
On the Regularity of Characteristic
Functions

Winfried Sickel

Abstract In this survey we shall deal with the regularity of characteristic functions
XE of subsets E of Rd in the framework of Besov spaces. We will describe a number
of necessary and sufficient conditions to guarantee membership in a Besov space
of given smoothness s and with integrability p. Several examples are discussed in
detail.
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1 Introduction

Let E be a nontrivial measurable subset of Rd such that 0 < |E| < ∞. By |E| we
denote the Lebesgue measure of E and by XE the associated characteristic function.
For 1 ≤ p ≤ ∞ and s ≥ 0 we have

XE ∈ Lp(Rd ) for all E , XE �∈ W 1
p(Rd) for all E ,

and

XE �∈ Cs(Rd ) for all E .

Neither the Lebesgue spaces Lp(Rd ) nor the first order Sobolev spaces W 1
p(Rd) nor

the Hölder spaces Cs(Rd) allow to distinguish the regularity of those characteristic
functions. Intuitively it is clear that these functions have different regularity
depending on the quality of the boundary (whatever this means at this moment).
To make this clear we have to deal with notions of fractional smoothness s ∈ (0, 1)

related to spaces with p < ∞. There are several possibilities. Not only for simplicity
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we have decided here for Besov spaces Bs
p,q(Rd), see Sect. 2 for a definition.

Alternatively we could have chosen Bessel potential spaces Hs
p(Rd ) or even more

general Lizorkin–Triebel spaces Fs
p,q(Rd). Parts of the results obtained below carry

over from Besov spaces to the spaces Fs
p,q (Rd), but there will be also exceptions,

mainly in limiting situations. We will not go into details here.
In this survey we will discuss various notions describing the regularity of the

boundary ∂E and to compare this with the regularity of XE in Besov spaces. Mostly
they will stem from fractal geometry, but not exclusively. For convenience of the
reader we have collected some basic facts from fractal geometry in the Appendix
at the end of this paper. The paper is written in a way that it is readable also
for non-experts in function spaces. The author had spend some time to look for
proofs as simple as possible. Only in a few cases we did not include the known but
more complicated proofs. This makes the paper essentially self-contained. A certain
number of examples is treated in detail.

The motivation of the author to deal with this topic originated from the theory
of pointwise multipliers for Besov spaces. Here a function f : Rd → R is called a
pointwise multiplier for Bs

p,q(Rd) if f · g belongs to Bs
p,q(Rd ) for all g ∈ Bs

p,q(Rd ).

The question, whether the characteristic function of the half space E := Rd+ is a
pointwise multiplier for Besov and Bessel potential spaces, has attracted a lot of
attention since the early sixties. Later Gulisashvili [30, 31], see also Maz’ya and
Shaposhnikova [46, 5.5.2], had found necessary and sufficient conditions on a set
E ⊂ Rd such that XE is a pointwise multiplier in specific situations. For a function
f to be a pointwise multiplier for Bs

p,q(Rd ) it is necessary that f belongs at least

locally to Bs
p,q(Rd ) itself. Hence, the regularity of the characteristic function XE

is part of the pointwise multiplier problem for Besov spaces. In my opinion it is
interesting enough to be considered as an independent problem.

There will be a continuation of this survey dealing with characteristic functions
as pointwise multipliers for Besov spaces.

The paper is organized as follows. Section 2 is devoted to the function spaces
under consideration. In Sect. 3 we will discuss the maximal smoothness of charac-
teristic functions related to the case s = 1/p. Section 4 contains results on less
regular characteristic functions, i.e., we consider 0 < s < 1/p.

1.1 Notation

As usual,N denotes the natural numbers,N0 = N∪{0}, Z denotes the integers andR
the real numbers. The letter d ∈ N is always reserved for the underlying dimension
in Rd . As usual, a domain in Rd is an open, non-trivial and simply connected set.
For a subset E of Rd we denote it’s complement by F and the set of inner points of
F by F̊ . Furthermore, we put

∂E = ∂F := {x ∈ Rd : dist (x,E) = dist (x, F ) = 0} .
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Several times we will work with dyadic cubes. Here by a dyadic cube we mean a
cube of type

Qj,k := {x ∈ Rd : 2−j k� ≤ x� < 2−j (k� + 1), � = 1, . . . , d} , j ∈ Z, k ∈ Zd .

With λQ we denote the cube having the same centre as Q itself, the sides of λQ

and Q are parallel and the side-length of λQ is the side-length of Q multiplied with
λ > 0. A ball with center in x and radius r will be denoted by B(x, r).

If X and Y are two normed spaces, the symbol X ↪→ Y indicates that the
identity operator is continuous. For two sequences (an)n and (bn)n of nonnegative
real numbers we will write an � bn if there exists a constant c > 0 such that
an ≤ c bn for all n. We use an 
 bn if an � bn and bn � an.

2 Besov Spaces

Nowadays Besov spaces represent a standard version of regularity used in various
branches of mathematics. One of their advantages consists in the possibility to
describe them in quite different ways. For our purpose the most appropriate one
is the characterization by differences.

Definition 1 Let 1 ≤ p, q ≤ ∞.

(i) Let 0 < s < 1. Then Bs
p,q(Rd) is the collection of all real-valued functions

f ∈ Lp(Rd ) such that

‖ f |Bs
p,q(Rd )‖ := ‖ f |Lp(Rd )‖

+
(∫

|h|<1
|h|−sq

( ∫
Rd

|f (x + h) − f (x)|pdx
)q/p dh

|h|d
)1/q

< ∞

(usual modification if p and/or q are equal to infinity).
(ii) Let 1 ≤ s < 2. Then Bs

p,q(Rd ) is the collection of all real-valued functions

f ∈ Lp(Rd ) such that

‖ f |Bs
p,q(Rd)‖ := ‖ f |Lp(Rd)‖ +

(∫
|h|<1

|h|−sq
( ∫

Rd
|f (x + 2h) − 2f (x + h) + f (x)|pdx

)q/p dh

|h|d
)1/q

< ∞

(usual modification if p and/or q are equal to infinity).
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Remark 1

(i) Besov spaces can be defined for all s ∈ R and all p, q ∈ (0,∞] (partly by
using simply higher order differences). But for us the above definition will be
sufficient.

(ii) Besov spaces are Banach spaces. They can be characterized also in terms of
the modulus of smoothness, in a Fourier analytic way, by atoms, molecules
and wavelets etc.. Standard references are the monographs by Besov, Il’yin,
Nikol’skij [6, 7], Nikol’skij [48], Peetre [51] and Triebel [61, 62, 66].

Normally most important are the parameters p and s. The parameter q may be
considered as a fine-index which only comes into play in limiting situations. There
will be two cases, namely q = ∞ and q = p, which will be more important for us
then the other. In case q = ∞ the norm reads as

‖ f |Bs
p,∞(Rd)‖ := ‖ f |Lp(Rd)‖ + sup

|h|<1
|h|−s

(∫
Rd

|f (x + h) − f (x)|pdx

)1/p

if 0 < s < 1 and

‖ f |Bs
p,∞(Rd)‖ := ‖ f |Lp(Rd)‖

+ sup
|h|<1

|h|−s

(∫
Rd

|f (x + 2h) − 2f (x + h) + f (x)|pdx

)1/p

if 1 ≤ s < 2. In case q = p we first observe that we can replace
∫
|h|<1 . . . by

∫
Rd . . .

(since the additional term (
∫
|h|≥1 . . .)1/p is dominated by a constant C(s, p, d)

(independent of f ) times ‖ f |Lp(Rd )‖). A change of variables finally results in
the following equivalent norms for Bs

p,p(Rd):

‖ f |Bs
p,p(Rd )‖∗ := ‖ f |Lp(Rd )‖ +

(∫
Rd

∫
Rd

|f (x) − f (y)|p
|x − y|sp+d

dx dy

)1/p

if 0 < s < 1 and

‖ f |Bs
p,p(Rd )‖∗ := ‖ f |Lp(Rd )‖

+
(∫

Rd

∫
Rd

|f (2y − x) − 2f (y) + f (x)|p
|x − y|sp+d

dx dy

)1/p

if 1 ≤ s < 2. If Rd is replaced by a smooth bounded domain � these norms are
often called Gagliardo norms. Many times we shall employ so-called elementary
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embeddings. They express the monotonicity of the Besov spaces with respect to s

and q . Here we mean the following

Bs0
p,q0

(Rd) ↪→ Bs0
p,∞(Rd ) ↪→ B

s1
p,1(R

d ) ↪→ Bs1
p,q1

(Rd) , (1)

where q0, q1 are arbitrary in [1,∞] and 0 < s1 < s0.

Remark 2

(i) To restrict the values of h by |h| < 1 is always artificial. If a is an arbitrary
positive real number, then the restriction |h| < a leads to an equivalent norm.

(ii) Officially Besov spaces have been introduced by Besov in his Phd thesis
published in the papers [3] and [4] in 1959/1961. However, Nikol’skij had
already introduced the classes Bs

p,∞(Rd ) in 1951 and Gagliardo had considered

Bs
p,p(Rd) in 1956 (in connection with trace problems for W 1

p(�)).

3 The Limiting Case s = 1/p

As we shall see below, the smoothness s of a characteristic function XE of a
measurable set E ⊂ Rd, 0 < |E| < ∞, will be dominated in any case by 1/p.
With this problem we will deal first. Afterwards we will characterize those sets E

such that XE has maximal regularity.

3.1 Necessary Conditions

Let us start with a very simple example. We choose d = 1 and consider the
characteristic function X of the interval (0, 1). For 1 ≤ p < ∞ and 0 < h < 1 we
have

∫ ∞

−∞
|X(x + h) − X(x)|pdx =

∫ 0

−h

1 dx +
∫ 1

1−h

1 dx = 2h .

The same argument applies for −1 < h < 0. Hence

‖X( · + h) − X( · ) |Lp(R)‖ = |2h|1/p , |h| < 1 . (2)

For 1 < p < ∞ this immediately implies X ∈ Bs
p,∞(R) if 0 < s ≤ 1/p and

X �∈ Bs
p,∞(R) if 1/p < s < 1. Since Besov spaces are monotone in s, see (1), we

conclude X �∈ Bs
p,∞(R) for all s > 1/p.
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Now we apply the same method to the case of a more general set E. Recall,
F := Rd \ E. For h ∈ Rd we define

E(h) := {x ∈ E : x + h �∈ E} ;
F(h) := {x ∈ F : x + h �∈ F } .

It follows

‖XE( · + h) − XE( · ) |Lp(Rd)‖p =
∫

E(h)

1 dx +
∫

F(h)

1 dx

= |E(h)| + |F(h)| . (3)

Hence, we have a first result.

Lemma 1 Let 1 ≤ p < ∞ and 0 < s < 1. Then XE belongs to Bs
p,∞(Rd) if and

only if

sup
|h|<1

|h|−s (|E(h)| + |F(h)|)1/p < ∞ . (4)

There is an easy but interesting consequence of Lemma 1. Let 1 < p < ∞. Observe
that XE ∈ Bs

1,∞(Rd) implies XE ∈ B
s/p
p,∞(Rd ) and vice versa.

Figure 1 below shows shifted versions of the supports of characteristic functions
of a circle and of a rectangle, respectively. The shaded regions are just E(h) ∪ F(h)

in these cases. De facto it is “seen” that |E(h)| + |F(h)| 
 |h|, |h| < 1.
As a consequence we obtain a second result.

Lemma 2 Let d ≥ 2. Let 1 ≤ p < ∞ and s > 0. Then the characteristic function
XE of either a ball or a cuboid, i.e., the cartesian product of d segments, belongs to
Bs

p,∞(Rd) if and only if s ≤ 1/p.

Proof Only p = 1 requires an additional comment. Obviously
∫
Rd

|XE(x + 2h) − 2XE(x + h) + XE(x)|dx

≤
∫
Rd

|XE(x + 2h) − XE(x + h)|dx +
∫
Rd

|XE(x + h) − XE(x)|dx

= 2(|E(h)| + |F(h)|) .

This explains sufficiency. Necessity follows from Theorem 1 below. �

Fig. 1 E(h) ∪ F(h) for
circle and rectangle
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It will be the main aim of this subsection to show that s = 1/p is a barrier for
the smoothness of characteristic functions XE in general. Our point of departure is
a generalization of a theorem of Titchmarsh, due to Gulisashvili [30].

Proposition 1 If for some ball B, B ⊂ Rd , and f ∈ L�oc
1 (Rd ) we have

lim|h|→0

1

|h|
∫

B

|f (x + h) − f (x)| dx = 0

then f ≡ const almost everywhere on B.

Now we turn to an application of this Proposition 1. Let E ⊂ Rd, 0 < |E| < ∞.
Then the function g(x) := |X(x + h) −X(x)|, x ∈ Rd , only takes values in {0, 1}.
This implies

∫
B

|XE(x + h) − XE(x)| dx =
∫

B

|XE(x + h) − X(x)|p dx

for all h and all 1 ≤ p < ∞. Next we need to recall an equivalent characterization
of Besov spaces in terms of modulus of smoothness. We put

ωp(f, t) := sup
|h|<t

( ∫
Rd

|f (x + h) − f (x)|p dx
)1/p

, f ∈ L�oc
p (Rd) .

Let 1 ≤ q < ∞, 1 ≤ p < ∞ and 0 < s < 1. Then there exist positive constants
A,B such that

A ‖ f |Bs
p,q(Rd)‖ ≤ ‖ f |Lp(Rd )‖ +

( ∞∑
j=0

(2jsωp(f, 2−js))q
)1/q

≤ B ‖ f |Bs
p,q(Rd )‖

holds for all f ∈ Bs
p,q(Rd ), we refer, e.g., to [61, 2.5.12]. A simple monotonicity

argument yields that

lim
h→0

1

|h|
( ∫

Rd
|f (x + h) − f (x)|p dx

)1/p = 0

for any f ∈ Bs
p,q(Rd ). If f = XE then the assumption XE ∈ B

1/p
p,q (Rd) (1 < p <

∞, 1 ≤ q < ∞) and Proposition 1 yield that XE is constant on any ball B. But this
is in contradiction with E ⊂ Rd , 0 < |E| < ∞.

Theorem 1 Let 1 ≤ p < ∞ and 1 ≤ q < ∞. Then there exists no subset E ⊂
Rd, 0 < |E| < ∞, such thatXE ∈ B

1/p
p,q (Rd).
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Proof The case 1 < p < ∞, 1 ≤ q < ∞ has been treated above. It remains to
consider p = 1. Let us assume XE ∈ B1

1,q(Rd). Since the function

gh(x) := |X(x + 2h) − 2X(x + h) + X(x)| , x ∈ Rd ,

can only take values from the set {0, 1, 2}, we obtain

‖ gh |L1(Rd)‖ ≤ ‖ gh |Lp(Rd)‖p ≤ 2p−1 ‖ gh |L1(Rd )‖ .

Let 1 ≤ r < ∞. It follows

∫
|h|≤1

(
|h|−1 ‖ gh |L1(Rd)‖

)r/p dh

|h|d 

∫

|h|≤1

(
|h|−1/p ‖ gh |Lp(Rd)‖

)r dh

|h|d .

Since E has finite measure, this implies XE ∈ B1
1,q(Rd) if and only if XE ∈

B
1/p
p,pq(Rd). For 1 < p < ∞ and q < ∞ we may apply our arguments from above.

This yields the claim for p = 1. �
Hence we conclude that the maximal regularity of a characteristic function in the

framework of Besov spaces is given by the class B
1/p
p,∞(Rd) for some p. Only in case

d = 1 the spaces B
1/p
p,∞(Rd), 1 ≤ p ≤ ∞, are comparable. Then we have

B1
1,∞(R) ↪→ B

1/p0
p0,∞(R) ↪→ B

1/p1
p1,∞(R) ↪→ B0∞,∞(R) , 1 ≤ p0 < p1 ≤ ∞ .

The characteristic function X of the interval (0, 1) not only belongs to B1
1,∞(R), it

belongs to BV (R), the space of functions of bounded variation (which represents a
strictly smaller class). This will play a role in the next subsection.

3.2 Characteristic Functions with Maximal Regularity

Here we follow Gulisashvili [30]. Therefore we consider functions of bounded
variation which are integrable on Rd .

Recall, a locally integrable function f : Rd → R is of bounded variation
if its first order partial derivatives (in the distributional sense) are bounded Borel
measures. The space BV ∩ L1(Rd) will be endowed with the norm

‖ f |BV ∩ L1(Rd )‖ :=
d∑

j=1

∣∣∣ ∂f

∂xj

∣∣∣+ ‖ f |L1(Rd )‖ .

where | ∂f
∂xj

| denotes the total variation of the measure. The symbol Hs refers to the
s-dimensional Hausdorff measure, see the Appendix for details. Then the perimeter
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of a set E is the quantity

per E := lim inf
j→∞ Hd−1(∂Mj ) ,

where the limit is taken with respect to all sequences (Mj )j of sets with a smooth
boundary (or polyhedra) such that

lim
j→∞ ‖XE − XMj |L1(Rd)‖ = 0 .

A basic fact in the theory of the BV spaces is the Kronrod–Federer–Fleming–Rishel
formula

‖ f |BV (Rd )‖ =
∫ ∞

−∞
per ({x ∈ Rd : f (x) > t}) dt ,

see, e.g., Fleming, Rishel [26] and Burago, Zalgaller [11]. In particular, it follows

XE ∈ BV (Rd ) if and only if per E < ∞ . (5)

Next we recall the definition of the space Lip (1, 1)(Rd). A function f : Rd → R
belongs to Lip (1, 1)(Rd) if f ∈ L1(Rd) and supt>0 t−1 ω1(f, t) < ∞. The norm
is given by

‖ f |Lip (1, 1)(Rd )‖ := ‖ f |L1(R
d )‖ + sup

t>0
t−1 ω1(f, t) .

Hardy and Littlewood proved that BV ∩ L1(R) coincides with Lip (1, 1)(R). The
generalization to the case d > 1 has been proved by Gulisashvili [30].

Proposition 2 It holds BV ∩L1(Rd) = Lip (1, 1)(Rd ) as sets. There exist positive
constants A,B such that

A sup
t>0

t−1 ω1(f, t) ≤ ‖ f |BV (Rd )‖ ≤ B sup
t>0

t−1 ω1(f, t)

holds for all f ∈ L1(Rd).

Summarizing we get the following.

Lemma 3 Let E ⊂ Rd be a measurable set satisfying 0 < |E| < ∞.

(i) Let per E < ∞. ThenXE belongs to B
1/p
p,∞(Rd ) for all p, 1 ≤ p < ∞.

(ii) Let XE ∈ B
1/p0
p0,∞(Rd ) for some p0, 1 ≤ p0 < ∞. Then per E < ∞, XE ∈

BV (Rd) andXE ∈ B
1/p
p,∞(Rd ) for all p, 1 ≤ p < ∞, follows.
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Proof

Step 1. Proof of (i). Thanks to (5) and per E < ∞ we know that XE ∈ BV ∩
L1(Rd ). Since this space coincides with Lip(1, 1)(Rd ), see Proposition 2, we
conclude

sup
|h|<1

|h|−1
∫
Rd

∣∣∣(XE(x + 2h) − XE(x + h)
)

−
(
XE(x + h) − XE(x)

)∣∣∣ dx

≤ 2 sup
|h|<1

|h|−1
∫
Rd

|XE(x + h) − XE(x)| dx < ∞ ,

i.e., XE ∈ B1
1,∞(Rd). We put g̃h(x) := XE(x + h) − XE(x), x ∈ Rd . Observe

that |g̃(x)| ∈ {0, 1} for all x. Hence, for all p ∈ (1,∞) we get

|h|−1 ‖ g̃h |L1(Rd )‖ 
 |h|−1 ‖ g̃h |Lp(Rd)‖p (6)

with hidden constants independent of h. This yields that XE belongs to
B

1/p
p,∞(Rd ) for all these p.

Step 2. Proof of (ii). Once again we use (6). Since XE ∈ L1(Rd) is guaranteed by
|E| < ∞ we conclude that XE ∈ B

1/p0
p0,∞(Rd ) implies that XE ∈ B

1/p
p,∞(Rd ) for

all p ∈ [1,∞). We get a bit more. We also obtain that

sup
|h|<1

|h|−1
∫
Rd

|XE(x + h) − XE(x)| dx < ∞.

Now we employ (3) and find

sup
0<t<1

t−1 sup
|h|<t

∫
Rd

|XE(x + h) − XE(x)| dx

= sup
0<t<1

t−1 sup
|h|<t

(E(h) + F(h))

≤ sup
|h|<1

|h|−1 (E(h) + F(h)) =: I < ∞ .

Because of the trivial estimate

sup
t≥1

t−1 sup
|h|<t

∫
Rd

|XE(x + h) − XE(x)| dx ≤ I + 2 |E| < ∞

we conclude XE ∈ Lip(1, 1) ∩ L1(Rd ) and therefore XE ∈ BV ∩ L1(Rd ), see
Proposition 2. Finally, formula (5) yields the claim.

�
The second main result in this subsection we get as an immediate consequence.
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Theorem 2 Let E ⊂ Rd and 0 < |E| < ∞. Then the following assertions are
equivalent:

(i) per E < ∞;
(ii) sup|h|<1 |h|−1 (|E(h)| + |F(h)|) < ∞;

(iii) XE ∈ BV (Rd );
(iv) XE ∈ Lip(1, 1)(Rd);
(v) XE ∈ B

1/p0
p0,∞(Rd ) for some p0, 1 ≤ p0 < ∞.

(vi) XE ∈ B
1/p
p,∞(Rd) for all p, 1 ≤ p < ∞.

Proof Part (i) implies (iii) by using (5). Proposition 2 yields the implication (iii) →
(iv). From Lemma 3 we derive (iv) → (v) and (v) → (vi). Lemma 1 shows (vi) →
(ii) and at the same time (ii) → (v) (p0 = 1). Finally, Lemma 3 helps to close the
circle since (v) → (i). �

3.3 Examples

Characteristic functions of balls and of rectangles (cuboids) we have already
considered. Now we turn to more complicated domains. As usual, a domain is an
open connected set in Rd . First we apply a well-known fact in the theory of Besov
spaces. The classes Bs

p,q ∩ L∞(Rd ), s > 0, 1 ≤ p, q ≤ ∞, are algebras under
pointwise multiplication, i.e., there exists a positive constant c such that

‖ f ·g |Bs
p,q‖ ≤ c

(
‖ f |Bs

p,q(Rd )‖ ‖ g |L∞(Rd)‖+‖ g |Bs
p,q(Rd)‖+‖ f |L∞(Rd)‖

)

holds for all f, g ∈ Bs
p,q ∩ L∞(Rd ). We refer to Peetre [50] and [52, 4.6]. In

addition we shall use that Besov spaces are invariant under rotations, translations
and reflections. The combination of these two facts leads to a large number of further
examples sharing the same smoothness properties as the characteristic function
of a cube. For example, multiplying the characteristic function of a cube with an
rotated, shifted and properly enlarged version of it we get that the characteristic
function of a triangle has maximal regularity as well. Hence, any domain which
allows a finite triangulation, has an associated characteristic function with maximal
regularity. All these examples are covered by the classes of characteristic functions
which we will consider below. The most important but probably not the most
interesting examples are given by characteristic functions of elementary Lipschitz
domains. Concerning these domains we shall make use of the following definition,
picked up from Burenkov [12, 4.3]. In this definition we shall apply the notation
x = (x ′, xd), x ′ = (x1, . . . , xd−1) ∈ Rd−1, xd ∈ R.
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Definition 2 Let d ≥ 2. An open bounded set E is called elementary Lip-
schitz domain if there exist a function ϕ and numbers 0 < D1 ≤ D2 <

∞, a1, . . . ad, b1, . . . , bd−1, L such that

(i) diam (E) ≤ D2;
(ii) E = {x ∈ Rd : ad < xd < ϕ(x ′), x ′ ∈ W };

(iii) W := {x ′ ∈ Rd−1 : ai < xi < bi, i = 1, . . . , d − 1};
(iv) ad + D1 ≤ ϕ(x ′), x ′ ∈ W ;
(v) |ϕ(x ′) − ϕ(y ′)| ≤ L |x ′ − y ′| , x ′, y ′ ∈ W .

For elementary Lipschitz domains it is easy to prove that the associated charac-
teristic function has maximal regularity.

Lemma 4 Let E be an elementary Lipschitz domain. ThenXE ∈ BV ∩ B
1/p
p,∞(Rd )

for all p ∈ [1,∞).

Proof We will apply Theorem 2(ii).

Step 1. For positive δ we define

∂Eδ := {x ∈ Rd : dist (x, ∂E) ≤ δ} . (7)

Usually ∂Eδ is called the δ-neighbourhood of ∂E. Observe, in our particular case
we have

∂E = ∂W∗ ∪{(x ′, xd) : x ′ ∈ ∂W , ad ≤ xd ≤ ϕ(x ′)}∪{(x ′, ϕ(x ′)) : x ′ ∈ W } ,

where ∂W∗ := {(x ′, ad) : x ′ ∈ W }. In what follows we concentrate on the last
part since the remaining part of the boundary is either regular or can be treated
similarly as the last part. Suppose 0 < δ < D1/L, where L denotes the Lipschitz
constant of ϕ. Let

G := {(x ′, ϕ(x ′)) : x ′ ∈ W }.

We claim that

∂Gδ ⊂ � :=
{
(x ′, xd) : x ′ ∈ W , ϕ(x ′)− (L+1)δ < xd < ϕ(x ′)+ (L+1)δ

}
.

Let x ∈ Gδ and suppose dist (x,G) = ρ ≤ δ. Hence, there is a point y ∈ G such
that |x − y| = ρ. Clearly, y = (y ′, ϕ(y ′)). This yields

|xd −ϕ(x ′)| ≤ |xd −ϕ(y ′)|+|ϕ(y ′)−ϕ(x ′)| ≤ |xd −ϕ(y ′)|+L|x ′−y ′| . (8)

Since |xd − ϕ(y ′)| ≤ dist (x,G) = ρ and |x ′ − y ′| ≤ ρ, we find

|xd − ϕ(x ′)| ≤ (L + 1)δ

and therefore x ∈ �.
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Step 2. There is an obvious relation between the δ-neighbourhood of ∂E and
E(h) ∪ F(h). We have

E(h) ∪ F(h) ⊂ ∂Eδ , |h| = δ . (9)

Applying the result of Step 1 we find

|E(h)| + |F(h)| ≤ |∂Eδ| ≤ |�| = 2 (L + 1) δ |W | , δ = |h| .

By Theorem 2 the claim follows.
�

As already mentioned above, Besov spaces are invariant under rotations, transla-
tions and reflections. This has an immediate consequence.

Corollary 1 Let E be a domain which can be written as the union of the closures
of a finite number of pairwise disjoint domains E1, . . . , EN such that any of the
Ej , j = 1, . . . , N, is the image of an elementary Lipschitz domain under a finite

number of rotations, translations and reflections. Then XE ∈ BV ∩ B
1/p
p,∞(Rd) for

all p ∈ [1,∞).

Proof Lemma 4 yields

XEj ∈ BV ∩ B
1/p
p,∞(Rd)

for all p ∈ [1,∞) and all j . Since |∂Ej | = 0, j = 1, . . . , N, see Lemma 5 below,
we have

XE =
N∑

j=1

XEj .

Therefore, Corollary 1 is a consequence of Lemma 4. �
Figure 2 shows a domain with a polygonal boundary of finite length, covered by
Corollary 1. Now we turn to examples in R3. In Fig. 3, we have a

polyhedral cone and in Fig. 4 we see an Icosahedron. Both are elementary
Lipschitz domains. But Lipschitz regularity of the boundary is not necessary
for maximal regularity of the associated characteristic function. Here are a few
examples. First we take the domain A ⊂ R2 with boundary ∂A given by the Astroid.
The determining functional equation of this curve is given by

x2/3 + y2/3 = 1 , x, y ∈ R . (10)

Afterwards we consider the rotation of this curve around the y-axis resulting in the
domain Arot ⊂ R3.
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Fig. 2 A domain with a
polygonal boundary in the
plane

Fig. 3 A polyhedral cone

Fig. 4 The icosahedron

Figure 5 shows a vertical cut through Arot, which gives us the domain A itself.
Obviously the boundary ∂A has Hölder regularity α = 2/3, see (10), and is therefore
not Lipschitz (in four isolated points). Concerning the δ-neigbourhood it is easy to
show that there exists a positive constant c such that

|Aδ| ≤ c |h| , |h| < 1 .
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Fig. 5 The Astroid

Fig. 6 The rotated Astroid

Hence, Theorem 2 yields XA ∈ BV ∩B
1/p
p,∞(R2) for all p ∈ [1,∞). Figure 6 shows

the set Arot itself. Obviously the boundary ∂Arot is not Lipschitz in north and south
pole and on the equator. However, we can argue as in case of A itself, i.e., there
exists a positive constant C such that

|Aδ
rot| ≤ c |h| , |h| < 1 .

Hence, Theorem 2 yields XArot ∈ BV ∩ B
1/p
p,∞(R3) for all p ∈ [1,∞).

The next example is even simpler, see Fig. 7. Let ε ∈ (0, 1). We define

Eε := {(x, y) ∈ R2 : − 1 < x < 1, |x|ε < y < 1} .

The domain Eε has a boundary with Hölder regularity α = ε. So the Hölder
regularity can be arbitrarily small. However, the same argument as above can be
applied. For any ε there exists a positive constant cε such that

|Eδ
ε | ≤ cε |h| , |h| < 1 .

Hence, Theorem 2 yields that the characteristic function of the domain Eε

belongs to BV ∩ B
1/p
p,∞(Rd ) for all p ∈ [1,∞).
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Fig. 7 A typical
non-Lipschitz domain

0− 1

1

1

Fig. 8 A polyhedral domain
which is not Lipschitz

Now we turn to d = 3 again. There is a famous example of a polyhedral domain in
R3 which is not a Lipschitz domain, see Fig. 8. A convenient reference is given by
Dobrowolski [20], see page 103.

The red dot indicates one of the critical points of the boundary when one tries to
describe the neigbourhood as an elementary Lipschitz domain.

But in our situation it is simpler. We may apply Corollary 1. By the obvious
splitting of the domain into the two subdomains, each of them given by one cuboid,
it is immediate that the associated characteristic function has maximal regularity,
see Lemma 2. This is the reason why we avoided the notion of a Lipschitz domain
in Corollary 1. The class of domains used in this corollary covers the class of the
Lipschitz domains, but is more general.

4 Less Regular Characteristic Functions

Now we turn to characteristic functions of sets with a more wild boundary. First we
will investigate some necessary conditions.

4.1 Necessary Conditions

Let us start with some basics.

Lemma 5 Let E be a bounded domain. If XE ∈ Bs
p,q (Rd) for some s > 0, 1 ≤

p < ∞ and 1 ≤ q ≤ ∞, then |∂E| = 0 follows.
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Proof We employ the Withney-type decomposition of E into dyadic cubes, cf. Stein
[58, VI.1] for details. By dyadic cubes we mean cubes of the type

Qj,k := {x ∈ Rd : 2−j k� ≤ x� < 2−j (k� + 1), � = 1, . . . , d} ,

j ∈ Z, k ∈ Zd . Hence

E =
⋃

Q∈F
Q

where Q = Qj,k for some nonnegative integer j and k ∈ Zd , F denotes a subset
of the set of all dyadic cubes and the cubes Q are pairwise disjoint. To each point
x ∈ ∂E we can associate a sequence of points (xj )j ⊂ E approaching x. Each of
the points xj belongs to one of the dyadic cubes Q ∈ F and these cubes have the
property

diam Q ≤ dist (Q, ∂E) ≤ 4 diam Q.

Consequently, for any ε > 0 and each x ∈ ∂E there exist xj ∈ E and a cube
Q(xj ) ∈ F, x ∈ Q(xj ) such that diam Q(xj ) < ε. Since Besov spaces are
monotonically ordered with respect to s and q , see (1), we may concentrate on the
classes Bs

p,p(Rd ) for some small positive s < 1. It follows

(
‖XE |Bs

p,p(Rd)‖∗)p ≥
∫
Rd

∫
Rd

|XE(x) − XE(y)|p
|x − y|d+sp

dy dx

≥
∫

∂E

∫
Q(xj )

1

|x − y|d+sp
dy dx

≥
∫

∂E

∫
Q(xj )

(diam Q(xj ))−(d+sp) dy dx

≥ C |∂E| (diam Q(xj ))−sp

≥ C |∂E| ε−sp ,

where C does not depend on ε. This proves the claim. �
Now we will continue with a more serious result due to Jaffard and Meyer [35].

To establish further necessary conditions we need to have additional information on
the set E, in particular we need to know how thick the sets E and F \ ∂E are in a
neighbourhood of the boundary. We define

∂E+ =
{
x ∈ ∂E : ∃μ > 0 such that ∀ε, 0 < ε ≤ 1, ∃Aε ,Bε satisfying

Aε ⊂ B(x, ε) ∩ E, Bε ⊂ B(x, ε)∩F, and |Aε| · |Bε| ≥ με2d

}
. (11)
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Let A be a subset of Rd . By dimP (A) we denote the packing dimension, cf. the
Appendix.

Theorem 3 ([35, Thm. 2.2]) Let E be a nontrivial subset of Rd . Suppose XE

belongs to Bs
p,p(Rd ) for some s > 0 and 1 ≤ p < ∞. Then dimP (∂E+) ≤ d − sp.

Remark 3

(i) Jaffard and Meyer [35] worked with a slightly modified definition for the set
∂E+. They replaced |Aε| , |Bε| ≥ μ ε2d by the more restrictive conditions
|Aε| ≥ μ εd and |Bε| ≥ μ εd . But this change has no relevance for the proof.
Since we shall not apply Theorem 3 below we skip the proof.

(ii) It seems that the method of proof does not apply to the Besov spaces with p �= q

(but it extends to Lizorkin–Triebel spaces).

Of course, of interest are those domains E satisfying ∂E = ∂E+. We discuss
some examples.

(a) John domains. We say that a bounded domain E is a John domain provided
there is a constant C ≥ 1 and a distinguished point x0 ∈ E, so that each
point x ∈ E can be joint to x0 (inside E) by a rectifiable curve γ : [0, �] →
E, γ (0) = x, γ (�) = x0, parameterized by arc-length (� may depend on x),
and such that the distance to the boundary satisfies

dist (γ (t), ∂E) > C−1 t .

We refer to Martio, Sarvas [43] or Hajlasz, Koskela [32]. Relatives of John
domains are investigated by Besov, we refer to Definition 6 below and [5], [7].
A direct consequence of the definition of John domains is the observation that
for all x ∈ ∂E there exists a μ > 0 such that for all ε ∈ (0, 1) there exists a ball
Aε satisfying Aε ⊂ B(x, ε) ∩ E and |Aε| ≥ μ εn.

Now, select a cube Q such that E ⊂ Q and dist (∂E, ∂Q) > 1. For a given
set A we denote by Å the set of all inner points of A. Define G := F ∩ Q. If E

and G̊ are John domains then we conclude that ∂E = ∂E+.
(b) (ε, δ) domains. Let 0 < ε < ∞ and 0 < δ ≤ ∞. Then a domain E is called

an (ε, δ) domain whenever x, y ∈ E and |x − y| < δ, there is a rectifiable arc
γ ⊂ E joining x to y and satisfying

�(γ ) ≤ 1

ε
|x − y|

(�(γ ) denotes the length of the arc γ ) and

dist (z, ∂E) ≥ ε
|x − z| |y − z|

|x − y| for all z ∈ γ .

It is known that for an (ε, δ) domain it holds |∂E| = 0. One of the key properties
of (ε, δ) domains is the following. Denote by W1 the collection of all dyadic
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cubes which form the Whitney decomposition of E. By W2 we denote the
collection of all dyadic cubes which form the Whitney decomposition of F̊ .
Then, for each cube Q ∈ W2 with sidelength �(Q) ≤ ε δ/(16d) there exists a
cube Q∗ ∈ W1 such that

1 ≤ �(Q∗)
�(Q)

≤ 4 and dist (Q,Q∗) ≤ C �(Q)

where C = C(d) but independent of Q and E. For all these properties we refer
to Jones [36]. Hence, for E being an (ε, δ) domain we have ∂E = ∂E+.

(c) Regular domains. A domain E is called regular if it satisfies the measure
density condition: there exists a constant c > 0 such that for all x ∈ E and
all r ∈ (0, 1]

|B(x, r) ∩ E| ≥ c rd .

If E and F̊ are regular then ∂E = ∂E+ follows.
(d) Extension and embedding domains. We say that a bounded domain � ⊂ Rd

is a Bs
p,p-extension domain if every function u ∈ Bs

p,p(�) can be extended to

a function ũ ∈ Bs
p,p(Rd ), the mapping u �→ ũ is continuous and there exists a

constant C = C(d, p, s,�) such that

‖ ũ |Bs
p,p(Rd)‖ ≤ C ‖u |Bs

p,p(�)‖ .

Here we use the following definition for Bs
p,p(�), 0 < s < 1, 1 ≤ p ≤ ∞. A

function u ∈ Lp(�) belongs to Bs
p,p(�) if

‖ f |Bs
p,p(�)‖∗ := ‖ f |Lp(�)‖ +

(∫
�

∫
�

|f (x) − f (y)|p
|x − y|sp+d

dx dy

)1/p

< ∞ . (12)

Often these spaces are denoted by Ws
p(�) and called Sobolev spaces of

fractional order s on �. In a remarkable paper Zhou [68] proved the following.
Let d ≥ 2 and � a domain in Rd . Then the following assertions are
equivalent:

• � is a regular domain;
• � is a Bs

p,p-extension domain for all s ∈ (0, 1) and all p ∈ [1,∞);
• � is a Bs

p,p-extension domain for some s ∈ (0, 1) and some p ∈ [1,∞).

In addition Zhou was able to prove that a similar characterization takes place
when the existence of a continuous extension operator is replaced by the validity
and continuity of the standard Sobolev embeddings into Lebsgue spaces/Hölder
spaces. We refer to [68] for more details.
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4.2 Sufficient Conditions: Approximation by Piecewise
Constant Functions

Now we turn to sufficient conditions. There are several ways to attack this problem.
All methods are related to specific characterizations of Besov spaces. The first one is
given by the characterization in terms of best approximation by piecewise constant
functions.

Let us turn to Lemma 1 again. There we have already a sharp result. However,
to make it more easy to deal with, we may use a further easy observation already
employed in the proof of Lemma 4. Recall, the δ-neighbourhood ∂Eδ of ∂E has
been defined in (7). We have

E(h) ∪ F(h) ⊂ ∂Eδ , |h| = δ ,

see (9). As a consequence, if |h|−s |∂E|h|| stays bounded in a neighborhood of 0
the function XE belongs to B

s/p
p,∞(Rd). For later reference we fix this. Concerning

the definition of upper Minkowski content and upper Minkowski dimension (box
counting dimension) we refer to the Appendix below.

Lemma 6 Let E ⊂ Rd such that 0 < |E| < ∞. Let 1 ≤ p < ∞, 0 < s ≤ 1 and
0 < a ≤ 1.

(i) If

sup
0<δ<a

δ−s |∂Eδ| < ∞ ,

thenXE ∈ B
s/p
p,∞(Rd).

(ii) If the d − s-dimensional upper Minkowski content of ∂E, denoted by
M∗(d−s)(∂E), is finite, thenXE ∈ B

s/p
p,∞(Rd).

(iii) If the upper Minkowski dimension dimM∂E = t , then XE ∈ Bs ′
p,∞(Rd) for all

s′ < d−t
p

.

Proof Part (i) follows directly from Lemma 1. In view of the definition of
the Minkowski content part (ii) is just a reformulation of (i). Finally (iii) is a
consequence of (A.1). �
Remark 4 We recall a result from Falconer [22, Prop. 9.6]. Let S be an m-tuple of
contractions on a closed subset D of Rd such that

|Si(x) − Si(y)| ≤ ri |x − y| , x, y ∈ D ,
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where ri ∈ (0, 1) for all i = 1, . . . ,m. Then the invariant set K satisfies dimH K ≤
s and dimM K ≤ s, where s is the unique number for which

N∑
j=1

rs
i = 1 .

Let E be a bounded domain with boundary ∂E = K . Hence, Lemma 6 yields
XE ∈ Bs ′

p,∞(Rd) for all s′ < d−s
p

and all p ∈ [1,∞).

But we can do a little bit better. For f ∈ Lp(Rd) we define

Ej(f )p := inf
{
‖ f − g |Lp(Rd )‖ : g ∈ Lp(Rd) and

g is constant on the dyadic cubes Qj,k , k ∈ Zd
}

, j ∈ N0 .

The number Ej(f )p expresses the minimal error in approximating f with first order
splines (piecewise constant functions) with respect to the dyadic cubes Qj,k, k ∈
Zd . By assumption any approximant has the form

g =
∑
k∈Zd

αj,k Xj,k . (13)

Here the αj,k are appropriate real numbers and Xj,k denotes the characteristic
function of the dyadic cube Qj,k . There is a well-known characterization of Besov
spaces in terms of these numbers Ej(f )p. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and
0 < s < 1/p. Then f ∈ Bs

p,q (Rd) if and only if f ∈ Lp(Rd) and

( ∞∑
j=0

[
2js Ej (f )p

]q)1/q

< ∞ , (14)

cf., e.g., Oswald [49]. Let E be a bounded domain in Rd . Choosing the approximant
g in (13) such that αj,k = 1 as long as Qj,k ⊂ E and αj,k = 0 otherwise, then it
follows

∥∥∥XE −
∑
k∈Zd

αj,k Xj,k

∣∣∣Lp(Rd)

∥∥∥p =
∑

k: |Qj,k∩∂E|>0

∫
Qj,k

|χE(x)|pdx (15)

≤
∣∣∣{x ∈ E : dist (x, ∂E) ≤ √

d 2−j }
∣∣∣ .

For a subset E of Rd and δ > 0 we put

∂Eδ+ := {x ∈ E : dist (x, ∂E) ≤ δ} , (16)
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i.e., we concentrate on that part of the neigbourhood of the boundary which is part
of E.

Theorem 4 Let E be a bounded domain in Rd . Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and
0 < s < 1/p. Suppose

∫ 1

0
δ−sq |∂Eδ+|q/p dδ

δ
< ∞ if q < ∞

and sup
0<δ<1

δ−s |∂Eδ+|1/p < ∞ if q = ∞ .

ThenXE ∈ Bs
p,q(Rd ) holds.

Proof The condition |E| < ∞ implies XE ∈ Lp. Let q < ∞. As a consequence of
(15) and obvious monotonicity arguments we have

∞∑
j=0

2jsq Ej (XE)
q
p ≤

∞∑
j=0

2jsq |∂E
√

d2−j

+ |q/p

≤ ds/2
∞∑

j=0

∫ √
d2−j

√
d2−j−1

δ−sq
∣∣∣∂E

2
√

dδ
+

∣∣∣q/p dδ

δ

≤ ds/2 (2
√

d)sq
∫ 2d

0
t−sq |∂Et+|q/p dt

t
.

Since

∫ 2d

1
t−sq |∂Et+|q/p dt

t
≤ C(s, q, d) |E|q/p,

the claim follows from (14). In case q = ∞ the needed modifications are obvious.
�

Remark 5 As mentioned above, in case q = ∞ our sufficient condition is close
to the property that M∗(d−sp)(∂E) < ∞. The usefulness of the (upper) Minkowski
content in connection with the regularity of characteristic functions has been pointed
out at several places, e.g. Strichartz [59] (but traced there to Madych), Jaffard and
Meyer [35, Prop.2.1], Runst, S. [52, 2.3.1] and Sickel [57].

There is a further improvement possible. In our context it is quite easy to find the
best approximation of XE . For j ∈ N0 and k ∈ Zd we define

αj,k :=
⎧⎨
⎩

1 if Qj,k ⊂ E;
1 if |Qj,k ∩ E| ≥ |Qj,k|/2;
0 otherwise.
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It follows
∥∥∥XE −

∑
k∈Zd

αj,k Xj,k

∣∣∣Lp(Rd )

∥∥∥

=
( ∑

k: 0<|Qj,k∩E|<2−jd−1

|Qj,k ∩ E| +
∑

k: |Qj,k∩E|≥2−jd−1

|Qj,k ∩ F |
)1/p

= Ej(f )p .

If we change the definition of the αj,k for one cube Qj,k , then it is easy to see
that the error increases. This explains the last identity. Now we obtain an analog of
Lemma 1.

Lemma 7 Let E be a bounded nontrivial domain in Rd . Let 1 ≤ p < ∞, 1 ≤ q ≤
∞ and 0 < s < 1/p. ThenXE belongs to Bs

p,q(Rd) if and only if

( ∞∑
j=0

2jsq
[ ∑

k∈Zd

min(|Qj,k ∩ E|, |Qj,k ∩ F |)
]q/p

)1/q

< ∞

(standard modification for q = ∞).

Both, Lemmas 1 and 7 seem to have the disadvantage that they are not of great
help with respect to the understanding of concrete examples.

4.3 Examples: I

First we continue our study of elementary domains.

Definition 3 Let d ≥ 2. We define an elementary domain with Hölder continuous
boundary of order α ∈ (0, 1] by replacing (v) in Definition 2 by

|ϕ(x ′) − ϕ(y ′)| ≤ L |x ′ − y ′|α , x ′, y ′ ∈ W .

Lemma 8 Let d ≥ 2. Let α ∈ (0, 1). Let E be an elementary domain with Hölder
continuous boundary of order α. ThenXE ∈ B

α/p
p,∞(Rd ) for all p ∈ [1,∞).

Proof The proof is almost the same as in case of Lemma 4. We indicate the needed
modifications only. By applying the same notation as there we have to change the
estimate (8). This yields in case ρ ≤ δ < 1

|xd − ϕ(x ′)| ≤ |xd − ϕ(y ′)| + L|x ′ − y ′|α ≤ ρα(L + 1) .
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Hence ∂Gδ ⊂ �, where

� := {(x ′, xd) ∈ Rd : x ′ ∈ W , ϕ(x ′) − (L + 1)δα < xd < ϕ(x ′) + (L + 1)δα} .

The remaining part of the boundary is regular, i.e., for the sets E(h) and F(h) we
conclude

|E(h)| + |F(h)| ≤ |∂Eδ| ≤ C δα , δ = |h|

with a constant C > 0 independent on δ. Now the claim follows from Lemma 1. �

4.4 On the Dimension of Graphs of Functions and
Consequences

There is a certain number of contributions in the literature where the problem of
the Hausdorff or Minkowski dimension of a graph of a function is studied, we refer,
e.g., to Carvalho and Caetano [16], Deliu and Jawerth [19], Falconer [22, Cor. 11.2],
Hunt [33], Kamont and Wolnik [38], Kaplan et al. [39] and Triebel [63, Thm. 16.2].

In view of Lemma 6 any bound of the Minkowski dimension of the graph results
in an estimate for the smoothness of the characteristic function of the associated
domain. The most prominent example is the family of Weierstrass functions. Here
we will have a short look onto the simplified version

fλ(t) :=
∞∑

k=1

λ−β sin(λkt) , t ∈ R , 0 < β < 1 , λ > 1 .

For more general Weierstrass functions we refer to Kaplan et al. [39] and Hunt [33].
Since fλ represents a lacunary Fourier series, the regularity in periodic Besov spaces
Bs∞,∞(T) is well understood. For the case λ = 2 one may consult [53, Chapt. 3], for
the general case λ �= 2 one has to apply in addition some arguments from Triebel
[60, 2.2.1], replacing the dyadic resolution of unity by more general resolutions
of unity (depending on λ). It follows fλ ∈ B

β∞,∞(T) and this is just the periodic

subspace of Cβ(R) = B
β∞,∞(R), see also [53, Chapt. 3], since 0 < β < 1. Define

aλ := mint∈R fλ(t) and

�λ := {(x, y) : 0 < x < 2π , aλ − 1

2
< y < fλ(x)} .

The Fig. 9 shows the graph of the function f2 on [0, 2π], i.e., below of the graph
we see �2.
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Fig. 9 A special Weierstrass function

Then

X�λ ∈ B
β/p
p,∞(Rd) for all p ∈ [1,∞)

follows. We refer also to Falconer [22, Ex. 11.3].
Let us mention that Triebel [63, proof of Thm. 16.2], [65] has constructed

another example of a Hölder continuous function of order α ∈ (0, 1) such that
the characteristic function X� of the associated domain � satisfies

X� ∈ B
α/p
p,∞(Rd) for all p ∈ [1,∞)

and

X� �∈ Bs
p,∞(Rd) for all s >

α

p
.

We make a short summary. Hölder continuity of the boundary of order α ∈ (0, 1] is a
sufficient condition for regularity of order α/p but by no means necessary. Triebel’s
example shows that for the class Cα itself the result is unimprovable. However,
also our examples from Figs. 5, 6, and 7 show, that Hölder regularity and Lipschitz
regularity are not well adapted to our problem of determining the smoothness of
XE .

There is one more general class of domains we would like to investigate.

4.5 Domains with a Boundary Being an h-Set

We follow Bricchi [8, 9], but see also [63–65] and [54].
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Definition 4 Let h : (0, 1] → (0,∞) be a positive non-decreasing function such
that there exists a positive constant c with

h(2−j−k)

h(2−j )
≥ c 2−kd for all j, k ∈ N0 . (17)

Let � be a non-empty compact set in Rd . Then � is called an h-set if there exists a
finite Radon measure μ in Rd satisfying

supp μ = � and μ(B(y, r)) 
 h(r) , y ∈ � , 0 < r < 1 . (18)

Observe that for any such function h there exists at least one such set � (for an
explicit construction we refer to [8]). We recall a few more properties of h-sets.
Again our references are [8, 9].

Lemma 9 Let � be an h-set. Then the following assertions are true.

(i) All h-measures related to � are equivalent to the generalized Hausdorff
measureHh restricted to � (see the Appendix below for a definition).

(ii) The related Radon measure μ is a doubling measure, i.e., there exists a
constant c > 0 such that

μ(B(y, 2r)) ≤ c μ(B(y, r)) for all y ∈ � and all 0 < r < 1 .

(iii) For any t ∈ (0, 1] and any y ∈ � one has

dimH �∩B(y, t) = lim inf
r→0

log h(r)

log r
and dimP �∩B(y, t) = lim sup

r→0

log h(r)

log r

There is a list of examples in [9]. All these functions are defined on a small
intervall (0, a), 0 < a < 1, and then suitably prolonged on the whole (0, 1].
• h1(r) = rδ 0 ≤ δ ≤ d;
• h2(r) = rδ | log r|b , 0 < δ < d, b ∈ R;
• h3(r) = | log r|b , b < 0;
• h4(r) = rd | log r|b , b > 0;
• h5(r) = rδ exp(b | log r|κ) , 0 < δ < d, b ∈ R, 0 < κ < 1;
• h6(r) = rδ S(r), where S is a slowly varying function.

Here a slowly varying function S : (0, 1] → R is a positive measurable function
such that limr→0 S(λr)/S(r) = 1 for all λ ∈ (0, 1].

The most important special case is the first one. The compact sets � related to
h1 are called δ-sets (in most of the cases the letter d is used instead of δ, but d

has already a different meaning). δ-sets are discussed at various places, sometimes
they are also called regular or Ahlfors regular sets, see, e.g., Bechtel and Egert
[2], Frazer [27], Jonsson and Wallin [37], Schneider and Vybíral [54] or Triebel
[63, 65, 66].
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The main step to understand domains E with ∂E being an h-set is made with the
following lemma, see Bricchi [8].

Lemma 10 Let E be a bounded domain in Rd with boundary ∂E being an h-set.
Then there exists a constant c > 0 such that

|∂Er+| ≤ c
rd

h(r)
, 0 < r < 1 .

Proof The proof is based on the fact that the finite Radon measure controls the
thickness of ∂Er for r sufficiently small.

The starting point is the Whitney decomposition of E, see [58]. More exactly, let
F denote the collection of all dyadic cubes representing the Whitney decomposition
of E , i.e.,

E =
∞⋃

j=0

Mj⋃
�=0

Qj,�(j) , (19)

all the cubes Qj,�(j) are pairwise disjoint and

√
d 2−j ≤ dist (Qj,�(j), ∂E) ≤ √

d 2−j+2 .

We shall need an estimate of the numbers Mj . Let

Ej := {x ∈ E : √
d 2−j−1 ≤ dist (x, ∂E) ≤ 4

√
d 2−j+1} , j ∈ N .

By Fj we denote the collection of all � ∈ Zd such that the dyadic cube Qj,� ∈ F

is contained in Ej . Then, if k ∈ Fj , the cube 3
√

d Qj,k intersects �. Furthermore,
there exists a point yk ∈ � such that the cube Pk , side-length

√
d2−j , sides parallel

to the axes and with center in yk, is contained in 3
√

d Qj,k . Let us denote the
centre of Qj,k by xk. Then, by definition, xk is the centre of 3

√
d Qj,k as well

and |xk − x�| ≥ 2−j , k �= �. Hence, every y ∈ � is contained in at most C = C(d)

(independent of j ) cubes 3
√

d Qj,k with k ∈ Fj . Let μ be the associated finite
Radon measure on �. By assumption on μ it follows

∞ > C μ(�) ≥
∑
k∈Fj

μ
(

3
√

d Qj,k ∩ �
)

≥
∑
k∈Fj

μ(Pk ∩ �) 
 |Fj | h(2−j ) .

Here |Fj | denotes the cardinality of Fj . Hence

sup
j=0,1,...

Mj h(2−j ) ≤ C μ(�) . (20)
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This inequality is the key step in the proof. The inequality (20) can be turned
immediately into an estimate of the Lebesgue measure of the sets ∂Er+. For a
moment we put r := √

d2−j−1, j ∈ N. Then

∂Er+ ⊂
⋃

�∈Fj

3
√

d Qj,�

and therefore

|∂Er+| ≤ C

h(2−j )

(
3
√

d 2−j
)d ≤ c

rd

h(r)
,

where c is a positive constant independent of j . In the last step we used the
monotonicity of h and the doubling property, see Lemma 9. �

In view of Theorem 4 the Lemma 10 implies the following.

Corollary 2 LetE be a bounded domain in Rd with boundary ∂E being an h-set.

(i) Let 1 ≤ p < ∞ and 0 < s < 1/p. Then the characteristic functionXE belongs
to Bs

p,∞(Rd) if

sup
0<r<1

rd−sp

h(r)
< ∞ .

(ii) Let 1 ≤ p, q < ∞ and 0 < s < 1/p. Then the characteristic function XE

belongs to Bs
p,q (Rd) if

∫ 1

0
r
( d
p −s− 1

q )q
h(r)

− q
p dr < ∞ .

As an immediate consequence we get the following.

Corollary 3 Let E be a bounded domain in Rd with boundary ∂E being an δ-set

for some d − 1 < δ < d . Let 1 ≤ p < ∞. Then we have XE ∈ B
d−δ
p

p,∞(Rd ) for all
p ∈ [1,∞).

Remark 6

(i) Corollary 3 originates from Triebel [65, Thm. 3, Rem. 9] and Schneider, Vybíral
[54]. The proofs in [65] and [54] are partly different. They are based on the
characterization of Besov spaces by atoms.

(ii) Also Triebel [65] and Schneider, Vybíral [54] have dealt with h-sets. However,
for more general sets than δ-sets the sufficient condition

Is,p,q := sup
j∈N0

( ∞∑
k=0

2ksq
( h(2−j )

h(2−j−k)
2−kd

)q/p
)1/q

< ∞
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for XE , to belong to Bs
p,q(Rd), given in the quoted papers, is in general stronger

than that one from Corollary 2. It is not difficult to see that

( ∫ 1

0
r
( d
p −s− 1

q )q
h(r)

− q
p dr

)1/q ≤ ch Is,p,q

always holds with some constant ch, depending on h. As an example for the
non-equivalence of these quantities may serve h2(r) := rδ | log r|b, 0 < r < 1.
Let E denote a bounded domain with boundary being an h-set with respect to

h2. In case d − 1 < δ < d and b > 0 Corollary 2 yields XE ∈ B
d−δ
p

p,q (Rd )

if b > p/q . But Is,p,q = ∞, s = d−δ
p

for all q < ∞. However, let us
mention that Triebel, Schneider and Vybíral showed that Is,p,q < ∞ implies

XE ∈ B
d−δ
p

p,q,self s(R
d), a smaller space than the corresponding Besov space.

The classes Bs
p,q,self s(R

d ) are of some relevance in connection with pointwise
multipliers of Besov spaces.

Particular examples of δ-sets are self-similar sets, see the Appendix.

Corollary 4 Let K be a bounded domain in Rd with boundary ∂K being a self-
similar set satisfying the assumptions in Proposition 5 with s = δ, see the Appendix.

Let 1 ≤ p < ∞. Then we haveXK ∈ B
d−δ
p

p,∞(Rd) for all p ∈ [1,∞).

Now we turn to the next concrete example.

4.6 The Twindragon

The twindragon is a space filling curve with a fractal boundary, see Fig. 10. More
information, also about relatives (heighway dragon, Levy dragon) of this curve, may
be found in Wikipedia, see https://en.wikipedia.org/wiki/Dragon-curve.
Let T ⊂ R2 denote the set which is filled by this curve. It is known that ∂T is a
self-similar set, which satisfies the assumptions of Proposition 5 in the Appendix
below. It holds that dimH ∂T = dimM ∂T = δ, where δ is the unique solution of

( 1√
2

)δ + 2
( 1

2
√

2

)δ = 1 ,

given by

δ := log2

(
1 + 3

√
73 − 6

√
87 + 3

√
73 + 6

√
87

3

)
∼ 1.5236 ,

https://en.wikipedia.org/wiki/Dragon-curve
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Fig. 10 The twindragon

see Mandelbrot [42, p. 78]. Most important for us is the existence of a finite Radon
measure on ∂T , which turns ∂T into a δ-set. Here we may take the Hausdorff
measure Hδ restricted to ∂T . Hence, as a consequence of Corollary 3 we conclude

XT ∈ B
2−δ
p

p,∞(R2) for all p ∈ [1,∞).

Let us mention that we do not know whether this number δ is optimal. In particular,
we do not know whether Theorem 3 is applicable. If that would be the case, we
could conclude that this number δ is best possible.

There are further interesting properties of XT , in particular of interest in the
theory of wavelets. It can be used as a scaling function, we refer to Gröchenig,
Madych [29] and Wojtaszczyk [67, 5.3]. It is not difficult to see that the associated
wavelets have the same regularity as XT has.

4.7 Some Sufficient Conditions: Quasiballs

An essential step forward has been done by Faraco and Rogers [25]. These authors
worked with quasiballs.
A homeomorphism f : Rd → Rd is called K-quasiconformal if there is a constant
K < ∞ such that for all x ∈ Rd

K(x) := lim sup
ε→0

maxa: |x−a|=ε |f (x) − f (a)|
minb: |x−b|=ε |f (x) − f (b)| ≤ K .

A K-quasiball is the image of the unit ball under a K-quasiconformal mapping. For
d = 2 also the name quasicircle is commonly used.
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Theorem 5 ([25, Thm. 1.3]) Let 1 ≤ p < ∞, 0 < s < 1 and let E ⊂ Rd be a
K-quasiball. Then

‖XE |Bs
p,p(Rd)‖ 


(
|E| +

∫ δ∗

0
δ−ps |∂Eδ| dδ

δ

)1/p

,

where δ∗ := inf{δ : E ⊂ ∂Eδ}.
The proof is not short enough to be included into this survey. The more

interesting part in Theorem 5 is the estimate of ‖XE |Bs
p,p(Rd )‖ from below,

because this part is missing in Theorem 4. In general there is some gap between
the sufficient conditions in Theorem 4 and the necessary condition in Theorem 3.
However, in case of certain domains with a fractal boundary they almost touch. For
later use we formulate a simple consequence, already known to [25].

Corollary 5 Let 1 ≤ p < ∞, 0 < s < 1 and let E ⊂ Rd be a K-quasiball. If we
assumeXE ∈ Bs

p,p(Rd ), then

lim
δ→0

δ−s |∂Eδ|1/p = 0

follows.

Proof The mapping δ �→ |∂Eδ| is monotone in δ. Hence

∫ δ∗

0
δ−ps |∂Eδ| dδ

δ



∞∑
k=k0

2kps |∂Eδ| ,

where k0 has to be chosen in dependence of δ∗. This yields the claim. �
Remark 7 A reformulation of Corollary 5 (just by definition) reads as follows.
Under the given restrictions we obtain M∗d−s(∂E) = 0.

The most beautiful example we discuss next.

4.8 The Snowflake Domain

The standard construction of the von Koch curve is as follows, see Fig. 11. We start
with an equilateral triangle. Then we subdivide each side into three equal parts and
remove the middle one. This middle part is replaced by an equilateral triangle again.

Sidelength is now 1/3 of the original one. This procedure is iterated. After a
few further iterations one obtains Fig. 12 which might be seen as a reasonable
approximation of the von Koch curve. The domain � with the von Koch curve as its
boundary is called the snowflake domain.
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Fig. 11 The first three steps of the construction of the von Koch curve

Fig. 12 The Snowflake domain

We collect a few facts about its properties.

(i) � is a (ε,∞) domain, see [36];
(ii) � is a John domain, see [10];

(iii) � is a quasiball, see [47, 1.2];
(iv) � is a selfsimilar set, which fulfils the conditions in Proposition 5 in the

Appendix, see [22, 9.2] and [44, p. 67];
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(v) ∂�+ = ∂�, see (i);
(vi) dimH ∂� = dimM ∂� = log 4/log 3, see, e.g., Falconer [22, Ex.9.5]);

(vii) ∂� is a δ-set with δ = log 4/log 3, see Proposition 5 in the Appendix.
(viii) 0 < Hlog 4/ log 3(∂�) ≤ M

log 4/ log 3∗ (∂�) ≤ M∗ log 4/ log 3(∂�),
see Proposition 5 in the Appendix and (A.2).

As a combination of Theorem 5, Corollary 5 and property (viii) we obtain now
the following.

Corollary 6 ([25, Cor. 1.4]) Let 1 ≤ p < ∞. The characteristic function X� of

the snowflake domain belongs to Bs
p,p(R2) if and only if s < 1

p

(
2 − log 4

log 3

)
.

This result has a counterpart for q = ∞.

Theorem 6 Let 1 ≤ p < ∞. The characteristic function X� of the snowflake
domain � belongs to Bs

p,∞(R2) if and only if s ≤ (2 − log 4/ log 3
)
/p.

Proof Sufficiency follows from Proposition 5, see the Appendix, and Corollary 3.
If we assume that X� ∈ Bt

p,∞(R2) for some t > 2−s
p

then by the elementary

embeddings of the Besov spaces in (1) it follows X� ∈ B
(2−s)/p
p,p (R2). But this

contradicts Corollary 6. �
The author conjectures that, for fixed p ∈ [1,∞), the smallest Besov space

containing X� is given by Bs
p,∞(R2) with s := 2−log 4/ log 3

p
.

4.9 The Rotating Snowflake

The Fig. 13 below is obtained by first shifting an approximation of the snowflake
domain � in the (x, y)-plane to the right such that it will be located to the right of
x = 1. Afterwards this shifted domain is rotated around the y-axes. In the limit the
outcome in R3 is denoted by �rot. What we have in mind is a spiked car tyre.

Lemma 11 Let 1 ≤ p < ∞. The characteristic function X�rot of the rotating

snowflake domain belongs to Bs
p,∞(R3) if s ≤ 1

p

(
2 − log 4

log 3

)
.

Proof Lemma 10 yields

|�r | ≤ c r2−s , r ∈ (0, 1) , s = log 4

log 3
.

Hence, because of

|�r
rot| 
 |�r | , 0 < r < 1 ,
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Fig. 13 The rotated Snow flake domain

we get the same inequality for |�r
rot|. Lemma 6(i) can be used to complete the

argument. �

4.10 Some Sufficient Conditions: The Aikawa Dimension

This time we shall work with a sufficient condition related to the Aikawa dimension
of the boundary of a domain. In [1] Aikawa introduced the following definition of
a fractal dimension (for simplicity we concentrate on the situation in Rd and the
Lebesgue measure).

Definition 5 Let A be a subset of Rd and let G(A) be the set of those t > 0 for
which there exists a constant ct such that

∫
B(x,r)

dist (y, A)t−d dy ≤ ct rt−d for all x ∈ A and all r ∈ (0, diam (A)) .

Then the Aikawa dimension of A is defined to be dimAI A = inf G(A).

Our point of departure is Lemma 1. Let p = 1, 0 < s < 1 and |h| < a < 1.
First, observe that

E(h) = Ea(h) = {x ∈ E : dist (x, ∂E) < a , x + h �∈ E}
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and similarly for F(h) = Fa(h). Furthermore

|h|−s

∫
Ea(h)

dx ≤
∫

Ea

dist (x, ∂E)−s dx .

This is almost all what is needed to prove the following supplement to Lemma 1.

Theorem 7 Let 1 ≤ p < ∞ and 0 < s < 1. Let E be a bounded domain.

(i) If

sup
x∈∂E

∫
B(x,1)

dist (y, ∂E)−s dy < ∞ ,

thenXE belongs to B
s/p
p,∞(Rd ).

(ii) If dimAI ∂E = t , thenXE belongs to Bs ′
p,∞(Rd) for all s′ < d−t

p
.

Proof The sets Ea and Fa can be covered by finitely many balls B(xk, 1), xk ∈
∂E, since E is bounded. Hence

∫
Ea

dist (x, ∂E)−s dx +
∫

Fa

dist (x, ∂E)−s dx

is finite if
∫

B(xk,1)

dist (x, ∂E)−s dx < ∞

for all k. This proves (i). On the other hand part (ii) is an obvious consequence of
(i). �
Remark 8

(i) For deciding about membership of XE in a Besov space we do not need the full
power of the Aikawa dimension since we only work with balls of radius 1. This
will be different when we switch to the question whether XE is a pointwise
multiplier for a Besov space. For more details we refer to Frazier and Jawerth
[28], Bechtel and Egert [2] and [56, 57].

(ii) It is interesting to notice that on Rd the probably more popular Assouad
dimension dimA and the Aikawa dimension coincide. We refer to Lehrbäck
and Tuominen [41] and Fraser [27] for more details.

(iii) On Rd we have the following chain of inequalities

dimH ∂E ≤ dimM∂E ≤ dimM∂E ≤ dimA ∂E = dimAI ∂E .



430 W. Sickel

Let E be a bounded domain with the boundary being a δ-set for some d − 1 <

δ < d . Then dimA ∂E = dimM ∂E = dimH ∂E = δ. We refer to Frazer [27],
see also [2].

Mainly Besov [5], but see also [7, 2.8], has worked with domains satisfying a
flexible horn condition.

Definition 6 The domain � satisfies a flexible horn condition if there exist δ0 > 0
and T > 0 such that for any x ∈ � there exist an arc

γ (t, x) := (γ1(t, x), . . . , γd(t, x)) , 0 ≤ t ≤ T ,

with the following properties.

(i) For all i ∈ {1, . . . , d} the functions γi(t, x) are absolutely continuous with
respect to t and |γi(u, x)| ≤ 1 for almost all u ∈ [0, T ].

(ii) γ (0, x) = 0 and x +⋃0≤t≤T

(
γ (t, x) + tδ0[−1, 1]d

)
⊂ � .

This is quite close to the definition of a John domain.

Lemma 12 Let 1 ≤ p < ∞.

(i) Let � ⊂ Rd be a bounded domain which satisfies a flexible horn condition with
parameters δ0 and T . Then there exists a positive number s ≤ 1 such that X�

belongs to B
s/p
p,∞(Rd).

(ii) Let � ⊂ Rd be a John domain. Then there exists a positive number s ≤ 1 such
thatX� ∈ B

s/p
p,∞(Rd ).

Proof In both cases it is known that the Aikawa dimension of the boundary ∂� is
positive. In case (i) this is proved in Besov [5]. For John domains we refer to Hajlasz
and Koskela [32]. �

4.11 The Distance Zeta Function of a Set

Let A be a bounded subset of Rd . In the recent book [40] Lapidus, Radunović and
Žubrinić studied the function

ζA(s) :=
∫

Aδ

dist (x,A)s−d dx, s ∈ C ,

where Aδ denotes the δ-neigbourhood of A. The chosen fixed δ > 0 is of no
importance in their context. They call ζA the distance zeta function of A. For us
of interest are Lemmas 2.1.3 and 2.1.6 in [40]. They read as follows.

Proposition 3 Let A be an arbitrary subset of Rd and let δ be an arbitrary positive
number.
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(i) If σ > d − dimMA, then
∫
Aδ dist (x,A)−σ dx = +∞.

(ii) If −∞ < σ < d − dimMA, then
∫
Aδ dist (x,A)−σ dx < ∞.

Consequently, if 0 < s < d − dimM∂E, then in view of Theorem 7(i) we
obtain X� ∈ B

s/p
p,∞(Rd) for all p ∈ [1,∞), which is just a different proof of

Lemma 6(iii). Part (i) of Proposition 3 illustrates that on this way we can not improve
our conclusion.

4.12 Some Further Examples

When looking at the two examples of the twindragon and the snowflake domain one
could conjecture that the following formula holds:

XE ∈ Bs
p,∞(Rd) and s = 1

p

(
d − dimM ∂E

)
= 1

p

(
d − dimH ∂E

)
.

In what follows we shall investigate a two-parameter family Eα,γ of domains in the
plane, see Fig. 14, with a quite different behaviour. These domains are related to the
shark-domain on the cover of the monograph of Maz’ya [45] (and on the cover of its
Russian edition). In a certain sense the domains under consideration are also limit
cases of the classical Nikodym domains, cf. [45, 1.1.4].

Let γ ≥ α > 1. Then we define

βj :=
j∑

�=1

�−α , β :=
∞∑

�=1

�−α and δj := 1

4(2j + 2)γ
, j ∈ N .
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Fig. 14 A (modified) Nikody domain
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Further we put

A−1 := {
(x, y) : 0 < x < β , 0 < y <

1

2

}
,

A0 := {
(x, y) : 0 < x < 1 ,

1

2
≤ y < 1

}
,

Aj := {
(x, y) : β2j < x < β2j+1 ,

1

2
≤ y < 1

}
, j = 1, 2, . . . ,

Bj := {
(x, y) : β2j+1 + δj < x < β2j+2 − δj ,

1

2
+ δj<y <

3

2

}
, j = 0, 1, . . . ,

C0 := {
(x, y) : 0 < x < β1 + δ0 ,

1

2
+ δ0 < y <

3

2

}
,

Cj := {
(x, y) : β2j − δj−1 ≤ x < β2j+1 + δj ,

1

2
+ δj<y <

3

2

}
, j = 1, 2, . . . ,

D := {
(x, y) : β < x < β + 1 , 0 < y <

3

2

}

∪ {(β, y) : 0 < y <
1

2
or 1 < y <

3

2

}
,

and

Eα,γ :=
⎛
⎝ ∞⋃

j=−1

Aj

⎞
⎠ ∪

⎛
⎝ ∞⋃

j=0

Bj

⎞
⎠ ∪

⎛
⎝ ∞⋃

j=0

Cj

⎞
⎠ ∪ D .

What we have in mind are two combs where the teeth come closer and closer
together. Just by looking at the neigbourhood of the line {(β, y) : 1/2 < y < 1}
it is clear that Eα,γ is neither an (ε, δ)-domain nor an John domain nor a domain
satisfying a flexible horn condition in the sense of Besov. They do not belong to the
regular domains as well.

Proposition 4 Let 1 ≤ p < ∞ and γ ≥ α > 1. Then the sets Eα,γ have the
following properties.

(i) dimM(∂Eα,γ ) = 1 + 1/α.
(ii) dimH (∂Eα,γ ) = dimP (∂Eα,γ ) = 1.
(iii) χEα,γ ∈ Bs

p,∞(R2) if and only if s p ≤ (1 − 1/γ ).

(iv) Let 1 ≤ q < ∞. Then χEα,γ ∈ Bs
p,q(R2) if and only if s p < (1 − 1/γ ).

The rather technical proofs can be found in [56]. Let γ > α. Obviously we have

1

p

(
d − dimM ∂Eα,γ

)
= 1

p

(
1 − 1

α

)
<

1

p

(
1 − 1

γ

)
<

1

p
= 1

p

(
d − dimH ∂Eα,γ

)
.
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Clearly, in case of these domains neither the Hausdorff dimension nor the
Minkowski dimension characterize the smoothness s of the characteristic function.
Furthermore, from our knowledge on this family Eα,γ we can derive the following
conclusions.

• Let s ∈ (0, 1), p ∈ [1,∞) and q ∈ [1,∞] be fixed. Then there exists a set
E ⊂ R2, 0 < |E| < ∞, such that XE �∈ Bs

p,q (R2).

• Let s ∈ (0, 1) be fixed. Then for any s′ ∈ (s, 1) there exists a set E ⊂ R2, 0 <

|E| < ∞, such that the Minkowski dimension of ∂E equals 2 − s and

XE ∈ B
s ′/p
p,q (R2) for all p ∈ [1,∞) and q ∈ [1,∞].

Hence, our sufficient conditions given in Lemma 6 and Theorem 4 are not sharp
in general.

• Let p ∈ [1,∞) and q ∈ [1,∞] be fixed. Then for any s ∈ (0, 1] there exists a
set E ⊂ R2, 0 < |E| < ∞, such that the Hausdorff and the packing dimension
of ∂E equals 1 and

XE �∈ B
s/p
p,q (R2) .

Summarizing one observes that in general the Hausdorff dimension and the packing
dimension of ∂E are too small to characterize the smoothness of XE . On the other
hand the Minkowski dimension of ∂E is oversized for a characterization of the
smoothness of XE in many cases.

4.13 The Mandelbrot Set

We finish this subsection with one well-known extreme example, the famous
Mandelbrot set, see Fig. 15. This set, denoted by D, satisfies dimH D = 2 and
dimH ∂D = 2, see Shishikura [55]. Obviously this implies dimM ∂D = 2. Hence,
in view of Lemma 6, we do not expect any positive smoothness of XD .

References with respect to the Mandelbrot set are, e.g., [42] and [22, 14.2].
Concerning the smoothness of XD there is at least a chance that it belongs to

some Besov spaces B
0,b
p,∞(R2) of logarithmic smoothness b > 0, characterized by

the norm

‖f |B0,b
p,∞(Rd )‖ := ‖f |Lp(Rd )‖+ sup

|h|<1/2
(− log |h|)b

(∫
Rd

|f (x +h)−f (x)|pdx

)1/p

.

Recently, those function spaces have showed up in various publications, see, e.g.,
[13–15, 17, 18].
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Fig. 15 The Mandelbrot set

4.14 A Final Comment

The three methods, to obtain sufficient conditions for the regularity ofXE , discussed
in this section, seem to be more adapted to situations where

lim
t→0

dimH

(
∂E ∩ B(y, t)

)

exists and does not depend on y ∈ ∂E, compare with Lemma 9(iii). If this quantity
depends on y as in case of the domains Eα,γ , then we need more sophisticated
criteria.

Appendix

We recall some basic notions from fractal geometry. Our main sources are the
monographs of Falconer [21, 22] and Mattila [44].

Fractal Dimensions

Here we recall Hausdorff, Minkowski and packing dimension as well as the
Minkowski content.
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Hausdorff Dimension

Let A be a subset of Rd . A countable (or finite) collection of sets Ui with diameter
diam Ui is called a δ-cover of A if

A ⊂
∞⋃
i=1

Ui and 0 < diam Ui ≤ δ

for all i. Let s be a nonnegative real number. For any δ > 0 we put

Hs
δ (A) := inf

{ ∞∑
i=1

(diam Ui)
s : (Ui)

∞
i=1 is a δ-cover of A

}
.

We shall write

Hs (A) := lim
δ→0

Hs
δ (A) .

This limit exists in [0,∞] for any subset of Rd . Hs (A) is called the s-dimensional
Hausdorff measure of A. If s = d ∈ N we have

Hd (A) = 2d |A|
|B(0, 1)|

where |A| and |B(0, 1)| refer to the d-dimensional Lebesgue measure of these sets.

Definition 7 The Hausdorff dimension of a set A ⊂ Rd is given by

dimH A := sup{s : Hs(A) > 0} = inf{t : Ht (A) < ∞} .

We also need a generalization due to Bricchi [8, 9]. Let h : (0, 1] → (0,∞) be a
positive non-decreasing function such that there exists a positive constant c with

h(2−j−k)

h(2−j )
≥ c 2−kd for all j, k ∈ N0 .

Then, for a set A ⊂ Rd , we put h(A) := h(diam A) if A �= ∅ and h(∅) := 0. The
set function

Hh(A) := lim
δ→0

(
inf
{ ∞∑

i=1

h(Ui) : (Ui)
∞
i=1 is a δ-cover of A

})

is called the Hausdorff measure corresponding to h.
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Minkowski Dimensions

Let A be a non-empty bounded subset of Rd . For 0 < ε < ∞, let

N(A, ε) := min
{
k : A ⊂

k⋃
i=1

B(xi, ε) for some xi ∈ Rd
}

.

N(A, ε) is sometimes called covering number.

Definition 8 The upper and lower Minkowski dimension of a set E ⊂ Rd are
defined by

dimMA := inf{s : lim sup
ε↓0

N(A, ε) εs = 0}

and

dimMA := inf{s : lim inf
ε↓0

N(A, ε) εs = 0} .

In case dimMA = dimMA we call this number the Minkowski dimension of A.

It follows

dimH A ≤ dimMA ≤ dimMA ≤ d ,

see Mattila [44, pp. 78]. Let us mention that the Minkowski dimension is sometimes
also called box counting dimension.

Minkowski Content

Recall, for a given set A ⊂ Rd the family of δ-neighbourhoods Aδ, δ > 0, are
defined as

Aδ := {x ∈ Rd : dist (x,A) ≤ δ} .

Definition 9 The s-dimensional upper Minkowski content of A is defined by

M∗s(A) := lim sup
δ↓0

(2δ)s−d |Aδ|

and the s-dimensional lower Minkowski content of A by

Ms∗(A) := lim inf
δ↓0

(2δ)s−d |Aδ| .
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The Minkowski content and the Minkowski dimension are related as follows

dimMA = inf{s : M∗s (A) = 0} = sup{s : M∗s (A) > 0} , (A.1)

dimMA = inf{s : Ms∗(A) = 0} = sup{s : Ms∗(A) > 0} ,

A useful relation between Minkowski content and Hausdorff measure is given by

2−s−d |B(0, 1)|Hs (A) ≤ Ms∗(A) , (A.2)

see, e.g., Mattila [44, pp. 79].

Packing Dimension

We define upper and lower packing dimension as follows

dimP A = inf
{

sup
i

dimMAi : A =
∞⋃
i=1

Ai , Ai is bounded
}

,

dimP A = inf
{

sup
i

dimMAi : A =
∞⋃
i=1

Ai , Ai is bounded
}

,

where A is an arbitrary subset of Rd . If both numbers coincide, they are called
packing dimension of A.

Self-Similar and Sub-self-similar Sets

A mapping S : Rd → Rd is called a similarity with ratio r if

|S(x) − S(y)| = r |x − y| , x, y ∈ Rd .

If 0 < r < 1 we say that S is contracting. Suppose S := (S1, . . . SN), N ≥ 2,
is a finite sequence of similarities with contraction ratios r1, . . . , rN ∈ (0, 1). Then
there exists a unique non-empty compact set K such that

K =
N⋃

j=1

Sj (K) .
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This set K will be called self-similar. A non-empty compact set K ⊂ Rd is called
sub-self-similar for S if

K ⊂
N⋃

j=1

Sj (K) ,

see [23]. Furthermore, S satisfies the open set condition if there exists a bounded
non-empty open set O such that

N⋃
j=1

Sj (O) ⊂ O and (Si(O) ∩ Sj (O)) = ∅ if i �= j .

We shall need the following two results, see Hutchinson [34] and Falconer [22,
Thm. 9.3].

Proposition 5 ([22, Thm. 9.3]) If S satisfies the open set condition, then the
invariant set K is self-similar and 0 < Hs (K) < ∞, whence s = dimH K , where
s is the unique number for which

N∑
j=1

rs
i = 1 . (A.3)

Moreover, there are positive and finite numbers a and b such that

a rs ≤ Hs(K ∩ B(x, r)) ≤ b rs for x ∈ K, 0 < r < 1 .

In addition dimH K = dimM K .

There is a partial generalization to sub-self-similar sets which covers boundaries
of self-similar sets as well, see [23].

Proposition 6 ([24, Cor. 3.4], [23, Thm. 3.5]) Let S satisfy the open set condition
and let the non-empty compact set K be sub-self-similar for S. Define s as the
unique solution of (A.3). Then 0 < Hs(K) and s = dimH K = dimM K .
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