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for the first order p-evolution operator

p—1 )
P,(D)u = P(t, x,u(t,x), Ds, Dy)u == Dsu + ap(t)Dfu + Z aj(t, x, wDiu (2)
j=0

where D = }a,p €N,p>2a, € C(I0,T],R),ajarefor0 < j < p—1
continuous in time functions with values in C*° (R x C), and moreover the functions
x — aj(t,x,w) are in B>°(R) (i.e. uniformly bounded together with all their
derivatives).

For p = 2 our analysis will concern semilinear Schrodinger equations of the
form

Dyu + D)%u +ai(t,x,u)Dyu + ap(t, x,u) = f(t, x).

For p = 3, the most important model is represented by the Korteweg-de Vries
equation describing the propagation of monodimensional waves of small amplitudes
in waters of constant depth:

3 1 2 1
oru = 2\/i8)C <2u2+ 3otu + 3083u>,

that can be written in the form (1) as

1 3
Dyu + 2\/ioD;u —\/i <a~|— 2u> Dyu =0.

Here u represents the wave elevation with respect to the water’s surface, g is the
gravity constant, i the (constant) level of water, « a fixed small constant and o0 =
h; — i;’ , with T the surface tension, p the density of the fluid. Assuming the level of
water & depending on x, we are led to an operator with space-depending coefficients
that can be applied to study the evolution of the wave when the depth of the seabed
is variable, cf. [1].

Since a is real valued, the principal symbol (in the sense of Petrowski) of P,
given by T + a,(¢)&7, has the real characteristic root T = —a,(¢)é?; by the Lax-
Mizohata theorem, real characteristics are necessary for the existence of a unique
solution in Sobolev spaces of the Cauchy problem (1) in a neighborhood of # = 0,
for any p > 1. Moreover, whenever the lower order coefficients a;(f, x,w) € C
for 0 < j < p — 1, decay conditions as |x| — oo are necessary on the a; for
well-posedness in Sobolev spaces, see [6, 15] respectively for p = 2, p arbitrary.

Well-posedness for the Cauchy problem (1), (2) in H*(R) = Ny H*(R), where
H*(R) is the usual Sobolev space on L2, has been proved in the paper [1] under
suitable decay conditions at infinity for the aj, 0 < j < p — 1, relying on the
linear results of [5]; in this paper, despite very precise decay assumptions on the
coefficients, the authors have no information at all about the behavior at infinity of
the solution.
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In the last years, we started to study linear p-evolution equations in weighted
Sobolev spaces, see [3, 4] and to state a relation between the behavior at infinity of
the data and the one of the solution. Here we are interested to extend part of these
results to the semilinear case, that is to give decay conditions on the coefficients of
P, (D) that are sufficient for the local in time well-posedness of the Cauchy problem
(1) in suitable weighted Sobolev spaces.

Namely, fixed s, s> € R, we define H5*2(R) as the space of all u € .7'(R)
such that [lulls, 5, := [[{x)*2(D)*' ull;2 < oo where we denote by (D)*! the Fourier
multiplier with symbol (£)*! := (1 + £2)51/2_ This space is a Hilbert space endowed
with the inner product

(U, V)55, = ((x)*(D)'u, (x)**(D)""v) 2

which induces the norm || ||, s,. We have H 0.0(R) = L%(R) and we shall denote the
L? norm simply by | - ||. An equivalent norm on H*!-2(R) is given by Helllsy,s, =
[{D)*' (x)*2u|| ;2. Notice that for s, = 0 we recapture the standard Sobolev spaces
and that the obvious inclusions H*!52(R) € H''2(R) for every s1 > t1, 2 > B
hold. We also recall that H!-52(R) is an algebra with respect to multiplication for
s1 > 1/2 and 5o > 0, cf. [2, Proposition 2.2]. For every given 51 € R (resp. s2 € R)
we define

H ' ®(R) := ﬂ H*"2(R), resp. H*2(R) := ﬂ H'2(R).

SzER S1€|R

We remark that H*"°°(R) consists of functions with the same decay as the functions
of .(R) but with a limited regularity, while H°>*2(R) consists of functions in
H*>(R) with a prescribed decay as |x|] — oo. As it will be shown in Sect. 2,
these two spaces are graded Fréchet spaces endowed with the increasing families
of seminorms

lulsy k== max |lulls;,sp, reSp. ||k, :=max|[lull;s,, k€N,
o<k s1<k

and they are tame (see Definition 1). Finally, we notice that
() H"®®) = (] H*2([R) = .S (R). 3)
S]ElR SzélR

The main result of the paper is the following.

Theorem 1 Let P(t, x, Dy, D) be an operator of the form (2). Assume that there
exist a constant C > 0 and a function y : C — RT of class C” such that for all
(t,x,w) €[0,T] xR x C, B,6§ € N the following conditions hold:

ap(t) is real valued and a,(t) # 0, te[0,T], 4)
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10208 Ima;(t, x. w)| < Cyw)(x) »m P 0<j<p—1. )

w

18588 Rea;(t, x, w)| < Cy(w)(x)" ¥, 0<j<p—1. (©6)

Then, for every given sp > 3p — 2, the Cauchy problem (1) is well-posed locally in
time in H%2(R): namely for all f € C([0, T]; H**2(R)) and ug € H>®*2(R),
there exists 0 < T* < T and a unique solution u € C' ([0, T*]; H®*2(R)) of (1).

Remark 1 With respect to [1], in Theorem 1 from the decay at infinity of the data
we can estimate the decay of the solution as |x| — oo. Indeed, by [1] we know
that if the data are in H* (and the decay conditions are satisfied), then the solution
belongs to H*°, too; Theorem 1 states that if the data are in H°2 for s, large
enough, then also u € H**2.

The idea of the proof of Theorem 1 is the following: to show the existence of a
unique solution to the semilinear equation (1) in H %2, we first linearize it, fixing
a function u € C([0, T], H°>*2(R)) with s, € R large enough, then we solve the
linear Cauchy problem in the unknown v(z, x)

!PM(D)U(I, x)=f@,x), (,x)el[0,T]xR )

v(0, x) = ug(x), x €eR

in H°%2(R); finally, inspired by [6], [10] and [12], we apply the Nash-Moser
theorem to obtain the existence of a unique solution of (1) in the tame space
H>%2(R). We remark that we cannot apply to the Cauchy problem (1), (2) a usual
fixed point scheme in Banach spaces since the linearized problem (7) has a unique
solution which presents a loss of regularity and/or a different behavior at infinity
with respect to the data. Thus the problem (7) is not well posed in H*!*2; however
it turns out to be well posed in H°°"2(R) which is a tame Fréchet space, so there we
can apply the Nash Moser theorem.

Remark 2 In the linear case treated in [3], as a consequence of the energy estimates
in weighted Sobolev spaces, we also obtained that the Cauchy problem is well posed
in Z(R) and .’(R). In the semilinear case, we are not able to prove in the same way
well posedness in . (R). In fact, if the data of the problem are Schwartz functions,
they belong in particular to H°*2(R) for every s, > 0, however, in the semilinear
case, the upper bound 7* of the interval of existence of the solution may depend on
s> and possibly tends to O when s; — +-00.

Remark 3 The techniques used in this paper may be adapted to study semilinear
p-evolution equations in higher space dimension x at least in some particular cases
as, for instance, Schrodinger-type equations (p = 2). For this type of equations, at
least the linear theory is well established in general space dimension, cf. [8, 9, 16]
and it could be easily applied to the analysis of the linearized Cauchy problem (7).
We will treat this problem for general p-evolution equations in a future paper.
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2 Preliminaries: SG-Calculus and Nash Moser Theorem

2.1 SG-Calculus

We recall here the definition and the main properties of the SG classes of
pseudodifferential operators. In view of the purposes of this paper we shall state
them for symbols defined on R2, but they have obvious extension in higher
dimension. For this generalization and for more details on these classes we refer to
[11, 19, 20]. Fixed m1, m> € R, the space SG™1-"2 (R?) is the space of all functions
p(x, &) eC ©(R?) satisfying the following estimates:

sup (&) 7" (x) " Pagaf p(x, £)] < oo ®)
(x.6)eR?

for every a, B € N. We can associate to every p € SG™!""2(R?) the pseudodiffer-
ential operator defined by

Pu(x) = p(x, Dyu(x) = @m)~ /R ¢ p i) de. ©)

If p e SG”””"Z([RZ), then the operator p(x, D) is a linear continuous map from
Z(R) to .#(R) and extends to a linear continuous map from .#’(R) to .’ (R)
and from H*"2(R) to H*'~"1-27"2(R) for every s1,s2 € R. We also recall the
following result concerning the composition and the adjoint of SG operators.

Proposition 1 Let p € SG™ "™ (R?) and q € SG™1m (R?). Then there exists a
symbol s € SGm'J“mll’szrm/Z([Rz) such that p(x, D)q(x, D) = s(x, D)+ R where R
is a smoothing operator /' (R) — #(R). Moreover, s has the following asymptotic
expansion

s(x, &) ~ Y ol p(x, £)DYq (x, £)

o

i.e. for every N > 1, we have

s €)= Yl o plx, £)DYq (x, £) € SGMTM TN MmN (R2)
|| <N

Proposition 2 Let p € SG™"2(R?) and let P* be the L*-adjoint of p(x, D). Then
there exists a symbol p* € SG™"2(R?) such that P* = p*(x, D)+ R’, where R’ is
a smoothing operator /' (R) — Z(R). Moreover, p* has the following asymptotic
expansion

P, &) ~ Y ol DY p(x, §)
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i.e. for every N > 1, we have

Prx &) — Y oD p(x, £) € SGMTNTN(RY),
la|<N

We will denote in the sequel by S™ ([Rz), m € R, the class of symbols p(x, &) €
C>(R?) satisfying

sup ()" |9g9f p(x, £)] < o0,
(x,&)eR?

for every o, B € IN. We observe that the following inclusion holds
SG™"M2(R?) c §™(R?) (10)

forevery m; € R, my < 0.

The following theorem has been proved in [3, Theorem 2.3], and provides
an extension to pseudodifferential operators of SG-type of the well known sharp
Garding theorem.

Theorem2 Let m; > 0,ms < 0, a € SG™ "™ (R?) such that Rea(x,&) > 0
if €] = C for some positive C. Then there exist pseudo-differential operators
QO = q(x,D), R = r(x,D) and Ry = ro(x, D) with symbols, respectively,
g € SG™ "™ (R?), r € SG™V"2(R?) and ry € S°(R?) such that

a(x,D)=q(x,D)+r(x, D)+ ro(x, D), (11)
Re{g(x, D)u,u) >0 Yu € Z(R) (12)
and

r(x,§) = y1(§)Dralx, §) + Z Vo p(§)0F Dla(x, £) 13)

2<a+B<2m;—1

for some real valued functions V1, Vo g with Y1 € SG~O(R?) and Ya,p €
SGY~PI20(R?) depending only on &.

We remark that the terms in (13) can be re-arranged so that we have

m—1
re, €)=Y ri(x,8), (14)
j=1
VIEDxa. £) + Y Vap®)df Dfatx. &), j=m—1,
rj(x,€) = seths3 (15)

> Vap®)d¢ Dfa(x.6),  1<j<m-2.
2(m—j)<a+B=2(m—j)+1
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We also remark that Theorem 2 implies the well-known sharp Garding inequality
Re(A(x, Dou, u) = —cllulg, 1) 0 (16)
for some fixed constant ¢ > 0O (cf. [17, Theorem 4.4]).

We recall here also the Fefferman-Phong inequality (cf. [13]):
Theorem 3 Let A(x, &) € S"(R?) with A(x, £) > 0. Then

Re(A(x, Dou, u) = —cllullg, 20  Yu € H™ (17)

for some ¢ > 0.

We remark that, by Lerner and Morimoto [18], for m = 2 the constant ¢ in (17)

depends only on max Cq g for Cy g := sup |8§‘8§A(x, £)|(g) "+,
la|+IBI<7 x,£€R

2.2 Tame Fréchet Spaces and the Nash Moser Theorem

We recall here the notions of tame space, tame maps, and the statement of the Nash-
Moser inversion theorem, see [14] for further details. Moreover, we show that, for
every fixed s, so € R, H*"*° and H "2 are tame spaces.

A graded Fréchet space X is a Fréchet space endowed with a grading, i.e. an
increasing sequence of semi-norms:

[xln < 1X]ns1, Vn e Ng, x € X.

Example 1 Given a Banach space B, consider the space X (B) of all sequences
{vk}ken, C B such that

“+00
. k
o}l =D ™ ullp <400 Vn € No.
k=0

We have that ¥(B) is a graded Fréchet space with the topology induced by the
family of seminorms | - |, (which is in fact a grading on X (B)).

We say that a linear map L : X — Y between two graded Fréchet spaces is a tame
linear map if there exist r, ng € N such that for every integer n > n there exists a
constant C,, > 0, depending only on n, s.t.

|[Lx|n < CplX|ngr Vx € X. (18)

The numbers ng and r are called respectively base and degree of the tame estimate
(18).
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Definition 1 A graded Fréchet space X is said to be fame if there exist a Banach
space B and two tame linear maps L : X — X(B) and Ly : ¥ (B) — X such that
Ly o Ly is the identity on X.

Obviously, given a graded Fréchet space X and a tame space Y, if there exist two
linear tame maps L1 : X — Y and Ly : Y — X such that L, o L is the identity
on X, then also X is a tame space.

Lemma 1 The spaces H*"*° and H®*? are tame.

Proof We first recall that H* := (),.g H* endowed with the seminorms | f |, :=
maxg<, || f|ls for every n € N is a tame Fréchet space, cf. [10]. Moreover the map
L : H® — H®"% defined by L(f) = (x)~*2 f is a tame isomorphism since for
everyn =0, 1,2, ... we have:

IL(P)n.s, = max [[L(f)ls,.s, = max [[{x) 72 5.5
s1=n si=n
< Cpmax |[[{(x) 72 flllsy.5 = [ fln
S1=<n
and
— / =S —
[fln = max I flls; < Cp max 1) 72 fllsys, = [L() |n.s, -

Thus, H°*%2 is a tame space. H*"* is also tame, since the Fourier transform & is
an isomorphism between H***2 and H*>*!, and | (f)lls,,5; = | f 51,5, Dy this, it
is easy to prove that # : H*'®°® — H%"2 defines a tame map with tame inverse
given by the inverse Fourier transform. O

Given now a nonlinear map 7 : U — Y where U C X and X, Y are graded
spaces, we say that T satisfies a tame estimate of degree r and base ny if for every
integer n > ng there exists a constant C,, > 0 such that

Tl < Co(1 + |ulnr)  Vuel. 19)

We say that T is tame if it satisfies a tame estimate (19) in a neighborhood of each
pointu € U (with constants r, ng and C, which may depend on the neighbourhood).
Notice that a linear map is tame if and only if it is a tame linear map.
Givenamap 7T : U C X — Y, we define the Fréchet derivative DT (u)v of T
atu € U in the direction v € X by

T+ ev) —T(u)
E bl

DT (u)v := lim (20)
e—>0

and we say that T is C L(U) if the limit (20) exists and the derivative DT : U x X —
Y is continuous. We can also define recursively the higher order Fréchet derivatives
D'T : U x X" — Y of T, cf. [14]; we say that T is C*°(U) if all the Fréchet
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derivatives of T exist and are continuous. A smooth tame map T : U — Y defined
on an open subset U of X is a C* map such that D" T is tame for all n € No.

It is known that sums and compositions of smooth tame maps are smooth tame,
and, moreover, linear and nonlinear partial differential operators and integration are
smooth tame maps, see [14] for the proofs of these results. Finally we recall the
statement of Nash-Moser inversion theorem in the tame Fréchet spaces category,
which will be used in the sequel to approach the Cauchy problem (1).

Theorem 4 (Nash-Moser-Hamilton) Ler X, Y be tame spaces, U an open subset
of Xand T : U — Y a smooth tame map. If the equation DT (u)v = h has a
unique solution v :== S(u, h) forallu e Uandh € Y,andif S: U xY — X is
smooth tame, then T is locally invertible and each local inverse is smooth tame.

3 Well Posedness for the Linearized Cauchy Problem

The following theorem is the key to prove the main result of this paper. It deals
with the linear Cauchy problem (7), and proves that if the data of (7) are chosen
in the Sobolev space H**2, 51, s> € R, then there exists a unique solution v(t) €
H51720n(p=1).5-28¢ 51 some § > 0 and for every) <e,n < lsuchthate +n = 1.

Theorem 5 Under the assumptions of Theorem 1, there exists § > 0 such
that for every u € C([0,T]; H3?~13P=2(R)), f e C([0,T]; H*2(R))
and ug € H'2(R), there exists a unique solution v of (7) such that v €
Cl([O, TI; H“*Z‘S”(p’l)’”*z‘sg([R))forevery e, n € [0, 1]withe+n = 1. Moreover
v satisfies the following energy estimate:

2
(@, DI, —26n(p—1),50—25¢ @D

1 3p—2 4
< Cy, 5y ye T 5p-13p-2) <||M0||?1,32 + / I f(z, -)||%1,Szdr> vt € [0, T].
0

Remark 4 Notice that the solution v presents the loss 267 (p — 1) in the first Sobolev
index and the loss 28¢ in the second one. In the case so = 0, ¢ = 0, n = 1 we
recapture the result of [1, Theorem 2.1]. Moreover, in the linear case (i.e., if (7)
does not depend on ), we can obtain either well-posedness with loss of 25(p — 1)
derivatives and no loss of decay (take n = 1 and € = 0), or the result of [3], that
is well-posedness without loss of derivatives but with loss of decay 26 (take n = 0
and € = 1). We can also obtain all the intermediate estimates. A similar result has
been proved in [7], where intermediate estimates for Schrodinger equations (p = 2)
have been proved in Gevrey classes.

The proof of Theorem 5 consists in choosing an appropriate and invertible change
of variable

v(t, x) = e™(x, D)w(t, x) (22)
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which transforms the Cauchy problem (7) into an equivalent Cauchy problem

:PA(I, x,u(t,x), Dy, Dy)w(t,x) = fa(t,x) (,x)€[0,T] xR 23)

w(0,x) =upAr(x) xeR
for
P = (7P, fai= (™7 uoa = (™ ug

which is well-posed in L? (and therefore in all the weighted Sobolev spaces H*!"%2).
By the energy estimate in H*!*2 for the solution w to the Cauchy problem (23), we
then deduce the energy estimate (21) from (22).

The operator A will be of the form

A(x,D)=rx,D)+...+Ap-1(x, D),
)
Py o= (M) (TP (),
fai= @7 @) won = @D @) o,

We construct here below the transformation A and we point out its main
properties in Proposition 3. Then we prove the invertibility of ¢ in Proposition 4.
In the subsequent Lemma 2 we show how to obtain the energy estimate (21) for the
Cauchy problem (7) from the H*!-*2 energy estimate for the Cauchy problem (23).
After that, in Lemma 5 we state the regularity with respect to x, u of the coefficients
aj(t, x, u) of the linear operator (7), for 0 < j < p — 1. This section ends with the
proof of Theorem 5.

Definition 2 Forevery k =1, ..., p — 1 we define the symbols

EN oy okt [og—rt )
hpk(x,§) 1= Mpkw(h)@)h"“ fo () ww(@),,_l)dy, (24)

h

where i and M, are positive constants such that 2 > 1, w € C*°(R) is such that

0 <1
w(y) = { oo e @5)
IyIP=/yP=" Iyl = 2
and ¥ € Cg°(R) is such that 0 < ¥ (y) < 1 forally € R, ¥(y) = 1 for |y| < é,
and ¥ (y) =0 for |y| > 1.
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Proposition 3 There exists a constant C > 0 such that for every (x, &) € R? the
following conditions hold:

|Ap—1(x, E) = Mp—1 (log2 + elog(x) + n(p — 1) log(§)n) (26)
Ve,ne[0,1]e+n=1,
Ap—k(x,8)| <CMp—y, 2=<k=<p-1 (27)

Moreover, for every a, B with (a, B) # (0, 0), there exists Cy,p > 0 such that for
|| > 2h:

|0g 00 % p—k(x,6)] < Caplx) (€)%, 1<k<p-—1. (28)

Proof We only prove (26) and (27); the inequality (28) can be deduced as in the

proof of [5, Lemma 2.1]. Let E = {(y, &) € R? : (y) < (5)571}. Ifx e E,x >0,
then by (24), integrating we have:

Ap-1(x,6) = My dy = Mp_log (2(x))

o
/0 V1+y?
< M,_1(In2 + log(x))
< M,_1(In2 + log(x)< (£)1"~ ")

< Mp_1(In2 + €log(x) + n(p — 1) log(§)n)
forevery 0 <€, n <1,e+ n = 1. Analogously, if x ¢ E we get

2(p—-1)
h -1 1

J©
gt = My | dy
P o V14?2

< M, 12
< M,_1(In2 + log(x)< (£)1"~ ")
< M,_1(In2 + elog(x) + n(p — 1) log(&)n),

using the fact that for x ¢ E we have (5)5 -1 - (x). Similar estimates can be
obtained for x < 0. The estimate (27) can be proved by a similar argument. O

From Proposition 3 we obtain in particular that e**»-1 € SGMp-11(P=1.Mp-1€
for every €,n > 0 such that € + n = 1 whereas for k = 2,..., p — 1, we have
et e SGPO(R?) C SO(RY).
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Proposition4 Foreveryk =1,..., p—1, let A, be defined by (24). There exists
hix > 1 such that for every h > hy the operator eMr—k (x, D) is invertible and

(M4 (x, D))" = etk (x, D) +rps(x, D)), 29

where I stands for the identity operator and r,—i(x, D) is a pseudodifferential
operator with principal symbol

rp—k,—k(x, &) = 0ghp—r(x,8)Dxdpi(x,§) € SGRI (30)
Proof We first observe that
e’ (x, Dye *r=*(x, D) = I —Fp_i(x, D),
where 7, has principal symbol 7, _ in (30). From (28) we have
|rp—k—k(x, ) < CeMp b,
and we similarly estimate the derivatives. We see that for & large enough, say 7 >

hy, the operator I — 7 is invertible on L? with inverse given by the Neumann
series

and the operator 7,4 has principal part (30). Thus,
etk (x, Dye M, DY +rpi) = 1,

and e *r—+(x, D)(I + rp—k) is a right inverse of e*r=k(x, D). Similarly we can
obtain that it is also a left inverse. |

Lemma 2 Ifthe Cauchy problem (23) is H*'>*2 well posed, and the energy estimate

1 3p-2 ;
w2, ,, < e H 112" (uuo,Au?l,sz + /0 ||fA<r>||31,szd’) 31)
holds for every t € [0, T, then the Cauchy problem (7) admits a unique solution
v e C([0, TT; H'~20n(p=1).5=23€)

forevery €, n € [0, 1] with € + n = 1 which satisfies the energy estimate (5).



Semilinear p-Evolution Equations in Weighted Sobolev Spaces 13

Proof From Proposition 3 we know that

p—1
|ACx, €)] < Mp—1 (log2 + € log(x) +n(p — 1) log(E)) + Y CkMp—i
k=2

<8 (1 +elog(x) +n(p — 1)log(&)n)
with a positive constant § depending on My, ..., M, _1.This yelds

:l: \ X S 0 0€ 5” P 1
|e ( ’ ) | < e (.x) <§ >h ( ) )
and by the energy estimate (31) we get

2 A2 2
”v||sl—287](p—l),s2—286 =lle w”s1—287](p—1),s2—286 = ||w”s1—87](p—1),s2—56

3p—

2 t
Atlluell3, ) 3,00t 2 2
< Ce 3p=1.3p=2 <||MO,A||S15,7(p1),s256+/0 ||fA(T)||Sl5,7(p1),s25€d'5)

3p—2 1
1+ t 2 2
< Cel 3, 13,-2) <||”0||sl,sz+/ ||f(t)||s1’32dr>
0

forevery r € [0, T]. |

The next Proposition 5 states the regularity with respect to x, u of the coefficients
aj(t, x, &) of the linearized operator (7).

Proposition 5 Under the assumptions (5) and (6), there exists C' > 0 such that
for every fixed u € C([0, T); H3P~1:3P=2(R)) the coefficients aj(t,x,u(t,x)) of
the operator P,(D) satisfy for every 1 < j < p—1, (t,x) € [0,T] x R and
B<3p—2:

9 Rea;(t, x,u(t, x)| < Cy @A+ lullf 5 ) x) 7P, (32)
108 Ima; (r, x. u(e, )| = Cy @)L+ ullf ;) 7177, (33)
Proof Forevery § > land1 < j < p — 1 we have
3P (aj(t,x,u)) = @Paj)t, x,u)

+ 0> g D cqr@Lafay) (e x, u) @7 u) - (35 u)

Bi1+p2=B ritetrg=p2
/3221 ri >1
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for some cg,cy,r > 0. By (6), using the relationship between geometric and
arithmetic mean value and Sobolev inequality, this gives for every 8 < 4(p — 1):

0(Rea;j(t, x, u))|

<Cr@@ P+ 3 cpp D Cqrpemrgy @) TP ] (05 0|

Bi1+p2=p rit..trg=p2
Ba>1 ri>1

<Cyww P+ ) D ol )0l

Bi+B2=B rit+..+rg=p2
Ba=1 ri>1

_ )05 ] + -+ 1) 0 u] | !
<Cyw P i+ > > (
PriPa=p rit.irg=P 1

B2= ri>1
< Cy@ (1 + ulf 5 0
where we have used the fact that forevery 1 < j < ¢, 8 <3p — 2, we have

calj P
[(x)"7 05" ul < CIlx)"T 0" ulli,o = Nlulli4r;,r; < llulli+pp < 0o

On the other hand, looking at Ima; and using (5) instead of (6), the same
computations give

N
08 (Ima;j(t, x,u)| < C"y )1+ Jullf, 5 g)ix) 7177

O

Remark 5 We observe that a conjugation of the type (e*r—+)~! T; e*r—k with A p—k
given by (24) and T; € SG/*, j > k + 1 depending on y;j derivatives of u, by
Proposition 4 gives:

(e* )" Tjetr+ = e 4=k (Tj + rp_ Tj) e r (34)

where the principal symbol of r,_; is given by 0gAp x(x,§)DxAp_((x,8) €
SG~*=(r=/(r=D By the asymptotic expansion we get

j—k—1

1
o (Tj +rpiTj) (x, &) =Tj(x,6) + Z a,agrp—k(x,S)Dﬁ‘Tj(x,E) + So(x, §)
a=0 ’
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with Sp € SG*°. Since d'rp—kDYTj € SG/ k== (p=h/(p=D~lel 3nd depends on
yj + o derivatives of u, by re-ordering the sum we get

Jj—k

o (Tj+rpiTj) (6, &) = Tj(x, &) + Y _Tje(x,6) + T
=1

with Tj ¢ € SGH~(P=0/(p=D=(=k=0 depending on vj + j — k — £ derivatives of
u and on M, Tp of order (0, 0). Thus

p—1 p—1
(e)np*k)—l Z Tj e)\pfk — e—)np—k Z(T/ + r[)—ij) e)»p—k
— s
and we have, modulo terms of order (0, 0):
p—1 p—1j—k
Y (T +rpaT) | (x.6) = ZT W)+ YD T, §)
Jj=0 j=1¢=1
p—1 p—k—1 p—1
= 2 T+ X (G+Thwj+ o+ Tponj) = DT
Jj=p—k Jj=1 j=1

with ij =Tjforj>p—k, whilefor j <p—k—1 ij € SG/% as well as T; but
dependon max{yp,-1+p—1—k—j,yp2+p—2—k—j,..., yjtx} derivatives
of u and on the constant M.

Remark 6 Similarly, a conjugation of the type e *Tye*, where 1 € SG*Y and
Tr € SGK0 depends on yj derivatives of u, gives, modulo terms of order (0, 0),
the operator

k—1 k—1k—p

Tk+Z ! (as Tk) RS ;'ag e DP (as Ty D% A)

01=1 B=1a=0

at each level 1 < j < k — 1 we find, except for 7; itself, new terms of
type 85 e_’\Df (ag Tj+a+,ngfe)‘) with the same decay as T; and depending on
Yj+a+p + B derivatives of u.

Proof of Theorem 5 First of all we observe that the assumption (4) implies that
ap(t) > Cpforeveryt € [0,T]oray(t) < —C)p forevery t € [0, T'] for a positive
constant C),. We will prove the theorem under the first condition. If the second one
holds the result remains valid with only modifications of signs in the proof.
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Fixed u, we consider the linear operator

p—1
i Py(t, x,u(t,x), Dy, Dy) = +ia,()DY + ) iaj(t, x,u)Di
j=0

with a,, satisfying (4) and a; satisfying (32), (33) forevery 1 < j < p — 1, and we
apply for i > hy (see Proposition 4) the first conjugation (¢*7-1)~1i P,e*»-1, with
Ap—1 in Definition 2 satisfying Proposition 3. Let us first notice that

p—1
("l petrt = 9, + e Pr iap(t)Df + Z iaj(t, x, u)D} | e*r!
=0
p—1 )
+etrt iy i(x, Dyay(t)DE + > irp_1(x, D)aj(t, x,u)Dy | e*r!
j=0

and that the principal symbol of r,_; is given by d:Ap_1(x,6)DxAp_1(x,8) €
SG~1~!. The composition e‘AP*'iapgpe)‘l’*l provides, among others, the term
—0Ap—1(x,8)apsPoyhp 1 (x,&) = —iapéPr, 1, —1(x, &) which cancels with the
principal part of the symbol of e_)‘ﬁflirp_lapspe)‘ﬂfl. Then, we notice that by
Remark 5 we can write

p—1

@rDiPetrt =0+ et ia,()DE + ) id(t x.u, Dy) | €t
j=0

+ Op (iapsprp—l,—l) (ta X, D)
with new terms

-1
a,_y(t,x,u, Dx) = ap—1(t, x,u) DY

and, for0 < j < p—2, a} (t, x,u, Dy) is a pseudodifferential operator given by

aj(t, x, u) D] plus other terms of the same order. Namely, a; satisfy estimates of
the form

|0g 0fRe a (1, x, u(t, x), )| (35)
< Cuypy @A+ ulD 3708 ) P,
0g aftma; (1, x, u(t, x), )| (36)

i, S R .
< Cotp v @A+ Il 1210 i) )" TP
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The asymptotic expansion gives

iP|(t,x,u, D) := (1)~ Lip,etr (37)

= o +iap()DY +iap i (t,x,u)DY!

+ op (ipape? ™" Dip 1)

p—1
ppD ﬂ!ly!"p(“"(’)asye_“" fgr . Dyt

oa=2 p+y=a
B=p

p—2
+ ) id;(t, x, u, Dx)
j=1

p—lj-1

1 - .
+ X yon(eagia; peent)

j=la=1 "

B —xp_1 pBlaa;: 7 no+B2 A,y
ﬁa!ﬁllﬁz!op(ase -1 DY oia, DY Pt )
T

+ so(t,x,u, D)

with a term so of order (0, 0). Notice that, by (35), (36) and Remark 6, in (37) we

find at each level 1 < j < p — 2, except for the original terms a; (¢, x, u)D){, terms
with decay at least of type (x)~!, depending at most on M p—1, and depending at
most on

Vitleltipl T 1Bl=p =G +lal+[BD =1+ [Bl=p—j—la|-1=<p—j—1

derivatives of u, so that we get

iPy =0 +ia,()D! +iap 1(t,x,u)D!" (38)
p—2
+0p (lpap%-p_le)\p—l) + Z ia}/(ta xa ua D.X) + So(ta xa ua D)
j=1

where the pseudodifferential operators a}/ are given by a; D){ plus other terms with

the same behavior, namely a}’ still satisfy (35) and (36).
Now, let us focus on the term A1 of order p — 1 with respect to & in (38). By
(24) and (33), the choice of w in (25), and (4) we get for every |§| > 2h:

ReA, |t x,u,£) := Re (iap,l(t,x, WEP! 4 papEP 0, 1 (x, g))

= —Ima, 1 (t,x,wE" ™" + papyEP oxh, 1 (x, 8)
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Y

~Cly o) Y + My pap@)1E1P 0y (<s p-l)
h
@ , 2 )”_1
-C M,_1pC
(x) w((&)i”)( ye+ Mp-1p P(Js
ot

- w© (1 —w( <’;)1))
() 3

—2C"y (u)

Y

Y

C'y /5"

orlpc where we have also used the fact that
pLp

<x>_1 > ! on the support of 1 — ¢ ( (x)_1> and [P~ > (2/\/5)1’—1(&)}1”*1
& 2 )
for |&| > 2h. Being the symbol Re A, (¢, x, u, £) +2C"y (1) non negative, we can
apply the sharp Garding Theorem 2 and we obtain that there exist pseudodifferential

operators Q,_1(¢, x,u, D), Rp_1(t, x,u, D), Ro,p—1(¢, x, u, D) with symbols

if we choose M, >

Qp 1t x,u,8) € SGP10 R y(t.x,u,8) € SGPT20, Ry, it x 1 8) € S°
such that

Ap1(t,x,u,D)=Qp1(, x,u, D) +iRp_1(t,x,u, D) + Ro p—1(t, x, u, D)
with

Re(Q,_1(t, x,u, DYh(t, x),h(t,x)) = 0 Vh e .#(R), (t,x) €[0,T] x R

and by (15)
p—2
Rp_l(t,x,u,é)zZRj’p_l(t,x,M,é) (39)
j=1

Rp—Z,p—l =—i ‘//‘1($)DxAp—l + Z ‘/fa,ﬂ@)angAp—l
2<a+p<3

Rjpoi = —i 3 Va5 (€)0F DAy
2(p—1-j)=a+p=2(p—1-j)+1
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for every 1 < j < p — 3, where ¥ and v, are real valued symbols, ¥ (§) €
SG~ 0 and ¥, 5(£) € SG@P/20 We have so

iPy =8 +iay(t)DY + Qp—1(t,x,u, Dy)

p—2
+ iRy 1(t,x,u, Dy) + ) iaf(t,x,u, Dy) +50(t,x, 0, D).
j=1

We notice that, by (39), R,—1 adds to the terms a}/ some new terms; whenever

B # 0, these new terms have at least decay (x)~!, while for 8 = 0 we see that

Re (=ita.0(6) 0 Ap-1 (1, x,1,6) )

= Ya0E)0f ImAp 1 (1, x,u, &) € SGP~17%/20 c §GP=20

can be added to Re a}’, while

Im (—iv0,0(6) 0 Ap1 (1,5, 4, 6))
p—2
— Y00 Re Ay (1, x. 1, §) € SGP1-0/271 € §GP 2

can be added to Ima}/ . Again, by (39), we see that the largest number of x-
derivatives of u appears when o = 0, 8 =2(p — 1 — j) + 1 and we have

Vg 0 DEAp 1t x, 10,0 = C'y o) (14l ) @1 ()

2(p—j)—1 jio—
= Cly@ (14 Bt 50, ) € W™

By these considerations, we understand that after the application of Theorem 2, we
can write

p—2
iP =8 +iap()DY + Qp 1 (t,x,u, Dy) + Y _iaj1(t,x,u, Dy) +s1(t, x,u, D) (40)
j=1

for a new operator s; with symbol in S°, where a j,1 are given by a}’ plus other terms
with the same order and decay, depending on 2(p — j) derivatives of u, this means
thataj 1 depend on max{p —j—1,2(p— j)} = 2(p — j) derivatives of u. Summing
up, forevery 8 < p—1(weneedthat2(p — j)+ 8 <2(p— 1)+ <3p—1)we
have

8¢9/ Re aj1(t, x, u(t, x), §)] @1

2(p—j)—1 —_ i—
< Cyy v @A+ llulp b0 P E
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8¢9 Imay,1 (¢, x, ut, x), €] (42)

2p—j)—1 - J— -
< Cuy v @A+ llulpn e gy

Now, let us consider, for # > max{hj, hy} (see Proposition 4), the operator
(e*r-2)~1i Pje*r=2, with A,_5 in Definition 2 satisfying Proposition 3. We observe
preliminarly that, since ethr2 ¢ SGO’O([RZ) C SO([RZ), then for the composition
(e*r-2)~Ls (¢, x, u, D)e*»—2 we can use the symbolic calculus in the Hormander
class and obtain that (e*r-2)"ls (¢, x, u, D)e*r—2 is again an operator with symbol
in S°(R?). Moreover, since (ekﬁfz)f1 = e *»=2(I + rp_3) and the principal part
of rp—2 has symbol rp 2 2(x,&) = dsAp_2(x,&)DxAp 2(x,§) in SG_Z’_L%, by
Remark 5 we obtain

(r2)7liPietr=2 = 3 +op (iaprp—2,_2)

p—2
+e Tt (m,,(r)DfZ + Qpo1(t,x,u, DY+ Y id) (1%, u, Dy) + 511, %, u, D)) tr-2

j=0
with a;_zsl(t,x,u,Dx) = ap21(t,x,u,Dy) and, for 0 < j < p — 3,
a}’l(t, x,u, Dy) is given by a; 1(t, x, u, Dy) plus some new terms with the same
order and decay as a; 1 and dependingon max{y,—1 +p—1—-2—j,...,yp_¢ +

p—4L—2—j,...¥j2} = Vj+2 = 2(p — j — 2), because we have y,_¢ =
2(p—(p—4)) =2Lfor1 <€ < p—1.The new terms contain a smaller number of
derivatives with respect to (41) and (42). Thus for every 1 < j < p —2 we have that
a;’l still satisfy (41) and (42) for a constant depending also on M,_»; notice that the
dependence on M), > is only at levels 1 < j < p — 3. The asymptotic expansion
gives

iPs(t,x,u, D) = (e*r—2)"Lipjetr2

& +iap()DY + Qp_1(t, x,u, D) (43)

+ iap72,1(ts x,u, Dy) +op (ipapgpile)Lp72>

+ 2_: p (o Gaps?e =)D, o)

p-3 p—2

+ Y id} (t,x,u, Dy )+Z ( —*p—zang_]Dgelpfz)

Jj=l1

p—=2p-2-P
P T T e (000 D)
B=1

a=0 Bi+pr=
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p—2j—1

_ . Ay
+ 2% op (e agiay, Dy

j=la=1

p—2j-1j-1-8

+ ZZ Z Z a'ﬂ ’ﬂ (aﬁ —Ap— zDﬂl ()otla DoH—ﬁze p— 2)
1:P2-

j=1p=1 a=0 Bi+p2=
+ sl(t, x,u, D)
with a new term si e SO. Let us now look at (43); by (41), (42), and using the
estimate (28) wih k = 2, we find at each level 1 < k < p — 3, the original terms
ak.1(t, x,u, D) plus terms which decay with respect to x at least like (x)’l, and
possibly depending only on M,_1 and M,,_»; the largest number of derivatives with
respect to u appears in
(o e~*r2D{ o ia DY PRt

< Chy oy oY @+ Nl DEY P ),
at the level k = j — o — B the largest number of x-derivatives of u appears when
a=0and B =j—kanditisgivenby2(p — j)+B=2(p—k—p)+8 =
2(p — k) — B <2(p — k) — 1. Thus, similarly as for (38), we get

le = at +la[1(t)D_€ + Qp—l(taxa u, D) +iap—2,1(ta-xa u, DX) (44)

p—3
+ op (ipang*IDxxp,z) + ial (t,x.u, Dy) + 5} (t, x,u, D)
—

where a’/ .1 are given by a; plus other terms of the same type, still satistying (41),
(42) but with a constant C My 1, M, , depending on both M,y and M), ».

Now, let us focus on the term A _p of order p — 2 with respect to £ in (44). By
(42), (24), the choice of w in (25), and (4) we get for every |§| > 2h:

Re A, o(t,x,u,£) = Re (iap,z’l(t, X, u, &) + papOEP 9h, (x, g))
= —Ima,_51(t, %, u, &) + papEP ™ 02y 2(x, )

NG I SN e
= —Cup v @) (14l 5) 7, + Mpapap@lgl?™ )1 (e) .

(x) !

)02 (x) 5 \p-1
z i,l,fz 14 ((g)pl —Cpyp,_y v () (1 + ||u||3’3> +M,_2pCp (\/5>
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NG )
= Ca, v (14 Nl 5) e e P
-

(x) h

= =2Cu, v @ (14 Jul} ;)

-1
Cotyo v @) (14l 5) V5"
if we choose M, », >
2r=lpC,
(ﬂ/(é);’f—l = 1/2 on the support of 1 — Iﬁ((x)/(fi);f_l) and [§]7 >
(2/\/5)1”’1(5)}1:_1 for || > 2h. We can so apply the sharp Garding theorem
to the symbol A, _»(t, x,u, &) + 2Cum,_, v (u) (1 + ||u||43113) > 0 and we obtain

that there exist pseudodifferential operators Q, 2(t, x,u, D), R, _2(t, x,u, D),
Ro,p—2(t, x, u, D) with symbols

, and using again

Qpa(t,x,u, &) € SGP™20 R, »(t,x,u,&) € SGP™> Ry, 2(t, x,u,£) € S°
such that

Ap 2(t,x,u,D)=Qp 20, x,u, D)+ iRy 2(t,x,u, D)+ Ry p—2(t,x,uD)
with

Re(Qp 2(t, x,u, DYh(t, x), h(t,x)) = 0 Vh e .#(R), (t,x) €[0,T] x R

and
p—3
Ry = Z Rjp-2 (45)
j=1
where
Rp-3p-—2=—i 1//‘1(%‘)DXA[J—2 + Z ‘/fa,ﬂ@)angAp—Z
2<a+B<3
and
Rjpo=—i > Vo, p(E)IF DEAp2,

2(p—2—j)<a+p=<2(p—2—j)+1
forevery 1 < j < p — 3. We have so

IPZ = at +la[7(t’ D) + Qp—l(ta-xaua DX) + Qp—Z(taxa”, D.X)

p—3
+ lR[J—Z(ta-xa u, DX) + Zia;‘/’l(taxa u, DX) +Si/(taxa u, D.X)
j=1



Semilinear p-Evolution Equations in Weighted Sobolev Spaces 23

Again, each R; ,_> adds to @ | new terms with the same order and decay as a’/ i
(notice that the second apphcatlon of Theorem 2 is needed only in the case p > 3
and in this case we have 5 < p + 2, so the term 1 (§)Dx A, _2(¢, x, u, §) satisfies
(41) and (42) with j = p—3 and a constant depending on M, _1, M, 5. The largest
number of x-derivatives of u appears wheno =0, 8 = 2(p —2 — j) + 1 and we
have

_H_atp _
Vg €0 D Apalt, .. §)| = Cor v @) (L4 Tl 5 ) €777 ()7
2p—j oy~
= Cotpy v @) (14 M350 41 2 p) €V )7

This means that, after the second application of the sharp Géarding theorem, we can
write
le = at + la[)(tﬂ D) + Qp—l(ta X, U, D.X) + Q[J—Z(ta X, U, DX) (46)

p—3
+ Z iajo(t,x,u, Dy) + s2(t, x, u, D)
j=1

for a new operator s, with symbol in S°, where a j,2 are given by a; D} plus other
terms with the same order and decay depending on 2(p — j) + 1 x-derivatives of u;
thus a; > depends on max{2(p — j)+1,2(p — j)} = 2(p — j) + 1 x-derivatives of u.
Summing up, forevery 1 < j < p—3andfor 8 < p(weneedthat2(p—j)+1+8 <
2p—1+ B <3p—1)wehave

|asa Reajo(t, x,u(t,x), )| 47)
2(p—j _ i—
< Cuy oty >y O+ Nl D ) P,
0880 Tma;(r, x, u(t, %), £)| (48)

2p—j - - i
=< CMpfl,Mpfzy(”)(l‘F”””2%_531{34_/3,2([,_/')_’_/3)(x> p-l ﬂ(éf)/ .

We can proceed performing the next conjugations which follow the same argument

as the second one. Arguing in this way, after £ = p — 3 applications of Theorem 2
we finally come for 2 > max{hy, ..., h,_3} to

iPp_3 = ()7 ()P ) () (49)

=8 +iap(t)DY + Qp_1(t.x, u, Dy) + ...+ Q3(t, x,u, Dx) (50)

+iag p—3(t, x,u, Dy) +iay p—3(t, x,u, Dx) +sp_3(, x, u, D)
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where, forevery 1 < j < p — 3,
Re(Q,—j(t,x,u, D)h(t,x),h(t,x)) >0 VYhe S (R), (t,x) [0, T] xR
and moreover for every 8 <7
0¢9/Reay, p3(t, x, u, £)| (51)

3p—9 _ _
< Cmyyitsy @1+ I3 20 5o ) P (E),

09l Tmay, p3(t, x, u, £)| (52)

2
< Ctyoy ity @)+ Nl 30200 5 o)) 7t P ()27,

andforg <5
0¢9fRear, p-3(t, x,u, &) (53)
< Cmyy sy @A+ 3 g S o 0 i),
0 9fTmay, p3(t, x, u, £)| (54)
< Cotyretsy @ Wl )T Py
Now, we define, for h > max{hy,...,hp-2}, iPp2(t,x,u,D) :=

(e)‘z)_liPp_g)e)‘2 and we get
iPy_y =0 +iap(t)D{ + Qp_1(t,x,u, Dy) + ...+ Q3(t, x,u, Dy) (55)
+ias p—3(t,x,u, Dx) + op (ipapé”_le)Q)
+ iai”p_?,(t, x,u, D)+ s;_?,(t, x,u, D)

where af p—3 are given by a; plus other terms of the same type, still satisfying (53)
and (54) but with a constant CMFl ..M, instead of Cp
order 0.

Now, as usual, by choosing M2 > Cum, .. My W) (1 + ||u||3p 8 3p— 9)

Vs
2r=1pC,

potve My, and s, 5 s still of

we get

ReA; : = Re (iaz,p,3(t, x,u, Dy) + op (pa,,gl’—laxxz))

Z 2CM],71 M3J/(’/l) (1 + ”u”?,p 8 3[) 9)
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This time, since we are dealing with second order operators, we can apply the
Fefferman-Phong inequality (see Theorem 3) to

3p—9
Re Ay + 2CM,,,1,...,M3J/(M) (1 + ”””32_8,3[,_9)

and obtain

Re(Re Aok, h) = = (¢ +2Cu, , _wyy @) (1+ 1ul3h 55, o)) IRIP Vh e Z(®)

for a positive constant ¢ = ¢(u) depending on the derivatives 8;‘ 8f with |a|+]8] <7
of the symbol Re (1, x, u, §)+2Cu,_, ...y () (1 + ull3h g 31,79). Since y is
of class C7, we can now find a constant Cy > 0 (depending alsoon M1, ..., M3)

such that

Re(Re Ash, h)

v

3p—9+7 2
~Cy (14 11357317 3047 ) 11

=-C (1 + ||u|I§£Zf3p,2) Ik, Vh e .ZR).

The advantage of the use of Fefferman-Phong inequality instead of Theorem 2 is
that we avoid the remainder of that theorem, i.e. we save some derivatives of the
fixed function u.

It now remains to treat the terms i Im A, = i Reay ,—3 and ia/{,p% in (55). We
split i Re az 3 into its Hermitian and anti-Hermitian part:

iReaz p—3+ (iRe azﬁp_3)* +i Reas p-3 — (iRe az,p_3)*

i Im A, =
11m A2 2 2

=: Hi+H>,
and we have that
Re(Hyh, h) =0,

while

1
Hy = -, d:dxRear p 3 (mod. SG*0)

can be put together with ia/{p% since by (51) it satisfies (53). We get so
le—Z = at + lap(t)D)[C) + Q[J—l(ta-xa I/l, DX) + A + Q3(t7-x7 I/l, DX)

+ ReAZ(t,xJ/la DX) +H2(taxaua D.X)

+ ial,p*2(t1 X, U, Dx) +Sp*2(t1 X, U, D)
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with iay p—» still satisfying (53), (54) and 5,2 € s9. Finally, to treat the terms

of order 1 with respect to &, we perform for 2 > max{hy,..., hp—1} the last
conjugation:
iPy:= ()P, pet (56)

= at +la[1(t)D.€ + Qp—l(taxaua D.X) + "'+ Q3(taxau7 D.X)
+ ReAz(taxaua D.X) +H2(t7-xaua DX)

+ ial,[)—z(ta-xa I/l, DX) +0p (lpapsp_le)‘-l) +S;7_2(taxa ua D)

with a new term 5;7_2 e SO, Notice that the conjugation e ™! (Re A + Hb) e*! gives
Re Ay + H» plus a remainder of order (0, 0) whose principal part is given by

3 (Re Ay + Ha)dxh1 — 011 Dy (Re Ay + Hp) — dgh1(Re Ax + Ha) Dyap € SG™0.

. _ -1
As usual, by choosing M; > CMpflezy(u) (1 + ||u||§§_;3p_7) \/517 /
(2”_1pCp) we get

ReA| : = Re (ial,,,_z(t, x,u, Dy) + op (pa,,sl’—laxxl))
3p-—T7
> 0= 2C, 1.y @) (14 1305, 7)

To the symbol A1 (¢, x, u, £) we can apply the sharp Garding inequality (16) and we
obtain

Re(Arh, h) = —C, (1 + |ul3 "¢ 5, Il Yh e S(R).

At this point we are finally ready to prove an energy estimate in L2 for the Cauchy
problem. We compute

p—1

d
dt ||w(t)||2 = 2Re(0,w, w) = 2Re(i PAw, w) — 2Re(iapw, w) — Z2Re(ka, w)
k=3

— 2Re(Re Aow, w) — 2Re(Hyw, w) —2Re(Ajw, w) — 2Re(s;,72w, w)

= C U+ I35 5, ) (IPAwI + Jwl?)  Vw e #®).

By Gronwall’s Lemma we obtain

3p-2 t
lwl? < CetHIlp-13,-2" (uw(o, )P+ / I Paw(t, ->||2dr>
0

and, by standard arguments, the energy estimate (31). O
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Remark 7 Notice that with respect to [1], by a different proof we can relax from
4p —3to 3p — 1 the number of derivatives of # needed to perform the computations
in the linearized problem.

4 The Semilinear Problem

We now apply the energy estimates obtained in the previous section to prove the well
posedness of the semilinear Cauchy problem (1). Fixed s, > 3p —2and T > 0,
we consider the space X7 := C!([0, T], H®**(R)) and the map J : X}? — X7
defined by

¢
J(u) = u(t,x)—uo(x)—i—i/ ap(t)Dfu(s, x)ds
0
p=1 . ) t
—l—iZ/ aj(s,x,u(s,x))D)]Cu(s,x)ds—i/ f(s,x)ds.
j=070 0

It is well known that the existence of a unique solution of (1) in X ;2* for some T* €
(0, T']is equivalent to the existence of a unique solution in X ;2* of the equation Ju =
0, cf. [1, 12]. We shall approach the latter problem via the Nash-Moser inversion
theorem. As a direct consequence of Lemma 1, X ;2 is a tame Fréchet space endowed
with the family of seminorms

|g|n,s2,T = Sup(lg(ta ‘)ln,sz + |Dtg(ta ')ln,Sz)a n = 07 15 27 e
[0,T]

The map J is smooth tame since it is defined in terms of sums and composition of
integration and linear and nonlinear partial differential operators. In order to apply
Nash-Moser theorem it is sufficient to prove that for every fixed u,h € X st’ the
equation DJ (u)v = h has a unique solution v = S(u, h) € X ;2 and that the map

S:X7P x Xy —> X7, (u,h) > v=_Su,h) (57)

is smooth tame.

Lemma 3 For every u,h € X3, the equation DJ(u)v = h admits a unique
solution v € X}z satisfying for every n € N the following estimate:

t
(e, a,, < Calu) (|h(0, Miprs, + /0 |Dih(r, -)|g+m2df), tel0,7]

(58)
. 3p-2
foreveryr > 28(p — 1) with Cy,(u) = Cyy25(p—1),y €xp(1 + ||u||3£_113p_2).
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Proof The proof follows the same argument as the proof of [1, Lemma 3.2], so we
just sketch it. A direct computation of the Fréchet derivative of J gives

7 —J
DJ(uyv = lim @ TV~ /@)
e—0 &

t p=l .
- v—i—i/ ap(s)va(s)ds—i-iZ/ a;(s,x, u)Djv(s)ds,
0 R 0
j=0

where

aj(s,x,u) 1<j<p-1
p—1

ao(s, x,u) + Y dwap(s, x,u)Diu,  j=0.
h=0

aj(s,x,u) =

Hence v is a solution of the equation DJ(u)v = h if and only if it is a solution of
the equation Jy, 4, p,n (v) = 0, where hg(x) := h(0, x) and for every u, ug, f € X}z
the map Jyo.u, 5 1 X7 — X7 is defined by

t
Jug.u. f () 1= v(z, x) —uo(X)—i-i/ a,(s)Dyv(s, x)ds
0
p=1 ) t
~|—i2/ Elj(s,x,u(s,x))D)]Cv(s,x)ds—i/ f(s,x)ds.
j=0"0 0

On the other hand, v solves Jp, 4, p,n(v) = 0 if and only if it is a solution of the
linear Cauchy problem

!ﬁu(D)v(t,x) = D,h(t, x) 59)

v(0, x) = ho(x)
where

p—1
Pu(D) = Dy +ap(0)Df + ) | a;(t, x, u)Dy.
j=0

Notice that a;(z, x, u) satisfy the same conditions as a;(¢, x, u). Hence, we can
apply Theorem 5 to (59), choosing n = 1 and € = 0. It follows that there exists
veX ;2 solution of (59) satisfying the estimate (58). This concludes the proof. O

Lemma 4 The map S defined in (57) is smooth tame.

Proof We observe that, fixed (uo, ho) € X7 x X7, the constant Cy,(u) in the
energy estimate (58) is bounded if u belongs to a bounded neighborhood of (ug, o).
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Evidently, from (58) we have:
. Vns, < Culhlyyrr 1 €[0.T]

for some C, > 0. Similarly, from the equation P,(D)v = D;h we get

p—1
1Dt sy < lapEDPo(t, Vs, + D1 (¢, ) DLv(E, sy + DAt sy
j=0

< C(Jv(z, ‘)ln-‘rp,sz + |h|n,sz,T)
for some C > 0. Hence

|S(u, h)ln,sz,T = Ssup (|v|n,82 + | Dt (e, ')|n,s2) = Cn|h|n+r’,sZ,T < Cal(u, h)anrr’,sz,T
tel0,T]

for some C,, > 0r' > 28(p — 1) + p. Then S is tame.
We now prove that DS is also a tame map. For (u, k), (u1, hy) € X}Z X XAT2 we
have

S(u—+cuy,h+ehy) — S(u, h) . Vg —U
= lim ,

DS(u, h)(uy, hy) = lim
e—0 & e—0 &

where v is a solution of (59) and v, is the solution of

ﬁu+£u1 (D)vg = Dy(h + ghy)
US(07 -x) = ho(-x) + Shl(()’ -x)

A direct computation shows that the function we = """ solves the Cauchy problem

ﬁqueu]we = fe
we (0, x) = h1(0, x)

where
p_lé(txu—l—su) ai(t,x,u)
AT 1) — AZET j
ﬁ=am—§:/ / Dlv.
j=0 ¢

We have the following: to prove that DS is tame it is sufficient to show that w, tends
to some wj in XAT2 for ¢ — 0. Indeed, this would imply that w; solves the Cauchy
problem

P.(D)wy = fi
w1(0, x) = h1(0, x)
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where

p—1
f1:= Sli_lz})fg = D/hy — Z;)awdj(t,x, wuDiv
/:

and so that w; will satisfy an energy estimate of the form

t
lwi(t, )55, < Cuu) (|h1(o, Mrtrsy T / | fi(z, ~>|,%+,,S2dr>, (60)
0
which would give, by the expression of f1,

lwi(t, ‘)ln,sz =< C;,(”)(lhlln+r’,s2,T + |h|n+r’,s2,T)a r >2r + pP— 1

for (u, h) in a neighborhood of (ug, ko) and (u1, k1) in a neighborhood of some
fixed (i1, h1) € X7 x X3#. Moreover, D;w; would satisfy a similar estimate, and
SO w1 is tame.

Let us so prove that w, converges in XST2 fore — 0.Lete; > Oand & > 0 and
consider the corresponding functions wg, and w,, which solve the Cauchy problems

Pu+£ju1(D)w£j =f8j =12
ij (07 -x) = hl(oa -x)
Then, it is immediate to see that w,; — wy, is a solution of
p—l )
Puteyuy (DY (We, — wey) = foy = for + D _(@;(t, %, u+ egu1) — @j(t, x, u + £1u1)) Diw,,
=0

(we; — we,) (0, x) = 0.

Then by the estimate (60) and the mean value theorem, we get

|w61 - w62|n,s2 S Cn(u +€1M1) ( Sup |f6‘1 - f62|n+r,s2

1€[0,T}
p—1

+ Z sup 9@, (1, x, u12)(e1 — £2)u1 D{we, ntr.s,
<o el0.T)

for some constant C,,(u + €1u1) > 0 and for some u; > between u + e1u; and
u + &2u1. Moreover, since H,, s, is an algebra, then

[0wa;(t, x,u12)(e1 — €2) 41 Diwe, lntr.s,

< |awaj (, x, u1,2)|n+r,szlsl - 82””1|n+r,s2|w52|n+r+j,s2~
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Then, |wg; — wg, |n,s, tends to O when 1 — &2 — 0if (u, &) is in a neighoborhood

of (1o, ho) and (u1, h1) is in a neighborhood of some fixed (i1, k1) € X7 x X7.

This shows that there exists a Cauchy sequence ¢; tending to O such that the

corresponding function w,; converges in X }2 and this implies that DS is tame.
Using the previous results we can prove by induction on m that

D" S(u, h)(ui, h1) -« - (um, hy) = w™

is a solution of the Cauchy problem

Pu(Dyw™ = f"
w™(0,x) =0
with
p—1 ] p—1 )
fmi=- Z duwd (1, x, Wity Diw™ 1 — Z 85]5” (f, X, U)thpm—1tm DIw™ 2
j=0 j=0
p—1
— = Z apaj(t,x, uuy-- ~um,1umD!Cw0,
Jj=0
wo = v, and satisfies, in a neighborhood of (u, k), (u1, h1), ... Um, h;y) the
estimate
m—1
|wm|n,sz,T <Cy Z |hj|n+r(m),s2,T
j=0

for some C,, > 0 and some r(m) € N, where hg := h. The proof follows readily the
argument in the proof of Lemma 3.3 in [1]. We leave the details to the reader. O

Proof of Theorem 1 We prove now the existence of a solution of the semilinear
Cauchy problem (1) that is of the equation Ju = 0. We recall that Ju = 0 if
and only if

t
u(t,x) = up(x) — i/ a,,(s)Dfu(s, x)ds (61)
0

p—1 . t
i Z/ aj(s,x,u(s, x))Dlu(s, x)ds —i—i/ f(s,x)ds.
oo 0
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By a linear approximation in ¢ we get u (¢, x) = w(t, x) + o(¢) for t — 0 where
p—1 )
w(t, x) = ug(x) —it | a,(0)DYuo(x) + Z a;(0, x, uo(x)) Diug(x) — £(0, x)

j=0

We also observe that, by the definition of J and w, we have:

p—1 )
d(Jw(t,x)) = dw+iap()Dfw+i Z aj(t,x, w)Diw —if(t,x)
j=0
p—1 ‘
= i(ap(t) — ap(O)DFug+i Y _ (a;(t.x, w) —a;(0, x, up)) Diug
j=0

p—1 i
+tap(t) DY |:ap(0)Dfuo + Y aj(0, x,up) Diug — £(0, x)}
Jj=0

p—1 i p—1
+ Z ta; (t, x, w)D)/C {ap(O)D,lguo + Z ar (0, x, uo)D)lguo — f(O, x):|
j=0 k=0

+i(f(0,x) — f(t,x)).

From this it follows that

[0: Jw(t, Hns, < sup lap(t) — ap(o)l uolntp,s

1€[0,T]
p—1 ]
+ Z laj(t, x, w) — a;(0, x, u0) | D{uoln,s, + | f(0, %) = f(t, X)|n.s
j=0
p—1
+1t sup |ap(®)] - ap(O)Dfuo + Zak(O,x, uo)Dfuo — f(0,x)
1€[0,T] =0
n+p,sy
p—1 p—1
+1 3 laj(t.x, w)DL | ap(©)DEuo + Y ax(0, x, u0) Diug — £(0,x)
j=0 k=0 nis
(62)

Taking w in a sufficiently small neighborhood of uo and applying the mean value
theorem to the right-hand side of (62) we obtain

[0, Jw(t, ')ln,sz < Ct (63)
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for a suitable constant C = C(n, 52, ap, ..., ap, uo, f). Now, fixed ¢ > 0 we define

! s
¢£(r,x)=/ p (1) @uws, ) ds,
0 &

where p € C*°(R) such that0 < p < 1 and p(s) = O for |s| < 1 and p(s) = 1 for
|s| > 2. Notice that ¢, = 0 for 0 <t < ¢. Let U and V be neighborhoods of w and
Jw respectively such that J : U — V is a bijection. We have that

|Jw = Pelns, = ‘/Ot (1 —p (Z)) 0 Jw)(s, -) ds

/026 (1=2(])) @I

2e
< C/ sds < 2C€2,
0

n,s2

IA

ds

n,s2

where C is the same constant appearing in (63). Similarly we obtain that

[0, (Jw — ¢£)|n,s2 < 2Cs.

Hence, taking 0 < ¢ < 1 we conclude that
[Jw — ¢€|n,s2,T < 2Ce.

If we choose ¢ sufficiently small, we have that ¢, € V. Then there exists u € U
such that Ju = ¢.. In particular we have Ju = 0 for 0 < ¢t < ¢, thatis u is a
solution in X3* of the Cauchy problem. The uniqueness of the solution comes from
standard arguments, cf. [1]. |
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