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Abstract We would like to prove a blow-up result for Sobolev solutions to the
Cauchy problem for semi-linear structurally damped σ -evolution equations, where
σ ≥ 1 and δ ∈ [0, σ ) are assumed to be any fractional numbers. To deal with
the fractional Laplacian (−�)σ and (−�)δ as well-known non-local operators, a
modified test function method is applied to prove a blow-up result in the subcritical
case and in the critical case as well.
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1 Introduction

The main goal of this paper is to discuss the critical exponent to the following
Cauchy problem for semi-linear structurally damped σ -evolution models:

{
utt + (−�)σ u + (−�)δut = |u|p,

u(0, x) = u0(x), ut (0, x) = u1(x),
(1)

with some σ ≥ 1, δ ∈ [0, σ ) and a given real number p > 1. Here, critical exponent
pcrit = pcrit (n) means that for some range of admissible p > pcrit there exists
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a global (in time) Sobolev solution for small initial data from a suitable function
space. Moreover, one can find suitable small data such that there exists no global (in
time) Sobolev solution if 1 < p ≤ pcrit . In other words, we have, in general, only
local (in time) Sobolev solutions under this assumption for the exponent p.

For the local existence of Sobolev solutions to (1), we address the interested
readers to Proposition 9.1 in the paper [2]. The proof of blow-up results in the
present paper is based on a contradiction argument by using the test function
method. The test function method is not influenced by higher regularity of the data.
For this reason, we restrict ourselves to the critical exponent to (1) in the case,
where the data are supposed to belong to the energy space. In this paper, we use the
following notations.

• For given nonnegative f and g we write f � g if there exists a constant C > 0
such that f ≤ Cg. We write f ≈ g if g � f � g.

• We denote v̂ = v̂(ξ) := Fx→ξ

(
v(x)

)
as the Fourier transform with respect to the

spatial variables of a function v = v(x).
• As usual, Ha with a ≥ 0 stands for Bessel potential spaces based on L2.
• We denote by [b] the integer part of b ∈ R. We put

〈
x
〉 := √

1 + |x|2.
• Moreover, we introduce the following two parameters:

k− := min{σ ; 2δ} and k+ := max{σ ; 2δ} if δ ∈ [0, σ ).

In order to state our main result, we recall the global (in time) existence result of
small data energy solutions to (1) in the following theorem.

Theorem 1 (Global Existence) Let m ∈ [1, 2) and n > m0k− with 1
m0

= 1
m

− 1
2 .

We assume the conditions

2

m
≤ p < ∞ if n ≤ 2k+,

2

m
≤ p ≤ n

n − 2k+ if n ∈
(
2k+,

4k+

2 − m

]
.

Moreover, we suppose the following condition:

p > 1 + m(k+ + σ)

n − mk− . (2)

Then, there exists a constant ε0 > 0 such that for any small data

(u0, u1) ∈ (
Lm ∩ H k+) × (

Lm ∩ L2)
satisfying the assumption ‖u0‖Lm∩Hk+ + ‖u1‖Lm∩L2 ≤ ε0, we have a uniquely
determined global (in time) small data energy solution

u ∈ C
(
[0,∞),H k+)

∩ C1
(
[0,∞), L2

)
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to (1). Moreover, the following estimates hold:

‖u(t, ·)‖L2 � (1 + t)
− n

2(k+−δ)
( 1
m

− 1
2 )+ k−

2(k+−δ)
(‖u0‖Lm∩Hk+ + ‖u1‖Lm∩L2

)
,

∥∥|D|k+
u(t, ·)∥∥

L2 � (1 + t)
− n

2(k+−δ)
( 1
m

− 1
2 )− k+−k−

2(k+−δ)
(‖u0‖Lm∩Hk+ + ‖u1‖Lm∩L2

)
,

‖ut (t, ·)‖L2 � (1 + t)
− n

2(k+−δ)
( 1
m

− 1
2 )− σ−k−

k+−δ
(‖u0‖Lm∩Hk+ + ‖u1‖Lm∩L2

)
.

We are going to prove the following main result.

Theorem 2 (Blow-Up) Let σ ≥ 1, δ ∈ [0, σ ) and n > k−. We assume that we
choose the initial data u0 = 0 and u1 ∈ L1 satisfying the following relation:

∫
Rn

u1(x)dx > ε0, (3)

where ε0 is a suitable nonnegative constant. Moreover, we suppose the condition

p ∈
(
1, 1 + 2σ

n − k−
]
. (4)

Then, there is no global (in time) Sobolev solution u ∈ C
([0,∞), L2

)
to (1).

Remark 1 We want to underline that the lifespan Tε of Sobolev solutions to given
data (0, εu1) for any small positive constant ε in the subcritical case of Theorem 2
can be estimated as follows:

Tε ≤ Cε
− (2σ−k−)(p−1)

2σ−(n−k−)(p−1) with C > 0. (5)

Nevertheless, catching the sharp lower bound of the lifespan Tε to verify whether
the obtained upper bound in (5) is optimal or not still remains open so far.

Remark 2 If we choose m = 1 in Theorem 1, then from Theorem 2 it is clear that
the critical exponent pcrit = pcrit (n) is given by

pcrit (n) = 1 + 2σ

n − 2δ
if δ ∈

[
0,

σ

2

]
and 4δ < n ≤ 4σ.

However, in the case δ ∈ ( σ
2 , σ ) there appears a gap between the exponents given by

1 + 2δ+σ
n−σ

from Theorem 1 and 1 + 2σ
n−σ

from Theorem 2 for 2σ < n ≤ 8δ. Related
to such a gap in the latter case, quite recently, the authors in [3] have succeeded to
indicate the global (in time) existence of small data energy solutions to (1), with
σ > 1, in low space dimensions for any p > 1 + 2σ

n−σ
by using suitable Lr1 − Lr2

decay estimates, with 1 ≤ r1 ≤ r2 ≤ ∞, for solutions to the corresponding linear
equation, after application of the stationary phase method. For this reason, at least
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in low space dimensions, we can claim that the critical exponent pcrit = pcrit (n) in
the case δ ∈ ( σ

2 , σ ) with σ > 1 is

pcrit (n) = 1 + 2σ

n − σ
.

2 Preliminaries

In this section, we collect some preliminary knowledge needed in our proofs.

Definition 1 ([8, 10]) Let s ∈ (0, 1). Let X be a suitable set of functions defined
on Rn. Then, the fractional Laplacian (−�)s in Rn is a non-local operator given by

(−�)s : v ∈ X → (−�)sv(x) := Cn,s p.v.

∫
Rn

v(x) − v(y)

|x − y|n+2s dy

as long as the right-hand side exists, where p.v. stands for Cauchy’s principal value,

Cn,s := 4s�( n
2+s)

π
n
2 �(−s)

is a normalization constant and � denotes the Gamma function.

Lemma 1 Let q > 0. Then, the following estimate holds for any multi-index α

satisfying |α| ≥ 1:

∣∣∂α
x

〈
x
〉−q ∣∣ � 〈

x
〉−q−|α|

.

Proof First, we recall the following formula of derivatives of composed functions
for |α| ≥ 1:

∂α
x h

(
f (x)

) =
|α|∑
k=1

h(k)
(
f (x)

)
⎛
⎜⎜⎝ ∑

γ1+···+γk≤α
|γ1|+···+|γk |=|α|, |γi |≥1

(
∂

γ1
x f (x)

) · · · (∂γk
x f (x)

)
⎞
⎟⎟⎠ ,

where h = h(z) and h(k)(z) = dkh(z)

dzk . Applying this formula with h(z) = z− q
2 and

f (x) = 1 + |x|2 we obtain

∣∣∂α
x

〈
x
〉−q ∣∣ ≤

|α|∑
k=1

(1 + |x|2)− q
2−k

×

⎛
⎜⎜⎝ ∑

γ1+···+γk≤α
|γ1|+···+|γk |=|α|, |γi |≥1

∣∣∂γ1
x (1 + |x|2)∣∣ · · · ∣∣∂γk

x (1 + |x|2)∣∣
⎞
⎟⎟⎠
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≤ C1

|α|∑
k=1

(1 + |x|2)− q
2−k

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if 0 ≤ |x| ≤ 1,⎛
⎜⎜⎝ ∑

γ1+···+γk≤α
|γ1|+···+|γk |=|α|, |γi |≥1

|x|2−|γ1| · · · |x|2−|γk|

⎞
⎟⎟⎠ if |x| ≥ 1,

≤ C2

|α|∑
k=1

(1 + |x|2)− q
2−k

{
1 if 0 ≤ |x| ≤ 1,

|x|2k−|α| if |x| ≥ 1,

≤
{

C2|α|〈x〉−q−2
if 0 ≤ |x| ≤ 1,

C2|α|〈x〉−q |x|−|α| if |x| ≥ 1,

where C1 and C2 are some suitable constants. This completes the proof. 
�
Lemma 2 Let m ∈ Z, s ∈ (0, 1) and γ := m + s. If v ∈ H 2γ (Rn), then it holds

(−�)γ v(x) = (−�)m
(
(−�)sv(x)

) = (−�)s
(
(−�)mv(x)

)
.

One can find the proof of Lemma 2 in Remark 3.2 in [1].

Lemma 3 Let m ∈ Z, s ∈ (0, 1) and γ := m + s. Let q > 0. Then, the following
estimates hold for all x ∈ Rn:

∣∣(−�)γ
〈
x
〉−q ∣∣ �

⎧⎪⎪⎨
⎪⎪⎩

〈
x
〉−q−2γ

if 0 < q + 2m < n,〈
x
〉−n−2s log(e + |x|) if q + 2m = n,〈

x
〉−n−2s

if q + 2m > n.

(6)

Proof We follow ideas from the proof of Lemma 1 in [7] devoting to the casem = 0
and s = 1

2 , that is, the case γ = 1
2 is generalized to any fractional number γ > 0.

To do this, for any s ∈ (0, 1) we shall divide the proof into two cases: m = 0 and
m ≥ 1.
Let us consider the first case m = 0. Denoting by ψ = ψ(x) := 〈

x
〉−q

we write

(−�)s
〈
x
〉−q = (−�)s(ψ)(x). According to Definition 1 of fractional Laplacian as

a singular integral operator, we have

(−�)s(ψ)(x) := Cn,δ p.v.

∫
Rn

ψ(x) − ψ(y)

|x − y|n+2s dy.
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A standard change of variables leads to

(−�)s(ψ)(x) = −Cn,s

2
p.v.

∫
Rn

ψ(x + y) + ψ(x − y) − 2ψ(x)

|y|n+2s dy

= −Cn,s

2
lim

ε→0+

∫
ε≤|y|≤1

ψ(x + y) + ψ(x − y) − 2ψ(x)

|y|n+2s dy

− Cn,s

2

∫
|y|≥1

ψ(x + y) + ψ(x − y) − 2ψ(x)

|y|n+2s dy.

To deal with the first integral, after using a second order Taylor expansion for ψ we
arrive at

|ψ(x + y) + ψ(x − y) − 2ψ(x)|
|y|n+2s � ‖∂2xψ‖L∞

|y|n+2s−2 .

Thanks to the above estimate and s ∈ (0, 1), we may remove the principal value of
the integral at the origin to conclude

(−�)s(ψ)(x) = −Cn,s

2

∫
Rn

ψ(x + y) + ψ(x − y) − 2ψ(x)

|y|n+2s dy.

To prove the desired estimates, we shall divide our considerations into two cases. In
the first subcase {x : |x| ≤ 1}, we can proceed as follows:

∣∣(−�)s(ψ)(x)
∣∣ � ∫

|y|≤1

|ψ(x + y) + ψ(x − y) − 2ψ(x)|
|y|n+2s dy

+
∫

|y|≥1

|ψ(x + y) + ψ(x − y) − 2ψ(x)|
|y|n+2s dy

� ‖∂2xψ‖L∞
∫

|y|≤1

1

|y|n+2s−2 dy + ‖ψ‖L∞
∫

|y|≥1

1

|y|n+2s dy.

Due to the boundedness of the above two integrals, it follows immediately

∣∣(−�)s(ψ)(x)
∣∣ � 1 for |x| ≤ 1. (7)
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In order to deal with the second subcase {x : |x| ≥ 1}, we can re-write

(−�)s(ψ)(x) = −Cn,s

2

∫
|y|≥2|x|

ψ(x + y) + ψ(x − y) − 2ψ(x)

|y|n+2s dy

− Cn,s

2

∫
1
2 |x|≤|y|≤2|x|

ψ(x + y) + ψ(x − y) − 2ψ(x)

|y|n+2s dy

− Cn,s

2

∫
|y|≤ 1

2 |x|
ψ(x + y) + ψ(x − y) − 2ψ(x)

|y|n+2s dy. (8)

For the first integral, we notice that the relations |x + y| ≥ |y| − |x| ≥ |x| and
|x − y| ≥ |y| − |x| ≥ |x| hold for |y| ≥ 2|x|. Since ψ is a decreasing function, we
obtain the following estimate:

∣∣∣ ∫
|y|≥2|x|

ψ(x + y) + ψ(x − y) − 2ψ(x)

|y|n+2s dy

∣∣∣
≤ 4|ψ(x)|

∫
|y|≥2|x|

1

|y|n+2s dy �
〈
x
〉−q

∫
|y|≥2|x|

1

|y|1+2s d|y|

�
〈
x
〉−q |x|−2s �

〈
x
〉−q−2s (

due to |x| ≈ 〈
x
〉
for |x| ≥ 1

)
. (9)

It is clear that |y| ≈ |x| in the second integral domain. Moreover, it follows

{
y : 1

2
|x| ≤ |y| ≤ 2|x|

}
⊂ {

y : |x + y| ≤ 3|x|}, (10)

{
y : 1

2
|x| ≤ |y| ≤ 2|x|

}
⊂ {

y : |x − y| ≤ 3|x|}. (11)

For this reason, we arrive at

∣∣∣ ∫
1
2 |x|≤|y|≤2|x|

ψ(x + y) + ψ(x − y) − 2ψ(x)

|y|n+2s
dy

∣∣∣
� |x|−n−2s

( ∫
|x+y|≤3|x|

ψ(x + y)dy +
∫

|x−y|≤3|x|
ψ(x − y)dy

+ ψ(x)

∫
1
2 |x|≤|y|≤2|x|

1dy
)

� |x|−n−2s
( ∫

|x+y|≤3|x|
ψ(x + y)dy + 〈

x
〉−q |x|n

)
, (12)



220 T. A. Dao and Michael Reissig

where we used the relation∫
|x+y|≤3|x|

ψ(x + y)dy =
∫

|x−y|≤3|x|
ψ(x − y)dy.

By the change of variables r = |x + y|, we apply the inequality 1 + r2 ≥ (1+r)2

2 to
get

∫
|x+y|≤3|x|

ψ(x + y)dy �
∫

r≤3|x|
(1 + r2)−

q
2 rn−1dr �

∫
r≤3|x|

(1 + r)n−q−1dr

�

⎧⎪⎪⎨
⎪⎪⎩

(1 + 3|x|)n−q if 0 < q < n,

log(e + 3|x|) if q = n,

1 if q > n.

(13)

By |x| ≈ 〈
x
〉
for |x| ≥ 1, combining (12) and (13) leads to

∣∣∣ ∫
1
2 |x|≤|y|≤2|x|

ψ(x + y) + ψ(x − y) − 2ψ(x)

|y|n+2s dy

∣∣∣

�

⎧⎪⎪⎨
⎪⎪⎩

〈
x
〉−q−2s if 0 < q < n,〈

x
〉−n−2s log(e + 3|x|) if q = n,〈

x
〉−n−2s if q > n.

(14)

For the third integral in (8), using again the second order Taylor expansion forψ we
obtain

∣∣∣ ∫
|y|≤ 1

2 |x|
ψ(x + y) + ψ(x − y) − 2ψ(x)

|y|n+2s dy

∣∣∣
≤

∫
|y|≤ 1

2 |x|
|ψ(x + y) + ψ(x − y) − 2ψ(x)|

|y|n+2s dy

�
∫

|y|≤ 1
2 |x|

max
θ∈[0,1]

∣∣∂2xψ(x ± θy)
∣∣ 1

|y|n+2s−2 dy

�
∫

|y|≤ 1
2 |x|

max
θ∈[0,1]

〈
x ± θy

〉−q−2 1

|y|n+2s−2 dy

�
〈
x
〉−q−2

∫
|y|≤ 1

2 |x|
|y|1−2sd|y| � 〈

x
〉−q−2s

. (15)
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Here we used the relation |x ± θy| ≥ |x|− θ |y| ≥ |x|− 1
2 |x| = 1

2 |x|. From (8), (9),
(14), and (15) we arrive at the following estimates for |x| ≥ 1:

∣∣(−�)s(ψ)(x)
∣∣ �

⎧⎪⎪⎨
⎪⎪⎩

〈
x
〉−q−2s if 0 < q < n,〈

x
〉−n−2s log(e + 3|x|) if q = n,〈

x
〉−n−2s if q > n.

(16)

Finally, combining (7) and (16) we may conclude all desired estimates for m = 0.
Next let us turn to the second case m ≥ 1. First, a straight-forward calculation gives
the following relation:

− �
〈
x
〉−r = r

(
(n − r − 2)

〈
x
〉−r−2 + (r + 2)

〈
x
〉−r−4

)
for any r > 0. (17)

By induction argument, carrying outm steps of (17) we obtain the following formula
for any m ≥ 1:

(−�)m
〈
x
〉−q = (−1)m

m−1∏
j=0

(q + 2j)
( m∏

j=1

(−n + q + 2j)
〈
x
〉−q−2m

− C1
m

m∏
j=2

(−n + q + 2j)(q + 2m)
〈
x
〉−q−2m−2

+ C2
m

m∏
j=3

(−n + q + 2j)(q + 2m)(q + 2m + 2)
〈
x
〉−q−2m−4

+ · · · + (−1)m
m−1∏
j=0

(q + 2m + 2j)
〈
x
〉−q−4m

)
. (18)

Then, thanks to Lemma 2, we derive

(−�)γ
〈
x
〉−q = (−�)s

(
(−�)m

〈
x
〉−q)

= (−1)m
m−1∏
j=0

(q + 2j)
( m∏

j=1

(−n + q + 2j) (−�)s
〈
x
〉−q−2m

− C1
m

m∏
j=2

(−n + q + 2j)(q + 2m) (−�)s
〈
x
〉−q−2m−2
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+ C2
m

m∏
j=3

(−n + q + 2j)(q + 2m)(q + 2m + 2) (−�)s
〈
x
〉−q−2m−4

+ · · · + (−1)m
m−1∏
j=0

(q + 2m + 2j) (−�)s
〈
x
〉−q−4m

)
. (19)

For this reason, in order to conclude the desired estimates, we only indicate the
following estimates for k = 0, · · · ,m:

∣∣(−�)s
〈
x
〉−q−2(m+k)∣∣ �

⎧⎪⎪⎨
⎪⎪⎩

〈
x
〉−q−2γ if 0 < q + 2m < n,〈

x
〉−n−2s log(e + |x|) if q + 2m = n,〈

x
〉−n−2s if q + 2m > n.

(20)

Indeed, substituting q by q + 2(m + k) with k = 0, · · · ,m and γ = s into (6) leads
to

∣∣(−�)s
〈
x
〉−q−2(m+k)∣∣ �

⎧⎪⎪⎨
⎪⎪⎩

〈
x
〉−q−2γ if 0 < q + 2(m + k) < n,〈

x
〉−n−2s log(e + |x|) if q + 2(m + k) = n,〈

x
〉−n−2s

if q + 2(m + k) > n.

From these estimates, it follows immediately (20) to conclude (6) for any m ≥ 1.
Summarizing, the proof of Lemma 3 is completed. 
�

Lemma 4 Let s ∈ (0, 1). Let ψ be a smooth function satisfying ∂2xψ ∈ L∞. For
any R > 0, let ψR be a function defined by

ψR(x) := ψ
(
R−1x

)
for all x ∈ Rn. Then, (−�)s(ψR) satisfies the following scaling properties for all
x ∈ Rn:

(−�)s(ψR)(x) = R−2s((−�)sψ
)(

R−1x
)
.

Proof Thanks to the assumption ∂2xψ ∈ L∞, following the proof of Lemma 3 we
may remove the principal value of the integral at the origin to conclude

(−�)s(ψR)(x) = −Cn,s

2

∫
Rn

ψR(x + y) + ψR(x − y) − 2ψR(x)

|y|n+2s
dy

= − Cn,s

2R2s

∫
Rn

ψ
(
R−1x + R−1y

) + ψ
(
R−1x − R−1y

) − 2ψ
(
R−1x

)
|R−1y|n+2s

d(R−1y)

= R−2s((−�)sψ
)(

R−1x
)
.

This completes the proof. 
�
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Lemma 5 (One Mapping Property in the Scale of Fractional Spaces {Hs}s∈R)
Let γ, s ∈ R. Then, the fractional Laplacian

(−�)γ : f → (−�)γ f = (
(−�)γ f

)
(x) := F−1(|ξ |2γ f̂ (ξ)

)
(x)

maps isomorphically the space Hs onto Hs−2γ .

This result can be found in Section 2.3.8 in [12].

Lemma 6 Let f = f (x) ∈ Hs and g = g(x) ∈ H−s with s ∈ R. Then, the
following estimate holds:

∣∣∣ ∫
Rn

f (x) g(x)dx

∣∣∣ ≤ ‖f ‖Hs ‖g‖H−s .

The proof of Lemma 6 can be found in Theorem 16 in [6].

Lemma 7 Let s ∈ R. Let v1 = v1(x) ∈ Hs and v2 = v2(x) ∈ H−s . Then, the
following relation holds:

∫
Rn

v1(x) v2(x)dx =
∫
Rn

v̂1(ξ) v̂2(ξ)dξ.

Proof We present the proof from Theorem 16 in [6] to make the paper self-
contained. Since the space S is dense in Hs and H−s , there exist sequences {v1,k}k
and {v2,k}k with v1,k = v1,k(x) ∈ S and v2,k = v2,k(x) ∈ S such that

‖v1,k − v1‖Hs → 0 and ‖v2,k − v2‖H−s → 0 for k → ∞.

On the one hand, for k → ∞ we have the relations

V̂1,k(ξ) := (1 + |ξ |2) s
2 v̂1,k(ξ) → V̂1(ξ) := (1 + |ξ |2) s

2 v̂1(ξ) in L2,

V̂2,k(ξ) := (1 + |ξ |2)− s
2 v̂2,k(ξ) → V̂2(ξ) := (1 + |ξ |2)− s

2 v̂2(ξ) in L2.

On the other hand, by Parseval–Plancherel formula we arrive at

∫
Rn

v1,k(x) v2,k(x) dx = (
v1,k, v2,k

)
L2 = (̂

v1,k, v̂2,k
)
L2 =

∫
Rn

v̂1,k(ξ) v̂2,k(ξ) dξ

=
∫
Rn

(1 + |ξ |2) s
2 v̂1,k(ξ) (1 + |ξ |2)− s

2 v̂2,k(ξ) dξ

=
∫
Rn

V̂1,k(ξ) V̂2,k(ξ) dξ, (21)
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where (·, ·)L2 stands for the scalar product in L2. Moreover, applying Lemma 6 we
may estimate

∣∣∣ ∫
Rn

(
v1,k(x) v2,k(x) − v1(x) v2(x)

)
dx

∣∣∣
≤

∣∣∣ ∫
Rn

(
v1,k(x) − v1(x)

)
v2,k(x)dx

∣∣∣ +
∣∣∣ ∫

Rn
v1(x)

(
v2,k(x) − v2(x)

)
dx

∣∣∣
≤ ‖v1,k − v1‖Hs ‖v2,k‖H−s + ‖v1‖Hs ‖v2,k − v2‖H−s → 0 as k → ∞.

This is equivalent to

∫
Rn

v1,k(x) v2,k(x) dx →
∫
Rn

v1(x) v2(x) dx as k → ∞. (22)

In the same way we also derive

∫
Rn

V̂1,k(ξ) V̂2,k(ξ) dξ →
∫
Rn

V̂1(ξ) V̂2(ξ) dξ as k → ∞. (23)

Summarizing from (21) to (23) we may conclude

∫
Rn

v1(x) v2(x) dx =
∫
Rn

V̂1(ξ) V̂2(ξ) dξ =
∫
Rn

v̂1(ξ) v̂2(ξ) dξ.

Therefore, the proof of Lemma 7 is completed. 
�

3 Proof of Theorem 2

We divide the proof of Theorem 2 into several cases.

3.1 The Case that Both Parameters σ and δ Are Integers

Proof The proof of this case can be found in the paper [2]. 
�
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3.2 The Case that the Parameter σ Is Integer
and the Parameter δ Is Fractional from (0, 1)

Proof The first case is devoted to the subcritical case p < 1 + 2σ
n−k− . First, we

introduce the function ϕ = ϕ(|x|) := 〈
x
〉−n−2δ

and the function η = η(t) having
the following properties:

1. η ∈ C∞
0 ([0,∞)) and η(t) =

⎧⎪⎪⎨
⎪⎪⎩
1 for 0 ≤ t ≤ 1

2 ,

decreasing for 1
2 ≤ t ≤ 1,

0 for t ≥ 1,

2. η
− p′

p (t)
(|η′(t)|p′ + |η′′(t)|p′) ≤ C for any t ∈

[1
2
, 1

]
, (24)

where p′ is the conjugate of p > 1. Let R be a large parameter in [0,∞). We define
the following test function:

ϕR(t, x) := ηR(t)ϕR(x),

where ηR(t) := η
(
R−αt

)
and ϕR(x) := ϕ

(
R−1x

)
with a fixed parameter α :=

2σ − k−. We define the functionals

IR :=
∫ ∞

0

∫
Rn

|u(t, x)|pϕR(t, x) dxdt =
∫ Rα

0

∫
Rn

|u(t, x)|pϕR(t, x) dxdt

and

IR,t :=
∫ Rα

Rα

2

∫
Rn

|u(t, x)|pϕR(t, x) dxdt.

Let us assume that u = u(t, x) is a global (in time) Sobolev solution from
C

([0,∞), L2
)
to (1). After multiplying the Eq. (1) by ϕR = ϕR(t, x), we carry

out partial integration to derive

0 ≤ IR = −
∫
Rn

u1(x)ϕR(x) dx +
∫ Rα

Rα

2

∫
Rn

u(t, x)∂2t ηR(t)ϕR(x) dxdt

+
∫ ∞

0

∫
Rn

ηR(t)ϕR(x) (−�)σu(t, x) dxdt

−
∫ Rα

Rα

2

∫
Rn

∂tηR(t)ϕR(x) (−�)δu(t, x) dxdt

=: −
∫
Rn

u1(x)ϕR(x) dx + J1 + J2 − J3. (25)
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Applying Hölder’s inequality with 1
p

+ 1
p′ = 1 we may estimate as follows:

|J1| ≤
∫ Rα

Rα

2

∫
Rn

|u(t, x)| ∣∣∂2t ηR(t)
∣∣ϕR(x) dxdt

�
( ∫ Rα

Rα

2

∫
Rn

∣∣∣u(t, x)ϕ
1
p

R (t, x)

∣∣∣p dxdt
) 1

p

×
( ∫ Rα

Rα

2

∫
Rn

∣∣∣ϕ− 1
p

R (t, x)∂2t ηR(t)ϕR(x)

∣∣∣p′
dxdt

) 1
p′

� I
1
p

R,t

( ∫ Rα

Rα

2

∫
Rn

η
− p′

p

R (t)
∣∣∂2t ηR(t)

∣∣p′
ϕR(x) dxdt

) 1
p′

.

By the change of variables t̃ := R−αt and x̃ := R−1x, a straight-forward calculation
gives

|J1| � I
1
p

R,t R
−2α+ n+α

p′
( ∫

Rn

〈
x̃
〉−n−2δ

dx̃
) 1

p′
. (26)

Here we used ∂2t ηR(t) = R−2αη′′(t̃) and the assumption (24). Now let us turn to
estimate J2 and J3. First, by using ϕR ∈ H 2σ and u ∈ C

([0,∞), L2
)
we apply

Lemma 7 to conclude the following relations:

∫
Rn

ϕR(x) (−�)σu(t, x) dx =
∫
Rn

|ξ |2σ ϕ̂R(ξ) û(t, ξ) dξ

=
∫
Rn

u(t, x) (−�)σϕR(x) dx,

∫
Rn

ϕR(x) (−�)δu(t, x) dx =
∫
Rn

|ξ |2δϕ̂R(ξ) û(t, ξ) dξ

=
∫
Rn

u(t, x) (−�)δϕR(x) dx.

Hence, we obtain

J2 =
∫ ∞

0

∫
Rn

ηR(t)ϕR(x) (−�)σu(t, x) dxdt

=
∫ ∞

0

∫
Rn

ηR(t)u(t, x) (−�)σϕR(x) dxdt,
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J3 =
∫ Rα

Rα

2

∫
Rn

∂tηR(t)ϕR(x) (−�)δu(t, x) dxdt

=
∫ Rα

Rα

2

∫
Rn

∂tηR(t)u(t, x) (−�)δϕR(x) dxdt.

Applying Hölder’s inequality again as we estimated J1 leads to

|J2| ≤ I
1
p

R

( ∫ Rα

0

∫
Rn

ηR(t)ϕ
− p′

p

R (x)
∣∣(−�)σ ϕR(x)

∣∣p′
dxdt

) 1
p′

,

|J3| ≤ I
1
p

R,t

( ∫ Rα

Rα

2

∫
Rn

η
− p′

p

R (t)
∣∣∂tηR(t)

∣∣p′
ϕ

−p′
p

R (x)
∣∣(−�)δϕR(x)

∣∣p′
dxdt

) 1
p′

.

In order to control the above two integrals, the key tools rely on results from
Lemmas 1, 3 and 4. Namely, at first carrying out the change of variables t̃ := R−αt

and x̃ := R−1x we arrive at

|J2| � I
1
p

R R
−2σ+ n+α

p′
( ∫ 1

0

∫
Rn

η(t̃)ϕ
− p′

p (x̃)
∣∣(−�)σ (ϕ)(x̃)

∣∣p′
dx̃dt̃

) 1
p′

� I
1
p

R R
−2σ+ n+α

p′
( ∫

Rn
ϕ

− p′
p (x̃)

∣∣(−�)σ (ϕ)(x̃)
∣∣p′

dx̃
) 1

p′
,

where we note (σ is an integer) that (−�)σϕR(x) = R−2σ (−�)σ ϕ(x̃). Using
Lemma 1 implies the following estimate:

|J2| � I
1
p

R R
−2σ+ n+α

p′
( ∫

Rn

〈
x̃
〉−n−2δ−2σp′

dx̃
) 1

p′
. (27)

Next carrying out again the change of variables t̃ := R−αt and x̃ := R−1x and
employing Lemma 4 we can proceed J3 as follows:

|J3| � I
1
p

R,t R
−2δ−α+ n+α

p′

×
( ∫ 1

1
2

∫
Rn

η
− p′

p (t̃ )
∣∣η′(t̃)

∣∣p′
ϕ

− p′
p (x̃)

∣∣(−�)δ(ϕ)(x̃)
∣∣p′

dx̃dt̃
) 1

p′

� I
1
p

R,t R
−2δ−α+ n+α

p′
( ∫

Rn
ϕ

− p′
p (x̃)

∣∣(−�)δ(ϕ)(x̃)
∣∣p′

dx̃
) 1

p′
.

Here we used ∂tηR(t) = R−αη′(t̃) and the assumption (24). To deal with the last
integral, we apply Lemma 3 with q = n + 2δ and γ = δ, that is, m = 0 and s = δ
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to get

|J3| � I
1
p

R,tR
−2δ−α+ n+α

p′
( ∫

Rn

〈
x̃
〉−n−2δ

dx̃
) 1

p′
. (28)

Because of the assumption (3), there exists a sufficiently large constantR0 > 0 such
that it holds ∫

Rn
u1(x)ϕR(x) dx > 0 (29)

for all R > R0. Combining the estimates from (25) to (29) we may arrive at

0 <

∫
Rn

u1(x)ϕR(x) dx � I
1
p

R,t

(
R

−2α+ n+α

p′ + R
−α−2δ+ n+α

p′ )

+ I
1
p

R R
−2σ+ n+α

p′ − IR � I
1
p

R R
−2σ+ n+α

p′ − IR (30)

for all R > R0. Moreover, applying the inequality

A yγ − y ≤ A
1

1−γ for any A > 0, y ≥ 0 and 0 < γ < 1

leads to

0 <

∫
Rn

u1(x)ϕR(x)dx � R−2σp′+n+α (31)

for allR > R0. It is clear that the assumption (4) is equivalent to −2σp′+n+α ≤ 0.
For this reason, in the subcritical case, that is, −2σp′ + n + α < 0 letting R → ∞
in (31) we obtain ∫

Rn
u1(x) dx = 0.

This is a contradiction to the assumption (3).
Let us turn to the critical case p = 1+ 2σ

n−k− . It follows immediately−2σ+n+α
p′ = 0.

Then, repeating some arguments as we did in the subcritical case we may conclude
the following estimate:

0 < C0 :=
∫
Rn

u1(x)ϕR(x) dx ≤ C1I
1
p

R − IR,
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where C1 :=
( ∫

Rn

〈
x̃
〉−n−2δ

dx̃
) 1

p′
, that is,

C0 + IR ≤ C1I
1
p

R . (32)

From (32) it is obvious that IR ≤ C1I
1
p

R and C0 ≤ C1I
1
p

R . Hence, we obtain

IR ≤ C
p′
1 (33)

and

IR ≥ C
p
0

C
p

1

, (34)

respectively. By substituting (34) into the left-hand side of (32) and calculating
straightforwardly, we get

IR ≥ C
p2

0

C
p+p2

1

.

For any integer j ≥ 1, an iteration argument leads to

IR ≥ C
pj

0

C
p+p2+···+pj

1

= C
pj

0

C

pj+1−p
p−1

1

= C

p
p−1
1

( C0

C

p
p−1
1

)pj

. (35)

Now we choose the constant

ε0 =
∫
Rn

〈
x̃
〉−n−2δ

dx̃

in the assumption (3). Then, there exists a sufficiently large constant R1 > 0 so that

∫
Rn

u1(x)ϕR(x) dx > ε0

for all R > R1. This is equivalent to

C0 > C
p′
1 = C

p
p−1
1 , that is,

C0

C

p
p−1
1

> 1.
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Therefore, letting j → ∞ in (35) we derive IR → ∞, which is a contradiction to
(33). Summarizing, the proof is completed. 
�
Let us now consider the case of subcritical exponent to explain the estimate for
lifespan Tε of solutions in Remark 1. We assume that u = u(t, x) is a local (in
time) Sobolev solution to (1) in [0, T ) ×Rn. In order to prove the lifespan estimate,
we replace the initial data (0, u1) by (0, εu1) with a small constant ε > 0, where
u1 ∈ L1 satisfies the assumption (3). Hence, there exists a sufficiently large constant
R2 > 0 so that we have ∫

Rn
u1(x)ϕR(x) dx ≥ c > 0

for any R > R2. Repeating the steps in the above proofs we arrive at the following
estimate:

ε ≤ C R−2σp′+n+α ≤ C T − 2σp′−n−α
α

with R = T
1
α . Finally, letting T → T −

ε we may conclude (5).

Remark 3 We want to underline that in the special case σ = 1 and δ = 1
2 the

authors in [4] have investigated the critical exponent pcrit = pcrit (n) = 1 + 2
n−1 .

If we plug σ = 1 and δ = 1
2 into the statements of Theorem 2, then the obtained

results for the critical exponent pcrit coincide.

3.3 The Case that the Parameter σ Is Integer and the
Parameter δ Is Fractional from (1, σ)

Proof We follow ideas from the proof of Sect. 3.2. At first, we denote sδ := δ −[δ].
Let us introduce test functions η = η(t) as in Sect. 3.2 and ϕ = ϕ(x) := 〈

x
〉−n−2sδ .

We can repeat exactly, the estimates for J1 and J2 as we did in the proof of Sect. 3.2
to conclude

|J1| � I
1
p

R,t R
−2α+ n+α

p′ , (36)

|J2| � I
1
p

R R
−2σ+ n+α

p′ . (37)

Let us turn to estimate J3, where δ is any fractional number in (1, σ ). In the first
step, applying Lemma 7 and Hölder’s inequality leads to

|J3| ≤ I
1
p

R,t

( ∫ Rα

Rα

2

∫
Rn

η
− p′

p

R (t)
∣∣∂tηR(t)

∣∣p′
ϕ

− p′
p

R (x)
∣∣(−�)δϕR(x)

∣∣p′
dxdt

) 1
p′

.
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Now we can re-write δ = mδ + sδ , where mδ := [δ] ≥ 1 is integer and sδ is a
fractional number in (0, 1). Employing Lemma 2 we derive

(−�)δϕR(x) = (−�)sδ
(
(−�)mδϕR(x)

)
.

By the change of variables x̃ := R−1x we also notice that

(−�)mδϕR(x) = R−2mδ (−�)mδ (ϕ)(x̃)

since mδ is an integer. Using the formula (18) we re-write

(−�)mδϕR(x) = (−1)mδR−2mδ

mδ−1∏
j=0

(q + 2j)
( mδ∏

j=1

(−n + q + 2j)
〈
x̃
〉−q−2mδ

− C1
mδ

mδ∏
j=2

(−n + q + 2j)(q + 2mδ)
〈
x̃
〉−q−2mδ−2

+ C2
mδ

mδ∏
j=3

(−n + q + 2j)(q + 2mδ)(q + 2mδ + 2)
〈
x̃
〉−q−2mδ−4

+ · · · + (−1)mδ

mδ−1∏
j=0

(q + 2mδ + 2j)
〈
x̃
〉−q−4mδ

)
,

where q := n + 2sδ . For simplicity, we introduce the following functions:

ϕk(x) := 〈
x
〉−q−2mδ−2k and ϕk,R(x) := ϕk(R

−1x) = 〈
x̃
〉−q−2mδ−2k

with k = 0, · · · ,mδ . As a result, by Lemma 4 we arrive at

(−�)δϕR(x) = (−1)mδ R−2mδ

mδ−1∏
j=0

(q + 2j)
( mδ∏

j=1

(−n + q + 2j) (−�)sδ (ϕ0,R)(x)

− C1
mδ

mδ∏
j=2

(−n + q + 2j)(q + 2mδ) (−�)sδ (ϕ1,R)(x)

+ C2
mδ

mδ∏
j=3

(−n + q + 2j)(q + 2mδ)(q + 2mδ + 2) (−�)sδ (ϕ2,R)(x)

+ · · · + (−1)mδ

mδ−1∏
j=0

(q + 2mδ + 2j) (−�)sδ (ϕmδ,R)(x)
)
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= (−1)mδ R−2mδ−2sδ
mδ−1∏
j=0

(q + 2j)
( mδ∏

j=1

(−n + q + 2j) (−�)sδ (ϕ0)(x̃)

− C1
mδ

mδ∏
j=2

(−n + q + 2j)(q + 2mδ) (−�)sδ (ϕ1)(x̃)

+ C2
mδ

mδ∏
j=3

(−n + q + 2j)(q + 2mδ)(q + 2mδ + 2) (−�)sδ (ϕ2)(x̃)

+ · · · + (−1)mδ

mδ−1∏
j=0

(q + 2mδ + 2j) (−�)sδ (ϕmδ )(x̃)
)

= R−2δ(−�)δ(ϕ)(x̃).

For this reason, performing the change of variables t̃ := R−αt we obtain

|J3| � I
1
p

R,t R
−2δ−α+ n+α

p′

×
( ∫ 1

1
2

∫
Rn

η
− p′

p (t̃ )
∣∣η′(t̃)

∣∣p′
ϕ

− p′
p (x̃)

∣∣(−�)δ(ϕ)(x̃)
∣∣p′

dx̃dt̃
) 1

p′

� I
1
p

R,t R
−2δ−α+ n+α

p′
( ∫

Rn
ϕ

− p′
p (x̃)

∣∣(−�)δ(ϕ)(x̃)
∣∣p′

dx̃
) 1

p′
.

Here we used ∂tηR(t) = R−αη′(t̃) and the assumption (24). After applying
Lemma 3 with q = n + 2sδ and γ = δ, i.e. m = mδ and s = sδ , we may conclude

|J3| � I
1
p

R,t R
−2δ−α+ n+α

p′
( ∫

Rn

〈
x̃
〉−n−2sδ dx̃

) 1
p′ � I

1
p

R,t R
−2δ−α+ n+α

p′ . (38)

Finally, combining (36)–(38) and repeating arguments as in Sect. 3.2 we may
complete the proof of Theorem 2. 
�

3.4 The Case that the Parameter σ Is Fractional from (1,∞)

and the Parameter δ Is Integer

Proof We follow ideas from the proofs of Sects. 3.2 and 3.3. At first, we denote
sσ := σ − [σ ]. Let us introduce test functions η = η(t) as in Sect. 3.2 and ϕ =
ϕ(x) := 〈

x
〉−n−2sσ . Then, repeating the proof of Sects. 3.2 and 3.3 we may conclude

what we wanted to prove. 
�
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3.5 The Case that the Parameter σ Is Fractional from (1,∞)

and the Parameter δ Is Fractional from (0, 1)

Proof We follow ideas from the proofs of Sects. 3.2 and 3.4. At first, we denote
sσ := σ − [σ ]. Next, we put s∗ := min{sσ , δ}. It is obvious that s∗ is fractional
from (0, 1). Let us introduce test functions η = η(t) as in Sect. 3.2 and ϕ = ϕ(x) :=〈
x
〉−n−2s∗

. Then, repeating the proof of Sects. 3.2 and 3.4 we may conclude what we
wanted to prove. 
�

3.6 The Case that the Parameter σ Is Fractional from (1,∞)

and the Parameter δ Is Fractional from (1, σ)

Proof We follow ideas from the proofs of Sects. 3.2 and 3.5. At first, we denote
sσ := σ − [σ ] and sδ := δ − [δ]. Next, we put s∗ := min{sσ , sδ}. It is obvious that
s∗ is fractional from (0, 1). Let us introduce test functions η = η(t) as in Sect. 3.2

and ϕ = ϕ(x) := 〈
x
〉−n−2s∗

. Then, repeating the proof of Sects. 3.2 and 3.5 we may
conclude what we wanted to prove. 
�

4 Critical Exponent Versus Critical Nonlinearity

In Remark 2 we explained that for some models (1) we determined the critical
exponent pcrit = pcrit (n) in the scale of power nonlinearities {|u|p}p>1. But is this
observation sharp? In the paper [5] the authors discussed this issue for the classical
damped wave model with power nonlinearity. Here we want to extend this idea to
some models of type (1). For this reason, we discuss the following model:

{
utt + (−�)σu + (−�)δut = |u|pcrit (n)μ(|u|),
u(0, x) = u0(x), ut (0, x) = u1(x),

(39)

where σ ≥ 1, δ ∈ [0, σ
2 ] and pcrit (n) = 1 + 2σ

n−2δ with n ≥ 1. Here the function
μ = μ(|u|) is a suitable modulus of continuity.

4.1 Main Results

First we state a global (in time) existence result of small data Sobolev solutions to
(39).
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Theorem 3 (Global Existence) Let σ ≥ 1, δ ∈ [0, σ
2 ] and m ∈ [1, 2). Let 0 <

θ ≤ σ . We assume the conditions

{
2m0δ < n < 2θ if δ ∈ [0, σ

2 ),

mσ < n < 2θ if δ = σ
2 .

(40)

Moreover, we suppose the following assumptions of modulus of continuity:

sμ′(s) � μ(s) (41)

and

∫ C0

0

μ(s)

s
ds < ∞ (42)

with a sufficiently small constant C0 > 0. Then, there exists a constant ε0 > 0 such
that for any small data

(u0, u1) ∈ (
Lm ∩ Hθ

) × (
Lm ∩ L2)

satisfying the assumption ‖u0‖Lm∩Hθ + ‖u1‖Lm∩L2 ≤ ε0, we have a uniquely
determined global (in time) small data Sobolev solution

u ∈ C
([0,∞),H θ

)
to (39). The following estimates hold:

‖u(t, ·)‖L2 � (1 + t)
− n

2(σ−δ)
( 1
m

− 1
2 )+ δ

σ−δ
(‖u0‖Lm∩Hθ + ‖u1‖Lm∩L2

)
,∥∥|D|θu(t, ·)∥∥

L2 � (1 + t)
− n

2(σ−δ) (
1
m − 1

2 )− θ−2δ
2(σ−δ)

(‖u0‖Lm∩Hθ + ‖u1‖Lm∩L2

)
.

Now we state a blow-up result to (39).

Theorem 4 (Blow-Up) Let σ ≥ 1 and δ ∈ [0, σ
2 ] be integer numbers. We assume

that we choose the initial data u0 = 0 and u1 ∈ L1 satisfying the following relation:

∫
Rn

u1(x) dx > 0. (43)

Moreover, we suppose the following assumption of modulus of continuity:

skμ(k)(s) = o
(
μ(s)

)
as s → +0 with k = 1, 2, (44)
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and

∫ C0

0

μ(s)

s
ds = ∞, (45)

where C0 > 0 is a sufficiently small constant. Then, there is no global (in time)
Sobolev solution to (39).

In the following we restrict ourselves to prove the blow-up result.

4.2 Proof of Theorem 4

The ideas of the following proof are based on the recent paper [5] of the second
author and his collaborators in which the authors focused on their considerations
to (39) with σ = 1 and δ = 0. For simplicity, we use the abbreviations pc :=
pcrit (n) = 1 + 2σ

n−2δ to (39) in the following proof.

Proof of Theorem 4 First, we introduce a test function ϕ = ϕ(τ) having the
following properties:

ϕ ∈ C∞
0 ([0,∞)) and ϕ(τ) =

⎧⎪⎪⎨
⎪⎪⎩
1 for 0 ≤ τ ≤ 1

2 ,

decreasing for 1
2 ≤ τ ≤ 1,

0 for τ ≥ 1.

Moreover, we also introduce the function ϕ∗ = ϕ∗(τ ) satisfying

ϕ∗(τ ) =
{
0 for 0 ≤ τ < 1

2 ,

ϕ(τ ) for 1
2 ≤ τ < ∞.

Let R be a large parameter in [0,∞). We define the following two functions:

ϕR(t, x) =
(
ϕ
( |x|2(σ−δ) + t

R

))n+2(σ−δ)

and

ϕ∗
R(t, x) =

(
ϕ∗( |x|2(σ−δ) + t

R

))n+2(σ−δ)

.
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Then it is clear that

suppϕR ⊂ QR := {
(t, x) : (t, |x|) ∈ [0, R] × [

0, R1/(2(σ−δ))
]}

,

suppϕ∗
R ⊂ Q∗

R := QR \ {
(t, x) : (t, |x|) ∈ [0, R/2] × [

0, (R/2)1/(2(σ−δ))
]}

.

Now we define the functional

IR :=
∫ ∞

0

∫
Rn

|u(t, x)|pcμ
(|u(t, x)|)ϕR(t, x) dxdt

=
∫

QR

|u(t, x)|pcμ
(|u(t, x)|)ϕR(t, x) d(x, t).

Let us assume that u = u(t, x) is a global (in time) Sobolev solution to (39). After
multiplying the Eq. (39) by ϕR = ϕR(t, x), we carry out partial integration to derive

0 ≤ IR = −
∫
Rn

u1(x)ϕR(0, x) dx

+
∫

QR

u(t, x)
(
∂2t ϕR(t, x) + (−�)σϕR(t, x) − (−�)δ∂tϕR(t, x)

)
d(x, t)

=: −
∫
Rn

u1(x)ϕR(0, x) dx + JR.

Because of the assumption (43), there exists a sufficiently large constant R0 > 0
such that for all R > R0 it holds∫

Rn
u1(x)ϕR(0, x) dx > 0.

Consequently, we obtain

0 ≤ IR < JR for all R > R0. (46)

In order to estimate JR , firstly we have

|∂tϕR(t, x)| �
∣∣∣ 1
R

(
ϕ
( |x|2(σ−δ) + t

R

))n+2(σ−δ)−1
ϕ′( |x|2(σ−δ) + t

R

)∣∣∣
� 1

R

(
ϕ∗( |x|2(σ−δ) + t

R

))n+2(σ−δ)−1
. (47)
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Further calculations lead to

|∂2t ϕR(t, x)| �
∣∣∣ 1

R2

(
ϕ
( |x|2(σ−δ) + t

R

))n+2(σ−δ)−2(
ϕ′( |x|2(σ−δ) + t

R

))2∣∣∣
+

∣∣∣ 1

R2

(
ϕ
( |x|2(σ−δ) + t

R

))n+2(σ−δ)−1
ϕ′′( |x|2(σ−δ) + t

R

)∣∣∣
� 1

R2

(
ϕ∗( |x|2(σ−δ) + t

R

))n+2(σ−δ)−2
. (48)

To control (−�)σ ϕR(t, x), we shall apply Lemma 8 as a main tool. Indeed, we
divide our consideration into three sub-steps as follows:

Step 1: Applying Lemma 8 with h(z) = zσ−δ+t
R

and z = f (x) = |x|2 we derive
the following estimate for |α| ≥ 1:

∣∣∣∂α
x

( |x|2(σ−δ) + t

R

)∣∣∣

≤
|α|∑
k=1

|x|2(σ−δ)−2k

R

⎛
⎜⎜⎝ ∑

|γ1|+···+|γk |=|α|
|γi |≥1

∣∣∂γ1
x

(|x|2)∣∣ · · · ∣∣∂γk
x

(|x|2)∣∣
⎞
⎟⎟⎠

≤
|α|∑
k=1

|x|2(σ−δ)−2k

R

⎛
⎜⎜⎝ ∑

|γ1|+···+|γk |=|α|
1≤|γi |≤2

∣∣∂γ1
x

(|x|2)∣∣ · · · ∣∣∂γk
x

(|x|2)∣∣
⎞
⎟⎟⎠

�
|α|∑
k=1

|x|2(σ−δ)−2k

R

⎛
⎜⎜⎝ ∑

|γ1|+···+|γk |=|α|
1≤|γi |≤2

|x|2−|γ1| · · · |x|2−|γk|

⎞
⎟⎟⎠

�
|α|∑
k=1

|x|2(σ−δ)−2k

R
|x|2k−|α| � |x|2(σ−δ)−|α|

R
.

This estimate holds for |α| ≤ 2(σ − δ). But we may conclude that it holds for all
|α| ≥ 1, too and small |x|. More precisely, the singularity appearing in the case
|α| > 2(σ − δ) does not really bring any difficulty in the further treatment.
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Step 2: Applying Lemma 8 with h(z) = ϕ(z) and z = f (x) = |x|2(σ−δ)+t
R

we get
for all |α| ≥ 1 the following estimate:

∣∣∣∂α
x ϕ

( |x|2(σ−δ) + t

R

)∣∣∣
≤

|α|∑
k=1

∣∣∣ϕ(k)
( |x|2(σ−δ) + t

R

)∣∣∣

×

⎛
⎜⎜⎝ ∑

|γ1|+···+|γk |=|α|
1≤|γi |≤2(σ−δ)

∣∣∣∂γ1
x

( |x|2(σ−δ) + t

R

)∣∣∣ · · · ∣∣∣∂γk
x

( |x|2(σ−δ) + t

R

)∣∣∣
⎞
⎟⎟⎠

≤
|α|∑
k=1

∣∣∣ϕ(k)
( |x|2(σ−δ) + t

R

)∣∣∣

×

⎛
⎜⎜⎝ ∑

|γ1|+···+|γk |=|α|
1≤|γi |≤2(σ−δ)

|x|2(σ−δ)−|γ1|

R
· · · |x|2(σ−δ)−|γk|

R

⎞
⎟⎟⎠

�
|α|∑
k=1

( |x|2(σ−δ)

R

)k|x|−|α| � |x|2(σ−δ)−|α|

R

(
since |x|2(σ−δ) ≤ R in Q∗

R

)
.

Step 3: Applying Lemma 8 with h(z) = zn+2(σ−δ) and z = f (x) = ϕ
( |x|2(σ−δ)+t

R

)
we obtain

∣∣(−�)σϕR(t, x)
∣∣ � ∑

|α|=2σ

∣∣∂α
x ϕR(t, x)

∣∣ (49)

�
2σ∑
k=1

(
ϕ
( |x|2(σ−δ) + t

R

))n+2(σ−δ)−k

×

⎛
⎜⎜⎝ ∑

|γ1|+···+|γk |=2σ
|γi |≥1

∣∣∣∂γ1
x ϕ

( |x|2(σ−δ) + t

R

)∣∣∣ · · ·
∣∣∣∂γk

x ϕ
( |x|2(σ−δ) + t

R

)∣∣∣
⎞
⎟⎟⎠
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�
2σ∑
k=1

(
ϕ∗( |x|2(σ−δ) + t

R

))n+2(σ−δ)−k

×
∑

|γ1|+···+|γk |=2σ
|γi |≥1

|x|2(σ−δ)−|γ1|

R
· · · |x|2(σ−δ)−|γk|

R

�
2σ∑
k=1

(
ϕ∗( |x|2(σ−δ) + t

R

))n+2(σ−δ)−k |x|2k(σ−δ)−2σ

Rk

� 1

R
σ

σ−δ

(
ϕ∗( |x|2(σ−δ) + t

R

))n−2δ (
since |x|2(σ−δ) ≈ R in Q∗

R

)
. (50)

It is clear that if δ = 0, then
∣∣(−�)δ∂tϕR(t, x)

∣∣ was estimated in (47). For
the case δ ∈ (0, σ

2 ], we can proceed in an analogous way as we controlled∣∣(−�)σ ϕR(t, x)
∣∣ to derive

∣∣(−�)δ∂tϕR(t, x)
∣∣ � 1

R
σ

σ−δ

(
ϕ∗( |x|2(σ−δ) + t

R

))n+2(σ−2δ)−1
. (51)

From (47) to (51), we arrive at the following estimate:

∣∣∂2t ϕR(t, x) + (−�)σ ϕR(t, x) − (−�)δ∂tϕR(t, x)
∣∣

� 1

R
σ

σ−δ

(
ϕ∗( |x|2(σ−δ) + t

R

))n−2δ = 1

R
σ

σ−δ

(
ϕ∗

R(t, x)
) n−2δ

n+2(σ−δ) .

Hence, we may conclude

JR = |JR| � 1

R
σ

σ−δ

∫
QR

|u(t, x)| (ϕ∗
R(t, x)

) n−2δ
n+2(σ−δ) d(x, t). (52)

Now we focus our attention to estimate the above integral. To do this, we
introduce the function �(s) = spcμ(s). Then, we derive

�
(
|u(t, x)| (ϕ∗

R(t, x)
) n−2δ

n+2(σ−δ)

)

= |u(t, x)|pc
(
ϕ∗

R(t, x)
) pc(n−2δ)

n+2(σ−δ) μ
(
|u(t, x)| (ϕ∗

R(t, x)
) n−2δ

n+2(σ−δ)

)
≤ |u(t, x)|pc ϕ∗

R(t, x)μ
(|u(t, x)|) = �

(|u(t, x)|)ϕ∗
R(t, x). (53)
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Here we used the increasing property of the function μ = μ(s) and the relation

0 ≤ (
ϕ∗

R(t, x)
) n−2δ

n+2(σ−δ) ≤ 1.

Due to the assumption (44), we may verify that � is a convex function on a small
interval (0, c0] by the following relation:

� ′′(s) = spc−2
(
pc(pc − 1)μ(s) + 2pc sμ′(s) + s2μ′′(s)

)
≥ 0.

Moreover, we can choose a convex continuation of � outside this interval to
guarantee that� is convex on [0,∞). Applying Proposition 1 with h(s) = �(s),

f (t, x) = |u(t, x)|(ϕ∗
R(t, x)

) n−2δ
n+2(σ−δ) and γ ≡ 1 gives the following estimate:

�
(∫

Q∗
R

|u(t, x)|(ϕ∗
R(t, x)

) n−2δ
n+2(σ−δ) d(x, t)∫

Q∗
R
1 d(x, t)

)

≤
∫
Q∗

R
�

(
|u(t, x)|(ϕ∗

R(t, x)
) n−2δ

n+2(σ−δ)

)
d(x, t)∫

Q∗
R
1 d(x, t)

.

We may compute

∫
Q∗

R

1 d(x, t) ≈ R
1+ n

2(σ−δ) .

Hence, we get

�
(∫

Q∗
R

|u(t, x)|(ϕ∗
R(t, x)

) n−2δ
n+2(σ−δ) d(x, t)

R
1+ n

2(σ−δ)

)

≤
∫
Q∗

R
�

(
|u(t, x)|(ϕ∗

R(t, x)
) n−2δ

n+2(σ−δ)

)
d(x, t)

R
1+ n

2(σ−δ)

≤
∫
QR

�
(
|u(t, x)|(ϕ∗

R(t, x)
) n−2δ

n+2(σ−δ)

)
d(x, t)

R
1+ n

2(σ−δ)

. (54)
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Combining the estimates (53) and (54) we may arrive at

�
(∫

Q∗
R

|u(t, x)|(ϕ∗
R(t, x)

) n−2δ
n+2(σ−δ) d(x, t)

R
1+ n

2(σ−δ)

)

≤
∫
QR

�
(|u(t, x)|)ϕ∗

R(t, x) d(x, t)

R
1+ n

2(σ−δ)

. (55)

Since μ = μ(s) is a strictly increasing function, it immediately follows that
� = �(s) is also a strictly increasing function on [0,∞). For this reason, from
(55) we deduce∫

QR

|u(t, x)|(ϕ∗
R(t, x)

) n−2δ
n+2(σ−δ) d(x, t)

=
∫

Q∗
R

|u(t, x)|(ϕ∗
R(t, x)

) n−2δ
n+2(σ−δ) d(x, t)

≤ R
1+ n

2(σ−δ) �−1
(∫

QR
�

(|u(t, x)|)ϕ∗
R(t, x) d(x, t)

R
1+ n

2(σ−δ)

)
. (56)

From (46), (52) and (56) we may conclude

IR � R
n−2δ
2(σ−δ) �−1

(∫
QR

�
(|u(t, x)|)ϕ∗

R(t, x) d(x, t)

R
1+ n

2(σ−δ)

)
(57)

for all R > R0. Next we introduce the following two functions:

g(r) =
∫

QR

�
(|u(t, x)|)ϕ∗

r (t, x) d(x, t) with r ∈ (0,∞)

and

G(R) =
∫ R

0
g(r)r−1 dr.

Then, we re-write

G(R) =
∫ R

0

( ∫
QR

�
(|u(t, x)|)ϕ∗

r (t, x) d(x, t)
)
r−1 dr

=
∫

QR

�
(|u(t, x)|)( ∫ R

0

(
ϕ∗( |x|2(σ−δ) + t

r

))n+2(σ−δ)

r−1 dr
)

d(x, t).
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Carrying out change of variables r̃ = |x|2(σ−δ)+t
r

we derive

G(R) =
∫

QR

�
(|u(t, x)|)( ∫ ∞

|x|2(σ−δ)+t
R

(
ϕ∗(r̃)

)n+2(σ−δ)
r̃−1 dr̃

)
d(x, t)

≤
∫

QR

�
(|u(t, x)|)( ∫ 1

1/2

(
ϕ∗(r̃)

)n+2(σ−δ)
r̃−1 dr̃

)
d(x, t)

(
since suppϕ∗ ⊂ [1/2, 1])

≤
∫

QR

�
(|u(t, x)|)( ∫ 1

1/2

(
ϕ(r̃)

)n+2(σ−δ)
r̃−1 dr̃

)
d(x, t)

(
since ϕ∗ ≡ ϕ in [1/2, 1])

≤
∫

QR

�
(|u(t, x)|)(ϕ

( |x|2(σ−δ) + t

R

))n+2(σ−δ)( ∫ 1

1/2
r̃−1 dr̃

)
d(x, t)

(
since ϕ is decreasing

)
≤ log(1 + e)

∫
QR

�
(|u(t, x)|)(ϕ

( |x|2(σ−δ) + t

R

))n+2(σ−δ)

d(x, t)

= log(1 + e)IR. (58)

Moreover, it holds the following relation:

G′(R)R = g(R) =
∫

QR

�
(|u(t, x)|)ϕ∗

R(t, x) d(x, t). (59)

From (57) to (59) we get

G(R)

log(1 + e)
≤ IR ≤ C1R

n−2δ
2(σ−δ) �−1

( G′(R)

R
n

2(σ−δ)

)

for all R > R0 and with a suitable positive constant C1. This implies

�
( G(R)

C2R
n−2δ
2(σ−δ)

)
≤ G′(R)

R
n

2(σ−δ)

for all R > R0 and C2 := C1 log(1 + e) > 0. By the definition of the function
� , the above inequality is equivalent to

( G(R)

C2R
n−2δ
2(σ−δ)

)pc

μ
( G(R)

C2R
n

2(σ−δ)

)
≤ G′(R)

R
n

2(σ−δ)
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for all R > R0. Therefore, we have

1

C3R
μ
( G(R)

C2R
n−2δ
2(σ−δ)

)
≤ G′(R)(

G(R)
)pc

for all R > R0 and C3 := C
pc

2 > 0. Because G = G(R) is an increasing
function, for all R > R0 it holds the following inequality:

1

C3R
μ
( G(R0)

C2R
n−2δ
2(σ−δ)

)
≤ G′(R)(

G(R)
)pc

.

After denoting s̃ := R and integrating two sides over [R0, R] we arrive at

1

C3

∫ R

R0

1

s̃
μ
( 1

C4s̃
n−2δ
2(σ−δ)

)
ds̃ ≤

∫ R

R0

G′(s̃)(
G(s̃)

)pc
ds̃

= n − 2δ

2σ

( 1(
G(R0)

) 2σ
n−2δ

− 1(
G(R)

) 2σ
n−2δ

)

≤ n − 2δ

2σ
(
G(R0)

) 2σ
n−2δ

,

where C4 := C2
G(R0)

> 0. Letting R → ∞ leads to

1

C3

∫ ∞

R0

1

s̃
μ
( 1

C4s̃
n−2δ
2(σ−δ)

)
ds̃ ≤ n − 2δ

2σ
(
G(R0)

) 2σ
n−2δ

.

Finally, using change of variables s = C4s̃
n−2δ
2(σ−δ) we may conclude

C

∫ ∞

C0

μ
( 1

s

)
s

ds ≤ n − 2δ

2σ
(
G(R0)

) 2σ
n−2δ

,

where C := 2σ
C3(n−2δ) > 0 and C0 := C4R

n−2δ
2(σ−δ)

0 > 0 is a sufficiently large
constant. This is a contradiction to the assumption (45). Summarizing, the proof
of Theorem 4 is completed. 
�

Remark 4 From the condition (42) in Theorem 3 and the condition (45) in
Theorem 4, we recognize that determining the critical exponent pcrit = 1 + 2σ

n−2δ
in the scale of power nonlinearities {|u|p}p>1 is really sharp to (39) in the case
δ ∈ [0, σ

2 ], i.e. for “parabolic like models”. However, up to now this observation
remains an open problem for “σ -evolution like models” in the remaining case



244 T. A. Dao and Michael Reissig

δ ∈ ( σ
2 , σ ], the so-called “hyperbolic like models” or “wave like models” in the

case σ = 1.

Appendix

Proposition 1 (A Generalized Jensen’s Inequality) Let γ = γ (x) be a defined
and nonnegative function almost everywhere on �, provided that γ is positive in
a set of positive measure. Then, for each convex function h on R the following
inequality holds:

h

⎛
⎜⎜⎝

∫
�

f (x)γ (x) dx∫
�

γ (x) dx

⎞
⎟⎟⎠ ≤

∫
�

h
(
f (x)

)
γ (x) dx∫

�

γ (x) dx

,

where f is any nonnegative function satisfying all the above integrals are meaning-
ful.

The proof of this result can be found in [5, 9].

Lemma 8 (Useful Lemma) The following formula of derivative of composed
function holds for any multi-index α:

∂α
ξ h

(
f (ξ)

) =
|α|∑
k=1

h(k)
(
f (ξ)

)
⎛
⎜⎜⎝ ∑

γ1+···+γk≤α
|γ1|+···+|γk |=|α|, |γi |≥1

(
∂

γ1
ξ f (ξ)

) · · · (∂γk

ξ f (ξ)
)
⎞
⎟⎟⎠ ,

where h = h(z) and h(k)(z) = dkh(z)

d zk .

The result can be found in [11] at page 202.
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8. M. Kwaśnicki, Ten equivalent definitions of the fractional laplace operator. Fract. Calc. Appl.
Anal. 20, 7–51 (2017)
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