4 On Slicing Delta-Oriented SPLSs of IFJ Programs

The extensional representation of SPLs allowed us to formulate notion of slice of
an SPLS by abstracting from SPL implementation details. However, in order to
investigate a practical slicing algorithm, we need to consider a representation of
SPLs that reflects some implementation approach. To this aim, we first recall the
propositional presentation of feature models (in Sect. 4.1) and the delta-oriented
approach to implement SPLs, the definition delta-oriented SPL of IFJ programs,
and the corresponding definition of SPLS (in Sect. 4.2). Then we illustrate the
problem of devising a feasible algorithm for slicing delta-oriented SPLSs where
the feature model is represented in propositional form (in Sect. 4.3).

4.1 Propositional Representation of Feature Models

The propositional representation of feature models works well in practice [6,36,
38,47]. In this representation, a feature model is given by a pair (F , φ) where:

– F is a set of features, and
– φ is a propositional formula where the variables x are feature names:

φ ::= x | φ ∧ φ | φ ∨ φ | φ → φ | ¬φ.

A propositional formula φ over a set of features F represents the feature models
whose products are configurations {x1, ..., xn} ⊆ F (n ≥ 0) such that φ is
satisfied by assigning value true to the variables xi (1 ≤ i ≤ n) and false to
all other variables. More formally, given the propositional representation M =
(F , φ) of a feature model, we denote E(M) its extensional representation, i.e,
the feature model (F , E(φ)) with E(φ) = { p | p ⊆ F and Ip |= φ }.

Example 8 (A proposition representation of the Expression Feature Model). Con-
sider the feature model MEPL = (FEPL,PEPL) and the propositional formula
φEPL introduced in Example 1. Then (FEPL, φEPL) is a propositional represen-
tation of the feature model MEPL, i.e., E((FEPL, φEPL)) = MEPL.

92 F. Damiani et al.

AB ::= P DD Artifact Base
DD ::= delta d{CO} Delta Declaration
CO ::= adds CD | removes C | modifies C[extends C′]{AO} Class Operation
AO ::= adds AD | removes a | modifies MD Attribute Operation

Fig. 4. Syntax of IFΔJ SPL artifact base

4.2 Delta-Oriented SPLs and SPLSs

Delta-Oriented Programming (DOP) [40,41], [3, Sect. 6.6.1] is a transformational
approach to implement SPLs. The artifact base of a delta-oriented SPL consists
of a base program (that might be empty) and of a set of delta modules (deltas for
short). A delta is a container of program modifications (e.g., for IFJ programs,
a delta can add, remove or modify classes). The configuration knowledge of a
delta-oriented SPL associates to each delta an activation condition (determining
the set of products for which that delta is activated) and specifies an application
ordering between deltas: once a product is selected, the corresponding variant
can be automatically generated by applying the activated deltas to the base
program according to the application ordering. It is worth mentioning that the
Feature-Oriented Programming (FOP) [5], [3, Sect. 6.1] approach to implement
SPLs can be understood as the restriction of DOP where deltas correspond one-
to-one to features and do not contain remove operations.

4.2.1 Delta-Oriented SPLs of IFJ Programs
Imperative Featherweight Delta Java (IFDJ) [7] is a core calculus for delta-
oriented SPLs of IFJ programs. The abstract syntax of the artifact base of an
IFDJ SPL is given in Fig. 4. The artifact base comprises a (possibly empty) IFJ
program P, and a set of deltas DD. A delta declaration DD comprises the name
d of the delta and class operations CO representing the transformations per-
formed when the delta is applied to an IFJ program. A class operation can add,
remove, or modify a class. A class can be modified by (possibly) changing its
super class and performing attribute operations AO on its body. An attribute
operation can add or remove fields and methods, and modify the implementation
of a method by replacing its body. The new body may call the special method
name original, which is implicitly bound to the previous implementation of
the method.

Recall that, according to Convention 1, we assume that the deltas declared
in an artifact base have distinct names, the class operations in each delta act on
distinct classes, the attribute operations in each class operation act on distinct
attributes, etc.

If the feature model of a delta-oriented SPL L is in propositional represen-
tation (F , φ), then the configuration knowledge of L can be conveniently repre-
sented by a pair K = (α,<) where:

On Slicing Software Product Line Signatures 93

– α (the delta activation map) is a function that associates to each delta d a
propositional formula φd such that φ ∧ φd represents the set of products that
activate it; and

– < (the delta application order) is a partial ordering between delta names.4

Therefore an IFΔJ SPL can be represented by a triple L = ((F , φ),AB,K).
The generator of L, denoted by GL, is a total function that associates each

product p in ML with the IFJ program dn(· · · d1(P) · · ·), where P is the base
program of L and d1 . . . , dn (n ≥ 0) are the deltas of L activated by p (they are
applied to P according to a total ordering that is compatible with the application
order).5

In most presentation of delta-oriented SPLs (see, e.g, [40,41]), the generator
is considered to be a partial function in order to encompass ill-formed SPLs
where, for some product, the generation of the associated variant fails. Recall
that we focus on well-formed SPLs,6 where generators are total functions and
the generated products are well-typed IFJ programs—see [13,24] for effective
means to ensure the well-formedness of IFΔJ SPLs.

The extensional representation a delta-oriented SPL L, denoted by E(L), is
the SPL (ML,GL) where ML and GL are the feature model and the generator of
L, respectively.

4.2.2 Delta-Oriented SPLSs of IFJ Programs
A delta-oriented SPLS [19] can be understood as a delta-oriented SPL where the
variants are program signatures. The abstract syntax of the artifact base of an
IFΔJ SPLSs [19], called artifact base signature, is given in Fig. 5. An artifact base
signature ABS comprises a program signature PS and a set of delta signatures
DS that are deltas deprived of method-modifies operations and method bodies.

If the feature model of a delta-oriented SPLS Z is in propositional rep-
resentation (F , φ), then the configuration knowledge of Z can be represented
by a pair K = (α,<) defined similarly to the configuration knowledge of a
delta-oriented SPL. Therefore the IFΔJ SPLS can be represented by a triple
Z = ((F , φ),ABS,K).

Also generator of a delta-oriented SPLS Z, denoted by GZ, and the extensional
representation a delta-oriented SPLS Z, denoted by E(Z), are defined as for delta-
oriented SPLs.

Given two delta-oriented SPLSs Z1 and Z2 we say that:

– Z1 and Z2 are extensional equivalent to mean that their extensional represen-
tations are equivalent, i.e., E(Z1) � E(Z2); and

– Z1 is an interface of Z2 (written Z1 � Z2) to mean that E(Z1) � E(Z2).

4 As pointed out in [40,41], the delta application order <L is defined as a partial
ordering to avoid over specification.

5 We assume that all the total orders that are compatible with <L yield the same
generator—see [7,34] for effective means to enforce this constraint.

6 See footnote 2.

94 F. Damiani et al.

ABS ::= PS DS AB Signature
DS ::= delta d { COS } Delta Signature
COS ::= adds CS | removes C | modifies C [extends C′]{AOS } CO Signature
AOS ::= adds AS | removes a AO Signature

Fig. 5. Syntax of IFΔJ SPLS artifact base signature

The signature of an IFΔJ SPL L, denoted as signature(L), is the SPLS obtained
from L by dropping the method-modifies operations and the body of the methods
in the artifact base. Note that the notion of signature of a delta-oriented SPL
is consistent with the notion of signature defined for extensionally represented
SPLs (introduced immediately after Definition 7). Namely, for all IFΔJ SPLs L
we have that:

E(signature(L)) = signature(E(L)).

Given a delta-oriented SPLS Z and a delta-oriented SPL L, we say that Z is an
interface of L (written Z � L) to mean that E(Z) � E(signature(L)).

Recently [19], we have presented an algorithm for checking the interface rela-
tion between IFΔJ SPLSs where the feature model is represented in proposi-
tional form. The algorithm encodes interface checking into a boolean formula
such that the formula is valid if and only of the interface relation holds. Then
a SAT solver can be used to check whether a propositional formula is valid by
checking whether its negation is unsatisfiable. Although this is a co-NP prob-
lem, similar translations into SAT constraints have been applied in practice for
several SPL analysis with good results [26,37,46,47].

4.3 On Devising an Algorithm for Slicing Delta-Oriented SPLSs

Given a set of features F0 and delta-oriented SPL L where the feature model
is represented in propositional form, manually writing a delta-oriented SPLS
Z that is a slice of signature(L) for F0 is a tedious and error-prone task. In
this section we illustrate the problem of devising a feasible algorithm for slicing
delta-oriented SPLSs where the feature model is represented in propositional
form.

We first focus on slicing a feature model represented in propositional form
(in Sect. 4.3.1), then we consider slicing an IFΔJ SPLS (in Sect. 4.3.2).

4.3.1 Slicing Feature Models in Propositional Form
Given a set of features X = {x1, ..., xn} (n ≥ 0) and a feature model in propo-
sitional representation (F , φ), the slicing algorithm slice is defined by:

sliceX((F , φ)) = (F ∩ X, sliceBFF/X(φ))

where the algorithm sliceBF is defined by:

sliceBF ∅(φ) = φ
sliceBF {x1,...,xn}(φ) = sliceBF {x2,...,xn}(φ[x1 := true]) ∨ (φ[x1 := false])).

On Slicing Software Product Line Signatures 95

The following theorem states that the slicing algorithm slice is correct.

Theorem 2 (Correctness of the slice algorithm for feature models). For
all set of features X and for all feature models in propositional representation
(F , φ), we have that E(sliceX(F , φ))) = ΠX(E((F , φ))).

Proof. Straightforward by induction on the number of features in F \ X. ��
By construction, the size of feature model sliceX((F , φ)) can grow as 2n,

where n is the number of variables in X. In order to avoid this exponential
growth, we modify the notion of propositional representation of feature model
(introduced in Sect. 4.1) by replacing the Boolean formula φ by an (existentially)
Quantified-Boolean formula σ defined by:

σ ::= ∃x.φ, where x may be empty, i.e., σ = φ.

Given a set of features X = {x1, ..., xn} (n ≥ 0) and a feature model in propo-
sitional representation (F , σ), the slicing algorithm sliceE is defined by:

sliceEX ((F, ∃y.φ)) = (F ∩ X, ∃w.φ)), where w are the elements of{y} ∪ (F \ X).

The following theorem states that the slicing algorithm sliceE is correct.

Theorem 3 (Correctness of the sliceE algorithm for feature models).
For all set of features X and for all feature models in propositional representation
(F , σ), we have that E(sliceEX(F , σ))) = ΠX(E((F , σ))).

Proof. Straightforward by induction on the number of features in F \ X. ��
Example 9 (Computing a slice of the Expression Feature Model). Con-
sider the feature model (FEPL, φEPL) introduced in Example 8 and the
set of features Y0 = {Lit,Add,Print} introduced in Example 7. We have:
sliceY0(FEPL, φEPL) = (Y0, φEPL0) and sliceEY0(FEPL, φEPL) = (Y0, σEPL0),
where both φEPL0 = (Lit ∧ (Print ∨ true)) ∨ (Lit ∧ (Print ∨ false)) and σEPL0 =
∃x.Lit ∧ (Print ∨ x) are logically equivalent to Lit.

Although the fact that slicing a feature model in propositional representation
corresponds to performing an existential quantification on the dropped feature
variables was already know in the literature (e.g., we have exploited it Sect. 5
of [19]), we are not aware of other authors that have published slicing algorithms
like sliceX and sliceEX above.

4.3.2 On the Problem of Slicing IFΔJ SPLSs
We aim at devising an algorithm such that:

– given an IFΔJ SPLS Z = ((F , σ),ABS,K) and a set of features X,
– returns an IFΔJ SPLS Z′ = ((F ′, σ′),ABS′,K′) that is a slice of Z for X and

is such that:
1. (F ′, σ′) = sliceEX(F , σ),

96 F. Damiani et al.

2. the size of the artifact base ABS′ is linear in the size of ABS, and
3. the size of the configuration knowledge K′ is linear in the size of K.

Note that requirements 2 and 3 above rule out any algorithm that returns an
IFΔJ SPLS where the artifact base and configuration knowledge are the straight-
forward encoding of the generation mapping GZ of Definition 11 (i.e., a delta for
each product, activated if and only if the product is selected).

Although we don’t know whether an algorithm that satisfies requirements 2
and 3 exists, we conjecture that it exists at least for some significant classes of
delta-oriented SPLs. We leave the investigating of such an algorithm for future
work, and conclude this section by an example.

Example 10 (On slicing a delta-oriented implementation of the EPLS). Con-
sider the IFΔJ SPLS Z = (MEPL,ABS,K) where: MEPL is the feature model
(FEPL, φEPL) introduced in Example 8; the artifact base signatureABS is

EPS1 // the program signature introduced in Example 4
delta d1 { removes Add }
delta d2 {modifies Exp {removes toString} } delta d3 {modifies Exp {removes toInt} }

and the configuration knowledge K comprises the activation mapping
{d1 �→ ¬Add, d2 �→ ¬Print, d3 �→ ¬Eval} and the flat application order (i.e., d1,
d2 and d3 can be applied in any order). Note that E(Z) � EPLS1, where EPLS1

is as in Example 5.
The slicing of Z w.r.t. the set of features Y0 = {Lit,Add,Print} introduced

in Example 5 is represented by the IFΔJ SPLS Z0 = (MEPL0 ,ABS0,K0) where:
MEPL0 is the feature model (Y0, Lit) introduced in Example 9; the artifact base
signatureABS0 is

EPSIV // the program signature introduced in Example 5
delta d1 { removes Add }
delta d2 {modifies Exp {removes toString} }

and the configuration knowledge K comprises the activation mapping
{d1 �→ ¬Add, d2 �→ ¬Print} and the flat application order. Note that E(Z0) �

EPLS0, where EPLS0 is as in Example 7.

5 Related Work

The notion of SPLS considered in this paper can be used to introduce a support
for MPLs on top of a given approach for implementing SPL. For instance, in [19]
we have exploited it to to define a formal model for delta-oriented MPLs. Previ-
ous work [25] informally outlined an extension of delta-oriented programming to
implement MPLs, which does not enforce any boundaries between different SPLs
and therefore is not suitable for supporting compositional analyses. In contrast,

On Slicing Software Product Line Signatures 97

as illustrated in [19], SPLSs can be used to support compostional type-checking
of MPLs of IFJ programs.

Schröter et al. [44] advocated investigating interface constructs for supporting
compositional analyses of MPLs at different stages of the development process. In
particular, they informally introduced the notion of syntactical interfaces (which
generalizes feature model interfaces to provide a view of reusable programming
artifacts) and the notion of behavioral interface (which generalizes syntactical
interfaces to support formal verification). The notion of SPLS considered in this
paper is (according to terminology of [44]) a syntactical interface.

Schröter et al. [45] also proposed the notion of feature-context interfaces
in order to support preventing type errors while developing SPLs with the
FOP approach. A feature-context interface provides an invariable API speci-
fying classes and members of the feature modules that are intended to be acces-
sible in the context of a given set of features. In contrast, an SPLS represents a
variability-aware API.

The notion of slice of an SPLS for a set of features introduced and formalized
in this paper lifts to SPLs the notion of slice of a feature model introduced in [1]
(see also [43]). We are not aware of any other proposal for lifting to SPLs the
notion of slice of a feature model.

6 Conclusions and Future Work

We have defined the notion of slice of an SPLS by abstracting from SPL(S)
implementation approaches, and we have formulated the problem of defining an
efficient algorithm that given a delta-oriented SPLS K and a set of features F
returns a delta-oriented SPLS that is an slice of K for F.

In future work we would like to investigate a efficient algorithm for slic-
ing delta-oriented SPLSs. In particular, we are planning to devise an algo-
rithm for refactoring IFΔJ SPLSs to some normal form that is suitable for
performing a slice. A starting point for this investigation could be represented
by the algorithms for refactoring IFΔJ SPLs presented in [14,15,18]. The
Abstract Behavioural Specification (ABS) language [9,16,31] is a delta-oriented
modeling language has been successfully used in the context of industrial use
cases [2,11,28,32]. DeltaJava [33,48] is a delta-oriented programming language
designed to comfortably create SPLs within the Java environment. In future
work we would like to exploit the notions of SPLS and slice for adding sup-
port for MPLs and support for deductive verification proof reuse [8,20,27] to
the ABS toolchain (https://abs-models.org/) and to the DeltaJava toochain
(http://deltajava.org/). We also plan the exploit the notion of SPLS to increase
modularity in mechanisms that extend delta-oriented programming to support
dynamic SPLs [23] (see also [21,22]) and interoperability between variants of the
same SPL [12].

Acknowledgments. We thank the anonymous reviewers for comments and sugges-
tions for improving the presentation.

https://abs-models.org/
http://deltajava.org/

98 F. Damiani et al.

A Proof of Theorem 1

Recall that, although Object �∈ dom(PS), class Object is used in every non-
empty program PS . Therefore, ≤:PS is a relation on domo(PS), where domo(PS)
is a shortening for dom(PS) ∪ {Object}.

Definition 13 (Subtyping path). Given a program signature PS and a class
C ∈ dom(PS), we denote path(C,PS) the restriction of ≤:PS to the supertypes
of C viz. the set {(C′, C′′) | C′≤:PSC′′ and C≤:PSC′}.

We remark that path(C,PS) is an order relation that identifies (uniquely) a
linearly ordered sequence of classes, with C as bottom and Object as top. No
path can be empty, since it has to include at least the pair (Object, Object).

The following definition and lemma exploit a canonical form for the elements
of the equivalence classes of the relation � between program signatures that
is more convenient than the thin form (given in Definition 10) for writing the
proofs.

Definition 14 (Fat program signatures and fatInf operator). We say
that a program signature PS is in fat form (fat for short) to mean that, for all
classes C ∈ dom(PS) and for all attributes a ∈ dom(PS(C)), if lookupPS(a, C) =
AS then PS(C)(a) = AS. We write fat(PS) to denote the fat form of a program
signature PS. Let PS be a (non empty) set of program signatures.

1. We write
⋂

PS dom(PS) to shorten
⋂

PS∈PS dom(PS). Note that Object is
never included in this intersection.

2. Let C ∈ ⋂
PS dom(PS).

(a) pathPS(C) is the linear order relation
⋂{path(C,PSi) | PSi ∈ PS}.

(b) path �⊥
PS

(C) is the order relation obtained by pathPS(C) removing C.

(c) mcs(C) (minimum common superclass of C) is the bottom of path �⊥
PS

(C).
(d) mcfd(PS, C) is the (maximum) set of common field declarations, viz. the

set of all field declarations of the shape C∗ f∗ such that: for all PSi ∈ PS,
lookupPSi

(f∗, C) = C∗ f∗.
(e) mcmd(PS, C) is the (maximum) set of common method declarations,

viz. the set of all field declarations of the shape C∗ m∗(Cx x) such that: for
all PSi ∈ PS, lookupPSi

(m∗, C) = C∗ m∗(Cx x′) for some variable names x′

(the type sequences have to match but, as usual, the names of arguments
do not matter).

3. We denote fatInf(PS) the in PS, viz. the program signature such that, for
all and only C ∈ ⋂

PS dom(PS) includes all and only the declarations:

class C extends mcs(C) { mcmd(PS, C) mcfd(PS, C) } .

Lemma 1 (fatInf characterizes
∧
). For every (non empty) set of program

signatures PS, it holds that fatInf(PS) = fat(
∧

PS).

On Slicing Software Product Line Signatures 99

Proof. It is straightforward to see that fatInf (PS) is always defined and that
fatInf (PS) � PSi for all PSi ∈ PS (since it is build as a restriction of them).
Therefore fatInf (PS) is a lower bound for PS and we can conclude the proof
by showing that it is the greater between the lower bounds for PS, namely if
PS� � PSi for all PSi ∈ PS then PS� � fatInf (PS) has to hold. In accordance
with Definition 5, we have to prove that the following three conditions hold.

(i) If C ∈ dom(PS�) then it has to be C ∈ dom(PSi) for all PSi ∈ PS. Therefore,
C ∈ fatInf (PS) by construction.

(ii) Let C1, C2 ∈ dom(PS�). If C0 <:P � C1 then it has to be C0 <:Pi
C1 for all

PSi ∈ PS, viz. (C0, C1) ∈ pathPSi
(C0). Therefore, (C0, C1) ∈ path(PS)(C) by

construction.
(iii) Let C ∈ dom(PS�) and a be an attribute such that lookupPS�(a, C) is defined.

But PS� � PS implies that, for all PSi ∈ PS, lookupPSi
(a, C) is defined and

lookupPSi
(a, C) = lookupPS�(a, C). Since mcfd(PS, C) and mcmd(PS, C) have

been defined to grasp the maximum set of common attribute declarations,
the proof follows by construction. ��

Proof (of Theorem 1). Straightforward by Lemma1. ��

References

1. Acher, M., Collet, P., Lahire, P., France, R.B.: Slicing feature models. In: 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 424–427 (2011). https://doi.org/10.1109/ASE.2011.6100089

2. Albert, E., et al.: Formal modeling and analysis of resource management for cloud
architectures: an industrial case study using real-time ABS. Serv. Oriented Com-
put. Appl. 8(4), 323–339 (2014). https://doi.org/10.1007/s11761-013-0148-0

3. Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Heidelberg (2013)

4. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005). https://doi.org/10.1007/11554844 3

5. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE
Trans. Softw. Eng. 30, 355–371 (2004). https://doi.org/10.1109/TSE.2004.23

6. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010). https://doi.
org/10.1016/j.is.2010.01.001

7. Bettini, L., Damiani, F., Schaefer, I.: Compositional type checking of delta-oriented
software product lines. Acta Informatica 50(2), 77–122 (2013). https://doi.org/10.
1007/s00236-012-0173-z

8. Bubel, R., et al.: Proof repositories for compositional verification of evolving soft-
ware systems - managing change when proving software correct. Trans. Found.
Mastering Change I(1), 130–156 (2016). https://doi.org/10.1007/978-3-319-46508-
1 8

9. Clarke, D., et al.: Modeling spatial and temporal variability with the HATS abstract
behavioral modeling language. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 417–457. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-21455-4 13

https://doi.org/10.1109/ASE.2011.6100089
https://doi.org/10.1007/s11761-013-0148-0
https://doi.org/10.1007/11554844_3
https://doi.org/10.1109/TSE.2004.23
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1007/s00236-012-0173-z
https://doi.org/10.1007/s00236-012-0173-z
https://doi.org/10.1007/978-3-319-46508-1_8
https://doi.org/10.1007/978-3-319-46508-1_8
https://doi.org/10.1007/978-3-642-21455-4_13
https://doi.org/10.1007/978-3-642-21455-4_13

100 F. Damiani et al.

10. Clements, P., Northrop, L.: Software Product Lines: Practices & Patterns. Addison
Wesley Longman, Boston (2001)

11. Damiani, F., Hähnle, R., Kamburjan, E., Lienhardt, M.: A unified and formal
programming model for deltas and traits. In: Huisman, M., Rubin, J. (eds.) FASE
2017. LNCS, vol. 10202, pp. 424–441. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54494-5 25

12. Damiani, F., Hähnle, R., Kamburjan, E., Lienhardt, M.: Interoperability of soft-
ware product line variants. In: Proceedings of the 22nd International Systems and
Software Product Line Conference SPLC 2018, vol. 1, pp. 264–268. Association
for Computing Machinery, New York (2018). https://doi.org/10.1145/3233027.
3236401

13. Damiani, F., Lienhardt, M.: On type checking delta-oriented product lines. In:
Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 47–62. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33693-0 4

14. Damiani, F., Lienhardt, M.: Refactoring delta-oriented product lines to achieve
monotonicity. In: Proceedings 7th International Workshop on Formal Methods and
Analysis in Software Product Line Engineering, FMSPLE@ETAPS 2016 EPTCS,
Eindhoven, The Netherlands, 3 April 201, vol. 206, pp. 2–16 (2016). https://doi.
org/10.4204/EPTCS.206.2

15. Damiani, F., Lienhardt, M.: Refactoring delta-oriented product lines to enforce
guidelines for efficient type-checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016, Part II. LNCS, vol. 9953, pp. 579–596. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47169-3 45

16. Damiani, F., Lienhardt, M., Muschevici, R., Schaefer, I.: An extension of the ABS
toolchain with a mechanism for type checking SPLs. In: Polikarpova, N., Schnei-
der, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 111–126. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66845-1 8

17. Damiani, F., Lienhardt, M., Paolini, L.: A formal model for multi SPLs. In: Das-
tani, M., Sirjani, M. (eds.) FSEN 2017. LNCS, vol. 10522, pp. 67–83. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68972-2 5

18. Damiani, F., Lienhardt, M., Paolini, L.: Automatic refactoring of delta-oriented
SPLs to remove-free form and replace-free form. Int. J. Softw. Tools Technol.
Transf. 21(6), 691–707 (2019). https://doi.org/10.1007/s10009-019-00534-2

19. Damiani, F., Lienhardt, M., Paolini, L.: A formal model for multi software product
lines. Sci. Comput. Program. 172, 203–231 (2019). https://doi.org/10.1016/j.scico.
2018.11.005

20. Damiani, F., Owe, O., Dovland, J., Schaefer, I., Johnsen, E.B., Yu, I.C.: A trans-
formational proof system for delta-oriented programming. In: Proceedings of SPLC
2012, vol. 2, pp. 53–60. ACM (2012). https://doi.org/10.1145/2364412.2364422

21. Damiani, F., Padovani, L., Schaefer, I.: A formal foundation for dynamic delta-
oriented software product lines. In: Proceedings of the 11th International Confer-
ence on Generative Programming and Component Engineering GPCE 2012, pp.
1–10. ACM, New York (2012). https://doi.org/10.1145/2371401.2371403

22. Damiani, F., Padovani, L., Schaefer, I., Seidl, C.: A core calculus for dynamic
delta-oriented programming. Acta Informatica 55(4), 269–307 (2018). https://doi.
org/10.1007/s00236-017-0293-6

23. Damiani, F., Schaefer, I.: Dynamic delta-oriented programming. In: Proceedings of
the 15th International Software Product Line Conference SPLC 2011, vol. 2, pp.
34:1–34:8. ACM, New York (2011). https://doi.org/10.1145/2019136.2019175

https://doi.org/10.1007/978-3-662-54494-5_25
https://doi.org/10.1007/978-3-662-54494-5_25
https://doi.org/10.1145/3233027.3236401
https://doi.org/10.1145/3233027.3236401
https://doi.org/10.1007/978-3-319-33693-0_4
https://doi.org/10.4204/EPTCS.206.2
https://doi.org/10.4204/EPTCS.206.2
https://doi.org/10.1007/978-3-319-47169-3_45
https://doi.org/10.1007/978-3-319-47169-3_45
https://doi.org/10.1007/978-3-319-66845-1_8
https://doi.org/10.1007/978-3-319-68972-2_5
https://doi.org/10.1007/s10009-019-00534-2
https://doi.org/10.1016/j.scico.2018.11.005
https://doi.org/10.1016/j.scico.2018.11.005
https://doi.org/10.1145/2364412.2364422
https://doi.org/10.1145/2371401.2371403
https://doi.org/10.1007/s00236-017-0293-6
https://doi.org/10.1007/s00236-017-0293-6
https://doi.org/10.1145/2019136.2019175

On Slicing Software Product Line Signatures 101

24. Damiani, F., Schaefer, I.: Family-based analysis of type safety for delta-oriented
software product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I.
LNCS, vol. 7609, pp. 193–207. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34026-0 15

25. Damiani, F., Schaefer, I., Winkelmann, T.: Delta-oriented multi software product
lines. In: Proceedings of the 18th International Software Product Line Conference
SPLC 2014, vol. 1, pp. 232–236. ACM (2014). https://doi.org/10.1145/2648511.
2648536

26. Delaware, B., Cook, W.R., Batory, D.: Fitting the pieces together: a machine-
checked model of safe composition. In: ESEC/FSE, pp. 243–252. ACM (2009).
https://doi.org/10.1145/1595696.1595733

27. Din, C.C., Johnsen, E.B., Owe, O., Yu, I.C.: A modular reasoning system using
uninterpreted predicates for code reuse. J. Log. Algebraic Methods Program. 95,
82–102 (2018). https://doi.org/10.1016/j.jlamp.2017.11.004

28. Helvensteijn, M., Muschevici, R., Wong, P.Y.H.: Delta modeling in practice: a
Fredhopper case study. In: Proceedings of VAMOS 2012, pp. 139–148. ACM (2012).
https://doi.org/10.1145/2110147.2110163

29. Holl, G., Grünbacher, P., Rabiser, R.: A systematic review and an expert survey
on capabilities supporting multi product lines. Inf. Softw. Technol. 54(8), 828–852
(2012). https://doi.org/10.1016/j.infsof.2012.02.002

30. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM TOPLAS 23(3), 396–450 (2001). https://doi.org/10.1145/
503502.503505

31. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

32. Kamburjan, E., Hähnle, R.: Uniform modeling of railway operations. In: Artho,
C., Ölveczky, P.C. (eds.) FTSCS 2016. CCIS, vol. 694, pp. 55–71. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-53946-1 4

33. Koscielny, J., Holthusen, S., Schaefer, I., Schulze, S., Bettini, L., Damiani, F.:
DeltaJ 1.5: delta-oriented programming for Java. In: International Conference on
Principles and Practices of Programming on the Java Platform Virtual Machines,
Languages and Tools, PPPJ 2014, pp. 63–74 (2014). https://doi.org/10.1145/
2647508.2647512

34. Lienhardt, M., Clarke, D.: Conflict detection in delta-oriented programming. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 178–192.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0 14

35. Lienhardt, M., Damiani, F., Donetti, S., Paolini, L.: Multi software product lines
in the wild. In: Proceedings of the 12th International Workshop on Variability
Modelling of Software-Intensive Systems VAMOS 2018, pp. 89–96. ACM, New
York (2018). https://doi.org/10.1145/3168365.3170425

36. Lienhardt, M., Damiani, F., Johnsen, E.B., Mauro, J.: Lazy product discovery in
huge configuration spaces. In: Proceedings of the 42th International Conference on
Software Engineering ICSE 2020. ACM (2020). https://doi.org/10.1145/3377811.
3380372

37. Lienhardt, M., Damiani, F., Testa, L., Turin, G.: On checking delta-oriented prod-
uct lines of statecharts. Sci. Comput. Program. 166, 3–34 (2018). https://doi.org/
10.1016/j.scico.2018.05.007

https://doi.org/10.1007/978-3-642-34026-0_15
https://doi.org/10.1007/978-3-642-34026-0_15
https://doi.org/10.1145/2648511.2648536
https://doi.org/10.1145/2648511.2648536
https://doi.org/10.1145/1595696.1595733
https://doi.org/10.1016/j.jlamp.2017.11.004
https://doi.org/10.1145/2110147.2110163
https://doi.org/10.1016/j.infsof.2012.02.002
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/503502.503505
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-319-53946-1_4
https://doi.org/10.1145/2647508.2647512
https://doi.org/10.1145/2647508.2647512
https://doi.org/10.1007/978-3-642-34026-0_14
https://doi.org/10.1145/3168365.3170425
https://doi.org/10.1145/3377811.3380372
https://doi.org/10.1145/3377811.3380372
https://doi.org/10.1016/j.scico.2018.05.007
https://doi.org/10.1016/j.scico.2018.05.007

102 F. Damiani et al.

38. Mendonca, M., Wasowski, A., Czarnecki, K.: SAT-based analysis of feature models
is easy. In: Muthig, D., McGregor, J.D. (eds.) Proceedings of the 13th Interna-
tional Software Product Line Conference. ACM International Conference Proceed-
ing Series, vol. 446, pp. 231–240. ACM (2009)

39. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering -
Foundations, Principles, and Techniques. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-28901-1

40. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15579-6 6

41. Schaefer, I., Damiani, F.: Pure delta-oriented programming. In: Proceedings of
the 2nd International Workshop on Feature-Oriented Software Development, pp.
49–56. ACM (2010). https://doi.org/10.1145/1868688.1868696

42. Schaefer, I., et al.: Software diversity: state of the art and perspectives. Int. J.
Softw. Tools Technol. Transfer 14(5), 477–495 (2012). https://doi.org/10.1007/
s10009-012-0253-y

43. Schröter, R., Krieter, S., Thüm, T., Benduhn, F., Saake, G.: Feature-model inter-
faces: the highway to compositional analyses of highly-configurable systems. In:
Proceedings of the 38th International Conference on Software Engineering ICSE
2016, pp. 667–678. ACM (2016). https://doi.org/10.1145/2884781.2884823

44. Schröter, R., Siegmund, N., Thüm, T.: Towards modular analysis of multi product
lines. In: Proceedings of the 17th International Software Product Line Conference
Co-located Workshops SPLC 2013, pp. 96–99. ACM (2013). https://doi.org/10.
1145/2499777.2500719

45. Schröter, R., Siegmund, N., Thüm, T., Saake, G.: Feature-context interfaces: tai-
lored programming interfaces for SPLs. In: Proceedings of the 18th International
Software Product Line Conference SPLC 2014, vol. 1, pp. 102–111. ACM (2014).
https://doi.org/10.1145/2648511.2648522

46. Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe composition of product lines. In:
GPCE 2007, pp. 95–104. ACM (2007). https://doi.org/10.1145/1289971.1289989

47. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 6:1–
6:45 (2014). https://doi.org/10.1145/2580950

48. Winkelmann, T., Koscielny, J., Seidl, C., Schuster, S., Damiani, F., Schaefer, I.:
Parametric DeltaJ 1.5: propagating feature attributes into implementation arti-
facts. In: Gemeinsamer Tagungsband der Workshops der Tagung Software Engi-
neering 2016 (SE 2016), Wien, 23–26 February 2016. CEUR Workshop Proceed-
ings, vol. 1559, pp. 40–54. CEUR-WS.org (2016)

https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1145/1868688.1868696
https://doi.org/10.1007/s10009-012-0253-y
https://doi.org/10.1007/s10009-012-0253-y
https://doi.org/10.1145/2884781.2884823
https://doi.org/10.1145/2499777.2500719
https://doi.org/10.1145/2499777.2500719
https://doi.org/10.1145/2648511.2648522
https://doi.org/10.1145/1289971.1289989
https://doi.org/10.1145/2580950

Assumption-Commitment Types
for Resource Management in Virtually

Timed Ambients

Einar Broch Johnsen(B), Martin Steffen(B), and Johanna Beate Stumpf

University of Oslo, Oslo, Norway
{einarj,msteffen,johanbst}@ifi.uio.no

Abstract. This paper introduces a type system for resource manage-
ment in the context of nested virtualization. With nested virtualization,
virtual machines compete with other processes for the resources of their
host environment in order to provision their own processes, which could
again be virtual machines. The calculus of virtually timed ambients for-
malizes such resource provisioning, extending the capabilities of mobile
ambients to model the dynamic creation, migration, and destruction of
virtual machines. The proposed type system is compositional as it uses
assumptions about the outside of a virtually timed ambient to guaran-
tee resource provisioning on the inside. We prove subject reduction and
progress for well-typed virtually timed ambients, expressing that upper
bounds on resource needs are preserved by reduction and that processes
do not run out of resources.

1 Introduction

Virtualization enables the resources of an execution environment to be repre-
sented as a software layer, a so-called virtual machine. Software processes are
agnostic to whether they run on a virtual machine or directly on physical hard-
ware. A virtual machine is itself such a process, which can be executed on another
virtual machine. Technologies such as VirtualBox, VMWare ESXi, Ravello HVX,
Microsoft Hyper-V, and the open-source Xen hypervisor increasingly support
running virtual machines inside each other in this way. This nested virtualization,
originally introduced by Goldberg [1], is necessary to host virtual machines with
operating systems which themselves support virtualization [2], such as Microsoft
Windows 7 and Linux KVM. Use cases for nested virtualization include end-user
virtualization for guests, software development, and deployment testing. Nested
virtualization is also a crucial technology to support the hybrid cloud, as it
enables virtual machines to migrate between different cloud providers [3].

To study the logical behavior of virtual machines in the context of nested vir-
tualization, this paper introduces a type-based analysis for a calculus of virtual
machines. An essential feature of virtual machines, captured by this calculus,
is that a virtual machine competes with other processes for the resources avail-
able in their execution environment, in order to provision resources to the pro-
cesses inside the virtual machine. Another essential feature of virtual machines is
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 103–121, 2020.
https://doi.org/10.1007/978-3-030-61362-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_6

104 E. B. Johnsen et al.

migration. From an abstract perspective, virtual machines can be seen as mobile
processes which can move between positions in a hierarchy of nested locations.

We develop the type system for virtually timed ambients [4], a calculus of
mobile virtual locations with explicit resource provisioning, based on mobile
ambients [5]. The goal is to statically approximate an upper bound on resource
consumption for systems of virtual machines expressed in this calculus. The
calculus features a resource called virtual time, reflecting local execution capacity,
which is provisioned to an ambient by its parent ambient, similar to time slices
that an operating system provisions to its processes. With several levels of nested
virtualization, virtual time becomes a local notion which depends on an ambient’s
position in the location hierarchy. Virtually timed ambients are mobile, reflecting
that virtual machines may migrate between host virtual machines. Migration
affects the execution speed of processes inside the virtually timed ambient which
is moving as well as in its host before and after the move. Consequently, the
resources required by a process change dynamically when the topology changes.

The distinction between the inside and outside of a virtually timed ambi-
ent (or a virtual machine) is a challenge for compositional analysis; we have
knowledge of the current contents of the virtual machine, but not of what can
happen outside its borders. This challenge is addressed in our type system by
distinguishing assumptions about ambients on the outside of the virtually timed
ambient from commitments to ambients on the inside. To statically approximate
the effects of migration, an ambient’s type imposes a bound on the ambients it
can host. If type checking fails, the ability to provision resources for an incoming
ambient in a timely way cannot be statically guaranteed in our type system.

The ambient calculus has previously been enriched with types (e.g., [6]).
Exploiting the explicit notion of resource provisioning in virtually timed ambi-
ents (including a fair resource distribution and competition for resources between
processes), our type system captures the resource capacity of a virtually timed
ambient and an upper bound on the number of its subambients. The type sys-
tem thereby provides concrete results on resource consumption in an operational
framework. Resource dependency in the type system is expressed using coeffects.
The term coeffect was coined by Petricek, Orchard, and Mycroft [7,8] to cap-
ture how a computation depends on an environment rather than how it affects
the environment. In our setting, coeffects capture how a process depends on its
environment by an upper bound on the resources needed by the process.

Contributions. The main technical contributions of this paper are

– an assumption commitment type system with effects and coeffects, which pro-
vides a static approximation of constraints regarding the capacity of virtually
timed ambients and an upper bound on their resource usage; and

– a proof of the soundness of resource management for well-typed virtually
timed ambients in terms of a subject reduction theorem which expresses that
the upper bounds on resources and on the number of subambients are pre-
served under reduction, and a progress theorem which expresses that well-
typed virtually timed ambients will not run out of resources.

Assumption-Commitment Types for Resource Management 105

To the best of our knowledge, this is the first assumption commitment style type
system for resource types and nested locations.

Paper Overview. Section 2 introduces virtually timed ambients. Section 3
presents the type system for resource management. In Sect. 4, we prove the
soundness of the type system in terms of subject reduction and progress. We
discuss related work and conclude in Sects. 5 and 6.

2 Virtually Timed Ambients

Mobile ambients [5] are processes with a concept of location, arranged in a hier-
archy which may change dynamically. Interpreting these locations as places of
deployment, virtually timed ambients [4,9] extend mobile ambients with notions
of virtual time and resource consumption. The timed behavior of a process
depends on the one hand on the local timed behavior, and on the other hand on
the placement or deployment of the process in the hierarchical ambient struc-
ture. Virtually timed ambients combine timed processes and timed capabilities
with the mobility and location properties of the mobile ambient calculus.

Compared to Johnsen et al. [4,9], we here present a slightly simplified version
of virtually timed ambients which assumes a uniform speed for all ambients in
the hierarchy. This simplification does not mean the ambients proceed uniformly
with respect to time: the progress of an ambient still depends on its position in
the hierarchy and the number of sibling ambients that compete for time slices
at the given level. When discussing the reduction rules from Table 1 later, we
provide further details on how the more general non-uniform setting relates to
the presentation here. Since an ambient system can change its structure, i.e., its
hierarchy, an ambient’s local access to time slices may also dynamically change.
Thus, the simplification by uniform speed is not conceptual, but it allows a
simpler formulation of the type system by removing fractional representations
of speed in scheduling and the resulting (easy but cumbersome) calculations.

Definition 1 (Virtually timed ambients). The syntax of virtually timed
ambients is as follows:

P ::“ 0 | pνnq P | P |P | !C.P | C.P | n[P]
C ::“ in n | out n | open n | c

The syntax is almost unchanged from that of standard mobile ambients
(e.g., [5]); the only syntactic addition is an additional capability c explained
below. In the sequel, we mostly omit the qualification “timed” or “virtually
timed” when speaking about processes, capabilities, etc. Processes include the
inactive process 0, parallel composition P | P and replication !C.P , the latter
conceptually represents an unbounded parallel composition of a process, with
capability C as “guard”. The ν-binder or restriction operator, makes the name
n local, as in the π-calculus, ambient calculus, and related formalisms. Ambients
n[P] are named processes. The standard mobile ambient capabilities in, out,

106 E. B. Johnsen et al.

and open allow a process to change the nested ambient structure by moving an
ambient into or out of another ambient, or by dissolving an ambient altogether.

The additional capability c is specific for the virtually timed extension and
abstractly represents the need of the process for a resource in order to continue
its execution (i.e., c can be read as “consume”). Thus, the consume capability
relates to resource cost in frameworks for cost analysis (e.g., [10,11]). In our
setting, the c-capabilities consume resources which can be thought of as time
slices and which are governed by a scheduler. A scheduler is local to an ambient
and its responsibility is to schedule resources to the processes directly contained
in this ambient. Since ambients are nested, the scheduler also has to allocate time
slices or resources to subambients, thereby delegating the allocation of time slices
at the level of the subambients to their respective schedulers. To achieve a fair
distribution of resources, the semantics adopts a simple round-based scheduling
strategy. Intuitively, no process is served twice, unless all other processes that
need resources at that level have been served at least once. This round-based
scheme is slightly more refined in that the number of processes per ambient is
not fixed as ambients may move inside the hierarchy and even dissolve.

To capture the outlined scheduling strategy in operational rules working on
the syntax of ambients, we augment the grammar of Definition 1 with additional
run-time syntax (highlighted below). When needed, we refer to the original syn-
tax from Definition 1 as static syntax. The run-time syntax uses the notation ˇ
to indicate that processes, including ambients, are frozen and n to denote either
n or ň.

P ::“ 0 | pνnq P | P | P | !C.P | tick? | tick! | n[P] | C.P

n ::“ n | ň

γ ::“ c | č

C ::“ in n | out n | open n | tick? | γ

Frozen processes are not eligible for scheduling. For regular (non-ambient)
processes, only processes prefixed by the consume capability c will be controlled
in this way; other processes are unconditionally enabled. Consequently, we only
need as additional run-time syntax č, capturing a deactivated resource capabil-
ity. Similarly ň[P] denotes a timed ambient which is not eligible for scheduling.
Apart from scheduling, a frozen ambient ň[P] is treated as any other ambient
n[P]: the ordinary, untimed capabilities address ambients by their name with-
out the additional scheduling annotation. Likewise, ν-binders and corresponding
renaming and algebraic equivalences treat names ň as identical to n. Unless
explicitly mentioned, we assume in the following run-time syntax, i.e., P may
contain occurrences of ň and č. Time slices are denoted by ticks, and come in
two forms tick? and tick!. We may think of the first form tick? as repre-
senting incoming ticks into an ambient, typically from the parent ambient, the
second form tick! represents time slices handed out to the local processes by
the local scheduler. The tick?-capability similarly accepts an incoming tick.
Let namespP q denote the set of names for ambients contained in P .

Assumption-Commitment Types for Resource Management 107

Semantics. The semantics of virtually timed ambients is given as a reduction
relation P � Q (see Tables 1 and 2). Processes are considered up-to structural
congruence P ” Q and reduction is defined modulo ”. The corresponding rule
is omitted here, as is the standard axiomatization of P ” Q. We further omit
the standard congruence rules (e.g.,), which also
correspond to those for mobile ambients. The rules in Table 1 (with rule names
to the left) cover ambient reconfiguration. Apart from the annotations used for
scheduling, the rules are exactly the ones for the (untimed) mobile ambients [5].

Table 1. Reduction rules (1). The symbol m̄ occuring both on the left and the right
side of a reduction rule represents either m̌ on both sides, or else m on both sides.

(R-In) n[in m.P1 | P2] | m[Q] � m[Q | ň[P1 | P2]]

(R-Out) m[n[out m.P1 | P2] | Q] � ň[P1 | P2] | m[Q]

(R-Open) open n.P1 | n[P2] � P1 | qP2

Ambients can undergo restructuring in three different ways. First, an ambient
can move horizontally or laterally by entering a sibling ambient (rule R-In).
Second, it can move vertically up the tree, leaving its parent ambient (rule R-
Out). Finally, a process can cause the dissolution of its surrounding ambient
(rule R-Open). These forms of restructuring are untimed in that they incur
no resource cost. If an ambient changes its place, the scheduler of the target
ambient will, from that point on, become responsible for the new ambient, and
the treatment is simple: Being frozen, the newcomer will not be served in the
current round of the scheduler, but waits for the next round. Considering the
source ambient (i.e., the ambient which contained the process executing the out
or in capability), no process inside the source ambient looses or changes its
status. A similar discipline is followed (for P1) when opening an ambient in rule
R-Open (the interpretation of pP2 as opposed to P2 follows shortly). Note that
a process in an ambient can execute a capability in, out, or open independent
of the status of the affected ambient, which is indicated in the rules by n and m.

Scheduling, in particular the handling of ticks and the resource capabilities,
is covered by the reduction rules in Table 2. Scheduling ultimately means to
discriminate and select between processes which are allowed to proceed at a
given point, and those which are not. To capture that distinction in the rules,
pP represents the former, i.e. P is eligible for a new time-slice (“unfrozen”).
Dually, qP represents P after having been served (“frozen”). The exact formu-
lation of the freeze and unfreeze operation will be given in Definition 3 below,
after discussing the rules themselves. The first rule translates “incoming” ticks
to ticks available for local processes. The translation ratio is uniform; i.e., one
incoming tick produces one outgoing tick (this is the simplification compared
to previous work mentioned earlier, where the ratio between incoming and local
ticks could more generally be a rational number). A tick! process can be con-
sumed in two ways. First by scheduling a c-prefixed process which undergoes

108 E. B. Johnsen et al.

the steps c.P � tick?.P �
qP (consuming tick! in the second step).1 Sec-

ond, by scheduling a subambient, such that an incoming tick tick? occurs one
level down in the hierarchy. To ensure the round-based scheduling, the scheduled
entity must not have been served yet in the current round. For this purpose, the
process before the transition must be of the form tick?.P or n[P], and after the
transition the continuation of the process is frozen, using Definition 3. The last
rule completes one scheduling round and initiates the next round by changing
the ambient’s processes P to pP . This unfreezing step can be done only if all the
ambient’s processes have been served, which is captured be the rule’s negative
premise, stipulating that no process at the level of n can proceed.

Table 2. Reduction rules (2)

tick? � tick! tick! | tick?.P �
qP

c.P � tick?.P tick! | n[P] � ň[tick? | P]

not P tick?

n[P] � n[pP]

This inability to proceed by a tick-step at the end of a round is formulated
using the notion of observables, also known as barbs. Barbs, originally intro-
duced for the π-calculus [12], capture a notion of immediate observability. In the
ambient calculus, these observations concern the presence of a top-level ambi-
ent whose name is not restricted [13]. In our context, the barbs are adapted to
express top-level schedulability, i.e., an ambient’s ability to receive a tick. Later,
to formulate progress properties, we will additionally need to capture the same
condition for t a sub-process deeper inside the system and not necessarily at
top-level. For that, we denote by C[¨] (or simply by C) a context, i.e., a process
with a (unique) hole [¨] in place of a process, and write C[P] for the context
with its hole replaced by P (for the formal definition, see [13]). The observabil-
ity predicates (or “tick-barbs”) Ótick? resp. ÓC

tick? are then defined as follows,
where rm is a tuple of names:

Definition 2 (Barbs). A process P has a strong barb on tick?, written
PÓtick?, if P ” pν rmqpn[P1] | P2q or P ” pν rmqptick?.P1 | P2q. A process P has
a strong barb on tick? in context C, written PÓC

tick?, if P “ C[P ′] for some
process P ′ with .

Note that the ambient name n may well be hidden, i.e., mentioned in rm. Barb-
ing on the ambient name n, written PÓn, would require that P ” pν rmqpn[P1] |
P2q where n R rm, in contrast to the definition of PÓtick?. This more conventional
notion of strong barbs [13] expresses that an ambient is available for interaction

1 The rules and the calculus may be simplified, e.g., by avoiding the two-step behavior
just described. The formulation here was chosen as it more aligned with versions of
virtually timed ambients allowing non-uniform speeds across ambients, mentioned
earlier in this section. Thus, the type system here would allow a more straightforward
generalization to ambients with non-uniform speed.

Assumption-Commitment Types for Resource Management 109

with the standard ambient capabilities; ambients whose name is unknown are
not available to be contacted by other ambients and therefore, their name is
excluded in the observability predicate Ón. In contrast, strong barbs as defined
in Definition 2 capture an ambient’s ability to receive ticks and thus, the defi-
nition will allow hidden ambients to be served by the local scheduler. However,
the name of the ambient must not be frozen ň: ambients that have been served
a tick in the current round are not eligible for another allocation before a new
round has started, in which case the ambient’s name has “changed” to n.

To complete the presentation of the semantics, we provide the operations
used in the rules that allow processes to conceptually switch back and forth
between waiting to be served in the current round, and having been served and
thus waiting for the next round to begin.

Definition 3 (Freezing and unfreezing). Let qP denote the process where all
top-level occurrences of n[Q] are replaced by ň[Q] and all top-level occurrences of
c replaced by č. Conversely, let pP denote the process where all top-level occur-
rences of č are replaced by c and all top-level occurrences of ň[Q] replaced by
n[Q]. Define qP by induction on the syntactic structure as follows:

pνnq P “ pνnq qP qč “ č
P1 | P2 “ |P1 | |P2 qc “ č

~n[P] “ ň[P] qn “ ň
}γ.P “ γ̌.P qň “ ň
}C.P “ C. qP C “ γ

qP “ P otherwise

The definition of pP is analogous (e.g., pč “ c) and omitted here.

Remark that the congruence relation, which is part of the reduction seman-
tics, works with scheduling in the sense that both operations defined in Defini-
tion 3 are preserved under congruence: P1 ” P2 implies |P1 ” |P2 and xP1 ” xP2.

Example 1. Consider the process . If we place this
process in a context root with one tick! process, three reduction steps become
possible, as tick! can propagate to either ambients and ambient vm can move
into cloud. One way this process can reduce, is as follows:

root [tick! | cloud [0] | vm[in cloud .c.0]] � root [tick! | cloud [0 | ˇvm[c.0]]]
� root [ˇcloud [tick? | 0 | ˇvm[c.0]]] � root [ˇcloud [tick! | 0 | vm[c.0]]]
� root [ˇcloud [0 | ˇvm[tick? | c.0]]] � root [ˇcloud [0 | ˇvm[tick! | c.0]]]
� root [ˇcloud [0 | ˇvm[tick! | tick?.0]]] � root [ˇcloud [0 | ˇvm[0]]].

However, the time slice could also enter the ambient vm, and move with this
ambient, resulting in a reduction sequence starting as follows:

root [tick! | cloud [0] | vm[in cloud .c.0]]
� root [cloud [0] | ˇvm[tick? | in cloud .c.0]]
� root [cloud [0 | ˇvm[tick? | c.0]]] � . . .

110 E. B. Johnsen et al.

Generally, a process P will be placed in a runtime environment which pro-
visions it with a given amount of resources (e.g., root in Example 1 with one
tick!). When executed in a surrounding ambient without enough resources,
some sub-process of P may not receive a sufficient number of resources and may
get “stuck”. This inability to progress for lack of resources can be captured by
(contextually) having a barb on an irreducible process: P � and PÓC

tick? for
some C, i.e., P cannot proceed despite the fact that there is a sub-process that
could proceed by consuming a resource, if one were still available. This intuition
is used to formulate progress (Theorem 2), stipulating that well-typed processes
will not get stuck.

3 An Assumption-Commitment Type System

We consider a type system which analyzes the timed behavior of virtually timed
ambients in terms of the movement and resource consumption of a given pro-
cess. Statically estimating the timed behavior is complicated because the place-
ment of an ambient in the process hierarchy influences its resource consumption,
and movements inside the hierarchy change the relative speed of the ambients.
The proposed type system is loosely based on Cardelli, Ghelli, and Gordon’s
movement control types for mobile ambients [14]; however, its purpose is quite
different, and therefore the technical formulation will be rather different as well.

Types and Typing Contexts. Processes will be typed with respect to nominal
resource contracts for virtually timed ambients, which are tuples of the form

T “ xcap, bnd, tkny.
Here, cap P N specifies the ambient’s resource capacity, i.e., the upper bound
on the number of resources that the subprocesses of the ambient are allowed to
require; bnd P N specifies the ambient’s hosting capacity, i.e., the upper bound
on the number of timed subambients and timed processes allowed inside this
ambient; and tkn P N specifies the ambient’s currently hosted processes, i.e., the
number of taken slots within the ambient’s hosting capacity. The number of
currently hosted processes inside an ambient can change dynamically, due to the
movements of ambients. These changes must be captured in the type system. In
this sense, a type for ambient names T contains an accumulated effect mapping.

Typing environments or contexts associate ambient names with resource con-
tracts. They are finite lists of associations of the form n : T . In the type system,
when analyzing an ambient or process, a typing environment will play a role as
an assumption, expressing requirements about the ambients outside the current
process. Dually, facts about ambients which are part of the current process are
captured in another typing environment which plays the role of a commitment.
Notationally, we use Γ for assumption and Δ for commitment environments. We
write H for the empty environment, and Γ, n : T for the extension of Γ by a new
binding n : T . We assume that ambient names n are unique in environments,
so n is not already bound in Γ . Conversely, Γ zn : T represents an environment

Assumption-Commitment Types for Resource Management 111

coinciding with Γ except that the binding for n is removed. If n is not declared
in Γ , the removal has no effect. The typing judgment for names is given as
Γ $ n : T . Since each name occurs at most once, an environment Γ can be seen
as a finite mapping; we use Γ pnq to denote the ambient type associated with n
in Γ and write dompΓ q for all names bound in Γ . In the typing rules, the typing
environment Γ may need to capture the ambient in which the current process
resides; this ambient will conventionally be denoted by the reserved name this.

We now define domain equivalence, context addition, error-free environments,
and an ordering relation on types and environments to capture subtyping.

Definition 4 (Domain equivalence). Two contexts Γ1 and Γ2 are domain
equivalent, denoted Γ1 „ Γ2, iff dompΓ1q “ dompΓ2q.
Definition 5 (Additivity of contexts). Let Γ1 and Γ2 be contexts such that
Γ1 „ Γ2, and Γipnq “ xcap, bnd, tkniy for n P dompΓ1q and i “ 1, 2. The context
Γ1 ‘ Γ2 with domain dompΓ1q is defined as follows: for n P dompΓ1q

pΓ1 ‘ Γ2qpnq “ xcap, bnd, tkn1 ` tkn2y.
If the number of currently hosted ambients is smaller than the hosting capac-

ity of all ambients in an environment, we say that the environment is error-free:

Definition 6. (Error-free environments) An environment Γ is error-free,
denoted if tkn ď bnd for all n P dompΓ q and Γ pnq “ xcap, bnd, tkny.

Resource contracts can be ordered by their contents and environments by
their resource contracts. The bottom type K is a subtype of all resource contracts.

Definition 7 (Ordering of resource contracts and environments). Let
T1 “ xcap1, bnd1, tkn1y and T2 “ xcap2, bnd2, tkn2y be resource contracts. Then
T1 is a subtype of T2, written T1 ď T2, if and only if cap1 ď cap2, bnd1 ď bnd2

and tkn1 ě tkn2. Typing environments Γ1 and Γ2 are ordered by the subtype
relation as follows: Γ1 Ď Γ2 if and only if dompΓ1q Ď dompΓ2q and Γ1pnq ď
Γ2pnq, for all n P dompΓ1q.

Typing Judgments. A typing judgment for a process P has the form

Γ ; req $ P : okxprov, subsy; Δ

where req and prov are the required and provided resources for P , subs is the
number of subambients of P , and Γ and Δ are the assumptions and commitments
of P , respectively. Scheduling is reflected in the type rules by the calculation of
the required resources req, which capture the number of resources a process will
need to make progress. We call req the coeffect of the process. Coeffects [7,8]
capture how a computation depends on an environment rather than how it affects
this environment. We use the perspective of coeffects since a computation may
require resources from its environment to terminate. Similarly, prov is the number
of provided resources in P ; these resources are available in P independent of its

112 E. B. Johnsen et al.

environment, and subs approximates the number of subambients in P . We may
think of xprov, subsy as the effect of the typing judgment, where effects express
what the process P potentially provides to its environment.

For each process, the domain of the assumptions is assumed to contain all
names which are not in the domain of the commitments; i.e., for two paral-
lel processes P1 and P2 such that Γ1; req1 $ P1 : okxprov1, subs1y; Δ1 and
Γ2; req2 $ P2 : okxprov2, subs2y; Δ2, we will have that Δ2 Ď Γ1, Δ1 Ď Γ2 and
dompΔ1q X dompΔ2q “ H. Since ambient names are assumed to be unique, it
follows for type judgments that dompΔq X dompΓ q “ H, as an ambient is either
inside the process and has its contract in the commitments, or outside and has
its contract in the assumptions. Further, dompΔq Ď namespP q.

In Table 3, Rule T-Zero types the inactive process, which does not require
nor provide any time slices. Rule T-Tick1 expresses the availability of tick!
and Rule T-Tick2 that a time slice tick? is ready to be consumed. Both
judgments express that a time slice is provided without requiring any time slice.
The assumption rule T-Ass types an ambient with the resource contract it has
in the environment. The restriction rule T-Res removes the resource contract
assumption in the environment for the restricted name. Subsumption relates
different resource contracts; e.g., in subtypes (T-Tsub), the subsumption rule
T-Sub allows a higher number of required resources, a lower number of provided
resources and a higher number of subambients to be assumed in a process.

For the typing of ambients in Rule T-Amb, the reserved name this is used
to denote the current environment of P in the premise of the rule; the assumed
typing of this becomes the typing of n in the commitment of the conclusion.
Note that the required resources in the co-effect of the premise may be smaller
than the bnd of the contract; for example, n may already have received the time
slices prov. Furthermore, the number of resources a process P requires changes
if it becomes enclosed in an ambient n; i.e., we move to the resource contract T
of n, provided the process P satisfies its part of the contract.

The parallel composition rule T-Par makes use of the fairness of the schedul-
ing of time slices in virtually timed ambients. While the branches agree on
the required resources req, the provided resources and subambients accumu-
late. It follows from T-Par that several ambients in parallel will at most need
as many resources req from the parent ambient as the slowest of them. Fur-
thermore, T-Par changes assumptions and commitments depending on the
assumptions and the commitments of the composed processes, using the con-
text composition operator from Definition 5 to compose environments. We have
dompΔP q X dompΔQq “ H, which is a consequence of the uniqueness of ambi-
ent names. The assumptions of the branches split the resource contracts of the
environment Γ between the type judgments for P1 and P2 and the commitments
split such that Δ′

1 is the assumption for P1 and vice versa. The replication rule
T-Rep imposes the restriction that the process being replicated does not incur
any cost; allowing that would amount to an unbounded resource need, which
cannot be provisioned in a setting with a finite amount of resources.

Assumption-Commitment Types for Resource Management 113

Table 3. Type rules for the virtually timed ambients.

Now consider the capability rules. In T-Consume, the resource consumption
is a requirement to the environment, expressed by increasing the coeffect to
req`1. Since the process requires a time slice, it is counted among the currently
hosted processes. If it was already counted as a timed process, subs remains
unchanged, but since it could have been untimed, we let subs′ “ maxtsubs, 1u.

114 E. B. Johnsen et al.

Rule T-In derives an assumption about ambient m under which the move-
ment inm.P can be typed. Since the movement involves all processes co-located
with inm.P , the rule depends on the resource contract of this, the ambient in
which the current process is located. The rule has a premise expressing that if P
can be typed with a resource contract T for m, then inm.P can be typed with
the resource contract T ′ for m. In addition, the hosting capacity bnd′ of this
and this itself are added to the assumed currently hosted processes tkn of the
premise. The premise bnd ˆ req ď cap expresses that the required resources req
must be within the resource capacity cap if scheduled to all processes within the
hosting capacity bnd of m. The effect and co-effect carry over directly from the
premise, as the movement does not modify the required or provided resources or
subambients of P . In contrast, rules T-Open and T-Out simply preserve the
co-effect and effect of its premise, since the actual movement is captured by the
worst-case assumption in T-Amb.

Example 2 (Typing of in-capabilities). We revisit Example 1 to illustrate the
typing of cloud [0] | vm[in cloud .c.0]. From T-Zero and T-Consume1, we get
H; 1 $ c.0 : okx0, 1y; H. The in-capability will move the ambient containing
this process, which is captured by this in the typing environment. Let us type
this by T “ x1, 1, 1y. In this case cloud will need a hosting capacity of at least
2, so let us type cloud by T ′ “ x2, 2, 2y. Then, from T-In, we get

cloud : T ′,this : T ; 1 $ in cloud .c.0 : okx0, 1y; H.

By T-Amb, we get cloud : . Simi-
larly, H; 2 $ cloud [0] : okx0, 1y; cloud : x2, 2, 0y and T-Par gives us

H; 2 $ cloud [0] | vm[in cloud .c.0] : okx0, 3y; vm : T, cloud : T ′;

Example 3 (Typing of open-capabilities). We consider the typing of a process
cloud [open vm.0 | vm[c.0]]. From T-Zero and T-Consume, we get H; 1 $
c.0 : okx0, 1y; H. Let vm have type T “ x1, 1, 1y. Then, by T-Amb,

H; 1 $ vm[c.0] : okx0, 2y; vm : T.

By T-Zero, T-Open and T-Sub, we have H; 1 $ open vm.0 : okx0, 0y; H.
By T-Par, we obtain H; 1 $ open vm.0 | vm[c.0] : okx0, 2y; vm : T . Let cloud
have type T ′ “ x2, 2, 2y. By T-Amb, we get

H; 2 $ cloud [open vm.0 | vm[c.0]] : okx0, 3y; vm : T, cloud : T ′.

Example 4 (Typing of out-capabilities). We consider the typing of a process

cloud[vm[out cloud.c.0] | 0]

By T-Zero and T-Consume, we have H; 1 $ c.0 : okx0, 1y; H, and by T-Out
we get

H; 1 $ out cloud.c.0 : okx0, 1y; H

Assumption-Commitment Types for Resource Management 115

Let T “ x1, 1, 1y. We can type vm by

H; 1 $ vm[out cloud.c.0] : okx0, 2y; vm : T

and, with T ′ “ x2, 2, 2y, we get

H; 2 $ cloud[vm[out cloud.c.0] | 0] : okx0, 3y; vm : T, cloud : T ′

Example 5 (Failure of type checking). Type checking fails if the provision-
ing of resources for an incoming ambient in a timely way cannot be stati-
cally guaranteed. This can occur for different reasons. One reason is that an
ambient may lack sufficient hosting capacity to take in the processes that
want to enter. Let T ′ “ x2, 2, 2y as before and consider again the process
cloud [0] | vm[in cloud .c.0] from Example 2. Now assume a second virtual
machine vm2[in cloud .c.0] which aims to enter the cloud ambient, resulting
in the parallel process

cloud [0] | vm[in cloud .c.0] | vm2[in cloud .c.0]

We can type vm2 similarly to vm in Example 2.:

cloud : T ′; 1 $ vm2[in cloud .c.0] : okx0, 2y; vm2 : T.

In contrast to Example 2, the hosting capacity for cloud in T ′ cannot accommo-
date both vm and vm2; type checking fails when giving cloud the resource con-
tract T ′. (Remark that type checking would succeed if cloud get more resources,
e.g., the resource contract x4, 4, 4y.)

Another reason is that the resource contract of cloud may have a too low
resource capacity. Consider a third virtual machine vm3[in cloud .c.c.c.0] which
can be typed with the resource contract x3, 1, 1y for vm3. Again, type checking
cloud [0] | vm3[in cloud .c.c.c.0] fails if cloud were given the resource contract
T ′, since the resource capacity of cloud must here be at least 6 with hosting
capacity 2. (Here, cloud would need a resource contract such as x6, 2, 2y for the
expression to be well-typed.)

Example 6 (Capacity of an ambient). Assume that the process

n1[in m.P1] | n2[in m.P2] | m[Q]

is well-typed. Let resource contracts T1 “ xcap, bnd, tkn1y, T2 “ xcap, bnd, tkn2y
and T3 “ xcap, bnd, tkn3y be such that

m : Ti; reqi $ ni[in m.Pi] : okxprovi, subsiy;Δi

for i P t1, 2u, and H; req3 $ m[Q] : okxprov3, subs3y;m : T3. Now let r12 “
maxpr1, r2q and T12 “ xcap, bnd, tkn1 ‘ tkn2y. Since n1[in m.P1] | n2[in m.P2]
is well-typed, we have tkn1 ‘ tkn2 ď bnd and, by T-Par,

m : T12; req12 $ n1[in m.P1] | n2[in m.P2] : okxprov12, subs12y;Δ12

116 E. B. Johnsen et al.

where prov12 “ prov1 ` prov2, subs12 “ subs1 ` subs2 and Δ “ Δ1,Δ2. By
applying T-Par again, we get

H; req $ n1[in m.P1] | n2[in m.P2] | m[Q] : okxprov, subsy;m : T,Δ

where req “ maxtreq12, req3u, prov “ prov12 ` prov3, subs “ subs12 ` subs3
and T “ xcap, bnd, tkn12 ` tkn3y. Thus, the weakest resource contract which
types m and allows both n1 and n2 to enter, will have bnd “ tkn12 ` tkn3 and
cap “ bnd ˆ req.

4 Soundness of Resource Management

The soundness of resource management can be perceived similarly to that of
message exchange [14]. We prove a subject reduction theorem, stating that the
number of resources required for a boxed process to make progress is preserved
under reduction.

Theorem 1 (Subject Reduction). Assume Γ, req $ n[P] : okxprov, subsy;Δ
and n[P] � n[Q], then there are environments Γ ′ ď Γ and Δ′ ď Δ such that

and req′ ď req or req′ “ req ^ prov′ ě prov.

Proof. By induction on the derivation of n[P] � n[Q]. [\
Further, we prove a progress theorem, which shows that a well-typed boxed

process which receives the approximated number of resources from its environ-
ment will not get stuck due to missing resources. Obviously, a well-typed pro-
cess may be non-progressing due to other reasons. For instance, the terminated
process 0 cannot “proceed” no matter how many ticks it may be served. To
characterize a situation where inside the process, there is a sub-process in need
of a tick to proceed, be it an unserved ambient or a process guarded by a tick?-
capability, we use the contextual variant of barbs from Definition 2.

Theorem 2 (Tick progress). Assume Γ ; req $ P : okxprov, subsy;Δ where
P “ m[R], and let Q “ n̄[P | tick! | . . . | tick!] , where P is running in
parallel with req occurrences of tick! inside some enclosing ambient. If QÓC

tick?
for some context C, then for some process Q′.

Proof sketch. This follows from the definition of the typing rules. If P contains
the subprocess it follows from the typing rule for the consume capability
that req ě 1. From the other typing rules it the number of resources is sufficient
to trigger the reduction . Thus, Q can reduce to Q′. [\

With the properties of subject reduction and progress the type system guar-
antees the soundness of resource management.

Corollary 1 (Soundness). The type system guarantees the soundness of
resource management, i.e., the transitive closure of the progress result holds.

Assumption-Commitment Types for Resource Management 117

5 Related Work

We first discuss related work on modeling virtualization, time and resources,
mainly focusing on process algebra, and then related work on type systems.

The calculus presented here differs from Stumpf et al ’s original work on vir-
tually timed ambients [4,9] by assuming uniform time and by the use of freezing
and unfreezing operations, which allow a significantly simpler formulation of the
calculus. The behavior of the original calculus, with non-uniform time, can be
recaptured by modifying the rule tick? � tick! to cater for different numbers
of input and output ticks, and to contextualize the rule for specific ambients.
Stumpf et al. provide more elaborate examples of how aspects of virtualization
(such as scaling and load balancing) can be modeled in virtually timed ambients
(e.g., [4,9]). For the original calculus of virtually timed ambients, a modal logic
with somewhere and sometime modalities [15] captures aspects of reachability
for these ambients. Whereas this work can express more complex properties of
a given process than the contract-based types in our paper, the logic cannot
capture properties for all processes, in contrast to our work.

Gordon proposed a simple formalism for virtualization loosely based on
mobile ambients [16]. Virtually timed ambients [4] stay closer to the syntax
of the original ambient calculus, while including notions of time and resources.
This model of resources as processing capacity over time builds on deployment
components [17,18], a modeling abstraction for cloud computing in ABS [19].
Compared to virtually timed ambients, ABS does not support nested deployment
components nor the timed capabilities of ambients.

Timers have been studied both for the distributed π-calculus [20,21] and
mobile ambients (e.g., [22]) to express the possibility of a timeout, controlled by
a global clock. In membrane computing, rule execution similarly takes exactly
one time unit, as given by a global clock [23]. Timed P systems [24] overcome
this restriction by associating with each rule an integer representing the time
needed to complete its execution. This resembles the timer approach on mobile
ambients [22]. In contrast, schedulers in virtually timed ambients recursively
control the execution power of the nested location structure. Modeling timeouts
is a straightforward extension of virtually timed ambients.

The process algebra ACSR [25] features resources as primitives. In contrast to
the c-capability in virtually timed ambients, ACSR uses a set of consume actions
with a priority relation, which can be used to encode, e.g., scheduling policies.
PADS [26] extends ACSR with hierarchical approaches to scheduling, making
the provisioning of resources explicit and introducing refinement relations on
supply and demand. PARS [27] similarly uses explicit resource provisioning to
specify that process needs, e.g., one processor and 100 units of memory for a
given duration. Neither of these calculi combine resources with locations and
mobility. The Kell calculus [28] supports mobility, inspired by mobile ambients,
through higher order communication, but does not model resource provisioning.
Whereas Kell has a type system to enforce the uniqueness of names [28], none
of these calculi provide contract-based abstractions for resource analyses such as
our type system for resource contracts.

118 E. B. Johnsen et al.

A type system for the ambient calculus was defined in [14] to control com-
munication and mobility. For communication, a basic ambient type captures
the kind of messages that can be exchanged within. For mobility, the type sys-
tem controls which ambients can enter. Types are often enriched with effects to
capture the aspects of computation which are not purely functional. In process
algebra, session types have been used to capture communication in the π-calculus
[29]. Orchard and Yoshida have shown that effects and session types are similar
concepts as they can be expressed in terms of each other [30]. Session types
have been defined for boxed ambients in [31] and behavioral effects for the ambi-
ent calculus in [32], where the original communication types by Cardelli and
Gordon are enhanced by movement behavior. This is captured with traces, the
flow-sensitivity hereby results from the copying of the capabilities in the type.
Type-based resource control for resources in the form of locks has been proposed
for process algebras in general [33] and for the π-calculus in particular [34,35].

The idea of assumptions and commitments (or relies and guarantees) is quite
old, but has mainly been explored for specification and compositional reasoning
about concurrent or parallel processes (e.g., [36–38]). Assumption commitment
style type systems have previously been used for multi-threaded concurrency [39,
40]; the resources controlled by the effect-type system there are locks and a
general form of futures, in contrast to our work.

To capture how a computation depends on an environment instead of how
the computation affects it, Petricek, Orchard and Mycroft suggest the term
coeffect as a notion of context-dependent computation [7,8]. Dual to effects, which
can be modeled monadically, the semantics of coeffects is provided by indexed
comonads [41,42]. We use coeffects to control time and resources. An approach
to control timing via types can be found in [43], which develops types and typed
timers for the timed π-calculus. Another approach to resource control without
coeffects can be found in [44], which proposes a type system to restrict resource
access for the distributed π-calculus. In [45] a type system for resource control for
a fragment of the mobile ambients is defined by adding capacity and weight to
communication types for controlled ambients. Simplified non-modifiable mobile
ambients with resources, and types to control migration and resource distribution
are proposed in [46]. Another fragment of the ambient calculus, finite control
ambients with only finite parallel composition, are covered in [47]. Here the
types are a bound to the number of allowed active outputs in an ambient.

6 Concluding Remarks

Virtualization opens for new and interesting models of computation by explic-
itly emphasizing deployment and resource management. This paper introduces
a type system based on resource contracts for virtually timed ambients, a cal-
culus of hierarchical locations of execution with explicit resource provisioning.
Resource provisioning in this calculus is based on virtual time, a local notion of
time reminiscent of time slices provisioned by operating systems in the context of
nested virtualization. The proposed assumption-commitment type system with
effects and coeffects enables static checking of timing and resource constraints for

Assumption-Commitment Types for Resource Management 119

ambients and gives an upper bound on the resources used by a process. The type
system supports subsumption, which allows relating subtypes to supertypes. We
show that the proposed type system is sound in terms of subject reduction and
a progress property. Although these are core properties for type systems, the
results are here given for a non-standard assumption-commitment setting in an
operational framework. The type system further provides reusable properties as
it supports abstraction and the results would also hold for other operational
accounts of fair resource distribution. The challenge of how to further general-
ize the distribution strategy and type system for, e.g., earliest deadline first or
priority-based scheduling policies, remains.

The virtually timed ambients used for the models in this paper extend the
basic ambient calculus without channel communication. Introducing channels
would lead to additional synchronization, which could potentially be exploited
to derive more precise estimations about resource consumption. Such an exten-
sion would be non-trivial as the analysis of the communication structure would
interfere with scheduling.

References

1. Goldberg, R.P.: Survey of virtual machine research. IEEE Comput. 7(6), 34–45
(1974)

2. Ben-Yehuda, M., et al.: The turtles project: design and implementation of nested
virtualization. In: Proceedings 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2010), pp. 423–436. USENIX Association
(2010)

3. Williams, D., Jamjoom, H., Weatherspoon, H.: The Xen-Blanket: virtualize once,
run everywhere. In: Proceedings 7th European Conference on Computer Systems
(EuroSys 2012), pp. 113–126. ACM (2012)

4. Johnsen, E.B., Steffen, M., Stumpf, J.B.: A calculus of virtually timed ambients.
In: James, P., Roggenbach, M. (eds.) WADT 2016. LNCS, vol. 10644, pp. 88–103.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72044-9 7

5. Cardelli, L., Gordon, A.D.: Mobile ambients. Theoret. Comput. Sci. 240(1), 177–
213 (2000)

6. Giovannetti, E.: Ambient calculi with types: a tutorial. In: Priami, C. (ed.) GC
2003. LNCS, vol. 2874, pp. 151–191. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-40042-4 5

7. Petricek, T., Orchard, D., Mycroft, A.: Coeffects: a calculus of context-dependent
computation. In: Jeuring, J., Chakravarty, M.M.T. (eds.) Proceedings of the Inter-
national Conference on Functional Programming (ICFP 2014). ACM (2014)

8. Petricek, T., Orchard, D., Mycroft, A.: Coeffects: unified static analysis of context-
dependence. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013. LNCS, vol. 7966, pp. 385–397. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39212-2 35

9. Johnsen, E.B., Steffen, M., Stumpf, J.B.: Virtually timed ambients: a calculus of
nested virtualization. J. Log. Algebraic Methods Program. 94, 109–127 (2018)

10. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
java bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 12

https://doi.org/10.1007/978-3-319-72044-9_7
https://doi.org/10.1007/978-3-540-40042-4_5
https://doi.org/10.1007/978-3-540-40042-4_5
https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.1007/978-3-540-71316-6_12

120 E. B. Johnsen et al.

11. Albert, E., Correas, J., Johnsen, E.B., Pun, V.K.I., Román-Dı́ez, G.: Parallel cost
analysis. ACM Trans. Comput. Log. 19(4), 31:1–31:37 (2018)

12. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992.
LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-55719-9 114

13. Merro, M., Zappa Nardelli, F.: Behavioral theory for mobile ambients. J. ACM
52(6), 961–1023 (2005)

14. Cardelli, L., Ghelli, G., Gordon, A.D.: Types for the ambient calculus. Inf. Comput.
177(2), 160–194 (2002)

15. Johnsen, E.B., Steffen, M., Stumpf, J.B., Tveito, L.: Checking modal contracts for
virtually timed ambients. In: Fischer, B., Uustalu, T. (eds.) ICTAC 2018. LNCS,
vol. 11187, pp. 252–272. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-02508-3 14

16. Gordon, A.D.: V for virtual. Electr. Notes Theoret. Comput. Sci. 162, 177–181
(2006)

17. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architec-
tures and resource consumption in timed object-oriented models. J. Logic Algebraic
Methods Program. 84(1), 67–91 (2015)

18. Albert, E., et al.: Formal modeling and analysis of resource management for cloud
architectures: an industrial case study using Real-Time ABS. J. Serv.-Oriented
Comput. Appl. 8(4), 323–339 (2014). https://doi.org/10.1007/s11761-013-0148-0

19. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

20. Berger, M.: Towards Abstractions for Distributed Systems. Ph.D. thesis, University
of London, Imperial College (2004)

21. Prisacariu, C.: Timed distributed pi-calculus. In: Modelling and Verifying of Par-
allel Processes (MOVEP06), pp. 348–354 (2006)

22. Aman, B., Ciobanu, G.: Mobile ambients with timers and types. In: Jones, C.B.,
Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 50–63. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75292-9 4

23. Paun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press, Oxford (2010)

24. Cavaliere, M., Sburlan, D.: Time–independent P systems. In: Mauri, G., Păun,
G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS,
vol. 3365, pp. 239–258. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-31837-8 14

25. Lee, I., Philippou, A., Sokolsky, O.: Resources in process algebra. J. Logic Algebraic
Program. 72(1), 98–122 (2007)

26. Philippou, A., Lee, I., Sokolsky, O.: PADS: an approach to modeling resource
demand and supply for the formal analysis of hierarchical scheduling. Theor. Com-
put. Sci. 413(1), 2–20 (2012)

27. Mousavi, M.R., Reniers, M.A., Basten, T., Chaudron, M.R.V.: PARS: a process
algebraic approach to resources and schedulers. In: Alexander, M., Gardner, W.
(eds.) Process Algebra for Parallel and Distributed Processing. Chapman and
Hall/CRC (2008)

28. Bidinger, P., Stefani, J.-B.: The Kell calculus: operational semantics and type
system. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS,
vol. 2884, pp. 109–123. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39958-2 8

https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1007/978-3-030-02508-3_14
https://doi.org/10.1007/978-3-030-02508-3_14
https://doi.org/10.1007/s11761-013-0148-0
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-540-75292-9_4
https://doi.org/10.1007/978-3-540-31837-8_14
https://doi.org/10.1007/978-3-540-31837-8_14
https://doi.org/10.1007/978-3-540-39958-2_8
https://doi.org/10.1007/978-3-540-39958-2_8

Assumption-Commitment Types for Resource Management 121

29. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57208-2 35

30. Orchard, D., Yoshida, N.: Effects as sessions, sessions as effects. In: POPL 2016.
ACM Press (2016)

31. Garralda, P., Compagnoni, A., Dezani-Ciancaglini, M.: BASS: boxed ambients with
safe sessions. In Maher, M. (ed.) PPDP 2006, pp. 61–72. ACM Press (2006)

32. Amtoft, T.: Flow-sensitive type systems and the ambient calculus. Higher-Order
Symb. Comput. 21(4), 411–442 (2008)

33. Igarashi, A., Kobayashi, N.: Resource usage analysis. ACM Trans. Program. Lang.
Syst. 27(2), 264–313 (2005)

34. Kobayashi, N., Suenaga, K., Wischik, L.: Resource usage analysis for the π-calculus.
Log. Methods Comput. Sci. 2(3) (2006)

35. Kobayashi, N., Sangiorgi, D.: A hybrid type system for lock-freedom of mobile
processes. ACM Trans. Program. Lang. Syst. 32(5), 16:1–16:49 (2010)

36. Abadi, M., Lamport, L.: Conjoining specifications. ACM Trans. Program. Lang.
Syst. 17(3), 507–534 (1995)

37. Jones, C.B.: Tentative steps towards a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

38. Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE Trans. Softw. Eng.
7, 417–426 (1981)

39. Ábrahám, E., Grabe, I., Grüner, A., Steffen, M.: Behavioral interface description of
an object-oriented language with futures and promises. J. Logic Algebraic Program.
78(7), 491–518 (2009)

40. Ábrahám, E., Grüner, A., Steffen, M.: Heap-abstraction for an object-oriented
calculus with thread classes. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V.
(eds.) CiE 2006. LNCS, vol. 3988, pp. 1–10. Springer, Heidelberg (2006). https://
doi.org/10.1007/11780342 1

41. Katsumata, S.: Parametric effect monads and semantics of effect systems. In: Pro-
ceedings of POPL 2014, pp. 633–645. ACM (2014)

42. Uustalu, T., Vene, V.: Comonadic notions of computation. Electr. Notes Theoret.
Comput. Sci. 203, 263–284 (2008). Proceedings 9th Intl. Workshop on Coalgebraic
Methods in Computer Science (CMCS 2008)

43. Berger, M., Yoshida, N.: Timed, distributed, probabilistic, typed processes. In:
Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 158–174. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-76637-7 11

44. Hennessy, M., Riely, J.: Resource access control in systems of mobile agents. Inf.
Comput. 173(1), 82–120 (2002)

45. Teller, D., Zimmer, P., Hirschkoff, D.: Using ambients to control resources*. In:
Brim, L., Křet́ınský, M., Kučera, A., Jančar, P. (eds.) CONCUR 2002. LNCS,
vol. 2421, pp. 288–303. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45694-5 20

46. Godskesen, J.C., Hildebrandt, T., Sassone, V.: A calculus of mobile resources*.
In: Brim, L., Křet́ınský, M., Kučera, A., Jančar, P. (eds.) CONCUR 2002. LNCS,
vol. 2421, pp. 272–287. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45694-5 19

47. Charatonik, W., Gordon, A.D., Talbot, J.-M.: Finite-control mobile ambients. In:
Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp. 295–313. Springer, Heidel-
berg (2002). https://doi.org/10.1007/3-540-45927-8 21

https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/11780342_1
https://doi.org/10.1007/11780342_1
https://doi.org/10.1007/978-3-540-76637-7_11
https://doi.org/10.1007/3-540-45694-5_20
https://doi.org/10.1007/3-540-45694-5_20
https://doi.org/10.1007/3-540-45694-5_19
https://doi.org/10.1007/3-540-45694-5_19
https://doi.org/10.1007/3-540-45927-8_21

Abstraction and Genericity in Why3

Jean-Christophe Filliâtre(B) and Andrei Paskevich(B)

Université Paris-Saclay, CNRS, Inria, LRI, 91405 Orsay, France
{jean-christophe.filliatre,andrei}@lri.fr

Abstract. The benefits of modularity in programming—abstraction
barriers, which allow hiding implementation details behind an opaque
interface, and genericity, which allows specializing a single implementa-
tion to a variety of underlying data types—apply just as well to deductive
program verification, with the additional advantage of helping the auto-
mated proof search procedures by reducing the size and complexity of
the premises and by instantiating and reusing once-proved properties in
a variety of contexts

In this paper, we demonstrate the modularity features of WhyML, the
language of the program verification tool Why3. Instead of separating
abstract interfaces and fully elaborated implementations, WhyML uses
a single concept of module, a collection of abstract and concrete declara-
tions, and a basic operation of cloning which instantiates a module with
respect to a given partial substitution, while verifying its soundness. This
mechanism brings into WhyML both abstraction and genericity, which
we illustrate on a small verified Bloom filter implementation, translated
into executable idiomatic C code.

1 Introduction

When Alice writes code that uses hash tables, she does not need direct access
to the actual implementation of that data structure—only to the handful of
operations provided by it. Truth be told, she would rather not have that access:
less risk to break her data structure by mistake, and she can also swap one
implementation for another, provided that the offered operations behave in the
same way. What she needs, however, is hash tables for cabbages and hash tables
for kings, and hash tables for whatever other data type she has in her code, for
which she has written a hash function and an equality test1.

If Alice also wants to formally verify her program, then not having access to
the implementation may easily become a necessary requirement for her success.
The automated provers are more stubborn than smart, and they will happily
drown in all the minute properties of the implementation, whereas they could
easily succeed in their proof, were they given just the simple specifications of
1 “Cabbage hash can be delicious,” said Alice, “but I would never dare to hash a king.”.

A. Paskevich—This research was partly supported by the French National Research
Organization (project VOCAL ANR-15-CE25-008) and by the Inria-Mitsubishi Electric
bilateral contract “ProofInUse-MERCE”.
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 122–142, 2020.
https://doi.org/10.1007/978-3-030-61362-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_7

Abstraction and Genericity in Why3 123

hash table operations. The best way to get an automated proof of anything is to
give the prover very little data written in very simple terms (incidentally, this
also helps if at some later point you need to slightly change your problem and
be able to prove it again). And then, if you do get the proof, just make sure
that it somehow still holds if your terms are not as simple and your problem is
actually much larger than what you let your prover believe.

What this means for Alice, is that she would prefer to verify her code with-
out knowing anything about how hash tables are implemented, and if she also
verified her implementation of hash tables, she would prefer to do it just once,
without giving her prover any details about the type of the objects to store,
only that there is an equality test and a hash function for them. If her verifica-
tion framework is done right, this should be enough to guarantee that her final
executable—where sophisticated and highly performant hash tables are reused
for ships and shoes and sealing-wax sticks—is flawless.

Probably, any approach invented for modularity in programming can be
adapted to program verification. The purpose of this work is to show how we do
it in WhyML, the language of the program verification tool Why3 [6].

Our framework is inspired by theorem proving just as much as by program-
ming. In classical, non-constructive, logic, the difference between full implemen-
tation and partial specification is just how much you say about your type, func-
tion, or program. Also, apart from some symbols that are given a fixed meaning
in your formalism (equality predicate or integer type), everything else is just an
identifier bound by some quantifier, explicitly or implicitly, up in the scope. And
finally, we need to break our formalizations into many small pieces, to keep the
proof tasks within reach of automated provers.

This has led us to quite a minimalistic system of modules, which are simple
collections of specifications and code, with only two basic operations: (a) link
module A from module B so that B can have access to the contents of A, and
(b) put a fresh copy of module A inside module B, while replacing some symbols
introduced in A with the symbols from B. The second operation we call module
cloning, and it turned out to be surprisingly (not that surprisingly, if one comes
from classical logic) versatile. One of the first cloning instructions we wrote was
in the standard library of integers, where we imported the ring axioms by cloning
the generic library of rings, replacing the abstract domain t with int, abstract
function plus with +, etc. We did not need to say that the module of generic
rings was a functor parametrized by that type and those operations. Instead we
simply declared an abstract type and three abstract functions on it. And Why3
allows us to instantiate any abstract symbol (or none at all) when cloning a
module, on condition that we respect its properties.

Module cloning can help us create abstraction barriers. Write a mod-
ule A with abstract types and abstract functions, described only by their
specifications—this is your interface. Client code may link to A or clone it (to
have a fresh instantiated copy), and be verified without knowing anything about
the implementation. Write an implementation—a module B with fully defined
types and fully implemented operations, and then clone A into B while instan-
tiating every abstract symbol from the interface with its implementation. Why3

124 J.-C. Filliâtre and A. Paskevich

will check the types and the side effects, and will generate verification condi-
tions for you to prove in order to ensure that the implementation respects the
interface.

Module cloning can help us implement generic code. Rings and integers cited
above are just one example. Write a module A with all the parameters as abstract
symbols—this is your functor. State (and prove) all the generic properties you
may need. Clone A into the client code while instantiating the abstract symbols
with concrete types and concrete operations. Why3 will transfer all the properties
you have proved in the generic module to the client code without requiring you
to reprove them.

Below, we present the modules in WhyML (Sect. 2) and show their use on
an example of a Bloom filter library (Sect. 3), where proofs performed in mini-
mal contexts lead us to a fully implemented correct-by-construction C program
(Sect. 4). The complete formalization of this case study is available at the com-
panion web page http://why3.lri.fr/isola-2020/. Our account, though detailed,
stays informal: we bring up the soundness properties of the framework but do
not try to prove them.

2 WhyML Modules

A building block of a WhyML development is a declaration. A declaration can
introduce a data type, a mathematical symbol, a logical proposition or a pro-
gram function. Some declarations provide full information about the symbols
they introduce: the structure of a data type is fully exposed, a mathematical
symbol is given a sound definition, a proposition is proved, a program function
is implemented. Other declarations give us a partial view: we only get to know
some fields of a data type, a mathematical symbol is only given a name and a
type signature, a proposition is posited without a proof, and a program function
shows its specification but the actual implementation is unknown. Mixing con-
crete and abstract declarations is best suited for program verification, as we get
to freely choose the level of abstraction for each element involved. Of course, if
we intend to obtain executable code at the end, we must be able to refine the
abstract portions into concrete implementations, while preserving the properties
obtained through proof.

Declarations are structured using scopes and modules. Scopes help us to
manage namespaces. Let us say, we declare a function symbol f in a scope S:

scope S
function f . . .

end

After closing the scope S, we can refer to f by using a qualifier:

lemma L: . . . S.f . . .

or by temporarily opening S inside a WhyML expression:

predicate p = . . . S.(. . . f . . .) . . .

http://why3.lri.fr/isola-2020/

Abstraction and Genericity in Why3 125

or by importing S into the current namespace until the end of the current scope:

import S
constant c = . . . f . . .

Sometimes we want to import a scope right away:

scope import T (* the same as writing ‘import T’... *)
predicate q . . . (* ...right after closing the scope *)

end

This is useful if there is some other symbol named q declared in the current
scope. WhyML forbids giving the same name to two symbols declared in the
same scope, but permits shadowing with imported names.

Scopes can be nested and reopened. They are only used for name resolution
and do not affect the logical or operational semantics of WhyML declarations.

Modules, on the other hand, provide the semantic structure of a WhyML
program. Each module contains a sequence of declarations and scopes and ref-
erences to other modules. These references are of two kinds.

First, a module N can bring another module M in its logical context, and thus
get access to the contents of M, through the operation use:

module M module N
type t use M
function h (x: int): t constant d: t = h 5

end end

Module M shares its contents with all modules that use it, either directly or
indirectly. For example, if some third module uses both M and N, it will get
access to the same type t and function h through both of them.

The other way to reference a module is by cloning it. This operation makes
a full copy of the contents of the cloned module while simultaneously replacing
some of its abstract symbols with suitable refinements:

module P
clone M
constant e: t (* this is not the same type as t in M *)

end

module Q
clone M with type t = int
lemma idem: forall z: int. h (h z) = h z (* h returns int *)

end

When cloning M in the module P above, the programmer does not specify any
substitution to be performed. Thus the contents of M is copied into P verbatim.
However, the copied declarations are now part of P and they are distinct from
the original declarations in M. If some other module uses both M and P, it will
get two different types named t: one from M and another from P.

126 J.-C. Filliâtre and A. Paskevich

As for the module Q in the same example, it copies the contents of M while
replacing every occurrence of the type t with int. Since type t is abstract, this
substitution is allowed. Still, if M contains any axioms about t, they may come
in contradiction with the properties of type int (e.g., t could be axiomatized as
a finite type in M), thus creating an inconsistency. This is why all axioms from a
cloned module appear by default as lemmas in the cloning module, obliging the
programmer either to prove them or to deliberately override the default.

Cloning a module does not affect the symbols that were added to it through
the use command. For example, if we clone module N, we get access to the same
type t and function h as if we have used module M directly. Informally, one
can see use as creating a window into another module. On the other hand, the
symbols introduced with clone belong to the cloning module (and Why3 does
actually put the instantiated declarations inside the cloning module), and thus
can be further instantiated during subsequent clone commands. For example,
one can write clone P with type M.t = real.

When we use or clone a module, we introduce new symbols to the logical
context and thus, new names. In their shortest form, with no modifiers, both
use and clone will put these names in a new scope, named after the module
in question, and import that scope. Operations use export and clone export
do not open a new scope, and put all the new names in the current namespace
instead. For example, module P above can be equivalently written as follows:

module P
scope import M (* gets the name of the cloned module *)

clone export M
end
constant e: t (* we can also write ‘M.t’ here *)

end

We can choose a different name for the new scope by writing use M as A or
clone M as B. In this form, the new scope is not imported automatically:

module P_alt_1
clone M as B (* scope B is not imported *)
constant e: B.t (* qualifier is required *)

end

unless we add the import modifier:

module P_alt_2
clone import M as B (* scope B is imported *)
constant e: t (* both ‘t’ and ‘B.t’ work *)

end

It is important to note that module names can only appear in use or clone
operations. In particular, it is impossible to refer to a symbol from a module
that has not been added to the current context either through use or through
clone. Once it is done, the scope structure will determine the fully qualified
name for each symbol that came with that module.

Abstraction and Genericity in Why3 127

In what follows, we discuss in more detail various aspects of cloning, paying
most attention to the checks and verifications required to ensure the soundness
of symbol instantiations. The cloning mechanism guarantees that all properties
that have been established in the module being cloned—proved lemmas, verified
program contracts, etc.—stay valid after instantiation and can be incorporated
into the cloning module without creating a contradiction. This does not mean
that cloning a module is always a conservative extension: as we have seen earlier,
Why3 does not guarantee that the instantiated axioms of the cloned module are
consistent with the current logical context (which is why it incites the program-
mer to prove them after instantiation). However, whatever has been proved in
the cloned module must stay provable after cloning.

We call “original” the module being cloned and the symbols declared in it:
type symbols, mathematical symbols, program symbols, etc. The substitution
in a clone operation we call a “refinement”, the original symbols on the left-
hand side being “refined”, and the ones on the right-hand side, which replace the
originals in the cloned declarations, being “refining”. Symbols that are given a
full definition in the original module cannot be refined, and are simply trans-
ferred into the new context. Their definitions, however, are still instantiated with
respect to the cloning substitution, similarly to how in module Q above, type t
is replaced with int in the signature of the cloned function h.

Type Declarations. Fully defined types in Why3 are sum types, non-private
records, type aliases, and special numeric types:

type list ’a = Nil | Cons ’a (list ’a)
type ref ’a = { mutable contents: ’a }
type point = (real, real)
type int8 = <range -128 127>

Being fully defined, these types cannot be replaced by cloning instructions. The
only refinable types are private records:

type queue ’a = private { ghost mutable elts: list ’a }

WhyML programs can read the values of private records’ fields, but cannot
directly construct such records or modify their mutable fields through a direct
assignment. Instead, a module that declares a private type like queue should
also declare functions to create and manipulate the objects of this type: allocate
a new empty queue, add an element to a queue, etc. These functions ought to be
implemented in the refining modules that provide a full definition for the type.

A type without definition is considered to be a private record with no fields:

type t (* the same as ‘type t = private {}’ *)

A private type whose fields are all ghost (meaning that they can only be used
in specifications and in ghost computations, but cannot influence the observable
program behaviour) is called “abstract”. For example, the definition of type queue
above can be equivalently written as follows:

type queue ’a = abstract { mutable elts: list ’a }

128 J.-C. Filliâtre and A. Paskevich

Both private and non-private records can be equipped with a type invariant:

type clock = abstract { mutable h: int; mutable m: int }
invariant { 0 <= h < 24 /\ 0 <= m < 60 }

A type invariant is essentially an axiom that restricts possible values of the
fields of a record type. Only the variables representing these fields are allowed
to be free in the invariant; the quantifiers over the new type are also forbidden.
Why3 requires type invariants to be satisfiable and generates appropriate proof
obligations. Private records, records with mutable fields, and records with type
invariants cannot be recursive in WhyML.

A cloning operation can instantiate a private record with a different type.
The following restrictions apply:

1. The refining type must have the same number of type parameters as the
original type.

2. All fields of the original type must be present in the refining type and have the
same type. Here, as before, “the same type” is meant modulo instantiation:
that is, if the field’s type in the original record is ref t and the cloning
substitution replaces t with int, the corresponding field in the refining type
must have type ref int.

3. A mutable (respectively, immutable) field in the original type must be mutable
(respectively, immutable) in the refining type.

4. A ghost field in the original type may become non-ghost in the refining type
but not vice-versa.

5. New fields can be added, which can be mutable and/or ghost. Mutable fields,
however, can only be added when the original type is explicitly declared as
mutable or has mutable fields of its own.

6. The (instantiated) original invariant must hold for each value of the refining
type; Why3 generates an appropriate proof obligation. One possible way to
satisfy this requirement is to include the original invariant in the invariant of
the refining type.

7. An original field with a mutable type that is not mentioned in the original
type invariant cannot occur in the invariant of the refining type either.

The last item deserves some discussion. Let us consider the following declaration:

type ptr ’a = private { segment: array ’a;
mutable offset: int }

and a variable p of type ptr. Since ptr is private, modification of the mutable
field p.offset is only possible through abstract functions operating on values
of type ptr. What about p.segment, an immutable field containing a mutable
value? One possibility is to treat it in the same way as p.offset, that is, to for-
bid direct modification of the array. Another is to allow writes into p.segment.
In the latter case, however, we must ensure that any such write does not break
the invariant of the ptr type. The problem, of course, is that ptr is a private type
and its invariant can be strengthened during refinement. Since we do not know

Abstraction and Genericity in Why3 129

the full invariant of ptr right now, we cannot formulate an invariant preserva-
tion condition for the writes into p.segment. We can work around this problem
by forbidding to constrain the values of the segment field in the current and
all future type invariants of ptr, so that no state of p.segment can break the
integrity of p. An easy way to ensure this is to forbid mentioning the field in the
invariant altogether.

Thus, the presence or the absence of a field with a mutable type (such as
segment) in the type invariant of a private type serves as an indication of the
user intention: If the field is mentioned in the type invariant (even in a trivially
tautological way, like segment = segment), then it becomes non-modifiable2;
otherwise, it can be written into, but must not appear in the invariants of the
refining types, ensuring that modifications are always safe.

Mathematical Functions and Predicates. Here, the rules are simple, because func-
tions and predicates in WhyML are either provided with a (consistent, total, and
unambiguous) definition:

predicate mem (x: ’a) (l: list ’a) = match l with
| Nil -> false
| Cons y r -> x = y \/ mem x r
end

or declared as abstract symbols, with only their name and type signature:

function length (s: string): int

The defined functions and predicates cannot be refined and their definitions
are simply transferred to the current module. An abstract function or predicate
is refinable, and the refining symbol must have the exact same type signature
modulo instantiation.

For example, the following module clones module M above, and refines both
type t and function h:

module R
use list.List
function singleton (n: int): list int = Cons n Nil
clone M with type t = list int, function h = singleton

end

Refinement of functions and predicates does not produce proof obligations.

Logical Propositions. Axioms, lemmas, and goals are not refinable: they cannot
be replaced with some other propositions. However, Why3 allows the program-
mer to specify how they should be treated in the cloning module.

The goals in the original module are not transferred to the current module
at all. Indeed, they have already been proved in the original module and thus
2 In this case, due to the specifics of state handling in WhyML, not even abstract

functions are allowed to announce a potential write in the segment field, which
limits the usefulness of this kind of construction. This may be relaxed in the future.

130 J.-C. Filliâtre and A. Paskevich

do not need to be reproved after instantiation. And since they are not added to
the logical context as premises (contrary to lemmas), the cloning module has no
need for the original goals.

The original lemmas are cloned as lemmas; however, since they have already
been proved in the original module, Why3 will not generate a proof obligation
for them. If we do not want to keep a cloned lemma as a premise in the logical
context (e.g., because it duplicates an existing premise), we can “recast” it as a
goal by writing with goal L in the cloning substitution (where L is the name of
the original lemma). Then lemma L will not be copied to the current module.

Axioms require caution, because, as we have noted above, simply copying
an original axiom into the new context may create an inconsistency. To prevent
this from happening, WhyML clones axioms as lemmas by default (and generates
proof obligations for them), and the programmer must explicitly specify which
axioms of the original module are to be kept as axioms:

clone relations.PreOrder with axiom Refl, axiom Trans

This instruction clones the PreOrder module from the file relations.mlw from
the standard library of Why3. It adds to the current module declarations of a
new abstract type t and a new binary relation rel on t together with the axioms
of reflexivity and transitivity of rel.

When cloning modules with numerous axioms, listing all of them would be
tedious. Therefore, WhyML provides a shortcut with axiom . which preserves
every axiom in the original module unless it is converted into a lemma or a goal
elsewhere in the cloning substitution.

Program Functions. Only the abstract program functions, characterized by their
type signature and their contract, can be refined in a cloning substitution. How-
ever, due to the large variety of possible side effects in the original and refining
functions, the required checks are rather complex. For example, consider the
code in Fig. 1 (we omit the references to the standard library of lists). The Queue
module declares an abstract type of mutable queues and an abstract enqueuing
function. The TwoListQueue module implements the queue type and the enqueue
operation, and then clones Queue, refining the two symbols.

After checking the correctness of the type refinement (remember that in an
abstract record all fields are ghost and thus field elts is allowed to stay ghost
in the implementation), Why3 proceeds to the refinement of enqueue.

The procedure starts with instantiating the prototype of the original abstract
function. This step does not take the refining function into consideration; in fact,
the same rules are applied when we simply transfer an abstract function into the
cloning module without refining it. Prototype instantiation is non-trivial because
the types in the original type signature, notably those involved in the side effects,
may have been refined, revealing new mutable fields and new fields with mutable
components. This is the case in our example: the modified parameter q has gained
two new mutable fields, front and back.

Why3 applies the following rules when instantiating the “writes” annotations
for the modified mutable values whose type is refined (remember that all side

Abstraction and Genericity in Why3 131

Fig. 1. Queues: interface and implementation.

effects in these annotations are latent and do not have to actually happen in any
implementation):

1. All original mutable fields marked as written in the original prototype are
considered written in the instantiated prototype.

2. All original fields not marked as written in the original prototype are not
considered written in the instantiated prototype.

3. All new mutable fields are considered written in the instantiated prototype.
4. All mutable components of the new fields are considered written in the instan-

tiated prototype.

Mutable values that are not modified in the original prototype, are not modified
in the instantiated prototype either, regardless of how their type is refined.

According to these rules, the instantiated prototype of the original function
enqueue is as follows:

val enqueue (q: queue ’a) (x: ’a): unit
writes { q.front, q.back, q.elts }
ensures { q.elts = (old q.elts) ++ Cons x Nil }

Indeed, q.elts is considered written, as it was already marked as such in the
original prototype (rule 1). The fields front and back are added to the write
effect, since they are new mutable fields in a modified parameter q (rule 3). If

132 J.-C. Filliâtre and A. Paskevich

the added fields front and back were not mutable but had a mutable type (say,
array’a), they would also appear in the instantiated effect by rule 4.

To sum up, the instantiated effect annotation stays the same with respect
to what is known by the original module (rules 1, 2, and 5). However, each
announced write effect extends to all added fields of the affected values. This
allows the implementations of the original enqueue function to modify the new
fields front and back.

Now that we have the instantiated prototype of the original abstract func-
tion, we need to compare it with the proposed refinement and verify that the
instantiation is legal. This requires multiple checks:

1. The type signatures must coincide.
2. Ghost parameters of the original should be ghost in the refinement (an imple-

mentation cannot depend on ghost data passed from the client code).
3. Ghost results of the refinement should be ghost in the original (an implemen-

tation cannot pass ghost data to client code unbeknown to it).
4. The refining function must not have effects unlisted in the instantiated pro-

totype of the original.
5. The refining function must not create memory aliases that are not required

by the original.
6. The refinement must satisfy the instantiated contract of the original, that

is, have a weaker (or equivalent) precondition and a stronger (or equivalent)
postcondition.

In order to check these conditions, Why3 creates and verifies (and then throws
out) a WhyML function whose specification comes from the instantiated original
prototype and whose implementation consists in calling the refining function
with the same parameters. The type-checking system of Why3 and its verification
condition generator perform the necessary checks and produce an appropriate
proof obligation for the last item. In the case of enqueue, this proof obligation
is an easily provable tautology.

While the rules for prototype instantiation introduce new latent write effects,
these effects only concern the values that are already marked as modified in the
original prototype, and they are limited to the new fields. Since a caller of the
abstract function only knows the fields in the original type declaration, it can
only observe a modification in the new fields as a non-specific change of the whole
value—which is covered by the effect annotation in the original prototype.

It is crucial for the soundness of cloning that no aliases exist between the
values accessible to the caller and the “hidden state” represented by the added
fields. Such an alias can only be created through a refinement of an abstract
program function in the original module, and this is prevented by rule 5 above.

In the next section, we show how to use modules in a fully developed exam-
ple, going from abstract specifications to executable C code. In particular, we
demonstrate how module cloning expresses: (a) the relation between an inter-
face and an implementation; (b) the relation between a generic module and its
parameters; and (c) specialization of a generic module.

Abstraction and Genericity in Why3 133

64 42 21

0 0 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0

Fig. 2. A Bloom filter for integers, using m = 19 and k = 3.

3 Example: Bloom Filters

A Bloom filter [4] is a data structure that implements a set and provides two
operations: one to insert an element into the set and one to query the presence
of an element in the set. The latter must always give a correct positive answer
for elements that have been indeed inserted into the set, but it may return a
false answer for the elements not in the set. In other words, false positives are
allowed but false negatives are not.

A Bloom filter makes use of a bitmap (a Boolean array) of a given size m and
of k hash functions h1, . . . , hk mapping the elements to integers between 0 and
m− 1. When inserting an element x, we set the bits at indices h1(x), . . . , hk(x).
When querying the presence of x, we return true if and only if all bits at indices
h1(x), . . . , hk(x) are set.

Figure 2 illustrates a Bloom filter for integer elements where we use an array
of 19 bits and 3 hash functions h1(x) = 34x, h2(x) = 55x, and h3(x) = 89x (all
considered modulo 19). We insert three elements into the set, namely 21, 42,
and 64. It results in seven bits being set (bits at indices 3, 5, 7, 10, 11, 14, and
15 in the array). If we now query the filter for the element 82, it reports that it
is not in the set. Indeed, element 82 is mapped to bits 2, 7, and 14 and, though
bits 7 and 14 are set, bit 2 is not and thus 82 does not belong to the set. But if
we now query the filter for the element 80, it checks for bits 3, 11, and 14, which
are all set, and thus reports that 80 belongs to the set. This is a false positive. If
we query the filter for all elements between 0 and 99, it reports 17 positives: the
three elements we added and 14 false positives. For the remaining 83 elements,
we know for sure they do not belong to the set.

Despite being imprecise, a Bloom filter is a genuinely useful data structure.
One good application is the following. Say we are implementing a storage whose
operations are expensive, because they involve disk or network access. A Bloom
filter can be conveniently placed between the storage and its client. When an
element is added to the storage, it is added to the filter as well. Whenever the
storage needs to be queried, we first query the filter. If the filter reports that the
element is not in the storage, the answer is guaranteed to be correct and we avoid
a costly operation. By themselves, Bloom filters are efficient data structures, in
both space and time. With suitable choices of m and k, a Bloom filter can achieve
an error ratio less than 1% with less than 10 bits per element [13].

It is worth pointing out that unlike a traditional hash table, a Bloom filter
cannot be resized to accommodate an increasing number of elements. Indeed,
the elements themselves are not kept in the Bloom filter and thus there is no

134 J.-C. Filliâtre and A. Paskevich

Fig. 3. Bloom filters in Why3: the module map.

way to rehash them into a larger array. This means that we must make an
estimation of the expected size of the element set in advance, and pick the value
of m accordingly. Similarly, there is no way to remove an element from a Bloom
filter. Indeed, by clearing the bits corresponding to an element, we could remove
other elements from the set, which would make the filter unsound. This is not a
problem, since removing an element from the actual storage without updating
the Bloom filter would merely lead to another false positive, which is allowed.
If need be, the filter can be reconstructed from the storage on regular intervals,
without compromising the asymptotic complexity.

Let us implement a Bloom filter with Why3. Our final objective is to get a
verified C library of Bloom filters. We decompose the code into eight modules,
shown in Fig. 3. Notice that the verbs “requires”, “implements”, and “instantiates”
are all realized using the clone operation, as will be demonstrated throughout
this section. Here is a short overview of the diagram:

– On the left side of the figure, we have three modules related to Boolean arrays.
Module BoolArray is an interface and modules BAchar and BAint32 are two
implementations of this interface. The former implements a Boolean array
rather naïvely, using one byte per element. The latter uses an array of 32-bit
integers, using one bit per element.

– On the central part of the figure, we have three modules related to filters.
Module Filter is an interface. It provides an abstract data type and three
operations create, add, and mem. Module BloomFilter implements Bloom fil-
ters on the basis of various parameters: an implementation of Boolean arrays,
values for m and k, a data type for the elements, and a set of hash func-
tions. Then module BFstring instantiates all these parameters to get a fully
implemented Bloom filter for strings.

– Finally, on the right side of the figure, we have two modules to make a quick
test of the library. Module GenericClient uses the interface Filter to build
a filter and perform a few additions and membership queries. Then module
Client instantiates this generic client using module BFstring.

The four modules at the bottom of the figure are fully implemented and can be
translated to compilable C code (this is described in the next section).

Abstraction and Genericity in Why3 135

Boolean Arrays. We start with an interface BoolArray, which declares a type t
together with three operations create, get, and set.

module BoolArray
type t = abstract { mutable contents: seq bool; }
val create (size: uint32): t
val get (a: t) (i: uint32): bool
val set (a: t) (i: uint32): unit

end

We omit various details here, such as the modules imported from the standard
library and the contracts for the three operations. The type t is an abstract
record data type, with a single field named contents. Since all fields of an
abstract type are ghost, the field contents can be used within any specification
element, such as a function contract, but cannot be used in actual computation
in the code. In other words, it serves as a model for the type t, but not as a part
of its implementation. This model is a sequence of Boolean values (type seq,
from Why3 standard library, can be seen as a purely applicative array) and this
is all we need to provide suitable contracts to our three operations. For instance,
operation get is given the following contract:

val get (a: t) (i: uint32): bool
requires { i < length a.contents }
ensures { result = a.contents[i] }

For convenience, WhyML allows us to declare contents a coercion symbol, so
that we can write simply a instead of a.contents. Module BoolArray does not
incur any verification condition.

We now provide two different implementations of this interface. We start with
a rather simple implementation with one byte per bit. We do this in a separate
module BAchar. It also contains declarations for a type t and three operations
create, get, and set.

module BAchar
type t = { mutable ghost contents: seq bool;

arr: ptr uchar; }
invariant { ... }

let create (size: uint32): t = ...
let get (a: t) (i: uint32): bool = ...
let set (a: t) (i: uint32): unit = ...
...

This time, however, our types and functions are fully implemented. Type t is
still a record data type with a ghost field contents. But it also contains a
non-ghost field arr that holds a pointer to an array of bytes (type uchar from
Why3 standard library). A gluing invariant (omitted here) makes the connection
between field contents (the model) and field arr (the implementation). The
type t is not abstract anymore, which means we are now allowed to construct
instances of that type. This is precisely what function create does.

136 J.-C. Filliâtre and A. Paskevich

Operations create, get, and set are now given definitions (omitted here).
Their contracts are identical to those of module BoolArray. In particular, they
only refer to field contents. Their definitions, of course, do make use of field arr.
Why3 generates suitable verification conditions for these three definitions to be
correct with respect to their contracts.

Finally, we show that module BAchar is indeed an implementation of the
interface BoolArray. This is done with the help of a clone instruction:

...
clone BoolArray with type t, val create, val get, val set

end

Here, we use a syntactical shortcut that allows us to write only the left-hand side
of the substitution when the refining symbol has the same name as the original.
That is, we substitute the type t of module BoolArray with the type t we just
defined, and similarly for the three operations.

This clone command generates several verification conditions. They are all
rather trivial, as there is no invariant on type BoolArray.t and the contracts
for the three operations are the same in the interface and the implementation.

Apart from this last clone, module BAchar is completely independent of
BoolArray. The clone instruction matches the definitions in BAchar to the
declarations in BoolArray and verifies that the former can indeed serve as an
implementation of the latter. It is perfectly possible for a module to implement
several different interfaces.

We also provide a second implementation of BoolArray in a module called
BAint32. It is a more efficient implementation that uses an array of 32-bit inte-
gers, where each element packs 32 Boolean values.

Filters. We proceed in a similar way for filters, though using two layers of refine-
ment instead of one. We start with an interface, Filter, which declares types
for elements and filters and three operations:

module Filter
type elt
type filter = abstract { mutable contents: fset elt; }
val create (m: uint32): filter
val add (x: elt) (s: filter): unit
val mem (x: elt) (s: filter): bool

end

This is similar to what we did earlier with module BoolArray. Here, the contents
of type filter is modeled using a finite set. Then we implement Bloom filters
in a second module BloomFilter. We start by introducing parameters for the
type of elements and the family of k hash functions.

module BloomFilter
type elt
val constant k: uint32
val function hash (i: uint32) (e: elt): uint32

Abstraction and Genericity in Why3 137

The individual hash functions are identified with an index i in 0. . .k− 1. Then
we move to the implementation of type filter. For that, we need a Boolean
array, and so we bring a copy of BoolArray into the context.

clone BoolArray

It is worth pointing out that this module is merely an interface for Boolean
arrays. This means that our implementation of Bloom filters does not depend
on a particular implementation of that data structure, and can be instantiated
to use any of them. We can now define type filter on top of BoolArray.t.

type filter = {
mutable ghost contents: fset elt;

m: uint32;
barr: BoolArray.t; }

invariant { length barr = m > 0 }
invariant { forall x. mem x contents ->

forall i. i < k -> barr[(hash i x) % m] }

The gluing invariant makes the connection between the model field contents
and the implementation fields m and barr. Now we can implement the three
operations over Bloom filters:

let bloom_filter (m: uint32): filter = ...
let add (x: elt) (s: filter): unit = ...
let mem (x: elt) (s: filter): bool = ...

Note that, despite being defined, these functions still depend on parameters elt,
k, and hash. Thus, they are not executable.

Last, as we did with module BAint32, we check that this module refines
module Filter, using a clone command.

clone Filter with type elt, type filter,
val create = bloom_filter, val add, val mem

end

Again, this generates VCs that are all easily discharged.
In order to obtain executable code, we further refine module BloomFilter

to produce a filter for strings. Here, we choose to use three hash functions.

module BFstring
type elt = string
let constant k: uint32 = 3
let function hash (h: uint32) (x: elt): uint32 = ...

The actual implementation of hash, omitted here, is based on Fowler-Noll-Vo
hash functions, following Louridas [12]. The remaining part is a clone command
to instantiate BloomFilter with these parameters and with module BAint32:

use BAint32
clone export BloomFilter with val k, type elt, val hash,

138 J.-C. Filliâtre and A. Paskevich

type BoolArray.t = BAint32.t,
val BoolArray.create = BAint32.create,
val BoolArray.get = BAint32.get,
val BoolArray.set = BAint32.set

end

Though for Why3 this clone command is no different from the previous two,
from the programmer’s point of view it is of a rather different flavor. Instead of
claiming that module BFstring implements BloomFilter, it rather instantiates
module BloomFilter with actual parameters. Notice that we write export in
order to have the Bloom filter operations in the top namespace of BFstring.

Client. We conclude this example with a tiny client code. The main purpose is
to check the usability of our contracts before going any further. We start with a
client for module Filter, which we instantiate on string elements.

module GenericClient
clone Filter with type elt = string

Then a test function builds a filter of a given size, inserts some strings, and
checks for membership:

let main () =
let f = Filter.create 0x10000 in
Filter.add "foo" f;
Filter.add "bar" f;
let b = Filter.mem "foo" f in
assert { b };
...

end

Once this is done, and verified, we can clone this generic client with a specific
implementation of Filter, namely module BFstring we built earlier.

module Client
use BFstring
clone export GenericClient with type Filter.filter = filter,

val Filter.create = bloom_filter, val Filter.add = add,
val Filter.mem = mem

end

This verification passes, too, as we have already checked that BFstring imple-
ments Filter. (As for now, Why3 unnecessarily generates the same VCs a second
time; this will be improved in the future.) Module Client is fully implemented
and we will be able to translate it into executable C code, as shown in the next
section. If we look again at the right-hand size of Fig. 3, we can see that the cor-
rectness of the Client module is ensured by the correctness of GenericClient
and the fact that BFstring correctly refines Filter. A similar relation exists
between modules BFstring, BloomFilter, BAint32, and BoolArray.

Abstraction and Genericity in Why3 139

Fig. 4. Generated C code for function create from module BAint32.

4 C Library

Once verification is complete, Why3 can automatically translate WhyML code
to C [14]. The resulting C code is composed of three files:

– baint32.c, a translation of module BAint32;
– bfstring.c, a translation of module BFstring;
– client.c, a translation of module Client.

File bfstring.c makes use of functions from baint32.c and file client.c makes
use of functions from bfstring.c. Each C file comes with a corresponding header
file (.h). These files are available at http://why3.lri.fr/isola-2020/. Figure 4
contains the C code for function create from file baint32.c, resulting from
the translation of function create from module BAint32. We can make two
comments regarding this code. First, assert is used so that we can assume that
the value returned by malloc is not NULL in the following, without having to
test it. This is reflected on the Why3 side with an assert function that ensures
(in its postcondition) that p is not NULL. Second, the rather unusual form of the
for loop, using a break statement, ensures that even a loop up to the maximum
representable value is sound with respect to the WhyML semantics. In this case,
the loop is bounded by n-1 so a traditional loop would be fine but Why3 does
not make any effort to figure that out.

It is worth pointing out that each generated header file exposes all decla-
rations from the corresponding WhyML module. For instance, file baint32.h
declares the functions create, get, and set, as expected, but also “internal”
functions one_bit, bit_set, and set_bit. Similarly, file bfstring.h declares
the structure filter and the functions bloom_filter, add, and mem, but also
the global variable k and the functions hash and bit. We translate all declara-
tions because the translation is made on per-module basis. In WhyML, modules

http://why3.lri.fr/isola-2020/

140 J.-C. Filliâtre and A. Paskevich

do not have dedicated interfaces and any module using module Baint32 has
access to all of its declarations. Thus, this ability must not be lost in translation.

An argument can be made that it is not crucial to ensure any abstraction
barrier in the translated code since we have already made use of it on the WhyML
side. This argument is less applicable when we develop a verified library for
the target language, which is the case of bfstring. Indeed, the development
will be pursued in the target language and thus it would be nice to hide the
translated code behind a suitable interface. The simplest way to achieve it is
just to remove unnecessary declarations from the generated header files. Finally,
when translating to C, the whole discussion is moot since there is no proper
encapsulation in C (it is always possible to bypass header files).

5 Related Work

The idea of conducting verification through stepwise refinements is not new. It
is at the basis of Abrial’s B method [1] for instance. In this context, abstract
machines, which can be seen as interfaces, are gradually refined into fully exe-
cutable machines, which are implementations. This is quite close to what we
do: for instance, when we start with an interface Filter and refine it into an
implementation BFstring in two steps. Proper modularity is also offered by the
B method, as a machine is referring to the abstract version of another machine
(its interface) and not to its refinements. Again, this is similar to what we do, for
instance with our GenericClient referring to the interface Filter. Yet, there
are fundamental differences between B machines and Why3 modules, the main
being that B machines are state machines. Though Why3 modules can definitely
be used to specify and implement state machines, they are not limited to this
usage. Why3 modules may provide data types (as Boolean arrays and filters in
our example) and this has no counterpart in the B method.

Abstraction and genericity are handled in programming languages in various
ways. Most of these solutions can be readily used or adapted for use in pro-
gram verifiers. When a program verifier is built for an existing programming
language, such as Java for instance, it is natural to apply the abstraction and
genericity mechanisms (e.g., object-oriented programming, visibility modifiers,
generic types) to the specification/verification level. This is done in tools such
as VeriFast [7] or KeY [2] for instance. When a program verifier is providing its
own programming language, it is nonetheless possible to reuse mechanisms from
the programming community. The Coq proof assistant, for instance, implements
both a module system inspired by that of OCaml [5,11] and type classes inspired
by those of Haskell [16,17].

Why3 modules are not a direct implementation of a concept from any pro-
gramming language. Yet, they have obvious connections with traits [15] and mix-
ins [3], even if they are not cast in some object-oriented context. Indeed, Why3
modules mix declarations and definitions, may require parameters to come with
some operations (by cloning suitable “interfaces”), and may provide new defi-
nitions on top of these parameters (in modules to be later cloned in suitable

Abstraction and Genericity in Why3 141

contexts). The comparison stops at some point, however, as Why3 modules are
not centered around types. A parameter of a Why3 module can be a constant,
a function, etc., which means more flexibility. On the other hand, Why3 mod-
ules cannot be used to require that a type parameter of a polymorphic type or
function provides some operations, contrary to traits or type classes.

Closest to our work is likely to be Dafny [9], where modules are used to
organize the namespace and to restrict visibility of symbols or symbol defini-
tions [10]. Thus it provides adequate abstraction during the verification of client
code, though this is done by hiding implementation details rather than having
the client exposed to an interface only. There is a notion of module refinement in
Dafny [8]. As in Why3, it allows declarations to be refined with definitions and
it permits data refinement, though it is class-based in Dafny and record-based
in Why3. Dafny goes a step forward in program refinement, allowing reduction
of nondeterminism in program statements during refinement.

6 Conclusion

We have shown how abstraction and genericity are provided in the Why3 pro-
gram verifier through a notion of modules and a module cloning operation. The
latter performs a partial substitution on a module, replacing some of its abstract
declarations with concrete ones, and generates suitable verification conditions
to guarantee correctness. In this paper, we demonstrated this mechanism on a
library of Bloom filters, using several modules and refinement steps.

The module system of Why3, despite being usable (and extensively used),
can still be improved in several regards.

First, we should avoid redundant verification conditions (such as ones gen-
erated for the clone instruction in the Client module) by taking into account
the previously made refinements. In practice, these redundant VCs are usually
easy to discharge, but it is preferable not to produce them at all.

Second, we should add support for scope-level cloning substitutions, which
would allow us to write simply clone GenericClient with scope Filter =
BFstring, and avoid long and tedious enumeration of individual refinements.

Third, it would be convenient to annotate an “implementation” module with
its designated interface, e.g., by writing module BAint32 : BoolArray. This
notation should automatically add an appropriate cloning instruction at the end
of BAint32, ensuring that it indeed refines BoolArray. Furthermore, any subse-
quent use of BAint32 in the client code should only add to the logical context
the contents of BoolArray, acting as an abstraction barrier (of course, transla-
tion into executable code would still use the concrete definitions from BAint32).
This can be achieved by implicitly replacing such use instructions with cloning
of BoolArray, like we did in the BloomFilter module above; also, renaming
substitutions should be applied to ensure symbol sharing where necessary.

Acknowledgments. We are grateful to Claude Marché, Jacques-Henri Jourdan, and
Rustan Leino for their insightful remarks and suggestions.

142 J.-C. Filliâtre and A. Paskevich

References

1. Abrial, J.-R.: The B-Book, Assigning Programs to Meaning. Cambridge University
Press, Cambridge (1996)

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice. LNCS,
vol. 10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

3. Ancona, D., Zucca, E.: An algebraic approach to mixins and modularity. In:
Hanus, M., Rodríguez-Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 179–193.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61735-3_12

4. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

5. Chrzaszcz, J.: Modules in Type Theoryx with Generative Definitions. Ph.D. thesis,
Warsaw University, Poland and Université de Paris-Sud (January 2004)

6. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8

7. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5_4

8. Koenig, J., Rustan, K., Leino, M.: Programming language features for refinement.
In: Derrick, J., Boiten, E.A., Reeves, S. (eds.) Proceedings of 17th International
Workshop on Refinement, Refine@FM 2015. EPTCS, Oslo, Norway, 22 June 2015,
vol. 209, pp. 87–106 (2015)

9. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

10. Leino, K.R.M., Matichuk, D.: Modular verification scopes via export sets and
translucent exports. In: Müller, P., Schaefer, I. (eds.) Principled Software Devel-
opment, pp. 185–202. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98047-8_12

11. Leroy, X.: A modular module system. J. Funct. Program. 10(3), 269–303 (2000)
12. Louridas, P.: Real-World Algorithms: A Beginner’s Guide. The MIT Press, Cam-

bridge (2017)
13. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms

and Probabilistic Analysis. Cambridge University Press, New York (2005)
14. Rieu-Helft, R., Marché, C., Melquiond, G.: How to get an efficient yet verified

arbitrary-precision integer library. In: Paskevich, A., Wies, T. (eds.) VSTTE 2017.
LNCS, vol. 10712, pp. 84–101. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-72308-2_6

15. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.P.: Traits: composable units of
behaviour. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 248–274.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45070-2_12

16. Mohamed, O.A., Muñoz, C., Tahar, S. (eds.): TPHOLs 2008. LNCS, vol. 5170.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7

17. Wadler, P., Blott. S.: How to make ad-hoc polymorphism less ad hoc. In: Proceed-
ings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 1889, pp. 60–76. ACM, New York (1989)

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/3-540-61735-3_12
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-319-98047-8_12
https://doi.org/10.1007/978-3-319-98047-8_12
https://doi.org/10.1007/978-3-319-72308-2_6
https://doi.org/10.1007/978-3-319-72308-2_6
https://doi.org/10.1007/978-3-540-45070-2_12
https://doi.org/10.1007/978-3-540-71067-7

Verification Artifacts in Cooperative Verification:
Survey and Unifying Component Framework

Dirk Beyer1 and Heike Wehrheim2

1 LMU Munich, Munich, Germany
2 Paderborn University, Paderborn, Germany

Abstract. The goal of cooperative verification is to combine verification
approaches in such a way that they work together to verify a system model.
In particular, cooperative verifiers provide exchangeable information
(verification artifacts) to other verifiers or consume such information from
other verifiers with the goal of increasing the overall effectiveness and
efficiency of the verification process.

This paper first gives an overview over approaches for leveraging
strengthsofdifferenttechniques,algorithms,andtoolsinordertoincreasethe
power and abilities of the state of the art in software verification. To limit
the scope, we restrict our overview to tools and approaches for automatic
program analysis. Second, we specifically outline cooperative verification
approaches and discuss their employed verification artifacts. Third, we
formalize all artifacts in a uniform way, thereby fixing their semantics and
providing verifiers with a precise meaning of the exchanged information.

Keywords: Cooperative verification · Software verification ·
Conditional model checking · Verification witness · Exchange format ·
Partial verification · Reducer · Execution report · Tool combination

1 Introduction

The area of software verification studies methods and constructs tools for au-
tomatically proving program properties. The recent past has seen an enormous
improvement in this area, in particular with respect to scalability, precision,
and the handling of different programming-language features. Today’s software-
verification tools employ a variety of different techniques, ranging from data-flow
analysis [69] over symbolic execution [70] to SAT-based approaches [16,33]. As
all these techniques have their particular strengths and weaknesses, a number of
tools tightly integrate different —usually two— approaches into one tool (see [17]
for an overview). For instance, the integration of techniques that under- and
over-approximate the state space of the program is a frequent combination. Such
combinations typically improve over pure approaches. However, such conceptual
integrations also require new tool implementations for every additional integration

A preliminary version of this article appeared as technical report [30].
Funded in part by the Deutsche Forschungsgemeinschaft (DFG) – 418257054 (Coop)

c© The Author(s) 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 143–167, 2020.
https://doi.org/10.1007/978-3-030-61362-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_8&domain=pdf
http://orcid.org/0000-0003-4832-7662
http://orcid.org/0000-0002-2385-7512
http://gepris.dfg.de/gepris/projekt/418257054
https://doi.org/10.1007/978-3-030-61362-4_8

144 D. Beyer and H. Wehrheim

of techniques. Portfolio combinations loosely integrate different tools: There is
no communication between the approaches and the resulting combination can be
composed from off-the-shelf components. Algorithm selection combines different
approaches into one by first analyzing the input problem and then choosing the
approach that will most likely (according to some heuristics) succeed.

In contrast to these extremely tight or extremely loose combinations, coop-
erative verification is a combination of approaches that cooperate, that is, work
together to achieve the verification goal, but leave the existing tools (mostly)
untouched. Cooperative verifiers communicate with each other in order to max-
imize the common strength, in particular, by exchanging information about
intermediate results. In a framework for cooperative verification, the integration
of a new technique might require some implementation to make it understand
the communication, viz. be able to use intermediate results, but it can avoid
a new re-implementation of the combination — from the conceptual as well as
from the practical viewpoint. If the intermediate results come in a format already
accepted by the tool (e.g. as a program), the tool can even be employed as is.

In this paper, we provide a classification of verification approaches according
to the interface and type of combination employed; we briefly survey combination
approaches, for portfolio, selection, cooperative, and conceptual combination
of verification approaches. We then discuss a number of aspects relevant to
cooperative verification, in particular its objectives and prerequisites.

2 Classification of Verification Approaches

Fig. 1. Formal verification

In the following, we provide a classification of verifica-
tion approaches according to their way of interfacing
and combining verification components. By the term
“verification approach” we understand an automatic
or automatable formal method for solving verification
tasks, i.e., for evaluating the proposition “Program p
satisfies behavioral specification ϕb” and returning a result r, which can be
true (p |= ϕb), false (p �|= ϕb), or unknown, and an (optional) witness ω,
which contains proof hints, as depicted in Fig. 1.

2.1 Overview over Interfaces

Fig. 2. Output Interfaces

Output. The goal of a verification tool is
to solve a verification task and to deliver
the computed results to either a verification en-
gineer for manual inspection or to a machine
for further automated processing (Fig. 2). De-
pending on how the results are consumed (by
human or by machine), the tool needs to use different formats.

While researchers mainly concentrated on improving the (internal) verifica-
tion algorithms during the past two decades, it is understood since recently that

Analyze

p

ϕb

r

ω

Verifier

Consumption
by humans

Consumption
by machines

Verification Artifacts in Cooperative Verification 145

it is (at least) equally important to provide not only true/false answers, but
more details about the reasoning and the process of the verification.

Human. Almost all verification tools provide some kind of statistics to the
user, for example, about the number of iterations, of number of proof facts, or
consumed resources. Execution reports [34] present an underapproximation of
the successfully verified state space to the user. There are also approaches to
support interactive inspection of verification results, e.g., by visualization of
error paths [81] and verification-aided debugging [11].

Machine. In order to make it possible to validate verification results in an au-
tomated way, verification witnesses were introduced [8,31], a machine-readable
exchange format (XML based). Verification witnesses make it possible to inde-
pendently re-verify the program based on knowledge that another verifier has
produced. This can increase trust in the results, can spread the risk of verification
errors, and can help making internal knowledge from the verification engine
accessible for the user (error paths, program invariants). Violation witnesses [14]
enhance the answer false by a description of the state space that contains an
error path (a program path that violates the specification), while correctness
witnesses [13] enhance the answer true by a description of program invariants
that are helpful to prove that the program satisfies the specification. It is known
since 15 years that test cases can be derived from error paths [9,96], but this
approach was rarely used in practice and only since recently it is possible to
output and exchange this kind of information via a standard format.

While the previous approaches, as the name indicates, witness the verification
result, it is also important to make intermediate results and partial results
accessible to further processing. Conditional model checking [19] reads as input
and writes as output a description of the already verified state space. That is, a
conditional verifier outputs a condition that describes the work already done, i.e,
the parts of the state space that are already verified. Another kind of intermediate
output for machines to later reuse is the abstraction precision [23,29,86]. In
CEGAR-based approaches [38] an abstract model is automatically constructed by
finding abstraction facts in refinement steps which are added to the precision of
the analysis (the more abstraction facts are added to the precision, the finer the
abstract model). Full abstract models can be used as certificate of correctness [66]
or in order to speed up later verification runs for different versions of the same
program during regression verification [60].

Fig. 3. Input Interfaces

Input. Similar to the output, there are dif-
ferent interfaces for the kind of input that
is given to the verification tools, some from
users, some from machines, see Fig. 3.

Human. From the very beginning of program-
ming, assertions were added to programs [94]
in order to make it easier to prove correctness. Nowadays, assertions, invariants,

Verifier

Information
from humans

Information
from machines

146 D. Beyer and H. Wehrheim

pre- and post-conditions, are annotated in programs in a way that machines (inter-
active verifiers) can read [5,59]. There are several languages and tools that support
this, and a nice overview over such tools and their application opportunities are
given in the annual competition on interactive software verificationVerifyThis [49].

There were also attempts to support the splitting of specifications and pro-
grams into modular parts, in order to make the verification task for the model
checkers easier, such as in the Blast query language [10,87]. There are also
testing and analysis tools which ask the user for help [98]. Last not least, and
this is one of the most difficult parts, each verifier expects a set of parameters
that the user has to set, in order to choose how the verifier should solve its
task. However, finding the right parameters is a challenging task, which could
use tool support itself (such as SMAC [64] or Tuner [92]).

Machine. A classic approach to make additional information available to a tool
is by transforming the original input, e.g., by simplification or enhancement. The
advantage is that there is no additional input (no extra parser, no need to imple-
ment additional features). For example, the first software model checkers did not
have a specification language, but the specification was weaved into the program
in a preprocessing step (as was done for the Slam [3] specification language Slic [2]
and the Blast [18] query language [10]). Even programs were made simpler [78].

Verification witnesses and conditions were discussed already above as example
implementations for output interfaces. Verification witnesses can be taken as input
by validation tools that re-establish the verification result using independent tech-
nology. Also, the error path described by the violation witness can be replayed and
a test case can be derived from the path constraints along the found error path [15].

Conditional model checking is not widespread yet because it was considered
difficult to extend a verifier such that it understands conditions as input and
reduces the state space accordingly before running the verification engine. This
problem was solved by the reducer-based construction of conditional verifiers:
Reducers [25,45] can be used to construct (without implementation effort) condi-
tional model checkers from off-the-shelf verifiers that do not understand conditions
themselves, by reducing the original input program to a residual program that
contains all the behavior that is not yet covered by the condition and removes
as much as possible from the already-verified state space.

2.2 Overview over Combinations

In the early days of automatic program verification, tools implemented a single
technique for verification (e.g., explicit enumeration of state space or data-
flow analysis using a fixed abstract domain). In our classification (see Fig. 4)
these are represented as Basic. Later, the tools implementing these techniques
were considerably generalized, for instance by allowing abstract domains to
be flexibly set via tool parameters. Still, during one verification run a sin-
gle basic technique was employed.

It soon turned out that a single verification technique may work well for
some verification tasks, but fail for others. This immediately triggered the ap-
plication of Combination techniques, in order to benefit from the different

Verification Artifacts in Cooperative Verification 147

Fig. 4. Hierarchy of verification approaches (using UML notation)

strengths. Combinations can come in two sorts: A combination either treats
techniques or tools as Black Box objects and runs them (mainly) as they are
without implementation-specific integrations for which it matters what’s inside
the box, or a combination views a component as White Box, conceptually
integrating two or more techniques within a new tool. We distinguish three
forms of black-box combinations, without and with communication, and classify
all white-box approaches into one category.

Fig. 5. Portfolio approaches
(top: sequential, bottom: parallel)

Portfolio combinations are motivated by
the portfolio idea from economics [63], which
is a means for distributing the risk: if one
investment (here: of computational resources
in a certain technique) fails, there are other
investments (techniques) that will be success-
ful. A portfolio combination has a number of
approaches available, and on a given verifica-
tion task executes the approaches in a fixed
order sequentially (Fig. 5, top), or runs all
approaches in parallel (Fig. 5, bottom). The
overall approach terminates if one component
analysis was successful in obtaining the result.
The big advantage of this approach is that it requires no knowledge about the
components and there is almost no effort for implementing the combination.
Therefore, we placed this most loosely coupled approach on the very left in the
bottom row of Fig. 4. The big disadvantage of portfolio approaches is that the
resources invested on unsuccessful tools or approaches are lost.

Algorithm Selection [85] is a solution to the problem of wasted resources of
portfolio approaches:Algorithm-selectionapproacheshaveanumberof approaches
available, and on a given verification task choose one and execute it (Fig. 6).
That is, before starting an approach, a selection model is extracted from the
input, based on which a selector function predicts which approach would be best,
and only the potentially best approach is selected and executed. This requires
some knowledge about the (black box) characterization of the components, but
does not require any change of the implementation of the components.

Verification Approach

Basic Combination

Black Box White Box

Portfolio Selection Cooperative Conceptual Integration

Verifier 1 Verifier n. . .

Verifier n

Verifier 1

. . .

148 D. Beyer and H. Wehrheim

Fig. 6. Algorithm selection

Portfolio and selection approaches run the component tools independently
from each other, without any form of information exchange between the ap-
proaches. The goal of combining strengths of different approaches and at the
same time avoiding to waste resources inspired the development of cooperative
combinations of verification approaches.

Cooperation approaches enable the possibility of solving the problem to-
gether. Typically, tools exchange intermediate results (e.g., the state space which
has already been searched) in order to achieve a division of labor. Such co-
operative combinations range from two or more basic techniques running in
parallel and combining the information obtained for certain program locations
(e.g., combining partial verification results to proof witnesses [67]) to approaches
executing different tools in turns with each specializing to specific tasks (e.g., a
testing tool trying to achieve coverage together with a model checker constructing
counter examples to non-reachability [46]).

Conceptual Integration is the most intensively coupled approach and there-
fore put on the very right end of the bottom row in Fig. 4. The components are not
communicating via clear interfaces, but are tightly integrated and exchange data
structures via procedure calls and not via interfaces that could be externalized [17].

In the following subsections, we describe some forms of non-cooperative
verification approaches in more detail. In the next section we explain some
examples for cooperative verification approaches.

2.3 Examples for Portfolio Combinations

While it seems obvious that portfolio combinations of verification techniques
have a large potential, the topic has not yet been systematically investigated for
software verification, although it is used in other areas since many years [63].

Sequential Combinations. Examples of sequential combinations are SDV and
CPAchecker. The static driver verification (SDV) [4] tool chain at Microsoft
used a sequential combination (described in [93]) which first runs Corral [71]
for up to 1 400 s and then Yogi [80]. CPAchecker [26] won the competition
on software verification 2013 (SV-COMP’13, [7]) using a sequential combina-
tion [97] that started with explicit-state model checking for up to 100 s and
then switched to a predicate analysis [27].

Selection-
Model

Extraction
Selector

Verifier selected

Verifier 1 Verifier n

Selection
Model

. . .

Verification Artifacts in Cooperative Verification 149

Parallel Combinations. Examples ofparallel combinationsare theverifiersUfo [57]
and PredatorHP [77], which start several different strategies simultaneously and
take the result from the approach that terminates first.

2.4 Examples for Algorithm Selection

Algorithm selection [85] first extracts a selection model from the input. In the
case of software verification, the input is the verification task (program and
its specification). The selection model describes some characteristics of the
verification task, for example, feature vectors (measurement values for certain
measures that map verification tasks to values). Based on the selection model, the
strategy selector chooses one strategy from a set of given verification strategies.

Approaches without Machine Learning. Strategy selection can be very simple and
yet effective. For example, a recent work has shown that it is possible with a few
boolean features to effectively improve the overall verification progress [12]. The
disadvantage is that the strategy selector needs to be explicitly defined by the
developer or user. This leads to approaches that use machine learning, in order
to automatically learn the strategy selector from training instances.

Machine-Learning-Based Approaches. The technique MUX [93] can be used to
synthesize a strategy selector for a set of features of the input program and a given
number of strategies. The strategies are verification tools in this case, and the
feature values for the selection model are statically extracted from the source code
of the input program. Later, a technique that uses more sophisticated features
was proposed [47,48]. While the above techniques use explicit features (defined
by measures on the source code), a more recently developed technique [44] leaves
it up to the machine learning to obtain insights from the input program. The
advantage is that there is no need to define the features: the learner is given the
control-flow graph, the data-dependency graph, and the abstract syntax tree,
and automatically derives internally the characteristics that it needs. Also, the
technique predicts a ranking, that is, the strategy selector is not a function that
maps verification tasks to a strategy, but to a sequence of strategies.

2.5 Examples for Conceptual Integrations

Conceptual integrations tightly combine two or more approaches into a new
tool, typically re-implementing the basic techniques. A frequent combination
of this type is integrating an overapproximating (static) may-analysis with
an underapproximating (dynamic) must-analysis. The tool SMASH [54] at the
same time maintains an over- and an under-approximation of the state space of
programs. Building on the same idea, Yogi [6] (first proposal of the algorithm
was under the name Synergy [55]) in addition specifically employs testing to
derive alias information which is costly to precisely compute by a static analysis.

A second form of conceptual integration is offered by tools running different
analysis in parallel in a form of “product” construction. For example, the ver-
ification framework CPAchecker [26] provides the possibility of specifying and

150 D. Beyer and H. Wehrheim

running composite analyses. A composite analysis could for instance combine two
sorts of data-flow analyses (e.g., an interval analysis and an available-expression
analysis). The analyses are then jointly run and jointly derive analysis informa-
tion for program locations. The same idea was classically hard-coded as reduced
product [40] and further improved [22,39,43,50,56,72].

All those combinations have in common that they exchange information, but
they are configured, intertwined, or even hardcoded combinations, rather than
interface-based black-box combinations. More approaches are described in the
Handbook on Model Checking, in the chapters on combining model checking with
data-flow analysis [17], with deductive verification [88], and with testing [53].

2.6 Verification as a Web Service

Orthogonally to the above combinations, approaches can be combined by provid-
ing them as web services. The Electronic Tools Integration platform (ETI) [91]
was developed for experimenting with, presenting, evaluating, conserving, and
coordinating tools. Later, the approach was extended to make it possible to use
the tools via a web site [74–76], such that the user does not need to install
any software. ETI uses LTL as specification language, and the systems to be
verified can be software systems or models of systems (e.g., times automata).
The central point of information of ETI is important, as otherwise, it is time-
consuming to collect the URLs of web services to different tool providers, such
as, for example, CPAchecker1, Dafny2, and Ultimate3. It is even more difficult
to get them to cooperate if the tools are distributed, using different interfaces.
Unfortunately, the ETI initiative was discontinued, according to Steffen [90]
because of the manual integration effort at the ETI site in Dortmund and because
tool providers hesitated to provide their tools.

3 Cooperative Verification Approaches

In the following, we discuss approaches for cooperative verification, structured
according to the kind of information objects that are exchanged, and then
explain a few applications and their effects.

3.1 Exchangeable Objects for Communication and
Information Transfer

We now classify the approaches for cooperative verification according to the kinds
of communication interfaces that they use. While our text always refers to software
verification for concrete examples, cooperative verification is in no way limited to
software.

1 https://vcloud.sosy-lab.org/cpachecker/webclient/run/
2 https://rise4fun.com/Dafny/
3 https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/

https://vcloud.sosy-lab.org/cpachecker/webclient/run/
https://rise4fun.com/Dafny/
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/

Verification Artifacts in Cooperative Verification 151

Fig. 7. Witness-based results validation

Conditions and Residual Programs. Conditional model checking (CMC) [19]
means to produce a condition as output that describes the state-space that
was successfully verified. The (temporal) condition can be represented as an
automaton. This information can be passed on to another verifier as input,
instructing this verifier to not verify again those parts of the state space that are
covered by the condition. Using a reducer [25], a program can be reduced to those
parts of its state space that still has to be verified; the result is called residual
program. Symbiotic [36] can be seen as reducer-based cooperation (slicer + Klee).
Inspired by CMC, comprehensive failure characterization (CFC) [51] computes a
condition that represents failure paths, using several tools that cooperate on the
task. Alternating conditional analysis (implemented in the tool ALPACA [52]4) is
a generalization of CFC and involves a portfolio of 14 tools for program analysis.

Witnesses. Exchangeable witnesses serve as envelopes for error paths and in-
variants in a way that makes it possible to exchange the information between
different tools. A violation witness [8,14,31] explains the specification violation,
by describing a path through the program that violates the specification. A cor-
rectness witness [13] explains why the program satisfied the specification, by
describing invariants that are useful to have in a correctness proof. Figure 7
illustrates the process: The first analyzer verifies the program p according to
specification ϕb, and produces a result r and a witness ω. The second ana-
lyzer (re-)verifies the same program and specification using information from the
witness. If the result r matches the result r’, then the result is confirmed.

Precisions. Verification approaches that are based on counterexample-guided
abstraction refinement (CEGAR) [38] iteratively construct an abstract model
of the system. The “abstraction facts” that define the level of abstraction are
often formalized and expressed as precision [23,29,31,86]. The precision can
be exported as output, such that later verification runs can start from such
a given definition of the abstraction level.

Abstract States / Certificates. Extreme model checking [60] dumps the ab-
stract reachability graph (ARG) to a file when the verification process terminates.
Configurable certificates [66] are sets of abstract states that cover all reachable
states of the system. ARGs and configurable certificates can be used by a different
verifier to check their validity (completeness and soundness).

Path Programs and Path Invariants. Path programs [21] are programs (for
example, written in the same programming language as the input program) that
4 https://bitbucket.org/mgerrard/alpaca/

Analyze

Verifier

p

ϕb

r

ω

Analyze

Validator

r’

ω’

https://bitbucket.org/mgerrard/alpaca/

152 D. Beyer and H. Wehrheim

were invented to incorporate external invariant generators into CEGAR-based
approaches and are produced after a verifier has found an infeasible error path
(often called infeasible counterexample). The path program contains that path in
question, but usually also longer paths that use the same program operations,
that is, unrollings of a certain loop. The path program can now be given to a
tool for invariant synthesis (e.g., [20]) in order to obtain path invariants [21],
which are invariants for the whole path program, but in particular also for the
original path. The path invariants can then be fed back into the CEGAR-based
approach that was encountering the original path.

Taint-Analysis Queries and Answers. Taint analyses perform a specific sort
of software verification. They do not look at the satisfaction of behavioral specifi-
cations, but at the flow of information (typically within smartphone applications)
from private sources to public sinks. In this area of software analysis, numerous
tools with complementary strengths exist which has already lead to the proposal
of a cooperative taint-analysis tool [83]. Information exchange among tools is
therein performed via the AQL (Android-App Analysis Query Language [82])
which allows to state task queries as well as answers to these queries.

Evidential Tool Bus. The evidential tool bus [41,42] is a tool-integration
framework, which is based on a variant of Datalog [1,35] as a meta language.
Artifacts like claims, rules, and evidence are described in this language, as well
as verification workflows. The idea is to compose assurance claims (certificates)
based on evidence artifacts contributed by different tools, which interact in the
evidential tool bus using scripts, queries, and evidence artifacts. Artifacts for
models and programs are stored together with evidence artifacts. The intended
application area is not only software verification, but the verification of systems
in general (that is, models of systems).

Program Annotations. Assertions [94] and other information about the behav-
ior of the program can be added to the program as annotations [5]. An overview
over behavioral interface specification languages can be found in the literature [59].

3.2 Objectives and Applications

Having exchangeable objects about (partial) verification results [32] available
is important to overcome a variety of practical problems. In the following, we
highlight a few of the objectives and applications that we can aim for.

Improvement of Effectiveness and Efficiency. Storing intermediate results
can be used to improve the effectiveness and efficiency of the verification process.

Stateful Verification and Reuse. Storing (exchangeable) objects that contain
information about intermediate verification results can be considered as a state
of the verification process, i.e., making the verification process stateful.

Precisions that are stored and in later verification runs read and reused can
significantly improve the performance of regression verification [29,86]. The setup
of this strategy is the following: the first version of a module is verified and at the

Verification Artifacts in Cooperative Verification 153

end, the precision is written to a file. When the i-th version is verified, then the
verifier reads the precision that the verification run for version i−1 has written, in
order to save time discovering the right abstraction level for the abstract model.

Configurable certificates [66] can reduce the validation time, because the
verifier that performs the validation of the certificate “only” needs to check
for the set of abstract states that all initial states are contained and that the
set is closed under successor transitions.

Also caching-based approaches to improve the efficiency can be seen as a
stateful way of performing computation. For example, Green [95] makes symbolic
execution more efficient by caching previous intermediate results.

Stateless Verification and Parallelization. The previous argument was based on
having a state that contains the intermediate results. It is also possible to speed up
verification processes in a stateless way. The technique of conditional model check-
ing is used to split programs into parts that can be independently verified [89].

Improvement of Precision and Confidence. Witness-based results valida-
tion [13,14] can be used to increase the confidence in the results of verification
tools, because it is possible to take a witness-based results validator to “replay” the
verification. That is, for a violation witness, the validator tries to find and confirm
the error path that the witness describes, and for a correctness witness, the valida-
tor tries to use the invariants in the witness to re-establish the proof of correctness.

Execution-based results validation [15] extracts a test case from a violation
witness and executes it, in order to confirm that the specification violation is
observable in the executed program as well.

Explainability. The existence and availability of exchangeable objects with
information about the verification process makes it possible to develop
approaches for explaining what the verification process did and why the user
should be more confident about the verification result. There are preliminary
results on explaining and visualizing counterexamples, e.g., for SPIN models [73]
and for C programs [11,81], but due to the exchangeable witness format, many
more approaches are possible.

4 Verification Artifacts

This section outlines a construction framework for cooperation. We study verifi-
cation artifacts, classify several verification tools as verification actors according
to their usage of artifacts, and define the semantics of some important artifacts.

4.1 Artifacts of Verification Tools

Verification artifacts are central to cooperation as they provide the means of
information exchange. A number of artifacts exist already, most notably of course
the programs themselves. We identified the following artifacts:

Program p. Defines the implemented behavior of the system. Syntax: C pro-
gramming language (for example). We represent programs as control-flow
automata in Sect. 4.3.

154 D. Beyer and H. Wehrheim

Behavior Specification ϕb. Defines requirements that all executions of a given
program have to satisfy, often as conjunction of several properties. Syntax:
The competition SV-COMP established a minimal set of properties that
participants of the competition have to support5, which is based on LTL [84],
but some tools also support monitor automata as specification. We represent
properties by property automata in Sect. 4.3.

Test Specification ϕt. Defines requirements that a given test suite has to
satisfy. Syntax: The competition Test-Comp established a minimal set of
coverage criteria that participants of the competition have to support6, which
is based on FQL [61,62]; some tools offer parameters for hard-coded coverage
criteria. We represent coverage criteria by test-goal automata in Sect. 4.3.

Verification Result r. Verification tools return an evaluation of the statement
“Program p satisfies specification ϕb.” as answer. Syntax: The answer is from
the set {true, false,unknown}.

Witness ω. Verification witnesses are used to witness an outcome of a veri-
fication run, and thus can come in the form of violation and correctness
witnesses. Syntax: XML-based witness format7 that is supported by all
available validators of verification results.

Test case t. Defines a sequence of values for all calls of external functions,
i.e., inputs for the program. Syntax: XML-based test-case format8 that is
supported by all test-case generators that participate in Test-Comp.

Condition ψ. Defines the part of the program behavior that does not need to
be further explored. For verification, ψ describes the already verified parts.
For testing, ψ describes the parts of the program that are already covered by
an existing test suite. Syntax: Condition automata using a notation similar
to the Blast query lang. [10] for verification and test-goal sets for testing [28].

We use the corresponding capital letters to denote the types (i.e., sets of artifacts
of a kind), for example, the type P is the set of all C programs. Many tools
generate different forms of verification artifacts, but currently only very few
understand more than the artifact “program” as input.

4.2 Classification of Verification Tools as Actors

Based on the identified artifacts, we classify existing tools according to their
usage of artifacts into three sorts of verification actors:

Analyzers. Produce new knowledge about programs, for example verification
results or test suites.

Transformers. Translate one artifact into another, in order to implement a
certain feature or support cooperation.

Presenters. Prepare information from artifacts such that it can be presented
in a human-readable form.

5 https://sv-comp.sosy-lab.org/2019/rules.php
6 https://test-comp.sosy-lab.org/2019/rules.php
7 https://github.com/sosy-lab/sv-witnesses
8 https://gitlab.com/sosy-lab/software/test-format

https://sv-comp.sosy-lab.org/2019/rules.php
https://test-comp.sosy-lab.org/2019/rules.php
https://github.com/sosy-lab/sv-witnesses
https://gitlab.com/sosy-lab/software/test-format

Verification Artifacts in Cooperative Verification 155

Fig. 8. Graphical visualization of the component framework

To convey a better understanding of these concepts, consider the following
examples: A verifier is an analyzer of type P ×Φb → R×Ω, which takes as input
a program p and a behavior specification ϕb, and produces as output a result r
and a witness ω9. A conditional verifier is of type P × Φb × Ψ → R × Ω × Ψ ,
i.e., a verifier that supports also input and output conditions. A validator is
of type P × Φb × Ω → R × Ω, i.e., a verifier that takes as input in addition a
witness. A test-case generator is also an analyzer, but of type P × Φt → 2T ,
which takes as input a program p and a test specification ϕt, and produces
as output a set ts ∈ 2T of test cases.

Transformers are largely lacking today, only a few exist already [15,25,58,79].
Transformers are, however, key to cooperation: only if a transformer can bring
the artifact into a form understandable by the next tool without implementing an
extension of this tool, cooperation can be put into practice. A test-case extractor
is a transformer of type P ×Φb×Ω → T , which translates a program, specification,
and violation witness to a test case. The identity function is also a transformer
(for any given type). A reducer is a transformer of type P × Ψ → P , which takes
a program and a condition as input, and transforms it to a residual program.

Presenters form the interface to the user. A test-case executor is a presenter of
type P × T → {}, which takes a program p and a test case t as input, and shows
a particular program execution (perhaps with a crash) to the software engineer.

Now we can construct, for example, a conditional verifier from a reducer red
and an off-the-shelf verifier ver by composition. For inputs p, ϕb, and ψ, the expres-
sion ver(red(p, ψ), ϕb) runs the construction. For a verification with an execution-
based result validation based on a given verifier ver , test extractor wit2test ,

9 All verifiers that participate in the competition SV-COMP are analyzers of this form.

Analyze

ConditionalVerifier

p

ϕb

ψ

r

ω

ψ

Analyze

Verifier

p

ϕb

r

ω

Analyze

Validator

p

ϕb

ω

r

ω

Transform

Reducer

p

ψ

p’ Transform

TestExtractor

p

ϕb

ω

t Present

TestExecutor

p

t

Transform Analyze

ConditionalVerifier constructed from
ReducerandVerifier

p

ψ

p’

ϕb

r

ω

Analyze Transform Present

Execution-BasedValidationconstructed from
Verifier,TestExtractor, andTestExecutor

p

ϕb

r

ω

t

156 D. Beyer and H. Wehrheim

and test executor exec, we can write exec(p,wit2test(p, ϕb, ver(p, ϕb).ω)).
Figure 8 shows a graphical visualization of the individual components and the
two mentioned constructions.

With our construction framework, it is possible to identify the gaps of meaning-
ful transformers, and propose solutions to close these gaps, as far as needed for co-
operation.

4.3 Semantics of Verification Artifacts

We now develop the theoretical foundations of artifacts and actors. Artifacts
describe some information about a program (or a program itself), and for sound
cooperation we need to define the semantics of artifacts. For instance, a viola-
tion witness of a program describes a path of the program on which a specific
specification is violated, a condition describes a set of paths of a program which
have (or have not been) inspected by an analyzer. When employing cooperation
as a means for sharing the work load of validation, the cooperating tools need to
agree on the meaning of the exchanged artifacts. Without this, cooperation might
easily get unsound, e.g., returning a result true for a program and specification
although the combined usage of tools has failed to inspect the whole state space
of the program. By defining the semantics of artifacts, we also implicitly define
the desired semantics of the various actors operating on artifacts.

All of the artifacts given below are a variation of finite-state automata. The
reasons for choosing automata as our formalization are twofold: First, artifacts
arising in software verification naturally incorporate the sequencing of actions
or events as specifiable via automata (e.g., programs have control flow, paths or
counterexamples are sequences of operations), and second, a number of verification
tools already accept or produce artifacts which are some sort of automata
(e.g., violation or correctness witnesses).
We start the formalization of artifacts with the definition of programs, our prime
artifact. We denote the set of all program locations by Loc. Formally, a program p
is described by a control-flow automaton (CFA) Ap = (L, �0, G) that consists of
a set of locations L ⊆ Loc, an initial location �0 ∈ L, and a set of control-flow
edges G ⊆ L × Ops × L, where Ops is the set of operations. Operations can be
(a) assignments, (b) assume statements (arising out of branches), and (c) calls
to functions retrieving inputs. Here, we assume to have a single such function,
called input. We let G = L × Ops × L be the set of all control-flow edges.

We let X be the set of variables occurring in the operations Ops. For simplicity,
we restrict the type of variables to integers. A concrete data state c : X −→◦ Z

is thus a partial mapping from X to Z. In the left of Fig. 9 we see our running
example of the simple program p and its control-flow automaton on the right.
The program starts by retrieving an input for variable x, sets variables a and b
to 0, and then increments both while the value of a is less than that of x.

A concrete program path of a program Ap = (L, �0, G) is a sequence
(c0, �0) −g1−→ . . . −gn−→ (cn, �n), where the initial concrete data state c0 = ∅ assigns
no value, gi = (�i−1, opi, �i) ∈ G, and ci−1 −opi−→ ci, i.e., (a) in case of assume

Verification Artifacts in Cooperative Verification 157

Fig. 9. Example program and its control-flow automaton

operations, ci−1 |= opi (opi is a boolean condition) and ci−1 = ci, (b) in case of
assignments, ci = SPopi

(ci−1), where SP is the strongest-post operator of the op-
erational semantics, and (c) in case of inputs of the form x = input(), ci(x) ∈ Z

(nondeterministic choice of input) and ci(y) = ci−1(y) for all y �= x. An edge g is
contained in a concrete program path π = (c0, �0) −g1−→ . . . −gn−→ (cn, �n) if g = gi

for some i ∈ [1, n]. We let paths(Ap) be the set of all concrete program paths.
We allow artifacts to state assumptions and invariants on program variables.

These are given as state conditions (from a set Φ of predicates over a certain
theory). We write c |= ψ and c |= ϕ to say that a concrete state c satisfies an
assumption ψ ∈ Φ and an invariant ϕ ∈ Φ, respectively.

Artifacts on a program p are represented by protocol automata [14]:

Definition 1. A protocol automaton A = (Q,Σ, δ, q0, F) for a program CFA
Ap = (L, �0, G) consists of

– a finite set Q ⊆ Ω×Φ of states, each being a pair of a name and an invariant,
and an initial state q0 ∈ Q,

– an alphabet Σ ⊆ 2G × Φ,
– a transition relation δ ⊆ Q × Σ × Q, and
– a set F ⊆ Q of final states.

We write q −(D,ψ)−−−→ q′ for (q, (D,ψ), q′) ∈ δ. In figures, we often elide invariants
at states and assumptions at edges when they are true. We furthermore elide
the set notation when the element of 2G is a singleton.

Protocol automata describe paths of a program.10 Depending on the sort of
protocol automaton, these could for instance be paths allowed or disallowed by a
specification, or paths already checked by a verifier. A path of the program can
be accepted (if the automaton reaches a final state) or covered by the automaton.

10 Note: Each CFA (L, �0, G) induces a protocol automaton (where � denotes true)(
L × {�}, {({g}, �) | g∈G}, {(l, ({g}, �), l′) | g=(l, op, l′) ∈ G}, (�0, �), L × {�})

.

0: int x = input();
1: int a = 0;
2: int b = 0;
3: while (a < x) {
4: a++;
5: b++; // later elided

}
6:

(a) Example program p

0 1

2

3

4

5

6

(0,int x = input(), 1)

(1,int a=0, 2)

(2, int b=0, 3)

(3, a<x, 4) (3, !(a<x), 6)

(4, a++, 5) (5, b++, 3)

(b) Control-flow automaton Ap

158 D. Beyer and H. Wehrheim

Fig. 10. Automata for a property and a test-goal specification

Definition 2. A protocol automaton A = (Q,Σ, δ, q0, F) matches a path π =
(c0, �0) −g1−→ . . . −gn−→ (cn, �n) if there is a run ρ = q0 −(G1,ψ1)−−−−→ . . . −(Gk,ψk)−−−−−→ qk in A,
with k ∈ [0, n], s.t.

1. ∀i ∈ [1, k] : gi ∈ Gi,
2. ∀i ∈ [0, k] : ci |= ϕ, for qi = (·, ϕ) and
3. ∀i ∈ [1, k] : ci |= ψi.

The protocol automaton A accepts the path π if A matches π and qk ∈ F , and
A covers π if A matches π and k = n.

We let L(A) be the set of paths accepted by the automaton A (its la-
nguage) and paths(A) be the set of paths covered by A. As we will see below,
some protocol automata might have an empty set of final states and just des-
cribe a set of paths that they cover.

Protocol Automata as Representation of Artifacts. We consider different
specializations of protocol automata and use the notation As to denote the
automaton that represents the syntactical object s.

(1) A property automaton (or, observer automaton) A¬ϕb
= (Q,Σ, δ, q0, F)

is a protocol automaton that satisfies the following conditions:

1. ∀(·, ϕ) ∈ Q : ϕ = true ,

2. ∀q ∈ Q \ F,∀g ∈ G :
∨ {

ψ | ∃ q −(D,ψ)−−−→ q′ ∈ δ : g ∈ D
}

= true

(assuming
∨ ∅ = false).

Condition 2 ensures that property automata only observe the state of the program
(when running in parallel with the program). They do not block, except for the
case when the final state is reached where blocking is allowed. Final states denote
the reaching of property violations (or, targets).

(2) A test-goal automaton Aϕt
= (Q,Σ, δ, q0, F) is a protocol automaton

that has only trivial state invariants, i.e., ∀(·, ϕ) ∈ Q : ϕ = true. If a final state
is reached, the test goal is fulfilled.

Figure 10 shows two specification automata: In Fig. 10a we see a property
automaton specifying that variables a and b have to be equal when the loop
terminates, i.e., the error state is reached if there is a transition from location 3
to 6 at which a �= b. The label o/w (otherwise) denotes all transitions other

q0

qe

o/w

(3, !(a<x), 6), a!=b

(a) Property automaton A¬ϕb

q0

qf

o/w

(3, (a<x), 4), true

(b) Test-goal automaton Aϕt

Verification Artifacts in Cooperative Verification 159

Fig. 11. Automata for a correctness witness for program p and a violation witness
for p without line 5, both wrt. behavior specification ϕb of Fig. 10a

than the ones explicitly depicted. Figure 10b depicts a test-goal automaton
for the branch condition entering the loop.

(3) A violation-witness automaton Aω = (Q,Σ, δ, q0, F) is a protocol au-
tomaton with trivial state invariants only, i.e., ∀(·, ϕ) ∈ Q : ϕ = true.

Violation witnesses are used to describe the part of a program’s state space
which contains the error. The final state is reached if an error is detected. Coun-
terexamples are a specific form of violation witnesses which describe a single path.

(4) A correctness-witness automaton Aω = (Q,Σ, δ, q0, F) is a protocol
automaton that has only trivial transition assumptions, that is,
∀(q, (D,ψ), q′) ∈ δ : ψ = true , and all states are final states (F = Q).

A correctness witness typically gives information about the state space of the
program (like a loop invariant) in order to facilitate its verification.

In Fig. 11 we see both a correctness and a violation witness. The correctness
witness belongs to program p and, e.g., certifies that at location 3 variables a and
b are equal (via the invariant for q3). The violation witness on the right belongs
to program p with line 5 removed, i.e., a program which does not satisfy the
property stated in Fig. 10a. The violation witness states that an input value of
x being greater or equal to 1 is needed for directing the verifier towards the
error.

(5) A condition automaton Aψ = (Q,Σ, δ, q0, F) is a protocol automaton that
satisfies

1. ∀(·, ϕ) ∈ Q : ϕ = true (no invariants at states) and
2. ¬∃(qf , ·, q) ∈ δ with qf ∈ F (no transitions leaving final states).

q0 true

q1 true

q2 a = 0

q3 a = b

q4a = b

q5a− 1 = b

q6 a = b

(0,int x=input(), 1)

(1,int a=0, 2)

(2, int b=0, 3)

(3, a<x, 4) (3, !(a<x), 6)

(4, a++, 5) (5, b++, 3)

(a) Correctness-witness automaton Aω

q0

q0

q1

q2

q3

q4

qe

(0,int x=input(), 1), x ≥ 1

(1,int a=0, 2)

(2, int b=0, 3)

(3, a<x, 4)

(4, a++, 3)

(3, !(a<x), 6)

(b) Violation-witness automaton Aω

160 D. Beyer and H. Wehrheim

Fig. 12. Automata for a condition and a test case

A condition is typically used to describe parts of the state space of a program,
e.g., the part already explored during verification. Final states are thus used
to fix which paths have already been explored.

A test case is a sequence of input values consecutively supplied to the calls
of function input. Such a test case is encoded as protocol automaton using a
special template variable χ that can be instantiated with every program variable.

(6) A test-case automaton At = (Q,Σ, δ, q0, F) for a test case 〈z1, . . . , zn〉
is a protocol automaton with the following components:
Q= {q0, . . . , qn}, qi−1 −((∗,χ=input(),∗),χ=zi)−−−−−−−−−−−−−−→ qi, q0 −o/w−→ q0, qi −o/w−→ qi (i∈ [1, n])

and F = Q . For matching these special transitions (Gi, ψi) =(
(·, χ = input(), ·), χ = z

)
with program paths, the program transitions gi

have to be of the form (�, x = input(), �′) and the next state needs to satisfy
ci(x) = z, ci(y) = ci−1(y) for y �= x.

Figure 12a gives a condition stating the exploration of the state space for
inputs less or equal to 0. This could for instance be the output of a verifier
having checked that the property holds for inputs x ≤ 0. Figure 12b is the
test-case automaton for the test case 〈4〉.

Semantics of Protocol Automata. The above definitions fix the syntacti-
cal structure of protocol automata. In addition, we need to state their seman-
tics, i.e., the meaning of particular artifacts for a given program. In the fol-
lowing, we let Ap = (L, �0, G) be the CFA for a program p and A¬ϕb

, Aω, and
Aϕt

be protocol automata.

(i)Theprogram p fulfills a property specificationϕb if paths(Ap) ∩ L(A¬ϕb
) = ∅ .

Our running example p fulfills the property of Fig. 10a.

(ii) A correctness witness ω is valid for a program p and property specification ϕb

if paths(Ap) ⊆ paths(Aω) ∧ paths(Ap) ∩ L(A¬ϕb
) = ∅ . We see here that a cor-

rectness witnesses can thus be used to facilitate verification: when we run program,
property, and correctness witness in parallel in order to check the emptiness of
paths(Ap)∩L(A¬ϕb

), the correctness witness helps in proving the program correct.
The correctness witness in Fig. 11a is valid for p and the property in Fig. 10a.

(iii) A violation witness ω is valid for a program p and a property specification ϕb

if paths(Ap) ∩ L(Aω) ∩ L(A¬ϕb
) �= ∅ . During verification, violation witnesses

can thus steer the state-space exploration towards the property violation. Looking
again at the running example: If we elide the statement in location 5 of our

q0

q1

(0,int x=input(),1), x ≤ 0

(a) Condition automaton Aψ

q0

q1

o/w

(*, χ = input(), *), χ = 4

o/w

(b) Test-case automaton At

Verification Artifacts in Cooperative Verification 161

program, the automaton in Fig. 11b is a valid violation witness. It restricts the
state-space exploration to inputs for variable x which are greater or equal to 1.

(iv) A condition ψ is correct for a program p and property ϕb if
paths(Ap) ∩ L(Aψ) ∩ L(A¬ϕb

) = ∅ . All program paths accepted by the con-
dition fulfill the specification given by the property automaton. The condition in
Fig. 12a describes all paths of the program p which initially started with input x
less or equal to 0. This condition is correct for p and the property automaton in
Fig. 10a.

(v) A test-case t for a program p covers a goal of a test-goal specification ϕt

if paths(Ap) ∩ paths(At) ∩ L(Aϕt
) �= ∅ . Basically, we require that the inputs

provided by the test case guarantee the program execution to reach (at least
one) test goal. If there are more than one final state in the test-goal automaton
(or the final state can be reached via different paths), the test-goal automa-
ton specifies several test goals. In this case, the test case covers only some
of these goals. The test-case automaton in Fig. 12b for p covers the (single)
goal of the test-goal automaton in Fig. 10b.

5 Conclusion

Different verification approaches have different strengths, and the only way
to benefit from a variety of approaches is to combine them. The two classic
approaches of combining approaches either in white-box manner via a tight
conceptual integration or in black-bock manner via loosely coupled combinations,
such as portfolio or selection, are both insufficient.

We propose that cooperation is the right direction to go: a loosely-coupled
combination of tools that interact via clear interfaces and exchange formats,
in order to achieve the verification goal together. To this end, we provide a
classification and an overview of existing techniques, which we briefly describe,
while giving most importance to cooperative approaches. We add definitions
of several useful artifacts, actors, and their semantics.

As future work we see the development of tool combinations putting the
outlined cooperation approach into practice. Since a number of tools already
generate some of the discussed artifacts, they are “ready for cooperation”. Ulti-
mately, we aim at assembling a pool of actors which can be combined in various
ways and where some combination can be easily defined by users, e.g., with
the help of a domain-specific combination language.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Ball, T., Rajamani, S.K.: SLIC: A specification language for interface checking
(of C). Technical report MSR-TR-2001-21, Microsoft Research (2002)

162 D. Beyer and H. Wehrheim

3. Ball, T., Rajamani, S.K.: The SLAM project: Debugging system software via
static analysis. In: Proc. POPL, pp. 1–3. ACM (2002). https://doi.org/10.1145/
503272.503274

4. Ball, T., Bounimova, E., Kumar, R., Levin, V.: SLAM2: Static driver verification
with under 4% false alarms. In: Proc. FMCAD, pp. 35–42. IEEE (2010)

5. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: ACSL: ANSI/ISO C specification language version 1.15 (2020)

6. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J., Tetali, S., Thakur,
A.V.: Proofs from tests. IEEE Trans. Softw. Eng. 36(4), 495–508 (2010). https://
doi.org/10.1109/TSE.2010.49

7. Beyer, D.: Second competition on software verification (Summary of SV-COMP
2013). In: Proc. TACAS. LNCS, vol. 7795, pp. 594–609. Springer (2013). https://
doi.org/10.1007/978-3-642-36742-7 43

8. Beyer, D.: Software verification and verifiable witnesses (Report on SV-COMP
2015). In: Proc. TACAS. LNCS, vol. 9035, pp. 401–416. Springer (2015). https://
doi.org/10.1007/978-3-662-46681-0 31

9. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: Proc. ICSE, pp. 326–335. IEEE (2004). https://
doi.org/10.1109/ICSE.2004.1317455

10. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: The Blast
query language for software verification. In: Proc. SAS. LNCS, vol. 3148, pp. 2–18.
Springer (2004). https://doi.org/10.1007/978-3-540-27864-1 2

11. Beyer, D., Dangl, M.: Verification-aided debugging: An interactive web-service
for exploring error witnesses. In: Proc. CAV (2). LNCS, vol. 9780, pp. 502–509.
Springer (2016). https://doi.org/10.1007/978-3-319-41540-6 28

12. Beyer, D., Dangl, M.: Strategy selection for software verification based on Boolean
features: A simple but effective approach. In: Proc. ISoLA. LNCS, vol. 11245,
pp. 144–159. Springer (2018). https://doi.org/10.1007/978-3-030-03421-4 11

13. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchang-
ing verification results between verifiers. In: Proc. FSE, pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

14. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness valida-
tion and stepwise testification across software verifiers. In: Proc. FSE, pp. 721–733.
ACM (2015). https://doi.org/10.1145/2786805.2786867

15. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP. LNCS, vol. 10889,
pp. 3–23. Springer (2018). https://doi.org/10.1007/978-3-319-92994-1 1

16. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software ver-
ification. J. Autom. Reasoning 60(3), 299–335 (2018). https://doi.org/10.1007/
s10817-017-9432-6

17. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-flow
analysis. In: Handbook of Model Checking, pp. 493–540. Springer (2018). https://
doi.org/10.1007/978-3-319-10575-8 16

18. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. Int. J. Softw. Tools Technol. Transf. 9(5–6), 505–525 (2007). https://
doi.org/10.1007/s10009-007-0044-z

19. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: A technique to pass information between verifiers. In: Proc. FSE. ACM
(2012). https://doi.org/10.1145/2393596.2393664

https://doi.org/10.1145/503272.503274
https://doi.org/10.1145/503272.503274
https://doi.org/10.1109/TSE.2010.49
https://doi.org/10.1109/TSE.2010.49
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1007/978-3-540-27864-1_2
https://doi.org/10.1007/978-3-319-41540-6_28
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1145/2393596.2393664

Verification Artifacts in Cooperative Verification 163

20. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant synthesis
for combined theories. In: Proc. VMCAI. LNCS, vol. 4349, pp. 378–394. Springer
(2007). https://doi.org/10.1007/978-3-540-69738-1 27

21. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
Proc. PLDI, pp. 300–309. ACM (2007). https://doi.org/10.1145/1250734.1250769

22. Beyer, D., Henzinger, T.A., Théoduloz, G.: Lazy shape analysis. In: Proc.
CAV. LNCS, vol. 4144, pp. 532–546. Springer (2006). https://doi.org/10.1007/
11817963 48

23. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic preci-
sion adjustment. In: Proc. ASE, pp. 29–38. IEEE (2008). https://doi.org/10.1109/
ASE.2008.13

24. Beyer, D., Jakobs, M.C.: CoVeriTest: Cooperative verifier-based testing. In: Proc.
FASE. LNCS, vol. 11424, pp. 389–408. Springer (2019). https://doi.org/10.1007/
978-3-030-16722-6 23

25. Beyer, D., Jakobs, M.C., Lemberger, T., Wehrheim, H.: Reducer-based construc-
tion of conditional verifiers. In: Proc. ICSE, pp. 1182–1193. ACM (2018). https://
doi.org/10.1145/3180155.3180259

26. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software veri-
fication. In: Proc. CAV. LNCS, vol. 6806, pp. 184–190. Springer (2011). https://
doi.org/10.1007/978-3-642-22110-1 16

27. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD, pp. 189–197. FMCAD (2010)

28. Beyer, D., Lemberger, T.: Conditional testing: Off-the-shelf combination of test-
case generators. In: Proc. ATVA. LNCS, vol. 11781, pp. 189–208. Springer (2019).
https://doi.org/10.1007/978-3-030-31784-3 11

29. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for
efficient regression verification. In: Proc. FSE, pp. 389–399. ACM (2013). https://
doi.org/10.1145/2491411.2491429

30. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Survey
and unifying component framework. arXiv/CoRR 1905(08505), May 2019. https://
arxiv.org/abs/1905.08505

31. Beyer, D., Wendler, P.: Reuse of verification results: Conditional model check-
ing, precision reuse, and verification witnesses. In: Proc. SPIN. LNCS, vol. 7976,
pp. 1–17. Springer (2013). https://doi.org/10.1007/978-3-642-39176-7 1

32. Beyer, D.: Partial verification and intermediate results as a solution
to combine automatic and interactive verification techniques. In: Proc.
ISoLA. LNCS, vol. 9952, pp. 874–880. Springer (2016). https://doi.org/
10.1007/978-3-319-47166-2

33. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Proc. TACAS. LNCS, vol. 1579, pp. 193–207. Springer (1999). https://
doi.org/10.1007/3-540-49059-0 14

34. Castaño, R., Braberman, V.A., Garbervetsky, D., Uchitel, S.: Model checker exe-
cution reports. In: Proc. ASE, pp. 200–205. IEEE (2017). https://doi.org/10.1109/
ASE.2017.8115633

35. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog
(and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989)

36. Chalupa, M., Vitovská, M., Strejcek, J.: Symbiotic 5: Boosted instrumentation
(competition contribution). In: Proc. TACAS. LNCS, vol. 10806. Springer (2018).
https://doi.org/10.1007/978-3-319-89963-3 29

37. Christakis, M., Müller, P., Wüstholz, V.: Guiding dynamic symbolic execution
toward unverified program executions. In: Proc. ICSE, pp. 144–155. ACM (2016).
https://doi.org/10.1145/2884781.2884843

https://doi.org/10.1007/978-3-540-69738-1_27
https://doi.org/10.1145/1250734.1250769
https://doi.org/10.1007/11817963_48
https://doi.org/10.1007/11817963_48
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-030-31784-3_11
https://doi.org/10.1145/2491411.2491429
https://doi.org/10.1145/2491411.2491429
https://arxiv.org/abs/1905.08505
https://arxiv.org/abs/1905.08505
https://doi.org/10.1007/978-3-642-39176-7_1
https://doi.org/10.1007/978-3-319-47166-2
https://doi.org/10.1007/978-3-319-47166-2
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1109/ASE.2017.8115633
https://doi.org/10.1109/ASE.2017.8115633
https://doi.org/10.1007/978-3-319-89963-3_29
https://doi.org/10.1145/2884781.2884843

164 D. Beyer and H. Wehrheim

38. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794
(2003). https://doi.org/10.1145/876638.876643

39. Codish, M., Mulkers, A., Bruynooghe, M., de la Banda, M.G., Hermenegildo,
M.: Improving abstract interpretations by combining domains. In: Proc. PEPM,
pp. 194–205. ACM (1993). https://doi.org/10.1145/154630.154650

40. Cousot, P., Cousot, R.: Systematic design of program-analysis frameworks. In:
Proc. POPL, pp. 269–282. ACM (1979). https://doi.org/10.1145/567752.567778

41. Cruanes, S., Hamon, G., Owre, S., Shankar, N.: Tool integration with the Eviden-
tial Tool Bus. In: Proc. VMCAI. LNCS, vol. 7737, pp. 275–294. Springer (2013).
https://doi.org/10.1007/978-3-642-35873-9 18

42. Cruanes, S., Heymans, S., Mason, I., Owre, S., Shankar, N.: The semantics of
Datalog for the Evidential Tool Bus. In: Specification, Algebra, and Software,
pp. 256–275. Springer (2014)

43. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Proc. SEFM, pp. 233–247. Springer (2012). https://doi.org/10.1007/
978-3-642-33826-7 16

44. Czech, M., Hüllermeier, E., Jakobs, M., Wehrheim, H.: Predicting rankings of
software verification tools. In: Proc. SWAN, pp. 23–26. ACM (2017). https://
doi.org/10.1145/3121257.3121262

45. Czech, M., Jakobs, M., Wehrheim, H.: Just test what you cannot verify! In: Proc.
FASE. LNCS, vol. 9033, pp. 100–114. Springer (2015). https://doi.org/10.1007/
978-3-662-46675-9 7

46. Daca, P., Gupta, A., Henzinger, T.A.: Abstraction-driven concolic testing. In: Proc.
VMCAI. LNCS, vol. 9583, pp. 328–347. Springer (2016). https://doi.org/10.1007/
978-3-662-49122-5 16

47. Demyanova, Y., Pani, T., Veith, H., Zuleger, F.: Empirical software metrics for
benchmarking of verification tools. In: Proc. CAV. LNCS, vol. 9206, pp. 561–579.
Springer (2015). https://doi.org/10.1007/978-3-319-21690-4 39

48. Demyanova, Y., Pani, T., Veith, H., Zuleger, F.: Empirical software metrics for
benchmarking of verification tools. Formal Methods Syst. Des. 50(2–3), 289–316
(2017). https://doi.org/10.1007/s10703-016-0264-5

49. Ernst, G., Huisman, M., Mostowski, W., Ulbrich, M.: VerifyThis: Verification com-
petition with a human factor. In: Proc. TACAS. LNCS, vol. 11429, pp. 176–195.
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3 12

50. Fischer, J., Jhala, R., Majumdar, R.: Joining data flow with predicates. In: Proc.
FSE, pp. 227–236. ACM (2005). https://doi.org/10.1145/1081706.1081742

51. Gerrard, M.J., Dwyer, M.B.: Comprehensive failure characterization. In: Proc.
ASE, pp. 365–376. IEEE (2017). https://doi.org/10.1109/ASE.2017.8115649

52. Gerrard, M.J., Dwyer, M.B.: ALPACA: A large portfolio-based alternating condi-
tional analysis. In: Proc. ICSE, pp. 35–38. IEEE (2019). https://doi.org/10.1109/
ICSE-Companion.2019.00032

53. Godefroid, P., Sen, K.: Combining model checking and testing. In: Hand-
book of Model Checking, pp. 613–649. Springer (2018). https://doi.org/10.1007/
978-3-319-10575-8 19

54. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional may-must
program analysis: unleashing the power of alternation. In: Proc. POPL, pp. 43–56.
ACM (2010). https://doi.org/10.1145/1706299.1706307

55. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.:
Synergy: A new algorithm for property checking. In: Proc. FSE, pp. 117–127.
ACM (2006). https://doi.org/10.1145/1181775.1181790

https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/154630.154650
https://doi.org/10.1145/567752.567778
https://doi.org/10.1007/978-3-642-35873-9_18
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1007/978-3-319-21690-4_39
https://doi.org/10.1007/s10703-016-0264-5
https://doi.org/10.1007/978-3-030-17502-3_12
https://doi.org/10.1145/1081706.1081742
https://doi.org/10.1109/ASE.2017.8115649
https://doi.org/10.1109/ICSE-Companion.2019.00032
https://doi.org/10.1109/ICSE-Companion.2019.00032
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1145/1706299.1706307
https://doi.org/10.1145/1181775.1181790

Verification Artifacts in Cooperative Verification 165

56. Gulwani, S., Tiwari, A.: Combining abstract interpreters. In: Proc. PLDI,
pp. 376–386. ACM (2006). https://doi.org/10.1145/1133981.1134026

57. Gurfinkel, A., Albarghouthi, A., Chaki, S., Li, Y., Chechik, M.: Ufo: Verification
with interpolants and abstract interpretation (competition contribution). In: Proc.
TACAS. LNCS, vol. 7795, pp. 637–640. Springer (2013). https://doi.org/10.1007/
978-3-642-36742-7 52

58. Harman, M., Hu, L., Hierons, R.M., Wegener, J., Sthamer, H., Baresel, A., Roper,
M.: Testability transformation. IEEE Trans. Softw. Eng. 30(1), 3–16 (2004).
https://doi.org/10.1109/TSE.2004.1265732

59. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.: Behav-
ioral interface specification languages. ACM Comput. Surv. 44(3) (2012). https://
doi.org/10.1145/2187671.2187678

60. Henzinger, T.A., Jhala, R., Majumdar, R., Sanvido, M.A.A.: Extreme model check-
ing. In: Verification: Theory and Practice, pp. 332–358 (2003). https://doi.org/
10.1007/978-3-540-39910-0 16

61. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Query-driven program testing.
In: Proc. VMCAI. LNCS, vol. 5403, pp. 151–166. Springer (2009). https://doi.org/
10.1007/978-3-540-93900-9 15

62. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you specify your
test suite. In: Proc. ASE, pp. 407–416. ACM (2010). https://doi.org/10.1145/
1858996.1859084

63. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard com-
putational problems. Science 275(7), 51–54 (1997)

64. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Proc. LION. LNCS, vol. 6683, pp. 507–523.
Springer (2011). https://doi.org/10.1007/978-3-642-25566-3 40

65. Jakobs, M.C.: Speed up configurable certificate validation by certificate reduction
and partitioning. In: Proc. SEFM. LNCS, vol. 9276, pp. 159–174. Springer (2015).
https://doi.org/10.1007/978-3-319-22969-0 12

66. Jakobs, M.C., Wehrheim, H.: Certification for configurable program analysis. In:
Proc. SPIN, pp. 30–39. ACM (2014). https://doi.org/10.1145/2632362.2632372

67. Jakobs, M.: PARTPW : From partial analysis results to a proof witness. In: Proc.
SEFM. LNCS, vol. 10469, pp. 120–135. Springer (2017). https://doi.org/10.1007/
978-3-319-66197-1 8

68. Jakobs, M., Wehrheim, H.: Compact proof witnesses. In: Proc. NFM.
LNCS, vol. 10227, pp. 389–403. Springer (2017). https://doi.org/10.1007/
978-3-319-57288-8 28

69. Kildall, G.A.: A unified approach to global program optimization. In: Proc. POPL,
pp. 194–206. ACM (1973). https://doi.org/10.1145/512927.512945

70. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7),
385–394 (1976). https://doi.org/10.1145/360248.360252

71. Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories. In:
Proc. CAV. LNCS, vol. 7358, pp. 427–443. Springer (2012). https://doi.org/
10.1007/978-3-642-31424-7 32

72. Lerner, S., Grove, D., Chambers, C.: Composing data-flow analyses and trans-
formations. In: Proc. POPL, pp. 270–282. ACM (2002). https://doi.org/10.1145/
503272.503298

73. Leue, S., Befrouei, M.T.: Counterexample explanation by anomaly detection. In:
Proc. SPIN. LNCS, vol. 7385, pp. 24–42. Springer (2012). https://doi.org/10.1007/
978-3-642-31759-0 5

https://doi.org/10.1145/1133981.1134026
https://doi.org/10.1007/978-3-642-36742-7_52
https://doi.org/10.1007/978-3-642-36742-7_52
https://doi.org/10.1109/TSE.2004.1265732
https://doi.org/10.1145/2187671.2187678
https://doi.org/10.1145/2187671.2187678
https://doi.org/10.1007/978-3-540-39910-0_16
https://doi.org/10.1007/978-3-540-39910-0_16
https://doi.org/10.1007/978-3-540-93900-9_15
https://doi.org/10.1007/978-3-540-93900-9_15
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-319-22969-0_12
https://doi.org/10.1145/2632362.2632372
https://doi.org/10.1007/978-3-319-66197-1_8
https://doi.org/10.1007/978-3-319-66197-1_8
https://doi.org/10.1007/978-3-319-57288-8_28
https://doi.org/10.1007/978-3-319-57288-8_28
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-642-31424-7_32
https://doi.org/10.1007/978-3-642-31424-7_32
https://doi.org/10.1145/503272.503298
https://doi.org/10.1145/503272.503298
https://doi.org/10.1007/978-3-642-31759-0_5
https://doi.org/10.1007/978-3-642-31759-0_5

166 D. Beyer and H. Wehrheim

74. Margaria, T., Nagel, R., Steffen, B.: Remote integration and coordination of ver-
ification tools in jETI. In: Proc. ECBS, pp. 431–436 (2005). https://doi.org/
10.1109/ECBS.2005.59

75. Margaria, T.: Web services-based tool-integration in the ETI platform. Softw. Syst.
Modeling 4(2), 141–156 (2005). https://doi.org/10.1007/s10270-004-0072-z

76. Margaria, T., Nagel, R., Steffen, B.: jETI: A tool for remote tool integration. In:
Proc. TACAS. LNCS, vol. 3440, pp. 557–562. Springer (2005). https://doi.org/
10.1007/978-3-540-31980-1 38

77. Müller, P., Peringer, P., Vojnar, T.: Predator hunting party (competition contribu-
tion). In: Proc. TACAS. LNCS, vol. 9035, pp. 443–446. Springer (2015). https://
doi.org/10.1007/978-3-662-46681-0 40

78. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: Cil: Intermediate language
and tools for analysis and transformation of C programs. In: Proc. CC. LNCS,
vol. 2304, pp. 213–228. Springer (2002)

79. Necula, G.C., McPeak, S., Weimer, W.: CCured: Type-safe retrofitting of
legacy code. In: Proc. POPL, pp. 128–139. ACM (2002). https://doi.org/10.1145/
503272.503286

80. Nori, A.V., Rajamani, S.K., Tetali, S., Thakur, A.V.: The Yogi Project: Software
property checking via static analysis and testing. In: Proc. TACAS. LNCS, vol. 5505,
pp. 178–181. Springer (2009). https://doi.org/10.1007/978-3-642-00768-2 17

81. Novikov, E., Zakharov, I.S.: Towards automated static verification of GNU C pro-
grams. In: Proc. PSI. LNCS, vol. 10742, pp. 402–416. Springer (2017). https://
doi.org/10.1007/978-3-319-74313-4 30

82. Pauck, F., Bodden, E., Wehrheim, H.: Do Android taint-analysis tools keep
their promises? In: Proc. ESEC/FSE, pp. 331–341. ACM (2018). https://doi.org/
10.1145/3236024.3236029

83. Pauck, F., Wehrheim, H.: Together strong: Cooperative Android App analy-
sis. In: Proc. ESEC/FSE, pp. 374–384. ACM (2019). https://doi.org/10.1145/
3338906.3338915

84. Piterman, N., Pnueli, A.: Temporal logic and fair discrete systems. In: Hand-
book of Model Checking, pp. 27–73. Springer (2018). https://doi.org/10.1007/
978-3-319-10575-8 2

85. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976).
https://doi.org/10.1016/S0065-2458(08)60520-3

86. Rothenberg, B., Dietsch, D., Heizmann, M.: Incremental verification using trace
abstraction. In: Proc. SAS. LNCS, vol. 11002, pp. 364–382. Springer (2018).
https://doi.org/10.1007/978-3-319-99725-4 22

87. Serý, O.: Enhanced property specification and verification in Blast. In: Proc.
FASE. LNCS, vol. 5503, pp. 456–469. Springer (2009). https://doi.org/10.1007/
978-3-642-00593-0 32

88. Shankar, N.: Combining model checking and deduction. In: Handbook
of Model Checking, pp. 651–684. Springer (2018). https://doi.org/10.1007/
978-3-319-10575-8 20

89. Sherman, E., Dwyer, M.B.: Structurally defined conditional data-flow static analy-
sis. In: Proc. TACAS (2). LNCS, vol. 10806, pp. 249–265. Springer (2018). https://
doi.org/10.1007/978-3-319-89963-3 15

90. Steffen, B.: The physics of software tools: SWOT analysis and vision. Int.
J. Softw. Tools Technol. Transf. 19(1), 1–7 (2017). https://doi.org/10.1007/
s10009-016-0446-x

https://doi.org/10.1109/ECBS.2005.59
https://doi.org/10.1109/ECBS.2005.59
https://doi.org/10.1007/s10270-004-0072-z
https://doi.org/10.1007/978-3-540-31980-1_38
https://doi.org/10.1007/978-3-540-31980-1_38
https://doi.org/10.1007/978-3-662-46681-0_40
https://doi.org/10.1007/978-3-662-46681-0_40
https://doi.org/10.1145/503272.503286
https://doi.org/10.1145/503272.503286
https://doi.org/10.1007/978-3-642-00768-2_17
https://doi.org/10.1007/978-3-319-74313-4_30
https://doi.org/10.1007/978-3-319-74313-4_30
https://doi.org/10.1145/3236024.3236029
https://doi.org/10.1145/3236024.3236029
https://doi.org/10.1145/3338906.3338915
https://doi.org/10.1145/3338906.3338915
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1007/978-3-319-99725-4_22
https://doi.org/10.1007/978-3-642-00593-0_32
https://doi.org/10.1007/978-3-642-00593-0_32
https://doi.org/10.1007/978-3-319-10575-8_20
https://doi.org/10.1007/978-3-319-10575-8_20
https://doi.org/10.1007/978-3-319-89963-3_15
https://doi.org/10.1007/978-3-319-89963-3_15
https://doi.org/10.1007/s10009-016-0446-x
https://doi.org/10.1007/s10009-016-0446-x

Verification Artifacts in Cooperative Verification 167

91. Steffen, B., Margaria, T., Braun, V.: The Electronic Tool Integration plat-
form: Concepts and design. STTT 1(1–2), 9–30 (1997). https://doi.org/10.1007/
s100090050003

92. Torsney-Weir, T., Saad, A., Möller, T., Hege, H., Weber, B., Verbavatz, J.: Tuner:
Principled parameter finding for image segmentation algorithms using visual
response surface exploration. IEEE Trans. Vis. Comput. Graph. 17(12), 1892–1901
(2011). https://doi.org/10.1109/TVCG.2011.248

93. Tulsian, V., Kanade, A., Kumar, R., Lal, A., Nori, A.V.: MUX: Algorithm selection
for software model checkers. In: Proc. MSR. ACM (2014). https://doi.org/10.1145/
2597073.2597080

94. Turing, A.: Checking a large routine. In: Report on a Conference on High Speed
Automatic Calculating Machines, pp. 67–69. Cambridge Univ. Math. Lab. (1949)

95. Visser, W., Geldenhuys, J., Dwyer, M.B.: Green: Reducing, reusing, and recy-
cling constraints in program analysis. In: Proc. FSE, pp. 58:1–58:11. ACM (2012).
https://doi.org/10.1145/2393596.2393665

96. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test-input generation with Java
PathFinder. In: Proc. ISSTA, pp. 97–107. ACM (2004). https://doi.org/10.1145/
1007512.1007526

97. Wendler, P.: CPAchecker with sequential combination of explicit-state anal-
ysis and predicate analysis (competition contribution). In: Proc. TACAS.
LNCS, vol. 7795, pp. 613–615. Springer (2013). https://doi.org/10.1007/
978-3-642-36742-7 45

98. Xie, T., Zhang, L., Xiao, X., Xiong, Y., Hao, D.: Cooperative software testing and
analysis: Advances and challenges. J. Comput. Sci. Technol. 29(4), 713–723 (2014).
https://doi.org/10.1007/s11390-014-1461-6

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s100090050003
https://doi.org/10.1007/s100090050003
https://doi.org/10.1109/TVCG.2011.248
https://doi.org/10.1145/2597073.2597080
https://doi.org/10.1145/2597073.2597080
https://doi.org/10.1145/2393596.2393665
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1007/978-3-642-36742-7_45
https://doi.org/10.1007/978-3-642-36742-7_45
https://doi.org/10.1007/s11390-014-1461-6
http://creativecommons.org/licenses/by/4.0/

An Interface Theory for Program Verification

Dirk Beyer and Sudeep Kanav

LMU Munich, Munich, Germany

Abstract. Program verification is the problem, for a given program P
and a specification φ, of constructing a proof of correctness for the
statement “program P satisfies specification φ” (P |= φ) or a proof
of violation (P �|= φ). Usually, a correctness proof is based on inductive
invariants, and a violation proof on a violating program trace. Verifi-
cation engineers typically expect that a verification tool exports these
proof artifacts. We propose to view the task of program verification as
constructing a behavioral interface (represented e.g. by an automaton).
We start with the interface IP of the program itself, which represents all
traces of program executions. To prove correctness, we try to construct
a more abstract interface IC of the program (overapproximation) that
satisfies the specification. This interface, if found, represents more traces
than IP that are all correct (satisfying the specification). Ultimately, we
want a compact representation of the program behavior as a correctness
interface IC in terms of inductive invariants. We can then extract a cor-
rectness witness, in standard exchange format, out of such a correctness
interface. Symmetrically, to prove violation, we try to construct a more
concrete interface IV of the program (underapproximation) that violates
the specification. This interface, if found, represents fewer traces than IP
that are all feasible (can be executed). Ultimately, we want a compact
representation of the program behavior as a violation interface IV in
terms of a violating program trace. We can then extract a violation wit-
ness, in standard exchange format, out of such a violation interface. This
viewpoint exposes the duality of these two tasks — proving correctness
and violation. It enables the decomposition of the verification process,
and its tools, into (at least!) three components: interface synthesizers,
refinement checkers, and specification checkers. We hope the reader finds
this viewpoint useful, although the underlying ideas are not novel. We
see it as a framework towards modular program verification.

Keywords: Program verification · Interface theory · Cooperative
verification · Software verification · Verification interface · Verification
witness · Conditional model checking · Tool combination · Modular
verification

1 Introduction

Software verification solves the problem of finding out, for a given program P and
a behavioral specification φ, whether the program fulfills the specification, writ-

Funded in part by Deutsche Forschungsgemeinschaft (DFG) – 378803395 (ConVeY).

c© The Author(s) 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 168–186, 2020.
https://doi.org/10.1007/978-3-030-61362-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_9&domain=pdf
http://orcid.org/0000-0003-4832-7662
http://orcid.org/0000-0001-6078-4175
http://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.1007/978-3-030-61362-4_9

An Interface Theory for Program Verification 169

ten P |= φ, or not, written P �|= φ. The problem is in general undecidable [26,48],
but we can create verification tools that solve some practical instances of the prob-
lem with reasonable performance. The society and industry depends on correctly
working software. As often with difficult problems, there are many different heuris-
tics that lead to different verification tools with different strengths [7,15,37]. Soft-
ware verification is applied more and more to industry-scale software [5,24,29,39].

Our motivation is to decompose the problem of software verification in such
a way that parts of the problem can be given to different verification tools,
which can be specialized to solve their part of the problem. Tools for software
verification usually work on an internal representation of the program, which
is an overapproximation (to prove correctness), or an underapproximation (to
prove violation), or neither of the two (intermediate result). We call these internal
representations verification interfaces, and we would like to make them explicit
and ideally export them to the user, such that the verification problem can be
composed into sub-problems that can be solved by different tools.

In theory, the answer to the verification problem is True or False, and early
tools only reported those answers. It became clear quickly that in practice,
the value lays not in the short answer, but in the explanation —a verification
witness— that describes the answer True or False in more detail. Thus, model
checkers started exporting counterexamples when the answer was False [28]. It
took another 20 years to make counterexamples exchangeable using a standard
XML format for violation witnesses [11]. The format was quickly adopted by
many publicly available tools for software verification1 and got extended to
correctness witnesses later [10]. Exporting witnesses for decisions computed by
algorithms seems to be standard also in other areas [42,50].

Contributions. As a first step towards the decomposition of verification tools, we
define interfaces, state the interface theorems (known from refinement calculus [44]
and interface automata [3]) to enable modular verification, discuss the various
proof flows, including the connection to verification witnesses, and discuss a few
approaches as we see them through the lens of interfaces.

Related Work. The insights in this paper stem from our work on capturing
the essence of the program-verification process in verification witnesses [10,11],
which is a large project that started seven years ago [21]. The basic idea is to
summarize, materialize, and conserve the information that the verification system
uses internally for the proof of correctness or violation.

The foundational ideas that we use in this paper are well-known, such as seeing
the correctness proofs as a modular two-step approach that consists of (i) captur-
ing the semantics and deduct specification satisfaction (e.g., using a correctness
logic [34] or an incorrectness logic [45]) and (ii) base the proof on refinements [44].

The inspiration to call the objects of interest interface comes from the interface
theories for concurrent systems [3], for timed systems [4], for resources [25], for
web services [8], and for program APIs [17,33].

1 For C programs: https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/tree/svcomp20/2020

https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/tree/svcomp20/2020

170 D. Beyer and S. Kanav

2 Verification via Interfaces

For simplicity, we restrict our consideration to specifications of safety properties,
and to programs that contain only variables of type integer and no function
calls. The theory can be extended naturally.

2.1 Verification Interfaces

A program P is usually represented as a control-flow graph (CFA) [1,40] or
control-flow automaton [15,16]. A control-flow automaton P = (L, l0, G) consists
of a set L of program locations, an initial program location l0, and a set G ⊆
L ×Ops × L of control-flow edges, which transfer from one program location to
another on a program operation from Ops. The program operations operate on
a set of program variables X. For defining interfaces, we use protocol automata
from the literature on verification witnesses [11,20], in order to emphasis the
similarity of verification interfaces with verification witnesses.

A verification interface (Q,Σ, δ, qinit, F) for a program P is a nondeterministic
finite automaton and its components are defined as follows (the set Φ contains
all predicates of a given theory over the set X of variables of P):

1. The set Q ⊆ Γ × Φ is a finite set of control states, where each control
state (γ, ϕ) ∈ Q has a name γ from a set Γ of names, which can be used to
uniquely identify a control state q within Q, and an invariant ϕ ∈ Φ, which is
a predicate over program variables that evaluates to true whenever a program
path reaches a program location that is matched by this control state.2

2. The set Σ ⊆ 2G × Φ is the alphabet, in which each symbol σ ∈ Σ is a
pair (S, ψ) that comprises a finite set S ⊆ G of CFA edges and a state
condition ψ ∈ Φ.

3. The set δ ⊆ Q × Σ × Q contains the transitions between control states, where
each transition is a triple (q, σ, q′) with a source state q ∈ Q, a target
state q′ ∈ Q, and a guard σ = (S, ψ) ∈ Σ comprising a source-code guard S
(syntax), which restricts a transition to the specific set S ⊆ G of CFA edges,
and a state-space guard ψ ∈ Φ (semantics), which restricts the state space to
be considered by an analysis that consumes the protocol automaton. We also
write q σ−→q′ for (q, σ, q′) ∈ δ.

4. The control state qinit ∈ Q is the initial control state of the automaton.
5. The subset F ⊆ Q contains the accepting control states.

For a given interface (Q,Σ, δ, qinit, F), a sequence 〈q0, . . .〉 of states from Q
is called path if it starts in the initial state, i.e., q0 = qinit, and there exists a
transition between successive control states, i.e., qi −·→ qi+1 for all i ∈ [0, n − 1].
A test vector [9] specifies the values for input variables of a program. A path p
is called P-feasible, if a test vector exists3 for which p can be executed in P ,

2 For example, an invariant that is matched for a loop-head location is called loop
invariant of the program.

3 Note that a test vector can have length zero if no input values are necessary to
execute a path.

An Interface Theory for Program Verification 171

1 x = nondet();
2 if (x < −10)
3 exit(1);
4

5 if (x < 0)
6 x = −x;
7

8 if (x >= 0)
9 return x;

10 else
11 error();
12

Listing 1. Correct program

1 x = nondet();
2 if (x < −10)
3 exit(1);
4

5 if (x > 0)
6 x = −x;
7

8 if (x >= 0)
9 return x;

10 else
11 error();
12

Listing 2. Violating program

Fig. 1. Program interface for Listing 1 Fig. 2. Program interface Listing 2

otherwise the path is called P-infeasible. The semantics L(I) of a verification
interface I is defined as the set of all paths of I.

Refinement. Given two verification interfaces I1 and I2, we say that I1 refines I2,
written I1 � I2, if L(I1) ⊆ L(I2).

Program Interface. If our goal is to reason about interfaces, we need to
be able to represent the control-flow automaton of a program also as an
interface. For a given program P , the corresponding program interface IP =
(QP , ΣP ,−→P , (l0, true), QP) consists of the following components:

5

6

8

9 11

12

[x < 0]

[!(x < 0)]

[!(x >= 0)]

x = -x;

[x >= 0]

2

0

3

x = nondet();

[!(x < -10)]
[x < -10]

return x;
error();

exit(1); 5

6

8

9 11

12

[x > 0]

[!(x > 0)]

[!(x >= 0)]

x = -x;

[x >= 0]

2

0

3

x = nondet();

[!(x < -10)]
[x < -10]

return x;
error();

exit(1);

172 D. Beyer and S. Kanav

1. The set QP = L × {true} of control states represents the program locations,
where the set L models the program-counter values, and the invariant is true
for all program locations.

2. The set ΣP = GP × {true} of alphabet symbols represents the program
operations, where the set GP = {{g} | g ∈ G} models the program operations
when control flows from one location to the next, and the guard is true for
all operations. Each transition is labeled with exactly one control-flow edge
(therefore the singleton construction above).

3. The set −→P ⊆ QP ×ΣP ×QP of transitions represents the control-flow edges
of the program.

4. The initial control state (l0, true) ∈ QP consists of the program-entry location
and the invariant true.

5. The set of final control states is the set QP of all control states, which models
that the program executions can potentially end at any given time (e.g., by
termination from the operating system).

The set L(IP) of paths in IP contains (by definition) exactly the paths of P ,
in other words, each program execution corresponds to a P -feasible path of
the verification interface IP .

Example 1. We consider as example a program that is supposed to compute
the absolute value of an integer number, if the value is not smaller than -10.
The program first reads an integer value into variable x, and exits if the
value is smaller than -10. Then, if the value is smaller than zero, the value is
inverted. If the operation was successful, the new value is returned, otherwise
an error is signaled. Listings 1 and 2 show two C programs, one correct and
one with a typo as bug: in line 5, the programmer mistyped the less-than
as a larger-than. Figures 1 and 2 show the program interfaces for the two C
programs from Listings 1 and 2. We use a compact notation for a transition
label (S, ψ), where we omit the set braces for the set S of CFA edges, if S is
a singleton, we omit the source and target control states and only print the
operation, and we omit the state-space guard if it is true. The background
color of a control state indicates membership in the set F : gray for final
(accepting) and light-red for non-final (non-accepting) control states.

Specification Interface. Specifications are typically given as LTL formulas [46]
or as monitor automata [15,47]. Since we focus on safety specifications, we
use monitor automata. In order to use a uniform formalism, we use interfaces
here also. A specification interface Iφ = (Qφ, Σφ,−→φ, qinit, Fφ) consists of the
following components:

1. The set Qφ ⊆ Γ × {true} of control states (all state invariants are true).
2. The set Σφ = 2G ×{true} of labels that match control-flow edges, where each

label has a set of control-flow edges for the matching, and the guard is true
for all transitions.

3. The set −→S ⊆ Qφ × Σφ × Qφ of transitions represents the state changes
according to the monitored control-flow edges of the program.

An Interface Theory for Program Verification 173

4. The initial control state is qinit ∈ Qφ, with the invariant true, i.e., qinit =
(·, true).

5. The set Fφ ⊆ Qφ of final control states are those control states in which the
interface accepts the path, that is, the represented specification is satisfied.

Correctness and Violation. Given a verification interface I and a specifica-
tion φ, the verification interface is correct, written as I |= φ, if L(I) ⊆ L(Iφ),
or, using the notion of refinement of verification interfaces, I � Iφ, otherwise
the verification interface is violating.

Verification Problem. Given a program P and a specification φ, verification
is the problem of finding either a correctness proof for P |= φ or a violation
proof for P �|= φ.

Since we know that the program interface IP is path-equivalent to the
program P , and that the specification interface Iφ represents a monitor au-
tomaton for the specification φ, we can restate the verification problem in
terms of verification interfaces:

Given a program P and a specification φ, verification is the problem of finding
either a correctness proof for IP � Iφ or a violation proof for IP �� Iφ.4

Traditionally, the verification problem is solved in one monolithic procedure,
or in an alternating sequence of attempts to prove P |= φ or P �|= φ. Our goal
is to decompose the proof-finding process into smaller parts.

Figure 3 illustrates the space of verification interfaces. Each node represents
an interface and each dotted line represents that the lower interface refines the
upper interface. On the very top, we have the interface I�, which accepts all
paths, and I � I� holds for all interfaces I. On the very bottom, we have the
interface I⊥, which accepts no paths, and I⊥ � I holds for all interfaces I. These
two parts of the picture are not interesting and we will not revisit them.

The program interface IP is the center of the interface space, and the ver-
ification problem is to answer the question whether it belongs to the area
of correctness interfaces (marked by |= φ, light blue) or to the area of the
violation interfaces (marked by �|= φ, red).

The specification interface Iφ is the top-most element in the refinement
hierarchy inside the area of correctness interfaces, that is, Iφ is the most abstract
correctness interface. If IP � Iφ holds, then there exists is a refinement path
through the area of correctness interfaces from the program interface to the
specification interface. This is well-known from refinement calculus [44] and is
applied for proving correctness. There is a symmetry for proving violation, which
was not yet emphasized in the literature:

The test-vector interface IT contains one feasible violating path and is the
bottom-most element in the refinement hierarchy inside the area of violation

4 There are various ways for reasoning in order to obtain a proof, for example, strongest
post-conditions [34] are traditionally used for correctness proofs and incorrectness
logic [45] was recently proposed for violation proofs.

174 D. Beyer and S. Kanav

Fig. 3. Space of verification interfaces

interfaces, that is, IT is the most concrete violation interface.5 If IT � IP holds,
then there exists is a refinement path through the area of violation interfaces
from the test-vector interface to the program interface.

5 There might be several violating test-vectors for different bugs (as there might be
different specifications for the overall correctness of the program), but let us assume
for simplicity that there is only one violating test vector.

IP
Program
Interface IP

Iφ
Specification
Interface Iφ

I>

IT
Test-Vector
Interface IT

I⊥

IT ′

Co
rr

ec
tn

es
s

Pr
es

er
vi

ng
A

bs
tr

ac
tio

n

Re
fin

em
en

t
Fe

as
ib

ili
ty

Pr
es

er
vi

ng
Re

fin
em

en
t

A
bs

tr
ac

tio
n

IC
Correctness
Interface IC

IV
Violation
Interface IV

|= φ

6|= φ

I¬C

I¬V

An Interface Theory for Program Verification 175

Fig. 4. Specification
interface

Fig. 5. Feasible interface
(test vector for Listing 2)

Fig. 6. Infeasible interface
(test vector for Listing 2)

Example 2. Figure 4 shows an example specification interface (Iφ in Fig. 3)
for representing a safety specification. The specification interface starts from
an initial state qinit and transitions to the non-final (non-accepting, violating)
control state qE when it encounters a call to function error. A program is
correct if the non-accepting state is never reached during any execution,
otherwise it is said to violate the specification.

Figure 5 shows an example interface (IT in Fig. 3) representing a test
vector for our violating example program in Listing 2. Here, the test vector
assumes that variable x was assigned the value 5 (expressed by the state-space
guard after the colon) by the call to function nondet. Note that the label of a
transition is a pair (S, ψ) and here we have S is the set {(0, x = nondet();, 2)}
and ψ is the predicate x = 5. Then, the automaton either keeps on looping in
control state 2, or transitions to the non-accepting (violating) control state 12
on a call to function error.

Figure 6 shows an example test-vector interface (IT ′ in Fig. 3) that is
infeasible for our violating example program in Listing 2. Here, the test
vector assumes that variable x was assigned the value -15 by the call to
function nondet. Then, the automaton either keeps on looping in the control
state 2, or transitions to the non-accepting (violating) control state 12 on a
call to function error. This interface is infeasible because our program would
exit (line 3 of Listing 2) if x was assigned -15.

2.2 Modular Verification using Interfaces

As illustrated in Fig. 3, there are intermediate correctness interfaces between the
program and the specification, and there are intermediate violation interfaces
between the program interface and the test-vector interface.

Theorem 1 (Refinement Preserves Correctness). Given a program P ,
a specification φ, and an interface IC , if IC |= φ and IP � IC , then P |= φ.

According to Theorem 1 [44], we can now use an intermediate correctness interface
to construct a correctness proof via the interface: Given a program P , a specifi-

qE

qinit

error();

G\error();

G 12

0

2

x = nondet();
: 〈x = 5〉

error();

G\error();

12

0

2

x = nondet();
: 〈x = −15〉

error();

G\error();

176 D. Beyer and S. Kanav

Fig. 7. Correctness interface for correct
program (Listing 1)

Fig. 8. Violation interface for
violating program (Listing 2)

cation φ, and an interface IC , to prove P |= φ it is sufficient to prove (i) IC |= φ
and (ii) IP � IC . An intermediate correctness interface IC is also drawn in Fig. 3.

The requirement for constructing correctness interfaces is to represent (a) only
correct program paths (satisfying the specification) and (b) try to enlarge the
set of paths until a compact form is reached. The quality of a correctness
interface I1 is often felt better than the quality of I2, if I2 � I1, or L(I2) ⊆ L(I1).
Requirement (a) can be proven with a Hoare logic [34].

To construct an induction proof, we would like to add another requirement:
(c) all the invariants in the control states of the correctness interfaces are inductive.
Therefore, Fig. 3 has two marked areas between the program and the specification
interface: The large (light-blue) area represents all correctness interfaces, the
smaller (green) area represents all correctness interfaces whose invariants are
inductive. We use the notion of inductive invariants as used in the literature [30].

Example 3. Figure 7 shows an example correctness interface IC for the pro-
gram in Listing 1. The green rectangles at control states show the state
invariants. The paths leading to the violating program location (i.e., taking
the violating transition) in the program interface of Fig. 1 are not contained
in the correctness interface because they are infeasible.

To emphasize the symmetry between correctness and violation proofs, we
write the below text using a wording as close as possible to the above.

5

6

8

9

12

x >= 0

x >= -10
[x < 0]

[!(x < 0)]

x = -x;

[x >= 0]

2

0

3

x = nondet();

[!(x < -10)]
[x < -10]

return x;

exit(1); 5

6

8

11

12

[x > 0]

[!(x > 0)]

[!(x >= 0)]

x = -x;

2

0

x = nondet();
: 〈¬(x < −10)〉

[!(x < -10)]

error();

An Interface Theory for Program Verification 177

Theorem 2 (Abstraction Preserves Violation). Given a program P ,
a specification φ, and an interface IV , if IV �|= φ and IV � IP , then P �|= φ.

According to Theorem 2, we can now use an intermediate violation interface to
construct a violation proof via the interface: Given a programP , a specification φ,
and an interface IV , to prove P �|= φ it is sufficient to prove (i) IV �|= φ and
(ii) IV � IP . An intermediate violation interface IV is also drawn in Fig. 3.

The requirement for constructing violation proofs is to represent (a) only
feasible program paths (being executable) and (b) try to reduce the set of paths
until only one is left. The quality of a violation interface I1 is often felt better
than the quality of I2, if I1 � I2, or L(I1) ⊆ L(I2). Requirement (a) can be
proven with an incorrectness logic [45].

To construct a counterexample proof, we would like to add another require-
ment: (c) all the feasible paths of the violation interfaces are violating. Therefore,
Fig. 3 has two marked areas between the program and the test-vector interface:
The large (light gray) area represents all feasible interfaces, the smaller (red)
area represents all violation interfaces that contain only violating paths.

Example 4. Figure 8 shows an example violation interface IV for the program
in Listing 2. This interface only shows the paths leading to the non-accepting
(violating) control state (i.e., taking the violating transition) in Fig. 2.

Theorem 3 (Substitutivity of Interfaces). Given two verification interfaces
I1 and I2 with I1 � I2 and a specification φ, if I2 |= φ, then I1 |= φ (and if
I1 �|= φ, then I2 �|= φ).

Using Theorem 3, we can use the concept of step-wise refinement in proofs of
correctness [44] and in proofs of violation [11]. Theorem 3 lets us substitute one
interface by another one while preserving the (dis-) satisfaction of the specification.

2.3 Proof Flows using Interfaces and Witnesses

Figure 9 illustrates the possible ways to construct proofs. In the interface domain
on the left, the figure shows the program interface IP , a correctness interface IC ,
and a violation interface IV . In the domain of the software engineer, we have
the specification φ, the program P , the test vector T , and two verification
witnesses WC and WV . The correctness witness WC [10] is a representation of
the verification results if the verification tool constructed a correctness proof;
the violation witness WV [11] is a representation of the verification results if
the verification tool constructed a violation proof.

Proving Correctness. To prove the correctness P |= φ for a given program P
and a specification φ, we can use interfaces in the following way: First we embed
the program P into the interface domain by constructing IP . This is simply done
by applying the definition. The creative part of the proof construction is to come
up with the correctness interface IC that contains invariants that are inductive.
So the actual proof consists of three steps: (a) construct IC , (b) show IP � IC ,

178 D. Beyer and S. Kanav

Fig. 9. Proof flows using the interface domain

and (c) show IC |= φ. At the end, we can extract a correctness witness WC

in an exchange format to share with tools and users.
A correctness witness overapproximates the correctness interface that it is

extracted from. The intention of a correctness witness is to represent useful
information to help reconstructing a correctness proof [10], but it might be
overapproximating too much, that is, having invariants that are not inductive, or
even weaker than the specification. In other words, a correctness witness might
describe a set of paths that includes also violating paths, while a correctness
interface is guaranteed to represent only correct (and inductive) paths.

Proving Violation. To prove the violation P �|= φ for a given program P and a
specification φ, we can use interfaces in the following way: First we embed the
program P into the interface domain by constructing IP . Again, this is simply
done by applying the definition. The creative part of the proof construction is

Interface Domain Programmer Domain

IP
Program
Interface P Program

transformation

IC
Correctness
Interface WC

Correctness
Witness

φ Specification

abstraction summarization

transformation

sati
sfies

testifies

IV
Violation
Interface WV

Violation
Witness

T Test
Vector

refinement concretization

transformation

testifies

represents

An Interface Theory for Program Verification 179

to come up with the violation interface IV that describes paths that all violate
the specification. So the actual proof consists of three steps: (a) construct IV ,
(b) show IV � IP , and (c) show IV �|= φ. At the end, we can extract a violation
witness WV in an exchange format to share with tools and users.

A violation witness overapproximates the violation interface that it is
extracted from. The intention of a violation witness is to represent useful infor-
mation to help reconstructing a violation proof [11], but it might be overap-
proximating too much, that is, including paths that are not violating, or not
even feasible. In other words, a violation witness might describe a set of paths
that includes also correct paths, while a violation interface is guaranteed to
represent only feasible (and violating) paths.

3 Decomposing Verification and Cooperative Verification

The original goal of our work is to find ways to decompose verification tasks in
such a way that several tools, written by different development teams, cooper-
ate to solve the verification task. In fact, the proof flows that were explained
in the previous section are actually used in practice, but their three steps are
usually hidden under the hood of the verification engine, and the flow is mostly
implemented in a monolithic way.

Our proposal is to make the interfaces eminent, and to explicitly separate
the steps of the overall proof. From this it follows that the steps need not
necessarily be taken care of by the same verifier. The idea is to decompose the
overall verification process into parts that can be performed by specific tools,
optimized for their part of the proof. Verification interfaces are a great tool to
make program verification compositional, involving different tools that solve the
problem together in a cooperative manner [20]. Thus, we need three kinds of tools:

• Interface synthesizers, to construct an interface
• Refinement checkers, to check I1 � I2

• Specification checkers, to check I |= φ

In the following, we put new and existing approaches to verification into the
perspective of interfaces, by motivating their existence (for new or recent ones)
and by trying to explain the internal working of some existing approaches.

3.1 Decomposed Approaches

Learning and Approximate Methods. Classically, we need approaches to
construct interfaces that are valid, that is, interfaces with inductive invariants
for correctness proofs and interfaces that are feasible and validating for violation
proofs. But given existing checkers as explained above, we can use approxi-
mate methods to construct interfaces that are not guaranteed to be helpful
for the proof construction. Since the interfaces can be checked, it is easy to
refute them or prove that they are indeed useful. Also, such interfaces might

180 D. Beyer and S. Kanav

Fig. 10. Validation flows using the interface domain

be helpful to be further refined or abstracted to become more useful for the
proof process. Furthermore, it might be interesting to come up with violation
interfaces via learning-based testing [43].

Refiners. Besides the above-mentioned checkers, we can imagine tools that
take an interface I1 as input and refine (e.g., reduce) it in order to construct
a new interface I2 such that I2 � I1. This idea is already used in the context
of conditional model checking [18] (Reducers).

Abstracters. For the other direction, we can imagine tools that take an in-
terface I1 as input and abstract (e.g., extend, slice) it in order to construct
a new interface I2 such that I1 � I2. This is an old but effective idea and
used in program slicing [49].

Interactive Verification. The process of interactively constructing a proof in
software verification using tools like Dafny [41], KeY [2], and Why3 [31] can be

Interface Domain Programmer Domain

IP
Program
Interface P Program

transformation

IC
Correctness
Interface WC

Correctness
Witness

φ Specification

abstracts summarization

transformation

sati
sfies

testifies

IV
Violation
Interface WV

Violation
Witness

T Test
Vector

refines concretization

transformation

testifies

represents

An Interface Theory for Program Verification 181

seen through the interface lens as follows: The human defines the correctness
interface, usually by injecting the invariants in the program source code using
annotations, and the verifier checks the refinement and specification satisfaction.

Witness-Based Results Validation. A validator for verification results takes
the correctness witness WC and transforms it to the internal interface repre-
sentation IC , that is, the validator does not need to come up with IC (and the
contained invariants) but applies only a (syntactic) transformation. Figure 10
tries to illustrate this flow. Then, the validator tries to prove IP � IC and IC |= φ.
Symmetrically, for validating a violation result, the validator takes the violation
witness WV and transforms it to the internal interface representation IV , which
ideally describes an error path that it can easily replay and check for feasibility
and violation, i.e., IV � IP and IV �|= φ. Regarding multi-threaded programs,
there is support for verification witnesses and their validation already [14].

k-Induction. There are verification approaches that consist of two engines,
(a) an invariant-generator and (b) an inductiveness checker [12,13,38]. The
former constructs the most essential parts of the correctness interface IC (the
invariants, done in parallel in an isolated separate process), while the latter
performs the checks IP � IC and IC |= φ, with ever increasing values for
length k of the inductive-step.

3.2 Integrated Approaches

CEGAR—Explained using Interfaces. Counterexample-guided abstraction
refinement (CEGAR) [27] is an approach that uses the following steps in a loop
until a proof of either correctness or violation is constructed:

1. construct an abstract model Ia using a given precision
2. check Ia |= φ; if it holds, terminate with answer (True,WC) (the interface Ia

corresponds to an interface IC in Fig. 3, the correctness witness WC in Fig. 9
is an abstraction of IC)

3. extract counterexample interface Ib from Ia (interface Ia corresponds to
interface I¬C in Fig. 3)

4. check Ib �|= φ; if it holds, terminate with answer (False,WV) (the interface Ib

corresponds to an interface IV in Fig. 3, the violation witness WV in Fig. 9
is an abstraction of IV)

5. extract new facts to refine the precision (derived from the infeasibility of Ib)
and continue with step (1); (the interface Ib corresponds to an interface I¬V

in Fig. 3)

Theorems 1 and 2 explain the correctness of CEGAR-based software model
checking: The interfaces IC and IV can be used to prove the correctness and
violation, respectively, using an internal specification checker and feasibility
checker. Note that the feasibility checker in CEGAR is given by the above-
described refinement checker (all refinements of the program interface IP are

182 D. Beyer and S. Kanav

Fig. 11. Explaining CEGAR using interfaces

feasible, see Fig. 3). Figure 11 illustrates the alternation of the CEGAR loop
between trying to prove correctness and trying to prove violation.

The resulting correctness interface IC (in case of outcome True) contains
predicates describing inductive invariants (overapproximation of IP), and the
resulting violation interface IV (in case of outcome False) contains (at least
one) feasible and violating path (underapproximation of IP).

Test Generation. Theorem 2 explains the process of symbolic-execution-based
test generation (as done, e.g., by Klee [23]): The approaches leverage con-
cretization mechanisms to construct a refined interface (constraints describing
error paths, underapproximation) and the process must ensure feasibility, until
a violating interface is found.

Explicit-State Model Checking. In some approaches to verification, the
complete state space is exhaustively enumerated and checked [6,19,32,36]. When
proving correctness of a program, those approaches operate on the same level of

IP

Iφ

IT

I>

I⊥

IC

IV

|= φ

6|= φ

I¬C1

I¬C2
I¬C3

I¬V 1

I¬V 1

I¬V 1

refine

ab
st
ra
ct

refine
ab
str
ac
t

An Interface Theory for Program Verification 183

abstraction as the program itself, there is neither over- nor under-approximation.
Thus, the most compact correctness interface used by such a verifier is the program
interface IP — these approaches cannot benefit from abstraction. However, when
proving violation of a program, once an error path is encountered, the verifier
can terminate the exploration and the partially explored state space can be
seen as violation interface (which represents only a subset of all paths). Similar
observations hold for SMT-based bounded model checking [22].

4 Conclusion

Software verification is a grand challenge of computer science [35]. Many powerful
tools and approaches have been developed for program verification. Different
approaches come with different strengths, and in order to join forces, we need
to investigate ways to combine approaches. We are looking into possibilities
to decompose a verification problem into smaller sub-problems in such a way
that we can assign them to different tools (cooperative verification [20]). To
achieve this, we extended the schema for proving correctness from refinement
calculus by a symmetric schema for proving violation of program specifications.
We hope that our interface-based viewpoint stimulates discussion on how we
can achieve more modularity and decomposition in software verification. As
future work, we plan to integrate compositional proofs into CoVeriTeam6 —
a tool to compose verification actors.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley (1986)

2. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W.,
Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool. Softw. Syst.
Model. 4(1), 32–54 (2005). https://doi.org/10.1007/s10270-004-0058-x

3. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proc. FSE, pp. 109–120.
ACM (2001). https://doi.org/10.1145/503271.503226

4. de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In: Proc. EMSOFT,
LNCS, vol. 2491, pp. 108–122. Springer (2002). https://doi.org/10.1007/
3-540-45828-x 9

5. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model check-
ing with Slam. Commun. ACM 54(7), 68–76 (2011). https://doi.org/10.1145/
1965724.1965743

6. Baranová, Z., Barnat, J., Kejstová, K., Kučera, T., Lauko, H., Mrázek, J.,
Ročkai, P., Štill, V.: Model checking of C and C++ with Divine 4. In: Proc.
ATVA, LNCS, vol. 10482, pp. 201–207. Springer (2017). https://doi.org/10.1007/
978-3-319-68167-2 14

7. Beckert, B., Hähnle, R.: Reasoning and verification: State of the art and current
trends. IEEE Intell. Syst. 29(1), 20–29 (2014). https://doi.org/10.1109/MIS.2014.3

8. Beyer, D., Chakrabarti, A., Henzinger, T.A.: Web service interfaces. In: Proc.
WWW, pp. 148–159. ACM (2005). https://doi.org/10.1145/1060745.1060770

6 https://gitlab.com/sosy-lab/software/coveriteam/

https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1145/503271.503226
https://doi.org/10.1007/3-540-45828-x_9
https://doi.org/10.1007/3-540-45828-x_9
https://doi.org/10.1145/1965724.1965743
https://doi.org/10.1145/1965724.1965743
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1109/MIS.2014.3
https://doi.org/10.1145/1060745.1060770
https://gitlab.com/sosy-lab/software/coveriteam/

184 D. Beyer and S. Kanav

9. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: Proc. ICSE, pp. 326–335. IEEE (2004). https://
doi.org/10.1109/ICSE.2004.1317455

10. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchang-
ing verification results between verifiers. In: Proc. FSE, pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

11. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness valida-
tion and stepwise testification across software verifiers. In: Proc. FSE, pp. 721–733.
ACM (2015). https://doi.org/10.1145/2786805.2786867

12. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined
invariants. In: Proc. CAV, LNCS, vol. 9206, pp. 622–640. Springer (2015). https://
doi.org/10.1007/978-3-319-21690-4 42

13. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software
verification. J. Autom. Reason. 60(3), 299–335 (2018). https://doi.org/10.1007/
s10817-017-9432-6

14. Beyer, D., Friedberger, K.: Violation witnesses and result validation for multi-
threaded programs. In: Proc. ISoLA, LNCS. Springer (2020)

15. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-flow
analysis. In: Handbook of Model Checking, pp. 493–540. Springer (2018). https://
doi.org/10.1007/978-3-319-10575-8 16

16. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. Int. J. Softw. Tools Technol. Transfer 9(5–6), 505–525 (2007). https://
doi.org/10.1007/s10009-007-0044-z

17. Beyer, D., Henzinger, T.A., Singh, V.: Algorithms for interface synthesis. In:
Proc. CAV, LNCS, vol. 4590, pp. 4–19. Springer (2007). https://doi.org/10.1007/
978-3-540-73368-3 4

18. Beyer, D., Jakobs, M.C., Lemberger, T., Wehrheim, H.: Reducer-based construc-
tion of conditional verifiers. In: Proc. ICSE, pp. 1182–1193. ACM (2018). https://
doi.org/10.1145/3180155.3180259

19. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and
interpolation. In: Proc. FASE, LNCS, vol. 7793, pp. 146–162. Springer (2013).
https://doi.org/10.1007/978-3-642-37057-1 11

20. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Survey
and unifying component framework. In: Proc. ISoLA, LNCS. Springer (2020)

21. Beyer, D., Wendler, P.: Reuse of verification results: Conditional model check-
ing, precision reuse, and verification witnesses. In: Proc. SPIN, LNCS, vol. 7976,
pp. 1–17. Springer (2013). https://doi.org/10.1007/978-3-642-39176-7 1

22. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Proc. TACAS, LNCS, vol. 1579, pp. 193–207. Springer (1999). https://
doi.org/10.1007/3-540-49059-0 14

23. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI, pp. 209–224.
USENIX Association (2008)

24. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P.W., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast
with software verification. In: Proc. NFM, LNCS, vol. 9058, pp. 3–11. Springer
(2015). https://doi.org/10.1007/978-3-319-17524-9 1

25. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces.
In: Proc. EMSOFT, LNCS, vol. 2855. Springer (2003). https://doi.org/10.1007/
978-3-540-45212-6 9

https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/978-3-540-73368-3_4
https://doi.org/10.1007/978-3-540-73368-3_4
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-39176-7_1
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-540-45212-6_9
https://doi.org/10.1007/978-3-540-45212-6_9

An Interface Theory for Program Verification 185

26. Church, A.: A note on the Entscheidungsproblem. J. Symb. Logic 1(1), 40–41
(1936). https://doi.org/10.2307/2269326

27. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794
(2003). https://doi.org/10.1145/876638.876643

28. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation
of counterexamples and witnesses in symbolic model checking. In: Proc. DAC,
pp. 427–432. ACM (1995). https://doi.org/10.1145/217474.217565

29. Cook, B.: Formal reasoning about the security of Amazon web services. In: Proc.
CAV (2), LNCS, vol. 10981, pp. 38–47. Springer (2018). https://doi.org/10.1007/
978-3-319-96145-3 3

30. Cousot, P.: On fixpoint/iteration/variant induction principles for proving total
correctness of programs with denotational semantics. In: Proc. LOPSTR
2019, LNCS, vol. 12042, pp. 3–18. Springer (2020). https://doi.org/10.1007/
978-3-030-45260-5 1

31. Filliâtre, J.C., Paskevich, A.: Why3: Where programs meet provers. In: Pro-
gramming Languages and Systems, pp. 125–128. Springer (2013). https://doi.org/
10.1007/978-3-642-37036-6 8

32. Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. Int. J. Softw. Tools Technol. Transfer 2(4), 366–381 (2000)

33. Henzinger, T.A., Jhala, R., Majumdar, R.: Permissive interfaces. In: Proc. FSE,
pp. 31–40. ACM (2005). https://doi.org/10.1145/1095430.1081713

34. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

35. Hoare, C.A.R.: The verifying compiler: A grand challenge for computing research.
J. ACM 50(1), 63–69 (2003)

36. Holzmann, G.J.: The Spin model checker. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

37. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4)
(2009). https://doi.org/10.1145/1592434.1592438

38. Kahsai, T., Tinelli, C.: PKind: A parallel k-induction based model checker. In:
Proc. Int. Workshop on Parallel and Distributed Methods in Verification, EPTCS,
vol. 72, pp. 55–62 (2011). https://doi.org/10.4204/EPTCS.72.6

39. Khoroshilov, A.V., Mutilin, V.S., Petrenko, A.K., Zakharov, V.: Establishing Linux
driver verification process. In: Proc. Ershov Memorial Conference, LNCS, vol. 5947,
pp. 165–176. Springer (2009). https://doi.org/10.1007/978-3-642-11486-1 14

40. Kildall, G.A.: A unified approach to global program optimization. In: Proc. POPL,
pp. 194–206. ACM (1973). https://doi.org/10.1145/512927.512945

41. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: Proc. LPAR, LNCS, vol. 6355, pp. 348–370. Springer (2010). https://doi.org/
10.1007/978-3-642-17511-4 20

42. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algo-
rithms. Comput. Sci. Rev. 5(2), 119–161 (2011). https://doi.org/10.1016/
j.cosrev.2010.09.009

43. Meinke, K.: Learning-based testing: Recent progress and future prospects.
In: Machine Learning for Dynamic Software Analysis: Potentials and Lim-
its, LNCS, vol. 11026, pp. 53–73. Springer (2018). https://doi.org/10.1007/
978-3-319-96562-8 2

44. Morris, J.M.: A theoretical basis for stepwise refinement and the programming
calculus. Sci. Comput. Program. 9(3), 287–306 (1987). https://doi.org/10.1016/
0167-6423(87)90011-6

https://doi.org/10.2307/2269326
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/217474.217565
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-030-45260-5_1
https://doi.org/10.1007/978-3-030-45260-5_1
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/1095430.1081713
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.4204/EPTCS.72.6
https://doi.org/10.1007/978-3-642-11486-1_14
https://doi.org/10.1145/512927.512945
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1016/j.cosrev.2010.09.009
https://doi.org/10.1016/j.cosrev.2010.09.009
https://doi.org/10.1007/978-3-319-96562-8_2
https://doi.org/10.1007/978-3-319-96562-8_2
https://doi.org/10.1016/0167-6423(87)90011-6
https://doi.org/10.1016/0167-6423(87)90011-6

186 D. Beyer and S. Kanav

45. O’Hearn, P.W.: Incorrectness logic. Proc. ACM Program. Lang. 4(POPL) (2020).
https://doi.org/10.1145/3371078

46. Piterman, N., Pnueli, A.: Temporal logic and fair discrete systems. In: Hand-
book of Model Checking, pp. 27–73. Springer (2018). https://doi.org/10.1007/
978-3-319-10575-8 2

47. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000). https://doi.org/10.1145/353323.353382

48. Turing, A.: On computable numbers, with an application to the Entschei-
dungsproblem. In: Proc. LMS, vol. s2–42, pp. 230–265. London Mathematical Soci-
ety (1937). https://doi.org/10.1112/plms/s2-42.1.230

49. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. 10(4), 352–357 (1984).
https://doi.org/10.1109/tse.1984.5010248

50. Wetzler, N., Heule, M.J.H., Hunt Jr., W.A.: Drat-trim: Efficient checking
and trimming using expressive clausal proofs. In: Proc. SAT, LNCS, vol. 8561,
pp. 422–429. Springer (2014). https://doi.org/10.1007/978-3-319-09284-3 31

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3371078
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1145/353323.353382
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1109/tse.1984.5010248
https://doi.org/10.1007/978-3-319-09284-3_31
http://creativecommons.org/licenses/by/4.0/

Scaling Correctness-by-Construction

Alexander Knüppel(B) , Tobias Runge(B), and Ina Schaefer(B)

TU Braunschweig, Braunschweig, Germany
{a.knueppel,tobias.runge,i.schaefer}@tu-braunschweig.de

Abstract. The correctness-by-construction paradigm allows developers
to derive formally correct programs from a pair of first-order precondition
and postcondition. Although tool support has been proposed recently,
and thus correctness-by-construction has left the period of pen-and-
paper proofs, it is still applied in an unstructured manner to independent
algorithmic problems only. To scale correctness-by-construction to more
complex programs and to establish a repository of reusable off-the-shelf
components, we present a formal framework and open-source tool sup-
port called ArchiCorC. In ArchiCorC, a developer models UML-style
software components comprising required and provided interfaces, where
methods contained in interfaces are associated to specification contracts
and mapped to correct-by-construction implementations. We describe
our proposed mathematical model for the horizontal and vertical com-
position of correct-by-construction components, and identify properties
that allow to reuse them across different projects. Finally, we demon-
strate feasibility of our approach on a case study and discuss future
research directions related to the integration of correct-by-construction
components into software engineering practices.

Keywords: Correctness-by-construction · Deductive verification ·
Architecture · UML components · Design-by-contract

1 Introduction

As a promising methodology to guarantee the correct implementation of algo-
rithms, the correctness-by-construction approach [10,11,17,23] has been pro-
posed to support the incremental development of correct programs with respect
to some specification. Starting with a Hoare triple {φ}P{ψ} comprising precon-
dition φ, postcondition ψ, and abstract program P , a developer refines this triple
into code using small, tractable, and provably correct refinement rules. Applying
correctness-by-construction promises to introduce little to no defects [17]. How-
ever, despite its advantages, missing adequate tool support is one of the reasons
that this approach is not a prevalent style of software development.

To mitigate these challenges and leave the period of pen-and-paper proofs,
CorC [32] has been recently introduced by some of the authors as a hands-
on software development environment for constructing programs following the
correctness-by-construction paradigm. Moreover, in a recent empirical study [33],
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 187–207, 2020.
https://doi.org/10.1007/978-3-030-61362-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_10&domain=pdf
http://orcid.org/0000-0002-8804-7051
https://doi.org/10.1007/978-3-030-61362-4_10

188 A. Knüppel et al.

CorC showed that good tool support renders the correctness-by-construction
paradigm as a real alternative to post-hoc verification. In particular, CorC pro-
vides a hybrid textual-graphical editor to develop single programs on the gran-
ularity level of procedures (i.e., methods). Additionally, a refinement rule for
method calls has been introduced, which allows to call subroutines in a modular
manner and to build larger programs. However, large-scale software development
using CorC and correctness-by-construction is still in its infancy, as, currently,
correctness-by-construction is not well integrated into existing software develop-
ment methodologies.

As a first step towards software engineering practices and correctness-by-
construction in concert, we propose ArchiCorC, a framework that extends the
principles of CorC and structures correct-by-construction programs into com-
ponents with defined provided and required interfaces. Such interfaces represent
sets of method signatures specified following the design by contract principle [22].
That is, each method signature m is associated to a contract c = {φ}m{ψ} with
precondition {φ} and postcondition {ψ}. When a basic component is developed,
each method contract c = {φ}m{ψ} of its provided interfaces is mapped to a
CorC implementation that satisfies the contract {φ′}P{ψ′}. Compatibility is
ensured by following behavioral subtyping [21]. That is, precondition φ′ is only
allowed to be weaker (i.e., φ =⇒ φ′), whereas postcondition ψ′ is only allowed to
be stronger (i.e., ψ′ =⇒ ψ). One additional particularity of ArchiCorC is that
CorC implementations associated to a component are only allowed to invoke
methods that are part of the component’s required interface. Moreover, compo-
nent connectors link compatible provided and required interfaces of two compo-
nents together, such that during execution of an implementation the respective
method is invoked.

Following the hierarchical nature and reuse potential of component-based
software [35], more complex components called composite components can be
constructed from simpler ones by component composition. To this end, so called
delegation connectors wire interfaces from higher-level components to interfaces
of the lower-level components. Only basic components (i.e., components that
cannot be decomposed any further) are realised by the implementing CorC
implemenations. An advantage of composite components is their hiding of imple-
mentation details and their reuse potential in different contexts. We provide
an open source implementation of ArchiCorC that offers a hybrid graphical-
textual IDE and integrates CorC as part of its tool suite. Methods in component
interfaces are annotated by contracts written in a syntax resembling the Java
Modeling Language [19]. In summary, the contribution of this work is threefold.

– We propose a framework for specifying and reasoning about UML-style com-
ponents based on Hoare logic [14] and correctness-by-construction [10,11,17].

– We provide a practical open-source implementation, ArchiCorC, that con-
nects component modeling, specification, and code generation facilities with
CorC [32].

– We showcase our theoretical framework on a case study that has been created
with ArchiCorC.

Scaling Correctness-by-Construction 189

2 The Correctness-by-Construction Approach

Correctness-by-Construction [17] is a paradigm to derive formally correct pro-
grams in an incremental process guided by a specification. Specifications are
represented as Hoare triples [14] of the form {φ}P{ψ} comprising a precondi-
tion φ asserting the initial state, an abstract statement P that is concretized
during program construction, and a postcondition ψ asserting the final state
after the program is executed. Hoare triples represent total correctness asser-
tions that valuate only to true if, beginning from the precondition, the postcon-
dition is met after executing the eventually defined concrete program and the
program terminates. Therefore, in each step, the Hoare triple {φ}P{ψ} is refined
to a primed Hoare triple {φ}P ′{ψ} using a set of allowed and provably correct
refinement rules. {φ}P ′{ψ} is thus true for a subset of programs represented by
{φ}P{ψ}. Finally, all abstract statements are replaced by concrete statements
and the derived concrete program is guaranteed to be correct by construction.

Recently, CorC [32] has been proposed, which is a graphical and textual
development environment for creating programs following the correctness-by-
construction approach. Following the CorC language, preconditions and post-
conditions are written in a flavor of first-order logic following the design-by-
contract methodology [22], and programs are written in an adapted version of
the guarded command language [9]. Incremental derivation of concrete programs
from abstract statements is accomplished by means of refinement rules. These
rules are based on a constructive calculus, such that developers are able to
establish the correctness of each individual step (e.g., to faster identify non-
conformance of program and specification), as opposed to the classical post-hoc
verification of complete programs.

In Fig. 1, we show the six core refinement rules currently supported by the
CorC language. For the composition rule and the repetition rule, additional
manual specification is typically required. For the composition rule, an inter-
mediate condition M has to be provided, which valuates to true after P1 is
executed and needs to be strong enough to serve as the precondition for P2. For
the repetition rule, a loop invariant I and a variant V have to be provided. To
show termination, the evolution of variant V needs to be strictly monotonically
decreasing with each execution of P until a lower bound of zero is reached. The
method call rule omits side effects (i.e., call by value) and is applicable iff the
callee’s specification complies with the respective statement’s specification.

Contrary to the purely imperative guarded command language, the CorC
language introduces a simple object model similar to the one used in ABS [15].
That is, there exists no inheritance and no subtyping. Moreover, each CorC
program is part of an object definition by exhibiting a method as declared in
classical object-oriented languages (e.g., Java). In particular, all referenced vari-
ables in a program are labeled as either argument, return value, or local variable.
As we will extend CorC programs with class membership for grouping pur-
poses, we additionally allow to label variables as shared class variables. Besides
primitive types, such variables are allowed to have an interface type, which com-
prises further accessible correct-by-construction methods (cf. method call rule

190 A. Knüppel et al.

{φ}P{ψ} is refinable to

↪→ {φ}skip{ψ} iff φ implies ψ (Skip)

↪→ {φ}x := E{ψ} iff φ implies ψ[x := E] (Assignment)

↪→ {φ}P1;P2{ψ} iff intermediate condition M exists such that
{φ}P1{M} and {M}P2{ψ} hold

(Composition)

↪→ {φ}if G1 ⇒ P1 elseif . . . Gn ⇒ Pn fi{ψ} iff φ implies
G1 ∨ · · · ∨ Gn and ∀i = 1 . . . n : {φ ∧ Gi}Pi{ψ} holds

(Selection)

↪→ {φ}do [I, V] G ⇒ P od{ψ} iff φ implies I and I ∧ ¬G im-
plies ψ and {I ∧G}P{I} holds and {I ∧G∧V = V0}P{I ∧0 ≤
V < V0} holds

(Repetition)

↪→ {φ}m(a1, . . . , an) → r{ψ} iff method {φ′}m(a′
1, . . . , a

′
n) →

r′{ψ′} exists and φ implies φ′[a′
i \ a1] and ψ′[old(a′

i) \
old(ai), r′ \ r] implies ψ

(Method Call)

Fig. 1. Refinement Rules Following the Correctness-By-Construction Approach [32]

in Fig. 1). The precondition of the top-level specification is allowed to reference
arguments and class variables, whereas the postcondition is additionally allowed
reference return values. Class variables can be seen as the equivalent of private
class fields in object-oriented programming languages. Hence, class variables are
shared among all CorC methods associated to the same interface type.

3 Overview and Motivating Example

In this section, we present an overview and the key ideas of ArchiCorC. One
main goal is to purposefully bundle correct-by-construction implementations into
reusable components with defined interfaces to establish a repository of correct-
by-construction components. In particular, our proposed framework is based on
the following elements:

Key Elements of ArchiCorC

1. A component and interface description language to describe the intercon-
nection in terms of provided and required interfaces between components
based on design by contract.

2. A construction technique that allows to refine method signatures of pro-
vided interfaces to provably correct implementations using the correctness-
by-construction approach.

3. An integrated formal reasoning framework in order to establish hierar-
chical and vertical compatibility of composed components.

4. A code generation method for correct-by-construction Java implemen-
tations from ArchiCorC components.

Scaling Correctness-by-Construction 191

interface OrderEntry {
//[...]
method add {

contract {
requires: "Person.isSolvent(d)";
ensures: "OrderAbleItem.isAvailable(id) => res";

 }
in { UInt32 id }
out { Boolean res }

 }
//[...]

}

{φ} P {ψ}

{φ} P1 {M} ∧ {M} P2 {ψ}

{φ} if Person.solvent() ⇒ Pv

elseif skip fi {ψ} {M} S21 {M2} ∧ {M2} S22 {Q}

{M2} data := tmp{Q}{I ∧ G} do [I, V] G → rS od {I}

composition for S

{I ∧ G} tmp[i], i := data[i], i + 1{I}

assignment for S1

 composition for S2

 repetition for S21

assignment for rS

assignment for S22

Correct-by-Construction

Formal Reasoning

Contract-based Interface Description

UML-style Component Modelling
Compatibality and
consistency checking

Code Generation3

2

4

1

Side conditions of

OrderEntry

<<delegate>> <<delegate>>

OrderEntry
Person Account Account

OrderAbleItem

Store

:Order :Customer

:Product

Correct-by-Construction Java Code

CorC Implementation

Fig. 2. Schematic Workflow of the ArchiCorC Development Process

As shown in Fig. 2, a developer starts by designing an initial, high-level
structure of a component including its required and provided interfaces. Inter-
faces represent sets of method signatures that are either needed or provided and
are specified by a pair of precondition and postcondition 1 . In the following,
we refer to Hoare triples consisting of a method signature and a pair of precondi-
tion and postcondition as contracts. In ArchiCorC, we distinguish two types of
components: basic and composite components. Composite components are hier-
archically composed of sub-components and do not have an explicit mapping
of method signatures of provided interfaces to CorC implementations. Instead,
only basic components have that mapping, but are not decomposed any further.
Both basic and composite components can be part of a enclosing composite
component and propagate their provided interfaces to the enclosing composite
component if a delegation between the interfaces exists.

Subsequently, a developer maps provided method signatures of basic com-
ponents to either existing CorC implementations from an already established
repository or tries to construct a new provably-correct program starting from
the method contract 2 . External methods that are used in these CorC imple-
mentations by applying the method call rule (cf. Fig. 1) must be part of the
required interface of this component.

Basic components represent correct-by-construction implementations in a
strictly defined way. Through the construction of composite components in con-
cert with assume-guarantee reasoning, a developer is able to correctly assemble
smaller existing CorC implementations to larger ones, while also hiding func-
tionality 3 . Valid compositions are established through contracts, which enable
both horizontal and vertical reasoning. Horizontal reasoning ensures compatibil-
ity between connected components by proving that each component satisfies the
assumptions of any component it provides input to. Vertical reasoning ensures
substitutability by allowing the replacement of a component k by any other com-
ponent k′, whose contract is subsumed by the contract of component k. Finally,
ArchiCorC allows to generate correct-by-construction Java implementations

192 A. Knüppel et al.

OrderEntry

<<delegate>> <<delegate>>

OrderEntry
Person Account Account

OrderAbleItem

Store

:Order :Customer

:Product

//Specified methods {φ}m{ψ}
- boolean add(int id)
- boolean cancel(int id)

...

Fig. 3. Illustration of Composite Component Store

from components including JML annotations, which can be used in typical Java
projects 4 .

Motivating Example. To illustrate the described concepts, we have chosen
a simple composite component Store, depicted in Fig. 3, consisting of three
basic components, namely Order, Customer, and Product. Externally, compos-
ite component Store only provides interface OrderEntry to place a new order, for
which it depends on interface Account. Internally, method signatures of inter-
faces associated to basic components are mapped to CorC implementations
and are possibly delegated to the external interfaces. In particular, part of inter-
face OrderEntry is method add(int id) that adds a new product to the cart
identified by a unique id. An excerpt of a corresponding CorC implementation
is presented in Fig. 4. As highlighted, the program uses the method call rule to
access method isSolvent of interface Person, which is only possible, as Person is
a required interface of component Order. A developer can hide many implemen-
tations details by developing composite components, while provided methods of
such components also retain their correctness. Users of such components need
to satisfy the required interfaces, but can rely on the correctness of provided
methods in their own software projects.

4 Formalizing ArchiCorC Components

A software component in the sense of ArchiCorC is similar to a UML-style
software component [35] such that it provides a static view on an encapsulated

Scaling Correctness-by-Construction 193

{φ} P {ψ}

{φ} P1 {M} ∧ {M} P2 {ψ}

{φ} solvent := Person.isSolvent() {M} {M}if solvent ⇒ Pv

elseif !solvent ⇒ Sk fi{ψ}

{M}skip{ψ}{M} Pv1 {M2} ∧ {M2} Pv2 {ψ}

. . .

1 composition for P

2 assignment for P1

3 selection for P2

4 composition for Pv

5 . . .

6 skip for Sk

Fig. 4. Excerpt of a CorC Implementation for Method OrderEntry.add(int id)

piece of software with explicit interfaces to its environment. In the following, we
give the necessary formal definitions of ArchiCorC’s component model.

4.1 Interface Definition

In this regard, a ArchiCorC component provides methods (i.e., functional-
ity) to other components through its provided interfaces and possibly requires
methods specified by its required interfaces to be even able to provide such func-
tionality. Provided and required interfaces of ArchiCorC components comprise
specified method signatures, which are associated to Hoare triples of the form
c = {φ}m{ψ}, where φ and ψ are the respective precondition and postcondi-
tion. As mentioned before, we refer to such Hoare triples as method contracts
and denote by C the universe of all existing contracts.

The specification language used for formalizing method contracts is based on
a simple version of the Java Modeling Language [19] (JML). That is, specification
expressions used in method contracts must be side-effect free, which means that
assignment and increment expressions are not permitted. Additionally, method
contracts may refer to some variables in their specification, which have to be
resolved when the corresponding method is implemented. Therefore, we allow
the declaration of fields in our interface definitions similar to model fields as used
in JML. Technically, when code generation takes place, get and set methods
are generated for field declarations in a provided interface. Fields in required
interfaces are accessible in CorC implementations through their get and set
methods.

Importantly, the introduction of fields is only necessary when the intended
application is stateful. Contrary, a stateless application (e.g., RESTful API’s)
follows a functional programming style, which means that no fields are needed.
Finally, it is possible to call pure methods in method contracts. A method is pure

194 A. Knüppel et al.

if the state is not altered when executing the method. We define an interface as
follows.

Definition 1 (Interface). An interface I is a pair 〈M,F〉. M is a set of
method signatures of the form {req : φ}m(in : T a, out : U b){guar : ψ}, where
m is the name of the method, a of types T are the passed arguments, b of type U
are the result values, and φ, ψ are the precondition and postcondition of method
signature m, respectively. Moreover, F is a set of typed variables, which we will
refer to as fields. An interface specification has the following form:

Interface Specification

Interface I:
Method m1: {req : φ1} m1(in : T1 a1, out : U1 b1){guar : ψ1}

...
Method mk: {req : φk} mk(in : Tk ak, out : Uk bk){guar : ψk}

Fields: T f

As apparent in the interface specification, all arguments, the return value,
and fields have a type. However, for the sake of presentation we discard the
introduction of a type system and assume only primitive data types and standard
typing rules (e.g., as introduced by Pierce [27]). Moreover, to increase flexibility
in our formalism, we allow that multiple components may in fact provide a part of
a required interface of a another component. We therefore introduce an operator
that merges composable interfaces together to match the required interface.

Definition 2 (Interface Merging). Let I = {I1, ..., In} with Ii = 〈Mi,Fi〉
be a finite set of composable interfaces. That is, interfaces are composable
if equally named methods have identical signatures and method contracts, and
equally named fields are equally typed. Then, their merging is defined as

merge I = 〈
⋃

Mi,
⋃

Fi〉. (1)

Similarly, we may want to be able to provide only a subset of methods to
different clients of a component. Therefore, we allow to hide methods and fields
in an interface to render them invisible.

Definition 3 (Method Hiding). Let I = 〈M,F〉 be an interface. Further, let
M ′ ⊂ M a set of method signatures and F ′ ⊂ F a set of fields we want to hide.
Then, we denote by I ′ = 〈M \ M ′,F \ F ′〉 the interface after removal of all
methods M ′ and fields F ′ from I.

4.2 Contract Compatibility

Method signatures of our interface definition and contracts as used in CorC
implementations are conceptually identical, which we exploit to define a valid

Scaling Correctness-by-Construction 195

mapping between both concepts. Indeed, each method signature m of an inter-
face I has to be associated to a method contract c = {φ}m{ψ} ∈ C that we use
as the lingua franca in our formalism. Known as behavioral subtyping [21], a
contract may preserve the behavior of another contract. Informally, a contract
c can be replaced by a contract c′ if each behavior specified by contract c is also
specified by contract c′. In this case, we say that contract c′ is compatible to con-
tract c. This property is important, as it (1) allows a developer to link a method
signature in a provided interface of a basic component to a CorC implementa-
tion that preserves the behavior, and (2) provides a provable condition for the
valid connection of a provided and required interface. For a method signature m
that satisfies a contract c, we say that a CorC implementation c′ is compatible
to m iff c′ is compatible to c. That is, (1) c and c′ have the same arguments
and return values, and (2) c’s precondition is only allowed to be stronger than
c′’s precondition and c’s postcondition is only allowed to be weaker than c′’s
postcondition. Formally, we define contract compatibility as follows.

Definition 4 (Contract Compatibility). Let c, c′ ∈ C be two contracts with
c = {φ}m{ψ} and c′ = {φ′}m′{ψ′}. We say that contract c′ is compatible to
contract c, denoted by c′ � c, iff argm = argm′ and retm = retm′ , where arg
and ret are sets associated to the arguments and return values of a method,
respectively, and the following condition holds:

� φ ⇒ φ′ ∧ ψ′ ⇒ ψ. (2)

Compatibility has also to be guaranteed between required and provided inter-
faces. In essence, each method signature of a required interface has to be con-
nected to a compatible method signature of a provided interface, which means
that the provided method signature has to fulfill the corresponding required
method signature. The following definition lifts contract compatibility to the
level of interfaces.

Definition 5 (Interface Compatibility). Let I = 〈M,F〉 and I ′ = 〈M ′,F ′〉
be two interfaces. We say that interface I ′ is compatible to interface I, denoted
by I ′ � I, iff

∀m′ ∈ M ′ ∃m ∈ M such that m′ � m ∧ F ′ ⊆ F (3)

4.3 Component Definition and Composition

We consider a basic component to be a black-box comprising an optional required
interface and a mandatory provided interface. Furthermore, basic components
map method signatures of their provided interface to compatible CorC imple-
mentations from a set of existing programs P ⊂ C. Formally, we define basic
components as follows.

Definition 6 (Basic Component). A basic component kb is a triple
〈Ip, Ir, Impl〉 consisting of: (i) the provided interface Ip, (ii) the possibly empty

196 A. Knüppel et al.

required interface Ir, and (iii) a mapping Impl : Ip → P associating each method
signature in m ∈ Ip with a valid CorC implementation c ∈ P. We say that kb
is well-formed iff ∀c = {φ}m{ψ} ∈ Ip.M : Impl(m) � c.

Furthermore, we introduce composite components that hierarchically struc-
ture sub-components to reuse already implemented functionality, but also to hide
unneeded method signatures. Opposed to basic components, composite compo-
nents do not establish any mapping from their provided interfaces to CorC
implementations. Instead, delegate connectors link the external method signa-
tures (i.e., the required and provided interfaces) of the composite component
to the respective interfaces of sub-components (cf. Sect. 2). Formally, we define
composite components as follows.

Definition 7 (Composite Component). A composite component kc is a
tuple 〈Ip, Ir,Ksub,Conn,Delereq/prov〉 consisting of: (i) the provided interface
Ip, (ii) the required interface Ir, (iii) a finite set of sub-components Ksub =
{k1, . . . , kn}, where each ki is either basic or a composite, (iv) a finite set of
connections Conn ⊆ {k.Ip | k ∈ Ksub} × {k.Ir | k ∈ Ksub} between provided and
required interfaces of sub-components, and (v) two finite sets Delereq ⊆ {k.Ir | k ∈
Ksub} and Deleprov ⊆ {k.Ip | k ∈ Ksub} of delegate connectors.

In ArchiCorC, we assume that connected top-level components are implic-
itly part of a composite component. To specify a link between components on the
same hierarchy, component connectors associate provided interfaces of a com-
ponent with required interfaces of another one. The connection can only be
established when the provided interface is compatible to the required interface
(cf. Definition 4). Furthermore, a well-formed composite component consists of
only well-formed sub-component and has to ensure that its required and pro-
vided interface is correctly linked to sub-components. In the following, we give
a formal definition of a well-formed composite component.

Definition 8 (Well-Formed Composite Component). Let kc = 〈Ip, Ir,
Ksub, Conn,Delereq/prov〉 be a composite component. Composite component kc
is well-formed iff the following conditions hold.

– Each method of a required interface of a sub-component is linked to either
a provided method signature of a sub-component or to a method of the com-
posite’s required interface through a delegate connector. The sub-component’s
interface has therefore to be compatible to the merge of all interfaces of con-
nected sub-components and the composite’s required interface (i.e., ∀k′ ∈
Ksub : k′.Ir � merge {I ′

p | (k′.Ir, I ′
p) ∈ Conn} ∪ Delereq).

– Each method of the provided interface Ip is linked to a method of a provided
interface of a sub-component through a delegate connector. Therefore, Ip has
to be compatible to all connected sub-components (i.e., Ip � mergeDeleout).

– All sub-components in Ksub are well-formed.

Scaling Correctness-by-Construction 197

5 Code Generation and Validation

For using correct-by-construction components in arbitrary software projects,
ArchiCorC provides facilities for code generation. The tooling translates com-
posite components to a Java implementation, where methods are additonally
annotated with JML [19] contracts. Using the generated code then amounts to
importing the respective Java package. Following the principles of ArchiCorC,
only provided methods of the composite component are visible and accessible,
while implementation details are hidden. Moreover, our aim is to retain correct-
ness during the code generation, which is trivially accomplished for all methods
that are implemented with CorC, as CorC implementations already resemble
valid Java code. However, if the composite component requires methods through
its required interface, these methods have to be provided by a user and contract
conformance has to be checked separately.

In Table 1, we show the formal constructs of our component model and the
corresponding translation to Java code. The complete interfaces and classes
of a ArchiCorC component are generated in the same Java package. Pro-
vided interfaces are translated to classical Java interfaces, where methods are
additionally annotated with the corresponding method contract. Furthermore,
actual components are translated to classes that implement the containing pro-
vided interface. Top-level components are publicly visible, whereas lower-level
components are only visible inside the package. For each provided field of the
provided interface, a private field together with its set and get method is gen-
erated. Moreover, a reference for each component and delegate connector that
is connected to the required interface is generated.

Methods of a basic component’s provided interface are implemented by the
corresponding CorC implementation. Methods of a composite component’s pro-
vided interface delegate all method calls to the respective sub-components (i.e.,
specified with a delegate connector) through method chaining. Furthermore, all
referenced variables in the specification are (both basic and composite compo-
nents) and CorC implementations (only basic components) are resolved and
replaced with the respective set and get methods.

As mentioned in Sect. 2, CorC implementations label referenced variables as
either arguments, return values, local variables, and class variables. During code
generation, it is checked that all mapped CorC implementations indeed satisfy
the specification of the corresponding interface method. That is, (1) arguments
and the return value have to match, and (2) class variables have to form a subset
of the fields that are part of the respective provided interface.

6 Bank Account Case Study

In this section, we demonstrate the applicability of ArchiCorC on a part of
a bank account application. In Fig. 5, we depict the corresponding component
diagram of a banking account together with a module for financial transaction
between two accounts. Composite component DailyAccountComposite provides
the interface DailyAccount to a client for managing accounts with a fixed daily

198 A. Knüppel et al.

Table 1. Excerpt of Code Translation from ArchiCorC Components to Correct-by-
Construction Java Code

Formal Construct Transformation

Provided interface Ip = M, i n t e r f a c e Ip {
∀{φ}m(Ta, Ub){ψ} ∈ M :

//@ r e qu i r e s φ ;
//@ ensure s ψ ;
pub l i c U m(Ta) ;

}

Component K with provided inter-
face Ip = Mp, Fp , required inter-
face Ir = Mr, Fr , which is part
of a composite component K∗ =
I∗
p , I∗

r , K∗
sub,Conn,Delereq/prov

modifier c l a s s K implements Ip {
∀ f ∈ Fp with type T :

p r i va t e Tf ;
//@ ensure s \ r e s u l t == f ;
pub l i c T ge t f () ;
//@ ensure s f == f ;
pub l i c void s e t f (Tf) ;

∀(k.Ip, Ir) ∈ Conn ∧ ∀k .Ip ∈ Delereq :
p r i va t e k.Ip Objecti = new k.Ip () ;
p r i va t e k .Ip Objectj = new k .Ip () ;
//method implementat ions . . .

}

Top-level component?
modifier = pub l i c else modifier =

Method implementation for basic compo-
nent Ip, Ir, Impl with Ip = Mp, Fp

and Ir = Mr, Fr

. . .
∀{φ}m(Ta, Ub){ψ} ∈ Mp :

//@ r e qu i r e s φ[f ∈ Fr Ir.get f] ;
//@ ensure s ψ[f ∈ Fr Ir.get f] ;
pub l i c U m(Ta) {

// Resolve CorC implementation
Impl(m)

}
. . .

Method implementation for composite
component Ip, Ir, Ksub,Conn,Delereq/prov
with Ip = Mp, Fp and Ir = Mr, Fr

. . .
∀{φ}m(Ta, Ub){ψ} ∈ Mp :

//@ r e qu i r e s φ[f ∈ Fr Ir.get f] ;
//@ ensure s ψ[f ∈ Fr Ir.get f] ;
pub l i c U m(Ta) {

k .m ∈ Deleprov with m m:
r e turn k .m(Ta) ;

}
. . .

Enclosing composite component
K = Ip, Ir, Ksub,Conn,Delereq/prov
with non-empty required interface
Ir = Mr, Fr

. . .
Ir req ;
pub l i c K (Ir arg) { // cons t r .

req = arg ;
}

. . .

withdrawal limit. In particular, DailyAccountComposite consists of three basic
sub-components, namely Account, DailyLimit, and DailyAccount. Account pro-
vides basic functionality to alter the balance of an account (e.g., to withdraw
a specific amount of money). DailyLimit is used to set withdrawal limits for

Scaling Correctness-by-Construction 199

DailyAccountComposite

DailyAccount
Account

Account
Account

DailyLimit
Limit

Limit

Transaction TransferDailyAccount DailyAccount Account

Fig. 5. Component Diagram of a Banking Account Application

an account. Both components are required by DailyAccount to provide updates
for an account considering the daily withdrawal limit. Whereas the interfaces
of both components Account and DailyLimit are only accessible internally, Dai-
lyAccount’s equally-named interface is delegated to the DailyAccountComposite
composite component and therefore accessible by any client. The basic compo-
nent Transaction provides functionality to transfer money from one account to
another. Therefore, it requires the Account interface to operate on two accounts.

For our evaluation, we constructed this component diagram in ArchiCorC1.
ArchiCorC is a graphical editor written in Java. The graphical interface is
implemented with Graphiti2. The components and interfaces can be added by
drag and drop from a palette at the side of the editor. Required and provided
interfaces are connected with UML lollipop notation. Additionally, the provided
interfaces can be specified with contracts for each method. To establish behavior
of methods of provided interfaces, the methods are mapped to CorC implemen-
tations and ArchiCorC verifies automatically that the CorC implementation
is compatible to the corresponding method contracts using the SMTSolver Z3 [8].

In Table 2, we present the mapping of each method of a provided interface
of Fig. 5 to the corresponding CorC implementation. Correctness is ensured by
proving that (1) the Hoare triple of each CorC implementation is compatible
to the method signature’s contract, and (2) that connected interfaces are also
compatible (cf. Definition 5). In particular, provided interface DailyAccount of
component DailyAccountComposite is connected to required interface Account
of component Transaction, which is only valid as interfaces DailyAccount and
Account respect the compatibility property defined in Definition 5.

As an example for a visualization of a correct-by-construction program devel-
oped in CorC, an excerpt of the implementation of method update of compo-
nent Account is shown in Fig. 6. The method computes the new balance of an
account, while checking whether input argument x exceeds the overdraft limit of
the account. The method returns true if the update was successful and false
otherwise. The top-level specification is shown in the top node and the complete
implementation is constructed using refinement rules (i.e., each refinement is
visualized by one node). In this excerpt, a total of three refinements starting

1 https://github.com/TUBS-ISF/ArchiCorC.
2 https://eclipse.org/graphiti/.

https://github.com/TUBS-ISF/ArchiCorC
https://eclipse.org/graphiti/

200 A. Knüppel et al.

Table 2. Mapping of Interfaces to CorC-Programs

Component Interface Method CorC-Program

Transaction Transfer boolean
transfer(Account a,
Account b, int x)

transfer

DailyAccount DailyAccount boolean update(int x) updateDaily

boolean undoUpdate() undoUpdateDaily

Account Account boolean update(int x) update

boolean undoUpdate() undoUpdate

DailyLimit Limit int getLimit() getLimit

void nextDay() nextDay

void nextYear() nextYear

from the top-level specification are shown. First, a composition statement splits
the program into a calculation of old balance and newBalance with an assign-
ment statement, and a second part. The second, shortened, part uses a selection
statement to check whether newBalance exceeds the overdraft limit, which is
represented by a provided field OVERDRAFT LIMIT of interface Account. In the
complete implementation, both cases of the selection statement are refined to
satisfying assignment statements to ensure that the complete implementation is
constructed correctly.

In the following, we show the basic interface description of interface Account.
Alongside the two aforementioned methods update and undoUpdate, Account
declared the two integer fields balance and OVERDRAFT LIMIT, which are accessi-
ble in the CorC implementation. Keyword old E refers to the state of expression
E before method execution and is translated to old E to match the specification
of the corresponding CorC implementation.

Interface Specification: Account

– update(in : int x, out : boolean res) (Method)

req : {true}
guar : {res ⇒ balance = old balance + x} ∧ {!res ⇒ balance = old balance}

– undoUpdate(in : int x, out : boolean res) (Method)

req : {true}
guar : {res ⇒ balance = old balance − x} ∧ {!res ⇒ balance = old balance}

– int balance (Field)

– int OVERDRAFT LIMIT (Field)

Interface DailyAccount extends the interface description of Account by a daily
withdrawal limit, such that withdrawing money is only allowed, when the limit
is not yet reached. Therefore, a new attribute withdraw is added and, as high-
lighted in the following, the specification is also extended. Internally, the cor-
responding CorC implementation updateDaily and undoUpdateDaily access the
DAILY LIMIT attribute of interface Limit through the generated get method of

Scaling Correctness-by-Construction 201

Fig. 6. Excerpt of Basic Update Method in the Graphical CorC Editor

component DailyLimit. DAILY LIMIT is only accessible, as components DailyLimit
and DailyAccount are connected. Visibility of methods and attributes is also
ensured by a checking mechanism during the development of the CorC imple-
mentation when using ArchiCorC.

Interface Specification: DailyAccount

– update(in : int x, out : boolean res) (Method)

req : {true}
guar : {res ⇒ balance = old balance + x} ∧ {!res ⇒ balance = old balance}
∧ {res ⇒ withdraw ≤ old withdraw} ∧ {!res ⇒ withdraw = old withraw}

– undoUpdate(in : int x, out : boolean res) (Method)

req : {true}
guar : {res ⇒ balance = old balance − x} ∧ {!res ⇒ balance = old balance}
∧ {res ⇒ withdraw ≥ old withdraw} ∧ {!res ⇒ withdraw = old withraw}

– int balance (Field)

– int OVERDRAFT LIMIT (Field)

– int withdraw (Field)

202 A. Knüppel et al.

The specification of each method in DailyAccount preserves the specification
of each corresponding method in Account and, thus, DailyAccount is compatible
to Account. Based on Fig. 5, we generate publicly accessible code for both com-
ponents DailyAccountComposite and Transaction. That is, only objects of type
DailyAccountComposite and Transaction are instantiable, as only code gen-
erated for top-level components is accessible from outside the Java package. A
basic application may then look as illustrated in Listing 1.

1 package Appl i cat ion ;

2

3 //Auto−generated packages

4 import DailyAccount . DailyAccount ;

5 import Transact ion . Trans fer ;

6

7 pub l i c s t a t i c void main (St r ing [] a rgs) {
8 DailyAccount a = new DailyAccount () ;

9 DailyAccount b = new DailyAccount () ;

10

11 // Correct−by−cons t ruc t i on update method

12 a . update (500) ;

13 b . update (400) ;

14

15 // Correct−by−cons t ruc t i on t r a n s f e r method

16 (new Trans fer ()) . t r a n s f e r (a , b , 100) ;

17

18 a s s s e r t a . balance == 400 && b . balance == 500 : ”Should not happen” ;

19 }

Listing 1. Example Application for Bank Account

By implementing every method in CorC and mapping the components to these
implementations, we can guarantee correctness of the complete component dia-
gram, as all required interfaces are satisfied and all provided interfaces are cor-
rectly implemented.

7 Discussion

Our considerations exhibit only a starting point for the integrated development of
correct software following the correct-by-construction philosophy. In this section,
we discuss current limitations, how they might be mitigated, and future direc-
tions of ArchiCorC.

7.1 Beyond Preconditions and Postconditions

For brevity, our formulations in Sects. 2 and 4 only focused on simple con-
tracts consisting of pairs of exactly one precondition and one postcondition as
introduced by Meyer [22]. However, there are advanced specification concepts
in alignment with the notion of contracts that may further support developers
with the challenging task of specifying software and are possibly required for
practical usage.

Scaling Correctness-by-Construction 203

Framing Conditions. As introduced in Sect. 2, class variables express class fields
that can be shared among multiple CorC programs that belong to the same
class. With the introduction of method calls and the abstraction with the respec-
tive contract, it is necessary to inform the verifier, which locations a method
may modify and which locations remain unmodified. These additional condi-
tions are referred to as framing conditions [2,12,16]. Currently, these conditions
have to be encoded as

∧
i old(vi) = vi for every class variable vi that is not

altered (i.e., specifying which variables remain unmodified). To reduce speci-
fication effort, prominent specification languages provide syntactic sugar (e.g.,
keyword assignable in JML [19]) to simply express in a set-theoretic notion,
which locations might be modified. In the future, ArchiCorC will integrate
the concept of framing conditions and desugar them when required (e.g., to be
compatible with CorC, which currently does not provide syntactic sugar for
framing itself).

Specification Cases. Specification languages such as JML support the defini-
tion of multiple contracts for a single method by connecting them with key-
word also [7]. Specification cases allow to define different expected behaviors
based on different assumptions (i.e., preconditions). That is, integrating such
a concept into ArchiCorC would allow to specify multiple contracts for an
interface method, such that different (and smaller) CorC programs would be
compatible. In fact, such a concept is already integrated in the current version
of ArchiCorC, as specification cases are, again, just syntactic sugar. Given
n separated specification cases with their respective precondition φi and post-
condition ψi, desugaring all specification cases into a single contract results in
precondition

∨n
i φi and postcondition

∧n
i old(φi) ⇒ ψi. Compatibility between

this contract and the possible CorC implementations then follows from Defi-
nition 4. However, an explicit notion for specification cases (e.g., separation by
keyword also) would certainly improve the readability of specifications and is
part of future work.

Class Invariants. Apart from method contracts, specification languages for
object-oriented languages allow to define conditions for complete classes referred
to as class invariants [20]. Class invariants are defined once per class and con-
sequently apply to all of its methods by implicitly adding them in conjunction
to each precondition and postcondition. CorC already provides the definition
of such conditions and refers to them as global conditions [32]. Instead of redun-
dantly adding such conditions manually to each precondition and postcondition,
we plan to add a designated keyword to ArchiCorC’s interface description lan-
guage for describing such invariants as part of future work. Global conditions of
connected CorC programs then have to be implied by the invariants as specified
in the respective interfaces or are otherwise rejected as incompatible.

7.2 Liskov-Style Compatibility

The intended application of ArchiCorC is management of correct-by-
construction library functions, for which we group interfaces into components

204 A. Knüppel et al.

and implement interface methods by CorC programs adhering to a notion of
refinement and compatibility (cf. Definition 4). The most crucial step is the last
refinement step, which involves a switch from the specification language to the
implementation language. Consequently, abstract data types of the specification
language have to be concretized to data types of the implementation language,
which enables the rise of potential (unrecognized) errors. For instance, integer
types of specification languages are usually of infinite domain, whereas program-
ming languages, such as Java, bound their integers to a finite domain.

There are three possible solutions to this problem [4]. First, we may change
the implementation level to support equal operation as provided by the speci-
fication language. Second, we may restrict domains of data types to the same
domains as provided by the implementation language. Third, it is possible to
introduce a notion of controlled incorrectness, referred to as retrenchment [3,4],
in our refinement rules. A retrenchment framework may additionally prove the
absence of cases where such mismatches could occur, albeit possible based on
the different type definitions of specification and implementation language.

ArchiCorC shifts this problem to CorC, as its focus is primarily on the
specification language and code generation. CorC itself overcomes this limita-
tion (i.e., does not violate the refinement from specification to implementation)
by closely following the JML specification language and by integrating the ver-
ifier KeY as part of its tool suite. That is, the second solution is applied by
using implementation level data types in the specification language to avoid any
mismatch between the two. However, as identified by Beckert and Schlager [4],
this solution comes with certain drawbacks, such that the hiding of implemen-
tation details is reduced or that not all implementation details are even known
during the specification phase, which consequently limits applicability of such a
specification language.

A future direction could be to study the notion of retrenchment in combi-
nation with the correctness-by-construction paradigm. First, as our vision is to
support software developers in their daily practices with writing correct software,
retrenchment already follows the idea of implementation hiding and focusing on
adequately abstract specifications for refinement calculi. Second, humans typi-
cally think of types as mathematical objects with infinite domains. Hence, a nat-
ural consequence is to not restrict the domains of data types of the specification
language. As lifting the data types of many programming languages to infinite
domains seems infeasible due to scalability and compatibility reasons, keeping
infinite domains for data types of the specification language is only sufficiently
addressed by the third solution mentioned before (i.e., applying retrenchment).

8 Related Work

The primary goal of ArchiCorC is to scale the correctness-by-construction
paradigm to large scale software projects following the design-by-contract
paradigm. As such, the component model of ArchiCorC is simpler compared
to most existing component models applied in practice, as it follows a UML-
style modularization to separate concerns and realize reusable components. More

Scaling Correctness-by-Construction 205

recent contract theories are applied at the level of embedded systems and aim at
supporting heterogeneous systems [13,29] (i.e., contracts over systems that com-
prise multiple domains, such as software, hardware, mechanical, and electrical
parts). In particular, component models in such theories [5,6,34] are comprised of
a set of ports and an implementation, and contracts follow the assume-guarantee
paradigm similar to design-by-contract. In contrast to ArchiCorC, these com-
ponents are typical dynamic in the sense that they follow a trace-based semantics
and their state changes over time.

Besides ArchiCorC, there exist other tools for specifying software architec-
tures as component models that apply the design-by-contract principle in their
description language. Examples of such tools include CBabel [28], RADL [30],
XCD [26] and its visual extension VXCD [25], and X-MAN [18]. However, our
programming model for components greatly differs from the mentioned tools,
as their primary focus is the interaction model between components, whereas
our focus is to establish a repository of correct-by-construction library functions
following the component-based design model.

In this work, we applied correctness-by-construction to implement methods
of provided interfaces. Related to the correctness-by-construction approach is
Event-B [1], which provides a formal language together with a notion of refine-
ment. Other refinement-inspired tools include ArcAngel [24], which is based
on Morgan’s refinement calculus [23]. To apply correctness-by-construction, we
integrated CorC into ArchiCorC. Recently, CorC was extended to enable
information flow control-by-construction [31].

9 Conclusion

Our vision is to bring correctness-by-construction into the realm of mainstream
software developers by providing sophisticated tool support. We believe that
ArchiCorC exhibits a promising starting point for integrating correctness-by-
construction into software engineering processes. Specifically, we implemented
ArchiCorC as an extension to CorC with the goal to scale the correctness-
by-construction paradigm to large scale software development. ArchiCorC lets
developers model UML-style software components consisting of required and
provided interfaces, while methods of provided interfaces are implemented with
CorC. Consequently, deployed ArchiCorC components bundle functionality
in a modular way, while correctness is provably established per construction.
Moreover, by generating valid Java code, such components can be imported
and used in various software projects as-is. We defined the valid composition
of components and demonstrated the capabilities of ArchiCorC on the bank
account case study.

For future work, we aim at extending the tool support even further to estab-
lish a repository of correct-by-construction components. For instance, as men-
tioned before, our proposed methodology has potential to be used for implement-
ing stateless web services and therefore to derive a process for developing correct-
by-construction services. Moreover, our code generation is prone to changes in

206 A. Knüppel et al.

the component model, as the complete Java code has to be re-generated. This
can be solved with more sophisticated design patterns. A second package for
future work is to conduct more case and user studies to evaluate ArchiCorC’s
improvement over just CorC for constructing larger programs using correctness-
by-construction.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.:
Deductive Software Verification-The KeY Book. Lecture Notes in Computer Sci-
ence. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-49812-6

3. Banach, R., Poppleton, M.: Retrenchment: an engineering variation on refinement.
In: Bert, D. (ed.) B 1998. LNCS, vol. 1393, pp. 129–147. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0053358

4. Beckert, B., Schlager, S.: Refinement and retrenchment for programming language
data types. Formal Aspects Comput. 17(4), 423–442 (2005)

5. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis, C.:
Multiple viewpoint contract-based specification and design. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp.
200–225. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92188-
2 9

6. Benveniste, A., Caillaud, B., Passerone, R.: Multi-Viewpoint State Machines for
Rich Component Models. Model-Based Design of Heterogeneous Embedded Sys-
tems (2009)

7. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: advanced spec-
ification and verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363.
Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 16

8. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

9. Dijkstra, E.W.: Guarded commands, non-determinacy and formal derivation of
programs. Comm. ACM 18(8), 453–457 (1975)

10. Dijkstra, E.W.: A Discipline of Programming, 1st edn. Prentice Hall PTR, Upper
Saddle River (1976)

11. Gries, D.: The Science of Programming, 1st edn. Springer, Secaucus (1981).
https://doi.org/10.1007/978-1-4612-5983-1

12. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.: Behavioral
interface specification languages. ACM Comput. Surv. (CSUR) 44(3), 1–58 (2012)

13. Henzinger, T.A., Sifakis, J.: The discipline of embedded systems design. Computer
40(10), 32–40 (2007)

14. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

15. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/BFb0053358
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/11804192_16
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-1-4612-5983-1
https://doi.org/10.1007/978-3-642-25271-6_8

Scaling Correctness-by-Construction 207

16. Kassios, I.T.: Dynamic frames: support for framing, dependencies and sharing
without restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 268–283. Springer, Heidelberg (2006). https://doi.org/10.
1007/11813040 19

17. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to
Programming. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
27919-5

18. Lau, K.-K., Tran, C.M.: X-MAN: an MDE tool for component-based system devel-
opment. In: 2012 38th EUROMICRO Conference on Software Engineering and
Advanced Applications, pp. 158–165. IEEE (2012)

19. Leavens, G.T., Baker, A.L., Ruby, C.: JML: a Java modeling language. In: Formal
Underpinnings of Java Workshop (at OOPSLA 1998), pp. 404–420. Citeseer (1998)

20. Leavens, G.T., Muller, P.: Information hiding and visibility in interface specifica-
tions. In: 29th International Conference on Software Engineering (ICSE 2007), pp.
385–395. IEEE (2007)

21. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Pro-
gramm. Lang. Syst. (TOPLAS) 16(6), 1811–1841 (1994)

22. Meyer, B.: Applying design by contract. IEEE Comput. 25(10), 40–51 (1992)
23. Morgan, C.: Programming from Specifications. Prentice Hall, Upper Saddle River

(1994)
24. Oliveira, M., Cavalcanti, A., Woodcock, J.: ArcAngel: a Tactic Language For

Refinement. Formal Aspects Comput. 15(1), 28–47 (2003)
25. Ozkaya, M.: Visual specification and analysis of contract-based software architec-

tures. J. Comput. Sci. Technol. 32(5), 1025–1043 (2017). https://doi.org/10.1007/
s11390-017-1779-y

26. Ozkaya, M., Kloukinas, C.: Design-by-contract for reusable components and real-
izable architectures. In: Proceedings of the 17th International ACM SIGSOFT
Symposium on Component-Based Software Engineering, pp. 129–138 (2014)

27. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
28. Rademaker, A., Braga, C., Sztajnberg, A.: A rewriting semantics for a software

architecture description language. Electron. Notes Theor. Comput. Sci. 130, 345–
377 (2005)

29. Rawat, D.B., Rodrigues, J.J., Stojmenovic, I.: Cyber-Physical Systems: From The-
ory to Practice. CRC Press, Boca Raton (2015)

30. Reussner, R.H., Schmidt, H.W., Poernomo, I.H.: Reliability prediction for
component-based software architectures. J. Syst. Softw. 66(3), 241–252 (2003)

31. Runge, T., Knüppel, A., Thüm, T., Schaefer, I.: Lattice-based information flow
control-by-construction for security-by-design. In: FormaliSE 2020. IEEE (2020)

32. Runge, T., Schaefer, I., Cleophas, L., Thüm, T., Kourie, D., Watson, B.W.: Tool
support for correctness-by-construction. In: Hähnle, R., van der Aalst, W. (eds.)
FASE 2019. LNCS, vol. 11424, pp. 25–42. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-16722-6 2

33. Runge, T., Thüm, T., Cleophas, L., Schaefer, I., Watson, B.W.: Comparing
correctness-by-construction with post-hoc verification—a qualitative user study.
In: Sekerinski, E., et al. (eds.) FM 2019. LNCS, vol. 12233, pp. 388–405. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-54997-8 25

34. Sangiovanni-Vincentelli, A., Damm, W., Passerone, R.: Taming Dr. Frankenstein:
contract-based design for cyber-physical systems. Eur. J. Control 18(3), 217–238
(2012)

35. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming. Pearson Education, London (2002)

https://doi.org/10.1007/11813040_19
https://doi.org/10.1007/11813040_19
https://doi.org/10.1007/978-3-642-27919-5
https://doi.org/10.1007/978-3-642-27919-5
https://doi.org/10.1007/s11390-017-1779-y
https://doi.org/10.1007/s11390-017-1779-y
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-030-54997-8_25

X-by-Construction: Correctness Meets
Probability

X-by-Construction

Correctness Meets Probability

Maurice H. ter Beek1(B), Loek Cleophas2,5(B), Axel Legay3, Ina Schaefer4,
and Bruce W. Watson5,6

1 ISTI–CNR, Pisa, Italy
maurice.terbeek@isti.cnr.it

2 TU Eindhoven, Eindhoven, The Netherlands
l.g.w.a.cleophas@tue.nl

3 UC Louvain, Louvain-la-Neuve, Belgium
axel.legay@uclouvain.be

4 TU Braunschweig, Braunschweig, Germany
i.schaefer@tu-braunschweig.de

5 Stellenbosch University, Stellenbosch, South Africa
bwwatson@sun.ac.za

6 CAIR, Stellenbosch, South Africa

Abstract. In recent years, researchers have started to investigate X-by-
Construction (XbC) as a refinement approach to engineer systems that
by-construction satisfy certain non-functional properties, beyond correct-
ness as considered by the more traditional Correctness-by-Construction
(CbC). In line with increasing attention for fault-tolerance and the use of
machine-learning techniques in modern software systems, in which even
correctness is hard to establish, this track brings together researchers
and practitioners that are interested in XbC in particular in the setting
of probabilistic properties.

1 Motivation and Aim

Correctness-by-Construction (CbC) approaches the development of software
(systems) as a true form of Engineering, with a capital ‘E’. CbC advertises
a step-wise refinement process from specification to code, ideally by CbC design
tools that automatically generate error-free software (system) implementations
from rigorous and unambiguous specifications of requirements. Afterwards, test-
ing only serves to validate the CbC process rather than to find bugs. (Of course,
bugs might still be present outside the boundaries of the verified system: in
libraries, compilers, hardware, the CbC design tools themselves, etc.)

A lot of progress has been made in this domain, implying it is time to look fur-
ther than correctness and investigate a move from CbC to XbC, i.e., by consider-
ing also non-functional properties. XbC is thus concerned with a step-wise refine-
ment process from specification to code that automatically generates software
(system) implementations that by-construction satisfy specific non-functional

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 211–215, 2020.
https://doi.org/10.1007/978-3-030-61362-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_11

212 M. H. ter Beek et al.

properties concerning security, dependability, reliability or resource/energy con-
sumption, etc. A track on XbC was organised at ISoLA 2018 [2], in turn building
on an ISoLA 2016 track focusing on the combination of post-hoc verification with
CbC [3]. The 2018 XbC track brought together researchers and practitioners
interested in CbC and the promise of XbC, with a particular emphasis on
security-by-construction.

Building on the highly successful ISoLA 2018 track, the aim of this track is
to once again bring together researchers and practitioners that are interested
in CbC and XbC. In line with the growing attention to fault-tolerance (thanks
to increasingly common failures in hardware and software) and the increasing
use of machine-learning techniques in modern software systems—in both of these
contexts, guaranteed properties are hard to establish—we particularly emphasise
XbC in the setting of probabilistic properties.

We therefore invited researchers and practitioners working in the following
communities to share their views on (moving from CbC to) XbC:

V People working on system-of-systems, who address modelling and verification
(correctness, but also non-functional properties concerning security, reliabil-
ity, resilience, energy consumption, performance, and sustainability) of net-
works of interacting legacy and new software systems, and who are interested
in applying XbC techniques in this domain in order to prove—potentially
probabilistic—non-functional properties of systems-of-systems by construc-
tion (from their constituent systems satisfying these properties).

V People working on quantitative modelling and analysis, e.g., through proba-
bilistic or real-time systems and probabilistic or statistical model checking, in
particular in the specific setting of dynamic, adaptive or (runtime) reconfig-
urable systems with variability. These people work on lifting successful formal
methods and verification tools from single systems to families of systems, i.e.,
modelling and analysis techniques that need to cope with the complexity of
systems stemming from behaviour, variability, and randomness—and which
focus not only on correctness but also on non-functional properties concern-
ing safety, security, performance, or dependability properties. As such, they
may be interested in applying XbC techniques in this domain to prove non-
functional properties of families of systems by construction (from their indi-
vidual family members satisfying these properties).

V People working on systems involving components that employ machine-
learning (ML) or other artificial-intelligence (AI) approaches. In these set-
tings, models and behaviour are typically dependent on what is learned from
large data sets, and may change dynamically based on yet more data being
processed. As a result, guaranteeing properties (whether functional or non-
functional ones) becomes hard, and probabilistic reasoning needs to be applied
instead with respect to such properties for the components employing ML or
AI approaches, and as a consequence, for systems involving such components
as well.

V People working on generative software development, who are concerned with
the automatic generation of software from specifications given in general for-

X-by-Construction 213

mal languages or domain-specific languages, leading to families of related
software (systems). Also in this setting, the emphasis so far has typically
been on functional correctness, but the restricted scope of the specifications—
especially for domain-specific languages—may offer a suitable ground for rea-
soning about non-functional properties, and for using XbC techniques to guar-
antee such properties.

V People working on systems security, privacy, and algorithmic transparency
and accountability, who care about more than correctness. The application
of XbC techniques could provide certain guarantees from the outset when
designing critical systems. It could also enforce transparency when developing
algorithms for automated decision-making, in particular those based on data
analytics—thus reducing algorithmic bias by avoiding opaque algorithms.

2 Contributions

In their keynote contribution, McIver and Morgan [8] describe a correct-by-
construction proof method for probabilistic programming. It is based on their
probabilistic extension pGCL of Dijkstra’s Guarded-Command Language, which
allows to describe program correctness by a generalisation of Hoare logic that
includes quantitative analysis, and to develop programs by refinement such that
both functional and probabilistic properties are preserved. They demonstrate
how to apply their method by deriving a fair-coin implementation of any given
discrete probability distribution in a systematic, layered way such that the rea-
soning in each layer does not depend on earlier layers nor affect later ones.
Moreover, in the special case of simulating a fair die, the authors show how one
final correctness-preserving step allows them to obtain Knuth and Yao’s optimal
die-roll algorithm.

In the context of probabilistic component-based systems that interact via syn-
chronised execution of shared actions, Baier et al. [1] present different notions
of (component) suitability, results on their decidability for restricted classed,
and associated algorithmic analysis procedures. The basic notion of suitability
is provided through threshold suitability that determines whether each one of the
given quantitative properties exceeds a given threshold, while weighting quan-
titative properties leads to a quantitative measure of degrees of suitability. The
applicability of the resulting notions of quantitative suitability analysis is illus-
trated with a case study of vehicle components with features for different road
conditions, which is particularly appealing due to its feature-oriented nature.

Fahrenberg and Legay [4] consider the notion of behavioural specification
theories, giving an overview of the underlying theoretical concepts, as well as
various kinds of behavioural specification theories, with examples for most of
them. To make the connection to this specific XbC track, they include three
different behavioural specification theories for modelling real-time and proba-
bilistic systems. The survey emphasises commonalities and differences between
the various specification and modelling formalisms in such theories, leading to a
taxonomy in the form of a table showing the different behavioural specification
theories and their properties.

214 M. H. ter Beek et al.

Jaeger et al. [6] consider the resolution of control problems under uncertainty
and continuous domains. For doing so, they rely on finite-state imprecise Markov
decision processes that can be used to approximate the behaviour of these infinite
models. The authors address two questions. First, they investigate what kind of
approximation guarantees are obtained when the process is approximated by
finite-state approximations induced by increasingly fine partitions of the contin-
uous state space. They show that for cost functions over finite time horizons the
approximations become arbitrarily precise. Second, they use imprecise Markov
decision process approximations as a tool to analyse and validate cost functions
and strategies obtained by reinforcement learning. Finally, the authors compare
this constructive process with classical learning-based solutions.

Könighofer et al. [7] present an overview of shield synthesis approaches in
order to ensure that policies learned using reinforcement learning do not make
incorrect or unsafe actions. They discuss the approaches of pre-shielding where
the set of possible actions an agent can take are filtered before decision making,
to only include correct actions and post-shielding where the selected action after
decision making is corrected in case it is incorrect. The paper reviews existing
work for shield synthesis for temporal, probabilistic and timed properties and
presents examples and evaluation results for each of the reviewed approaches.

Performance is an important non-functional property that, being related to
metrics like response time and throughput, directly affects end-user perception
of the quality of a software system. Therefore, controlling a software system’s
performance is an important endeavour in today’s engineering practice. Incerto
et al. [5] argue that the performance-by-construction development paradigm by
which executable code carries some kind of performance guarantees, as opposed
to the current practice in software engineering where performance concerns are
left to later stages of the development process by means of profiling or testing,
needs to support techniques that are probabilistic in nature, leveraging accurate
models for the analysis. To this aim, they present a literature review and a classi-
fication of methods that can form the basis of such performance-by-construction
development approaches, focussing on methods where performance information
is extracted directly from the code. This is a line of research that has apparently
been less explored by the software performance engineering community. They
conclude by discussing limitations of the state of the art.

References

1. Baier, C., et al.: Components in probabilistic systems: suitable by construction. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2020, Part I. LNCS, vol. 12476, pp. 240–261.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-4 13

2. ter Beek, M.H., Cleophas, L., Schaefer, I., Watson, B.W.: X-by-construction. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 359–364.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03418-4 21

3. ter Beek, M.H., Hähnle, R., Schaefer, I.: Correctness-by-construction and post-hoc
verification: friends or foes? In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9952, pp. 723–729. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47166-2 51

https://doi.org/10.1007/978-3-030-61362-4_13
https://doi.org/10.1007/978-3-030-03418-4_21
https://doi.org/10.1007/978-3-319-47166-2_51
https://doi.org/10.1007/978-3-319-47166-2_51

X-by-Construction 215

4. Fahrenberg, U., Legay, A.: Behavioral specification theories: an algebraic taxonomy.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2020, Part I. LNCS, vol. 12476, pp. 262–
274. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-4 14

5. Incerto, E., Napolitano, A., Tribastone, M.: Inferring performance from code: a
review. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020, Part I. LNCS, vol. 12476,
pp. 307–322. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-4 17

6. Jaeger, M., Bacci, G., Bacci, G., Larsen, K.G., Jensen, P.G.: Approximating
euclidean by imprecise Markov decision processes. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2020, Part I. LNCS, vol. 12476, pp. 275–289. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-61362-4 15

7. Könighofer, B., Lorber, F., Jansen, N., Bloem, R.: Shield synthesis for reinforcement
learning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020, Part I. LNCS, vol. 12476,
pp. 209–306. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-4 16

8. McIver, A., Morgan, C.: Correctness by construction for probabilistic programs. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2020, Part I. LNCS, vol. 12476, pp. 216–239.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-4 12

https://doi.org/10.1007/978-3-030-61362-4_14
https://doi.org/10.1007/978-3-030-61362-4_17
https://doi.org/10.1007/978-3-030-61362-4_15
https://doi.org/10.1007/978-3-030-61362-4_15
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-030-61362-4_12

Correctness by Construction
for Probabilistic Programs

Annabelle McIver1(B) and Carroll Morgan2(B)

1 Macquarie University, Sydney, Australia
annabelle.mciver@mq.edu.au

2 University of New South Wales and Trustworthy Systems, Data61, CSIRO,
Sydney, Australia

carroll.morgan@unsw.edu.au

Abstract. The “correct by construction” paradigm is an important
component of modern Formal Methods, and here we use the probabilis-
tic Guarded-Command Language pGCL to illustrate its application to
probabilistic programming.

pGCL extends Dijkstra’s guarded-command language GCL with prob-
abilistic choice, and is equipped with a correctness-preserving refinement
relation (�) that enables compact, abstract specifications of probabilis-
tic properties to be transformed gradually to concrete, executable code
by applying mathematical insights in a systematic and layered way.

Characteristically for correctness by construction, as far as possible
the reasoning in each refinement-step layer does not depend on earlier
layers, and does not affect later ones.

We demonstrate the technique by deriving a fair-coin implementation
of any given discrete probability distribution. In the special case of sim-
ulating a fair die, our correct-by-construction algorithm turns out to be
“within spitting distance” of Knuth and Yao’s optimal solution.

1 Testing Probabilistic Programs?

Edsger Dijkstra argued [1, p. 3] that the construction of correct programs requires
mathematical proof, since “. . . program testing can be used very effectively to
show the presence of bugs but never to show their absence.” But for programs
that are constructed to exhibit some form of randomisation, regular testing can’t
even establish that presence: surprising, unexpected program traces are bound
to turn up even in correctly operating probabilistic systems.

Thus evidence of quantitative errors in probabilistic systems could require
many, many traces to be subjected to detailed statistical analysis—yet even then
debugging probabilistic programs is a challenge once that evidence has been
assembled. Unlike standard (non-probabilistic) programs, where a single failed
test can often pinpoint the source of the offending error in the code, it’s not easy

We are grateful for the support of the Australian Research Council.

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 216–239, 2020.
https://doi.org/10.1007/978-3-030-61362-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_12

Correctness by Construction for Probabilistic Programs 217

to figure out what to change in the implementation of probabilistic programs in
order to move closer towards “correctness” rather than further away.

Without that unambiguous relationship between failed tests and the coding
errors that cause them, Dijkstra’s caution regarding proofs of programs is even
more apposite. In this paper we describe such a proof method for probability:
correctness by construction. In a sentence, to apply “CbC” one constructs the
program and its proof at the same time, letting the requirement that there be a
proof guide the design decisions taken while constructing the program.

Like standard programs, probabilistic programs incorporate mathematical
insights into algorithms, and a correctness-by-construction method should allow
a program developer to refer rigorously to those insights by applying develop-
ment steps that preserve “probabilistic correctness”. Probabilistic correctness
is however notoriously unintuitive. For example, the solution of the infamous
Monty Hall problem caused such a ruckus in the mathematical community that
even Paul Erdös questioned the correct analysis [14].1 Yet once coded up as a
program [10, p. 22], the Monty Hall problem is only four lines long! More gen-
erally though, many widely relied-upon probabilistic programs in security are
quite short, and yet still pose significant challenges for correctness.

We describe correctness by construction in the context of pGCL, a small pro-
gramming language which restores demonic choice to Kozen’s landmark (purely)
probabilistic semantics [7,8] while using the syntax of Dijkstra’s GCL [2]. Its
basic principles are that correctness for programs can be described by a general-
isation of Hoare logic that includes quantitative analysis; and it has a definition
of refinement that allows programs to be developed in such a way that both
functional and probabilistic properties are preserved.2

2 Enabling Correctness by Construction—pGCL

The setting for correctness by construction of probabilistic programs is provided
by pGCL –the probabilistic Guarded-Command Language– which contains both
abstraction and (stepwise) refinement [10]. We begin by reviewing its origins,
then its treatment of probabilistic choice and demonic choice, and finally its
realisation of CbC .

(This section can be skimmed on first reading: just collect pGCL syntax from
Figs. 2, 3, and 4, and then skip directly to Sect. 3.)

As we will not be treating non-terminating programs, we can base our descrip-
tion here on quite simple models for sequential (non-reactive) programs. The

1 A game-show host, Monty Hall, exhibits three curtains, behind one of which sits a
Cadillac; the other two curtains conceal goats. The contestant guesses which curtain
hides the prize, and Monty then opens another, making sure however that it reveals
a goat. The contestant is allowed to change his mind. Should he?

2 If the program is a mathematical object, then as Andrew Vazonyi [14] pointed out:
“I’m not interested in ad hoc solutions invented by clever people. I want a method
that works for lots of problems. . . One that mere mortals can use. Which is what a
correctness-by-construction method should be.”.

218 A. McIver and C. Morgan

state space is some set S and, in its simplest terms, a program takes an initial
state to a final state: it (its semantics) therefore has type S →S.

The three subsections that follow describe logics based on successive enrich-
ments of this, the simplest model, and even the youngest of those logics is by
now almost 25 years old: thus we will be “reviewing” rather than inventing.

The first enrichment, Sect. 2.1, is based on the model S →PS that allows
demonic nondeterminism,3 so facilitating abstraction; then in Sect. 2.2 the model
S →DS replaces demonic nondeterminism by probabilistic choice, losing abstrac-
tion (temporarily) but in its place gaining the ability to describe probabilistic
outcomes; and finally in Sect. 2.3 the model S →PDS restores demonic nonde-
terminism, allowing programs that can abstract from precise probabilities. Using
syntax we will make more precise in those sections, we give here some simple
examples of the three increments in expressivity:

(1) x:= H Set variable x to H (as in any sequential language);
(2) x:∈ {H,T} Set x’s value demonically from the set {H, T};
(3) x:∈ H 2/3⊕ T Set x’s value from the set {H, T} with probability 2/3

for H and 1/3 for T, a “biased coin”; and
(4) x:∈ H 1/3⊕1/3 T Set x from the set {H, T} with probability at least 1/3

each way, a “capricious coin”.

The last example of those (4) is the most general: for (3) is x:∈ H 2/3⊕1/3 T;
and (2) is x:∈ H 0⊕0 T; and finally (1) is x:∈ H 1⊕0 T.

2.1 Floyd/Hoare/DijKstra: Pre- and Postconditions: (1, 2) Above

We assume a typical sequential programming language with variables, expres-
sions over those variables, assignment (of expressions to variables), sequential
composition (semicolon or line break), conditionals and loops. It is more or less
Dijkstra’s guarded command language [2], and is based on the model S →PS,
where PS is the set of all subsets of S.

The weakest precondition of program Prog in such a language, with respect
to a postcondition post given as a first-order formula over the program variables,
is written wp(Prog ,post) and means

the weakest formula (again on the program variables) that must hold before
Prog executes in order to ensure that post holds after Prog executes [2].

In a typical compositional style, the wp of a whole program is determined by the
wp of its components.

We group Dijkstra, Hoare and Floyd together because the Dijkstra-style
implication pre ⇒ wp(Prog , post) has the same meaning as the Hoare-style
triple {pre } Prog {post } which in turn has the same meaning as the original
Floyd-style flowchart annotation, as shown in Fig. 1 [3,4]. All three mean “If pre
holds of the state before execution of Prog , then post will hold afterwards.”
3 Constructor P is “subsets of” and D is “discrete distributions on”.

Correctness by Construction for Probabilistic Programs 219

x = 1

x = 2

x:= x+1

pre

Prog

post

At left is a “generic” Floyd annotation of a flowchart containing only one
program element. If the annotation pre holds “on the way in” to the program
Prog , then annotation post will hold on the way out. At right is an example
with specific annotations and a specific program.

In the Hoare style the right-hand example would be written

{x = 1} x:= x+1 {x = 2} .

In the Dijsktra style it would be written x=1 ⇒ wp(x:= x+1, x=2).
They all three have the same meaning.

Fig. 1. Floyd-style annotated flowchart

Finally, a notable –but incidental– feature of Dijkstra’s approach was that
(demonic) nondeterminism arose naturally, as an abstraction from possible con-
crete implementations.4 That is why we use S →PS rather than S →S here.
In later work (by others) that abstraction was made more explicit by includ-
ing explicit syntax for a binary “demonic choice” between program fragments,
a composition Left � Right that could behave either as the program Left or
as the program Right . But that operator (�) was not really an extension of
Dijkstra’s work, because his (more verbose) conditional

IF True → Left – If True holds, then this branch may be taken.

True → Right – If True holds, then also this branch may be taken.

FI – (Dijkstra terminated all IF’s with FI’s.)

was there in his original guarded-command language, introducing demonic choice
naturally as an artefact of the program-design process—and it expressed exactly
the same thing. The (�) merely made it explicit.

2.2 Kozen: Probabilistic Program Logic: (3) Above

Kozen extended Dijkstra-style semantics to probabilistic programs, again over a
sequential programming language but now based on the model S →DS, where

4 See Sect. 3.5 for a further discussion of this.

220 A. McIver and C. Morgan

DS is set of all discrete distributions in S.5 He replaced Dijkstra’s demonic non-
determinism (�) by a “probabilistic nondeterminism” operator (p⊕) between
programs, understood so that Left p⊕ Right means “Execute Leftwith prob-
ability p and Right with probability 1−p.” The probability p is (very) often
1/2 so that coin:= Heads 1/2⊕ coin:= Tails means “Flip a fair coin.” But
probability p can more generally be any real number, and more generally still
it can even be an expression in the program variables.

Kozen’s corresponding extension of Floyd/Hoare/Dijkstra [7,8] replaced Dij-
kstra’s logical formulae with real-valued expressions (still over the program vari-
ables); we give examples below. The “original” Dijkstra-style formulae remain
as a special case where real number 1 represents True and 0 represents False;
and Dijkstra’s definitions of wp simply carry through essentially as they are. . .
except that an extra definition is necessary, for the new construct (p⊕), where
Kozen defines that

wp(Left p⊕ Right , post)
is p · wp(Left , post) + (1−p) · wp(Right , post).

With this single elegant extension, it turns out that in general wp(Prog ,post)
is the expected value, given as a (real valued) expression over the initial state,
of what post will be in the final state, i.e. after Prog has finished executing
from that initial state. (The initial/final emphasis simply reminds us that it is
the same as for Dijkstra: the weakest precondition is what must be true in the
initial state for the postcondition to be true in the final state.) For example we
have that

wp(x:= 1-y 1/3⊕ x:= 3*x, x + 3) is 1/3(1−y + 3) + 2/3(3x+3),

that is the real-valued expression 3 1
3 + 2x − y/3 in which both x and y refer to

their values in the initial state.
More impressive though is that if we introduce the convention that brackets

[−] convert Booleans to numbers, i.e. that [True] = 1 and [False] = 0, we have
in general for Boolean-valued prop the convenient idiom 6

wp(Prog , [prop])
is “the probability that Prog establishes property prop ”, (1)

And if –further– it happens that the “probabilistic” program Prog actually
contains no probabilistic choices at all, then (1) just above has value 1 just when

5 Kozen’s work did not restrict to discrete distributions; but that is all we need here.
6 The expected value of the characteristic function [prop] of an event prop is equal

to the probability that prop itself holds.

Correctness by Construction for Probabilistic Programs 221

Prog is guaranteed to establish post , and is 0 otherwise: it is in that sense that
the Dijkstra-style semantics “carries through” into the Kozen extension. That
is, if Prog contains no probabilistic choice, and post is a conventional (Boolean
valued) formula, then we have that7

Dijkstra style [wp(Prog , post)]
is the same as Kozen style wp(Prog , [post]).

The full power of the Kozen approach, however, starts to appear in examples
like this one below: we flip two fair coins and ask for the probability that they
show the same face afterwards. Using the (Dijkstra) weakest-precondition rule
that wp(Prog1 ;Prog2 , post) is simply wp(Prog1 , wp(Prog2 ,post)),8 we can
calculate

wp(c1:= H 1/2⊕ c1:= T; c2:= H 1/2⊕ c2:= T, [c1 = c2])
= wp(c1:= H 1/2⊕ c1:= T, wp(c2:= H 1/2⊕ c2:= T, [c1 = c2]))
= wp(c1:= H 1/2⊕ c1:= T, 1/2[c1 = H] + (1−1/2)[c1 = T])

= 1/2(1/2[H = H] + 1/2[H = T]) + 1/2(1/2[T = H] + 1/2[T = T])
= 1/2(1/2 · 1 + 1/2 · 0) + 1/2(1/2 · 0 + 1/2 · 1)

= 1/4 + 1/4
= 1/2 , that is that the probability that c1= c2 is 1/2.

A nice further exercise for seeing this probabilistic wp at work is to repeat the
above calculation when one of the coins uses (p⊕) but (1/2⊕) is retained for the
other, confirming that the answer is still 1/2.

2.3 McIver/Morgan: Pre- and Post-expectations

Following Kozen’s probabilistic semantics at Sect. 2.2 just above (which itself
turned out later to be a special case of Jones and Plotkin’s probabilistic powerdo-
main construction [5]) we restored demonic choice to the programming language
and called it pGCL [10,12]. It contains both demonic (�) and probabilistic (p⊕)
choices; its model is S →PDS; and it is the language we will use for the correct-
by-construction program development we begin in Sect. 3 below [10]. Figures 2,
3, and 4 summarise its syntax and its wp-logic.

To illustrate demonic- vs. probabilistic choice, we’ll revisit the two-coin pro-
gram from above. This time, one coin will have a probability-p bias for some
constant 0≤ p≤ 1 (thus acting as a fair coin just when p is 1/2). The other choice
will be purely demonic.

We start with the (two-statement) program

c1:= H p⊕ c1:= H
c2:= H � c2:= T ,

7 Note that if Prog contains (p⊕) somewhere, the above does not apply: Dijkstra
semantics has no definition for (p⊕).

8 This is particularly compelling when wp is Curried: sequential composition
wp(Prog1 ; Prog2) is then the functional composition wp(Prog1) ◦ wp(Prog2).

222 A. McIver and C. Morgan

name syntax semantics

expectation
post

real-valued expression
over the program variables

(the usual)

expression E expression over the program
variables (of any type)

(the usual)

condition C Boolean-valued expression
over the program variables

(the usual)

substitution E1 [x \E2 fosecnerruccoeerfllaecalpeR] x in E1

by E2 (with the usual caveats.)

assignment x := E Evaluate E ; assign it to x .
wp(x := E , post) = post [x \E]

sequential
composition

Prog1 ;Prog2 Execute Prog1 then Prog2 .

wp(Prog1 ;Prog2 , post) = wp(Prog1 , wp(Prog2 ,post))

conditional IF C THEN Prog1 ELSE Prog2 Evaluate Boolean C , then execute
Prog1 or Prog2 accordingly.

wp(IF C THEN Prog1 ELSE Prog2 , post)
= [C]·wp(Prog1 , post) + [¬C]·wp(Prog2 , post)

loop WHILE C DO Prog Evaluate Boolean C , then execute Prog

(and repeat), or exit, accordingly.

The usual least fixed point, based on
WHILE C DO Prog = IF C THEN (Prog ; WHILE C DO Prog)

The above cases cover the constructs of pGCL without probabilistic- or demonic choice,
but nevertheless defined with Kozen-style “numeric” wp’s which, applied to “post-
expectations” give “pre-expectations”.

Fig. 2. Syntax and wp-semantics for “restricted” pGCL

where the first statement is probabilistic and the second is demonic, and ask, as
earlier, “What is the probability that the two coins end up equal?” We calculate

wp(c1:= H p⊕ c1:= T; c2:= H � c2:= T, [c1 = c2])
= wp(c1:= H p⊕ c1:= T, wp(c2:= H � c2:= T, [c1 = c2]))
= wp(c1:= H p⊕ c1:= T, [c1 = H] min [c1 = T])

= p ·([H = H] min [H = T]) + (1−p)·([T = H] min [T = T])
= p ·(1 min 0) + (1−p)·(0 min 1)
= p ·0 + (1−p)·0
= 0 ,

Correctness by Construction for Probabilistic Programs 223

name syntax semantics

probabilistic
choice

Prog1 p⊕ Prog2 Evaluate p , which must be in [0, 1], then
execute Prog1 with that probability; oth-
erwise execute Prog2 .

wp(Prog1 p⊕ Prog2 , post) = p ·wp(Prog1, post)+(1-p)·wp(Prog2, post)

demonic
choice

Prog1 � Prog2 Choose demonically whether to execute
Prog1 or Prog2 .

wp(Prog1 � Prog2 , post) = wp(Prog1, post) min wp(Prog2, post)

These “extra” cases cover the probabilistic- and demonic choice constructs of pGCL.

Fig. 3. Syntax and wp-semantics for pGCL’s choice constructs

to reach the conclusion that the probability of the two coins’ being equal finally. . .
is zero. And that highlights the way demonic choice is usually treated: it’s a
worst-case outcome. The “demon” –thought of as an agent– always tries to make
the outcome as bad as possible: here because our desired outcome is that the
coins be equal, the demon always sets the coin c2 so they will differ. If we were
to repeat the above calculation with postcondition c1�=c2 instead, the result
would again be zero: if we change our minds, want the coins to differ, then the
demon will change his mind too, and act to make them the same.9

Implicit in the above treatment is that the c2 demon knows the outcome of
the c1 flip—which is reasonable because that flip has already happened by the
time it’s the demon’s turn.

Now we reverse the statements, so that the demon goes first: it must set c2
without knowing beforehand what c1 will be. The program becomes

c2:= H � c2:= T
c1:= H p⊕ c1:= T ,

and we calculate

wp(c2:= H � c2:= T; c1:= H p⊕ c1:= T, [c1 = c2])
= wp(c2:= H � c2:= T, wp(c1:= H p⊕ c1:= T, [c1 = c2]))
= wp(c2:= H � c2:= T, p ·[H = c2] + (1−p)·[T = c2])
= p ·[H = H] + (1−p)·[T = H] min p ·[H = T] + (1−p)·[T = T]
= p ·1 + (1−p)·0 min p ·0 + (1−p)·1
= p min (1−p).

9 This is not a novelty: demonic choice is usually treated that way in semantics—that’s
why it’s called “demonic”.

224 A. McIver and C. Morgan

name syntax semantics

do nothing SKIP wp(SKIP, post) = post .
fail ABORT wp(ABORT, post) = 0 .

probabilistic
assignment

x :∈ E1 p⊕ E2 As for (x := E1) p⊕ (x := E2) .

demonic
assignment

x :∈ E1 � E2 As for (x := E1) � (x := E2) .

probabilistic IF p THEN Prog1 As for Prog1 p⊕ Prog2 .
conditional ELSE Prog2

probabilistic WHILE p DO Prog As for ordinary loop,
loop but using probabilistic conditional.

The cases above introduce special abbreviations and “syntactic sugar” for pGCL.

Command SKIP allows an “ELSE-less” conditional, as used e.g. in Fig. 2, to be defined
in the usual way as IF C THEN Prog1 ELSE SKIP.

Command ABORT allows wp(WHILE C DO Prog , post), as a least fixed point, to be
defined as the supremum of

wp(ABORT, post)
wp(IF C THEN (Prog ;ABORT), post)
wp(IF C THEN (Prog ;(IF C THEN (Prog ;ABORT))), post)
... ,

which exists (in spite of the reals’ being unbounded) because it can be shown by
structural induction that

wp(Prog , post) ≤ post ,

and that wp(Prog ,−) is continuous, for all programs Prog . The above is therefore a
chain, is dominated by post itself, and attains the limit at ω.

Fig. 4. Syntax and wp-semantics for pGCL’s choice constructs

Since the demon set flip c2 without knowing what the c1-flip would be (because
it had not happened yet), the worst it can do is to choose c2 to be the value
that it is known c1 is least likely to be—which is just the result above, the lesser
of p and 1−p. If –as before– we changed our minds and decided instead that we
would like the coins to be different, then the demon would adapt by choosing c2
to be the value that c1 is most likely to be.

Either way, the probability our postcondition will be achieved, the pre-
expectation of its characteristic function, is the same p min (1−p)—so that only
when p= 1/2, i.e. when p= (1−p), does the demon gain no advantage.

Correctness by Construction for Probabilistic Programs 225

3 Probabilistic Correctness by Construction in Action10

Our first example problem conceptually will be to achieve a binary choice of
arbitrary bias using only a fair coin. With the apparatus of Sect. 2.3 however,
we can immediately move from conception to precision:

We must write a pGCL program that implements Left p⊕ Right , under
the constraint that the only probabilistic choice operator we are allowed
to use in the final (pGCL) program is (1/2⊕).

This is not a hard problem mathematically: the probabilistic calculation that
solves it is elementary. Our point here is to use this simple problem to show how
such solutions can be calculated within a programming-language context, while
maintaining rigour (possibly machine-checkable) at every step.

The final program is given at (8) in Sect. 3.5.

3.1 Step 1—A Simplification

We’ll start by simplifying the problem slightly, instantiating the programs Left
and Right to x:= 1 and x:= 0 respectively. Our goal is thus to implement

x:∈ 1 p⊕ 0, (2)

for arbitrary p, and our first step is to create two other distributions 1 q⊕ 0 and
1 r⊕ 0 whose average is 1 p⊕ 0—that is

1/2 × ((1 q⊕ 0) + (1 r⊕ 0)) = (1 p⊕ 0). (3)

A fair coin will then decide whether to carry on with 1 q⊕ 0 or with 1 r⊕ 0.
Trivially (3) holds just when (q+r)/2 = p, and if we represent p, q, r as

variables in our program, we can achieve (3) by the double assignment11

IF p≤ 1/2 → q,r:= 0,2p
p≥ 1/2 → q,r:= 2p-1,1

FI
{ p = (q + r)/2 },

(4)

whose postcondition indicates what the assignment has established. If we follow
that with a fair-coin flip between continuing with q or with r, viz.

IF p≤ 1/2 → q,r:= 0,2p – Here q is 0.

p≥ 1/2 → q,r:= 2p-1,1 – Here r is 1.

FI
(x:∈ 1 q⊕ 0) 1/2⊕ (x:∈ 1 r⊕ 0) – The fair coin (1/2⊕) here is permitted.

(5)

10 This intent of this section can be understood based on the syntax given in Figs. 2,
3, and 4.

11 We will sometimes include Dijkstra’s closing FI.

226 A. McIver and C. Morgan

then we should have implemented Program (2). But what have we gained?
The gain is that, whichever branch of the conditional is taken, there is a 1/2

probability that the problem we have yet to solve will be either (0⊕) or (1⊕),
both of which are trivial. If we were unlucky, well. . . then we just try again. But
how do we show rigorously that Program (2) and Program (5) are equal?

If we look back at Program (4), we find the assertion { p = (q + r)/2 } which
is easy to establish by conventional Hoare-logic or Dijkstra-wp reasoning from
the conditional just before it. (We removed it from Program (5) just to reduce
clutter.) Rigour is achieved by calculating

wp((x:∈ 1 q⊕ 0) 1/2⊕ (x:∈ 1 r⊕ 0), post)

= 1/2 wp((x:∈ 1 q⊕ 0), post) + 1/2 wp((x:∈ 1 r⊕ 0), post)
= q/2 · post [x\1] + (1−q)/2 · post [x\0] + r/2 · post [x\1] + (1−r)/2 · post [x\0]
= (q+r)/2 · post [x\1] + (1 − (q+r)/2) · post [x\0]
= p · post [x\1] + (1−p) · post [x\0] “{ p = (q + r)/2 }”

= wp(x:∈ 1 p⊕ 0, post),

for arbitrary postcondition post where at the end we used { p = (q + r)/2 }.
Thus (2) = (5) because for any post their pre-expectations agree.

3.2 Step 2—Intuition Suggests a Loop

We now return to the remark “. . . then we just try again.” If we replace the
final fair-coin flip (x:∈ 1 q⊕ 0) 1/2⊕ (x:∈ 1 r⊕ 0) by p:∈ q 1/2⊕ r then
–intuitively– we are in a position to “try again” with x:∈ 1 p⊕ 0 . Although
it is the same as the statement we started with, we have made progress because
variable p has been updated—and with probability 1/2 it is either 0 or 1 and we
are done. If it is not, then we arrange for a second execution of

IF p≤ 1/2 → q,r:= 0,2p
p≥ 1/2 → q,r:= 2p-1,1

FI
p:∈ q 1/2⊕ r

(6)

and, if still p is neither 0 nor 1, then . . . we need a loop.

3.3 Step 3—Introduce a Loop

We have already shown that

Program (2) = Program (6); Program (2).

A general equality for sequential programs (including probabilistic) tells us that
in that case also we have 12

Program (2) = WHILE C DO Program (6) OD; Program (2)
12 As before, we usually use Dijkstra’s loop-closing OD.

Correctness by Construction for Probabilistic Programs 227

for any loop condition C , provided the loop terminates. Intuitively that is clear
because, if Program (2) can annihilate Program (6) once from the right, then it
can do so any number of times. A rigorous argument appeals to the fixed-point
definition of WHILE, which is where termination is used. (If C were False, so
that the loop did not terminate, the rhs would be Abort, thus providing a clear
counter-example.)

For probabilistic loops, the usual “certain” termination is replaced with
almost-sure termination, abbreviated AST, which means that the loop termi-
nates with probability one: put the other way, that would be that the probability
of iterating forever is zero. For example the program

c:= H; WHILE c=H DO c:∈ H 1/2⊕ T OD.

terminates almost surely because the probability of flipping T forever is zero.
A reasonably good AST rule for probabilistic loops is that the variant is (as

usual) a natural number, but must be bounded above; and instead of having to
decrease on every iteration, it is sufficient to have a non-zero probability of doing
so [10,13].13 The variant for our example loop just above is [c=H], which has
probability 1/2 of decreasing from [H=H], that is 1, to [T=H] on each iteration.

The loop condition C for our program will be 0< p< 1 and the variant comes
directly from there: it is [0<p<1], which has probability of 1/2 of decreasing from
1 to 0 on each iteration: and when it is 0, that is 0< p< 1 is false, the loop must
exit. With that, we have established that our original Program (2) equals the
looping program

WHILE 0 < p < 1 DO
IF p≤ 1/2 → q,r:= 0,2p

p≥ 1/2 → q,r:= 2p-1,1
FI
p:∈ q 1/2⊕ r

OD
{ p = 1 ∨ p = 0 }
x:∈ 1 p⊕ 0,

where the assertion at the loop’s end is the negation of the loop guard.

3.4 Step 4—Use the Loop’s Postcondition

There is still the final x:∈ 1 p⊕ 0 to be dealt with, at the end; but the assertion
{ p = 1 ∨ p = 0 } just before it means that it executes only when p is zero or
one. So it can be replaced by IF p=0 THEN x:∈ 11⊕0 ELSE x:∈ 10⊕0 , i.e. with
13 By “reasonably good” we mean that it deals with most loops, but not all: it is

sound, but not complete. There are more complex rules for dealing with more com-
plex situations [11]. Strictly speaking, over infinite state spaces “non-zero” must be
strengthened to “bounded away from zero” [13].

228 A. McIver and C. Morgan

just x:= p . Mathematically, that would be checked by showing for all post-
expectations post that

p = 1 ∨ p = 0 ⇒ wp(x:∈ 1 p⊕ 0, post) = wp(x:= p, post).

But it’s a simple-enough step just to believe (unless you were using mechanical
assistance, in which case it would be checked).

And so now the program is complete: we have implemented x:∈ 1p⊕0 by a
step-by-step correctness-by-construction process that delivers the program

WHILE 0 < p < 1 DO
IF p≤ 1/2 → q,r:= 0,2p

p≥ 1/2 → q,r:= 2p-1,1
FI
p:∈ q 1/2⊕ r

OD
x:= p

(7)

in which only fair choices appear. And each step is provably correct.

3.5 Step 5—After-the-Fact Optimisation

There is still one more thing that can (provably) be done with this program, and
it’s typical of this process: only when the pieces are finally brought together do
you notice a further opportunity. It makes little difference—but it is irresistible.

Before carrying it out, however, we should be reminded of the way in which
these five steps are isolated from each other, how all the layers are indepen-
dent. This is an essential part of CbC , that the reasoning can be carried out in
small, localised areas, and that it does not matter –for correctness– where the
reasoning’s target came from; nor does it matter where it is going.

Thus even if we had absolutely no idea what Program (7) was supposed to
be doing, still we would be able to see that if we are replacing x by p at the end,
we could just as easily replace it at the beginning; and then we can remove the
variable p altogether. That gives

– Now p is again a parameter, as it was in the original specification.

x:= p
WHILE 0 < x < 1 DO

IF x≤ 1/2 → q,r:= 0,2x – When x= 1/2, these two

x≥ 1/2 → q,r:= 2x-1,1 – branches have the same effect.

FI
x:∈ q 1/2⊕ r

OD,
– The above implements x:∈ 1p⊕0 for any 0 ≤ p≤ 1.

(8)

and we are done. When p is 0 or 1, it takes no flips at all; when p is 1/2, it takes
exactly one flip; and for all other values the expected number of flips is 2.

Correctness by Construction for Probabilistic Programs 229

We notice that Program (8) appears to contain demonic choice, in that when
x= 1/2 the conditional could take either branch. The nondeterminism is real—
even though the effect is the same in either case, that q,r:= 0,1 occurs. But
genuinely different computations are carried out to get there: in the first branch
2(1/2)− 1 is evaluated to 0; and in the second branch 2(1/2) is evaluated to 1.

This is not an accident: we recall from Sect. 2.1 that for Dijkstra such nonde-
terminism arises naturally as part of the program-construction process. Where
did it come from in this case?

The specification from which this conditional IF · · · FI arose was set out
much earlier, at (3) which given p has many possible solutions in q, r. One
of them for example is q= r= p which however would have later given a loop
whose non-termination would prevent Step 3 at Sect. 3.3. With an eye on loop
termination, therefore, we took a design decision that at least one of q, r should
be “extreme”, that is 0 or 1. To end up with q= 0, what is the largest that
p could be without sending r out of range, that is strictly more than 1? It’s
p= 1/2, and so the first IF-condition is p≤ 1/2. The other condition p≥ 1/2 arises
similarly, and it absolutely does not matter that they overlap: the program will
be correct whichever IF-branch taken in that case.

And, in the end –in (8) just above– we see that indeed that is so.

4 Implementing any Discrete Choice with a Fair Coin

Suppose instead of trying to implement a biased coin (as we have been doing
so far), we want to implement a general (discrete) probabilistic choice of x’s
value from its type, say a finite set X , but still using only a fair coin in the
implementation. An example would be choosing x uniformly from {x0, x1, x2},
i.e. a three-way fair choice. But what we develop below will work for any discrete
distribution on a finite set X of values: it does not have to be uniform.

The combination of probability and abstraction allows a development like
the one in Sect. 3 just above to be replayed, but a greater level of generality. We
begin with a variable d of type DX ,14 where we recall that X is the type of x;
and our specification is x:∈ d , that is “Set x according to distribution d.”

4.1 Replaying Earlier Steps from Sect. 3

Our first step –Step 1– is to declare two more DX -typed variables d0 and d1,
and –as in Sect. 3.1– specify that they must be chosen so that their average
is the original distribution d; for that we use the pGCL nondeterministic-choice
construct “assign such that” (with syntax borrowed from Dafny [9]), from Fig. 5,
to write

d0,d1:| d = (d0+d1)/2 – Choose d0,d1 so that their average is d. (9)

14 Recall from Sect. 2.2 that DX is the set of discrete distributions over finite set X .

230 A. McIver and C. Morgan

name syntax semantics

choose from set x :∈ set

wp(x :∈ set , post) = (min e | e ∈ set . post [x \e])

assign “such that” x :| property (x)
wp(x :| property (x), post) = (min e | property (e) . post [x \e])

The above generalise to more than a single variable, and are consistent with the earlier
definitions: thus

x:= a � x:= b

= x:∈ {a,b}
= x:| x∈ {a,b} .

By analogy with “choose from set” (but not itself an abstraction) we have also

name syntax semantics

choose from distribution x :∈ dist

wp(x :∈ dist , post) = (
∑

e | e ∈ �dist � . dist (e) · post [x \e]) ,

where dist (e) is the probability that dist assigns to e and �dist � is the support of
dist , the set of elements to which it assigns non-zero probability.

It is just the expected value of post , considered as a function of x , over the distribution
dist on x . (Since E1 p⊕ E2 is a distribution, the definition above agrees with the earlier
meaning of x:∈ E1 p⊕ E2 that we gave in Fig. 4 as an abbreviation.)

Fig. 5. Abstraction in pGCL.

The analogy with our earlier development is that there the distribution d was
specifically 1 p⊕ 0, and we assigned

if p≤1/2 d0, d1 = (1 0⊕ 0), (1 2p⊕ 0)
if p≥1/2 d0, d1 = (1 2p−1⊕ 0), (1 1⊕ 0),

which is a refinement (�) of (9).
Our second step is to re-establish the x:∈ d -annihilating property that

Program (9); d:∈ d0 1/2⊕ d1; x:∈ d = x:∈ d, (10)

15 Summing over all possible values e of x would give the same result, since the extra
values have probability zero anyway. Some find this formulation more intuitive.

15

Correctness by Construction for Probabilistic Programs 231

which is proved using wp-calculations against a general post-expectation post ,
just as before: instead of the assertion { p = (q + r)/2 } used at the end of Step 1,
we use the assertion { d = (d0+d1)/2 } established by the assign-such-that.

The third step is again to introduce a loop. But we recall from Step 3 earlier
that the loop must be almost-surely terminating and, to show that, we need
a variant function. Here we have no q,r that might be set to 0 or 1; we have
instead d0,d1. Our variant will be that the “size” of one of these distributions
must decrease strictly, where we define the size of a discrete distribution to
be the number of elements to which it assigns non-zero probability.16 But our
specification d0,d1:| d = (d0+d1)/2 above does not require that decrease; and
so we must backtrack in our CbC and make sure that it does.

And we have made an important point, that developments following CbC
rarely proceed as they are finally presented: the dead-ends are cut off, and only
the successful path is left for the audit trail. It highlights the multiple uses of
CbC—that on the one hand, used for teaching, the dead-ends are shown in order
to learn how to avoid them; used in production, the successful path remains so
that it can be modified in the case that requirements change.17

Thus to establish AST of the loop –that it terminates with probability one–
we strengthen the split of d achieved by d0,d1:| (d0+d1)/2 = d with the
decreasing-variant requirement, that either |d0|< |d| or |d1|< |d|, where we are
writing |−| for “size of”. Then the variant |d| is guaranteed strictly to decrease
with probabililty 1/2 on each iteration. That is we now write

d0,d1:| (d0+d1)/2 = d ∧ (|d0|< |d| ∨ |d1|< |d|), (11)

replacing (9), for the nondeterministic choice of d0 and d1. We do not have to re-
prove its annihilation property, because the new statement (11) is a refinement
of the (9) from before (It has a stronger postcondition.) and so preserves all its
functional properties. In fact that is the definition of refinement.

Our next step is to reduce the nondeterminism in (11) somewhat, choosing
a particular way of achieving it: to “split” d into two parts d0,d1 such that the
size of at least one part is smaller, we choose two subsets X0,X1 of X whose
intersection contains at most one element. That is illustrated in Fig. 6, where
X0 = {A,B,C} and X1 = {C,D}. Further, we require that the probabilities
d(X0) and d(X1) assigned by d to X0−X1 and X1−X0 are both no more than
1/2.18 Those constraints mean that we can always arrange the subsets so that
the “1/2-line” of Fig. 6 either goes strictly through X0 ∩X1 (if they overlap) or
runs between them (if they do not).19

16 In probability theory this would be the cardinality of its support.
17 And if an error was made in the CbC proofs, the “successful” path can be audited

to see what the mistake was, why it was made, and how to fix it.
18 Applying d to a set means the sum of the d-probabilities of the elements of the set.
19 If for example C were much smaller, so that the dividing line went through D, the

new distribution d0 would have support 4, the same as d itself. But |d1| would then
have support 1, strictly smaller.

232 A. McIver and C. Morgan

Fig. 6. Dividing a discrete distribution into two pieces.

We then construct d0 by restricting d to just X0, then doubling all the
probabilities in that restriction; if they sum to more than 1, we then trim any
excess from the one element in X0 ∩X1 that X0 shares with X1. The analogous
procedure is applied to generate d1. In Fig. 6 for example we chose sizes 0.2, 0.1,
0.3 and 0.4 for the four regions, and the 1/2 line went through the third one. On
the left, the 0.2 and 0.1 and 0.3 are doubled to 0.4 and 0.2 and 0.6, summing
to 1.2; thus 0.2 is trimmed from the 0.6, leaving 0.4 assigned to C. And the
analogous procedure applies on the right.

4.2 “Decomposition of Data into Data Structures”

The quote is from Wirth [15]. Our program is currently

WHILE |d|�=1 DO
d0,d1:| (d0+d1)/2 = d ∧ (|d0|< |d| ∨ |d1|< |d|)
d:∈ d0 1/2⊕ d1

OD
x:∈ d // This is a trivial choice, because |d|=1 here.

(12)

Correctness by Construction for Probabilistic Programs 233

And it is correct: it does refine x:∈ d—but it is rather abstract. Our next develop-
ment step will be to make it concrete by realising the distribution-typed variables
and the subsets of X as “ordinary” datatypes using scalars and lists. In CbC this
is done by deciding, before that translation process begins, what the realisations
will be—and only then is the abstract program transformed, piece by piece. The
relation between the abstract- and concrete types is called a coupling invariant.

Although an obvious approach is to order the type X , say as x1, x2, . . . , xN

and then to realise discrete distributions as lists of length N of probabilities
(summing to 1), a more concise representation is suggested by the fact that for
example we represent a two-point distribution x1 p⊕ x2 as just one number p,
with the 1−p implied. Thus we will represent the distribution p1, p2, . . . pN as
the list of length N−1 of “accumulated” probabilities: in this case for p we would
have a list

p1, p1+p2, . . . ,

N−1∑

n=1

pn,

leaving off the N th element of the list since it would always be 1 anyway.
Subsets of X will be pairs low,high of indices, meaning {xlow, . . . , xhigh}, and
although that can’t represent all subsets of X , contiguous subsets are all we will
need. Carrying out that transformation gives following concrete version of our
abstract Program (12) below, where the abstract d is represented as the concrete
dL[low:high] , which is the coupling invariant.20

And in Program (13) of Fig. 7 we have, finally, a concrete program that can
actually be run. Notice that it has exactly the same structure as Program (12):
split (the realisations of) d into d0 and d1; overwrite d with one of them; exit
the loop when |d| is one.

Neverthess, as earlier in Sect. 3.5, further development steps might still be
possible now that everything is together in one place:21 and indeed, recognising
that only one of dL0,dL1 will be used, we can rearrange Program (13)’s body
so that only one of them will be calculated—and it can be updated as we go.
That gives our really-final-this-time program (14) in Fig. 8, which will -without
further intervention– use a fair coin to choose a value xn according to any given
discrete distribution d on finite X . Its expected number of coin flips is no worse
than 2N−2, where N is the size of X , thus agreeing with expected 2 flips for
the program (8) in Sect. 3.5 that dealt with the simpler case d = (1 p⊕ 0) where
X was {1, 0}.

It’s again worth emphasising –because it is the main point– that the cor-
rectness arguments for all of these steps are isolated from each other: in CbC
every step’s correctness is determined by looking at that step alone. Thus for
example nothing in the translation process just above involved reasoning about
the earlier steps, whether Program (12) actually implemented the x:∈ d that

20 The range low:high is inclusive-exclusive (as in Python). A similar coupling invari-
ant applies to d0 and d1. All three invariants are applied at once.

21 Note the necessity of keeping this as two steps: first data-refine, then (if you can)
optimise algorithmically.

234 A. McIver and C. Morgan

– Discrete distribution d in X of size N is realised here as dL (for “d-list”).
low,high:= 1,N – Initial support is all of X .

WHILE low 	= high DO – low= high means support is {xlow}
– Current support is {xlow, . . . , xhigh}.

– Find X0 by examining the probabilities of x1, x2, . . .
n:= low – Determine dL0 as in lhs of Fig. 6.
WHILE n<high∧ dL[n]<1/2 DO dL0[n]:= 2*dL[n]; n:= n+1 OD

low0,high0:= low,n – Subset X0 is {xlow0, . . . , xhigh0} .

– Find X1 by examining the probabilities of xN , xN−1, . . .
n:= high-1 – Determine dL1 as in rhs of Fig. 6.
WHILE low≤n∧ 1/2<dL[n] DO dL1[n]:= 2*dL[n]-1; n:= n-1 OD

low1,high1:= n+1,high – Subset X1 is {xlow1, . . . , xhigh1} .

– Use fair coin to choose between dL0 and dL1.
(dL,low,high):∈ (dL0,low0,high0) 1/2⊕ (dL1,low1,high1)

OD

x:= xlow – Extract sole element of point distribution’s support.

(13)

Fig. 7. Implement any discrete choice using only a fair coin.

– Assume discrete distribution d over X = {x1, . . . , xN} of size N
– has been represented cumulatively in list dL, as described above.

low,high:= 1,N – Initial support is all of X .
WHILE low 	= high DO – low= high means support is {xlow}

– Fair coin flipped here. (Recall Fig. 4.)
IF 1/2 THEN – Then update dL as in lhs of Fig. 6.

n:= low

WHILE n<high∧ dL[n]<1/2 DO dL[n]:= 2*dL[n]; n:= n+1 OD

high:= n

ELSE – Else update dL as in rhs of Fig. 6.
n:= high-1

WHILE low≤n∧ 1/2<dL[n] DO dL[n]:= 2*dL[n]-1; n:= n-1 OD

low:= n+1

FI

OD

x:= xlow – Extract sole element of point distribution dL’s support.

(14)

Fig. 8. Optimisation of Program (13)

Correctness by Construction for Probabilistic Programs 235

we started with: we didn’t care, and we didn’t check. We just translated Pro-
gram (12) into Program (13) regardless. And the subsequent rearrangement of
(13) into Program (14) similarly made no use of Program (13)’s provenence.

All that is to be contrasted with the more common approach in which
only intuition (and experience, and skill) is used, that is in which our final
Program (14) might be written all at once at this concrete level, only then
checking (testing, debugging, hoping) afterwards that our intuitions were correct.
A transliteration of Program (14) into Python is given in AppendixA.

5 An Everyday Application: Simulating a Fair Die Using
only a Fair Coin

Program (14) of the previous section works for any discrete distribution, without
having to adapt the program in any way. However if the distribution’s proba-
bilities are not too bizarre, then the number of different values for low and
d and high might be quite small—and then the program’s behaviour for that
distribution in particular can be set out as a small probabilistic state machine.

In Fig. 9 we take d to be the uniform distribution over the possible die-roll
outcomes {1, 2, 3, 4, 5, 6}, and show the state machine that results. For that state
machine in particular, we propose one last correctness-preserving step: it takes
us to the optimal die-roll algorithm of Knuth and Yao [6].

6 Why Was This “Correctness by Construction”?

The programs here are not themselves remarkable in any way. (The optimality
of the Knuth/Yao algorithm is not our contribution.) Even the mathematical
insights used in their construction are well known, examples of elementary prob-
ability theory. CbC means however applying those insights in a systematic, lay-
ered way so that the reasoning in each layer does not depend on earlier layers,
and does not affect later ones. The steps were specifically

236 A. McIver and C. Morgan

61
1 2 3 4 5

1 3
2 4

2 3
2

1 2

1 2
4

1 2
2

2 3
4

3

4 6
2 4

5 6
2

4 5

4 5
4

4 5
2

5 6
4

6

αα

ββ

γ

Each interior node has two possible successors chosen with equal probability, and each
final-die node is reached with the same probability 1/6. There are 17 nodes, and the
expected number of coin flips is 4.
The nodes’ origins are shown by labelling them with low, d and high from the states
in the generating program that gave rise to them, representing the current probability
distribution d yet to be realised over over the remaining subset {low, . . . , high} of
possible results. With probabilities normalised out of 6 for neatness, a typical label is

low high

←− 6×d −→ ,

where we recall that d gives the sum of the probabilities for xlow, xlow+1, . . . , xhigh−1

and that d for xhigh is left out, because it is always 1. Thus for example low = 2 and
high = 3 and d = [4] represents the distribution over support {2, 3} of 4/6 for 2 and
1−4/6 for 3, that is 2 2/3⊕ 3.

The well-known (optimal) algorithm of Knuth and Yao for simulating a die with a fair
coin has 13 states and 11/3 expected coin flips [6] — and it can be obtained from here
by one last correctness-preserving step. Eliminate the choice γ, so that the two α and
the two β nodes are merged; since that also merges the two die-rolls 1 and 3, restore
the γ choice as a new fair choice γ′ over {1, 3}, just below the merged β’s. (The nodes
leading to die-roll 2 are merged as well, but it makes no difference.)
Concentrating on the left (justified by symmetry), we see that the original γ choice
must be done every time; but its replacement γ′ is done only 2/3 of the time. That
realises exactly the 1/3 efficiency advantage that Knuth/Yao optimal algorithm has
over the one synthesised here by our general Program (14).

Fig. 9. Simulating a fair die with a fair coin

Correctness by Construction for Probabilistic Programs 237

1. Start with the specification x:∈ d at the beginning of Sect. 4.
2. Prove a one-step annihilation property (10) for that specification.
3. Use a general loop rule to prove loop-annihilation Program (12), after

Strengthening Program (9) to Program (11) to establish AST.
4. Propose strategy Fig. 6 for the loop body of Program (12).
5. Propose data representation of finite discrete distributions as lists, in

Sect. 4.2, realising the strategy of Fig. 6 in the code of Program (13).
6. Rearrange Program (13) to produce a more efficient final program Pro-

gram (14).
7. Note that correctness by construction guarantees that Program (14)

refines x:∈ d for any d.
8. Apply Program (14) to the fair die, to produce state chart of Fig. 9.
9. Modify Fig. 9 to produce the Knuth/Yao (optimal) algorithm [6].

10. Note that correctness by construction guarantees that the Knuth/Yao
(optimal) algorithm implements a fair die.

CbC also means that since all those steps are done explicitly and separately,
they can be checked easily as you go along, and audited afterwards. But to apply
CbC effectively, and honestly, one must have a rigorous semantics that justifies
every single development step made. In our example here, that was supplied here
by the semantics of pGCL [10]. But working in any “wide spectrum” language,
right from the (abstract) start all the way to the (concrete) finish, means that
many of those rigorous steps can be checked by theorem provers.

A Program (14) implemented in Python

Run 1,000,000 trials on a fair-die simulation.

#

bash-3.2$ python ISoLA.py

1000000

1 1 1 1 1 1

Relative frequencies

0.998154 1.00092 0.996474 0.998664 1.004928 1.00086

realised, using 4.001938 flips on average.

import sys

from random import randrange

Number of runs, an integer on the first line by itself.

runs = int(sys.stdin.readline())

Discrete distribution unnormalised, as many subsequent integers as needed.

Then EOT.

d= []

for line in sys.stdin.readlines():

for word in line.split(): d.append(int(word))

sizeX= len(d) # Size of initial distribution’s support.

238 A. McIver and C. Morgan

Construct distribution’s representation as accumulated list dL_Init.

Note that length of dL_Init is sizeX-1,

because final (normalised) entry of 1 is implied.

Do not normalise, however: makes the arithmetic clearer.

sum,dL_Init= d[0],[]

for n in range(sizeX-1): dL_Init= dL_Init+[sum]; sum= sum+d[n+1]

tallies= []

for n in range(sizeX): tallies= tallies+[0]

allFlips= 0 # For counting average number of flips.

for r in range(runs):

flips= 0

Program (14) starts here.

low,high,dL= 0,sizeX-1,dL_Init[:] # Must clone dL_Init.

print "Start:", low, dL[low:high], high

while low<high:

flip= randrange(2) # One fair-coin flip.

flips= flips+1

if flip==0:

n= low

while n<high and 2*dL[n]<sum: dL[n]= 2*dL[n]; n= n+1

high= n # Implied dL0[high]=1 performs trimming automatically.

print "Took dL0:", low, dL[low:high], high # dL0 has overwritten dL.

else: # flip==1

n= high-1

while low<=n and 2*dL[n]>sum: dL[n]= 2*dL[n]-sum; n= n-1

low= n+1 # Implied dL1[low]=0 performs trimming automatically.

print "Took dL1", low, dL[low:high], high # dL1 has overwritten dL.

print "Rolled", low, "in", flips, "flips."

Program (14) ends here.

tallies[low]= tallies[low]+1

allFlips= allFlips+flips

print "Relative frequencies"

for n in range(sizeX): print " ", float(tallies[n])/runs * sum

print "realised, using", float(allFlips)/runs, "flips on average."

Correctness by Construction for Probabilistic Programs 239

References

1. Dijkstra, E.W.: On the reliability of programs (EWD303)
2. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Upper Saddle River

(1976)
3. Floyd, R.W.: Assigning meanings to programs. In: Schwartz, J.T. (ed.) Mathemat-

ical Aspects of Computer Science. Proceedings of Symposium on Applied Mathe-
matics, vol. 19, pp. 19–32. American Mathematical Society (1967)

4. Hoare, C.A.R.: An axiomatic basis for computer programming. Comm. ACM
12(10), 576–580 (1969)

5. Jones, C.B., Plotkin, G.: A probabilistic powerdomain of evaluations. In: Pro-
ceedings of the IEEE 4th Annual Symposium on Logic in Computer Science, Los
Alamitos, CA, pp. 186–195. Computer Society Press (1989)

6. Knuth, D., Yao, A.: The complexity of nonuniform random number generation. In:
Algorithms and Complexity: New Directions and Recent Results. Academic Press
(1976)

7. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22, 328–350
(1981)

8. Kozen, D.: A probabilistic PDL. In: Proceedings of the 15th ACM Symposium on
Theory of Computing, pp. 291–297. ACM, New York (1983)

9. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

10. McIver, A.K., Morgan, C.C.: Abstraction, Refinement and Proof for Probabilistic
Systems. Monographs in Computer Science. Springer, New York (2005). https://
doi.org/10.1007/b138392

11. McIver, A.K., Morgan, C.C., Kaminski, B.-L., Katoen, J.-P.: A new proof rule for
almost-sure termination. Proc. ACM Program. Lang. 2(POPL), 1–28 (2017)

12. Morgan, C.C., McIver, A.K., Seidel, K.: Probabilistic predicate transformers. ACM
Trans. Program. Lang. Syst. 18(3), 325–353 (1996)

13. Morgan, C.C.: Proof rules for probabilistic loops. In: Jifeng, H., Cooke, J., Wallis,
P. (eds.) Proceedings of the BCS-FACS 7th Refinement Workshop, Workshops in
Computing. Springer, Heidelberg (July 1996). http://www.bcs.org/upload/pdf/
ewicrw96paper10.pdf

14. Vazsonyi, A.: Which Door has the Cadillac: Adventures of a Real-Life Mathemati-
cian. Writers Club Press (2002)

15. Wirth, N.: Program development by stepwise refinement. Commun. ACM 14(4),
221–227 (1971)

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
http://www.bcs.org/upload/pdf/ewicrw96paper10.pdf
http://www.bcs.org/upload/pdf/ewicrw96paper10.pdf

Components in Probabilistic Systems:
Suitable by Construction

Christel Baier1(B) , Clemens Dubslaff1(B) , Holger Hermanns2,3(B) ,
Michaela Klauck2(B) , Sascha Klüppelholz1(B) ,

and Maximilian A. Köhl2(B)

1 Technische Universität Dresden, Dresden, Germany
baier@tcs.inf.tu-dresden.de,

{clemens.dubslaff,sascha.klueppelholz}@tu-dresden.de
2 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

{hermanns,klauck,mkoehl}@cs.uni-saarland.de
3 Institute of Intelligent Software, Guangzhou, China

Abstract. This paper focusses on the question when and to what extent
a particular system component can be considered suitable to use in the
context of the dynamics of a larger technical system. We introduce dif-
ferent notions of suitability that arise naturally in the context of proba-
bilistic nondeterministic systems that interact through the exchange of
messages in the style of input-output automata. Besides discussing algo-
rithmic aspects for an analysis following our notions of suitability, we
demonstrate practical usability of our concepts by means of experiments
on a concrete use case.

1 Introduction

The structured composition of systems from smaller entities is a key technique
across many engineering disciplines. For instance, in the field of architecture, it
is well understood how the structural properties of construction stones trans-
late into structural properties of walls and thus of houses. This concept also is
extremely appealing for the engineering of cyber-physical systems (CPSs), typ-
ically built up of components that interact and exchange information [3,30].
For CPSs, the compositional approach poses a number of challenges, stem-
ming first and foremost from the notoriously complex dynamics of even simple
CPSs placed in only partially controllable or partially known environments. But
also the semantic heterogeneity of computational, physical, and human aspects
for modelling the CPS, together with algorithmic and technical challenges in a

Authors are listed in alphabetical order. This work was partially supported by the DFG
under the projects TRR 248 (see https://perspicuous-computing.science, project ID
389792660), EXC 2050/1 (CeTI, project ID 390696704, as part of Germany’s Excellence
Strategy), BA-1679/11-1, and BA-1679/12-1, the ERC Advanced Investigators Grant
695614 (POWVER), and the Key-Area Research and Development Program Grant
2018B010107004 of Guangdong Province.

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 240–261, 2020.
https://doi.org/10.1007/978-3-030-61362-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_13&domain=pdf
http://orcid.org/0000-0002-5321-9343
http://orcid.org/0000-0001-5718-8276
http://orcid.org/0000-0002-2766-9615
http://orcid.org/0000-0002-6353-227X
http://orcid.org/0000-0003-1724-2586
http://orcid.org/0000-0003-2551-2814
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-61362-4_13

Components in Probabilistic Systems: Suitable by Construction 241

model-based engineering process render the modelling and analysis of composite
CPSs an exigent task.

The present paper contributes to the quest for methods and tools to con-
struct, abstract, compose, and evaluate CPS models that summarise the cru-
cial aspects of components’ quantitative behaviour, together with support for
design-time evaluation of alternatives. Our long-term vision is a methodology
to devise, verify, and compose summaries of component characteristics, and to
provide means that enable the comparative analysis of such characteristics. To
this end, we aim at deepening the known concepts of interfaces and service con-
tracts in that they come with rigid semantic interpretations, and are supported
by effective algorithmic analysis techniques. In doing so, we focus on component
models that can exhibit probabilistic behaviour while engaging in interaction via
inputs and outputs. The central notion that we study in this paper is suitability.
We explore the spectrum of meaningful notions of suitability of a component
with respect to a set of quantitative properties representing what is considered
important in a specific context. In this, we concentrate on probabilistic aspects
of suitability.

Concurrency, Composition, and Probability. The questions in how far compo-
nent characteristics affect a larger context is entrenched with the question how
the components interact, i.e., what the composition of components and contexts
actually mean semantically. Process calculi like CSP [26] or CCS [34] are at the
roots of generic and expressive ways to piece up larger systems from concurrent
interacting components. Segala [38] lifted these ideas to the setting of probabilis-
tic automata, nowadays the standard composition for Markov decision processes
(MDPs) [37] also used in analysis tools such as Prism [29]. Earlier seminal work
on probabilistic concurrency [24] has put in focus the importance of a gener-
ative/reactive view on probabilities. This echoes the separation of component
activities into inputs and outputs, a central concept especially in the works on
I/O automata [32]. In this modelling approach, component inputs are always
enabled, meaning that no component can block the output of another compo-
nent by not accepting it as input. This simple assumption is natural in many
contexts: if in place, it is intuitively easy to add more components to an existing
system, since none of them will block the behaviour already present. In a proba-
bilistic setting with inputs and outputs, it is furthermore natural to associate to
outputs a generative probabilistic effect: different outputs of a component can
be generated according to a probability distribution (local to the output com-
ponent), while inputs are reactive in the sense that for all inputs the component
is able to react with a probabilistic effect. This idea was first worked out in
probabilistic I/O automata [40], and later adapted to the setting of probabilistic
automata [11,14,23].

Probabilistic Input-Output Systems (PIOSs). In this paper, we strive towards
notions for the suitability of components to be composed with a larger con-
text. To benefit from the compositional advantages detailed above, we work
with a very expressive formalism for interacting probabilistic components and

242 C. Baier et al.

their composition based on the compositional framework of interleaved prob-
abilistic I/O system (IPIOA) [23]. This formalism is a conservative extension
of input-output automata [32] to the setting of discrete probabilities. We fur-
ther enhance IPIOA slightly by a more flexible concept of observability, leading
to the framework of partially observable PIOSs (PO-PIOSs). While the use of
I/O formalisms as in PO-PIOSs is common for many compositional specifica-
tion theories, input-enabledness is sometimes not natural for tightly interacting
systems. However, our concept of suitability does not explicitly rely on the input-
enabledness assumption in PO-PIOSs and can be adapted to other compositional
MDP-based formalisms.

Notions of Suitability. Stepwise and with an increasing intricacy, we introduce
several notions of suitability formalised for the setting of PO-PIOS. Our basic
instance is provided through threshold suitability that determines whether each
one of the given quantitative properties exceeds a given threshold. This notion
has similarities to conjunctive multi-objective properties in MDPs [12,19–21].
Weighting quantitative properties for the CPS leads to a single quantitative
measure of suitability degree, which then might be used to relate different com-
ponents with respect to their suitability. That is, we call a component more suit-
able than another if executed in the same context CPS all possible executions
achieve a higher suitability degree. For all of our notions, we present universal
and existential versions, differing in the ability of the component investigated
with respect to its ability to react on the other components of the CPS.

Suitability Evaluation. Algorithmically, the notions of suitability we introduce
for PO-PIOS are closely related to threshold properties for IPIOA [23], and to
verification problems on partially-observable MDPs [8,31,33,35], all of which are
known to be undecidable already under mild assumptions. As we illustrate in
this paper, this leaves little room for decidable suitability problems in the general
case. Therefore, restricted classes of PO-PIOSs, properties, and schedulers have
to be considered to establish decidable instances of our suitability problems. The
problem instances for which we establish positive results comprise PO-PIOSs
with full observability and restrictions on the nondeterminism that is present in
the components. While these instances appear to be quite restricted at the first
glance, our case study shows that they provide useful contributions to estimate
suitability of components in CPSs.

Suitability in Action. Despite our definitions of suitability being a priori devel-
oped in a theoretical context, and despite the challenges in algorithmically cap-
turing the concepts, we put them to a first practical litmus test. For this, we
instantiated them in a concrete example context, known as the Racetrack case
study across the automated planning community [9,10,36], here augmented with
probabilistic noise [25]. Within this case study, a car that comprises multiple
components such as an engine, tank, and a track with different types of ground,
aims to reach a target position while meeting time, energy, and CO2-emission
constraints. We work on a feature-oriented model of the car where the model

Components in Probabilistic Systems: Suitable by Construction 243

family consists of multiple car and environment configurations, e.g. differing in
the engine variant, the tank size and the ground the car drives on. Specifically,
we show that a more powerful engine is existentially threshold suitable on tarmac
but not on sand and that a less powerful engine is more suitable in terms of its
suitability degree than a more powerful engine.

Contributions. In a nutshell, this paper (i) develops a spectrum of suitabil-
ity notions for probabilistic components with inputs and outputs, (ii) provides
results regarding decidability for the notions considered, and (iii) illustrates the
notions and their effect in the context of a case study with vehicle components.

2 Partially Observable Probabilistic I/O Systems

This section discusses the basic concepts of the compositional framework of
probabilistic I/O automata originally proposed by Giro et al. [23], enhanced
with a notion of partial observability.

Markov Decision Processes. For a finite set S, we denote by Dist(S) the set of
all the probability distributions over the set S, i.e. functions μ : S → [0, 1] such
that

∑
s∈S μ(s) = 1. We write δ(s) for the Dirac distribution where δ(s)(s) = 1.

Definition 1 (Markov Decision Process (MDP)). A Markov Decision Pro-
cess (MDP) is a tuple (S,A, T , s0) where S and A are sets of states and actions,
respectively, T ⊆ S ×A×Dist(S) is a transition probability relation, and s0 ∈ S
is an initial state.

Let M = (S,A, T , s0) be an MDP as above. We say that action a ∈ A is
applicable in state s ∈ S if (s, a, μ) ∈ T for some μ ∈ Dist(S). By A(s) ⊆ A
we denote the set of actions applicable in s. We assume w.l.o.g. that A(s) is
nonempty for all s ∈ S. Furthermore, we require that for all (s, a, μ), (s, a, μ′) ∈
T we have μ = μ′. A finite path in M is an alternating sequence of states and
transitions π = s0 t0 s1 t1 . . . tk−1 sk where s1, . . . , sk ∈ S and where for each
index i ∈ {0, 1, . . . , k−1}, ti = (si, ai, μi) ∈ T such that μi(si+1) > 0. We denote
by Paths(M) the set of all finite paths in M. By last(π) we denote the last
state of π, i.e. last(π) = sk. Infinite paths are defined accordingly, collected in a
set IPaths(M). A (randomised) scheduler for M is a function S : Paths(M) →
Dist(A) that resolves the nondeterminism in an execution of the MDP M, i.e.
for any path π ∈ Paths(M) we have S(π) ∈ Dist

(
A(last(π))

)
. S is called

memoryless in case for all paths π1, π2 ∈ Paths(M) with last(π1) = last(π2)
we have S(π1) = S(π2), and deterministic if all distributions in S are Dirac.
We define the probability measure PrSM on M with respect to a scheduler S
in the standard way, assigning a probability to measurable sets of paths in M.
Here, the fact that any scheduler resolves the nondeterminism in the given MDP
towards a Markov chain [37] is exploited.

244 C. Baier et al.

Observability in MDPs. A flexible notion of observation will allow us to map
states and actions to observables.

Definition 2 (Observation Function). An observation function for an MDP
M = (S,A, T , s0) over a set of atomic observables Obs is a function obs : (S ∪
A) → (Obs∪{ε}), where obs(x)=ε stands for unobservability of state or action x.

We refer to observation function obs as totally observable in case Obs = S ∪ A
and obs(x) = x for all x ∈ S ∪A. For a transition t = (s, a, μ) ∈ T we denote by
obs(t) the observation obs(a) of the action of t. Observation functions obs are
extended to functions from paths π = s0 t0 s1 t1 . . . tk−1 sk to strings over the
alphabet Obs, given by

obs(π) = obs(s0) obs(t0) obs(s1) . . . obs(tk−1) obs(sk).

For an observation function obs as above, a function ρ defined on paths of M is
said to be obs-complying if for all finite paths π1, π2 ∈ Paths(M) we have that

obs(π1) = obs(π2) implies ρ(π1) = ρ(π2).

Probabilistic I/O Systems. To introduce the PIOS framework [23], we first need
to define reactive and generative structures for outputs and inputs, respectively:
Given a set Act of action labels and a set States of states, a generative output
transition relation G is a subset of States×Dist(Act×States), and an input reac-
tive transition function R is a function of the form States ×Act → Dist(States).
Intuitively, executing a generative output transition (s, κ) ∈ G available in some
state s means choosing both an action a to output and a state s′ with joint proba-
bility κ(a, s). In a composed setting, action a will serve as an output broadcasted
to other participants. Receiving input a while being in state t triggers a unique
reaction R(t, a) according to the input reactive transition function R, mapping
to a distribution over successor states.

Definition 3 (Probabilistic Input/Output System (PIOS)). A proba-
bilistic I/O component is a tuple (States,Act , G,R, init), where

– States is a finite set of states,
– Act is a finite set of action labels,
– G ⊆ States × Dist(Act × States) is a generative output transition relation,
– R : States × Act → Dist(States) is a reactive transition function, and
– init ∈ States is an initial state.

A probabilistic I/O system (PIOS) is a finite vector P = (α1, . . . , αn) of com-
ponents αi, i ∈ {1, . . . , n}.

Note that since R : States ×Act → Dist(States) is a total function, every compo-
nent is input-deterministic and input-enabled. We use the indices of components
also for their elements, e.g. refer to the states of αi by Statesi.

Components in Probabilistic Systems: Suitable by Construction 245

Definition 4 (MDP induced by PIOS). Any PIOS P = (α1, . . . , αn) gives
rise to an MDP �P� = (S,A, T , s0) as follows:

– S = n
i=1Statesi

– A = Dist(
⋃n

i=1 Act i)
– T ⊆ S × A × Dist(S) is the smallest set of transitions

(
(s1, . . . , sn), κ, μ

)
for

which there is an i ∈ {1, . . . , n} and κi ∈ Dist(Act i × Statesi) such that
• (si, κi) ∈ Gi,
• for all a ∈ Act i we have κ(a) =

∑
s∈Statesi

κi(a, s), and
• for all (s′

1, . . . , s
′
n) ∈ S we have

μ(s′
1, . . . , s

′
n) =

∑

a∈Acti

κi(a, s′
i)

n∏

j=1
j �=i

μa
j (s′

j)

where μa
j = δ(sj) provided a /∈ Actj and otherwise μa

j = Rj(sj , a).
– s0 = (init1, . . . , initn)

Remark 1. In the MDP defined above, output distributions appear as action
labels of MDP transitions. This slightly differs from the semantics of PIOSs
defined in [23], where the operational behaviour is specified through compound
transitions, explicitly comprising generative and reactive transitions as well as
the action label. �

Observability in PIOSs. In the following, we assume a fixed PIOS P =
(α1, . . . , αn) with the induced MDP semantics �P� = (S,A, T , s0) as per Defi-
nition 4. Let αi be a component of P and s = (s1, . . . , sn) a global state of P,
i.e. a state in the MDP �P�. By s|i = si we denote the state projection of s to
the i-th local state. The set of atomic observables Obsi collects the observations
a component αi of P can make on global states and actions. Suppose that for
all i ∈ {1, . . . , n} we are given a local observation function obsi, for which we
require that global states of P with different local states for component αi have
different observables. Formally,

if obsi(s) = obsi(s′) then s|i = s′|i.

We call obsi purely locally observable in case Obsi = Statesi ∪ Dist(Act i)
where obsi(s) = s|i for any s ∈ S and for all μ ∈ A we have obsi(μ)(a) =
μ(a)/

∑
a∈Acti

μ(a) for a ∈ Act i and obsi(μ)(a) = ε for a �∈ Act i. Intuitively, a
purely local observation function observes only the local state of component αi

and the normalised action distribution on its local actions.

Partially Observable PIOS. We define observation profiles O for P as tuples

O = (obs1, . . . , obsn, obs)

where obsi are local observation functions for each component αi, i ∈ {1, . . . , n}
as defined above, and obs is a global observation function. The tuple Q =

(
P,O

)

is called partially observable PIOS (PO-PIOS).

246 C. Baier et al.

Strategies for Partially Observable PIOSs. Let
(
P,O

)
be a PO-PIOS with O =

(obs1, . . . , obsn, obs intl). A local strategy for component αi is a scheduler σi for
�P� where for all paths π in �P� there is (last(π)|i, μ) ∈ Gi such that σi(π)(a) =∑

s∈Statesi
μ(a, s) for all a ∈ Act i.

We also consider interleaving strategies for P as functions σintl : Paths(�P�)
→ Dist({1, . . . , n}) where for each path π in �P� with σintl(π)(i) > 0 there is
some μ ∈ Dist(Statesi × Act i) such that (last(π)|i, μ) ∈ Gi. An interleaving
strategy σintl is deterministic if all distributions of σintl are Dirac. Intuitively,
an interleaving strategy selects the component to choose the next move, i.e.
for a path π ∈ Paths(�P�) and i ∈ {1, . . . , n} the component αi is scheduled
with probability σintl(π)(i) to select and perform one of its generative output
transitions.

Strategy Profiles. We restrict our attention to those schedulers for �P� that arise
by composing an interleaving strategy σintl for P and local strategies σi for
component αi for all i ∈ {1, . . . , n}. To formalise the composition for PO-PIOSs,
i.e. also take observability into account, we define strategy profiles to be tuples

P = (σ1, . . . , σn, σintl)

where σi is an obsi-complying strategy for component αi for each i = {1, . . . , n}
and σintl is an obs intl -complying interleaving strategy.

Strategy profiles can be understood as a class of observation-based schedulers
for �P�. The scheduler SP : Paths(�P�) → Dist(A) for �P� induced by a strategy
profile P is a function that assigns to any finite path π = s0 t0 s1 . . . tk−1 sk in
�P� an action a ∈ Act with probability

SP(π)(a) =
n∑

i=1

σintl(π)(i) · σi(π)(a).

We denote by PrPP the probability measure PrSP

�P�.

Remark 2 (On observability in [23]). For defining strategy profiles, we followed
the approach of [23] by composing interleaving and local strategies, called “inter-
leaving schedulers” and “output schedulers”. The class of observation-based
schedulers SP that arises from strategy profiles P for PO-PIOS where the global
observation function provides total observability and local observation functions
are purely locally observable is similar however not equivalent to the class of
distributed schedulers. The restricted class of strongly distributed schedulers that
imposes constraints on the component distribution of interleaving schedulers cor-
responds to variants of SP where the global observation function is not totally
observable. �

Remark 3 (Observability by the interleaving strategy). It appears reasonable to
assume that interleaving strategies have access to the local information available
to the components. Formally,

Components in Probabilistic Systems: Suitable by Construction 247

– if s, s′ ∈ S such that obs intl(s) = obs intl(s′) �= ε then obsi(s) = obsi(s′) for
all i ∈ {1, . . . , n}, and

– if a, a′ ∈ A such that obs intl(a) = obs intl(a′) �= ε then obsi(a) = obsi(a′) for
all i ∈ {1, . . . , n}. �

3 Notions of Suitability

We now turn our attention to the question of how far some component κ can be
considered suitable to use in combination with a given system. For this, let us
consider a fixed PO-PIOS Q = (P,O) where P = (α1, . . . , αn) is a PIOS with
observation profile O = (obs1, . . . , obsn, obs intl). Furthermore, we follow the con-
vention of the last section, denoting by P a not necessarily fixed strategy profile
for Q. For any fresh component κ not contained in P we assume furthermore an
observability function obsκ and denote by κ‖Q the PO-PIOS

(
(κ,P), (obsκ,O)

)
.

Properties and Their Values. In what follows, suppose that we are given a set Φ
of properties or quantitative measures (e.g. defined using some temporal logics).
For the definition of suitability notions, the type and syntax of these properties
is irrelevant as we shall take an abstract view and deal with valuation functions
valP : Φ → R for strategy profiles P for Q.

Example 1. We exemplify several variants for value functions:

(i) If φ is a (P)CTL-like state property, then valP(φ) could be defined as
Boolean value not directly depending on P, i.e. 1 (“true”) if s0 |= φ in
�P� and 0 (“false”) otherwise. In case φ is a PCTL property, the semantics
of the probability operator could be restricted to range over all strategy
profiles only, rather than over arbitrary schedulers for the MDP �P�.

(ii) If φ is an LTL formula or more generally an ω-regular path property, then
valP(φ) could be PrPQ(φ), the probability of the set of infinite paths that
satisfy φ under the probability measure induced by SP.

(iii) If φ is a random variable of type IPaths(�P�) → R, then valP(φ) could be
the expectation of φ on SP-paths in �P�. This, of course, requires a side
constraint to ensure the existence of the expectation or a default value if
the expectation does not exist. Examples for such random variables are the
accumulated weight until reaching a target state set, or the mean payoff
when weights are attached to the transitions of �P�. �

To ease the notations that follow, we suppose that high satisfaction values are
desirable in the sense that the objective is to increase values valP(φ) of properties
φ ∈ Φ whenever possible. Furthermore, when analysing multiple objectives, we
might annotate the kind of valuation function on the property. For instance,
we allow for a property set Φ = {P(okUgoal),E[cost](♦goal)} to describe that
the LTL formula okUgoal and ♦goal should be evaluated with respect to their
probability PrPQ(okUgoal) and expected costs ExpP

Q(♦goal), respectively.

Remark 4. Note that if instead one aims at minimising objectives regarding a
state or path property φ one can switch to its complement ¬φ and consider the

248 C. Baier et al.

maximising objective instead. Likewise, in a weighted setting with accumulated,
discounted, or instantaneous weights, weights can be multiplied by −1 turning
the meaning of weights to costs to be paid rather than rewards to be earned. �

Remark 5 (Observation-compatible properties). It appears natural to assume
that the properties fit with the observations, in the sense that if φ is a path
property then φ does not distinguish between paths with identical observa-
tions. Formally, for π1, π2 ∈ IPaths(�P�) with obsi(π1) = obsi(π2) for i ∈
{1, . . . , n} ∪ {intl} and π1 |= φ, then π2 |= φ. Similarly, if φ is a random variable
formalising a reward to be earned along paths one might require that paths with
the same observation have the same value under φ. �

3.1 Threshold Suitability

We are now in the position to propose formal criteria for a component β to be
suitable in the context of other components. Suitability of β and Q is defined by
imposing conditions on the PO-PIOS β‖Q.

Definition 5 (Universal Threshold Suitability (∀TS)). Let Φ be a set of
properties with a valuation function for the PO-PIOS β‖Q and let ϑ = (ϑφ)φ∈Φ

be a real vector assigning a threshold value for each property φ ∈ Φ. β and Q are
said to be universally threshold-suitable with respect to (Φ, ϑ) if for all strategy
profiles P for β‖Q and for each property φ ∈ Φ we have

valP(φ) > ϑφ.

In a nutshell, the definition says that β‖Q will meet all the criteria being part of
valP(·) regardless of what happens to the system, in terms of the strategy profiles
imaginable. An alternative definition arises when β has the freedom to choose
its strategy depending on the decisions of global control and other components.

Definition 6 (Existential Threshold Suitability (∃TS)). Let Φ be a set of
properties with a valuation function for the PO-PIOS β‖Q and let ϑ = (ϑφ)φ∈Φ

be a real vector assigning a threshold value for each property φ ∈ Φ. Then, β and
Q are said to be existentially threshold-suitable with respect to (Φ, ϑ) if

for all obsi-complying strategies σi for αi, i ∈ {1, . . . , n} and
for all obs intl -complying interleaving strategies σintl

there exists an obsβ-complying strategy σβ for β

such that with P = (σβ , σ1, . . . , σn, σintl) for each property φ ∈ Φ we have

valP(φ) > ϑφ.

A practical example for threshold suitability are Real Driving Emissions (RDE)
tests where it is required that the amount of emitted pollutants is below cer-
tain thresholds for all reasonable driver behaviours [28]. In terms of threshold
suitability, a driver behaviour corresponds to a strategy and the system could

Components in Probabilistic Systems: Suitable by Construction 249

constrain nondeterministic choices to those that are reasonable as required. Uni-
versal threshold suitability then asks whether the emitted pollutants are below
their respective thresholds for all possible RDE tests as required by the RDE reg-
ulation. In contrast, existential threshold suitability asks whether it is possible
to pass an individual test by driving accordingly.

3.2 Degree of Suitability

To provide a more fine-grained mechanism to quantify how suitable components
behave, we go beyond the simple discrimination discussed thus far, i.e. whether
or not they are suitable. For this, we introduce measures of degrees of suitability,
which rely on an aggregation function f : RΦ → R ∪ {±∞} for the potential
satisfaction values of properties. Here, RΦ stands for the set of real-valued vectors
(vφ)φ∈Φ over a set of properties Φ.

Example 2 Typical candidates for an aggregation function f are:

(i) Weighted sums f(v) =
∑

φ∈Φ wφ · vφ of the individual satisfaction values
defined over vectors v = (vφ)φ∈Φ for a finite set of properties Φ. This
corresponds to the switch to a composite valuation function

(P, Φ) �→
∑

φ∈Φ

wφ · valP(φ)

(ii) The valuation function of a (single) distinguished property ψ ∈ Φ under
threshold conditions for the values for all other properties, and −∞ other-
wise. That is:

f(v) =
{

vψ if vφ > ϑφ for all φ ∈ Φ \ {ψ}
−∞ otherwise

where ϑφ are thresholds as in Definition 5 or Definition 6.
(iii) Combinations of (i) and (ii).

In practical situations, the latter are all but uncommon. For instance, when con-
sumer organisations like the Dutch Consumentenbond and the German Stifung
Warentest [1] carry out safety tests of consumer products, it is very common
to have some criteria where a certain threshold must be met in order to be
considered eligible, and that the other criteria are weighted with percentages
and mapped into a scalar of normed range. This principle is also behind the
European car safety performance assessment programme EuroNCAP [2]. �

Definition 7 (Universal Degree of Suitability (∀DS)). Let Φ be a set of
properties with a valuation function for the PO-PIOS β‖Q and let f : RΦ →
R ∪ {±∞} be an aggregation function. Then, the universal degree of suitability
of β with respect to Q is defined as

inf
P

f
((

valP(φ)
)
φ∈Φ

)

where the infimum ranges over all strategy profiles P for β‖Q.

250 C. Baier et al.

As in the case for threshold suitability, we also present an existential version
of suitability degrees where component β has the freedom of choosing a strategy
depending on the interleaving strategy and local strategies of other components.

Definition 8 (Existential Degree of Suitability (∃DS)). Let Φ be a set
of properties with a valuation function for the PO-PIOS β‖Q and let f : RΦ →
R∪{±∞} be an aggregation function. Then, the existential degree of suitability
of β with respect to Q is defined as

sup
σβ

inf
P[β]

f
((

valP[β](φ)
)
φ∈Φ

)

where the supremum ranges over all obsβ-complying strategies σβ for β and the
infimum ranges over all strategy profiles P[β] = (σβ , σ1, . . . , σn, σintl) for β‖Q.

It is conceivable to combine both of the above notions in a weighted setting, but
we do not spell out the details here. For instance, one may be interested in the
average emissions in the best and the worst case.

3.3 Suitability Relations

We now consider two composite PO-PIOS β‖Q and γ‖Q and introduce formal
notions that spell out in what sense β is more suitable than γ when running
in the context of Q with respect to a given set Φ of properties with valuation
functions valP : Φ → R and aggregation functions f : RΦ → R ∪ {±∞} for both
β‖Q and γ‖Q. Although β and γ can have different observables, we suppose
here that all the corresponding observation functions of β‖Q and γ‖Q coincide.
Furthermore, we assume the following requirements for the observation functions
of κ‖Q, κ ∈ {β, γ}:

(Loc) We assume that the components of Q do not have information on the local
states of κ in the sense that the observable of global state (sκ, s1, . . . , sn) in
�κ‖Q� only depends on (s1, . . . , sn) but not on sκ. Likewise, we suppose that
actions in Actκ \ Act i are invisible for all αi, i = 1, . . . , n.

(Intl) Global observation functions for κ‖Q do not have access to the local state
of κ and cannot see the actions in (Actβ \ Actγ) ∪ (Actγ \ Actβ). Formally,

– obs intl(sκ, s1, . . . , sn) = obs intl(s′
κ, s1, . . . , sn) for all states sκ, s′

κ ∈
Statesκ and si ∈ Statesi for i = 1, . . . , n, and

– obs intl(a) = ε for each action a ∈ (Actβ \ Actγ) ∪ (Actγ \ Actβ).

Assumption Loc implies that if P = (α1, . . . , αn) then any obsi-complying strat-
egy for αi in β‖P is also an obsi-complying strategy for αi in γ‖P, and vice versa.
Note that here, we regard strategies as functions that take as input an obser-
vation sequence. Assumption Intl ensures that β‖Q and γ‖Q have the same
interleaving strategies. While assumption Loc is a fairly natural and standard
assumption in the partial information setting, assumption Intl appears techni-
cally rather strong. In an exemplary setting, Loc means that when testing the
performance of two cars, we do not exploit that one of them offers the possibility

Components in Probabilistic Systems: Suitable by Construction 251

to turn on and off “boost mode” while the other one does not. Intl then corre-
sponds to the idea that the behaviour considered relevant is observed from the
outside, and does not refer to particularities of the components to be compared,
such as a warning light only available in one of the cars.

Definition 9 (Universally More Suitable (∀MS). Let Φ be a set of prop-
erties with a valuation function for the PO-PIOS β‖Q and let f : RΦ →
R ∪ {±∞} be an aggregation function. Under the assumptions Loc and Intl,
β is said to be universally more suitable than γ if for all strategy profiles
P[γ] = (σγ , σ1, . . . , σn, σintl) for γ‖Q and for all obsβ-complying strategies σβ

for β we have

f
((

valP[β](φ)
)
φ∈Φ

)
> f

((
valP[γ](φ)

)
φ∈Φ

)

where P[β] = (σβ , σ1, . . . , σn, σintl).

Note that due to the assumption Intl, for any obsβ-complying strategy for β
we have that P[β] is indeed a strategy profile for β‖Q. Intuitively, a component
β is universally more suitable than γ if for all strategy profiles P[β] for β‖Q, we
cannot find a local strategy σγ for γ that leads to a higher degree of suitability
in γ‖Q when replacing σβ in P[β] by σγ .

Similar as for the notions of threshold suitability and the degrees of suitabil-
ity, we also introduce an existential version of the “more suitable” relation that
allows σβ to react on behaviour imposed by σγ .

Definition 10 (Existentially More Suitable ∃MS). Let Φ be a set of
properties with a valuation function for the PO-PIOS β‖Q and let f : RΦ →
R ∪ {±∞} be an aggregation function. Under the assumptions Loc and Intl,
β is said to be existentially more suitable than γ if for all strategy profiles
P[γ] = (σγ , σ1, . . . , σn, σintl) for γ‖Q there is an obsβ-complying strategy for
β such that

f
((

valP[β](φ)
)
φ∈Φ

)
> f

((
valP[γ](φ)

)
φ∈Φ

)

where P[β] = (σβ , σ1, . . . , σn, σintl).

To determine the ∀MS- and ∃MS-relations provided in Definitions 9 and 10,
we have to evaluate aggregated valuations with respect to an observation-based
scheduler for both, �β‖Q� and �γ‖Q�. Since this might require more involved
analysis techniques, an independent analysis of �β‖Q� and �γ‖Q� towards deriv-
ing a more strict notion of suitability is desirable.

Definition 11 (Strictly More Suitable (SMS)). Let Φ be a set of properties
with a valuation function for the PO-PIOS β‖Q and let f : RΦ → R ∪ {±∞} be
an aggregation function. Then, β is said to be strictly more suitable than γ if

inf
P[β]

f
((

valP[β](φ)
)
φ∈Φ

)
> sup

P[γ]

f
((

valP[γ](φ)
)
φ∈Φ

)

where the infimum ranges over all strategy profiles P[β] for β‖Q and the supre-
mum ranges over all strategy profiles P[γ] for γ‖Q.

252 C. Baier et al.

Note that if β is strictly more suitable than γ, then β is also universally and
existentially more suitable than γ.

4 Suitability Analysis

We now turn to the algorithmic side of the definitions proposed. Assume we
are given an input PO-PIOS Q = (P,O), two components β and γ, a set of
properties Φ with a valuation function valP : Φ → R, and an aggregation function
f : RΦ → R ∪ {±∞}. Then we consider the following decision problems:

(a) For a threshold vector ϑ = (ϑφ)φ∈Φ decide whether β and Q are threshold
suitable with respect to (Φ, ϑ) as defined in Definitions 5 and 6.

(b) For a threshold ϑ ∈ R decide whether the suitability degree of β with respect
to Q exceeds ϑ for notions defined in Definitions 7 and 8.

(c) Decide whether β is more suitable than γ with respect to Q as defined in
Definitions 9, 10, and 11.

In the sequel, we provide positive and negative answers for the above decision
problems. Due to the lack of space, we moved full proofs to the appendix.

Theorem 1. The problems (a)–(c) are undecidable for all valuation functions
of Example 1 and all aggregation functions of Example 2.

Due to the above theorem, one has to consider restrictions of strategy profiles,
PO-PIOSs, and/or valuation functions in order to enable the analysis of suit-
ability notions. A natural candidate for a restriction would be to only consider
strategy profiles that are composed of strategies whose decisions can be repre-
sented as a finite-state machine. Existing results on IPIOAs [23] suggest that this
direction is indeed worth to consider. In this paper, we do not a priori restrict
the class of schedulers, but restrict the PO-PIOSs making up the system.

Threshold and Degree of Suitability Analysis. We arrive at a positive decidability
result by restricting to total observation.

Proposition 1. For all valuation functions of Example 1 and all aggregation
functions of Example 2, problems (a) and (b) are decidable if all observation
functions in the observation profile of β‖Q are totally observable.

The above proposition relies on the fact that the class of observation-based
schedulers SP for observation profiles consisting of totally observable observa-
tion functions in β‖Q coincides with the full class of schedulers for �β‖Q�. Thus,
threshold suitability and deciding degree of suitability questions boil down to
multi-objective analysis tasks for MDPs [12,19,21] in case of universal notions
of suitability and 21

2 -player games in case of existential notions of suitability [13].

Components in Probabilistic Systems: Suitable by Construction 253

More Suitable Relation Analysis. For problem (c), totally observable observation
functions in observation profiles violate conditions (Loc) and (Intl), such that
we present different conditions to provide decidability.

Proposition 2. For all valuation functions of Example 1 and all aggregation
functions of Example 2, problems (a)–(c) are decidable if

(i) all components in Q are not containing any generative input transition, and
(ii) the observation function for β, respectively γ, in the observation profile of

β‖Q, respectively γ‖Q, is totally observable.

Due to (i), β and γ contain all generative input transitions and the interleaving
strategies for β‖Q and γ‖Q agree in the sense that they are independent from
the global state, always picking component β, respectively γ, to perform the next
move. To this end, the only nondeterminism in the composite system stems from
the components β or γ, respectively. In combination with condition (ii), solving
problem (c) reduces to multi-objective analysis tasks for MDPs [12,19,21].

5 Racetrack – A Case Study

Fig. 1. Two example maps with start
line in green, goals in red, and walls
marked with x. (Color figure online)

In this section, we explain and illus-
trate the applicability of the theoreti-
cal concepts discussed above by means
of a simple scenario known as Race-
track [22]. For the fragment that can be
reduced to standard methods for MDPs,
we present initial experimental results
obtained with Prism [29]. The tooling
as well as the obtained results are made
available for download1. The computation
of the results shown in this section took
less than 40 min on a standard laptop.

5.1 Racetrack Scenario

Originally, Racetrack is a pen and paper game [22], comprising a vehicle which
has to manoeuvre through a given two-dimensional discrete track with a desig-
nated start and goal, walls on the boundaries, and barriers on the track. The
vehicle starts with no initial velocity from a starting position, with the objective
to reach the goal as fast as possible without crashing into a wall or barrier. We
extend this setting with costs for time steps, fuel consumption and CO2-emission
yielding a trade-off between costs and reaching the goal fast. To this end, the
driver modifies the current velocity vector by means of acceleration and steer-
ing actions. Apart from those nondeterministic actions, we extend our setting

1 https://doi.org/10.5281/zenodo.3970766 [6].

https://doi.org/10.5281/zenodo.3970766

254 C. Baier et al.

to a probabilistic environment such that actions may fail with a certain prob-
ability. We obtain a PIOS-based model with MDP semantics that allows, e.g.
emulating slippery road conditions, where the driver’s action may not induce the
intended change in the velocity or direction. As a consequence, the vehicle will
be unable to almost surely reach the goal, even when considering the best driver
(namely a maximising scheduler for the underlying MDP). Stochastic variants
of the racetrack scenario have traditionally served as benchmarks for MDP algo-
rithms in the AI community [9,10,36] and lately also considered in the context
of statistical model checking [25].

For our case study, we generalised the racetrack scenario by choosing a
feature-oriented modelling approach [4,5] in the probabilistic variant introduced
in [15,18]. To this end, features encapsulate the behavioural descriptions and
characteristics for different road conditions (in the following: tarmac, sand, and
ice), tank sizes (here: small, medium, large) with different fuel capacities, and
engine variants, which are characterised by a maximal velocity vmax and maxi-
mal acceleration amax (here as values from the set {1, 2, 3}). This feature model
then gives rise to an entire family of PIOS (rather than just one) with three
components: the engine, the tank, and the map. In our case we end up with
34 = 81 family members, standing for separate models for each setting. The
engine component controls the acceleration and thereby the speed of the car by
generative input transitions corresponding to acceleration changes. A driver is
in control of the car by selecting acceleration actions in x- and y-dimension. The
tank updates its fuel level in reaction to the engine’s acceleration decisions and
gets trapped in a failure state once all fuel is entirely used up. Note that PIOS
components have to be input-enabled and, hence, the tank has to be able to
react to all acceleration decisions independent on whether there is enough fuel
left for the required acceleration change. Finally, the map models the terrain as
a grid with fixed road conditions and with starting cells, road cells, barrier cells
and goal cells. Throughout this section we use a tiny map of size 5×5 as depicted
on the right of Fig. 1, which is included in the available artefacts. Depending on
the drivers choices, i.e. in reaction to the engine’s generative transitions, the map
then updates the car’s position on the track under the given road conditions.
As the engine is the only generative component in this setting, our assumptions
with regard to the case study are fulfilled and the system is completely deter-
mined by the driver’s strategy for the engine. Following the decidability result
of Proposition 2, this allows to use existing tooling for the analysis of MDPs.

5.2 A New Car

Imagine that we would like to purchase a new car which we primarily need
to drive to the office every day. Hence, the map and in particular the possible
routes to the office are fixed, while the road conditions may vary from day to
day. Now, the car salesman asks us which tank and engine variant we would like
to purchase. Obviously, we want to configure our new car such that it suits our
needs and here our suitability notions come into play. To apply them, we first
have to fix a context Q and decide on the component(s) for which we would

Components in Probabilistic Systems: Suitable by Construction 255

like to analyse suitability. Assume that we already decided that we would like a
medium sized tank, but we are still uncertain about the engine variant. Hence, we
are interested in the suitability of engine variants. Notably, this scenario entails
that the road conditions are part of the fixed context as well. However, we can
still carry out the analysis for different contexts to cover threshold suitability.
For instance, in case we are interested in whether a particular engine variant is
threshold suitable for all road conditions.

Threshold Suitability. Threshold suitability allows us to define minimal require-
ments for our new car. Imagine that we would like the probability of reaching
our office (without running out of fuel or crashing into walls or barriers) to be at
least 0.55. At the same time, we want the expected number of time steps to be
less than 20, the expected fuel consumption to be less than 39 and the expected
CO2-emission to be less than 35. Formally, these requirements manifest in the
set of properties

Φ =
{

P(status okUoffice), E[timesteps](♦office),

E[fuel](♦office), E[CO2](♦office)
}

and respective thresholds ϑφ for each property.
Threshold suitability allows us to decide whether a car with a particular

engine variant β as characterised by a maximal velocity vmax and acceleration
amax fulfils these thresholds in context Q by considering β‖Q. As (∀TS) quanti-
fies over all strategy profiles and β is nondeterministic with regard to the accel-
eration vector, it tells us whether the thresholds will be satisfied independent of
the driver, i.e. it essentially assumes the worst possible driver. In contrast, (∃TS)
merely requires that there exists a strategy profile for which all thresholds are
satisfied and thereby assumes the best possible driver. Intuitively (∀TS) is not
particularly helpful in our case as even with the best car, the worst possible
driver can waste all fuel driving in circles, never reaching the office. The same
phenomenon also applies to the other notions of universal suitability.

For our analysis we considered all engine variants with amax, vmax ∈ {1, 2, 3}
on sand and on tarmac with a medium sized tank. For all variants we computed
a multi-objective with a lower bound on reaching the goal without crashing and
upper bounds on the expected fuel consumption, time steps and CO2-emission.
We refer to Sect. 5.3 for the technical details of the multi-objective analysis.
From the analysis we can conclude that all engine variants with amax = 1 are
existentially threshold suitable on sand, while all the others are not. On tar-
mac, however, all engine variants with amax ∈ {1, 2} are existentially threshold
suitable while all the others, i.e. with amax = 3, are not. If we would like to
go off-road with our car we should thus purchase a car with an engine variant
satisfying amax = 1. Otherwise, every engine variant with amax ∈ {1, 2} is just
fine. The full result, including the numbers for icy road conditions are included
in the available artifacts.

Degree of Suitability. While threshold suitability is a purely qualitative notion,
the degree of suitability provides a quantitative measure. Coming back to our

256 C. Baier et al.

example, multiple engine variants meet our minimal requirements as set by our
thresholds, however, one of them may for instance be more fuel efficient than
the others. Here suitability degrees come into play.

To apply (∃DS) and (∀DS) we first need to specify an aggregation function
combining the values for the different properties into a single value depending on
our requirements. Assume that it is more important for us to save time than it is
to preserve fuel and that it is more important for us to preserve fuel than to emit
less CO2. In this case, we may define an aggregation function f as a weighted
sum giving weight −50 to the time it takes, −30 to the fuel consumption, and
−20 to the CO2 emissions with the set of properties being:

Φ =
{

E[timesteps](♦office), E[fuel](♦office), E[CO2](♦office)
}
.

Note that we weighted all properties with negative values as all these properties
are subject to minimisation (cf. Remark 4). Analogously to threshold suitability,
(∀DS) and (∃DS) provide a suitability degree assuming the worst, respectively
best, driver behaviour.

For tarmac and the medium sized tank we determined the following suit-
ability degrees: if amax = 1 then the suitability degree is −1450, if amax = 2
then the suitability degree is −1900, and if amax = 3 then the suitability degree
is −2350. This is explained by the fact that an engine with a higher amax is
assumed to consume more fuel than a weaker engine. While all engine variants
with amax ∈ {1, 2} are existentially threshold suitable for tarmac, the engines
with amax = 1 are more economical. Hence, we conclude that we should purchase
a car with amax = 1. The technical details can again be found in Sect. 5.3.

More Suitable Relations. In addition to the already discussed notions of suitabil-
ity, we defined more suitable relations that directly compare two variants. While
one may use suitability degrees to compare two engine variants, this assumes
the worst respectively best driver behaviour for both variants. Instead, the more
suitable relations compare the worst strategy profile for one component with the
best for the other (cf. Definition 9) or, as a more relaxed existential notion, the
best component behaviour assuming the worst system behaviour with the best
strategy profile for the other component (cf. Definition 10). We are not aware of
tool support for these notions.

The strict variation (cf. Definition 11) is merely a comparison of the best
degree for one component with the worst degree for the other. Specifically, the
worst degree will always be −∞ because the worst driver can just drive in a
circle. Hence, while easier to analyse, this notion of suitability is too coarse for
our example. The result would be that no engine variant is strictly dominating.

5.3 Implementation and Technical Aspects

We now present the technical details regarding the analysis for existential thresh-
old suitability and degree of suitability as discussed in the previous section using
standard methods for MDPs as provided by Prism.

Components in Probabilistic Systems: Suitable by Construction 257

Threshold Suitability. Using Prism’s multi-objective engine [20] and manually
translating the family of PIOS to their corresponding MDPs we were able to
obtain experimental results for (∃TS) and using the following numerical multi-
objective query:

multi(
P>=PBound["ap_status_ok" U "ap_office"],
R{"fuel"}<=FBound[C], R{"timesteps"}<=TBound[C],
R{"CO2"}<=CBound[C]

);

Note that in the above query, we used non-strict bounds on the valuation func-
tions as opposed to our theoretical framework. This is due to the current tool sup-
port provided by Prism. Furthermore, encoding (∃TS) into a numerical multi-
objective query required us to switch from the expected reachability rewards to
total accumulated rewards, as expected rewards are not yet supported by the
multi-objective engine. This change is reasonable, because the total accumulated
rewards are all finite due to the fact that the number of time steps is bounded
until the car can no longer move and one ends up in a trap state where no further
reward is gained. Furthermore, the goal states, when the office is reached and
the car stops, and the crashed states enjoy this property. Also the actual bounds
used within the total reward properties can be scaled with a factor PBound. This
is due to the fact that the multi-objective engine computes optimal weights for
each property and the computed scheduler is in fact a randomised scheduler
that balances out the individual objectives. Hence, the upper bounds for the
total expected costs (fuel and CO2) used within the multi-objective query were
scaled down by multiplying with PBound and rounding.

While (∀TS) does not seem to be as important as (∃TS) in our case study,
let us note that there is tool support by Prism to decide (∀TS) for our set
of properties. For this, one can solve (∀TS) by considering a dual problem on
multiple (∃TS) questions of single properties [21].

Degree of Suitability. To the best of our knowledge, there exists no tool support
for aggregating and weighting properties over a particular scheduler and then
searching for a scheduler which minimises respectively maximises this aggrega-
tion. But in case of probability and expectation properties, we can transform the
model from a multi-reward into a single-reward model by pulling inwards the
aggregation function, so that we arrive at weighted sums as rewards on edges.
This is justified by the distributivity law, and results in the following transition
reward structure:

reward "wsum" := (50 * c_timestep) + (30 * f_fuel_consumption)
+ (20 * f_co2_production)

Note that we switched here to positive weights, because Prism hardly supports
negative rewards. Now, by computing the minimal expected reward for finally
reaching the goal, we compute how unsuitable the system is in the best case. In

258 C. Baier et al.

the end, we have to invert the result in order to obtain the actual existential
suitability degree as specified with the negative weights above. Please note that
the expected reachability reward will be ∞ for all soils different from tarmac, as
the probability of reaching the goal is strictly less than one.

Feature-Oriented Analysis and Scalability. Using our feature-based modelling
approach, the analysis for different contexts could be in principle carried out
separately one-by-one per context or in a single run by means of an all-in-one
analysis [4,15,16,39]. The latter relies on our family model that encodes all
settings in a single model. It is well known (see, e.g. [16,17,39]) that all-in-
one approaches can mitigate the exponential blowup of feature combinations
in the number of features by exploiting similarities of behaviours within differ-
ent settings using symbolic analysis techniques such as implemented in Prism’s
MTBDD engine. However, as the current implementation of Prism to analyse
multi-objective properties does not fully support family models and symbolic
engines, we had to follow a one-by-one analysis approach to compute results for
different notions of suitability. The lack of such a support is also the reason why
we used a comparably small case-study setup with the 5x5 map shown on the
right of Fig. 1. The map on the left of Fig. 1 is an example of realistically sized
map that is also considered in the automated planning community [9]. Here, the
Prism family model contained 6 · 81 = 486 family members and led to a model
with more than 1.1 ·109 states. As this model could not be explicitly represented
in memory, we considered a symbolic representation with 1.4 · 106 MTBDD
nodes.2 Using Prism’s MTBDD engine applied on the family model, an all-in-
one analysis of single-objective threshold suitability was possible for this larger
map, checking (∀TS) for Φ = {P(status okUoffice)} with ϑΦ = 0.35 in less than
14 min, equivalent to about 10 s per configuration. A corresponding one-by-one
analysis required around 10 h in total, i.e. in average more than 7 min per con-
figuration. This comparison shows the potential of our feature-based modelling
and analysis approach.

6 Concluding Remarks

This paper has introduced notions formalising the suitability of components in
the context of probabilistic systems given as PO-PIOSs. We presented undecid-
ability results for the general case of suitability notions and established decid-
ability for restricted classes of PO-PIOSs that we used in our case study. Further
positive results on suitability notions could be expected with respect to restricted
classes of strategy profiles, e.g. where all strategies in a profile are finite-memory
strategies [23].

Many facets of these suitability notions can be seen as future work. The
definitions presented rely on strict comparisons in the case of threshold suitability
and “more suitable” formalisations. Instead one may also consider relations that
implement “at least as suitable”, i.e. replace the strict comparison > relation by
2 Also exploiting variable-reordering techniques from [27] on the generated model.

Components in Probabilistic Systems: Suitable by Construction 259

� in our formal definitions. For this, it is an open question whether threshold
suitability is decidable for simple valuation functions. In addition, further kinds
of valuation and aggregation functions could be investigated, e.g. by including
energy-utility trade-offs into the measure of suitability or rely on conditional
probabilities and expectations [7].

On the evaluation and practical side, an implementation of the multi-
objective engine of Prism supporting family models would enable to exploit the
benefits of our family-based approach towards an all-in-one suitability analysis.

References

1. Test-ablauf - So testet die Stiftung Warentest. https://www.test.de/unternehmen/
testablauf-5017344-0/. Accessed 30 June 2020

2. The Official Site of The European New Car Assessment Programme. https://www.
euroncap.com/en/. Accessed 30 June 2020

3. Alur, R.: Principles of Cyber-Physical Systems. The MIT Press, Cambridge (2015)
4. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product

Lines: Concepts and Implementation. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37521-7

5. Apel, S., Kästner, C.: An overview of feature-oriented software development. J.
Object Technol. 8, 49–84 (2009)

6. Baier, C., Dubslaff, C., Hermanns, H., Klauck, M., Klüppelholz, S., Köhl, M.A.:
Tooling, Data and Results for “Components in Probabilistic Systems: Suitable by
Construction” (2020). https://doi.org/10.5281/zenodo.3970766

7. Baier, C., Dubslaff, C., Klüppelholz, S.: Trade-off analysis meets probabilistic
model checking. In: Proceedings of the 23rd Conference on Computer Science Logic
and the 29th Symposium on Logic in Computer Science (CSL-LICS), pp. 1:1–1:10.
ACM (2014)

8. Baier, C., Größer, M., Bertrand, N.: Probabilistic ω-automata. J. ACM 59(1),
1:1–1:52 (2012)

9. Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time dynamic
programming. Artif. Intell. 72(1–2), 81–138 (1995)

10. Bonet, B., Geffner, H.: Labeled RTDP: improving the convergence of real-time
dynamic programming. In: ICAPS, pp. 12–21 (2003)

11. Canetti, R., et al.: Task-structured probabilistic I/O automata. J. Comput. Syst.
Sci. 94, 63–97 (2018). https://doi.org/10.1016/j.jcss.2017.09.007

12. Chatterjee, K., Majumdar, R., Henzinger, T.: Markov decision processes with mul-
tiple objectives. In: STACS, February 2006. http://chess.eecs.berkeley.edu/pubs/
81.html

13. Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: On stochastic
games with multiple objectives. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013.
LNCS, vol. 8087, pp. 266–277. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40313-2 25

14. Cheung, L., Lynch, N.A., Segala, R., Vaandrager, F.W.: Switched PIOA: parallel
composition via distributed scheduling. Theor. Comput. Sci. 365(1–2), 83–108
(2006). https://doi.org/10.1016/j.tcs.2006.07.033

15. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: ProFeat: feature-oriented
engineering for family-based probabilistic model checking. Formal Aspects Com-
put. 30(1), 45–75 (2018). https://doi.org/10.1007/s00165-017-0432-4

https://www.test.de/unternehmen/testablauf-5017344-0/
https://www.test.de/unternehmen/testablauf-5017344-0/
https://www.euroncap.com/en/
https://www.euroncap.com/en/
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.5281/zenodo.3970766
https://doi.org/10.1016/j.jcss.2017.09.007
http://chess.eecs.berkeley.edu/pubs/81.html
http://chess.eecs.berkeley.edu/pubs/81.html
https://doi.org/10.1007/978-3-642-40313-2_25
https://doi.org/10.1007/978-3-642-40313-2_25
https://doi.org/10.1016/j.tcs.2006.07.033
https://doi.org/10.1007/s00165-017-0432-4

260 C. Baier et al.

16. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model checking
lots of systems: efficient verification of temporal properties in software product
lines. In: Proceedings of ICSE 2010, pp. 335–344. ACM (2010)

17. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. ACM Press/Addison-Wesley Publishing Co., New York (2000)

18. Dubslaff, C., Baier, C., Klüppelholz, S.: Probabilistic model checking for feature-
oriented systems. Trans. Aspect-Oriented Softw. Dev. 12, 180–220 (2015). https://
doi.org/10.1007/978-3-662-46734-3 5

19. Etessami, K., Kwiatkowska, M., Vardi, M., Yannakakis, M.: Multi-objective model
checking of Markov decision processes. Log. Methods Comput. Sci. 4(4), 1–21
(2008)

20. Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model
checking. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp. 317–
332. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33386-6 25

21. Forejt, V., Kwiatkowska, M.Z., Norman, G., Parker, D., Qu, H.: Quantitative multi-
objective verification for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 112–127. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 11

22. Gardner, M.: Mathematical games. Sci. Am. 229, 118–121 (1973)
23. Giro, S., D’Argenio, P.R., Fioriti, L.M.F.: Distributed probabilistic input/output

automata: expressiveness, (un)decidability and algorithms. Theor. Comput.
Sci. 538, 84–102 (2014). https://doi.org/10.1016/j.tcs.2013.07.017. Quantitative
Aspects of Programming Languages and Systems (2011–12)

24. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative and stratified
models of probabilistic processes. Inf. Comput. 121(1), 59–80 (1995). https://doi.
org/10.1006/inco.1995.1123

25. Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Deep statis-
tical model checking. In: Gotsman, A., Sokolova, A. (eds.) FORTE 2020. LNCS,
vol. 12136, pp. 96–114. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
50086-3 6

26. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978). https://doi.org/10.1145/359576.359585

27. Klein, J., et al.: Advances in probabilistic model checking with PRISM: variable
reordering, quantiles and weak deterministic Büchi automata. Int. J. Softw. Tools
Technol. Transf. 20(2), 179–194 (2017). https://doi.org/10.1007/s10009-017-0456-
3

28. Köhl, M.A., Hermanns, H., Biewer, S.: Efficient monitoring of real driving emis-
sions. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 299–315.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 17

29. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

30. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), pp. 363–369 (2008)

31. Lovejoy, W.S.: A survey of algorithmic methods for partially observable Markov
decision processes. Ann. Oper. Res. 28(1), 47–65 (1991)

32. Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI Q. 2(3),
219–246 (1989)

https://doi.org/10.1007/978-3-662-46734-3_5
https://doi.org/10.1007/978-3-662-46734-3_5
https://doi.org/10.1007/978-3-642-33386-6_25
https://doi.org/10.1007/978-3-642-19835-9_11
https://doi.org/10.1016/j.tcs.2013.07.017
https://doi.org/10.1006/inco.1995.1123
https://doi.org/10.1006/inco.1995.1123
https://doi.org/10.1007/978-3-030-50086-3_6
https://doi.org/10.1007/978-3-030-50086-3_6
https://doi.org/10.1145/359576.359585
https://doi.org/10.1007/s10009-017-0456-3
https://doi.org/10.1007/s10009-017-0456-3
https://doi.org/10.1007/978-3-030-03769-7_17
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

Components in Probabilistic Systems: Suitable by Construction 261

33. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning
and related stochastic optimization problems. Artif. Intell. 147(1–2), 5–34 (2003)

34. Milner, R.: Communication and Concurrency. PHI Series in Computer Science.
Prentice Hall, Upper Saddle River (1989)

35. Papadimitriou, C., Tsitsiklis, J.: The complexity of Markov decision processes.
Math. Oper. Res. 12(3), 441–450 (1987)

36. Pineda, L.E., Zilberstein, S.: Planning under uncertainty using reduced models:
revisiting determinization. In: ICAPS (2014)

37. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley, New York (1994)

38. Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D. thesis, Massachusetts Institute of Technology (1995)

39. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv. 47(1s), 6:1–
6:45 (2014)

40. Wu, S., Smolka, S.A., Stark, E.W.: Composition and behaviors of probabilistic I/O
automata. Theor. Comput. Sci. 176(1–2), 1–38 (1997). https://doi.org/10.1016/
S0304-3975(97)00056-X

https://doi.org/10.1016/S0304-3975(97)00056-X
https://doi.org/10.1016/S0304-3975(97)00056-X

Behavioral Specification Theories: An
Algebraic Taxonomy

Uli Fahrenberg1(B) and Axel Legay2(B)

1 École polytechnique, Palaiseau, France
uli@lix.polytechnique.fr

2 Université Catholique de Louvain, Louvain-la-Neuve, Belgium
axel.legay@uclouvain.be

Abstract. We develop a taxonomy of different behavioral specification
theories and expose their algebraic properties. We start by clarifying
what precisely constitutes a behavioral specification theory and then
introduce logical and structural operations and develop the resulting
algebraic properties. In order to motivate our developments, we give
plenty of examples of behavioral specification theories with different
operations.

1 Introduction

Behavioral specification theories are specification formalisms for formal models
which are enriched with logical and structural operations. This allows for incre-
mental and compositional design and verification and has shown itself to be a
viable way to avoid the habitual state-space explosion problems associated with
the verification of complex models.

Behavioral specification theories have seen significant attention in recent
years [1,6,8,12–14,17–19,40,41,44,46]. Generally speaking, they have the prop-
erty that the specification formalism is an extension of the modeling formalism,
so that specifications have an operational interpretation and models are verified
by comparing their operational behavior against the specification’s behavior.

Popular examples of behavioral specification theories are modal transition
systems [6,18,40], disjunctive modal transition systems [12–14,17,30–32,44],
and acceptance automata [19,46]. Also relations to contracts and interfaces have
been exposed [8,47], as have extensions for real-time, probabilistic, and quanti-
tative specifications and for models with data [9–11,15,20,22,23,27–29].

Except for the work by Vogler et al. in [17,18] and our own [31], behav-
ioral specification theories have been developed only to characterize bisimilarity
(or variants like timed or probabilistic bisimilarity). While bisimilarity is an
important equivalence relation on models, there are many others which also are
of interest. Examples include nested and k-nested simulation [2,34], ready or
2
3 -simulation [43], trace equivalence [36], impossible futures [51], or the failure
semantics of [16–18,45,50] and others. We have addressed some of these equiv-
alences in [31].
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 262–274, 2020.
https://doi.org/10.1007/978-3-030-61362-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_14

Behavioral Specification Theories: An Algebraic Taxonomy 263

In this survey we take a step back and develop a systemization or taxonomy
of different behavioral specification theories and expose their algebraic prop-
erties. As an example, the most basic ingredient of a behavioral specification
theory is a preorder of refinement on specifications, turning the set of specifi-
cations into a partial order up to ≡, the equivalence generated by refinement.
Now if the refinement preorder admits least upper bounds, then this binary
operation is usually called conjunction, and the set of specifications becomes a
meet-semilattice up to ≡. Conjunction is a useful ingredient of any specification
theory, but some also admit disjunctions, thus turning them into distributive
lattices up to ≡.

We believe that a systemization as we set out for here is useful to clarify
which properties one needs or expects of behavioral specification theories, and
that it may help in developing new behavioral specification theories, both for
equivalence relations different from bisimilarity and for more intricate models
such as real-time, probabilistic, or hybrid systems.

To develop our systemization, we first have to clarify what precisely is a
behavioral specification theory. Here we follow the seminal work of Pnueli [45],
Hennessy and Milner [35], and Larsen [41] and argue that a behavioral spec-
ification theory is built on an adequate and expressive specification formalism
equipped with a mapping from models to their characteristic formulae, which
provides the extension of the modeling formalism by the specification formalism.
This is the theme of Sects. 2 and 3.

Section 4 then introduces behavioral specification theories, and Sect. 5 makes
precise what it means to have logical operations on specifications. Section 6 is
concerned with structural operations on specifications: composition and quotient.
When present in a specification theory, these can be used for compositional
design and verification. Algebraically, a specification theory which has all the
logical and structural operations forms a residuated lattice up to ≡, a well-
understood algebraic structure [37] which also appears in linear logic [33] and
other areas.

All throughout Sects. 2 to 6, we give plenty of examples, taken from our own
work in [14,27,31], of specification theories which have the required operations.
In the final Sect. 7 we survey a few other behavioral specification theories, for
real-time and probabilistic models, in order to expose their particular algebraic
properties. We make no claim to completeness of this survey; indeed there are
many other examples which we do not treat here. The paper finishes with a
scheme which sums up the relevant algebraic structures and an overview of the
properties of the different behavioral specification theories encountered.

2 Models and Specifications

Let Spec be a set of specifications, Mod a set of models, |= ⊆ Mod × Spec a
relation between specifications and models, and ∼ ⊆ Mod×Mod an equivalence
relation on Mod. The intuition is that Spec is to provide specifications for the
models in Mod through the relation |=, but up to ∼, so that two models which
are equivalent cannot be distinguished by their specifications. We will make this
precise below.

264 U. Fahrenberg and A. Legay

We will generally use S for specifications and M for models. For S ∈ Spec, let
�S� = {M ∈ Mod | M |= S} denote its set of implementations. For M ∈ Mod,
let Th(M) = {S ∈ Spec | M |= S} denote its set of theories. We record the
following trivial fact:

Lemma 1. For any S ∈ Spec and M ∈ Mod, the following are equivalent:

(1) M |= S;
(2) M ∈ �S�;
(3) S ∈ Th(M).

Example 2. A common type of models is given by labeled transition systems
(LTS). These are structures M = (S, s0, T) consisting of a finite set of states S,
an initial state s0 ∈ S, and transitions T ⊆ S ×Σ ×S labeled with symbols from
a fixed finite set Σ.

LTS are often considered modulo bisimilarity : A bisimulation between two
LTS M1 = (S1, s

0
1, T1) and M2 = (S2, s

0
2, T2) is a relation R ⊆ S1 ×S2 such that

(s01, s
0
2) ∈ R and for any (s1, s2) ∈ R,

(1) for all (s1, a, s′
1) ∈ T1 there exists (s2, a, s′

2) ∈ T2 such that (s′
1, s

′
2) ∈ R;

(2) for all (s2, a, s′
2) ∈ T2 there exists (s1, a, s′

1) ∈ T1 such that (s′
1, s

′
2) ∈ R;

and then M1 and M2 are said to be bisimilar if there exists a bisimulation
between them.

A common specification formalism for LTS is Hennessy-Milner logic [35]. It
consists of formulae generated by the abstract syntax

HML � φ, ψ ::= tt | ff | φ ∧ ψ | φ ∨ ψ | 〈a〉φ | [a]φ (a ∈ Σ) ,

with semantics defined by �tt� = LTS, �ff� = ∅, �φ ∧ ψ� = �φ� ∩ �ψ�, �φ ∨ ψ� =
�φ� ∪ �ψ�, and

�〈a〉φ� = {(S, s0, T) ∈ LTS | ∃(s0, a, s) ∈ T : (S, s, T) ∈ �φ�} ;
�[a]φ� = {(S, s0, T) ∈ LTS | ∀(s0, a, s) ∈ T : (S, s, T) ∈ �φ�} .

The Hennessy-Milner theorem [35] then states that HML specifies LTS up to
bisimilarity, that is, M1 ∼ M2 precisely when Th(M1) = Th(M2). ��
Definition 3 [35]. (Spec, |=) is adequate for (Mod,∼) if it holds for any
M1,M2 ∈ Mod that M1 ∼ M2 iff Th(M1) = Th(M2).

3 Characteristic Formulae

Let M ∈ Mod. A specification S ∈ Spec is a characteristic formula forM [45] if
it holds for any M′ ∈ Mod that M′ |= S iff Th(M′) = Th(M).

Lemma 4. If S1,S2 ∈ Spec are characteristic formulae for M ∈ Mod, then
�S1� = �S2�.

Behavioral Specification Theories: An Algebraic Taxonomy 265

Proof. For any M′ ∈ Mod, M′ ∈ �S1� iff Th(M′) = Th(M), iff M′ ∈ �S2�. ��
Definition 5 [45]. (Spec, |=) is expressive for (Mod,∼) if every M ∈ Mod
admits a characteristic formula.

Example 6. It is known [3] that HML is not expressive for LTS with bisimilarity.
Indeed, the simple transition system ({s0}, s0, (s0, a, s0)} consisting only of a
loop at the initial state does not admit a characteristic formula in HML.

The standard remedy [42] for this expressivity failure is to add recursion and
maximal fixed points to the logic. For a finite set X of variables, let HML(X) be
the set of formulae generated as follows:

HML(X) � φ, ψ ::= tt | ff | φ ∧ ψ | φ ∨ ψ | 〈a〉φ | [a]φ | x (a ∈ Σ, x ∈ X)

That is, HML(X) formulae are HML formulae which additionally may contain
variables from X.

A recursive Hennessy-Milner formula [14,42] is a tuple H = (X,X0,Δ) con-
sisting of finite sets X ⊇ X0 of variables and initial variables, respectively, and
a declaration Δ : X → HML(X). The set of such formulae is denoted HMLR.
The semantics of a formula H ∈ HMLR is a set �H� ∈ LTS which is defined as a
maximal fixed point, see [3,42]; we do not go into these details here because we
will give another, equivalent, semantics below.

The characteristic formula [42] of (S, s0, T) ∈ LTS is now the HMLR formula
(S, {s0},Δ) given by

Δ(s) =
∧

(s,a,t)∈T

〈a〉t ∧
∧

a∈Σ

[a]
(∨

(s,a,t)∈T)

t
)

.

Note how Δ(s) precisely specifies all labels which must be available from s
(the first part of the conjunction) and, for each label, which properties must be
satisfied after its occurrence (the second part of the conjunction). ��

4 Specification Theories

Definition 7 [31]. A behavioral specification theory for (Mod,∼) consists of
a set Spec of specifications, a relation |= ⊆ Mod × Spec, a mapping χ : Mod →
Spec, and a preorder ≤ on Spec, called refinement, subject to the following con-
ditions:

(1) (Spec, |=) is adequate for (Mod,∼);
(2) for every M ∈ Mod, χ(M) is a characteristic formula for M;
(3) for all M ∈ Mod and all S ∈ Spec, M |= S iff χ(M) ≤ S.

We will generally omit “behavioral” from now and only speak about specifi-
cation theories.

The equivalence relation ≡ on Spec defined as ≤ ∩ ≥ is called modal equiv-
alence. Some comments on the different ingredients above are in order.

266 U. Fahrenberg and A. Legay

1. By (2), (Spec, |=) is also expressive for (Mod,∼).
2. χ is a section of |=: for all M ∈ Mod, M |= χ(M).
3. (3) can be seen as defining |=, so we may omit |= from the signature of

specification theories.
4. For any M ∈ Mod, Th(M) = {S ∈ Spec | χ(M) ≤ S} = χ(M)↑ is the

upward closure of χ(M) with respect to ≤.

Lemma 8 [31]. Let (Spec, χ,≤) be a specification theory for (Mod,∼).

(1) For all S1,S2 ∈ Spec, S1 ≤ S2 implies �S1� ⊆ �S2�.
(2) For all M1,M2 ∈ Mod, M1 ∼ M2 iff χ(M1) ≤ χ(M2).

Proof. For the first claim, M ∈ �S1� implies χ(M) ≤ S1 ≤ S2, hence M ∈ �S2�.
For the second claim, we have M1 ∼ M2 iff M1 |= χ(M2) (as χ(M2) is

characteristic for M2), iff χ(M1) ≤ χ(M2) by (3). ��
Example 9. [14] introduces a normal form for HMLR formulae, showing that
for any HMLR formula H1 = (X1,X

0
1 ,Δ1), there exists another formula H2 =

(X2,X
0
2 ,Δ2) with �H1� = �H2� and such that for any x ∈ X2, Δ2(x) is of the

form
Δ2(x) =

∧

N∈♦(x)

(∨

(a,y)∈N

〈a〉y
)

∧
∧

a∈Σ

[a]
(∨

y∈�a(x)

y
)

,

for finite sets ♦(x) ⊆ 2Σ×X2 and, for each a ∈ Σ, �a(x) ⊆ X2. This may be
seen as generalizing the characteristic formulae of HMLR: the first part of the
conjunction in Δ2(x) specifies all labels which must be available, and the second
part, which properties must be satisfied after each label’s occurrence.

A refinement [14] of two HMLR formulae H1 = (X1,X
0
1 ,Δ1) and H2 =

(X2,X
0
2 ,Δ2) in normal form is a relation R ⊆ X1 × X2 such that for every

x0
1 ∈ X0

1 there exists x0
2 ∈ X0

2 for which (x0
1, x

0
2) ∈ R, and for any (x1, x2) ∈ R,

(1) for all N2 ∈ ♦2(x2) there is N1 ∈ ♦1(x1) such that for each (a, y1) ∈ N1,
there exists (a, y2) ∈ N2 with (y1, y2) ∈ R;

(2) for all a ∈ Σ and every y1 ∈ �a
1(x1), there is y2 ∈ �a

2(x2) for which (y1, y2) ∈
R.

Note how this corresponds to the intuition for the normal form above.
Writing H1 ≤ H2 whenever there exists a refinement as above, and denoting

by χ(M) the characteristic formula of M ∈ LTS introduced in the previous
example, it can be shown [14] that (HMLR, χ,≤) is a specification theory for LTS
under bisimulation. This also implies that the refinement semantics of HMLR

agrees with the standard fixed-point semantics [3,42]. ��
Example 10. [14] exposes structural translations between HMLR and two other
specification formalism: a generalization of the disjunctive modal transition
systems (DMTS) introduced in [44] to multiple initial states, and a non-
deterministic version of the acceptance automata (AA) of [19,46]. This yields
two other specification theories for LTS under bisimulation, one DMTS-based
and one based on (non-deterministic) acceptance automata. ��

Behavioral Specification Theories: An Algebraic Taxonomy 267

Example 11. [31] introduces DMTS-based specification theories for (LTS,∼=),
where ∼= is any equivalence in van Glabbeek’s linear-time–branching-time spec-
trum [49]. Using the translations mentioned in the previous example, these also
give rise to HMLR-based specification theories, and to specification theories based
on acceptance automata, for all those equivalences. ��

5 Logical Operations on Specifications

Behavioral specifications typically come equipped with logical operations of con-
junction and disjunction. Recall that ≡ is defined as ≤ ∩ ≥.

Definition 12. A specification theory (Spec, χ,≤) for (Mod,∼) is logical if
(Spec,≤) forms a bounded distributive lattice up to ≡.

The above implies that Spec admits commutative and associative binary
operations ∨ of least upper bound and ∧ of greatest lower bound: disjunction
and conjunction. It also entails that there is a bottom specification ff ∈ Spec,
satisfying �ff� = ∅, and a top specification tt ∈ Spec, satisfying �tt� = Mod. We
sum up the properties of these operations:

S1 ∨ S2 ≤ S3 iff S1 ≤ S3 and S2 ≤ S3 (1)
S1 ≤ S2 ∧ S3 iff S1 ≤ S2 and S1 ≤ S3 (2)
S1 ∧ (S2 ∨ S3) ≡ (S1 ∧ S2) ∨ (S1 ∧ S3)
S1 ∨ (S2 ∧ S3) ≡ (S1 ∨ S2) ∧ (S1 ∨ S3)

ff ∧ S ≡ ff tt ∧ S ≡ S
ff ∨ S ≡ S tt ∨ S ≡ tt

Note that the properties of least upper bound and greatest lower bound in (1)
and (2) above define ∨ and ∧ uniquely: they are universal properties.

Example 13. Hennessy-Milner logic has disjunction and conjunction as part of
the syntax, and [14] shows that on the specification theory (HMLR, χ,≤) from
previous examples these are operations as above. The disjunction of two HMLR

formulae in normal form is again in normal form; for conjunction it may be
defined directly on normal forms as follows:

Let H1 = (X1,X
0
1 ,Δ1) and H2 = (X2,X

0
2 ,Δ2) be HMLR formulae in normal

form and define H = (X1 × X2,X
0
1 × X1

1 ,Δ) by �a((x1, x2)) = �a
1(x1)∧ �a

2(x2)
for every a ∈ Σ and (x1, x2) ∈ X and

♦((x1, x2)) =
{{(a, (y1, y2)) | (a, y1) ∈ N1, y2 ∈ �a

2(x2)}
∣∣ N1 ∈ ♦2(x1)

}

∪ {{(a, (y1, y2)) | (a, y2) ∈ N2, y1 ∈ �a
1(x1)}

∣∣ N2 ∈ ♦2(x2)
}

,

then H ≡ H1 ∧ H2 [14].
Hence the three specification theories for (Mod,∼) of [14]: HMLR, DMTS, and

AA, are all logical. ��

268 U. Fahrenberg and A. Legay

As a variation, some specification theories only admit conjunction and no
disjunction, thus forming a bounded meet-semilattice. We call such specification
theories semi-logical.

6 Structural Operations on Specifications

Many behavioral specifications also admit structural operations of composition,
denoted ‖, and quotient, denoted /, in order to enable compositional design and
verification.

Definition 14. A compositional specification theory is a specification the-
ory (Spec, χ,≤) for (Mod,∼) together with an operation ‖ on Spec such that
(Spec, ‖,≤) forms a commutative partially ordered semigroup up to ≡.

That is to say that the operation ‖ is commutative and associative and addi-
tionally satisfies the following monotonicity law:

S1 ≤ S2 =⇒ S1‖S3 ≤ S2‖S3

Contrary to the logical operations ∨ and ∧, ‖ is not defined uniquely; indeed a
specification theory may admit many different composition operations.

Corollary 15 (Independent implementability). If (Spec, ‖, χ,≤) is compo-
sitional, then S1 ≤ S3 and S2 ≤ S4 imply S1‖S2 ≤ S3‖S4.

Proof. By monotonicity, S1‖S2 ≤ S3‖S2 ≤ S3‖S4. ��
Note that independent implementability also implies the monotonicity law

above.
If (Spec, ‖, χ,≤) is compositional and logical, then it is called a lattice-ordered

semigroup (up to ≡) as an algebraic structure; more precisely a bounded dis-
tributive lattice-ordered commutative semigroup. This entails that composition
distributes over disjunction:

S1‖(S2 ∨ S2) ≡ S1‖S2 ∨ S1‖S3

Note that composition does not necessarily distributed over conjunction.
If composition ‖ also admits a unit 1 ∈ Spec (up to ≡), i.e. such that S‖1 ≡ S

for all S ∈ Spec, then (Spec, ‖, χ,≤) is said to be unital, and “semigroup” is
replaced by “monoid” above.

Definition 16. A compositional specification theory (Spec, ‖, χ,≤) for (Mod,∼)
is complete if (Spec, ‖,≤) forms a residuated partially ordered commutative
semigroup up to ≡.

That is, the operation ‖ admits a residual /, in our context called quotient,
satisfying the following property:

S1‖S2 ≤ S3 ⇐⇒ S2 ≤ S3/S1 (3)

Behavioral Specification Theories: An Algebraic Taxonomy 269

This property is again universal, so that / is uniquely defined by ‖.
If (Spec, ‖, χ,≤) is also unital, then it forms a residuated poset up to ≡. In

that case, the following holds for all S1,S2 ∈ Spec:

S1‖(1/S2) ≤ S1/S2

We refer to [37] for a survey on residuated posets and the residuated lattices we
will encounter in a moment; we only highlight a few properties here.

Lemma 17 [37]. The following hold in any complete compositional specification
theory:

S1‖(S2/S3) ≤ (S1‖S2)/S3 S1/S2 ≤ (S1‖S3)/(S2‖S3)
(S1/S2)‖(S2/S3) ≤ S1/S3 (S1/S2)/S3 ≡ (S1/S3)/S2

S1/(S2‖S3) ≡ (S1/S2)/S3 S‖(S/S) ≡ S
(S/S)‖(S/S) ≡ S/S

If (Spec, ‖,1, χ,≤) is complete compositional and logical, then it is called a
residuated lattice-ordered semigroup (up to ≡); more precisely a bounded dis-
tributive residuated lattice-ordered commutative semigroup. Distributivity of
composition over disjunction now follows from residuation, and also the quo-
tient is well-behaved with respect to the logical operations:

(S1 ∧ S2)/S3 ≡ S1/S3 ∧ S2/S3 S1/(S2 ∨ S3) ≡ S1/S2 ∧ S1/S3

Additionally, composition and quotient interact with the bottom and top ele-
ments as follows:

S‖ff ≡ ff S/ff ≡ tt tt/S ≡ tt

Finally, if (Spec, ‖,1, χ,≤) is complete compositional, unital, and logical, then
it is called a residuated lattice. We sum up the different algebraic structures we
have encountered in Fig. 1.

Example 18. In [14] it is shown that the specification theory (HMLR, χ,≤), and
thus also the specification theories based on DMTS and AA, are unital com-
plete compositional when enriched with CSP-style composition ‖. (In [27] this is
generalized to other types of composition.)

The composition H1‖H2 is defined by translation between HMLR and AA.
Also quotient is defined through AA, and it is shown in [14] that due to these
translations, composition may incur an exponential blow-up and quotient a
double-exponential blow-up. ��

270 U. Fahrenberg and A. Legay

Fig. 1. Spectrum of specification theories and the corresponding algebraic struc-
tures. Abbreviations: b.—bounded; d.—distributive; c.—commutative; po.—partially
ordered; lo.—lattice-ordered

7 Specification Theories for Real-Time and Probabilistic
Systems

We quickly survey a few different specification theories for real-time and proba-
bilistic systems.

7.1 Modal Event-Clock Specifications

Modal event-clock specifications (MECS) were introduced in [15]. They form a
specification theory for event-clock automata (ECA) [5], a determinizable sub-
class of timed automata [4], under timed bisimilarity. Models and specifications
are assume to be deterministic, thus S1 ≤ S2 iff �S1� ⊆ �S2� in this case.

In [15] it is shown that MECS admit a conjunction, thus forming a meet-
semilattice up to ≡. The authors also introduce composition and quotient; but
computation of quotient incurs an exponential blow-up. Altogether, MECS form
a complete compositional semi-logical specification theory: a bounded residuated
semilattice-ordered commutative semigroup.

7.2 Timed Input/Output Automata

[20,21] introduce a specification theory based on a variant of the timed
input/output automata (TIOA) of [38,39]. Both models and specifications are

Behavioral Specification Theories: An Algebraic Taxonomy 271

Table 1. Algebraic taxonomy of some specification theories. Abbreviations: L—logical;
C—compositional; Q—complete

Specifications Models L C Q Notes

HMLR, DMTS, AA LTS, bisim. ✓ ✓ ✓ [14]; bisimulation
HMLR, DMTS, AA LTS, any ✗ ✗ ✗ [31]; any equivalence in LTBT spec-

trum [49]
DMTS LTS, fail./div. ≈ ✓ ✗ [17]; failure/divergence equivalence;

no disjunction
MECS ECA, t.bisim. ≈ ✓ ✓ [15]; timed bisim.; no disjunction
TIOA TIOA, t.bisim. ≈ ✓ ≈ [20]; no disjunction; weak quotient
IMC PA, p.bisim. ✗ ✗ ✗ [25]; probabilistic bisim
APA PA, p.bisim. ≈ ✓ ✗ [24]; no disjunction

TIOA which are action-deterministic and input-enabled; but models are further
restricted using conditions of output urgency and independent progress. The
equivalence on models being specified is timed bisimilarity.

In [20] it is shown that TIOA admit a conjunction, so they form a meet-
semilattice up to ≡. The paper also introduces a composition operation and a
quotient, but the quotient is only shown to satisfy the property that

S1‖M ≤ S3 ⇐⇒ M ≤ S3/S1

for all specifications S1,S3 and all models M, which is strictly weaker than (3).
With this caveat, TIOA form a complete compositional semi-logical specification
theory: a bounded residuated semilattice-ordered commutative semigroup.

7.3 Abstract Probabilistic Automata

Abstract probabilistic automata (APA), introduced in [23,24], form a specifica-
tion theory for probabilistic automata (PA) [48] under probabilistic bisimilarity.
They build on earlier models of interval Markov chains (IMC) [25], see also [7,26]
for a related line of work.

In [24] it is shown that APA admit a conjunction, but that IMC do not. Also a
composition is introduced in [24], and it is shown that composing two APA with
interval constraints (an IMC) may yield an APA with polynomial constraints
(not an IMC); but APA with polynomial constraints are closed under compo-
sition. APA form a compositional semi-logical specification theory: a bounded
semilattice-ordered commutative semigroup.

Table 1 sums up the algebraic properties of the different specification theo-
ries we have surveyed here, plus the specification theory for failure/divergence
semantics based on DMTS from [17].

272 U. Fahrenberg and A. Legay

References

1. Aceto, L., Fábregas, I., de Frutos-Escrig, D., Ingólfsdóttir, A., Palomino, M.: On
the specification of modal systems. Sci. Comput. Program. 78(12), 2468–2487
(2013)

2. Aceto, L., Fokkink, W., van Glabbeek, R.J., Ingólfsdóttir, A.: Nested semantics
over finite trees are equationally hard. Inf. Comput. 191(2), 203–232 (2004)

3. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems. Cambridge
University Press, Cambridge (2007)

4. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

5. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class
of timed automata. Theor. Comput. Sci. 211(1–2), 253–273 (1999)

6. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wąsowski, A.: 20 years of modal
and mixed specifications. Bull. EATCS 95, 94–129 (2008)

7. Bart, A., Delahaye, B., Fournier, P., Lime, D., Monfroy, E., Truchet, C.: Reacha-
bility in parametric interval Markov chains using constraints. Theor. Comput. Sci.
747, 48–74 (2018)

8. Bauer, S.S.: Moving from specifications to contracts in component-based design.
In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43–58. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2_3

9. Bauer, S.S., Fahrenberg, U., Juhl, L., Larsen, K.G., Legay, A., Thrane, C.: Quanti-
tative refinement for weighted modal transition systems. In: Murlak, F., Sankowski,
P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 60–71. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22993-0_9

10. Bauer, S.S., Fahrenberg, U., Juhl, L., Larsen, K.G., Legay, A., Thrane, C.:
Weighted modal transition systems. Form. Meth. Syst. Des. 42(2), 193–220 (2013)

11. Bauer, S.S., Juhl, L., Larsen, K.G., Legay, A., Srba, J.: Extending modal transition
systems with structured labels. Math. Struct. Comput. Sci. 22(4), 581–617 (2012)

12. Beneš, N., Černá, I., Křetínský, J.: Modal transition systems: composition and
LTL model checking. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 228–242. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-24372-1_17

13. Beneš, N., Delahaye, B., Fahrenberg, U., Křetínský, J., Legay, A.: Hennessy-Milner
logic with greatest fixed points as a complete behavioural specification theory. In:
D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 76–90.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40184-8_7

14. Beneš, N., Fahrenberg, U., Křetínský, J., Legay, A., Traonouez, L.-M.: Logical vs.
behavioural specifications. Inf. Comput. 271, 104487 (2020)

15. Bertrand, N., Legay, A., Pinchinat, S., Raclet, J.-B.: Modal event-clock specifica-
tions for timed component-based design. Sci. Comput. Program. 77(12), 1212–1234
(2012)

16. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984)

17. Bujtor, F., Sorokin, L., Vogler, W.: Testing preorders for dMTS. ACM Trans.
Embed. Comput. Syst. 16(2), 41:1–41:28 (2017)

18. Bujtor, F., Vogler, W.: Failure semantics for modal transition systems. ACM Trans.
Embed. Comput. Syst. 14(4), 67 (2015)

19. Caillaud, B., Raclet, J.-B.: Ensuring reachability by design. In: Roychoudhury, A.,
D’Souza, M. (eds.) ICTAC 2012. LNCS, vol. 7521, pp. 213–227. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-32943-2_17

https://doi.org/10.1007/978-3-642-28872-2_3
https://doi.org/10.1007/978-3-642-22993-0_9
https://doi.org/10.1007/978-3-642-24372-1_17
https://doi.org/10.1007/978-3-642-24372-1_17
https://doi.org/10.1007/978-3-642-40184-8_7
https://doi.org/10.1007/978-3-642-32943-2_17

Behavioral Specification Theories: An Algebraic Taxonomy 273

20. David, A., Larsen, K.G., Legay, A., Nyman, U., Traonouez, L.-M., Wąsowski, A.:
Real-time specifications. Softw. Tools Technol. Transf. 17(1), 17–45 (2015)

21. David, A., et al.: Compositional verification of real-time systems using Ecdar.
Softw. Tools Technol. Transf. 14(6), 703–720 (2012)

22. Delahaye, B., Fahrenberg, U., Guldstrand Larsen, K., Legay, A.: Refinement and
difference for probabilistic automata. In: Joshi, K., Siegle, M., Stoelinga, M.,
D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 22–38. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40196-1_3

23. Delahaye, B., Fahrenberg, U., Larsen, K.G., Legay, A.: Refinement and difference
for probabilistic automata. Log. Meth. Comput. Sci. 10(3), 1–32 (2014)

24. Delahaye, B.: Abstract probabilistic automata. Inf. Comput. 232, 66–116 (2013)
25. Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wąsowski, A.: Consistency

and refinement for interval Markov chains. Log. Algebr. Program. 81(3), 209–226
(2012)

26. Delahaye, B., Lime, D., Petrucci, L.: Parameter synthesis for parametric interval
Markov chains. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS,
vol. 9583, pp. 372–390. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49122-5_18

27. Fahrenberg, U., Křetínský, J., Legay, A., Traonouez, L.-M.: Compositionality for
quantitative specifications. Soft. Comput. 22(4), 1139–1158 (2018)

28. Fahrenberg, U., Legay, A.: A robust specification theory for modal event-clock
automata. In: Bauer, S.S., Raclet, J.-B. (eds.) FIT 2012. EPTCS, vol. 87, pp. 5–16
(2012)

29. Fahrenberg, U., Legay, A.: General quantitative specification theories with modal
transition systems. Acta Inf. 51(5), 261–295 (2014)

30. Fahrenberg, U., Legay, A.: A linear-time–branching-time spectrum of behavioral
specification theories. In: Steffen, B., Baier, C., van den Brand, M., Eder, J.,
Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 49–61.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0_5

31. Fahrenberg, U., Legay, A.: A linear-time-branching-time spectrum for behavioral
specification theories. J. Log. Algebraic Meth. Program. 110, 100499 (2020)

32. Fahrenberg, U., Legay, A., Traonouez, L.-M.: Structural refinement for the modal
nu-calculus. In: Ciobanu, G., Méry, D. (eds.) ICTAC 2014. LNCS, vol. 8687, pp.
169–187. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10882-7_11

33. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
34. Groote, J.F., Vaandrager, F.W.: Structured operational semantics and bisimulation

as a congruence. Inf. Comput. 100(2), 202–260 (1992)
35. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.

ACM 32(1), 137–161 (1985)
36. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–

677 (1978)
37. Jipsen, P., Tsinakis, C.: A survey of residuated lattices. In: Martínez, J. (ed.)

Ordered Algebraic Structures. Developments in Mathematics, vol. 7. Springer,
Boston (2002). https://doi.org/10.1007/978-1-4757-3627-4_3

38. Kaynar, D.K., Lynch, N.A., Segala, R., Vaandrager, F.W.: Timed I/O automata: a
mathematical framework for modeling and analyzing real-time systems. In: RTSS,
pp. 166–177. IEEE Computer Society (2003)

39. Kaynar, D.K., Lynch, N.A., Segala, R., Vaandrager, F.W.: The Theory of Timed
I/O Automata. Synthesis Lectures on Distributed Computing Theory, 2nd edn.
Morgan & Claypool Publishers (2010)

https://doi.org/10.1007/978-3-642-40196-1_3
https://doi.org/10.1007/978-3-662-49122-5_18
https://doi.org/10.1007/978-3-662-49122-5_18
https://doi.org/10.1007/978-3-319-51963-0_5
https://doi.org/10.1007/978-3-319-10882-7_11
https://doi.org/10.1007/978-1-4757-3627-4_3

274 U. Fahrenberg and A. Legay

40. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52148-
8_19

41. Guldstrand Larsen, K.: Ideal specification formalism = expressivity + composi-
tionality + decidability + testability + In: Baeten, J.C.M., Klop, J.W. (eds.)
CONCUR 1990. LNCS, vol. 458, pp. 33–56. Springer, Heidelberg (1990). https://
doi.org/10.1007/BFb0039050

42. Larsen, K.G.: Proof systems for satisfiability in Hennessy-Milner logic with recur-
sion. Theor. Comput. Sci. 72(2&3), 265–288 (1990)

43. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. In: POPL, pp.
344–352. ACM Press (1989)

44. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:
LICS, pp. 108–117. IEEE Computer Society (1990)

45. Pnueli, A.: Linear and branching structures in the semantics and logics of reactive
systems. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 15–32. Springer,
Heidelberg (1985). https://doi.org/10.1007/BFb0015727

46. Raclet, J.-B.: Residual for component specifications. Electr. Notes Theor. Comput.
Sci. 215, 93–110 (2008)

47. Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
A modal interface theory for component-based design. Fundam. Inf. 108(1–2),
119–149 (2011)

48. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nord.
J. Comput. 2(2), 250–273 (1995)

49. van Glabbeek, R.J.: The linear time–branching time spectrum I, chap. 1. In:
Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp.
3–99. Elsevier (2001)

50. Vogler, W.: Failures semantics and deadlocking of modular Petri nets. Acta Inf.
26(4), 333–348 (1989)

51. Vogler, W. (ed.): Modular Construction and Partial Order Semantics of Petri
Nets. LNCS, vol. 625. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-
55767-9

https://doi.org/10.1007/3-540-52148-8_19
https://doi.org/10.1007/3-540-52148-8_19
https://doi.org/10.1007/BFb0039050
https://doi.org/10.1007/BFb0039050
https://doi.org/10.1007/BFb0015727
https://doi.org/10.1007/3-540-55767-9
https://doi.org/10.1007/3-540-55767-9

Approximating Euclidean by Imprecise
Markov Decision Processes

Manfred Jaeger(B), Giorgio Bacci(B), Giovanni Bacci(B),
Kim Guldstrand Larsen(B), and Peter Gjøl Jensen(B)

Department of Computer Science, Aalborg University, Aalborg, Denmark
{jaeger,grbacci,giovbacci,kgl,pgj}@cs.aau.dk

Abstract. Euclidean Markov decision processes are a powerful tool for
modeling control problems under uncertainty over continuous domains.
Finite state imprecise, Markov decision processes can be used to approx-
imate the behavior of these infinite models. In this paper we address two
questions: first, we investigate what kind of approximation guarantees
are obtained when the Euclidean process is approximated by finite state
approximations induced by increasingly fine partitions of the continuous
state space. We show that for cost functions over finite time horizons
the approximations become arbitrarily precise. Second, we use imprecise
Markov decision process approximations as a tool to analyse and validate
cost functions and strategies obtained by reinforcement learning. We find
that, on the one hand, our new theoretical results validate basic design
choices of a previously proposed reinforcement learning approach. On
the other hand, the imprecise Markov decision process approximations
reveal some inaccuracies in the learned cost functions.

1 Introduction

The traditional goal of software development is correctness with respect to a
given specification. However, in the presence of uncertainty, such as faced in
the construction of software agents acting in stochastic environments, often no
strict notions of correctness exist. One then has to aim instead for optimality
with regard to a given performance measure, and in expectation with respect to
the stochastic system behavior. The construction of optimal agents often leads
to intractable optimization problems. However, it may be sufficient to construct
near-optimal solutions with provable bounds on the deviation from optimal-
ity. When agents are learned from data, then instead of (near-)optimality by
construction, one has to aim for convergence to optimality as the available data
increases. In this paper we are primarily concerned with the first question of con-
structing near-optimal solutions for systems in complex environments described
by a continuous state space, and performance measures given by a time-bounded
objective. Some implications for the reinforcement learning approach introduced
in [8] will also be discussed.

Our work is based on Markov Decision Processes (MDP) [11] as the model for
an agent and its environment. MDPs provide a unifying framework for modeling
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 275–289, 2020.
https://doi.org/10.1007/978-3-030-61362-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_15

276 M. Jaeger et al.

decision making in situations where outcomes are partly random and partly
under the control of an agent. Optimal strategies for MDPs can be obtained
via dynamic programming or reinforcement learning. They are used in many
areas, including economics, control, robotics and autonomous systems. In its
simplest form, an MDP comprises a finite set of states S, and a finite set of
control actions Act , which for each state s and action a specifies the transition
probabilities Pa(s, s′) to successor states s′. In addition, transitioning from a
state s an action a has an immediate cost C(s, a)1. The overall problem is to
find a strategy σ that specifies the action σ(s) to be made in state s in order to
optimize some objective (e.g. the expected cost of reaching a goal state).

For many applications, however, such as queuing systems, epidemic processes
(e.g. COVID19), and population processes the restriction to a finite state-space
is inadequate. Rather, the underlying system has an infinite state-space and
the decision making process must take into account the continuous dynamics of
the system. In this paper, we consider a particular class of infinite-state MDPs,
namely Euclidean Markov Decision Processes [8], where the state space S is
given by a (measurable) subset of RK for some fixed dimension K.

As an example, consider the semi-random walk illustrated on the left of
Fig. 1 with state-space S = [0, xmax] × [0, tmax] (one dimensional space, and
time). Here the goal is to cross the x = 1 finishing line before t = 1. The agent
has two actions at its disposal: to move fast and expensive (cost 3), or to move
slow and cheap (cost 1). Both actions have uncertainty about distance traveled
and time taken. This uncertainty is modeled by a uniform distribution over a
successor state square: given current state (x, t) and action a ∈ {slow , fast},
the distribution over possible successor states is the uniform distribution over
[x+δ(a)−ε, x+δ(a)+ε]× [t+τ(a)−ε, t+τ(a)+ε], where (δ(a), τ(a)) represents
the direction of the movement in space and time which depends on the action a,
while the parameter ε models the uncertainty. Now, the question is to find the
strategy that will minimize the expected cost of reaching a goal state.

In [8], we proposed two reinforcement learning algorithms implemented in
UPPAAL STRATEGO [4], using online partition refinement techniques. In that
work we experimentally demonstrated its improved convergence tendencies on a
range of models. For the semi-random walk example, the online learning algo-
rithm returns the strategy illustrated on the right of Fig. 1.

However, despite its efficiency and experimentally demonstrated convergence
properties, the learning approach of [8] provides no hard guarantees as to how
far away the expected cost of the learned strategy is from the optimal one. In
this paper we propose a step-wise partition refinement process, where each parti-
tioning induces a finite-state imprecise MDP (IMDP). From the induced IMDP
we can compute by value iteration strategies whose expected costs are upper and
lower bounds on the expected cost of the original infinite-state Euclidean MDP.
As a crucial result, we prove the correctness of these bounds, i.e., that they

1 In several alternative but essentially equivalent definitions of MDPs transitions have
associated rewards rather than cost, and the reward may be depend on the successor
state as well.

Approximating Euclidean by Imprecise Markov Decision Processes 277

0.2 0.4 0.6 0.8 1.0 1.2
S

0.2

0.4

0.6

0.8

1.0

1.2

T

0.0 0.2 0.4 0.6 0.8 1.0
X0.0

0.2

0.4

0.6

0.8

1.0
T

Fig. 1. Left: a Semi-Random Walk on S = [0, 1.2] × [0, 1.2]. Green: goal area, red:
failure area, blue dot: current state, yellow/blue squares: successor state squares for fast
(blue) and slow (yellow) actions. Right: partition of [0, 1] × [0, 1] and strategy learned
by UPPAAL STRATEGO; partition regions colored according to actions prescribed
by the strategy. (Color figure online)

are always guaranteed to contain the true expected cost. Furthermore, under a
restriction to time-bounded objectives, we will also show that upper and lower
bounds converge to the true expected cost, and therefore the associated strategies
become near-optimal. Figure 2 shows upper and lower bounds on the expected
cost over the regions shown in Fig. 1.

Fig. 2. Lower and upper cost bounds for the learned partition.

Applying the IMDP value iteration procedures to the partition learned by
UPPAAL STRATEGO therefore allows us to compute guaranteed lower and
upper bounds on the true expected cost, and thereby evaluate the results of
reinforcement learning. The main contributions of this paper can by summarized
as follows:

278 M. Jaeger et al.

– We define IMDP abstractions of infinite state Euclidean MDPs, and establish
as key theoretical properties: the correctness of value iteration to compute
upper and lower expected cost functions, the correctness of the upper and
lower cost functions as bounds on the cost function of the original Euclidean
MDP, and, under a restriction to finite time horizons, the convergence of
upper and lower bounds to the actual cost values.

– We demonstrate the applicability of the general framework to analyze the
accuracy of strategies learned by reinforcement learning.

Related Work. Our work is closely related to various types of MDP models
proposed in different areas. Imprecise Markov Chains and Imprecise Markov
Decision processes have been considered in areas such as operations research
and artificial intelligence [3,13,14]. The focus here typically is on approximating
optimal policies for fixed, finite state spaces. In the same spirit, but from a
verification point of view, [2] focuses on reachability probabilities.

Lumped Markov chains are obtained by aggregating sets of states of a Markov
Chain into a single state. Much work is devoted to the question of when and
how the resulting process again is a Markov chain (it rarely is) [5,12]. The
interplay of lumping and imprecision is considered in [6]. Most work in this area
is concerned with finite state spaces. Abstraction by state space partitioning
(lumping) can be understood as a special form of partial observability (one only
observes which partition element the current state belongs to). A combination
or partial observability with imprecise probabilities is considered in [7].

[9] introduce abstractions of finite state MDPs by partitioning the state space.
Upper and lower bounds for reachability probabilities are obtained from the
abstract MDP, which is formalized as a two player stochastic game. [10] is con-
cerned with obtaining accurate specifications of an abstraction obtained by state
space partitioning. The underlying state space is finite, and a fixed partition is
given.

Thus, while there is a large amount of closely related work on abstracting
MDPs by state space partitioning, and imprecise MDPs that can result from
such an abstraction, to the best of our knowledge, our work is distinguished
from previous work by: the consideration of infinite continuous state spaces for
the underlying models of primary interest, and the focus on the properties of
refinement sequences induced by partitions of increasing granularity.

An extended version of this paper containing all proofs can be found at
https://arxiv.org/abs/2006.14923.

2 Euclidean MDP and Expected Cost

Definition 1 (Euclidean Markov Decision Processes). A Euclidean
Markov decision process (EMDP) is a tuple M = (S,G,Act , T, C) where:

– S ⊆ R
K is a measurable subset of the K-dimensional Euclidean space equipped

with the Borel σ-algebra BK .
– G ⊆ S is a measurable set of goal states,

https://arxiv.org/abs/2006.14923

Approximating Euclidean by Imprecise Markov Decision Processes 279

– Act is a finite set of actions,
– T : S × Act × BK → [0, 1] defines for every a ∈ Act a transition kernel on

(S,BK), i.e., T (s, a, ·) is a probability distribution on BK for all s ∈ S, and
T (·, a, B) is measurable for all B ∈ BK. Furthermore, the set of goal states is
absorbing, i.e. for all s ∈ G and all a ∈ Act: T (s, a,G) = 1.

– C : S × Act → R≥0 is a cost-function for state-action pairs, such that for all
a ∈ Act: C(·, a) is measurable, and C(s, a) = 0 for all s ∈ G.
A run π of an MDP is a sequence of alternating states and actions

s1a1s2a2 · · · . We denote the set of all runs of an EMDP M as ΠM. We use
πi to denote (si, ai), π≤i for the prefix s1a1s2a2 · · · siai, and π>i for the tail
si+1ai+1si+2ai+2 · · · of a run. The cost of a run is

C∞(π) := sup
N

N∑

i=1

C(πi) ∈ [0,∞] .

The set ΠM is equipped with the product σ-algebra (BK ⊗2Act)∞ generated
by the cylinder sets B1 ×{a1}× · · ·×Bn ×{an}× (S ×Act)∞ (n ≥ 1, Bi ∈ BK ,
ai ∈ Act). We denote with B+ the Borel σ-algebra restricted to the non-negative
reals, and with B̄+ the standard extension to R̄≥0 := R≥0 ∪ {∞}, i.e. the sets of
the form B and B ∪ {∞}, where B ∈ B+.

Lemma 1. C∞ is (BK ⊗ 2Act)∞ − B̄+ measurable.

We next consider strategies for EMDPs. We limit ourselves to memoryless
and stationary strategies, noting that on the rich Euclidean state space S this
is less of a limitation than on finite state spaces, since a non-stationary, time
dependent strategy can here be turned into a stationary strategy by adding one
real-valued dimension representing time.

Definition 2 (Strategy). A (memoryless,stationary) strategy for an MDP M
is a function σ : S → (Act → [0, 1]), mapping states to probability distribu-
tions over Act, such that for every a ∈ Act the function s ∈ S 	→ σ(s)(a) is
measurable.

The following lemma is mostly a technicality that needs to be established
in order to ensure that an MDP in conjunction with a strategy and an initial
state distribution defines a Markov process on S ×Act , and hence a probability
distribution on ΠM.

Lemma 2. If σ is a strategy, then

Tσ : (S × Act) × (BK × 2Act) → [0, 1]
((s, a), (B,A)) 	→ ∫

B
σ(s′)(A)T (s, a, ds′) (1)

is a transition kernel on (S × Act ,BK × 2Act).

Usually, an initial state distribution will be given by a fixed initial state
s = s1. We then denote the resulting distribution over ΠM by Ps,σ (this also
depends on the underlying M; to avoid notational clutter, we do not always
make this dependence explicit in the notation).

280 M. Jaeger et al.

Definition 3 (Expected Cost). Let s ∈ S. The expected cost at s under strat-
egy σ is the expectation of C∞ under the distribution Ps,σ, denoted Eσ(C, s). The
expected cost at initial state s then is defined as

E(C, s) := inf
σ

Eσ(C, s) ∈ [0,∞] .

Example 1. If s ∈ G, then for any strategy σ: Ps,σ(
⋂

i≥1{si ∈ G}) = 1, and hence
E(C, s) = 0. However, E(C, s) = 0 can also hold for s
∈ G, since C(s, a) = 0 also
is allowed for non-goal states s.

Note that, for any strategy σ, the functions Eσ(C, ·) and E(C, ·) are [0,∞]-
valued measurable functions on S. This follows by measurability of C(·, a) and
σ(·)(a), for all a ∈ Act , and [1, Theorem 13.4].

2.1 Value Iteration for EMDPs

We next show that expected costs in EMDPs can be computed by value iter-
ation. Our results are closely related to Theorem 7.3.10 in [11]. However, our
scenario differs from the one treated by Puterman [11] in that we deal with
uncountable state spaces, and in that we want to permit infinite cost values.
Adapting Puterman’s notation [11], we introduce two operators, L and Lσ, on
[0,∞]-valued measurable functions E on S, defined as follows:

LE(s) := min
a∈Act

(
C(s, a) +

∫

t∈S
E(t)T (s, a,dt)

)
,

LσE(s) :=
∑

a∈Act

σ(s)(a) ·
(

C(s, a) +
∫

t∈S
E(t)T (s, a,dt)

)
,

The operators above are well-defined:

Lemma 3. If E is measurable, so are LE and LσE.

The set of [0,∞]-valued measurable functions on S forms a complete partial
order under the point wise order E ≤ E′ iff E(s) ≤ E′(s), for all s ∈ S. The top
� and bottom ⊥ are respectively given by the constant functions �(s) := ∞,
⊥(s) := 0, for s ∈ S. Meet and join are the point-wise infimum and point-wise
supremum, respectively. By their definition, it is easy to see that both L and Lσ

are monotone operators.
Since the set of actions Act is finite, for every E we can define a deterministic

strategy d, such that LE = LdE. We can establish an even stronger relation:

Lemma 4. infσ Lσ = L.
As a first main step we can show that the expected cost under the strategy

σ is a fixed point for the operator Lσ:

Proposition 1. For any strategy σ, Eσ(C, ·) = Lσ
Eσ(C, ·).

Approximating Euclidean by Imprecise Markov Decision Processes 281

As a corollary of Lemma 4 and Proposition 1, E(C, ·) is a pre-fixpoint of the
L operator. Moreover, we can show that it is the least pre-fixpoint of L.

Proposition 2. E(C, ·) ≥ LE(C, ·). Moreover, if E ≥ LE, then E ≥ E(C, ·).
By Proposition 2 and Tarski fixed point theorem, E(C, ·) is the least fixed

point of L. The following theorem, provides us with a stronger result. Let L be
the supremum of the point-wise increasing chain ⊥ ≤ L⊥ ≤ L2⊥ ≤ L3⊥ ≤ . . .
The following theorem then states that value iteration converges to E(C, ·).
Theorem 1. E(C, ·) = L.

3 Imprecise MDP

The value iteration of Theorem1 is a mathematical process, not an algorith-
mic one, as it is defined pointwise on the uncountable state space S. Our goal,
therefore, is to approximate the expected cost function E(C, ·) of an EMDP by
expected cost functions on finite state spaces consisting of partitions of S. In
order to retain sufficient information of the original EMDP to be able to derive
provable upper and lower bounds for E(C, ·), we approximate the EMDP by an
Imprecise Markov Decision Processes (IMDPs) [14].

Definition 4 (Imprecise Markov Decision Processes). A finite state,
imprecise Markov decision process (IMDP) is a tuple M = (S,G,Act , T ∗, C∗)
where:

– S is a finite set of states
– G ⊆ S is the set of goal states,
– Act is a finite set of actions,
– T ∗ : S ×Act → 2(S→R≥0) assigns to state-action pairs a closed set of probabil-

ity distributions over S; the set of goal states is absorbing, i.e., for all s ∈ G
and all T (s, a) ∈ T ∗(s, a):

∑
t∈G T (s, a)(t) = 1,

– C∗ : S × Act → 2R≥0 assigns to state-action pairs a closed set of costs, such
that for all s ∈ G, a ∈ Act: C∗(s, a) = {0}.
Memoryless, stationary strategies σ are defined as before. In order to turn

an IMDP into a fully probabilistic model, one also needs to resolve the choice of
a transition probability distribution and cost value.

Definition 5 (Adversary, Lower/Upper expected cost). An adversary α
for an IMDP consists of two functions

αT : (s, a) 	→ αT (s, a) ∈ T ∗(s, a) ((s, a) ∈ S × Act),
αC : (s, a) 	→ αC(s, a) ∈ C∗(s, a) ((s, a) ∈ S × Act).

A strategy σ, an adversary α, and an initial state s together define a proba-
bility distribution Ps,σ,α over runs π with s1 = s, and hence the expected cost
Eσ,α(C∗(π), s). We then define the lower and upper expected cost as

E
min(C∗(π), s) := min

σ
min

α
Eσ,α(C∗(π), s) (2)

E
max(C∗(π), s) := min

σ
max

α
Eσ,α(C∗(π), s) (3)

282 M. Jaeger et al.

Since T ∗(s, a) and C∗(s, a) are required to be closed sets, we can here write
minα and maxα rather than infα, supα. Furthermore, the closure conditions are
needed to justify a restriction to stationary adversaries, as the following example
shows (cf. also Example 7.3.2 in [11]).

Example 2. Let S = {s1, s2, s3}, Act = {a}, We write (p1, p2, p3) for a transition
probability distribution T with T (si) = pi. Then let T ∗(s1, a) = {(p1, p2, p3) :
p1 ∈]0, 1[, p2 = 1−p1}, T ∗(s2, a) = T ∗(s3, a) = {(0, 0, 1)}. C∗(s1, a) = C∗(s3, a) =
{0}, C∗(s2, a) = {1}. Since there is only one action, there is only one strategy
σ. For i ≥ 1 let εi ∈]0, 1[such that

∏∞
i=1 εi = δ > 0. Then, if the adver-

sary at the i’th step selects transition probabilities (εi, 1 − εi, 0) one obtains
E

min(C∗(π), s1) = 1− δ. For every stationary adversary the transition from s1 to
s2 will be taken eventually with probability 1, so that here E

min(C∗(π), s1) = 1.

We note that only in the case of Emax does α act as an “adversary” to the
strategy σ. In the case of E

min, σ and α represent co-operative strategies. In
other definitions of imprecise MDPs only the transition probabilities are set-
valued [14]. Here we also allow an imprecise cost function. Note, however, that
for the definition of Emin(C∗, s) and E

max(C∗, s) the adversary’s strategy αC will
simply be to select the minimal (respectively maximal) possible costs, and that
we can also obtain E

min,Emax as the expected lower/upper costs on IMDPs with
point-valued cost functions

Cmin(s, a) := min C∗(s, a), Cmax(s, a) := max C∗(s, a),

where then the adversary has no choice for the strategy αC .

3.1 Value Iteration for IMDPs

We now characterize E
min,Emax as limits of value iteration, again following the

strategy of the proof of Theorem 7.3.10 of [11]. In this case, the proof has to
be adapted to accommodate the additional optimization of the adversary, and,
as in Subsect. 2.1, to allow for infinite costs. We again start by defining suitable
operators Lmin,Lmax on [0,∞]-valued functions C defined on S:

(LoptC)(s) := min
a∈Act

(
Copt(s, a) + opt

T∈T ∗(s,a)

∑

s′
T (s′)C(s′)

)
, (4)

where opt ∈ {min,max}. The mapping

αopt
T (C) : (s, a) 	→ arg opt

T∈T ∗(s,a)

∑

s′
T (s′)C(s′) (5)

defines the αT of an adversary. Similarly

σopt(C) : s 	→ arg min
a∈Act

(
Copt(s, a) +

∑

s′
αopt

T (C)(s, a)C(s′)

)
(6)

defines a strategy.

Approximating Euclidean by Imprecise Markov Decision Processes 283

Let ⊥ be the function that is constant 0 on S. Denote

Lopt,n := (Lopt)n⊥, and Lopt := sup
n≥0

Lopt,n (7)

We can now state the applicability of value iteration for IMDPs as follows:

Theorem 2. Let opt ∈ {min,max}. Then E
opt(C∗(π), ·) = Lopt

We note that even though Lopt, in contrast to the L operator for EMDPs,
now only needs to be computed over a finite state space, we do not obtain from
Theorem 2 a fully specified algorithmic procedure for the computation of Eopt,
because the optimization over T ∗(s, a) contained in (4) will require customized
solutions that depend on the structure of the T ∗(s, a).

4 Approximation by Partitioning

From now on we only consider EMDPs whose state space S is a compact subset
of R

K . We approximate such a Euclidean MDP by IMDPs constructed from
finite partitions of S. In the following, we denote with A = {ν1, . . . , ν|A|} ⊂ 2S

a finite partition of S. We call an element ν ∈ A a region and shall assume that
each such ν is Borel measurable. For s ∈ S we denote by [s]A the unique region
ν ∈ A such that s ∈ ν. The diameter of a region is δ(ν) := sups,s′∈ν ‖ s − s′ ‖,
and the diameter of a partition A is defined as δ(A) := maxν∈A δ(ν). We say
that a partition B refines a partition A if for any ν ∈ B there exist μ ∈ A with
ν ⊆ μ. We write A � B in this case.

A Euclidean MDP M = (S,G,Act , T, C) and a partition A of S induces an
abstracting IMDP [9,10] according to the following definition.

Definition 6 (Induced IMDP). Let M = (S,Act , sinit, T, C,G) be an MDP,
and let A be a finite partition of S consistent with G in the sense that for any
ν ∈ A either ν ⊆ G or ν ∩ G = ∅. The IMDP defined by M and A then is
MA = (A,GA,Act , T ∗

A, C∗
A), where

– GA = {ν ∈ A|ν ⊆ G}
–

T ∗
A(ν, a) = cl({TA(s, a) | s ∈ ν}),

where TA(s, a) is the marginal of T (s, a, ·) on A, i.e. TA(s, a)(ν′) =∫
ν′ T (s, a, dt), and cl denotes topological closure.

–
C∗

A(ν, a) = cl({C(s, a)|s ∈ ν})

The following theorem states how an induced IMDP approximates the under-
lying Euclidean MDP. In the following, we use sub-scripts on expectation oper-
ators to identify the (I)MDPs that define the expectations.

284 M. Jaeger et al.

Theorem 3. Let M and A as in Definition 6. Then for all s ∈ S:
E

min
MA(C∗

A, [s]A) ≤ EM(C, s) ≤ E
max
MA(C∗

A, [s]A). (8)

If A � B, then B improves the bounds in the sense that

E
min
MA(C∗

A, [s]A) ≤ E
min
MB(C∗

A, [s]B), (9)
E

max
MA(C∗

A, [s]A) ≥ E
max
MB (C∗

B, [s]B). (10)

Our goal now is to establish conditions under which the approximation (8)
becomes arbitrarily tight for partitions of sufficiently low diameter. This will
require certain continuity conditions for M as spelled out in the following defi-
nition. In the following,

dtv(P, P ′) := supS⊆S |P (S) − P ′(S)|
denotes the total variation distance between distributions P, P ′ on a state space
S. We will be using dtv both when S = A is finite, and for continuous spaces S.
In the latter case, the supremum over S ⊆ S is restricted to measurable subsets.

Definition 7 (Continuous Euclidean MDP). A Euclidean MDP M is con-
tinuous if

– For each ε > 0 there exists δ > 0, such that: for all partitions A, if δ(A) ≤ δ,
then for all ν ∈ A, s, s′ ∈ ν, a ∈ Act: dtv(T (s, a), T (s′, a)) ≤ ε.

– C is continuous on S for all a ∈ Act.

We observe that due to the assumed compactness of S, the first condition of
Definition 7 is satisfied if T is defined as a function T (s, a, t) on S ×Act ×S that
for each a as a function of s, t is continuous on S × S, and such that T (s, a, ·) is
for all s, a a density function relative to Lebesgue measure.

We next introduce some notation for N -step expectations and distributions.
In the following, we use τ to denote strategies for induced IMDPs defined on
partitions A, whereas σ is reserved for strategies defined on Euclidean state
spaces S. For a given partition A and strategy τ for MA let α+, α− denote
two strategies for the adversary (to be interpreted as strategies that are close
to achieving supαEτ,α(C∗(π), ·) and infαEτ,α(C∗(π), ·), respectively, even though
we will not explicitly require properties that derive from this interpretation). We
then denote with PN

τ,α+ , PN
τ,α− the distributions defined by τ, α+ and τ, α− on

run prefixes of length N , and with E
N
τ,α+ ,EN

τ,α− the corresponding expectations

for the sum of the first N costs
∑N

i=1 α
+[−]
C (νi, ai). The PN and E

N also depend
on the initial state ν1. To avoid notational clutter, we do not make this explicit
in the notation. We then obtain the following approximation guarantee:

Theorem 4. Let M be a continuous EMDP. For all N , ε > 0 there exists δ > 0,
such that for all partitions A with δ(A) ≤ δ, and all strategies τ defined on A:

|EN
τ,α+ − E

N
τ,α− | ≤ ε (11)

and
dtv(PN

τ,α+ , PN
τ,α−) ≤ ε. (12)

Approximating Euclidean by Imprecise Markov Decision Processes 285

Theorem 4 is a strengthening of Theorem 2 in [8]. The latter applied to pro-
cesses that are guaranteed to terminate within N steps. Our new theorem applies
to the expected cost of the first N steps in a process of unbounded length. When
the process has a bounded time horizon of no more than N steps, and if we let
τ, α+, α− be the strategy and the adversaries that achieve the optima in (2),
respectively (3), then (11) becomes

|Emax
MA − E

min
MA | ≤ ε. (13)

We conjecture that this actually also holds true for arbitrary continuous
EMDPs:

Conjecture 1. Let M be a continuous Euclidean MDP. Let A0 � A1 � · · · �
Ai � · · · be a sequence of partitions consistent with G such that lim

i→∞
δ(Ai) = 0.

Then for all s ∈ S:

lim
i→∞

E
min
MAi

(C∗
Ai

, [s]Ai
) = EM(C, s) = lim

i→∞
E

max
MAi

(C∗
Ai

, [s]Ai
).

5 Examples and Experiments

We now use our semi-random walker example to illustrate the theory presented
in the preceding sections, and to demonstrate its applicability to the validation
of machine learning models.

5.1 IMDP Value Iteration

We first illustrate experimentally the bounds and convergence properties
expressed by Theorems 3 and 4. For this we consider a nested sequence of
partitions of the continuous state space S = [0, xmax] × [0, tmax] consisting
of regular grid partitions A = A(Δ) defined by a width parameter Δ for the
regions. We run value iteration to compute E

min
MA(Δ) and E

max
MA(Δ) for the values

Δ ∈ {0.1, 0.05, 0.025}. For illustration purposes, we plot expected cost functions
along one-dimensional sections S ′

t = [0, xmax]×{t} for the two fixed time points
t = 0 and t = 0.7.

Figure 3 shows the upper and lower expected costs that we obtain from the
induced IMDPs. One can see how the intervals narrow with successive partition
refinements. The bounds on the section S ′

0 are closer and converge more uni-
formly than on S ′

0.7. This shows that in the upper left region of the state space
(x < 0.5, t ≥ 0.7) the adversary has a greater influence on the process than at the
lower part of the state space (x ∼ 0), and the difference between a cooperative
and a non-cooperative adversary is more pronounced.

Ultimately, induced strategies are of greater interest than the concrete cost
functions. Once upper and lower expectations define the same strategy, further
refinement may not be necessary. Figure 4 illustrates for the whole state space S
the strategies σ obtained from the lower (Eq. (2)) and upper (Eq. (3)) approxi-
mations. On regions colored blue and yellow, both strategies agree to take the

286 M. Jaeger et al.

0.2 0.4 0.6 0.8 1.0
X

2

4

6

8

10

12

Exp. Cost

0.2 0.4 0.6 0.8 1.0
X

5

10

15

20

Exp. Cost

Fig. 3. Upper (yellow) and lower (blue) expected cost functions of IMDPs MA(Δ) for
Δ ∈ {0.1, 0.05, 0.025} on S ′

0 (left) and S ′
0.7 (right). (Color figure online)

0.2 0.4 0.6 0.8 1.0
X

0.2

0.4

0.6

0.8

1.0

T

0.2 0.4 0.6 0.8 1.0
X

0.2

0.4

0.6

0.8

1.0

T

0.2 0.4 0.6 0.8 1.0
X

0.2

0.4

0.6

0.8

1.0

T

Fig. 4. Strategies obtained from lower and upper expected cost approximations for
MA(Δ) for Δ = 0.1, 0.05, 0.025 (left to right). (Color figure online)

fast and slow actions, respectively. The regions colored light green are those
where the lower bound strategy chooses the fast action, and the upper bound
strategy the slow action. Conversely for the regions colored light red. One can
observe how the blue and yellow areas increase in size with successive partition
refinements. However, this growth is not entirely monotonic: for example, some
regions in the upper left that for Δ = 0.1 are yellow are sub-divided in succes-
sive refinements Δ = 0.05, 0.025 into regions that are partly yellow, partly light
green.

5.2 Analysis of Learned Strategies

We now turn to partitions computed by the reinforcement learning method devel-
oped in [8], and a comparison of the learned cost functions and strategies with
those obtained from the induced IMDPs. We have implemented the semi-random
walker in UPPAAL STRATEGO and used reinforcement learning to learn parti-
tions, cost functions and strategies. Our learning framework produces a sequence
of refinements, based on sampling 100 additional runs for each refinement. In the
following we consider the models learned after k = 27 and k = 205 refinements.

Approximating Euclidean by Imprecise Markov Decision Processes 287

0.2 0.4 0.6 0.8 1.0
X

2

4

6

8

10

Exp. Cost

0.2 0.4 0.6 0.8 1.0
X

5

10

15

20

Exp. Cost

Fig. 5. Expected cost functions along S′
0 (left) and S′

0.7 (right). Green: learned cost
function; yellow/blue: upper/lower expected cost function obtained from IMDP. (Color
figure online)

0.0 0.2 0.4 0.6 0.8 1.0
X0.0

0.2

0.4

0.6

0.8

1.0

T

0.0 0.2 0.4 0.6 0.8 1.0
X0.0

0.2

0.4

0.6

0.8

1.0

T

Fig. 6. Comparison of the strategies obtained for the IMDP induced by the partition
A(27) (left) and A(205) (right). (Color figure online)

Figure 5 illustrates expected costs functions for the partition learned at k =
205. One can observe a strong correlation between the bounds and the learned
costs. Nevertheless, the learned cost function sometimes lies outside the given
bounds. This is to be expected, since the random sampling process may produce
data that is not sufficiently representative to estimate costs for some regions.

Turning again to the strategies obtained on the whole state space, we first
note that the learned strategy at k = 205, which is shown in Fig. 1 (right) exhibits
an overall similarity with the strategies illustrated in Fig. 4, with the fast action
preferred along a diagonal region in the middle of the state space. To understand
the differences between the learning and IMDP results, it is important to note
that in the learning setting s0 = (0, 0) is taken to be the initial state of interest,
and all sampling starts there. As a result, regions that are unlikely to be reached
(under any choice of actions) from this initial state will obtain very little relevant

288 M. Jaeger et al.

data, and therefore unreliable cost estimates. This is not necessarily a disadvan-
tage, if we want to learn an optimal control strategy for processes starting at s0.
The value iteration process does not take into account the distinguished nature
of s0.

Figure 6 provides a detailed picture of the consistency of the strategies learned
at k = 27 and k = 205 with the lower and upper bound strategies obtained from
value iteration over the same partitions. Drawn in green are those regions where
all three strategies pick the same action. Yellow and red are those regions, where
the learned strategy agrees with one, respectively none, of the upper/lower bound
strategies. As Fig. 6 shows, the areas of greatest discrepancies (red) are those in
the top left and bottom right, which are unlikely to be reached from initial
state (0, 0), and therefore have little data support in learning. The figure also
indicates that unlike for the rightmost partition in Fig. 4, the upper and lower
bound strategies here do not yet reach agreement on taking the fast action along
the middle diagonal.

6 Conclusion

In this paper we have developed theoretical foundations for the approximation
of Euclidean MDPs by finite state space imprecise MDPs. We have shown that
bounds on the cost function computed on the basis of the IMDP abstractions
are correct, and that for bounded time horizons they converge to the exact costs
when the IMDP abstractions are refined. We conjecture that this convergence
also holds for the total cost of (potentially) infinite runs.

The results we here obtained provide theoretical underpinnings for the learn-
ing approach developed in [8]. At the very fundamental level, Theorems 3 and 4
show that the hypothesis space of strategies defined over finite partitions that
underlies our reinforcement learning approach is adequate in the sense that it
contains strategy representations that approximate the optimal strategy for the
underlying continuous domain arbitrarily well. To go from here to a proof of
asymptotic optimality of learned strategies, one still needs to analyze the inter-
play of convergence of Q-learning on finite state spaces with the iterative refine-
ment steps of our learning approach.

Upper and lower bounds computed from induced IMDPs can be used to
check the accuracy of learned value functions. As we have seen, data sparsity
and sampling variance can make the learned cost functions fall outside computed
bounds. One can also use value iteration on IMDP approximations directly as a
tool for computing cost functions and strategies, which then would come with
stronger guarantees than what we obtain through learning. However, compared
to the learning approach, this has important limitations: first, we will usually
only obtain a partial strategy that is uniquely defined only where upper and
lower bounds lead to the same actions. Second, we will require a full model of
the underlying EMDP, from which IMDP abstractions then can be derived, and
the optimization problem over adversaries that is part of the value iteration
process must be tractable. Reinforcement learning, on the other hand, can also

Approximating Euclidean by Imprecise Markov Decision Processes 289

be applied to black box systems, and its computational complexity is essentially
independent of the complexities of the underlying dynamic system.

References

1. Billingsley, P.: Probability and Measure, 2nd edn. Wiley, Hoboken (1986)
2. Chen, T., Han, T., Kwiatkowska, M.: On the complexity of model checking interval-

valued discrete time Markov chains. Inf. Process. Lett. 113(7), 210–216 (2013)
3. Crossman, R., Coolen-Schrijner, P., Škulj, D., Coolen, F.: Imprecise Markov chains

with an absorbing state. In: Proceedings of the 6th International Symposium on
Imprecise Probability: Theories and Applications (ISIPTA), pp. 119–128. Citeseer
(2009)

4. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 206–
211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 16

5. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov
chains. Inf. Process. Lett. 87(6), 309–315 (2003)

6. Erreygers, A., De Bock, J.: Computing inferences for large-scale continuous-time
markov chains by combining lumping with imprecision. In: Destercke, S., Denoeux,
T., Gil, M.Á., Grzegorzewski, P., Hryniewicz, O. (eds.) SMPS 2018. AISC, vol. 832,
pp. 78–86. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-97547-4 11

7. Itoh, H., Nakamura, K.: Partially observable Markov decision processes with impre-
cise parameters. Artif. Intell. 171(8–9), 453–490 (2007)

8. Jaeger, M., Jensen, P.G., Guldstrand Larsen, K., Legay, A., Sedwards, S.,
Taankvist, J.H.: Teaching Stratego to play ball: optimal synthesis for continuous
space MDPs. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS,
vol. 11781, pp. 81–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31784-3 5

9. Kwiatkowska, M.Z., Norman, G., Parker, D.: Game-based abstraction for Markov
decision processes. In: QEST 2006, pp. 157–166. IEEE Computer Society (2006).
ISBN 0-7695-2665-9. https://doi.org/10.1109/QEST.2006.19

10. Lun, Y.Z., Wheatley, J., D’Innocenzo, A., Abate, A.: Approximate abstractions of
Markov chains with interval decision processes. In: Abate, A., Girard, A., Heemels,
M. (eds.) ADHS 2018. IFAC-PapersOnLine, vol. 51, pp. 91–96. Elsevier (2018).
https://doi.org/10.1016/j.ifacol.2018.08.016

11. Puterman, M.L.: Markov Decision Processes. Wiley, Hoboken (2005)
12. Rubino, G., Sericola, B.: A finite characterization of weak lumpable Markov pro-

cesses. Part i: the discrete time case. Stoch. Process. Appl. 38(2), 195–204 (1991)
13. Troffaes, M., Gledhill, J., Škulj, D., Blake, S.: Using imprecise continuous time

Markov chains for assessing the reliability of power networks with common cause
failure and non-immediate repair. In: SIPTA 2015 (2015)

14. White III, C.C., Eldeib, H.K.: Markov decision processes with imprecise transition
probabilities. Oper. Res. 42(4), 739–749 (1994)

https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-319-97547-4_11
https://doi.org/10.1007/978-3-030-31784-3_5
https://doi.org/10.1007/978-3-030-31784-3_5
https://doi.org/10.1109/QEST.2006.19
https://doi.org/10.1016/j.ifacol.2018.08.016

Shield Synthesis for Reinforcement
Learning

Bettina Könighofer1,2(B), Florian Lorber3, Nils Jansen4, and Roderick Bloem1

1 Institute IAIK, Graz University of Technology, Graz, Austria
bettina.koenighofer@iaik.tugraz.at

2 Silicon Austria Labs, TU-Graz SAL DES Lab, Graz, Austria
3 Department of Computer Science, Aalborg University, Aalborg, Denmark

4 Radboud University Nijmegen, Nijmegen, The Netherlands

Abstract. Reinforcement learning algorithms discover policies that
maximize reward. However, these policies generally do not adhere to
safety, leaving safety in reinforcement learning (and in artificial intelli-
gence in general) an open research problem. Shield synthesis is a formal
approach to synthesize a correct-by-construction reactive system called a
shield that enforces safety properties of a running system while interfer-
ing with its operation as little as possible. A shield attached to a learning
agent guarantees safety during learning and execution phases. In this
paper we summarize three types of shields that are synthesized from
different specification languages, and discuss their applicability to rein-
forcement learning. First, we discuss deterministic shields that enforce
specifications expressed as linear temporal logic specifications. Second,
we discuss the synthesis of probabilistic shields from specifications in
probabilistic temporal logic. Third, we discuss how to synthesize timed
shields from timed automata specifications. This paper summarizes the
application areas, advantages, disadvantages and synthesis approaches
for the three types of shields and gives an overview of experimental
results.

1 Introduction

Advances in machine learning enabled a new paradigm for developing controllers
for autonomous systems that accomplish complicated tasks in uncertain and
dynamic environments. The increasing use of learning-based controllers in phys-
ical systems in the proximity of humans strengthens the concern of whether these
systems will operate safely. While convergence, optimality and data-efficiency of
learning algorithms are well understood, ensuring the safety of decision-making
for systems employing AI is still a major challenge [10].

Reinforcement learning (RL) [20] lets an agent explore its environment by
sequential decision-making. During the exploration of the underlying Markov
decision process (MDPs) [18] of the environment, the current policy may be
unsafe in the sense that it harms the agent or the environment. This shortcoming

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 290–306, 2020.
https://doi.org/10.1007/978-3-030-61362-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_16

Shield Synthesis for Reinforcement Learning 291

Fig. 1. Pre-shielding. Fig. 2. Post-shielding.

restricts the application of RL mainly to application areas where safety is not a
concern and has triggered the direction of safe RL [10].

In this paper, we approach the problem of ensuring safety in RL from a formal
methods perspective. We discuss shielded learning, a framework that allows to
apply RL while enforcing correctness w.r.t. a given safety specification. In the
traditional RL setting, the learning agent chooses an action in every time step
and sends it to the environment. The environment evolves accordingly and sends
the agent an observation of its state and a reward for the underlying transition.
The objective of the agent is optimizing the accumulated reward.

Our approach introduces a shield [1] into the traditional RL setting. The
shield is computed upfront from the safety part of the given system specification
and an abstraction of the agent’s environment dynamics. We say that an action
is wrong, if it may cause the violation of the safety specification; and correct
otherwise. A shield prevents any wrong decisions from the agent. Shields fulfill
the following requirements:

1. Guaranteed correctness: If the sequential decision-making of the learning
agent is shielded, the safety specification is satisfied during the learning and
execution phase (as long as the shield is used).

2. Minimal interference: The shield restricts potential decisions as little as
possible.

We discuss two types of shields. In pre-shielding, see Fig. 1, the shield is
implemented before the learning agent and each time the learning agent is to
make a decision, it restricts the choices for the learner to a list of correct actions.
In post-shielding, see Fig. 2, the shield monitors the actions selected by the agent
and corrects them if and only if the chosen action is wrong.

Advantages. Shielded learning provides the following key advantages:

Separation of concerns. The synthesis algorithms for the computation of
shields make relatively mild assumptions on the input/output structure of
the learning algorithm (rather than its inner working). Thus, the correctness
guarantees are agnostic to the learning algorithm of choice. The shielding
setup introduces a clear boundary between the learning agent and the shield,
helping to separate the concerns, e.g., correctness on one side and convergence
and optimality on the other.

292 B. Könighofer et al.

Scalability. A key advantage of using a separate safety objective is that we may
analyze safety on just a fraction of the system. In our experiments, these MDP
fragments are at least ten orders of magnitude smaller than a full model of the
system, rendering model-based verification techniques applicable to realistic
scenarios and enabling their usage to compute a shield. The learner itself
has to consider the full model to increase performance, but may do so using
either model-based or model-free approaches.

This paper summarizes the three papers on shielded RL [1,5,11] using the
safety fragments of LTL [17], PLTL [4], and timed automata [2] as specification
language, and gives a survey on how shields have been used in RL so far. Using
a shield synthesized from an LTL specification, or a timed automata specifica-
tion, a learning agent avoids safety violations altogether. Therefore, such shields
guaranty correctness during the learning and execution phase and thereby justi-
fying the deployment of learned controllers in safety critical applications. While
both types of shields guarantee correctness, LTL is not expressible enough to
capture real time behavior and thus the corresponding shields cannot protect
against timing related faults. Therefore, if the learning agent has to learn com-
plex timing behavior, timed shields are preferable. While guaranteed safety is
necessary for some applications, in other cases this tight restriction limits the
agent’s exploration and understanding of the environment, and policies satis-
fying the restrictions may not even exist. Without randomness, all states are
either absolutely safe or unsafe. However, in the presence of randomness, safety
may be seen as a quantitative measure: in some states, all actions may induce a
considerable risk, while in other states, one action may be considered relatively
safe. Probabilistic shields from safety specifications given in PLTL incorporate
more liberal constraints that enforce safety violations to occur only with small
probability.

Related Work. Most approaches to safe RL [10] rely on reward engineering
and changing the learning objective. As rewards are specialized for particu-
lar environments, reward engineering runs the risk of triggering negative side
effects or hiding potential bugs. The area of safe exploration aims at restricting
decision-making to adhere to safety requirements during the exploration of an
environment [3]. Such restrictions may cause insufficient progress in following
the original objective of the decision-maker or even deadlocks.

First approaches to safe RL that incorporate formal methods tackle this
problem with pre-computations. First, a safe, permissive strategy is computed.
Then, exploration is constrained to this strategy and thereby meets the imposed
safety requirements. This requires strong assumptions on the available informa-
tion about the environment [6,9,15].

An alternative to ensure safety is runtime enforcement (RE) [8,19] which
enforces the expected behavior at runtime. Shields are correct-by-construction
runtime enforcers, with the additional goal of interfering with the RL agent’s
choices as little as possible. The concept of a shield to ensure the correctness of
reactive systems was proposed in [12].

Shield Synthesis for Reinforcement Learning 293

Outline. In this work we summarize how to construct shields from different
specification languages. We start with the shield synthesis from safety specifica-
tions in LTL in Sect. 2. Next, probabilistic shields are summarized in Sect. 3.
Finally, we give an overview on timed shields in Sect. 4. We conclude in Sect. 5.

2 Safe RL via Shielding

In this section, we first discuss how we introduce a shield into the traditional
RL setting, and discuss post- and pre-shielding. Next, we discuss the synthesis
procedure to compute shields from safety specifications expressed in LTL, as
proposed in [1], and conclude the section with the results of their case study.

2.1 Setting for Shielded RL

The loop between the learning agent and its environment can be modified in
two alternative ways. Based on the location at which the shield is applied, the
shielding setting is called pre-shielding and post-shielding, respectively.

Pre-shielding. The interaction between the agent, the environment and the
shield is as follows: at every time step t, the shield computes a set of all correct
actions {a1

t , . . . , a
k
t }. i.e., it takes the set of all actions available, and removes

all wrong actions that would violate the safety specification. The agent receives
the list and picks a correct action at ∈ {a1

t , . . . , a
k
t }. The environment executes

action at, moves to a next state st+1, and computes the reward rt+1. The task
of the shield is basically to modify the set of available actions of the agent in
every time step, such that only correct actions remain.

Post-shielding. The shield monitors the actions of the agent, and substitutes
the selected actions by correct actions whenever this is necessary to prevent
the violation of the specification. In each step t, the agent selects an action a1

t .
The shield forwards a1

t to the environment; i.e., at = a1
t . Only if a1

t is wrong
w.r.t. the specification, the shield selects a different correct action at �= a1

t .
The environment executes at, moves to st+1 and computes rt+1. The agent
receives at and rt+1, and performs policy updates based on that information.
For the executed action at, the agent updates its policy using rt+1. This raises
the question what the reward for a1

t should be, in case that at �= a1
t . Two different

approaches are the following:

1. Assign a punishment r′
t+1 to a1

t . The agent assigns a punishment r′
t+1 < 0

to the wrong action a1
t and learns that selecting a1

t at state st is wrong,
without ever violating the specification. However, there is no guarantee that
wrong actions are not part of the final policy. Therefore, the shield has to
remain active even after the learning phase.

2. Assign the reward rt+1 to a1
t . The agent updates the wrong action a1

t with
the reward rt+1. Therefore, picking wrong actions could be part of an optimal
policy by the agent. Since at is always correct as it was selected by the shield,

294 B. Könighofer et al.

this does not pose a problem and the agent never has to learn to avoid wrong
actions. Consequently, the shield is needed during the learning and execution
phase.

Properties of Pre-shielding and Post-shielding:

– Post-shielding has the advantage, that the learning algorithm is treated as a
total back box. In order for pre-shielding to work, an agent needs to choose
the actions w.r.t. the suggestions of the shield, in other words, the shield
needs to be able to influence the set of actions per state from the agent.

– Another big advantage of post-shielding is that it works even if the learning
algorithm is already in the execution phase and therefore follows a fixed policy.
In every step, the shield just takes the provided action from the agent and
corrects it if necessary to ensure safe operation of the system. The learning
agent does not even need to know that it is shielded.

– In general, post-shielding is more restrictive than pre-shielding. Instead of
overruling the agent, a pre-shield leaves the choice of all safe actions to the
agent. Thus, pre-shielding in general has more potential to speed up the
learning performance than post-shielding.

– In order to be less restrictive to the agent in the post-shielding setting, in
every time step, the agent can provide a ranking rankt = {a1

t , . . . , a
k
t } on the

actions to the shield, i.e., the agent wants a1
t to be executed the most, a2

t the
second most, etc. The shield selects the first action at ∈ rankt that is correct.
Only if all actions in rankt are wrong, the shield selects a correct action
at /∈ rankt. Both approaches for updating the policy discussed before can
naturally be extended for a ranking of several actions. A second advantage
of having a ranking on actions is that the learning agent can perform several
policy updates at once; e.g. if all actions in rankt are wrong, the agent can
perform |rankt| + 1 policy updates in one step.

2.2 Construction of Shields

Given is an RL problem in which an agent has to learn an optimal policy for
an unknown environment that can be modelled by an MDP while satisfying a
safety specification given in the safety fragment of LTL. The reactive synthesis
algorithm to create a shield works as follows:

Step 1. Construct an abstraction of the environment dynamics. Reac-
tive synthesis does not require the environment dynamics to be completely known
in advance. However, to reason about when exactly a specification violation can-
not be avoided, we have to give a (coarse finite-state) abstraction of them. Such
an abstraction has to be conservative w.r.t. the behavior of the real MDP. This
approximation may have finitely many states, even if the MDP has infinitely
many states or is only approximately known. An abstraction of an MDP describes
how its executions can possibly evolve, and provides the needed information
about the environment to allow planning ahead w.r.t. the safety properties.

Shield Synthesis for Reinforcement Learning 295

Step 2. Construct a safety automaton. Translate the given safety specifi-
cations in LTL to a deterministic safety word automaton [12] with a set of safe
states F , i.e., an automaton in which only safe states in F may be visited.

Step 3. Construct and solve the safety game. The MDP abstraction that
represents the environment and the safety automaton are transformed into a
safety game. In the construction, the state space of the game is the product
between the specification automaton state set and the abstraction state set. The
game is played between two players. In the game, player 0 chooses the next
observations from the MDP state, and player 1 chooses the next action. The
safe states in the game are the ones at which the specification automaton is in
a safe state and that are reachable within the abstraction. The play is won by
player 1, if only safe states are visited during the play. In order to win, player 1
has to plan ahead: it can never allow the play to visit a state, from which the
player 0 can force the play to visit an unsafe state in the future.

This planning ahead is the true power of synthesis. Think about an
autonomous car that is heading towards a cliff. It is to late, if the shield notices
that something bad is happening, if the car is already falling down. The shield
has to avoid all states from which avoiding the cliff is no longer possible.

In the next step, the set W of winning states for player 1 is computed by
standard safety game solving [12].

Step 4. Construct a shield. The safety game and its winning region W are
translated into a reactive system that constitutes the shield in the following
way: the shield allows all actions that are guaranteed to lead to a state in W ,
no matter what the next observation is. Since these winning states are exactly
the ones from which player 1 can enforce not to ever visit a state not in F , the
shield is minimally interfering. The shield disables all actions that may lead to
an error state (according to the abstraction).

Step 5a. Pre-shielding. The shield is attached before the agent and at runtime
applied in the following way: at every time step, the shield sends the set of correct
actions to the agent. The agent picks one and sends it to the environment.

Step 5b. Post-shielding. The shield is attached after the agent and applied
in the following way: at every time step it takes an action from the agent. If the
action is correct it forwards it to the environment, else it picks a correct one.

2.3 Implementation and Experiments

We give one of the case studies of [1]. This example considers an agent that learns
to drive around a block in a clockwise direction in an environment with the size
of 480×480 pixels. The car has 8 sensors, distributed evenly around the car, that
trigger whenever the agent is less than 60 pixels away from a wall. In each step,
the car moves 3 pixels in the direction of its heading and can make a maximum
turn of 7.5◦ in either direction. The safety specification in this example is to
avoid crashing into a wall. A corresponding post-shield was synthesized in 2 s.
In each step, a positive reward is given if the car moves a step in a clockwise
direction along its track and a penalty is given if it moves in a counter-clockwise

296 B. Könighofer et al.

Fig. 3. Still image from the environment (left) and the accumulated reward per episode
(right) for the self driving car example. (Color figure online)

direction. A crash into the wall results in a penalty and a restart. The agent uses
a Deep Q-Network with a Boltzmann exploration policy. This network consists
of 4 input nodes, 8 outputs nodes and 3 hidden layers. Figure 3(left) shows a
snapshot of the environment, where the car is moving anti-clockwise. The plot
in Fig. 3(right) shows that the accumulated rewards for unshielded RL (red,
dashed) increase over time, but the car still crashes at the end of the simulation.
The post-shielded version without punishment (blue, solid) learns more rapidly
than the unshielded learner and never crashes.

3 Safe RL via Probabilistic Shields

We discussed deterministic shields as a suitable technique to guarantee correct-
ness with certainty in RL in Sect. 2. Deterministic shields prevent an agent from
taking any unsafe actions at runtime. To this end, the performance objective of
the learning agent is extended with a constraint, the safety objective, specifying
that unsafe states are never visited, i.e., there are no safety violations. How-
ever, in many cases, this tight restriction on the decision-making of the agent to
adhere to the safety requirements limits the agent’s exploration and understand-
ing of the environment [3,16]. Such restrictions may cause insufficient progress
in following the original objective of the decision-maker, or policies satisfying the
restrictions may not exist. Thus, there is a trade-off between safety and progress.
In this section, we discuss probabilistic shields [11] that incorporate more liberal
constraints enforcing that safety violations occur only with a small probability.
If an action increases the probability of a safety violation by more than a factor
δ w.r.t. the optimal safety probability, a probabilistic shield considers this action
to be wrong.

Advantages. Probabilistic shielding has the following key benefits:

Adaptivity. The shield is adaptive w.r.t. δ, as a high value for δ yields a stricter
and a smaller value a more permissive shield. The value for δ can be changed
on-the-fly and may depend on the individual minimal safety probabilities
at each state. Without randomness, all states are either absolutely safe or

Shield Synthesis for Reinforcement Learning 297

unsafe. However, in the presence of randomness, safety may be seen as a
quantitative measure: in some states, all actions may induce a large risk,
while one action may be considered relatively safe. Therefore, it is essential
to have an adaptive notion of shielding, in which the pre-selection of actions
is not based on absolute thresholds, i.e., if necessary, the shield needs to
dynamically adapt to allow more, potentially less safe, decisions.

Trade-off between safety and progress. Shielding may restrict exploration
and lead to suboptimal policies. Therefore, it should not be considered in
isolation. The trade-off between optimizing the performance objective and
the achieved safety is intricate. Intuitively, taking a bit of additional risk
short-term may allow for efficient exploration and limit the risk long-term.
To this end, the value for δ can be adjusted based on such observations.

The formal notion of a probabilistic shield is based on MDPs. Safety is
assessed using probabilistic temporal logic constraints [4] that limit, for example,
the probability for reaching a set of critical states in the MDP.

In the remainder of this section, we describe the setting, outline the con-
struction of probabilistic shields, state optimizations towards a computationally
tractable implementation, and conclude with the results of a case study.

3.1 Probabilistic Shielding Setting

We first define the setting in which apply the probabilistic shield and discuss
several potential applications. Next, we give a problem statement about what
we would like to achieve by applying a shield in the discussed setting.

Setting. The setting is a partially-controlled multi-agent system, where one
controllable agent (the avatar) and several uncontrollable agents (the adver-
saries) operate within a finite graph representation of an arena. The arena is a
compact, high-level description of the underlying model. From this arena, the
potential states and actions of all agents may be inferred. For safety considera-
tions, the reward structure can be neglected, effectively reducing the state space
for our model-based safety computations. Some combinations of agent positions
are safety-critical (e.g., they may correspond to collisions). A safety property
may describe reaching such positions, or any other property expressible in the
safety fragment of temporal logic. To encode a performance criterion, edges of
the arena are associated with a (partial) token function, indicating the status of
some edge. Tokens have an associated reward that is, e.g., either earned as long
as the token is present, or upon visiting an edge. In fact, tokens build a sim-
ple representation of a state-space extension which is not relevant for the safety
specification. The performance objective is the maximization of the expected
reward.

Problem Statement. Let us consider an environment described by an arena
as above and a safety specification, and let us assume stochastic behaviors for
the adversaries, e.g., obtained using RL in a training environment. In fact, this
stochastic behavior determines all actions of the adversaries via probabilities.

298 B. Könighofer et al.

Fig. 4. Workflow of the Shield Construction

The underlying model is then an MDP: the avatar executes an action, and upon
this execution, the next exact positions (the state of the system) are determined
stochastically. A probabilistic shield prevents avatar decisions that violate this
specification by more than a threshold δ w.r.t. the optimal safety probability.

Application. The formal setting is defined to be applicable to a series of scenar-
ios. As an example, take a factory floor plan with several corridors. The nodes
of the arena describe crossings, and the edges the corridors with machines. The
adversaries are (possibly autonomous) transporters moving parts within the fac-
tory. The avatar models a service unit moving around and inspecting machines
where an issue has been raised (as indicated by a token), while accounting for the
behavior of the adversaries. Corridors might be too narrow for multiple robots,
which poses a safety critical situation. Several notions of cost can be induced
by the tokens, indicating the costs of a broken machine or for inspecting the
machine.

3.2 Construction of Probabilistic Shields

Figure 4 outlines the synthesis procedure for probabilistic shields, which consists
of the following steps (see [11] for more details):

Step 1. Construct behavior models for adversaries. An adversary model
is learned by observing behavior in a set of similar (small) arenas, until sufficient
confidence is gained that more training data would not change the behavior sig-
nificantly. An upper bound on the necessary data may be obtained using Hoeffd-
ing’s inequality [22]. Data augmentation techniques using domain knowledge of
the arenas [21] can be used to reduce training set size.

Step 2. Compute the safety-relevant quotient MDP. Combining the mod-
els for the adversaries with a concrete arena yields an MDP. At this point, the
token function is ignored, so the MDP may be seen as a quotient of the full
MDP that models the real system within which only safe behavior is assessed.

Shield Synthesis for Reinforcement Learning 299

Therefore, the MDP is called the safety-relevant quotient. The real scenario incor-
porates the token function. Rewards may be known or only be observed during
learning. The underlying full MDP including tokens constitutes an exponential
blowup of the safety-relevant quotient, rendering probabilistic model checking or
planning practically infeasible, and is never needed to construct the shield.

Step 3. Construct the probabilistic shield. Using probabilistic model check-
ing, the shield is computed from the safety-relevant MDP and the safety specifi-
cation. For any state and any possible decision, the synthesis procedure computes
precise probabilities for violating the safety specification. Based on these values
and δ, the shield considers all actions inducing a too large risk to be wrong.

Step 4a. Pre-shielding: Attach the shield before the agent. The prob-
abilistic shield then readily augments either model-free or model-based RL. In
pre-shielding, the shield is placed before the learning agent. At each time step,
the shield provides a list of correct actions, i.e., the actions that are too risky
are deactivated. RL now aims to maximize the reward according to the original
scenario, while wrong actions are blocked by the shield.

Step 4b. Post-shielding: Attach the shield after the agent. In post-
shielding, the probabilistic shield is implemented after the agent and overwrites
wrong actions with correct ones.

Faster construction of shields. Even with the restriction to the safety-
relevant MDP, automatic analysis is challenging for realistic applications. There-
fore the following optimizations can be applied:

– Finite Horizon. A policy for the avatar in the shielded MDP is then only
guaranteed to be safe for the next n steps.

– Piece-wise Construction. The shield is computed for each state indepen-
dently, enabling multi-threaded computations.

– Independent Agents. It may be possible to make the assumptions that the
agents operate independently from each other. In such situations, the compu-
tations can be performed for each adversary separately and then composed
to obtain the final shield.

– Abstractions. Several abstractions can be exploited, e.g., adversaries that
are far away are not considered for the computation of the shield.

3.3 Implementation and Experiments

We summarize the results on probabilistic shielding of an agent for the arcade
game Pac-Man. The task is to eat food in a maze and not get eaten by ghosts.
Pac-Man achieves a high score if it eats all the food as quickly as possible while
minimizing the number of times it gets eaten by the ghosts.

Each instance of the game is modeled as an arena, where Pac-Man is the
avatar and the ghosts are adversaries. The safety specification is that the avatar

300 B. Könighofer et al.

Fig. 5. Still image from video (left) and training scores (right) on Pac-Man.

does not get eaten with a high probability. Tokens represent the food at each
position in the maze, such that food is either present or already eaten. Food
earns reward (+10), while each step causes a small penalty (−1). A large reward
(+500) is granted, if Pac-Man eats all the food in the maze. If Pac-Man gets
eaten, a large penalty (−500) is imposed and the game is restarted.

The ghost behavior is learned from the original Pac-Man game for each ghost.
Transferring the resulting stochastic behavior to any arena (without tokens)
yields the safety-relevant MDP. For that MDP, a shield is computed via the
model checker STORM [7] for a horizon of 10 steps.

The implementation uses an approximate Q-learning agent (using α = 0.2,
γ = 0.8 and ε = 0.05) with the following feature vector: (1) how far away the
next food is, (2) whether a ghost collision is imminent, and (3) whether a ghost
is one step away. Figure 5(left) show a screenshot of a series of videos1. Each
video compares how RL performs either shielded or unshielded on a Pac-Man
instance. In the shielded version, the risk of potential decisions is indicated by
the colors green (low), orange (medium), and red (high). Figure 5 (right) depicts
the scores obtained during RL, composed by rewards and penalties mentioned
above. Table 1 shows the results. The table lists the number of model checking
calls, the time to construct the shield, the scores with and without shield, and
the winning rate. For all instances, we see a large difference in scores due to the
fact that Pac-Man is often saved by the shield. For the two largest instances with
3 and 4 ghosts, a shield that plans 10 steps ahead is not enough to always avoid
Pac-Man from being encircled by the ghosts. Nevertheless, the shield still saves
Pac-Man in many situations, leading to superior scores. Moreover, the shield
helps to learn an optimal policy much faster because viewer restarts are needed.

4 Safe RL via Timed Shields

In this section, we focus on the enforcement of regular timed properties and
automatically synthesize timed shields from timed automata specifications.

An especially challenging task for RL is to learn complex timing behav-
ior. Shielding against timing properties is especially important for learned con-
trollers, where a deadline violation comes with serious consequences. Since LTL

1 https://seafile.iaik.tugraz.at/f/58f6043bad/.

https://seafile.iaik.tugraz.at/f/58f6043bad/

Shield Synthesis for Reinforcement Learning 301

Table 1. Average scores and win rates for Pac-Man.

Size, num Ghosts Num MC Time (s) Score Win rate

No shield Shield No shield Shield

9× 7,1 5912 584 −359,6 535,3 0,04 0,84

17× 6,2 5841 1072 −195,6 253,9 0,04 0,4

17× 10,3 51732 3681 −220,79 −40,52 0,01 0,07

27× 25,4 269426 19941 −129,25 339,89 0,00 0,00

is not expressible enough to capture real time behavior, the corresponding shields
cannot prevent timing related faults. Therefore, we summarize the synthesis pro-
cedure presented in [5] which computes timed shields from timed safety proper-
ties given as timed automata.

The timed pre-shield and timed post-shield settings are mostly similar as in
the untimed case. A timed pre-shield provides a set of correct actions for the
agent to choose from. If this set contains a delay action, the agent is permitted
to wait without performing any discrete action. Otherwise, the agent has to
produce an action immediately. A timed post-shield simply forwards any correct
actions from the learning agent to the environment without altering them. If an
action is wrong, or once an invariant is reached and any delay would violate the
specification, the shield is allowed pick an action.

This section summarizes the construction of timed shields and concludes with
a case study.

4.1 Construction of Timed Shields

In this section, we outline the construction of timed shields (for more details see
[5]). The synthesis procedure consists of the following steps:

Step 1. Construct and solve a timed safety game. The safety specification
is given in form of a network of timed input/output automata [2]. In the first
step of the synthesis procedure, these automata are transformed into timed game
automata [14] with a safety objective, i.e., the control objective is that bad states
should never be visited. Solving the safety game leads to a winning strategy.

Step 2. Construct a timed shield. A timed shield is constructed by com-
posing the timed game automata with the derived winning strategy; meaning
that in the timed automaton that depicts the shield, all unsafe transitions are
removed. The timed shield may still permit multiple correct actions in a given
state.

Step 3. Construct the set of correct actions via zones. For a given state
of the timed shield, the set of correct actions is computed via zones. From any
given state, its zones can be calculated straightforwardly, see [2].

302 B. Könighofer et al.

Fig. 6. The zones reachable by delay from a state s in a timed automaton with two
clocks, x and y. The squares represent constraints for the actions a and b.

Example. The concept of zones is illustrated in Fig. 6, where the X and Y
axis depict different clocks, and the squares represent the constraints in which
different actions a and b are correct. We have for a : {1 < x < 5, 2 < y < 5}
and for b : {4 < x < 8, 3 < y < 6}.

Step 4a. Pre-shielding. The set of correct actions is kept up to date by mon-
itoring the current state of the timed shield. Whenever a new input is received,
the state is updated. From the new state, all zones that can be reached via delay
are calculated and the correct actions in each zone determined.

Example. In Fig. 6, the correct actions per zone are z1 = {}, z2 = {a}, z3 =
{a,b}, z4 = {b}, z5 = {}. Thus, in the state S which is in z1, the set of correct
actions is empty, after one time unit the set contains a, and so on.

The set of correct actions for the current zone is sent to the agent. In case the
end of the zone is not met yet, this includes a delay action. If enough time passes
so that the end of the current zone is met, the shield needs to check whether
future zones permit actions. If so, the set of actions of the next zone is passed to
the agent. Otherwise, the current set of actions is transmitted again, this time
without a delay action.

Step 4b. Post-shielding. The set of actions is kept up-to-date and is used to
determine, whether the actions from the agent are correct, i.e., included in the
current set. If this is the case, the action is forwarded to the environment. If not,
the action is overwritten by an action that is contained in the current set.

4.2 Implementation and Experiments

We summarize the case-study of [5] in which an RL agent controls n follower
vehicles in the platoon following an (environment controlled) leader vehicle2.
All vehicles can drive a maximum of 20 m/s and have three different possible
accelerations modes: −2 m/s2, 0 m/s2 and 2 m/s2 which can be changed at every
time unit. The goal of the RL agent is to control the followers in the platoon

2 The source code, including some demonstrative videos and the running example used
in the paper, is available at https://doi.org/10.5281/zenodo.3903227.

https://doi.org/10.5281/zenodo.3903227

Shield Synthesis for Reinforcement Learning 303

Fig. 7. Results training phase.

such that the total distance between all vehicles is minimized. Furthermore, the
RL agent receives a negative reward if the distance between two cars is outside
a safe region (≤5 m) or is too large (above 200 m).

The hyper-parameters for the DQN were chosen in the following way. The
input features consist of the distances between the cars and the velocities of
the cars. There are DNNs for actor and critic, containing 3 hidden layers with
rectified linear units and a linear layer for the output. Networks are optimized
with an Adamax optimizer. The hidden layers consist of 16 units. The learning
rate is α = 0.002, and the exponential decay rates are β1 = 0.9 and β2 = 0.9999.
The reward function is designed such that the total spacing between the vehicle
is minimized. If the distance between any two cars is either ≤5 m or ≥200 m,
then the reward is set to −1. In all other cases, the distances between the cars
are used within a logarithmic scale to determine the reward 0 ≤ r ≤ 1 per step.
The models from [13] were used to synthesize timed post-shields with the tool
Uppaal Tiga. The behaviour of RL agents was studied in the context of 1. no
shielding, 2. post-shielding during execution, and 3. post-shielding during both
training and execution. The learning curves during the training phase and the
performances in the execution phase for {2, 4, 6, 8, 10} cars are reported.

Training. Each training episode starts with random but safe initial distances
and velocities of all cars. During the simulation, the environment picks the accel-
erations of the leading car via a uniform distribution. A training episode lasts
for 2000 time units, or until the distance between two cars gets smaller than 5 m
or larger than 200 m. Note, that with a shield, a training episode always lasts
2000 time units, since safety is always guaranteed.

Figure 7 compares the learning curves as a mean of 20 training phases, for the
unshielded case (left) and the shielded case (right). The reward in the unshielded
case is considerably higher than in the shielded setting. We observe that the agent
exploits the relatively low risk of a crash and makes potentially unsafe choices.
Since the accelerations of the leading car are picked via an uniform distribution,
it is unlikely that e.g., the leading car accelerates to the maximum speed and
then immediately hits the brake until it reaches zero. Such risk tolerance is not
allowed when deploying the shield as even a potential but unlikely future crash
should be shielded against.

304 B. Könighofer et al.

Table 2. Results of the exploitation phase using 10000 simulations. Number of crashes
is given in absolute values over all simulations, reward and time measures as averages.
Time and crash values are omitted when shielding, as these are 2000 and 0, resp. Time
denotes time-units of simulation before a crash.

#Cars No shield Shield E Shield T+E

#Crashes Time Reward Reward Reward

2 703 1133 747 915 603

4 13 1989 1070 685 393

6 0 2000 638 617 375

8 85 1908 477 495 386

10 983 544 170 608 342

Execution Phase. All controller combinations were tested for 1000 simulations,
and each simulation lasts until a crash or for 2000 time units. Table 2 depicts the
results. Note, that we learned a global controller for each number of cars (but use
local shields) and that the controllers optimize a local minimum, therefore the
controllers performances differ from each other. Interestingly, we observe that
the combination of unshielded training (Shield E) provides better results in our
setting than a RL agent utilizing the shield also during training (Shield T+E).
More experiments are needed to discern this effect in detail.

5 Conclusion

We gave an overview of three types of shields that have already been applied to
RL: deterministic, probabilistic, and timed shields and discussed their pros and
cons in shielding RL agents. For future work, we will extend shields to richer
models such as partially-observable MDPs. Furthermore, we want to exploit
techniques from model repair and model refinement to deal with dynamic envi-
ronments, and adapt the shields during runtime if needed. Additionally, we want
to investigate techniques how shielding can be used for speeding up the learning
performance in addition to providing safety. Another interesting direction is to
explore (possibly model free) learning of shields, instead of employing model-
based model checking. Moreover, we will extend our shielding approaches to
industrial applications, employing deep recurrent neural networks as means of
decision making, and justifying via our provided correctness guarantees the appli-
cation of learned controllers in safety critical applications.

References

1. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence (AAAI 2018), New Orleans, Louisiana, USA,
2–7 February 2018, pp. 2669–2678 (2018)

Shield Synthesis for Reinforcement Learning 305

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

3. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Con-
crete problems in AI safety. CoRR, abs/1606.06565 (2016)

4. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
5. Bloem, R., Jensen, P., Könighofer, B., Larsen, K.G., Lorber, F., Palmisano, A.:

It’s time to play safe: shield synthesis for timed systems. CoRR, abs/2006.16688
(2020)

6. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0 16

7. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

8. Falcone, Y., Pinisetty, S.: On the runtime enforcement of timed properties. In:
Proceedings of the 19th International Conference on Runtime Verification, RV
2019, Porto, Portugal, 8–11 October 2019, pp. 48–69 (2019)

9. Fulton, N., Platzer, A.: Verifiably safe off-model reinforcement learning. In: Pro-
ceedings of the 25th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS 2019, Prague, Czech Republic, 6–
11 April 2019, pp. 413–430 (2019)

10. Garćıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res. 16, 1437–1480 (2015)

11. Jansen, N., Könighofer, B., Junges, S., Bloem, R.: Shielded decision-making in
MDPs. CoRR, abs/1807.06096 (2018)

12. Könighofer, B., et al.: Shield synthesis. Formal Methods Syst. Des. 51(2), 332–361
(2017)

13. Larsen, K.G., Mikucionis, M., Taankvist, J.H.: Safe and optimal adaptive cruise
control. In: Proceedings of Correct System Design - Symposium in Honor of Ernst-
Rüdiger Olderog on the Occasion of His 60th Birthday, Oldenburg, Germany, 8–9
September 2015, pp. 260–277 (2015)

14. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–
242. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59042-0 76

15. Mason, G., Calinescu, R., Kudenko, D., Banks, A.: Assured reinforcement learn-
ing with formally verified abstract policies. In: ICAART, vol. 2, pp. 105–117.
SciTePress (2017)

16. Pecka, M., Svoboda, T.: Safe exploration techniques for reinforcement learning
– an overview. In: Hodicky, J. (ed.) MESAS 2014. Lecture Notes in Computer
Science, vol. 8906, pp. 357–375. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-13823-7 31

17. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October–1
November 1977, pp. 46–57 (1977)

18. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st edn. Wiley, New York (1994)

19. Renard, M., Falcone, Y., Rollet, A., Jéron, T., Marchand, H.: Optimal enforcement
of (timed) properties with uncontrollable events. Math. Struct. Comput. Sci. 29(1),
169–214 (2019)

https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1007/978-3-319-13823-7_31
https://doi.org/10.1007/978-3-319-13823-7_31

306 B. Könighofer et al.

20. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. IEEE Trans.
Neural Networks 9(5), 1054 (1998)

21. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, Los Altos (2016)

22. Ziebart, B.D., Maas, A.L., Bagnell, J.A., Dey, A.K.: Maximum entropy inverse
reinforcement learning. In: AAAI, pp. 1433–1438. AAAI Press (2008)

Inferring Performance
from Code: A Review

Emilio Incerto(B), Annalisa Napolitano(B), and Mirco Tribastone(B)

IMT School for Advanced Studies, 55100 Lucca, Italy
{emilio.incerto,annalisa.napolitano,mirco.tribastone}@imtlucca.it

Abstract. Performance is an important non-functional property of soft-
ware that has a direct impact on the end-user’s perception of quality of
service since it is related to metrics such as response time, throughput,
and utilization. Performance-by-construction can be defined as a devel-
opment paradigm where executable code carries some kind of guarantee
on its performance, as opposed to the current practice in software engi-
neering where performance concerns are left to the later stages of the
development process by means of profiling or testing. In this paper we
argue that performance-by-construction techniques need to be proba-
bilistic in nature, leveraging accurate models for the analysis. In sup-
port of this idea, here we carry out a literature review on methods that
can be used as the basis of performance-by-construction development
approaches. There has been significant research—reviewed elsewhere—
on performance models derived from high-level software specifications
such as UML diagrams or other domain-specific languages. This review,
instead, focuses on methods where performance information is extracted
directly from the code, a line of research that has arguably been less
explored by the software performance engineering community.

1 Introduction

Non-functional (also called extra-functional) properties of software are related
to issues concerning how a system works, as opposed to functional properties
which establish what it does. Among many relevant such properties including
security, dependability, and reliability is software performance. Briefly, it can be
understood as a property analyzable through a number of quantitative metrics
related to how fast the software system can yield the desired output. Typical
performance metrics of interest are response time, i.e., how long it takes to obtain
a reply since a request has been issued; throughput, i.e., how many requests can be

This work has been partially supported by the Italian Ministry for Education under
grant SEDUCE no. 2017TWRCNB.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-61362-4 17) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 307–322, 2020.
https://doi.org/10.1007/978-3-030-61362-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_17
https://doi.org/10.1007/978-3-030-61362-4_17
https://doi.org/10.1007/978-3-030-61362-4_17

308 E. Incerto et al.

served per unit time; and utilization, i.e., the percentage of time that a software
resource is busy servicing some request.

Performance metrics can be defined mathematically (e.g., [11]), in which
case it is possible to easily see how they can be formally related to each other.
They can also be related to other metrics such as energy consumption (via
appropriate models [41]) and availability (e.g., excessively long response times
of a web application causing server crashes).

Performance is a key property that directly affects the end-user’s perception
of quality of a software system. It is such an important aspect that, as claimed by
Harman and O’Hearn [29], “in many practical deployment scenarios, particularly
mobile, performance is the new correctness.” Despite its relevance, however,
the practice of software engineering does not seem to make use of principled
criteria to reason about performance. For example, the Android developers’ guide
suggests a rule of thumb for improving the performance of an app by means of
multithreading [1]:

“You can use trial-and-error to discover the minimum number of threads
you can use without running into problems.”

Such state of affairs is unsatisfactory for at least two reasons. First, conduct-
ing performance analysis only through testing or runtime profiling raises several
issues about the cost and the degree of coverage of the experiments. Indeed,
it implies a software development process where performance issues are left to
the latest stages, which may make serious flaws too expensive to fix, such as
in the notable case of halting a NASA space mission due to on-board software
producing unacceptably large response times [2]. The second limitation is that
testing approaches can detect the presence of performance issues, but they do
not carry explanatory and generalization power on their own. Specifically, they
do not provide a model of the software system under investigation that can be
used for the analysis of further what-if scenarios or for formal verification.

A paradigm based on performance-by-construction principles aims instead
at the development of software with guarantees of achieving given performance
objectives [57]. In order to achieve this, it appears inescapable that this paradigm
leverage appropriate models of software systems that can yield (accurate) perfor-
mance predictions. Traditionally, performance models of computer and commu-
nication systems are probabilistic [11,56]. Essentially, this can be motivated by
two orthogonal modeling choices to capture external and internal uncertainty,
respectively [45]. With the former we refer to the typical use of stochastic pro-
cesses to model the workload of software system (i.e., the pattern of arrivals of
requests) as well as to abstract from the details of other environmental features
such as the hardware on which the software system runs. With the latter we refer
to the explicit use of programming primitives that generate samples from given
probability distributions, as in the context of probabilistic programming [27].

A model capable of predicting performance properties is necessarily a distinct
artifact than the software system under consideration. Of course, it could be built
by hand by the software architect/engineer. However this would not fit with the
need of providing automated support within a development process. Moreover,

Inferring Performance from Code: A Review 309

in general it is likely difficult to find engineers who have competences both in the
problem domain and in the performance modeling techniques—recognized as a
main obstacle to model-based performance analysis in software engineering [63].

More automated support to model building can be offered by model-driven
development techniques where the performance model is algorithmically derived
from software specifications such as behavioral UML diagrams (e.g., [58,59,64])
or domain-specific languages (e.g., [10]) annotated with quantitative information.
Some of the vast literature on this topic has already been reviewed [7,35].

Model-driven approaches may not always be applicable, for instance when
the code that is automatically generated from the higher-level specification is
likely to undergo manual modifications. Indeed, after these, the related perfor-
mance model may not be a faithful representation of the actual system under
consideration any longer [23]. In order to avoid this problem, another approach
might be to use the code as the model of the software system itself, thus infer-
ring performance models directly from the code. Of course, this rules out the
possibility of conducting performance analysis at the very early stages of the
software development. However, it fits well with agile processes based on succes-
sive iterations, where changes in the codebase can be reflected onto changes in
the associated performance model.

In this paper we present a literature review on the state of the art of tech-
niques which produce performance predictions for code analysis in order to eval-
uate their feasibility as tools to be used within a performance-by-construction
development framework. The literature analyzed, consisting of 24 research papers
published with the period 1982–2019, is mostly located in the sub-fields of com-
puter science regarding programming languages and software engineering. In
addition to a brief description of each method, we provide a classification in
terms of the assumptions on the input program, the type of technique employed
(i.e., whether it uses static or dynamic analysis), and the output provided (i.e.,
if it yields a model or directly a performance prediction). We conclude the paper
with a discussion of the main limitations of the state of the art for their use in
realistic development processes based on performance-by-construction.

Search and Selection. The research was conducted by selecting from a search
engine a set of representative and highly cited papers from the literature, which
deal with the issue of extracting performance from the code, specifically [13,18,
21,24,25,38,51,65]. We then evaluated the ongoing and outgoing citation links
of these papers and the most interesting, as well as the most cited, were selected
for analysis in this semi-systematic review.

2 Analysis Dimensions

In this section, we analyze the several aspects that distinguish the analyzed
methods of performance generation from code. They concern learning techniques,
exploration techniques, the type of the output model or performance metrics,
and the scalability level.

310 E. Incerto et al.

2.1 Learning Techniques

Although they differ greatly from each other, all performance learning techniques
from software can be condensed into two categories:

– Static analysis: the source-code of the program is systematically inspected
to infer performance. Often, an intermediate model is created, e.g. differential
equations [61], Markov processes [47], or a step-counting function [50] which
simplifies the software by focusing only on performance evaluation.

– Dynamic analysis: an instrumented version of the program is executed,
and by analyzing traces, the necessary information to build the performance
model is gathered (e.g., which parts of the code have been actually explored,
the number of calls issued to a particular functions). While some approaches
are based on one single run to inspect one specific profile [28], others perform
several runs with different workloads to obtain metrics, models and trend
functions of different profiles such as worst-, average-, best-case scenarios [65].
This could be costly if the program needs to be executed numerous times with
different input sizes. There are several techniques to select the workloads (e.g.,
load-testing, probabilistic symbolic execution, random sampling), which we
will analyze later in Subsect. 2.2.

Notice that often these techniques are combined together for the definition of
hybrid approaches. For example, static analysis is used to create an instrumented
version of the program that is then executed with dynamic analysis [21].

2.2 Exploration Techniques

In this subsection, we will describe the different techniques that can be used
both for exploring the program’s paths in the static analysis and to generate the
workload input sequences that guide the dynamic analysis.

– Runtime monitoring implies analyzing the logs or execution traces of the
real (instrumented) system. Approaches that exploit runtime monitoring care
about instrumenting the program as efficiently as possible, so that to leave
the system performance unchanged [6].
This kind of exploration technique does not make any assumption on the
input features and thus the resulting performance models show the typical
system behavior and not a peculiar case.

– Load testing is an input generation technique that tries to stress the soft-
ware by evaluating it with a workload of increasing size [25]. This may imply
evaluating a particular scenario for a given size e.g., worst and best cases, try-
ing to find out the right workload based on user-specified features, heuristics
on the complexity of the data structures, or observations.

– Random sampling implies testing the program under an input randomly
distributed according to some probability distribution [55]. Random sampling
is efficient and easy to implement; in addition, sometimes it might be the

Inferring Performance from Code: A Review 311

only viable option when the program is too complex or some source-code
portions are unknown [19]. However, the main limitation is that without any
heuristic it could be extremely unlikely to observe interesting but rare system
behaviors [14].

– Symbolic execution exhaustively explores the execution tree of a program
using symbolic values for the input instead of concrete ones [5,33]. Each exe-
cution edge could be described by a condition formula on the input variables.
A path is described with the conjunction of all conditional formulas of its
edges, called the path condition. The execution tree can be explored with
any algorithms for traversing trees, such as breadth-first search. The search
is done by trying to symbolically satisfy the (partial) path condition: if the
set of solutions is not empty the search continues, by evaluating also child
edges conditions; otherwise, the path condition is impossible to satisfy and
thus that branch of the tree is marked as unreachable. Probabilistic symbolic
execution [24] arises when symbolic execution is combined with model count-
ing [26] in order to obtain not only reachability/unreachability information
but also path probabilities, by comparing the number of path solutions, i.e.,
the cardinality of the path condition admissibility set, with the cardinality
of the input set [18]. While in random testing the input distribution can be
arbitrarily chosen, probabilistic symbolic execution works only for uniformly
distributed input.

2.3 Output Model

The output models of the surveyed methods differ in many aspects, such as the
amount of information they encode, the predictive power or the efficiency of the
analysis techniques. They can be categorized as follows.

– Enriched call graphs and control-flow graphs. Mostly path or edges
probabilities obtained through the code analysis are stored in a compact form
in (enriched) control flow graphs or call graphs [6]. Since the total amount
of program’s paths is often exponential with respect to the number of visited
branches, these techniques typically limit the exploration of the hottest ones,
i.e., those that have the greatest impact on performance.

– Performance metrics. Often profiling approaches deal with discovering
some static or dynamic performance metrics, e.g., number of procedure
calls [20] and average runtimes [9]. The information level of this kind of model
is low since it has no predictive power and it gives no indication as to the
reason why the program execution shows those performance metrics.

– Bottlenecks detection provides insight on the worst case of the program
execution, which can be given in terms of hot paths detection [16], or input
values that trigger performance bottlenecks [3]. We consider this model to
have a low information level since the worst-case scenario does not capture
exhaustively the whole program’s behavior.

– Cost functions. All the approaches that provide some kind of cost-function
in terms of the size of input belong to this category. This function could

312 E. Incerto et al.

represent the average-case [65] as the asymptotic one [25]. Cost functions
provide insight on how the program behaves as the input grows and thus
they are considered medium-level informative. For instance, these techniques
do not allow to select the best alternative of an algorithm among a set of
functionally and asymptotically equivalent ones.

– Markov processes [47]. Markov processes are a fundamental model for soft-
ware systems [11]. To build a Markov model that is compact and has an ana-
lytical solution in a closed form (i.e., a Markov chain) it is necessary that the
analyzed program is memoryless. This implies that the probabilities of the
edges are all mutually independent.

– Target events probabilities [38,51]. These approaches aim to evaluate
the probability that certain target events happen. Even if these techniques
are typical of bug finding and do not give directly a performance measure,
they can provide insight on performance, since the target events could be
previously selected as costly functions or inefficient blocks of code.

3 Model Construction Methods

In this section, we briefly describe all the methods that infer performance from
code, presented in chronological order.

Gprof [28] periodically samples the program counter in a single program run
with a certain workload, and counts the number of calls and execution times of
each procedure. A post-processing step then propagates the sampled values to
the program call-graph to estimate the total running time in each procedure.

Sarkar et al. [52] propose a framework for obtaining the mean and variance
of the execution times for program’s procedures. These values are obtained by
a counter-based execution profile of the program and then inserted in the pro-
gram’s extended control flow graph. The proposed solution assumes that the
average execution time of a procedure call is independent of the call site and
thus the observed time value is multiplied by the frequency of that procedure
call, without any concern about the program history and data flow.

Ramalingam et al. [47] study the problem of determining how often, i.e.,
with what probability, a fact holds true during program execution. The input
is the program control flow graph whose edges are labeled with a probability.
The program is simply modeled as a first-order Markov chain, by assuming the
probability of the program execution following a particular branch is independent
of the execution history, which does not hold in general for real programs.

Ball et al. [6] focus on path profiling, i.e., computing paths’ frequencies and
performance metrics. They claim that since edges probabilities are not indepen-
dent, it is impossible to obtain paths frequencies by simply combining edges
frequencies. In many cases the next visited program instructions are dependent
on the execution history, thus making path profiling essential for finding accu-
rate performance models of programs. Unfortunately while edge profiling is linear
respect to the program size, path profiling is exponential. In order to tame such
issue, the authors provide a solution for runtime estimation of intra-procedural

Inferring Performance from Code: A Review 313

path frequencies of an acyclic version of the program, by minimizing the over-
head of the instrumentation. To further mitigate the scalability issues they only
consider dynamic paths, i.e., those that have been actually executed during the
program runtime monitoring.

Whole Program Paths (WPP) [36] is an approach to learn and represent
the program’s dynamic control flow, i.e., the set of executed paths. Differently
from previous approaches, it considers loop iterations as well as interprocedural
paths. The work shows also how to compute hot subpaths. The instrumentation
and path discovery phase is done relying on the published work [6]; the novelty of
WPP is the compression algorithm, which, by finding regularities (i.e., repeated
code), transforms the traces more compactly into the directed acyclic graph.

JinsightEx [54] samples performance metrics (i.e., execution time, memory
and other resource usage) of a Java program’s execution slices, which are user-
defined through dynamic or static criteria. The slices represent the primary view
of the performance models and they can be grouped in workloads to facilitate
larger analysis procedures. JinsightEx allows the user to browse this data to
evaluate the number of called objects, allocations, method calls; and to find
performance and memory problems in many industrial applications.

Magpie is an online performance modeling service that collects detailed
end-to-end traces from users on the running system and constructs probabilis-
tic models of its behavior [8,9]. It instruments the system using black-box
approaches such as kernel-level tracing for Windows [53] or WinPcap packet
capture library [48]. Magpie constructs a model of the observed behavior, by
clustering requests features and performance. Using these behavioral clusters it
is possible to detect anomalous requests and system malfunctions.

Ammons et al. [4] find bottlenecks, given some kind of profiles (e.g. call tree)
of the system execution. There are two algorithms: one that finds expensive paths
of a program and another that computes how the path cost differs from similar
execution runs. They build a summarized model of the program that is based
on heuristics, by collecting cost metrics of execution paths, and they provide an
interface for querying this model and comparing paths cost metrics to find the
worst-case. The approach is evaluated on a real-world case study.

Trend-prof [25] derives the asymptotic behavior of a program by computing
its empirical computational complexity. This is done by executing the program
on workloads of different sizes and user-specified numerical features, for example
the number of bytes of the input file. Measured execution times of program blocks
are fit against linear or power law models. Trend-prof is evaluated on several
large programs; the authors report cases in which the program meets its expected
bounds, performs better than its worst-case, or shows performance bugs.

Buse et al. [16] provide a descriptive statistical model of paths frequencies
that is obtained by static analysis of the source code with path enumeration. The
approach is validated on several benchmarks. The qualitative analysis provides
insights on which source code features characterize hot paths. Since the number
of program paths could be exponential, only interprocedural paths within one
single class are considered; calls across class boundaries are ignored. The idea

314 E. Incerto et al.

that underlines the approach is that the most likely hot paths are those that
have little impacts on the program state, intended in terms of changes of global
variables and stack. With this idea in mind, any machine learning algorithm
could be trained to select the source-level features that identify hot paths; in
the paper, Weka [31] is used. This approach suffers from overfitting, and in case
the behavior of the program is not fully captured by a single class, it may reveal
unuseful.

Zaparanuks et al. [65] exploit heuristics to determine a program’s approx-
imated cost functions from traces of representative program executions. This
approach automatically determines the input size, measures the program’s cost
for each input, and fits a cost function. Several cost measures are supported
such as algorithmic steps, number and size of reads/writes on data structures
and the number of objects creations. The program input type (e.g., recursive
data structures, arrays, and so on) and the input size are obtained by com-
puting the number of elements of the structure or its memory occupation. A
limitation of this approach is that it cannot infer the input size of programs
that do not work with data structures but on primitive types, and that since it
is based on heuristics, it returns an approximate cost-function rather than an
exact one.

Geldenhuys et al. [24] propose an extension of Java Symbolic PathFinder [44]
that estimates probabilities of each particular program locations using proba-
bilistic symbolic execution. Although the cost of symbolic execution is mitigated
by implementing some heuristics, the scalability of this technique is still a con-
cerning issue. In the paper, the authors present case studies involving 4 and
5 operations on a data structure, i.e., insertions and deletions from Binomial-
Heap, TreeMap, and BinaryTree. They claim the infeasibility of the analysis for
programs having a sequence of 14 operations.

Coppa et al. [21] present a profiling methodology to discover hidden asymp-
totic inefficiencies from program traces. Grow rates of routines as a function of
the input size is dynamically measured with a metric—the read memory size
(RMS)—that counts the accessed numbers of memory cells. Thee supporting
tool, named aprof, builds upon Valgrind [42] for the instrumentation. It deter-
mines the RMS and the minimum and maximum cost of executing routines
and exploits curve fitting and curve bounding to obtain the functions that best
describe their asymptotic behavior.

Sankaranarayanan et al. [51] statically analyze probabilistic programs, char-
acterized by variables that assume uncertain values during execution, by assign-
ing them probability distributions. They provide bounds on the probability that
a certain event happens and claim that to determine those bounds only an ade-
quate subset of program’s execution paths is needed. The initial set of paths is
obtained using random simulations and statistical tests, while probability bounds
are obtained using symbolic execution, a heuristic they implement for the prob-
lem of computing the volume of an n-dimensional convex polyhedron, namely
probabilistic volume bound computation and Monte Carlo sampling.

Inferring Performance from Code: A Review 315

Like the previous work, Luckow et al. [38] consider the probability of a tar-
get event in case of nondeterministic programs, e.g., multithreaded or distributed
programs. They firstly implement a symbolic tree scheduler to handle uncertain-
ties using Markov decision processes [46] (exact algorithm) or Monte Carlo sam-
pling (approximated algorithm) on the symbolic tree generated with a bounded
symbolic execution of the program. Then they exploit reinforcement learning [32]
to iteratively improve the tree of the approximate algorithm. Finally, model
counting techniques and some heuristics are used to compute branch probabili-
ties until reaching the target event.

Filieri et al. [22] propose a method for computing the probability of a target
event for a program. The method is based on Monte Carlo sampling to improve
Bayesian estimates of the sought probability. To speed up convergency they
propose the informed sampling technique, with which paths with high statistical
significance are explored first.

Borges et al. [12] describe a methodology for the automatic estimation of
the probability of a target event given an input profile described via continuous
probability distribution over the floating-point domain. The method supports
three strategies, based on gradient descent optimization [43] and on heuristics, to
improve the learning phase (hence, the scalability of the approach) that are based
on ranking the edge condition constraints of the symbolic execution according
to their impact on the convergence of the statistical analysis and counting.

Brünink et al. [13] present an approach to infer the performance specification
of a running system by creating runtime models and subsequently producing
performance assertions. These models are graphs that describe the expected
behavior of the system in its hot functions, tracing probabilities in a context-
sensitive or insensitive way, as needed. The context information is inserted when
the performance metrics (i.e., the runtimes) of the procedures, evaluated for
different contexts, belong to different clusters of values. Although they do not
exploit analytical rigorous models they succeed to obtain accurate performance.

PerfPlotter [18] is a framework for performance analysis of a program that
takes as input the source code and a usage profile and generates a probability
density cost function. PerfPlotter extends Java Symbolic PathFinder [44] using
probabilistic symbolic execution to detect paths with low and high probabilities
under the given usage profile, and the resulting set of paths are executed to
measure the effective runtime (precisely the subset chosen is that of the paths
with high or low probability whose termination within a certain number of steps
has been established). Finally, these results are combined and weighted with
paths’ probabilities to obtain the probability density function (PDF). This app-
roach can infer the PDF, still having a scalability limitation due to the usage of
probabilistic symbolic execution.

Luckow et al. [37] propose a technique based on guided symbolic execution
to generate the worst-case complexity function of the input size. First, symbolic
execution is run with a small value of input size, which is subsequently increased.
The symbolic execution is guided by selecting only the paths that account for the
worst cases. To be more accurate, during path selection the history of choices

316 E. Incerto et al.

is taken into account when deciding which branch to execute next. Thus, the
method produces a context-sensitive model of worst-case paths that are analyzed
to fit the cost function using some resource consumption metrics (e.g., execution
time or memory usage).

Wang et al. [60] present an approach to analyze the performance of appli-
cations deployed on Cloud. The approach first tests the Cloud infrastructure
with typical micro-benchmarks and evaluates the performance distribution of
each resource, e.g., memory and CPU. Then it tests the user-defined application
with a given input that characterizes the program’s typical workload, result-
ing in the resource usage profile of the target application. Finally, it conducts
the same tests on the application deployed in the cloud producing the baseline
performance. By combining these models the approach provides statistics that
allow the developer to understand which kind of performance specification the
application meets.

Speedoo [20] is an approach to identify groups of methods that are crucial to
the program’s performance and whose optimization would lead to the best speed-
up possible. It suggests optimization opportunities for these methods based on
performance (anti-)patterns detection, e.g., cyclic invocation, expensive recur-
sion. Speedoo ranks the methods based on metrics of architectural importance
(e.g. the size of the sub-calls tree) according to the Design Rule Hierarchy algo-
rithm (DRH), defined by Cai et al. and Wong et al. [17,62], dynamic execution
metrics (e.g., CPU time), and static complexity metrics (e.g., the number of
loops).

PT4Cloud [30] is concerned about obtaining performance models of appli-
cation developed on the cloud, addressing the issue of performance uncertainty
due to IaaS resource managing. Their purpose is to find reliable stop conditions
to test runs to cut down the cost of performance testing. They test the selected
benchmarks with their pre-specified workloads and compute the performance
distribution of the deployed application. By using a non-parametric statistical
approach, they stop testing when they find that two subsequent distribution are
statistically equivalent.

PerfXRL [3] presents an approach to find input values that trigger the per-
formance bottlenecks of the system. Given an input space, possibly very large
with multiple possible combinations, PerfXRL dynamically analyzes the system
by executing it with a certain input and then guiding the analysis with the
resulting cost reward value, using reinforcement learning.

4 Conclusion and Future Lines of Reseach

Performance is a crucial non-functional property that affects the user’s percep-
tion of the software’s quality. While it could be useful to know performance from
early development stages, model-driven approaches may not always be applica-
ble. When the code is continuously developed the real software source-code may
differ considerably from model artifacts. In this scenario, performance models
should be inferred directly from the deployed system. In this work we present a

Inferring Performance from Code: A Review 317

Table 1. Summary of the analyzed methods

Method Learning
Techn.

Exploration Techn. Output Model Info. Level Scalability

[28] Dynamic
analysis

Runtime monitoring Enriched call-graph Low Medium

[52] Static and
dynamic
analysis

Offline monitoring with
given input

Performance metrics
(sub-routines execution
times and variance)

Low Low

[47] Static analysis CFG sequential exploration Markov Chain Medium Medium-low

[6] Dynamic
analysis

Runtime monitoring Enriched CFG with acyclic
intraprocedural path
frequencies DAG (Directed
Acyclic Graph)

Medium Medium-high

[36] Dynamic
analysis

Uses [6] Whole program paths and
hot subpaths detection

Medium Medium-high

[54] Dynamic
analysis

Realistic traces as input Performance metrics
organized in execution
slices

Low Medium

[9] Dynamic
analysis

Runtime monitoring Performance metrics
organized in clusters of
request features

Low High

[4] Dynamic
analysis

Profiles navigation
searching the longest path

Bottlenecks detection Medium-low Medium-high

[25] Dynamic
analysis

Offline monitoring of
chosen workloads described
with numerical features

Computational complexity
function of user-specified
features

Medium Medium

[16] Static analysis Loop bounded static path
enumeration and counting
with machine learning

Hot paths identification Medium-low Medium

[65] Dynamic
analysis

Realistic traces as input Approximate descriptive
cost function

Medium-low Medium

[24] Static analysis Symbolic execution Paths probabilities Medium Low

[21] Dynamic
analysis

Traces as input Asymptotic cost function Medium Medium

[51] Simulation +
Static analysis

Random sampling with
Monte Carlo + symbolic
execution

Target events probabilities Medium Medium

[38] Static analysis
+ simulation

Symbolic execution +
Monte Carlo sampling and
reinforcement learning

Target event probability Low Medium-high

[22] Static analysis
+ simulation

Symbolic execution +
Monte Carlo sampling and
Hypothesis testing (i.e.
Importance Sampling)

Target event probability Low Medium-high

[12] Static analysis Symbolic execution Target event probability Low Medium

[13] Dynamic
analysis

Runtime monitoring Performance metrics of hot
functions (context sensitive
profiling)

Medium-high Medium

[18] Static analysis Symbolic execution Probability density function
of program runtime

High Medium-low

[37] Static analysis Symbolic execution +
policy guided exploration

Asymptotic cost-function Medium High

[60] Dynamic
analysis

Offline monitoring with
typical benchmarks (Cloud)
and typical input
(stand-alone)

Cloud application
performance statistics

Medium High (Cloud)

[20] Static and
dynamic
analysis

Design Rule Hierarchy
algorithm + profiling tools

Optimization suggestions Medium-low High

[30] Dynamic
analysis

Testing with given inputs +
non-parametric statistical
approach for stop
conditions

Cloud application
performance distributions

High High (Cloud)

[3] Dynamic
analysis

Reinforcement learning
guided testing

Input values that trigger
performance bottlenecks

Low High

318 E. Incerto et al.

literature review of methods that produce performance information from code,
trying to underline typical inefficiencies and future lines of research. Table 1
presents a summary of the evaluated methodologies and a comparison according
to the proposed analysis dimensions.

Initially, the focus of the literature was on system profiling (mainly through
dynamic analysis), using runtime monitoring [6,9,36] or offline monitoring start-
ing from some realistic representative traces of program executions [25,34,54].
Recently, efforts have moved toward improving the applicability and scalability
of symbolic execution (mainly with static analysis) [22,37,38]. Heuristics tried
to speed up learning by approximating the paths probabilities [51] or by limiting
the set of paths considered by the analysis to the most representative ones, i.e.,
worst-case, best-case, average-case [18].

In addition, most of the methodologies analyzed are able to learn low or
medium information content models, such as performance metrics [13,54] or
identification of hot paths [4,16]. The work presented by Ramalingam and Gane-
san [47] is the only approach that extracts a model with a high predictive power
like a Markov chain. Unfortunately, their model needs the memoryless assump-
tion, i.e., the probability of the program execution following a particular branch
is independent of the execution history, which obviously does not hold true in
many cases. Also noteworthy are all the approaches that learn the probability
density functions of the execution cost of the program [18,30], a compact but at
the same time informative performance model, as it encapsulates the execution
probabilities and the runtime.

Another interesting consideration, present in works of Brünink et al. and
Luckow et al. [13,37], is to consider the impact of the context information on
the probabilities of execution of the path, creating a context-aware model. It
is evident, indeed, that the future behavior of the program is highly dependent
on the state (i.e., the values of the variables) and therefore on past history.
Explicitly considering this information in the performance model can provide
a new and interesting view and allow the developer to better understand the
reasons behind the performance behavior of a program. One could envisage the
use of models with high predictive and implicitly context-sensitive content such
as variable-length Markov chains [15,49], typically used for text analysis and
pattern recognition. These techniques, never used for performance, have been
used by Mazeroff et al. [39,40] to describe the behavior of the system in order
to identify anomalies and malicious behaviors.

References

1. Android Developers’ Guide: Threading performance. https://developer.android.
com/topic/performance/threads.html. Accessed 23 July 2020

2. NASA delays satellite launch after finding bugs in software program. https://
fcw.com/Articles/1998/04/19/NASA-delays-satellite-launch-after-finding-bugs-
in-software-program.aspx. Accessed 4 Feb 2018

3. Ahmad, T., Ashraf, A., Truscan, D., Porres, I.: Exploratory performance testing
using reinforcement learning. In: 2019 45th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pp. 156–163. IEEE (2019)

https://developer.android.com/topic/performance/threads.html
https://developer.android.com/topic/performance/threads.html
https://fcw.com/Articles/1998/04/19/NASA-delays-satellite-launch-after-finding-bugs-in-software-program.aspx
https://fcw.com/Articles/1998/04/19/NASA-delays-satellite-launch-after-finding-bugs-in-software-program.aspx
https://fcw.com/Articles/1998/04/19/NASA-delays-satellite-launch-after-finding-bugs-in-software-program.aspx

Inferring Performance from Code: A Review 319

4. Ammons, G., Choi, J.-D., Gupta, M., Swamy, N.: Finding and removing perfor-
mance bottlenecks in large systems. In: Odersky, M. (ed.) ECOOP 2004. LNCS,
vol. 3086, pp. 172–196. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24851-4 8

5. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. (CSUR) 51(3), 1–39 (2018)

6. Ball, T., Larus, J.R.: Efficient path profiling. In: Proceedings of the 29th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 29, pp. 46–
57. IEEE (1996)

7. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: a survey. IEEE Trans. Softw. Eng. 30(5), 295–
310 (2004)

8. Barham, P., Donnelly, A., Isaacs, R., Mortier, R.: Using magpie for request extrac-
tion and workload modelling. In: OSDI, vol. 4, p. 18 (2004)

9. Barham, P., Isaacs, R., Mortier, R., Narayanan, D.: Magpie: online modelling and
performance-aware systems. In: HotOS, pp. 85–90 (2003)

10. Becker, S., Koziolek, H., Reussner, R.: Model-based performance prediction with
the palladio component model. In: Proceedings of the 6th International Workshop
on Software and Performance (WOSP), pp. 54–65 (2007)

11. Bolch, G., Greiner, S., De Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applica-
tions. Wiley, Hoboken (2006)

12. Borges, M., Filieri, A., d’Amorim, M., Păsăreanu, C.S.: Iterative distribution-aware
sampling for probabilistic symbolic execution. In: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, pp. 866–877 (2015)

13. Brünink, M., Rosenblum, D.S.: Mining performance specifications. In: Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 39–49 (2016)

14. Bucklew, J.: Introduction to Rare Event Simulation. Springer, New York (2013).
https://doi.org/10.1007/978-1-4757-4078-3

15. Bühlmann, P., Wyner, A.J., et al.: Variable length Markov chains. Ann. Stat.
27(2), 480–513 (1999)

16. Buse, R.P., Weimer, W.: The road not taken: estimating path execution frequency
statically. In: 2009 IEEE 31st International Conference on Software Engineering,
pp. 144–154. IEEE (2009)

17. Cai, Y., Sullivan, K.J.: Modularity analysis of logical design models. In: 21st
IEEE/ACM International Conference on Automated Software Engineering (ASE
2006), pp. 91–102. IEEE (2006)

18. Chen, B., Liu, Y., Le, W.: Generating performance distributions via probabilis-
tic symbolic execution. In: Proceedings of the 38th International Conference on
Software Engineering, pp. 49–60 (2016)

19. Chen, T.Y., Kuo, F.C., Merkel, R.G., Tse, T.: Adaptive random testing: the art
of test case diversity. J. Syst. Softw. 83(1), 60–66 (2010)

20. Chen, Z., et al.: Speedoo: prioritizing performance optimization opportunities. In:
Proceedings of the 40th International Conference on Software Engineering, pp.
811–821 (2018)

21. Coppa, E., Demetrescu, C., Finocchi, I.: Input-sensitive profiling. ACM SIGPLAN
Not. 47(6), 89–98 (2012)

22. Filieri, A., Păsăreanu, C.S., Visser, W., Geldenhuys, J.: Statistical symbolic exe-
cution with informed sampling. In: Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, pp. 437–448 (2014)

https://doi.org/10.1007/978-3-540-24851-4_8
https://doi.org/10.1007/978-3-540-24851-4_8
https://doi.org/10.1007/978-1-4757-4078-3

320 E. Incerto et al.

23. Garcia, J., Krka, I., Mattmann, C., Medvidovic, N.: Obtaining ground-truth soft-
ware architectures. In: Proceedings of the 35th International Conference on Soft-
ware Engineering (ICSE), pp. 901–910 (2013)

24. Geldenhuys, J., Dwyer, M.B., Visser, W.: Probabilistic symbolic execution. In: Pro-
ceedings of the 2012 International Symposium on Software Testing and Analysis,
pp. 166–176 (2012)

25. Goldsmith, S.F., Aiken, A.S., Wilkerson, D.S.: Measuring empirical computational
complexity. In: Proceedings of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pp. 395–404 (2007)

26. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting (2008)
27. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic program-

ming. In: Proceedings of the Future of Software Engineering (FOSE), pp. 167–181
(2014)

28. Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: a call graph execution profiler.
ACM Sigplan Not. 17(6), 120–126 (1982)

29. Harman, M., O’Hearn, P.: From start-ups to scale-ups: opportunities and open
problems for static and dynamic program analysis. In: SCAM (2018)

30. He, S., Manns, G., Saunders, J., Wang, W., Pollock, L., Soffa, M.L.: A statistics-
based performance testing methodology for cloud applications. In: Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 188–199 (2019)

31. Holmes, G., Donkin, A., Witten, I.H.: WEKA: a machine learning workbench.
In: Proceedings of ANZIIS 1994-Australian New Zealnd Intelligent Information
Systems Conference, pp. 357–361. IEEE (1994)

32. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J.
Artif. Intell. Res. 4, 237–285 (1996)

33. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

34. Kluge, M., Knüpfer, A., Nagel, W.E.: Knowledge based automatic scalability anal-
ysis and extrapolation for MPI programs. In: Cunha, J.C., Medeiros, P.D. (eds.)
Euro-Par 2005. LNCS, vol. 3648, pp. 176–184. Springer, Heidelberg (2005). https://
doi.org/10.1007/11549468 22

35. Koziolek, H.: Performance evaluation of component-based software systems: a sur-
vey. Perform. Eval. 67(8), 634–658 (2010)

36. Larus, J.R.: Whole program paths. ACM SIGPLAN Not. 34(5), 259–269 (1999)
37. Luckow, K., Kersten, R., Păsăreanu, C.: Symbolic complexity analysis using

context-preserving histories. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST), pp. 58–68. IEEE (2017)

38. Luckow, K., Păsăreanu, C.S., Dwyer, M.B., Filieri, A., Visser, W.: Exact and
approximate probabilistic symbolic execution for nondeterministic programs. In:
Proceedings of the 29th ACM/IEEE International Conference on Automated Soft-
ware Engineering, pp. 575–586 (2014)

39. Mazeroff, G., De, V., Jens, C., Michael, G., Thomason, G.: Probabilistic trees and
automata for application behavior modeling. In: 41st ACM Southeast Regional
Conference Proceedings (2003)

40. Mazeroff, G., Gregor, J., Thomason, M., Ford, R.: Probabilistic suffix models for
API sequence analysis of windows XP applications. Pattern Recogn. 41(1), 90–101
(2008)

https://doi.org/10.1007/11549468_22
https://doi.org/10.1007/11549468_22

Inferring Performance from Code: A Review 321

41. Möbius, C., Dargie, W., Schill, A.: Power consumption estimation models for pro-
cessors, virtual machines, and servers. IEEE Trans. Parallel Distrib. Syst. 25(6),
1600–1614 (2014)

42. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. ACM Sigplan Not. 42(6), 89–100 (2007)

43. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Heidelberg (2006).
https://doi.org/10.1007/978-0-387-40065-5

44. Păsăreanu, C.S., Rungta, N.: Symbolic pathfinder: symbolic execution of Java byte-
code. In: Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering, pp. 179–180 (2010)

45. Perez-Palacin, D., Mirandola, R.: Uncertainties in the modeling of self-adaptive
systems: a taxonomy and an example of availability evaluation. In: Proceedings
of the 5th ACM/SPEC International Conference on Performance Engineering, pp.
3–14 (2014)

46. Puterman, M.L.: Markov decision processes. Handb. Oper. Res. Manag. Sci. 2,
331–434 (1990)

47. Ramalingam, G.: Data flow frequency analysis. ACM SIGPLAN Not. 31(5), 267–
277 (1996)

48. Risso, F., Degioanni, L.: An architecture for high performance network analysis. In:
Proceedings of the Sixth IEEE Symposium on Computers and Communications,
pp. 686–693. IEEE (2001)

49. Ron, D., Singer, Y., Tishby, N.: The power of amnesia: learning probabilistic
automata with variable memory length. Mach. Learn. 25(2–3), 117–149 (1996).
https://doi.org/10.1023/A:1026490906255

50. Rosendahl, M.: Automatic complexity analysis. In: Proceedings of the Fourth Inter-
national Conference on Functional Programming Languages and Computer Archi-
tecture, pp. 144–156 (1989)

51. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilis-
tic programs: inferring whole program properties from finitely many paths. In:
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 447–458 (2013)

52. Sarkar, V.: Determining average program execution times and their variance. In:
Proceedings of the ACM SIGPLAN 1989 Conference on Programming Language
Design and Implementation, pp. 298–312 (1989)

53. Schlabach, T.: Insight into event tracing for windows (2019)
54. Sevitsky, G., De Pauw, W., Konuru, R.: An information exploration tool for perfor-

mance analysis of Java programs. In: Proceedings Technology of Object-Oriented
Languages and Systems, TOOLS 38, pp. 85–101. IEEE (2001)

55. Sharir, M., Pnueli, A., Hart, S.: Verification of probabilistic programs. SIAM J.
Comput. 13(2), 292–314 (1984)

56. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation. Princeton
University Press, Princeton (2009)

57. Tribastone, M.: Towards software performance by construction. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 466–470. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03418-4 27

58. Tribastone, M., Gilmore, S.: Automatic extraction of PEPA performance models
from UML activity diagrams annotated with the MARTE profile. In: Proceedings
of the Seventh International Workshop on Software and Performance (WOSP)
(2008)

https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1023/A:1026490906255
https://doi.org/10.1007/978-3-030-03418-4_27

322 E. Incerto et al.

59. Tribastone, M., Gilmore, S.: Automatic translation of UML sequence diagrams into
PEPA models. In: Fifth International Conference on the Quantitative Evaluation
of Systems (QEST), pp. 205–214 (2008)

60. Wang, W., et al.: Testing cloud applications under cloud-uncertainty performance
effects. In: 2018 IEEE 11th International Conference on Software Testing, Verifi-
cation and Validation (ICST), pp. 81–92. IEEE (2018)

61. Wegbreit, B.: Mechanical program analysis. Commun. ACM 18(9), 528–539 (1975)
62. Wong, S., Cai, Y., Valetto, G., Simeonov, G., Sethi, K.: Design rule hierarchies

and parallelism in software development tasks. In: 2009 IEEE/ACM International
Conference on Automated Software Engineering, pp. 197–208. IEEE (2009)

63. Woodside, M., Franks, G., Petriu, D.C.: The future of software performance engi-
neering. In: Proceedings of the Future of Software Engineering (FOSE), pp. 171–
187 (2007)

64. Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Merseguer, J.: Perfor-
mance by unified model analysis (PUMA). In: Proceedings of the 5th International
Workshop on Software and Performance, pp. 1–12. ACM, New York (2005)

65. Zaparanuks, D., Hauswirth, M.: Algorithmic profiling. In: Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pp. 67–76 (2012)

30 Years of Statistical Model Checking!

30 Years of Statistical Model Checking

Kim G. Larsen1,2(B) and Axel Legay1,2(B)

1 Aalborg University, Aalborg, Denmark
kgl@cs.aau.dk, axel.legay@uclouvain.be

2 INRIA Rennes – Bretagne Atlantique, Rennes, France

Abstract. This short note introduces statistical model checking and
gives a brief overview of the Statistical Model Checking, past present and
future session at ISOLA 2020.

1 Context

Quantitative properties of stochastic systems are usually specified in logics
that allow one to compare the measure of executions satisfying certain tem-
poral properties with thresholds. The model checking problem for stochastic
systems with respect to such logics is typically solved by a numerical app-
roach [BHHK03,CG04] that iteratively computes (or approximates) the exact
measure of paths satisfying relevant subformulas; the algorithms themselves
depend on the class of systems being analysed as well as the logic used for
specifying the properties.

Another approach to solve the model checking problem is to simulate the
system for finitely many runs, and use hypothesis testing to infer whether the
samples provide statistical evidence for the satisfaction or violation of the spec-
ification. This approach was first applied in [LS91], where it was shown that
hypothesis testing could be used to settle probabilistic modal logic properties
with arbitrary precision, leading in the limit to probabilistic bisimulation. More
recently [You05a] this approach has been known as statistical model checking
(SMC) and is based on the notion that since sample runs of a stochastic system
are drawn according to the distribution defined by the system, they can be used
to obtain estimates of the probability measure on executions. Starting from time-
bounded PCTL properties [You05a], the technique has been extended to handle
properties with unbounded until operators [SVA05b], as well as to black-box
systems [SVA04,You05a]. Tools, based on this idea have been built [HLMP04,
SVA05a,You05a,You05b,BDD+11,DLL+11,BCLS13], and have been used to
analyse many systems that are intractable numerical approaches.

The SMC approach enjoys many advantages. First, the algorithms require
only that the system be simulatable (or rather, sample executions be drawn
according to the measure space defined by the system). Thus, it can be applied
to larger class of systems than numerical model checking algorithms, including
black-box systems and infinite state systems. In particular, SMC avoids the
‘state explosion problem’ [CES09]. Second the approach can be generalized to a
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 325–330, 2020.
https://doi.org/10.1007/978-3-030-61362-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_18

326 K. G. Larsen and A. Legay

larger class of properties, including Fourier transform based logics. Third, SMC
requires many independent simulation runs, making it easy to parallelise and
scale to industrial-sized systems.

While it offers solutions to some intractable numerical model checking prob-
lems, SMC also introduces some additional problems. First, SMC only provides
probabilistic guarantees about the correctness of the results. Second, the required
sample size grows quadratically with respect to the required confidence of the
result. This makes rare properties difficult to verify. Third, only the simulation of
purely probabilistic systems is well defined. Nondeterministic systems, which are
common in the field of formal verification, are especially challenging for SMC.

2 On Statistical Model Checking

Consider a stochastic system S and a logical property ϕ that can be checked
on finite executions of the system. Statistical Model Checking (SMC) refers to a
series of simulation-based techniques that can be used to answer two questions:
(1) Qualitative: Is the probability for S to satisfy ϕ greater or equal to a certain
threshold? and (2) Quantitative: What is the probability for S to satisfy ϕ? In
contrast to numerical approaches, the answer is given up to some correctness
precision.

In the sequel, we overview two SMC techniques. Let Bi be a discrete random
variable with a Bernoulli distribution of parameter p. Such a variable can only
take 2 values 0 and 1 with Pr[Bi = 1] = p and Pr[Bi = 0] = 1 − p. In our
context, each variable Bi is associated with one simulation of the system. The
outcome for Bi, denoted bi, is 1 if the simulation satisfies ϕ and 0 otherwise.

Qualitative Answer. The main approaches [You05a,SVA04] proposed to answer
the qualitative question are based on sequential hypothesis testing [Wal45]. Let
p = Pr(ϕ). To determine whether p ≥ θ, we can test H : p ≥ θ against K : p < θ.
A test-based solution does not guarantee a correct result but it is possible to
bound the probability of error. The strength of a test is determined by two
parameters, α and β, such that the probability of accepting K (respectively,
H) when H (respectively, K) holds, called a Type-I error (respectively, a Type-
II error) is less or equal to α (respectively, β). A test has ideal performance
if the probability of the Type-I error (respectively, Type-II error) is exactly
α (respectively, β). However, these requirements make it impossible to ensure
a low probability for both types of errors simultaneously (see [Wal45,You05a]
for details). A solution is to use an indifference region [p1, p0] (given some δ,
p1 = θ − δ and p0 = θ + δ) and to test H0 : p ≥ p0 against H1 : p ≤ p1. We now
sketch the Sequential Probability Ratio Test (SPRT). In this algorithm, one has
to choose two values A and B (A > B) that ensure that the strength of the test
is respected. Let m be the number of observations that have been made so far.
The test is based on the following quotient:

p1m

p0m
=

m∏

i=1

Pr(Bi = bi | p = p1)
Pr(Bi = bi | p = p0)

=
pdm
1 (1 − p1)m−dm

pdm
0 (1 − p0)m−dm

,

30 Years of Statistical Model Checking 327

where dm =
∑m

i=1 bi. The idea is to accept H0 if p1m
p0m

≥ A, and H1 if p1m
p0m

≤ B.
The algorithm computes p1m

p0m
for successive values of m until either H0 or H1

is satisfied. This has the advantage of minimizing the number of simulations
required to make the decision.

Quantitative Answer. In [HLMP04] Peyronnet et al. propose an estimation
procedure to compute the probability p for S to satisfy ϕ. Given a preci-
sion δ, the Chernoff bound of [Oka59] is used to compute a value for p′ such
that |p′ − p| ≤ δ with confidence 1 − α. Let B1 . . . Bm be m Bernoulli ran-
dom variables with parameter p, associated to m simulations of the system
considering ϕ. Let p′ =

∑m
i=1 bi/m, then the Chernoff bound [Oka59] gives

Pr(|p′ − p| ≥ δ) ≤ 2e−2mδ2
. As a consequence, if we take m = �ln(2/α)/(2δ2)�,

then Pr(|p′ − p|≤δ) ≥ 1 − α.

3 Content of the Session

SMC has been implemented in prototypes/tools, which includes Uppaal-
SMC [DLL+11], Plasma [BCLS13], Ymer [You05b], or COSMOS [BDD+11].
Those tools have been applied to several complex problems coming from a wide
range of areas. This includes systems biology (see e.g., [Zul14]), automotive and
avionics (see e.g., [BBB+12]), energy-centric systems (see e.g., [DDL+13]), or
power grids (see e.g., [HH13]).

This year, the session is mostly focused on real-world applications of SMC
on emerging industrial and societal topics such as automotive or COVID19.
Some papers consider the integration of blackbox aspects, while others focus
on combining the SMC approach with machine learning. It is worth observing
that SMC reached a level of maturity that is sufficient for the approach to be
integrated to real-life projects such as WABLIEFT or BEOCOVID presented
hereafter. The program includes the following contributions.

– In [AKW20], the authors discuss the advantages gained when SMC is applied
to white-box systems, utilizing the knowledge of their internals. The authors
focus on the setting of unbounded-horizon properties such as reachability or
LTL. The suggested approach is compared to other statistical and numerical
techniques both conceptually as instantiations of the same framework, and
experimentally. It not only clearly preserves scalability advantages of black-
box SMC compared to classical model checking (while providing high level
of guarantees), but it also scales yet better than either of the two for a wide
class of models.

– In [GESL20], the authors focus on Mission planning. This is one of the crucial
problems in the design of Multi-Agent Systems (MAS) because it requires the
agents to calculate collision-free paths and efficiently schedule their tasks. The
complexity of this problem greatly increases when realistic assumptions are
includied, e.g. such as increase in number of agents, and timing requirements,
as well as the stochastic behavior of the agents. In the paper, the authors

328 K. G. Larsen and A. Legay

propose a novel method that integrates statistical model checking and rein-
forcement learning to overcome those difficulties. Additionally, the authors
employ hybrid automata to model the continuous movement of agents and
moving obstacles, and estimate the possible delay of the agents’ traveling time
when facing unpredictable obstacles, in order to synthesize mission plans that
are statistically optimal. The authors show the result of synthesizing mission
plans, analyzing bottlenecks, and the re-planning ability of the method in
case of the sudden appearance of pedestrians by modeling and verifying a
real industrial use case using UPPAAL SMC.

– In [BtBG+20], the authors provide a brief comparison of the modelling
and analysis capabilities of two different formalisms and their associated
simulation-based tools, acquired from experimenting with these methods and
tools on one specific case study. The case study is a cyber-physical sys-
tem from an industrial railway project, namely a railroad switch heater, and
the quantitative properties concern energy consumption and reliability. The
authors model and analyse the case study with stochastic activity networks
and Möbius on the one hand and with stochastic hybrid automata and Uppaal
SMC on the other hand. The authors give an overview of the performed exper-
iments and highlight specific features of the two methodologies. This yields
usefull pointers for future research and improvements.

– In [JLM+20], the authors present the BEOCOVID project. During the spring
of 2020, the BEOCOVID project has been funded to investigate the use of
stochastic hybrid models, statistical model checking and machine learning to
analyse, predict and control the rapid spreading of COVID19. The overall aim
of BEOCOVID is to support government in decision making. In the paper
the authors focus on the SEIRH epidemiological model instance of COVID19
pandemics and show how the risk of viral exposure, the impact of super-
spreader events as well as other scenarios can be modelled, estimated and
controlled in a variety of ways using the tool UPPAAL SMC.

– In [BLGW20], the authors present the WABLIEFT project. This project
explores how to improve medical service delivery through a shared market-
place for service providers. This shared marketplace allows patients to choose
services from providers and so support improved service delivery and patient
satisfaction. Having a shared marketplace raises some service reliability and
correctness challenges, as well as creates opportunities for improved informa-
tion gathering. This work formalises the shared marketplace to prove cor-
rect behaviour and properties of the marketplace behaviour. The information
available to the shared marketplace is also used to improve predictions of
medical scenarios such as pandemics, and thus improve service delivery.

References

[AKW20] Ashok, P., Kretinsky, J., Weininger, M.: Statistical model checking: black
or white? In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol.
12476, pp. 331–349 (2020)

30 Years of Statistical Model Checking 329

[BBB+12] Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A.: Statistical
abstraction and model-checking of large heterogeneous systems. STTT
14(1), 53–72 (2012). https://doi.org/10.1007/s10009-011-0201-2

[BCLS13] Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: a flexi-
ble, distributable statistical model checking library. In: Joshi, K., Siegle,
M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054,
pp. 160–164. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40196-1 12

[BDD+11] Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: COSMOS:
a statistical model checker for the hybrid automata stochastic logic. In:
QEST, pp. 143–144. IEEE Computer Society (2011)

[BHHK03] Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking
algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng.
29(6), 524–541 (2003)

[BLGW20] Baranov, E., Legay, A., Given-Wilson, T.: Improving secure and robust
patient service delivery. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020.
LNCS, vol. 12476, pp. 404–418 (2020)

[BtBG+20] Basile, D., ter Beek, M., Di Giandomenico, F., Gnesi, S., Fantechi, A.,
Spagnolo, G.: 30 years of simulation-based quantitative analysis tools: a
comparison experiment between möbius and UPPAAL SMC. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp. 368–384
(2020)

[CES09] Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic
verification and debugging. Commun. ACM 52(11), 74–84 (2009)

[CG04] Ciesinski, F., Größer, M.: On probabilistic computation tree logic. In:
Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.)
Validation of Stochastic Systems. LNCS, vol. 2925, pp. 147–188. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24611-4 5

[DDL+13] David, A., Du, D., Guldstrand Larsen, K., Legay, A., Mikučionis, M.:
Optimizing control strategy using statistical model checking. In: Brat, G.,
Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 352–367.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-
4 24

[DLL+11] David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for
statistical model checking of real-time systems. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 27

[GESL20] Gu, R., Enoiu, E., Seceleanu, C., Lundqvist, K.: Probabilistic mission
planning and analysis for multi-agent systems. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp. 350–367 (2020)

[HH13] Hermanns, H., Hartmanns, A.: An internet inspired approach to power
grid stability. IT Inf. Technol. 55(2), 45–51 (2013)

[HLMP04] Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate
probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004.
LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24622-0 8

[JLM+20] Jensen, P., Larsen, K.G., Mikuconis, M., Muniz, M., Poulsen, D., Jor-
gensen, K.: Fluid model-checking in UPPAAL for Covid-19. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp. 385–403 (2020)

[LS91] Kim Guldstrand Larsen and Arne Skou: Bisimulation through probabilis-
tic testing. Inf. Comput. 94(1), 1–28 (1991)

https://doi.org/10.1007/s10009-011-0201-2
https://doi.org/10.1007/978-3-642-40196-1_12
https://doi.org/10.1007/978-3-642-40196-1_12
https://doi.org/10.1007/978-3-540-24611-4_5
https://doi.org/10.1007/978-3-642-38088-4_24
https://doi.org/10.1007/978-3-642-38088-4_24
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-540-24622-0_8
https://doi.org/10.1007/978-3-540-24622-0_8

330 K. G. Larsen and A. Legay

[Oka59] Okamoto, M.: Some inequalities relating to the partial sum of binomial
probabilities. Ann. Inst. Stat. Math. 10, 29–35 (1959). https://doi.org/
10.1007/BF02883985

[SVA04] Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-
box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004.
LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-27813-9 16

[SVA05a] Sen, K., Viswanathan, M., Agha, G.A.: VESTA: a statistical model-
checker and analyzer for probabilistic systems. In: QEST, pp. 251–252.
IEEE Computer Society (2005)

[SVA05b] Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of
stochastic systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 266–280. Springer, Heidelberg (2005). https://doi.
org/10.1007/11513988 26

[Wal45] Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat.
16(2), 117–186 (1945)

[You05a] Younes, H.L.S.: Verification and planning for stochastic processes with
asynchronous events. Ph.D. thesis, Carnegie Mellon (2005)

[You05b] Younes, H.L.S.: Ymer: a statistical model checker. In: Etessami, K., Raja-
mani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer,
Heidelberg (2005). https://doi.org/10.1007/11513988 43

[Zul14] Zuliani, P.: Statistical model checking for biological applications. Int.
J. Softw. Tools Technolo. Transfer 17(4), 527–536 (2014), CoRR,
abs/1405.2705, https://doi.org/10.1007/s10009-014-0343-0

https://doi.org/10.1007/BF02883985
https://doi.org/10.1007/BF02883985
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/11513988_26
https://doi.org/10.1007/11513988_26
https://doi.org/10.1007/11513988_43
https://doi.org/10.1007/s10009-014-0343-0

Statistical Model Checking: Black
or White?

Pranav Ashok(B), Przemys�law Daca, Jan Křet́ınský(B),
and Maximilian Weininger(B)

Technical University of Munich, Munich, Germany
ashok@in.tum.de, jan.kretinsky@tum.de, maxi.weininger@tum.de

Abstract. One of the advantages of statistical model checking (SMC)
is its applicability to black-box systems. In this paper, we discuss the
advantages gained when SMC is applied to white-box systems, utilizing
the knowledge of their internals. We focus on the setting of unbounded-
horizon properties such as reachability or LTL. We compare our app-
roach to other statistical and numerical techniques both conceptually as
instantiations of the same framework, and experimentally. It not only
clearly preserves scalability advantages of black-box SMC compared to
classical model checking (while providing high level of guarantees), but
it also scales yet better than either of the two for a wide class of models.

1 Introduction

Classical probabilistic verification techniques rely on iterative approximation
algorithms for linear equation systems and linear programs, such as value iter-
ation (VI), e.g. [Put14]. However, the scalability of such numeric analyses is
severely limited, compared to standard non-quantitative (hardware or software)
verification, since exact transformations, such as abstraction or partial-order
reduction, are more difficult to use. Consequently, weaker guarantees such as
probably approximately correct (PAC) results become acceptable even for com-
pletely known systems (white box) and not only in contexts where the system
is executable but unknown (black box), and where thus absolute guarantees are
principally impossible.

Example 1. Consider the task of model checking a reachability property of
a probabilistic communication protocol, which starts by generating a few, say k,
random bits. Thus the execution immediately branches into 2k states. If there are
only few or hard-to-find symmetries in the behaviour, standard analysis quickly
becomes infeasible. In the following, we discuss drawbacks of previously studied
alternative approaches; then we suggest a new one that overcomes the difficulties
for a wide class of models.

This research was funded in part by TUM IGSSE Grant 10.06 (PARSEC) and the Ger-
man Research Foundation (DFG) project 383882557 Statistical Unbounded Verification
(KR 4890/2-1).

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 331–349, 2020.
https://doi.org/10.1007/978-3-030-61362-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_19

332 P. Ashok et al.

The exponential state-space explosion quickly renders explicit VI unable
to propagate information by more than a single step. Besides, if the transi-
tion probabilities depend on the generated bits, even the symbolic variants of
VI [BCH+97] cannot help much. There have been two major alternatives pro-
posed, both relying on extensive use of simulations.

• (I) For large and possibly unknown systems, statistical model checking
(SMC) [YS02] reincarnates the Monte Carlo method. It runs simulations of
the system; the resulting statistics then yields confidence intervals, i.e. PAC
results. However, for unbounded-horizon properties, such as reachability or
linear temporal logic (LTL) [Pnu77], performing simulations of finite length
requires some information about the model [Kře16]:

1. Either the second eigenvalue of the transition matrix can be
bounded [LP08,YCZ10], which requires essentially the complete knowl-
edge of the system (white box) and is as hard as solving the model
checking problem, or

2. the topology of the underlying state-graph is known [YCZ10,HJB+10]
(sometimes called grey box, e.g. [AKW19]) and the whole system is pre-
processed, which beats the purpose of sublinear analysis, or

3. a bound on the minimum transition probability pmin is known as is the
case in [BCC+14,DHKP17]. This is the closest to black box, thus called
black SMC here.

In black SMC, long enough simulations can be run to ensure the system
passes from the transient to the recurrent part and reliable information on
the whole infinite run is obtained. While the a-priori length is practically
infeasible [BCC+14], early detection of recurrent behaviour has been pro-
posed [DHKP17] as follows. Based on the observed part of a simulation run,
a hypothesis on the topology of the system is made, answering what bottom
strongly connected component (BSCC) this run ends up in. With repetitive
observations of transitions over the run, the confidence grows that what cur-
rently looks as a BSCC indeed is a BSCC. Since quite a few repetitions of all
transitions in the BSCC are required, this approach turns out practical only
for systems with small BSCCs and not too small pmin.
In this paper, assuming knowledge of the system (white-box setting), we twist
the technique to a more efficient one as follows. After quickly gaining (unre-
liably low) confidence that the run entered a BSCC, we use the knowledge
of the topology to confirm this information—again very quickly since not
the whole model is built but only the local BSCC. Consequently, BSCCs are
detected fast even in the case with larger BSCCs or small pmin. As the infor-
mation used turns out quite limited, corresponding to the grey-box setting,
we call this approach grey SMC.

• (II) The other alternative to VI, now in the context or large but known sys-
tems, is the asynchronous value iteration, e.g. [BT89], a generalization of the
Gauss-Seidel method and the core of reinforcement learning and approximate
dynamic programming. There, the VI updates on states of the system are per-
formed in varying orders, in particular possibly entirely skipping some states.

Statistical Model Checking: Black or White? 333

The class of algorithms providing guarantees is represented by bounded real-
time dynamic programming (BRTDP) [MLG05,BCC+14,AKW19] where the
states to be updated at each moment are those appearing on a current sim-
ulation run. Consequently, states with low probability of visiting and thus
low impact on the overall value are ignored. While this allows for treating
very “wide” systems with lots of unimportant branches, the scalability prob-
lem persists as soon as the branching is very uniform (see also Example 5 on
Fig. 2b). From this perspective, grey SMC relaxes the rigorous approximation
in the transient part and replaces it with a statistical estimate.

Overall, grey SMC fills the gap in the following spectrum:
VI BRTDP grey SMC black SMC

analysis
analysis with simulation with

simulation
simulation inside analysis inside

On the one end, numeric analysis (VI) provides reliable results; in BRTDP, sim-
ulations are additionally used in the analysis to improve the performance while
preserving the guarantees. On the other end, simulations (SMC) provide PAC
guarantees; grey SMC then improves the performance by additional analysis in
the simulation.

Our contribution can be summarized as follows:

– We modify the black SMC for unbounded properties of [DHKP17] to perform
better in the white-box (and actually also in the so-called grey-box) setting.

– We compare our grey SMC to black SMC, BRTDP and VI both conceptually,
illustrating advantages on examples, as well as experimentally, comparing the
runtimes on standard benchmarks.

– We present all algorithms within a unified framework, which in our opinion
eases understanding and comparison, provides a more systematic insight, and
is pedagogically more valuable.

Outline of the Paper: After recalling necessary definitions in Sect. 2, we describe
and exemplify the algorithms in Sect. 3 and the respective key sub-procedure
in Sect. 4. Then we compare the algorithms and other related work in Sect. 5,
discussing the expected implications, which we confirm experimentally in Sect. 6.
For a broader account on related work on SMC in the context of unbounded-
horizon properties, we refer the interested reader to the survey [Kře16].

2 Preliminaries

A probability distribution on a finite set X is a mapping δ : X → [0, 1], such
that

∑
x∈X δ(x) = 1. The set of all probability distributions on X is denoted by

D(X).

Definition 1 (MC). A Markov chain (MC) is a tuple (S, s0, δ), where S is a
finite set of states with a designated initial state s0 ∈ S, and δ : S → D(S)

334 P. Ashok et al.

is a transition function that given a state s yields a probability distribution δ(s)
over successor states. For ease of notation, we write δ(s, t) instead of δ(s)(t) and
Post(s) := {t | δ(s, t) > 0} to denote the set of successors of a state.

The semantics of an MC is given in the usual way by the probability space on
paths. An infinite path ρ is an infinite sequence ρ = s0s1 · · · ∈ (S)ω, such that for
every i ∈ N we have si+1 ∈ Post(si). A finite path is a finite prefix of an infinite
path. The Markov chain together with a state s induces a unique probability
distribution Ps over measurable sets of infinite paths [BK08, Ch. 10].

Definition 2 (Reachability probability). For a target set T ⊆ S, we write
♦T := {s0s1 · · · | ∃i ∈ N : si ∈ T} to denote the (measurable) set of all infinite
paths which eventually reach T. For each s ∈ S, we define the value in s as

V(s) := Ps(♦T).

The reachability probability is then the value of the initial state V(s0).

The value function V satisfies the following system of equations, which is
referred to as the Bellman equations:

V(s) =

{
1 if s ∈ T
∑

s′∈S δ(s, s′) · V(s′) otherwise
(1)

Moreover, V is the least solution to the Bellman equations, see e.g. [CH08].
Certain parts of the state space are of special interest for the analysis of MC

with respect to unbounded-horizon properties, such as reachability:

Definition 3 (SCC, BSCC). A non-empty set T ⊆ S of states is strongly
connected if for every pair s, s′ ∈ S there is a path (of non-zero length) from s
to s′. Such a set T is a strongly connected component (SCC) if it is maximal
w.r.t. set inclusion, i.e. there exists no strongly connected T ′ with T � T ′. An
SCC T is called bottom (BSCC), if for all states s ∈ T we have Post(s) ⊆ T ,
i.e. no transition leaves the SCC.

Note that the SCCs of an MC are disjoint and that, with probability 1,
infinitely often reached states on a path form a BSCC.

We consider algorithms that have a limited information about the MC:

Definition 4 (Black box and grey box setting). An algorithm inputs an
MC as black box if it cannot access the whole tuple, but

– it knows the initial state,
– for a given state, it can sample a successor t according to δ(s),1

1 Up to this point, this definition conforms to black box systems in the sense of [SVA04]
with sampling from the initial state, being stricter than [YS02] or [RP09], where
simulations can be run from any desired state.

Statistical Model Checking: Black or White? 335

– it knows pmin ≤ min
s∈S,t∈Post(s)

δ(s, t), an under-approximation of the minimum

transition probability.

When input as grey box, it additionally knows the number |Post(s)| of successors
for each state s.2

3 Description of Algorithms

In this section, we describe all of the algorithms that we compare in this paper.
They all use the framework of Algorithm1. The differences are in the instanti-
ations of the functions (written in capital letters). This allows for an easy and
modular comparison.

Algorithm 1. Framework for all considered algorithms
Input: MC M, reachability objective T
Output: (An estimate of) Ps0

(♦T)
1: procedure Compute reachability probability
2: INITIALIZE
3: repeat
4: X ← GET STATES
5: UPDATE(X)
6: until TERM CRIT

3.1 Value Iteration

Value iteration (VI), e.g. [Put14], computes the value for all states in the MC.
As memory, it saves a rational number (the current estimate of the value) for
every state. In INITIALIZE, the estimate is set to 1 for target states in T and to 0
for all others. GET STATES returns the whole state space, as the estimate of all
values is updated simultaneously. The UPDATE works by performing a so called
Bellman backup, i.e.g.iven the current estimate function Li, the next estimate
Li+1 is computed by applying the Bellman Equation (1) as follows:

Li+1(s) =
∑

s′∈S

δ(s, s′) · Li(s
′)

Example 2. Consider the MC from Fig. 1a, with δ(s2, s2) = δ(s2, t) = δ(s2, s3) =
1
3 and the reachability objective {t}. The estimates that VI computes in the first 4
iterations are depicted in Fig. 1b. The target state t is initialized to 1, everything
else to 0. The estimate for s3 stays at 0, as it is a BSCC with no possibility to

2 This requirement is slightly weaker than the knowledge of the whole topology, i.e.
Post(s) for each s.

336 P. Ashok et al.

s0 s1 s2

s3

t

(a)

Iter. L(s0) L(s1) L(s2)

0 0 0 0
1 0 0 1/3

2 0 1/3 4/9

3 1/3 4/9 13/27

4 4/9 13/27 40/81

(b)

Iter. L(s2) U(s2)

0 0 1
1 0.01 0.99
2 0.029 0.980
3 0.039 0.970
4 0.048 0.961

(c)

Fig. 1. (a) Example Markov chain (b) Under approximations computed by value iter-
ation, see Example 2 (c) Under- and over-approximations computed by bounded value
iteration, see Example 3.

reach the target state. Since these two states do not change, they are omitted
in the figure. In every iteration, the estimates are updated and become more
precise, coming closer to the true value 0.5 for s0, s1 and s2. However, they
converge to 0.5 only in the limit, as for any finite number of iterations there is
a positive probability to remain in s2. Note that s0 always is two steps behind
s2, as it takes two iterations to backpropagate the current estimate.

VI converges to the true value only in the limit, hence we need some termi-
nation criterion TERM CRIT to stop when we are close enough. However, to be
certain that the estimate is close, one has to perform an exponential number of
iterations [CH08], which is infeasible. Hence, usually this version of VI does not
give convergence guarantees, but instead just runs until the difference between
two successive iterations is small. The result of this heuristic is guaranteed to be
a lower bound, but can be arbitrarily imprecise [HM18], as we will also see in
Example 3.

3.2 Bounded Value Iteration

To be able to give convergence guarantees, Bounded value iteration (BVI, also
called interval iteration) was introduced more generally for Markov decision pro-
cesses in [BCC+14,HM18]. In this paper, we only focus on Markov chains, i.e.
Markov decision processes with a single action in every state. In addition to the
under-approximation computed by VI, this approach also computes a convergent
over-approximation. For this, it stores a second rational number for every state.
Dually to the under-approximation, INITIALIZE sets the estimate to 0 in states
that cannot reach the target and 1 everywhere else. Note that finding the states
with value 0, i.e. BSCC that do not contain the target, BVI has to perform
a graph analysis, e.g. a backwards search from the targets. BVI still works on
the whole state space and the update is completely analogous to VI, only this
time updating both approximations. As TERM CRIT, BVI checks that difference
between the over- and under-approximation in the initial state is smaller than a
given precision ε. This guarantees that the returned value is ε-precise.

Statistical Model Checking: Black or White? 337

Example 3. Consider the MC from Fig. 1a with the same objective, but this time
with δ(s2, s2) = 0.98 and δ(s2, t) = δ(s2, s3) = 0.01. Note that by pre-processing
we set the over approximation U(s3) to 0, as it is a BSCC with no possibility of
reaching the target. The estimates BVI computes for s2 in the first 4 iterations
are depicted in Fig. 1c.

If we were running VI only from below, we might stop after iteration 4, as
the lower bound changes by less than 0.01 between these iterations and hence
it seems to have converged close to the value. However, the difference between
upper and lower bounds is still very high, so BVI knows that there still is a huge
uncertainty in the values, as it could be anything between 0.048 and 0.961. Even-
tually, both estimates converge close enough to 0.5; for example, after around
400 iterations the lower bound is 0.49 and the upper bound 0.51. Then BVI can
return the value 0.5 (the center of the interval) with a precision of 0.01, as this
value is off by at most that.

3.3 Simulation-Based Asynchronous Value Iteration

The biggest drawback of the two variants we introduced so far is that they
always work on the whole state space. Because of the state-space explosion,
this is often infeasible. In contrast, asynchronous value iteration only updates
parts of the state space in every iteration of the loop, i.e. GET STATES does
not return the whole state space, but instead heuristically selects the states to
update next. This not only speeds up the main loop, but also allows the algo-
rithm to reduce the memory requirements. Indeed, instead of storing estimates
for all states, one stores estimates only for the partial model consisting of pre-
viously updated states. In [BBS95,MLG05,BCC+14], the heuristic for selecting
the states is based on simulation: a path is sampled in the model, and only the
states on that path are updated. The partial model contains all states that have
been encountered during some of the simulations. If the part of the state space
that is relevant for convergence of value iteration is small, this can lead to enor-
mous speed-ups [BCC+14,KM19]. For more details on why this happens and a
formal definition of ’state space relevant for convergence’, we refer the interested
reader to [KM19].

Algorithm 2. Simulation-based implementation of GET STATES
Input: MC M, reachability objective T, s0
Output: A set of states X ⊆ S
1: procedure SIMULATE
2: ρ ← s0
3: repeat
4: s′ ← sample from δ(last(ρ)) according to NEXT STATE
5: ρ ← ρs′

6: until last(ρ) ∈ T or STUCK
7: return ρ

338 P. Ashok et al.

s0

s1 s2 t

1− ε

ε

(a)

s0

s1

s2

.

.

.
sn

ε

ε

ε

(b)

Fig. 2. (a) A Markov chain where exploring the whole state space can be avoided. ε
denotes a transition probability. The cloud represents an arbitrarily large state space.
(b) A Markov chain with high branching. From s0, there is a uniform probabilistic
choice with n = 1

ε
successors.

Algorithm 2 shows how states can be sampled through simulations, as done
in [BCC+14]: Starting from the initial state, in every step of the simulation a
successor is chosen from the distribution of the last state on the path. Note
that this choice depends on another heuristic NEXT STATE. The successor
can be chosen according to the transition probabilities δ, but it has proven to
be advantageous to additionally consider the difference between the upper and
lower bound in the successor states [MLG05,BCC+14]. In consequence, states
where we already know a lot (under- and over-approximations are close to each
other) are given less priority than states where we still need information.

The simulation is stopped in two cases: Either (i) it reaches a target state
or (ii) it is stuck in a BSCC with no path to the target. Different heuristics for
checking whether the simulation is stuck are discussed in depth in Sect. 4. Note
that being able to differentiate between targets and non-target BSCCs during the
simulations allows us not to do anything in INITIALIZE; we can set the value to 1
when reaching a target and 0 in the other case. The UPDATE function for simu-
lation based asynchronous value iteration again uses the Bellman equation (1) to
update the estimates of all states on the path; moreover, it can utilize additional
information: Since GET STATES returns a path, there is a notion of order of the
states. Updating the states in reverse order backpropagates information faster.

Example 4. Consider the MC in Fig. 2a, again with reachability objective {t}.
The cloud represents an arbitrarily large state space. However, since it is only
reachable with a very small probability ε (and we are interested in an ε-precise
solution), it need not be explored. Let the first sampled path be s0s1s2t. This
happens with high probability, as the only other possibility would be to select
a successor from the cloud in state s0, but since the selection process depends
on the transition probabilities δ , going to s1 has a higher probability. After the

Statistical Model Checking: Black or White? 339

simulation reaches t, this value is backpropagated in reverse order. First the
lower estimate L(s2) is set to 1, then L(s1) is set to 1, then L(s0) is set to 1 − ε.
At this point the algorithm has converged, as difference between the lower and
upper bound is ε.

So in this example, sampling the most probable path a single time gives a
good approximation. The algorithm avoids exploring the large cloud and back-
progagates values faster than synchronous VI.

Example 5. As an adversarial example, consider the MC in Fig. 2b. Here, the
model exhibits high branching, so every single path has a low probability, and
only by aggregating all paths we actually get a high value. Unlike the previous
example, there is no part of the state space that is clearly irrelevant. In fact,
to achieve precision of ε the algorithm has to see so many paths that their
cumulative probability is 1 − ε, which in this case means seeing all but one
transition from the starting state. This needs at least 1

ε simulations, but since
the successors are chosen probabilistically, most likely a lot more.

Note that similarly to synchronous VI, there are versions of asynchronous VI
without (RTDP [BBS95]) and with (BRTDP [MLG05,BCC+14])3 guaranteed
error bounds.

3.4 Statistical Model Checking

Algorithms for statistical model checking (SMC), [YS02], are different from all
previously described ones in two ways, namely what they store and what they
return. The VI-based algorithms store estimates for every (seen) state and they
update these values to be ever more precise. Thus, the returned bounds on the
values are certainly correct, although possibly quite loose. In contrast, SMC
stores only a single accumulator (for the value of the initial state) and the
returned value is probably approximately correct (PAC [Val84]). Being PAC
with probability α and approximation ε > 0 guarantees the following: with high
probability (α), the returned value is close to the true value (off by at most ε).
However, the returned confidence interval is not guaranteed to be a valid under-
and over-approximation; if we are unlucky (i.e. with the remaining probability
1 − α), there is no guarantee whatsoever on the returned value.

SMC does not need to do anything in INITIALIZE. It only stores a single
accumulator to remember how often a target state was reached. GET STATES
works as in Algorithm 2 with NEXT STATE typically sampling the successor
according to the transition probabilities δ (in some settings, importance sampling
may also be possible, e.g. [JLS12,BDH17]). UPDATE remembers whether we
reached the target or not; in the end we can divide the number of reaches by
the total number of samples to get the probability estimate. TERM CRIT is a
(typically low) number of samples that depends on the required probability of

3 While all are more generally applicable to Markov decision processes, [MLG05] only
ensures convergence if no end components [BK08] are present (for MC, no BSCCs
without a target are present) and [BCC+14] lifts this restriction.

340 P. Ashok et al.

the guarantee and the width of the confidence interval; see [DHKP17, Section 2.2]
for details or [JSD19] for more advanced techniques.

Example 6. Consider again the MC depicted in Fig. 1a. Let the first sampled
path be s0s1s2s2t. At this point the simulation stops, as we have reached a
target state, and we remember that we have seen a target once. Let the second
path be s0s1s2s2s2s3s3 On the one hand, the STUCK function has to let the
simulation continue, even though s2 is seen 3 times and it looks like a cycle. On
the other hand, it has to detect that the simulation will loop forever in s3 and
has to stop it. Ways to detect this are discussed in Sect. 4. After detecting that
we are stuck, we remember that the simulation did not reach the target.

Let the required probability of the guarantee be α = 0.9 and the width of
the confidence interval ε = 0.1. Using Hoeffding’s inequality [Hoe63] we can
show that the required number of samples for this is 461. So assume that after
461 simulations we have seen the target 223 times. Then we know that with
probability at least 0.9, the value is in the interval 223/461±0.05, i.e. [0.434, 0.534].
Increasing the number of simulations can both increase the confidence or decrease
the width of the interval.

Note that this number of simulations is independent of the system. While
461 simulations are a lot for this small system, the number would be the same
if we were considering a model with several billion states where value iteration
is impossible.

4 STUCK

In this section, we discuss heuristics for detecting whether a simulation is stuck
in a BSCC with no path to a target state. We also propose one new such heuristic
with convenient theoretical properties.

For simulation-based asynchronous value iteration, previous work either
excluded the existence of non-target BSCCs in their assumptions [BBS95,
MLG05] or used a heuristic with no false negatives, but the possibility of false
positives [BCC+14]. This means that if the simulation is stuck in a BSCC, the
simulation definitely is stopped, which is required for termination. However, if the
simulation is not stuck in a BSCC, it might still be stopped, guessing the value
of the last state in the path is 0, although it might not be. The STUCK-heuristics
used in previous work either depend on the path length ([BCC+14,Ujm15,
Chapter 7.5]) or simply stops exploring when any state is seen twice [AKW19,
Appendix A.3].

SMC has to be sure with high probability that the simulation is stuck, as
otherwise it loses the probabilistic guarantee. In [YCZ10], two approaches are
described. The first approach requires knowledge of the second eigenvalue of the
MC in order to guarantee asymptotic convergence. However, getting the second
eigenvalue is as hard as the verification problem itself. The second approach
works in the grey-box setting and pre-processes the MC so that all potentially
infinite paths are eliminated. A similar transformation, using white-box informa-

Statistical Model Checking: Black or White? 341

tion, was suggested in [HJB+10]. However, both of these approaches transform
the whole model and thus face problems in the case of very large models.

An alternative was suggested in [DHKP16]. It monitors the finite path sam-
pled during the simulation, implicitly constructing a graph with all seen states as
nodes and all seen transitions as edges. The candidate of the current path is the
(possibly empty) set of states forming the maximal BSCC of this graph. Intu-
itively, it is what we believe to be a BSCC given the observation of the current
simulation. This candidate has to be validated, because as we saw in Example 6,
a state set can look like a BSCC for several steps before being exited. In the
black-box setting, this validation works by continuing the simulation until the
probability of overlooking some transition exiting the candidate becomes very
small [DHKP16].

In this paper, we pinpoint that in the grey-box or white-box setting, this
costly type of validation is not necessary. Instead of validating the candidate
by running around in it for a huge number of steps, one can verify it using the
additional information on the model. If no successor of any state in the candidate
is outside of the candidate, then it indeed is a BSCC. Formally, for a candidate
T , we check that {s | ∃t ∈ T : s ∈ Post(t)} ⊆ T (if the topology is known),
or alternatively that ∀t ∈ T : |P̂ost(t)| = |Post(t)| (in what we defined as the
grey-box setting) where P̂ost yields the number of successors within the observed
candidate.

Example 7. Consider again the MC depicted in Fig. 1a. When a simulation enters
s3, STUCK should return true in order to stop the simulation, as it has reached a
BSCC with no path to a target. In the black box setting of [DHKP16], this is only
possible after continuing the simulation for another huge amount of steps. For
example, even in a BSCC with only a single state, hundreds of further steps can
be necessary to reach the required confidence. Given the grey-box information,
the algorithm can determine that all successors of the states in the candidate
({s3}) have been seen and conclude that the candidate is indeed a BSCC.

However, this check stops the simulation and can incur an overhead if there
are many SCCs in the transient part of the state space. Hence, we can delay it,
not checking at the first occurrence of a cycle, but e.g. only when every state in
the candidate has been seen twice. Alternatively, one can only allow the check
every n (e.g. hundred) steps of the simulation. Depending on the model and the
implementation of the algorithm, these heuristics can have some impact on the
runtime.

Furthermore, one might modify this heuristic even further. If a state of the
BSCC is only reached with low probability, it takes many steps for the simulation
to reach it. When we check whether the current candidate is a BSCC, this
state might not have occurred in the simulation yet. Instead of concluding that
the information is insufficient and the simulation has to continue, one could
deterministically explore the unknown successors and compute the BSCC. On
the one hand, for small to medium sized BSCCs, this could result in a speed-up.
On the other hand, it increases the overhead when transient SCCs are checked

342 P. Ashok et al.

by STUCK. Consequently, in the available benchmarks, this heuristic did not
prove advantageous. Hence we do not even report on it in the evaluation section.

5 Discussion

5.1 Dependency of Simulation Length on Topology

Although the number of samples in SMC is independent of the model size, the
length of the simulations is highly dependent on the model size and even more
on the structure. Indeed, any kind of cyclic behaviour in the transient part
of the state space increases the simulation time for two reasons. Firstly, the
simulation loops in transient SCCs and does not make progress towards a target
or a BSCC. Secondly, the check whether the simulation is stuck in transient
SCCs incurs an overhead. An adversarial handcrafted worst-case example where
simulations struggle is given in [HM18, Figure 3]. Moreover, the structure of
BSCCs affects the length of the simulation. For cyclic BSCCs, the simulation
easily encounters all states of the BSCC and can quickly terminate. For more
complex topologies, some states are typically only seen with very low frequency
and thus the simulation takes longer.

If the model exhibits many transient SCCs, using any simulation-based tech-
nique is problematic.

5.2 Black, Grey and White SMC

The difference between the variants of SMC we report on are their knowledge
of the transition system: pmin corresponds to black, the number of successors to
grey and the exact successors and probabilities to the white-box setting. This
information can be used in the STUCK-check; apart from that, the algorithms
are the same.

Comparing grey and black box, it is apparent that simulations in grey box
can be much shorter, as upon detection of a candidate that is a BSCCs the
simulation is immediately stopped, whereas in the black box setting it has to
continue for a number of steps. This number of steps depends on two things: (i)
The size of the BSCC, as larger BSCC take longer to explore, especially since all
states, no matter how improbable, need to be seen a certain amount of times,
and (ii) the given under-approximation of the minimum transition probability
pmin, as this determines how often every state in the candidate has to be seen
until the probability of a false positive is small enough.

Thus, for large BSCCs or small pmin, grey SMC is clearly better, as we also
experimentally validate in Table 3 (large BSCC) and Table 2 (various pmin) in
the next section. For small BSCCs (e.g. only of size 1) and not so small pmin,
black and grey SMC become more comparable, but grey SMC still has shorter
simulations. However, practically, the overhead of verifying the candidates in
grey SMC can be so large that black SMC can even be slightly faster than grey
SMC (see e.g., leader6 11 in Table 1).

Statistical Model Checking: Black or White? 343

Heuristically reducing the number of checks in grey SMC (as described in
Sect. 4) can make it faster again, but the effectiveness of the heuristics depends
on the models. So, if it is known that the BSCC-detection is very easy for black
SMC (e.g. they are of size 1 or cyclic and pmin is not too small), black SMC can
be a viable choice. However, as black SMC is never far better, using grey SMC
is the safer variant when facing models with uncertain topology.

5.3 Comparison of Algorithms

Finally, we compare the (dis-)advantages of the different algorithms, giving a
practical decision guidance. If hard guarantees are required, then BVI or BRTDP
are to be used. The latter is simulation based, and thus good if only a small part
of the state space is relevant for convergence. Additionally, if the model is too
large for BVI, BRTDP still has a chance, but quite possibly the partial model
will also be too large. Conversely, if the model contains lots of transient SCCs,
BVI is preferable, as simulation based approaches fail on this kind of model, see
Sect. 5.1. Note that, if there are small probabilities present, it might take very
long for BVI and BRTDP to converge, see Example 3.

For a quick estimate, or if PAC guarantees are sufficient, or if the system is
too large, so that it is not possible to provide hard guarantees, SMC is to be
used, if possible (white or grey box setting) in our grey variant. As both the
memory and the termination criterion are independent of the size of the system,
SMC always has a chance to yield an estimate, which additionally comes with a
probabilistic guarantee.

There is no case in which un-guaranteed (synchronous or asynchronous) VI
are preferable, as they suffer from the same drawbacks as BVI and BRTDP, but
additionally do not provide guarantees. Whenever hard guarantees are not of
interest and the system is not strongly connected, grey SMC should be used for
a quick estimate.

5.4 Extensions to Other Unbounded-Horizon Properties

For more complex unbounded-horizon properties [BK08], such as Until (avoid-
reach), LTL or long-run average reward, (B)VI pre-processes the state space
to analyze the BSCCs [BK08] and BRTDP [BCC+14] can either do the same
or analyze the encountered BSCCs only. Black SMC of [DHKP17] is applicable
through additional analysis of the BSCC candidates after they have been found
likely to be BSCCs. This is directly inherited by grey SMC and makes it available
for these specifications with low overhead.

6 Experimental Evaluation

We implemented grey SMC in a branch of the PRISM Model Checker [KNP11]
extending the implementation of black SMC [DHKP17]. We ran experiments on
(both discrete- and continuous-time) Markov chains from the PRISM Benchmark

344 P. Ashok et al.

Table 1. Runtime (in seconds) comparison of black and grey SMC for various bench-
marks. BVI runtimes are also presented as a baseline.

Model/property Size pmin BSCC (no.,
max. size)

SMC BVI

Black Grey

bluetooth(10)time qual >569K 7.81× 10−3 >5.8K, 1 9 7 TO

brp nodl(10K,10K)p1 qual >40M 1× 10−2 >4.5K, 1 86 84 TO

crowds nodl(8,20)positive qual 68M 5× 10−2 >3K, 1 10 8 TO

egl(20,20)unfairA qual 1719T 5× 10−1 1, 1 43 25 TO

gridworld(400,0.999)prop qual 384M 1× 10−3 796, 160K 15 8 TO

herman-174tokens 10G 4.7× 10−7 1, 34 TO 73 98

leader6 11elected qual >280K 5.6× 10−7 1, 1 106 152 OOM

nand(50,3)reliable qual 11M 2× 10−2 51, 1 11 10 455

tandem(2K)reach qual >1.7M 2.4× 10−5 1, >501K 7 7 62

Suite [KNP12a]. In addition to a comparison to black SMC, we also provide
comparisons to VI and BVI of PRISM and BRTDP of [BCC+14]. An interested
reader may also want to refer [DHKP17, Table II] for a comparison of black
SMC against two unbounded SMC techniques of [YCZ10].

For every run configuration, we run 5 experiments and report the median.
In black SMC, the check for candidates is performed every 1000 steps during
path simulations, while in grey SMC the check is performed every 100 steps.
Additionally, grey SMC checks if a candidate is indeed a BSCC once every state
of the candidate is seen at least twice. In all our tables, ‘TO’ denotes a timeout
of 15 min and ‘OOM’ indicates that the tool ran out of memory restricted to
1GB RAM.

6.1 Comparison of Black and Grey SMC

Table 1 compares black SMC and grey SMC on multiple benchmarks. One can see
that, except in the case of leader6 11 and brp nodl, grey SMC finishes atleast
as soon as black SMC. In bluetooth, gridworld, leader and tandem, both
the SMC methods are able to terminate without encountering any candidate
(i.e. either the target is seen or the left side of the until formula is falsified).
In brp nodl, crowds nodl and nand, the SMC methods encounter a candidate,
however, since the candidate has only a single state (all BSCCs are trivial),
black SMC is quickly able to confidently conclude that the candidate is indeed a
BSCC. The only interesting behaviour is observed on the herman-17 benchmark.
In this case, every path eventually encounters the only BSCC existing in the
model. Grey SMC is able to quickly conclude that the candidate is indeed a
BSCC, while black SMC has to sample for a long time in order to be sufficiently
confident.

Statistical Model Checking: Black or White? 345

Table 2. Effect of pmin on black SMC runtimes (in seconds) on some of the benchmarks.
Lower pmin demands stronger candidates, due to which black SMC has to sample longer
paths.

Model Black SMC/pmin Grey SMC

1 × 10−2 1 × 10−3 1 × 10−4 1 × 10−5

brp nodl(10K,10K) 86 93 183 TO 84

crowds nodl(8,20) 11 41 334 TO 9

egl(20,20) 47 106 875 TO 44

The performance of black SMC is also a consequence of the pmin being quite
small. Table 2 shows that black SMC is very sensitive towards pmin. Note that
grey SMC is not affected by the changes in pmin as it always checks whether a
candidate is a BSCC as soon as all the states in the candidate are seen twice.

6.2 Grey SMC vs. Black SMC/BRTDP/BVI/VI

We now look more closely at the self-stabilization protocol herman [KNP12b,
Her90]. The protocol works as follows: herman-N contains N processes, each
possessing a local boolean variable xi. A token is assumed to be in place i if
xi = xi−1. The protocol proceeds in rounds. In each round, if the current values
of xi and xi−1 are equal, the next value of xi is set uniformly at random, and
otherwise it is set equal to the current value of xi−1. The number of states in
herman-N is therefore 2N . The goal of the protocol is to reach a stable state
where there is exactly one token in place. For example, in case of herman-5, a
stable state might be (x1 = 0, x2 = 0, x3 = 1, x4 = 0, x5 = 1), which indicates
that there is a token in place 2. In every herman model, all stable states belong
to the single BSCC. The number of states in the BSCC range from 10 states in
herman-5 to 2,000,000 states in herman-21.

For all herman models in Table 3, we are interested in checking if the prob-
ability of reaching an unstable state where there is a token in places 2–5, i.e.
(x1 = 1, x2 = 1, x3 = 1, x4 = 1, x5 = 1) is less than 0.05. This property, which
we name 4tokens, identifies 2N−5 states as target in herman-N. The results in
Table 3 show how well grey SMC scales when compared to black SMC, BRTDP,
BVI4 and VI. Black SMC times out for all models where N ≥ 11. This is due
to the fact that the larger models have a smaller pmin, thereby requiring black
SMC to sample extremely long paths in order to confidently identify candidates
as BSCCs. BVI and VI perform well on small models, but as the model sizes
grow and transition probabilities become smaller, propagating values becomes
extremely slow. Interestingly, we found that in both grey SMC and black SMC,
approximately 95% of the time is spent in computing the next transitions, which

4 We refrain from comparison to other guaranteed VI techniques such as sound
VI [QK18] or optimistic VI [HK19] as the implementations are not PRISM-based
and hence would not be too informative in the comparison.

346 P. Ashok et al.

Table 3. Runtime (in seconds) of the various algorithms on the Herman self-
stabilization protocol [KNP12b] with the property 4tokens. The median runtimes are
reported for grey SMC, black SMC [DHKP17], BRTDP [BCC+14], Bounded value
iteration (BVI) and Value iteration (VI). The SMC algorithms use SPRT method with
parameters α = 0.01 and β = 0.01. BRTDP, BVI and VI run until a relative error of
0.01 is obtained.

Model States Grey SMC Black SMC BRTDP BVI VI

herman-5 32 11 15 TO 1 1

herman-7 128 12 57 TO 1 1

herman-9 512 10 775 TO 1 1

herman-11 2048 19 TO TO 1 1

herman-13 8192 18 TO TO 1 1

herman-15 33K 17 TO TO 9 3

herman-17 131K 49 TO TO 98 21

herman-19 524K 252 OOM TO 602 113

herman-21 2M 759 OOM OOM TO TO

grow exponentially in number; an improvement in the simulator implementation
can possibly slow down the blow up in run time, allowing for a fairer comparison
with the extremely performant symbolic value iteration algorithms.

Finally, we comment on the exceptionally poor performance of BRTDP on
herman models. In Table 4, we run BRTDP on three different properties: (i)
tokens in places 2–3 (2tokens); (ii) tokens in places 2–4 (3tokens); and (iii)
tokens in places 2–5 (4tokens). The number of states satisfying the property
decrease when going from 2 tokens to 4 tokens. The table shows that BRTDP is
generally better in situations where the target set is larger.

In summary, the experiments reveal the following:

– For most benchmarks, black SMC and grey SMC perform similar, as seen in
Table 1. As expected, the advantages of grey SMC do not show up in these
examples, which (almost all) contain only trivial BSCCs.

– The advantage of grey SMC is clearly visible on the herman-N benchmarks,
in which there are non-trivial BSCCs. Here, black SMC quickly fails while
grey SMC is extremely competitive.

– Classical techniques such as VI and BVI fail when either the model is too
large or the transition probabilities are too small. However, they are still to
be used for strongly connected systems, where the whole state space needs to
be analysed for every run in both SMC approaches, but only once for (B)VI.

Statistical Model Checking: Black or White? 347

Table 4. Effect of restrictive properties (satisfied in fewer states) on the runtime (in
seconds) of BRTDP in the herman benchmarks.

Model Property

2tokens 3tokens 4tokens

herman-5 1 2 TO

herman-7 1 1 TO

herman-9 1 2 TO

herman-11 2 2 TO

herman-13 2 2 TO

herman-15 3 3 TO

herman-17 5 6 TO

herman-19 9 9 TO

herman-21 104 111 TO

herman-23 OOM OOM OOM

7 Conclusion

While SMC has found its use also in the white-box setting as a scalable alter-
native, we introduce the first approach that utilizes the knowledge in a local
way, without globally processing the state space, and thus preserves the effi-
cency advantages of black-box SMC. We call this approach grey SMC since we
utilize only the topological information and not the quantitative information
(sometimes referred to as grey box). On the one hand, this is useful as the
quantitative information is often unavailable or imprecise w.r.t. the modelled
reality. On the other hand, while the full quantitative information is irrelevant
in BSCCs, it plays a major role in the transient phase and could be used to
further enhance the approach. For instance, it could be used for importance
sampling in order to handle rare events efficiently [JLS12,BDH17] even in the
context of unbounded-horizon properties.

References

[AKW19] Ashok, P., Křet́ınský, J., Weininger, M.: PAC statistical model checking for
Markov decision processes and stochastic games. In: Dillig, I., Tasiran, S.
(eds.) CAV 2019. LNCS, vol. 11561, pp. 497–519. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25540-4 29

[BBS95] Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time
dynamic programming. Artif. Intell. 72(1–2), 81–138 (1995)

[BCC+14] Brázdil, T., et al.: Verification of Markov decision processes using learning
algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol.
8837, pp. 98–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-11936-6 8

https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8

348 P. Ashok et al.

[BCH+97] Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska, M.,
Ryan, M.: Symbolic model checking for probabilistic processes. In: Degano,
P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol.
1256, pp. 430–440. Springer, Heidelberg (1997). https://doi.org/10.1007/
3-540-63165-8 199

[BDH17] Budde, C.E., D’Argenio, P.R., Hartmanns, A.: Better automated impor-
tance splitting for transient rare events. In: Larsen, K.G., Sokolsky, O.,
Wang, J. (eds.) SETTA 2017. LNCS, vol. 10606, pp. 42–58. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69483-2 3

[BK08] Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cam-
bridge (2008)

[BT89] Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation:
Numerical Methods. Prentice-Hall Inc., Upper Saddle River (1989)

[CH08] Chatterjee, K., Henzinger, T.A.: Value iteration. In: Grumberg, O., Veith,
H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 107–138.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69850-0 7

[DHKP16] Daca, P., Henzinger, T.A., Křet́ınský, J., Petrov, T.: Faster statistical model
checking for unbounded temporal properties. In: Chechik, M., Raskin, J.-
F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 112–129. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49674-9 7

[DHKP17] Daca, P., Henzinger, T.A., Kret́ınský, J., Petrov, T.: Faster statistical model
checking for unbounded temporal properties. ACM Trans. Comput. Log.
18(2), 12:1–12:25 (2017)

[Her90] Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67
(1990)

[HJB+10] He, R., Jennings, P., Basu, S., Ghosh, A.P., Wu, H.: A bounded statistical
approach for model checking of unbounded until properties. In: ASE, pp.
225–234 (2010)

[HK19] Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. CoRR,
abs/1910.01100 (2019)

[HM18] Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and
IMDPs. Theor. Comput. Sci. 735, 111–131 (2018)

[Hoe63] Hoeffding, W.: Probability inequalities for sums of bounded random vari-
ables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)

[JLS12] Jegourel, C., Legay, A., Sedwards, S.: Cross-entropy optimisation of impor-
tance sampling parameters for statistical model checking. In: Madhusudan,
P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 327–342. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 26

[JSD19] Jégourel, C., Sun, J., Dong, J.S.: Sequential schemes for frequentist esti-
mation of properties in statistical model checking. ACM Trans. Model.
Comput. Simul. 29(4), 25:1–25:22 (2019)

[KM19] Křet́ınský, J., Meggendorfer, T.: Of cores: a partial-exploration framework
for Markov decision processes. (2019, Submitted)

[KNP11] Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of prob-
abilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1 47

[KNP12a] Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite.
In: QEST, pp. 203–204. IEEE Computer Society (2012)

https://doi.org/10.1007/3-540-63165-8_199
https://doi.org/10.1007/3-540-63165-8_199
https://doi.org/10.1007/978-3-319-69483-2_3
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-662-49674-9_7
https://doi.org/10.1007/978-3-642-31424-7_26
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

Statistical Model Checking: Black or White? 349

[KNP12b] Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic verification of
Herman’s self-stabilisation algorithm. Formal Asp. Comput. 24(4–6), 661–
670 (2012). https://doi.org/10.1007/s00165-012-0227-6

[Kře16] Křet́ınský, J.: Survey of statistical verification of linear unbounded prop-
erties: model checking and distances. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016. LNCS, vol. 9952, pp. 27–45. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-47166-2 3

[LP08] Lassaigne, R., Peyronnet, S.: Probabilistic verification and approximation.
Ann. Pure Appl. Logic 152(1–3), 122–131 (2008)

[MLG05] Mcmahan, H.B., Likhachev, M., Gordon, G.J.: Bounded real-time dynamic
programming: RTDP with monotone upper bounds and performance guar-
antees. In: ICML 2005, pp. 569–576 (2005)

[Pnu77] Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
[Put14] Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic

Programming. Wiley, Hoboken (2014)
[QK18] Quatmann, T., Katoen, J.-P.: Sound value iteration. In: Chockler, H., Weis-

senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 643–661. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 37

[RP09] El Rabih, D., Pekergin, N.: Statistical model checking using perfect sim-
ulation. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp.
120–134. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
04761-9 11

[SVA04] Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-
box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS,
vol. 3114, pp. 202–215. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27813-9 16

[Ujm15] Ujma, M.: On verification and controller synthesis for probabilistic systems
at runtime. Ph.D. thesis, University of Oxford, UK (2015)

[Val84] Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142
(1984)

[YCZ10] Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of prob-
abilistic properties with unbounded until. In: Davies, J., Silva, L., Simao,
A. (eds.) SBMF 2010. LNCS, vol. 6527, pp. 144–160. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19829-8 10

[YS02] Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event
systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.)
CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45657-0 17

https://doi.org/10.1007/s00165-012-0227-6
https://doi.org/10.1007/978-3-319-47166-2_3
https://doi.org/10.1007/978-3-319-47166-2_3
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1007/978-3-642-04761-9_11
https://doi.org/10.1007/978-3-642-04761-9_11
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-642-19829-8_10
https://doi.org/10.1007/3-540-45657-0_17

Probabilistic Mission Planning
and Analysis for Multi-agent Systems

Rong Gu(B), Eduard Enoiu, Cristina Seceleanu(B), and Kristina Lundqvist

Mälardalen University, Väster̊as, Sweden
{rong.gu,eduard.enoiu,cristina.seceleanu,kristina.lundqvist}@mdh.se

Abstract. Mission planning is one of the crucial problems in the design
of autonomous Multi-Agent Systems (MAS), requiring the agents to cal-
culate collision-free paths and efficiently schedule their tasks. The com-
plexity of this problem greatly increases when the number of agents
grows, as well as timing requirements and stochastic behavior of agents
are considered. In this paper, we propose a novel method that inte-
grates statistical model checking and reinforcement learning for mission
planning within such context. Additionally, in order to synthesise mis-
sion plans that are statistically optimal, we employ hybrid automata to
model the continuous movement of agents and moving obstacles, and
estimate the possible delay of the agents’ travelling time when facing
unpredictable obstacles. We show the result of synthesising mission plans,
analyze bottlenecks of the mission plans, and re-plan when pedestrians
suddenly appear, by modelling and verifying a real industrial use case in
UPPAAL SMC.

Keywords: MAS · Mission planning · Q-learning · Statistical model
checking

1 Introduction

Multi-Agent Systems (MAS) draw a wide interest in academia and industry,
mostly due to their autonomous functions that ease people’s daily lives and
improve industrial productivity. Mission planning for MAS involves path plan-
ning and task scheduling, and is one of the most critical problems when designing
such systems [4]. There are path-planning algorithms that have already proved
useful for autonomous systems, e.g., RRT [15] and Theta* [5]. These algorithms
are able to calculate collision-free paths towards a destination, yet they do
not consider complex requirements and uncertainties in the environment. For
instance, if agents need to prioritize or repetitively execute some tasks, path
planning is not enough. In addition, when the task execution time is uncertain,
or some moving objects such as humans and other machines appear irregularly
in the environment, autonomous agents need to consider these factors when
synthesising mission plans so that the resulting plans are comprehensive. Task
scheduling algorithms are designed to solve the above problems. However, since
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 350–367, 2020.
https://doi.org/10.1007/978-3-030-61362-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_20

Probabilistic Mission Planning and Analysis for Multi-agent Systems 351

task scheduling is an NP-hard problem, when the number of agents becomes
large, traditional methods cannot manage to produce a result even for a simple
instance with very restrictive constraints [1].

In our previous work, we have formally defined and modeled the movement
and task execution of MAS [9], and proposed a combined model-checking and
reinforcement learning method [10], to synthesise mission plans that are proved
to satisfy complex requirements obtained from industry. However, when the
agents perform some uncertain actions, e.g., unstable time of moving and oper-
ating, or the environment contains some stochastic phenomena, e.g., humans
crossing the roads unpredictably, the proposed method does not provide quan-
titative verification and analysis, which is best suited in these cases.

In this paper, we propose an adjusted version of our method called MCRL

(Model Checking + Reinforcement Learning) [10] to provide a means of syn-
thesizing and analyzing mission plans for MAS with uncertainties of the type
mentioned above. The method is based on Stochastic Timed Automata (STA)
and statistical model checking (by employing UPPAAL SMC), and combines the
latter with reinforcement learning. Instead of exhaustively exploring the state
space of the model and looking for the execution traces that satisfy certain
requirements, MCRL uses the simulation function of UPPAAL SMC to execute the
model. Then, it adopts a reinforcement learning algorithm, namely Q-learning
[21], to accumulate the rewards of the state-action pairs gathered in the simula-
tion, and populate a Q-table that is used to guide the agents to move safely and
finish tasks within a prescribed time limit. As the STA describe the stochastic
behavior of the agents and uncertain events in the environment by probability
distributions, based on which the simulation is executed, the collected state-
action pairs reflect the possible scenarios that the agents would probably meet
in the environment. Therefore, as long as the simulation generates enough data,
the synthesised mission plans are comprehensive and optimal.

To estimate the possible delays of executing mission plans when the agents
encounter unexpected situations, e.g., pedestrians, we adopt a hybrid-automata
(HA) model of the agents that are equipped with a state-of-the-art collision-
avoidance algorithm based on dipole flow fields [19]. By simulating and statis-
tically verifying the HA model, we can get the estimated travelling time of the
agents [11], respectively, which is then used to construct the STA model that is
used for synthesising mission plans. Next, statistical verification and simulation
of the STA are conducted in UPPAAL SMC in order to analyze the synthesised
mission plans in an environment model containing uncertainties, which is not
feasible by purely using reinforcement learning algorithms. To summarize, the
contributions of this paper are:

– An innovative approach based on MCRL for synthesizing and analyzing mis-
sion plans for MAS that exhibit stochastic behavior.

– An effective combination of the STA and HA models of MAS, which enables
the estimation of travelling time considering unexpected situations, and thus
produces comprehensive mission plans.

352 R. Gu et al.

(a) A STA modeling passengers (b) A STA modeling an airport

Fig. 1. STA modeling a scenario of passengers arriving at an airport and taking off

– An evaluation of the method showing the ability of analyzing the bottleneck
of mission plans and re-planning when facing unpredictable moving obstacles.

The remainder of the paper is organized as follows. In Sect. 2, we introduce
the preliminaries of this paper. Sect. 3 presents the problem and challenges. In
Sect. 4, we introduce the adjusted version of MCRL and its combination with
the HA model. Section 5 presents the bottleneck analysis as well as the ability
of re-planning. In Sect. 6, we compare to related work, before concluding and
outlining possible future work in Sect. 7.

2 Preliminaries

In this section, we introduce Stochastic Timed Automata and UPPAAL SMC,
reinforcement learning, and a two-layer framework that we have proposed pre-
viously for formal modeling and verification of autonomous agents.

2.1 Stochastic Timed Automata and UPPAAL SMC

UPPAAL SMC [6] is an extension of the tool UPPAAL [14], which supports Sta-
tistical Model Checking (SMC) of Stochastic Timed Automata (STA). STA is a
widely used paradigm for modeling the probabilistic behavior of real-time sys-
tems. The basic elements of STA are locations and edges connecting them. Time
can elapse at locations, which is reflected by the increased values of clock vari-
ables in delayed transitions of STA, whereas transitions between locations are
non-delayed. The delays at locations follow probabilistic distributions, which
are either uniform distributions for time-bounded delays, or exponential distri-
butions (with user-defined rates) for unbounded delays. The choices between
multiple enabled non-delayed transitions are also probabilistic.

Figure 1 depicts a network of STA modeling the scenario of passengers arriv-
ing at an airport and taking off. Figure 1(a) shows the model of passengers, who
randomly arrive at the airport. The arriving time follows the exponential distri-
bution as it is modeled by an unbounded delay at location Arriving. The constant
“5” is the exponential rate that can be replaced by any rational number. The
channels (e.g., enter and takeoff) model the handshaking interaction between

Probabilistic Mission Planning and Analysis for Multi-agent Systems 353

STA. Note that UPPAAL SMC only supports broadcast channels for a clean
semantics of purely non-blocking automata. When a passenger enters an air-
port, the corresponding STA moves to location Leaving simultaneously with the
airport STA (Fig. 1(b)) moving from location Wait to Handling, synchronized via
the channel enter. Next, the airport STA goes to a branch point leading to two
locations, namely Crowded and Uncrowded, respectively. The constants, “20”
and “80”, are the probability weights of the edges marked by the dashed lines
in Fig. 1(b), meaning that the probability of entering a crowded airport is 80%,
and 20% for an uncrowded one. Delays at locations such as location Crowded
are time-bounded, as the locations are constrained by invariants (e.g., c ≤ 10),
so the delay time at these locations should not surpass the upper boundary spec-
ified by the invariants, respectively. If the outgoing edges of such locations are
guarded by conditions, e.g., c ≥ 5 in our case, the STA cannot leave the locations
until the lower boundaries of the guards are exceeded. A uniform distribution
is set for the time-bounded delays by default in UPPAAL SMC, which is also
adopted in this paper. Variables can be updated by assignments (e.g., c = 0) or
C-code functions on the edges.

2.2 Reinforcement Learning

Reinforcement learning is a branch of machine learning that enables agents to
learn how to take actions by themselves, in an environment. In this paper, we
employ Q-learning [21] as the reinforcement learning algorithm to generate poli-
cies of movement and task execution for agents. A policy is associated with a
state action value function called Q function, where “Q” stands for “quality”.
The optimal Q function satisfies the Bellman optimality equation:

q∗(s, a) = E[R(s, a) + γ max
a′

q∗(s′, a′)], (1)

where q∗(s, a) represents the expected reward of executing action a at state
s, E denotes the expected value function, R(s, a) is the reward obtained by
taking the action a at state s, γ is a constant of discounting, s′ is the new state
coming from state s by taking action a, max

a′
q∗(s′, a′) represents the maximum

reward that can be achieved by any possible next state-action pair (s′, a′). The
equation means that the expected reward of the state-action pair (s, a) is the
sum of the current reward and the discounted maximum future reward. The
Bellman equation accumulates the Q-values of state-action pairs and guarantees
the values to converge to the maximum Q-value during the learning process [13].
In this paper, we use the simulation function in UPPAAL SMC to gather the
information of state-action pairs in files, and invoke a Java program to parse the
data and run the Q-learning algorithm, so that a Q-table is populated.

2.3 A Two-Layer Framework for Formal Modelling and Verification
of Autonomous Agents

To provide a separation of concerns for the formal modeling and verification
of autonomous agents, we have proposed a two-layer framework [11]. In this

354 R. Gu et al.

framework, a static layer is responsible for mission planning and only concerns
static obstacles and milestones where the tasks are carried out. The dynamic
layer uses hybrid automata (HA) [12] to model the continuous movement and
operations of the agents in UPPAAL SMC. In addition, UPPAAL SMC provides
a “spawning” function to dynamically generate instances of HA models during
the verification, which enables one to mimic the sudden appearance of obstacles
(e.g., pedestrians), which are considered unpredictable before the agents get close
to them.

(a) An example of HA gen-
erating pedestrians

(b) An example of HA modeling the
linear movement of agents

Fig. 2. Examples of HA model in the dynamic layer of the framework

Figure 2(a) shows the HA that generates pedestrians. As long as the number
of pedestrians does not exceed a maximum number (i.e., “pedeNum<M”), the
self-loop edge of location G0 is enabled, which invokes the spawning function
to generate an instance of the pedestrian model. The constant “0.1” denotes
the rate of the exponential probability distribution of the pedestrians’ appear-
ance. Figure 2(b) depicts the HA that models the continuous linear movement
of agents. The model contains four locations, representing the four moving sta-
tuses of agents: idle, acceleration, constantly moving, and deceleration. At the
each of the locations, the derivatives of speed and positions are regulated by
Newtonian laws of motion in the form of ordinary differential equations (ODE).
In a nutshell, the HA model describes the continuous movement of agents, and
thus the simulation of the model reflects the agents’ moving trajectories when
circumventing obstacles. For brevity, we refer readers to the literature [11] for
details. In this paper, we use this HA model to generate the moving trajectories
of pedestrians and agents, and UPPAAL SMC to estimate the prolonged traveling
time of the agents caused by collision avoidance, which is used for re-planning.

Probabilistic Mission Planning and Analysis for Multi-agent Systems 355

3 Problem Description

In this section, we introduce the research problem that originates from an indus-
trial use case of an autonomous quarry, containing various autonomous vehicles,
e.g., trucks, wheel loaders, etc. For example, as shown in Fig. 3, in an autonomous
quarry, a wheel loader digs stones at stone piles and loads them into trucks, which
carry the stones to a primary crusher, where stones are crushed into fractions,
and proceed to carry the crushed stones to the secondary crushers, which is
the destination. To accomplish their tasks and guarantee a certain level of pro-
ductivity, these autonomous vehicles need to calculate collision-free paths and
schedule their tasks (e.g., digging stones) to finish their jobs within a time frame.
In this paper, henceforth, we name path planning and task scheduling as mission
planning in general. As our solution is generic and suits all kinds of autonomous
systems that need to synthesise mission plans, the autonomous vehicles in this
paper are referred to as autonomous agents [8].

Fig. 3. An example of an autonomous quarry

In this paper, path planning is accomplished by the Theta* algorithm [5]
as the environment in the problem is a 2D map and the algorithm is especially
good at generating smooth paths with any-angle turning points in 2D maps. Task
scheduling acquires satisfaction of various requirements, e.g., task assignment,
execution order, and timing requirements. We extract the requirements of the
autonomous quarry from our industrial partner, and generically categorize them
as follows:

– Task Assignment. The task must be assigned to the right milestone containing
the corresponding device.

– Execution Order. The task execution order must be correct, e.g., unloading
into the primary crusher can start only after digging stones finishes.

– Milestone Exclusion. Some milestones containing a device that only allows
one agent to operate at a time are exclusive when they are occupied.

– Timing. Tasks must be completed within a prescribed time frame.

The complexity of path planning of multiple agents increases linearly as the
number of agents grows, because the path-planning algorithm runs on each indi-
vidual agent and it does not consider the paths of other agents, as the collision

356 R. Gu et al.

Fig. 4. The process of the MCRL method

avoidance is dealt with when the agents are actually moving. In other words, the
time to calculate paths for multiple agents is the sum of the computation time
of each agent. However, the task-scheduling problem is NP-hard and involves
uncertainties that traditional methods do not consider [1].

– Uncertain execution time of tasks. The execution time of tasks is not a fixed
value, but it is a time interval between the best-case execution time (BCET)
and worst-case execution time (WCET), which are usually different.

– Uncertain movement time. Since some milestones are exclusive, when an agent
approaches an occupied milestone, it most probably should wait until it is
released. The waiting time is uncertain.

– Uncertain environment. Human workers sometimes appear in the sites but
do not always stay there. This requires the agents to avoid those workers
at all cost, and adjust their mission plans accordingly, in order to maintain
productivity.

These features make our problem even more difficult than the classic scheduling
problem. For example, if human workers appear irregularly, it is hard to estimate
their influence on the traveling time of agents. We formulate the target problems
of this paper as follows.

Overall Challenge. Given a confined environment containing multiple
autonomous agents, several predefined milestones and static obstacles, some
unpredictable moving objects or humans, a set of tasks for the agents to fin-
ish in order to satisfy some requirements, the goal is to synthesize mission plans
for these agents, such that:

– The mission plans satisfy the requirements that are categorized previously;
– The mission plans consider the uncertainties in the environment and handle

them effectively so that the agents could finish tasks under various conditions;
– The solution provides a means of statistical analysis of the synthesised mission

plans to investigate the bottleneck of the plans, and an ability of re-planning
when facing disturbance, e.g., pedestrians.

4 Mission Planning Based on Reinforcement Learning
and Stochastic Timed Automata

In this section, we introduce the modelling of MAS using STA, which is based on
a method called MCRL [10]. MCRL combines model checking and reinforcement

Probabilistic Mission Planning and Analysis for Multi-agent Systems 357

learning, which enables the method to cope with large numbers of agents and
verify the synthesised mission plans. The use of stochastic timed automata in
this paper extends MCRL with the ability of modelling stochastic behaviors. We
also present some queries that are used in this method for statistical analysis of
the mission plans.

4.1 MCRL: Combining Model Checking and Reinforcement
Learning for Mission Planning

Previously, we have presented the formal definitions of agent movement and task
execution and the model-generation algorithms to generate Timed Automata
(TA) for mission-plan synthesis [9]. This initial work provides a theoretical foun-
dation and a tool called TAMAA, based on which a novel approach is designed
to synthesise mission plans, namely MCRL.

Overall Description of MCRL. As Fig. 4 depicts, MCRL consists of three
phases. First, it simulates the TA that models the movement and task execution
of autonomous agents by running the Monte Carlo simulation query in UPPAAL

SMC. The introduction of the TA model is in the literature [10]. The multi-round
simulation produces the execution traces of the model. Some of them satisfy our
requirements, e.g., finishing tasks in time, correct execution order of tasks; some
traces fail, e.g., exceeding the time limit. The successful traces are assigned with
positive values, which are calculated by (ST −FT)2, where ST is the simulation
time, FT is time of reaching the desired state, e.g., finishing all tasks; whereas
a fixed negative value is assigned to all the failed traces.

Next, the traces and their values are input into the model-training phase,
where a reinforcement learning algorithm, namely Q-learning, is performed to
generate a Q-table. The Q-table contains the state-action pairs and their values
that are accumulated by running Eq. (1) using the data of the input traces. This
equation guarantees that the values of state-action pairs converge, as long as
the simulation has produced enough data of execution traces. Eventually, the
Q-table is injected back to the TA model of agents, where a new TA named
conductor is created so that the behavior of the agent model is controlled by it.
The conductor TA looks up the Q-table and chooses the action that owns the
highest value among the available actions at the current state for the agents to
perform. Each agent model has its own conductor TA so that the agents can
make decisions distributedly. However, as the Q-table contains the state-action
pairs of all agents, when their actions conflict, e.g., moving to the same exclusive
milestone simultaneously, the agents can compare their rewards of actions with
others, and let the one having the highest reward to perform. In this way, the
Q-table serves as the mission plan we intend to synthesise. In addition, since
the method utilizes random simulation and reinforcement learning instead of
pure exhaustive model checking, the solution is scalable for systems with large
numbers of agents. For a detailed introduction of the method, we refer readers
to the literature [10].

358 R. Gu et al.

Although Q-learning strengthens MCRL’s ability of handling large numbers
of agents, the method provides no means of handling unpredictable events, which
is important as the environment is uncertain. This limitation stems from the use
of timed automata. This modelling language cannot depict the stochastic events
in the environment. For example, when human workers sporadically appear in
the environment, MCRL cannot estimate the possible delay that is caused by
the detour taken by the agents to avoid humans. In addition, industries always
focus on productivity. The waiting time of agents at exclusive milestones is an
unnecessary consumption of time, but it is hard to capture as the waiting time
depends on multiple factors. Original MCRL is not able to provide this kind of
analysis, as it does not use any statistical analysing techniques.

4.2 Stochastic Timed Automata for MCRL

To overcome these shortcomings, we improve MCRL by adopting stochastic timed
automata (STA) as the modelling language and statistical model checking for
verification and analysis. In this section, we present the STA model in detail
such that readers understand how the movement and task execution is modelled
as STA, and how the stochastic behavior is handled by this model.

STA of Task Execution. Tasks in this paper are operations of the agents that
need to be carried out in a right order and at the specific milestones. For instance,
in the scenario of an autonomous quarry in Fig. 3, tasks for autonomous trucks
can be unloading stones into the primary crushers, charging, etc. Collaborative
tasks are the ones that need more than one agent to perform, e.g., loading stones
at stones piles needs a wheel loader and a truck to accomplish. For mission
planning, a task can be abstracted as time duration between the BCET and
WCET, which is only permitted to start when a set of conditions is satisfied,
e.g., precedent tasks are finished, and staying at the right milestone. The formal
definition of tasks is presented in literature [9].

Fig. 5. The STA modeling an agent executing task T1

Figure 5 depicts an example of the STA modelling an agent executing one
of its tasks, namely T1. For brevity, the execution of other tasks for the same
agent, which should be modelled in the same STA, is not shown in this figure.
Note that the variable id in this figure is the index of the agent. The STA

Probabilistic Mission Planning and Analysis for Multi-agent Systems 359

starts from the location named Idle that represents the status of running no
tasks. Agents are only allowed to move at this status, hence, this location has
a self-loop edge labelled by a synchronization channel go[id] that is used to
inform the movement STA to start moving. Since the milestone that the agent
is approaching to might be occupied and exclusive, the agent probably has to
wait. The invariant on the location Idle (e.g., te[id] ≤MT) and the guard on its
self-loop edge (e.g., te[id] ≥MT) is for triggering the “moving” command every
MT time units, so that the agent would not wait forever and periodically detects
whether the target milestone is available. The detection is done by the STA of
agent movement, which is introduced in the next section.

If the agent decides to execute task T1, its task execution STA transfers to
location T1. This edge is guarded by a Boolean expression that is composed
of four parts (see Fig. 5). The first Boolean expression cp[id]==B checks if the
agent is at milestone B currently, where the task is permitted. The following
function isReady(TK1) returns a Boolean value indicating whether task T1 is
not finished yet. If T1 is a collaborative task, this function also decides if the
collaborating agents are ready for this task by checking if they are staying at
the same right position, which is milestone B in this case. The Boolean array
named tasks stores the execution status of tasks, namely finished or not, so
tasks[TK2] here checks if the precedent task of T1 is finished. The Boolean
expression !event[id][0] indicates that the event monitored by this agent is not
active, where the number “0” is the index of the event that can be replaced.
An event can be a battery-level-low warning, or a critical-damage alert, etc.,
which needs to be prioritized than regular tasks, and responded within a time
frame. The task execution time is between the BCET and WCET. Therefore, the
invariant on location T1 regulates that the clock variable should not exceed the
WCET of T1, whereas the guard on the outgoing edge of this location decides
the earliest time to leave this location to be later than the BCET. In UPPAAL

SMC, the default probability distribution of time-bounded delays is uniform
distribution. Hence, the execution time of task T1 here is between the BCET

and WCET with equal possibilities.
When the guards hold, agents can take the transition with the execution

of function start(TK1) to start T1. This function changes the variable of the
current task of the agent, and stores the current state of the agent, as well as
the corresponding action taken at this moment into an array. The array, which
represents the execution trace, will be printed by UPPAAL SMC in the end of
the data gathering phase (see Fig. 4). The function finish(TK1) simply changes
the variable of the current task to Idle, and checks if all the tasks have been
finished when the agent should leave the environment and stop.

STA of Agent Movement. Figure 6(a) depicts a scenario containing an
intersection where pedestrians keep crossing the road every once a while. An
autonomous vehicle starting from position A1 intends to go to A2. Though going
straightly to A2 is the shortest path, potential collision avoidance might increase
the travelling time, as shown by the blue trajectory. Therefore, the vehicle can

360 R. Gu et al.

alternatively choose to detour via position B1, as shown by the violet trajectory.
As the HA described in Sect. 2.3 model the probable appearance of human work-
ers and the continuous movement of agents equipped with a collision-avoidance
algorithm based on dipole flow fields [19], we can verify the HA model against
queries in the following forms in order to obtain the prolonged travelling time
and its probabilities.

Pr[<=T](<> arrived) (2)
Pr[<=T]([] arrived imply t <= TL), (3)

where T is the simulation time, arrived is a Boolean variable indicating if the
agent arrives at the destination or not, t is a clock variable, and TL is an integer
indicating the time limit. Query (2) calculates the probability of the agent reach-
ing the destination, and Query (3) further calculates the probability of always
arriving at the destination within TL time units. The results are probability
intervals and we use the average value to estimate the probability of travelling
time, which is used in the STA of movement.

Figure 6(b) shows a part of the movement STA modelling the movement
from A1 to A2. As there are two alternative paths, the STA starts with a non-
deterministic choice between two transitions to location A1B1A2 or a branch
point. The function isOver() returns a Boolean value of whether the agent has
finished all tasks and should stop. The update function move(0, A1, A2) changes
the current position of the agent, and stores the current state-action pair into the
array, which is similar to the function start() in Fig. 5. When the agent chooses
to go via position B1, which does not have any pedestrians, the STA transfers
to the location A1B1A2 representing the duration of travelling. When the least
travelling time has passed, e.g., 15 time units travelling via B1, the STA can
transfer to location PA2, as long as the milestone A2 is not occupied. If the
travelling time is uncertain by the influence of pedestrians, the STA transfers
to a branch point that leads to different locations representing different proba-
ble travelling duration, e.g., location A1A2 1. After verifying the HA of agents
(see Fig. 2 for an example) against queries similar to Queries (2) and (3), and
replacing TL with different numbers, we can obtain that going to position A2
straightly can cost 10 or 18 time units, and their probabilities are 40% and
60%, respectively, which are depicted in Fig. 6(b). In the STA of movement, a
synchronization channel named go[id] is used to get commands from the task
execution STA (Fig. 5). So the verification of agents is for an integrated model
composing the STA of agent movement and task execution.

In UPPAAL SMC, a simulation query composed as following randomly exe-
cutes the model for R rounds and T time units in each round,

simulate[<=T;R] {ds[0].cs,ds[0].act,ds[0].value,...}:tasks[TK1], (4)

where ds is the array variable whose type is a structure, cs and act are the
elements of the structure representing the current state and action, respectively,
value is the reward or penalty assigned to the pair. The definitions of the states
and actions are in the literature [10]. The predicate in the end of the query
regulates that the data in the curly brackets are printed only when the predicate

Probabilistic Mission Planning and Analysis for Multi-agent Systems 361

(a) A scenario of an intersec-
tion containing pedestrians

(b) The STA modeling the possible move-
ment of agents

Fig. 6. A scenario of intersection and the STA modeling the movement of agents

is true. In this query, when the agent finishes task T1, the elements in ds are
printed. The simulation needs to run multiple runs for obtaining enough state-
action pairs that simulate various situations that the agents would encounter.
Hence, the Q-learning algorithm, which uses the state-action pairs as input,
would cover various cases comprehensively so that the final mission plans can
satisfy various properties in an environment model containing uncertainties.

MCRL Revisited. Now that the TA of task execution and movement are
adjusted to STA, the simulation query in UPPAAL SMC would explore the state
space of the model based on the probability distributions defined in the STA. The
model-training phase that uses the state-action pairs representing the stochastic
behavior of agents would generate mission plans that are statistically optimal.

Fig. 7. An experimental scenario containing 4 autonomous agents

Table 1. Tasks for the autonomous agents in the experiment

Task BCET WCET Precedent task Milestone

Wheel loader Dig 2 2 none Stone pile (A)

Unload 1 4 Dig Stone pile (A)

Truck Load I 1 4 Dig Stone pile (A)

Unload I 4 4 Load I Primary crusher (B or C)

Load II 2 3 Unload I Primary crusher (B or C)

Unload II 3 5 Load II Secondary crusher (D)

362 R. Gu et al.

5 Statistical Verification and Analysis of the Use Case:
An Autonomous Quarry

In this section, we evaluate our method by demonstrating a statistical verification
and analysis on our use case: an autonomous quarry (as shown in Fig. 3). The
experiments are conducted in UPPAAL 4.1.24. Most of the statistical parameters
are set to the default values in UPPAAL SMC, except the probability of false
negatives (α), which is 0.001, and probability uncertainty (ε), which is 0.001.
The experimental scenario is depicted in Fig. 7. Tasks for those agents are shown
in Table 1. Milestones A to D are exclusive, thus only one truck is allowed at one
time. As there are two primary crushers, the trucks need to choose one of them
to perform tasks, which take uncertain execution time. The agents must carry
all the stones to the secondary crusher, and the job need to be accomplished
within a time frame.

5.1 Mission Plan Synthesis

After building the STA and running MCRL by using UPPAAL SMC and our Java
program of the Q-learning algorithm, we successfully synthesize mission plans for
agents. By verifying queries as following, we demonstrate the synthesized mission
plans satisfy different kinds of requirements that are described in Sect. 3.

– Task Assignment. Query (5) checks the probability of agent n performing
task Ti at milestone Pi. The results for all tasks in Table 1 are above 99.8%.

Pr[<=T]([] ten.Ti imply mn.Pi) (5)

– Execution Order. Query (6) checks the probability that when agent n is per-
forming task Ti, its precedent task Tj has finished. UPPAAL SMC returns
that the results for tasks that have precedent tasks are above 99.8%.

Pr[<=T]([] ten.Ti imply ten.tasks[j]) (6)

– Milestone Exclusion. Query (7) checks the probability that when agent n is
at an exclusive milestone named Pi, other agents are not there. The results
for milestones A to D are above 99.8%.

Pr[<=T]([] mn.Pi imply !(m0.Pi && ... && mn−1.Pi && mn+1.Pi ...)) (7)

(a) Probabilities of waiting at milestones (b) Waiting time at milestone D

Fig. 8. Bottleneck analysis of the scenario in Fig. 7

Probabilistic Mission Planning and Analysis for Multi-agent Systems 363

– Timing. Query (8) checks the probability of agent n travelling through all
milestones and finishing all tasks within TL time units. If we set TL to be 10
and 25 for wheel loaders and trucks, the results are above 99.8%.

Pr[<=T]([] (ten.tasks[0] && ... && ten.tasks[M-1]) imply x < TL) (8)

In these queries, ten and mn are the task execution STA and movement STA of
agent n, respectively, ten.tasts is a Boolean array for storing the task execution
status of agent n, namely true for finished tasks, and false for unfinished ones,
M is the number of tasks, and x is a global clock variable that is only reset when
all tasks finish.

5.2 Bottleneck Analysis

To perform this analysis, we verify the reformed model equipped with Q-tables
against queries in the following form of Query (9) to get the waiting time at
different milestones during the process of transferring stones.

Pr[<=T](<> m0.wt[i] + m1.wt[i] + ... + mn.wt[i] > TL), (9)

where T is the simulation time, m0 to mn are the movement STA of agents 0 to n,
wt[i] refers to the waiting time at milestone i, and TL is an integer estimating the
waiting time. By setting TL to zero and replacing the index i with the indices
of milestones A to D, one can investigate the probability of waiting at each
milestone (see Fig. 8(a)). By replacing the integer TL with different values and
fixing the index i to some certain milestone, one can estimate the waiting time
at the milestone and the corresponding probability (see Fig. 8(b)). In UPPAAL

SMC, the result of a probability estimation property (e.g., Query (9)) is given as
a probability interval with a confidence level. Hence, the probabilities in Fig. 8
are presented as ranges from the lower boundaries to the upper boundaries. As
shown in Fig. 8(a), the probabilities of waiting at milestones A to D are always
larger than zero, and the average probability of waiting at milestone D is the
highest. We specifically estimate the waiting time at milestone D. As shown in
Fig. 8(b), the waiting time is most likely less than 2 time units.

5.3 Travelling Timed Estimation and Re-planning

When the autonomous agents encounter pedestrians, they must run collision-
avoidance algorithms to compute a new path to bypass the pedestrians, and
that would possibly affect the travelling time significantly such that it is even
quicker to take another path. We call the ability of agents choosing another

364 R. Gu et al.

path when encountering moving obstacles re-planning. In the scenario depicted
in Fig. 7, if the number of autonomous trucks is decreased to one, the truck is free
to choose between primary crushers at milestones B and C, as no other trucks
are competing with it. Since the primary crusher at milestone C is closer to
the secondary crusher, the Q-learning algorithm enables the autonomous truck
to choose milestone C rather than milestone B as the precedent position of
milestone D. We can verify this phenomenon by checking Query (10):

Pr[<=T] ([] m0.D imply (viaC && !viaB)), (10)

where viaC and viaB are Boolean variables, which are turned to true when the
agent sets off from the starting point, i.e., milestone A, and reaches milestones C
and B, respectively, and are turned back to false when the agent leaves milestone
D. Hence, Query (10) checks the probability of an agent going to location D via
location C but not location B.

However, if pedestrians keep walking near milestone C and thus block the
path (see Fig. 7), it could take longer time if the agent sticks to the original
path plan (i.e., travelling via milestone C). By using the HA model depicted in
Fig. 2(a), we can generate instances of the pedestrian model dynamically during
verification. Then we verify the HA model that describes the continuous move-
ment of agents (see Fig. 2(b) for an example of linear movement) together with
the pedestrian model against queries in the form of Queries (2) and (3), in order
to estimate the prolonged travelling time between milestones A and C, and the
corresponding probabilities. Next, we encode the new travelling time and its
probabilities into the movement STA and synthesize mission plans.

Figure 9 shows two situations of the scenario, where pedestrians are few and
crossing the road quickly (Fig. 9(a)), as well as pedestrians are many and walking
slowly (Fig. 9(c)), which causes congestion on the road. The situation with fewer
pedestrians results in the movement STA that is partly shown in Fig. 9(b), where
the probability of going to milestone C quickly is 83% (i.e., t ≥ 3), whereas
33% is the probability of moving slowly (i.e., t ≥ 10). Similarly, the situation
containing many pedestrians results in the movement STA partly depicted in
Fig. 9(d), where the chance of agents moving slowly is much larger than the
chance of moving quickly.

Verifying Query (10) against the model that is partly shown in Fig. 9(d)
produces a result of a range of low probabilities, where as if query is changed to
check the probability of agents going via milestone B, the result is much higher.
This shows that MCRL enables the agents to re-plan a better path when the
irregular appearance of pedestrians influences the path plans.

Probabilistic Mission Planning and Analysis for Multi-agent Systems 365

(a) The number of pedestrians. Exponential
rate of the generator: 0.1. Existing time: 1

(b) The resulting movement STA in
the situation with a few pedestrians

(c) The number of pedestrians. Exponential
rate of the generator: 0.2. Existing time: 5

(d) The resulting movement STA in
the situation with many pedestrians

Fig. 9. The Number and frequency of pedestrians and the movement STA

6 Related Work

Motion-plan synthesis has arisen a wide interest of research in recent years. Nikou
et al. [16] present a method of automatic controller synthesis for multi-agent sys-
tems under the presence of uncertainties. Sadraddini et al. [17] propose an app-
roach of synthesising control strategies for positive and monotone systems, which
satisfy requirements formalized by Signal Temporal Logic, and demonstrate their
method on a traffic management case study. Wang et al. [20] propose a novel
formulation based on Partially Observable Markov Decision Processes to syn-
thesis policies over a vast space of probability distributions. Although having
promising results, these methods are not applied in industrial systems, which
requires solutions to be practically usable and scalable.

To model the uncertain behavior of the autonomous agents and environment,
Markov Decision Process and Probabilistic Computation Tree Logic (PCTL)
have been adopted by many studies. A solution of behavior verification of
autonomous vehicles (AV) proposed by Sekizawa et al. [18] considers the dis-
turbance that causes the AV to swerve from the planned path. Their solution
uses the probabilistic model checker PRISM to conduct the verification against
PCTL properties. Al-Nuaimi et al. [2] also employs PRISM in their design of a
stochastically verifiable decision making framework for AV. The authors demon-
strate the applicability of their framework in a scenario of parking bay containing
one AV, a pedestrian, and another vehicle. Ayala et al. [3] present a solution to

366 R. Gu et al.

find control strategies for mobile robotic systems moving in environments con-
taining entities that are not completely observable. Compared with these studies,
our approach systematically estimates the disturbance caused by unpredictable
moving obstacles, and enables re-planning for the autonomous agents. UPPAAL

STRATEGO is designed to synthesize strategies for stochastic priced timed games
[7], and it also implements the Q-learning algorithm as one of its algorithms for
synthesis. The main difference between MCRL and UPPAAL STRATEGO is that
the former supports a larger numbers of agents, and we refer the interested
readers to previous work [10] for a detailed comparison between the methods.

7 Conclusion and Future Work

We present a method for automatic synthesis of mission plans for multi-agent
systems. The method is based on MCRL, which combines model checking with
reinforcement learning, and extends MCRL with the ability of handling uncer-
tainties in the environment by employing Stochastic Timed Automata and Sta-
tistical Model Checking. We demonstrate the applicability of the method in an
industrial use case: an autonomous quarry, provided by VOLVO CE. The demon-
stration shows that the method is capable of synthesising mission plans for MAS

that satisfy various requirements, and further analyse the bottleneck of the mis-
sion plans. When encountering disturbance of unpredictable moving obstacles,
e.g., pedestrians, the method is able to estimate the delays of traveling time of
the agents, and conduct a re-planning when it is necessary. Future work includes
integrating the new MCRL with our tool called TAMAA [9], so that a complete
solution of mission-plan synthesis for MAS together with a user-friendly GUI
is accomplished. Automating the transformation of requirements into temporal
logic queries is another possible direction.

Acknowledgement. The research leading to the presented results has been under-
taken within the research profile DPAC - Dependable Platform for Autonomous Sys-
tems and Control project, funded by the Swedish Knowledge Foundation, grant num-
ber: 20150022.

References

1. Abdeddaı, Y., Asarin, E., Maler, O., et al.: Scheduling with timed automata. Theor.
Comput. Sci. 354(2), 272–300 (2006)

2. Al-Nuaimi, M., Qu, H., Veres, S.M.: A stochastically verifiable decision making
framework for autonomous ground vehicles. In: 2018 IEEE International Confer-
ence on Intelligence and Safety for Robotics (ISR), pp. 26–33. IEEE (2018)

3. Ayala, A.M., Andersson, S.B., Belta, C.: Temporal logic control in dynamic envi-
ronments with probabilistic satisfaction guarantees. In: 2011 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 3108–3113. IEEE (2011)

4. Chandler, P., Pachter, M.: Research issues in autonomous control of tactical UAVs.
In: Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.
98CH36207). IEEE (1998)

Probabilistic Mission Planning and Analysis for Multi-agent Systems 367

5. Daniel, K., Nash, A., Koenig, S., Felner, A.: Theta*: any-angle path planning on
grids. J. Artif. Intell. Res. 39, 533–579 (2010)

6. David, A., et al.: Statistical model checking for stochastic hybrid systems. arXiv
preprint arXiv:1208.3856 (2012)

7. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0 16

8. Franklin, S., Graesser, A.: Is it an agent, or just a program?: A taxonomy for
autonomous agents. In: Müller, J.P., Wooldridge, M.J., Jennings, N.R. (eds.) ATAL
1996. LNCS, vol. 1193, pp. 21–35. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0013570

9. Gu, R., Enoiu, E.P., Seceleanu, C.: TAMAA: UPPAAL-based mission planning for
autonomous agents. In: 35th ACM/SIGAPP Symposium on Applied Computing
SAC2020. ACM (2019)

10. Gu, R., Enoiu, E., Seceleanu, C., Lundqvist, K.: Verifiable and scalable mission-
plan synthesis for autonomous agents. In: ter Beek, M.H., Ničković, D. (eds.)
FMICS 2020. LNCS, vol. 12327, pp. 73–92. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58298-2 2

11. Gu, R., Marinescu, R., Seceleanu, C., Lundqvist, K.: Towards a two-layer frame-
work for verifying autonomous vehicles. In: Badger, J.M., Rozier, K.Y. (eds.) NFM
2019. LNCS, vol. 11460, pp. 186–203. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-20652-9 12

12. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems NATO ASI Series (Series F: Com-
puter and Systems Sciences), vol. 170, pp. 265–292. Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-642-59615-5 13

13. Kochenderfer, M.J.: Decision Making Under Uncertainty: Theory and Application.
MIT press, Cambridge (2015)

14. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1–2), 134–152 (1997)

15. LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Tech-
nical report, Computer Science Department, Iowa State University, October 1998

16. Nikou, A., Tumova, J., Dimarogonas, D.V.: Probabilistic plan synthesis for coupled
multi-agent systems. IFAC-PapersOnLine 50(1), 10766–10771 (2017)

17. Sadraddini, S., Belta, C.: Formal synthesis of control strategies for positive mono-
tone systems. IEEE Trans. Autom. Control 64(2), 480–495 (2018)

18. Sekizawa, T., Otsuki, F., Ito, K., Okano, K.: Behavior verification of autonomous
robot vehicle in consideration of errors and disturbances. In: 2015 IEEE 39th
Annual Computer Software and Applications Conference, vol. 3, pp. 550–555. IEEE
(2015)

19. Trinh, L.A., Ekström, M., Cürüklü, B.: Toward shared working space of human
and robotic agents through dipole flow field for dependable path planning. Front.
Neurorobot. 12, 28 (2018)

20. Wang, Y., Chaudhuri, S., Kavraki, L.E.: Bounded policy synthesis for POMDPs
with safe-reachability objectives. In: International Conference on Autonomous
Agents and Multi Agent Systems. IFAAMS, ACM (2018)

21. Watkins, C.J.C.H.: Learning from delayed rewards, King’s College, Cambridge
(1989)

http://arxiv.org/abs/1208.3856
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/BFb0013570
https://doi.org/10.1007/BFb0013570
https://doi.org/10.1007/978-3-030-58298-2_2
https://doi.org/10.1007/978-3-030-58298-2_2
https://doi.org/10.1007/978-3-030-20652-9_12
https://doi.org/10.1007/978-3-030-20652-9_12
https://doi.org/10.1007/978-3-642-59615-5_13

30 Years of Simulation-Based
Quantitative Analysis Tools:

A Comparison Experiment Between
Möbius and Uppaal SMC

Davide Basile1(B) , Maurice H. ter Beek1(B) , Felicita Di Giandomenico1 ,
Alessandro Fantechi1,2 , Stefania Gnesi1 , and Giorgio O. Spagnolo1

1 ISTI–CNR, Pisa, Italy
{basile,terbeek,digiandomenico,fantechi,gnesi,spagnolo}@isti.cnr.it

2 University of Florence, Florence, Italy

Abstract. We provide a brief comparison of the modelling and analysis
capabilities of two different formalisms and their associated simulation-
based tools, acquired from experimenting with these methods and tools
on one specific case study. The case study is a cyber-physical system from
an industrial railway project, namely a railroad switch heater, and the
quantitative properties concern energy consumption and reliability. We
modelled and analysed the case study with stochastic activity networks
and Möbius on the one hand and with stochastic hybrid automata and
Uppaal SMC on the other hand. We give an overview of the performed
experiments and highlight specific features of the two methodologies.
This yields some pointers for future research and improvements.

1 Introduction

Industrial critical, cyber-physical systems typically need to satisfy a number of
quantitative properties. The formal modelling and efficient analysis of such sys-
tems is challenging and has been extensively studied recently. Indeed, simulation-
based analysis techniques and tools have been used for decades to perform
quantitative analysis, well before the NSF workshop on cyber-physical systems
in October 2006 made them fashionable. In particular, stochastic model-based
analysis has a longstanding and rich history in Mathematics, well preceding
Computer Science as a discipline [4,29]. Statistical Model Checking (SMC) may
be traced back to hypothesis testing in the context of probabilistic bisimula-
tion [1,21], but the notion has become popular during the last two decades as
a result of Younes’s Ph.D. thesis [22,34,35]. Tools that support SMC are more
recent [1]. For instance, the first version of Uppaal SMC [17] was released in 2014.
The stochastic analysis tool Möbius [15] can be traced back much further, to its
predecessors UltraSAN [16,32] and MetaSAN [33]. The latter offer analysis tech-
niques for performability models based on stochastic activity networks (SAN),
which are a generalization of stochastic Petri nets [2], which are considered to
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 368–384, 2020.
https://doi.org/10.1007/978-3-030-61362-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_21&domain=pdf
http://orcid.org/0000-0002-7196-6609
http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0002-8760-7299
http://orcid.org/0000-0002-4648-4667
http://orcid.org/0000-0002-0139-0421
http://orcid.org/0000-0002-7771-0882
https://doi.org/10.1007/978-3-030-61362-4_21

30 Years of Simulation-Based Quantitative Analysis Tools 369

mark the starting point of cross-fertilization between the fields of performance
evaluation and formal verification [4].

In this paper, we continue this cross-fertilization by providing a brief com-
parison of some of the modelling and analysis capabilities of Möbius and Uppaal
SMC, their two different modelling formalisms and their simulation-based quan-
titative analysis techniques, acquired by experimenting with these methods and
tools on one and the same case study. The case study is a cyber-physical system
from the railway domain, namely a railroad switch heater, and the quantitative
properties concern energy consumption and reliability. This case study comes
from our industrial partners in STINGRAY (SmarT station INtelliGent RAil-
waY), a project funded by the Tuscany region, which advocates the study of
energy-saving algorithms in the railway domain. The models and analyses with
stochastic activity networks (SAN) and Möbius have originally been presented
in [5], while those with stochastic hybrid automata (SHA) and Uppaal SMC
have originally been presented in [9].

The agenda of compared features ranges from modelling features (e.g. com-
munication primitives and delay distributions) to properties specification (e.g.
measures of interest) and experiments and presentation of results (e.g. exper-
iment parameter setup), cf. the leftmost column of Table 1 in Sect. 5. While
most of the findings of our comparison are likely well known by the communi-
ties around Möbius and Uppaal SMC, this might be less so for someone who
is facing her first attempt at modelling a real-time system with the aim of per-
forming quantitative analyses. Our comparison can help such user evaluate which
method and tool better fits her specific needs, or at least make her aware of pos-
sible limitations and specificities of the chosen methodology. Furthermore, we
conclude our comparison by providing some possible pointers to future research
and improvements, from the point of view of usability, for both methodologies.

Finally, our approach to model and analyse one and the same case study
with two different formalisms and their associated tools also responds to the
call for formal methods diversity in the railway sector as put forward in [27,28].
This call, inspired by code/design diversity [24], is based on the assumption that
the application of different, non-certified analysis tools on a replication of the
same design may increase confidence in the correctness of the analysis results.
We believe this to be a useful concept.

Outline. After this Introduction, we provide a short description of the case study
and its context in Sect. 2. In Sect. 3, we briefly describe the two tools, followed
by a description of the models and experiments that our comparison is based
on in Sect. 4. The main contribution of our paper is presented in Sect. 5, where
we present a detailed comparison of a number of specific features of the two
methodologies, concluded by some pointers to possible improvements for the
future. Section 6, finally, wraps up the paper.

370 D. Basile et al.

2 Context of the Case Study

In this section, we provide a brief description of the case study and project where
it originates from. Traditionally, railway stations have a private energy distribu-
tion and communication system. The main reasons for this are to ensure unin-
terrupted power supply and security, but this isolation has two main drawbacks.
First, it prohibits integration with ‘smart cities’, in which, ideally, information
between different transport systems (i.e. bike sharing, car sharing, urban trans-
port, etc.) is synergically exploited. Second, the station system fails to benefit
from modern energy-saving techniques.

The project STINGRAY (SmarT station INtelliGent RAilwaY), funded by
the Tuscany region, aims to enhance the integration of railway stations into smart
cities of the future as well as to study advanced energy-saving techniques. To this
aim, the design and development of a station communication infrastructure is
studied, integrating powerline and wireless technologies. Powerlines are utilised
to enable a more efficient management of machinery and energetic resources.
The goals of the project are:

– to realise a LAN over the station plants using power line and wireless tech-
nologies;

– to allow the control and monitoring of station equipment via Supervisory
Control And Data Acquisition (SCADA), and in particular railroad switch
heaters as studied in this paper;

– to create value-added services for both customers and railway staff, such as
connectivity, monitoring fault prediction service (FPS), video surveillance,
environmental surveying and integration and access to so-called smart city
infomobility services; in particular the energy management service (EMS) is
addressed;

– to optimise existing strategies for managing energy consumption within the
station, to avoid wasting energy.

The case studies of STINGRAY provided by the industrial partners from the
railway domain are station lighting and the heating of the railroad switches in
ice conditions (cf. Fig. 1). In this paper, we address the latter case study.

Railroad switch heaters assure correct working of switches in case of ice and
snow through a central control unit in charge of managing policies of energy con-
sumption while satisfying reliability constraints. Although apparently a rather
focused system, with restricted functionalities, it represents very well the pecu-
liarities of a cyber-physical system: physical components (the heater), cyber
components (the heating policies and the related coordinator), stochastic aspects
(failure events and weather forecasts), and logical/physical dependencies.

3 Description of the Tools

Before providing the models, we briefly describe Möbius and Uppaal SMC.

30 Years of Simulation-Based Quantitative Analysis Tools 371

Fig. 1. Gas heating keeping a railroad switch free from snow and ice (Di Fabian Grun-
der (FabiBerg) – Opera propria, CC BY-SA 3.0, https://commons.wikimedia.org/w/
index.php?curid=641923)

3.1 Möbius

Möbius [15] offers a distributed discrete-event simulator, and, for Markovian
models, explicit state-space generators and numerical solution algorithms. It is
possible to analyse both transient and steady-state reward models. Möbius sup-
ports different formalisms, among which the aforementioned SAN, and models
specified in different formalisms can be composed in different ways. Reward mod-
els are used to define the measures under analysis. A SAN is composed of the
following primitives: places, activities, input gates, and output gates. Places and
activities have the same interpretation as places and transitions in Petri nets [30].
Input gates control the enabling conditions of an activity and define the change
of marking when an activity completes. Output gates define the change of mark-
ing upon completion of the activity. Activities can be of two types: instantaneous
or timed. Instantaneous activities complete once the enabling conditions are sat-
isfied. Timed activities take an amount of time to complete, following a temporal
stochastic distribution function which can be, e.g., exponential or deterministic.
Cases are associated to activities, and are used to represent probabilistic uncer-
tainty about the action taken upon completion of the activity. Primitives of the
SAN models are defined using C++ code.

3.2 Uppaal SMC

Statistical Model Checking (SMC) concerns running a sufficient number of (prob-
abilistically distributed) simulations of a system model to obtain statistical

https://commons.wikimedia.org/w/index.php?curid=641923
https://commons.wikimedia.org/w/index.php?curid=641923

372 D. Basile et al.

evidence (with a predefined level of statistical confidence) of the quantitative
properties to be checked [1,22]. Uppaal SMC [17] is an extension of Upp-
aal [11], a well-known toolbox for the verification of real-time systems mod-
elled by (extended) timed automata. Timed automata are finite-state automata
enhanced with real-time modelling through clock variables; their stochastic
extension replaces non-determinism with probabilistic choice and time delays
with probability distributions (uniform for bounded time and exponential for
unbounded time). These automata may communicate via (broadcast) channels
and shared variables. The resulting stochastic hybrid automata (SHA) form the
input models of Uppaal SMC. Uppaal SMC allows to check (quantitative)
properties over simulation runs of an Uppaal SMC model (i.e. a network of
SHA). These properties must be expressed in a dialect [12] of the Metric Inter-
val Temporal Logic (MITL) [3].

4 Models and Experiments

To contextualize the comparison between the two methodologies, in this section
we briefly describe the models and experiments performed in [5,9].

Although the modeling studies on the railroad switch heating system have
since been further extended to focus on other aspects (mainly, to account for
more sophisticated weather dynamics and representation, e.g. in [14]), these only
exploited the SAN formalism and Möbius. Hence for our comparison experiment
the two works mentioned in the beginning of this section are the most suitable.

4.1 Modelling Approaches

The aforementioned energy-saving policies for railroad switch heaters are based
on dynamic power management, according to which energy is turned on and
off based on predefined temperature thresholds. Moreover, the system can be
constrained to not exceed a given maximum amount of power. This is especially
useful in case of degraded operational modes which forbid to exceed a certain
amount of power. In particular, once the system temperature falls below a tem-
perature warning threshold (Twa), the heating needs to be activated, otherwise
the associated switch fails. Once the temperature rises and reaches the working
threshold (Two), the heating system can be safely turned off.

The models (in both tools) are parameterized based on these two temperature
thresholds Twa and Two, and on NHmax, which is the maximum power that the
system can provide at every instant of time, expressed as the percentage of
heaters that can be turned on at the same time.

The continuous physical behaviour concerning the increment and decrement
of the temperature of the railroad track when the heater is turned on or off,
respectively, is modelled by an ordinary differential equation (ODE) representing
the balance of energy.

When the temperature of the railroad track is below the freezing threshold
(i.e. 0 ◦C in the performed experiments), a switch may experience a failure. In

30 Years of Simulation-Based Quantitative Analysis Tools 373

init

clock

heater

Fig. 2. The SAN model RailRoadSwitchHeater from [5]

this case, the time-to-failure is modelled with an exponential distribution with
fixed rate, which is based on the temperature of the railroad track. This rate is
an input parameter.

To model the external weather conditions, the model takes as input data
structures containing profiles of average temperatures in those days for which the
analysis is relevant (e.g. winter days). Different daily weather profiles retrieved
from the Internet are used in the performed experiments. The time window under
analysis is divided into intervals to which an average reference temperature is
assigned.

The two main logical components describing the discrete cyber part of the
analysed system are the heater and the central coordinator. The overall model is
then composed of n heaters and the coordinator. The heater model implements
the policy for activating and deactivating the heating phase. The central coor-
dinator manages the activation and deactivation of each heater, by interacting
with the network of heaters, to notify the activation or deactivation, respec-
tively, of a heater, according to a specific communication protocol designed by
the authors.

SAN Model. We first describe the SAN model of the railroad switch heating
system, built with the functionalities provided by Möbius.

The main SAN model concerning the railroad switch heater is depicted in
Fig. 2, reproduced from [5]. It is partitioned into three logical components: the
init subnet, the clock subnet, and the heater subnet.

The init subnet initialises the data structures used by the SAN model. The
clock subnet models the evolution of time (during one day in our analysis) and
it is used to update the environment temperature and the temperature of the
railroad track. In [5], we considered as unit of time one hour. The activity Clock

374 D. Basile et al.

Fig. 3. SHA H from [9], modelling an instance of a railroad switch heater

has a deterministic distribution of time (non-Markovian) and completes each
hour. When Clock completes, the place Temperature is updated: if the heater
is turned on then the temperature increases, otherwise the temperature will be
updated according to the temperature of the environment. Indeed, the time-step
has been discretized to account for the temperature profile windows.

The heater subnet represents the status of the railroad switch heater. The
heater subnet interacts with a SAN model Coordinator (not depicted here)
through places that are shared among all the replicas of the heater model and
the coordinator model.

The function representing the heating exchange is defined in C++, and it is
called by the output gate O1 clock shown in Fig. 2 to update the temperature of
the railroad each interval of time t. The activity TA failure models the failure
of a heater. It has an exponential distribution of time based on the temperature
of the railroad track: the more the temperature is below the freezing threshold
the more likely the activity will fire, according to the rate of the distribution
which is an input parameter of the model.

The SAN model Coordinator represents the central management unit and it
interacts with all heaters in the network by activating, deactivating, or moving
them into a waiting state.

SHA Model. Next we describe the SHA model of the railroad switch heating
system, built with the functionalities provided by Uppaal SMC. SHA allow to
capture discrete, continuous, and stochastic aspects in a single framework. We
briefly outline the formalisation of the system of (remotely controlled) railroad
switch heaters as a product of SHA.

The ODE is expressed in the SHA model H in Fig. 3, where the temperature
T is a continuous clock and the flow function F (i.e. the ODE) is similar in
different states. Indeed, when H is in state on, F adds the term Q (i.e. power),
which does not occur in states off and ready.

30 Years of Simulation-Based Quantitative Analysis Tools 375

Fig. 4. SHA K from [9], modelling the coordinator

The two main logical components describing the discrete cyber part of the
analysed system are the heater H and the central coordinator K, depicted in
Figs. 3 and 4, respectively, both reproduced from [9]. The network composed of
n heaters and the coordinator is realised by the product of K and the replicas of
the SHA Hid, id ∈ 1, . . . , n, where each heater is uniquely identified by its id,
i.e. (

⊗
id∈1,...,n Hid) ⊗ K.

The SHA heater model depicted in Fig. 3 implements the policy for activating
and deactivating the heating phase, similarly to the SAN heater model depicted
in Fig. 2. In particular, the dotted transitions are urgent (i.e. instantaneous)
probabilistic transitions used for selecting one of the available weather profiles.
The main states are on, off, ready, and fail, which correspond to the places of
the SAN model RailRoadSwitchHeater. Note that each state has an inner cycle
modelling the decrease and increase of the internal temperature according to
the flow function, and that both incoming transitions to state fail have an
exponential distribution of time, whose rates are input parameters to fine tune
the model. During a simulation, the current time is stored in the clock x and
a variable hour stores the current hour. The function Te(), used in the flow
function of T, selects the actual external temperature based on the current hour,
and it is implemented in Uppaal.

The SHA model depicted in Fig. 4 implements the coordinator model. Its
behaviour is similar to that of the SAN model Coordinator mentioned above.
The queue of pending heaters is modelled with the array queue[] of length
equal to NHmax, and the functions enqueue(int id) and dequeue() are used
for inserting and removing elements, while empty() returns true if the queue of
pending heaters is empty.

The coordinator sends messages to the network of heaters through two arrays
of channels, NI[id] and NO[id], both indexed by the identifiers of the heaters,
to notify the activation and deactivation, respectively, of a heater. Note that
Uppaal SMC only allows broadcast channels, hence an array of channels has been
adopted in order to implement one-to-one communications. Following the de
facto standard notation in component-based systems, sending a message through
a channel a is denoted as a!, while reading is denoted as a?. Upon reception of

376 D. Basile et al.

the notification NI[id]?, the heater with identifier id switches from state ready
to state on.

The heaters communicate to the coordinator their transition from off to
ready through the channel ins, asking to be activated, and their transition
from on to off through the channel rem; both channels are many-to-one. All
channels are urgent : no delay will occur in case a synchronisation is available.

While the coordinator is in a busy state, a shared variable lock is used as
a semaphore to prevent a heater from sending messages that cannot be elabo-
rated, and it is used by the heaters for communicating their identifiers to the
coordinator.

4.2 Quantitative Analyses

The conducted analyses focussed on reliability as well as energy consumption
indicators. More precisely, the two measures of interest concerning energy con-
sumption and reliability of the system under analysis were defined as follows.

1. The time (in hours) a generic heater is activated in a specific time interval. By
multiplying such measurement for the power consumed (kilowatt per hour),
it is possible to derive the energy consumed by the system.

2. The probability that a generic switch fails (becomes frozen). Reliability is
computed as the probability that no failure occurs in the interval of time
under analysis.

In Möbius, reward structures were used for evaluating the measures of inter-
est, while in Uppaal SMC they were defined as formulae in the aforementioned
MITL [3], which are enriched with quantification operators on the replicated
models and expected values.

First consider the SAN model. The first measure of interest was computed
as the sum of the time that each heater model spends in markings encoding
its operative state, that is the time that each heater is activated. The second
measure of interest, the probability of failure, instead was computed as the prob-
ability that there is one token in the place encoding a failure state in the heater
model at the end of the experiment.

Next consider the SHA model. In Uppaal SMC, a discrete clock energy was
used to count the hours each heater is activated. For the first measure of interest,
the energy consumption, the number of hours in which the heaters are active
was estimated as the formula:

E[<= 24; 10000] (max :
∑

i:idt

Hi.energy)

In this formula, E stands for the expected value, 24 is the considered interval of
time (24 h) and 10000 is the number of simulations executed by the tool. The
overall energy consumption is the sum for all Hi of all clocks energy.

The second measure of interest, the probability of failure, was instead esti-
mated by Uppaal SMC through the formula:

P(♦h≤24∃(i : idt)(Hi.fail))

30 Years of Simulation-Based Quantitative Analysis Tools 377

This formula evaluates the probability that in the interval [t, t + l] (24h) there
exists at least a switch Hi in the network which has failed, i.e. Hi is in state fail.

Experiments conducted on a system of 10 switches, grouped according to
their priority, confirmed that both modelling and analysis methodologies, i.e.
SAN and Möbius on the one hand and SHA and Uppaal SMC on the other
hand, are suitable to address the analyses. Results were aligned in spite of some
differences in the models, thus also serving as mutual cross-validation, as advo-
cated by formal methods diversity (cf. Introduction).

As expected, the analyses confirmed how energy consumption and reliability
are contrasting requirements: by reducing the energy consumption the overall
system reliability decreases. However, experiments made it possible to find a
parameter setup that represents the best compromise between these two mea-
sures. Of course, the nature of the adopted approaches did generate differences
in the evaluation experience, as discussed in the next section.

5 Comparison

In this section, we present the main contribution of our paper, in the form
of a number of considerations subjective to our experiences with applying the
two methodologies to the above mentioned case study. Our aim is merely to
highlight some specific features that the two methodologies offer, to be used
by potential modellers in deciding which one better suits their need for the
particular case study at hand. In addition, we underline that the comparison
carried out touches only those functionalities of the two modeling and evaluation
environments that were involved given the needs of the case study under analysis.
Therefore, we cannot claim that we exhaustively considered all features, and
consequently our goal is by no means to pronounce a definitive verdict concerning
the methodologies’ suitability, let alone quality. Generally speaking, we note
that Möbius is a mature tool that has been widely adopted in the evaluation of
performance and dependability aspects of real-world systems, while Uppaal is a
mature tool oriented to the quantitative verification of properties of real-time
systems of which Uppaal SMC is a recent, as yet less mature extension.

Our comparison should be seen in the light of a recent study, reported in [10],
of the outcomes of three questionnaires on the adoption of formal methods and
tools in the railway domain, which were performed within three different projects
of the EU Shift2Rail innovation programme (cf. https://shift2rail.org/). As part
of an analysis of the respondents’ expectations on tools, the paper reports that
the most relevant functionalities are formal verification and support for formal
modelling, followed by traceability, simulation, test and code generation. Instead,
the most relevant quality features are related to the maturity, usability, and
learnability of the tools.

Our comparison addresses the following three groups of features (summarised
in the leftmost column of Table 1 below) in the next three sections.

Modelling Features: these concern the composition of, and interactions
between, different models (i.e. heterogeneous formalisms, replicated models,

https://shift2rail.org/

378 D. Basile et al.

dynamic process instantiation, communication primitives) and the ability
towards modelling hybrid and stochastic systems (i.e. delay distributions, hybrid
variables);
Properties Specification: these concern the definition of measures of interest
(i.e. measures of interest) and the ability to verify properties of the defined
models (i.e. property verification);
Experiments and Presentation of Results: these concern the setup and
execution of experiments, as well as data collection and plotting the results (i.e.
experiment parameter setup).

We note that, for this comparison experiment that is focused on usability
and expressiveness, we specifically consider whether features are primitively sup-
ported by the tool. Of course, for features that are not built-in, both tools may
rely on external software packages or libraries for accessing extended functionali-
ties at the cost of an extra modelling effort. In the end, we provide some pointers
to future research and improvements for both methodologies.

5.1 Modelling Features

Systems under analysis are often composed of different types of components, and
in general more components of the same type may be involved, as is the case for
the railroad switch heater system of our case study. Möbius allows to develop
a composite overall model where individual models can be replicated, joined,
and defined in different formalisms (e.g. Petri nets [30,31], PEPA [19], Fault
trees [23], etc.). However, replication operators treat models as anonymous, so
in case non-anonymous instantiations are required, as in our case study, a specific
mechanism to assign a unique identifier to each replica model needs to be added
to the model under development. Anticipating the discussion, we mention that
the replication operator in Möbius has recently been enhanced in efficiency [26],
thus alleviating to some extent the additional computational overhead required
by the mechanism to implement non-anonymity. Moreover, efficient solutions to
non-anonymous model replication have been also proposed (cf., e.g., [13,25]),
which resort to a script on top of primitive facilities provided by Möbius.

Similarly, Uppaal offers template models that can be replicated, but each
replica has its own built-in identifier. Identifiers can be used for quantifying
formulae, as we did for the measures of interest in our case study. It is also
possible to dynamically create new processes during a simulation, through a fork
primitive. Several instances of models can be joined through the composition
operator. Accordingly, when different formalisms are necessary for designing the
system under analysis and the replicas are anonymous, Möbius is more adequate.
If the replicas are instead non-anonymous, Möbius requires to distinguish them
through ad-hoc networks that result in a larger state space. Moreover, if the
system to be modelled comprehends the dynamic generation of new processes,
then this feature is primitively available in Uppaal, making it very suitable.

Concerning the interaction between different instances of models, in the SAN
models defined in Möbius communication is implemented through shared places

30 Years of Simulation-Based Quantitative Analysis Tools 379

(i.e. places where different networks can read/write). Indeed, through tokens in
different places it is possible to codify the identifiers of the interacting parties
and the messages sent. The SHA models defined in Uppaal SMC are endowed
with primitives for I/O communication, allowing to describe interactions among
entities in a high-level language. When modelling communication-based systems,
SHA models thus offer both I/O primitives at message level and shared variables,
while SAN models interact through shared places (acting as shared variables).
We note in passing that shared places/variables are part of the state space,
while synchronous messages may reduce the state space by avoiding interleavings
(e.g. places notifyIn and notifyOut in Fig. 2 are rendered as communication
channels NI and NO in Fig. 3).

Concerning modeling stochastic and hybrid Systems, both SAN and SHA
models are capable of describing probabilistic transitions and stochastic delays.
Through SAN models it is possible to describe Markovian and non-Markovian
models with several probability distributions for delays in firing a transition,
whereas only uniform and exponential distributions for delays are available for
SHA models. Therefore, in general, SAN models allow for a more accurate rep-
resentation of physical phenomena. Both formalisms can model instantaneous
transitions, which are called instantaneous activities in SAN models and urgent
transitions in SHA models.

SHA models allow to describe discrete and hybrid clocks for updating values
according to given ODE, whereas SAN models do not provide a built-in solver of
ODE. Instead, the equations have to be solved and implemented in, for example,
C++ functions or via calls to external solvers. The hybrid clocks are stored in
Uppaal SMC through double precision types, while Möbius provides extended
places for storing high precision values.

Hence, Uppaal SMC deals with hybrid systems by primitively supporting
ODE. Möbius, on the other hand, primitively allows to model several stochastic
distributions in SAN models.

5.2 Properties Specification

Concerning definition of measures of interest, in Möbius, measures of interest
(performance variables) on the composed model are defined through reward
models. A reward model defines the data that needs to be collected from the
model (using C++ code), through analytic solvers or simulations. Rate rewards
on the measures of interest specify whether the reward is collected based on the
marking of the SAN models or the firing of activities, and if it is collected at a
specific instant of time, over an interval of time, over a time-averaged interval
of time, or after the system reaches a steady state.

In Uppaal SMC, measures of interest are introduced by means of formulae
in a weighted extension of MITL [12]. The available evaluation methods are
probability estimation, hypothesis testing, and probability comparison. It is also
possible to perform simulations to monitor the values of interest. The possibility
of expressing measures of interest as formulae in a temporal logic has the advan-
tage that a precise formal semantics endows those measures. Moreover, it is

380 D. Basile et al.

possible to define fine-grained properties directly through the available temporal
operators. For example, the formula P(♦[0,24]∃(i : idt)(�[0,2]Hi.on)) evaluates
the probability that there exists, in the interval of 24 hours, a component Hi
(where i is its index) in state on, for at least 3 consecutive time units.

Uppaal offers high-level expressions for the formal definition of varieties of
indicators to be analysed, while Möbius typically requires to enrich the model
to properly account for sophisticated properties, such as the one described by
the temporal logic formula above (e.g., by adding ad-hoc places and transitions
to code the property to be analysed, thus resulting in a more complex model).
Continuing the example, an extra place should be added to Fig. 2 with a token
being added once the heater is on for more than 3 time units, and the reward
model should be based upon this extra place.

Concerning the verification of the models and performances, Uppaal provides
the possibility of verifying properties such as for example the absence of dead-
locks. It is also possible to perform trace analysis and simulation of the models
for debugging purposes, and in case a property is violated the tool reports the
trace which violates it as counterexample.

Möbius does not provide any built-in verification of properties expressed in
some kind of logic. The property must be encoded in a Markov Reward Model,
thus requiring more effort from the point of view of the user. However, it is
possible to perform LTL model checking on traces obtained from the logs of
the simulations in Möbius by means of external prototypical tools, such as for
example Traviando [20].

Summing up, Uppaal supports model checking of temporal logic formulae,
while Möbius offers a more prototypical trace-based analysis.

Finally, in relation to the specific experiments carried out in [5,9], Möbius
showed better performances than Uppaal SMC. This might be due to the fact
that Uppaal SMC solves the defined ODE during simulation and the number of
simulations is fixed. No general conclusions can be drawn from two experiments.

5.3 Experiments and Presentation of Results

The experiments in Möbius can be organised in batches, called studies. Each
study contains the parameter setup of the experiment (such as temperature
thresholds and energy available in our case), which can then be executed in
series or in parallel. This feature enhances efficiency, by allowing to perform all
required experiments in background. In Uppaal SMC, instead, the parameters
must be instantiated manually for each experiment to be evaluated.

The results of the experiments performed by Möbius are stored into tabular
data, ready to be analysed and plotted through a database (PostgreSQL) or
external tools. Uppaal provides built-in graphic visualisers of, for example, the
density and cumulative distribution of the evaluated property.

In the specific case study presented in this paper, Möbius proved effective
in dealing with several parameter setups and a large amount of resulting data
concerning the experiments. From the viewpoint of presentation of the results,
Uppaal automatically generates the visualisation of results while Möbius requires
a pre-processing phase.

30 Years of Simulation-Based Quantitative Analysis Tools 381

5.4 Discussion

The comparison performed in this section so far is summarised in Table 1, which
reflects one of the main contributions of this paper. In the remainder of this
section, we highlight some directions for future developments for both Möbius
and Uppaal SMC to address some of the points discussed so far.

Table 1. Comparison between SAN+ Möbius and SHA+ Uppaal SMC

Features SAN+Möbius SHA+Uppaal SMC

Measures of interest Reward Models MITL formulae

Experiments parameter setup Batches Single

Replicated models Anonymous Distinguished

Dynamic process instantiation Not available Available

Heterogeneous formalisms Available (SAN, PEPA, etc.) Not available (SHA)

Communication primitives Shared places Channels

Delay distributions Various distributions Exponential, Uniform

Hybrid variables No primitive support ODE solver available

Property verification Not available Temporal logics

Concerning SAN and Möbius, improvement of the anonymous replication
aspect appears to be a major advancement to pursue. Actually, this is already
ongoing activity (involving a subset of the authors), aiming at implementing the
principles at the basis of the replication mechanism defined in [13] as a native
Möbius operator.

A further interesting extension of Möbius, from the point of view of usability,
would be the automatic generation of plot graphs from predefined measures of
interest. Indeed, although Möbius is conceived as a meta-tool to be coupled
with a variety of other tools (including visual tools and other functionalities),
offering an internal visualization facility would be certainly appreciated by those
users that prefer to have all they need within the same working environment.
Motivated by the same reasoning, also a primitive support for ODE solving would
be a step towards making easier the modeling effort of cyber-physical systems,
without requiring the knowledge of software libraries tailored to specific needs.

Moving to SHA and Uppaal SMC, we note that the tool lacks the possibility
of organising experiments in batches, where each batch has a specific parameter
setup. In the current version, this has to be done manually or by means of exter-
nal scripts. An interesting facility from the point of view of usability would be
to equip the tool with the possibility to automatically execute batches of exper-
iments (and collect the results). The possibility to primitively express other
distribution delays (different from exponential distributions) would increase the
expressiveness of the SHA formalism. For example, the SAN model presented
previously discretises the time-steps by simply having a deterministic distri-
bution delay that fires each specific time unit. We note in passing that such

382 D. Basile et al.

behaviour (deterministic time) is typical of many real-time specifications, i.e.
interacting periodically with a fixed period. This behaviour can be obtained in
Uppaal by an encoding of an invariant on a state of the form x ≤ t and an
outgoing transition from that state of the form x ≥ t. This ensures that the
transition is fired exactly at time t. Note that in Uppaal invariants are defined
for each state individually. Making such behaviour primitively expressible in the
tool would improve its usability, as well as the readability of the models. Fur-
thermore, it would typically reduce the state space (in the above example, we
would need to instantiate a clock x and a parameter t).

Finally, we envisage that a formal mapping from SHA to SAN models would
pave the way for automatic replicas of analyses, thus increasing the confidence
in results and the soundness of the tools’ implementations. In [7], a subset of
the authors already provided a formal translation from contract automata [6]
to SAN. Contract automata are similar to the SHA formalism used in Uppaal,
and a timed extension also exists [8]. This former translation could be extended
to deal with stochastic delays (to be encoded in SAN activities) and real-time
clocks.

6 Conclusion

We have compared the modelling and analysis capabilities offered by SAN and
Möbius with those offered by SHA and Uppaal SMC. This comparison experi-
ment is based on modelling and analysing a single, small cyber-physical system
from an industrial railway project (cf. [18] for a judgement study involving Upp-
aal SMC and 8 other tools). We have provided an overview of the performed
experiments and based on those we have highlighted some specific features of
the two methodologies. This has resulted in a few pointers for future research
and improvements for both, to be considered during the next 30 years.

Acknowledgements. Supported by POR FESR 2014–2020 project STINGRAY
(SmarT station INtelliGent RAilwaY) and MIUR PRIN 2017FTXR7S project IT
MaTTerS (Methods and Tools for Trustworthy Smart Systems).

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6:1–6:39 (2018). https://doi.org/10.1145/3158668

2. Ajmone Marsan, M., Bobbio, A., Donatelli, S.: Petri nets in performance analysis:
an introduction. In: Reisig, Rozenberg, [30], pp. 211–256. https://doi.org/10.1007/
3-540-65306-6 17

3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996). https://doi.org/10.1145/227595.227602

4. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Performance evaluation
and model checking join forces. Commun. ACM 53(9), 76–85 (2010). https://doi.
org/10.1145/1810891.1810912

https://doi.org/10.1145/3158668
https://doi.org/10.1007/3-540-65306-6_17
https://doi.org/10.1007/3-540-65306-6_17
https://doi.org/10.1145/227595.227602
https://doi.org/10.1145/1810891.1810912
https://doi.org/10.1145/1810891.1810912

30 Years of Simulation-Based Quantitative Analysis Tools 383

5. Basile, D., Chiaradonna, S., Di Giandomenico, F., Gnesi, S.: A stochastic model-
based approach to analyse reliable energy-saving rail road switch heating systems.
J. Rail Transp. Plan. Manag. 6(2), 163–181 (2016). https://doi.org/10.1016/j.
jrtpm.2016.03.003

6. Basile, D., Degano, P., Ferrari, G.L.: Automata for specifying and orchestrating
service contracts. Log. Methods Comp. Sci. 12(4) (2016). https://doi.org/10.2168/
LMCS-12(4:6)2016

7. Basile, D., Di Giandomenico, F., Gnesi, S.: A refinement approach to analyse crit-
ical cyber-physical systems. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS,
vol. 10729, pp. 267–283. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-74781-1 19

8. Basile, D., ter Beek, M.H., Legay, A.: Timed service contract automata. Innov.
Syst. Softw. Eng. 16(2), 199–214 (2019). https://doi.org/10.1007/s11334-019-
00353-3

9. Basile, D., Di Giandomenico, F., Gnesi, S.: Statistical model checking of an energy-
saving cyber-physical system in the railway domain. In: Proceedings of the 32nd
Symposium on Applied Computing (SAC), pp. 1356–1363. ACM (2017). https://
doi.org/10.1145/3019612.3019824

10. ter Beek, M.H., et al.: Adopting formal methods in an industrial setting: the rail-
ways case. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS,
vol. 11800, pp. 762–772. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30942-8 46

11. Behrmann, G., et al.: UPPAAL 4.0. In: QEST. pp. 125–126. IEEE (2006). https://
doi.org/10.1109/QEST.2006.59

12. Bulychev, P., David, A., Larsen, K.G., Legay, A., Li, G., Poulsen, D.B.: Rewrite-
based statistical model checking of WMTL. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 260–275. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35632-2 25

13. Chiaradonna, S., Di Giandomenico, F., Masetti, G.: A stochastic modeling app-
roach for an efficient dependability evaluation of large systems with non-anonymous
interconnected components. In: Proceedings of the 28th International Symposium
on Software Reliability Engineering (ISSRE), pp. 46–55. IEEE (2017). https://doi.
org/10.1109/ISSRE.2017.17

14. Chiaradonna, S., Di Giandomenico, F., Masetti, G., Basile, D.: A refined framework
for model-based assessment of energy consumption in the railway sector. In: ter
Beek, M.H., Fantechi, A., Semini, L. (eds.) From Software Engineering to Formal
Methods and Tools, and Back. LNCS, vol. 11865, pp. 481–501. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30985-5 28

15. Clark, G., et al.: The Möbius modeling tool. In: Proceedings of the 9th International
Workshop on Petri Nets and Performance Models (PNPM), pp. 241–250. IEEE
(2001). https://doi.org/10.1109/PNPM.2001.953373

16. Couvillion, J.A., et al.: Performability Modeling with UltraSAN. IEEE Softw. 8(5),
69–80 (1991). https://doi.org/10.1109/52.84218

17. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015). https://doi.
org/10.1007/s10009-014-0361-y

18. Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H., Fantechi, A.: Comparing
formal tools for system design: a judgment study. In: Proceedings of the 42nd
International Conference on Software Engineering (ICSE), pp. 62–74. ACM (2020).
https://doi.org/10.1145/3377811.3380373

https://doi.org/10.1016/j.jrtpm.2016.03.003
https://doi.org/10.1016/j.jrtpm.2016.03.003
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.1007/978-3-319-74781-1_19
https://doi.org/10.1007/978-3-319-74781-1_19
https://doi.org/10.1007/s11334-019-00353-3
https://doi.org/10.1007/s11334-019-00353-3
https://doi.org/10.1145/3019612.3019824
https://doi.org/10.1145/3019612.3019824
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1007/978-3-642-35632-2_25
https://doi.org/10.1007/978-3-642-35632-2_25
https://doi.org/10.1109/ISSRE.2017.17
https://doi.org/10.1109/ISSRE.2017.17
https://doi.org/10.1007/978-3-030-30985-5_28
https://doi.org/10.1109/PNPM.2001.953373
https://doi.org/10.1109/52.84218
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1145/3377811.3380373

384 D. Basile et al.

19. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press (1996). https://doi.org/10.1017/CBO9780511569951

20. Kemper, P., Tepper, C.: Traviando - debugging simulation traces with message
sequence charts. In: QEST, pp. 135–136. IEEE (2006). https://doi.org/10.1109/
QEST.2006.58

21. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991). https://doi.org/10.1016/0890-5401(91)90030-6

22. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statis-
tical model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 478–504. Springer, Cham (2019). https://doi.org/
10.1007/978-3-319-91908-9 23

23. Limnios, N.: Fault Trees. ISTE (2007). https://doi.org/10.1002/9780470612484
24. Littlewood, B., Popov, P., Strigini, L.: Modeling software design diversity: a

review. ACM Comput. Surv. 33(2), 177–208 (2001). https://doi.org/10.1145/
384192.384195

25. Masetti, G., Chiaradonna, S., Di Giandomenico, F.: Model-based simulation in
Möbius: an efficient approach targeting loosely interconnected components. In:
Reinecke, P., Di Marco, A. (eds.) EPEW 2017. LNCS, vol. 10497, pp. 184–198.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66583-2 12

26. Masetti, G., Chiaradonna, S., Di Giandomenico, F., Feddersen, B., Sanders, W.H.:
An efficient strategy for model composition in the Möbius modeling environment.
In: Proceedings of the 14th European Dependable Computing Conference (EDCC),
pp. 116–119 (2018). https://doi.org/10.1109/EDCC.2018.00029

27. Mazzanti, F., Ferrari, A.: Ten diverse formal models for a CBTC automatic
train supervision system. In: Gallagher, J.P., van Glabbeek, R., Serwe, W. (eds.)
MARS/VPT. EPTCS, vol. 268, pp. 104–149 (2018). https://doi.org/10.4204/
EPTCS.268.4

28. Mazzanti, F., Ferrari, A., Spagnolo, G.O.: Towards formal methods diversity in
railways: an experience report with seven frameworks. Int. J. Softw. Tools Technol.
Transfer 20(3), 263–288 (2018). https://doi.org/10.1007/s10009-018-0488-3

29. Pinsky, M.A., Karlin, S.: An Introduction to Stochastic Modeling, 4th edn. Aca-
demic Press, Cambridge (2011). https://doi.org/10.1016/C2009-1-61171-0

30. Reisig, W., Grzegorz, R. (eds.): ACPN 1996. LNCS, vol. 1491. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-65306-6

31. Reisig, W., Grzegorz, R. (eds.): ACPN 1996. LNCS, vol. 1492. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-65307-4

32. Sanders, W., Obal II, W., Qureshi, M., Widjanarko, F.: The UltraSAN modeling
environment. Perform. Eval. 24(1), 89–115 (1995). https://doi.org/10.1016/0166-
5316(95)00012-M

33. Sanders, W.H., Meyer, J.F.: METASAN: a performability evaluation tool based
on stochastic acitivity networks. In: Proceedings of the 1986 Fall Joint Computer
Conference, pp. 807–816. IEEE (1986)

34. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-
9 16

35. Younes, H.L.S.: Verification and Planning for Stochastic Processes with Asyn-
chronous Events. Ph.D. thesis, Carnegie Mellon University, January 2005. http://
reports-archive.adm.cs.cmu.edu/anon/2005/CMU-CS-05-105.pdf

https://doi.org/10.1017/CBO9780511569951
https://doi.org/10.1109/QEST.2006.58
https://doi.org/10.1109/QEST.2006.58
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1002/9780470612484
https://doi.org/10.1145/384192.384195
https://doi.org/10.1145/384192.384195
https://doi.org/10.1007/978-3-319-66583-2_12
https://doi.org/10.1109/EDCC.2018.00029
https://doi.org/10.4204/EPTCS.268.4
https://doi.org/10.4204/EPTCS.268.4
https://doi.org/10.1007/s10009-018-0488-3
https://doi.org/10.1016/C2009-1-61171-0
https://doi.org/10.1007/3-540-65306-6
https://doi.org/10.1007/3-540-65307-4
https://doi.org/10.1016/0166-5316(95)00012-M
https://doi.org/10.1016/0166-5316(95)00012-M
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
http://reports-archive.adm.cs.cmu.edu/anon/2005/CMU-CS-05-105.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2005/CMU-CS-05-105.pdf

Fluid Model-Checking in UPPAAL
for Covid-19

Peter G. Jensen, Kenneth Y. Jørgensen, Kim G. Larsen(B),
Marius Mikučionis, Marco Muñiz, and Danny B. Poulsen(B)

Department of Computer Science, Aalborg University, Aalborg, Denmark
{pgj,kyrke,kgl,marius,muniz,dannybpoulsen}@cs.aau.dk

Abstract. During the spring of 2020, the BEOCOVID project has been
funded to investigate the use of stochastic hybrid models, statistical
model checking and machine learning to analyse, predict and control
the rapid spreading of Covid-19. In this paper we focus on the SEIHR
epidemiological model instance of Covid-19 pandemics and show how
the risk of viral exposure, the impact of super-spreader events as well as
other scenarios can be modelled, estimated and controlled using the tool
Uppaal SMC.

1 Introduction

Epidemic modelling has gained tremendous interest in both news and research
communities in 2020 due to the rapid spread of Covid-19. In the news most of
the interest has been to use modelling as a way to explain the spread of Covid-19
while much research is about using models to predict and control the spread.

In Denmark three (collaborating) initiatives on combating Covid-19 using
mathematical models has been made:

– In March an expert group headed by Statens Serum Institut (SSI1) was estab-
lished with the task of developing mathematical models to predict the impact
of Covid-19 spread in the Danish society and to evaluate the effect of preven-
tive measures.

– In early April researchers at Danmarks Tekniske Universitet (DTU) and Aal-
borg Universitet (AAU) started a research project funded by Novo Nordisk
Fonden (NNF) to develop and improve modelling tools of Covid-19 to assist
decision makers to evaluate the effectiveness and impact of preventive mea-
sures. The project has been carried out in collaboration with SSI.

– On April 20th researchers from the Distributed, Embedded and Intelligent sys-
tems group at Department of Computer Science, Aalborg University (AAU)
received a grant by Poul Due Jensens Foundation (PDJ) to further aid devel-
opment of Covid-19 models. The PDJ project has been working in close col-
laboration with the NNF project.

1 https://www.ssi.dk.

The project was funded by Poul Due Jensens Foundation grant.

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 385–403, 2020.
https://doi.org/10.1007/978-3-030-61362-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_22&domain=pdf
https://www.ssi.dk
https://www.pdjf.dk/
https://doi.org/10.1007/978-3-030-61362-4_22

386 P. G. Jensen et al.

S E II R
β · S · I

N α · E γ · I

κ · I τ · H

Fig. 1. Rate diagram of the basic compartmental SEIHR model.

The key research question addressed in the NNF and PDJ projects has been
to identify the best strategy for social restrictions dependent on age and region
in Denmark for protecting the population and society from Covid-19 mortalities
caused by exceeding the intensive care capacity in the Danish hospital system.

An ambition of the two projects has been to provide a strategic decision
tool for the Danish authorities. The projects involved dissemination to Statens
Serum Institute (SSI), through a number of scheduled meetings. These have not
only included the concepts behind the models, but also effects of changing the
underlying assumptions and the uncertainties inherent in the different input data
and estimations, as well as the predictive power of the analysis methods.

Classically epidemics are modelled using so-called compartmental models [5–
7] where a population is divided into a number of different compartments, e.g.
the following five compartments of the so-called SEIHR model:

– susceptible (S) being those that can affected by the disease,
– exposed (E) being those that have the disease but not yet infectious,
– infectious (I) being those that have the disease and can infect others,
– recovered/removed (R) being those that have had the disease and either recov-

ered (with an assumed immunity), in quarantine or died, and
– hospitalised (H) being those that are hospitalised.

The dynamic change of the distribution of a population over compartments
may be described using a rate diagram such as Fig. 1. In the rate diagram the
expression above an arrow describes the rate of the flow between different com-
partments, e.g. the arrow E

α·E−−→ I means a conversion from E to I with a rate

α multiplied by the number of E elements. Similarly S
β·S· I

N−−−−→ E is a conversion
from S to E with a rate β multiplied by the number of S, except this conver-
sion is facilitated by the number of infectious I elements where the probability
of meeting one is I/N , therefore the overall conversion rate is scaled with this
probability. As we shall see later, the rate diagram may be analysed using a
number of different mathematical models.

Remark 1. Importantly it should be mentioned, that at the time of writing
details concerning immunity in respect to Covid-19 (especially duration) are
not yet established. If immunity is later discovered to be only temporary and
lasts shortly, then our models need to be refined.

Fluid Model-Checking in UPPAAL for Covid-19 387

A crucial aspect of epidemic modelling is estimation of the β, α, γ, κ and τ
parameters. After the outbreak of Covid-19 Chinese researchers [8] have esti-
mated the parameters based on data observed in Wuhan. These parameters are
however not directly transferable from one country to another as they depend on
the health and the behavior of each society. The NNF-project has fitted Danish
data to a SEIHR model and estimated the parameters for Danish conditions.
These parameter values are used in our modelling and analysis effort.

In this paper we focus on the PDJ project, with the purpose of illustrating
how statistical model checking in the tool Uppaal SMC [3] has been used to
model, analyse and synthesise a variety of scenarios relevant for Covid-19 [4],
ranging from abstract (continuous) population models to detailed (stochastic)
agent-based models as well as (fluid) mixtures of these, allowing to reason about
health risks of selected individuals in the setting of particular populations.

2 SEIHR Models in UPPAAL SMC

The rate diagram in Fig. 1 describing how individuals move between the different
compartments of the SEIHR model can be captured by a number of different
mathematical models. Traditionally, rate diagrams are most often interpreted
as ordinary differential equations (ODE) which are deterministic. However, the
diagrams can also be viewed as stochastic models, where the rates of the reac-
tions are used as parameters of exponential distributions. The stochastic models
may either be aggregated or be agent-based. In the latter, the health-status
(i.e. compartment) for each individual is faithfully reflected, whereas in the for-
mer only the number of individuals in each compartment is maintained. The
stochastic models are more realistic than the ODE models, but also come with
a significantly increased complexity in their analysis: the analysis of agent-based
models are exponentially2 more complex than the analysis of aggregate models.
A well-known fact about the aggregate stochastic model is that it can be easily
translated into a set of ODEs capturing the expected behaviour of the model
in the limit. Furthermore, the aggregated stochastic model can be proven to be
a correct abstraction of the agent-based stochastic model using the notion of
probabilistic bisimulation. To mediate between the accuracy of modelling and
the complexity of analysis, it is possible to have mixed models – so-called fluid
models – where selected individuals are modelled as agents, whereas the remain-
ing population are modelled using either ODE or aggregated models.

In the remainder of this section we will show how the tool Uppaal SMC [3]
can easily model and analyse all the three (four) above types of models for
reaction networks.

2.1 Ordinary Differential Equation Models

Figure 2 shows the ODE model of the SEIHR reaction network in Uppaal.
The main ingredients of the model are the five continuous state-variables S,
2 Assuming a fixed number of compartments.

388 P. G. Jensen et al.

(a) Declarations.

(b) hybrid automaton.

(c) Simulation.

Fig. 2. ODE model of SEIHR rate diagram.

E, I, H and R declared as (initialised) clocks in the declaration part Fig. 2a.
The declaration part also sets a number of constants for the various rates of
the reaction network to fit the evolution of Covid-19 in Denmark. Here we are
looking at small sub-population of Denmark with 10,000 people and with 1%
being exposed initially. The behavioural part of the model is given in Fig. 2b,
being a one-location automata, with an invariant describing the behaviour of
the state-variables as a system of ODEs. The ODEs are derived from the SEIHR
reaction network in a very simple manner: for any state-variable X there is an
ODE expressing that the derivative of X equals the difference between the total
rate of the incoming edges and the total rate of outgoing edges, i.e.:

X ′ =
∑

Y
E−→X

E −
∑

X
E−→Z

E

Finally, we see the evolution of the state-variables over a period of 100 days in
Fig. 2c. In particular, we note that out the total population of 10,000 some 1,403
will get exposed, 900 infected and 1,98 hospitalised. The time for the simulation
was 0.077 s.

2.2 Aggregated Stochastic Models

In Fig. 3(a)–(e), we show the aggregated stochastic model of the SEIHR rate
diagram. In this model the different compartments are represented as integer
variables (counters S, E, I, H and R) representing at any given point in time the
number of individuals being in that state. A key assumption is that S + E + I +

Fluid Model-Checking in UPPAAL for Covid-19 389

(a) S
I,β−→ E. (b) E

α−→ I. (c) I
κ−→ H. (d) H

τ−→ R. (e) I
γ−→ R.

(f) One simulation plot. (g) 100 simulations.

Fig. 3. Aggregated CTMC model of SEIHR rate diagram.

H + R = N , where N is the number of individuals. As for the rate-expressions
of the SEIHR rate diagram, these are used as rates of exponentially distributed
transitions incrementing/decrementing the relevant counters. E.g. the (looping)
transition of Fig. 3(b) indicates that one individual is transferred from E to I with
rate kappa*I – of course provided that E is larger than 0 as expressed by the
guard E>0. The resulting aggregated model is a continuous time Markov chain
(CTMC) with states being vectors (S, E, I, H, R) and where the five transitions of
Fig. 3(a)–(e) are racing against each other.

In Fig. 3(f) we see the evolution of the state counters resulting from a single
simulation over a period of 100 days. Despite the randomness of the simulation,
the evolution of S, E, I and R seems indistinguishable from that of the ODE
model Fig. 2. However, considering the variable H, we see a variation between 0,
1 and 2 over the 100 day period. Figure 3(g) visualises 100 random simulations
with H ranging between 0 and 8. In fact, based on the 100 random simulations the
expected value of H in the aggregated CTMC model is found to be 3.82± 0.24.
Moreover, using 291 random simulations the probability that H will exceed 4 is
found to be in the confidence interval [0.183, 0.282] with 5% confidence. These
stochastic analyses significantly refines the expected behaviour analysis provided
by the deterministic ODE model, where H was below 2. For this aggregated
CTMC model the time to perform a single simulation is approximately 0.702 s
(a factor of 10 more than the ODE model).

2.3 Agent-Based Stochastic Models

Both the ODE model and the aggregated CTMC model provide sufficient infor-
mation to address3 the key question as to whether the capacity at hospitals will

3 Assuming, of course, that the given model is valid with respect to reality.

390 P. G. Jensen et al.

(a) SEIHR agent template .

(b) Simulation.

(c) Location changes of 30 individuals: at , at , at , at , at .

Fig. 4. Agent-based CTMC model of SEIHR rate diagram.

be exceeded within a given period. However, questions such as “how many dif-
ferent individuals will be hospitalised” and “what is the expected time before
a given individual becomes exposed” cannot be readily answered by these two
models. To answer such questions, we need an agent-based model, where the
healthiness status of each individual is accounted for. Figure 4(a) provides a
SEIHR agent automaton (template) to be instantiated for each individual of
the population. In the automaton, the five locations S, E, I, H and R are used
to represent healthiness status. The time of transitions between the last four
states are exponentially distributed with rates alpha, kappa and gamma respec-
tively The rate of the transition between S and E has rate beta*infectious/N,
where infectious keeps count on the total number of infected individuals, i.e.
infectious/N is the probability that a random individual is infected.

Fluid Model-Checking in UPPAAL for Covid-19 391

Fig. 5. Fluid SEIHR agent template P.

Instantiating the template 10,000 times we see in Fig. 4(b) the evolution of
the number of individuals in the different states resulting from a single simulation
over a period of 100 days. During the simulation we are tracking expressions such
as sum(i:id_t) P(i).S. Here P(i) refer to the i’th instance of the template P,
and P(i).S is a Boolean indicating whether P(i) is in state S. Summing over
all instances i the overall expression sum(i:id_t) P(i).S provides the total
number of individuals in state S. We see that the evolution matches that of the
aggregated CTMC.

Now we select 30 individuals out of the total population of 10,000. In Fig. 4(c)
we track the state of these selected 30 individuals during one simulation. In
particular, we note a wide variation in the time of becoming exposed as well as
in the length of time being in the various states. Out of the 30 randomly selected
individuals one a single person becomes hospitalised. The time for the simulation
for 10,000 individuals was 407.49 s (several orders of magnitude larger than the
aggregated CTMC model).

2.4 Fluid Models

For agent-based models – as described in the previous section – simulations
involve all individuals of the total population resulting in significant increase in
simulation time. However, if the properties of interests only refer to a limited
number of selected individuals it may be advantageous to apply the method of
fluid model checking.

In [2] a potential use of fluid approximation techniques in the context of
stochastic model checking has been investigated. Here the focus is on prop-
erties describing the behaviour of a single agent in a (large) population of
agents, exploiting a limit result known also as fast simulation. In particular,
the behaviour of the single agent is approximated with a time-inhomogeneous
CTMC, which depends on the environment and on the other agents only through
the solution of the ODE. This approach has been proven asymptotically correct
in terms of satisfiability of logical properties including reachability probabilities.
In our context the advantage of fluid model checking is that it allows us reduce
simulation efforts while preserving the reachability probabilities (e.g. probability
of getting exposed) of the few agents we are concerned with.

In Fig. 5 we revise the agent-based CTMC model from the previous section
with the purpose of exploiting fluid model checking. For each of the 30 selected

392 P. G. Jensen et al.

individuals, the template P will be instantiated. To model the behaviour of the
remaining 9,970 individuals we will use the ODE model of Fig. 2 (with N =
9, 970). Importantly, the template P of Fig. 5 describes a time-inhomogeneous
CTMC as the rate of the transition of leaving S given by the expression beta *
(infectious+I)/(N+A) is time dependent. Here infectious is the number of

individuals infected out of the 30 selected ones, and the I one of the five state-
variables of the ODE describing the number of infected individuals out of the
9,970 large population. Finally, A respectively N is the number of selected indi-
viduals (30) respectively the amount of individuals of the ODE model (9,970).
The time for a single simulation of the resulting fluid model is 0.164 s being sev-
eral orders of magnitude faster than simulation of the corresponding agent-based
model (407.49 s).

3 Covid-19 in Denmark

Fig. 6. Phases.

Covid-19 was first identified at December 2019 in Wuhan, China
and from there quickly spread throughout the world. On Febru-
ary 27th the first case of Covid-19 was confirmed in Denmark.

On March 11th 2020 the Danish prime minister Mette Fred-
eriksen announced a countrywide quarantine (lockdown) tak-
ing effect from March 13th. The order closed down all non-
essential public services, including daycare, primary- and sec-
ondary schools, upper secondary schools and universities. All
non-essential public sector staff were required to stay and work
from home, the order urged the private sector to follow the
same procedure. On March 16th a new order closely followed
restricting public gatherings of more than 10 people, as well
as closing down shopping centers and stores where people are
in close proximity, including bars, restaurants, fitness centers,
hairdressers, dentists and shopping centers.

The lockdown was kept into effect until April 15th when a
gradual reopening of the country started. The reopening was
planned and approved by politicians in collaboration with the
government, assisted by modelling and expert input by SSI. The
plan consisted of 4 phases gradually lifting the quarantine:

Phase 1: daycare and primary schools (1.-5 grade) as well as
hairdressers, dentists.

Phase 2: starting May 18th, included the opening of shopping
centers, bars and restaurants (with reduced opening hours),
secondary schools, upper secondary schools, outdoor sports
clubs, churches and professional sports and athletics.

Phase 3: staring from June 8th, included universities, public swimming pool,
gyms, sports, tourist attractions, parties and larger gatherings of up to 500.

Fluid Model-Checking in UPPAAL for Covid-19 393

Phase 4: everything else including lifting the ban on public gatherings of more
than 500 people. The phase is planned to start in August.

Figure 6 shows an extended timed automaton modelling the four phase of the
gradual lifting of the quarantine. Here u is a floating point variable between 0
and 1 giving the degree of quarantine, i.e. 0 corresponds to the complete lifting
of quarantine. Figure 7 is a slightly modified version of the ODE SEIHR model,
taking into account the degree of quarantine at any given point in time.

In Figs. 8, 9 and 10 we compare the planned lifting of quarantine with a
hypothetical plan, where quarantine is completely lifted after phase 1. The three
Figures focus on different subsets of S, E, I, H and R. In the first two figures the
values of H as well as u are so small that a scaling has been used. From Fig. 8
we see that the planned lifting of quarantine slowly brings R close to the level
needed for herd immunity in Denmark at approximately 3,267,000 (at the time
of writing this paper we are in the middle of Phase 3). In contrast the alternative
plan of early reopening herd immunity would have been achieved already now.

Fig. 7. SEIHR model for Denmark with quarantine.

Figure 10 focuses on the number of hospitalised individuals. Here the pre-
dictions of the two models are compared to the actual Covid-19 hospitalised
numbers as published by SST (Sundhedsstyrelsen)4. We see that the trajectory
in Fig. 10(a) obtained from the ODE model under the planned quarantine phases
is extremely close to the actual observed data. Most importantly we see that the
maximum number of hospitalised individuals at any given point in time is less

(a) Danish quarantine. (b) Early reopening.

Fig. 8. SEIHR trajectories.

4 https://www.sst.dk/da/corona/tal-og-overvaagning.

https://www.sst.dk/da/corona/tal-og-overvaagning

394 P. G. Jensen et al.

(a) Danish quarantine. (b) Early reopening.

Fig. 9. EIH trajectories.

(a) Danish quarantine. (b) Early reopening.

Fig. 10. Hospitalizations.

than 520, well below the capacity of Danish hospitals. In Fig. 10(b) we see that
the early complete lifting of quarantine results in a small temporary increase in
the number of hospitalisations.

4 Family Routines in Cities

In this section, we consider a scenario focusing on the healthiness of a family
with three members, a mother, a father and a son, living in Copenhagen. Besides
living in Copenhagen (613,288 inhabitants) the members of the family spend
considerable time at work and at school and occasionally enjoy some leisure
activity. More precisely, the mother works at Maersk (estimated 2,000 employees
at Esplanaden), the father works at ITU (estimated 2,300 employees) and the
son goes at Vesterbro Ny school (752 pupils). As for leisure, the father is fanatic
about FCK (FC Copenhagen) and has season tickets for home matches at Parken
(capacity of 38,000 spectators) twice a week. During weekend the mother and
father enjoy a dinner at one of restaurants in Nyhavn (some 5,000 people may
gather there). In this scenario the son enjoys no leisure activities.

Now the city of Copenhagen as well as the 5 locations relevant for this par-
ticular family, i.e. Parken, ITU, Maersk, Vesterbro Ny School and Nyhavn, will
have their own SEIHR ODE-based model. Each location has a population-size
as well as a specific transition-rate for flow between susceptible (S) and exposed
(E) reflecting the differences in being exposed at various locations. Figure 11(a)
is an instantiation of the ODE SEIHR model for Copenhagen, where KBH_N is

Fluid Model-Checking in UPPAAL for Covid-19 395

(a) ODE model for Copenhagen.

(b) Timed ODE model for Parken.

Fig. 11. SEIHR models for locations.

the number of inhabitants in Copenhagen and beta is an array with a distinct
values for each location e.g. beta[kbh] is the exposure rate for Copenhagen.

The SEIHR model for Parken is essentially the product of an ODE SEIHR
model with a timed automaton [1] indicating the opening hours of Parken. In
Fig. 11(b) we see that on Tuesdays (d==2) and Saturdays (d==60) the opening
hours are between 12:00–23:00. Only in the Open location, the ODE for Parken is
activated. The function (not shown here) let_in() (let_out()) will “transfer”
a number of spectators from (to) Copenhagen into (from) Parken upon opening
(closing). The SEIHR models of the remaining four locations are similar to that
of Parken taking the opening hours into account.

As for the three members of the family we will use two components: an agent-
based model for recording the health status and a timed automaton describing
the weekly itinerary reflecting work-hours and leisure activities. For example
Fig. 12(a) is a timed automaton describing the whereabouts of the Father over
a week. Here x is a clock used to determine the precise timing of the various
location-visits. As such we see that he leaves Home at 7 o’clock in the morning
and reaches ITU at 8 o’clock. At 16 o’clock he leaves either for Home in order
to go to Nyhavn or to Parken. Figure 12(b, c) describes the itineraries for the
mother and son. Figure 12(d) is the agent-based SEIHR model used to describe
the health status of each family member. Here we note that the rate for leaving
S is a composite expression essentially picking the index of the array beta cor-
responding to current location of the family member (given by the expression
l[id], where l is an array holding the location of all three family members).
Note here the final case, where the family member is at home (potentially the
location with highest exposure), where the integer variable Home_I counts the
number of family members being infected.

396 P. G. Jensen et al.

(a) TA itinerary for Father.

(b) TA itinerary for Mother.

(c) TA itinerary for Son.

(d) Agent model of the Health Status per each member.

Fig. 12. Models for family members.

In Fig. 13 we see the result of a single simulation of the SEIHR model Copen-
hagen. In Fig. 13(a) we notice that twice a week a significant part of the Copen-
hagen population goes to Parken. Also, in Fig. 13(b) we note that the number
of hospitalized peaks on day 42 at approximately 125 people.

In Fig. 14 we estimate the probability for each family member that one
becomes exposed during a duration of 300 days. For the father (similar for the
mother) the returned 95% confidence intervals are 0.738 ± 0.025, whereas the
confidence interval for the son is only slightly below being 0.731 ± 0.025. Note
that in all cases the exposure happens within the first 100 days – after this the
number of infections in the relevant locations becomes too low.

The very marginal difference between the exposure of the son and the parents
may seem strange as the son in this scenario does not enjoy any leisure activities
(where the beta has been set substantially higher than at work-places). However,
the son meets his father and mother regularly and for a substantial amount of
time at their home. Thus, we investigated an alternative scenario, where the son
lives alone (still not enjoying leisure activities). The result becomes significantly
different as shown in Fig. 14(c), where the estimated 95% confidence interval
becomes 0.661±0.025. Thus the lesson is: it is not enough that you yourself stay
away from highly exposed places, you should avoid spending long time-periods
with others having this behaviour.

Fluid Model-Checking in UPPAAL for Covid-19 397

(a) SEIHR (b) Number of hospitalized.

Fig. 13. Copenhagen.

(a) Father: 0.738 ± 0.025 (95% CI). (b) Son living alone: 0.661 ± 0.025.

Fig. 14. Probabilities of becoming exposed within 300 days.

5 Super-Spreading and Bars

In this section we consider a scenario of a super-spreader, being a single indi-
vidual who is infected and has a personal extremely high rate for spreading the
virus to other people at the same location. For locations, we consider five bars
(say at Nyhavn in Copenhagen) each with a capacity of 300 persons (out of
which 3 are assumed to be exposed already). For each bar we instantiate the
aggregate CTMC model of Fig. 3(a). Thus a complete state will be captured by
five arrays of counters S, E, I, H and R, e.g. E[2] will be the number of exposed
people in bar number 2, Bar[2].

In this scenario the super-spreader walks between bars in a periodic manner.
In fact, to demonstrate the damage of the super-spreader only Bar[1] and Bar
[2] are visited. The periodic behaviour of the super-spreader is given as a timed
automaton in Fig. 15(a), where we note that the period is 2 days. spread is a
Boolean array where spread[i] is true when the super-spreader is in Bar[i]. In
Fig. 15(b) we see the extra reaction rule added to Bar[i]. We see that the rule
causes a susceptible person to be exposed with extremely high rate (beta=10)
but only if the super-spreader is in Bar[i]. In Fig. 15(c) we see 10 simulations
tracking the number exposed people in each of the five bars over a period of 100
days. Clearly, there are many more people being exposed in the bars visited by
the super-spreader in comparison to the other bars. Also the exposure happens
much faster in these bars with a peak around day 13 compared to day 40. In

398 P. G. Jensen et al.

(a) Timed Automaton for Itinerary (b) Infection Rule

(c) Evolution of number of exposed people in the five bars.

Fig. 15. Super-spreader

fact, the expected number of people becoming exposed in Bar[1] is 72.58± 1.38
compared to that of Bar[5] being 48.04 ± 2.43.

6 Tracing Covid-19

One strategy for limiting the spread of epidemic diseases is containment: isolate
infected people and rapidly determine who they infected and also isolate them.
This strategy works very well if:

1. we can discover initially infected people through testing, and
2. we can trace their interactions.

The smitte|stop smartphone application5, mandated by the Danish gov-
ernment6, has recently made such a trace-and-isolate strategy possible. The
5 https://smittestop.dk/.
6 https://sum.dk/Aktuelt/Nyheder/Coronavirus/2020/Maj/∼/media/Filer%20-
%20dokumenter/01-corona/App/Politisk-aftale-om-smittessporingsappen.pdf.

https://smittestop.dk/
https://sum.dk/Aktuelt/Nyheder/Coronavirus/2020/Maj/~/media/Filer%20-%20dokumenter/01-corona/App/Politisk-aftale-om-smittessporingsappen.pdf
https://sum.dk/Aktuelt/Nyheder/Coronavirus/2020/Maj/~/media/Filer%20-%20dokumenter/01-corona/App/Politisk-aftale-om-smittessporingsappen.pdf

Fluid Model-Checking in UPPAAL for Covid-19 399

application is build atop frameworks of Apple and Google for their respective
smartphone platforms.

After being installed smitte|stop periodically emits unique IDs to nearby
phones running smitte|stop. It also stores IDs of phones it has received (been
in close contact with) during a 15 min interval. These ID exchanges are sufficient
for infected individuals running the smitte|stop app to notify people whom they
have plausible infected.

Part of the strategy of the Danish government to stop a second wave relies
on the smitte|stop app having a significant reduction in the number of new infec-
tions. However, the impact of such an app relies heavily on the adoption of
the population. We thus demonstrate the use of Uppaal to asses the impact of
smitte|stop with varying adoption rates.

To model the effect of the smitte|stop application, we extend the agent based
model presented in Sect. 2.3. However, to reduce the complexity, we make the
following assumptions:

1. infected one who has been tested positive immediately warns other users using
the app,

2. people who receive a warning are tested immediately,
3. test results are received after a fixed number of testDelay days, and
4. the interaction with disease transmission is accurately and specifically cap-

tured by smitte|stop.

We believe that assumptions 1–3 are quite realistic. However, we can see that
assumption 4 is a crude simplification as it may fail to register when a) two users
do not interact long enough, or b) two users each were infected by separate third
parties but caught by the smitte|stop accidentally.

Nonetheless, we expect these effects to be minor. Furthermore, we restrict
ourselves to a 1,000-agent simulation due to the required computational effort,
as noted in Sect. 2.3

Each individual in our world is modelled by two different automata: one
automaton (Health) models the health condition of each person while a second
automaton (Test) models a persons behaviour in regards to testing policies.

Notice that the Health automaton (Fig. 16) is a modified version of Fig. 4:
an extra location Q for quarantine has been added while the hospitalisation
has been merged into the R location. We merged the hospitalisation into R as
the number of hospitalisations is not interesting for this particular scenario. The
extra Q location captures the (assumed) non-interaction of persons in quarantine
– a health state reached via a synchronisation on the person-specific quarantine
channel. During location changes Health also updates a shared variable s to
reflect its new health status such that the behaviour of the Test template is
modified accordingly.

Figure 17 shows the Test automaton. Initially a choice is made as to whether
this person uses smitte|stop. Afterwards (in S) we wait for the Health automaton
to signal it has been exposed. Upon exposure an existing infected individual is
selected (at random) as the source of the exposure; if no-one is infected, the edge

400 P. G. Jensen et al.

Fig. 16. Health of the smitte|stop model. The external_pressure/Persons models
people might be exposed from outside (e.g. travels)

guarded by no_infectious() can be taken, in which case the source of infection
is assumed to be external. Notice the increment of frandom and fapp: these are
counters of how many infected are found using random testing and how many
are found using the app.

In the location E a person can either be selected for random testing through
synchronisation on test, or via a warning from smitte|stop, modelled via syn-
chronisation on (positive_c[who]?). The automaton follows a similar pattern
in both cases: we go to a location where it waits for a test result for testDelay
days. If the test is positive (with probability weight testInf()) then the indi-
vidual moves to isolation – if the individual is using smitte|stop, the person emits
a warning via smitte|stop (pos, received on positive_c[who] when who matches
the ID of the transmitting individual). If the test is negative (with probability
weight testNInf()) then for the random testing path (red rectangle) the indi-
vidual returns to E while the current protocol (blue rectangle) for a smitte|stop
case mandates a second test after a two day waiting/incubation period7.

Remark 2. We mentioned above that people could be selected for random testing
by synchronisation on test, but did not mention who controls this channel. It is
controlled by an additional automaton that continuously chooses a delay from
an exponential distribution. After that delay it selects a person to be tested
a uniformly. The exponential distribution has rate T which corresponds to the
number of people tested each day.

To assess the potential effect of using smitte|stop, we estimated the number
of people found using the app within 200 days, and the number of people found
using random testing within 200 days for different adoption rates of smitte|stop,
and for different levels of testing accuracy. As our model is fully stochastic each
simulation used for estimation does not have the same number of infected.

Table 1 summarises the results of these simulations. Worth noting is:

1. The number of infected using smitte|stop (smitte|stop column) does increase
with higher adoption rate of the app,

2. the Random+smitte|stop column indicates that we do find more infected
in total with higher adoption rates,

7 https://smittestop.dk/spoergsmaal-og-svar.

https://smittestop.dk/spoergsmaal-og-svar

Fluid Model-Checking in UPPAAL for Covid-19 401

F
ig
.
1
7
.
E
x
ce
rp
t
o
f
T
e
s
t
o
f
th
e
sm

it
te
|st

o
p
m
o
d
el
.
T
h
e
a
re
a
in

th
e
b
lu
e
re
ct
a
n
g
le

is
th
e
sm

it
te
|st

o
p
te
st
in
g
p
ro
ce
d
u
re

a
n
d
th
e
a
re
a
re
d

re
ct
a
n
g
le

is
th
e
ra
n
d
o
m

te
st

p
ro
ce
d
u
re
.
(C

o
lo
r
fi
g
u
re

o
n
li
n
e)

402 P. G. Jensen et al.

Table 1. Estimation Data for the smitte|stop model: Persons is total size of the popu-
lation, TestAcc is the accuracy of the tests, Tests/day is the amount of people tested
using random testing per day, %smitte|stop is the percentage of people using smitte|stop,
Random is the number of infected found using random testing while smitte|stop is the
amount found using the smitte|stop app. The Random and smitte|stop columns are esti-
mated over 10000 runs.

Persons TestAcc Tests/day %smitte|stop Random smitte|stop Random+smitte|stop
1000 .25 2 .25 1.75 0.02 1.79

1000 .25 2 .50 1.75 0.07 1.82

1000 .25 2 .75 1.70 0.17 1.87

1000 .50 2 .25 3.35 0.05 3.40

1000 .50 2 .50 3.25 0.23 3.48

1000 .50 2 .75 3.22 0.59 3.81

1000 .75 2 .25 4.72 0.11 4.83

1000 .75 2 .50 4.69 0.49 5.18

1000 .75 2 .75 4.59 1.14 5.73

3. A superficial scan over Table 1 could easily lead to the conclusion that
smitte|stop is not useful: with the highest adoption rate (highlighted in
Table 1) it only finds 1.14 infected. However, one should consider that random
testing finds only 4.59 infected, and random testing needs to find an infected
individual before smitte|stop can alert people. Increasing test capacity should
have a positive effect on both the number of infected found by random testing
and the number of infected found using smitte|stop.

7 Conclusion

In this paper we have demonstrated how Uppaal SMC may be used to model
the ongoing Covid-19 epidemic in several ways. The span of models allows for
a range of analyses to be made. This includes analysis at population level for
crucial estimation of the sufficiency of hospital capacity. Also analyses at the
level of individuals is possible using fluid models, where consequences of various
social behavioural patterns may be predicted.

We are convinced that the graphical and rich modelling formalism of
Uppaal SMC has been crucial for the rapid speed by which these models
have been constructed and analysed. As for the analyses the current efficiency
of Uppaal SMC has proven adequate with respect to the scenarios consid-
ered. However, we have a number of ideas for optimisations (e.g. precomputing
the solutions to the ODE component of fluid models, sweeping of parameters,
exploiting cluster computing facilities) that will be needed for scaling to more
complex scenarios.

In the NNF project domain specific modelling-notations and ways of visu-
alising results more suited for end-users (doctors, politicians, etc.) are being
developed. We plan to support these notations.

Fluid Model-Checking in UPPAAL for Covid-19 403

One overall important aspect that we have not considered is the estimation
of parameters and initial condition based on real observed measurements. In the
sister NNF project a number of approaches for this has been examined.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I.
(eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32940-1 24

3. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)

4. Jensen, P.G., Jørgensen, K.Y., Larsen, K.G., Mikucionis, M., Muñiz, M., Poulsen,
D.B.: Fluid models in uppaal for covid-19 - full models. https://github.com/DEIS-
Tools/uppaal-models/tree/master/CaseStudies/Covid-19

5. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of
epidemics–I. Bull. Math. Biol. 53(1), 33–55 (1991)

6. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of
epidemics-II. The problem endemicity. Bull. Math. Biol. 53(1), 57–87 (1991)

7. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of
epidemics-III. Further studies of the problem of endemicity. Bull. Math. Biol. 53(1),
89–118 (1991)

8. Peng, L., Yang, W., Zhang, D., Zhuge, C., Hong, L.: Epidemic analysis of covid-19
in China by dynamical modeling (2020)

https://doi.org/10.1007/978-3-642-32940-1_24
https://github.com/DEIS-Tools/uppaal-models/tree/master/CaseStudies/Covid-19
https://github.com/DEIS-Tools/uppaal-models/tree/master/CaseStudies/Covid-19

Improving Secure and Robust Patient
Service Delivery

Eduard Baranov(B), Thomas Given-Wilson(B), and Axel Legay(B)

Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
{eduard.baranov,thomas.given-wilson,axel.legay}@uclouvain.be

Abstract. The Wablieft project explores how to improve medical ser-
vice delivery through a shared marketplace for service providers. This
shared marketplace allows patients to choose services from providers
and so support improved service delivery and patient satisfaction. Hav-
ing a shared marketplace raises some service reliability and correctness
challenges, as well as creates opportunities for improved information
gathering. This work formalises the shared marketplace to prove correct
behaviour and properties of the marketplace behaviour. The information
available to the shared marketplace is also used to improve predictions of
medical scenarios such as pandemics, and thus improve service delivery.

1 Introduction

The Wablieft project considers how to improve the delivery of services to patients
by using a shared marketplace [5]. Current service providers may be over- or
under-utilised due to patients being assigned to a specific service provider by
their hospital. By pooling the information on services and allowing patients to
choose the service provider (and hence timing, locations, etc.) of the service
that is best for them, the goal is to improve the utilisation and overall delivery
of services. This pooling of information is done through a shared marketplace
where service providers offer their services, and patients are able to choose the
service and service provider that best matches them.

This shared marketplace is designed to benefit all parties involved, hospitals,
patients, service providers (and others such as payment options, legislation, etc.).
For hospitals they do not need to manage a single or multiple service providers
directly and can instead use the marketplace to offer many services (and service
providers). For patients this provides options to choose service providers accord-
ing to patient preferences, e.g., more convenient location, better appointment
times, etc. For service providers this allows many more potential patients to
find services, and to more efficiently schedule services (ensuring more consistent
utilisation). There are also advantages for other actors in the Wablieft project
related to patient compliance, auditing, financial services, and legal protections,
although these are not detailed in this work.

Having a shared marketplace raises some service reliability and correctness
challenges, as well as creates opportunities for improved information gathering.
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 404–418, 2020.
https://doi.org/10.1007/978-3-030-61362-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_23&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_23

Improving Secure and Robust Patient Service Delivery 405

By using this new approach to service provisioning there are potential concerns
with implementation.

One of the main challenges is to ensure that the shared marketplace behaves
correctly and fairly toward all users. This requires some delicacy in how the
different users can interact with the shared marketplace, and how to ensure this
cannot be exploited. Also by having a shared marketplace system, the common
behaviours to all users of the same class should be handled in a consistent man-
ner, e.g., all service providers should have the same experience. There are also
questions of accountability in a shared marketplace, where all the users may wish
to have consistent, immutable, and reliable records of the usage of the system.

The information available to the shared marketplace is also potentially able
to provide benefits to users of the system. The shared marketplace has a global
view of how the market is behaving and can use this to improve outcomes for all
parties. For example, consider when service provisioning may be interrupted by
emergency service requirements (e.g., an operating theatre that was scheduled
for one patient is required for an emergency). Then in the case of some larger
occurrence like a pandemic, predicting the spread to other regions can improve
service delivery by preventing too many services being offered and cancelled.

This work formalises the shared marketplace in Uppaal SMC [1] and uses
statistical model checking [4,6,8] to analyse key behavioural properties. The
models were made easily reconfigurable, thus allowing many experiments with
differing input parameters (number of patients, services, kind of blockchain, kind
of pandemic model etc.). To model the occurrence of a pandemic and predictive
power of the shared marketplace, we used a simplified version of the model,
optimised to improve performance while considering a large number of patients.
The main contributions of this work are as follows.

– A formal model for a shared marketplace of the Wablieft project.
– Prove the correctness of the model of the Wablieft project.
– Demonstrate the predictive advantage of global knowledge from a shared

marketplace as in the Wablieft project.

The structure of the paper is as follows. Section 2 recalls important back-
ground for understanding this paper. Section 3 overviews the Wablieft project
and its goals. Section 4 presents the models of the Wablieft project. Section 5
experiments with how to improve service delivery in the face of a pandemic.
Section 6 concludes and considers future work.

2 Background

This paper makes use of formal verification techniques. The key concepts are
briefly introduced here for those unfamiliar with the field. In formal verification
both the system and the requirements are represented via mathematical models
and formulas on which (mathematical) operations are applied. The usage of a
model allows for validation at design time, in particular early in the project life

406 E. Baranov et al.

cycle. One common approach to verification is Model Checking (MC) (see [3] for
a detailed survey) where the system is represented by a Transition System (TS)
or graph where nodes represent states of the system and ordered edges between
nodes represent transitions between those states. The execution of the system
is represented by a sequence n0 e0 n1 e1 n2..., where nis are nodes and eis are
edges from ni to ni+1. Requirements are represented by temporal logic formulas
[3]. For example, both linear and branching temporal logics (resp. LTL/CTL)
are sufficient to represent requirements that make (temporal) hypothesis on a
given set of executions. Such logics extend classical Boolean logics with temporal
operators over sequences of states. As an example, the LTL formula “[]a” says
that proposition “a” must be true in each state of each execution, while “<> a”
says that for each execution there must be a state in the execution where “a” is
true.

The advantages of MC are that 1. it can be deployed at all steps of conception
time, and 2. it is exhaustive as it explores the entire behaviors of the system.

A wide range of works have focused on quantitative systems. Such systems
are TS where transitions are equipped with quantitative values such as cost or
probabilities. This allows us to express quantitative measures, e.g., duration of
an execution or probability/cost of an action. In such cases, logics are themselves
extended with quantitative operators, which allows us to pose quantitative ques-
tions like “what is the probability of termination”, or “what is the probability
that we avoid a deadlock”, or “what is the timing cost of a specific execution”.

Unfortunately, MC requires exploration of all executions and this is infeasi-
ble for large models. This problem is also known as the state-space explosion
problem. To address this problem, an alternative approach was proposed based
on algorithms from statistics. The core idea of Statistical Model Checking (SMC)
[6–8] is to make many simulations of the model during which properties are mon-
itored. Then, the statistical algorithm (e.g., Monte-Carlo) is used to decide the
probability of the property to be satisfied with some degree of confidence. The
level of confidence can be tuned with the number of simulations. Being based
on simulation techniques, SMC is known to be less time and memory consuming
than exhaustive methods. SMC is usually used to monitor bounded executions,
therefore Bounded LTL/CTL logics are used - versions that can be decided on
finite executions.

Uppaal SMC [1,4] is a statistical model checker using stochastic timed
automata models [2]. The stochastic extension adds probabilistic choice between
transitions and probability distributions for time delays. Uppaal SMC provides
several queries for statistical model checking: “probability estimation” - prob-
ability of the property to be satisfied within the given timebound; “hypothe-
sis testing” - comparing the probability of the property to be satisfied with a
threshold; “probability comparison” of two properties. In addition Uppaal SMC
supports evaluation of expected values of an expression.

Improving Secure and Robust Patient Service Delivery 407

3 The Wablieft Project

The motivation for the Wablieft project is to improve the delivery of healthcare
services through a shared marketplace.

3.1 The Wablieft Marketplace

The Wablieft shared marketplace is designed to bring together various actors
in the healthcare sector, including: hospitals, patients, and service providers
amongst others. (Note this work will focus on the interactions between these
three and the shared marketplace.)

A typical interaction of these actors without the shared marketplace in as
follows. The patient visits a hospital and is prescribed to receive a treatment.
The hospital then assigns a service provider to provide the treatment to the
patient. The patient arranges an appointment for the treatment with the service
provider. The patient receives the treatment at the appointed time from the
(hospital) chosen service provider.

One main inefficiency in this approach is that the hospital chooses the service
provider. In practice other service providers may also be able to provide the same
service, often at a more convenient time or location for the patient. This is where
the shared marketplace is designed to improve the service.

A typical interaction of the above actors with the shared marketplace is
as follows. The patient visits a hospital and prescribed to receive a treatment.
The hospital provides the patient with a voucher to use in the shared market-
place. The patient uses this voucher to arrange an appointment with the service
provider they prefer (and receive a coupon for this appointment). The patient
receives the treatment at the appointed time from their chosen service provider.

The flow of interactions with the shared marketplace is not significantly
changed, except that now the patient can choose a service provider taking into
account their preferences. The hospital can also benefit by no longer needing to
have a priori knowledge of all service providers, or working with many service
providers (or being limited by the service providers they have a prior relationship
with). Similarly the service providers benefit by having a larger pool of patients
they can offer services to, and also not requiring direct relationships with many
hospitals.

3.2 Safe and Secure Behaviour

There are several aspects of service delivery where safety and security are highly
desirable. Here these do not necessarily depend upon the use of a shared market-
place. However, since the goal of the Wablieft project is to gain the advantages
of a shared marketplace, this is an opportunity to ensure desired behaviours are
guaranteed by this new approach to service delivery.

One central requirement from all of the actors is a fair use of the shared
marketplace. This manifests in several ways. One is that all actors are treated
equally in their role (all patients are equal to each other, all service providers are

408 E. Baranov et al.

Fig. 1. Marketplace template for wablieft model.

equal to each other, all hospitals are equal to each other, etc.). In particular this
means that no patient, service provider, or hospital is prioritised over another.
Another is the capability to inspect and audit all sales done by the marketplace.
This allows for all actors to examine the actions taken and ensure their actions
are correctly recorded. This motivated the desire for an immutable record of the
use of the shared marketplace.

There are also several properties related to how the marketplace supports
coupons for patients to use services. The following are related to correct usage,
and the inability for malicious usage of the marketplace.

– A coupon can be used only once. That is, a coupon can only be used to gain
a service and never re-used.

– A revoked coupon cannot be used. Since a coupon may be lost or replaced,
this coupon can be revoked. Once a coupon is revoked it cannot be used to
gain a service.

– A forged coupon (i.e. not issued by the marketplace) cannot be used. This
ensures that only coupons created by the shared marketplace can be used on
the shared marketplace.

There are also privacy related properties, for example a patient cannot receive
coupons issued to other patients. Similarly, service providers cannot see patients
that are not using their service without a coupon, and hospitals only have knowl-
edge about their own patients.

4 Modelling Wablieft

This section presents the models of the Wablieft project and the properties to
ensure safe and secure operation of the market.

Improving Secure and Robust Patient Service Delivery 409

Fig. 2. Hospital template for wablieft model.

Fig. 3. Patient template for wablieft model.

Fig. 4. Service Provider template for wablieft model.

410 E. Baranov et al.

Fig. 5. Blockchain validator template for wablieft model.

4.1 The Wablieft Model

The marketplace and other actors have been modelled in Uppaal SMC. There
are four templates for each of the actors: marketplace Fig. 1, hospitals Fig. 2,
patients Fig. 3, and service providers Fig. 4.

The general workflow is as follows. The first step is when a patient goes to a
hospital and if the patient needs treatment then the hospital adds information
to the marketplace that the patient requires a particular medical service. Note
that at this stage the patient must opt-in to using the shared marketplace and
thus the addition of their information. The next step is when the patient goes
to the shared marketplace and requests the prescribed medical service from any
service provider of the patient’s choice. The marketplace generates a coupon that
is securely transferred to the patient which can be used at a service provider. As
a additional option, a patient can request a coupon be reissued, e.g., in case of
losing the coupon.

There are several mechanism included in the model that help ensure required
safety and security properties. Patients and service providers are required to
“login” to the marketplace and obtain a session key. This key allows encryption
of all communication between the actors and the marketplace preventing other
actors from reading this communication. In the model this is abstracted to simply
adding the key to the message and assuming the possibility of decryption only
in case of knowing the key.

In order to keep track of all coupon issuing and usage, we have a blockchain
that stores all this information. The presence of a blockchain keeps the data
immutable and has two uses. The first is allowing actors to check the origin of
each coupon, in particular whether it was really issued by the shared marketplace

Improving Secure and Robust Patient Service Delivery 411

and whether the coupon has already been used or revoked. The second is allowing
a later audit of the shared marketplace ensuring the proper behaviour.

There are several architectural decisions that have to be made during the
project. The modular nature of Uppaal SMC models allows us to check different
options without the considerable effort for complete remodelling the entire sys-
tem. As an example of such required decision is the type of blockchain used in the
project. The default option considered by industrial partners is to use a private
blockchain, i.e. only the shared marketplace can create blocks in the blockchain.
Another approach is to use a “consortium” blockchain that requires an agree-
ment from several trusted partners (e.g., hospitals and service providers) to add
a block to the blockchain. By simply adding two templates with validators Fig. 5
and leader controller necessary for Istanbul Byzantine Fault Tolerance consen-
sus algorithm, it is possible to evaluate both options and prove their correct
function.

4.2 The Wablieft Properties

Due to the size of the model, full verification of the properties is not feasible.
Therefore, we use statistical model checking that is available at Uppaal SMC
SMC.

For the privacy properties we checked the probability that service coupon
received by a patient (and decrypted) does indeed belong to this patient, in
particular we check that it always holds that the patient can either have his ID
or is empty.

Pr[<= 1000]([]
∧

p:Patient

(p.storedServiceCoupon.patient == p.id

|| p.storedServiceCoupon.patient == −1)) (1)

For the properties related to coupon misuse, we added a malicious patient
template that intentionally attempts to reuse of forge a coupon. In case of a
success, the malicious patient goes into a successful state, and we can evaluate
the probability of reaching such state.

For the evaluation of properties we use an instantiation with two hospitals,
ten patients, and two service providers. The blockchain size is bounded by two
hundred blocks and the simulation lasts until the blockchain is full. Each prop-
erty requires approximately 21 s to evaluate and the satisfaction probability is
above 98% with 99% confidence.

5 Marketplace Prediction Capabilities

In this section we consider two evolutions of the shared marketplace and a pan-
demic scenario.

The first evolution of the Wablieft model is that services may have multiple
contributing components. Each service may require one or more doctors, one

412 E. Baranov et al.

or more nurses, specialised room, and some medical devices. For one example,
an operation service may require an operating theater, an anesthesiologist, and
two nurses. Another example is a dialysis service that requires only a nurse and
a dialysis machine. Clearly if a service provider has only a limited number of
nurses, this may prevent offering too many services. If they had only six nurses,
then they could offer 3 operation services, or 6 dialysis services, but not both.
Ideally the service provider would like to be able to offer the maximum of both,
and then reduce as these services are purchased through the marketplace.

The second evolution of the Wablieft model is that emergency patients may
appear, i.e. a patient who was not predicted to appear scheduled but requires
immediate medical service. In practice service providers may be required to pro-
vide services for emergency patients who cannot wait to go through the market-
place (or any other waiting list) to be treated. This creates a potential conflict
for the service provider who would like to offer the maximum number of ser-
vices possible, but also have facilities available for emergency patients. Here
this is considered as a trade-off where normal services may be cancelled if too
many emergency patients appear, but only if the service provider does not have
enough components (i.e. doctors, nurses, etc.). Of course service providers can
somewhat predict emergencies and so do not sell all possible services assuming
no emergency patients, as service cancellations are extremely poor outcomes for
patients.

Normally, number of emergency cases are expected to have some stable pat-
tern, e.g., n emergencies per day with slightly more on Friday and Saturday
night.

Observe that the two evolutions above together add some interesting com-
plexity to service delivery. In particular the ability to predict how many services
can be offered to normal patients without causing too many cancellations. This
is made more complex (and realistic) here by the reality that some medical ser-
vices may require more equipment than others, and that with limited resources
(e.g., doctors, nurses, etc.) there is motivation to maximise service delivery.

This section considers how to improve service delivery, but also the advan-
tages that can be gained by having a shared marketplace. Here we consider how
the shared marketplace can improve outcomes for patients by using better infor-
mation to predict emergency patient patterns. In particular we consider the sce-
nario of a pandemic, where emergencies can grow exponentially requiring more
and more resources each day. Here a single service provider may notice the fast
growth and adapt their scheduling, however during the first days of pandemic
multiple services could be cancelled due to unexpected number of emergency
cases.

In such a scenario the marketplace’s global knowledge of the population’s
health can better evaluate current needs. A pandemic does not start everywhere
simultaneously, some locations are affected later than others. The marketplace
has a capability to detect the start of the pandemic in the first location and
notify service providers in other locations to be prepared.

Improving Secure and Robust Patient Service Delivery 413

Fig. 6. Patient template for pandemic model.

To explore this scenario we developed a Uppaal SMC model focusing on three
actors: a (shared) marketplace, several service providers, and many patients.
Each day service providers select how much resources shall be kept for emergency
cases and offer the remaining resources to be sold via the marketplace. Patients
(as shown in Fig. 6) in turn can book services from the marketplace.

To focus on the predictive power of the service providers and the marketplace,
the model is restricted to only selling services for the current or next day. This
restriction is introduced in order to prevent the case when lots of services are
already sold for several days in advance and so not allowing service providers to
reserve more resources for emergency cases.

Each service provider encounters a number of emergencies during each day.
This was originally modelled by a large pool of patients (who may require a
normal service, or may have an emergency). However, this approach was too
computationally expensive since to reasonably model both the normal services
and emergency cases, a large pool of patients (with potential for these services)
was required. To address this computational cost the model was simplified: each
service provider model selects the number of emergencies (according to some
function) and processes the emergencies at the beginning of each day. (This
processing of emergencies first in effect preempts normal service delivery.) Note
that while patients can book services from any service provider, emergency cases
are considered to be cared for by the “nearest” service provider.

Number of patients, service providers, services and their requirements are
parameters of the model. We have created a python script that is capable to

414 E. Baranov et al.

modify these parameters of the model based on the desired configuration. There
are two controlled sources of randomness in the model: the rates of service pur-
chase and the rate of emergencies are parameters of the model. Both are selected
with normal distribution where parameters define the mean value.

We consider several options for the service providers to predict the number
of emergencies in the future.

1. Baseline - There is a fixed number of resources reserved for emergency cases.
That is, each day the prediction is a fixed value.

2. Providers Separately - Each service provider makes predictions based on their
local knowledge. Here the service providers can look at their history of emer-
gency cases and attempt to predict future emergencies.

3. Total Emergencies - The shared marketplace makes prediction based on the
total number of emergencies. Here the marketplace considers all the emer-
gency cases across all service providers and uses this for prediction.

4. Worst Scenario Among Providers - The shared marketplace makes separate
predictions based on data from each service provider then selects the worst
scenario and this is propagated to all service providers. Here the marketplace
finds the worst emergency numbers from any service provider uses this to
predict a worst case scenario for all service providers.

The prediction function is identical in all cases except Baseline. The predic-
tion function compares the growth of emergencies over the last 3 days and
chooses among the constant, linear and exponential scenarios. The only dif-
ference between the options is the input data (source) given to the prediction
function.

To evaluate the predictions we consider several outcomes.

1. Cancelled - This is the number of services that had to be cancelled due to
emergency patients. The idea here is to measure how often patients must be
turned away due to service providers over-selling their capabilities. This num-
ber also include undelivered emergency services in case of provider facilities
overflow by emergency patients (although no special penalty is imposed here
since emergency services are prioritised and this would overflow regardless of
prediction).

2. Sold - This is the number of services sold through the marketplace. This is to
balance against a naive approach that could only provide emergency services
and so have almost no cancelled services, but also deliver very few services
(i.e. only emergency services).

3. Delivered - This is the number of services that were successfully delivered.
This measures normal services delivered, in practice this adjusts for the num-
ber of cancelled services except for cases when a service provider is overflown
by emergency patients. Note that emergency services are not counted here
since we are considering the shared marketplace delivery improvements.

The outcomes are evaluated with SMC engine of Uppaal SMC. Each service
provider has counters of cancelled and delivered services, while the marketplace
computes the sales. By running the simulation multiple times (100 in our exper-
iments) Uppaal SMC can then report the expected values of outcomes.

Improving Secure and Robust Patient Service Delivery 415

5.1 Experiments

Our first experiment is a model of service providers that provide a simple set
of services: a physician visit, several types of surgeries, a blood analysis and
an x-ray scan. In total we have 5 medical professional types: physician, sur-
geon, anesthesiologist, radiographer, and nurse, also 4 types of equipment: x-ray,
laser, pacemaker, and analysis laboratory. We consider an exponential emergency
growth. We consider three service providers that are hit by the exponential
growth not simultaneously but in consequent days. At the peak almost 80% of
service provider resources would be required by emergency patients. Only one
service is unaffected since it does not require professionals and tools involved into
the emergency services. In order to reduce the computation complexity we sim-
plified the model by replacing a single standard patient with 6, i.e. each patient
would book and consume 6 units of resource instead of 1. This allows to gradu-
ally reduce the number of processes while, as we believe, having only minor effect
on model applicability. In the experiment we considered 900 standard patients
transformed into 150 processes after simplification.

Prediction Cancelled Delivered Sold
Baseline 3677.4 7328.64 11006
Providers separately 22.92 7230.18 7253.1
Total emergencies 66.18 7077.78 7143.96
Worst scenario among providers 14.4 6096.36 6110.76

Fig. 7. Results for exponential scenario

We run 100 simulations of 20 days of marketplace work. The mean values for
considered outcomes are shown in Fig. 7. The baseline is selling 80% of service
provider resources resulting in 11006 bookings by patients. As expected, since
emergency services require more than 20% of providers resources starting from
day 8, the baseline has lots of overbookings resulted in high number of cancelled
services. Using means for prediction, more resources are reserved for emergencies
when the growth is detected and, even if the sales are lower, the number of
cancelled services decreases immensely. Notice that despite the decrease in sales
the number of delivered services is close to the baseline for 2 out of 3 prediction
options. The best result in cancelled services is achieved when considering worst
case scenario among providers. This is compensated by considerably lower level
of sales due to high reservation of resources. The prediction based on counting
total emergencies does not perform well in this experiment: large growth of
emergencies for one provider is compensated by the stable situation of others.
Simulation for each prediction option takes 15 min.

In order to see if the model can work in a more realistic scenario we take
the number of COVID-19 cases per Belgian province for the period 01.03.2020-
13.04.2020 reported by Belgian Institute of Public Health1. We assume that all
1 https://epistat.wiv-isp.be/covid/.

https://epistat.wiv-isp.be/covid/

416 E. Baranov et al.

patients used service providers of their municipality and we also assume that all
patients added some load to the service providers. At each municipality we fixed
the number of resources proportional to the population of the region such that
the COVID-19 patients would add a significant resource consumption. In addi-
tion we added other patients that are trying to receive standard services. In this
experiment we have 11 service providers, 2 standard services plus an emergency
service, and 200 standard patients (as before each books and consumes 6 units
of resource). Simulation for each prediction option takes about 2 h.

Prediction Cancelled Delivered Sold
Baseline 645.53 49410.7 50027.44
Providers separately 307.35 47057.9 47336.12
Total emergencies 303.61 48465.9 48740.64
Worst scenario among providers 135.58 44429.1 44535.78

Fig. 8. Results for COVID-19 scenario

The results are shown in Fig. 8 and in Figs. 9 & 10.

Fig. 9. Number of cancelled services or missed emergencies for COVID-19 scenario.

An overview of the cancelled results can be seen in Fig. 9. Clearly the number
of cancelled medical services decreases with each choice of prediction. This is as
expected, with the baseline having high cancelled numbers, localised and global
knowledge marketplace prediction performing similarly (although the global

Improving Secure and Robust Patient Service Delivery 417

Fig. 10. Number of delivered services for COVID-19 scenario.

knowledge prediction has tighter bounds), and worst case scenario having the
lowest number of cancelled services.

A graph of the delivered results can be seen in Fig. 10. As expected the
baseline here performs the best. This is due to over-selling of services and then
having a very high cancellation rate (as seen above). The prediction per service
provider performs significantly worse than the global knowledge marketplace.
This is most significant since they achieve approximately the same cancelled
rate, and so the global prediction increases service delivery while also achieving
a (very small) improvement in cancelled medical services. Finally, as expected
the worse case scenario delivers the least medical services.

Overall these results show that using predictions can significantly reduce the
number of cancelled services (more than 335 or 52% reduction for all prediction
models). Also the global knowledge of the shared marketplace has a significant
improvement on relative service delivery; reducing from the baseline by approx-
imately 950 or <2%, compared with approximately 2350 or <5% less services
delivered for local predictions. (That is, the global knowledge of the shared mar-
ketplace has an approximately 60% improvement in the reduction of delivered
services.) The worst case scenario of course performs the worst in delivery, but
was used here to indicate a (somewhat) reasonable bound for worst performance.

6 Conclusions

The Wablieft project proposes to use a shared marketplace to improve medical
service delivery. The shared marketplace provides benefits for all actors; hospi-
tals, patients, and service providers. By formalising this model in Uppaal SMC
it is possible to prove that desirable properties about the shared marketplace

418 E. Baranov et al.

can be proven. This in turn ensures that an implementation can meet these
properties.

The shared marketplace also has access to greater information than individ-
ual service providers. We explore how this can be used to improve responses
to events that span multiple service providers and impact their normal abil-
ity to offer and deliver services. Here we demonstrate the advantages of shared
information from a shared marketplace by using this knowledge to improve pre-
diction in a pandemic scenario. This is considered with two different models for
the pandemic; simple exponential growth, and using real data from COVID-19
incidences in Belgium. Four different approaches to prediction are compared,
demonstrating that the shared marketplace can improve both emergency and
non-emergency service delivery.

Future Work. Future work on the Wablieft project will be to extend the Wablieft
model with more actors to consider other entities such as financial and govern-
ment services, and also blockchain-based records keeping. This will also require
the development of more complex properties that address concerns related to
GDPR regulations.

There are also opportunities to consider other ways that knowledge from the
shared marketplace can be exploited to improve medical service delivery. Other
kinds of larger scale responses or scenarios can be considered. Also the possibility
to learn from patterns in one service provider or medical service, and apply the
knowledge to other providers or medical services ina more fine-grained manner.

References

1. Uppaal. http://www.uppaal.org/
2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),

183–235 (1994)
3. Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind

Series). The MIT Press (2008)
4. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC

tutorial. Int. J. Softw. Tools Technol. Transfer 17(4), 397–415 (2015). https://doi.
org/10.1007/s10009-014-0361-y

5. Given-Wilson, T., Baranov, E., Legay, A.: Building user trust of critical digital
technologies. In: 2020 IEEE International Conference on Industrial Technology, ICIT
2020, Buenos Aires, Argentina, 26–28 February 2020, pp. 1199–1204. IEEE (2020).
https://doi.org/10.1109/ICIT45562.2020.9067154

6. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 8

7. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 11

8. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
266–280. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988 26

http://www.uppaal.org/
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1109/ICIT45562.2020.9067154
https://doi.org/10.1007/978-3-540-24622-0_8
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/11513988_26

Verification and Validation
of Concurrent and Distributed Systems

Verification and Validation of Concurrent
and Distributed Systems

(Track Summary)

Marieke Huisman1(B) and Cristina Seceleanu2

1 University of Twente, Enschede, The Netherlands
m.huisman@utwente.nl

2 Mälardalen University, Väster̊as, Sweden

Abstract. Usually, greater concurrency is the goal of any distributed
system, yet distribution also introduces issues of consistency and sepa-
rate failure domains. With the increase of device connectivity and vir-
tualization techniques, developing correct and reliable concurrent and
distributed systems characterized by high performance is notoriously dif-
ficult. This requires novel verification techniques, or extensions, adapta-
tions and improvements of existing ones, to address emergent problems.
The track on Verification and Validation of Concurrent and Distributed
Systems aims to discuss key challenges that need to be tackled in order
to enable the efficient and scalable assurance of modern concurrent and
distributed systems, as well as present methods and tools that bear the
promise to achieve the latter.

1 Motivation and Goals

Concurrent and distributed systems are becoming omnipresent for two reasons.
First of all, concurrency and distribution are necessary to fulfill performance
requirements of modern software. Second, such systems’ paradigms are a nat-
ural fit with most underlying application domains. However, concurrent and
distributed systems add a lot of extra complexity to systems, and allow many
different kinds of errors to occur, which cannot happen in sequential software.
As Leslie Lamport, known for his seminal work in distributed systems, famously
said: “A distributed system is one in which the failure of a computer you did not
even know existed can render your own computer unusable” [13]. Similarly, for
concurrent systems, an error might occur in one execution, and then disappear
in the next execution of the system.

Nevertheless, over the last years, we see a plethora of different tools and
techniques to reason about distributed systems [7,12,17] and concurrent soft-
ware [3,5,8,10,14,16] being developed and applied under different specific
scenarios.

The next step is then to think about how to develop verification techniques
for systems that combine distributed and concurrent aspects. One can refine

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 421–425, 2020.
https://doi.org/10.1007/978-3-030-61362-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_24

422 M. Huisman and C. Seceleanu

this ambition by asking: How can verification techniques for concurrent systems
benefit from verification techniques for distributed systems, and vice versa?

The Verification and Validation of Concurrent and Distributed Sys-
tems (VVCDS) track focuses on providing answers to these questions, by pre-
senting invited papers that propose models, techniques, and tools for the rigorous
analysis of various concurrent and distributed systems. The included contribu-
tions give a good overview of the current state-of-the-art in the verification
of concurrent and distributed systems, and propose solutions to difficult prob-
lems related to modern topics such as cloud-native microservice architectures,
blockchain synchronization, or validation and dynamic monitoring of multi-
threaded programs, but also to long-standing issues such as ensuring quality
and correctness of distributed protocols used in industry, taming the complexity
of distributed systems design via incremental development, or applying aca-
demic tools for verifying distributed systems in an industrial context. The track
closes with a discussion to look further ahead: given the current-state-of-the-
art, how can we combine verification and validation techniques for concurrency
and distribution such that not only the systems’ specific issues are tackled, but
also the scalability and applicability in industry of the proposed approaches
are achieved. For this, we would like to understand similarities and differences
between concurrent yet not distributed, and truly distributed systems, and their
respective techniques of verification and validation, in an attempt to leverage
the key strengths of such approaches and reduce their potential weaknesses.

Finally, we would like to express our deep gratitude to the ISoLA organisers,
in particular Prof. Tiziana Margaria and Prof. Bernhard Steffen, for working so
hard to provide such a wonderful platform for our and other tracks, enabling
lively and creative interaction between individuals and communities, helping us
all to not forget the bigger picture of working for the development of systems
that people can rely on.

2 Overview of Contributions

In Step-wise Development of Provably Correct Actor Systems [1], the authors
Bernhard K. Aichernig and Benedikt Maderbacher present an approach for the
incremental formal development of actor systems via refinement, in the Event-
B tool. The assumption is that distributed software modeled using the actor-
based paradigm benefits from the latter’s simple asynchronous message passing
for interprocess communication, and does not suffer from the common pitfall
of shared mutable state. The technique is shown on Agha’s classical factorial
algorithm, which has been proven correct via a series of refinement steps, starting
from an abstract description. The authors have also proven deadlock-freeness
and convergence from which the termination of a single computation follows.
The paper shows that the key to handling complexity is to keep the actor model
simple enough yet as faithful to reality as possible, such that all proofs can be
resolved automatically.

In Violation Witnesses and Result Validation for Multi-Threaded Pro-
grams [2], the authors Dirk Beyer and Karlheinz Friedberger present how the

Verification and Validation of Concurrent and Distributed Systems 423

standard format for violation witnesses for program analysis tools is extended to
multi-threaded programs. It discusses what information about threading needs
to be captured in the witness. It turns out that the main information that is
needed is the thread identifier that executes an instruction, whereas other infor-
mation about monitors etc. does not have to be kept. The paper also presents
a validation tool that can be used to confirm detected violations. An exten-
sive experimental evaluation is done, which confirms that for larger problems
validation time is faster than the original verification time.

In Tendermint Blockchain Synchronization: Formal Specification and Model
Checking [4], the authors Sean Braithwaite, Ethan Buchman, Igor Konnov, Zarko
Milosevic, Ilina Stoilkovska, Josef Widder, and Anca Zamfir present a formal
specification of the blockchain synchronization protocol of Tendermint, called
Fastsync. The protocol is firstly specified in English language, after which it is
decomposed and abstracted in TLA+. Various safety and liveness properties are
encoded in the property language of checkers TLC and Apalache, and the result-
ing specifications are model checked. The generated counter-examples have led
to better understanding of different issues of both the specification and imple-
mentation of Fastsync. The authors discuss also the lessons learned, including
the scalability issues that has forced them to resort to bounded model checking
with Apalache, in order to account for faulty peers too.

In Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje
Project [6], the authors Ruben Hamers and Sung-Shik Jongmans give an
overview of the Discourje project. Discourje supports dynamic monitoring of
concurrent Clojure programs. The monitored properties describe the expected
system behavior at an abstract level, and the monitor implementation then
checks whether the implementation behaves as specified. The system is illus-
trated by three different examples, each illustrating different aspects of the spec-
ifications and implementations. It also discusses how the monitor is added into
the implementation. The paper completes with a short summary of the Discourje
formalization.

In Modular Verification of Liveness Properties of the I/O Behavior of Impera-
tive Programs [9], the author Bart Jacobs describes a modular verification tech-
nique to reason about I/O behaviour of programs. The verification technique
allows to verify properties such as eventually something will happen, response
and reactive properties, and persistence properties (something will eventually
become true forever). The paper first illustrates typical specifications for all
these patterns. It then formalizes the verification technique, and discusses how
verification proceeds for some of the examples discussed earlier.

In Formal Verification of an Industrial Distributed Algorithm: an Experi-
ence Report [11], the authors Nikolai Kosmatov, Delphine Longuet and Romain
Soulat report on experiences with modeling and verification of some consensus
algorithms. Their paper explains that even though the literature contains many
verified consensus algorithms, in industrial practice slight variations are often
needed, so we need techniques to reason about those easily. The paper sketches
a consensus algorithm that is used at Thales on a distributed internet-of-things

424 M. Huisman and C. Seceleanu

system. The algorithm is modeled in two different ways: fully explicitly and
in the form of an abstract model, where a single node is modeled, interacting
with a model that represents the rest of the network. The authors experiment
with 3 different tools (SafeProver, CBMC and KLEE) to analyze the model,
and they discuss the lessons learned from these experiments. In particular, the
experiments show that it is indeed possible to use formal analysis tools in an
industrial setting, but more work is needed to turn this into daily industrial
practice.

In Deploying TESTAR to enable remote testing in an industrial CI pipeline:
a case-based evaluation [15], the authors Fernando Pastor Ricós, Pekka Aho,
Tanja Vos, Ismael Torres Boigues, Ernesto Calás Blasco, and Héctor Mart́ınez
Mart́ınez describe the application of an academic tool for testing, called TES-
TAR, on a commercially-available distributed system. The technical challenges
of a distributed software system, which the tool has not been initially designed
for, are described, as well as how these gaps have been bridged. The paper also
highlights the differences between industry and academia, in approaching prob-
lems and their corresponding classification, respectively.

In A Formal Model of the Kubernetes Container Framework [18], the authors
Gianluca Turin, Andrea Borgarelli, Simone Donetti, Einar Broch Johnsen,
S. Lizeth Tapia Tarifa, and Ferruccio Damiani develop a formal model of
resource consumption and scaling for Kubernetes containerized micro-services.
The framework, encoded in Real-time ABS, is intended to provide a platform in
which various configurations can be assessed before the actual deployment. The
authors validate the model by comparing an instance of the framework, under
several scenarios, to observations of a real system running on a high-performance
application cluster called HPC4AI. The work paves the way towards the model-
based development of native-cloud solutions based on Kubernetes.

References

1. Aichernig, B.K., Maderbacher, B.: Step-wise development of provably correct actor
systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp.
426–448. Springer, Cham (2020)

2. Beyer, D., Friedberger, K.: Violation witness and result validation for multi-
threaded programs. Implementation and evaluation with CPAchecker. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp. 449–470. Springer,
Cham (2020)

3. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification
of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.) IFM
2017. LNCS, vol. 10510, pp. 102–110. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66845-1 7

4. Braithwaite, S., et al.: Tendermint blockchain synchronization: formal specification
and model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol.
12476, pp. 471–488. Springer, Cham (2020)

5. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: a logic for time and
data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44202-9 9

https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-662-44202-9_9

Verification and Validation of Concurrent and Distributed Systems 425

6. Hamers, R., Jongmans, S.-S.: Safe sessions of channel actions in clojure: a tour of
the discourje project. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol.
12476, pp. 489–508. Springer, Cham (2020)

7. Hawblitzel, C., et al.: IronFleet: proving practical distributed systems correct. In:
Proceedings of the 25th Symposium on Operating Systems Principles, SOSP 2015,
pp. 1–17. ACM (2015)

8. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 4

9. Jacobs, B.: Modular verification of liveness properties of the I/O behavior of imper-
ative programs. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476,
pp. 509–524. Springer, Cham (2020)

10. Jung, R., et al.: Iris: monoids and invariants as an orthogonal basis for concurrent
reasoning. In: POPL, pp. 637–650. ACM (2015)

11. Kosmatov, N., Longuet, D., Soulat, R.: Formal verification of an industrial dis-
tributed algorithm: an experience report. In: Margaria, T., Steffen, B. (eds.) ISoLA
2020. LNCS, vol. 12476, pp. 525–542. Springer, Cham (2020)

12. Krogh-Jespersen, M., Timany, A., Ohlenbusch, M.E., Gregersen, S.O., Birkedal,
L.: Aneris: a mechanised logic for modular reasoning about distributed systems.
In: Muller, P., et al. (eds.) ESOP 2020. LNCS, vol. 12075, pp. 336–365. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-44914-8 13

13. Lamport, L.: Distribution, May 1987. Email message sent to a DEC SRC bulletin
board at 12:23:29 PDT on 28 May 87

14. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5 2

15. Ricós, F.P., Aho, P., Vos, T., Boigues, I.T., Blasco, E.C., Mart́ınez, H.M.: Deploy-
ing TESTAR to enable remote testing in an industrial CI pipeline: a case-based
evaluation. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp.
543–557. Springer, Cham (2020)

16. Sergey, I., Nanevski, A., Banerjee, A.: Specifying and verifying concurrent algo-
rithms with histories and subjectivity. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol.
9032, pp. 333–358. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46669-8 14

17. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with distributed
protocols. In: Proceedings of PACMPL2(POPL), vol. 2, pp. 28:1–28:30. ACM
(2018)

18. Turin, G., Borgarelli, A., Donetti, S., Johnsen, E.B., Tarifa, S.L.T., Damiani, F.:
A formal model of the kubernetes container framework. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp. 558–577. Springer, Cham (2020)

https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1007/978-3-662-46669-8_14

Step-Wise Development of Provably
Correct Actor Systems

Bernhard K. Aichernig(B) and Benedikt Maderbacher(B)

Graz University of Technology, Graz, Austria
aichernig@ist.tugraz.at, benedikt.maderbacher@iaik.tugraz.at

Abstract. Concurrent and distributed software is widespread, but is
inherently complex. The Actor model avoids the common pitfall of shared
mutable state and interprocess communication is done via asynchronous
message passing. Actors are used in Erlang, the Akka framework, and
many others. In this paper we discuss the formal development of actor
systems via refinement. We start with an abstract specification and intro-
duce details until the final model can be translated into an actor pro-
gram. In each refinement, we show that the abstract properties are still
preserved. Agha’s classical factorial algorithm serves as a demonstrating
example. To the best of our knowledge we are the first who formally
prove that his actor system computes factorials. We use Event-B as a
modelling language together with interactive theorem proving and SMT
solving for verification.

Keywords: Actors · Refinement · Proof-based development · Formal
method · Event-B · Verification

1 Introduction

Modern computer systems rely heavily on concurrent and distributed software.
Classic techniques using shared mutable state and explicit synchronization mech-
anisms are not ideal for these tasks. Instead, many systems are written using
techniques that are designed to handle the challenges inherent to concurrent pro-
grams. A model that is widely used in this area are actor systems [19]. They are
based on asynchronous communication via message passing. Each actor has its
own memory and state that is isolated from the rest of the world. All interaction
is done by sending messages between actors. This concept has been implemented
in various programming languages such as Erlang [5,6] as well as in frameworks
for other languages such as Akka [21] for Scala [27] and Java [7]. Many well-
known distributed systems use various actor implementations in their backend.
This includes network infrastructure by Cisco [9] and Ericsson’s telecommunica-
tion systems [18]. The messenger WhatsApp uses Erlang on its servers [24,31].
Other usages of actors include various online games, for example LeagueOfLe-
gends [11]. Actor systems can also be used to describe other distributed systems
such as IoT devices.
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 426–448, 2020.
https://doi.org/10.1007/978-3-030-61362-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_25&domain=pdf
http://orcid.org/0000-0002-3484-5584
http://orcid.org/0000-0002-5834-352X
https://doi.org/10.1007/978-3-030-61362-4_25

Step-Wise Development of Provably Correct Actor Systems 427

Actor systems by design help to prevent many common bugs in concurrent
programming, such as data races and many forms of deadlocks, but they do
not guarantee that the software is correct. There are still many possibilities to
introduce errors in software written with actors. The usage of such systems in
critical areas such as communication systems makes them an attractive target for
formal methods. Formal methods use mathematics and logic to model and anal-
yse hardware and software. They aim to find errors or certify the conformance
to a specification. This techniques help to create software with fewer errors.
Large companies, such as Amazon [26] and Microsoft [8], use formal methods
to improve the quality of their software. In this paper we will explore how the
formal method Event-B [1] can be used to verify actor systems. Here, we will
focus on one classical example, further examples can be found in Maderbacher’s
master thesis [23].

Actor Systems. The main component of the actor systems concurrency model
are so called actors. These are similar to processes or threads but they cannot
access any shared memory. Each actor can have its own local memory. Actors
communicate by sending messages. An actor who receives a message can do three
kinds of actions: (1) it can send messages to other actors, (2) create new actors,
or (3) change its own state or behaviour. A behaviour defines how an actor reacts
to messages. While an actor performs computations triggered by one message,
no other message can interrupt it. This allows actors to avoid the classic data
race problem [10,28].

Event-B. Event-B is a modelling language and formal method based on set the-
ory. One writes a model that captures the important behaviours of a system,
instead of directly verifying a computer program. An Event-B model contains
machines and contexts. A machine has a set of variables that define the state and
guarded events that can change this state. An initial event defines the initial val-
ues of the variables. Contexts contain the static definitions of a model, including
carrier sets, constants, and axioms. The models represent a discrete transition
system: the initial state is defined via the initial event. The transitions are formed
by enabled events with their guard expression evaluating to true in the current
state. If more than one guard is enabled, the choice is non-deterministic. If no
guard is enabled the system terminates or deadlocks depending on the interpre-
tation. A model is developed by using step-wise refinement. At each step a new
machine is created that is a refinement of the previous one. It is a more concrete
version that contains more details and is closer to the modelled system. For
each step a formal proof is required to demonstrate that this refinement relation
holds. The Rodin Platform [2], an Event-B IDE based on Eclipse, supports the
development and refinement of models with automatic generation and partial
discharging of mathematical proof obligations.

Next, we introduce our demonstrating example in Sect. 2. Then, in Sect. 3 we
discuss the modelling of actors in Event-B. Section 4 presents our formal devel-
opment starting from the mathematical definition of the problem and ending
in a correct actor system. Next, in Sect. 5 we briefly discuss a truly concurrent

428 B. K. Aichernig and B. Maderbacher

Listing 1. Factorial with Scala’s actor library Akka Typed.

1 final case class Request(value: Int, replyTo: ActorRef[Result])

2 final case class Result(value: Int)

3
4 val fact: Behavior[Request] = Behaviors.receive { (c, m) =>

5 m.value match {

6 case 0 => m.replyTo ! Result(1)

7 case n =>

8 val cont = c.spawnAnonymous(cont(m.value, m.replyTo))

9 c.self ! Request(m.value - 1, cont)

10 }

11 Behaviors.same }

12
13 def cont(i:Int, cust:ActorRef[Result]): Behavior[Result] =

14 Behaviors.receive { (c, m) =>

15 cust ! Result(i * m.value)

16 Behaviors.same }

extension of the previous actor system. Section 6 surveys related work. Finally,
in Sect. 7 we discuss the results and draw our conclusions.

2 Demonstrating Example

As a demonstrating example we will develop Agha’s classical factorial algorithm
with actors [3]. The algorithm works recursively, but the computation is not
solely done by one function. Instead, it works by creating continuations for each
step. Each of these continuations is represented as its own actor. Additionally,
there is one actor called fact that receives requests by customers, to calculate
the factorial for a certain number. In response to these requests, it starts the
continuation actors to do the actual work.

An implementation of this algorithm, using Scala [27] and Akka Typed [22],
can be seen in Listing 1. The program contains two types of behaviours, fact and
cont. There exists exactly one actor with the behaviour fact, therefore we will
also refer to it as fact. It receives as a request the value that shall be processed
and the address of the recipient of the result. If the number is 0, it will imme-
diately send the result 1 to the recipient, otherwise it creates a new actor with
the cont behaviour. This new actor keeps as state the value and the recipient of
the request. After the new actor is created, fact sends itself an updated request,
containing the decremented value and the newly created continuation as recip-
ient. The cont actors await the result of the factorial of the number below the
one stored by them. Once this is received, it is multiplied by the stored number
and the result is sent to the stored recipient.

Figure 1 shows a sequence diagram computing the factorial of 3. At first,
only the actor Factorial exists. It receives a request with the number 3 and the

Step-Wise Development of Provably Correct Actor Systems 429

recipient address c. As a result the continuation actor m is created with the
state 3 and c. The actor Factorial also sends itself the new request message
containing 2 and the address of m. This is repeated two more times and the
actors m’ and m” are created. When Factorial receives the request with the
value 0, it responds to the newest actor m” with the result 1. This triggers a
chain of result messages. The actor m” computes the value 1 and sends it to
m’. This continues till m sends the final result 6 to the customer who sent the
original request.

Fig. 1. Sequence diagram computing the factorial of 3 with actors.

Computing the factorial function in this way is not more efficient than using
a sequential program. It might even consume more memory because the number
of actors is linear in the size of the problem. One possible advantage of this
program is that it can distribute the computation of multiple calls to factorial
over multiple processors, instead of doing them one after another. In this case the
factorial actor receives not only a single request, but multiple requests over time.
The created continuation actors are distributed and can do all computations
independently. The general pattern of using actors to represent continuation
can also be used for more complicated computations. Thus, the techniques used
to verify this case study, might be applied to other more complex distributed
applications.

3 Modelling Actor Systems

To model actor systems in Event-B [1], it is necessary to define when a model
represents an actor system. This requires us to assign Event-B constructs to all
components of an actor system, we want to study. The two most important of
these components are actors and messages.

430 B. K. Aichernig and B. Maderbacher

Actors have unique identifiers. Hence, we define an Event-B context with
a carrier set ACTOR ID. It contains identifiers for dynamically created actors,
represented as natural numbers, and two special identifiers. The first one is
final id for the customer (main) actor who is outside the modelled system and
who, in our example, should receive the final result. To simplify computations,
it is represented by the number −1. In addition, we use invalid id if a variable of
type ACTOR ID is not used at some point in time. These identifiers are formally
defined as Event-B constants with the following axioms:

axm 0: ACTOR ID = N ∪ {−1, invalid id}
axm 1: final id = −1

axm 2: invalid id /∈ N

axm 3: final id �= invalid id

To represent the actors, multiple new variables are introduced into an Event-
B machine: num actors stores the number of existing actors and actor id is a
set that stores all actor identifiers which are currently in use. These variables
are defined by these invariants:

inv 1: num actors ∈ N

inv 2: actor id = 0 .. (num actors − 1)

Meaning that exactly the actor identifiers from 0 to num actors − 1 are valid
and a newly created actor will get the next larger number as its identifier.

Actors may have a state. For example, the continuation actors in our example
store their value and the target actor who will receive their response. Both of
these state variables are represented as functions from actor id to their respective
types:

inv 3: cont actors target ∈ actor id → (actor id ∪ {final id})

inv 4: cont actors value ∈ actor id → N1

Actors communicate asynchronously via message queues. Hence, the most
general model would map actor ids to sequences (arrays) of messages. However,
we may postulate assumptions in order to simplify the model and consequently
verification. For example, for proving that the actor model computes the recur-
sive definition of a factorial function, we may (initially) assume a slow envi-
ronment, where a new request is only issued after a response has been received.
With such a synchronized behaviour, at most one message at a time can exists in
our factorial actor system. Hence, it is sufficient to use a single set of variables
for all components of messages. The Boolean variable msg exists stores if an
unprocessed message exists. The variables msg content and msg recipient store
the values of a message. If no message exists, the value of msg recipient will be
invalid id. The variable active actor stores the actor which receives the current
message if a message exists. Otherwise, it is the identifier of the last actor that
was created. We give the formal definition of these variables:

Step-Wise Development of Provably Correct Actor Systems 431

inv 5: msg exists ∈ BOOL

inv 6: msg recipient ∈ actor id ∪ {final id, invalid id}
inv 7: msg content ∈ N1

inv 8: msg exists = FALSE ⇔ msg recipient = invalid id

inv 9: active actor = num actors − 1

Note, that we prefer to decompose a message into separate variables over defining
a composite message type. Naturally, one would describe a message as a tuple
of its fields, e.g., the pair msg ∈ (actor id ∪ {final id, invalid id}) × N1. The
reason for our flat encoding is that the provers tend to have less difficulties with
basic data types.

In contrast, in a fully concurrent model, we need to keep track of individual
computation requests via a REQUEST ID . Hence, we model the message queues
of the continuation actors as follows1:

invC 1: cont mail msg content ∈ (ACTOR ID × REQUEST ID) �→ N1

This is the most general model, where each actor has a set of messages to be
processed. In this model, too, it is beneficial to split the message queue of an
actor into separate queues per message type.

Having discussed the representation of actors in Event-B, we are going to
develop the actor model of the factorial.

4 Step-Wise Development

In this section we detail the development of the sequential actor model where
the environment issues the next computation requests after receiving the result
of the previous one. Our formal development of the provably correct factorial
actor system follows a refinement strategy. We start with the standard recursive
definition of factorial. Then, in five refinements, the details necessary for an actor
system are added.

The initial model consists of an event that computes the factorial in one
step. The first refinement changes the one step computation into an iterative
algorithm. In the second refinement the used memory is made explicit in the form
of a stack. We also separate the creation of the memory cells from performing
the computation. Refinement 3 is the first one that resembles an actor system.
At that point the stack elements are replaced by actors and the computations
are triggered by messages. However, the process of creating the actors is still
controlled by an iterative program. Refinement 4 turns this last part into an
actor, controlled by sending updated messages to itself. Refinement 5 changes
the shared mailbox to one mailbox per actor.

4.1 Specification

The specification is captured in an initial model comprising a context that defines
the function fact and a machine (Fig. 2) that uses this function. The context
defines two constants, the recursive factorial function fact and the input :
1 An arrow with a vertical bar is Event-B’s notation for a partial function.

432 B. K. Aichernig and B. Maderbacher

axm0 0: fact ∈ N → N1

axm0 1: fact(0) = 1

axm0 2: ∀n·n ∈ N ⇒ fact(n + 1) = (n + 1) ∗ fact(n)

axm0 3: input ∈ N

The initial machine has only a single variable result of type N. This variable is
used to store the final result of the computation. For brevity, we do not display
the variable definitions in the model listings, but show events only. There are
two events:

The Initialisation event sets the value of result to 0.
The Finish event contains one action

act0 0: result := fact(input)

that assigns result to the result computed by the fact function. This event
contains no guard and may be repeated.

This model is sequential as it assumes that one factorial is computed after each
other. A simulation consists of the execution of the Initialisation event followed
by an unrestricted number of computation steps without any effect. Execution
of the Finish event computes the factorial in one step. For simplicity, the input
is a constant as we are only interested to prove that the refined actor system
computes a factorial of an arbitrary input.

4.2 Refinement 1

The first refinement (Fig. 3) splits the computation into multiple steps. The new
variables tmp result and val are introduced to hold the intermediate state. The
result variable stays part of the machine. The algorithm will do the calculation
beginning with the smallest number 1. In each consecutive step the next factorial
number is calculated based on the previous one which is stored in tmp result.
The number of remaining steps is stored in val. The types of this new variables
are N for val and N1 for tmp result.

MACHINE m0
EVENTS
Initialisation
begin

act0 0: result := 0
end
Finish 〈ordinary〉 =̂
begin

act0 0: result := fact(input)
end
END

Fig. 2. Events of the Specification.

Step-Wise Development of Provably Correct Actor Systems 433

MACHINE m1
EVENTS
Initialisation
begin

act1 0: result := 0
act1 1: val := input
act1 2: tmp result := 1

end
ComputeStep 〈convergent〉 =̂
when

grd1 0: val > 0
then

act1 0: val := val − 1
act1 1: tmp result := tmp result ∗ (input − val + 1)

end
Finish 〈ordinary〉 =̂
refines Finish
when

grd1 0: val = 0
then

act1 0: result := tmp result
end
END

Fig. 3. Events of Refinement 1.

The Initialisation assigns the variable val to input. We need to do as many steps
as the value of the input. To start the computation properly, tmp result is
initialised to 1 the multiplicative identity. As in the previous machine, result
is set to 0.

The event ComputeStep is new and we have to show that it is convergent. This
means that the event must not be enabled infinitely often possibly preventing
the other events. The guard states that this event can only be executed if val
is not 0, meaning that there is still work to do. The two actions decrement
val and update tmp result to the next factorial number.

The event Finish refines the event of the same name. It now contains a guard.
Also, instead of assigning the final result directly, the variable tmp result is
assigned to result. This event can now only be executed if there are no more
computations to do and instead of doing the computation itself, the result is
just copied.

In order to demonstrate that this machine is indeed a refinement of the
previous machine, we need to confirm that all events refine their corresponding
abstract event. It is also required to show that all convergent events are really
convergent. That is, there exists a variant, an expression bounded from below
which is decreased by every execution of the convergent event.

434 B. K. Aichernig and B. Maderbacher

The event ComputeStep is new and the refinement relation is thus trivially
satisfied, if we can shown convergence. The variant for this machine is the vari-
able val. It is a natural number and thus cannot get infinitely small and it is
decremented in ComputeStep. Thus, it turns out that ComputeStep is indeed
convergent.

To justify that Finish refines its predecessor event, we need to demonstrate
that whenever val is 0, the value in tmp result is the correct final result. We can
prove this with the following invariants added to the model:

inv1 2: val ≤ input

inv1 3: tmp result = fact(input − val)

We need to prove that these invariants are preserved by all events. The
initialisation satisfies both invariants. More interesting is the event ComputeStep.
Before the event is executed tmp result = fact(input − val) and afterwards
tmp result′ = fact(input − val) ∗ (input − val + 1) = fact(input − val′) which
proves that the invariant inv1 3 is preserved. Here, we use standard notation:
primed variables refer to values after event execution while unprimed variables
denote values before execution. Constants are always unprimed. The proof of
inv1 2 follows from the observation that val is only decremented and input is a
constant.

Finally, we prove deadlock freedom. The corresponding theorem states that at
least one event must always be enabled, or expressed differently, the disjunction
of all guards must be a valid expression:

thm DLF: 〈theorem〉 (val > 0) ∨ (val = 0)

This theorem follows directly from the type definition invariant of val, stating
that val ∈ N. All proof obligations for this refinement can be discharged by the
included automatic solvers [14,17]. No manual proofs are required.

4.3 Refinement 2

In the second refinement (Fig. 4) the computation is split into two phases. First,
all numbers are pushed on a stack, afterwards they are multiplied. This brings
us one step closer to the actor system, where first actors are created, then they
process messages to perform the actual computation.

For this stack-based model, we need to introduce several new variables:
counter tracks how many more elements need to be pushed, stack is a func-
tion that models the stack and stack pointer is the current size of the stack.
They are defined by the following invariants:

inv2 1: stack ∈ N �→ N1

inv2 2: stack pointer ∈ N

inv2 3: 0 .. (stack pointer − 1) ⊆ dom(stack)

inv2 4: counter ∈ N

Step-Wise Development of Provably Correct Actor Systems 435

MACHINE m2
EVENTS
Initialisation
begin

act2 0: result := 0
act2 1: counter := input
act2 2: stack := ∅

act2 3: stack pointer := 0
act2 4: tmp result := 1

end
Call 〈convergent〉 =̂
when

grd2 0: counter > 0
grd2 1: tmp result = 1

then
act2 0: counter := counter − 1
act2 1: stack pointer := stack pointer + 1
act2 2: stack(stack pointer) := counter

end
Return 〈convergent〉 =̂
refines ComputeStep
when

grd2 0: counter = 0
grd2 1: stack pointer > 0

then
act2 0: tmp result := tmp result ∗ stack(stack pointer − 1)
act2 1: stack pointer := stack pointer − 1

end
Finish 〈ordinary〉 =̂
refines Finish
when

grd2 0: counter = 0
grd2 1: stack pointer = 0

then
act2 0: result := tmp result

end
END

Fig. 4. Events of Refinement 2.

In inv2_3 the dom function is used to get the domain of a function. It means
that stack is defined for all N up to, but not including stack pointer which points
to the next free space in the stack. The variables result and tmp result are the
same as in the previous machine. The variable val is no longer visible.

The event Initialisation sets counter to input, stack to an empty set,
stack pointer to 0. The old variables result and tmp result are initialised as
before to 0 and 1.

436 B. K. Aichernig and B. Maderbacher

The event Call is a new convergent event. It is responsible for pushing the
numbers on the stack. The guard states that there are numbers left and that
the computation has not started. This is needed to satisfy some invariants.
The actions push the value of counter and decrement it. To establish that
this event is convergent, the variant counter is used.

The event Return is a refinement of ComputeStep. Its guard requires that all
elements are pushed and that the stack is non-empty. When executed, it
pops one element and multiplies it with tmp result. The value of tmp result
is the same as in the previous refinement. The difference is that now it is
computed based on a stack element and not based on a simple variable.

The event Finish is almost the same as in the previous refinement. Only the
guard is slightly different.

To establish the refinement relationship, we need to relate the new variables to
the old ones of the more abstract model. This relation is defined in so called
gluing invariants as follows:

inv2 5: ∀n·n ∈ dom(stack) ⇒ stack(n) = input − n

inv2 6: stack pointer + counter = val

inv2 7: counter = 0 ⇒ val = stack pointer

inv2 8: counter �= 0 ⇒ val = input

The invariant inv2_5 allows us to know the value on the stack, which is impor-
tant for the proof obligations related to the return event. The other three invari-
ants state how counter, stack pointer, and val are related. While the event Call
is executed, the value of val stays at input. At the same time counter and
stack pointer are decremented and incremented, but always both. Once counter
is 0 and the execution of return starts, the stack pointer takes the role of val. The
invariant inv2_7 follows directly from inv2_6, it could be marked as a theorem.
Using these invariants, all proof obligations can be discharged by the automatic
solvers [14,17]. The deadlock freedom theorem

thm DLF: 〈theorem〉 (counter > 0 ∧ tmp result = 1) ∨
(counter = 0 ∧ stack pointer > 0) ∨ (counter = 0 ∧ stack pointer = 0)

is also proven automatically.

4.4 Refinement 3

With the third refinement (Fig. 5), we start to introduce actors. The stack, used
in the previous refinement, is now represented as actors and the computation
phase is controlled by messages sent between these actors. Actor identifiers and
the number of existing actors are defined as described in Sect. 3.

In this refinement step only the memory for the computation is represented
as actors. This corresponds to the behaviour cont in Listing 1. The state of
these actors consists of value and target as defined in Sect. 3. Also the simplified
model for messages for these actors has been presented in Sect. 3. Furthermore,
the two variables result and counter are taken from the previous refinement. The
machine consists of five events, one more than in the previous refinement.

Step-Wise Development of Provably Correct Actor Systems 437

act3 3: cont actors value(active actor + 1) := counter
act3 4: active actor := active actor + 1
act3 5: num actors := num actors+ 1

end
Created 〈convergent〉 =̂
when

grd3 0: counter = 0
grd3 1: msg exists = FALSE
grd3 2: active actor = input − 1

then
act3 0: msg exists := TRUE
act3 1: msg recipient := active actor
act3 2: msg content := 1

end
Compute 〈convergent〉 =̂
refines Return
when

grd3 1: msg exists = TRUE
grd3 2: msg recipient �= final id
grd3 3: msg recipient = active actor

then
act3 0: msg recipient := cont actors target(msg recipient)
act3 1: msg content := msg content ∗ cont actors value(msg recipient)
act3 2: num actors := num actors − 1
act3 3: actor id := 0 .. num actors − 2
act3 4: cont actors target := {msg recipient} �− cont actors target
act3 5: cont actors value := {msg recipient} �− cont actors value
act3 6: active actor := cont actors target(msg recipient)

end
Finish 〈ordinary〉 =̂
refines Finish
when

grd3 1: msg exists = TRUE
grd3 2: msg recipient = final id
grd3 3: msg recipient = active actor

then
act3 0: result := msg content

end
END

MACHINE m3
EVENTS
Create 〈convergent〉 =̂
refines Call
when

grd3 0: counter > 0
then

act3 0: counter := counter − 1
act3 1: actor id := 0 .. num actors
act3 2: cont actors target(active actor + 1) := active actor

Fig. 5. Events of Refinement 3.

438 B. K. Aichernig and B. Maderbacher

In the Initialisation event most variables are set to empty or default values. The
variable active actor is set to −1, meaning that no dynamic actor exists at
that point. For brevity the initialisation event is not shown in Fig. 5.

The event Create refines the event Call. It creates continuation actors. The
guard is a subset of the guard of Call. When executed, the counter is decre-
mented and a new continuation actor is created. To create this new actor the
num actors variable is incremented, the actor id variable is extended, and
the state is added to cont actors target and cont actors value. Additionally,
the active actor variable is set to the id of the newly created actor.

The newly introduced event Created is enabled when the counter reaches zero,
but no message was sent to a continuation actor. It is responsible for starting
the computation by sending the first message to the continuation actor that
was created last. To do so, the msg exists flag is set to true and the other msg
variables are filled. This event is introduced in this refinement and marked
as convergent. So we need to provide a suitable variant. We know that this
event is only executed once and it is the only event that changes msg exists.
To build a variant out of this Boolean variable, we need an auxiliary function
that turns the Boolean value into an integer and decreases when the input
changes from false to true. The following definition is part of the context:

axm3 4: boolToNat ∈ BOOL → N

axm3 5: boolToNat(TRUE) = 0

axm3 6: boolToNat(FALSE) = 1

By using it, the variant can be defined as boolToNat(msg exists).
The event Compute is the receive function of the continuation actors. It is

enabled whenever there exists a message for one of these actors. It also con-
tains two additional guards to keep the system synchronized. When the event
is executed, a message is sent to the stored target. The message contains the
product of the stored value and the value received via the latest message.
This corresponds to the cont behaviour in the actor algorithm in Listing 1.
Additionally, the actor who processed the message is deleted, as there will
be no more messages for it to process. This is done by removing it from the
cont actors functions and from the actor id set.

The Finish event corresponds to the customer who receives the final result. It
is enabled if a message arrives at this customer. When executed, the variable
result is set to the received result in the message.

In order to demonstrate that this third machine is a refinement of the sec-
ond machine, we need to provide some gluing invariants. These relate the now
invisible variables of the stack system, to the new variables of the actor system.
The roles of tmp result and stack pointer are now taken by msg content and
num actor. In fact, these variables are equivalent to its predecessors, they are
just renamed to be a better fit for describing an actor system. The content of
the continuation actors is equivalent to stack frames in the second refinement.
The gluing invariants are formally stated as:

Step-Wise Development of Provably Correct Actor Systems 439

inv3 8: msg exists = TRUE ⇒ counter = 0

inv3 11: msg content = tmp result

inv3 12: num actors = stack pointer

inv3 14: ∀x·x ∈ dom(cont actors value) ⇒ stack(x) = cont actors value(x)

inv3 15: ∀x·x ∈ dom(cont actors target) ⇒ cont actors target(x) = x − 1

As for all the previous machines, we need to provide a deadlock freedom theorem.
In this case we need to provide additional invariants to prove it because our
existing invariants are not strong enough. The value of msg recipient needs to
be derived correctly from the other information known in a guard. There is no
way to guarantee its values independently.

inv3 16: msg exists = TRUE ⇒ msg recipient = active actor

inv3 17: (counter = 0 ∧ msg exists = FALSE) ⇒ active actor = input − 1

With this additional invariants the deadlock freedom theorem, i.e. the disjunc-
tion of all guards equals true, can be proven. The proof obligations from the
invariants and the deadlock freedom theorem are all automatically discharged
by the solvers [14,17]. The only manual intervention was the creation of the two
additional invariants for deadlock freedom.

4.5 Refinement 4

In the fourth refinement (Fig. 6), we replace the counter variable by a message.
This message is sent by the factorial actor to itself. It corresponds to the Request
message and the fact actor in Listing 1. To model this message, we introduce
a new channel consisting of the variables msgC exists and msgC content. The
msgC prefix expresses that these variables belong to the message that sends the
counter. The variable counter from the previous refinement is removed, all other
variables stay the same. The variables are defined, including the gluing invariant,
as follows:

inv4 0: msgC exists ∈ BOOL

inv4 1: msgC content ∈ N

inv4 2: msgC content = counter

The number and names of the events are unchanged, compared to the previous
refinement.

The Initialisation is the same as before, except for the new variables.
The event Create is modified to handle the new message. Instead of checking the

value of the counter, the existence of the message and its value are checked.
The decremented counter is not updated directly, but instead sent as a mes-
sage. The msgC exists flag is already true, thus unchanged, and the message
content is written to msgC content.

The event Created is also modified to work with the counter message. The guard
now checks the existence of the message and whether its content is 0. An
additional action supplements the actions of the event. After the last counter
message was handled, the channel will be empty, as this event does not create
a new one. Thus, the value of the msgC exists flag needs to be changed.

440 B. K. Aichernig and B. Maderbacher

MACHINE m4
EVENTS
Create 〈convergent〉 =̂
refines Create
when

grd3 0: msgC exists = TRUE
grd3 1: msgC content > 0

then
act3 0: msgC content := msgC content − 1
act3 1: actor id := 0 .. num actors
act3 2: cont actors target(active actor + 1) := active actor
act3 3: cont actors value(active actor + 1) := msgC content
act3 4: active actor := active actor + 1
act3 5: num actors := num actors+ 1

end
Created 〈convergent〉 =̂
refines Created
when

grd3 0: msgC exists = TRUE
grd3 1: msgC content = 0
grd3 2: msg exists = FALSE
grd3 3: active actor = input − 1

then
act3 0: msg exists := TRUE
act3 1: msg recipient := active actor
act3 2: msg content := 1
act3 3: msgC exists := FALSE

end
END

Fig. 6. Events of Refinement 4. The events Compute and Finish are the same as in
Fig. 5.

The events Compute and Finish are the same as in the previous refinement.

The proofs for refinement and deadlock freedom are done automatically
[14,17]. To establish the deadlock freedom theorem, we need this additional
invariant:

inv4 3: msgC exists = FALSE ⇒ msg exists = TRUE

4.6 Refinement 5

The fifth and last refinement (see Appendix) changes the mailboxes to arrays and
uses separate ones for each actor. This follows the technique for truly concurrent
systems described in Sect. 3 and gives a model that better resembles an actor
system.

Step-Wise Development of Provably Correct Actor Systems 441

We introduce the new variables for the mailboxes of the fact and cont actors.
They replace the variables msg exists, msg content, active actor, msgC exists
and msgC content. Their types are defined by the following invariants:

inv5 0: fact mail msgC content ∈ N �→ N

inv5 3: fact index msgC ∈ N

inv5 4: cont mail msg content ∈ (ACTOR ID × N) �→ N

inv5 6: cont index msg ∈ N

The state variables as well as the result and actor id variables are unchanged
compared to the previous refinement. The events are adapted to the new message
encoding in a relatively straightforward way. There is no change in the processing
logic.

To satisfy the refinement condition, we need gluing invariants to link the
old mailbox variables to the new ones. Note that the model still adheres to
the restriction that there can be only one message in all the continuation actor
mailboxes. This message must be in the mailbox of the actor identified by the
now hidden active actor variable. The Boolean exists flags are replaced by using
an empty set instead. This gives us these gluing invariants:

inv5 1: msgC exists = TRUE ⇔
ran(fact mail msgC content) = {msgC content}

inv5 2: msgC exists = FALSE ⇔ fact mail msgC content = ∅

inv5 7: msg exists = TRUE ⇔ ran(cont mail msg content) = {msg content}
inv5 8: msg exists = FALSE ⇔ cont mail msg content = ∅

inv5 9: ∃n·msg exists = TRUE ⇒
dom(cont mail msg content) = {active actor �→ n}

Again, with these invariants all proofs are found fully automatically.

5 Concurrent Version

The previous model has one major limitation: it can only perform the com-
putation once and, hence, behaves like a sequential program. Even though the
actor program in Listing 1 can compute the solution for multiple requests, these
requests can also occur while the previous computation is still running. In that
case the two computations are performed concurrently and can be interleaved. In
this section we adapt our previous factorial model to handle concurrent requests
like the Scala version.

It is not possible to realize this as a refinement of the previous machine.
Instead we create a new specification machine and refine it to an actor system
as in the previous section. The concurrent machines follow the same structure
as before, but we introduce a task identifier to associate each continuation actor
and message with a task.

The concurrent specification (Fig. 7) contains variables for tasks and for
results. The start event expects as parameters an input and a unique task

442 B. K. Aichernig and B. Maderbacher

MACHINE m0c
EVENTS
Initialisation
begin

act0 0: tasks := ∅

act0 1: results := ∅

end
Start 〈ordinary〉 =̂
any

input
task

where
grd0 0: input ∈ N

grd0 1: task /∈ dom(tasks)
then

act0 0: tasks(task) := input
end
Finish 〈ordinary〉 =̂
any

task
where

grd0 0: task ∈ dom(tasks)
grd0 1: task /∈ dom(results)

then
act0 0: results(task) := fact(tasks(task))

end
END

Fig. 7. Events of the concurrent specification.

identifier, it adds these to the set of tasks. Analogue to the Finish event in the
previous section the Finish event here calculates the factorial number in one
step. Instead of accessing the constant input it processes one of the tasks that
do not yet have an associated result. The newly computed number is inserted
into the results. That way the model is able to handle arbitrary many requests
instead of only one.

All refinements closely follow the ones from the previous section. The events
are similar, but they all expect a task parameter to know which task is pro-
cessed. Variables and invariants need to be lifted to the set of tasks. An
invariant that previously had the form ϕ(input, result) becomes in this model
∀task : ϕ(tasks(task), results(task)). Except for the newly added Start event
all machines contain the same events as in the sequential case.

Changing all of the variables to functions leads to some proofs requiring
manual intervention. Table 1 shows how many proof obligations where generated
for each refinement and how many of them where done automatically. We can see
that 29 out of 305 proof obligations required interactive proof. This is contrast
to the sequential actor model where all proofs were done automatically. This

Step-Wise Development of Provably Correct Actor Systems 443

demonstrates the effect of more complex data structures (here functions) to
proof automation.

Table 1. Proof statistics for the concurrent model.

Element Total Auto Manual

ctx0c 2 1 1

ctx3c 0 0 0

m0c 8 8 0

m1c 26 24 2

m2c 50 47 3

m3c 129 110 19

m4c 33 33 0

m5c 57 53 4

Σ 305 276 29

6 Related Work

Type systems have been used in conjunction with actors. Charalambides et al.
[12] apply session types to actor systems. This has been extended to also prove
liveness properties of actor systems [13]. Our method on the other hand uses
refinement to develop a model in multiple steps. The specification is built grad-
ually and the model is separate from a possible program.

Rebeca is a modelling language and model checker for actor systems [29,30].
However, Rebeca cannot deal with the dynamic creation of actors necessary for
the factorial case study. Another actor modelling language is ABS [20]. It is an
executable and formally specified language based on the active object variant of
actor systems. ABS has been used in large industrial case studies [4]. KeY-ABS
[15,16] allows tool-based reasoning about ABS specifications. However, ABS does
not support refinement.

Musser and Varela [25] developed an actor theory in the Athena proof assis-
tant. Using Athena, they proved properties about actor systems like uniqueness
of addresses or fairness. Their theory supports the creation of actors and the
exchange of actor identifiers. Another implementation of actor systems was done
in the Coq proof assistant by [32]. They also modelled Agha’s factorial example
[3] but without a complete correctness prove. Their system can export Erlang
code and they proved uniqueness for their address generation and fairness. Both
of these works use correctness properties as theorems. However, they do not use
stepwise refinement or any other iterative process to develop the final program
from the specification.

444 B. K. Aichernig and B. Maderbacher

7 Conclusion

In this paper we studied the formal development of actor systems in Event-B
using refinement. Starting from a mathematical recursive specification, we have
proven with five refinement steps that Agha’s classical factorial actor system is
correct. We have also proven deadlock-freeness and convergence from which the
termination of a single computation follows. With the assumption that requests
are issued synchronously, we could keep the actor model flat and all proofs could
be resolved automatically—once the necessary invariants have been added. Our
actor models use a naming scheme and actor code could be generated from it,
in principle, although this has not been implemented.

To the best of our knowledge, we are the first who formally verified that
Agha’s factorial actor system implements its recursive definition. Furthermore,
we think that we are the first who developed actor systems in Event-B. The
example might be simple, but it shows how recursive definitions can be turned
into actor systems. Furthermore, the case study demonstrates the proof power
of the available provers. The key to this high automation is to keep the actor
model as simple as possible: we exploited the synchronous nature of the recursive
definition and kept the actor model flat, avoiding composite data structures.

The full development of the truly concurrent factorial model discussed in
Sect. 5 can be found in [23]. It uses the insights from the synchronous devel-
opment and shows that with the more involved data structures we loose proof
automation: 9.5% of the 305 proof obligations needed manual intervention, which
is still acceptable. Maderbacher also develops a messaging client-server sys-
tem which demonstrates the applicability of the method beyond the factorial
example.

We strongly believe that abstract models and refinement are essential to the
development of dependable distributed systems. An abstract model provides the
necessary global view and complexity needs to be added incrementally. Starting
at the actor or code level is too late and one has difficulties in stating the
correctness properties. This is demonstrated by the observation that we seem to
be the first who formally proved the correctness of the classical factorial actor
system—which was quite surprising to us.

Acknowledgement. This work is supported by the TU Graz LEAD project “Depend-
able Internet of Things in Adverse Environments”. The authors wish to thank the three
anonymous reviewers for their constructive feedback in order to improve the paper.

Appendix

The complete model of the final actor model computing a factorial number
(Refinement 5).

Step-Wise Development of Provably Correct Actor Systems 445

MACHINE m5
REFINES m4
SEES ctx5
VARIABLES
result
num actors
actor id
cont actors target
cont actors value
fact mail msgC content
fact index msgC
cont mail msg content
cont index msg

INVARIANTS
inv5 0: fact mail msgC content ∈ N �→ N

inv5 1: msgC exists = TRUE ⇔ ran(fact mail msgC content) =
{msgC content}

inv5 2: msgC exists = FALSE ⇔ fact mail msgC content = ∅

inv5 3: fact index msgC ∈ N

inv5 4: cont mail msg content ∈ (ACTOR ID × N) �→ N

inv5 6: cont index msg ∈ N

inv5 7: msg exists = TRUE ⇔ran(cont mail msg content) = {msg content}
inv5 8: msg exists = FALSE ⇔ cont mail msg content = ∅

inv5 9: ∃n·msg exists = TRUE ⇒ dom(cont mail msg content) =
{active actor �→ n}

EVENTS
Initialisation
begin

act5 0: result := 0
act5 5: num actors := 0
act5 6: actor id := ∅

act5 7: cont actors target := ∅

act5 8: cont actors value := ∅

act5 9: fact mail msgC content := {0 �→ input}
act5 10: fact index msgC := 1
act5 11: cont mail msg content := ∅

act5 13: cont index msg := 0
end
Create 〈convergent〉 =̂
refines Create
any

content
index

where
grd5 0: index ∈ dom(fact mail msgC content)
grd5 1: fact mail msgC content(index) = content
grd5 2: content > 0

then
act5 0: fact mail msgC content := {fact index msgC �→ content − 1}

446 B. K. Aichernig and B. Maderbacher

act5 1: fact index msgC := fact index msgC + 1
act5 2: actor id := 0 .. num actors
act5 3: cont actors target(num actors) := num actors − 1
act5 4: cont actors value(num actors) := content
act5 6: num actors := num actors + 1

end
Created 〈convergent〉 =̂
refines Created
any

index
where

grd5 0: {index} = dom(fact mail msgC content)
we need to guarante that there is only one msg, because of the previous
machines

grd5 1: fact mail msgC content(index) = 0
grd5 2: cont mail msg content = ∅

grd5 3: num actors = input
then

act5 0: cont mail msg content := {(num actors−1 �→ cont index msg) �→ 1}
act5 3: fact mail msgC content := {index} �− fact mail msgC content

end
ContCompute 〈ordinary〉 =̂
refines Compute
any

actor
index

where
grd5 0: {actor �→ index} = dom(cont mail msg content)
grd5 1: actor �= final id

then
act5 1: cont mail msg content := {(cont actors target(actor) �→

cont index msg) �→ (cont mail msg content(actor �→ index) ∗
cont actors value(actor))}

act5 2: num actors := num actors − 1
act5 3: actor id := 0 .. num actors − 2
act5 4: cont actors target := {actor} �− cont actors target
act5 5: cont actors value := {actor} �− cont actors value

end
Finish 〈ordinary〉 =̂
refines Finish
any

actor
index

where
grd5 0: {actor �→ index} = dom(cont mail msg content)
grd3 1: actor = final id

then
act3 0: result := cont mail msg content(actor �→ index)

end
END

Step-Wise Development of Provably Correct Actor Systems 447

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.:
Rodin: an open toolset for modelling and reasoning in Event-B. Int. J. Softw.
Tools Technol. Transfer 12(6), 447–466 (2010)

3. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

4. Albert, E., et al.: Formal modeling and analysis of resource management for cloud
architectures: an industrial case study using Real-Time ABS. Serv. Oriented Com-
put. Appl. 8(4), 323–339 (2014)

5. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Programmers, The Pragmatic Bookshelf, 2nd edn (2013)

6. Armstrong, J., Virding, R., Williams, M.: Concurrent Programming in ERLANG.
Prentice Hall, Upper Saddle River (1993)

7. Arnold, K., Gosling, J., Holmes, D.: The Java Programming Language. Addison-
Wesley, Boston (2000)

8. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and static driver verifier:
technology transfer of formal methods inside Microsoft. In: Boiten, E.A., Derrick,
J., Smith, G. (eds.) IFM 2004. LNCS, vol. 2999, pp. 1–20. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24756-2 1

9. Bevemyr, J.: How Cisco is using Erlang for intent-based networking (2018). https://
youtu.be/077-XJv6PLQ, Code Beam Stockholm

10. Boehm, H.J., Adve, S.V.: Foundations of the C++ concurrency memory model.
In: Gupta, R., Amarasinghe, S.P. (eds.) Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation, Tucson, AZ,
USA, 7–13 June 2008, pp. 68–78. ACM (2008)

11. Cesarini, F.: Which companies are using Erlang, and why?, 11 September
2019. https://www.erlang-solutions.com/blog/which-companies-are-using-erlang-
and-why-mytopdogstatus.html

12. Charalambides, M., Dinges, P., Agha, G.: Parameterized concurrent multi-party
session types. In: Kokash, N., Ravara, A. (eds.) Proceedings 11th International
Workshop on Foundations of Coordination Languages and Self Adaptation,
FOCLASA 2012, Newcastle, U.K., 8 September 2012. EPTCS, vol. 91, pp. 16–
30 (2012)

13. Charalambides, M., Palmskog, K., Agha, G.: Types for progress in actor programs.
In: Boreale, M., Corradini, F., Loreti, M., Pugliese, R. (eds.) Models, Languages,
and Tools for Concurrent and Distributed Programming. LNCS, vol. 11665, pp.
315–339. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21485-2 18

14. Clearsy: Atelier B (2016). https://www.atelierb.eu/en/atelier-b-tools/
15. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for the

concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 517–526. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6 35

16. Din, C.C., Tapia Tarifa, S.L., Hähnle, R., Johnsen, E.B.: History-based specifica-
tion and verification of scalable concurrent and distributed systems. In: Butler, M.,
Conchon, S., Zäıdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 217–233. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25423-4 14

https://doi.org/10.1007/978-3-540-24756-2_1
https://youtu.be/077-XJv6PLQ
https://youtu.be/077-XJv6PLQ
https://www.erlang-solutions.com/blog/which-companies-are-using-erlang-and-why-mytopdogstatus.html
https://www.erlang-solutions.com/blog/which-companies-are-using-erlang-and-why-mytopdogstatus.html
https://doi.org/10.1007/978-3-030-21485-2_18
https://www.atelierb.eu/en/atelier-b-tools/
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-25423-4_14

448 B. K. Aichernig and B. Maderbacher

17. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: SMT solvers for Rodin. In: Der-
rick, J., et al. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 194–207. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30885-7 14

18. Ericsson: Erlang celebrates 20 years as open source, 31 May 2018. https://www.
ericsson.com/en/news/2018/5/erlang-celebrates-20-years-as-open-source

19. Hewitt, C.: Actor model of computation: scalable robust information systems.
arXiv (2010). http://arxiv.org/abs/1008.1459

20. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

21. Lightbend: Akka Documentation (2019). https://doc.akka.io/docs/akka/2.5/
index.html

22. Lightbend: Akka Typed Documentation (2019). https://doc.akka.io/docs/akka/2.
5/typed/actors.html

23. Maderbacher, B.: Proof-based development of actor systems. Master’s thesis, Graz
University of Technology, Institute of Software Technology, December 2019. Super-
visor: Bernhard K. Aichernig

24. Metz, C.: Why WhatsApp Only Needs 50 Engineers for Its 900M Users.
WIRED (2015). https://www.wired.com/2015/09/whatsapp-serves-900-million-
users-50-engineers/

25. Musser, D.R., Varela, C.A.: Structured reasoning about actor systems. In: Jamali,
N., Ricci, A., Weiss, G., Yonezawa, A. (eds.) Proceedings of the 2013 Work-
shop on Programming Based on Actors, Agents, and Decentralized Control,
AGERE!@SPLASH 2013, Indianapolis, IN, USA, 27–28 October 2013, pp. 37–48.
ACM (2013)

26. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon web services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

27. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima Inc. (2008)
28. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.E.: Eraser: a

dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst. 15(4), 391–411 (1997)

29. Sirjani, M.: Power is overrated, go for friendliness! expressiveness, faithfulness, and
usability in modeling: the actor experience. In: Lohstroh, M., Derler, P., Sirjani,
M. (eds.) Principles of Modeling. LNCS, vol. 10760, pp. 423–448. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-95246-8 25

30. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fundamenta Informaticae 63(4), 385–410 (2004).
http://content.iospress.com/articles/fundamenta-informaticae/fi63-4-05

31. WhatsApp: 1 million is so 2011, 06 January 2012. https://blog.whatsapp.com/
196/1-million-is-so-2011

32. Yasutake, S., Watanabe, T.: Actario: a framework for reasoning about actor sys-
tems. Technical report, Tokyo Institute of Technology (2015)

https://doi.org/10.1007/978-3-642-30885-7_14
https://www.ericsson.com/en/news/2018/5/erlang-celebrates-20-years-as-open-source
https://www.ericsson.com/en/news/2018/5/erlang-celebrates-20-years-as-open-source
http://arxiv.org/abs/1008.1459
https://doi.org/10.1007/978-3-642-25271-6_8
https://doc.akka.io/docs/akka/2.5/index.html
https://doc.akka.io/docs/akka/2.5/index.html
https://doc.akka.io/docs/akka/2.5/typed/actors.html
https://doc.akka.io/docs/akka/2.5/typed/actors.html
https://www.wired.com/2015/09/whatsapp-serves-900-million-users-50-engineers/
https://www.wired.com/2015/09/whatsapp-serves-900-million-users-50-engineers/
https://doi.org/10.1007/978-3-319-95246-8_25
http://content.iospress.com/articles/fundamenta-informaticae/fi63-4-05
https://blog.whatsapp.com/196/1-million-is-so-2011
https://blog.whatsapp.com/196/1-million-is-so-2011

Violation Witnesses and Result Validation
for Multi-Threaded Programs

Implementation and Evaluation with CPAchecker

Dirk Beyer and Karlheinz Friedberger

LMU Munich, Munich, Germany

Abstract. Invariants and error traces are important results of a program
analysis, and therefore, a standardized exchange format for verification
witnesses is used by many program analyzers to store and share those
results. This way, information about program traces and variable assign-
ments can be shared across tools, e.g., to validate verification results,
or provided to users, e.g., to visualize and explore the results in or-
der to fix bugs or understand the reason for a program’s correctness.
The standard format for correctness and violation witnesses that was
used by SV-COMP for several years was only applicable to sequential
(single-threaded) programs. To enable the validation of results for multi-
threaded programs, we extend the existing standard exchange format by
adding information about thread management and thread interleaving.
We contribute a reference implementation of a validator for violation
witnesses in the new format, which we implemented as component of the
software-verification framework CPAchecker. We experimentally evalu-
ate the format and validator on a large set of violation witnesses. The
outcome is promising: several verification tools already produce violation
witnesses that help validating the verification results, and our witness
validator can re-verify most of the produced witnesses.

Keywords: Verification witness · Result validation · Software
verification · Proof format · Program analysis · Violation witness ·
Counterexample · CPAchecker

1 Introduction

Reliable and correct software is a basic dependency of today’s society and industry.
For proving programs correct as well as for finding errors in programs, formal ver-
ification is a powerful technique. Given a program and a specification, a software
verifier either finds an error path through the program that exposes the specifica-
tion violation or proves that the specification is satisfied by the program. In most
cases, the analysis produces some kind of data that is valuable for the user and can

Replication package available on Zenodo [14].
Funded in part by Deutsche Forschungsgemeinschaft (DFG) – 378803395 (ConVeY).
c© The Author(s) 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 449–470, 2020.
https://doi.org/10.1007/978-3-030-61362-4_26

https://doi.org/10.5281/zenodo.3885694
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_26&domain=pdf
http://orcid.org/0000-0003-4832-7662
http://orcid.org/0000-0001-7624-654X
http://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.1007/978-3-030-61362-4_26

450 D. Beyer and K. Friedberger

be used in further applications. Several tool chains support the direct reuse of ver-
ification results [5,6,25]. In general, information about the program analysis can
be provided in form of a verification witness, either as correctness witness [10] (e.g.,
describing invariants from the correctness proof) or as violation witness [11,12]
(e.g., representing an abstract counterexample towards a property violation).

The standard witness exchange format was specified and continuously
improved by the verification community (especially SV-COMP) over the last
years.1 The specification was first supporting only sequential programs (since SV-
COMP 2015 [4,11]), and we later extended it to multi-threaded programs as well
(SV-COMP 2018–2020). In this paper, we describe the necessary extensions to the
witness format and provide evidence that violation witnesses for concurrent tasks
are not only produced by many verification tools (in SV-COMP 2020: Cbmc [29],
CPAchecker [18], CPAlockator [1], Dartagnan [33], Divine [3], Esbmc [32],
Lazy-CSeq [39], PeSCo [31], Ultimate Automizer [37], Ultimate Taipan [35],
Yogar-Cbmc [40]), but that most of the violation witnesses for concurrent
programs can also be validated by our implementation of a validation tool.

Contributions. The paper makes the following contributions:

• Extension of the existing violation witness format by additional hints on
thread management: (i) thread interleavings are represented using thread-ids
at all edges and (ii) thread creation is added to the witness.

• Implementation of an approach for validation of violation witnesses for multi-
threaded programs in the verification framework CPAchecker and make the
source code available as reference implementation for others.2

• Experimental evaluation of the new format and validator on a large number
of verification tasks with violation witnesses from several verifiers to show
that the approach is effective and helps validating the existence of error traces
in multi-threaded programs.

• Availability of all experimental results, including raw data, tables, experiment
setup, etc. (see Sect. 6).

RelatedWork. As we extend an existing standardized witness format and valida-
tion technology, this work is based on a number of existing ideas, which we outline
in the following.

Verification Artifacts. Many program-analysis techniques are efficient at discov-
ering proofs or failures. However, it is often difficult to evaluate results, such
as program paths towards property violations. Artifacts [24] from verifier ex-
ecutions are valuable for users [2,28,36]. The standard exchange format for
verification witnesses [11] is the basis of our work; we describe and extend
it in this paper and apply it in our evaluation.

1 https://github.com/sosy-lab/sv-witnesses
2 https://cpachecker.sosy-lab.org

https://github.com/sosy-lab/sv-witnesses
https://cpachecker.sosy-lab.org

Violation Witnesses and Result Validation for Multi-Threaded Programs 451

Test Execution and Harnesses. While it is comparatively simple to create an
executable harness for a sequential program [12,27,30,34], the situation for
multi-threaded programs is more complex. Simple test cases can not capture
the difficulty of nondeterministically interleaved threads and can only be used
to heuristically execute a sample of all possible program traces. The schedul-
ing of threads needs to be encoded into the harness in such a way that all
statements are interleaved in the correct ordering.

Sequentialization. Tools like Lazy-CSeq [38,39] apply sequentialization tech-
niques before verification and can thus provide data about multi-threaded
counterexample traces via a sequentialized program. However, the mapping
from a sequentialized program (and the found counterexample path in it) back
to its multi-threaded origin needs to be supported.

2 Background

We provide only a short overview of some basic concepts and definitions that we
use to describe our approach, including the program representation, the format
for violation witnesses, and the multi-threaded program analysis in CPAchecker.

2.1 Program Representation

For presentation, we restrict our programs to a simple imperative programming
language that contains only assignments, assumptions, declarations, function
calls, and function returns. The language supports simple thread management via
the calls of pthread_create and pthread_join, and assumes that each statement
in the code is atomic on its own, i.e., uses a strong memory model providing
sequential consistency, such that an update of a shared variable is immediately
visible to all threads and the verification approach does not need to care about
asynchronous memory accesses like simultaneously updating the same memory
cell from multiple threads or unit-local caching of values that might happen on
hardware level. This is not a theoretical restriction, as each statement could
be decomposed into a sequence of reading and writing statements, where each
statement involves at most one shared variable. For simplicity and generality, the
witnesses ignore further thread-management methods like mutex locks, wait, and
cancel operations, as well as interrupts. In violation witnesses such operations
do not need to be specified for the validation tool.

The violation witnesses for multi-threaded programs that are produced by
the verifiers all support the C programming language as input language and
may support a wider range of thread-management operations. We will analyze
the quality of those witnesses in the evaluation (Sect. 5).

A program is represented by a control-flow automaton (CFA) (L, linit, G),
which consists of a set L of program locations (modeling the program counter),
a set G ⊆ L × Ops × L of control-flow edges (modeling the control flow with
assignment and assumption operations as well as declarations and function calls

452 D. Beyer and K. Friedberger

Fig. 1. Source code and CFAs for multi-threaded example program, adopted from
program https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread/fib_bench-2.c

and returns from Ops), and a program-entry location linit ∈ L. A sequence
<g1, g2, ..., gn> of CFA edges from G is called program path if it starts from
the program-entry location (i.e., g1 = (linit, ·, ·)). As we analyze multi-threaded
programs, this sequence consists of potentially interleaved edges from different
threads, e.g., there is no need that the end location l of a CFA edge gi = (·, ·, l)
is identical with the start location l′ of its directly succeeding CFA edge gi+1 =
(l′, ·, ·), but the next CFA edge along the sequence from the same thread must
start with program location l. At the program entry and at each thread entry,
there is no matching previous program location in a valid program path.

The example in Fig. 1 shows a short multi-threaded program and the corre-
sponding CFAs. The program is build around the Fibonacci sequence, even if
the source itself does not directly reveal this. We will later examine this example
and find a sequence of operations such that fib(10) = 55 was computed (this
is modeled as a violation of the specification G ! call(__VERIFIER_error())
i.e., a call to function __VERIFIER_error is not reachable).

1 int NUM = 4 , FIB = 55 ;
2 int i = 1 , j = 1 ;
3

4 void ∗ t1 () {
5 for (int k = 0 ; k < NUM; k++) {
6 i += j ;
7 }
8 pthread_exit (0) ;
9 }

10

11 void ∗ t2 () {
12 for (int k = 0 ; k < NUM; k++) {
13 j += i ;
14 }
15 pthread_exit (0) ;
16 }
17

18 int main () {
19 pthread_t id1 , id2 ;
20 pthread_create(&id1 , 0 , t1 , 0) ;
21 pthread_create(&id2 , 0 , t2 , 0) ;
22 i f (i >= FIB | | j >= FIB) {
23 __VERIFIER_error () ;
24 }
25 return 0 ;
26 }

1

2

18

19

20

21

22

23

25

26

int NUM=4, FIB=55

int i=1, j=1

main()

pthread_t id1, id2

pthread_create(&id1, 0, t1, 0)

pthread_create(&id2, 0, t2, 0)

![i ≥ FIB
|| j ≥ FIB]

[i ≥ FIB || j ≥ FIB]

__VERIFIER_error()

return 0

5

5a

6

78

9

int k=0

[k<NUM]

i += j
k++![k<NUM]

pthread_exit(0)

12

12a

13

1415

16

int k=0

[k<NUM]

j += i
k++![k<NUM]

pthread_exit(0)

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread/fib_bench-2.c

Violation Witnesses and Result Validation for Multi-Threaded Programs 453

2.2 Violation Witnesses

Witnesses in software verification are based on the concept of protocol au-
tomata [11] that are matched against a CFA for validation. A protocol automaton
consists of control states with invariants and edges between control states that
represent program transitions. An edge contains a source guard, which restricts
the transition to a specific set S ⊆ G of edges from the CFA, and a state-space
guard, which restricts the state space by giving additional constraints on variables.

For exporting a violation witness to a file, the protocol automaton is converted
intoGraphML [26], enriched with additional meta-data (like a hash of the analyzed
program). When importing a violation witness from a file, the GraphML data
structure is transformed into a protocol automaton, such that it can be used
internally in parallel to any of CPAchecker’s program analyses.

2.3 Analysis of Multi-Threaded Programs in CPAchecker

CPAchecker is based on the concept of configurable program analysis (CPA)
[15,16]. Different concerns of a program are analyzed by different components
(denoted as CPAs). To track variables and their assigned values, we can choose
from a predicate-abstraction analysis [19], an explicit-value analysis [21], a BDD-
based analysis [23], a symbolic execution [20], and several more. For the analysis
of program locations in multi-threaded programs, the multi-threading analy-
sis [13] explores the state space, computes possible thread interleavings on-the-fly,
and maintains abstract states, where each abstract state consists of several
program locations (one per thread) together with their call stacks (also one
per thread). Additional optimizations like partial-order reduction are available
in the implementation, but not considered here.

To avoid collisions of identifiers during a program analysis, e.g., as it might
happen if the same function is called in two different threads at the same
time, CPAchecker uses different function names for parallel running threads.
If necessary, we use several copies of the CFA for a function of the program,
using indexed names. For exporting a violation witness, the indexes are re-
moved, because changed function names are not compatible across different
tools. When using an existing violation witness for validating a multi-threaded
program, we reintroduce a matching of available thread identifiers in the wit-
ness and indexed function copies of the CFAs.

3 Detailed Example

In the following, we explain an example step by step. First we start a verifier
to verify an example program and produce a witness, and second we start a
validator to validate the verification result using the produced witness.

3.1 Producing a Violation Witness

The program from Fig. 1 creates two threads id1 and id2, which run in par-
allel and increase the value of the variables i and j. If any of the variables i

454 D. Beyer and K. Friedberger

Fig. 2. Counterexample trace represented by program path, scheduling of opera-
tions, data state as variable assignment, and line number as reference

or j reaches their limit (which is fib(10)), then function __VERIFIER_error
is reached and a standard verifier can check this by using the specification
G ! call(__VERIFIER_error()) and let it produce a counterexample path. This
case can happen if the assignments i+=j and j+=i in the two threads id1 and id2
are executed in alternating order for all iterations of the loops. The rest of the
loop statements in both threads, i. e., checking the loop bound, can be executed
in arbitrary ordering here and allows a wide range of possible thread interleaving.

The following command line runs CPAchecker as a verifier, configured to
use an explicit-value-based analysis for verifying multi-threaded programs:

scripts/cpa.sh \
-outputpath verification \
-setprop counterexample.export.graphml=witness.graphml \
-setprop counterexample.export.compressWitness=false \
-spec config/properties/unreach-call.prp \
-valueAnalysis-concurrency \
fib.c

This command specifies the directory for all output (including the witness
file), the name of the witness file (without compressing it), the specification
(which searches for the function call __VERIFIER_error), the domain-specific
analysis for the verification process, and the subject program.

Program Path Operation Scheduling Variable Values Line
main id1 id2 i j kt1 kt2

(1, ., 2),(2, ., 18),(18, ., 19),(19, ., 20) i=1, j=1 1 1 2
(20, ., 21),(5, ., 5a) kt1 = 0 0 5
(5a, ., 6),(6, ., 7) i+=j 2 6
(7, ., 5a) kt1++ 1 5
(21, ., 22),(12, ., 12a) kt2 = 0 0 12
(12a, ., 13),(13, ., 14) j+=i 3 13
(14, ., 12a) kt2++ 1 12
(5a, ., 6),(6, ., 7) i+=j 5 6
(12a, ., 13),(13, ., 14) j+=i 8 13
(14, ., 12a) kt2++ 2 12
(7, ., 5a) kt1++ 2 5
(5a, ., 6),(6, ., 7) i+=j 13 6
(12a, ., 13),(13, ., 14) j+=i 21 13
(14, ., 12a) kt2++ 3 12
(7, ., 5a) kt1++ 3 5
(5a, ., 6),(6, ., 7) i+=j 34 6
(12a, ., 13),(13, ., 14) j+=i 55 13
(22, ., 23) j >= FIB 22

Violation Witnesses and Result Validation for Multi-Threaded Programs 455

Fig. 3. Graphical representation of a violation witness and the available data

A1
entry=true

A2
threadId=0 , startline=18, enterFunction=main

A3
threadId=0 , startline=20, createThread=1

A4
threadId=1 , startline=20, enterFunction=t1

A5
threadId=1 , startline=5, scope=t1, enterLoopHead=true, assumption="k==0;"

A6
threadId=1 , startline=5, scope=t1, control=condition-true, assumption="k==0; NUM==4;"

A7
threadId=1 , startline=6, scope=t1, assumption="i==2;"

A8
threadId=1 , startline=5, scope=t1, enterLoopHead=true, assumption="k==1;"

A9
threadId=1 , startline=5, scope=t1, control=condition-true, assumption="k==1; NUM==4;"

A10
threadId=0 , startline=21, createThread=2

A11
threadId=2 , startline=21, enterFunction=t2

A12
threadId=2 , startline=12, scope=t2, enterLoopHead=true, assumption="k==0;"

A13
threadId=2 , startline=12, scope=t2, control=condition-true, assumption="k==0; NUM==4;"

A14
threadId=2 , startline=13, scope=t2, assumption="j==3;"

A15
threadId=2 , startline=12, scope=t2, enterLoopHead=true, assumption="k==1;"

A16
threadId=2 , startline=12, scope=t2, control=condition-true, assumption="k==1; NUM==4;"

A17
threadId=1 , startline=6, scope=t1, assumption="i==5;"

A18
threadId=2 , startline=13, scope=t2, assumption="j==8;"

A19
threadId=2 , startline=12, scope=t2, enterLoopHead=true, assumption="k==2;"

A20
threadId=2 , startline=12, scope=t2, control=condition-true, assumption="k==2; NUM==4;"

A21
threadId=1 , startline=5, scope=t1, enterLoopHead=true, assumption="k==2;"

A22
threadId=1 , startline=5, scope=t1, control=condition-true, assumption="k==2; NUM==4;"

A23
threadId=1 , startline=6, scope=t1, assumption="i==13;"

A24
threadId=2 , startline=13, scope=t2, assumption="j==21;"

A25
threadId=2 , startline=12, scope=t2, enterLoopHead=true, assumption="k==3;"

A26
threadId=2 , startline=12, scope=t2, control=condition-true, assumption="k==3; NUM==4;"

A27
threadId=1 , startline=5, scope=t1, enterLoopHead=true, assumption="k==3;"

A28
threadId=1 , startline=5, scope=t1, control=condition-true, assumption="k==3; NUM==4;"

A29
threadId=1 , startline=6, scope=t1, assumption="i==34;"

A30
threadId=2 , startline=13, scope=t2, assumption="j==55;"

A31
violation=true

threadId=0 , startline=22, scope=main, control=condition-true, assumption="j==55; FIB==55;"

456 D. Beyer and K. Friedberger

The verification process starts the analysis at the program entry and explores
the reachable state space. In this example, it finds and reports an error trace
as a program path (first column of Fig. 2) and provides the violation witness
in Fig. 3, which is written into the file verification/witness.graphml.gz.
Both, the counterexample trace and the violation witness specify the inter-
leaved thread execution and variable assignments, such that a user or a wit-
ness validator can directly follow the path until reaching the property vio-
lation in the program. We highlight the information that is relevant for the
thread interleaving. The violation witness uses sink nodes for branches or
thread interleavings that do not follow the counterexample path. For simplic-
ity, we avoid them in the graphical representation.

Using the explicit-value domain allows us to export detailed data about the
counterexample trace, such as assignments for all variables at many program
locations. The verification witness is enriched with these assignments, such that
the validator can use them as additional constraints.

The information about which thread is executed, and how the interleaving
looks like, is important for the user (and also for the validator). In a pro-
gram with threads created from the same function (that is, with identical line
numbers), the thread identifier is the only way to distinguish between differ-
ent contexts. Therefore, a witness must contain a thread identifier for every
transition (edge) in the witness. In this example, the executed threads have
different function scopes (t1 and t2) which makes it easier for the reader to
find the correct trace towards the property violation.

3.2 Validating Results Based on a Violation Witness

In order to validate the information from the witness, the violation witness
is matched against the program source code. As the violation witness de-
scribes a limited set of paths (best case: exactly one path), the validation
process is expected to be efficient and to only analyze a small portion of
the reachable state space of the whole program.

The following command line runs CPAchecker as a validator based on the
provided violation witness for the multi-threaded program:

scripts/cpa.sh \
-outputpath validation \
-spec config/properties/unreach-call.prp \
-witnessValidation \
-witness verification/witness.graphml \
fib.c

This command specifies the directory for all output (including the newly
generated witness file), the specification (which searches for the function call
__VERIFIER_error), the validation analysis that will select the strategy to
analyze multi-threaded programs, the witness that will be used for the vali-
dation (as second, parallel specification), and the subject program. Figure 4

Violation Witnesses and Result Validation for Multi-Threaded Programs 457

Fig. 4. Overview of CPAchecker’s control flow for violation witness validation
for multi-threaded programs

shows the architecture of CPAchecker for the witness validation for multi-
threaded programs. The program is parsed into a CFA and then given to an
analysis based on the CPA concept [17]. The property specification and the
violation witness are used as protocol automata.

The validation proceeds with the following steps: The witness validator
CPAchecker converts the GraphML file (from Fig. 3) into its internal protocol
automaton [11], which includes the constraints of the witness. The analysis then
runs this automaton in parallel to the default analysis (reduced product) and
strengthens the transition relation of the analysis with the additional constraints
from the witness. The analysis starts with an initial abstract state built from the
program-entry location in the CFA and the entry node in the witness automaton.
Then it computes successors for each state and follows a strategy that aims
at getting as deep as possible into the witness automaton. This corresponds
with strict guidance from the protocol automaton.

By the definition of the witness and the CFA, it is guaranteed that each
step through the violation witness matches one or more edges in the program’s
CFA. The witness structure guides the search towards the property violation
in the program. The validator only confirms a property violation from a vio-
lation witness, if both the witness automaton and the program location refer
to a property violation according to the specification.

For the example, the validation process reports a property violation and
confirms the violation witness. The framework reports the validated counterex-
ample trace in form of a new violation witness, which looks quite similar to
the existing one. As our validation process uses the BDD-based domain, inter-
mediate steps can be different and more precise than with the previously used
explicit-value analysis. However, exporting data from BDDs is more difficult and
CPAchecker does not (yet) support it for the witness export.

Witness

Specification

Source Code Validation
Result

CFA
Builder

CPA
Algorithm

Automaton
CPA

Threading
CPA

BDD
CPA

Witness Validator

458 D. Beyer and K. Friedberger

4 Violation Witnesses for Multi-threaded Programs

This section gives some details about the extension of the witness format to
multi-threaded programs and the implementation of a validator. We used the
most obvious way to model traces in multi-threaded programs: specify which
thread executes which statement at which point in the trace.

4.1 Extending the Existing Format

A violation witness should contain sufficient information about the verification
task, such that a validator can efficiently replay the property violation, that is,
without re-analyzing the whole state space of the program. This means that for
guiding the validator towards a certain property violation, the witness needs to
contain sufficient information about all branching choices. While branching points
are obvious in sequential programs —just mark all if-then-else statements—,
the situation in a multi-threaded program is more complex. The difficulty is
to determine the correct ordering of thread interleavings along the counterex-
ample trace. A detailed look provides us insights about the encoding of thread
interleavings in CPAchecker: Each program state represents multiple program
counters (i.e., one program location per thread) and thus allows the execution of
the follower statement from any available thread. We identified only one single
information that is critical for the validator to successfully validate a violation
witness for a multi-threaded program: a unique thread identifier to identify the
actual thread that executes a statement given in the witness. Along a violation
witness, the thread identifier is required for two different steps:

• Whenever a new thread is started via a control-flow edge calling
pthread_create, we insert the information createThread=<ID>, where ID
is a new thread identifier for the new thread. Using these hints on thread
creation, the validator can register a new thread and follow its control flow.

• The thread interleaving is encoded with the thread identifier that is given
for each statement in the witness. The information threadId=<ID> is added
to all control-flow edges in the witness, where the thread <ID> executes the
statement along the control-flow edge.

To keep the witness format as simple as possible, our extension of the witness
format consists of only the two above pieces of information (and even those
two are optional, i.e., just act as hints for the validator to find the property
violation faster). Overall, this allows verification tools that already have support
for exporting violation witness and can analyze concurrent programs to directly
export violation witnesses for concurrent programs without larger changes to their
code base. We considered to include an explicit notion of thread exit or thread join
into the set of critical information, but it turned out that none of these actually
helped or improved the performance of the validator. In other words, terminating
a single thread is unimportant and the validator can automatically infer such
information, whenever a single thread reaches the end of its control flow.

Violation Witnesses and Result Validation for Multi-Threaded Programs 459

Limitations of the Format. The current witness format does not support
assumptions using thread-local scopes of identifiers, such as x from thread 1
is larger than x from thread 2. The validator could in principle overcome this
limitation by heuristically choosing which thread is responsible for which identifier.
This could make validation slow due to a potentially large overhead. Alternatively,
we could extend the assumption format, which are currently plain C statements,
with fully qualified names. However, that requires several changes to the syntax
(parser and exporter) of the assumptions in both producer and consumer of
the witness format. Thus, our validator currently ignores assumptions for which
it can not deterministically assign the corresponding thread.

The current witness format does not support quantifiers. For a possibly
unbounded number of threads in the program, a correctness witness has to
provide information (invariants) over all threads, i.e., uses quantifiers such
as forall threads: property violation can not happen.

4.2 Implementation of the Validator in CPAchecker

CPAchecker transforms a given GraphML-based witness into its internal au-
tomaton format, which is then applied along the program analysis to restrict
the reachable state space. Additional assumptions over program variables that
are given in the witness can be used to strengthen domain-specific transfer
relations or cut off the state-space exploration, e. g., if an assumption about
a program variable does not satisfy its current assignment.

The validator uses the information from the violation witness for two different
features: (1) The state-space exploration is configured to prioritize the search in
the direction of the violation witness, i.e., as soon as any control-flow edge from
the witness is matching, CPAchecker directly follows that direction. This does
not exclude other traces of the program, as they will just be scheduled later in the
exploration algorithm. (2) If an assumption is available in the witness, the valida-
tor applies strengthening and allows to exchange of information between CPAs.

Matching Thread Identifiers. The validator needs to combine the infor-
mation provided in the witness automaton with its own thread model. The
important information for multi-threading is provided as an (optional) thread
identifier for each single control-flow edge. The validator assumes that the iden-
tifier is unique for any particular state in the witness, and we allow to reuse
a thread identifier if its previous usage is out of scope, i.e., the correspond-
ing thread has already exited and was joined.

Our internal thread model uses indices to refer to threads in an abstract state.
When validating the violation witness, we create a mapping of the thread identifier
from the witness to a possible thread index of our own thread model. This allows
the validator to be independent from any concrete representation of a thread identi-
fier in the witness.

Analyses in CPAchecker with Support for Multi-threaded Programs.
The validation for violation witnesses uses the default CPA algorithm [17], which
provides an efficient state-space exploration and can be combined with CEGAR.

460 D. Beyer and K. Friedberger

With the CPA concept, we combine independent analyses (CPAs) that work for
different aspects of the program analysis. The automaton analysis handles the
matching against the specification automaton and the witness automaton, The
threading analysis [13]manages the thread scheduling and interleaving.Additional
CPAs like an explicit-value analysis [21], a BDD-based [23], or interval-based
analysis allow to reason about assignments of variables.

For validation of violation witnesses, we additionally strengthen the abstract
threading state with information provided in the witness automaton, in or-
der to track the mapping of thread identifiers and thread indices, and to cut
off irrelevant branches in the state space eagerly.

Limitations of theValidator. There are some conceptional or implementation-
defined limitations of the current implementation of the validator.Wediscuss these
limitations to encourage developers of future validators for multi-threaded pro-
grams to improve the approach in our tool, to extend other validators for sequential
programs by support for multi-threaded tasks, or to provide new validators.

Based on the requirement to prepare a CFA for each thread of a multi-
threaded program, there is a fixed upper bound in the number of threads (default
value is 5). The validator ignores traces that use more than the given number
of threads, which is an unsound approximation. Note that this is no general
limitation of the witness format or the validator. Each concrete error trace for
a violation witness has a bounded length and thus can only use a bounded
number of thread interleavings. (For example, the number of threads could be
added to the metadata of the violation witness and the limit value could be
set appropriately.) For the evaluated verification tasks, the default limit was
sufficient. If the violation witness is to imprecise and the program allows to create
more threads than given in the violation witness, the validator can of course also
apply the analysis for more threads. Due to our simple threading analysis, we
can only track threads with simple thread-identifier assignments, i.e., where the
thread itself is not assigned to an array element or complex pointer structure.

CPAchecker currently supports two domains concretely for analyzing multi-
threaded programs, which are explicit-value analysis and BDD-based analysis.
The default is to use the BDD-based approach, as it can also handle symbolic
values. The validator inherits the limitations of those domains, e.g., it has only
limited support for heap-related data structures, such that we need to ignore
most array- or pointer-related operations, which can make the validation process
imprecise and in some cases even unsound (in case of pointer assignments). This
leads to two general cases in which a validator can be wrong: (a) there could be a
perfectly valid violation witness but the validator cannot replay it and rejects it
due to missing feature support and (b) there could be an invalid violation witness
(does not describe a feasible error path) but the validator still finds a different
feasible counterexample itself and accepts it due to imprecise information in the
witness. There were a few such cases in SV-COMP 2020. The following examples
are extracted from the results of SV-COMP 2020 by manual investigation, to give
an impression for unsupported features and how they show up in the results3:
3 SV-COMP published all referenced witnesses [9] and verification tasks [8].

Violation Witnesses and Result Validation for Multi-Threaded Programs 461

• Cbmc provides a valid (rather short) violation witness4 for the task
tls_destructor_worker.yml5. The validator with BDD-based analysis can
not confirm this witness due to missing support for pthread_create_key and
pointer operations.

• Esbmc provides a valid violation witness6 for the task
race-2_3-container_of.yml7, which the validator with BDD-based analy-
sis can not confirm due to missing support for structs.

• Yogar-CBMC provides a valid violation witness8 for the task bigshot_p.yml9,
for which the validator aborts due to an unexpected assignment of a thread
identifier into an array element.

So far, the presented validator is the only validator for multi-threaded pro-
grams, and it participated already three years in the competition of software verifi-
cation (since SV-COMP 2018).

5 Experimental Evaluation

We perform an experimental evaluation on violation witnesses for multi-threaded
programs to provide qualitative and quantitative insights on how well the result
validation based on violation witnesses for multi-threaded programs works.

5.1 Evaluation Questions

We split our experimental evaluation into the following evaluation questions:

Q1: Which verifiers already support the export of violation witnesses for multi-
threaded programs after a successful verification run and what kind of
information about the counterexample trace is provided within the witness.

Q2: Is the format sufficient and concrete enough for the validator to re-verify
the counterexample trace?

Q3: Is the validation process faster than the verification process?

4 https://sv-comp.sosy-lab.org/2020/results/fileByHash/
c4a519d36a719304f05e0af3675a0bcf40a7ce4d5000fba784365eed63105ee0.
graphml

5 https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/
pthread-divine/tls_destructor_worker.yml

6 https://sv-comp.sosy-lab.org/2020/results/fileByHash/
784befbee140f91b180268f489a6cdce2471ffc6f8578fb0e361c3d2953313d1.
graphml

7 https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ldv-races/
race-2_3-container_of.yml

8 https://sv-comp.sosy-lab.org/2020/results/fileByHash/
f197f473759cc28e4845bcfc6f92af00c0d3ad27e020ee9db1029bfd7c854dba.
graphml

9 https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread/
bigshot_p.yml

https://sv-comp.sosy-lab.org/2020/results/fileByHash/c4a519d36a719304f05e0af3675a0bcf40a7ce4d5000fba784365eed63105ee0.graphml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/c4a519d36a719304f05e0af3675a0bcf40a7ce4d5000fba784365eed63105ee0.graphml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/c4a519d36a719304f05e0af3675a0bcf40a7ce4d5000fba784365eed63105ee0.graphml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread-divine/tls_destructor_worker.yml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread-divine/tls_destructor_worker.yml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/784befbee140f91b180268f489a6cdce2471ffc6f8578fb0e361c3d2953313d1.graphml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/784befbee140f91b180268f489a6cdce2471ffc6f8578fb0e361c3d2953313d1.graphml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/784befbee140f91b180268f489a6cdce2471ffc6f8578fb0e361c3d2953313d1.graphml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ldv-races/race-2_3-container_of.yml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ldv-races/race-2_3-container_of.yml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/f197f473759cc28e4845bcfc6f92af00c0d3ad27e020ee9db1029bfd7c854dba.graphml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/f197f473759cc28e4845bcfc6f92af00c0d3ad27e020ee9db1029bfd7c854dba.graphml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/f197f473759cc28e4845bcfc6f92af00c0d3ad27e020ee9db1029bfd7c854dba.graphml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread/bigshot_p.yml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread/bigshot_p.yml

462 D. Beyer and K. Friedberger

5.2 Benchmark Set

We evaluate the witness format and the validator on a large set of verification tasks,
which is taken from the SV-Benchmarks collection [8]10, in the same version as
used for SV-COMP 2020. We limit the benchmark set to the subset of verification
tasks that exactly matches the category ConcurrencySafety in SV-COMP 2020,
i.e., multi-threaded programs with a reachability property as specification.

5.3 Setup

Our experiments were executed on computers with Intel Xeon E3-1230 v5 CPUs,
3.40 GHz CPU frequency, and 33 GB of RAM. We limited the CPU time to 15 min
and the memory to 15 GB.

We evaluated our validator on violation witnesses from SV-COMP [9] that
were produced by several different software verifiers. We selected those verifiers
that participated in SV-COMP 2020 [7], support violation witnesses (produced
more than 100 such witnesses that were confirmed), and have publicly available
archives on GitLab11. Those verifiers are the following seven: Cbmc, CPA-Seq,
Divine, Esbmc, Lazy-CSeq, PeSCo, and Yogar-CBMC. In addition to the
witnesses that we took from SV-COMP [9], we also used an updated version of
CPAchecker (revision r33531) to produce witnesses, where a small extension
for the export of violation witnesses was applied (add all beneficial informa-
tion about thread identifiers to the violation witness and consider more thread
interleavings). We include this additional verifier to show that a small and
inexpensive extension can lead to a significant improvement of the validation
results. The CPU time and memory consumption for each verification run was
measured by SV-COMP using BenchExec [22], and the number of nodes and
transitions was counted using the GraphML witness files.

Currently, there is only one validator available for violation witnesses of multi-
threaded programs, which is the validator explained in Sect. 4.2 and implemented
in the CPAchecker framework2. We use revision r33531 for the experiments.

5.4 Results and Discussion

Q1: Verifier Support and Available Information. All verifiers that we considered
in our experiments support (1) the verification of multi-threaded programs
and (2) the export of violation witnesses. Some tools include the beneficial
information about thread interleaving in the violation witness. That specific
feature was already requested in SV-COMP 2018, when the organizers extended
the validation of violation witnesses to the category of concurrent tasks. This
shows that our extension was already adopted to other verification tools. However,
the availability and the quality of the integration differs between the tools.

10 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20
11 https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/tree/svcomp20/2020

https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20
https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/tree/svcomp20/2020

Violation Witnesses and Result Validation for Multi-Threaded Programs 463

Table 1. Statistical description of the generated witnesses for the verifiers

Verifier Number of states Number of transitions
Median Mean Max Sum Median Mean Max Sum

Cbmc 6.00 6.05 10 4 790 4.00 4.05 8 3 210

CPA-Seq 48.0 48.7 662 38 700 82.0 84.4 744 67 000

CPAchecker (r33531) 141 140 1 480 112 000 207 202 1 620 161 000

Divine 3.00 3.05 5 1 820 2.00 2.05 4 1 220

Esbmc 3.00 5.19 30 4 140 2.00 4.19 29 3 340

Lazy-CSeq 66.0 64.1 156 52 100 64.0 62.1 154 50 500

PeSCo 51.0 49.5 662 38 600 83.0 85.9 744 67 000

Yogar-CBMC 86.0 84.7 188 68 300 84.0 82.7 186 66 700

Table 2. Properties of the exported violation witnesses

Verifier Thread id Thread creation All thread interleavings

Cbmc ✓

CPA-Seq ✓ ✓

CPAchecker (r33531) ✓ ✓ ✓

Divine

Esbmc

Lazy-CSeq ✓ ✓ ✓

PeSCo ✓ ✓

Yogar-CBMC ✓ ✓ ✓

Table 1 gives a statistical overview of the provided violation witnesses
and shows how many states and transitions are available in the violation wit-
nesses. Figure 5a shows the distribution of sizes of the violation witnesses for
different verifiers. As most tasks have roughly equal difficulty and length of
the counterexample trace, the sizes of the violation witnesses are in a cer-
tain range. The noticeable difference comes with the tools themselves, i.e.,
some tools export more details than others.

We also inspected the witnesses for the kind of information they contain.
Table 2 shows the different kinds of information available in thewitnesses produced
by the verifiers. We analyzed whether the violation witnesses contain the thread id
for every transition, information about thread creation for newly started threads
during the counterexample trace, and information about thread interleaving.
Cbmc, Divine, and Esbmc only export the main thread of the multi-threaded
program, which is not suitable for a counterexample trace with interleaving
thread statements, because all information about other threads is missing.

Q2:ValidationResults. The validation results for the produced violation witnesses
show whether the information from the violation witness was sufficient to guide
the validator towards confirming the given counterexample trace. Overall, the
performance of the validation run is determined by two factors: first, how well the
violation witness itself guides the state-space exploration and defines the thread

464 D. Beyer and K. Friedberger

Fig. 5. Quantile plots for violation witnesses from different verifiers

scheduling, and second, how precise the data in the violation witness are. The
less information is provided in the violation witness, the more work is left to the
validator with its heuristics to recover the error trace. In other words, more precise
violation witnesses are often validated faster than less precise witnesses. Figure 5b
shows the CPU time of the validator for violation witnesses from different verifi-
cation tools. Comparing the results with the annotations exported by the tools
(Table 2) leads us to a first conclusion: exporting thread interleavings is critical for
finding a concrete counterexample path through the program during validation.

As Cbmc, Divine, and Esbmc produce violation witnesses that contain only
a minimal set of nodes and transitions, especially only consisting of the main
function of the program and ignoring any additional threads, the validation
can not follow the given trace sufficiently and performs worse than for other
violation witnesses. CPA-Seq and PeSCo use the same underlying analysis,
i.e., both tools apply CPAchecker’s BDD-based concurrency analyzer with
nearly identical options. Thus, they produce nearly identical violation witnesses
which also results in similar validation performance.

For the three tools that export thread interleavings in the violation witness,
the validation is fast and precise for most of the available verification tasks.
Apart from the startup time of the validator (due to starting the Java VM), the

0 200 400 600 800
1

10

100

1 000

n-th largest witness

N
um

be
r
of

st
at
es

Cbmc
CPA-Seq

CPAchecker (r33531)
Divine
Esbmc

Lazy-CSeq
PeSCo

Yogar-CBMC

(a) Size of witnesses

0 100 200 300 400 500 600 700 800

10

100

1 000

n-th fastest correct validation result

C
P
U

ti
m
e
(s
)

(b) Runtime of validation of witnesses

Violation Witnesses and Result Validation for Multi-Threaded Programs 465

Fig. 6. Scatter plot showing the CPU time of the verification process of several
tools against the CPU time of the validation process

.1 1 10 100 1 000

10

100

1 000

Verification Cbmc (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification CPA-Seq (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification CPAchecker (r33531) (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification Divine (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification Esbmc (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification Lazy-CSeq (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification PeSCo (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification Yogar-CBMC (s)

V
al
id
at
io
n
(s
)

466 D. Beyer and K. Friedberger

runtime of the validation itself is negligible. The violation witness guides the
validator in the right direction, i.e., all scheduling information is available and
nearly no overhead from unimportant program traces appears in the validation
process. Only some validation tasks suffer from a high runtime, but these cases
also suffer from a rather long and complex to find counterexample trace, such
that the violation witness itself contains several thousands of nodes. Note that
depending on the verifier, a different path might have been determined, resulting
in violation witnesses of different length for each verification task.

Q3: Performance of Validation Compared to Verification. Based on the CPU time
consumed by the verifiers and the CPU time consumed by the validator, we can
compare the performance of the validation with the performance of the verification
per verifier. Figure 6 shows several scatter plots, each comparing for a given verifier
the CPU times for successful validation runs against the corresponding verification
runs. Each data point in the scatter plots represents a verification task that was
verified and the resulting violation witness was then successfully validated. The
three diagonal lines indicate the factors of 0.1, 1, and 10 between the coordinates.

The overall picture for all scatter plots is as follows: The validator (as part of
CPAchecker) is written in Java and has a large startup overhead. This makes it
difficult to see a clear performance difference for the small and fast verification
tasks. For Cbmc and Esbmc, which are tools with only very imprecise witnesses,
the validation usually needs much more CPU time than the actual verification
took, i.e., the validator needed much more time to find a counterexample trace
matching the rudimentary information in the violation witness. Divine not
only has quite imprecise witnesses, but also requires more CPU time for the
verification process; thus the difference to the time required for the validation is
smaller. For more precise witnesses, as produced by Lazy-CSeq, Yogar-CBMC,
and CPAchecker (r33531), the validation process is often faster, or at least
requires mostly a nearly constant time (about 10 s).

5.5 Threats to Validity

The validity of our experiments is limited by certain choices that we made in the ex-
periment setup.

External Validity. The verifiers are all state-of-the-art and seven of them are
taken from SV-COMP 2020. We applied the same options and a similar en-
vironment that was used in the competition execution, and collected the vi-
olation witnesses from the selected verifiers.

There exists only a single validator for multi-threaded violation witnesses, and
it might be possible that our results (sufficient information in the witness format)
does not apply to other, future validators for multi-threaded programs. We based
our validator on the verification frameworkCPAchecker, because mechanisms for
witness export and validation was already integrated. The configuration using a
BDD-based analysis is currently the most performant approach for multi-threaded

Violation Witnesses and Result Validation for Multi-Threaded Programs 467

programs in the framework. The heuristics for exploring the abstract state space
are tuned to match witnesses from a broad range of verifiers.

The community-based SV-Benchmarks repository is a largest and most divers
collection of verification tasks for the language C. We used all verification tasks
that were also used by the most recent competition: category ConcurrencySafety.

Internal Validity. The validator might contain programming bugs, but we based
our validator on the infrastructure that is used by the verifier CPA-Seq, which
performed extremely well in the recent competitions. Thus, we believe that
the implementation has a high quality. Also, previous versions of our valida-
tor participated in the competition since SV-COMP 2018. Limitations of the
validator were discussed in depth in Sect. 4.2.

The execution of the verification and validation runs was done with
BenchExec [22], the (only available) state-of-the-art benchmarking tool, which
is also used by the StarExec competition infrastructure and competitions like
SV-COMP and Test-Comp. BenchExec is used to enforce the limits and collect
measurements for the consumed resources (CPU time and memory).

6 Conclusion

While validation of verification results for sequential programshas been thoroughly
described in 2015, validation support for multi-threaded programs was not yet
described in the literature. This paper closes this gap by describing the (only avail-
able) validator for multi-threaded programs, which was already used three times
as validator in the competition on software verification (SV-COMP 2018-2020).

In our evaluation, we report the available features that the witnesses produced
by several verifiers expose to the validator, and we report the performance. The
results are promising, but it would be better for the verification community
to have more such validators available: There are six validators for violation
witnesses for sequential programs, but only one for multi-threaded programs.

Data Availability Statement. We make the violation witnesses, a ready-to-
run archive of CPAchecker, and all experimental results (including raw data,
tables, and plots) available on a supplementary web site12 and in a Zenodo
archive [14]. The verifiers that participated in SV-COMP 2020 have publicly
available archives in a GitLab repository.11 More witnesses and results from
SV-COMP can be found in the archives mentioned in the report [7] (Table 4).

References

1. Andrianov, P., Mutilin, V., Khoroshilov, A.: Predicate abstraction based config-
urable method for data race detection in Linux kernel. In: Proc. TMPA, CCIS,
vol. 779. Springer (2018). https://doi.org/10.1007/978-3-319-71734-0_2

12 https://www.sosy-lab.org/research/witnesses-concurrency

https://doi.org/10.1007/978-3-319-71734-0_2
https://www.sosy-lab.org/research/witnesses-concurrency

468 D. Beyer and K. Friedberger

2. Artho, C., Havelund, K., Honiden, S.: Visualization of concurrent program execu-
tions. In: Proc. COMPSAC, pp. 541–546. IEEE (2007). https://doi.org/10.1109/
COMPSAC.2007.236

3. Baranová, Z., Barnat, J., Kejstová, K., Kučera, T., Lauko, H., Mrázek, J.,
Ročkai, P., Štill, V.: Model checking of C and C++ with Divine 4. In:
Proc. ATVA, LNCS, vol. 10482, pp. 201–207. Springer (2017). https://doi.org/
10.1007/978-3-319-68167-2_14

4. Beyer, D.: Software verification and verifiable witnesses (Report on SV-COMP
2015). In: Proc. TACAS, LNCS, vol. 9035, pp. 401–416. Springer (2015). https://
doi.org/10.1007/978-3-662-46681-0_31

5. Beyer, D.: Reliable and reproducible competition results with BenchExec and
witnesses (Report on SV-COMP 2016). In: Proc. TACAS, LNCS, vol. 9636,
pp. 887–904. Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_55

6. Beyer, D.: Software verification with validation of results (Report on SV-COMP
2017). In: Proc. TACAS, LNCS, vol. 10206, pp. 331–349. Springer (2017). https://
doi.org/10.1007/978-3-662-54580-5_20

7. Beyer, D.: Advances in automatic software verification: SV-COMP 2020. In: Proc.
TACAS (2), LNCS, vol. 12079, pp. 347–367. Springer (2020). https://doi.org/
10.1007/978-3-030-45237-7_21

8. Beyer, D.: SV-Benchmarks: Benchmark set of 9th Intl. Competition on Soft-
ware Verification (SV-COMP 2020). Zenodo (2020). https://doi.org/10.5281/
zenodo.3633334

9. Beyer, D.: Verification witnesses from SV-COMP 2020 verification tools. Zenodo
(2020). https://doi.org/10.5281/zenodo.3630188

10. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchang-
ing verification results between verifiers. In: Proc. FSE, pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

11. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness valida-
tion and stepwise testification across software verifiers. In: Proc. FSE, pp. 721–733.
ACM (2015). https://doi.org/10.1145/2786805.2786867

12. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP, LNCS, vol. 10889,
pp. 3–23. Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_1

13. Beyer, D., Friedberger, K.: A light-weight approach for verifying multi-threaded
programs with CPAchecker. In: Proc. MEMICS, EPTCS, vol. 233, pp. 61–71
(2016). https://doi.org/10.4204/EPTCS.233.6

14. Beyer, D., Friedberger, K.: Replication package for article ‘Violation witnesses
and result validation for multi-threaded programs’. Zenodo (2020). https://doi.org/
10.5281/zenodo.3885694

15. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-flow
analysis. In: Handbook of Model Checking, pp. 493–540. Springer (2018). https://
doi.org/10.1007/978-3-319-10575-8_16

16. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification:
Concretizing the convergence of model checking and program analysis. In: Proc.
CAV, LNCS, vol. 4590, pp. 504–518. Springer (2007). https://doi.org/10.1007/
978-3-540-73368-3_51

17. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic preci-
sion adjustment. In: Proc. ASE, pp. 29–38. IEEE (2008). https://doi.org/10.1109/
ASE.2008.13

https://doi.org/10.1109/COMPSAC.2007.236
https://doi.org/10.1109/COMPSAC.2007.236
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.5281/zenodo.3633334
https://doi.org/10.5281/zenodo.3633334
https://doi.org/10.5281/zenodo.3630188
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.4204/EPTCS.233.6
https://doi.org/10.5281/zenodo.3885694
https://doi.org/10.5281/zenodo.3885694
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1109/ASE.2008.13

Violation Witnesses and Result Validation for Multi-Threaded Programs 469

18. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software ver-
ification. In: Proc. CAV, LNCS, vol. 6806, pp. 184–190. Springer (2011). https://
doi.org/10.1007/978-3-642-22110-1_16

19. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD, pp. 189–197. FMCAD (2010)

20. Beyer, D., Lemberger, T.: CPA-SymExec: Efficient symbolic execution in
CPAchecker. In: Proc. ASE, pp. 900–903. ACM (2018). https://doi.org/10.1145/
3238147.3240478

21. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR
and interpolation. In: Proc. FASE, LNCS, vol. 7793, pp. 146–162. Springer (2013).
https://doi.org/10.1007/978-3-642-37057-1_11

22. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and solu-
tions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2017). https://doi.org/
10.1007/s10009-017-0469-y

23. Beyer, D., Stahlbauer, A.: BDD-based software verification: Applications to event-
condition-action systems. Int. J. Softw. Tools Technol. Transfer 16(5), 507–518
(2014). https://doi.org/10.1007/s10009-014-0334-1

24. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Sur-
vey and unifying component framework. arXiv/CoRR 1905(08505) (May 2019).
https://arxiv.org/abs/1905.08505

25. Beyer, D., Wendler, P.: Reuse of verification results: Conditional model check-
ing, precision reuse, and verification witnesses. In: Proc. SPIN, LNCS, vol. 7976,
pp. 1–17. Springer (2013). https://doi.org/10.1007/978-3-642-39176-7_1

26. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: GraphML
progress report. In: Graph Drawing, LNCS, vol. 2265, pp. 501–512. Springer (2001).
https://doi.org/10.1007/3-540-45848-4_59

27. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Automati-
cally generating inputs of death. In: Proc. CCS, pp. 322–335. ACM (2006). https://
doi.org/10.1145/1180405.1180445

28. Castaño, R., Braberman, V.A., Garbervetsky, D., Uchitel, S.: Model checker exe-
cution reports. In: Proc. ASE, pp. 200–205. IEEE (2017). https://doi.org/10.1109/
ASE.2017.8115633

29. Clarke, E.M., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Proc. TACAS, LNCS, vol. 2988, pp. 168–176. Springer (2004). https://doi.org/
10.1007/978-3-540-24730-2_15

30. Csallner, C., Smaragdakis, Y.: Check ‘n’ crash: Combining static checking and
testing. In: Proc. ICSE, pp. 422–431. ACM (2005). https://doi.org/10.1145/
1062455.1062533

31. Czech, M., Hüllermeier, E., Jakobs, M.C., Wehrheim, H.: Predicting rankings of
software verification tools. In: Proc. SWAN, pp. 23–26. ACM (2017). https://
doi.org/10.1145/3121257.3121262

32. Gadelha, M.Y.R., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k -induction. Int. J. Softw. Tools Technol. Transfer
19(1), 97–114 (2017). https://doi.org/10.1007/s10009-015-0407-9

33. Gavrilenko, N., Ponce de León, H., Furbach, F., Heljanko, K., Meyer, R.: BMC
for weak memory models: Relation analysis for compact SMT encodings. In: Proc.
CAV, LNCS, vol. 11561, pp. 355–365. Springer (2019). https://doi.org/10.1007/
978-3-030-25540-4_19

34. Gennari, J., Gurfinkel, A., Kahsai, T., Navas, J.A., Schwartz, E.J.: Executable
counterexamples in software model checking. In: Proc. VSTTE, LNCS, vol. 11294,
pp. 17–37. Springer (2018). https://doi.org/10.1007/978-3-030-03592-1_2

https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1145/3238147.3240478
https://doi.org/10.1145/3238147.3240478
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-014-0334-1
https://arxiv.org/abs/1905.08505
https://doi.org/10.1007/978-3-642-39176-7_1
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1109/ASE.2017.8115633
https://doi.org/10.1109/ASE.2017.8115633
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-030-03592-1_2

470 D. Beyer and K. Friedberger

35. Greitschus, M., Dietsch, D., Podelski, A.: Loop invariants from counterexamples.
In: Proc. SAS, LNCS, vol. 10422, pp. 128–147. Springer (2017). https://doi.org/
10.1007/978-3-319-66706-5_7

36. Gunter, E.L., Peled, D.A.: Path exploration tool. In: Proc. TACAS,
LNCS, vol. 1579, pp. 405–419. Springer (1999). https://doi.org/10.1007/
3-540-49059-0_28

37. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people
who love automata. In: Proc. CAV, LNCS, vol. 8044, pp. 36–52. Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8_2

38. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Lazy-
CSeq: A lazy sequentialization tool for C (competition contribution). In:
Proc. TACAS, LNCS, vol. 8413, pp. 398–401. Springer (2014). https://doi.org/
10.1007/978-3-642-54862-8_29

39. Inverso, O., Trubiani, C.: Parallel and distributed bounded model checking of multi-
threaded programs. In: Proc. PPoPP. ACM (2020)

40. Yin, L., Dong, W., Liu, W., Wang, J.: On scheduling constraint abstraction for
multi-threaded program verification. IEEE Trans. Softw. Eng. (2018). https://
doi.org/10.1109/TSE.2018.2864122

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-66706-5_7
https://doi.org/10.1007/978-3-319-66706-5_7
https://doi.org/10.1007/3-540-49059-0_28
https://doi.org/10.1007/3-540-49059-0_28
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-54862-8_29
https://doi.org/10.1007/978-3-642-54862-8_29
https://doi.org/10.1109/TSE.2018.2864122
https://doi.org/10.1109/TSE.2018.2864122
http://creativecommons.org/licenses/by/4.0/

Tendermint Blockchain Synchronization:
Formal Specification and Model Checking

Sean Braithwaite2, Ethan Buchman1, Igor Konnov3(B), Zarko Milosevic2,
Ilina Stoilkovska3, Josef Widder3, and Anca Zamfir2

1 Informal Systems, Toronto, Canada
ethan@informal.systems

2 Informal Systems, Lausanne, Switzerland
{sean,zarko,anca}@informal.systems
3 Informal Systems, Vienna, Austria

{igor,ilina,josef}@informal.systems

Abstract. Blockchain synchronization is one of the core protocols of
Tendermint blockchains. We describe our recent efforts on formal speci-
fication of the protocol and its implementation, and present model check-
ing results for small parameters. We demonstrate that the protocol qual-
ity and understanding can be improved by writing specifications and
applying model checking to verify their properties.

1 Introduction

Tendermint is a state-of-the art Byzantine-fault-tolerant state machine replica-
tion (BFT SMR) engine equipped with a flexible interface supporting arbitrary
state machines written in any programming language [6]. Tendermint is particu-
larly popular for proof-of-stake blockchains, and constitutes a core component of
the Cosmos Project [7]. At the heart of the Cosmos Project is the InterBlockchain
Communication protocol (IBC) for reliable communication between independent
BFT SMs; what TCP is for computers, IBC aims to be for blockchains.

Multiple Tendermint-based blockchains run in production on the public Inter-
net for over a year, with new ones launching regularly. They carry billions of
dollars of cumulative value in the market capitalizations of their respective cryp-
tocurrencies. One of the primary deployments is the Cosmos Hub blockchain [24].
It is operated by a diverse set of 125 consensus forming nodes; they are connected
over an open-membership gossip network consisting of hundreds of other nodes.

Tendermint was the first proof-of-stake blockchain system to apply tradi-
tional BFT consensus protocols at its core [18]. The Tendermint BFT consensus
protocol constitutes a modern implementation of the consensus algorithm for
Byzantine faults with Authentication from [11], built on top of an efficient gos-
siping layer. The latest description of the consensus protocol can be found in
the technical report [8]. Tendermint has been a source of inspiration for a wide
variety of blockchain systems that have followed [9,26], though few, if any, have
achieved its level of maturity in production.

Supported by Interchain Foundation (Switzerland).

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 471–488, 2020.
https://doi.org/10.1007/978-3-030-61362-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_27&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_27

472 S. Braithwaite et al.

The reference implementation of the Tendermint software is written in
Go [25]. Under the hood, it consists of several fault-tolerant distributed pro-
tocols that interact to ensure efficient operation:

Consensus. Core BFT consensus protocol including the gossiping of proposals,
blocks, and votes.

Evidence. To incentivize consensus participants to follow the consensus pro-
tocol (and not behave faulty), in the proof-of-stake systems, misbehavior is
punished by destroying stake. This protocol gossips evidence of malicious
behavior in the form of conflicting signatures.

Mempool. A protocol to gossip transactions, ensuring transactions that should
eventually end up in a block are distributed to all participants.

Peer Exchange. Gossiping is based on communication only with a subset of
the peers. Managing the list of available peers and selecting peers based on
performance metrics is done by this protocol.

Blockchain synchronization (Fastsync). If a peer gets disconnected by the
network for some time, it might miss the most recent blocks in the blockchain.
A node that recovers from such a disconnection uses the blockchain synchro-
nization protocol to learn blocks without going through consensus.

We are conducting a project to formally specify and model check these pro-
tocols. The first protocol we considered was the blockchain synchronization pro-
tocol called Fastsync. Specifications can be found in English [13] and TLA+ [14].

Fastsync. A full node that connects to a Tendermint blockchain needs to syn-
chronize its state to the latest global state of the network. This network state
is defined by the sequence of blocks that the system has decided upon. These
blocks are numbered continuously, and a block’s number is called its height, and
the height of the most recently added block is called the current height of the
blockchain. Thus, another way to put the blockchain synchronization problem is
the need to catch-up to a recent height of the blockchain. One way to achieve this
is using Fastsync: Initially, the node has a local copy of a blockchain prefix and
the corresponding application state that may be out of date. The node queries
its peers for the blocks that were decided on by the Tendermint blockchain since
the time the full node was disconnected from the system. (Fastsync can be also
used by a fresh node that connects to a blockchain; the node starts with the
genesis file, i.e., the initial block.) After receiving these blocks, the protocol exe-
cutes the transactions that are stored in the blocks, in order to synchronize to
the current height of the blockchain and the corresponding application state.

Figure 1 shows a typical execution of the Blockchain Synchronization pro-
tocol. In this execution, a new node connects to two full nodes: a correct peer
and a faulty peer. The node requests the blockchain heights of the peers by issu-
ing statusReq. Once a peer replies with its height, e.g., with statusRes(10),
the node can request for a block i by sending the message blockReq(i). In
our example, the correct peer receives the request blockReq(1) for block 1 and
replies with the message blockRes(b1) that contains the block. In a Tender-
mint blockchain, the commit (signed votes messages) for block h is contained

Tendermint Blockchain Synchronization 473

node

faulty
peer

correct
peer

st
at
us
Re
q

statusR
eq

statusRes(2)

st
at
us
R
es
(1
0)

bl
oc
kR
eq
(1
)

blockReq(2)

blockRes(b1)

timeout

blo
ck
Re
q(
2)

blockR
es(b2)

Fig. 1. A Fastsync execution for a fully unsynchronized node of height 1

in block h+1, and thus a node performing Fastsync must receive two sequential
blocks before it can verify fully the first of them. If verification succeeds, the
first block is accepted; if it fails, both blocks are rejected, as it is unknown which
block was faulty. When the node rejects a block, it suspects the sending peer of
being faulty and evicts this peer from the set of peers. The same happens when a
peer does not reply within a predefined time interval. In our example, the faulty
peer is evicted, and the node finishes synchronization with the correct peer.

The above example may produce an impression that it is easy to specify
and verify correctness of Fastsync. (The authors of this paper thought so.) By
writing several protocol specifications in English and TLA+ and by running
model checkers, we have found that the specifications are intricate, in particular
due to the presence of faulty peers. Moreover, the intuitive safety and liveness
properties often fail to hold, and one has to refine the temporal formulas used to
encode these properties. This effort significantly improves understanding of the
protocol boundaries and of its guarantees.

2 Architecture

The most recent implementation of the Fastsync protocol, called V2, is the result
of significant refactoring to improve testability and determinism, as described
in the Architectural Decision Record [1]. In the original design, a go-routine
(thread of execution) was spawned for each block requested, and was responsible
for both protocol logic and network IO. In the V2 design, the protocol logic is
decoupled from IO by using three concurrent threads of execution: a scheduler,
a processor, and a demuxer, as per Fig. 2.

Both the scheduler and processor are structured as finite state machines with
input and output events. Inputs are received on an unbounded priority queue,
with higher priority for error events. Output events are emitted on a blocking,
bounded channel. Network IO is handled by the Tendermint p2p subsystem,
where messages are sent in a non-blocking manner. The demuxer routine is
responsible for all IO, including translating between internal events and network
IO messages, and routing events between components.

The task of the scheduler is to ensure that a number of blocks are always
available for verification by the processor. To achieve this, the scheduler tracks

474 S. Braithwaite et al.

Fig. 2. Communication between components in the Fastsync implementation [1].

peers and their heights (via statusReq and statusRes messages and events)
and makes block requests (blockReq) to peers. In order not to overload any one
peer, the block requests are equally spread across the peers. The block responses
(blockRes) are forwarded to the processor (blockReceived) for verification.
The scheduler maintains lists of pending block requests and block responses for
each peer. Peers that (i) are unresponsive, (ii) sent blocks which cause verifi-
cation failure, or (iii) sent unsolicited blocks, are removed, together with any
unprocessed blocks from these peers. In case there are pending block requests
associated with the removed peers, these blocks are requested from other peers.

The processor performs block processing, including verification of consen-
sus signatures and execution of all transactions, which is performed in increas-
ing order of the block height. The blocks that are successfully verified are
stored in Store, and the chain State is updated with the result of transac-
tion execution (cf. Fig. 2). The result of the block processing (blockProcessed
or verificationFailure) is sent to the scheduler via the demuxer routine. The
scheduler keeps track of the block execution height and triggers termination—at
the maximum peer height (finished). Once a node terminates executing Fast-
sync, it continues by executing the Tendermint consensus protocol to stay up to
date with the latest blockchain changes.

Tendermint Blockchain Synchronization 475

3 Specifications in English and TLA+

In addition to protocol verification, we are elaborating a verification-driven devel-
opment process. Our goal is to have a design process that has researchers, ver-
ification engineers, and software engineers in the loop during the design and
development of protocols. Fastsync was the first protocol where we adopted that
process in part. By the time we started our verification efforts, the blockchain
synchronization protocol had already been designed using a classic engineer-
ing process, whose artifacts include architecture decision records and English
specifications that focus on data structures and APIs. There had already been
two implementations of the protocol (V0 and V1), and our software engineer-
ing team was in the process of wrapping-up a third implementation (called V2)
whose primary goal was increased testability.

In this project we started with joint sessions of software engineers, researchers
and verification engineers, in which we wrote first TLA+ specifications together.
In order to better understand how TLA+ can be of most help to us, we then
wrote different specifications that focus, e.g., on the business logic, the local
concurrency architecture of the implementation of V2, and the protocol level; we
published the latter at [14]. While TLA+ specifications provide precise semantics,
we found that English specifications are a valuable tool for communication, both
within the project, but also to others who are interested in the protocols. We
thus developed a structure for English specifications [13]. While in the Fastsync
project, this structured English specification was written after-the-fact, in the
verification-driven development process and our current projects, it is the origin
and deals as reference both for implementations written by the software engineers
as well as for the TLA+specification written by the verification engineers.

We chose TLA+ for two reasons: (1) We have acquired a good understanding
of the language by developing the Apalache model checker [16], and (2) TLA+

has been successfully used by systems designers, e.g., at Amazon [5,23].

Structured Specification in English. We start our formalization by a structured
English specification [13], that consists of four parts:

1. Blockchain. Formalization of relevant properties of the chain and its blocks.
2. Sequential problem statement. Here we consider the blockchain as a growing

list of blocks, and define what we expect from the blockchain synchronization
protocol with respect to this list. This specification is sequential. It ignores
that the blockchain is implemented in a distributed system, in which val-
idators may be faulty. Even if they are correct, they locally have prefixes of
different lengths, which introduces uncertainty that has to be reflected in the
distributed protocol as well as in the distributed problem statement.

3. Distributed aspects. Here we introduce the computational model and the
refinement of the sequential problem statement. The computational model
specifies assumptions about the system, such as assumptions on the message
delays, process faults, etc. As a result, the problem statement is restricted
to some fairness constraints, e.g., it is preconditioned by the process being
connected to at least one correct peer.

476 S. Braithwaite et al.

4. Distributed protocol. Specification of the protocol, where we describe inputs,
outputs, variables, and functions used by the protocol. We specify functions
mainly in terms of preconditions, postconditions, and error conditions. Fur-
ther, we provide invariants over the protocol variables. These inform both the
implementation and the verification efforts.

Specifications in TLA+. The structure of the English specification highlights
interesting properties of the protocols and points to some issues. As it is written
in natural language, the English specification is ambiguous. We have written
three TLA+ specifications that provide precise semantics, which focus on differ-
ent aspects of the protocol and its architecture:

– High-level specification (HLS). This specification contains the minimal set
of interactions in the synchronization protocol. Its primary purpose is to
highlight safety and termination properties. HLS was mainly written by the
distributed system researchers.

– Low-level specification (LLS). While HLS captures the distributed proto-
col, there was a significant gap between HLS and the implementation. For
instance, the implementation uses additional messages and contains detailed
error codes, which are missing in HLS. The low-level specification is closer to
the implementation. It is mainly written by distributed system engineers.

– Concurrency specification (CRS). As discussed above, the V2 implementation
uses several threads that communicate via queues. To formally capture this,
we wrote a specification that models threads and message queues.

In the following, we focus on the high-level specification in English and
TLA+ [14]. In Sects. 4–7, we give the main abstractions and insights about
the specifications. The TLA+ specification has about 800 lines, hence we omit
presenting it in full detail. In addition, it is parameterized by the blockchain
length, and the set of peers. By fixing these parameters, we check its safety and
liveness with TLC [17] and Apalache [16], detailed in Sect. 8.

4 The Blockchain Specification in English and TLA+

A block is a data structure that contains application information (e.g., trans-
actions) as well as metadata needed for the protocols. As we are interested in
the blockchain synchronization, some of this metadata is relevant for our for-
mal model. Figure 3 illustrates three blocks of a Tendermint blockchain. The
blocks are consecutively numbered, and each block is assigned a number, called
its height. As the blocks are a result of consensus by validators, the validity of a
block is confirmed if a quorum of the validators signed (a hash of) a block. The
validator membership in Tendermint changes over time, and is indeed a result
of consensus itself. Moreover, the validators have an associated voting power,
which is not necessarily uniform. For a block, a validator set is a set of pairs of
IDs of validators and their associated voting power. The quorum we referred to

Tendermint Blockchain Synchronization 477

Height �→ 1

Data, AppState, etc.

VS1 �→ p1, p2, p3, p4

NVS1 �→ p1, p2, p3, p4

Votes1 ∅→�
BlockID1

Commit1: LastCommit

B
l
o
c
k

1 Height �→ 2

Data, AppState, etc.

VS2 �→ p1, p2, p3, p4

NVS2 �→ p3, p4, p5, p6

Votes2 �→ p1, p2, p3

BlockID2

Commit2: LastCommit

B
l
o
c
k

2 Height �→ 3

Data, AppState, etc.

VS3 �→ p3, p4, p5, p6

NVS3 �→ p3, p4, p5, p42

Votes3 �→ p2, p3, p4

BlockID3

Commit3: LastCommit

B
l
o
c
k

3

hash

=

Fig. 3. The block structure in Tendermint blockchain. The fields VS and NVS denote
the current and next validator sets of a block. Note that Votes3 contains more than 2/3
of voting power in NVS1.

above thus corresponds to the set of validators that have more than 2/3 of the
total voting power in a given validator set.

To capture this, in a block of height i, the validator set of the current block is
stored in the field VSi, the validator set for the next block is stored in NVSi, and
the signed messages that confirm block i are stored in the field Commiti+1 of
the block at height i+1. The nodes whose signatures are in Commiti+1 must be
a subset of the set VSi of validators at height i. A node running the blockchain
synchronization protocol checks the quorums and signatures in order to locally
confirm whether a downloaded block originates from the blockchain. Therefore,
it is crucial to capture validator sets and commits in our formal specification.

TLA+ Specification. The blockchain data structures in the implementation are
quite rich. To render model checking possible, we abstract blocks so that the
safety and liveness properties of the protocol are preserved, while the potential
search space becomes finite and relatively small. We call this model Tinychain,
and present it below. A compact version of TLA+ code is shown in Listing 1.

First, note that in general, the number of blocks on a blockchain may grow
unboundedly. As a result, the field height is also an unbounded integer. Hence,
we parameterize the blockchain with the maximal height MAX HEIGHT in line 3.

Second, the structure of the validator sets is not essential for the protocol. The
few required properties of the blocks, hashes, and validator sets are axiomatized
at an abstract level. Hence, we add two more parameters to the specification
in lines 4–5: VALIDATOR SETS and NIL VS. The parameter VALIDATOR SETS
can be a set of any values, not necessarily sets. We usually define it as a set
of uninterpreted constants, e.g., as {“S1”, “S2”, “S3”}. The parameter NIL VS
encodes an abstract set outside of VALIDATOR SETS, e.g., “Nil”.

Third, the field blockID in a commit and a block hash are needed only to test
block equality, when trying to find out whether a block has been sent by a faulty
or a correct peer. Hence, for every block, instead of its hash and the hash of
the previous block in the commit, we introduce two predicates: hashEqRef and
blockIdEqRef. These predicates restrict the behavior of faulty peers by comparing

478 S. Braithwaite et al.

Listing 1. Abstract blockchain for Fastsync in TLA+

1 −−−−−−−−−−−−−− module Tinychain −−−−−−−−−−−−−−−−−−−−
2 extends Integers
3 constants MAX HEIGHT, \∗ the maximal number of blocks
4 VALIDATOR SETS, \∗ a set of abstract sets
5 NIL VS \∗ a special abstract set outside of the above set
6

7 IsCorrectBlock(chain, h) �
8 ∧ chain[h].height = h \∗ the height is right
9 ∧ h > 1 ⇒

10 ∧ chain[h].VS = chain[h − 1].NVS \∗ the validators are from the prev. block
11 ∧ chain[h].lastCommit.voters = chain[h − 1].VS \∗ and they are the voters
12

13 IsCorrectChain(chain) �
14 let OkCommits � [blockIdEqRef: {true}, voters: VALIDATOR SETS]

15 OkBlocks � [height: 1..MAX HEIGHT, hashEqRef: {true},
16 wellFormed: {true}, VS: VALIDATOR SETS,
17 NVS: VALIDATOR SETS, lastCommit: OkCommits]
18 in
19 ∧ chain ∈ [1..MAX HEIGHT → OkBlocks]
20 ∧ ∀ h ∈ 1..MAX HEIGHT: IsCorrectBlock(chain, h)
21 ===

a block against the reference chain. We explain this in Sect. 6. Finally, we abstract
all simple structure tests with the predicate wellFormed, whose negation models
that a block by a faulty peer does not pass simple consistency tests.

Having the abstract block structure, we define the predicate IsCorrectChain
in lines 13–20 that constrains the block sequence chain. Line 19 restricts chain
to be a function of a block height to a block from OkBlocks, that is, a set of
records that is defined in lines 15–17. (The notation ‘a: B’ constrains the record
field a to range over the set B). Using the predicate IsCorrectChain, we define the
reference chain, to which the correct peers are synchronized.

5 The Blockchain Synchronization Problem in English

Sequential Problem Statement. The synchronization protocol must satisfy:

Sync. Let k be the height of the blockchain at the time Fastsync starts. When
the protocol terminates, it outputs a list of all blocks from its initial height
to some height terminationHeight ≥ k − 1. (Fastsync cannot synchronize
to the maximum height k as in Tendermint, verification of block at height h
requires the commit from the block at height h + 1.)

Liveness. Fastsync eventually terminates.
Safety. Upon termination, the application state is the one that corresponds to

the blockchain at height terminationHeight.

Tendermint Blockchain Synchronization 479

Observe that Sync requires terminationHeight ≥ k − 1. As in Tendermint
the verification of a block at height h requires the commit from the block at
height h + 1, Fastsync cannot synchronize to the height k. Also note that the
blockchain may grow during the execution of Fastsync, that is, its height may
increase before Fastsync terminates. In Sync we require to reach at least the
height of the blockchain when the protocol starts (it is a minimal requirement),
while we allow the protocol to go larger heights in case the blockchain grows.

Distributed Aspects and Faulty Peers. We consider a node FS that performs
Fastsync by communicating with peers from a set PeerIDs, some of which may
be faulty. We assume the authenticated Byzantine fault model [11] in which no
peer (faulty or correct) may break digital signatures, but otherwise, no additional
assumption is made about the internal behavior of faulty peers. That is, faulty
peers are only limited in that they cannot forge messages. We do not make any
assumptions about the number or ratio of correct/faulty peers.

Communication between the node FS and all correct peers is reliable and
bounded in time: there is a message end-to-end delay Δ such that if a message
is sent at time t by a correct process to a correct process, then it will be received
and processed by time t + Δ.

Without the assumption that PeerIDs contains a correct full node, no pro-
tocol can solve the sequential problem. To relax the problem in the unreliable
distributed setting, we consider two kinds of termination (successful and failure).
We specify below under what conditions Fastsync ensures successful termination
and still solves the sequential problem.

Distributed Problem Statement. In the distributed setting, the synchronization
protocol must satisfy:

Sync. Let maxh be the maximum height of a correct peer to which the node is
connected at the time Fastsync starts. If the protocol terminates successfully,
it is at some height terminationHeight ≥ maxh − 1.

Liveness. Fastsync eventually terminates: either successfully or with failure.
Non-abort. If there is one correct process in PeerIDs, Fastsync never terminates

with failure.
Safety. The same as Safety in the sequential problem statement.

In the distributed setting, non-abort in conjunction with liveness ensures
that if there is a correct process in PeerIDs, then Fastsync never terminates
with failure, that is, it will terminate successfully.

6 Correct and Faulty Peers in TLA+

Section 5 introduces a number of assumptions about correct and faulty peers. In
this section, we give an idea about formalization of these assumptions in TLA+.
The node starts with a finite set of peers, which can shrink when the node
suspects peers of being faulty. The initial set of peers is partitioned into two

480 S. Braithwaite et al.

Listing 2. Alternating composition of the node and peers in TLA+

1 constants CORRECT, FAULTY, ... \∗ the sets of correct and faulty peers
2 variables state, blockPool \∗ the node’s state variables
3 variables peersState \∗ the peer’s state variables
4 variables turn, inMsg, outMsg \∗ the composition variables
5 /∗ specification of the node and the peers ∗/
6 ...

7 Init �
8 ∧ IsCorrectChain(chain) \∗ initialize the chain up to MAX HEIGHT
9 ∧ InitNode ∧ InitPeers \∗ initialize the node and the peers

10 ∧ turn = ”Peers” \∗ the first turn is by the peers
11 ∧ inMsg = NoMsg \∗ no incoming message from the peers to the node
12 ∧ outMsg = [type �→ ”statusRequest”] \∗ a request from the node to a peer
13

14 Next �
15 if turn = ”Peers”
16 then NextPeers ∧ turn’ = ”Node” ∧ unchanged 〈state, blockPool, chain〉
17 else NextNode ∧ turn’ = ”Peers” ∧ unchanged 〈peersState〉

subsets: CORRECT and FAULTY. As expected, the node specification must not
refer to either of these subsets, as the node is not able to distinguish the faulty
nodes from the correct ones in the distributed setting.
Composition. Listing 2 shows the specification structure. The predicate Init con-
strains the initial states, whereas the predicate Next constrains the transition
relation of the system. We model the distributed system as two components:
the node and its peers. They communicate via two variables: outMsg, that keeps
an output message from the node to a peer, and inMsg, that keeps an input
message from a peer to the node; both variables may be set to None, indicating
that there is no message. The components alternate their steps by flipping the
variable turn: The odd turns belong to the node, and the even turns to the peers.

This approach is simple yet powerful. On one hand, it dramatically decreases
the state space, as there are no queues, and alternation produces significantly
fewer states than the disjunction, which would correspond to interleaving:
NextNode ∨ NextPeers. On the other hand, it does not decrease precision, as
the peers consume and produce messages independently of one another. More-
over, this approach allows us to easily formulate fairness in the system as weak
fairness over the variable turn.

Correct Peers. The correct peers non-deterministically send their status (the
chain height) to the node and respond to its requests. For example, if the node
requests a block of height 5 from a peer “c3”, the peer “c3” sends its block. The
peers may also join and leave the network. We omit the technical details.

Faulty Peers. The faulty peers are authenticated Byzantine: In addition to the
behavior of the correct peers, they may send unsolicited or corrupt messages, or

Tendermint Blockchain Synchronization 481

ignore the requests. As discussed in Sect. 4, the blockchain uses hashes, which
limits the power of the faulty peers in sending blocks. This is where the hashing
predicates come into play. The essential piece of TLA+ code is given below:

1 SendBlockResponseMessage(...) �
2 ∨ ... \∗ a response by a correct peer to a node’s request
3 ∨ ∃ peerId ∈ FAULTY: \∗ a faulty peer can always send a block
4 ∃ block ∈ Blocks:
5 ∧ block.height = height \∗ height mismatch is easy to detect
6 ∧ block.hashEqRef ⇒ block = chain[height] \∗ no hash forging
7 ∧ (height > 1 ∧ block.lastCommit.voters = chain[height − 1].VS)
8 ⇒ block.lastCommit.blockIdEqRef \∗ no equivocation by the validators
9 ∧ inMsg’ = [type �→ ”blockResponse”, peerId �→ peerId, block �→ block]

10 ∧ ...

Line 6 forces a faulty peer to produce the block as on the chain, when the
predicate block.hashEqRef holds true, that is, the block hash matches the hash
of the reference block on the chain. This is exactly the semantics of a perfect
hash. Line 8 is perhaps less obvious. Intuitively, it says that if the block contains
a commit for the previous block, and the voters in the commit coincide with the
validators of the previous block on the chain, then the hash in the commit must
be equal to the hash of the previous block on the chain. (The implementation
tests whether voters constitute over 2/3 of the VS voting power. However, we find
our approximation sufficient for model checking.) Importantly, with Boolean
hashEqRef and blockIdEqRef, we model the scenarios: (1) the hashes are equal
to the reference hash; (2) the hashes are equal to a number different from the
reference hash; and (3) the hashes are not equal.

7 The Node Protocol in English and TLA+

Recall Fig. 1, that shows a typical execution of Fastsync. Using statusReq, the
node FS asks a peer about its current height, that is, the length of the prefix
of the blockchain the peer has stored. Each peer responds with statusRes(h),
where h is its current height. By collecting these responses, FS gets information
about which peer has which blocks, and uses this information (1) to compute its
target height (the maximum height its peers know of) and (2) to decide which
blocks to request from which peer. It requests a block of height h from a peer
by sending blockReq(h), and a peer responds by sending blockRes(bh), that
contains a block of height h. FS stores all the received blocks locally, and checks
all the signatures and hashes to make sure that there are no invalid blocks that
could have been provided by faulty peers.

As the implementation uses external events (message reception) and timeouts
to make progress, we have chosen to describe the model in terms of the following
functions, that are triggered by events:

QueryStatus(): regularly (at least 2Δ, now 10 s) queries all peers from PeerIDs
for their current heights by sending statusReq to all peers.

482 S. Braithwaite et al.

CreateRequest(): regularly checks whether certain blocks have no open
request. If a block does not have an open request and its height is h, FS
requests one from a peer. It does so by sending blockReq(h) to one peer.

In our specification, we leave the strategy of peer selection unspecified. Var-
ious implementations of Fastsync differ in this aspect. Version V2 (see Sect. 2)
selects a peer p with the minimum number of pending requests that can serve
the required height h, that is, whose height is greater than or equal to h.

When the messages statusRes(h) or blockRes(b) are returned from the
peer at address addr, the following functions are called, respectively:

OnStatusResponse(addr Address, h int): The full node with address addr
returns its current height. The function updates the height information about
addr, and may also increase the target height.

OnBlockResponse(addr Address, b Block): The full node with address
addr returns a block. It is added to blockstore. Then the auxiliary function
Execute is called.

Execute(): Iterates over the received blocks. It checks soundness of the blocks
(hashes, signatures, etc.), and executes the transactions of a sound block and
updates the application state.

FS keeps track of several performance metrics: the last time a peer responded,
the throughput to a peer, etc. If a peer p has not provided a block recently
or it has not provided a sufficient amount of data, then p is removed from
PeerIDs. Fastsync V2 schedules a timeout whenever a block is executed, that is,
when the height is incremented. If the timeout expires before the next block is
executed, Fastsync terminates. If this happens, then Fastsync terminates with
failure. Otherwise it terminates successfully when it reaches the target height.

We omit the details about the other functions. Figure 4 shows an example of
how we specify functions in the English specification. Rather than using pseudo
code, we specify functions mainly using preconditions and postconditions. They
have a clear meaning to verification engineers, but also give the software engi-
neers a precise understanding of what the function should do without restricting
them in how to satisfy these requirements in the source code.

TLA+ Specification. We omit technical details of encoding the node communi-
cation. The implementation V2 relies on several timeouts to guarantee termina-
tion. Although precise modeling of time and timeouts is possible in TLA+ [20],
it obviously leads to state explosion. Hence, we simply model timeouts with
non-determinism and weak fairness.

Listing 3 shows the block verification logic. Interestingly, VerifyCommit checks
the predicates commit.blockIdEqRef and block.hashEqRef. There are two valid
options with respect to the hash hash of the reference block: Either both the
hashes are equal to hash, or they are both different from hash.

Tendermint Blockchain Synchronization 483

func OnBlockResponse(addr Address, b Block)

– Comment
• if after adding block b, blocks of heights height and height+1 are in blockstore,

then Execute is called
– Expected precondition

• pendingblocks(b.Height) = addr
• b satisfies basic soundness

– Expected postcondition
• if function Execute has been executed without error or was not executed:

receivedBlocks(b.Height) = addr
blockstore(b.Height) = b
peerT imeStamp[addr] is set to a time between invocation and return of
the function.
peerRate[addr] is updated according to size of received block and time
passed between current time and last block received from this peer (addr)

– Error condition: if precondition is violated: addr not in PeerIDs; reset
pendingblocks(b.Height) to nil;

Fig. 4. Example of a function definition in the English specification

Listing 3. Block execution logic in TLA+

1 VerifyCommit(block, commit) �
2 commit.voters = block.VS ∧ commit.blockIdEqRef = block.hashEqRef
3

4 ExecuteBlocks(pool) �
5 ... \∗ get stored blocks b0, b1, b2 for heights h−1, h, h+1
6 if b1 = Nil ∨ b2 = Nil \∗ no two next consecutive blocks
7 then pool
8 else if b0.NVS �= b1.VS ∨ ¬VerifyCommit(b0, b1.lastCommit)
9 then RemovePeers({Sender(b1.height)}, pool)

10 else if ¬VerifyCommit(b1, b2.lastCommit)
11 then RemovePeers({Sender(b1.height), Sender(b2.height)}, pool)
12 else [pool EXCEPT !.height = pool.height + 1]

8 Model Checking with TLC and Apalache

While developing TLA+ specifications, we were using TLA+ Toolbox and the
model checker TLC [17]. We also checked the safety properties with the new
symbolic model checker Apalache [2,16]. So far, we have checked the specifi-
cations for tiny parameters, such as 1 to 3 peers and Blockchain height from 3
to 5. Table 1 summarizes the results and running times of TLC and Apalache.
A central temporal property is the protocol’s Termination:

wfturn(FlipTurn) ⇒ �(state = “finished”)

where wfx(A) in TLA+ forces weak fairness of action A, if it changes x.

484 S. Braithwaite et al.

In 7 min, TLC finds a bug: Faulty peers may keep the node busy by sending
blocks or joining and leaving the network. The more precise property Termina-
tionByTO states that the protocol terminates, if there is a global timeout:

WFturn(FlipTurn) ∧ �(inMsg.type = “syncT imeout”

∧ blockPool.height ≤ blockPool.syncHeight) ⇒ �(state = “finished”
)

In this case, TLC finds no bug, though it does not finish state exploration.
(We did not run Apalache, as it only supports safety.) We found that it is
extremely hard to formulate the “normal” termination property in the presence
of faults, i.e., without involving a timeout. We also formulated the property Ter-
minationCorrect: The protocol terminates without a timeout, provided that all
peers are correct. TLC exhaustively proves this property for one correct peer.

The more interesting property is “synchronization”, whose intuitive meaning
is that by the time Fastsync terminates, it reaches the height of the blockchain.
Let us formalize this as Sync1: To see that our modeling is precise, we start with
a property that is slightly wrong, namely, when the protocol finishes, it reaches
the maximum height among the heights of the correct peers, i.e.,

�(
state = “finished” ⇒ blockPool .height ≥ MaxCorrectPeerHeight(blockPool)

)

Both model checkers report counterexamples. One reason is that to verify a
block h, one needs the commit signatures from block h + 1. We also observe,
that the node running Fastsync is not always connected to correct peers. Hence,
we fix it in Sync2, by stating that height MaxCorrectPeerHeight(blockPool) − 1
should be reached when the node is connected to correct peers. This property also
fails. This time we observe that a global timeout — that guarantees Termination-
ByTO— may terminate Fastsync before it has reached the maximal height. We
add a precondition for “no timeout”, and call the property Sync3. Neither TLC,
nor Apalache produce a counterexample (for executions up to 20 steps).

We formulated the invariant CorrectBlocks: The synchronized blocks have
enough votes and contain correct signatures and hashes (the correct peers pro-
duce only the blocks that satisfy this property). By running Apalache, we found
that this property was violated by the specification. After code inspection, we
realized that the implementation executes an extra consistency test that was not
captured in the specification (as it was not clear that it is part of the protocol).
After fixing the specification, we have found no further counterexamples.

Both model checkers quickly find counterexamples for the following two prop-
erties that might appear to be correct. SyncFromCorrect states that the accepted
blocks originate only from the correct processes. This property fails, as it does
not account for the cases where faulty peers behave correct in an execution pre-
fix (before showing faulty behavior). NoSuspectedCorrect states that the correct
peers are never removed from the peer set. This would be a desirable property,
but the current implementation V2 does not guarantee it.

Finally, TLC is quite fast when checking properties in the configuration with
one correct peer. However, adding just one faulty peer blows up the state space,

Tendermint Blockchain Synchronization 485

Table 1. Model checking results for TLC and apalache against the high-level speci-
fication for 1 correct peer, 0/1 faulty peers, and 4 blocks. The experiments were run in
an AWS instance equipped with 32GB RAM and a 4-core Intel® Xeon® CPU E5-2686
v4 @ 2.30GHz CPU. The notation: ✗ for “found a bug at depth k”, [✓]<k for “found
no bug up to depth k”, ✓ for “correct” (exhaustive search), TO for “timeout” (24 h).

which prevents TLC from finishing state exploration. In this case Apalache
performs better. However, it runs bounded model checking, which gives us only
bounded safety, that is, up to the predefined execution length.

9 Conclusions and Future Work

We approach this work with a process-oriented goal in mind: By Verification-
Driven Development [15] we understand a design process for distributed systems
that makes it easier to test and verify the software. The re-design of the Fastsync
protocol that resulted in a decomposition into state machines should be under-
stood under this aspect. The English and the TLA+ specifications are artifacts of
this design process, and are means of communication between researchers, soft-
ware engineers, and verification engineers. The structured English specification
strikes a balance between mathematical rigor and readability. It serves as a base
for (i) formal verification efforts in TLA+, that provide precise semantics, and
(ii) implementations. The annotations with invariants, pre- and postconditions
are very helpful for the software engineers to guide the implementation.

The gap between informal English specifications, and formal TLA+ specifica-
tions and the implementations is still a research challenge. As future work we will
consider semi-formal methods that address this formalization gap. For instance,
we have found that the distributed system engineers have a hard time specify-
ing precise liveness properties, which truly requires one to think about temporal
operators. Specifying fairness is the most challenging specification task in case
of fault-tolerant distributed systems. Instead of asking the engineers to write
the temporal properties directly, we could instantiate specification patterns [4]
that collect the most-often occurring shapes of temporal formulas. This can be

486 S. Braithwaite et al.

done with the help of graphical tools such as ProPas [12]. In a more general
setting, we could use the boilerplates approach offered by CESAR [3]. This is
a specification method that uses restricted English grammar, where a designer
selects the boilerplates that fit the specific requirement, and fills the details to
arrive at a complete specification.

The formalization also led to a better understanding of the liveness prop-
erties that we expect and want from blockchain synchronization protocols, and
to an improved awareness regarding the differences between the current imple-
mentations (Fastsync V0, V1, and V2). We have found several liveness issues
that come from unexpected behavior of faulty peers. For instance, rather than
reporting bad blocks, faulty peers may be very slow in reporting good blocks.
If they report them slower than the blockchain grows, but fast enough to not
lead to a timeout at the node, V2 may never terminate. This highlights that a
vital requirement had not been captured before, namely, a relationship between
timeout duration, block generation rate, and message end-to-end delays. As this
issue is closely related to real-time, we are not able to directly capture it and
reproduce it with TLA+. However, TLA+ counterexamples and the English
specifications helped us in isolating this scenario.

For safety verification, we can replace a timeout by a non-deterministic event
that may occur at any time. For liveness, we have to treat the relation of timeouts
to message delays and processing times precisely. The extensive use of timeouts
in the current implementation poses future research challenges to liveness verifi-
cation. Some of our current research questions are: How to limit timeouts in the
implementation? What is the most effective way to use timeouts in the imple-
mentation in order to stay precise in the verification? How can we capture the
relation of the (local) timeouts to (global) message delays in model checking?

The counterexamples produced by the model checkers were quite helpful in
understanding and refining the protocol properties. After refining the protocol
with small hashes, which resulted in a larger state space, TLC could not reach
error states within the reasonable time frame of one hour. In contrast, Apalache
was finding errors within 10 min, which was still interactive enough for us. Once
we felt confident in the protocol after debugging it with Apalache, we shrinked
the state space by introducing Boolean abstraction of hashes, allowing TLC to
also report errors. As future work, we plan to find an inductive invariant and
prove its correctness with Apalache (for fixed but larger parameters).

The language of TLA+ built around refinement [19,21]. In the classical app-
roach, one starts with an abstract specification A of a protocol and produces
a more detailed specification C. To show refinement, the user substitutes the
variables of A with expressions over the variables of C, which results in a speci-
fication γ(A), and then proves that the behaviors of C can be replayed by γ(A).
It suffices to prove two statements: (1) the initial states of C are a subset of the
initial states of γ(A), formally, C!Init ⇒ γ(A)!Init ; and (2) the transitions of C
are a subset of the transitions of γ(A), formally, C!Next ⇒ γ(A)!Next . To prove
the steps (1) and (2) for all values of the parameters, the user has to use TLA+

Proof System [10]. To debug the statements (1) and (2) for small parameters,
one can use the model checkers TLC and Apalache.

Tendermint Blockchain Synchronization 487

In our case, the design flow was in the opposite direction. We started with
the existing implementation and wrote several specifications of the protocol
in TLA+. Technically, we could construct a refinement mapping between the
low-level specification and the high-level specification and check it with the
model checkers for the small parameters. However, the potential feedback from
this step seemed to be negligible, in comparison to checking safety and liveness of
the protocol. A more pressing issue for us is how to establish conformance of the
protocol implementation (in Google Go) to the TLA+ specification. To this end,
we are currently developing a model-based testing tool, which produces system
tests out of TLA+ traces, as generated by TLC and Apalache as output.

An alternative approach would be to use Ivy [22] instead of TLA+ tools.
The authors of Ivy demonstrated how one can do refinement and parameterized
verification of consensus protocols with their tool. Their approach requires cre-
ative massaging of the specification with the goal of simplifying the SMT theory
and transforming the constraints in the EPR form. We found that is much easier
to explain TLA+ to the engineers than uninterpreted first-order logic. It would
be great to unite the clarity of TLA+ and effectiveness of Ivy.

References

1. ADR 043: Blockhchain reactor riri-org (2020). https://github.com/tendermint/
tendermint/blob/master/docs/architecture/adr-043-blockchain-riri-org.md

2. APALACHE: a symbolic model checker for TLA+ (2020). https://github.com/
informalsystems/apalache/. Accessed 10 Aug 2020

3. Arora, C., Sabetzadeh, M., Briand, L.C., Zimmer, F., Gnaga, R.: Automatic check-
ing of conformance to requirement boilerplates via text chunking: an industrial case
study. In: ESEM (2013)

4. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: FMSP, pp. 7–15 (1998)

5. Brooker, M., Chen, T., Ping, F.: Millions of tiny databases. In: USENIX, pp. 463–
478 (2020)

6. Buchman, E.: Tendermint: Byzantine fault tolerance in the age of blockchains.
Master’s thesis, University of Guelph (2016). http://hdl.handle.net/10214/9769

7. Buchman, E., Kwon, J.: Cosmos whitepaper: a network of distributed ledgers
(2016). https://cosmos.network/resources/whitepaper

8. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. arXiv
preprint arXiv:1807.04938 (2018). https://arxiv.org/abs/1807.04938

9. Buterin, V., Griffith, V.: Casper the friendly finality gadget. arXiv preprint
arXiv:1710.09437 (2017)

10. Cousineau, D., Doligez, D., Lamport, L., Merz, S., Ricketts, D., Vanzetto, H.:
TLA+ proofs. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol.
7436, pp. 147–154. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32759-9 14

11. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)

12. Filipovikj, P., Seceleanu, C.: Specifying industrial system requirements using spec-
ification patterns: a case study of evaluation with practitioners. In: ENASE, pp.
92–103 (2019)

https://github.com/tendermint/tendermint/blob/master/docs/architecture/adr-043-blockchain-riri-org.md
https://github.com/tendermint/tendermint/blob/master/docs/architecture/adr-043-blockchain-riri-org.md
https://github.com/informalsystems/apalache/
https://github.com/informalsystems/apalache/
http://hdl.handle.net/10214/9769
https://cosmos.network/resources/whitepaper
http://arxiv.org/abs/1807.04938
https://arxiv.org/abs/1807.04938
http://arxiv.org/abs/1710.09437
https://doi.org/10.1007/978-3-642-32759-9_14
https://doi.org/10.1007/978-3-642-32759-9_14

488 S. Braithwaite et al.

13. Informal Systems: Fastsync - English specification (2020). https://github.com/
informalsystems/tendermint-rs/blob/master/docs/spec/fastsync/fastsync.md

14. Informal Systems: Fastsync - TLA+ specification (2020).https://github.com/
informalsystems/tendermint-rs/blob/master/docs/spec/fastsync/fastsync.tla

15. Informal Systems: Verification-Driven Development: An Informal Guide (2020).
https://github.com/informalsystems/VDD/blob/master/guide/guide.md

16. Konnov, I., Kukovec, J., Tran, T.: TLA+ model checking made symbolic. PACMPL
3(OOPSLA), 123:1–123:30 (2019)

17. Kuppe, M.A., Lamport, L., Ricketts, D.: The TLA+ toolbox. In: F-IDE@FM 2019,
pp. 50–62 (2019)

18. Kwon, J.: Tendermint: consensus without mining. Draft v. 0.6, fall 1(11) (2014)
19. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley (2002)
20. Lamport, L.: Real-time model checking is really simple. In: Borrione, D., Paul, W.

(eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005).
https://doi.org/10.1007/11560548 14

21. Lamport, L.: Byzantizing Paxos by refinement. In: Peleg, D. (ed.) DISC 2011.
LNCS, vol. 6950, pp. 211–224. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24100-0 22

22. McMillan, K.L., Padon, O.: Ivy: a multi-modal verification tool for distributed
algorithms. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp.
190–202. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8 12

23. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon web services uses formal methods. Comm. ACM 58(4), 66–73 (2015)

24. Tendermint Inc.: Cosmos hub (2020). https://hub.cosmos.network
25. Tendermint core, reference implementation in Go (2020). https://github.com/

tendermint/tendermint
26. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: BFT con-

sensus with linearity and responsiveness. In: PODC, pp. 347–356 (2019)

https://github.com/informalsystems/tendermint-rs/blob/master/docs/spec/fastsync/fastsync.md
https://github.com/informalsystems/tendermint-rs/blob/master/docs/spec/fastsync/fastsync.md
https://github.com/informalsystems/tendermint-rs/blob/master/docs/spec/fastsync/fastsync.tla
https://github.com/informalsystems/tendermint-rs/blob/master/docs/spec/fastsync/fastsync.tla
https://github.com/informalsystems/VDD/blob/master/guide/guide.md
https://doi.org/10.1007/11560548_14
https://doi.org/10.1007/978-3-642-24100-0_22
https://doi.org/10.1007/978-3-642-24100-0_22
https://doi.org/10.1007/978-3-030-53291-8_12
https://hub.cosmos.network
https://github.com/tendermint/tendermint
https://github.com/tendermint/tendermint

Safe Sessions of Channel Actions
in Clojure: A Tour of the Discourje Project

Ruben Hamers1 and Sung-Shik Jongmans1,2(B)

1 Open University, Heerlen, The Netherlands
ssj@ou.nl

2 CWI, Amsterdam, The Netherlands

Abstract. To simplify shared-memory concurrent programming, in
addition to low-level synchronisation primitives, several modern pro-
gramming languages have started to offer core support for higher-
level communication primitives as well, in the guise of message pass-
ing through channels. Yet, a growing body of evidence suggests that
channel-based programming abstractions for shared memory also have
their issues.

The Discourje project aims to help programmers cope with message-
passing concurrency bugs in Clojure programs, based on run-time ver-
ification and dynamic monitoring. The idea is that programmers write
not only implementations, but also specifications (of sessions of channel
actions). Discourje then offers a library to ensure that implementations
run safely relative to specifications (= “bad” channel actions never hap-
pen).

This paper gives a tour of the current state of Discourje, by example;
it is intended to serve both as a general overview for readers who are
unfamiliar with previous work on Discourje, and as an introduction to
new features for readers who are familiar.

1 Introduction

Background. To take advantage of today’s and tomorrow’s multi-core pro-
cessors, shared-memory concurrent programming—a notoriously complex enter-
prise—is becoming increasingly important. To alleviate some of the complexities,
in addition to low-level synchronisation primitives, several modern programming
languages have started to offer core support for higher-level communication prim-
itives as well, in the guise of message passing through channels (e.g., Go [21],
Rust [40], Clojure [11]). The idea is that, beyond their usage in distributed com-
puting, channels can also serve as a programming abstraction for shared memory,
supposedly less prone to concurrency bugs than locks, semaphores, and the like.
Notably, the official Go documentation recommends programmers to “not com-
municate by sharing memory; instead, share memory by communicating” [20].

Yet, a growing body of evidence suggests that channel-based programming
abstractions for shared memory also have their issues. For instance, in the 2016–
2018 editions of the annual Go survey [16–18], “[respondents] least agreed that
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 489–508, 2020.
https://doi.org/10.1007/978-3-030-61362-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_28&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_28

490 R. Hamers and S.-S. Jongmans

they are able to effectively debug uses of Go’s concurrency features”, while in
the 2019 edition [19], “debugging concurrency” has the lowest satisfaction rate
of all eleven “very or critically important” topics (as indicated by the majority
of respondents). Moreover, after studying 171 concurrency bugs in popular open
source Go programs [45], Tu et al. find that “message passing does not necessarily
make multi-threaded programs less error-prone than shared memory.”

Recently, several research projects emerged that aim to help programmers
cope with concurrency bugs in Go programs [7,30,31,36,43], based on compile-
time verification and static analysis; the resulting tools complement Go’s static
type-checker in a natural fashion, and their compile-time usage integrates well—
at least potentially—with established Go programming practices. However, while
similar compile-time techniques may suit other statically typed languages (e.g.,
Rust) at least as well, their appropriateness seems less obvious for dynamically
typed languages (e.g., Clojure): for such languages, technical and cultural differ-
ences mean that run-time techniques may be preferable. The Discourje project
is a research vehicle to develop and study such techniques: ultimately, the aim is
to help programmers cope with concurrency bugs in Clojure programs,1 based
on run-time verification and dynamic monitoring.

The Discourje Project. Discourje,2 pronounced “discourse”, addresses the
following problem: given a specification S of the roles (threads), the infras-
tructure (channels between threads), and the sessions (communications through
channels) that an implementation I in Clojure should fulfill, how to check—at
run-time—that an execution of I is indeed safe relative to S? Safety means that
“bad” channel actions never happen: if a channel action happens in I, then it can
happen in S. For instance, typical specifications rule out common channel-based
concurrency bugs [45], such as sends without receives, receives without sends,
and type mismatches (actual type sent �= expected type received).

Roughly, the idea is to execute specification S—as if it were a state machine—
alongside implementation I, in “perfect synchrony”; this means that, to provide
safety, a channel action in I happens if and only if a corresponding transition
happens in S. To achieve this, following standard run-time verification prac-
tices [3], two extra components are needed: a monitor (of S) and instrumen-
tation (of I). Specifically, every time that a channel action is about to happen
in I, the instrumentation quickly intervenes and first asks the monitor if S can
make a corresponding transition. If the monitor answers “yes”, both the channel
action in I and the corresponding transition in S happen; if “no”, an exception is
thrown, while the channel action is aborted (= safe). Facilitating this approach,
Discourje offers the programmer easy-to-learn libraries to write specifications,
add monitors, and add instrumentation to Clojure programs.

1 Clojure [11,23] is a dynamically typed, functional language (impure) that compiles
to Java bytecode. As a dialect of Lisp, Clojure follows the code-as-data philosophy,
offers a powerful macro system, and is written in parenthesised prefix notation.

2 https://github.com/discourje.

https://github.com/discourje

Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project 491

In recent editions of the annual Clojure survey [9,10], respondents indicated
that “ease of development” is one of Clojure’s most important strengths (more
important than “runtime performance”). For this reason, and to make Discourje
non-invasive to deploy and start using, we emphasise ergonomics (including
expressiveness) in the design and implementation of the libraries. Notably:

1. We leverage Clojure’s macro system to offer the specification language as a
library of macros. As a result, the programmer can write specifications and
implementations in the same syntactic style, using the same editor (no exter-
nal tools needed), towards a seamless specification–implementation experi-
ence. Monitors can subsequently be added with simple function calls.

2. Control-flow operators in the specification language have the same names as
those in Clojure, for a gentle learning curve.

3. Normally, in Clojure, channel-based programming abstractions can be used
by loading standard library clojure.core.async. To add instrumentation, the
only thing the programmer needs to change, is load discourje.core.async
instead, for the primitives Discourje currently supports: threadthreadthread (new thread),
chanchanchan (new channel; unbuffered or buffered),3 close!close!close! (close), >!!>!!>!! (send), <!!<!!<!!
(receive), and alts!!alts!!alts!!| (select). This means, in particular, that the programmer
does not need to write the implementation with Discourje in mind: instru-
mentation can straightforwardly be added afterwards.

When clojure.core.async was introduced in 2013 [8], already, it was sug-
gested that “certain kinds of automated correctness analysis” are possible, but
at the time, “no work ha[d] been done on that front”. To our knowledge, Discourje
is the first project that addresses this open problem.

This Paper. This paper gives a tour of the current state of Discourje, by exam-
ple. It is geared towards demonstrating two core concepts of clojure.core.async
that we did not support before [22], and which significantly improve applicabil-
ity: unbuffered channels (to perform handshake communications) and selects (to
await enabledness of one of several channel actions). This paper has two aims
and intends to address two audiences: (i) for readers who are not familiar with
previous work on Discourje [22], this paper serves as a gentle overview of the
general idea and expressiveness; (ii) for readers who are familiar with previous
work, this paper introduces our new support for unbuffered channels and selects.

The tour consists of three Clojure programs, each of which simulates a game:
it starts in Sect. 2 with Tic–Tac–Toe; it continues in Sect. 3 with Rock–Paper–
Scissors; it ends in Sect. 4 with Go Fish. In each of these examples, essentially,

3 With unbuffered channels, in the absence of a buffer, both sends and receives are
blocking until a reciprocal channel action is performed on the other end of the
channel. With buffered channels, in the presence of a bounded, n-capacity, order-
preserving buffer, sends are blocking until the buffer is not full (then, a message is
added to the back of the buffer), while receives are blocking until the buffer is not
empty (then, a message is removed from the front of the buffer).

492 R. Hamers and S.-S. Jongmans

1 (defroledefroledefrole :alice) (defroledefroledefrole :bob)

2

3 (defsessiondefsessiondefsession :ttt []

4 (altaltalt

5

6 (defsessiondefsessiondefsession

7 (catcatcat (>>> Long r1 r2)

8 (altaltalt

(:ttt-turn :alice :bob)

(:ttt-turn :bob :alice)))

:ttt-turn [r1 r2]

(:ttt-turn r2 r1)

9 (parparpar (closecloseclose r1 r2)

10 (closecloseclose r2 r1)))))

Fig. 1. Specification of Tic–Tac–Toe

the safety property that we aim to ensure is that players never violate the “inter-
action rules” of the game (e.g. proper turn-taking), as prescribed by the speci-
fications; however, we do not check full functional correctness (e.g., we check if
players properly take turns to make moves, but we do not check if every move
is actually valid in the current state of the game). In Sect. 5, we give a brief
overview of the underlying formal foundation. For reference, a summary of Clo-
jure’s core functions and macros is given in Appendix A. Full code (specifications
and implementations) can be downloaded via the project’s website (footnote 2).

2 The Tour: Tic–Tac–Toe

Overview. We start the tour with a program that simulates a game of Tic–Tac–
Toe.4 The program consists of two threads and two oppositely directed channels
through which these threads communicate. The threads take turns to make plays
on thread-local copies of the grid; at the end of its turn, the active thread sends
its play to the other thread and becomes passive, while the other thread receives
the play, becomes active, updates its copy of the grid accordingly, and makes
the next play. This example demonstrates the following features:

– Specification: roles; unbuffered communication (binary);5 close; concate-
nation; choice; parallel; session parameters (roles).

– Implementation: channels; send; receive; close; monitor; instrumentation.

Specification. A Discourje specification of Tic–Tac–Toe is shown in Fig. 1.
Core Discourje functions and macros are typeset in fontfontfont.

Line 1 defines two roles (defroledefroledefrole), identified by :alice and :bob. Lines 3–10
define two sessions (defsessiondefsessiondefsession), identified by :ttt (zero formal parameters) and
:ttt-turn (two formal parameters for roles, identified by r1 and r2).

Session :ttt-turn represents one turn of r1 (active) against r2 (passive). It
prescribes a concatenation (catcatcat):

1. First, a message of type Long is communicated from r1 to r2, unbuffered (-->-->-->).
The idea is that r1 sends its play this turn to r2.

4 Tic–Tac–Toe is a two-player game played on a 3 × 3 grid. Players take turns to fill
the initially blank spaces of the grid with crosses (“X”) and noughts (“O”). The first
player to fill three consecutive spaces, in any direction, with the same symbol wins.

5 A version of this example with buffered communication appears elsewhere [22].

Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project 493

2. Then, there is a choice (altaltalt):
(a) Either, there is another instance of session :ttt-turn, but now with r2

active and r1 passive. The idea is that r1 did not win or draw this turn,
so the game continues.

(b) Or, channels are closed (closecloseclose), in parallel (parparpar). The idea is that r1 did
win or draw this turn, so the game ends.
We note that the closes may happen in any order; this is crucial, as neither
one of the closes is causally related to the other. In the implementation,
additional “covert interaction” (= synchronisation/ communication out-
side the specification) would be needed to order them.

Session :ttt represents the whole game. It prescribes a choice between either
an initial instance of session :ttt-turn with actual parameters :alice and :bob,
or :bob and :alice, depending on who takes the first turn. Thus, at the specifi-
cation level, it is undecided who goes first; this is an implementation detail.

As concatenation, choice, and recursion are supported, any regular expression
(over unbuffered communications and closes) can be written. However, for conve-
nience, shorthands are available for the following patterns: 0-or-more repetitions
(***), 1-or-more (+++), and 0-or-1 (???). Thus, the programmer never needs to use
recursion to write regular expressions. The syntax and semantics of the remain-
ing five macros are the same as those in standard library clojure.spec.alpha, to
make Discourje easy to learn. For the same reason, the notation to define and
“call” sessions is similar to the notation to define and call functions.

Implementation. A Clojure implementation of Tic–Tac–Toe is shown in Fig. 2.
Core Clojure functions and macros are typeset in fontfontfont.

Line 1 loads five functions and macros from clojure.core.async. Lines
3–11 define constants (blank, cross, nought, initial-grid) and functions
(get-blank, put, not-final?) to represent Tic–Tac–Toe concepts. Lines 11–12
define unbuffered channels (a->b and b->a) that implement the infrastructure
through which the threads communicate. As these channels are unbuffered, sends
and receives block until reciprocal channel actions are performed.

Lines 16–26 and 27–37 define threads that implement roles :alice and :bob.
Both threads execute a loop, starting with a blank initial grid. In each iteration,
:alice first gets the index of a blank space on the grid, then plays a cross in that
space, then sends a message to :bob to communicate the index (a message of type
Long), then awaits a message from :bob, and then updates the grid accordingly;
:bob acts symmetrically. After every grid update, :alice or :bob checks if it has
reached a final grid; if so, the loop is exited and channels are closed.6

6 Many data structures in Clojure—including the vector that implements the grid—are
persistent and, thus, effectively immutable: every operation on an old data structure
leaves it unmodified and, instead, returns a new data structure. In concurrent pro-
grams, including Tic–Tac–Toe, persistent data structures can be used as thread-local
copies of data, but modifications need to be explicitly communicated. Persistence
also means that classical data races cannot happen: if threads communicate only
persistent data structures through channels, freedom of data races is guaranteed.

494 R. Hamers and S.-S. Jongmans

1 (require '[clojure.core.async :refer [threadthreadthread chanchanchan close!close!close! >!!>!!>!! <!!<!!<!!]])

2

3 (defdefdef blank " ") (defdefdef cross "x") (defdefdef nought "o")

4

5 (defdefdef initial-grid [blank blank blank ;; an initial 3x3 grid of blank spaces,
6 blank blank blank ;; implemented as a vector of length 9
7 blank blank blank]) ;; (persistent data structure)
8

9 (defdefdef get-blank (fnfnfn [g] ...)) ;; returns a blank space in g

10 (defdefdef put (fnfnfn [g i x-or-o] ...)) ;; returns g, but with i set to x-or-o

11 (defdefdef not-final? (fnfnfn [g] ...)) ;; returns true iff g is not final
12

13 (defdefdef a->b (chanchanchan)) (defdefdef b<-a a->b) ;; b<-a is an alias of a->b

14 (defdefdef b->a (chanchanchan)) (defdefdef a<-b b->a) ;; a<-b is an alias of b->a

15

16 (threadthreadthread ;; for :alice

17 (looplooploop [g initial-grid]

18 (letletlet [i (get-blank g)

19 g (put g i cross)]

20 (>!!>!!>!! a->b i)

21 (ififif (not-final? g)

22 (letletlet [i (<!!<!!<!! a<-b)

23 g (put g i nought)]

24 (ififif (not-final? g)

25 (recurrecurrecur g))))))

26 (close!close!close! a->b))

27 (threadthreadthread ;; for :bob

28 (looplooploop [g initial-grid]

29 (letletlet [i (<!!<!!<!! b<-a)

30 g (put g i cross)]

31 (ififif (not-final? g)

32 (letletlet [i (get-blank g)

33 g (put g i nought)]

34 (>!!>!!>!! b->a i)

35 (ififif (not-final? g)

36 (recurrecurrecur g))))))

37 (close!close!close! b->a))

Fig. 2. Implementation of Tic–Tac–Toe (dashed arrows: matching send/receive)

Safety. The implementation in Fig. 2 runs fine—supposedly—but to really
ensure that it satisfies the specification in Fig. 1 (written independently), the
programmer can add a monitor and instrumentation. The few changes needed,
are shown in Fig. 3: to add instrumentation, on line 1 (which replaces line 1 in
Fig. 2), discourje.core.async is loaded instead of clojure.core.async; to add a
monitor, on lines 12–14 (which replace line 12–14), a monitor is created for ses-
sion :ttt, and then, channels a->b and b->a are associated with a sender, receiver,
and monitor. No other changes are needed: notably, the code that implement
roles :alice and :bob in Fig. 2 stays exactly the same. This shows that Discourje
is non-invasive to deploy and start using.

With these changes in place, safety is guaranteed: if a non-compliant channel
action were to be attempted, the monitor prevents it from happening and throws
an exception. Because the implementation in Fig. 2 actually satisfies the speci-
fication in Fig. 1, an exception is never thrown. In contrast, if the programmer
were to change Long to String on line 7 in Fig. 1, an exception is always thrown;
if they were to change parparpar to catcatcat on line 9, an exception is sometimes thrown,
depending on the execution and scheduling of threads.

Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project 495

1 (require '[discourje.core.async :refer [threadthreadthread chanchanchan close!close!close! >!!>!!>!! <!!<!!<!!]])

12 (defdefdef m (monitormonitormonitor (sessionsessionsession :ttt [])))

13 (linklinklink a->b (rolerolerole :alice) (rolerolerole :bob) m)

14 (linklinklink b->a (rolerolerole :bob) (rolerolerole :alice) m)

Fig. 3. Ensuring safety of Tic–Tac–Toe

1 (defroledefroledefrole :player)

2

3 (defsessiondefsessiondefsession :rps [ids]

4 (:rps-round ids empty-set))

5

6 (defsessiondefsessiondefsession :rps-round [ids co-ids]

7 (ififif (> (count ids) 1)

8 (catcatcat (par-everypar-everypar-every [i ids

9 j (disj player-ids i)]

10 (-->-->--> String (:player i) (:player j)))

11 (alt-everyalt-everyalt-every [winner-ids (power-set ids)]

12 (letletlet [loser-ids (difference ids winner-ids)]

13 (parparpar (:rps-round winner-ids (union co-ids loser-ids))

14 (par-everypar-everypar-every [i loser-ids

15 j (disj (union ids co-ids) i)]

16 (closecloseclose (:player i) (:player j)))))))))

Fig. 4. Discourje specification of Rock–Paper–Scissors

3 The Tour: Rock–Paper–Scissors

Overview. We continue the tour with a program that simulates a game of
Rock–Paper–Scissors.7 The program consists of k threads and k2 − k directed
channels from every thread to every other thread. In every round, every thread
chooses an item—rock, paper, or scissors—and sends it to every other thread;
then, when all items have been received, every thread determines if it goes to
the next round. This example demonstrates the following features:

– Specification: indexed roles; unbuffered communication (multiparty); con-
ditional; local bindings; quantification (existential; unordered universal); ses-
sion parameters (role indices); set operations; non-determinism (implicit).

– Implementation: select; external synchronisation.

7 Rock–Paper–Scissors is a multiplayer game played in rounds. In every round, every
remaining player chooses an item—rock, paper, or scissors—and reveals it. A player
goes to the next round, unless some other player defeats them, while they defeat no
other player, based on the chosen items in the current round (“scissors cuts paper,
paper covers rock, rock crushes scissors”). The last player to remain wins.

496 R. Hamers and S.-S. Jongmans

Specification. A Discourje specification of Rock–Paper–Scissors is shown in
Fig. 4. Auxiliary Discourje functions for operations on sets are typeset in font.

Line 1 defines one role, identified by :player. Lines 3–16 define two sessions,
identified by :rps (one formal parameter for role indices) and :rps-round (two
formal parameters). There are two key differences with Fig. 1 in Sect. 2:

– Whereas roles :alice and :bob in Tic–Tac–Toe are enacted each by a single
thread, role :player in Rock–Paper–Scissors is enacted by multiple threads.
To distinguish between different threads that enact the same role, roles can
be indexed in specifications. For instance, with 0-based indexing, (:player 5)
represents the thread that implements the sixth player.

– Whereas formal parameters of session :ttt-turn in Tic–Tac–Toe range over
roles, those of sessions :rps and :rps-round range over (sets of) role indices.
This exemplifies that session parameters can range over arbitrary values.

Session :rps-round represents one round of the game; threads indexed by
elements in set ids are still in, while threads indexed by elements in set co-ids
are already out. If fewer than two threads are still in (ififif), the session is effectively
empty. Otherwise, session :rps-round prescribes a concatenation:

1. First, there is an unordered universal quantification (par-everypar-everypar-every) of local vari-
able i over domain ids, and simultaneously, local variable j over domain “ids
without i” (disj). In general, an unordered universal quantification gives rise
to a “big parallel” of branches, each of which is formed by binding values in
domains to local variables (cf. parallel for-loops). In this particular example,
every such branch prescribes a communication of a message of type String
from (:player i) to (:player j), unbuffered. The idea is that every (:player
i) sends its chosen item to every other in-game (:player j), in no particular
order; the order is an implementation detail.

2. Then, there is an existential quantification (alt-everyalt-everyalt-every) of local variable
winner-ids over domain “set of subsets of ids” (power-set). Similar to
unordered universal quantification, in general, existential quantification gives
rise to a “big choice” of branches. In this particular example, every such branch
prescribes a binding (letletlet) of local variable loser-ids to “ids without winner-
ids” (difference), after which there is a parallel:
(a) Concurrently, there is another instance of session :rps-round, but now

with only winner-ids retained from ids, and with loser-ids added to
co-ids (union). The idea is that only every (:player i) that is a winner
this round goes to the next round.

(b) Concurrently, there is an unordered universal quantification of i over
loser-ids, and simultaneously, j over “all indices except i”. Every branch
of this “big parallel” prescribes a close of the channel from (:player i) to
(player j). The idea is that every (:player i) that is a loser this round
closes its channel to every other in-game or out-game (:player j).

Thus, the idea of the existential quantification is, for every possible subset of
winners, that the winners stay in the game, while the losers go out.
We note that the usage of existential quantification in this way makes the

Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project 497

1 (defdefdef k ...) ;; number of threads (e.g., read from stdin)
2

3 (defdefdef rock "rock") (defdefdef paper "paper") (defdefdef scissors "scissors") ;; items
4

5 (defdefdef rock-or-paper-or-scissors (fnfnfn [] ...)) ;; returns an item
6 (defdefdef winner-ids (fnfnfn [r] ...)) ;; returns winners in round r

7 (defdefdef winner-or-loser? (fnfnfn [r i] ...)) ;; returns true iff thread i is
8 ;; winner or loser in round r

9 (defdefdef chans (mesh chanchanchan (range k)))

10 (defdefdef barrier (java.util.concurrent.Phaser. k))

11

12 (doseq [i (range k)]

13 (threadthreadthread ;; for role (:player i)

14 (looplooploop [ids (range k)]

15 (letletlet [item (rock-or-paper-or-scissors)

16 opponent-ids (remove #{i} ids)

17 round (looplooploop [acts (into (puts chans [i item] opponent-ids)

18 (takes chans opponent-ids i))

19 round {}] ;; map from ids to items (initially empty)
20 (ififif (empty? acts)

21 (assoc round i item)

22 (letletlet [[v c] (alts!!alts!!alts!! acts)]

23 (recurrecurrecur (remove #{[c item] c} acts)

24 (assoc round (putter-id chans c) v)))))]

25 (.arriveAndAwaitAdvance barrier)

26 (ififif (winner-or-loser? round i)

27 (dododo (.arriveAndDeregister barrier)

28 (doseq [j (remove #i (range k))]

29 (close!close!close! (chans i j))))

30 (recurrecurrecur (winner-ids round)))))))

Fig. 5. Implementation of Rock–Paper–Scissors, excerpt

specification implicitly non-deterministic: different branches may start with
the exact same (sequence of) channel action(s), until a “distinguishing” chan-
nel action happens. This requires non-trivial bookkeeping to support.

Session :rps represents the whole game. It prescribes an initial instance of
session :rps-round, where all threads are in, and no threads are out (empty-set).

In addition to existential quantification and unordered universal quantifica-
tion, there is support for ordered universal quantification (cat-everycat-everycat-every): similar to
the former two, the latter one gives rise to a “big concatenation” of branches (cf.
sequential for-loops). We note that quantification domains need to be finite to
ensure that checking whether a channel action is safe can happen in finite time.

The syntax and semantics of the functions for operations on sets are the same
as those in standard library clojure.set, to make Discourje easy to learn.

498 R. Hamers and S.-S. Jongmans

Implementation. A Clojure implementation of Rock–Paper–Scissors is shown
in Fig. 5 (excerpt; some details are left out to save space). Auxiliary Discourje
functions are typeset in font; shading indicates external Java calls.

Line 1 defines a constant for the number of threads k. Lines 3–7 define con-
stants and functions to represent Rock–Paper–Scissors concepts. Line 9 defines
a collection of k2 − k unbuffered channels that implement the infrastructure,
intended to be used as a fully connected mesh network; the threads are rep-
resented by indices in the range from 0 to k (exclusive). We note that mesh is
“merely” an auxiliary Discourje function to simplify defining collections of chan-
nels; just as the other auxiliary Discourje functions used in Fig. 5, it works also
without adding a monitor or instrumentation. Line 10 defines a reusable syn-
chronisation barrier, imported from Java standard library java.util.concurrent,
leveraging Clojure’s interoperability with Java; shortly, we clarify the need for
this.

Lines 12–30 define k copies of a thread that implements role :player. Every
such thread executes two parametrised loops: an outer one, each of whose iter-
ations comprises a round, and an inner one, each of whose iterations comprises
a channel action (send or receive, indirectly using select). Salient aspects:

– According to the specification (Fig. 4), in the first half of every round (lines
8–10), the items that are chosen by in-game threads are communicated among
them. This can be problematic: as channels are unbuffered, sends and receives
are blocking until reciprocal channel actions are performed, so unless threads
agree on a global order to perform such individual channel actions, deadlocks
are looming. But, global orders are hard to get right and brittle to maintain.
An alternative solution is to use selects: in general, a select consumes a col-
lection of channel actions as input, then blocks until one of those actions
becomes enabled, then performs that action, then unblocks, and then pro-
duces that action’s output as output. Thus, a select performs one channel
action from a collection, depending on its enabledness at run-time.
In this particular example, instead of performing globally ordered individ-
ual sends and receives, every thread performs a series of selects (alts!!alts!!alts!!) in
the inner loop. Initially, the collection of channel actions consists of all sends
(puts) and receives (takes) that a thread needs to perform in a round. When
a select finishes, the channel action that was performed is removed from the
collection, and the inner loop continues. Because every thread behaves in this
way, reciprocal channel actions are always enabled, so every thread makes
progress. Thus, by using selects, the order in which communications happen,
is not implemented (nor is it specified), but deadlocks are still avoided.

– According to the specification (Fig. 4), there is a strict order between the first
half of every round (lines 8–10) and the second half (lines 11–16): all channel
actions that belong to the first half need to have happened before proceeding
to the second half. This can be problematic: additional synchronisation or
timing measures are needed to ensure that “fast threads”—those that perform
their channel actions early—wait for “slow threads” to catch up.

Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project 499

One solution is to extend the session with additional communications. An
alternative solution is to mix communication primitives with synchronisation
primitives. In this particular example, we adopt the latter solution: we mix
channels with a barrier from java.util.concurrent (shaded code in Fig. 5).
This demonstrates that channel-based programming abstractions (checked
using Discourje) can be mixed seamlessly with other concurrency libraries
(not checked), which is common practice [44,45].

Safety. A monitor and instrumentation can be added as in Fig. 3.

4 The Tour: Go Fish

Overview. We end the tour with a program that simulates a game of Go
Fish.8 Like the Rock–Paper–Scissors program in Sect. 3, the Go Fish program
consists of k + 1 threads (players, plus dealer), and k2 + k channels from every
thread to every other thread; unlike the Rock–Paper–Scissors program, however,
all interactions among threads happen through channels (no need for external
barriers, locks, etc.). This example demonstrates the following features:

– Specification: user-defined message types; repetition (0-or-more); quantifi-
cation (ordered universal); non-determinism (explicit).

– Implementation: message type-based control flow.

Specification. A Discourje specification of Go Fish is shown in Fig. 6.
Line 1 defines two roles, identified by :dealer (enacted by a single thread)

and :player (multiple threads). Lines 3–29 define two sessions, identified by :gf
and :gf-turn. Lines -7–0 define six user-defined message types.

Session :gf-turn represents one turn of (:player i). It prescribes a “big
choice”. In every branch, the idea is as follows. First, (:player i) asks (:player
j) for some card. Then, there is a choice:

1. Either, (:player j) replies with the card that it was asked for, which happens
to be the last card that (:player i) needs (to complete its last group), so it
informs (:dealer), and the game ends.

2. Or, (:player j) replies with the card that it was asked for, which does not
happen to be the last card that (:player i) needs, so (:player i) takes
another turn, and the game continues.
We note that the specification is explicitly non-deterministic: the first branch
and the second branch both start with the same channel action.

8 Go Fish is a multiplayer game played with a standard 52-card deck. A dealer shuffles
the deck and deals an initial hand to every player. Then, players take turns to collect
groups of cards of the same rank. Every turn, the active player asks a passive player
for a card. If the asked player has it, the asking player gets it and takes another turn;
if not, the asked player tells the asking player (“go”), the asking player gets a card
from the dealer (“fish”), and the turn is passed to the asked player. The first player
to hold only complete groups wins. (This version of Go Fish is due to Parlett [38].).

500 R. Hamers and S.-S. Jongmans

1 (defroledefroledefrole :dealer) (defroledefroledefrole :player)

2

3 (defsessiondefsessiondefsession :gf [ids]

4 (catcatcat (par-everypar-everypar-every [i ids]

5 (cat-everycat-everycat-every [_ (range 5)]

6 (-->-->--> Card :dealer (:player i))))

7 (alt-everyalt-everyalt-every [i ids]

8 (catcatcat (-->-->--> Turn :dealer (:player i))

9 (:gf-turn i ids)))

10 (par-everypar-everypar-every [i ids]

11 (catcatcat (closecloseclose :dealer (:player i))

12 (parparpar (catcatcat (*** (-->-->--> Card (:player i) :dealer))

13 (closecloseclose (:player i) :dealer))

14 (par-everypar-everypar-every [j (disj ids i)]

15 (closecloseclose (:player i) (:player j))))))))

16

17 (defsessiondefsessiondefsession :gf-turn [i ids]

18 (alt-everyalt-everyalt-every [j (disj ids i)]

19 (catcatcat (-->-->--> Ask (:player i) (:player j))

20 (altaltalt (catcatcat (-->-->--> Card (:player j) (:player i))

21 (-->-->--> OutOfCards (:player i) :dealer))

22 (catcatcat (-->-->--> Card (:player j) (:player i))

23 (:gf-turn i ids))

24 (catcatcat (-->-->--> Go (:player j) (:player i))

25 (-->-->--> Fish (:player i) :dealer)

26 (altaltalt (-->-->--> Card :dealer (:player i))

27 (-->-->--> OutOfCards :dealer (:player i)))

28 (-->-->--> Turn (:player i) (:player j))

29 (:gf-turn j ids))))))

-7 (defrecorddefrecorddefrecord Turn [])

-6 (defrecorddefrecorddefrecord Ask [s r])

-5 (defrecorddefrecorddefrecord Card [s r])

-4 (defrecorddefrecorddefrecord OutOfCards [])

-3 (defrecorddefrecorddefrecord Go [])

-2 (defrecorddefrecorddefrecord Fish [])

-1 ;; above, parameters s and r

0 ;; abbreviate suit and rank

Fig. 6. Discourje specification of Go Fish, including message types

3. Or, (:player j) does not reply with the card that it was asked for, so (:player
i) tries to “fish” a card from :dealer, after which (:player i) passes the turn
to (:player j), and the game continues.

Session :gf represents the whole game. It prescribes a concatenation:

1. First, there is a “big parallel”. The idea is that :dealer deals every player an
initial hand of five cards, in no particular order (implementation detail).

2. Then, there is a “big choice”. The idea is that :dealer passes the first turn
to one of the players (implementation detail). During the game, the players
pass the turn among themselves unbeknownst to :dealer.

3. Then, there is a “big parallel”. The idea is that the game has ended at this
point, so :dealer closes its channel to every (:player i), in no particular
order (implementation detail), after which every (:player i) sends its hand
back to :dealer through the oppositely directed channel, closes that channel,
and closes its channel to every other (:player j), in no particular order.

Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project 501

1 (doseq [i (range k)]

2 (threadthreadthread ;; for (:player i)

3 (... (letletlet [[v c] (alts!!alts!!alts!! ...)]

4 (condp = (type v)

5 Turn (... (letletlet [v (<!!<!!<!! ...)]

6 (condp = (type v)

7 Card ...

8 Go ...))) ;; another <!! and condp in this case
9 Ask ...

10 nil ...)))))

11 (threadthreadthread ...) ;; for :dealer

Fig. 7. Implementation of Rock–Paper–Scissors, excerpt

Implementation. A Clojure implementation of Go Fish is shown in Fig. 7
(excerpt; many details are left out to save space).

To demonstrate that Discourje supports message type-based control flow,
Fig. 7 shows fragments of code where messages are received—directly with <!!<!!<!!
and indirectly with alts!!alts!!alts!!—by threads that implement role :player. Specifically:

– On line 3, alts!!alts!!alts!! is used to receive a message v from another :player or from
:dealer. This message is either of type Turn (received from another :player),
or of type Ask (idem), or nil (“received” from :dealer).
We note that a “receive” of nil happens only, and automatically, when the
channel from :dealer to (:player i) is closed. Such a degenerate “receive” is
used by (:player i) to detect that the game has ended.

– On line 5, <!!<!!<!! is used to receive a message of type Card or Go from (:player
j), to which a message of type Ask was sent previously (not shown).

Safety. A monitor and instrumentation can be added as in Fig. 3.

5 Foundation

Overview. Discourje is built on a formal foundation, inspired by process algebra
(e.g., [15]) and multiparty session types (e.g., [46]). In a nutshell, let S and I be
sets of specifications and implementations. Then, given a specification S ∈ S and
an implementation I ∈ I, the “game” is to check if a trace of I is also a trace of
S. We briefly summarise the theory (for unbuffered channels), based on [22].

Specification. Let R be a set of roles, ranged over by p, q, r. Let F, V, X,
and E be sets of functions, values, variables, and expressions, ranged over by
f , v, x, and e, such that F ⊆ V ⊆ E and X ⊆ E; for simplicity, we leave the
elements of F, V, E, and X unspecified (although, we stipulate that E contains
at least boolean, numerical, and lambda expressions). Let X̃ and Ẽ be sets of
lists of variables and lists of expressions, ranged over by ẽ and x̃. The syntax of
specifications is defined as follows (with corresponding Discourje macros):

502 R. Hamers and S.-S. Jongmans

S ∈ S ::= 1
∣
∣

-->-->-->
︷ ︸︸ ︷

r1[e1]�r2[e2] :f
∣
∣

closecloseclose
︷ ︸︸ ︷

r1[e1] ��r2[e2]
∣
∣

catcatcat
︷ ︸︸ ︷

S1 · S2

∣
∣

altaltalt
︷ ︸︸ ︷

S1 + S2

∣
∣

S1 ‖ S2
︸ ︷︷ ︸

parparpar

∣
∣ e � S1 � S2

︸ ︷︷ ︸

ififif

∣
∣ X(ẽ)

︸ ︷︷ ︸

“call”

∣
∣ 〈S | X1(x̃1) = S1

︸ ︷︷ ︸

defsessiondefsessiondefsession

, . . . , Xn(x̃n) = Sn
︸ ︷︷ ︸

defsessiondefsessiondefsession

〉

Term 1 , which represents a skip, is the only term for which no corresponding
Discourje macro exists; its shading indicates that it is used primarily/ only to
define the operational semantics (it should not be used directly). Conversely,
Discourje macro calls for which no corresponding term exist, are encodable. For
instance, (cat-everycat-everycat-every [x (range 5)] ...), with x free in the ellipses, corresponds
with 〈X(5) | X(x) = (x > 1 � (. . . · X(x − 1)) � (x > 0 � . . . � 1)〉.

1 ↓ [S↓-One]
S1 ↓ and S2 ↓

S1 · S2 ↓ [S↓-Cat]
Si∈{1,2} ↓
S1 + S2 ↓ [S↓-Alt]

Fig. 8. Operational semantics of specifications (termination), excerpt

ei ⇓ i and ej ⇓ j and (f v) ⇓ true

p[ei] q[ej] :f
p[i]q[j]!?v−−−−−−→ 1

[S-Unbuf]
ei ⇓ i and ej ⇓ j

p[ei] q[ej]
p[i]q[j]•−−−−−→ 1

[S-Close]

S1
α−→ S′

1

S1 · S2
α−→ S′

1 · S2

[S-Cat1]
S1 ↓ and S2

α−→ S′
2

S1 · S2
α−→ S′

2

[S-Cat2]
Si∈{1,2}

α−→ S′

S1 + S2
α−→ S′ [S-Alt]

Fig. 9. Operational semantics of specifications (reduction), excerpt

The operational semantics of specifications is defined in terms of evaluation
relation ⇓, termination predicate ↓, and labelled reduction relation →. Labels,
ranged over by α, are of the form p[i]q[j]!?v (unbuffered send and receive; hand-
shake) and p[i]q[j]• (close). A subset of rules are shown in Figs. 8–9; they are
standard (cf. Basic Process Algebra [15], plus merge, conditional and recursion).

Implementation. The syntax of implementations is defined as follows (it does
not cover all features of Clojure used in Sects. 2–4, but a smaller core set):

I ∈ I ::= skip
∣
∣ if I1 I2 I3

∣
∣ loop x̃ ẽ I

∣
∣ recur ẽ

∣
∣ I1 · I2

∣
∣

I1 ‖ I2
∣
∣ chan

∣
∣ close e

∣
∣ send e1 e2

∣
∣ recv e x

∣
∣ select Ĩ

The operational semantics of the calculus is defined in terms of labelled
reductions of pairs (I,H), where H is a heap (map from locations to channel

Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project 503

Fig. 10. Operational semantics of implementations, excerpt

states). As we cover only unbuffered channels in this paper (buffered channels
are covered elsewhere [22]), a channel state is represented by � (if the channel
is open) of ⊥ (closed). Labels are of the form �!?v and �•. A subset of rules are
shown in Fig. 10 (notably, a structural congruence rule has been omitted).

Safety. Let † be a function from heap locations to sender–receiver pairs; it
corresponds with the linkage of channels to a monitor (Fig. 3). Abusing notation,
we write †(�!?v) and †(�•) instead of †(�)!?v and †(�)•.

We formalise safety (“bad channel actions never happen”) in terms of simu-
lation. Specifically, implementation I is †-simulated by specification S if there
exists a � ⊆ I × S such that: (1) I � S, and (2) for all Î , Î ′ ∈ I and Ŝ ∈ S, if
Î � Ŝ and Î

α−→ Î ′, then there exists an Ŝ′ ∈ S such that Î ′ � Ŝ′ and Ŝ
†(α)−−−→ Ŝ′.

To ensure safety at run-time, a monitor dynamically constructs a simulation
relation to check if the implementation is simulated by the specification, incre-
mentally, as channel actions are performed. A subtle—but important—detail is
that the relation is constructed not for the whole reduction relation of the imple-
mentation, but only for a “linear” subrelation (a trace; the actual execution).

6 Conclusion

Related Work. The Discourje project is strongly influenced by work on mul-
tiparty session types (MPST) [24]. The idea of MPST is to specify protocols as
behavioural types [1,28] against which threads are subsequently type-checked;
the theory guarantees that static well-typedness of threads at compile-time
implies dynamic safety of their channel actions at run-time. In recent years,
several practical implementations were developed, mostly for statically typed
languages (e.g., C [37], Java [26,27], Scala [42], F# [34], Go [7]), and to lesser
extent for dynamically typed languages (e.g., Python [25], Erlang [35]).

504 R. Hamers and S.-S. Jongmans

Discourje takes advantage of two key properties of the application domain
to offer higher expressiveness than existing MPST tools: we apply run-time ver-
ification instead of compile-time analysis, and we target shared-memory pro-
grams instead of distributed systems. The former means that no implementa-
tions are conservatively rejected (so, Discourje supports more implementations);
the latter means that no decomposition of “global” specifications into “local”
specifications—one for every role—is required, which is needed in existing MPST
tools, but often not possible [7] (so, Discourje supports more specifications).
Notably, we support non-deterministic choice and value-dependent control flow
in specifications. To our knowledge, in the context of MPST, we are the first to
leverage run-time verification and shared memory together, although they have
been considered in isolation:

– There are MPST approaches that combine static type-checking with a form of
distributed run-time monitoring and/or assertion checking [4,5,13,33,34]. In
contrast to Discourje, however, these dynamic techniques still rely on decom-
position; none of the specifications in this paper are supported.

– Decomposition-free MPST has also been explored by López et al. [32,41].
Their idea is to specify MPI communication protocols in an MPI-tailored
DSL, inspired by MPST, and verify the implementation against the specifi-
cation using deductive verification tools (VCC [12] and Why3 [14]). However,
this approach does not support push-button verification: considerable manual
effort is required. In contrast, Discourje is fully automated.

Verification of shared-memory concurrency with channels has received atten-
tion in the context of Go [30,31,36,43]. However, in addition to relying on static
techniques (unlike Discourje), emphasis in these works is on checking deadlock-
freedom, liveness, and generic safety properties, while we focus on program-
specific protocol compliance. Castro et al. [7] also consider protocol compliance
for Go, but their specification language is substantially less expressive than ours;
none of the specifications in this paper are supported.

We are aware of only two other works that use formal techniques to reason
about Clojure programs: Bonnaire-Sergeant et al. [6] formalized the optional type
system for Clojure and proved soundness, while Pinzaru et al. [39] developed a
translation from Clojure to Boogie [2] to verify Clojure programs annotated with
pre/post-conditions. Discourje seems the first to target concurrency in Clojure.

Future Work. We are currently working towards several new features: (1)
automated recovery when a violation is detected, instead of throwing an excep-
tion; (2) meta-verification of specifications, to detect “insensible” specifications;
(3) first-class support for histories, to improve expressiveness with history-based
conditionals. Also, we are interested to explore “weaving”, as in aspect-oriented
programming [29], to further reduce the effort of adding instrumentation [3].

Finally, research is needed to better understand the effectiveness of Discourje
(e.g., in terms of reduced development costs). In particular, we would like to gain
insight into difficulties that programmers face when writing specifications. We

Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project 505

try to make Discourje easy to learn and use by supporting standard Clojure
idioms wherever possible (e.g., for regular expressions; Sect. 2), but scientific
evidence on usability is still to be gathered.

Acknowledgements. We thank Luc Edixhoven and anonymous reviewers for com-
ments on an earlier version of this paper. Funded by the Netherlands Organisation of
Scientific Research (NWO): 016.Veni.192.103.

A Clojure

Standard library clojure.core:

– (defdefdef x e): first evaluates e to v; then binds x to v in the global environment.
– (ififif e1 e2 e3): first evaluates e1; if true, evaluates e2; else, evaluates e3.
– (letletlet [x1 e1 ... xn en] e): first evaluates e1 to v1; then evaluates e2 to v2

with x1 bound to v1; ...; then evaluates en to vn with x1, ..., xn−1 bound to
v1, ..., vn−1; then evaluates e with x1, ..., xn bound to v1, ..., vn.

– (fnfnfn [x1 ... xn] e1 ... em): evaluates to a function with parameters x1, ...,
xn and creates a recursion point; then, when applied to arguments v1, ..., vn,
sequentially evaluates e1, ..., em with x1, ..., xn bound to v1, ..., vn.

– (looplooploop [x1 e1 ... xn en] e): same as letletlet, but also creates a recursion point.
– (recurrecurrecur e1 ... en): first evaluates e1, ..., en to v1, ..., vn; then evaluates the

nearest recursion point with x1, ..., xn bound to v1, ..., vn.

Standard library clojure.core.async:

– (threadthreadthread e): starts a new thread that evaluates e.
– (chanchanchan): evaluates to a new unbuffered channel.
– (close!close!close! e): first evaluates e to channel c; then closes c.
– (>!!>!!>!! e1 e2): first evaluates e1 to channel c; then evaluates e2 to v; then sends

v through c.
– (<!!<!!<!! e): first evaluates e to channel c; then receives a value through c.
– (alts!!alts!!alts!! [a1 ... an]): for every ai of the form [ei,1 ei,2] (send) or ei (receive),

evaluates ei,1 and ei to channel ci, and then, evaluates ei,2 to v; then, waits
until one of these channel actions can be performed; then, performs a channel
action that can be performed (non-deterministically selected).

References

1. Ancona, D., et al.: Behavioral types in programming languages. Found. Trends
Program. Lang. 3(2–3), 95–230 (2016)

2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_17

https://doi.org/10.1007/11804192_17

506 R. Hamers and S.-S. Jongmans

3. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5_1

4. Bocchi, L., Chen, T., Demangeon, R., Honda, K., Yoshida, N.: Monitoring networks
through multiparty session types. Theor. Comput. Sci. 669, 33–58 (2017)

5. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for
distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15375-4_12

6. Bonnaire-Sergeant, A., Davies, R., Tobin-Hochstadt, S.: Practical optional types
for Clojure. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 68–94.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1_4

7. Castro, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in go: statically-typed endpoint APIs
for dynamically-instantiated communication structures. PACMPL 3(POPL), 29:1–
29:30 (2019)

8. Clojure Team: Clojure - Clojure core.async Channels, 28 June 2013. https://
clojure.org/news/2013/06/28/clojure-clore-async-channels. Accessed 1 Sept 2019

9. Clojure Team: Clojure - State of Clojure 2019 Results, 04 February 2019. https://
clojure.org/news/2019/02/04/state-of-clojure-2019. Accessed 1 Sept 2019

10. Clojure Team: Clojure - State of Clojure 2020 Results, 20 February 2019. https://
clojure.org/news/2020/02/20/state-of-clojure-2020. Accessed 28 May 2020

11. Clojure Team: Clojure (nd). https://clojure.org. Accessed 1 Sept 2019
12. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,

S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_2

13. Demangeon, R., Honda, K., Hu, R., Neykova, R., Yoshida, N.: Practical interrupt-
ible conversations: distributed dynamic verification with multiparty session types
and python. Formal Methods Syst. Des. 46(3), 197–225 (2015)

14. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8

15. Fokkink, W.: Introduction to Process Algebra. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2000). https://doi.org/10.1007/
978-3-662-04293-9

16. Go Team: Go 2016 Survey Results - The Go Blog, 03 June 2017. https://blog.
golang.org/survey2016-results. Accessed 1 Sept 2019

17. Go Team: Go 2017 Survey Results - The Go Blog, 26 February 2018. https://blog.
golang.org/survey2017-results. Accessed 1 Sept 2019

18. Go Team: Go 2018 Survey Results - The Go Blog, 28 March 2019. https://blog.
golang.org/survey2018-results. Accessed 1 Sept 2019

19. Go Team: Go Developer Survey 2019 Results - The Go Blog, 20 April 2020. https://
blog.golang.org/survey2019-results. Accessed 8 May 2020

20. Go Team: Effective Go - The Go Programming Language (nd). https://golang.
org/doc/effective_go.html. Accessed 8 May 2020

21. Go Team: The Go Programming Language (nd). https://golang.org. Accessed 1
Sept 2019

https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-662-49498-1_4
https://clojure.org/news/2013/06/28/clojure-clore-async-channels
https://clojure.org/news/2013/06/28/clojure-clore-async-channels
https://clojure.org/news/2019/02/04/state-of-clojure-2019
https://clojure.org/news/2019/02/04/state-of-clojure-2019
https://clojure.org/news/2020/02/20/state-of-clojure-2020
https://clojure.org/news/2020/02/20/state-of-clojure-2020
https://clojure.org
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1007/978-3-662-04293-9
https://blog.golang.org/survey2016-results
https://blog.golang.org/survey2016-results
https://blog.golang.org/survey2017-results
https://blog.golang.org/survey2017-results
https://blog.golang.org/survey2018-results
https://blog.golang.org/survey2018-results
https://blog.golang.org/survey2019-results
https://blog.golang.org/survey2019-results
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org

Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project 507

22. Hamers, R., Jongmans, S.-S.: Discourje: runtime verification of communication
protocols in Clojure. In: Biere, A., Parker, D. (eds.) TACAS 2020. LNCS, vol.
12078, pp. 266–284. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45190-5_15

23. Hickey, R.: The Clojure programming language. In: DLS, p. 1. ACM (2008)
24. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:

POPL, pp. 273–284. ACM (2008)
25. Hu, R., Neykova, R., Yoshida, N., Demangeon, R., Honda, K.: Practical interrupt-

ible conversations. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp.
130–148. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-
1_8

26. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., Wąsowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7_24

27. Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 116–133. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5_7

28. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016)

29. Kiczales, G., et al.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S.
(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0053381

30. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off go: liveness and safety for
channel-based programming. In: POPL, pp. 748–761. ACM (2017)

31. Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification framework for
message passing in go using behavioural types. In: ICSE, pp. 1137–1148. ACM
(2018)

32. López, H.A., et al.: Protocol-based verification of message-passing parallel pro-
grams. In: OOPSLA, pp. 280–298. ACM (2015)

33. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. Formal Aspects Comput. 29(5), 877–910 (2017). https://doi.org/
10.1007/s00165-017-0420-8

34. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation of distributed protocols with refinements in f#. In: CC, pp.
128–138. ACM (2018)

35. Neykova, R., Yoshida, N.: Let it recover: multiparty protocol-induced recovery. In:
CC, pp. 98–108. ACM (2017)

36. Ng, N., Yoshida, N.: Static deadlock detection for concurrent go by global session
graph synthesis. In: CC, pp. 174–184. ACM (2016)

37. Ng, N., Yoshida, N., Honda, K.: Multiparty session C: safe parallel programming
with message optimisation. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS,
vol. 7304, pp. 202–218. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30561-0_15

38. Parlett, D.: The Penguin Book of Card Games. Penguin (2008)
39. Pinzaru, G., Rivera, V.: Towards static verification of Clojure contract-based pro-

grams. In: Mazzara, M., Bruel, J.-M., Meyer, B., Petrenko, A. (eds.) TOOLS 2019.
LNCS, vol. 11771, pp. 73–80. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-29852-4_5

40. Rust Team: Rust Programming Language (nd). https://rust-lang.org. Accessed 1
Sept 2019

https://doi.org/10.1007/978-3-030-45190-5_15
https://doi.org/10.1007/978-3-030-45190-5_15
https://doi.org/10.1007/978-3-642-40787-1_8
https://doi.org/10.1007/978-3-642-40787-1_8
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1007/978-3-642-30561-0_15
https://doi.org/10.1007/978-3-642-30561-0_15
https://doi.org/10.1007/978-3-030-29852-4_5
https://doi.org/10.1007/978-3-030-29852-4_5
https://rust-lang.org

508 R. Hamers and S.-S. Jongmans

41. Santos, C., Martins, F., Vasconcelos, V.T.: Deductive verification of parallel pro-
grams using why3. In: ICE. EPTCS, vol. 189, pp. 128–142 (2015)

42. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty
sessions for safe distributed programming. In: ECOOP. LIPIcs, vol. 74, pp. 24:1–
24:31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

43. Stadtmüller, K., Sulzmann, M., Thiemann, P.: Static trace-based deadlock analysis
for synchronous mini-go. In: Igarashi, A. (ed.) APLAS 2016. LNCS, vol. 10017, pp.
116–136. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47958-3_7

44. Tasharofi, S., Dinges, P., Johnson, R.E.: Why do Scala developers mix the actor
model with other concurrency models? In: Castagna, G. (ed.) ECOOP 2013. LNCS,
vol. 7920, pp. 302–326. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39038-8_13

45. Tu, T., Liu, X., Song, L., Zhang, Y.: Understanding real-world concurrency bugs
in go. In: ASPLOS, pp. 865–878. ACM (2019)

46. Yoshida, N., Gheri, L.: A very gentle introduction to multiparty session types.
In: Hung, D.V., D’Souza, M. (eds.) ICDCIT 2020. LNCS, vol. 11969, pp. 73–93.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36987-3_5

https://doi.org/10.1007/978-3-319-47958-3_7
https://doi.org/10.1007/978-3-642-39038-8_13
https://doi.org/10.1007/978-3-642-39038-8_13
https://doi.org/10.1007/978-3-030-36987-3_5

Modular Verification of Liveness
Properties of the I/O Behavior

of Imperative Programs

Bart Jacobs(B)

Department of Computer Science, imec-DistriNet Research Group, KU Leuven,
Leuven, Belgium

bart.jacobs@cs.kuleuven.be

Abstract. One way of verifying systems whose components interact by
exchanging messages, such as distributed systems or certain types of con-
current systems, is by defining a protocol that governs the communica-
tion between the components and then verifying that each component’s
input and output (I/O) actions comply with its role in the protocol.

In this paper, we propose a separation logic-based approach for spec-
ifying and verifying liveness properties of the I/O behavior of such com-
ponents implemented as imperative programs, such as the property that
a server eventually responds to each request. Our approach builds on ear-
lier work for specifying safety properties of the I/O behavior of programs
in separation logic by means of abstract nested Hoare triples, and encodes
a liveness property verification problem into a termination verification
problem by specifying that some appropriately chosen I/O operation (for
example, the response to the N ’th request, for some unknown but fixed
N) will cause the program to terminate.

1 Introduction

Consider the following program:

loop (let msg = recv() in send(msg))

This program implements a simple echo server. It sits in an infinite loop. In each
iteration, it receives a message and echoes it back out. The problem we address
in this paper is: how to specify and verify the safety and liveness properties of
the I/O behavior of programs such as this one in Hoare logic [4]? We target
Hoare logic so that we obtain a modular verification approach. For the example
program specifically, we want to be able to specify the safety property that it
only sends messages that it has received, and that it sends a message at most
once1; furthermore, we want to be able to specify the liveness property that it
sends each message it has received at least once.
1 For simplicity, in this paper we assume a program never receives the same message

more than once.

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 509–524, 2020.
https://doi.org/10.1007/978-3-030-61362-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_29&domain=pdf
http://orcid.org/0000-0002-3605-249X
https://doi.org/10.1007/978-3-030-61362-4_29

510 B. Jacobs

For specifying the safety properties of the I/O behavior, we apply our earlier
work [7–9] on abstract nested Hoare triples in separation logic [11]. For specifying
liveness properties, we build on earlier work [5] on verification of basic liveness.
We combine and extend this work to obtain an approach that supports spec-
ifying a wide range of liveness properties. Adopting the terminology of Chang
et al. [2], we show how our approach supports not just guarantee properties (of
the form �p, eventually p in temporal logic) (example: the program eventually
terminates) and simple response properties (of the form ��p, always eventually
p) (example: the program always eventually responds to each request), but also
general response properties (of the form

∧
i ��pi) (example: the program always

eventually responds to each request and always eventually emits a heartbeat sig-
nal), simple reactivity properties (of the form ��p ⇒ ��q) (example: if the pro-
gram always eventually receives a request, it always eventually responds to each
request), general reactivity properties (of the form

∧
i(��pi ⇒ ��qi)) (exam-

ple: the program always eventually emits a heartbeat signal, and if it always
eventually receives a request, it always eventually responds to each request)
and persistence properties (of the form ��p) (example: the program eventually
always sends messages using the new message format).

The structure of this paper is as follows. In Sect. 2, we present our approach
informally. In Sect. 3, we formalize the syntax and semantics of a simple pro-
gramming language with I/O. In Sect. 4, we formalize our logic for liveness. We
discuss related work in Sect. 5 and offer a conclusion in Sect. 6.

2 Our Approach, Informally

In this section, we present our approach informally. In subsequent sections, we
formalize the programming language and the logic.

2.1 Safety

For specifying the safety properties of the I/O behavior, we apply our earlier
work [7–9]: we use abstract nested Hoare triples in separation logic [11]. For
example, a specification for the program send("Hello"); send("world!") could
look as follows:

{P1 ∧ send (P1, "Hello", P2) ∧ send (P2, "world!", P3)}
send("Hello"); send("world!")
{P3}

where the specification for send is

{P ∧ send (P,m,Q)} send(m) {Q}

and send (P,m,Q) is a higher-order predicate that states that any resource that
satisfies separation logic predicate P is sufficient to send message m; doing
so consumes such a resource and produces a resource that satisfies separation

Modular Verification of Liveness Properties of the I/O Behavior 511

logic predicate Q. We refer to higher-order predicates such as send as abstract
nested Hoare triples because their meaning is similar to that of the Hoare triple
{P} send(m) {Q}. The difference between abstract nested Hoare triples and
actual nested Hoare triples is that the abstract ones are in fact just user-defined
predicates, so their meaning is entirely defined by the user, rather than hav-
ing a fixed meaning assigned by the logic. The meaning of predicate send , for
example, is defined by the author of the module that implements function send.

We can read the specification for the "Hello, world!" example as follows:
for any P1, P2, and P3, if a resource (satisfying) P1 allows me to send "Hello"
and obtain a resource P2, and P2 allows me to send "world!" and obtain P3,
and I have P1, then I can run safely and if I terminate, I will end up with P3.

In a similar fashion we can specify programs that perform both input and
output. For example, the body of the echo loop can be specified as follows:

{P1 ∧ recv (P1,m, P2) ∧ send (P2,m, P3)}
let msg = recv() in send(msg)
{P3}

where the specification for recv is

{P ∧ recv (P,m,Q)} recv() {Q ∧ res = m}
In postconditions, we use res to denote the result of a command. The predicate
recv (P,m,Q) means that if you have P , you are allowed to receive. This will
consume P and produce Q. Furthermore, the message you will receive is m.
It follows that the specification for the single echo iteration states that it is
allowed to receive a message, and then send the message it received, and that if
it terminates, it shall indeed have performed these actions.

Using these ingredients, we can specify the full echo server, by first coinduc-
tively defining two predicates for expressing permission to receive and send an
infinite sequence of messages, respectively:

recv stream(P,m · μ) = ∃Q. recv (P,m,Q) ∧ recv stream(Q,μ)
send stream(P,m · μ) = ∃Q. send (P,m,Q) ∧ send stream(P, μ)

We use μ to range over infinite sequences of messages2, and m · μ to denote the
sequence with head m and tail μ. One possible specification for the safety of the
echo server is then:

{Pr ∗ Ps ∧ recv stream(Pr, μ) ∧ send stream(Ps, μ)}
loop (let msg = recv() in send(msg))
{False}

This is where separation logic’s separating conjunction −∗− comes in; it allows us
to express that I have permission Pr to receive, and separately I have permission
Ps to send. We can apply separation logic’s frame rule
2 For simplicity, we assume the same message does not appear twice in such a sequence.

As a result, “echoing out the message at position i in µ” is equivalent to “responding
to the i’th request”.

512 B. Jacobs

{P} c {Q}
{P ∗ R} c {Q ∗ R}

to the triple

{Pr ∧ recv stream(Pr,m · μ)} recv() {∃P ′
r . P ′

r ∧ recv stream(P ′
r , μ) ∧ res = m}

taking frame R = (Ps ∧ send stream(Ps,m · μ)) to obtain

{Pr ∗ Ps ∧ recv stream(Pr,m · μ) ∧ send stream(Ps,m · μ)}
recv()
{∃P ′

r . P ′
r ∗ Ps ∧ recv stream(P ′

r , μ) ∧ send stream(Ps, res · μ)}
If we only had Pr ∧ Ps instead of Pr ∗ Ps, we would not be able to conclude that
recv() preserves Ps.

Note, however, that this specification requires that the server reply to
requests in the order in which it receives them. This is overly strict, and for-
bids concurrent implementations. To allow the server to reply to requests in any
order, we replace predicate send stream by send all, defined as follows:

send all(P,m · μ) = ∃P1, P2. (P � P1 ∗ P2) ∧ send (P1,m,True) ∧ send all(P2, μ)

where P � Q, called a view shift [6], essentially simply means that P implies
Q.3

2.2 Basic Liveness

By itself, the logic we proposed in earlier work for verification of safety properties
of the I/O behavior of programs guarantees that the program does not perform
any I/O that is not permitted by the specification, and that if the program
terminates, it will have performed the I/O prescribed by the specification, but it
does not guarantee that the program will indeed perform the prescribed I/O. It
might instead go into a silent infinite loop, and not perform any I/O from some
point on. Or it might respond to some requests, but allow others to starve.

Of course, we could combine the I/O logic with any logic for verifying ter-
mination, such as the one we proposed in earlier work [5]. Interpreted in such a
combined logic, the specifications shown above for the "Hello, world!" exam-
ple and for the single echo loop iteration express full total correctness. However,
this approach is not appropriate for the complete echo server: it is not sup-
posed to terminate. (Indeed, the specification for the echo server shown above,
interpreted in a total logic, is unimplementable.)

3 More precisely, P � Q means that a state satisfying P can be transformed into a
state satisfying Q by optionally performing an update of the ghost state. However,
the reader can ignore the concept of ghost state for now.

Modular Verification of Liveness Properties of the I/O Behavior 513

In earlier work [5], we proposed an approach for verifying basic liveness of
non-terminating programs. Basic liveness means that the program always even-
tually performs I/O, i.e. that it never completely stops responding. Our approach
was to reduce the basic liveness verification problem to a termination verification
problem by imagining that the N ’th I/O operation performed by the program,
for some fixed but unknown N , causes abrupt termination of the program. For
example, in this approach, we can prove basic liveness of loop (beep()) by assum-
ing the following specification for beep():

{IO(n)} beep() {0 < n ∧ IO(n − 1)}

where IO(n) means the (n+1)’th next I/O operation will terminate the program
(so, in particular, IO(0) means that the very next I/O operation will terminate
the program), and then proving

{IO(n)} loop (beep()) {False}

in a total logic. In words, this specification states that, assuming that the (n +
1)’th I/O operation performed by the program terminates the program, the
program terminates, and furthermore, the program does not terminate normally
(because the postcondition is False, so skip and beep(); beep() do not satisfy this
specification4). Here, the number of I/O operations left before the program is
terminated can be used as a loop variant.

2.3 Simple Responsiveness

Notice that for the echo server, basic liveness is insufficient as a specification: an
implementation could satisfy it simply by receiving requests, but not responding
to any of them.

In this paper, we improve upon our earlier work by proposing an approach for
specifying and verifying not just basic liveness, but richer, application-specific
liveness properties of a program’s I/O behavior as well, such as the property
that our echo server eventually responds to each request. We again reduce the
liveness property verification problem to a termination verification problem by
imagining that a particular well-chosen I/O operation causes abrupt termination
of the program. For example, to prove that the echo server eventually responds
to each request, it is sufficient to prove that it terminates, under the assumption
that the response to the k’th request, for some fixed but unknown k, terminates
the program. Since the choice of which I/O operation terminates the program
is application-dependent, we do not encode it directly into the I/O primitives’
specification, as we did for basic liveness verification. Instead, we integrate it with
the program’s I/O safety specification, by stating in the program’s precondition
that the postcondition of the I/O operation that terminates the program is False.

4 Actually, beep(); beep() does satisfy the specification for n < 2, but the point is that
it does not satisfy the specification ∀n. {IO(n)} − {False}.

514 B. Jacobs

For example, if we apply this approach to the echo server, we obtain the following
specification:

{Pr ∗ Ps ∧ recv stream(Pr, μ) ∧ send all′(Ps, k, μ) ∧ 0 ≤ k}
loop (let msg = recv() in send(msg))
{False}

where send all′(P, k, μ) is defined in exactly the same way that send all(P, μ)
was defined above (so it means that resource P gives permission to send all
of the messages in μ, in any order), except that the postcondition of sending
the message at index k in μ is False (so sending the message at index k in μ
terminates the program) (if 0 ≤ k)5:

send all′(P, k,m · μ) =
∃P1, P2. (P � P1 ∗ P2) ∧ send (P1,m, k �= 0) ∧ send all′(P2, k − 1, μ))

where k ∈ Z. Again, k can be used as a loop variant to prove termination of the
loop.

This approach also allows us to verify other echo server implementations,
such as one that performs buffering and reordering of requests, against the same
specification:

{Pr ∗ Ps ∧ recv stream(Pr, μ) ∧ send all′(Ps, k, μ)}
loop (

let msg1 = recv() in
let msg2 = recv() in
let msg3 = recv() in
send(msg3);
send(msg1);
send(msg2)

)
{False}

Other simple responsiveness properties (i.e. properties of the form ��p) can be
encoded similarly.

2.4 General Responsiveness

Suppose the echo server should eventually respond to each request, and also
eventually log each request. We can reduce this property to termination by
imagining that either the response to the k’th request, for some k, or logging
the j’th request, for some j, terminates the program:

{
Pr ∗ Ps ∗ Pl ∧ recv stream(Pr, μ) ∧
send all′(Ps, k, μ) ∧ log all′(Pl, j, μ) ∧ (0 ≤ k ∨ 0 ≤ j)

}

loop (let msg = recv() in send(msg); log(msg))
{False}

5 Notice that if k < 0, send all′(P, k, µ) is equivalent to send all(P, µ).

Modular Verification of Liveness Properties of the I/O Behavior 515

Since the program only knows that either 0 ≤ k or 0 ≤ j, it must both log all
requests and respond to all of them to be sure of termination.

Other general responsiveness properties (i.e. properties of the form
∧

i ��pi)
can be encoded similarly.

2.5 Reactivity

Suppose receiving can suffer transient failures. To prove that the echo server
always eventually sends, we need to assume that receiving always eventually
succeeds. This can be expressed as follows:

{Pr ∗ Ps ∧ recv stream′(Pr, ν, μ) ∧ send all′(Ps, k, μ)}
loop (let msg = recv() in if msg �= ⊥ then send(msg))
{False}

where recv stream′(P, ν, μ) means that receiving message μi will fail νi times
before succeeding, for all i ∈ N:

recv stream′(P, 0 · ν,m · μ) = ∃Q. recv (P,m,Q) ∧ recv stream′(Q, ν, μ)
recv stream′(P, (n + 1) · ν, μ) = ∃Q. recv (P,⊥, Q) ∧ recv stream′(Q,n · ν, μ)

and ν ∈ N
ω ranges over infinite sequences of natural numbers.

Other reactivity properties (i.e. properties of the form ��p ⇒ ��q) can be
encoded similarly.

2.6 General Reactivity

Suppose the echo server should always eventually emit a heartbeat signal, even
if receiving fails persistently:

{
Pr ∗ Ps ∗ Ph ∧ recv stream′(Pr, ν̃, μ) ∧
send all′(Ps, k, μ) ∧ heartbeats′(Ph, j) ∧ (ν̃ ∈ N

ω ∧ 0 ≤ k ∨ 0 ≤ j)

}

loop (let msg = recv() in heartbeat(); if msg �= ⊥ then send(msg))
{False}

where ν̃ ∈ (N ∪ {∞})ω and heartbeats′ is defined as follows:

heartbeats′(P, j) =
∃P1, P2. (P � P1 ∗ P2) ∧ heartbeat (P1, j �= 0) ∧ heartbeats′(P2, j − 1)

Other general reactivity properties (i.e. properties of the form
∧

i(��pi ⇒
��qi)) can be encoded similarly.

2.7 Persistence

Suppose the echo server is allowed to drop a finite number of requests:

516 B. Jacobs

{
Pr ∗ Ps ∧ recv stream(Pr, μ) ∧ send all′′(Ps, μ)

}

commit(false); commit(false); commit(false);
recv(); let msg = recv() in send(msg); recv();
commit(true);
loop (let msg = recv() in send(msg))
{False}

which uses the following auxiliary definition:

send all′′(P,m · µ) =
(∃Q1, Q2. commit (P, false, Q1 ∗ Q2) ∧ send (Q1,m,True) ∧ send all′′(Q2, µ)) ∧
(∃Q, k ≥ 0. commit (P, true, Q) ∧ send all′(Q, k,m · µ)

To terminate, the program has to finish the phase where it is allowed to
drop requests (represented by predicate send all′′) and enter the phase where
it responds to each request (represented by predicate send all′); it needs to sig-
nal this by performing the ghost I/O action commit(true).6

Other persistence properties (i.e. properties of the form ��p) can be encoded
similarly.

3 A Programming Language with I/O

We present our approach in the context of a simplified ML-like programming
language with support for I/O. Its grammar is as follows:

v ∈ Vals, x ∈ Vars, t ∈ IOPrims
e ∈ Exprs ::= v | x
c ∈ Cmds ::= e | t(e) | if e = e then c else c | let x = c in c | loop c

We assume a set Vals of values, Vars of program variables, and IOPrims of
I/O primitives.7 We assume Vals contains at least the unit value ().

We define c; c′ = let x = c in c′ where x does not appear in c′.
We define the I/O actions α ∈ IOActions :: = t(v, v); in t(v, v′), we call

v the argument and v′ the result. We coinductively define the set of traces τ ∈
Traces ::= Div | Ret(v) | t(v, v)·τ . A trace ending in Div is called a diverging trace;
it represents the behavior where the program eventually neither terminates nor
performs I/O. A trace ending in Ret(v) is a finite trace; it represents the behavior
where the program eventually terminates with result value v.

6 The commit ghost commands are inserted into the program text for verification pur-
poses only. Since they do not have any observable effect, any properties proven about
the ghost-instrumented program hold also for the original program (also known as
the erased program).

7 In the examples, we assume send, recv, beep, log, heartbeat, commit ∈ IOPrims.

Modular Verification of Liveness Properties of the I/O Behavior 517

We define concatenation of traces coinductively as follows:

Ret(v);v τ = τ Div;v τ = Div
τ ;v τ ′ = τ ′′

t(v′, v′′) · τ ;v τ ′ = t(v′, v′′) · τ ′′

We define the language’s semantics by means of a big-step relation c ⇓ τ , which
relates a command c to a trace τ . We define the relation coinductively by means
of the following rules:

v ⇓ Ret(v)
c ⇓ τ

if v = v then c else c′ ⇓ τ

v �= v′ c′ ⇓ τ

if v = v′ then c else c′ ⇓ τ

c ⇓ τ c′[v/x] ⇓ τ ′ τ ;v τ ′ = τ ′′

let x = c in c′ ⇓ τ ′′
c; loop c ⇓ τ

loop c ⇓ τ
t(v) ⇓ t(v, v′) · Ret(v′)

Notice that we have loop () ⇓ Div. We also have loop () ⇓ τ for any other trace
τ as well; this imprecision is harmless, since we will be proving liveness.

3.1 Liveness Properties

If we define cecho = loop (let msg = recv(()) in send(msg)), we can state the
responsiveness property of the echo server as follows:

∀τ, μ. cecho ⇓ τ ∧ τ |recv � μ ⇒ ∀m ∈ μ. send(m, ()) ∈ τ

where we define τ |recv � μ coinductively as follows:

Div|recv � μ Ret(v)|recv � μ
τ |recv � μ

(recv(,m) · τ)|recv � m · μ

τ |recv � μ

(send(, ()) · τ)|recv � μ

To make the link with temporal logic: this is more or less equivalent to

∀τ. cecho ⇓ τ ⇒ τ � ��(∃m. recv(,m)) ∧ �(∀m. recv(,m) ⇒ �send(m,))

(It is equivalent if we ignore the possibility of messages being sent before they
are received.)

In the next section, we define a separation logic for modularly verifying prop-
erties such as this one, and argue formally that it is indeed adequate for this
purpose.

518 B. Jacobs

4 A Program Logic for I/O Liveness

4.1 Exit Actions and Exit Traces

We use the notation v̇ ∈ Vals ∪ {�} to denote either a program value or the
special exit value �. An exit action α̇ = t(v, v̇) is like an action except that its
result may be the exit value. An exit trace τ̇ is a finite sequence of exit actions.
We say an exit action is exiting if its result is the exit value.

The I/O safety logic from our earlier work [8] proves that a program’s partial
traces are prefixes of a given set of traces. A total logic (such as [5]) proves that a
program’s traces end with Ret(), or, equivalently, that they start with a partial
trace that ends with Ret(). By combining and slightly generalizing these, we
can obtain a logic whose correctness judgments imply that each of a program’s
traces starts with one of the partial traces from a given set of exit traces, i.e.
partial traces that, as soon as an exiting I/O action is performed, cause the
program to be considered “terminated”. Examples of such exit sets are: the set
of partial traces T1 where the program has responded to the first request, the
set of partial traces T2 where the program has responded to the second request,
etc. By proving a universally quantified correctness judgment, we can obtain
that a program’s traces start with a partial trace from T1 and with a partial
trace from T2, etc., that is, that the program responds to the first request and
to the second request, etc., allowing us to conclude that the program satisfies
the responsiveness property.

In the remainder of this section, we elaborate this approach.

4.2 Petri Nets

The I/O safety logic is based on the idea that the program must own particular
resources in order to be allowed to perform a given I/O action. When using
the logic, there is no need to specify the particular nature of those resources.
However, for the sake of proving adequacy of the logic, we do need to introduce a
particular ontology of resources. For this purpose, we here use a particular type
of Petri nets. Indeed, these resources serve very much like tokens in a Petri net.
If, in a Petri net, there is a token in each pre-place of a transition, the transition
can fire, which removes one token from each pre-place and adds one to each
post-place. This, in turn, can enable a new transition, and so on. If we label the
transitions by I/O actions, we obtain that a marking V ∈ P → N of a Petri net
(which maps each place to the number of tokens present at that place) defines
a set of traces.

Specifically, we will be labeling transitions by exit actions, so that a marking
defines a set of exit traces.

Let P be a set of places. We use p and q to range over places. We consider
Petri nets where the set of transitions N is a subset of the set N defined as

χ ∈ N ::= t(Vpre, v, v̇, Vpost) | noop(Vpre, Vpost)

Modular Verification of Liveness Properties of the I/O Behavior 519

where Vpre and Vpost are multisets of places, called the pre-places and post-places
of the transition, respectively.

A Petri net defines a labeled step relation → and a corresponding labeled
reachability relation � on markings:

t(Vpre, v, v̇, Vpost) ∈ N

V � Vpre
t(v,v̇)→ V � Vpost

noop(Vpre, Vpost) ∈ N

V � Vpre
ε→ V � Vpost

V
ε� V

V
τ̇→ V ′ V ′ τ̇ ′

� V ′′

V
τ̇ ·τ̇ ′
� V ′′

where V � V ′ = λp. V (p) + V ′(p). We define TracesN (V) = {τ̇ | ∃V ′. V
τ̇� V ′}.

4.3 Assertions, Correctness Judgments, View Shifts

We define the set of assertions semantically as the set of sets of markings. That
is, an assertion describes a marking. An assertion tokens(V) describes a mark-
ing that includes V : tokens(V) = {V ′ | ∀p. V ′(p) ≥ V (p)}. The separating
conjunction P ∗ P ′ describes a marking that can be split into one that satisfies
P and one that satisfies P ′: P ∗ P ′ = {V � V ′ | V ∈ P ∧ V ′ ∈ P ′}.

We define the meaning of a correctness judgment {P} c {Q}, where precon-
dition P is an assertion, c is a command, and postcondition Q maps a value to
an assertion, as follows:

{P} c {Q} ⇔ ∀V, τ. V ∈ P ∧ c ⇓ τ ⇒ safe(τ,TracesN (V), Q)

where safe(τ, T,Q) is defined inductively by the following rules:

∃V ∈ Q(v). TracesN (V) ⊆ T

safe(Ret(v), T,Q)
t(v,�) ∈ T

safe(t(v, v′) · τ, T,Q)

t(v, v′′) ∈ T v′ �= v′′

safe(t(v, v′) · τ, T,Q)
t(v, v′) ∈ T safe(τ, {τ̇ ′ | t(v, v′) · τ̇ ′ ∈ T}, Q)

safe(t(v, v′) · τ, T,Q)

The set T can be seen as a specification that expresses safety and liveness prop-
erties of the program, as well as assumptions about the environment. Notice that
infinite or diverging traces are safe only if they contain an input that conflicts
with the specification (i.e. the environment assumptions are violated) or perform
an action that corresponds to an exiting action of the specification.

Informally, {P} c {Q} states that for every marking V that satisfies P ,
assuming that the environment provides only inputs allowed by the traces of V ,
command c performs only outputs allowed by the traces of V and terminates,
either by performing an exiting action, or by returning with a result v and a
marking V ′ such that V ′ ∈ Q(v).

520 B. Jacobs

We say that P view-shifts to Q, written as P � Q, if ∀V ∈ P. ∃V ′ ∈
Q. TracesN (V ′) ⊆ TracesN (V). That is, we can replace the current marking
by another one that is equivalent or more restrictive in terms of the program
outputs it allows.8

4.4 Proof Rules

Given these definitions, the following proof rules are admissible:

{Q(v)} v {Q} {P ∧ v = v′} c {Q} {P ∧ v �= v′} c′ {Q}
{P} if v = v′ then c else c′ {Q}

{P} c {Q} ∀v. {Q(v)} c′[v/x] {R}
{P} let x = c in c′ {R}

∀n. {Pn} c {∃n′ < n. Pn′}
{Pm} loop c {False}

{tokens(Vpre) ∧ t(Vpre, v, v̇, Vpost) ∈ N} t(v) {tokens(Vpost) ∧ v̇ �= � ∧ res = v̇}

P � P ′ {P ′} c {Q} Q � Q′

{P} c {Q′}
{P} c {Q}

{P ∗ R} c {Q ∗ R}

∀i ∈ I. {Pi} c {Q}
{∃i ∈ I. Pi} c {Q}

P ⇒ Q

P � Q

P � Q

P ∗ R � Q ∗ R

noop(Vpre, Vpost) ∈ N

tokens(Vpre) � tokens(Vpost)
P � P ′ P ′ � P ′′

P � P ′′

We sometimes write postconditions as assertions with a free variable res.

4.5 Abstract Nested Hoare Triples Notation

We define the abstract nested Hoare triple notation t (P, v, v′, Q) as follows:

t (P, v, v′, Q) =
P � ∃Vpre, Vpost. tokens(Vpre) ∧

(t(Vpre, v, v′, Vpost) ∈ N ∧ tokens(Vpost) � Q ∨ t(Vpre, v,�, Vpost) ∈ N)

It follows that we have {P ∧ t (P, v, v′, Q)} t(v) {Q ∧ res = v′}.

4.6 Example: Simple Responsiveness

We show now how we can use our logic to verify the responsiveness property of
the echo server, repeated here:

∀τ, μ. cecho ⇓ τ ∧ τ |recv � μ ⇒ ∀m ∈ μ. send(m, ()) ∈ τ

8 Note: reducing the set of traces does not strengthen the assumptions on the envi-
ronment, because if two traces of a specification make conflicting assumptions about
environment behavior, the resulting assumption is the conjunction of these, i.e. False.

Modular Verification of Liveness Properties of the I/O Behavior 521

First of all, we fix μ. Again, we assume no message appears more than once
in μ.

It is sufficient to prove

∀k ≥ 0, τ. cecho ⇓ τ ∧ τ |recv � μ ⇒ send(μk, ()) ∈ τ

where μk denotes the message at index k in μ.
We fix k. We define exit set T as follows:

T = {τ̇ | τ̇ |recv � μ ∧ (∀send(v, v̇) ∈ τ̇ . v = μk ∨ v̇ = ())}
where we define τ̇ |recv � μ as follows:

ε|recv � μ
τ̇ |recv � μ

(recv(,m) · τ̇)|recv � m · μ

v̇ ∈ {(),�} τ̇ |recv � μ

(send(, v̇) · τ)|recv � μ

It is sufficient to prove

∀τ. cecho ⇓ τ ⇒ safe(τ, T,False)

where μk denotes the message at index k in μ.
Indeed, we can prove, by induction on the derivation of safe(τ, T,False), that

for any τ , if safe(τ, T,False) and τ |recv � μ, then send(μk, ()) ∈ τ .
We construct a Petri net (P, N) and a marking V such that TracesN (V) ⊆ T .

We define
P = {recvi | 0 ≤ i} ∪ {sendi | 0 ≤ i}

and

N = {recv({[recvi]}, (), μi, {[recvi+1]}) | i ≥ 0} ∪
{send({[sendi]}, μi, (),0) | i ≥ 0 ∧ i �= k} ∪ {send({[sendk]}, μk,�,0)}

and

V = λp.

⎧
⎨

⎩

1 if p = recv0

1 if ∃i. p = sendi

0 otherwise

where {[p]} denotes the singleton multiset with a single token at p, and 0 denotes
the empty multiset.

It is easy to check that indeed TracesN (V) ⊆ T , and that V ∈ P where
P = ∃Pr, Ps. Pr ∗ Ps ∧ recv stream(Pr, μ) ∧ send all′(Ps, k, μ).

Then, by the meaning of correctness judgments, we have that
{P} cecho {False} implies the goal.

4.7 General Responsiveness

The adequacy of the verification approach for general responsiveness properties
presented in Sect. 2 follows directly from the adequacy for simple responsiveness
properties, combined with the observation that {P1 ∨ P2} c {Q} implies both
{P1} c {Q} and {P2} c {Q}. Therefore, given a successful verification of the pro-
gram, each constituent simple responsiveness property can then be established
separately as above.

522 B. Jacobs

4.8 Example: Persistence

We wish to prove that c′
echo, defined as

c′
echo =
recv(); let msg = recv() in send(msg); recv();
loop (let msg = recv() in send(msg))

drops only finitely many messages, i.e. that it eventually always responds. For-
mally:

∀μ, τ. c′
echo ⇓ τ ∧ τ |recv � μ ⇒ ∃k0 ≥ 0. ∀k ≥ k0. send(μk, ()) ∈ τ

We consider a ghost-instrumented version c̃′
echo of c′

echo, defined as follows:

c̃′
echo =
commit(false); commit(false); commit(false);
recv(); let msg = recv() in send(msg); recv();
commit(true);
loop (let msg = recv() in send(msg))

Obviously, it is sufficient to prove

∀μ, τ. c̃′
echo ⇓ τ ∧ erasure(τ)|recv � μ ⇒ ∃k0 ≥ 0. ∀k ≥ k0. send(μk, ()) ∈ τ

where erasure(τ) removes the commit actions (replacing an infinite sequence of
commit actions with Div). We define #τ as the index of the first commit(true,)
action in τ , or 0 if it does not contain such an action. It is sufficient to prove

∀μ, τ. c̃′
echo ⇓ τ ∧ erasure(τ)|recv � μ ⇒ ∀k ≥ 0. send(μ#τ+k, ()) ∈ τ

We fix μ and k and define exit set T as follows:

T =
{

τ̇ erasure(τ̇)|recv � μ ∧
(∀send(v, v̇) ∈ τ̇ . commit(true,) ∈ τ̇ ∧ v = μ#τ̇+k ∨ v̇ = ())

}

It is sufficient to prove

∀τ. c̃′
echo ⇓ τ ⇒ safe(τ, T,False)

Indeed, one can again show, by induction on the derivation of safe(τ, T,False)
that for all τ , if safe(τ, T,False) and erasure(τ)|recv � μ, then send(μ#τ+k, ()) ∈ τ .

The remainder of this example proceeds as above: we construct a Petri net
and a marking that satisfies the precondition we used for verifying the persistence
example in Sect. 2 and whose traces are included in T . Successful verification then
implies the goal.

Modular Verification of Liveness Properties of the I/O Behavior 523

5 Related Work

We are not aware of existing work on Hoare logics for verifying liveness properties
of the I/O behavior of programs. To the best of our knowledge, most approaches
for verifying liveness properties of the I/O behavior of systems have so far been
based on a representation of the system as some kind of a state machine, or a
set of interacting processes or state machines, rather than a program. In these
approaches, the liveness properties of interest are very often specified using tem-
poral logic [2].

Even when it comes to Hoare logics for liveness properties of other aspects
of program execution, there is very little existing work. We are aware of only
two lines of work. Boström and Müller [1] verify that blocked threads in a multi-
threaded program are always eventually unblocked. In ongoing work, D’Osualdo
et al. [3] verify termination under a fair scheduler of multithreaded programs
that involve synchronization based on busy-waiting.

For a discussion of related work on verifying safety of I/O behavior and on
verifying program termination, we refer to our earlier work [5,9].

6 Conclusion

We presented a Hoare logic-based approach for the specification and verification
of liveness properties of the I/O behavior of program modules. Our approach is
based on the idea of reducing the problem to a termination verification problem
and then applying existing approaches for I/O safety verification and termination
verification. Our approach can be applied straightforwardly in existing verifica-
tion tools that support separation logic, higher-order predicates, and termination
verification, such as our VeriFast tool [12].

In this paper, we considered a very simple programming language with no
dynamically allocated memory, higher-order functions or dynamic method bind-
ing, or concurrency. However, we believe the ideas of this paper can be integrated
straightforwardly into the separation logic for total correctness of multithreaded
object-oriented programs from our earlier work [5] to verify liveness properties
of the I/O behavior of a large class of realistic programs.

A limitation of this earlier work, however, is that it does not support busy
waiting, a common practice in programs for multiprocessor machines. In recent
work [10], we propose a logic for verifying termination under fair scheduling of
programs where threads busy-wait for other threads to abruptly terminate the
program. By combining that logic with the ideas from this paper, one can obtain
a logic for verifying responsiveness of a multithreaded server where one thread
receives requests and another responds to them: the first thread can be seen as
busy-waiting for the second thread to terminate the program by responding to
the k’th request.

We have not addressed the question of completeness: does our approach sup-
port all possible liveness properties? Chang et al. [2] claim that any temporal
logic formula is equivalent to a general reactivity formula. However, their set-
ting is not quite the same as ours, as evidenced by the fact that we need to use

524 B. Jacobs

ghost I/O operations to support persistence properties, whereas in their frame-
work persistence properties are subsumed by reactivity properties. A thorough
investigation of this question is future work.

References

1. Boström, P., Müller, P.: Modular verification of finite blocking in non-terminating
programs. In: Boyland, J.T. (ed.) 29th European Conference on Object-Oriented
Programming, ECOOP 2015, 5–10 July 2015, Prague, Czech Republic. LIPIcs, vol.
37, pp. 639–663. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)

2. Chang, E., Manna, Z., Pnueli, A.: The safety-progress classification. In: Bauer,
F.L., Brauer, W., Schwichtenberg, H. (eds.) Logic and Algebra of Specification.
NATO ASI Series (Series F: Computer & Systems Sciences), vol. 94, pp. 143–202.
Springer, Berlin, Heidelberg (1993). https://doi.org/10.1007/978-3-642-58041-3 5

3. D’Osualdo, E., Farzan, A., Gardner, P., Sutherland, J.: TaDA live: compo-
sitional reasoning for termination of fine-grained concurrent programs. CoRR
abs/1901.05750 (2019)

4. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

5. Jacobs, B., Bosnacki, D., Kuiper, R.: Modular termination verification of single-
threaded and multithreaded programs. ACM Trans. Program. Lang. Syst. 40(3),
12:1–12:59 (2018)

6. Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: a modular foundation for higher-order concurrent separation logic.
J. Funct. Program. 28, e20 (2018)

7. Penninckx, W., Jacobs, B., Piessens, F.: Sound, modular and compositional veri-
fication of the input/output behavior of programs. In: Vitek, J. (ed.) ESOP 2015.
LNCS, vol. 9032, pp. 158–182. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46669-8 7

8. Penninckx, W., Timany, A., Jacobs, B.: Abstract I/O specification. CoRR
abs/1901.10541 (2019)

9. Penninckx, W., Timany, A., Jacobs, B.: Specifying I/O using abstract nested Hoare
triples in separation logic. In: Proceedings of the 21st Workshop on Formal Tech-
niques for Java-like Programs. FTfJP 2019, Association for Computing Machinery,
New York (2019)

10. Reinhard, T., Timany, A., Jacobs, B.: A separation logic to verify termination of
busy-waiting for abrupt program exit. In: FTfJP (2020, to appear)

11. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of the 17th IEEE Symposium on Logic in Computer Science (LICS
2002), 22–25 July 2002, Copenhagen, Denmark, pp. 55–74. IEEE Computer Society
(2002)

12. Vogels, F., Jacobs, B., Piessens, F.: Featherweight VeriFast. Log. Methods Comput.
Sci. 11(3), 1–57 (2015)

https://doi.org/10.1007/978-3-642-58041-3_5
https://doi.org/10.1007/978-3-662-46669-8_7
https://doi.org/10.1007/978-3-662-46669-8_7

Formal Verification of an Industrial
Distributed Algorithm: An Experience

Report

Nikolai Kosmatov(B) , Delphine Longuet(B) , and Romain Soulat(B)

Thales Research and Technology, Palaiseau, France
nikolaikosmatov@gmail.com,

{delphine.longuet,romain.soulat}@thalesgroup.com

Abstract. Verification of distributed software is a challenging task. This
paper reports on modeling and verification of a consensus algorithm
developed by Thales. The algorithm has an arbitrary number of pro-
cesses (nodes), which can possibly fail and restart at any time. Com-
munications between nodes are periodic, but completely asynchronous.
The goal of this algorithm is that, after a given amount of time since
the last status change, the network of nodes agrees on a list of working
nodes. Our verification approach is based on modeling both the source
code of the algorithm and the possible interleavings of executions. We
present how we were able to scale up to 100 processes using the rely-
guarantee based technique. Some of the initially expected properties did
not hold, and generated counter-examples helped to fix and prove them.
We also successfully verified other consensus algorithms at Thales with
the same approach. We describe our experiments on applying several
model-checking tools and a symbolic execution tool, and present some
lessons learned.

Keywords: Distributed algorithm verification · Consensus
algorithms · Symbolic model checking · Rely-guarantee · Symbolic
execution

1 Introduction

Distributed software is largely used nowadays. The advance of Internet of Things
(IoT) devices and autonomous systems promises their ever-growing use in the
next generations of industrial systems. Design and verification of distributed
algorithms for distributed software remain a very active research topic since
several decades. Many efficient algorithms were proposed [17,18], and important
impossibility results were established [11].

Distributed algorithms include in particular consensus protocols, where the
processes (nodes) of a network, executing the same code, have to come to the
agreement on some data. One example is leader election protocols, where several
processes have to choose a unique leader. In the synchronous context, the nodes
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 525–542, 2020.
https://doi.org/10.1007/978-3-030-61362-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_30&domain=pdf
http://orcid.org/0000-0003-1557-2813
http://orcid.org/0000-0002-8394-276X
http://orcid.org/0000-0003-4431-5250
https://doi.org/10.1007/978-3-030-61362-4_30

526 N. Kosmatov et al.

exchange information on the common clock signal, while in the asynchronous one,
they can communicate at different moments. A well-known synchronous leader
election protocol is the so-called Bully algorithm [12] in which the node with the
highest ID is elected as a leader after several rounds. In the asynchronous context,
a leader election protocol was described by Leslie Lamport [15]. It was formally
proved correct using several tools, in particular, in TLA+ [16], or, more recently,
in the timed model checking tool Uppaal [6]. However, the existing automated
proofs were performed only for a small number of processes, typically ≤ 10.

The verification of a given protocol is tightly linked to the considered setting:
synchronous or asynchronous, specific fault models, expected properties, values
of periods of message exchanges, the degree of possible period variations and
communication delays in a given system, etc. While many protocols were pro-
posed in the literature, the industrial practice shows that their assumptions and
properties do not always correspond to those of the target real-life system, and
some specific (variants of) algorithms can be needed. Of course, as soon as the
initial assumptions are modified, each new algorithm should be verified again.

Thales designed several distributed consensus algorithms where an arbitrary
number of processes are run and can possibly fail and restart at any moment.
Thus, each node can be on or off, but these statuses can change. Communications
between nodes are periodic, but completely asynchronous. The goal of these
algorithms is that, after a given amount of time since the last status modification,
the network of nodes agrees on a list of working nodes. Thus, the final property
of interest states that after a given number of activations, each node identifies
the same set of nodes as working, that is, the consensus is reached. They also
ensure some partial consistency properties after a smaller amount of time, which
express step-by-step progress of the algorithm towards the desired final property.

This paper presents an experience report on formal verification of a dis-
tributed consensus algorithm developed at Thales. This experience was mainly
realized by the formal methods group of Thales Research and Technology, with
participation of other Thales engineers. The algorithm itself is not detailed in
the paper: first, it is broadly inspired by the existing algorithms, and second, the
precise algorithm cannot be revealed due to confidentiality reasons. We describe
the methodology used to model and formally prove the initial algorithm as well
as some similar algorithms.

Our verification approach combines several ideas from previous work, in par-
ticular, on modeling the interleavings using a simulation loop to represent the
whole system (e.g. [7]), and the technique of rely-guarantee [13] that allows us
to focus on the behavior of a given node rather than the whole system. We first
modeled the source code of the algorithm and simulated the possible interleav-
ings of executions, and used synchronous model checkers to verify the model.
Possible variations of communication periods and communication delays in the
target system are simulated using jitters, slightly modifying the activation times
of the nodes. However, this technique does not allow us to prove the algorithm
for a large number of nodes. Then we created a second, abstracted model focus-
ing on the execution of a unique node and modeling the behavior of other nodes

Formal Verification of an Industrial Distributed Algorithm 527

by assumptions, and attempting to prove that each of them is indeed guaranteed
by the current node. This allowed the proof to scale up to 100 processes, and to
validate the C code against those assumptions. We also verified other consensus
algorithms at Thales with the same approach. Some of the initially expected
properties did not hold, and generated counter-examples helped to fix and prove
them. We describe our experiments on applying several model-checking tools
and a symbolic execution tool, and present some lessons learned.

This paper builds on a previously published case study [5] on verification of
an industrial algorithm at Thales using the SafeProver tool [10]. This work
extends it with a clearer presentation of the methodology, additional experiments
with two other verification tools, Cbmc [9] and Klee [8], and some lessons
learned. Recent case studies for similar algorithms confirmed the applicability of
this work.

Outline. The paper is organized as follows. Section 2 gives an overview of the tar-
get system and algorithm. The verification methodology is presented in Sect. 3.
Our experiments using different verification tools are reported in Sect. 4. Finally,
Section 5 concludes the paper with some lessons learned and future work.

2 Presentation of the System and the Algorithm

2.1 Overview of the System

For confidentiality reasons, we cannot disclose the exact real-life system and
algorithm, but we believe it does not prevent from understanding our approach
and results. In particular, system parameters were modified in the paper but the
consistency of the presented algorithm and results was of course preserved.

The system is composed of several identical computing nodes. They can per-
form various tasks and receive a part of the workload. The nodes are fully inter-
connected, which means that any node can send messages to any other node
in the network, for example, to communicate computation results. On top of
those messages, periodically, each node sends to all other nodes a special kind
of message indicating that the sender is still alive and providing some additional
data. Our distributed algorithm uses these messages in order for each node to
be able to compute a correct list of all working nodes in the network. This has
several uses: workload balancing, clock synchronization, leader election, etc.

More formally, the system is a fixed set of p nodes N = {node1, . . . , nodep},
p ∈ N, given with integer timing constants periodmin, periodmax, jittermin, jittermax,
msgDelaymin, msgDelaymax. Each node nodei is a record containing the following
fields:

1. a unique integer-valued ID : id ∈ N,
2. an integer-valued activation period : per ∈ [periodmin, periodmax],
3. an integer-valued first activation time: start ∈ [0, per[(which can be seen as

an offset, with the usual assumption that the offset is less than the period),

528 N. Kosmatov et al.

Constant Value
periodmin 49
periodmax 51
jittermin −0.5
jittermax 0.5
msgDelaymin 0
msgDelaymax 0

Node per start jitter1i jitter2i jitter3i
node1 49 0 0.5 −0.5 0.2
node2 51 30 0 0.1 0
node3 49 0.1 0.1 −0.5 0.5

(a)

(b)

Fig. 1. (a) Static constants (in ms), and (b) values chosen for the nodes in Example 1.

t
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

node1

node2

node3

t01 t11 t21 t31

t02 t12 t22

t03 t13 t23 t33

Fig. 2. Activation times (in ms) of the three nodes of Example 1.

4. a flag failure, failure ∈ {⊥,�}, which corresponds to the state of the node,
� means that the node has failed, ⊥ means that the node is running,

5. a receive failure flag, rcvFailure ∈ {⊥,�}, indicating a failure in the capacity
to receive messages (� means that the node cannot receive messages, ⊥ means
that the node can receive messages), and

6. a send failure flag, sndFailure ∈ {⊥,�}, indicating a failure in the capacity
of the node to send messages.

7. a field state represents the set of internal variables of the node,
8. a field networkView indicates the definitive belief of the node on the list of

fully working nodes in the network.

In addition, we use the following constants to model uncertainties (time varia-
tions) in the system execution:

1. an integer jitterj
i ∈ [jittermin, jittermax], indicating a delay in the execution of

nodei for the j-th activation,
2. an integer msgDelayj

ki ∈ [msgDelaymin,msgDelaymax] giving a delay in message
transmission between nodek and nodei for the j-th activation of nodei.

The j-th activation of node nodei occurs at time tji = tj−1
i + nodei.per + jitterj

i

for j > 0. We set besides: t0i = nodei.start.
In all our models we use values in microseconds for periods, activation times,

jitters, message delays, etc., in order to be as close as possible to a real-life exe-
cution and to be able to model all possible interleavings, while still using integer
values, easier to read and often better supported by tools. (In the examples in
this paper, we use milliseconds just to make the constants more readable.)

Formal Verification of an Industrial Distributed Algorithm 529

Algorithm 1: Pseudo-code of function UpdateNode(i)
1 if nodei.EvenActivation then
2 allMessages ← ReadMessages(i)
3 nodeState ← ComputeState(allMessages, nodeState)
4 message ← ComputeMessage(nodeState)

5 if ¬nodei.sndFailure then
6 SendToAllNetwork(message, currentT ime)

7 nodei.EvenActivation ← ¬nodei.EvenActivation

Note that the periods of different nodes can be different, which makes the
problem particularly challenging. While the period remains constant over the
node’s entire execution, its effective activation time can still be modified by a
jitter, varying at each activation (this is the common definition of a jitter).

The static timing parameters are defined by the target system constraints.
In this paper, we use the (anonymized) values given in Fig. 1a.

Example 1. Assume the system is made of three nodes. The periods, start times,
and jitters for the first three activations of the nodes are given in Fig. 1b.

We therefore have t01 = 0, t11 = 49.5, t21 = 98, t31 = 147.2, t02 = 30, t12 = 81, t22 =
132.1, t32 = 183.1, t03 = 0.1, t13 = 49.2, t23 = 97.7, t33 = 147.2. The first activations
of the nodes are depicted in Fig. 2. Due to both uncertain periods and jitters, it
can happen that, between two consecutive activations of a node, another node is
activated twice: for example, between t13 and t23, node 1 is activated twice (i.e. t11
and t21), and therefore, between two consecutive activations, node 3 may receive
two messages from node 1, while node 1 receives no new message from node 3.

Finally note that the number of activations of different nodes can increase at
a different speed. The number of activations since the system start for nodes 1
and 3 having the same periods remains roughly the same at any timestamp:
initially equal to at most 1, the difference can change very slowly (with the
values of Fig. 1a, due to jitters, it can increase by 1 after at least j activations
such that (49−0.5)(j+1) < (49+0.5)j, i.e. j > 48.5). The numbers of activations
for node 2 and nodes 1 and 3 can evolve with a more rapidly increasing difference.

Nodes can fail and restart. We consider in our models 5 failure modes:

– F1: A node can stop and flush its internal memory. When restarting, the node
will believe it is alone in the network until it receives messages from the other
nodes. This corresponds to a node shutting down.

– F2: A node can stop and keep its internal memory. When restarting, the node
will have the same state as before stopping, it will still assume the network
in the same state as when it stopped, until it receives messages that will
contradict this belief. This corresponds to a node freezing.

– F3: A node can stop sending and receiving messages. This corresponds to a
disconnection from the network.

530 N. Kosmatov et al.

– F4/F5: A node can stop receiving (resp., sending) messages but still be able
to emit (resp. receive) messages. This corresponds to a partial disconnection.

2.2 Overview of the Algorithm

We briefly describe how we modeled the node operation in this part. We assume
that currentT ime, the timestamp of the node execution, is a global variable
that can be accessed by any node. (In practice, the view of the time by the node
can be slightly imprecise. This imprecision is covered in the model by jitters and
message delays.)

At each activation, each nodei executes a code similar to the one given in
Algorithm 1. Due to asynchronicity, the main part of the code treating received
messages is executed only once every two activations (when the boolean flag
nodei.EvenActivation is true, cf. lines 1–4), while a working node sends a mes-
sage at each activation. This ensures that if a node is present in the network,
then any other node has received at least one message from it (cf. Fig. 2 for an
example of when it is necessary).

When nodei.EvenActivation is true, the node first reads the content of its
mailbox (line 2). Then it computes its new state from the messages it received
(line 3), and a message to be sent to the rest of the network (line 4). The
code of these two parts is confidential. Finally, at every iteration, if the sending
capacity has not failed, it sends a message to the rest of the network (using
the SendToAllNetwork function, cf. lines 5–6). The message is either the one
that has just been computed, or the repetition of the old message but with the
current timestamp. It then swaps the flag EvenActivation.

3 Methodology

One of our objectives was to develop a methodology and models that could be
read by software developers not specialized in formal verification, and hence,
must be as straightforward as possible. The first model, Msim, simulating the
whole network, is presented in Sect. 3.1. However, its verification was not able to
scale up to the real number of nodes so we developed an abstract model, Mabs,
presented in Sect. 3.2, that uses the rely-guarantee and abstraction techniques.
The models were specified in a simple subset of an imperative C-like language
(and were adapted to the input language of the tools used in our experiments).
We present their simplified pseudo-code versions in this paper.

3.1 Modeling the Whole System by Simulation

The model Msim simulates a network of a fixed, constant number of p processes.
It explicitly represents all nodes, with their associated periods, first activation
times, local memories, and mailboxes of received messages. A pseudo-code of
Msim is given in Algorithm 2. The mailbox of each node is represented as a

Formal Verification of an Industrial Distributed Algorithm 531

Algorithm 2: Pseudo-code of model Msim simulating p nodes
// Network initialization for nodes i=1,2,...,p

1 State : nodei.state
2 Integer : nodei.id, nodei.per, nodei.start, Activationi, nextActivationT imei

3 Boolean :
nodei.EvenActivation, nodei.failure, nodei.rcvFailure, nodei.sndFailure

4 Assume : AllDifferent(nodei.id | i ∈ 1, . . . , p) // Identifiers are unique

5 foreach i ∈ {1, . . . , p} do
6 Activationi ← 0
7 Assume : periodmin ≤ nodei.per ≤ periodmax

8 Assume : 0 ≤ nodei.start < nodei.per
9 nextActivationT imei ← nodei.start

// Mailbox initialization

10 . . .
// Main algorithm simulating the network execution

11 while true do
12 i ← indexMin(nextActivationT ime) // Node with the smallest time

13 if ¬nodei.failure then
14 UpdateNode(i) // Execute the node

15 Activationi ← Activationi + 1

16 jitter ← nondet() // Choose an arbitrary value for a new jitter

17 Assume : jittermin ≤ jitter ≤ jittermax // in the considered bounds

18 nextActivationT imei ← nextActivationT imei + nodei.per + jitter
19 Assert : P1 ∧ · · · ∧ Pα // Partial and final properties

list containing the messages received from every other node (or nothing, if such
messages were not received).

In the initialization phase, we assume (cf. lines 1–3 in Algorithm2) that all
variables are initialized by arbitrary values. It is equivalent to be initialized by a
call to an uninterpreted function nondet() (for which, by abuse of notation, the
same function name will be used to return data of the relevant type). Necessary
constraints (e.g. on the periods, cf. line 7) are introduced by the assume clause.
The assumption on line 4 states that all node IDs are different. In this way,
a symbolic initial state is created. (This notion of a symbolic initial state was
earlier used to solve a challenge by Thales [19], also featuring uncertain peri-
ods.) The variable Activationi is used to store how many times nodei has been
executed.

The code of function UpdateNode(i) is given by Algorithm1. To take into
account possible receiving failures and delays, the ReadMessages(i) function
selects the messages received by nodei to consider (unless it lost the ability to
receive messages, i.e. nodei.rcvFailure is true). For each other node nodek, it
checks when the latest message from nodek has been sent. If the message has
been sent since less than msgDelaymin, we consider that it has not yet reached
nodei, and we use the previous message from nodek. If the latest message has

532 N. Kosmatov et al.

been sent a long time ago (since more than msgDelaymax), we consider it has
reached nodei and we use this message. If the message has been sent between
msgDelaymin and msgDelaymax, the message may or may not have reached the
node, in that case we consider one of the two last messages to model both
possible cases.

The main simulating loop of Algorithm 2 chooses nodei to execute next as
the node having the smallest nextActivationT ime (line 12). If nodei did not
fail, it is executed and its activation counter incremented (lines 13–15). Then a
jitter is chosen and the next activation time computed (lines 16–18).

The final consensus achievement property Pα we want to prove for working
nodes since the last node status change is of the form:

∀k ∈ {1, . . . , p}, (nodek ∈ networkState ∧ Activationk ≥ α)

⇒ nodek.networkView = networkState
(Pα)

where networkState is the list of all currently working nodes (i.e. without any
failure), and α ∈ N is a parameter depending on the system (in our system,
α = 7). Thus, to prove the consensus is reached, the loop on line 11 should
execute each node at least α times. The consensus preservation (for any j ≥ α)
can be proved using k-induction (or by checking in some way that the system
returns to the same symbolic state as in the beginning). Our algorithm goes
through several partial consistency properties before reaching the consensus.
Such a partial property Pj , 1 ≤ j < α, is of the form:

∀k ∈ {1, . . . , p}, (nodek ∈ networkState ∧ Activationk ≥ j) ⇒ ... (Pj)

The right-hand side is a property of nodek’s state. It is not necessarily different
for all j. For the Msim model of our algorithm, only P2, P5 and of course P7 are
stronger than a previous one, so we will focus on them in our experiments and
call them key properties. In our algorithm, properties Pj can also be expressed
in terms of the message sent by nodek at its j-th activation.

As suggested in Fig. 2, the number of different executions can grow very fast
with the number of nodes and the execution length. A rough lower bound for
the number of different execution orderings of Msim can be computed as (p!)n,
where n is the number of activations of a node in the considered executions (so
n ≥ α). The target Thales system is comprised of roughly 20 nodes, and the
consensus is supposed to be reached after 7 activations of each node. Hence the
number of execution paths of Msim is greater than (20!)7 ≈ 5 · 10128.

As we will see in Sect. 4, model Msim allows us to prove our algorithm for
a small number of nodes. It is very useful to debug the implementation and
iteratively check properties Pj or find counter-examples that are easily readable
and understandable by the algorithm developers. To prove the same algorithm
for a larger number of nodes, we need to abstract some behaviors.

3.2 Modeling One Node with an Abstraction of the System

We now explain how we construct an abstract model Mabs (cf. Algorithm 3).
It is (manually) deduced from the original model Msim. The idea is to model

Formal Verification of an Industrial Distributed Algorithm 533

Algorithm 3: Pseudo code for abstract model Mabs (for a proof of Pl)
// Initialization for nodes k=1,2,...,p

1 Integer : nodek.id, Activationk

2 Boolean : nodek.failure, nodek.rcvFailure, nodek.sndFailure
3 Assume : AllDifferent(nodek.id | k ∈ 1, . . . , p) // Identifiers are unique

// Initialization for node i

4 Assume : i ∈ {1, . . . , p}
5 Activationi ← 0
6 Boolean : nodei.EvenActivation

// Main loop iteratively activating node i

7 while true do
8 Mailbox ← ∅ // Model possible messages from other nodes

9 for k ∈ {1, . . . , p} \ {i} do
10 messagek ← nondet()
11 if ¬nodei.rcvFailure ∧ ¬nodek.sndFailure then
12 Mailbox ← Mailbox ∪ messagek

13 Activationk ← Activationk + |nondet()| // An increasing value

14 Assume : Ptimed ∧ P1 ∧ · · · ∧ Pl−1 // Assume up to Pl−1 for all nodes

15 if ¬nodei.failure then
16 UpdateNode(i)

17 Activationi ← Activationi + 1
18 Assert : (P1 ∧ · · · ∧ Pl)|nodei // Prove properties up to Pl for nodei

the system as one node nodei (the node of interest) interacting with the rest of
the network. The model activates only nodei, which receives messages from the
other nodes. The behavior of the other nodes is defined only by assumptions.

Mabs also abstracts away the timing information contained in Msim and
also ensures it by suitable assumptions, called Ptimed. To infer and verify these
assumptions, we consider a simple auxiliary model MT of Msim which merely
contains relevant timing information. We then use a parametric timed model
checker to infer properties on possible execution interleavings of nodes.

In our methodology, we use Mabs, with the integration of Ptimed as assump-
tions, to iteratively prove properties Pj , 1 ≤ j ≤ α, on the (state and) messages
of nodei. To prove Pl, we assume in addition Pj , 1 ≤ j < l, for all other nodes.
Each time a new property Pl is proven, we add it as an assumption on the mes-
sages sent to nodei by other nodes. After several steps, when l = α, the proven
property Pl is the consensus property Pα (cf. lines 14, 18 in Algorithm 3).

We now describe models Mabs and MT in more detail.

Abstract Model Mabs and Proof of Properties Pj . This model considers only the
activations of the node under study, nodei. The rest of the network is abstracted
by the messages contained in the mailbox of nodei. Every other node nodek

(k �= i) can have any state and send any message at any activation, provided it
respects the assumptions (cf. line 14). Its behavior does not directly rely on its

534 N. Kosmatov et al.

parity (nodek.EvenActivation), what the nodes sent previously, or what nodei

is sending. Thus, only some of the node fields are used in this model.
Algorithm 3 first initializes (non-deterministically) the useful fields of all

nodes (lines 1–3), then those of the node under study nodei (lines 4–6). The
loop on lines 7–18 iteratively activates nodei (lines 15–17) if it did not fail. Prior
to that, it constructs a mailbox with any possible messages from the other nodes
(lines 8–12) that can communicate with nodei (cf. line 11). These messages have
to respect the assumptions on line 14.

Notice that the number of activations Activationk of any other node nodek is
not tightly linked to that of nodei. The constraint for Activationk to be increas-
ing follows from line 13, while having an acceptable difference with Activationi

will follow from the assumption Ptimed, as explained below. Thus, property
Ptimed will force some of the assumed properties Pj to constrain the messages
received by nodei from a working node nodek in the case when Activationk ≥ j
follows from Ptimed.

We iteratively prove the properties Pl for the messages sent by nodei, starting
by l = 1. Once a new property is proved, we add it as an assumption on the
messages sent by the other nodes. To prove property Pl (1 ≤ l ≤ α) for nodei,
we assume that all other nodes respect the properties for smaller numbers of
activations Pj , 1 ≤ j < l, along with Ptimed (cf. line 14). The assertion on line
18 requires to prove Pl for nodei in addition to the previously proven Pj , 1 ≤
j < l (that are already true at this step if the proof is done iteratively). The
notation Pj |nodei

means that the property is reduced to nodei (by removing the
quantification and taking k = i in the definition (Pj)).

In this way, if the assertion on line 18 is proved for nodei, we can deduce that
Pl holds for any node and any execution, thanks to a non-deterministic choice
of the node under study and symbolic states of all other nodes.

Interestingly, we observed that due to abstraction, the consensus property
in the abstract model Mabs for our algorithm was not reached after α = 7
activations as in the simulating model Msim, but after α = 8 activations. This
extra delay was not an issue for system developers, a rigorous proof being more
important. Therefore, we use α = 8 in the specification and verification of Mabs.
The other key properties P2 and P5 were still true for the same j.

Abstract Model MT and Proof of PropertyPtimed. We give in this section only a
very brief overview of the model MT . More detail about it can be found in [5].

Our goal is to establish a property Ptimed relating the numbers of executions
of two nodes for the given system parameters. It has the following form:

∀i, k ∈ {1, . . . , p}, Activationi ≤ β

⇒ | Activationi − Activationk | ≤ γ
(Ptimed)

for some β, γ ∈ N. The value γ depends on the activation periods, the maximal
jitter values, and of course the value of β. The value β must be sufficient in order
to cover executions long enough to prove all properties Pj , 1 ≤ j ≤ α needed to
reach the consensus property. Example 1 illustrated some situations where the

Formal Verification of an Industrial Distributed Algorithm 535

difference between such numbers of activations can (slightly) increase. In model
Mabs of our target system, since we need at least α = 8 activations of each node
to reach a consensus, we can take β = 8 and have the bound γ = 2.

Given the current number of activations of nodei, this property allows us to
deduce information on a possible number of activations of nodek. To prove it, we
use a timed abstract model MT of Msim. It relies on an extension of the formal-
ism of timed automata [1], a powerful extension of finite-state automata with
clocks, i.e. real-valued variables that evolve at the same time. Timed automata
were proven successful in verifying many systems with interactions between time
and concurrency, especially with the state-of-the-art model-checker Uppaal [6].
However, timed automata cannot model and verify arbitrary periods: while it
is possible to model a different period at each round, it is not possible to first
fix a period once for all (in an interval), and then use this period for the rest of
the execution. We therefore use the extension parametric timed automata [2,3]
allowing to consider parameters, i.e. unknown constants (possibly in an interval).
Imitator [4] is a state-of-the-art model checker supporting this formalism. The
timed abstract model MT of Msim is a product of two similar parametric timed
automata representing the node under study nodei and a generic node nodek.

Thanks to a more abstract view of the system in the model Mabs, where other
nodes and timing constraints were abstracted away and replaced by assumptions
relating the numbers of activations of nodes, and thanks to an iterative proof of
partial properties Pj , the proof for Mabs scaled up to larger numbers of nodes.

4 Experiments with Various Tools

To perform our experiments, we selected three tools: SafeProver [10],
Cbmc [9], and Klee [8]. Our experiments were not specifically aimed at com-
paring the tools or judging their potential. Their goal was rather to report the
results that industrial engineers without an advanced knowledge of these tools
can obtain when using them on a real-life distributed algorithm.

4.1 Experiments with SafeProver

We describe here the results obtained by a commercial SMT solver called Safe-
Prover [10] designed by the SafeRiver company. SafeProver is designed to
perform model-checking on Mathworks Simulink designs. It is a symbolic syn-
chronous model checker, which fits with our modelings. However, it can be used
with other input languages. In our case, we elected to use the Imperative Com-
mon Language (ICL) also designed by SafeRiver. ICL has some constraints that
fitted with the use-case: all loops have to be statically bounded, all types and
array sizes must be known statically. It forced us to use arrays for incoming
messages, but this was coherent with the original implementation of the algo-
rithm. SafeProver uses several steps of proven model simplification, as out-
lined in [10], before sending the resulting model to a bit-blasting algorithm. The
proof can then be performed by a choice of several SAT solvers.

536 N. Kosmatov et al.

(a) #nodes p = 3 p = 4 p = 5
variant Correct Correct Correct

time 59.5 s 95m48 s TO
result � � —

(b) #nodes p = 3 p = 18 p = 42 p = 100
variant Correct Correct Correct Correct

time 0.29 s 9.74 s 5min12 s 15min30
result � � � �

Fig. 3. Experiments with SafeProver for correct properties with all failure modes
for models (a) Msim, and (b) Mabs. TO means a timeout (set to 2 h).

We chose this language and tool as it is very close to a regular programming
language for the algorithmic parts and offers the possibility to specify assump-
tions and assertions.

Models. We performed the proof of both models, Msim and Mabs, with all failure
modes. For these models, we ran SafeProver on the proof of correction of P7

(resp. P8). We obtained that:

– The algorithm was correct when nodes could fail completely, or fail to send
messages (F1, F2, F3, and F5);

– The algorithm was not correct if nodes could fail to receive messages, while
still emitting new messages to the network (F4).

Results. For these models we ran SafeProver on a full proof using k-induction.
Contrary to the other tools tested for these experiments, it means that if a
property is proven, it is true for all possible infinite executions. In order to
establish this property, SafeProver first performs a Bounded Model Checking
(BMC) step with k steps and then tries to prove the k-induction step. In all
our experiments, the hardest and most time-consuming part of the proof was
the k-induction step. The tool did not report the time for the BMC part of
the proof, so we are unable to provide it for a clearer comparison between the
tools. We believe that these proof times are still interesting because it shows
that this approach is also viable for industrial proof. Times in Fig. 3 are given
for the models with all possible failure modes. It includes the proof when the
algorithm is correct (failure modes F1, F2, F3, and F5) and the generation of
counter-examples when it was not (F4). SafeProver gave good results in terms
of proof times and scaled up to p = 100 nodes for Mabs.

Next Steps. SafeProver offers the possibility to work on Mathworks Simulink
sheets. Simulink1 allows to model multidomain dynamical systems and automat-
ically generate the code. It is widely used in Thales entities for algorithm design.
We plan on working on a framework that would allow engineers to develop their
algorithm in Simulink, and have an automatic generation of a provable model.
Counter-examples would be given as a test case in Simulink so that the engineer
can correct their design.

1 See https://fr.mathworks.com/products/simulink.html.

https://fr.mathworks.com/products/simulink.html

Formal Verification of an Industrial Distributed Algorithm 537

#nodes p = 3 p = 4 p = 5
variant P err

1 P err
4 P err

6 Correct P err
1 P err

4 P err
6 Correct P err

1 P err
4 P err

6 Correct
time 0.25 s 0.95 s 6.27 s 37.75 s 0.33 s 1.52 s 53.98 s 14m52 s 0.57 s 8.4 s 2m27 s TO

result CE CE CE � CE CE CE � CE CE CE —
RDP 0.13 s 0.74 s 5.76 s 37.49 s 0.20 s 1.25 s 53.18 s 14m51 s 0.35 s 7.95 s 2m26 s TO
#vars 30,898 70,488 96,542 87,797 47,765 111,735 153,802 143,204 68,448 162,716 224,677 212,182

#clauses 110,966 256,340 351,902 319,867 172,625 408,119 562,800 523,886 261,475 627,154 867,407 819,048

Fig. 4. Experiments on erroneous and correct versions of model Msim simulating all
nodes without failures with Cbmc. TO means a timeout (set to 2 h). RDP stands for
runtime decision procedure.

#nodes p = 3 p = 18 p = 42
variant P err

1 P err
4 P err

7 Correct P err
1 P err

4 P err
7 Correct P err

1 P err
4 P err

7 Correct
time 0.32 s 0.33 s 0.41 s 0.34 s 2.19 s 2.35 s 2.42 s 2.85 s 8.07 s 8.65 s 9.81 s 11.05 s

result CE CE CE � CE CE CE � CE CE CE �
RDP 0.13 s 0.14 s 0.17 s 0.14 s 0.88 s 0.97 s 1.08 s 1.18 s 2.20 s 2.79 s 3.81 s 4.28 s
#vars 38,615 38,606 38,597 38,594 197,795 197,786 197,777 197,774 452,483 452,474 452,465 452,462

#clauses 116,705 116,411 116,009 115,851 578,390 577,736 576,434 575,856 1,317,086 1,315,856 1,313,114 1,311,864

Fig. 5. Experiments on erroneous and correct versions of the abstract model Mabs

without failures with Cbmc. TO means a timeout (set to 2 h).

4.2 Experiments with CBMC

Cbmc is a bounded model-checker for C programs [9]. We chose to work on
C code because the modelling language used for the initial model is very close
to C so the translation was quite straightforward, which allowed to compare
tools on similar models. We chose Cbmc since it is a well-known state-of-the-art
model-checker for C programs. We thought it was well fitted for this experiment
since the core of the problem is naturally bounded: the consensus is reached
after a given number of executions, so the proof only requires a fixed number of
iterations. For a complete proof, one also needs to prove that once a consensus
is reached, it is preserved by the following executions. Bounded model-checking
is not able to prove such a property stated on infinite executions, but it helped
us gain confidence in it by proving it for very long executions.

Models. In a first set of experiments, we worked on simpler variants of the two
models Msim et Mabs, where we do not consider message delays nor possible
failures. For these models, we ran Cbmc on the following properties:

– P err
j , with j = 1, 4, 6 for Msim and j = 1, 4, 7 for Mabs: an erroneous version

of the key property Pj+1 where the same property is stated after j executions
instead of j + 1. This leads to the production of a counter-example.

– P7 (resp. P8): each node executed at least 7 (resp. 8) times knows the actual
list of working nodes in Msim (resp. Mabs). The proof should be successful.

In a second step we extended the two models to all possible failures (except
those preventing a consensus to be reached). On these last models, we only ran
Cbmc on P7 for Msim (resp. P8 for Mabs), to be able to compare the proof times
to those of SafeProver.

538 N. Kosmatov et al.

(a) #nodes p = 3 p = 4
variant Correct Correct

time 4min20 s TO
result � —
RDP 4min19 s TO
#vars 305,431 527,197

#clauses 986,574 1,713,053

(b) #nodes p = 3 p = 18 p = 22 p = 23
variant Correct Correct Correct Correct

time 2.36 s 9min2 s 55min47 s TO
result � � � —
RDP 1.63 s 8min46 s 55min19 s TO
#vars 371,265 2,007,225 2,436,945 2,543,945

#clauses 1,143,416 6,080,111 7,350,811 7,665,476

Fig. 6. Experiments with Cbmc on correct versions of models (a) Msim with failures,
and (b) Mabs with failures. TO means a timeout (set to 2 h).

#nodes p = 2 p = 3 p = 4 p = 5
variant P err

1 P err
4 P err

6 P err
1 P err

4 P err
6 P err

1 P err
4 P err

6 P err
1 P err

4 P err
6

time 0.6s 7s 48s 0.8s 12m33s TO 1.15s TO TO 2.1s TO TO
result CE CE CE CE CE — CE — — CE — —

#instr. 2,299 595,279 4,231,836 4,820 51,662,006 ? 12,288 ? ? 44,118 ? ?

Fig. 7. Experiments on erroneous versions of model Msim simulating all nodes with
Klee. For correct versions, the tool timed out. TO means a timeout (set to 2 h).

Results. On model Mabs without failures, all properties are falsified or proved
in less than 25s for a size of network ranging from 3 to 64 nodes (see Fig. 5). On
model Msim without failures, the exponentially growing complexity of the model
prevents the termination of proofs for the more complex properties, except for
a very small number of nodes (see Fig. 4).

On models with failures, proofs are much more difficult. For model Msim,
only the model with 3 nodes is proven in less than 2 h (with 4 nodes the proof
takes almost 6 h). And even for model Mabs, the property is proven in less than
2 h only on models with less than 22 nodes. Results are shown in Fig. 6. This
seems to make SafeProver much more efficient on these models.

One may notice that for all the experiments, the total proof time is mainly the
time of the runtime decision procedure (RDP), except for model Mabs without
failures, where the time needed to build the formula takes two thirds of the total
proof time. The complexity of the BMC problem is expressed in terms of the
number of clauses and variables of the formula sent to the SAT solver.

The main advantage of Cbmc in an industrial setting is to work directly on
C code. Moreover, the tool is quite easy to handle and the default parameters
seem to be sufficient for the proof of user-defined properties. It requires very
few adaptations of the initial code to be run so the time needed to make ones
first proof is quite short. One may regret that, with the command line interface,
default counter-examples are not very easy to read, and that it is not possible
to directly replay them.

#nodes p = 2 p = 3 p = 4 p = 5
variant P err

1 P err
4 P err

7 P err
1 P err

4 P err
7 P err

1 P err
4 P err

7 P err
1 P err

4 P err
7

time 0.3s 27s 17m53s 0.5s 26m21s TO 1s 60m53s TO 1.7s 1h25m TO
result CE CE CE CE CE — CE CE — CE CE —

#instr. 2,213 2,039,992 57,289,534 6,739 63,235,648 ? 21,582 88,588,978 ? 62,962 109,841,990 ?

Fig. 8. Experiments on erroneous and correct versions of the abstract model Mabs with
Klee. For correct versions, the tool timed out. TO means a timeout (set to 2 h).

Formal Verification of an Industrial Distributed Algorithm 539

Next steps. A BMC proof of the original (real-life) code could be tried, thanks
to the knowledge we gained on the tool.

4.3 Experiments with KLEE

In the last set of experiments, we used Klee [8], a popular dynamic symbolic
execution tool. It explores program paths using a combination of concrete and
symbolic execution, offers several strategies, and generates test cases for a given
C program, possibly enriched with assume and assert statements.

Models. We used Klee on the same models and properties as in the first set of
experiments with Cbmc (see Sect. 4.2).

Results. The results for Msim and Mabs are shown, resp., in Fig. 7 and 8. They
show that Klee was able to generate counter-examples for both models, but
for the most complex properties it was possible only for 2 nodes. The execu-
tion was stopped at a first assertion failure so we do not have data on a com-
plete session, but we report the number of instructions Klee explored before
a counter-example was found. They show the combinatorial complexity of the
models. On the correct versions and for some properties for more nodes, Klee
timed out (and also reported that the memory cap was exceeded, so many paths
were dropped).

5 Lessons Learned and Perspectives

Our experience shows that despite the existence of several verified consensus
algorithms, industrial users often need to verify a specific algorithm (variant)
that precisely fits their needs. The reasons can be grouped into two categories.
System developers can be reluctant to changes and prefer to obtain a proof of the
existing legacy algorithm, or adapted only with minor changes. Second, especially
in embedded systems where performance is a key factor, the existing algorithms
do not always meet the constraints of the target system, e.g., memory size,
network usage, computational time, non-interference with other computations,
relevant fault models and robustness constraints, the level of possible variations
of the activation or communication times.

Generic verification methodologies applicable to large families of similar algo-
rithms can be very helpful in this context. The existence of advanced verification
tools and a large record of verification efforts in the area makes it possible today
to suggest such methodologies for industrial engineers. After verifying one algo-
rithm, the engineer may need to adapt it to a new system and to verify again.
The present paper describes such a methodology for a family of consensus algo-
rithms and reports on its application to some of them. The criteria for acceptance
of the methodology include the capacity to perform the proof, the possibility to
analyze the real-life code or a model as close as possible to the code, and to
produce and easily read counter-examples.

540 N. Kosmatov et al.

As is often the case in distributed algorithms, the models of consensus algo-
rithms we considered have a high combinatorial complexity, due to several free
variables in the initial state and lots of possible interleavings. It is rapidly increas-
ing with the number of nodes and executions. Therefore, we focused on symbolic
tools: symbolic model checking and symbolic execution. Timed model checking
did not seem to be a suitable candidate for two reasons. The timed model check-
ers we experimented with were enumerative. When experimenting with Imita-
tor [4], we filled the 160GB RAM memory of the server before ending the proof.
The second reason is the modeling language expected to be close to the code,
and the need to easily generate and read counter-examples without having to
invest too much time. Thus, Timed Petri nets or automata were not considered
as suitable candidates to perform the whole study, but their application should
be further investigated in the future. We restricted the usage of timed model
checkers to one property, PT , in order to perform the proof on the abstract
model Mabs. The underlying model was simple enough to be reviewed.

Symbolic model checking tools we used (SafeProver and Cbmc) appeared
to be very powerful both for finding counter-examples and proving the correct
version of the algorithm. In particular, the support of bit operations was partic-
ularly useful to achieve better results thanks to a compact bit-level encoding of
data in our models: the results became much better than for an earlier, naive
array-based version.

We have also verified algorithms where message transmission can be delayed,
using the SafeProver tool and applying the same methodology. While this
change did increase the time for the proof to be completed, it did not significantly
change the number of nodes for which the proof worked.

Symbolic execution using Klee also proved to be useful to detect counter-
examples for small numbers of nodes and executions. Due to the combinatorial
explosion of the number of paths, in this case study we were not able to use it to
explore all paths in order to show the absence of errors on the correct models.
Klee was convenient for producing readable counter-examples since it directly
handles the C code.

Abstracting the system model using the rely-guarantee based technique was
essential for the proof to scale for a large number of nodes. While the proof of
the properties on the complete model Msim was successful for smaller numbers
of nodes (p < 10), it ran out of time and memory for bigger numbers of nodes
which were required in the target systems. The rely-guarantee based approach,
dating back to the work of Jones [13] and well-established today, solved this
issue for the family of algorithms we faced in this work.

Future Work. Future work directions include the application of the method-
ology to other industrial algorithms, proof of the assumptions for the real-life
C code using deductive verification (using e.g. Frama-C [14]) and experiences
using other verification tools (model checking and symbolic execution). More
generally, collecting the engineers’ needs and experience related to verification
of distributed algorithms at Thales and supporting them in their verification

Formal Verification of an Industrial Distributed Algorithm 541

work remains a priority for the formal methods group of Thales Research and
Technology.

Acknowledgment. The authors are grateful to Etienne André, Laurent Fribourg and
Jean-Marc Mota for their contribution to the previous case study [5], as well as to the
anonymous reviewers for their useful comments.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–
235 (1994)

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC.
ACM (1993)

3. André, É.: What’s decidable about parametric timed automata? Int. J. Softw.
Tools Technol. Transf. 21(2), 203–219 (2019)

4. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing
robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM
2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32759-9 6

5. André, É., Fribourg, L., Mota, J., Soulat, R.: Verification of an industrial asyn-
chronous leader election algorithm using abstractions and parametric model check-
ing. In: Enea, C., Piskac, R. (eds.) Verification, Model Checking, and Abstract
Interpretation. VMCAI 2019 LNCS, vol. 11388, pp. 409–424. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-11245-5 19

6. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

7. Blanchard, A., Kosmatov, N., Lemerre, M., Loulergue, F.: Conc2Seq: a frama-C
plugin for verification of parallel compositions of C programs. In: SCAM. IEEE
(2016)

8. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: OSDI (2008)

9. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

10. Étienne, J.F., Juppeaux, É.: SafeProver: a high-performance verification tool. ACM
SIGAda Ada Lett. 36(2), 47–48 (2017)

11. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

12. Garćıa-Molina, H.: Elections in a distributed computing system. IEEE Trans. Com-
put. 31(1), 48–59 (1982)

13. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

14. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Asp. Comput. 27(3), 573–609 (2015)

15. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

16. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc. (2002)

https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1007/978-3-030-11245-5_19
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-24730-2_15

542 N. Kosmatov et al.

17. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., Burling-
ton (1996)

18. Raynal, M.: Fault-Tolerant Message-Passing Distributed Systems - An Algori-
thmic Approach. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-
94141-7

19. Sun, Y., André, É., Lipari, G.: Verification of two real-time systems using para-
metric timed automata. In: WATERS (2015)

https://doi.org/10.1007/978-3-319-94141-7
https://doi.org/10.1007/978-3-319-94141-7

Deploying TESTAR to Enable Remote
Testing in an Industrial CI Pipeline:

A Case-Based Evaluation

Fernando Pastor Ricós1(B), Pekka Aho2(B), Tanja Vos1,2(B),
Ismael Torres Boigues1,2,3(B), Ernesto Calás Blasco1,2,3,

and Héctor Mart́ınez Mart́ınez3

1 Universitat Politècnica de València, 46002 Valencia, Spain
ferpasri@inf.upv.es

2 Open Universiteit, Heerlen, The Netherlands
{pekka.aho,tanja.vos}@ou.nl
3 Prodevelop, Valencia, Spain

{itorres,info}@prodevelop.es

Abstract. Companies are facing constant pressure towards shorter
release cycles while still maintaining a high level of quality. Agile devel-
opment, continuous integration and testing are commonly used qual-
ity assurance techniques applied in industry. Increasing the level of test
automation is a key ingredient to address the short release cycles. Testing
at the graphical user interface (GUI) level is challenging to automate,
and therefore many companies still do this manually. To help find solu-
tions for better GUI test automation, academics are researching script-
less GUI testing to complement the script-based approach. In order to
better match industrial problems with academic results, more academia-
industry collaborations for case-based evaluations are needed. This paper
describes such an initiative to improve, transfer and integrate an aca-
demic scriptless GUI testing tool TESTAR into the CI pipeline of a
Spanish company Prodevelop. The paper describes the steps taken, the
outcome, the challenges, and some lessons learned for successful industry-
academia collaboration.

Keywords: Automated testing · GUI level · TESTAR · CI ·
Technology transfer

1 Introduction

The development of cost-effective and high-quality software systems is getting
more and more challenging for SMEs. Modern systems are distributed and
become larger and more complex, as they connect multitude of components
that interact in many different ways and have constantly changing and different
types of requirements. Adequately testing these systems cannot be faced alone
with traditional testing approaches.
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 543–557, 2020.
https://doi.org/10.1007/978-3-030-61362-4_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_31&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_31

544 F. P. Ricós et al.

New techniques for systematization and automation of testing are being
researched in academia. To help the industry to keep up with the increasing
quality requirements, it is important to guarantee the successful transfer of new
techniques into use.

Unit tests are widely automated, especially if test-driven development process
is followed. However, testing through graphical user interface (GUI) is more
challenging to automate [1]. The most common way to automate GUI testing is
based on scripts that are defined before the test execution. Manually recording
or writing test scripts for all the possible paths of the GUI takes simply too much
effort to be practical, and even if the test cases are built with keywords and a
proper architecture, so many test scripts would result in serious maintenance
issues [6]. To address this challenge, the academics are researching scriptless
GUI testing to complement the script-based approach. In scriptless GUI testing,
the test cases are generated during the test execution, based on observing the
run-time state of the system under test (SUT).

The rest of this paper is structured as follows. First, in Sect. 2, we describe the
context of this study. In Sect. 2.1, we describe TESTAR, an open source scriptless
test automation tool developed in academia. In Sect. 2.2, we describe a Spanish
company Prodevelop, their software product Posidonia that is used as the system
under test (SUT) in this collaboration, and their continuous integration (CI)
process. In Sect. 3, we describe the goals and the objectives to consider that the
transfer of knowledge has been achieved. In Sect. 4, we describe the development
improvements made into TESTAR in terms of functionality belonging to the
tool. We discuss the results in Sect. 5 and summarize the lessons learnt about
academia-industry collaboration in Sect. 6. Finally, we conclude in Sect. 7.

2 Context

The work described in this paper has been carried out within the context of the
European ITEA3 TESTOMAT project1. Both the private company Prodevelop
and the academic partners are funded through this project.

2.1 The TESTAR Tool

TESTAR2 [14] is an academic open source tool for automated testing through
the GUI currently being developed by the Polytechnic University of Valencia
and the Open University of the Netherlands, funded by various national and
European initiatives.

TESTAR is a tool for scriptless testing, meaning that it does not require
the creation, use and maintenance of scripts to test and explore the SUT from
the user’s perspective. It is open source under BSD3 license and available on
Github3.
1 https://www.testomatproject.eu/.
2 https://testar.org/.
3 https://github.com/TESTARtool/TESTAR dev.

https://www.testomatproject.eu/
https://testar.org/
https://github.com/TESTARtool/TESTAR_dev

Deploying TESTAR for Remote Testing 545

Fig. 1. TESTAR functional flow

The underlying principle of this testing approach is as follows (see Fig. 1):
generate test sequences of (state, action)-pairs by starting up the SUT in its
initial state and continuously select an action to bring the SUT in another state.
The action selection characterizes the most basic problem of intelligent systems:
what to do next. The difficult part is optimizing the action selection [ázar2018]
to find faults, and recognizing a faulty state when it is found.

The default action selection of TESTAR focuses on random exploration of
the SUT through processing of the state information extracted before and after
each executed action. This way TESTAR can analyze the robustness of the SUT
in a generic way and automate the testing of what we call Non-User Stories,
detecting failures by implicit test oracles that check the violation of general-
purpose system requirements, such as:

– the SUT should not crash,
– the SUT should not find itself in an unresponsive state (freeze), and
– the UI state should not contain any widget with suspicious titles like error,
problem, exception, etc.

Implementing support for various technical APIs enables TESTAR to inter-
act with different kinds of SUTs (desktop as well as Web). The modular archi-
tecture of TESTAR allows customizing and enriching the system specific pro-
tocol, for example, changing the action selection algorithms to take different
exploratory paths, or defining system specific inputs or test oracles.

In addition to the SUT-specific protocol defining the behavior of TESTAR
tool in terms of widgets interaction, actions exploration and test oracles, another
set of configuration parameters is required to indicate how to connect to the
desired SUT, define suspicious title patterns for SUT-specific test oracles or
change between different protocols if these are customized to explore different
parts of the SUT.

546 F. P. Ricós et al.

The configuration options for TESTAR are by default read from a local file,
which allows to read and write the desired protocol implementation to adapt the
functionality with the SUT requirements. For beginners and learning purposes,
or facilitate the first SUT inspection and configuration of TESTAR, a GUI is
offered to highlight the visibility of the most important configuration options.
When changed, the GUI overwrites the local file with the new configuration.

As TESTAR obtains the information from the SUT about existing widgets,
states, and available actions to execute, it selects and executes these actions
generating the TESTAR test sequences. All the information obtained is stored
in different formats and types of files creating output results for every sequence.
After each executed action, TESTAR applies all the implicit and defined test
oracles to obtain a verdict to determine whether the latest state of the sequence
contains failures.

Every sequence creates the following types of files:

– Logs including step-by-step textual information about the executed actions,
target widgets, and the verdicts from test oracles.

– Screenshots of each state and target widget on which an action is going to be
executed, taken along the test sequence.

– HTML reports of each generated test sequence, including step-by-step screen-
shots and textual information about existing widgets and available actions of
every state, and the executed action over the target widget.

– Binary files, used for saving the information about the executed actions in a
form that allows a sequence to be replayed later.

2.2 Prodevelop

Prodevelop4 is a Spanish company located in Valencia with an extensive network
of clients in Europe, Africa, America and Oceania. From the beginning, Prode-
velop has specialized on Geographic Information Systems and its application to
the maritime transportation, especially in port domain.

The SUT used in this study is Posidonia Management, a web-based port
management application developed and maintained by Prodevelop. Posidonia
Management is conceived and designed to fulfil the management needs of differ-
ent Port Authorities. The increasing port traffic and high competitiveness of the
international market lead to increasingly complex systems. It is in this context
that Posidonia Management, as a complete management system, can improve
the efficiency, productivity, and competitiveness of a Port Authority.

Until a few years ago, Prodevelop followed the waterfall development cycle,
but in the last few years, encouraged by the TESTOMAT Project, Prodevelop
has oriented its development practices towards a more agile development cycle,
with more frequent product deliveries, weekly in some products.

Continuous integration [8,10] (CI) is a process that focuses on increasing
the client value through developing, updating, building and testing the software
product as often as possible, for example after each code commit or once a day.
4 https://www.prodevelop.es.

https://www.prodevelop.es

Deploying TESTAR for Remote Testing 547

The continuous integration process of Prodevelop is made up of a series of
linked and interrelated steps, illustrated in Fig. 2. The process begins when the
Quality Assurance (QA) team configure the automatization orchestrator server
Jenkins5, a free and open source automation server that can be used to build,
test and deploy software, facilitating continuous integration.

In parallel, the Business Analyst will gather the project requirements and
analyse them to obtain the specification of the system. Based on this spec-
ification, on one hand, the testers will use TestLink6 to define the Accep-
tance/Functional test, and on the other hand, the Developers will develop the
system and create the Unit Tests. These tests will be evaluated by the task of
Jenkins that performs the build of the deliverables.

Fig. 2. Prodevelop CI/CD Pipeline

This automated process starts each time the Developers make a commit of
source code to the repository. When a project that is assigned to a continu-
ous integration environment receives an update of the source code, the Jenkins
application will execute software code testing tasks: Static analysis, build and
unit testing, to validate and compile the new source code.

If the build tasks in Jenkins end with the result “OK”, the new version of the
application will be deployed in the Quality Assurance (QA) environment, and
the acceptance/functional tests are executed manually. If the tests are passed,
the application will be deployed in the User Acceptance Test (PRE) and/or

5 https://www.jenkins.io.
6 http://testlink.org/.

https://www.jenkins.io
http://testlink.org/

548 F. P. Ricós et al.

Production (PRO) environment, which are located in the Client’s own environ-
ments. The number of environments and deployment procedures are subject to
the specific requirements of the Client.

In the case that any of the tasks that should be executed in Jenkins ends
with “NOK” results, Jenkins informs the Developers detailing which test or tests
have failed. In addition, Jenkins will generate an Incident-Ticket in Jira7, an issue
tracking and project management software, with all the necessary information,
including also the phase of the process and specifically the test that fail, so that
the Project Manager follows-up until the incident is resolved.

To ensure the quality of the software, Prodevelop relies mainly on functional
testing. The QA staff assigned to a project defines functional test cases for each
requirement and scenario using TestLink tool. These test cases are manually
executed by the QA team when a new release is ready. A report with the results
is generated and sent to the project manager to decide actions to be taken. On
the other hand, developers are in charge of defining unit and static tests that
are executed automatically.

The manual execution of functional tests is very time consuming as they have
to be executed on each new delivery. The automation of these tests is one of the
short-term objectives of Prodevelop. Another important issue to be improved is
the time needed to solve an error. Since Posidonia is a large product with several
million lines of code, and with several developers involved throughout the life of
this product, a lot of time is spent looking for the origin of the problem.

To facilitate error detection and root cause analysis, the Posidonia Manage-
ment application is instrumented with the intention to detect and debug all
behaviour that is identified as an exception. All these exceptions are written to
a log file with the information about the method where it occurred (the specific
class and package it belongs to) and details about the exception that has been
detected. This internal error information is added incrementally in the back-
ground log using local timestamps.

3 Objectives of the Study

From the academic point of view, the main goal of this collaboration was to eval-
uate the academic TESTAR tool on another real case in an industrial testing
environment. TESTAR has already been evaluated in other industrial environ-
ments [2–4,7,9], and in order to be able to generalize these results based on
individual cases [15] we need to study as many cases as we can and focus on
their similarities. All the case studies so far shared one common aspect: before
the introduction of TESTAR, GUI testing was done manually. For these studies
we could see that TESTAR was considered a useful complement to the existing
testing practices and interesting failures were found.

From the industrial point of view, Prodevelop is trying to achieve a high level
of software quality by innovating its development processes. As indicated, the
functional tests that are executed manually involve a high cost of running the

7 https://www.atlassian.com/es/software/jira.

https://www.atlassian.com/es/software/jira

Deploying TESTAR for Remote Testing 549

tests. For this reason, only a subset of them is executed in each release. So the
objective of the study is clear: integrate TESTAR into the current CI pipeline
to automatically test Posidonia when the life cycle requires it and evaluate the
performance.

With TESTAR integrated into the CI pipeline, every time a new version is
released and a nightly build is made, the following steps are taken:
– First, it will be checked whether there are failure sequences from previous

versions, and in that case replay TESTAR test sequences to verify that errors
were solved in the new release.

– Second, new test sequences will be generated with TESTAR to explore and
verify the robustness of the application using the desired oracles and proto-
cols. Depending on the configuration used, TESTAR can be steered to explore
specific parts of Posidonia.

– Third, if a failure is detected, Prodevelop must verify that it is not a false
positive, inspecting the sequence that found the failure. If it is not, all the
logs generated during the test run should be filtered by the timestamps of
the failure finding sequence, saved in a database and documented in TestLink.
Then, a Jira ticket will be created with linked information about these results
to be reviewed in the future.

To start the integration, Posidonia was tested with the default set-up of
TESTAR to generate: test sequences, TESTAR logs, HTML test reports and
GUI screenshots. All these artefacts generated by TESTAR were analyzed by
Prodevelop. It was found that before the integration into CI could be realized,
the following TESTAR extensions and improvements had to be implemented
first:

1. Enable invocation of TESTAR through the CLI (Command Line Interface).
This means that the configuration dialog should be disabled, and, instead of
passing the test settings in a local file, they should be passed as parameters
of the CLI command.

2. Enable TESTAR to correctly detect SUTs that have multiple processes han-
dling the GUI, or that the GUI process change at run-time. Posidonia runs
in a browser that starts with two main processes to which we should connect
to properly verify the defined oracles.

3. Enable distributed execution of TESTAR by providing a remote API. This
feature is fundamental if we want to integrate TESTAR into the CI method-
ology, or any other distributed process for that matter.

4. Improve the functionality of TESTAR Replay mode to observe changes
between a previously executed and saved sequence and a newly executed
test sequence.

5. Enable the synchronization of the logs produced by Posidonia with those of
TESTAR. In order to find the root cause of the errors, it is important to
be able to analyse the logs generated by Posidonia together with TESTAR
logs. This information is needed by Prodevelop developers to understand and
replicate the error.

These TESTAR adaptations will be described in the next section.

550 F. P. Ricós et al.

4 Extending TESTAR for the Case Study

This section describes the changes that had to be implemented into TESTAR
to meet the requirements of Prodevelop and to be able to test Posidonia with
TESTAR in the CI pipeline of Prodevelop.

4.1 Executing and Configuring TESTAR Through CLI

To allow TESTAR tool to be integrated into a CI pipeline, a new configuration
option was added in addition to local settings files. When starting TESTAR
through a CLI, the configuration can be passed on as parameters. This way any
configuration setting can be overwritten through CLI, also disabling the GUI.
This feature makes it easier to put TESTAR configuration into the settings of
the CI job that starts TESTAR execution and change it from the CI tool.

4.2 Supporting SUTs with Multiple GUI Processes

By default, the execution of a SUT is started up by TESTAR using the path that
contains the executable file, or in the case of web applications, by indicating the
browser executable with the desired web URL. In case of running the SUT on
Windows, first, we use this path to invoke a Windows function that will return
the process handle of the SUT process that allow us to obtain the identifier of
the SUT process, pid. However, to obtain the GUI state information (i.e., the
widget tree and all the widget properties) through the Windows Accessibility
API plugin, we need the window handle. To find the corresponding window han-
dle, we probe all the existing window handles that are children of the Windows
Desktop, to find the one that has the same pid as our SUT process.

The SUT in this case study, Posidonia, does not run in a single process.
Instead, it starts execution with two GUI related processes. Some elements of one
of these processes use warning pop-ups or lists of items. This prevented TESTAR
from recognizing all the widgets. Therefore, TESTAR had to be changed to deal
with SUTs that start with multiple GUI processes or launch new GUI handling
processes at run-time. When a SUT starts up multiple processes, we do not have
one main pid, but we have a list of pids (i.e., including the child pids of this main
pid). In such cases we need to iterate over all the elements in the list to be able
to get the GUI properties and information for each pid and merge them into one
widget tree.

Supporting multiple GUI processes improved TESTAR’s interaction with the
SUT of the case study, making it possible to obtain the GUI information of both
GUI handling processes. In addition to this, we also added a possibility to check
whether there are new running processes in the environment after launching the
SUT. If we find them, we save the pids. This way we are able to use different
Windows API functions to check whether the process pid of the window handle
that is in the foreground exists in our internal processes list. This makes it
possible to iterate and create a widget tree also for this new visible window
handle.

Deploying TESTAR for Remote Testing 551

Fig. 3. Integration of TESTAR through an API in a distributed environment

4.3 Distributed TESTAR Execution with a Remote API

In order to integrate TESTAR into the Posidonia CI test cycle, the next step was
to design a CI architecture [8,11] in which TESTAR can be invoked remotely
in a distributed manner. First, suitable technologies were required for the com-
munication between the: (1) CI server that launches the test execution, (2) the
server that contains TESTAR, and (3) the server that executes the SUT.

Thinking about future deployments and enabling TESTAR execution in a
test server environment, a Spring boot application was developed with an Apache
Tomcat servlet that provides an API for TESTAR settings. Prodevelop offered
the initial version of the API that was updated by the TESTAR developers
with other necessary requirements, such as new settings parameters for remote
login (instead of coding the user login inside the TESTAR Java protocol), and
additional configuration options for the initialization of the GUI state model
that is built during testing.

With the default implementation, the web API instance should be running in
the same directory as the TESTAR tool. Subsequently, when receiving a POST
request that is compatible with the TESTAR settings from the CI orchestrator,
the contents of the web parameters will be parsed into CLI instructions using
the configuration functionality described in 4.1. The flow of the invocation from
the CI pipeline is depicted in Fig. 3. The main steps of the functionality are:

1. Upon receiving a web POST request, Posidonia CI orchestrator will send the
desired configuration settings to run TESTAR. Only a couple of parameters
were needed in the request payload.

2. The remote API is running in the same directory with TESTAR binaries to
receive the requests and transform the parameters into a TESTAR configu-
ration that is executed through the CLI.

3. If all the parameters were correct, TESTAR execution will start and a
response will be sent back with the output information printed by TESTAR

552 F. P. Ricós et al.

on the CLI, which includes the test results, the path of the generated sequence
and a timestamp to indicate when the sequence began.

4. If more detailed information about any sequence is required, a request will
be sent indicating which sequence we want to obtain the resources from.

5. Then a response with the desired resources will be sent back.

4.4 Replay Mode

The objective of TESTAR Replay mode is to offer testers the possibility to
re-execute a sequence of actions that has already been executed. This allows
testers to verify and debug a sequence for which TESTAR reported finding a
failure during automated unattended execution. It is also possible to use this
mode to verify that a correct sequence of actions also does not throw any failure
in the new SUT versions. Alternatively, we can use it to show that, after a bug
fix, the sequence does no longer produce the failure.

A new sequence is started when TESTAR starts the SUT, and executed
actions are saved in a Java object stream of the ongoing sequence every time
TESTAR executes an action. Information about which action was executed is
ready to be replayed, and the state of the SUT does not have to be used for
deriving and selecting an available action. The discovered issue of the Replay
mode was that TESTAR was not verifying if the SUT is changing between the
desired states that we want to follow again by replaying a sequence.

To improve the Replay mode, the information related to the widget in which
the action was executed and about the SUT states found, should be stored in
the object stream associated with the action executed.

4.5 Output Results and the Structure of TESTAR Logs

The various logs and resources created by TESTAR could offer a large amount
of information about the different GUI elements detected by TESTAR in the
different states that conform the SUT. However, these files were not stored in
a suitable structure for the case study. All the resources were stored in their
corresponding directory (logs, sequences, HTML reports, screenshots), but they
were stored incrementally according to the sequence number without taking into
account the execution of TESTAR. With this structure the objective of synchro-
nizing Prodevelop and TESTAR logs could not be achieved, and therefore, it had
to be changed.

The solution was the creating an index log and restructuring the output direc-
tories according to the timestamp in which TESTAR was launched, in addition
to the sequence number. This index can then be used by Posidonia every time it
needs to obtain GUI information from TESTAR logs. Using its own logs and its
own timestamps, Posidonia will filter the desired sequence in the TESTAR index
and will be able to obtain the resource path with all the required information.

In Fig. 4 we can see that Posidonia creates its own logs based on its internal
state. If an error occurs, a timestamp will be used to find the matching event
from the TESTAR index log to obtain all existing resources and verify which
front-end GUI action produced the back-end error.

Deploying TESTAR for Remote Testing 553

Fig. 4. Posidonia and TESTAR Logs Structure

5 Results

When doing academia-industry collaborations, there are several types of results.
On the one hand, the academic tools have improved, they have successfully been
adopted in an industrial context, and new ideas are generated for future research.
On the other hand, the academic results are validated in an industrial context,
and data shows that this improves the quality of the testing practices in the
company. Naturally, our goal was to achieve all of these, but unfortunately the
second part was not entirely achievable.

Due to various circumstances, the SUT Posidonia evolved into “maintenance
only” phase, and Prodevelop decided not to make any changes to their existing
testing processes because there are hardly any changes to the SUT anymore.
This meant that, unfortunately, we could not really evaluate the performance of
TESTAR in a real CI environment.

To try and get some data, we simulated a test with Posidonia by running
TESTAR during 4 nightly builds for 12 h with random action selection protocol
and a configuration of 30 sequences of 200 actions each night. Unfortunately, the
SUT did not change in between, so the outcome of the runs could only differ due
to the randomness of TESTAR. The runs showed that the CLI adaptions, the
detection of multiple processes and the distributed execution did not fail during
long unattended runs.

This outcomes of the test runs were:

– a total of 24000 actions in 120 test sequences
– 15 sequences resulting in suspicious titles (all found during the first run)
– 6 sequences resulting in unexpected close (all found during the first run)
– 0 sequences resulting in unresponsiveness

Analyzing these faulty sequences using the HTML report revealed that:

– 12 of the found suspicious titles-failures all lead back to a database connection
error in Posidonia when TESTAR executed actions related to querying a port
registry.

554 F. P. Ricós et al.

– the other 3 suspicious titles-failures lead to another database connection error
in Posidonia trying to generate and obtain the expedient of a port activity.

– the 6 unexpected close-failures were all false positives related to the fact that
TESTAR tries to bring the SUT to the foreground.

The two errors that were found executed different database requests, and
both were related with an error in the Posidonia database connection. Prodevelop
was aware of these glitches in the software, but decided not to fix them.

To validate the log synchronization, TESTAR and Posidonia logs were com-
pared to check that the failure sequences found by TESTAR could be mapped to
the internal error-logs from Posidonia. The mapping was found correctly and the
names of the methods and classes that provoked the exception in Posidonia were
meaningful in respect to the properties of the web elements on which the actions
were executed. However, there was a delay of 5–10 s between timestamps. This
is attributed to the time needed for the internal process to represent and detect
the data at GUI level.

The mapping did not only help to verify the synchronization of errors after
the execution of a sequence, but also motivated us to investigate the possibility
of synchronizing TESTAR with other possible internal logs in order to find a
way to improve the action selection based on the available internal methods.

6 Academia-Industry Collaboration

The fact that we could not validate the work completely in a real environment
made us reflect again about the academia-industry collaboration. What went
wrong here? Why did we find out that the company had stopped active develop-
ment of the system we planned to test when we were ready with the adjustments
to our tool to support their environment?

A myriad of articles [5,12,13] have been written with lessons learned from
technology transfer. A simple Internet search with keywords such as university
companies, academia industry, collaboration, cooperation, etc, will result in a
massive number of hits discussing the issue. Looking at the factors mentioned
in the literature, we had them covered (at least that is what we thought):

– we had funding through an European research project,
– that gave us the possibility to have regular meetings,
– as well as the approval and commitment of the management to do the study
– some practitioners at the company had been previously employed at a uni-

versity, so we had their support and a collaboration champion on site
– the objectives of this collaboration were defined to address both the needs

from academia as well as that of the company
– we worked in agile sprints due to the nature of the funded research project
– we allowed solutions to emerge from the needs of the company (e.g., the log

synchronization, the multiple processes, the distributed execution) that were
added to TESTAR to fulfill the requirements of the company)

Deploying TESTAR for Remote Testing 555

Academics about industry: Industry about academics:

- think all problems are solved by
increased ROI
- keep no track of data
- talk lots of waffle
- are short term focused
- desperately need our solutions
but do not (want to) understand
this

- are single focused
- have no eye for application
- are stuck in theory
- cannot write a catchy story
- have no sense of urgency
- only want to write papers
- work with you for the funding but will not
really give you a solution

Fig. 5. Preconceptions industry and academia have about each other

– a team of academics was enthusiastic and committed to contribute to the
industry needs and had previous experience with working together with sim-
ilar companies

We started a discussion round with the involved people to figure out what
went wrong during the process that lead us to this situation and distill lessons
learned for the next time.

We found out that it was mainly the preconceptions industry and academia
have about each other, sometimes without even knowing it. These hindered the
communication. Everybody thought we were on the same track, but we were
not. Many of the preconceptions we detected are in Fig. 5. While the academics
thought the company really needed their tool and because of that were working
on the case study, the practitioners actually thought the academics only wanted
to try this out for the sake of the project on some industrial system and so they
provided us one. They were not really looking ahead to the future where the
solution would be really used (before the system would go into maintenance).

Successful innovation transfer is about effective communication and emo-
tional intelligence. Both soft skills should receive more attention in computer
science curricula.

7 Summary, Conclusions and Future Work

We have presented a case-based evaluation of the academic TESTAR tool on
the industrial SUT Posidonia. In order to do this, we integrated TESTAR into
the existing CI pipeline of Prodevelop to automatically test Posidonia when the
release cycle required it.

The results of this study are threefold. First, TESTAR has been extended
with five new valuable features that will be useful also for other test environments
(i.e., CLI invocation, multiple processes, distributed testing, replay mode and log
synchronization). Second, it was shown to be a useful complement to the existing
testing practices and find failures. Third, we learned some lessons on what went
wrong during our seemingly perfect collaboration.

556 F. P. Ricós et al.

Although the collaboration was not without problems, both parties have
shown mutual effort in understanding the cause of the problems with the intent
to improve. Both parties are currently researching new ways to collaborate and
improve their tools. Prodevelop has started the development of a new web appli-
cation where modern web frameworks and technologies will be used. We intend
to continue collaborating in this project. Having already integrated the TESTAR
tool into a similar CI environment, the future work will additionally focus on:

1. Improving the visualization of HTML reports. Prodevelop already gave some
initial proposals to improve the structure and aesthetic design of the infor-
mation that TESTAR tool is currently generating.

2. Improving test oracles. In addition to searching for generic suspicious titles,
such as error, exception, warning, and HTML error codes like 404, 40X, etc. at
GUI level, we aim to define and analyze the usefulness of preparing TESTAR
oracles more focused at the web level.

3. Evaluating the recently developed TESTAR functionality for automatically
learning GUI state models capturing all the information found in the SUT.

4. Use these state models to optimize the action selection strategies, to auto-
matically measure the GUI coverage, to find the shortest path to reproduce
found failures, or to compare two state models from different versions of the
same SUT to automatically detect changes at the GUI level.

Acknowledgment. This work has been funded through the ITEA3 TESTOMAT
project (www.testomatproject.eu), the EU H2020 DECODER project (www.decoder-
project.eu), the EU H2020 iv4XR project (iv4xr-project.eu) and the ITEA3 IVVES
project (ivves.weebly.com).

References

1. Aho, P., Vos, T.: Challenges in automated testing through graphical user interface.
In: 2018 IEEE International Conference on Software Testing. Verification and Val-
idation Workshops (ICSTW), pp. 118–121. IEEE Computer Society, Los Alamitos,
April 2018

2. Aho, P., Vos, T.E.J., Ahonen, S., Piirainen, T., Moilanen, P., Ricos, F.P.: Contin-
uous piloting of an open source test automation tool in an industrial environment.
Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD) 1–4 (2019)

3. Bauersfeld, S., de Rojas, A., Vos, T.E.J.: Evaluating rogue user testing in industry:
an experience report. In: 2014 IEEE Eighth International Conference on Research
Challenges in Information Science (RCIS), pp. 1–10, May 2014

4. Bauersfeld, S., Vos, T.E.J., Condori-Fernández, N., Bagnato, A., Brosse, E.: Eval-
uating the TESTAR tool in an industrial case study. In: 2014 ACM-IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement, ESEM
2014, Torino, Italy, 18–19 September 2014, p. 4 (2014)

5. Beckman, K., Coulter, N., Khajenoori, S., Mead, N.R.: Collaborations: closing the
industry-academia gap. IEEE Softw. 14(6), 49–57 (1997)

6. Coppola, R., Ardito, L., Torchiano, M.: Fragility of layout-based and visual GUI
test scripts: an assessment study on a hybrid mobile application. In: Proceedings

www.testomatproject.eu
www.decoder-project.eu
www.decoder-project.eu
http://iv4xr-project.eu
http://ivves.weebly.com

Deploying TESTAR for Remote Testing 557

of the 10th ACM SIGSOFT International Workshop on Automating TEST Case
Design, Selection, and Evaluation, A-TEST 2019, pp. 28–34. ACM, New York
(2019)

7. Chahim, H., Duran, M., Vos, T.E.J., Aho, P., Condori Fernandez, N.: Scriptless
testing at the GUI level in an industrial setting. In: Dalpiaz, F., Zdravkovic, J.,
Loucopoulos, P. (eds.) RCIS 2020. LNBIP, vol. 385, pp. 267–284. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-50316-1 16

8. Fowler, M.: Continuous integration (2006). https://www.martinfowler.com/
articles/continuousIntegration.html. Accessed 12 Dec 2019

9. Martinez, M., Esparcia, A.I., Rueda, U., Vos, T.E.J., Ortega, C.: Automated local-
isation testing in industry with test∗. In: Wotawa, F., Nica, M., Kushik, N. (eds.)
ICTSS 2016. LNCS, vol. 9976, pp. 241–248. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47443-4 17

10. Meyer, M.: Continuous integration and its tools. Softw. IEEE 31, 14–16 (2014)
11. O’Connor, R.V., Elger, P., Clarke, P.M.: Continuous software engineering: a

microservices architecture perspective. J. Softw.: Evol. Process. 29(11), e1866
(2017)

12. Rovegard, P., et al.: The success factors powering industry-academia collaboration.
IEEE Softw. 29(02), 67–73 (2012)

13. Sandberg, A., Pareto, L., Arts, T.: Agile collaborative research: action principles
for industry-academia collaboration. IEEE Softw. 28(4), 74–83 (2011)

14. Vos, T.E.J., Kruse, P.M., Condori-Fernández, N., Bauersfeld, S., Wegener, J.: TES-
TAR: tool support for test automation at the user interface level. Int. J. Inf. Syst.
Model. Des. 6(3), 46–83 (2015)

15. Wieringa, R., Daneva, M.: Six strategies for generalizing software engineering the-
ories. Sci. Comput. Program. 101, 136–152 (2015). Towards general theories of
software engineering

https://doi.org/10.1007/978-3-030-50316-1_16
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://doi.org/10.1007/978-3-319-47443-4_17
https://doi.org/10.1007/978-3-319-47443-4_17

A Formal Model of the Kubernetes
Container Framework

Gianluca Turin1,2(B), Andrea Borgarelli2(B), Simone Donetti2(B),
Einar Broch Johnsen1(B) , Silvia Lizeth Tapia Tarifa1(B) ,

and Ferruccio Damiani2(B)

1 Department of Informatics, University of Oslo, Oslo, Norway
{gianlutu,einarj,sltarifa}@ifi.uio.no

2 Department of Computer Science, University of Turin, Turin, Italy
andrea.borgarelli@edu.unito.it,

{simone.donetti,ferruccio.damiani}@unito.it

Abstract. Loosely-coupled distributed systems organized as collections
of so-called cloud-native microservices are able to adapt to traffic in very
fine-grained and flexible ways. For this purpose, the cloud-native microser-
vices exploit containerization and container management systems such as
Kubernetes. This paper presents a formal model of resource consump-
tion and scaling for containerized microservices deployed and managed
by Kubernetes. Our aim is that the model, developed in Real-Time ABS,
can be used as a framework to explore the behavior of deployed systems
under various configurations at design time—before the systems are actu-
ally deployed. We further present initial results comparing the observed
behavior of instances of our modeling framework to corresponding obser-
vations of real systems. These preliminary results suggest that the mod-
eling framework can provide a satisfactory accuracy with respect to the
behavior of distributed microservices managed by Kubernetes.

1 Introduction

Software that was considered scalable yesterday, may now be perceived as inflex-
ible and overly entangled compared to the suites of so-called microservices that
are today widely used [4]. Microservices are loosely coupled, independently
deployed, cloud-native small services [26]. Kubernetes [16] is a framework to
resiliently run distributed systems built from such microservices; it takes care
of scaling and failover for the application, provides deployment patterns, service
discovery, load balancing and other development-related functionalities.

The underlying technology for orchestrating microservices with Kubernetes,
is containerization [11]. Containers encapsulate a microservice environment,
abstracting details of machines and operating systems from the application

Supported by the Research Council of Norway through the project ADAPt: Exploit-
ing Abstract Data-Access Patterns for Better Data Locality in Parallel Processing
(www.mn.uio.no/ifi/english/research/projects/adapt/).

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 558–577, 2020.
https://doi.org/10.1007/978-3-030-61362-4_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_32&domain=pdf
http://orcid.org/0000-0001-5382-3949
http://orcid.org/0000-0001-9948-2748
http://orcid.org/0000-0001-8109-1706
https://www.mn.uio.no/ifi/english/research/projects/adapt/
https://doi.org/10.1007/978-3-030-61362-4_32

A Formal Model of the Kubernetes Container Framework 559

developer and the deployment infrastructure. Well-designed containers and con-
tainer images are scoped to a single microservice, such that managing microser-
vices means managing containers rather than machines. Thus, containerization
enables a shift from machine-oriented to application-oriented orchestration of a
system’s deployment by managing containers to minimize the downtime for any
deployed microservice, even when the system is flooded with requests.

In this paper, we develop a formal model of resource consumption and scaling
for containerized microservices deployed and managed by Kubernetes. Although
this model abstracts from many aspects of Kubernetes (e.g., self-healing, roll-
outs, rollbacks, and storage orchestration), it already allows system deployment
under several configurations to be explored at the modeling level, before the
system is actually deployed. Our objective with this work is to develop a mod-
eling framework which can help the developer in finding a deployment strategy
for a microservice-based system which meets the system’s performance require-
ments. We aim to facilitate the comparison of different deployment strategies
on a highly configurable and executable model. Although not addressed in this
paper, the formal model can also be used to verify liveness and safety properties
for workflows deployed as microservices with Kubernetes.

The Kubernetes model has been developed using Real-Time ABS [6,22], a
formal executable modeling language targeting distributed and cloud-based sys-
tems. We present a preliminary validation of our work by comparing results
obtained with the Kubernetes model to observations of a real system running on
HPC4AI [3], a cluster for deploying high-performance applications. The results
of this comparison suggest that the model-based analysis of an application’s
deployment complies with the observed performance of its actual deployment.

The main contributions of this paper can be summarized as follows:

– Formalization: We develop a succinct formal executable model of Kuber-
netes, a state-of-the-art management framework for monitoring resources con-
sumption and scalability of microservices;

– Configurable modeling framework: The developed Kubernetes model
can be configured to different client workloads and to different microservices
running in parallel and affecting each others performance. By means of sim-
ulations, system administrators can easily compare how different parameter
configurations affect the performance of their deployed microservices at the
modeling level;

– Evaluation: The proposed modeling framework is validated by comparing
an instance of the framework, modeling a real system deployed using Kuber-
netes, to the modeled system. We consider several scenarios in which different
workloads will trigger the need for automatic autoscaling. The results sug-
gest that our modeling framework can provide a satisfactory accuracy with
respect to the behavior of real systems.

Paper Overview. Section 2 introduces microservices, Kubernetes and Real-Time
ABS. Section 3 presents the developed Kubernetes model. Section 4 discusses
how the model was validated. Section 5 surveys related work and Sect. 6 con-
cludes the paper.

560 G. Turin et al.

2 Background

2.1 Microservices, Containers and Their Management
via Kubernetes

Microservices [26] are small basic services which are easy to adapt to distributed
hardware. They stem from service-oriented architectures (SOA) [14] and service-
oriented computing (SOC) [17]. Microservices are so-called cloud native; i.e.,
they are built to run scalable applications on cloud infrastructure. An appli-
cation consists of a collection of loosely coupled microservices. This decoupling
makes them easier to develop, deploy, scale, monitor and maintain in isolation.
Microservice architectures facilitate scalability since new instances of the same
microservice can be launched to split the workload locally, without scaling the
overall service.

Containers encapsulate execution environments for microservices, abstract-
ing from details of physical and virtual machines and operating systems from the
application developer and the deployment infrastructure. Containers have been
proposed instead of heavy VMs, and raise the level of abstraction from running
a service on virtual hardware to running it using logical resources. Containers
keep the advantages of virtualization such as modularity, but the unit of deploy-
ment is the container and not a full VM, which opens for better utilization of
resources. Containers offer better scalability and maintainability because they
can be added or updated easily, such that resources can be shared in clusters to
which containers can be added or removed on-demand.

By encapsulating microservices in containers, the services can be monitored
with respect to service performance and resource utilization. In contrast to VMs,
which run all components, including an operating system on top of virtualized
hardware, containers are lightweight but still keep their own filesystem, CPU,
memory, and process space similar to a VM. However, they are decoupled from
the underlying infrastructure, and additional containers can be created at exe-
cution time rather than only at deployment time. They are also portable across
clouds and OS distributions [15], therefore they require much less space and have
faster booting time.

Kubernetes is an open-source system1 for managing containerized applications
across multiple hosts. It provides basic mechanisms for deployment, mainte-
nance, and scaling of applications. Figure 1 depicts a logical representation of
a Kubernetes instance in a public or private cloud. Among all the components
implementing its functionalities, in the rest of this section, we briefly introduce
the main Kubernetes components related to resource management, load balanc-
ing and autoscaling2 (for further details, see [16]).

Pods are the basic scheduling unit in Kubernetes. They are high-level
abstractions for groups of containerized components. A pod consists of one or
more containers that are guaranteed to be co-located on the host machine and
1 https://github.com/kubernetes/kubernetes/.
2 https://kubernetes.io/docs/concepts/.

https://github.com/kubernetes/kubernetes/
https://kubernetes.io/docs/concepts/

A Formal Model of the Kubernetes Container Framework 561

Worker Node-1

Pod

Container

Container

Resources status:
CPU: 2300/4000
Memory: 1.5G/4G

Pod

Container

Container

Master Node

API server

VM VM

Public or private cloud

API pods

Monitor

Dashboard

Proxy
Cloud

controller

Scheduler

Controller managers

LoadBalancers

Monitors

Autoscalers

OS OS

Worker Node-N

Resources status:
CPU: 3200/4000
Memory: 1.9G/4G

Pod

Container

Container

VM

API pods

Monitor

Proxy

OS

Pod

Container

Pod

Container

Pod

Container

Pod

Container

Fig. 1. A logical representation of Kubernetes components in a generic cloud infras-
tructure. The colors mark services deployed on the cluster, their controller managers
reside on the master and their pods are distributed among the workers. (Color figure
online)

can share resources. A pod is deployed according to its resource requirements
and has its own specified resource limits. For two or more pods to be deployed
in the same node, the sum of the minimum amounts of resources required for
the pods needs to be available in the node. All pods have unique IP address,
which allows applications to use ports without the risk of conflict. Within the
pod, containers can reference each other directly, but a container in one pod
cannot address a container in another pod without passing through a reference
to a service; the service then holds a reference to the target pod at the specific
pod IP address. The IP addresses of pods are ephemeral; i.e., they are reassigned
on pod creation and system boot.

Services represent components that act as basic internal load balancers and
ambassadors for pods. A service groups together a logical collection of pods that
perform the same function and presents them as a single entity. This allows
the Kubernetes framework to deploy a service that can keep track of and route
to all the back-end containers of a particular type. Internal consumers only
need to know about the stable endpoint provided by the service. Meanwhile,
the service abstraction enables the scaling or replacing of back-end work units
as necessary. The IP address of a service remains stable regardless of changes
to the pods to which it routes requests. By deploying a service, the associated
pods gain discoverability, which simplifies container designs. Whenever access
to one or more pods needs to be provided to another application or to external
consumers, a service can be configured. Although services, by default, are only
available using an internally routable IP address, they can be made available
outside of the cluster.

Autoscalers are responsible for ensuring that the number of pods deployed
in the cluster matches the number of pods in its configuration. There is one

562 G. Turin et al.

autoscaler for each service, managing a group of identical, replicated pods which
are created from pod templates and can be horizontally scaled. Autoscalers are
processes that refer to a pod template and control parameters to scale identi-
cal replicas of a pod horizontally, i.e. by increasing or decreasing the number of
running copies. Thus, autoscalers facilitate load distribution and increase avail-
ability natively within Kubernetes.

Nodes in a cluster are each given a role (master or worker) within the
Kubernetes ecosystem. One node functions as the master node, it implements a
server that acts as a gateway and controller for the cluster by exposing an API
for developers and external traffic. It carries out scheduling, and orchestrates
communication between other components. The master node acts as the primary
point of contact with the cluster and is responsible for most of the centralized
logic that Kubernetes provides. The workers host pods and form the larger part
of a Kubernetes cluster. The worker nodes have explicit resource capabilities,
which are known by the system. These are given as a set of labels attached to a
worker node to specify its version, status and particular features.

Scheduler is in charge of assigning pods to specific nodes in the cluster.
The scheduler matches the operating requirements of a pod’s workload to the
resources that are available in the current infrastructure environment, and places
pods on appropriate nodes. The scheduler is responsible for monitoring the avail-
able capacity on each node to make sure that workloads are not scheduled in
excess of the available resources. The scheduler needs to know the total capacity
of each node as well as the resources already allocated to existing workloads on
the nodes.

2.2 Real-Time ABS

The abstract behavioral specification language (ABS)3 is an actor-based, object-
oriented modeling language targeting concurrent and distributed systems and
supports the design, verification, and execution of such systems [18]. ABS has
a Java-like syntax and a concurrency model, based on active objects, which
decouples communication and synchronization using asynchronous method calls,
futures and cooperative scheduling [7]. ABS is an open-source research project.4

The functional layer of ABS is used to model computations on the internal
data of objects. It allows designers to abstract from the implementation details
of imperative data structures at an early stage in the software design. The func-
tional layer combines parametric algebraic data types (ADTs) and a simple
functional language with case distinction and pattern matching. ABS includes a
library with predefined datatypes such as Bool, Int, String, Rat, Float, Unit, etc.
It also has parametric datatypes such as lists, sets and maps. All other types
and functions are user-defined.

The imperative layer of ABS allows designers to express communication and
synchronization between active objects. In the imperative layer, threads are

3 www.abs-models.org.
4 ABS can be found on GitHub at github.com/abstools/abstools.

http://www.abs-models.org
https://github.com/abstools/abstools

A Formal Model of the Kubernetes Container Framework 563

encapsulated within COGs [18,28] (concurrent objects groups). Threads are cre-
ated automatically at reception of a method call and terminated after the exe-
cution of the method call is finished. ABS combines active (with a run method
which is automatically activated) and reactive behavior of objects by means of
cooperative scheduling: Inside COGs threads may suspend at explicitly defined
scheduling points, after which control may be transferred to another thread. Sus-
pension allows other pending threads to be activated. The suspending thread does
not signal any other particular thread, instead the selection of the next thread to
be executed is left to the scheduler. Between these scheduling points, only one
thread is active inside a COG, which means that race conditions are avoided.

Real-Time ABS [6] extends ABS with support for the modeling and manip-
ulation of dense time. This extension allows the logical execution time to be
represented inside methods. The local passage of time is expressed in terms of
duration statements (which constrain time advance, similar to guards in, e.g.,
UPPAAL [23] and Real-Time Maude [27]). To express dense time, we consider
the two types Time and Duration Real-Time ABS provides. Time values capture
points in time as reflected on a global clock during execution. In contrast, finite
durations reflect the passage of time as local timers over time intervals.

ABS is supported by a range of analysis tools (see, e.g., [1]); for the analyses
in this paper, we are using the simulation tool which generates Erlang code.

3 A Kubernetes Model in Real Time ABS

Service
Service

Service

Infrastructure

Endpoint

Pod
Pod

Pod
Node : node

Node
Node

Node
Node

Scheduler

LoadBalancer

Autoscaler

Client

invokeService(request)

getPod()

processRequest(request)

consumeCpu(amount)
deployPod(pod)

deployPod(pod)

allocateMemory(amount)

add / remove (pod)

create /
delete

Fig. 2. The architecture of the modeled Kuber-
netes cluster

In this section, we present the
Real-Time ABS model of Kuber-
netes, with a focus on resource
management and autoscaling, by
modeling the Kubernetes com-
ponents involved in the deploy-
ment of a service. We aim for the
model to be executable and to
faithfully reproduce the behavior
of Kubernetes. The precision of
this model determines the pre-
dictive capabilities of the simu-
lations of real world scenarios.

Figure 2 shows the structure
of a modelled cluster. A ser-
vice is composed from its pods,
an endpoint, a load balancer
and an autoscaler. Clients invoke
the service by sending a request
to the endpoint which gets a
selected pod using the load balancer. A pod is deployed on a node and consumes
its resources while processing a request. The scheduler manages the number of

564 G. Turin et al.

pods for the service and calls the autoscaler to deploy new pods. In the remainder
of this section, we discuss some selected aspects of this model.5

3.1 Modeling of Pods

A service is carried out by its pods, for simplicity in the proposed model pods
are assumed to consist of a single container (a pod with many containers would
correspond to a pod running one container which consumes the sum of their con-
sumed resources). They are deployed onto nodes whose resources are consumed
while processing requests.

Figure 3 shows the model of a pod using the PodObject class: a PodObject is
instantiated by passing the configuration parameters which are serviceName, id,
compUnitSize, cpuRequest, cpuLimit, monitor (used by the method processRequest
in Fig. 4) and insufficientMemCooldown. After the underlying node is set by the
setNode method, the refreshAvailableCpu cycle starts. The PodObject class has a
custom scheduler which executes refreshAvailableCpu as the first method of every
time interval. Note that the auxiliary function reset availCpu scheduler, which is
set as custom scheduler of the COG by the expression inside square brackets
(Fig. 3 Line 1), ensures that the scheduler gives priority to the execution of
method refreshAvailableCpu and guarantees that every consumed CPU unit is
counted in the right time interval. If availableCpu falls to zero the pod has reached
its cpuLimit meaning no more CPU will be consumed within that time interval.
The allocateMemory and releaseMemory methods manage memory allocation and
deallocation on the Node, they are both called in the processRequest method. If
the Node’s free memory is not sufficient, the allocateMemory method waits for
insufficientMemCooldown time before retrying.

Figure 4 shows processRequest method (called by clients) in a PodObject,
which models resource consumption while processing a request. In our model, a
Request is modeled as a pair of CPU and memory costs. The method first stores
information about the CPU and memory cost, a time stamp started, for the
calling time of a request, and a deadline for the request to be processed. At lines
2 and 3 the required memory is allocated, the request cost is then consumed one
step at a time in the loop of lines 6–17. The size of the step is compUnitSize and
is set in the pod configuration, which determines the amount of CPU the pod
can consume in a round, having the same compUnitSize for every pod achieves
fair CPU scheduling on a node. If the Node runs out of CPU resources, the
consumption is suspended (consumeCpu sets the variable blocked to True) for
that time interval, it is then resumed in the next time interval after the pod’s
monitor is updated. At line 9 availableCpu is checked, if it is equal to zero the
pod limit is reached and no more cost is consumed within that time interval.
Once the request cost is entirely consumed, at line 19 the previously allocated
memory is released and at line 21 the total time spent in the process is computed
subtracting started to the actual time. Line 22 shows how the spentTime is then
compared to the deadline This approximates the quality of service related to the

5 The full model is available at https://doi.org/10.5281/zenodo.3975006.

https://doi.org/10.5281/zenodo.3975006

A Formal Model of the Kubernetes Container Framework 565

Fig. 3. PodObject class

Fig. 4. Pod processRequest method

Fig. 5. ServiceLoadBalancer interface

566 G. Turin et al.

response time, separating served requests between successes and failures. The
passing of time is a consequence of the limited amount of available CPU on a
node in every time interval. As explained in Sect. 2.2, the value of time during
the model execution is managed by the functions provided by Real-Time ABS.

3.2 Modeling of Services

A service is invoked through its endpoint which provides the service reference for
the clients. As explained in Sec. 2.1, every service has its own load balancer that
chooses the pod to which the endpoint forwards the request. The load balancer’s
policy for work distribution between all the pods of the service is round robin.
Figure 5 shows the ServiceLoadBalancer interface of our model: getPod returns
the pod for forwarding a request, addPod and removePods add and remove pods
from the pods of the service, getPods returns the service’s available pods and
getConsumptions and getPodConsumptions return the total consumption and per
pod consumption values in the current time interval.

Like in a real Kubernetes installation, a service in our model is config-
urable. Several parameters are passed on service instantiation as PodConfig and
ServiceConfig. PodConfig specifies the CPU request and limit for the pods, the
cool-down time for insufficient memory and the computation unit size. The mem-
ory cool-down is the time awaited before retrying in case there’s not enough free
memory on the node. The computation unit size is the amount of cost computed
every time the pod is given the CPU. For example, if CompUnitSize for Service
A is 1 and for Service B is 2, the pods of Service B will execute twice the cost of
the pods of Service A every time they are scheduled. This allows control over the
CPU time scheduling, setting all unit sizes to the same amount will provide a
fair scheduling, while setting different values allows to set different priorities for
the pods. ServiceConfig specifies the initial number of pods, the minimum and
maximum number of pods for the service and the configuration of the autoscaler.

3.3 Modeling of Autoscalers

Every service in our model has also its own Autoscaler which creates and deletes
pods. On service initialization it creates the specified starting number of pods
and then periodically checks the average load on the pods. In case the given
thresholds for scaling are reached, it creates or deletes pods accordingly. After
creating a pod the Autoscaler calls the Scheduler to deploy it on a node. Figure 6
shows the resize method of the Autoscaler, it fetches the average pod CPU con-
sumption ratio in the current time interval, waits for the next time interval to
apply the scaling, then starts over. The Autoscaler has its own configuration:
cycle period gives the frequency of resize execution, the thresholds for scaling
(percentages of requested CPU) up and down are modeled by downscaleThreshold
and upscaleThreshold and finally, downscalePeriod specifies how long a pod set
has to stay idle before shrinking. While scaling up is immediate as soon as the
threshold is hit, for scaling down the load is required to stay below the threshold
for a configurable period of time before any pod is deleted.

A Formal Model of the Kubernetes Container Framework 567

Fig. 6. ServiceAutoscaler resize method

3.4 Modeling of Nodes

The Kubernetes master node is not explicitly modeled, its functionalities are
implemented in the model logic, while Node models the Kubernetes worker node,
which has a given amount of resources (CPU and memory) to be consumed by
its running pods. CPU and memory capacities for a node are specified upon
node creation:

– CPU is refreshed every time interval, the total amount of computed costs on
a node in the time interval cannot exceed the node’s CPU capacity.

– Memory is time independent, it can be decreased and restored, it is decreased
when a pod starts the processing of a request and allocates memory cost on the
node memory. If there is enough free memory then it is decreased for the whole
computation time and the allocated amount is restored on request completion.
In case the free memory is insufficient, the request remains pending until
enough memory is available.

The available resources of the node are statically reserved when a pod is
scheduled. The amount of CPU required by the pod serves as discriminant for
the scheduler to find a suitable node. (This easily extends to matching over
multiple resource capabilities using the aforementioned label mechanism, which
we have left for future work.) Hence a node can be fully occupied while actually
idle, since there can be many pods deployed on it, but none is receiving requests.

3.5 Modeling of Scheduler

The Scheduler deploys pods on nodes. Figure 7 shows the deployPod method of
the Scheduler: it checks the pod CPU request and compares it to the available
CPU in the least busy node. If there is enough available CPU, the pod is sched-
uled on that node, otherwise it remains pending, to be scheduled in another time
interval.

568 G. Turin et al.

Fig. 7. Scheduler deployPod method

4 Validating the Model

We report on initial experiments to assess the precision of our model with respect
to real microservices managed by Kubernetes.

4.1 Experimental Setup

We set up experiments in which we compare two simple scenarios of microservices
running on a cluster to simulations in our model.

HPC4AI. The experiments have been performed on the HPC4AI infrastruc-
ture. HPC4AI [3] is a centre on High-Performance Computing for Artificial Intel-
ligence at the University of Turin and the Polytechnic University of Turin, which
offers on-demand provisioning of AI and BDA cloud services to a heterogeneous
industrial community of Small-Medium Enterprises (SMEs) active in many dif-
ferent sectors and leaning towards Industry 4.0. The centre aims at an increas-
ingly connected ecosystem of devices that produce digital data of increasing
variety, volume, speed and volatility. To fully exploit its potential, the next gen-
eration of AI applications must embrace distributed High-Performance Comput-
ing (HPC) techniques and platforms, where computing and data management
capabilities of distributed HPC are readily and easily accessible on-demand to
data scientists, who are more used to perform their work locally on interactive
platforms. The centre is currently looking at using containerized microservices
for this purpose. The preliminary results of this paper contribute towards a mod-
eling framework to equip HPC4AI with deployment decisions for this complex
setup.

Simulations. We replicated two simple scenarios in the model, each simulating
the execution of a stress test on a microservice system deployed on the HPC4AI
cluster. The stress tests have been created with Apache Jmeter, a tool generating
traffic to test web services. To reproduce the same circumstances, we modeled
the cluster infrastructure and measured the load generated during the stress

A Formal Model of the Kubernetes Container Framework 569

test for any type of service request. To this end, we represented stress tests as
waves of requests (see Figs. 8a and 10c). To reproduce the load of a wave, the
model instantiates a certain number of clients; by duplicating the number it will
simulate twice the load of the original wave.

We consider single workload and mixed workload scenarios. In the single
workload scenario the flow of requests is generated by three succeeding groups
of threads targeting the same service and running at different speed, such that
the central wave, with the highest load (see Fig. 8a) delivers twice the number of
requests than the first and the third. Simulating complicated stress tests requires
more measurements to be taken. In the mixed workload scenario we therefore
considered two services sharing the available resources and affecting each others
performance. In this setting, each service is targeted by a thread group generating
a certain load for the service.

To provide a baseline for the resource consumption of the model, we tuned the
model by stressing each service in isolation. After that, it is possible to simulate
mixed workloads. To generate a group of clients that reproduces a certain load in
the model, we needed to find the balance between the number and the cost of the
requests sent at any step. Here we decide also on the granularity of the model: a
large set of requests in the real system will be simulated in the model with few
costly ones, as done with batch processing. This will keep the granularity of the
simulations coarse, instead of fine-grained with many cheap requests, and will
allow us to run big workloads in the model in a short amount of time.

The duration of a time interval in the model is decided during the model
calibration, where the size of the waves in the requests determines the length of
the stress test on the cluster, and the granularity of the model the number of
time intervals of the simulation.

Experiments. We set up two experiments with a time interval corresponding
to 2 s.

Experiment 1. The purpose of Experiment 1 is to check the precision of the
modeling framework. We do this by running a single service stress test 10 min
long, in order to measure the model’s ability to reproduce Kubernetes autoscaling
while the service is processing requests and then compare the load experienced
on the cluster with the one seen in the simulation. In more detail, the cluster
setting was one service deployed and three nodes available with 4000 millicores
of CPU capacity each.

We start with one pod requiring 1000 millicores of CPU and limited to 2500.
The autoscaling threshold was set to 80% of the required CPU busy and the
downscale time was 300 s of inactivity. The load on the cluster has been gen-
erated with Jmeter:6 a group of 50 threads send requests with a given timing
for a three minutes, flooding the system with a wave. Then for the next three
minutes they generate requests at twice the speed (the second wave) before send-
ing the final requests again at their initial speed (see Fig. 8a). This stress test
6 https://jmeter.apache.org/.

https://jmeter.apache.org/

570 G. Turin et al.

has been replicated in the model by bulking clients up to reach the first wave
load, then twice that number of clients has been used to flood during the second
wave, and finally return to the initial amount of request in the third wave (see
Fig. 8c), to obtain the same total load in the simulation and real Kubernetes
deployment. The ABS code emulating the clients can be found in the repository
of the simulator along with the Jmeter stress test descriptor.7

Experiment 2. The purpose of Experiment 2 is to test the prediction ability
of the modeling framework. Namely, given the same load of requests of two
services to the model and the real system, can we predict the scaling behav-
ior of the real system? We run a second stress test 13 min long in a scenario
with the two services, where each service goes through variable load, so that we
can simulate scheduling and autoscaling in a resource-intensive scenario under
different configurations. The first service is the same as in Experiment 1 and
configured similarly; the second service has a different profile of resource con-
sumption, its pods require 1000 millicores of CPU and limited to 2500, but have
an upscale threshold of 95% and a downscale time of 300 s. The stress test load
can be divided into four phases and is different for both services: one uses the
same thread group as the first simulation, but inverting the load of the three
waves: it starts with a high load of requests, then reduces the load to half and
finally increases it again to the double. The load on the second service has been
calibrated separately, it starts low, turns high, then drops down again before
finishing with a demand that is much higher than the previous high traffic wave.

4.2 Results of the Experiments

Experiment 1. Figure 8 reports on the results of the first experiment. The load in
the real system, shown in Fig. 8a, triggers the scaling of pods, shown in Fig. 8b.
The approximated load in the model, shown in Fig. 8c, triggers the scaling of
pods, shown in Fig. 8d. The graphs suggest that the model is properly calibrated
and can reproduce the scalability scenario with reasonable accuracy.

Experiment 2. The results of the second experiment are shown in Figs. 10, 11
and 12. In this case we first reproduced the load in the Kubernetes model, based
on the measurements of the separate loads of the two services, then we executed
the model with the two services, potentially affecting each others performance,
and therefore affecting also the scalability of the services. Figure 10 shows the
result of this calibration.

We then tested different configurations of the model before doing the cor-
responding runs on the real cluster. This carried two main benefits: it lowered
the resources needed to test several configurations, and it emulated a real time
interval with few seconds of computation time.

7 https://github.com/giaku/abs-k8s-model.

https://github.com/giaku/abs-k8s-model

A Formal Model of the Kubernetes Container Framework 571

Time

(a) CPU load from Kubernetes dashboard

19:56 19:58 20:00 20:02 20:04
0
1
2
3

Time

P
od

s

(b) Number of pods in the real system.

0 50 100 150 200 250 300
0

1,250

2,500

Time (time intervals)

C
P
U

(m
il
li
co

re
s)

(c) The CPU load measured in the model.

0 50 100 150 200 250 300
0
1
2
3
4

Time (time intervals)

P
od

s

(d) Number of pods in the model.

Fig. 8. The results of the first experiment.

Service 1 Service 2
Calibration 80% 95%
Configuration 1 95% 80%
Configuration 2 95% 95%

Fig. 9. Upscale thresholds for Experiment 2.

We considered two differ-
ent configurations, changing the
upscale threshold for the services.
In the first configuration, shown
in Fig. 11, we obtained similar
graphs for the model and for the
real system. The yellow line rep-
resents the number of pods for the
first service, which stayed beneath 2 as a result of having a 95% scaling threshold,
the blue line represents the second service, which raised up to six with an upscale
threshold of 80%. In the second configuration, shown in Fig. 12, we tested 95%
as the threshold for the second service as well, its number of pod grew at most at
5 (blue line) both in the simulator and on the real cluster. Figure 9 summarizes
the different configurations.

572 G. Turin et al.

0 50 100 150 200 250 300 350
0

1,500
3,000
4,500
6,000

Time (time intervals)

C
P
U
(m

il
li
co

re
s)

(a) The CPU load measured in the model.

0 50 100 150 200 250 300 350
0

1

2

3

4

5

Time (time intervals)

P
od

s

(b) Number of pods in the model.

Time

(c) CPU load from Kubernetes dashboard.

13:10 13:12 13:14 13:16 13:18 13:20 13:22
0

1

2

3

4

5

Time

P
od

s

(d) Number of pods in the real system.

Fig. 10. Calibration for the mixed workload scenario of the second experiment. (Color
figure online)

5 Related Work

Cloud-Based Models in ABS. Whereas there are many cloud modeling languages
(see, e.g., [5]), this paper is part of a line of work on formal modeling of virtualized
systems in ABS. The perspective on virtualized systems we have taken, is to focus
on resource provisioning and quality-of-service, which typically affects the timing
behavior of systems on the cloud. The underlying technical idea is to introduce a
separation of concerns between resource-needs for different computational tasks,
and resource-provisioning in the infrastructure [20–22]. This approach has been

A Formal Model of the Kubernetes Container Framework 573

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

Time (time intervals)

P
od

s

(a) Required number of pods as predicted in the model.

13:30 13:32 13:34 13:36 13:38 13:40 13:42
0

1

2

3

4

5

6

Time

P
od

s

(b) Used number of pods as observed on the real system.

Fig. 11. Results for the first configuration, comparing the predicted need for pods in
the model the observed use of pods on the real cluster. (Color figure online)

successfully applied to different kinds of virtualization infrastructure, including
Amazon AWS [19], Hadoop YARN [25] and Hadoop Spark Streaming [24]. The
concurrency model of ABS, based on actors, has also been used for verification to
industrial case studies in a DevOps setting [1] and for parallel cost analysis [2], a
novel static analysis method related to parallelism and maximal span. The formal
model of Kubernetes presented in this paper differs from previous work in its
nested virtualization; i.e., the containerization of microservices lead to two levels
of book-keeping in the resource-sensitive architecture, corresponding to the pods
ond nodes of the Kubernetes framework. Furthermore, the notion of indirection
due to the service-concept and the auto-scaling groups add complexity compared
to previous work.

Optimization of Microservice Management. It has been shown that deployment
management can be formalized as finite state machines, such as the Aeolus [13]
and TOSCA-compliant deployment models [10], which can be adapted to for-
mally reason about the static deployment of microservices; i.e., to express com-
ponent resilience and static links between components. For example, the static
deployment of microservices can be encoded as a constraint problem [9]. This
work, which is based on Aeolus, takes an ABS model as its starting point. In
contrast to our work, the authors are not restricted to modelling and simulation
but are able to decide on optimal deployment. However, the optimization can

574 G. Turin et al.

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

Time (time intervals)

P
od

s

(a) Required number of pods as predicted in the model.

15:33 15:35 15:37 15:39 15:41 15:43 15:45
0

1

2

3

4

5

6

Time

P
od

s

(b) Used number of pods as observed on the real system.

Fig. 12. Results for the second configuration, comparing the predicted need for pods
in the model the observed use of pods on the real cluster.

only handle very limited forms of reconfiguration, and does not address dynamic
scaling as modelled in our work.

Testing Environments for Cloud-Based Services. In order to perform tests on
the real Kubernetes platform, we looked for a tool that allowed to simulate
multiple requests in parallel to the service and to simulate behavior that varies
over time. After a brief investigation about which tools are available on the
market (eg: Apache JMeter8, Locust9, Tsung10, etc.) we decided to use Apache
JMeter since it is an open-source tool, it is multiplatform, multiprotocol, it comes
with a simple GUI for configuration and to run the simulation from a shell, it
presents the simulation results in textual or graphical format. Apache JMeter is
used both by companies and in the scientific field to emulate traffic to network
services [8,12].

The most significant KPIs that we are looking for in order to evaluate the
service performance are the response time over time (which gives us an indication
about the quality of the offered service) and the number of requests per second
(to have an evaluation about the load our service undergoes).

8 https://jmeter.apache.org/.
9 https://locust.io/.

10 http://tsung.erlang-projects.org/.

https://jmeter.apache.org/
https://locust.io/
http://tsung.erlang-projects.org/

A Formal Model of the Kubernetes Container Framework 575

6 Conclusion and Future Work

In this paper, we present a formal model of resource consumption and scaling for
containerized microservices deployed and managed by Kubernetes. The model
focuses on how the deployment of such systems can behave under various con-
figurations to be explored at design time and abstract from other aspects of
Kubernetes such self-healing, rollouts, rollbacks, and storage orchestration. This
preliminary model and results contribute towards the development of a model-
ing framework which can help developers in finding a deployment strategy for a
microservice-based system which meets the system’s performance requirements.
The model is implemented in Real-Time ABS, it can be configured with differ-
ent client workloads and different microservices running in parallel and affecting
each others performance. The presented model can be used to explore different
configurations for loosely coupled microservices at design time.

In future work, we plan to extend the model with aspects related to resiliency
and reconfiguration of distributed and decoupled system, adding possible fail-
ures, volumes and stateful Kubernetes components. In particular, we plan to use
the resulting model to assess quality-of-service aspects of different configuration
choices by, e.g., predicting their response time and resource consumption. We
also plan to trace data movement within the cluster and predict how this may
affect the performance. We plan to validate such models using workloads col-
lected from hours, weeks or months of running real systems. We further plan to
investigate how such resiliency and reconfiguration can affect data access times
and patterns.

References

1. Albert, E., et al.: Formal modeling and analysis of resource management for cloud
architectures: an industrial case study using real-time ABS. Serv. Orient. Comput.
Appl. 8(4), 323–339 (2013). https://doi.org/10.1007/s11761-013-0148-0

2. Albert, E., Correas, J., Johnsen, E.B., Pun, K.I., Román-Dı́ez, G.: Parallel cost
analysis. ACM Trans. Comput. Logic 19(4), 31:1–31:37 (2018). https://doi.org/
10.1145/3274278

3. Aldinucci, M., et al.: HPC4AI: an AI-on-demand federated platform endeavour. In:
Proceedings of 15th International Conference on Computing Frontiers (CF 2018),
pp. 279–286. ACM (2018). https://doi.org/10.1145/3203217.3205340

4. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
DevOps: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52
(2016). https://doi.org/10.1109/MS.2016.64

5. Bergmayr, A., et al.: A systematic review of cloud modeling languages. ACM Com-
put. Surv. 51(1), 22:1–22:38 (2018). https://doi.org/10.1145/3150227

6. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: User-
defined schedulers for real-time concurrent objects. Innov. Syst. Softw. Eng. 9(1),
29–43 (2013). https://doi.org/10.1007/s11334-012-0184-5

7. de Boer, F.S., et al.: A survey of active object languages. ACM Comput. Surv.
50(5), 76:1–76:39 (2017). https://doi.org/10.1145/3122848

https://doi.org/10.1007/s11761-013-0148-0
https://doi.org/10.1145/3274278
https://doi.org/10.1145/3274278
https://doi.org/10.1145/3203217.3205340
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1145/3150227
https://doi.org/10.1007/s11334-012-0184-5
https://doi.org/10.1145/3122848

576 G. Turin et al.

8. Brady, J.F., Gunther, N.J.: How to emulate web traffic using standard load testing
tools. CoRR abs/1607.05356 (2016). http://arxiv.org/abs/1607.05356

9. Bravetti, M., Giallorenzo, S., Mauro, J., Talevi, I., Zavattaro, G.: Optimal and
automated deployment for microservices. In: Hähnle, R., van der Aalst, W. (eds.)
FASE 2019. LNCS, vol. 11424, pp. 351–368. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-16722-6 21

10. Brogi, A., Canciani, A., Soldani, J.: Modelling and analysing cloud application
management. In: Dustdar, S., Leymann, F., Villari, M. (eds.) ESOCC 2015. LNCS,
vol. 9306, pp. 19–33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24072-5 2

11. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, Omega, and
Kubernetes. Queue 14(1), 70–93 (2016). https://doi.org/10.1145/2898442.2898444

12. Curiel, M., Pont, A.: Workload generators for web-based systems: characteristics,
current status, and challenges. IEEE Commun. Surv. Tutorials 20(2), 1526–1546
(2018). https://doi.org/10.1109/COMST.2018.2798641

13. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Aeolus: a component model
for the cloud. Inf. Comput. 239, 100–121 (2014). https://doi.org/10.1016/j.ic.2014.
11.002

14. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall, Upper Saddle River (2005)

15. Fazio, M., Celesti, A., Ranjan, R., Liu, C., Chen, L., Villari, M.: Open issues in
scheduling microservices in the cloud. IEEE Cloud Comput. 3(5), 81–88 (2016).
https://doi.org/10.1109/MCC.2016.112

16. Hightower, K., Burns, B., Beda, J.: Kubernetes: Up and Running Dive into the
Future of Infrastructure. O’Reilly, Newton (2017)

17. Huhns, M.N., Singh, M.P.: Service-oriented computing: key concepts and princi-
ples. IEEE Internet Comput. 9(1), 75–81 (2005). https://doi.org/10.1109/MIC.
2005.21

18. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

19. Johnsen, E.B., Lin, J.-C., Yu, I.C.: Comparing AWS deployments using model-
based predictions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol.
9953, pp. 482–496. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47169-3 39

20. Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.: Modeling deployment decisions for
elastic services with ABS. In: Behjati, R., Elmokashfi, A. (eds.) Proceedings of
First International Workshop on Formal Methods for and on the Cloud. Electronic
Proceedings in Theoretical Computer Science, vol. 228, pp. 16–26. Open Publishing
Association (2016). https://doi.org/10.4204/EPTCS.228.3

21. Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.: A formal model of cloud-deployed
software and its application to workflow processing. In: Begusic, D., Rozic, N.,
Radic, J., Saric, M. (eds.) Proceedings of 25th International Conference on Soft-
ware, Telecommunications and Computer Networks (SoftCOM 2017), pp. 1–6.
IEEE (2017). https://doi.org/10.23919/SOFTCOM.2017.8115501

22. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architec-
tures and resource consumption in timed object-oriented models. J. Logical Alge-
braic Methods Program. 84(1), 67–91 (2015). https://doi.org/10.1016/j.jlamp.
2014.07.001

http://arxiv.org/abs/1607.05356
https://doi.org/10.1007/978-3-030-16722-6_21
https://doi.org/10.1007/978-3-030-16722-6_21
https://doi.org/10.1007/978-3-319-24072-5_2
https://doi.org/10.1007/978-3-319-24072-5_2
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1109/COMST.2018.2798641
https://doi.org/10.1016/j.ic.2014.11.002
https://doi.org/10.1016/j.ic.2014.11.002
https://doi.org/10.1109/MCC.2016.112
https://doi.org/10.1109/MIC.2005.21
https://doi.org/10.1109/MIC.2005.21
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-319-47169-3_39
https://doi.org/10.1007/978-3-319-47169-3_39
https://doi.org/10.4204/EPTCS.228.3
https://doi.org/10.23919/SOFTCOM.2017.8115501
https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1016/j.jlamp.2014.07.001

A Formal Model of the Kubernetes Container Framework 577

23. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1–2),134–152 (1997). https://doi.org/10.1007/s100090050010

24. Lin, J.-C., Lee, M.-C., Yu, I.C., Johnsen, E.B.: A configurable and executable model
of spark streaming on apache YARN. IJGUC 11(2), 185–195 (2020). https://doi.
org/10.1504/IJGUC.2020.10026548

25. Lin, J.-C., Yu, I.C., Johnsen, E.B., Lee, M.-C.: ABS-YARN: a formal framework
for modeling Hadoop YARN clusters. In: Stevens, P., W ↪asowski, A. (eds.) FASE
2016. LNCS, vol. 9633, pp. 49–65. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49665-7 4

26. Newman, S.: Building Microservices - Designing Fine-Grained Systems, 1st edn.
O’Reilly (2015). http://www.worldcat.org/oclc/904463848

27. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of real-time maude. High.
Order Symb. Comput. 20(1–2), 161–196 (2007). https://doi.org/10.1007/s10990-
007-9001-5

28. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14107-2 13

https://doi.org/10.1007/s100090050010
https://doi.org/10.1504/IJGUC.2020.10026548
https://doi.org/10.1504/IJGUC.2020.10026548
https://doi.org/10.1007/978-3-662-49665-7_4
https://doi.org/10.1007/978-3-662-49665-7_4
http://www.worldcat.org/oclc/904463848
https://doi.org/10.1007/s10990-007-9001-5
https://doi.org/10.1007/s10990-007-9001-5
https://doi.org/10.1007/978-3-642-14107-2_13

Author Index

Abdi, Mehrdad II-9
Aharon, Khen II-457
Aho, Pekka I-543
Ahrendt, Wolfgang III-9
Aichernig, Bernhard K. I-426
Alt, Leonardo III-178
Amendola, Arturo III-240
Ashok, Pranav I-331
Audrito, Giorgio II-344

Bacci, Giorgio I-275
Bacci, Giovanni I-275
Bacher, Isabelle II-55
Baier, Christel I-240
Baranov, Eduard I-404
Barbanera, Franco I-39
Bartoletti, Massimo III-25
Basile, Davide I-368, III-467
Becchi, Anna III-240
Beckert, Bernhard I-60, III-43
Bensalem, Saddek II-457
Bernardo, Bruno III-60
Bettini, Lorenzo II-361
Beyer, Dirk I-143, I-168, I-449
Blasco, Ernesto Calás I-543
Bloem, Roderick I-290
Bohn, Felix II-507, II-525
Boigues, Ismael Torres I-543
Bon, Philippe III-404
Borgarelli, Andrea I-558
Bourr, Khalid II-361
Braithwaite, Sean I-471
Brünjes, Lars III-73
Bubel, Richard III-9
Buchman, Ethan I-471
Bureš, Tomáš II-295, II-440

Casadei, Roberto II-344
Caselli, Ashley II-205
Castiglioni, Valentina II-380
Cauderlier, Raphaël III-60
Cavada, Roberto III-240
Chakravarty, Manuel M. T. III-89, III-112

Chapman, James III-89, III-112
Ciatto, Giovanni II-205
Cimatti, Alessandro III-240
Claret, Guillaume III-60
Cleophas, Loek I-211
Collart-Dutilleul, Simon III-404
Comptier, Mathieu III-393
Coto, Alex I-22

Daca, Przemysław I-331
Damiani, Ferruccio I-81, I-558, II-344
De Nicola, Rocco II-161, II-261
Demeyer, Serge II-3, II-9
Di Giandomenico, Felicita I-368
Di MarzoSerugendo, Giovanna II-205
Donetti, Simone I-558
Drechsler, Rolf III-326
Dubslaff, Clemens I-240
Duong, Tan II-261

Eing, Lennart II-525
Ellul, Joshua III-131
Enoiu, Eduard I-350
Eugster, Patrick III-178

Fahrenberg, Uli I-262
Fantechi, Alessandro I-368, III-389, III-467
Faqeh, Rasha II-416
Ferrari, Alessio III-467
Fetzer, Christof II-416
Filliâtre, Jean-Christophe I-122
Fränzle, Martin III-255
Friedberger, Karlheinz I-449

Gabbay, Murdoch J. III-73
Gabor, Thomas II-473
Gashier, Eamonn III-195
Geisler, Signe III-449
Gerostathopoulos, Ilias II-440
Gheyi, Rohit II-138
Given-Wilson, Thomas I-404
Glesner, Sabine III-307

Gnesi, Stefania I-368, III-389, III-467
Goes, Christopher III-146
Goldberg, Yoav II-457
Göttmann, Hendrik II-55
Griggio, Alberto III-240
Große, Daniel III-326
Gu, Rong I-350
Guanciale, Roberto I-22
Gurov, Dilian I-3, III-235, III-348

Hähnle, Reiner I-3, II-3, II-117
Hamers, Ruben I-489
Hansen, René Rydhof II-280
Haxthausen, Anne E. III-389, III-415,

III-449
Heinrich, Robert II-295
Hennicker, Rolf II-224
Herber, Paula III-235, III-307
Herdt, Vladimir III-326
Hermanns, Holger I-240, II-416
Heydari Tabar, Asmae II-117
Hillston, Jane II-491
Hnětynka, Petr II-295, II-440
Hoffmann, Alwin II-507, II-525
Hoffmann, Jörg II-416
Huhn, Lukas II-507
Huisman, Marieke I-421, III-273
Hungar, Hardi III-293
Hyvärinen, Antti E. J. III-178

Incerto, Emilio I-307
Inverso, Omar II-243, II-261
Iosti, Simon II-457

Jacobs, Bart I-509
Jaeger, Manfred I-275
Jähnichen, Stefan II-161
Jakobs, Marie-Christine II-72
Jakobsson, Arvid III-60
Jansen, Nils I-290
Jensen, Peter G. I-385
Jensen, Peter Gjøl I-275
Johnsen, Einar Broch I-103, I-558
Jongmans, Sung-Shik I-489
Jørgensen, Kenneth Y. I-385

Kamburjan, Eduard I-3
Kanav, Sudeep I-168

Kirsten, Michael I-60
Klamroth, Jonas I-60
Klauck, Michaela I-240, II-416
Kleinekathöfer, Jan III-326
Klüppelholz, Sascha I-240
Knüppel, Alexander I-187
Köhl, Maximilian A. I-240, II-416
Könighofer, Bettina I-290
Konnov, Igor I-471
Kosak, Oliver II-507, II-525
Kosmatov, Nikolai I-525
Křetínský, Jan I-331
Kröger, Paul III-255

Lamela Seijas, Pablo III-161
Lande, Stefano III-25
Lanese, Ivan I-39
Larsen, Kim G. I-325, I-385
Larsen, Kim Guldstrand I-275
Laursen, Per Lange III-415
Lecomte, Thierry III-393
Legay, Axel I-211, I-262, I-325, I-404
Lentzsch, Daniel II-25
Liebrenz, Timm III-307
Lienhardt, Michael I-81
Linnhoff-Popien, Claudia II-473
Lochau, Malte II-55
Longuet, Delphine I-525
Lorber, Florian I-290
Loreti, Michele II-380
Lundqvist, Kristina I-350
Luthmann, Lars II-55

MacKenzie, Kenneth III-89, III-112
Maderbacher, Benedikt I-426
Maffei, Matteo III-212
Mantel, Heiko II-3, II-72
Marescotti, Matteo III-178
Mariani, Stefano II-189
Martínez, Héctor Martínez I-543
Masullo, Laura III-467
Mazaheri, Arya II-117
Mazzanti, Franco III-467
McIver, Annabelle I-216
Melkonian, Orestis III-89, III-112
Meywerk, Tim III-326
Mikučionis, Marius I-385
Milosevic, Zarko I-471

580 Author Index

Molinero, Julien III-393
Monti, Raúl E. III-273
Morgan, Carroll I-216
Müller, Jann III-89, III-112
Muñiz, Marco I-385

Napolitano, Annalisa I-307
Naumann, David A. II-93
Nielson, Flemming II-280
Nielson, Hanne Riis II-280
Norouzi, Mohammad II-117
Nyberg, Mattias III-348

Omicini, Andrea II-205
Orlov, Dmitry II-44
Otoni, Rodrigo III-178

Pace, Gordon J. III-3
Pacovský, Jan II-440
Paolini, Luca I-81
Parsai, Ali II-9
Paskevich, Andrei I-122
Peled, Doron II-457
Peleska, Jan III-434
Pesin, Basile III-60
Petrov, Tatjana II-397
Peyton Jones, Michael III-89, III-112
Piattino, Andrea III-467
Piho, Paul II-491
Poulsen, Danny B. I-385
Pugliese, Rosario II-361
Pun, Violet Ka I II-138

Rall, Dennis II-525
Reif, Wolfgang II-507, II-525
Reisig, Wolfgang II-171
Ricós, Fernando Pastor I-543
Rius, Alfonso D. D. M. III-195
Runge, Tobias I-187

Sabatier, Denis III-393
Sánchez, César III-3
Scaglione, Giuseppe III-240
Schaefer, Ina I-187, I-211, III-235
Scherer, Markus III-212
Schiffl, Jonas III-43
Schlingloff, Bernd-Holger III-366
Schneider, Gerardo III-3
Schneidewind, Clara III-212
Schürmann, Jonas II-311

Seceleanu, Cristina I-350, I-421
Seifermann, Stephan II-295
Sharygina, Natasha III-178
Smith, David III-161
Soulat, Romain I-525
Spagnolo, Giorgio O. I-368
Steffen, Bernhard II-311
Steffen, Martin I-103
Steinhöfel, Dominic II-117
Steinmetz, Marcel II-416
Stoilkovska, Ilina I-471
Stolz, Volker II-138
Stumpf, Johanna Beate I-103
Sürmeli, Jan II-329
Susi, Angelo III-240

Tacchella, Alberto III-240
Tapia Tarifa, Silvia Lizeth I-558
Tegeler, Tim II-311
ter Beek, Maurice H. I-211, I-368, III-467
Tessi, Matteo III-240
Tesson, Julien III-60
Thompson, Simon III-161
Tiezzi, Francesco II-361
Tini, Simone II-380
Tognazzi, Stefano II-397
Trentini, Daniele III-467
Tribastone, Mirco I-307
Trinh, Van Anh Thi III-415
Trubiani, Catia II-243
Tuosto, Emilio I-22, I-39, II-243
Turin, Gianluca I-558

Ulbrich, Mattias I-60, II-25

van Bladel, Brent II-9
Vercammen, Sten II-9
Vinogradova, Polina III-89, III-112
Viroli, Mirko II-344
Vos, Tanja I-543

Wadler, Philip III-89, III-112
Walter, Marcel III-326
Walter, Maximilian II-295
Wanninger, Constantin II-507, II-525
Watson, Bruce W. I-211
Wehrheim, Heike I-143
Weidenbach, Christoph II-416
Weigl, Alexander II-25
Weininger, Maximilian I-331

Author Index 581

Westman, Jonas III-348
Widder, Josef I-471
Wirsing, Martin II-161, II-224
Wolf, Felix II-117

Zahnentferner, Joachim III-112
Zambonelli, Franco II-189
Zamfir, Anca I-471
Zunino, Roberto III-25

582 Author Index

	Introduction
	Organization
	Contents – Part I
	Contents – Part II
	Contents – Part III
	Modularity and (De-)Composition in Verification
	Who Carries the Burden of Modularity?
	1 Introduction
	2 Modularity and Composition Mechanisms: A Representative Collection
	2.1 Model
	2.2 Specification
	2.3 Verification

	3 Alignment of Context and the Burden of Modularity
	4 Track Contributions
	4.1 Modularity in the Context of the Model
	4.2 Modularity in the Context of the Specification
	4.3 Modularity in the Context of Verification

	5 Conclusion
	References

	On Testing Message-Passing Components
	1 Introduction
	2 Background
	2.1 Global Choreographies
	2.2 Communicating Systems

	3 Instantiating CGT
	4 An Example
	5 Discussion and Open Problems
	6 Conclusions and Related Work
	References

	Composing Communicating Systems, Synchronously
	1 Introduction
	2 Background
	3 Composition via Gateways
	4 Semi-direct Composition
	5 Related and Future Work
	References

	Modular Verification of JML Contracts Using Bounded Model Checking
	1 Introduction
	2 Background
	3 The Main Ideas Behind the Approach
	4 Translating JML Annotations
	4.1 Translating Method Contracts
	4.2 Translating JML Expressions
	4.3 Translating Quantifiers
	4.4 Translating Frame Conditions
	4.5 Translating Method Invocations
	4.6 Ensuring Correct Behavior for Boolean Operators

	5 Implementation
	6 Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

	On Slicing Software Product Line Signatures
	1 Introduction
	2 A Recollection of SPLs, SPL Signatures and Interfaces
	2.1 Feature Models, Feature Module Slices and Interfaces
	2.2 SPLs of IFJ Programs
	2.3 Signatures and Interfaces for SPLs of IFJ Programs

	3 The Slice Operator for SPLSs of IFJ Programs
	4 On Slicing Delta-Oriented SPLSs of IFJ Programs
	4.1 Propositional Representation of Feature Models
	4.2 Delta-Oriented SPLs and SPLSs
	4.3 On Devising an Algorithm for Slicing Delta-Oriented SPLSs

	5 Related Work
	6 Conclusions and Future Work
	A Proof of Theorem 1
	References

	Assumption-Commitment Types for Resource Management in Virtually Timed Ambients
	1 Introduction
	2 Virtually Timed Ambients
	3 An Assumption-Commitment Type System
	4 Soundness of Resource Management
	5 Related Work
	6 Concluding Remarks
	References

	Abstraction and Genericity in Why3
	1 Introduction
	2 WhyML Modules
	3 Example: Bloom Filters
	4 C Library
	5 Related Work
	6 Conclusion
	References

	Verification Artifacts in Cooperative Verification: Survey and Unifying Component Framework
	1 Introduction
	2 Classification of Verification Approaches
	2.1 Overview over Interfaces
	2.2 Overview over Combinations
	2.3 Examples for Portfolio Combinations
	2.4 Examples for Algorithm Selection
	2.5 Examples for Conceptual Integrations
	2.6 Verification as a Web Service

	3 Cooperative Verification Approaches
	3.1 Exchangeable Objects for Communication and Information Transfer
	3.2 Objectives and Applications

	4 Verification Artifacts
	4.1 Artifacts of Verification Tools
	4.2 Classification of Verification Tools as Actors
	4.3 Semantics of Verification Artifacts

	5 Conclusion
	References

	An Interface Theory for Program Verification
	1 Introduction
	2 Verification via Interfaces
	2.1 Verification Interfaces
	2.2 Modular Verification using Interfaces
	2.3 Proof Flows using Interfaces and Witnesses

	3 Decomposing Verification and Cooperative Verification
	3.1 Decomposed Approaches
	3.2 Integrated Approaches

	4 Conclusion
	References

	Scaling Correctness-by-Construction
	1 Introduction
	2 The Correctness-by-Construction Approach
	3 Overview and Motivating Example
	4 Formalizing ArchiCorC Components
	4.1 Interface Definition
	4.2 Contract Compatibility
	4.3 Component Definition and Composition

	5 Code Generation and Validation
	6 Bank Account Case Study
	7 Discussion
	7.1 Beyond Preconditions and Postconditions
	7.2 Liskov-Style Compatibility

	8 Related Work
	9 Conclusion
	References

	X-by-Construction: Correctness Meets Probability
	X-by-Construction
	1 Motivation and Aim
	2 Contributions
	References

	Correctness by Construction for Probabilistic Programs
	1 Testing Probabilistic Programs?
	2 Enabling Correctness by Construction—pGCL
	2.1 Floyd/Hoare/DijKstra: Pre- and Postconditions: ([i0939sps1]1, [i0939sps2]2) Above
	2.2 Kozen: Probabilistic Program Logic: ([i0939sps3]3) Above
	2.3 McIver/Morgan: Pre- and Post-expectations

	3 Probabilistic Correctness by Construction in Action
	3.1 Step 1—A Simplification
	3.2 Step 2—Intuition Suggests a Loop
	3.3 Step 3—Introduce a Loop
	3.4 Step 4—Use the Loop's Postcondition
	3.5 Step 5—After-the-Fact Optimisation

	4 Implementing any Discrete Choice with a Fair Coin
	4.1 Replaying Earlier Steps from Sect.3
	4.2 ``Decomposition of Data into Data Structures''

	5 An Everyday Application: Simulating a Fair Die Using only a Fair Coin
	6 Why Was This ``Correctness by Construction''?
	A Program(14) implemented in Python
	References

	Components in Probabilistic Systems: Suitable by Construction
	1 Introduction
	2 Partially Observable Probabilistic I/O Systems
	3 Notions of Suitability
	3.1 Threshold Suitability
	3.2 Degree of Suitability
	3.3 Suitability Relations

	4 Suitability Analysis
	5 Racetrack – A Case Study
	5.1 Racetrack Scenario
	5.2 A New Car
	5.3 Implementation and Technical Aspects

	6 Concluding Remarks
	References

	Behavioral Specification Theories: An Algebraic Taxonomy
	1 Introduction
	2 Models and Specifications
	3 Characteristic Formulae
	4 Specification Theories
	5 Logical Operations on Specifications
	6 Structural Operations on Specifications
	7 Specification Theories for Real-Time and Probabilistic Systems
	7.1 Modal Event-Clock Specifications
	7.2 Timed Input/Output Automata
	7.3 Abstract Probabilistic Automata

	References

	Approximating Euclidean by Imprecise Markov Decision Processes
	1 Introduction
	2 Euclidean MDP and Expected Cost
	2.1 Value Iteration for EMDPs

	3 Imprecise MDP
	3.1 Value Iteration for IMDPs

	4 Approximation by Partitioning
	5 Examples and Experiments
	5.1 IMDP Value Iteration
	5.2 Analysis of Learned Strategies

	6 Conclusion
	References

	Shield Synthesis for Reinforcement Learning
	1 Introduction
	2 Safe RL via Shielding
	2.1 Setting for Shielded RL
	2.2 Construction of Shields
	2.3 Implementation and Experiments

	3 Safe RL via Probabilistic Shields
	3.1 Probabilistic Shielding Setting
	3.2 Construction of Probabilistic Shields
	3.3 Implementation and Experiments

	4 Safe RL via Timed Shields
	4.1 Construction of Timed Shields
	4.2 Implementation and Experiments

	5 Conclusion
	References

	Inferring Performance from Code: A Review
	1 Introduction
	2 Analysis Dimensions
	2.1 Learning Techniques
	2.2 Exploration Techniques
	2.3 Output Model

	3 Model Construction Methods
	4 Conclusion and Future Lines of Reseach
	References

	30 Years of Statistical Model Checking!
	30 Years of Statistical Model Checking
	1 Context
	2 On Statistical Model Checking
	3 Content of the Session
	References

	Statistical Model Checking: Black or White?
	1 Introduction
	2 Preliminaries
	3 Description of Algorithms
	3.1 Value Iteration
	3.2 Bounded Value Iteration
	3.3 Simulation-Based Asynchronous Value Iteration
	3.4 Statistical Model Checking

	4 STUCK
	5 Discussion
	5.1 Dependency of Simulation Length on Topology
	5.2 Black, Grey and White SMC
	5.3 Comparison of Algorithms
	5.4 Extensions to Other Unbounded-Horizon Properties

	6 Experimental Evaluation
	6.1 Comparison of Black and Grey SMC
	6.2 Grey SMC vs. Black SMC/BRTDP/BVI/VI

	7 Conclusion
	References

	Probabilistic Mission Planning and Analysis for Multi-agent Systems
	1 Introduction
	2 Preliminaries
	2.1 Stochastic Timed Automata and UPPAAL SMC
	2.2 Reinforcement Learning
	2.3 A Two-Layer Framework for Formal Modelling and Verification of Autonomous Agents

	3 Problem Description
	4 Mission Planning Based on Reinforcement Learning and Stochastic Timed Automata
	4.1 MCRL: Combining Model Checking and Reinforcement Learning for Mission Planning
	4.2 Stochastic Timed Automata for MCRL

	5 Statistical Verification and Analysis of the Use Case: An Autonomous Quarry
	5.1 Mission Plan Synthesis
	5.2 Bottleneck Analysis
	5.3 Travelling Timed Estimation and Re-planning

	6 Related Work
	7 Conclusion and Future Work
	References

	30 Years of Simulation-Based Quantitative Analysis Tools: A Comparison Experiment Between Möbius and Uppaal SMC
	1 Introduction
	2 Context of the Case Study
	3 Description of the Tools
	3.1 Möbius
	3.2 Uppaal SMC

	4 Models and Experiments
	4.1 Modelling Approaches
	4.2 Quantitative Analyses

	5 Comparison
	5.1 Modelling Features
	5.2 Properties Specification
	5.3 Experiments and Presentation of Results
	5.4 Discussion

	6 Conclusion
	References

	Fluid Model-Checking in UPPAAL for Covid-19
	1 Introduction
	2 SEIHR Models in UPPAAL SMC
	2.1 Ordinary Differential Equation Models
	2.2 Aggregated Stochastic Models
	2.3 Agent-Based Stochastic Models
	2.4 Fluid Models

	3 Covid-19 in Denmark
	4 Family Routines in Cities
	5 Super-Spreading and Bars
	6 Tracing Covid-19
	7 Conclusion
	References

	Improving Secure and Robust Patient Service Delivery
	1 Introduction
	2 Background
	3 The Wablieft Project
	3.1 The Wablieft Marketplace
	3.2 Safe and Secure Behaviour

	4 Modelling Wablieft
	4.1 The Wablieft Model
	4.2 The Wablieft Properties

	5 Marketplace Prediction Capabilities
	5.1 Experiments

	6 Conclusions
	References

	Verification and Validation of Concurrent and Distributed Systems
	Verification and Validation of Concurrent and Distributed Systems (Track Summary)
	1 Motivation and Goals
	2 Overview of Contributions
	References

	Step-Wise Development of Provably Correct Actor Systems
	1 Introduction
	2 Demonstrating Example
	3 Modelling Actor Systems
	4 Step-Wise Development
	4.1 Specification
	4.2 Refinement 1
	4.3 Refinement 2
	4.4 Refinement 3
	4.5 Refinement 4
	4.6 Refinement 5

	5 Concurrent Version
	6 Related Work
	7 Conclusion
	References

	Violation Witnesses and Result Validationpg for Multi-Threaded Programs
	1 Introduction
	2 Background
	2.1 Program Representation
	2.2 Violation Witnesses
	2.3 Analysis of Multi-Threaded Programs in CPAchecker

	3 Detailed Example
	3.1 Producing a Violation Witness
	3.2 Validating Results Based on a Violation Witness

	4 Violation Witnesses for Multi-threaded Programs
	4.1 Extending the Existing Format
	4.2 Implementation of the Validator in CPAchecker

	5 Experimental Evaluation
	5.1 Evaluation Questions
	5.2 Benchmark Set
	5.3 Setup
	5.4 Results and Discussion
	5.5 Threats to Validity

	6 Conclusion
	References

	Tendermint Blockchain Synchronization: Formal Specification and Model Checking*-6pt
	1 Introduction
	2 Architecture
	3 Specifications in English and TLA+
	4 The Blockchain Specification in English and TLA+
	5 The Blockchain Synchronization Problem in English
	6 Correct and Faulty Peers in TLA+
	7 The Node Protocol in English and TLA+
	8 Model Checking with TLC and Apalache
	9 Conclusions and Future Work
	References

	Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project
	1 Introduction
	2 The Tour: Tic–Tac–Toe
	3 The Tour: Rock–Paper–Scissors
	4 The Tour: Go Fish
	5 Foundation
	6 Conclusion
	A Clojure
	References

	Modular Verification of Liveness Properties of the I/O Behavior of Imperative Programs
	1 Introduction
	2 Our Approach, Informally
	2.1 Safety
	2.2 Basic Liveness
	2.3 Simple Responsiveness
	2.4 General Responsiveness
	2.5 Reactivity
	2.6 General Reactivity
	2.7 Persistence

	3 A Programming Language with I/O
	3.1 Liveness Properties

	4 A Program Logic for I/O Liveness
	4.1 Exit Actions and Exit Traces
	4.2 Petri Nets
	4.3 Assertions, Correctness Judgments, View Shifts
	4.4 Proof Rules
	4.5 Abstract Nested Hoare Triples Notation
	4.6 Example: Simple Responsiveness
	4.7 General Responsiveness
	4.8 Example: Persistence

	5 Related Work
	6 Conclusion
	References

	Formal Verification of an Industrial Distributed Algorithm: An Experience Report
	1 Introduction
	2 Presentation of the System and the Algorithm
	2.1 Overview of the System
	2.2 Overview of the Algorithm

	3 Methodology
	3.1 Modeling the Whole System by Simulation
	3.2 Modeling One Node with an Abstraction of the System

	4 Experiments with Various Tools
	4.1 Experiments with SafeProver
	4.2 Experiments with CBMC
	4.3 Experiments with KLEE

	5 Lessons Learned and Perspectives
	References

	Deploying TESTAR to Enable Remote Testing in an Industrial CI Pipeline: A Case-Based Evaluation
	1 Introduction
	2 Context
	2.1 The TESTAR Tool
	2.2 Prodevelop

	3 Objectives of the Study
	4 Extending TESTAR for the Case Study
	4.1 Executing and Configuring TESTAR Through CLI
	4.2 Supporting SUTs with Multiple GUI Processes
	4.3 Distributed TESTAR Execution with a Remote API
	4.4 Replay Mode
	4.5 Output Results and the Structure of TESTAR Logs

	5 Results
	6 Academia-Industry Collaboration
	7 Summary, Conclusions and Future Work
	References

	A Formal Model of the Kubernetes Container Framework
	1 Introduction
	2 Background
	2.1 Microservices, Containers and Their Management via Kubernetes
	2.2 Real-Time ABS

	3 A Kubernetes Model in Real Time ABS
	3.1 Modeling of Pods
	3.2 Modeling of Services
	3.3 Modeling of Autoscalers
	3.4 Modeling of Nodes
	3.5 Modeling of Scheduler

	4 Validating the Model
	4.1 Experimental Setup
	4.2 Results of the Experiments

	5 Related Work
	6 Conclusion and Future Work
	References

	Author Index

