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1 Introduction

Consider the second order strictly hyperbolic operator

L = ∂2t −
n∑

j,k=1

∂j (ajk(t, x)∂k),
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where, for all (t, x) ∈ [0, T ] × Rn and ξ ∈ Rn,

0 < λ0|ξ |2 ≤
n∑

j,k=1

ajk(t, x)ξj ξk ≤ �0|ξ |2

and

ajk(t, x) = akj (t, x).

It is well-known that, if the coefficients ajk are Lipschitz-continuous in t and
measurable in x, then the Cauchy problem related to L is well-posed in the energy
space. In particular, a constant C > 0 exists, such that

sup
0≤t≤T

(‖u(t, ·)‖H 1 + ‖∂tu(t, ·)‖L2)

≤ C(‖u(0, ·)‖H 1 + ‖∂tu(0, ·)‖L2 +
∫ T

0
‖Lu(s, ·)‖L2 ds),

(1)

for all u ∈ C([0, T ]; H 1) ∩ C1([0, T ]; L2) with Lu ∈ L1([0, T ]; L2) (see [11, 12,
Ch. IX]).

In this note we are interested in second order strictly hyperbolic operators having
non Lipschitz-continuous coefficients with respect to time.

After the pioneering paper by Colombini, De Giorgi and Spagnolo [7], this
topic has been widely studied. A result of particular interest has been obtained in
[5], where it was proved that, if the coefficients are log-Lipschitz-continuous with
respect to t and x, i.e. there exists C > 0 such that

sup
t,x

|ajk(t + τ, x + y) − ajk(t, x)| ≤ C(|τ | + |y|)(1 + log
1

|τ | + |y|),

then (1) is nomore valid, but the followingweaker energy estimate can be recovered:

sup
0≤t≤T

(‖u(t, ·)‖H 1−θ−βt + ‖∂tu(t, ·)‖H−θ−βt )

≤ C(‖u(0, ·)‖H 1−θ + ‖∂tu(0, ·)‖H−θ +
∫ T

0
‖Lu(s, ·)‖H−θ−βs ds),

(2)

for some constants C > 0, β > 0 and for all u ∈ C2([0, T ]; H∞) and θ ∈ ]0, 1[
(here and in the following H∞ = ⋂

s∈R Hs). Remark that, while in (1) the norms
of u(t) and ∂tu(t) are estimated by the same norms of u(0) and ∂tu(0), in (2) the
Sobolev spaces in which u(t) and ∂tu(t) are measured are different and bigger
than the spaces in which initial data are, so the estimate is less effective. This
phenomenon goes under the name of “loss of derivatives”. We refer e.g. to the
introductions of [8, 9] for more details and references about this problem.
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Using a result obtained by Tarama in [16] (see also Remark 1 below), it is
possible to prove that if the coefficients depend only on t and are Zygmund-
continuous, i.e.

sup
t

|ajk(t + τ ) + ajk(t − τ ) − 2ajk(t)| dt ≤ C2|τ |, (3)

then (1) is valid. Notice that the Zygmund assumption is weaker than the Lipschitz
one. In [9], the authors proved that if the coefficients depend also on the space
variable and verify an isotropic Zygmund assumption (i.e. they are Zygmund-
continuous both in time and space variables), then the Cauchy problem is well-posed
with no loss, but only in the space H 1/2 × H−1/2. In particular, an estimate similar
to (1) holds true, up to replacing the H 1 and L2 norms respectively with the H 1/2

and H−1/2 norms. See also Remark 2 below for more details.
The problem whether a Zygmund assumption both in time and space is still

enough to recover well-posedness in general spaces Hs × Hs−1 (and not only for
s = 1/2) remains at present largely open. As a partial step in this direction, in this
note we consider a stronger hypothesis with respect to the space variable: namely
we prove that, if the coefficients are Zygmund-continuous with respect to t and
Lipschitz-continuous with respect to x, then an estimate without loss of derivatives,
similar to (1), holds true. Then, the Cauchy problem related to L is well-posed in
any space Hs × Hs−1, for all s ∈ ]0, 1].

Two are the main ingredients of the proof of our result. The first one is to resort to
Tarama’s idea of introducing a new type of energy associated to operatorL: this new
energy is equivalent to the classical energy, but it contains a lower order term, whose
goal is to produce special algebraic cancellations, which reveal to be fundamental in
the energy estimates. The second main ingredient, already introduced in [8] and [9],
is the use of paradifferential calculus with parameters (see e.g. [13, 15]), in order to
deal with coefficients depending also on x and having low regularity in that variable.

We conclude this introduction with a short overview of the paper. In the next
section we fix our hypotheses and state our main result, see Theorem 1. In Sect. 3
we collect some elements of Littlewood-Paley theory, which are needed in the
description of the functional classes where the coefficients belong to, and in the
construction of paradifferential calculus with parameters. With those tools at hand,
we tackle the proof of Theorem 1, which is carried out in Sect. 4.

2 Main Result

Given T > 0 and an integer n ≥ 1, let L be the linear differential operator defined
on [0, T ] × Rn by

Lu = ∂2t u −
n∑

j,k=1

∂j (ajk(t, x)∂ku), (4)
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where, for all j, k = 1, . . . , n,

ajk(t, x) = akj (t, x), (5)

and there exist λ0, �0 > 0 such that

λ0|ξ |2 ≤
n∑

j,k=1

ajk(t, x)ξj ξk ≤ �0|ξ |2, (6)

for all (t, x) ∈ [0, T ] × Rn and for all ξ ∈ Rn. Suppose moreover that there exist
constants C0, C1 > 0 such that, for all j, k = 1, . . . , n and for all τ ∈ R, y ∈ Rn,

sup
t,x

|ajk(t + τ, x) + ajk(t − τ, x) − 2ajk(t, x)| ≤ C0|τ |, (7)

sup
t,x

|ajk(t, x + y) − ajk(t, x)| ≤ C1|y|. (8)

We can now state the main result of this paper.

Theorem 1 Under the previous hypotheses, for all fixed θ ∈ [0, 1[, there exists a
constant C > 0, depending only on θ and T , such that

sup
0≤t≤T

(‖u(t, ·)‖H 1−θ + ‖∂tu(t, ·)‖H−θ )

≤ C(‖u(0, ·)‖H 1−θ + ‖∂tu(0, ·)‖H−θ +
∫ T

0
‖Lu(s, ·)‖H−θ ds),

(9)

for all u ∈ C2([0, T ],H∞(Rn)).

Some remarks are in order.

Remark 1 If the coefficients ajk depend only on t , this result has been obtained by
Tarama in [16], under the hypothesis that there exists a constant C2 > 0 such that,
for all j, k = 1, . . . , n and for all τ ∈ ]0, T /2[,

∫ T −τ

τ

|ajk(t + τ ) + ajk(t − τ ) − 2ajk(t)| dt ≤ C2τ. (10)

Tarama’s hypothesis is weaker than ours, but, when coefficients depend also on the
space variable, it is customary to take a pointwise condition with respect to time,
like in (7) above (see also [5, 6, 8, 9] in this respect). In particular, it is not clear at
present whether or not the pointwise condition (7) can be relaxed to an integral one,
similar to (10), in our framework.

Remark 2 If the hypoteses (7) and (8) are replaced by the weaker following one:
there exists a constant C3 > 0 such that, for all j, k = 1, . . . , n and for all τ ∈ R,
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y ∈ Rn,

sup
t,x

|ajk(t + τ, x + y) + ajk(t − τ, x − y) − 2ajk(t, x)| ≤ C3(|τ | + |y|), (11)

the estimate (9) has been proved, only in the case of θ = 1/2, by the present authors
and Métivier in [9].

Remark 3 Assume (7) and the following hypothesis: there exists a constant C4 > 0
such that, for all j, k = 1, . . . , n and for all y ∈ Rn with 0 < |y| ≤ 1,

sup
t,x

|ajk(t, x + y) − ajk(t, x)| ≤ C4|y|(1 + log
1

|y|). (12)

As a consequence of a result of the present authors and Métivier in [8] (stated for
coefficients which are actually log-Zygmundwith respect to time), one gets that, for
all fixed θ ∈ ]0, 1[, there exist a β > 0, a time T ′ > 0 and a constant C > 0 such
that

sup
0≤t≤T ′

(‖u(t, ·)‖H 1−θ−βt + ‖∂tu(t, ·)‖H−θ−βt )

≤ C(‖u(0, ·)‖H 1−θ + ‖∂tu(0, ·)‖H−θ +
∫ T ′

0
‖Lu(s, ·)‖H−θ−βs ds),

(13)

for all u ∈ C2([0, T ′],H∞(Rn)). The condition (12) is weaker than (8) but also
(13) is weaker than (9): (13) has a loss of derivatives, while (9) performs no loss. In
addition, observe that (13) holds only for θ ∈ ]0, 1[, while (9) holds also for θ = 0.

3 Preliminary Results

We briefly list here some tools we will need in the proof of the main result. We
follow closely the presentation of these topics given in [8] and [9].

3.1 Littlewood-Paley Decomposition

We will use the so called Littlewood-Paley theory. We refer to [2, 3, 14] and [1] for
the details.

We start recalling Bernstein’s inequalities.

Proposition 1 ([3, Lemma 2.2.1]) Let 0 < r < R. A constant C exists so that,
for all nonnegative integer k, all p, q ∈ [1,+∞] with p ≤ q and for all function
u ∈ Lp(Rd ), we have, for all λ > 0,
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(i) if Supp û ⊆ B(0, λR) = {ξ ∈ Rd : |ξ | ≤ λR}, then

‖∇ku‖Lq ≤ Ck+1λ
k+N( 1

p − 1
q )‖u‖Lp ;

(ii) if Supp û ⊆ C(0, λr, λR) = {ξ ∈ Rd : λr ≤ |ξ | ≤ λR}, then

C−k−1λk‖u‖Lp ≤ ‖∇ku‖Lp ≤ Ck+1λk‖u‖Lp .

We introduce the dyadic decomposition. Let ψ ∈ C∞([0,+∞[,R) such that ψ is
non-increasing and

ψ(t) = 1 for 0 ≤ t ≤ 11

10
, ψ(t) = 0 for t ≥ 19

10
.

We set, for ξ ∈ Rd ,

χ(ξ) = ψ(|ξ |), ϕ(ξ) = χ(ξ) − χ(2ξ). (14)

We remark that the support of χ is contained in the ball {ξ ∈ Rd : |ξ | ≤ 2}, while
the one of ϕ is contained in the annulus {ξ ∈ Rd : 1/2 ≤ |ξ | ≤ 2}.

Given a tempered distribution u, the dyadic blocks are defined by

�0u = χ(D)u = F−1(χ(ξ)û(ξ)),

�ju = ϕ(2−jD)u = F−1(ϕ(2−j ξ)û(ξ)) if j ≥ 1,

where we have denoted by F−1 the inverse of the Fourier transform. We introduce
also the operator

Sku =
k∑

j=0

�ju = F−1(χ(2−kξ)û(ξ)).

It is well known the characterization of classical Sobolev spaces via Littlewood-
Paley decomposition: for any s ∈ R, u ∈ S′ is in Hs if and only if, for all j ∈ N,
�ju ∈ L2 and the series

∑
22js‖�ju‖2

L2 is convergent. Moreover, in such a case,
there exists a constant Cs > 1 such that

1

Cs

+∞∑

j=0

22js‖�ju‖2
L2 ≤ ‖u‖2Hs ≤ Cs

+∞∑

j=0

22js‖�ju‖2
L2 . (15)



Hyperbolic Operators with Zygmund-Continuous Coefficients 133

3.2 Lipschitz, Zygmund and Log-Lipschitz Functions

In this subsection, we give a description of some functional classes relevant in the
study of hyperbolic Cauchy problems. Namely, via Littlewood-Paley analysis, we
can characterise the spaces of Lipschitz, Zygmund and log-Lipschitz functions. We
start by recalling their definitions.

Definition 1 A function u ∈ L∞(Rd) is a Lipschitz-continuous function if

|u|Lip = sup
x,y∈�d ,

y �=0

|u(x + y) − u(x)|
|y| < +∞,

u is a Zygmund-continuous function if

|u|Zyg = sup
x,y∈�d ,

y �=0

|u(x + y) + u(x − y) − 2u(x)|
|y| < +∞

and, finally, u is a log-Lipschitz-continuous function if

|u|LL = sup
x,y∈�d ,
0<|y|≤1

|u(x + y) − u(x)|
|y|(1+ log 1

|y|)
< +∞.

For X ∈ {Lip , Zyg , LL}, we define ‖u‖X = ‖u‖L∞ + |u|X.
Proposition 2 Let u ∈ L∞(Rd). We have the following characterisation:

u ∈ Lip(Rd ) if and only if sup
j

‖∇Sju‖L∞ < +∞, (16)

u ∈ Zyg(Rd ) if and only if sup
j

2j‖�ju‖L∞ < +∞, (17)

u ∈ LL(Rd ) if and only if sup
j

‖∇Sju‖L∞

j
< +∞. (18)

Proof The proof of (17) and (18) can be found in [3, Prop. 2.3.6] and [5, Prop. 3.3]
respectively. We sketch the proof of (16), for the reader’s convenience. Suppose
u ∈ Lip(Rd ). We have

Dj (Sku(x)) = Dj (F
−1(χ(2−kξ)û(ξ)))(x)

= F−1(ξjχ(2−kξ)û(ξ))(x)

= 2kF−1(2−kξjχ(2−kξ)û(ξ))(x)

= 2k

∫

Rd
θj (2ky)u(x − y) 2kddy
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where θj (y) = F−1(ξjχ(ξ))(y). From the fact that
∫
Rd θj (y) dy = 0 we deduce

that

|Dj(Sku(x))| ≤ 2k|
∫

Rd
θj (2ky)(u(x − y) − u(x)) 2kddy|

≤ |u|Lip
∫

Rd
|θj (z)||z| dz,

hence supj

∥∥∇(Sj u)
∥∥

L∞ < C |u|Lip.
Conversely, let the second statement in (16) hold. Remarking that

Dj (�ku(x)) = F−1(ξj ϕ(2−kξ)û(ξ))(x) = F−1(ξj (χ(2−kξ) − χ(2−k+1ξ))û(ξ))(x),

and, by Bernstein’s inequalities,

|�ku(x)| ≤ C2−k+1(‖∇(Sku)‖L∞ + ‖∇(Sk−1u)‖L∞),

we deduce that, for a new constant C > 0,

‖�ku‖L∞ ≤ C2−k sup
j

∥∥∇Sju
∥∥

L∞

for all k ≥ 0. Then

|u(x + y) − u(x)| ≤ |Sku(x + y) − Sku(x)| + |
∑

h>k

(�hu(x + y) − �hu(x))|

≤ ‖∇(Sku)‖L∞|y| + 2
∑

h>k

‖�hu‖L∞

≤ C sup
j

∥∥∇(Sj u)
∥∥

L∞ (|y| + 2−k).

The conclusion follows from choosing k in such a way that 2−k ≤ |y|. �
Notice that, going along the lines of the previous proof, we have actually shown

that there exists Cd > 1, depending only on d , such that, if u ∈ Lip(Rd ) then

1

Cd

|u|Lip ≤ ‖∇Sju‖L∞ ≤ Cd |u|Lip.

Proposition 3 ([3, Prop. 2.3.7])

Lip(Rd ) ⊆ Zyg(Rd ) ⊆ LL(Rd ).

In order to perform computations, we will need to smooth out our coefficients,
because of their low regularity. To this end, let us fix an even function ρ ∈ C∞

0 (R)
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such that 0 ≤ ρ ≤ 1, Suppρ ⊆ [−1, 1] and ∫
R ρ(t) dt = 1, and define ρε(t) =

1
ε
ρ( t

ε
). The following result holds true.

Proposition 4 ([9, Prop. 3.5]) Let u ∈ Zyg(R). There exists C > 0 such that,

|uε(t) − u(t)| ≤ C|u|Zyg ε, (19)

|u′
ε(t)| ≤ C|u|Zyg (1 + log

1

ε
), (20)

|u′′
ε (t)| ≤ C|u|Zyg 1

ε
, (21)

where, for 0 < ε ≤ 1,

uε(t) = (ρε ∗ u)(t) =
∫

R
ρε(t − s)u(s) ds. (22)

3.3 Paradifferential Calculus with Parameters

Let us sketch here the paradifferential calculus depending on a parameter γ ≥ 1.
The interested reader can look at [15, Appendix B] (see also [13] and [6]).

Let γ ≥ 1 and consider ψγ ∈ C∞(Rd × Rd) with the following properties

(i) there exist 0 < ε1 < ε2 < 1 such that

ψγ (η, ξ) =
{
1 for |η| ≤ ε1(γ + |ξ |),
0 for |η| ≥ ε2(γ + |ξ |);

(23)

(ii) for all (β, α) ∈ Nd × Nd , there exists Cβ,α ≥ 0 such that

|∂β
η ∂α

ξ ψγ (η, ξ)| ≤ Cβ,α(γ + |ξ |)−|α|−|β|. (24)

The model for such a function will be

ψγ (η, ξ) = χ(
η

2μ
)χ(

ξ

2μ+3 ) +
+∞∑

k=μ+1

χ(
η

2k
)ϕ(

ξ

2k+3 ), (25)

where χ and ϕ are defined in (14) and μ is the integer part of log2 γ . With this
setting, we have that the constants ε1, ε2 and Cβ,α in (23) and (24) do not depend
on γ .
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To fix ideas, from now on we take ψγ as given in (25). Define now

Gψγ (x, ξ) = (F−1
η ψγ )(x, ξ),

where F−1
η ψγ is the inverse of the Fourier transform of ψγ with respect to the η

variable.

Proposition 5 ([14, Lemma 5.1.7]) For all (β, α) ∈ Nd × Nd , there exists Cβ,α,
not depending on γ , such that

‖∂β
x ∂α

ξ Gψγ (·, ξ)‖
L1(Rd

x)
≤ Cβ,α(γ + |ξ |)−|α|+|β|, (26)

‖ | · | ∂β
x ∂α

ξ Gψγ (·, ξ)‖
L1(Rd

x )
≤ Cβ,α(γ + |ξ |)−|α|+|β|−1. (27)

Next, let a ∈ L∞. We associate to a the classical pseudodifferential symbol

σa,γ (x, ξ) = (ψγ (Dx, ξ)a)(x, ξ) = (Gψγ (·, ξ) ∗ a)(x), (28)

and define the paradifferential operator T γ
a associated to a as the classical pseudod-

ifferential operator associated to σa,γ (from now on, to avoid cumbersome notations,
we will write σa), i.e.

T
γ
a u(x) = σa(Dx)u(x) = 1

(2π)d

∫

Rd
ξ

σa(x, ξ)û(ξ) dξ.

Remark that T 1
a is the usual paraproduct operator

T 1
a u =

+∞∑

k=0

Ska�k+3u,

while, in the general case,

T
γ
a u = Sμ−1aSμ+2u +

+∞∑

k=μ

Ska�k+3u. (29)

with μ equal to the integer part of log2 γ .
In the following it will be useful to deal with Sobolev spaces depending on the

parameter γ ≥ 1.

Definition 2 Let γ ≥ 1 and s ∈ R. We denote by Hs
γ (Rd) the set of tempered

distributions u such that

‖u‖2Hs
γ

=
∫

Rd
ξ

(γ 2 + |ξ |2)s |û(ξ)|2 dξ < +∞.
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Let us remark that Hs
γ = Hs and there exists Cγ ≥ 1 such that, for all u ∈ Hs ,

1

Cγ

‖u‖2Hs ≤ ‖u‖2Hs
γ

≤ Cγ ‖u‖2Hs .

3.4 Low Regularity Symbols and Calculus

As in [8] and [9], it is important to deal with paradifferential operators having
symbols with limited regularity in time and space.

Definition 3 A symbol of order m is a function a(t, x, ξ, γ ) which is locally
bounded on [0, T ] × Rn × Rn × [1,+∞[, of class C∞ with respect to ξ such
that, for all α ∈ Nn, there exists Cα > 0 such that, for all (t, x, ξ, γ ),

|∂α
ξ a(t, x, ξ, γ )| ≤ Cα(γ + |ξ |)m−|α|. (30)

We take now a symbol a of order m ≥ 0, Zygmund-continuos with respect to t

uniformly with respect to x and Lipschitz-continuous with respect to x uniformly
with respect to t . We smooth out a with respect to time as done in (22), and call aε

the smoothed symbol. We consider the classical symbol σaε obtained from aε via
(28). In what follows, the variable t has to be thought of as a parameter.

Proposition 6 Under the previous hypotheses, one has:

|∂α
ξ σaε (t, x, ξ, γ )| ≤ Cα(γ + |ξ |)m−|α|,

|∂β
x ∂α

ξ σaε (t, x, ξ, γ )| ≤ Cβ,α(γ + |ξ |)m−|α|+|β|−1,

|∂α
ξ σ∂taε (t, x, ξ, γ )| ≤ Cα(γ + |ξ |)m−|α| log(1 + 1

ε
),

|∂β
x ∂α

ξ σ∂t aε (t, x, ξ, γ )| ≤ Cβ,α(γ + |ξ |)m−|α|+|β|−1 1

ε
,

|∂α
ξ σ∂2t aε

(t, x, ξ, γ )| ≤ Cα(γ + |ξ |)m−|α| 1
ε
,

|∂β
x ∂α

ξ σ∂2t aε
(t, x, ξ, γ )| ≤ Cβ,α(γ + |ξ |)m−|α|+|β|−1 1

ε2
,

where |β| ≥ 1 and all the constants Cα and Cβ,α do not depend on γ .

Proof We have

σaε (t, x, ξ, γ ) = (Gψγ (·, ξ) ∗ aε(t, ·, ξ, γ ))(x),

so that the first inequality follows from (26) and (30).
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Next, we remark that

∫
∂xj G

ψγ (x, ξ) dx =
∫

F−1
η (ηjψγ (η, ξ))(z) dz = (ηjψ(η, ξ))|η=0 = 0.

(31)

Consequently, using also (27),

|∂xj σaε (t, x, ξ, γ )| = |
∫

∂yj G
ψγ (y, ξ)(aε(t, x − y, ξ, γ ) − aε(t, x, ξ, γ )) dy|,

≤ C

∫
|∂yj G

ψγ (y, ξ)| |y| dy (γ + |ξ |)m,

≤ C(γ + |ξ |)m.

The other cases of the second inequality can be proved similarly.
The third inequality is again a consequence of (26), keeping in mind (20). It is in

fact possible to prove that

|∂α
ξ ∂taε(t, x, ξ, γ )| ≤ Cα(1 + log

1

ε
)(γ + |ξ |)m−|α|.

Next, considering again (31), we have

∂xj σ∂taε (t, x, ξ, γ )

=
∫

Rn
y

∂yj G
ψγ (y, ξ)(∂taε(t, x − y, ξ, γ ) − ∂taε(t, x, ξ, γ )) dy,

≤
∫

Rn
y

∂yj G
ψγ (y, ξ)

∫

Rs

1

ε2
ρ′( t − s

ε
)(a(s, x − y, ξ, γ ) − a(s, x, ξ, γ )) ds dy

≤
∫

Rs

1

ε2
ρ′( t − s

ε
)

∫

Rn
y

∂yj G
ψγ (y, ξ)(a(s, x − y, ξ, γ ) − a(s, x, ξ, γ )) dy ds.

so that the fourth inequality easily follows.
The last two inequalities are obtained in similar way, using also (21). �
To end this section it is worthy to recall some results on symbolic calculus. Again

details can be found in [8, 9] and [15, Appendix B].

Proposition 7 ([8, Prop. 3.19])

(i) Let a be a symbol of order m (see Def. 3). Suppose that a is L∞ in the x

variable. If we set

Tau(x) = σa(Dx)u(x) = 1

(2π)d

∫

Rd
ξ

σa(x, ξ, γ )û(ξ) dξ,

then Ta maps Hs
γ into Hs−m

γ continuously.
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(ii) Let a and b be two symbols of order m and m′ respectively. Suppose that a and
b are Lip in the x variable. Then

Ta ◦ Tb = Tab + R,

and R maps Hs
γ into Hs−m−m′+1

γ continuously.
(iii) Let a be a symbol of order m which is Lip in the x variable. Then, denoting by

T ∗
a the L2-adjoint operator of Ta ,

T ∗
a = Ta + R,

and R maps Hs
γ into Hs−m+1

γ continuously.
(iv) Let a be a symbol of order m which is Lip in the x variable. Suppose

Re a(x, ξ, γ ) ≥ λ0(γ + |ξ |)m.

with λ0 > 0. Then there exists γ0 ≥ 1, depending only on ‖a‖Lip and λ0, such
that, for all γ ≥ γ0 and for all u ∈ H∞,

Re (Tau, u)L2 ≥ λ0

2
‖u‖2

H
m/2
γ

.

4 Proof of Theorem 1

Also for the proof of the main result, we will closely follow the strategy imple-
mented in [8] and [9].

4.1 Approximate Energy

First of all we regularize the coefficients ajk with respect to t via (22) and we obtain
ajk,ε. We consider the 0-th order symbol

αε(t, x, ξ, γ ) = (γ 2 + |ξ |2)− 1
2 (γ 2 +

∑

j,k

ajk,ε(t, x)ξj ξk)
1
2 .

We fix

ε = 2−ν,
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and we write αν and ajk, ν instead of α2−ν and ajk, 2−ν respectively. From Prop. 7,
point iv), we have that there exists γ ≥ 1 such that, for all w ∈ H∞,

‖T γ

α
−1/2
ν

w‖L2 ≥ λ0

2
‖w‖L2 and ‖T γ

α
1/2
ν (γ 2+|ξ |2)1/2w‖L2 ≥ λ0

2
‖w‖H 1

γ
,

where λ0 has been defined in (6). We remark that γ depends only on λ0 and
supj,k‖ajk‖Lip, in particular γ does not depend on ν. We fix such a γ (this means
also that μ is fixed in (29)) and from now on we will omit to write it when denoting
the operator T and the Sobolev spaces Hs .

We consider u ∈ C2([0, T ],H∞). We have

∂2t u =
∑

j,k

∂j (ajk(t, x)∂ku) + Lu =
∑

j,k

∂j (Tajk ∂ku) + L̃u,

where

L̃u = Lu +
∑

j,k

∂j ((ajk − Tajk )∂ku).

We apply the operator �ν and we obtain

∂2t uν =
∑

j,k

∂j (Tajk ∂kuν) +
∑

j,k

∂j ([�ν, Tajk ]∂ku) + (L̃u)ν,

where uν = �νu, (L̃u)ν = �ν(L̃u) and [�ν, Tajk ] is the commutator between the
localization operator �ν and the paramultiplication operator Tajk .

We set

vν(t, x) = T
α

−1/2
ν

∂tuν − T
∂t (α

−1/2
ν )

uν,

wν(t, x) = T
α
1/2
ν (γ 2+|ξ |2)1/2 uν,

zν(t, x) = uν,

and we define the approximate energy associated to the ν-th component as

eν(t) = ‖vν(t, ·)‖2L2 + ‖wν(t, ·)‖2L2 + ‖zν(t, ·)‖2L2 .

We fix θ ∈ [0, 1[ and we define the total energy

Eθ(t) =
+∞∑

ν=0

2−2νθeν(t).
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We remark that, as a consequence of Bernstein’s inequalities,

‖wν‖2L2 ∼ ‖∇uν‖2L2 ∼ 22ν‖uν‖2L2 .

Moreover, from (20) and, again, Bernstein’s inequalities,

‖T
∂t (α

− 1
2

ν )

uν‖L2 ≤ C(ν + 1)‖uν‖L2 ≤ C′‖wν‖L2,

so that

‖∂tuν‖L2 ≤ C‖T
α

−1/2
ν

uν‖L2

≤ C(‖vν‖L2 + ‖T
∂t (α

−1/2
ν )

uν‖L2)

≤ C(eν(t))
1
2 .

(32)

We deduce that there exist constants Cθ and C′
θ , depending only on θ , such that

(Eθ (0))
1
2 ≤ Cθ (‖∂tu(0)‖H−θ + ‖u(0)‖H 1−θ ),

(Eθ (t))
1
2 ≥ C′

θ (‖∂tu(t)‖H−θ + ‖u(t)‖H 1−θ ).

4.2 Time Derivative of the Approximate Energy

We want to estimate the time derivative of eν .
Since

∂t vν = T
α

−1/2
ν

∂2t uν − T
∂2t (α

−1/2
ν )

uν,

we deduce

d

dt
‖vν(t)‖2L2

= 2Re
(
vν, Tα

−1/2
ν

∂2t uν

)
L2 − 2Re

(
vν, T∂2t (α

−1/2
ν )

uν

)
L2

= −2Re
(
vν, T∂2t (α

−1/2
ν )

uν

)
L2 + 2Re

(
vν,

∑

j,k

T
α

−1/2
ν

∂j (Tajk ∂kuν)
)
L2

+ 2Re
(
vν,

∑

j,k

T
α

−1/2
ν

∂j ([�ν, Tajk ]∂ku)
)
L2 + 2Re

(
vν, Tα

−1/2
ν

(L̃u)ν
)
L2 .
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We have
∣∣∣2Re

(
vν, Tα

−1/2
ν

(L̃u)ν
)
L2

∣∣∣ ≤ C(eν)
1
2 ‖(L̃u)ν‖L2,

and, from the fifth inequality in Prop. 6,

∣∣∣2Re
(
vν, T∂2t (α

−1/2
ν )

uν

)
L2

∣∣∣ ≤ C ‖vν‖L2 2ν‖uν‖L2 ≤ C eν(t).

Therefore, we obtain

d

dt
‖vν(t)‖2L2 = 2Re

(
vν,

∑

j,k

T
α

−1/2
ν

∂j (Tajk ∂kuν)
)
L2

+ 2Re
(
vν,

∑

j,k

T
α

−1/2
ν

∂j ([�ν, Tajk ]∂ku)
)
L2

+ 2Re
(
vν, Tα

−1/2
ν

(L̃u)ν
)
L2 + Q1,

(33)

with |Q1| ≤ Ceν(t).
Next

∂twν = T
∂t (α

1/2
ν )(γ 2+|ξ |2)1/2uν + T

α
1/2
ν (γ 2+|ξ |2)1/2∂tuν,

so that

d

dt
‖wν(t)‖2L2

= 2Re
(
T

∂t (α
1/2
ν )(γ 2+|ξ |2)1/2uν,wν

)
L2 + 2Re

(
T

α
1/2
ν (γ 2+|ξ |2)1/2∂tuν,wν

)
L2

= 2Re
(
Tαν(γ 2+|ξ |2)1/2T−∂t (α

−1/2
ν )

uν,wν

)
L2 + 2Re

(
R1uν,wν

)
L2

+ 2Re
(
Tαν(γ 2+|ξ |2)1/2Tα

−1/2
ν

∂tuν,wν

)
L2 + 2Re

(
R2uν,wν

)
L2

= 2Re
(
vν, Tαν(γ 2+|ξ |2)1/2wν

)
L2 + 2Re

(
vν, R3wν

)
L2

+ 2Re
(
R1uν,wν

)
L2 + 2Re

(
R2uν,wν

)
L2

= 2Re
(
vν, Tα

−1/2
ν

T
α
3/2
ν (γ 2+|ξ |2)1/2wν

)
L2 + 2Re

(
vν, R4wν

)
L2

+ 2Re
(
vν, R3wν

)
L2 + 2Re

(
R1uν,wν

)
L2 + 2Re

(
R2uν,wν

)
L2

= 2Re
(
vν, Tα

−1/2
ν

Tα2
ν (γ 2+|ξ |2)uν

)
L2

+ 2Re
(
vν, Tα

−1/2
ν

R5uν

)
L2 + 2Re

(
vν, R4wν

)
L2

+ 2Re
(
vν, R3wν

)
L2 + 2Re

(
R1uν,wν

)
L2 + 2Re

(
R2uν,wν

)
L2 .
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It is a straightforward computation, from the results of symbolic calculus recalled
in Prop. 7, to verify that all the operators R1, R2, R3, R4 and R5 are 0-th order
operators. Consequently,

d

dt
‖wν(t)‖2L2 = 2Re

(
vν, Tα

−1/2
ν

Tα2
ν (γ 2+|ξ |2)uν

)
L2 + Q2, (34)

with |Q2| ≤ Ceν(t).
Finally, from (32),

d

dt
‖zν(t)‖2L2 ≤ |2Re(uν, ∂tuν

)
L2 | ≤ Ceν(t). (35)

Now we pair the first term in right hand side of (33) with the first term in right
hand side of (34). We obtain

|2Re(vν,
∑

j,k T
α

−1/2
ν

∂j (Tajk ∂kuν)
)
L2 + 2Re

(
vν, Tα

−1/2
ν

Tα2
ν (γ 2+|ξ |2)uν

)
L2|

≤ C ‖vν‖L2 ‖ζν‖L2,

where

ζν = Tα2
ν (γ 2+|ξ |2)uν +

∑

j,k

∂j (Tajk ∂kuν)

= Tγ 2+∑
j,k ajk,ν ξj ξk

uν +
∑

j,k

∂j (Tajk ∂kuν)

= Tγ 2uν +
∑

j,k

(Tajk,ν ξj ξk uν + T∂j ajk ∂kuν − Tajkξj ξk uν).

We have

‖
∑

j,k

T∂j ajk ∂kuν‖L2 ≤ C sup
j,k

‖ajk‖Lip‖∇uν‖L2 ≤ C(eν(t))
1
2 ,

and, from Bernstein’s inequalities and (19),

‖
∑

j,k

T(ajk,ν−ajk)ξj ξk
uν‖L2 ≤ C sup

j,k

‖ajk‖Lip 2−ν ‖∇2uν‖L2 ≤ C(eν(t))
1
2 .

From this we deduce

‖ζν‖L2 ≤ C(eν(t))
1
2 .
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Summing up, from (33), (34) and (32) we get

d

dt
eν(t) ≤ C1eν(t) + C2(eν(t))

1
2 ‖(L̃u)ν‖L2

+|2Re(vν,
∑

j,k

T
α

−1/2
ν

∂j ([�ν, Tajk ]∂ku)
)
L2 |.

(36)

4.3 Commutator Estimate

We want to estimate

|
∑

j,k

2Re
(
vν, Tα

−1/2
ν

∂j ([�ν, Tajk ]∂ku)
)
L2 |.

We remark that

[�ν, Tajk ]w = �ν(Sμ−1ajk Sμ+2w) + �ν(

+∞∑

h=μ

Shajk �h+3w)

−Sμ−1ajk Sμ+2(�νw) −
+∞∑

h=μ

Shajk �h+3(�νw)

= �ν(Sμ−1ajk Sμ+2w) − Sμ−1ajk �ν(Sμ+2w)

+
+∞∑

h=μ

�ν(Shajk �h+3w) −
+∞∑

h=μ

Shajk �ν(�h+3w)

= [�ν, Sμ−1ajk] Sμ+2w +
+∞∑

h=μ

[�ν, Shajk] �h+3w,

where we recall that μ is a fixed constant (depending on γ , which has been chosen
at the beginning of Sect. 4.1). Hence we have

∂j ([�ν,Tajk ]∂ku)

= ∂j ([�ν, Sμ−1ajk] ∂k(Sμ+2u)) + ∂j (

+∞∑

h=μ

[�ν, Shajk] ∂k(�h+3u)).

Consider first

∂j ([�ν, Sμ−1ajk] ∂k(Sμ+2u)).
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The support of the Fourier transform of [�ν, Sμ−1ajk] ∂k(Sμ+2u) is contained in
{|ξ | ≤ 2μ+4} and [�ν, Sμ−1ajk] ∂k(Sμ+2u) is identically 0 if ν ≥ μ + 5. From
Bernstein’s inequalities and [4, Th. 35] we deduce that

‖∂j ([�ν, Sμ−1ajk] ∂k(Sμ+2u))‖L2 ≤ C 2μ sup
j,k

‖ajk‖Lip ‖Sμ+2u‖L2 .

We have

+∞∑

ν=0

2−2νθ |
∑

j,k

2Re
(
vν, Tα

−1/2
ν

∂j ([�ν, Sμ−1ajk] ∂k(Sμ+2u))
)
L2 |

≤ C 2μ sup
j,k

‖ajk‖Lip
μ+4∑

ν=0

2−2νθ‖vν‖L2(

μ+2∑

h=0

‖uh‖L2)

≤ C 2μ+(μ+4)θ sup
j,k

‖ajk‖Lip
μ+4∑

ν=0

2−νθ‖vν‖L2

μ+4∑

h=0

2−hθ‖uh‖L2

≤ C sup
j,k

‖ajk‖Lip
μ+4∑

h=0

2−2νθ eν(t).

Consider then

∂j (

+∞∑

h=μ

[�ν, Shajk] ∂k(�h+3u)).

Looking at the support of the Fourier transform, it is possible to see that

[�ν, Shajk] ∂k(�h+3u)

is identically 0 if |h + 3 − ν| ≥ 3. As a consequence, the sum over h is reduced to
at most 5 terms: ∂j ([�ν, Sν−5ajk] ∂k(�ν−2u)), . . . , ∂j ([�ν, Sν−1ajk] ∂k(�ν+2u)).
Each of these terms has the support of the Fourier transform contained in the ball
{|ξ | ≤ 2ν+4}.

We consider the term ∂j ([�ν, Sν−3ajk] ∂k(�νu)): for the other terms the
estimate will be similar. Again by Bernstein’s inequalities and [4, Th. 35] we infer

‖∂j ([�ν, Sν−3ajk] ∂k(�νu))‖L2 ≤ C 2ν sup
j,k

‖ajk‖Lip ‖�νu‖L2,

and then

|
∑

j,k

2Re
(
vν, Tα

−1/2
ν

∂j (

+∞∑

h=μ

[�ν, Shajk] ∂k(�h+3u))
)
L2 |

≤ C sup
j,k

‖ajk‖Lip (eν−2(t) + eν−1(t) + eν(t) + eν+1(t) + eν+2(t)).
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Thus we have

+∞∑

ν=0

2−2νθ |
∑

j,k

2Re
(
vν, Tα

−1/2
ν

∂j (

+∞∑

h=μ

[�ν, Shajk] ∂k(�h+3u))
)
L2 |

≤ C sup
j,k

‖ajk‖Lip
+∞∑

ν=0

2−2νθeν(t).

As a conclusion

+∞∑

ν=0

2−2νθ |
∑

j,k

2Re
(
vν, T

α
−1/2
ν

∂j ([�ν, Tajk ]∂ku)
)
L2 | ≤ C3

+∞∑

ν=0

2−2νθ eν(t), (37)

where C3 depends on γ , θ and supj,k ‖ajk‖Lip.

4.4 Final Estimate

From (36) and (37) we obtain

d

dt
Eθ (t) ≤ (C1 + C3)

+∞∑

ν=0

2−2νθeν(t) + C2

+∞∑

ν=0

2−2νθ (eν(t))
1
2 ‖(L̃u(t))ν‖L2

≤ (C1 + C3)

+∞∑

ν=0

2−2νθeν(t) + C2

+∞∑

ν=0

2−2νθ (eν(t))
1
2 ‖(Lu(t))ν‖L2

+C2

+∞∑

ν=0

2−2νθ (eν(t))
1
2 ‖(

∑

j,k

∂j ((ajk − Tajk )∂ku)
)
ν
‖L2 .

We have

+∞∑

ν=0

2−2νθ (eν(t))
1
2 ‖(

∑

j,k

∂j ((ajk − Tajk )∂ku)
)
ν
‖L2

≤
( +∞∑

ν=0

2−2νθeν(t)
) 1

2
( +∞∑

ν=0

2−2νθ‖(
∑

j,k

∂j ((ajk − Tajk )∂ku)
)
ν
‖2
L2

) 1
2
.

From (15) we deduce

+∞∑

ν=0

2−2νθ‖(
∑

j,k

∂j ((ajk − Tajk )∂ku)
)
ν
‖2
L2 ≤ C ‖

∑

j,k

∂j ((ajk − Tajk )∂ku)‖2
H−θ
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Now, using [10, Prop. 3.5] in the case θ ∈ ]0, 1[ and [14, Th. 5.2.8] in the case
θ = 0,

‖
∑

j,k

∂j ((ajk − Tajk )∂ku)‖2
H−θ ≤ C(sup

j,k

‖ajk‖Lip)‖u(t)‖H 1−θ ,

so that

+∞∑

ν=0

2−2νθ (eν(t))
1
2 ‖(

∑

j,k

∂j ((ajk − Tajk )∂ku)
)
ν
‖L2 ≤ C4Eθ(t),

and finally

d

dt
Eθ (t) ≤ C(Eθ (t) + (Eθ (t))

1
2 ‖Lu(t)‖H−θ ).

The energy estimate (9) easily follows from this last inequality and the Grönwall
Lemma.
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