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1 Introduction

In the present paper we deal with the semilinear Cauchy problem

{
Pu(D)u(t, x) = f (t, x), (t, x) ∈ [0, T ] × R

u(0, x) = u0(x), x ∈ R
(1)
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2 A. Ascanelli and M. Cappiello

for the first order p-evolution operator

Pu(D)u = P(t, x, u(t, x), Dt ,Dx)u := Dtu + ap(t)D
p
x u +

p−1∑
j=0

aj (t, x, u)D
j
xu (2)

where D = 1
i
∂ , p ∈ N, p ≥ 2, ap ∈ C([0, T ],R), aj are for 0 ≤ j ≤ p − 1

continuous in time functions with values in C∞(R×C), and moreover the functions
x → aj (t, x,w) are in B∞(R) (i.e. uniformly bounded together with all their
derivatives).

For p = 2 our analysis will concern semilinear Schrödinger equations of the
form

Dtu + D2
xu + a1(t, x, u)Dxu + a0(t, x, u) = f (t, x).

For p = 3, the most important model is represented by the Korteweg-de Vries
equation describing the propagation of monodimensionalwaves of small amplitudes
in waters of constant depth:

∂tu = 3

2

√
g

h
∂x

(
1

2
u2 + 2

3
αu + 1

3
σ∂2xu

)
,

that can be written in the form (1) as

Dtu + 1

2

√
g

h
σD3

xu −
√

g

h

(
α + 3

2
u

)
Dxu = 0.

Here u represents the wave elevation with respect to the water’s surface, g is the
gravity constant, h the (constant) level of water, α a fixed small constant and σ =
h3

3 − T h
ρg

, with T the surface tension, ρ the density of the fluid. Assuming the level of
water h depending on x, we are led to an operator with space-depending coefficients
that can be applied to study the evolution of the wave when the depth of the seabed
is variable, cf. [1].

Since ap is real valued, the principal symbol (in the sense of Petrowski) of P ,
given by τ + ap(t)ξp , has the real characteristic root τ = −ap(t)ξp ; by the Lax-
Mizohata theorem, real characteristics are necessary for the existence of a unique
solution in Sobolev spaces of the Cauchy problem (1) in a neighborhood of t = 0,
for any p ≥ 1. Moreover, whenever the lower order coefficients aj (t, x,w) ∈ C
for 0 ≤ j ≤ p − 1, decay conditions as |x| → ∞ are necessary on the aj for
well-posedness in Sobolev spaces, see [6, 15] respectively for p = 2, p arbitrary.

Well-posedness for the Cauchy problem (1), (2) in H∞(R) = ∩sH
s(R), where

Hs(R) is the usual Sobolev space on L2, has been proved in the paper [1] under
suitable decay conditions at infinity for the aj , 0 ≤ j ≤ p − 1, relying on the
linear results of [5]; in this paper, despite very precise decay assumptions on the
coefficients, the authors have no information at all about the behavior at infinity of
the solution.
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In the last years, we started to study linear p-evolution equations in weighted
Sobolev spaces, see [3, 4] and to state a relation between the behavior at infinity of
the data and the one of the solution. Here we are interested to extend part of these
results to the semilinear case, that is to give decay conditions on the coefficients of
Pu(D) that are sufficient for the local in time well-posedness of the Cauchy problem
(1) in suitable weighted Sobolev spaces.

Namely, fixed s1, s2 ∈ R, we define Hs1,s2(R) as the space of all u ∈ S ′(R)

such that ‖u‖s1,s2 := ‖〈x〉s2〈D〉s1u‖L2 < ∞ where we denote by 〈D〉s1 the Fourier
multiplier with symbol 〈ξ〉s1 := (1+ ξ2)s1/2. This space is a Hilbert space endowed
with the inner product

〈u, v〉s1,s2 := 〈〈x〉s2〈D〉s1u, 〈x〉s2〈D〉s1v〉L2

which induces the norm ‖·‖s1,s2 . We haveH 0,0(R) = L2(R) and we shall denote the
L2 norm simply by ‖ · ‖. An equivalent norm on Hs1,s2(R) is given by |||u|||s1,s2 :=
‖〈D〉s1 〈x〉s2u‖L2 . Notice that for s2 = 0 we recapture the standard Sobolev spaces
and that the obvious inclusions Hs1,s2(R) ⊆ Ht1,t2(R) for every s1 ≥ t1, s2 ≥ t2
hold. We also recall that Hs1,s2(R) is an algebra with respect to multiplication for
s1 > 1/2 and s2 ≥ 0, cf. [2, Proposition 2.2]. For every given s1 ∈ R (resp. s2 ∈ R)
we define

Hs1,∞(R) :=
⋂
s2∈R

Hs1,s2(R), resp. H∞,s2(R) :=
⋂
s1∈R

Hs1,s2(R).

We remark thatHs1,∞(R) consists of functions with the same decay as the functions
of S (R) but with a limited regularity, while H∞,s2(R) consists of functions in
H∞(R) with a prescribed decay as |x| → ∞. As it will be shown in Sect. 2,
these two spaces are graded Fréchet spaces endowed with the increasing families
of seminorms

|u|s1,k := max
s2≤k

‖u‖s1,s2, resp. |u|k,s2 := max
s1≤k

‖u‖s1,s2, k ∈ N,

and they are tame (see Definition 1). Finally, we notice that

⋂
s1∈R

Hs1,∞(R) =
⋂
s2∈R

H∞,s2(R) = S (R). (3)

The main result of the paper is the following.

Theorem 1 Let P(t, x,Dt ,Dx) be an operator of the form (2). Assume that there
exist a constant C > 0 and a function γ : C → R+ of class C7 such that for all
(t, x,w) ∈ [0, T ] × R × C, β, δ ∈ N the following conditions hold:

ap(t) is real valued and ap(t) = 0, t ∈ [0, T ]; (4)
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|∂δ
w∂β

x Im aj (t, x,w)| ≤ Cγ (w)〈x〉− j
p−1−|β|

, 0 ≤ j ≤ p − 1; (5)

|∂δ
w∂β

x Re aj (t, x,w)| ≤ Cγ (w)〈x〉−|β|, 0 ≤ j ≤ p − 1. (6)

Then, for every given s2 ≥ 3p − 2, the Cauchy problem (1) is well-posed locally in
time in H∞,s2(R): namely for all f ∈ C([0, T ]; H∞,s2(R)) and u0 ∈ H∞,s2(R),
there exists 0 < T ∗ ≤ T and a unique solution u ∈ C1([0, T ∗]; H∞,s2(R)) of (1).

Remark 1 With respect to [1], in Theorem 1 from the decay at infinity of the data
we can estimate the decay of the solution as |x| → ∞. Indeed, by [1] we know
that if the data are in H∞ (and the decay conditions are satisfied), then the solution
belongs to H∞, too; Theorem 1 states that if the data are in H∞,s2 for s2 large
enough, then also u ∈ H∞,s2 .

The idea of the proof of Theorem 1 is the following: to show the existence of a
unique solution to the semilinear equation (1) in H∞,s2 , we first linearize it, fixing
a function u ∈ C([0, T ],H∞,s2(R)) with s2 ∈ R large enough, then we solve the
linear Cauchy problem in the unknown v(t, x)

{
Pu(D)v(t, x) = f (t, x), (t, x) ∈ [0, T ] × R

v(0, x) = u0(x), x ∈ R
(7)

in H∞,s2(R); finally, inspired by [6], [10] and [12], we apply the Nash-Moser
theorem to obtain the existence of a unique solution of (1) in the tame space
H∞,s2(R). We remark that we cannot apply to the Cauchy problem (1), (2) a usual
fixed point scheme in Banach spaces since the linearized problem (7) has a unique
solution which presents a loss of regularity and/or a different behavior at infinity
with respect to the data. Thus the problem (7) is not well posed in Hs1,s2; however
it turns out to be well posed in H∞,s2(R) which is a tame Fréchet space, so there we
can apply the Nash Moser theorem.

Remark 2 In the linear case treated in [3], as a consequence of the energy estimates
in weighted Sobolev spaces, we also obtained that the Cauchy problem is well posed
inS (R) andS ′(R). In the semilinear case, we are not able to prove in the same way
well posedness in S (R). In fact, if the data of the problem are Schwartz functions,
they belong in particular to H∞,s2(R) for every s2 > 0, however, in the semilinear
case, the upper bound T ∗ of the interval of existence of the solution may depend on
s2 and possibly tends to 0 when s2 → +∞.

Remark 3 The techniques used in this paper may be adapted to study semilinear
p-evolution equations in higher space dimension x at least in some particular cases
as, for instance, Schrödinger-type equations (p = 2). For this type of equations, at
least the linear theory is well established in general space dimension, cf. [8, 9, 16]
and it could be easily applied to the analysis of the linearized Cauchy problem (7).
We will treat this problem for general p-evolution equations in a future paper.
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2 Preliminaries: SG-Calculus and Nash Moser Theorem

2.1 SG-Calculus

We recall here the definition and the main properties of the SG classes of
pseudodifferential operators. In view of the purposes of this paper we shall state
them for symbols defined on R2, but they have obvious extension in higher
dimension. For this generalization and for more details on these classes we refer to
[11, 19, 20]. Fixed m1,m2 ∈ R, the space SGm1,m2(R2) is the space of all functions
p(x, ξ) ∈ C∞(R2) satisfying the following estimates:

sup
(x,ξ)∈R2

〈ξ〉−m1+α〈x〉−m2+β |∂α
ξ ∂β

x p(x, ξ)| < ∞ (8)

for every α, β ∈ N. We can associate to every p ∈ SGm1,m2(R2) the pseudodiffer-
ential operator defined by

Pu(x) = p(x,D)u(x) = (2π)−d

∫
Rd

ei〈x,ξ 〉p(x, ξ)û(ξ) dξ. (9)

If p ∈ SGm1,m2(R2), then the operator p(x,D) is a linear continuous map from
S (R) to S (R) and extends to a linear continuous map from S ′(R) to S ′(R)

and from Hs1,s2(R) to Hs1−m1,s2−m2(R) for every s1, s2 ∈ R. We also recall the
following result concerning the composition and the adjoint of SG operators.

Proposition 1 Let p ∈ SGm1,m2(R2) and q ∈ SGm′
1,m

′
2(R2). Then there exists a

symbol s ∈ SGm1+m′
1,m2+m′

2(R2) such that p(x,D)q(x,D) = s(x,D)+R where R

is a smoothing operator S ′(R) → S (R). Moreover, s has the following asymptotic
expansion

s(x, ξ) ∼
∑
α

α!−1∂α
ξ p(x, ξ)Dα

x q(x, ξ)

i.e. for every N ≥ 1, we have

s(x, ξ) −
∑

|α|<N

α!−1∂α
ξ p(x, ξ)Dα

x q(x, ξ) ∈ SGm1+m′
1−N,m2+m′

2−N(R2).

Proposition 2 Let p ∈ SGm1,m2(R2) and let P ∗ be the L2-adjoint of p(x,D). Then
there exists a symbol p∗ ∈ SGm1,m2(R2) such that P ∗ = p∗(x,D)+R′, where R′ is
a smoothing operator S ′(R) → S (R). Moreover, p∗ has the following asymptotic
expansion

p∗(x, ξ) ∼
∑
α

α!−1∂α
ξ Dα

x p(x, ξ)



6 A. Ascanelli and M. Cappiello

i.e. for every N ≥ 1, we have

p∗(x, ξ) −
∑

|α|<N

α!−1∂α
ξ Dα

x p(x, ξ) ∈ SGm1−N,m2−N(R2).

We will denote in the sequel by Sm(R2),m ∈ R, the class of symbols p(x, ξ) ∈
C∞(R2) satisfying

sup
(x,ξ)∈R2

〈ξ〉−m+α |∂α
ξ ∂β

x p(x, ξ)| < ∞,

for every α, β ∈ N. We observe that the following inclusion holds

SGm1,m2(R2) ⊂ Sm1(R2) (10)

for every m1 ∈ R,m2 ≤ 0.
The following theorem has been proved in [3, Theorem 2.3], and provides

an extension to pseudodifferential operators of SG-type of the well known sharp
Gårding theorem.

Theorem 2 Let m1 ≥ 0,m2 ≤ 0, a ∈ SGm1,m2(R2) such that Re a(x, ξ) ≥ 0
if |ξ | ≥ C for some positive C. Then there exist pseudo-differential operators
Q = q(x,D), R = r(x,D) and R0 = r0(x,D) with symbols, respectively,
q ∈ SGm1,m2(R2), r ∈ SGm1−1,m2(R2) and r0 ∈ S0(R2) such that

a(x,D) = q(x,D) + r(x,D) + r0(x,D), (11)

Re〈q(x,D)u, u〉 ≥ 0 ∀u ∈ S (R) (12)

and

r(x, ξ) = ψ1(ξ)Dxa(x, ξ) +
∑

2≤α+β≤2m1−1

ψα,β(ξ)∂α
ξ Dβ

x a(x, ξ) (13)

for some real valued functions ψ1, ψα,β with ψ1 ∈ SG−1,0(R2) and ψα,β ∈
SGα−β/2,0(R2) depending only on ξ .

We remark that the terms in (13) can be re-arranged so that we have

r(x, ξ) =
m−1∑
j=1

rj (x, ξ), (14)

rj (x, ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ1(ξ)Dxa(x, ξ) +
∑

2≤α+β≤3

ψα,β(ξ)∂α
ξ D

β
x a(x, ξ), j = m − 1,

∑
2(m−j)≤α+β≤2(m−j)+1

ψα,β(ξ)∂α
ξ D

β
x a(x, ξ), 1 ≤ j ≤ m − 2.

(15)
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We also remark that Theorem 2 implies the well-known sharp Gårding inequality

Re〈A(x,Dx)u, u〉 ≥ −c‖u‖2(m−1)/2,0 (16)

for some fixed constant c > 0 (cf. [17, Theorem 4.4]).
We recall here also the Fefferman-Phong inequality (cf. [13]):

Theorem 3 Let A(x, ξ) ∈ Sm(R2) with A(x, ξ) ≥ 0. Then

Re〈A(x,Dx)u, u〉 ≥ −c‖u‖2(m−2)/2,0 ∀u ∈ Hm,0 (17)

for some c > 0.

We remark that, by Lerner and Morimoto [18], for m = 2 the constant c in (17)
depends only on max|α|+|β|≤7

Cα,β for Cα,β := sup
x,ξ∈R

|∂α
ξ ∂β

x A(x, ξ)|〈ξ〉−2+α .

2.2 Tame Fréchet Spaces and the Nash Moser Theorem

We recall here the notions of tame space, tame maps, and the statement of the Nash-
Moser inversion theorem, see [14] for further details. Moreover, we show that, for
every fixed s1, s2 ∈ R, Hs1,∞ and H∞,s2 are tame spaces.

A graded Fréchet space X is a Fréchet space endowed with a grading, i.e. an
increasing sequence of semi-norms:

|x|n ≤ |x|n+1, ∀n ∈ N0, x ∈ X.

Example 1 Given a Banach space B, consider the space (B) of all sequences
{vk}k∈N0 ⊂ B such that

|{vk}|n :=
+∞∑
k=0

enk‖vk‖B < +∞ ∀n ∈ N0.

We have that (B) is a graded Fréchet space with the topology induced by the
family of seminorms | · |n (which is in fact a grading on (B)).

We say that a linear map L : X → Y between two graded Fréchet spaces is a tame
linear map if there exist r, n0 ∈ N such that for every integer n ≥ n0 there exists a
constant Cn > 0, depending only on n, s.t.

|Lx|n ≤ Cn|x|n+r ∀x ∈ X. (18)

The numbers n0 and r are called respectively base and degree of the tame estimate
(18).
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Definition 1 A graded Fréchet space X is said to be tame if there exist a Banach
space B and two tame linear maps L1 : X → (B) and L2 : (B) → X such that
L2 ◦ L1 is the identity on X.

Obviously, given a graded Fréchet space X and a tame space Y , if there exist two
linear tame maps L1 : X → Y and L2 : Y → X such that L2 ◦ L1 is the identity
on X, then also X is a tame space.

Lemma 1 The spaces Hs1,∞ and H∞,s2 are tame.

Proof We first recall that H∞ := ⋂
s∈R Hs endowed with the seminorms |f |n :=

maxs≤n ‖f ‖s for every n ∈ N is a tame Fréchet space, cf. [10]. Moreover the map
L : H∞ → H∞,s2 defined by L(f ) = 〈x〉−s2f is a tame isomorphism since for
every n = 0, 1, 2, . . . we have:

|L(f )|n,s2 = max
s1≤n

‖L(f )‖s1,s2 = max
s1≤n

‖〈x〉−s2f ‖s1,s2

≤ Cn max
s1≤n

|||〈x〉−s2f |||s1,s2 = |f |n

and

|f |n = max
s1≤n

‖f ‖s1 ≤ C′
n max

s1≤n
‖〈x〉−s2f ‖s1,s2 = |L(f )|n,s2 .

Thus, H∞,s2 is a tame space. Hs1,∞ is also tame, since the Fourier transformF is
an isomorphism between Hs1,s2 and Hs2,s1 , and ‖F(f )‖s2,s1 = ‖f ‖s1,s2 ; by this, it
is easy to prove that F : Hs1,∞ → H∞,s2 defines a tame map with tame inverse
given by the inverse Fourier transform. ��

Given now a nonlinear map T : U → Y where U ⊂ X and X,Y are graded
spaces, we say that T satisfies a tame estimate of degree r and base n0 if for every
integer n ≥ n0 there exists a constant Cn > 0 such that

|T (u)|n ≤ Cn(1 + |u|n+r ) ∀u ∈ U. (19)

We say that T is tame if it satisfies a tame estimate (19) in a neighborhood of each
point u ∈ U (with constants r, n0 andCn which may depend on the neighbourhood).

Notice that a linear map is tame if and only if it is a tame linear map.
Given a map T : U ⊂ X → Y , we define the Fréchet derivative DT (u)v of T

at u ∈ U in the direction v ∈ X by

DT (u)v := lim
ε→0

T (u + εv) − T (u)

ε
, (20)

and we say that T isC1(U) if the limit (20) exists and the derivativeDT : U×X →
Y is continuous. We can also define recursively the higher order Fréchet derivatives
DnT : U × Xn → Y of T , cf. [14]; we say that T is C∞(U) if all the Fréchet
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derivatives of T exist and are continuous. A smooth tame map T : U → Y defined
on an open subset U of X is a C∞ map such that DnT is tame for all n ∈ N0.

It is known that sums and compositions of smooth tame maps are smooth tame,
and, moreover, linear and nonlinear partial differential operators and integration are
smooth tame maps, see [14] for the proofs of these results. Finally we recall the
statement of Nash-Moser inversion theorem in the tame Fréchet spaces category,
which will be used in the sequel to approach the Cauchy problem (1).

Theorem 4 (Nash-Moser-Hamilton) Let X,Y be tame spaces, U an open subset
of X and T : U → Y a smooth tame map. If the equation DT (u)v = h has a
unique solution v := S(u, h) for all u ∈ U and h ∈ Y , and if S : U × Y → X is
smooth tame, then T is locally invertible and each local inverse is smooth tame.

3 Well Posedness for the Linearized Cauchy Problem

The following theorem is the key to prove the main result of this paper. It deals
with the linear Cauchy problem (7), and proves that if the data of (7) are chosen
in the Sobolev space Hs1,s2 , s1, s2 ∈ R, then there exists a unique solution v(t) ∈
Hs1−2δη(p−1),s2−2δε for some δ > 0 and for every 0 ≤ ε, η ≤ 1 such that ε +η = 1.

Theorem 5 Under the assumptions of Theorem 1, there exists δ > 0 such
that for every u ∈ C([0, T ]; H 3p−1,3p−2(R)), f ∈ C([0, T ]; Hs1,s2(R))

and u0 ∈ Hs1,s2(R), there exists a unique solution v of (7) such that v ∈
C1([0, T ]; Hs1−2δη(p−1),s2−2δε(R)) for every ε, η ∈ [0, 1] with ε+η = 1. Moreover
v satisfies the following energy estimate:

‖v(t, ·)‖2s1−2δη(p−1),s2−2δε (21)

≤ Cs1,s2,γ e
(1+‖u‖3p−2

3p−1,3p−2)t

(
‖u0‖2s1,s2 +

∫ t

0
‖f (τ, ·)‖2s1,s2 dτ

)
∀t ∈ [0, T ].

Remark 4 Notice that the solution v presents the loss 2δη(p−1) in the first Sobolev
index and the loss 2δε in the second one. In the case s2 = 0, ε = 0, η = 1 we
recapture the result of [1, Theorem 2.1]. Moreover, in the linear case (i.e., if (7)
does not depend on u), we can obtain either well-posedness with loss of 2δ(p − 1)
derivatives and no loss of decay (take η = 1 and ε = 0), or the result of [3], that
is well-posedness without loss of derivatives but with loss of decay 2δ (take η = 0
and ε = 1). We can also obtain all the intermediate estimates. A similar result has
been proved in [7], where intermediate estimates for Schrödinger equations (p = 2)
have been proved in Gevrey classes.

The proof of Theorem5 consists in choosing an appropriate and invertible change
of variable

v(t, x) = e�(x,D)w(t, x) (22)
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which transforms the Cauchy problem (7) into an equivalent Cauchy problem

{
P�(t, x, u(t, x),Dt ,Dx)w(t, x) = f�(t, x) (t, x) ∈ [0, T ] × R

w(0, x) = u0,�(x) x ∈ R
(23)

for

P� := (e�)−1Pe�, f� := (e�)−1f, u0,� := (e�)−1u0

which is well-posed in L2 (and therefore in all the weighted Sobolev spaces Hs1,s2).
By the energy estimate in Hs1,s2 for the solution w to the Cauchy problem (23), we
then deduce the energy estimate (21) from (22).

The operator � will be of the form

�(x,D) = λ1(x,D) + . . . + λp−1(x,D),

so

P� := (eλ1)−1 · · · (eλp−1)−1Peλp−1 · · · (eλ1),

f� := (eλ1)−1 · · · (eλp−1)−1f, u0,� := (eλ1)−1 · · · (eλp−1)−1u0.

We construct here below the transformation � and we point out its main
properties in Proposition 3. Then we prove the invertibility of e� in Proposition 4.
In the subsequent Lemma 2 we show how to obtain the energy estimate (21) for the
Cauchy problem (7) from the Hs1,s2 energy estimate for the Cauchy problem (23).
After that, in Lemma 5 we state the regularity with respect to x, u of the coefficients
aj (t, x, u) of the linear operator (7), for 0 ≤ j ≤ p − 1. This section ends with the
proof of Theorem 5.

Definition 2 For every k = 1, . . . , p − 1 we define the symbols

λp−k(x, ξ) := Mp−kω

(
ξ

h

)
〈ξ〉−k+1

h

∫ x

0
〈y〉− p−k

p−1 ψ

(
〈y〉

〈ξ〉p−1
h

)
dy, (24)

where h and Mp−k are positive constants such that h ≥ 1, ω ∈ C∞(R) is such that

ω(y) =
{
0 |y| ≤ 1

|y|p−1/yp−1 |y| ≥ 2
, (25)

and ψ ∈ C∞
0 (R) is such that 0 ≤ ψ(y) ≤ 1 for all y ∈ R, ψ(y) = 1 for |y| ≤ 1

2 ,
and ψ(y) = 0 for |y| ≥ 1.
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Proposition 3 There exists a constant C > 0 such that for every (x, ξ) ∈ R2 the
following conditions hold:

|λp−1(x, ξ)| ≤ Mp−1 (log 2 + ε log〈x〉 + η(p − 1) log〈ξ〉h) (26)

∀ε, η ∈ [0, 1] ε + η = 1;
|λp−k(x, ξ)| ≤ CMp−k, 2 ≤ k ≤ p − 1. (27)

Moreover, for every α, β with (α, β) = (0, 0), there exists Cα,β > 0 such that for
|ξ | > 2h:

|∂α
ξ ∂β

x λp−k(x, ξ)| ≤ Cα,β 〈x〉−β 〈ξ〉−α
h , 1 ≤ k ≤ p − 1. (28)

Proof We only prove (26) and (27); the inequality (28) can be deduced as in the
proof of [5, Lemma 2.1]. Let E = {(y, ξ) ∈ R2 : 〈y〉 ≤ 〈ξ〉p−1

h }. If x ∈ E, x > 0,
then by (24), integrating we have:

|λp−1(x, ξ)| ≤ Mp−1

∫ x

0

1√
1 + y2

dy ≤ Mp−1 log (2〈x〉)

≤ Mp−1(ln 2 + log〈x〉)
≤ Mp−1(ln 2 + log〈x〉ε〈ξ〉η(p−1)

h )

≤ Mp−1(ln 2 + ε log〈x〉 + η(p − 1) log〈ξ〉h)

for every 0 ≤ ε, η ≤ 1, ε + η = 1. Analogously, if x /∈ E we get

|λp−1(x, ξ)| ≤ Mp−1

∫ √
〈ξ 〉2(p−1)

h −1

0

1√
1 + y2

dy

≤ Mp−1 ln(2〈ξ〉p−1
h )

≤ Mp−1(ln 2 + log〈x〉ε〈ξ〉η(p−1)
h )

≤ Mp−1(ln 2 + ε log〈x〉 + η(p − 1) log〈ξ〉h),

using the fact that for x /∈ E we have 〈ξ〉p−1
h < 〈x〉. Similar estimates can be

obtained for x < 0. The estimate (27) can be proved by a similar argument. ��
From Proposition 3 we obtain in particular that e±λp−1 ∈ SGMp−1η(p−1),Mp−1ε

for every ε, η ≥ 0 such that ε + η = 1 whereas for k = 2, . . . , p − 1, we have
e±λp−k ∈ SG0,0(R2) ⊂ S0(R2).
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Proposition 4 For every k = 1, . . . , p−1, let λp−k be defined by (24). There exists
hk ≥ 1 such that for every h ≥ hk the operator eλp−k (x,D) is invertible and

(
eλp−k (x,D)

)−1 = e−λp−k (x,D)(I + rp−k(x,D)), (29)

where I stands for the identity operator and rp−k(x,D) is a pseudodifferential
operator with principal symbol

rp−k,−k(x, ξ) = ∂ξλp−k(x, ξ)Dxλp−k(x, ξ) ∈ SG
−k,− p−k

p−1 . (30)

Proof We first observe that

eλp−k (x,D)e−λp−k (x,D) = I − r̃p−k(x,D),

where r̃p−k has principal symbol rp−k,−k in (30). From (28) we have

|rp−k,−k(x, ξ)| ≤ CkM
2
p−kh

−1,

and we similarly estimate the derivatives. We see that for h large enough, say h ≥
hk , the operator I − r̃p−k is invertible on L2 with inverse given by the Neumann
series ∑

j≥0

r̃
j
p−k = I + rp−k,

and the operator rp−k has principal part (30). Thus,

eλp−k (x,D)e−λp−k (x,D)(I + rp−k) = I,

and e−λp−k (x,D)(I + rp−k) is a right inverse of eλp−k (x,D). Similarly we can
obtain that it is also a left inverse. ��
Lemma 2 If the Cauchy problem (23) is Hs1,s2 well posed, and the energy estimate

‖w‖2s1,s2 ≤ Ce
(1+‖u‖3p−2

3p−1,3p−2)t

(
‖u0,�‖2s1,s2 +

∫ t

0
‖f�(τ)‖2s1,s2dτ

)
(31)

holds for every t ∈ [0, T ], then the Cauchy problem (7) admits a unique solution

v ∈ C([0, T ]; Hs1−2δη(p−1),s2−2δε)

for every ε, η ∈ [0, 1] with ε + η = 1 which satisfies the energy estimate (5).
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Proof From Proposition 3 we know that

|�(x, ξ)| ≤ Mp−1 (log 2 + ε log〈x〉 + η(p − 1) log〈ξ〉h) +
p−1∑
k=2

CkMp−k

≤ δ (1 + ε log〈x〉 + η(p − 1) log〈ξ〉h)

with a positive constant δ depending on M1, . . . ,Mp−1.This yelds

|e±�(x,ξ)| ≤ eδ〈x〉δε〈ξ〉δη(p−1)
h ,

and by the energy estimate (31) we get

‖v‖2s1−2δη(p−1),s2−2δε = ‖e�w‖2s1−2δη(p−1),s2−2δε ≤ ‖w‖2s1−δη(p−1),s2−δε

≤ Ce
(1+‖u‖3p−2

3p−1,3p−2)t

(
‖u0,�‖2s1−δη(p−1),s2−δε+

∫ t

0
‖f�(τ)‖2s1−δη(p−1),s2−δεdτ

)

≤ Ce
(1+‖u‖3p−2

3p−1,3p−2)t

(
‖u0‖2s1,s2 +

∫ t

0
‖f (τ)‖2s1,s2dτ

)

for every t ∈ [0, T ]. ��
The next Proposition 5 states the regularity with respect to x, u of the coefficients

aj (t, x, ξ) of the linearized operator (7).

Proposition 5 Under the assumptions (5) and (6), there exists C′ > 0 such that
for every fixed u ∈ C([0, T ]; H 3p−1,3p−2(R)) the coefficients aj (t, x, u(t, x)) of
the operator Pu(D) satisfy for every 1 ≤ j ≤ p − 1, (t, x) ∈ [0, T ] × R and
β ≤ 3p − 2:

|∂β
x Re aj (t, x, u(t, x))| ≤ C′γ (u)(1 + ‖u‖β

1+β,β)〈x〉−β, (32)

|∂β
x Im aj (t, x, u(t, x))| ≤ C′γ (u)(1 + ‖u‖β

1+β,β)〈x〉− j
p−1−β

. (33)

Proof For every β ≥ 1 and 1 ≤ j ≤ p − 1 we have

∂β
x (aj (t, x, u)) = (∂β

x aj )(t, x, u)

+
∑

β1+β2=β
β2≥1

cβ

∑
r1+...+rq=β2

ri≥1

cq,r(∂
q
w∂β1

x aj )(t, x, u)(∂r1
x u) · · · (∂rq

x u)
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for some cβ, cq,r > 0. By (6), using the relationship between geometric and
arithmetic mean value and Sobolev inequality, this gives for every β ≤ 4(p − 1):

|∂β
x(Re aj (t, x, u))|

≤ Cγ (u)〈x〉−β +
∑

β1+β2=β
β2≥1

cβ1,β2

∑
r1+...+rq=β2

ri≥1

Cq,r1,...,rq γ (u)〈x〉−β1 |∂r1
x u| · · · |∂rq

x u|

≤ C′γ (u)〈x〉−β

⎛
⎜⎜⎜⎝1 +

∑
β1+β2=β

β2≥1

∑
r1+...+rq=β2

ri≥1

|〈x〉r1∂r1
x u| · · · |〈x〉rq ∂

rq
x u|

⎞
⎟⎟⎟⎠

≤ C′γ (u)〈x〉−β

⎛
⎜⎜⎜⎝1 +

∑
β1+β2=β

β2≥1

∑
r1+...+rq=β2

ri≥1

(
|〈x〉r1∂r1

x u| + · · · + |〈x〉rq ∂
rq
x u|

q

)q

⎞
⎟⎟⎟⎠

≤ C′′γ (u)(1 + ‖u‖β
1+β,β)〈x〉−β ;

where we have used the fact that for every 1 ≤ j ≤ q, β ≤ 3p − 2, we have

|〈x〉rj ∂rj
x u| ≤ C‖〈x〉rj ∂rj

x u‖1,0 = ‖u‖1+rj ,rj ≤ ‖u‖1+β,β < ∞.

On the other hand, looking at Im aj and using (5) instead of (6), the same
computations give

|∂β
x (Im aj (t, x, u))| ≤ C′′γ (u)(1 + ‖u‖β

1+β,β)〈x〉− j
p−1−β

.

��
Remark 5 We observe that a conjugation of the type (eλp−k )−1Tje

λp−k with λp−k

given by (24) and Tj ∈ SGj,0, j ≥ k + 1 depending on γj derivatives of u, by
Proposition 4 gives:

(eλp−k )−1Tje
λp−k = e−λp−k

(
Tj + rp−kTj

)
eλp−k (34)

where the principal symbol of rp−k is given by ∂ξλp−k(x, ξ)Dxλp−k(x, ξ) ∈
SG−k,−(p−k)/(p−1). By the asymptotic expansion we get

σ
(
Tj + rp−kTj

)
(x, ξ) = Tj (x, ξ) +

j−k−1∑
α=0

1

α!∂
α
ξ rp−k(x, ξ)Dα

x Tj (x, ξ) + S0(x, ξ)
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with S0 ∈ SG0,0. Since ∂α
ξ rp−kD

α
x Tj ∈ SGj−k−α,−(p−k)/(p−1)−|α| and depends on

γj + α derivatives of u, by re-ordering the sum we get

σ
(
Tj + rp−kTj

)
(x, ξ) = Tj (x, ξ) +

j−k∑
�=1

Tj,�(x, ξ) + T0

with Tj,� ∈ SG�,−(p−k)/(p−1)−(j−k−�) depending on γj + j − k − � derivatives of
u and on Mp−k , T0 of order (0, 0). Thus

(eλp−k )−1

⎛
⎝p−1∑

j=0

Tj

⎞
⎠ eλp−k = e−λp−k

⎛
⎝p−1∑

j=0

(Tj + rp−kTj )

⎞
⎠ eλp−k

and we have, modulo terms of order (0, 0):

σ

⎛
⎝p−1∑

j=0

(Tj + rp−kTj )

⎞
⎠ (x, ξ) =

p−1∑
j=1

Tj (x, ξ) +
p−1∑
j=1

j−k∑
�=1

Tj,�(x, ξ)

=
p−1∑

j=p−k

Tj +
p−k−1∑

j=1

(
Tj + Tj+k,j + . . . + Tp−1,j

) =
p−1∑
j=1

T ′
j

with T ′
j = Tj for j ≥ p − k, while for j ≤ p − k − 1 T ′

j ∈ SGj,0 as well as Tj but
depend on max{γp−1 + p − 1− k − j, γp−2 + p − 2− k − j, . . . , γj+k} derivatives
of u and on the constant Mp−k .

Remark 6 Similarly, a conjugation of the type e−λTke
λ, where λ ∈ SG0,0 and

Tk ∈ SGk,0 depends on γk derivatives of u, gives, modulo terms of order (0, 0),
the operator

Tk +
k−1∑
α=1

1

α!
(
∂α
ξ Tk

)
e−λDα

x eλ +
k−1∑
β=1

k−β∑
α=0

1

α!β!∂
β
ξ e−λDβ

x

(
∂α
ξ TkD

α
x eλ

)
;

at each level 1 ≤ j ≤ k − 1 we find, except for Tj itself, new terms of

type ∂
β
ξ e−λD

β
x

(
∂α
ξ Tj+α+βDα

x eλ
)
with the same decay as Tj and depending on

γj+α+β + β derivatives of u.

Proof of Theorem 5 First of all we observe that the assumption (4) implies that
ap(t) ≥ Cp for every t ∈ [0, T ] or ap(t) ≤ −Cp for every t ∈ [0, T ] for a positive
constant Cp . We will prove the theorem under the first condition. If the second one
holds the result remains valid with only modifications of signs in the proof.
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Fixed u, we consider the linear operator

iPu(t, x, u(t, x),Dt ,Dx) = ∂t + iap(t)D
p
x +

p−1∑
j=0

iaj (t, x, u)D
j
x

with ap satisfying (4) and aj satisfying (32), (33) for every 1 ≤ j ≤ p − 1, and we
apply for h ≥ h1 (see Proposition 4) the first conjugation (eλp−1)−1iPue

λp−1 , with
λp−1 in Definition 2 satisfying Proposition 3. Let us first notice that

(eλp−1)−1iPue
λp−1 = ∂t + e−λp−1

⎛
⎝iap(t)D

p
x +

p−1∑
j=0

iaj (t, x, u)D
j
x

⎞
⎠ eλp−1

+ e−λp−1

⎛
⎝irp−1(x,D)ap(t)D

p
x +

p−1∑
j=0

irp−1(x,D)aj (t, x, u)D
j
x

⎞
⎠ eλp−1

and that the principal symbol of rp−1 is given by ∂ξλp−1(x, ξ)Dxλp−1(x, ξ) ∈
SG−1,−1. The composition e−λp−1iapξpeλp−1 provides, among others, the term
−∂ξλp−1(x, ξ)apξp∂xλp−1(x, ξ) = −iapξprp−1,−1(x, ξ) which cancels with the
principal part of the symbol of e−λp−1irp−1apξpeλp−1 . Then, we notice that by
Remark 5 we can write

(eλp−1)−1iPue
λp−1 = ∂t + e−λp−1

⎛
⎝iap(t)D

p
x +

p−1∑
j=0

ia′
j (t, x, u,Dx)

⎞
⎠ eλp−1

+ op
(
iapξprp−1,−1

)
(t, x,D)

with new terms

a′
p−1(t, x, u,Dx) = ap−1(t, x, u)D

p−1
x

and, for 0 ≤ j ≤ p − 2, a′
j (t, x, u,Dx) is a pseudodifferential operator given by

aj (t, x, u)D
j
x plus other terms of the same order. Namely, a′

j satisfy estimates of
the form

|∂α
ξ ∂β

xRe a′
j (t, x, u(t, x), ξ)| (35)

≤ CMp−1γ (u)(1 + ‖u‖p−2−j+β

p−1−j+β,p−2−j+β)〈x〉−β 〈ξ〉j−α,

|∂α
ξ ∂β

x Im a′
j (t, x, u(t, x), ξ)| (36)

≤ CMp−1γ (u)(1 + ‖u‖p−2−j+β
p−1−j+β,p−2−j+β)〈x〉− j

p−1−β〈ξ〉j−α .
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The asymptotic expansion gives

iP1(t, x, u, D) := (eλp−1)−1iPueλp−1 (37)

= ∂t + iap(t)D
p
x + iap−1(t, x, u)D

p−1
x

+ op
(
ipapξp−1Dxλp−1

)

+
p−1∑
α=2

∑
β+γ=α

β≤p

1

β!γ !op
(
ap(t)∂

γ
ξ e−λp−1 · ∂β

ξ ξp · Dα
x eλp−1

)

+
p−2∑
j=1

ia′
j (t, x, u,Dx)

+
p−1∑
j=1

j−1∑
α=1

1

α!op
(
e−λp−1∂α

ξ ia′
j Dα

x eλp−1
)

+
p−1∑
j=1

j−1∑
β=1

j−1−β∑
α=0

∑
β1+β2=β

1

α!β1!β2!op
(
∂
β
ξ e−λp−1D

β1
x ∂α

ξ ia′
j D

α+β2
x eλp−1

)

+ s0(t, x, u, D)

with a term s0 of order (0, 0). Notice that, by (35), (36) and Remark 6, in (37) we
find at each level 1 ≤ j ≤ p − 2, except for the original terms aj (t, x, u)D

j
x , terms

with decay at least of type 〈x〉−1, depending at most on Mp−1, and depending at
most on

γj+|α|+|β| + |β| = p − (j + |α| + |β|) − 1 + |β| = p − j − |α| − 1 ≤ p − j − 1

derivatives of u, so that we get

iP1 = ∂t + iap(t)D
p
x + iap−1(t, x, u)D

p−1
x (38)

+op
(
ipapξp−1Dxλp−1

)
+

p−2∑
j=1

ia′′
j (t, x, u,Dx) + s0(t, x, u,D)

where the pseudodifferential operators a′′
j are given by ajD

j
x plus other terms with

the same behavior, namely a′′
j still satisfy (35) and (36).

Now, let us focus on the term Ap−1 of order p − 1 with respect to ξ in (38). By
(24) and (33), the choice of ω in (25), and (4) we get for every |ξ | ≥ 2h:

ReAp−1(t, x, u, ξ) := Re
(
iap−1(t, x, u)ξp−1 + pap(t)ξp−1∂xλp−1(x, ξ)

)
= − Im ap−1(t, x, u)ξp−1 + pap(t)ξp−1∂xλp−1(x, ξ)
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≥ −C′γ (u)〈x〉−1〈ξ〉p−1
h + Mp−1pap(t)|ξ |p−1〈x〉−1ψ

(
〈x〉

〈ξ〉p−1
h

)

≥ 〈ξ〉p−1
h

〈x〉 ψ

(
〈x〉

〈ξ〉p−1
h

)(
−C′γ (u) + Mp−1pCp

(
2√
5

)p−1
)

− C′γ (u)
〈ξ〉p−1

h

〈x〉

(
1 − ψ

(
〈x〉

〈ξ〉p−1
h

))

≥ −2C′γ (u)

if we choose Mp−1 ≥ C′γ (u)
√
5
p−1

2p−1pCp

, where we have also used the fact that

〈x〉
〈ξ〉p−1

h

≥ 1

2
on the support of 1 − ψ

(
〈x〉

〈ξ〉p−1
h

)
and |ξ |p−1 ≥ (2/

√
5)p−1〈ξ〉p−1

h

for |ξ | ≥ 2h. Being the symbol ReAp−1(t, x, u, ξ)+2C′γ (u) non negative, we can
apply the sharp Gårding Theorem 2 and we obtain that there exist pseudodifferential
operators Qp−1(t, x, u,D), Rp−1(t, x, u,D), R0,p−1(t, x, u,D) with symbols

Qp−1(t, x, u, ξ) ∈ SGp−1,0, Rp−1(t, x, u, ξ) ∈ SGp−2,0, R0,p−1(t, x, u, ξ) ∈ S0

such that

Ap−1(t, x, u,D) = Qp−1(t, x, u,D) + iRp−1(t, x, u,D) + R0,p−1(t, x, u,D)

with

Re〈Qp−1(t, x, u,D)h(t, x), h(t, x)〉 ≥ 0 ∀h ∈ S (R), (t, x) ∈ [0, T ] × R

and by (15)

Rp−1(t, x, u, ξ) =
p−2∑
j=1

Rj,p−1(t, x, u, ξ) (39)

Rp−2,p−1 = −i

⎛
⎝ψ1(ξ)DxAp−1 +

∑
2≤α+β≤3

ψα,β(ξ)∂α
ξ Dβ

x Ap−1

⎞
⎠

Rj,p−1 = −i
∑

2(p−1−j)≤α+β≤2(p−1−j)+1

ψα,β(ξ)∂α
ξ Dβ

x Ap−1
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for every 1 ≤ j ≤ p − 3, where ψ1 and ψα,β are real valued symbols, ψ1(ξ) ∈
SG−1,0 and ψα,β(ξ) ∈ SG(α−β)/2,0. We have so

iP1 = ∂t + iap(t)D
p
x + Qp−1(t, x, u,Dx)

+ iRp−1(t, x, u,Dx) +
p−2∑
j=1

ia′′
j (t, x, u,Dx) + s0(t, x, u,Dx).

We notice that, by (39), Rp−1 adds to the terms a′′
j some new terms; whenever

β = 0, these new terms have at least decay 〈x〉−1, while for β = 0 we see that

Re
(−iψα,0(ξ) ∂α

ξ Ap−1(t, x, u, ξ)
)

= ψα,0(ξ)∂α
ξ ImAp−1(t, x, u, ξ) ∈ SGp−1−α/2,0 ⊂ SGp−2,0

can be added to Re a′′
j , while

Im
(−iψα,0(ξ) ∂α

ξ Ap−1(t, x, u, ξ)
)

= −ψα,0(ξ)∂α
ξ ReAp−1(t, x, u, ξ) ∈ SGp−1−α/2,−1 ⊂ SGp−2,− p−2

p−1

can be added to Im a′′
j . Again, by (39), we see that the largest number of x-

derivatives of u appears when α = 0, β = 2(p − 1 − j) + 1 and we have

|ψα,β(ξ)∂α
ξ Dβ

x Ap−1(t, x, u, ξ)| ≤ C′γ (u)
(
1 + ‖u‖β

β+1,β

)
〈ξ〉p−1− α+β

2 〈x〉−β

≤ C′γ (u)
(
1 + ‖u‖2(p−j)−1

2(p−j),2(p−j)−1

)
〈ξ〉j 〈x〉−1

By these considerations, we understand that after the application of Theorem 2, we
can write

iP1 = ∂t + iap(t)D
p
x + Qp−1(t, x, u,Dx ) +

p−2∑
j=1

iaj,1(t, x, u,Dx) + s1(t, x, u,D) (40)

for a new operator s1 with symbol in S0, where aj,1 are given by a′′
j plus other terms

with the same order and decay, depending on 2(p − j) derivatives of u, this means
that aj,1 depend on max{p−j −1, 2(p−j)} = 2(p−j) derivatives of u. Summing
up, for every β ≤ p − 1 (we need that 2(p − j) + β ≤ 2(p − 1) + β ≤ 3p − 1) we
have

|∂α
ξ ∂β

xRe aj,1(t, x, u(t, x), ξ)| (41)

≤ CMp−1γ (u)(1 + ‖u‖2(p−j)−1+β

2(p−j)+β,2(p−j)−1+β)〈x〉−β〈ξ〉j−α,
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|∂α
ξ ∂β

x Im aj,1(t, x, u(t, x), ξ)| (42)

≤ CMp−1γ (u)(1 + ‖u‖2(p−j)−1+β

2(p−j)+β,2(p−j)−1+β)〈x〉− j
p−1−β 〈ξ〉j−α.

Now, let us consider, for h ≥ max{h1, h2} (see Proposition 4), the operator
(eλp−2)−1iP1e

λp−2 , with λp−2 in Definition 2 satisfying Proposition 3. We observe
preliminarly that, since e±λp−2 ∈ SG0,0(R2) ⊂ S0(R2), then for the composition
(eλp−2)−1s1(t, x, u,D)eλp−2 we can use the symbolic calculus in the Hörmander
class and obtain that (eλp−2)−1s1(t, x, u,D)eλp−2 is again an operator with symbol

in S0(R2). Moreover, since
(
eλp−2

)−1 = e−λp−2(I + rp−2) and the principal part

of rp−2 has symbol rp−2,−2(x, ξ) = ∂ξλp−2(x, ξ)Dxλp−2(x, ξ) in SG−2,− p−2
p−1 , by

Remark 5 we obtain

(eλp−2)−1iP1e
λp−2 = ∂t + op

(
iaprp−2,−2

)

+e−λp−2

⎛
⎝iap(t)D

p
x + Qp−1(t, x, u,D) +

p−2∑
j=0

ia′
j,1(t, x, u, Dx) + s1(t, x, u, D)

⎞
⎠ eλp−2

with a′
p−2,1(t, x, u,Dx) = ap−2,1(t, x, u,Dx) and, for 0 ≤ j ≤ p − 3,

a′
j,1(t, x, u,Dx) is given by aj,1(t, x, u,Dx) plus some new terms with the same

order and decay as aj,1 and depending on max{γp−1 + p − 1 − 2 − j, . . . , γp−� +
p − � − 2 − j, . . . γj+2} = γj+2 = 2(p − j − 2), because we have γp−� =
2(p− (p − �)) = 2� for 1 ≤ � ≤ p −1. The new terms contain a smaller number of
derivatives with respect to (41) and (42). Thus for every 1 ≤ j ≤ p−2 we have that
a′
j,1 still satisfy (41) and (42) for a constant depending also on Mp−2; notice that the

dependence on Mp−2 is only at levels 1 ≤ j ≤ p − 3. The asymptotic expansion
gives

iP2(t, x, u,D) := (eλp−2 )−1iP1e
λp−2

= ∂t + iap(t)D
p
x + Qp−1(t, x, u,D) (43)

+ iap−2,1(t, x, u,Dx) + op
(
ipapξp−1Dxλp−2

)

+
p−1∑
β=2

1

β!op
(
∂

β
ξ (iapξpe−λp−2 )Dβ

x λp−2

)

+
p−3∑
j=1

ia′
j,1(t, x, u,Dx) +

p−2∑
α=1

1

α!op
(
e−λp−2 ∂α

ξ Qp−1D
α
x eλp−2

)

+
p−2∑
β=1

p−2−β∑
α=0

∑
β1+β2=β

1

α!β1!β2!op
(
∂

β
ξ e−λp−2Dβ1

x ∂α
ξ Qp−1D

α+β2
x eλp−2

)
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+
p−2∑
j=1

j−1∑
α=1

1

α!op
(
e−λp−2 ∂α

ξ ia′
j,1D

α
x eλp−2

)

+
p−2∑
j=1

j−1∑
β=1

j−1−β∑
α=0

∑
β1+β2=β

1

α!β1!β2!op
(
∂

β
ξ e−λp−2Dβ1

x ∂α
ξ ia′

j,1D
α+β2
x eλp−2

)

+ s′
1(t, x, u,D)

with a new term s′
1 ∈ S0. Let us now look at (43); by (41), (42), and using the

estimate (28) wih k = 2, we find at each level 1 ≤ k ≤ p − 3, the original terms
ak,1(t, x, u,D) plus terms which decay with respect to x at least like 〈x〉−1, and
possibly depending only on Mp−1 and Mp−2; the largest number of derivatives with
respect to u appears in

|∂β
ξ e−λp−2Dβ1

x ∂α
ξ ia′

j,1D
α+β2
x eλp−2|

≤ C′
Mp−1,Mp−2

γ (u)(1 + ‖u‖2(p−j)+β−1
2(p−j)+β,2(p−j)+β−1)〈ξ〉j−α−β 〈x〉−α−β ;

at the level k = j − α − β the largest number of x-derivatives of u appears when
α = 0 and β = j − k and it is given by 2(p − j) + β = 2(p − k − β) + β =
2(p − k) − β ≤ 2(p − k) − 1. Thus, similarly as for (38), we get

iP2 = ∂t + iap(t)D
p
x + Qp−1(t, x, u,D) + iap−2,1(t, x, u,Dx) (44)

+ op
(
ipapξp−1Dxλp−2

)
+

p−3∑
j=1

ia′′
j,1(t, x, u,Dx) + s′

1(t, x, u,D)

where a′′
j,1 are given by aj plus other terms of the same type, still satisfying (41),

(42) but with a constant CMp−1,Mp−2 depending on both Mp−1 and Mp−2.
Now, let us focus on the term Ap−2 of order p − 2 with respect to ξ in (44). By

(42), (24), the choice of ω in (25), and (4) we get for every |ξ | ≥ 2h:

ReAp−2(t, x, u, ξ) := Re
(
iap−2,1(t, x, u, ξ) + pap(t)ξp−1∂xλp−2(x, ξ)

)
= − Im ap−2,1(t, x, u, ξ) + pap(t)ξp−1∂xλp−2(x, ξ)

≥ −CMp−1γ (u)
(
1 + ‖u‖34,3

) 〈ξ〉p−2
h

〈x〉
p−2
p−1

+ Mp−2pap(t)|ξ |p−1〈x〉−
p−2
p−1 〈ξ〉−1

h
ψ

(
〈x〉

〈ξ〉p−1
h

)

≥ 〈ξ〉p−2
h

〈x〉
p−2
p−1

ψ

(
〈x〉

〈ξ〉p−1
h

)(
−CMp−1γ (u)

(
1 + ‖u‖34,3

)
+ Mp−2pCp

(
2√
5

)p−1
)



22 A. Ascanelli and M. Cappiello

− CMp−1γ (u)
(
1 + ‖u‖34,3

) 〈ξ〉p−2
h

〈x〉
p−2
p−1

(
1 − ψ

(
〈x〉

〈ξ〉p−1
h

))

≥ −2CMp−1γ (u)
(
1 + ‖u‖34,3

)

if we choose Mp−2 ≥
CMp−1γ (u)

(
1 + ‖u‖34,3

)√
5
p−1

2p−1pCp

, and using again

〈x〉/〈ξ〉p−1
h ≥ 1/2 on the support of 1 − ψ(〈x〉/〈ξ〉p−1

h ) and |ξ |p ≥
(2/

√
5)p−1〈ξ〉p−1

h for |ξ | ≥ 2h. We can so apply the sharp Gårding theorem

to the symbol Ap−2(t, x, u, ξ) + 2CMp−1γ (u)
(
1 + ‖u‖34,3

)
≥ 0 and we obtain

that there exist pseudodifferential operators Qp−2(t, x, u,D), Rp−2(t, x, u,D),
R0,p−2(t, x, u,D) with symbols

Qp−2(t, x, u, ξ ) ∈ SGp−2,0, Rp−2(t, x, u, ξ ) ∈ SGp−3,0, R0,p−2(t, x, u, ξ ) ∈ S0

such that

Ap−2(t, x, u,D) = Qp−2(t, x, u,D) + iRp−2(t, x, u,D) + R0,p−2(t, x, uD)

with

Re〈Qp−2(t, x, u,D)h(t, x), h(t, x)〉 ≥ 0 ∀h ∈ S (R), (t, x) ∈ [0, T ] × R

and

Rp−2 =
p−3∑
j=1

Rj,p−2 (45)

where

Rp−3,p−2 = −i

⎛
⎝ψ1(ξ)DxAp−2 +

∑
2≤α+β≤3

ψα,β(ξ)∂α
ξ Dβ

x Ap−2

⎞
⎠

and

Rj,p−2 = −i
∑

2(p−2−j)≤α+β≤2(p−2−j)+1

ψα,β(ξ)∂α
ξ Dβ

x Ap−2,

for every 1 ≤ j ≤ p − 3. We have so

iP2 = ∂t + iap(t,D) + Qp−1(t, x, u,Dx) + Qp−2(t, x, u,Dx)

+ iRp−2(t, x, u,Dx) +
p−3∑
j=1

ia′′
j,1(t, x, u,Dx) + s′′

1 (t, x, u,Dx).



Semilinear p-Evolution Equations in Weighted Sobolev Spaces 23

Again, each Rj,p−2 adds to a′′
j,1 new terms with the same order and decay as a′′

j,1
(notice that the second application of Theorem 2 is needed only in the case p ≥ 3
and in this case we have 5 ≤ p + 2, so the term ψ1(ξ)DxAp−2(t, x, u, ξ) satisfies
(41) and (42) with j = p−3 and a constant depending onMp−1,Mp−2. The largest
number of x-derivatives of u appears when α = 0, β = 2(p − 2 − j) + 1 and we
have

|ψα,β(ξ)∂α
ξ Dβ

x Ap−2(t, x, u, ξ)| ≤ CMp−1γ (u)
(
1 + ‖u‖3+β

4+β,3+β

)
〈ξ〉p−2− α+β

2 〈x〉−β

≤ CMp−1γ (u)
(
1 + ‖u‖2(p−j)

2(p−j)+1,2(p−j)

)
〈ξ〉j 〈x〉−1.

This means that, after the second application of the sharp Gårding theorem, we can
write

iP2 = ∂t + iap(t,D) + Qp−1(t, x, u,Dx) + Qp−2(t, x, u,Dx) (46)

+
p−3∑
j=1

iaj,2(t, x, u,Dx) + s2(t, x, u,D)

for a new operator s2 with symbol in S0,where aj,2 are given by ajD
j
x plus other

terms with the same order and decay depending on 2(p − j) + 1 x-derivatives of u;
thus aj,2 depends on max{2(p−j)+1, 2(p−j)} = 2(p−j)+1 x-derivatives of u.
Summing up, for every 1 ≤ j ≤ p−3 and for β ≤ p (we need that 2(p−j)+1+β ≤
2p − 1 + β ≤ 3p − 1) we have

|∂α
ξ ∂β

xRe aj,2(t, x, u(t, x), ξ)| (47)

≤ CMp−1,Mp−2γ (u)(1 + ‖u‖2(p−j)+β

2(p−j)+1+β,2(p−j)+β)〈x〉−β 〈ξ〉j−α,

|∂α
ξ ∂β

x Im aj,2(t, x, u(t, x), ξ)| (48)

≤ CMp−1,Mp−2γ (u)(1 + ‖u‖2(p−j)+β

2(p−j)+1+β,2(p−j)+β)〈x〉− j
p−1−β 〈ξ〉j−α.

We can proceed performing the next conjugations which follow the same argument
as the second one. Arguing in this way, after � = p − 3 applications of Theorem 2
we finally come for h ≥ max{h1, . . . , hp−3} to

iPp−3 = (eλ3)−1 . . . (eλp−1)−1(iP )(eλp−1 ) . . . (eλ3) (49)

= ∂t + iap(t)D
p
x + Qp−1(t, x, u, Dx) + . . . + Q3(t, x, u, Dx) (50)

+ ia2,p−3(t, x, u,Dx) + ia1,p−3(t, x, u,Dx) + sp−3(t, x, u,D)
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where, for every 1 ≤ j ≤ p − 3,

Re〈Qp−j (t, x, u,D)h(t, x), h(t, x)〉 ≥ 0 ∀h ∈ S (R), (t, x) ∈ [0, T ] × R

and moreover for every β ≤ 7

|∂α
ξ ∂β

xRe a2,p−3(t, x, u, ξ)| (51)

≤ CMp−1,...,M3γ (u)(1 + ‖u‖3p−9+β
3p−8+β,3p−9+β)〈x〉−β 〈ξ〉2−α,

|∂α
ξ ∂β

x Im a2,p−3(t, x, u, ξ)| (52)

≤ CMp−1,...,M3γ (u)(1 + ‖u‖3p−9+β

3p−8+β,3p−9+β)〈x〉− 2
p−1−β〈ξ〉2−α,

and for β ≤ 5

|∂α
ξ ∂β

xRe a1,p−3(t, x, u, ξ)| (53)

≤ CMp−1,...,M3γ (u)(1 + ‖u‖3p−7+β
3p−6+β,3p−7+β)〈x〉−β〈ξ〉1−α,

|∂α
ξ ∂β

x Im a1,p−3(t, x, u, ξ)| (54)

≤ CMp−1,...,M3γ (u)(1 + ‖u‖3p−7+β

3p−6+β,3p−7+β)〈x〉− 1
p−1−β〈ξ〉1−α.

Now, we define, for h ≥ max{h1, . . . , hp−2}, iPp−2(t, x, u,D) :=
(eλ2)−1iPp−3e

λ2 and we get

iPp−2 = ∂t + iap(t)D
p
x + Qp−1(t, x, u,Dx) + . . . + Q3(t, x, u,Dx) (55)

+ ia2,p−3(t, x, u,Dx) + op
(
ipapξp−1Dxλ2

)
+ ia′′

1,p−3(t, x, u,Dx) + s′
p−3(t, x, u,D)

where a′′
1,p−3 are given by aj plus other terms of the same type, still satisfying (53)

and (54) but with a constant CMp−1,...,M2 instead of CMp−1,...,M3 , and s′
p−3 is still of

order 0.
Now, as usual, by choosing M2 ≥ CMp−1,...,M3γ (u)

(
1 + ‖u‖3p−9

3p−8,3p−9

)
√
5
p−1

2p−1pCp
we get

ReA2 : = Re
(
ia2,p−3(t, x, u,Dx) + op

(
papξp−1∂xλ2

))
≥ 2CMp−1,...,M3γ (u)

(
1 + ‖u‖3p−9

3p−8,3p−9

)
.
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This time, since we are dealing with second order operators, we can apply the
Fefferman-Phong inequality (see Theorem 3) to

ReA2 + 2CMp−1,...,M3γ (u)
(
1 + ‖u‖3p−9

3p−8,3p−9

)
and obtain

Re〈ReA2h, h〉 ≥ −
(
c + 2CMp−1,...,M3γ (u)

(
1 + ‖u‖3p−9

3p−8,3p−9

))
‖h‖2, ∀h ∈ S (R)

for a positive constant c = c(u) depending on the derivatives ∂α
ξ ∂

β
x with |α|+|β| ≤ 7

of the symbol ReA2(t, x, u, ξ)+2CMp−1,...,M3γ (u)
(
1 + ‖u‖3p−9

3p−8,3p−9

)
. Since γ is

of class C7, we can now find a constant Cγ > 0 (depending also on Mp−1, . . . ,M3)
such that

Re〈ReA2h, h〉 ≥ −Cγ

(
1 + ‖u‖3p−9+7

3p−8+7,3p−9+7

)
‖h‖2

= −Cγ

(
1 + ‖u‖3p−2

3p−1,3p−2

)
‖h‖2, ∀h ∈ S (R).

The advantage of the use of Fefferman-Phong inequality instead of Theorem 2 is
that we avoid the remainder of that theorem, i.e. we save some derivatives of the
fixed function u.

It now remains to treat the terms i ImA2 = i Re a2,p−3 and ia′′
1,p−3 in (55). We

split i Re a2,p−3 into its Hermitian and anti-Hermitian part:

i ImA2 = i Re a2,p−3 + (i Re a2,p−3)
∗

2
+ i Re a2,p−3 − (i Re a2,p−3)

∗

2
=: H1+H2,

and we have that

Re〈H2h, h〉 = 0,

while

H1 = −1

2
∂ξ ∂x Re a2,p−3 (mod. SG0,0)

can be put together with ia′′
1,p−3 since by (51) it satisfies (53). We get so

iPp−2 = ∂t + iap(t)D
p
x + Qp−1(t, x, u,Dx) + . . . + Q3(t, x, u,Dx)

+ ReA2(t, x, u,Dx) + H2(t, x, u,Dx)

+ ia1,p−2(t, x, u,Dx) + sp−2(t, x, u,D)
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with ia1,p−2 still satisfying (53), (54) and sp−2 ∈ S0. Finally, to treat the terms
of order 1 with respect to ξ , we perform for h ≥ max{h1, . . . , hp−1} the last
conjugation:

iP� : = (eλ1)−1iPp−2e
λ1 (56)

= ∂t + iap(t)D
p
x + Qp−1(t, x, u,Dx) + . . . + Q3(t, x, u,Dx)

+ ReA2(t, x, u,Dx) + H2(t, x, u,Dx)

+ ia1,p−2(t, x, u,Dx) + op
(
ipapξp−1Dxλ1

)
+ s′

p−2(t, x, u,D)

with a new term s′
p−2 ∈ S0. Notice that the conjugation e−λ1 (ReA2 + H2) eλ1 gives

ReA2 + H2 plus a remainder of order (0, 0) whose principal part is given by

∂ξ (ReA2 + H2)∂xλ1 − ∂ξλ1Dx(ReA2 + H2) − ∂ξλ1(ReA2 + H2)Dxλ1 ∈ SG0,0.

As usual, by choosing M1 ≥ CMp−1,...,M2γ (u)
(
1 + ‖u‖3p−7

3p−6,3p−7

)√
5
p−1

/(
2p−1pCp

)
we get

ReA1 : = Re
(
ia1,p−2(t, x, u,Dx) + op

(
papξp−1∂xλ1

))
≥ 0 − 2CMp−1,...,M2γ (u)

(
1 + ‖u‖3p−7

3p−6,3p−7

)
.

To the symbolA1(t, x, u, ξ) we can apply the sharp Gårding inequality (16) and we
obtain

Re〈A1h, h〉 ≥ −C′
γ (1 + ‖u‖3p−7

3p−6,3p−7)‖h‖ ∀h ∈ S (R).

At this point we are finally ready to prove an energy estimate in L2 for the Cauchy
problem. We compute

d

dt
‖w(t)‖2 = 2Re〈∂tw,w〉 = 2Re〈iP�w,w〉 − 2Re〈iapw,w〉 −

p−1∑
k=3

2Re〈Qkw,w〉

− 2Re〈ReA2w,w〉 − 2Re〈H2w,w〉 − 2Re〈A1w,w〉 − 2Re〈s ′
p−2w,w〉

≤ C′
γ (1 + ‖u‖3p−2

3p−1,3p−2)
(
‖P�w‖2 + ‖w‖2

)
∀w ∈ S (R).

By Gronwall’s Lemma we obtain

‖w‖2 ≤ Ce
(1+‖u‖3p−2

3p−1,3p−2)t

(
‖w(0, ·)‖2 +

∫ t

0
‖P�w(τ, ·)‖2dτ

)

and, by standard arguments, the energy estimate (31). ��
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Remark 7 Notice that with respect to [1], by a different proof we can relax from
4p−3 to 3p−1 the number of derivatives of u needed to perform the computations
in the linearized problem.

4 The Semilinear Problem

We now apply the energy estimates obtained in the previous section to prove the well
posedness of the semilinear Cauchy problem (1). Fixed s2 ≥ 3p − 2 and T > 0,
we consider the space X

s2
T := C1([0, T ],H∞,s2(R)) and the map J : X

s2
T → X

s2
T

defined by

J (u) := u(t, x) − u0(x) + i

∫ t

0
ap(t)D

p
x u(s, x) ds

+i

p−1∑
j=0

∫ t

0
aj (s, x, u(s, x))D

j
xu(s, x) ds − i

∫ t

0
f (s, x) ds.

It is well known that the existence of a unique solution of (1) in X
s2
T ∗ for some T ∗ ∈

(0, T ] is equivalent to the existence of a unique solution inX
s2
T ∗ of the equation Ju =

0, cf. [1, 12]. We shall approach the latter problem via the Nash-Moser inversion
theorem.As a direct consequence of Lemma 1,Xs2

T is a tame Fréchet space endowed
with the family of seminorms

|g|n,s2,T = sup
[0,T ]

(|g(t, ·)|n,s2 + |Dtg(t, ·)|n,s2), n = 0, 1, 2, . . .

The map J is smooth tame since it is defined in terms of sums and composition of
integration and linear and nonlinear partial differential operators. In order to apply
Nash-Moser theorem it is sufficient to prove that for every fixed u, h ∈ X

s2
T , the

equation DJ(u)v = h has a unique solution v = S(u, h) ∈ X
s2
T and that the map

S : X
s2
T × X

s2
T → X

s2
T , (u, h) → v = S(u, h) (57)

is smooth tame.

Lemma 3 For every u, h ∈ X
s2
T , the equation DJ(u)v = h admits a unique

solution v ∈ X
s2
T satisfying for every n ∈ N the following estimate:

|v(t, ·)|2n,s2
≤ Cn(u)

(
|h(0, ·)|2n+r,s2

+
∫ t

0
|Dth(τ, ·)|2n+r,s2

dτ

)
, t ∈ [0, T ]

(58)
for every r ≥ 2δ(p − 1) with Cn(u) = Cn+2δ(p−1),γ exp(1 + ‖u‖3p−2

3p−1,3p−2).
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Proof The proof follows the same argument as the proof of [1, Lemma 3.2], so we
just sketch it. A direct computation of the Fréchet derivative of J gives

DJ(u)v := lim
ε→0

J (u + εv) − J (u)

ε

= v + i

∫ t

0
ap(s)D

p
x v(s) ds + i

p−1∑
j=0

∫ t

0
ãj (s, x, u)D

j
xv(s) ds,

where

ãj (s, x, u) =

⎧⎪⎨
⎪⎩

aj (s, x, u) 1 ≤ j ≤ p − 1

a0(s, x, u) +
p−1∑
h=0

∂wah(s, x, u)Dh
x u, j = 0.

Hence v is a solution of the equation DJ(u)v = h if and only if it is a solution of
the equation Jh0,u,Dth(v) = 0, where h0(x) := h(0, x) and for every u, u0, f ∈ X

s2
T

the map Ju0,u,f : X
s2
T → X

s2
T is defined by

Ju0,u,f (v) := v(t, x) − u0(x) + i

∫ t

0
ap(s)Dxv(s, x) ds

+i

p−1∑
j=0

∫ t

0
ãj (s, x, u(s, x))D

j
xv(s, x) ds − i

∫ t

0
f (s, x) ds.

On the other hand, v solves Jh0,u,Dth(v) = 0 if and only if it is a solution of the
linear Cauchy problem

{
P̃u(D)v(t, x) = Dth(t, x)

v(0, x) = h0(x)
, (59)

where

P̃u(D) = Dt + ap(t)D
p
x +

p−1∑
j=0

ãj (t, x, u)D
j
x .

Notice that ãj (t, x, u) satisfy the same conditions as aj (t, x, u). Hence, we can
apply Theorem 5 to (59), choosing η = 1 and ε = 0. It follows that there exists
v ∈ X

s2
T solution of (59) satisfying the estimate (58). This concludes the proof. ��

Lemma 4 The map S defined in (57) is smooth tame.

Proof We observe that, fixed (u0, h0) ∈ X
s2
T × X

s2
T , the constant Cn(u) in the

energy estimate (58) is bounded if u belongs to a bounded neighborhood of (u0, h0).
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Evidently, from (58) we have:

|v(t, ·)|2n,s2
≤ C′

n|h|2n+r,s2,T
t ∈ [0, T ]

for some C′
n > 0. Similarly, from the equation P̃u(D)v = Dth we get

|Dtv(t, ·)|n,s2 ≤ |ap(t)Dpv(t, ·)|n,s2 +
p−1∑
j=0

|ãj (t, ·, u)D
j
xv(t, ·)|n,s2 + |Dth(t, ·)|n,s2

≤ C(|v(t, ·)|n+p,s2 + |h|n,s2,T )

for some C > 0. Hence

|S(u, h)|n,s2,T = sup
t∈[0,T ]

(|v|n,s2 + |Dtv(t, ·)|n,s2) ≤ Cn|h|n+r ′,s2,T ≤ Cn|(u, h)|n+r ′,s2,T

for some Cn > 0 r ′ ≥ 2δ(p − 1) + p. Then S is tame.
We now prove that DS is also a tame map. For (u, h), (u1, h1) ∈ X

s2
T × X

s2
T we

have

DS(u, h)(u1, h1) = lim
ε→0

S(u + εu1, h + εh1) − S(u, h)

ε
= lim

ε→0

vε − v

ε
,

where v is a solution of (59) and vε is the solution of{
P̃u+εu1(D)vε = Dt(h + εh1)

vε(0, x) = h0(x) + εh1(0, x)
.

A direct computation shows that the functionwε = vε−v
ε

solves the Cauchy problem

{
P̃u+εu1wε = fε

wε(0, x) = h1(0, x)
,

where

fε = Dth1 −
p−1∑
j=0

ãj (t, x, u + εu1) − ãj (t, x, u)

ε
D

j
xv.

We have the following: to prove thatDS is tame it is sufficient to show thatwε tends
to some w1 in X

s2
T for ε → 0. Indeed, this would imply that w1 solves the Cauchy

problem

{
P̃u(D)w1 = f1

w1(0, x) = h1(0, x)
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where

f1 := lim
ε→0

fε = Dth1 −
p−1∑
j=0

∂wãj (t, x, u)u1D
j
xv

and so that w1 will satisfy an energy estimate of the form

|w1(t, ·)|2n,s2
≤ Cn(u)

(
|h1(0, ·)|2n+r,s2

+
∫ t

0
|f1(τ, ·)|2n+r,s2

dτ

)
, (60)

which would give, by the expression of f1,

|w1(t, ·)|n,s2 ≤ C′
n(u)(|h1|n+r ′,s2,T + |h|n+r ′,s2,T ), r ′ ≥ 2r + p − 1

for (u, h) in a neighborhood of (u0, h0) and (u1, h1) in a neighborhood of some
fixed (ũ1, h̃1) ∈ X

s2
T × X

s2
T . Moreover, Dtw1 would satisfy a similar estimate, and

so w1 is tame.
Let us so prove that wε converges in X

s2
T for ε → 0. Let ε1 > 0 and ε2 > 0 and

consider the corresponding functionswε1 andwε2 which solve the Cauchy problems

{
P̃u+εj u1(D)wεj = fεj

wεj (0, x) = h1(0, x)
, j = 1, 2.

Then, it is immediate to see that wε1 − wε2 is a solution of

⎧⎪⎪⎨
⎪⎪⎩

P̃u+ε1u1 (D)(wε1 − wε2) = fε1 − fε2 +
p−1∑
j=0

(ãj (t, x, u + ε2u1) − ãj (t, x, u + ε1u1))D
j
xwε2

(wε1 − wε2 )(0, x) = 0.

Then by the estimate (60) and the mean value theorem, we get

|wε1 − wε2 |n,s2 ≤ Cn(u + ε1u1)

(
sup

t∈[0,T ]
|fε1 − fε2 |n+r,s2

+
p−1∑
j=0

sup
t∈[0,T ]

|∂wãj (t, x, u1,2)(ε1 − ε2)u1D
j
xwε1|n+r,s2

⎞
⎠

for some constant Cn(u + ε1u1) > 0 and for some u1,2 between u + ε1u1 and
u + ε2u1. Moreover, since Hn+r,s2 is an algebra, then

|∂waj (t, x, u1,2)(ε1 − ε2) u1D
j
xwε2 |n+r,s2

≤ |∂waj (t, x, u1,2)|n+r,s2|ε1 − ε2||u1|n+r,s2 |wε2|n+r+j,s2 .
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Then, |wε1 − wε2 |n,s2 tends to 0 when ε1 → ε2 → 0 if (u, h) is in a neighoborhood
of (u0, h0) and (u1, h1) is in a neighborhood of some fixed (ũ1, h̃1) ∈ X

s2
T × X

s2
T .

This shows that there exists a Cauchy sequence εj tending to 0 such that the
corresponding function wεj converges in X

s2
T and this implies that DS is tame.

Using the previous results we can prove by induction on m that

DmS(u, h)(u1, h1) · · · (um, hm) = wm

is a solution of the Cauchy problem

{
P̃u(D)wm = f m

wm(0, x) = 0

with

f m := −
p−1∑
j=0

∂wãj (t, x, u)umD
j
xwm−1 −

p−1∑
j=0

∂2wãj (t, x, u)um−1umD
j
xwm−2

− · · · −
p−1∑
j=0

∂m
w ãj (t, x, u)u1 · · ·um−1umD

j
xw0,

w0 := v, and satisfies, in a neighborhood of (u, h), (u1, h1), . . . (um, hm) the
estimate

|wm|n,s2,T ≤ Cn

m−1∑
j=0

|hj |n+r(m),s2,T

for some Cn > 0 and some r(m) ∈ N, where h0 := h. The proof follows readily the
argument in the proof of Lemma 3.3 in [1]. We leave the details to the reader. ��
Proof of Theorem 1 We prove now the existence of a solution of the semilinear
Cauchy problem (1) that is of the equation Ju = 0. We recall that Ju = 0 if
and only if

u(t, x) = u0(x) − i

∫ t

0
ap(s)D

p
x u(s, x) ds (61)

− i

p−1∑
j=0

∫ t

0
aj (s, x, u(s, x))D

j
xu(s, x) ds + i

∫ t

0
f (s, x) ds.
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By a linear approximation in t we get u(t, x) = w(t, x) + o(t) for t → 0 where

w(t, x) = u0(x) − it

⎛
⎝ap(0)Dp

x u0(x) +
p−1∑
j=0

aj (0, x, u0(x))D
j
xu0(x) − f (0, x)

⎞
⎠ .

We also observe that, by the definition of J and w, we have:

∂t (Jw(t, x)) = ∂tw + iap(t)D
p
x w + i

p−1∑
j=0

aj (t, x, w)D
j
xw − if (t, x)

= i(ap(t) − ap(0))Dp
x u0 + i

p−1∑
j=0

(
aj (t, x, w) − aj (0, x, u0)

)
D

j
xu0

+tap(t)D
p
x

⎡
⎣ap(0)Dp

x u0 +
p−1∑
j=0

aj (0, x, u0)D
j
xu0 − f (0, x)

⎤
⎦

+
p−1∑
j=0

taj (t, x, w)D
j
x

⎡
⎣ap(0)Dp

x u0 +
p−1∑
k=0

ak(0, x, u0)D
k
xu0 − f (0, x)

⎤
⎦

+i(f (0, x) − f (t, x)).

From this it follows that

|∂tJw(t, ·)|n,s2 ≤ sup
t∈[0,T ]

|ap(t) − ap(0)| · |u0|n+p,s2

+
p−1∑
j=0

|[aj (t, x,w) − aj (0, x, u0)]Dj
xu0|n,s2 + |f (0, x) − f (t, x)|n,s2

+ t sup
t∈[0,T ]

|ap(t)| ·
∣∣∣∣∣∣ap(0)Dp

x u0 +
p−1∑
k=0

ak(0, x, u0)D
k
xu0 − f (0, x)

∣∣∣∣∣∣
n+p,s2

+ t

p−1∑
j=0

∣∣∣∣∣∣aj (t, x,w)D
j
x

⎡
⎣ap(0)Dp

x u0 +
p−1∑
k=0

ak(0, x, u0)D
k
xu0 − f (0, x)

⎤
⎦
∣∣∣∣∣∣
n,s2

.

(62)

Taking w in a sufficiently small neighborhood of u0 and applying the mean value
theorem to the right-hand side of (62) we obtain

|∂tJw(t, ·)|n,s2 ≤ Ct (63)



Semilinear p-Evolution Equations in Weighted Sobolev Spaces 33

for a suitable constantC = C(n, s2, ap, . . . , a0, u0, f ). Now, fixed ε > 0 we define

φε(t, x) =
∫ t

0
ρ
( s

ε

)
(∂tJw)(s, x) ds,

where ρ ∈ C∞(R) such that 0 ≤ ρ ≤ 1 and ρ(s) = 0 for |s| ≤ 1 and ρ(s) = 1 for
|s| ≥ 2. Notice that φε = 0 for 0 ≤ t ≤ ε. Let U and V be neighborhoods of w and
Jw respectively such that J : U → V is a bijection. We have that

|Jw − φε|n,s2 =
∣∣∣∣
∫ t

0

(
1 − ρ

( s

ε

))
(∂tJw)(s, ·) ds

∣∣∣∣
n,s2

≤
∫ 2ε

0

∣∣∣(1 − ρ
( s

ε

))
(∂tJw)(s, ·)

∣∣∣
n,s2

ds

≤ C

∫ 2ε

0
s ds ≤ 2Cε2,

where C is the same constant appearing in (63). Similarly we obtain that

|∂t (Jw − φε)|n,s2 ≤ 2Cε.

Hence, taking 0 < ε < 1 we conclude that

|Jw − φε|n,s2,T ≤ 2Cε.

If we choose ε sufficiently small, we have that φε ∈ V . Then there exists u ∈ U

such that Ju = φε . In particular we have Ju = 0 for 0 ≤ t ≤ ε, that is u is a
solution in X

s2
ε of the Cauchy problem. The uniqueness of the solution comes from

standard arguments, cf. [1]. ��
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